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Abstract

In this thesis I examine the role of Compton back-scatter of solar

flare Hard X-rays, also known as albedo, in the inference of the par-

ent electron spectrum. I consider how albedo affects measurements

of the energy and angular distributions when the mean electron flux

spectrum in a solar flare is inferred using regularised inversion tech-

niques.

The angular distribution of the accelerated electron spectrum is a key

parameter in the understanding of the acceleration and propagation

mechanisms that occur in solar flares. However, the anisotropy of en-

ergetic electrons is still a poorly known quantity, with observational

studies producing evidence for an isotropic distribution and theoret-

ical models mainly considering the strongly beamed case. First we

investigate the effect of albedo on the observed spectrum for a va-

riety of commonly considered analytic forms of the pitch angle dis-

tribution. As albedo is the result of the scattering of X-ray photons

emitted downwards towards the photosphere different angular distri-

butions are likely to exhibit a varying amount of albedo reflection, in

particular, downward directed beams of electrons are likely to produce

spectra which are strongly influenced by albedo.

The low-energy cut-off of the non-thermal electron spectrum is an-

other significant parameter which it is important to understand, as

its value can have strong implications for the total energy contained

in the flare. However, both albedo and a low energy cut-off will cause

a flattening of the observed X-ray spectrum at low energies. The Ra-

maty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data



base has been searched to find solar flares with weak thermal compo-

nents and flat photon spectra in the 15− 20 keV energy range. Using

the method of Tikhonov Regularisation, we determine the mean elec-

tron flux distribution from count spectra of a selection of these events.

We have found 18 cases which exhibit a statistically significant local

minimum (a dip) in the range of 10 − 20 keV. The positions and

spectral indices of events with low-energy cut-off indicate that such

features are likely to be the result of photospheric albedo. It is shown

that if the isotropic albedo correction was applied, all low-energy cut-

offs in the mean electron spectrum were removed.

The effect of photospheric albedo on the observed X-ray spectrum sug-

gest RHESSI observations can be used to infer the anisotropy in the

angular distribution of X-ray emitting electrons. A bi-directional ap-

proximation is applied and regularized inversion is performed for eight

large flare events viewed by RHESSI to deduce the electron spectra

in both downward (towards the photosphere) and upward (away form

the photosphere) directions. The electron spectra and the electron

anisotropy ratios are calculated for broad energy range from about

10 and up to ∼ 300 keV near the peak of the flares. The variation

of electron anisotropy over short periods of time intervals lasting 4, 8

and 16 seconds near the impulsive peak has been examined. The re-

sults show little evidence for strong anisotropy and the mean electron

flux spectra are consistent with the isotropic electron distribution.

The inferred X-ray emitting electron spectrum is likely to have been

modified from the accelerated or injected distribution by transport

effects thus models of electron transport are necessary to connect the

observations. We use the method of stochastic simulations to investi-

gate the effect of Coulomb collisions on an electron beam propagating

through a coronal loop. These simulations suggest that the effect of

Coulomb collisions on a uniformly downward directed beam as en-

visaged in the collisional thick target model is not strong enough to

sufficiently scatter the pitch angle distribution to be consistent with



the measurements made in the previous chapter. Furthermore these

simulations suggest that for the conditions studied the constraints in-

ferred in Chapter 4 are only consistent with a low level of anisotropy

in the injected electron distribution.
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1

Introduction

1.1 The Sun

The Sun, our closest star, is the ultimate source of almost all the energy on Earth,

making it one of the most significant objects to study. The mean distance between

the Earth and the Sun, with a value of 1.5 × 1013 cm, defines the Astronomical

Unit (AU), one of the standard measurements of astronomical distance. The

luminosity of the Sun has a value L⊙ = 3.83 × 1033 ergs s−1. This results in a

solar irradiance at Earth of 1.36× 106 ergs cm−2 s−1 (Cox, 2000), this value being

known historically as the solar constant, although it is now known that it varies

by ∼ 0.1% over the solar cycle. The Sun is a typical main sequence star with

a radius of 1R⊙ = 6.96 × 1010 cm and a mass of 1M⊙ = 1.99 × 1033 g ; it is

about 4.5 billion years old, putting it close to half way through its life-cycle. The

Sun is mainly composed of Hydrogen (70% by mass), the second most abundant

element is Helium (∼ 28%) and all other elements, often referred to as metals by

astronomers, make up only a small fraction (∼ 2%).

The Sun has a surface temperature of roughly 5800K and is classified in the

Harvard system as a G2V spectral type. G-type stars are yellow in colour and

have a surface temperature of between 5200 and 6000 K; spectral types are each

subdivided into 10 classes running from the hottest to the coolest, denoted by the

numbers 0 to 9, G2 is thus the third hottest class of G-type. The V represents
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1.1 The Sun

the luminosity class. Here stars are classified with roman numerals from the most

luminous hyper-giants classed 0 to the least luminous white dwarfs classed VII,

with V class main sequence stars sometimes referred to as yellow dwarfs.

As the closest star, the Sun is our prototype for understanding all stars as well as

astrophysical plasmas which cannot be reproduced in the lab. The Sun is the only

star that it is possible for us to study in detail, and until the 90s the only stellar

disk which we could directly image (Gilliland and Dupree, 1996). Fortunately, as

the Sun is a fairly average main sequence star, our understanding can be applied

to many other stars. This does not mean that the Sun is uninteresting, the Sun is

magnetically active, exhibiting sunspots on its surface and producing flares and

Coronal Mass Ejections (CMEs) which can have a direct effect on Earth.

There are still many unanswered questions about the physics of the Sun such as

the “Coronal Heating Problem” which seeks to explain why the outer layers of

the Sun’s atmosphere are much hotter than expected; the creation of the Sun’s

dipole magnetic field by the solar dynamo and the origin of solar flares also

still have open questions. Another significant contribution of solar studies to

recent advances in physics is the “Solar neutrino problem” - the measured flux of

neutrinos at Earth being lower than theoretically predicted. The solution to this

problem required changes to the Standard Model of particle physics, namely that

neutrinos, which previously were believed to be massless, must have mass.

1.1.1 The Solar Interior

In order to understand the physics of the Sun it is useful to first consider its

structure. The Sun is usually divided into concentric shells with the inner layers

below the visible surface being considered part of the solar interior and the outer

layers being considered the Sun’s atmosphere.

The structure of the interior of the Sun is usually considered to consist of three

regions, from the centre up to 0.3R⊙ which is the core where the energy that

drives the Sun is generated by nuclear fusion; between 0.3R⊙ and 0.7R⊙ is the

radiative zone where radiation is the main form of energy transport; and thirdly
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1.1 The Sun

between 0.7R⊙ and 1R⊙ is the convective zone where convective cells are the

dominant transport mechanism moving energy out to the solar surface.

The core of the Sun, with a central temperature of 15 million K and a density of ∼
150 g cm−3 (an electron density ne ≈ 1026 cm−3), is the source of its nuclear energy.

The process responsible for most (99%) of the energy release is the p-p chain

where hydrogen is fused into helium (Hansen and Kawaler, 1994). This is a highly

temperature sensitive process. There are several other nuclear burning processes

which occur on the Sun including the CNO-cycle where four Hydrogen nuclei

undergo fusion in a cyclical process involving interactions the heavier elements of

Carbon, Nitrogen and Oxygen.

The Radiative zone is characterised by electromagnetic radiation energy trans-

port. Here the density is high so that the high energy photons which are emitted

in the nuclear fusion processes scatter off many particles. The number of inter-

actions is such that it can take thousands of years for a photon to travel the

distance between the centre and the upper boundary of the Radiative zone.

Between the radiative and convective zones is the tachocline (from the Greek

tachos meaning speed) where there is a sharp change in the angular velocity of

the plasma. Here the rigid body rotation of the core can no longer be supported so

that the outer layers rotate differentially, with the equator moving ∼ 30% faster

than the polar regions; this differential rotation can be clearly seen on the surface

when tracking solar features. The tachocline is believed to be the source of the

solar dynamo responsible for the Sun’s strong toroidal magnetic fields.

Recently the study of helioseismology has allowed us to probe the solar interior.

Helioseismology works by studying the resonant vibrations on the solar surface

and comparing these observations with what would be expected from different

models of temperature and density.

1.1.2 The Photosphere

The photosphere is a thin (∼ 100 km) shell where the the opacity for visible

light drops to zero and is generally considered to be the surface of the Sun. The
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1.1 The Sun

name photosphere comes from photos the Greek for light. The photosphere has

a temperature of roughly 5700 K and is close to being a Black Body radiator.

The plasma number density here is roughly 1013 cm−3. As the visible surface of

the Sun the photosphere is one of the most studied aspects of the Sun, particu-

larly historically: ancient Chinese and Greek astronomers describe observations

of sunspots and telescopic observations of the solar surface were performed by

Galileo.

One of the most noticeable features on the photosphere are sunspots. These

appear as dark regions on the solar surface, which can usually be divided into a

dark umbra (umbra is Latin for shadow) in the centre surrounded by a lighter

penumbra (pen- comes from the Latin paene meaning almost). Sunspots appear

dark because they are cooler than the surrounding area; the strong magnetic

fields inhibit plasma flows and so the temperature drops.

Sunspots are one of the most obvious features of Active Regions; these are regions

of high magnetic flux passing through the solar surface into the solar atmosphere.

The magnetic field at the Photosphere is usually measured by Zeeman splitting

of emission lines. Solar flares almost invariably occur within active regions with

larger flares often occurring within large and complex active regions. Variations

in the visible number of sunspots was the first evidence for the activity cycle of

the Sun, roughly every eleven years magnetic activity reaches a maximum with

high numbers of phenomena such as flares and sunspots being observed.

Another slightly less distinct feature of the solar surface is granulation, When

viewed with a telescope the surface of the Sun appears mottled with bright and

dark patches roughly 1000 km (∼ 1′′) in diameter (Zirin, 1988). This is the result

of convective cells which transport plasma through the solar interior reaching the

photosphere. The bright patches correspond to the hot rising material, this is

surrounded by a darker ring where the cooled material is beginning to flow down.

Larger scale convective motion is also seen as super-granular cells ∼ 300 times

bigger.
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1.1.3 The Chromosphere and Transition Region

Above the photosphere is the chromosphere named for chromos the Greek for

colour, due to the bright red glow caused by Hydrogen alpha emission, although

this is typically only visible if the disk of the Sun is covered. The chromosphere is

notable for its temperature profile, several hundred metres above the photosphere

the temperature reaches a minimum of around 4000 K and then starts to rise.

The density continues to fall as height increases ne ≈ 1011 cm−3 at a height of

1000 km above the photosphere.

The chromosphere is usually viewed in narrow wavelength bands corresponding

to the energies of atomic transitions. These are usually emission lines, when an

excited electron makes a transition to a lower energy state it emits a photon, with

energy equal to the difference between the two states.

The chromosphere exhibits structural features. The most notable of these are

known as filaments or prominences, regions of cool dense plasma suspended by

strong magnetic fields. When viewed against the disk these appear as long dark

filaments but when seen on the limb these appear as bright structures extending

out of the Sun.

The chromosphere and the next layer, the corona, are separated by a thin layer

called the transition region. Here the temperature increases rapidly from 20000 K

to ∼ 106 K in several hundred km. This results in the Hydrogen rapidly becoming

ionised. This region is usually viewed in emission lines in the extreme-ultraviolet

(EUV).

1.1.4 The Corona

The corona, named after the Latin for crown, is generally considered to be the

highest layer of the solar atmosphere. The corona, with an electron density of

ne = 109 cm−3 at its base, is far more tenuous than the inner layers of the Sun

and as a result coronal emission is much weaker than photospheric emission, the

corona can usually only be seen if the disk of the Sun is blocked either naturally
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during a solar eclipse or artificially using a corona graph. In optical light the

corona can be seen as uneven streaks of light often structured into semi-circular

loops, cusp-like helmet structures and radial streamers; these can be seen due

to the Thompson scattering of light from the photosphere off the magnetically

dominated coronal gas. This emission is known as the K-corona. There are two

other origins of coronal light which are referred to as the the F-corona and the E-

corona (Golub and Pasachoff, 2009). The F-corona is characterised by Fraunhofer

absorption lines which are caused by the scattering of solar light by small dust

particles.

Coronal emission lines (which comprise the E-corona), on the other hand, tend

to be in the UV to soft X-ray range. When solar spectroscopy was beginning

several emission lines were detected which did not correspond to any transitions

observed in the laboratory. It was proposed that these lines were from a new

element, coronium, and this was a popular idea at the time as Helium had first

been detected on the Sun before subsequently being discovered on Earth. It was

eventually determined that this line was due to highly ionised iron and calcium

Grotian (1939) suggesting that the Corona was far hotter (∼ 1 MK) than was

previously assumed. One of the major unanswered questions in Solar Physics is

the coronal heating problem: the temperature of the corona is far higher than

would be expected.

The corona is highly dynamic with structures being formed and dissipating on

several different timescales. The corona is magnetically dominated and generally

believed to be the main site for magnetic reconnection and the acceleration of

particles in solar flares.

Beyond the corona (from roughly 3R⊙) lies the solar wind, a flow of charged

particles which streams out from the corona. Interactions between these solar

wind particles and the Earth’s atmosphere cause the polar aurorae.
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1.2 Solar Flares

A flare in the solar atmosphere is generally characterised by a sudden large emis-

sion of electromagnetic radiation. A solar flare generally lasts for tens of minutes

though the profile varies significantly in different wavelength ranges, often ap-

pearing as a sharp spike in the hard X-ray regime (that is X-rays with energy

of roughly > 10 keV) but as a broad slowly varying hump in soft (lower energy)

X-rays (Figure 1.1). The occurrence of solar flares tends to follow a power law dis-

tribution with the most energetic being the least common (Crosby, Aschwanden,

and Dennis, 1993). Related phenomena are microflares, which are believed to be

simply less energetic versions of solar flares and nanoflares which are linked to

small, currently undetectable, energy release events. Large flares may occur up to

100s of times a day at solar maximum. A typical flare is visible in all bands of the

electromagnetic spectrum but at optical wavelengths is greatly dominated by the

ambient thermal emission of the photosphere. Flares can most clearly be seen in

the Radio, EUV, X-rays and γ-ray regimes. Solar flares can have energy budgets

of up to 1033 ergs with typical flares releasing 1029 ergs of energy (Hannah et al.,

2011) making them some of the most energetic events in the solar system.

The temporal evolution of flares is typically divided into three stages: the preflare,

impulsive and gradual phases. In the preflare stage the levels of soft X-rays

gradually increase. This stage usually lasts several minutes. This is followed

by the impulsive phase which might last ∼ 20 seconds and is characterised by

a sharp peak in hard (higher energy) X-rays and sometimes γ-rays. Finally the

flare enters the gradual phase where the hard X-rays have died away and the soft

X-rays reach a maximum value then slowly decrease over several tens of minutes.

1.2.1 Flare observations

Flare observations have been made in almost every band of the EM spectrum

from radio waves to γ-rays.
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Figure 1.1: Flare temporal profile in different energy bands (Priest, 1984)

Flares were first witnessed by Richard Carrington and Richard Hodgson on

September 1 1859, when using telescopes to project an image of a sunspot group

onto a screen; they witnessed a localised increase in the brightness of the Sun

lasting only a few minutes (Carrington, 1859; Hodgson, 1859). This was a com-

paratively rare white light flare. The potential effect solar flares could have on the

Earth were almost immediately clear as the magnetometer at Kew Observatory
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recorded a magnetic crochet at roughly the same time as the flare; 17 hours later

there was a large geomagnetic storm which saturated the magnetometer readings

and caused numerous aurorae throughout the world (Stewart, 1861). It has been

suggested that this flare could be one of the most energetic events in the last 150

years (Cliver and Svalgaard, 2004).

White light flares (flares which have enough energy to change the visible bright-

ness of the Sun) are sometimes viewed as rare compared with flares seen in other

energy ranges such as X-rays; this is because for electron beam models, it requires

a large proportion of the flare energy to be transported to the photosphere. How-

ever, detailed high sensitivity studies have suggested that all flares could have

an optical component (Hudson, Wolfson, and Metcalf, 2006; Jess et al., 2008).

Measurements in this regime are difficult as the contrast is low against the bright

photosphere; a typical flare lasting an hour has an energy release rate ∼ 300

times lower than the adjacent photosphere (Ambastha, 2003). It is likely that

other factors also play a role in the production of white light flares.

Optical observations of the Sun are still a significant source of information about

solar flares, both for observations of white light flares and for contextual infor-

mation about the state of the photosphere, particularly for extrapolation of the

coronal magnetic field structure and for measurements of line emission.

The H-α (656.3 nm) line of the Balmer series is of particular significance to solar

flare studies. The line is caused by the transition of an electron between the

n = 3 and n = 2 energy states in atomic hydrogen. A flare can increase the

intensity in this line by several orders of magnitude compared with the adjacent

continuum emission. Historically, as this line is part of the visible spectrum a

large amount of solar flare measurements were made solely in H-α; thus , flaring

in this line was considered the most significant type of impulsive solar emission.

A commonly used method for classifying flares was based on the brightness and

apparent area of the flare in H-α (Zirin, 1988). Observations at this wavelength

are still frequently performed by ground-based telescopes as they tend to have

better angular and temporal resolution.
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Historically, radio is the second regime used to study solar flares, as radio wave-

lengths can penetrate the Earth’s atmosphere. Technology for studying the Sun

at these wavelengths first became available in the 1940s as a result of improve-

ments to radio receivers during World War 2 (Hey, Parsons, and Phillips, 1948).

The primary emission mechanisms in this regime are gyrosynchrotron and coher-

ent plasma emission. Radio emission is of particular interest as a complement to

X-ray studies as the keV electrons which emit in X-ray via bremsstrahlung also

emit gyrosynchrotron radiation in the GHz regime.

A significant fraction of coronal emission, both as part of the quiet corona and

from flares, is observed in the ultraviolet energy range, this is sometimes separated

into UV (Ultraviolet) at ∼ 3 − 10 eV and EUV (Extreme Ultraviolet) at ∼ 10 −
100 eV. This is predominantly line emission from the hot plasma which can be

greatly increased as the energy from the flare heats the ambient plasma in the

corona. As the plasma temperature is so high, for the most part hydrogen and

helium are completely ionised, so that many of these lines are ionised states of

heavy metals , most notably iron (Doschek and Feldman, 2010).

Flare Soft X-rays are commonly understood to be photons with energy in the

range ∼ 0.1− 10 keV though the division between SXR and Hard X-rays (HXR)

is somewhat ambiguous. As SXR are commonly defined to be the X-rays emitted

by electrons in a thermal distribution, and HXR are considered to arise from an

accelerated non-thermal distribution , the exact cutoff can depend on the charac-

teristics of the individual spectra. The range is generally considered to be between

10 and 40 keV. SXR photons are predominantly produced by bremsstrahlung

emission from hot thermal plasma and so tend to follow a similar time profile

to the EUV emission (Benz, 2008). High temperature emission lines are also

apparent at SXR energies.

Flares are typically characterised by their soft X-ray flux. GOES (Geostation-

ary Operational Environmental Satellite) measures X-rays in the 0.1 − 0.8 nm

wavelength range. Flares are then classified by letter: A, B, C, M and X, each

representing a decade in flux, they are then subdivided by number so for example

GOES A1 class is equivalent to 1× 10−5 ergs cm−2 s−1 and a C3 class flare would
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have a measured flux of 3 × 10−3 ergs cm−2 s−1. The highest X-ray flux flare de-

tected by GOES was on 4 November 2003; however, this saturated the detectors

which are not reliable at such high fluxes, other estimates suggest that its true

flux could be in the range from X24 to as high as X40 (Brodrick, Tingay, and

Wieringa, 2005).

Gamma rays are typically considered to be photons with energy greater than

several hundred keV. Emission from the Sun in this regime is observed in some,

often particularly strong, solar flares. Gamma ray emission is often associated

with energetic protons and ions accelerated in the solar flare process (see Vilmer,

MacKinnon, and Hurford 2011 for a recent review). There are several processes

which can create gamma-ray energy photons, producing both continuum and line

emission.

Continuum emission is generally considered to be produced by bremsstrahlung

emission from highly relativistic electrons, these can either be primarily accel-

erated electrons similar to those considered to produce the X-ray emission or

electrons produced in secondary decay processes by accelerated protons and ions.

At very high energies (≥ 300 MeV nucleon−1), proton-ion collisions can produce

pions which decay into photons of a very wide range in energies (centred on 67

MeV, half the neutral pion rest-mass). As this spectrum is relatively flat it is

usually only able to be detected at gamma-ray energies of ≥ 10 MeV.

Line emission is also visible in gamma-rays, this is created by nuclear de-excitations

when accelerated ions and protons interact with thermal ions. At 511 keV the

electron-positron line is visible. Positrons can be created by nuclear processes;

when these encounter ambient electrons, they annihilate, releasing a pair of

photons each with energy 511 keV. Another significant gamma-ray line is the

2.23 MeV neutron capture line. Accelerated protons can interact with ambient

ions releasing neutrons, which are then captured by ambient thermal protons

producing deuterium and emitting a gamma ray photon with an energy equal to

the binding energy of deuterium (2.223 MeV).

The fact that the gamma rays and hard X-rays follow similar spectral evolution

suggests that the ions and electrons are accelerated in the same process; however,
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Hurford et al. (2003, 2006) used RHESSI spectral imaging to determine the cen-

troid positions of the gamma ray footpoints and determined that for some flares

(3 out of the 5 examined) (Vilmer, MacKinnon, and Hurford, 2011) they were

not consistent with the positions of the HXR footpoints, suggesting that either

the transport mechanisms or the acceleration process differs between protons and

electrons.

1.2.2 Flare Theory

Figure 1.2: Flare loop during magnetic reconnection (Cliver et al., 1986)

In the simplest interpretation of the standard picture solar flares occur in 2D mag-

netic loops anchored at the photosphere extending into the corona (Figure 1.2).

Magnetic reconnection occurs in the corona, releasing energy which accelerates

particles and heats the ambient plasma. Many of these accelerated particles

stream along the field lines of the loop reaching the denser layers of the solar
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atmosphere, emitting radiation and heating the plasma. The hot plasma from

the lower atmosphere then “evaporates” filling the loop with hot dense plasma.

This then radiates in EUV and SXR, cooling down to preflare levels after several

tens of minutes.

This simplistic cartoon has been developed into many more detailed physical the-

ories. While there is no single simple model which fits the characteristics of all

flares one of the most popular 2D models has been the CSHPK model named after

the main initial contributors. It was initially developed by Carmichael (1964),

Sturrock (1966), Hirayama (1974), Kopp and Pneuman (1976). In this model

a prominence above an active region rises in between two regions of oppositely

directed open field-lines. The resulting magnetic collapse forms an X-point ge-

ometry where reconnection can occur.

The clearest features of a solar flare in X-ray images are the looptop and foot-

points. The looptop is usually seen in soft X-rays. The footpoints are much lower

down in the solar atmosphere and represent the location where the density of

plasma is great enough to stop the high energy electrons, thus causing a large

emission of X-ray radiation by collisional bremsstrahlung. Footpoints are gener-

ally seen in the hard X-ray regime, that is X-rays with energy of order tens of

keV. Flare HXR foot-points generally occur at a height of around 1000 km above

the solar photosphere (Battaglia and Kontar, 2011).

One feature of solar flare morphology which has had a significant amount of

interest recently is above-the-looptop hard X-ray sources. These were first noted

by Masuda et al. (1994): they appear as bright HXR sources above the SXR

loop which are simultaneous with the HXR footpoint sources. As the corona

is usually significantly less dense at these heights (n ≈ 109 cm−3), strong HXR

sources are not expected here. Several theories have been put forward to explain

these observations, for example, particle trapping could hold accelerated electrons

for longer at these heights. Originally they were believed to be thermal emission

from very hot ∼ 100 MK plasma (Tsuneta et al., 1997) but RHESSI measurements

suggest they have a non-thermal component.
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It is almost universally accepted that the Sun’s magnetic field is the source of

the energy for solar flares. In the prevalent model of solar flares, the motion of

plasma in the solar atmosphere causes a constantly changing magnetic field. This

will cause the magnetic field lines will become stressed, at some point they will

reconfigure to a lower energy state, this can cause a substantial amount of energy

to be released explosively. It is believed that in solar flares magnetic field lines

perpendicular to the photosphere connect, forming a loop, as shown in Figure 1.2.

As this is often a lower energy configuration, by conservation, the remainder of

this energy must be released in some form. This energy causes the acceleration

of ions, protons and electrons.

The relationship between the plasma and the magnetic field here is “frozen-in”:

this means that, depending on the dominant type of pressure, either the plasma

follows the magnetic field or vice versa. However, when this frozen-in condition is

broken reconnection may occur. The plasma conditions are usually encapsulated

in the ratio between gas pressure and magnetic pressure known as the plasma-β

i.e.

β =
pg

pm
=

2µ0nkBT

B2
(1.1)

In the photosphere, β is high and surface flows move the magnetic field lines,

shifting the footpoints of the magnetic loop. In the corona, on the other hand, β

is low and the plasma follows the magnetic fields.

A popular early mechanism for magnetic reconnection is Sweet-Parker reconnec-

tion (Parker, 1957; Sweet, 1958), named after Peter Sweet and Eugene Parker.

Sweet-Parker reconnection is a 2D steady state model where two sets of oppo-

sitely directed field lines come into contact. This creates a long narrow diffusion

region where reconnection can occur. However, this type of reconnection is too

slow to account for the rapid energy release seen in solar flares. Petschek recon-

nection (Petschek, 1964) addresses this problem by allowing a smaller diffusion

region.

Many reconnection models are now calculated numerically using dynamic 3D

codes in the framework of Magnetohydrodynamics (MHD); however, these are
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far more computationally intensive than the simple 2D steady state pictures his-

torically considered. Detail can be found on the theory of MHD in the solar

context in Priest (1984). The magnetic field in the corona is harder to determine

than that of the photosphere or chromosphere so that computational extrapola-

tions are usually used to estimate the magnetic flux in the corona.

The Hard X-ray emission is usually associated with an accelerated non-thermal

distribution of electrons. There are several proposed mechanisms by which coro-

nal electrons in a reconnection region might be accelerated: Direct acceleration

by electric fields, stochastic acceleration and shock acceleration (Miller et al.,

1997). Each proposed mechanism needs to account for the relativistic energies

needed to explain the hard X-ray emission. Direct acceleration can either be sub

or super Dreicer, where the Dreicer field is given by (Dreicer, 1959)

ED = 4πne

(

e3

mevth

)

ln Λ = e
ln Λ

λ2
D

, (1.2)

where vth is the thermal velocity, as the particles are initially assumed to be

part of a thermal distribution, and λD is the Debye length. This represents

the minimum level of electric field needed to freely accelerate particles out of a

thermal distribution, without being stopped by collisions. For electric field E a

particle with speed greater than

v = vth

√

ED

E
(1.3)

will be accelerated out of the thermal distribution. Super-Dreicer acceleration

requires stronger electric fields but shorter distances than Sub-Dreicer accelera-

tion.

The accelerated electrons will tend to stream along the magnetic field lines of the

loop; thus many will travel downwards against the density gradient of the Sun,

and in solar flare physics it is therefore often useful to consider the electrons as a

beam propagating through the ambient plasma of the solar atmosphere. In doing

so they will lose energy by a variety of processes such as radiation, but the most

significant is energy loss by binary Coulomb collisions with ambient electrons

and protons. As they propagate they will emit radiation, the most notable being
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X-ray bremsstrahlung and synchrotron radiation. Collective plasma effects will

also affect transport.

A significant question in the study of solar flare physics is what is the total energy

budget for flares and how is it distributed among particle acceleration, particle

heating, and Cornal Mass Ejection (CME) acceleration.

There are several methods used to estimate the total energy of the flare and one

is to consider the amount of free magnetic energy in the corona. Free magnetic

energy is the difference between the total magnetic energy in a volume and the

energy associated with the potential field. This free energy can then be compared

to the observed emitted energy either given by measurements of the total solar

irradiance (TSI) or estimated by combining the total power in various wavebands

(e.g. Emslie et al. 2004, 2005). A method often used to estimate the total energy

in solar flare accelerated electrons is to consider the power in Hard X-ray emission

given by the thick target model. These calculations are consistent, with a large

fraction of the total flare energy going into the acceleration of electrons. If there

is a CME associated with the flare this may also comprise a significant fraction

of the flare energy budget.

1.3 Hard X-rays

1.3.1 HXR production

The dominant mechanism for X-ray production in solar flares is the process of

bremsstrahlung, or braking radiation, as the accelerated electrons interact with

denser plasma lower in the solar atmosphere where they are slowed down (Kor-

chak, 1967). This deceleration in the electric field of the ambient plasma causes

the electrons to radiate.

The electron will predominantly be involved in binary collisions with significantly

heavier ions. The majority of these collisions will be long distance, resulting in

only small angle deflections to the trajectory of the electron so that the resulting

photons will be low energy. However some of the collisions will be close and cause
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Figure 1.3: Schematic diagram of bremsstrahlung interaction (Nakel, 1994). An

incident electron of energy, E0, momentum, p0, and polarisation, P , scatters off a

target nucleus of atomic number, Z, emitting a photon of energy, Ek, and momen-

tum, k, at an angle, θk, from its initial direction of travel. The scattered electron

has energy, Ee, and momentum, pe, at an angle, θe, from the initial momentum of

the electron.

large angle deflections, these can result in photons comparable in energy to the

kinetic energy of the incident electron (Figure 1.3). For electrons accelerated to

very high energies by the flare, the emitted photons can be in the X-ray or γ-ray

regimes.

The theory of light emission by an electron undergoing deflection in a Coulomb

field can be understood using classical physics, but for higher energy electrons

relativistic corrections are necessary and the quantum nature of light becomes

more significant. The process of an incoming electron with a given velocity vector

interacting with a heavier particle and emitting an X-ray photon is encapsulated

in a differential cross-section. A range of relativistic cross-sections have been

calculated using the Born approximation, many of these are tabulated in Koch

and Motz (1959). As in astrophysics the trajectory of the electron is unknown and

the X-ray source is only viewed from one position, the direction of the incoming

and outgoing electron and the outgoing photon are commonly averaged over,

leaving a cross-section differential only in photon energy.

The simplest form of the bremsstrahlung cross-section, Kramers approximation
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(Kramers, 1923), is given by

QKramers(ǫ, E) =
Q0mec

2

ǫE
, (1.4)

where E is the electron energy, ǫ is the photon energy, me is the mass of the

electron and, Q0 = Z̄2αr2
e ≈ 1.54 × 10−31 cm2, where α is the fine structure

constant re, is the classical radius of the electron and Z̄2 is a factor which takes

account of the contribution of elements heavier than Hydrogen. This form is

non-relativistic and so can be substantially different from the true cross section

thus it is mostly only applicable for analytic calculations.

While the simplicity of the Kramer’s Cross-section makes it useful for analytic

studies it is too inaccurate for most practical applications. A better approxi-

mation commonly used in solar flare studies is the non-relativistic Bethe-Heitler

cross-section (Heitler, 1954).

QNRBH(ǫ, E) =
Q0mec

2

ǫE
ln

1 +
√

1 − ǫ/E

1 −
√

1 − ǫ/E
, (1.5)

This cross section still has a fairly simple form and so can be used analytically

and requires very little computation. As a result of this it has been frequently

used in solar physics literature (e.g. Brown 1971, Piana 1994). However the

Bethe-Heitler cross-section is not relativistic so it becomes highly inaccurate at

high energies and thus is not sufficiently accurate for contemporary data analysis

(Haug, 1997).

The bremsstrahlung photon flux, differential in energy I(ǫ), can then be calcu-

lated by integrating over the distribution of electrons passing through the plasma

volume (Tandberg-Hanssen and Emslie, 1988).

I(ǫ) =
1

4πR2

∫

V

n(r)

∫ E

ǫ

Q(ǫ, E)F (E)dEdV , (1.6)

where F (E) is the electron flux differential in energy; R is the distance to the

observer; V is the volume of the source, and n(r) is the density at position r. This

can be simplified by replacing the integral of density over the volume with the
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average density multiplied by the total volume nV =
∫

V
n(r)dV . Substituting in

the Kramers cross-section this has the form:

I(ǫ) =
nV

4πR2

Q0mec
2

ǫ

∫ E

ǫ

F (E)

E
dE . (1.7)

The electron flux at arbitrary height can be calculated from a given initial electron

flux by assuming a model for the interaction between the ambient plasma and

the electron beam, the two most common which consider purely collisional energy

losses are thin and thick targets. These models are named by analogy to early

scattering experiments, where beams of electrons were fired at metal targets of

various thicknesses.

The assumption that the electrons are fully stopped, releasing all of their kinetic

energy is known as the thick target model. Collisional energy loss can be char-

acterised by assuming an equation of motion; as we are considering the Kramers

cross-section we will consider the non-relativistic form (Brown, 1971)

dE

dx
=

−Kn(x)

E
, (1.8)

where K = 2πe4 ln Λ = 2×10−18 cm2 is constant and Λ is the Coulomb logarithm

(Emslie, 1978).

The initial injected electron spectrum is usually taken to be a power law of spec-

tral index δ

F0(E0) = aE−δ
0 , (1.9)

where a is a scaling constant. This results in a power law form for I(ǫ) of spectral

index γ = δ − 1.

Thus the total power in accelerated electrons will be given by

Pbeam =

∫

F0(E0)E0dE0 =

∫ ∞

Ec

aE−δ
0 E0dE0 =

a

δ − 2
E2−δ

c (1.10)

where Ec is the low energy cutoff, the minimum particle energy in the non-

thermal distribution. To determine the total energy in the flare, knowledge of

the low energy cutoff is critical.
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The number flux of non-thermal electrons can be calculated in a similar man-

ner

Nbeam =

∫

F0(E0)dE0 =

∫ ∞

Ec

aE−δ
0 dE0 =

a

δ − 1
E1−δ

c . (1.11)

However, this results in estimates of 1037 electrons s−1 for large flares suggesting a

coronal loop with average density n̄ ≈ 1011 cm−3 and volume V ≈ 1027 cm3 would

be depleted in tens of seconds. This is known as the “electron number problem”.

A beam of electrons this large would carry a current of ∼ 1018 A. This sets up

an electric field which drives a return current moving in the opposite direction

(Knight and Sturrock, 1977) from the background electrons. While this alleviates

the number problem it represents an additional energy requirement. As with the

total energy to determine the total number of accelerated electrons it is necessary

to have an accurate value for Ec.

Bremsstrahlung is also known as free-free emission, as the electron is unbound

both before and after interaction with the ion, and is widely thought to be the pri-

mary mechanism of X-ray emission in solar flares. However, recent studies (Brown

and Mallik, 2008, 2009; Brown, Mallik, and Badnell, 2010) have suggested that

free-bound or recombination radiation ought to be accounted for when analysing

solar flare X-ray emission. In this case, the initially unbound electron interacts

with an ion and is captured by it, this releases a photon. While free-bound emis-

sion is unlikely to be a major contribution to the X-ray spectrum, the presence

of sharp lines can have a significant influence on inferred electron spectra if they

are not properly taken into account.

Hard X-rays can also be produced by Inverse Compton Scattering (Korchak,

1967). The scattering of light from massive particles is often split into three

regimes - Thomson scattering, Compton scattering and Inverse Compton scat-

tering. At low energies it is known as Thomson scattering and the photon ex-

periences no change in wavelength. Compton scattering is generally considered

when a high energy photon interacts with a low energy particle, the electron gains

some kinetic energy from the photon which is scattered to a lower energy. Inverse

Compton scattering is similar but the particle imparts energy to the photon. As

Compton scattering is responsible for the phenomena of Photospheric Albedo
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the details shall be considered extensively in Section 1.4. The inverse mechanism

occurs when a low energy photon interacts with a high energy electron and the

electron imparts some of its energy to the photon. As in a solar flare there are

likely to be high numbers of electrons accelerated to relativistic energies and the

photon flux of the Sun from the photosphere is predominately at eV energies

(500 nm ≈ 2.5 eV), some component of the observed spectrum could be due to

inverse Compton scattering.

As well as from free electrons, X-rays are also produced in the form of spectral

emission lines (Phillips, 2004). The solar flare can heat the corona to several

tens of MK producing even more highly ionised atomic species than those that

produce the EUV lines seen in the quiet corona. The most notable line features

at high energies are the Fe feature at 6.7 keV and Fe-Ni feature at 8 keV, these

are the result of the contributions of many lines including a large number from

Fe XXV and Fe XXIV (i.e iron atoms which have lost all but 2 and 3 electrons

respectively).

Hard X-ray bremsstrahlung emission can be produced by the interaction of many

sufficiently energetic pairs of charged particles. Alternative explanations proposed

to explain solar flare HXR observations include “inverse” bremsstrahlung from

proton (Emslie and Brown, 1985) or neutral (Karlický et al., 2000) beams inter-

acting with electrons in the solar atmosphere. However measurements of γ-ray

lines and timing of X-ray pulses (Aschwanden, 1996) suggests that deka-keV elec-

trons are the most likely production mechanism for solar flare hard X-rays.

1.3.2 HXR Observations

As the Earth’s atmosphere is opaque to X-ray emission, the first solar X-ray

measurements did not occur until the start of the space age. The first detection

of solar flare X-rays was made in 1958 from a balloon borne detector (Peterson and

Winckler, 1958), several balloons and rockets with X-ray instruments followed. As

interest in high energy solar physics grew, more long term satellite missions were

launched dedicated to measuring solar HXR. To test new technologies, balloon
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Figure 1.4: Spectrum of high energy flare emission from soft X-rays to gamma

rays (Aschwanden, 2004)

and rocket based X-ray detectors are still flown today, such as the proposed

FOXSI (Krucker et al., 2009) and GRIPS (Shih et al., 2009) missions.

The first satellites taking solar flare X-ray measurements were part of the Orbiting

Solar Observatory (OSO) program which lasted between 1962 and 1978, sending

a total of 8 satellites into low earth orbit aiming to study the Sun over an entire

11-year cycle. Each satellite had a slightly different design but most included

some form of hard X-ray detector.

In the 1980s several spacecraft were launched to study high energy aspects of

solar flares during the maximum of cycle 21, the most notable of these were: the

International Sun-Earth Explorer (ISEE-3) in 1978 (Anderson et al., 1978), Solar

Maximum Mission (SMM) in 1980 and the Japanese ASTRO-A (later renamed

Hinotori meaning firebird) in 1981 (Tanaka, 1983). The HXIS (Hard X-ray Imag-

ing Spectrometer) (van Beek et al., 1980) onboard SMM was the first instrument

to provide hard X-ray imaging of solar flares, though it was only sensitive up to

30 keV.

During the next decade, the most significant satellites studying hard X-rays were
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1.3 Hard X-rays

the Compton Gamma-Ray Observatory (CRGO) and Yohkoh (Kosugi et al.,

1991). The Burst and Transient Source Experiment (BATSE) (Fishman et al.,

1989) was a highly sensitive instrument designed to study gamma-ray bursts but

capable of detecting solar flares. Yohkoh (meaning sunbeam) used Fourier imag-

ing to produce flare images up to 100 keV.

1.3.3 RHESSI

The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite was

launched in 2002 by NASA with the primary aim of studying electron acceleration

in solar flares (Lin et al., 2002). RHESSI uses germanium detectors to perform

high precision spectroscopy. RHESSI can observe solar flares in the X-ray and

gamma ray regimes in the energy range 3 keV up to 17 MeV with a resolution

of up to 1 keV, an unprecedentedly high level. Due to the high photon fluxes

measured by RHESSI during a solar flare, the satellite is equipped with aluminium

attenuators which limit the X-ray flux to the detectors and thus the total counts

measured. Another method used by RHESSI to limit the amount of information

which must be committed to the onboard memory is count decimation: here, only

1 in every N measured counts are recorded, where N is a known number between

2 and 16. Throughout this project, flares in which the attenuator status or the

decimation status changes during the impulsive phase were discounted. RHESSI

uses a Solar Aspect System (SAS) to ensure that the spacecraft pointing with

regards to the solar centre is always known. The SAS uses three linear CCDs to

measure the position of three points on the solar limb and can thus be used to

determine the solar radius (Fivian et al., 2002).

For imaging RHESSI uses 9 collimators (Figure 1.5) with a grid at either end

of varying spacing. These grids rotate along with the satellite and provide a

modulated time profile depending on the angle of the incoming X-ray photon

(Hurford et al., 2002). A variety of algorithms are available to infer the positional

information from this modulated time profile and thus create images of solar flares

in HXR.
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Figure 1.5: Schematic diagram of RHESSI telescope (Hurford et al., 2002)

1.4 Compton Scattering of X-rays

The classical theory of light scattering by charged particles is known as Thomson

scattering and was proposed by J.J. Thomson in 1903. In this case the incident

light is viewed as a wave of oscillating electric and magnetic fields. The simplest

case is light incident on a free particle, such as an electron. The changing electric

field causes the electron to accelerate in that direction. This then results in dipole

radiation, mostly in the plane perpendicular to the motion of the electron, that

is the direction of the initial electric field. This process can clearly be viewed as

the electron changing the direction of the electromagnetic wave without altering

the frequency. The key parameter for Thomson scattering is the Thomson cross-

section which is a measure of the effective area over which the electron interacts

with the electromagnetic wave:

σT =
8π

3
r2
e = 6.65 × 10−25 cm2 , (1.12)

where

re =
e2

c2m2
e

, (1.13)

is the classical electron radius.
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The Thomson model works well for light of low energies, but once the energy of

the incident light is of the hard X-ray regime, or greater, experimental results

show significant digression from Thomson’s predictions. In particular, a shift in

the wavelength of the X-rays and directional beaming of the scattered X-rays are

observed. These effects were accounted for by Arthur H. Compton (Compton,

1923). Compton’s theory accounted for these discrepancies by considering the X-

ray as particles, that is X-ray photons, and by considering the relativistic effects of

the motion of the electron. Compton predicted an energy dependent cross-section

of

σc = σT
(1 + α)

(1 + 2α)2
, (1.14)

where

α =
ǫ0

mec2
, (1.15)

ǫ0 = hν0 being the energy of the incident X-ray photon.

The significant difference in Compton scattering is the change in energy, to the

scattered photon
1

ǫ
− 1

ǫ0
=

1

mec2
(1 − cos θ) , (1.16)

where ǫ is the energy of the scattered photon, ǫ0 is the energy of the initial

photon, and θ is the scattering angle. As momentum must be conserved overall,

the photon must impart energy to the electron, changing its energy.

The full cross-section was calculated by Klein and Nishina (Bai and Ramaty,

1978) using the framework of quantum electrodynamics (QED) and is thus the

expression used in all accurate calculations for the scattering cross-section of

light

σKN =
2πr2

e

α

{

1 −
[

2(α + 1)

α2

]

ln(2α + 1) +
1

2
+

4

α
− 1

2(2α + 1)2

}

. (1.17)

This tends to the constant Thomson cross-section in the low energy limit. When

dealing with photons of energy hν0 ≪ mec
2 the full Klein-Nishina formula is

generally not used.
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Also, the Thomson cross-section can be compared to the collisional cross-section.

The collisional cross-section is given by

σcollisional
∼= K

E2
, (1.18)

where K is defined in the same way as for Equation 1.8. For 10 keV electrons

this gives σcollisional = 2× 10−20 cm2. Clearly this is much larger than the Thom-

son cross-section implying that the X-rays are produced far higher in the solar

atmosphere than where any Compton scattering is likely to occur. Thus outward

emitted photons can be considered to escape the solar atmosphere unscattered.

On the other hand X-rays emitted downwards towards the Sun will encounter

an increasing density of electrons and are likely to be Compton scattered. There

is a probability that these photons will be scattered back in the direction of the

observer.

1.4.1 Effect of Compton Scattering on photon spectrum

When a solar flare is observed the recorded spectrum will likely be a mix of both

the primary spectrum produced by collisional bremsstrahlung and the Compton

scattered X-ray photons directed back towards the observer.

The reflectivity, which is defined as the ratio of scattered photons to incident

photons of the Compton scattering, is energy dependent, therefore the influence

of Compton backscattering can severely distort the observed photon spectrum

(Bai and Ramaty, 1978).

The drop off in reflectivity at low energies, as seen in Figure 1.6, is caused by

photoelectric absorption. The temperature in the solar atmosphere where Comp-

ton scattering is likely to occur is low enough that it is mostly made up of neutral

hydrogen. Thus photons can promote electrons to higher energy levels or pho-

toionise. For higher energies other elements become significant. This effect tends

to drop off as ∼ ǫ−3 (Fireman, 1974).

At low energies the Compton cross-section is thus roughly constant whereas at

high energies the Compton cross-section drops off roughly as ∼ ǫ−1 so higher
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1.4 Compton Scattering of X-rays

Figure 1.6: Variation of integral reflectivity with incident photon energy for

power-law and thermal spectra (Bai and Ramaty, 1978)

energy photons penetrate more deeply into the Sun. In accordance with Equa-

tion 1.16 these higher energy X-rays will lose more energy when they are Compton

scattered. This loss of energy results in the photons now seeing a much higher

cross-section and becoming unable to escape the solar atmosphere. Thus for en-

ergies of several hundred keV, photons are not significantly backscattered. This

results in the broad hump in reflectivity with a peak at 30 – 40 keV as seen in

Figure 1.6. Thus the expected effect of Compton scattering on a primary pho-

ton spectrum produced by bremsstrahlung emission can be calculated (Tomblin,

1972). The net effect is for the spectral index of the X-ray spectrum, γ, to be

greater at lower energies and smaller at higher energies (Santangelo, Horstman,

and Horstman-Moretti, 1973). This can therefore have an influence on the char-

acteristics of the electron spectra inferred from solar flare observations and thus

implications for our understanding of flare energetics.
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2

Forward Modelling of

Anisotropic Electron Spectra to

Determine the Effect of Albedo

To understand the effect of albedo on the observed X-ray spectra some simple

forward modelling was performed. We will first consider the angle-averaged case

and examine the commonly used theoretical energy-dependent electron distribu-

tions and their corresponding photon spectra. We will then consider the effect

variation in the angular distribution of the electrons has on the emitted photon

spectrum. Finally we will include the effect of photospheric albedo and how it

can distort the photon spectrum.

2.1 Energy Variation

When studying solar flare physics, it is important to understand the distribution

of accelerated electrons. These are often modelled using several simple analytic

functional forms. These forms are then fitted to observed spectra and used in the

modelling and simulation of the processes which occur during solar flares.

An important distinction has to be made between the accelerated or injected
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2.1 Energy Variation

electron spectrum F0(E) and the mean electron flux spectrum F (E) (Brown,

Emslie, and Kontar, 2003). This is the density weighted volumetric average,

given by:

F (E) =
1

nV

∫

V

F (E, r)n(r)d3r , (2.1)

where the average target proton density is given by n = V −1
∫

V
n(r)dV . The

product nV F is the maximum amount of information which can be inferred from

I(ǫ) without further assumptions.

X-ray emission from solar flares is often separated into two categories: Soft X-

rays (SXR), which are in the energy range 1-20 keV and are often associated with

a thermal distribution; and Hard X-rays (HXR) in the energy range 20-500 keV,

mostly emitted by a non-thermal accelerated electron distribution, which tends

to follow a power-law.

2.1.1 Thermal Distribution

A significant component, particularly at low (. 20 keV) energies, of observed solar

flare X-rays, is believed to come from thermal emission from high temperature

plasma (T ∼ 107 K) in the corona. It is characterised by an exponential decrease

of the X-ray flux with energy by I(ǫ) ∝ exp(−ǫ/kBT ). This is often modelled as a

single isothermal component which usually provides a good fit to the observational

data, though there have been some suggestions that a multi-thermal model might

be more suitable.

The thermal distribution of electrons is generally taken to have a classical Maxwellian

form:

F Thermal(E) =
23/2

√
πme

EM · E
(kBT )3/2

exp

(

− E

kBT

)

,

where T is the temperature, kB is Boltzmann’s constant (1.38×10−16 erg/deg(K))

and EM is the emission measure defined as

EM =

∫

V

n2
edV ,

where ne is the electron density in volume element dV and the integration is

performed over the entire source volume.
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2.1 Energy Variation

The efficiency of bremsstrahlung photon production for a thermal distribution

is generally seen as higher than for the non-thermal case. For a non-thermal

distribution fast electrons quickly lose the majority of their energy collisionally,

whereas, for a thermal distribution the electrons are in a state of equilibrium, with

electrons tending to exchange energy in collisions, thus, the electron population

can continue to emit high energy photons.

2.1.2 Single Power-law

Observations of solar flare X-rays frequently show evidence for a non-thermal

component. The most common way of modelling this is a single power-law de-

pendence of flux on electron energy:

F (E) = AE−δ (2.2)

where A is an arbitrary scaling constant.

The total power in the non-thermal part can be found simply by integration

Pnon−thermal =

∫ ∞

0

AE−δEdE. (2.3)

However this equation is divergent at the lower limit for indices δ ≥ 2. As this is

the case for the observed spectra (Dennis, 1985) a low energy cut-off, Ec, must be

imposed. The exact value of this cut-off is significant, as most of the non-thermal

energy is situated in the low energy part of the non-thermal distribution, thus

this has a significant influence on the value of Pnon−thermal and therefore the total

energy budget of the flare. It is also sometimes assumed that there is a maximum

energy to which electrons are accelerated and thus a high energy cutoff, Eh, is

assumed; in practice, when performing forward fits to HXR data, computational

limitations require a maximum energy to be specified. The general form used

when fitting a single power law therefore has the form:

F (E) =







0 if E < Ec

AE−δ Ec < E < Eh

0 E > Eh ,

The low and high energy cutoffs can have a significant effect on the shape of the

emitted photon spectrum. This was studied in detail by Holman (2003).
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2.1 Energy Variation

2.1.3 Broken power-law

Often when studying X-ray spectral data a single power law is too restrictive

and does not provide a good fit to the data. This can be improved by allowing

a double power law (Dulk, Kiplinger, and Winglee, 1992) with break energy Ec,

which is generally taken with the form (Brown et al., 2008) :

F (E) =















0 if E < 0
AE−δ1 Ec < E < Eb

BE−δ2 Eb < E < Eh

0 E > Eh

where B = AE−δ1+δ2
b . There are several possible explanations for this broken

power-law behaviour including a high-energy limit to particle acceleration. Other

explanations suggest that the initial distribution is a single power-law and that

the break is due to transport effects, such as non-uniform ionisation of the ambient

solar plasma (Kontar, Brown, and McArthur, 2002) or the effect of return-current

(Zharkova and Gordovskyy, 2006).

2.1.4 Resultant Photon Spectra

The spectral variation of emitted X-rays in solar flares is one of the most studied

aspects in solar flare physics.

While in general both the bremsstrahlung cross-section and the electron distri-

bution will be angularly dependent, for simplicity we will first consider the angle

averaged case. This is equivalent to averaging the angular dependent cross-section

over all solid-angles

Q(ǫ, E) =

∫ 2π

φ=0

∫ π

θ=0

Q(ǫ, E, θ) sin θdθdφ . (2.4)

and assuming that the electron distribution is isotropic in pitch angle.

A more accurate, fully-relativistic, solid-angle-averaged cross-section commonly

used when studying solar flares is the 3BN cross-section of Koch and Motz (1959).
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2.2 Angular Variation

The terminology 3BN denotes twice integrated (over the outgoing electron direc-

tions and emitted photon direction), where B stands for Born approximation and

N for non-screening. An approximate version was calculated by Haug (1997) us-

ing an expansion in terms of the squares of initial and final momenta in order to

be more computationally efficient.

The Born approximation is applicable when 2πZ
137β′

, 2πZ
137β

≪ 1. To compensate for

cases where this assumption starts to break down a Coulomb correction as a

function of initial and final electron velocities (v and v′ respectively) is included

as devised by (Elwert, 1939), is often applied to the cross-section. This has the

form:

C =
β(1 − e−2πZα/β)

β ′(1 − e−2πZα/β′)
β =

v

c
β ′ =

v′

c
(2.5)

As was calculated in Chapter 1, with a single power law and the Kramer’s

cross-section, the relation between the electron spectral index, δ, and the photon

spectral index, γ is given by γ = δ − 1 in the thick target case and γ = δ + 1 for

the thin target case. For more accurate cross sections and more complex energy

distributions the relationship between γ and δ does not follow these simple thin

and thick target relationships and in general will be dependent on energy. γ(ǫ)

is commonly defined as (Brown and Emslie 1988, Conway et al. 2003)

γ(ǫ) = − ǫ

I

dI

dǫ
= −d log I

d log ǫ
, (2.6)

This may be further complicated by additional distortions to the photon spectrum

such as photospheric albedo.

2.2 Angular Variation

As well as a distribution in kinetic energy, electrons will also have a distribution in

angle. The motion of the particle can be described by two angles: the pitch angle

with respect to the magnetic field, η, and the azimuthal angle around, φ. For

simplicity, we assume here that the variations in energy and angle are separable

i.e. that the distribution has the form F (E, η) ∝ G(E)H(η).
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As the ion-electron bremsstrahlung cross-section is dependent on θ, the angle be-

tween the initial electron velocity vector and the direction of the emitted photon,

both the energy and angular distributions of the electron spectrum will affect the

distribution of emitted X-rays and hence the observed spectrum at Earth.

The most commonly used angular-dependent cross-section in solar flare studies

is given by formula 2BN (Figure 2.2) from Koch and Motz (1959) with Coulomb

correction by Elwert (1939) included and is the form used here:

Q2BN (ǫ, E, θ) = Z2 α

2

r2
0

mc2

(

1

k

)

p′

p

(

8 sin2 θ
2Γ2 + 1

p2∆4
− 2

5Γ2 + 2ΓΓ′ + 3

p2∆2

−2
p2 − k2

T 2∆2
+

L

p′p

{

4Γ2(Γ2 + Γ′2) − 2(7Γ2 − 3ΓΓ′ + Γ′2) + 2

p2∆2

+
2k(Γ2 + Γ′Γ − 1)

p2∆
+

4Γ sin2 θ(3k − p2Γ′)

p2∆4

}

+ 4
Γ′

p2∆

+
ξT

p′T

[

4

∆2
− 6k

∆
− 2k(p2 − k2)

T 2∆

]

− 4ξ

p∆

)

C .

(2.7)

Here, the normalised photon energy k, initial and final electron kinetic energies

(Γ and Γ′ respectively) and corresponding initial and final electron momenta (p

and p′ respectively) are defined as:

k =
ǫ

mc2
, Γ =

E

mc2
+ 1 , Γ′ = Γ − k ,

p =
√

Γ2 − 1 , p′ =
√

Γ′2 − 1 .

Other intermediate quantities ∆, T , L, ξ and ξT are defined as

∆ = Γ − p cos θ , T =
√

p2 + k2 − 2pk cos θ , L = log

(

Γ′Γ + p′p − 1

Γ′Γ − p′p − 1

)

,

ξ = log

(

Γ′ + p′

Γ′ − p′

)

, ξT = log

(

T + p′

T − p′

)

.

The Coulomb correction C (Equation 2.5) as a function of initial and final

electron velocities (β and β ′ respectively) is included.
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The relation between the angles η, θ0, φ and θ is given by

cos θ = cos η cos θ0 + sin η sin θ0 cos φ , (2.8)

where θ0 is the angle between the emitted photon and the upwards direction (see

Figure 2.1).

Figure 2.1: Diagram showing the relevant angles. An electron, e−, emits a photon,

γ, by bremsstrahlung. The axes are defined such that the z-direction points down

towards the solar centre and the photon is emitted in the xz-plane. The electron

has pitch angle with respect to the z-azis, η, and azimuthal angle, φ, measured

from the x axis. The angle between the initial electron velocity vector and the

direction of the emitted photon is θ and the angle between the emitted photon and

the negative z-axis is θ0.

2.2.1 Downward Directed Beam of Electrons

One of the most common forms of pitch angle distribution is a beamed distri-

bution. In general a beam is any distribution satisfying 〈v‖〉 >> 〈v⊥〉 where v‖
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Figure 2.2: Polar diagrams of the 2BN ion-electron bremsstrahlung cross-section

(Equation 2.7). The angle made with the x-axis represents the angle between the

velocity vector of the incoming electron and the emitted photon and the radial

extent represents the size of the cross-section. For an electron with initial energy

100 keV emitting a photon of 30 keV (blue) 50 keV (yellow) and 80 keV (red).

After Massone et al. (2004).

and v⊥ are the particle velocity components perpendicular and parallel to the

magnetic field and 〈..〉 denotes averaged over the distribution. Strongly directed

distributions are popular because the electrons will tend to stream along the

strong magnetic fields common in solar flares. Another advantage in strongly

downward directed distributions is that they allow efficient transport from high

in the solar corona, where particle acceleration is often assumed to take place,

to lower in the solar atmosphere the where the X-ray footpoints are observed.

Strong beaming is one of the main components of the Collisional Thick Target

Model (Brown, 1972).

A common functional form for a beam is (Leach and Petrosian, 1983)

H(η) = exp

(

−(1 − µ)2

∆µ2

)

, (2.9)
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where µ = cos(η). The strength of beaming is determined by the parameter ∆µ

(Figure 2.3). This form is used because it has useful analytic properties.
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Figure 2.3: Polar diagrams of the assumed electron distribution H(η). The angle

made with the x-axis corresponds to the pitch angle η and the radial extent corre-

sponds to the magnitude of the electron distribution. Left: intermediate anisotropic

case ∆µ = 0.4. Right: Highly beamed case ∆µ = 0.1.

2.2.2 X-Rays from an Isotropic Electron Distribution

As the assumed electron distribution has azimuthal symmetry, an average cross-

section integrated over φ can immediately be defined, leaving only the angles

θ0 and η needed to characterise the angular distribution (c.f. Massone et al.

(2004))

Q′(ǫ, E, θ0, η) =

∫ 2π

φ=0

Q(ǫ, E, θ(φ))dφ . (2.10)

The angular distribution of the emitted X-rays with respect to the downward

direction can now be found by applying this cross-section to the assumed electron

spectrum and integrating over electron energy and pitch angle

I(ǫ, θ0) =
n̄V

4πR2

∫ π

0

∫ ∞

ǫ

F (E, η)Q′(ǫ, E, η, θ0)sin(η)dEdη . (2.11)
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Figure 2.4: Left: Polar diagrams of the assumed electron pitch-angle distribution

H(η) for the isotropic case (∆µ = 100). The angle made with the x-axis corre-

sponds to the pitch angle η of the electron and the radial extent corresponds to

the magnitude of the distribution. The electron flux with µ = 1 is normalised to 1.

Right: Polar diagrams of the emitted photon distribution I(ǫ, θ0) for the isotropic

case. The angle made with the x-axis corresponds to the angle θ0 and the radial

extent corresponds to the magnitude of the photon distribution. The energy distri-

bution is plotted for several energies: 10 keV (solid black), 40 keV (dotted purple),

150 kev (dashed green), 600 (dashed yellow) and 5 MeV (solid red). The photon

flux with cos θ0 = 1 is normalised to 1. As an isotropic electron distribution results

in an isotropic photon distribution at all energies, these lines are all the same, with

a slight discrepancy at higher energies due to the discretisation of the integral.

As a first test of this, the emitted photon spectrum from an approximately

isotropic electron distribution was calculated numerically by approximating the

integrals as sums

I(ǫi, θ0j) =
∑

k

∑

l

F (Ek, ηl)Q
′(ǫi, Ek, ηl, θ0j)sin(ηl)∆Ek∆ηl . (2.12)

As we are interested here in the shape of the electron spectrum and the angular

distribution of the emitted photons, the normalisation is not important; thus,

the term n̄V
4πR2 is omitted. The energy dependence of the electron spectrum is

taken to be a single power-law as solar flare x-ray observations are often well
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2.2 Angular Variation

fit by power laws, implying close to power-law electron spectra. For energy, a

pseudo-logarithmic binning scheme with 100 bins starting at 10 keV and going up

to 5 MeV is used for both electrons and photons. Due to the highly-anisotropic

nature of the cross-section at high energies, fine resolution in angle was needed.

Angles η and θ0 were binned in 90 evenly spaced bins between 0 and π whereas

φ was binned in 180 evenly spaced bins between 0 and 2π. The results show,

as expected, that an isotropic electron distribution produces an isotropic photon

distribution (Figures 2.4 and 2.5). As expected, the photon spectrum is the same

for all viewing angles, so that the lines of Figure 2.5 are identical.

The spectral index, as defined in Equation 2.6 was also calculated. This can be

seen to be close to a value of 3, which is expected in the thin target case with δ = 2

for the Kramers approximation. The discrepancy is due to the difference between

the relativistic 3BN cross-section and the simplified Kramers cross-section.
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Figure 2.5: Left: Photon flux for several selected values of θ0 - red 0◦, yellow

45◦, green 90◦, blue 135◦ and black 180◦. Right: Photon spectral index for several

selected values of θ0
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2.2 Angular Variation
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Figure 2.6: Polar diagrams of the emitted photon distribution I(ǫ, θ0). The angle

made with the x-axis corresponds to the angle θ0 and the radial extent corresponds

to the magnitude of the photon distribution. The energy distribution is plotted

for several energies: 10 keV (solid black), 40 keV (dotted purple), 150 kev (dashed

green), 600 (dashed yellow) and 5 MeV (solid red). The photon flux with cos θ0 = 1

is normalised to 1. Left: intermediate anisotropic case (∆µ = 0.4). Right: Highly

beamed case (∆µ = 0.1).
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2.2 Angular Variation

2.2.3 X-Rays from a Beamed Electron Distribution

The angular distribution of emitted photons from a beamed distribution can

be calculated in the same manner. The emitted photon distribution is close to

isotropic at low energies as the cross-section is fairly broad, however at high

energies it can be highly anisotropic.
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Figure 2.7: Photon flux for several selected values of θ0 - red 0◦, yellow 45◦, green

90◦, blue 135◦ and black 180◦. Left: intermediate anisotropic case. Right: highly

beamed case.

This method was performed for the cases of strong (∆µ = 0.1) and interme-

diate (∆µ = 0.4) Gaussian beam centred downwards, over an energy range 10

keV to 5 MeV (Figure 2.3). After applying this assumed electron spectrum to

the bremsstrahlung cross-section the angular dependent X-ray emission is found,

for lower energies this tends towards being closer to isotropic than the electron

distribution, but for high energies it is reasonably similar to the input electron

spectrum (Figure 2.6). The observed flux density (Figure 2.7) and spectral index

(Figure 2.8) for a range of angles of observation are then calculated.
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2.3 How albedo affects observations
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Figure 2.8: Photon spectral index for several selected values of θ0 - red 0◦, yellow

45◦, green 90◦, blue 135◦ and black 180◦. Left: intermediate anisotropic case.

Right: highly beamed case.

2.3 How albedo affects observations

As the albedo reflection contribution is energy dependent it can significantly

distort the photon spectrum, and this distortion depends on the details of the

primary photon spectrum. To accurately determine the effect of albedo, modelling

of Compton scattering in the solar atmosphere is needed. The most detailed

approach is to include the effects of radiative transfer as was done by Poutanen,

Nagendra, and Svensson (1996).

A more straightforward approach is to use Monte Carlo simulations as was done

by Bai and Ramaty (1978). These allow the Compton reflection from a variety

of assumed X-ray sources to be calculated. However, these calculations assumed

power-law electron spectra, and even if the initial accelerated electron spectrum

was a power-law, transport effects in the solar atmosphere are likely to cause

deviation in the emitting spectra.

A method for determining the albedo contribution from an arbitrary primary

photon spectrum is to use a Green’s function method. Magdziarz and Zdziarski
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2.3 How albedo affects observations

(1995) calculated an analytic angular dependent Green’s function (Figure 2.9),

which gives the probability a photon with energy ǫ′ will be Compton scattered to

energy ǫ and angle θ′. The calculations were performed assuming a cold plane-

stratified atmosphere and that the initial angular distribution was isotropic in the

downwards direction. The Green’s functions were calculated by performing Monte

Carlo simulations and fitting the results with functional forms based on previous

analytic results. This allows the reflected albedo spectrum to be calculated from

any given primary spectrum. The Green’s functions used here are calculated

using the analytic forms tabulated in Magdziarz and Zdziarski (1995).
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Figure 2.9: Albedo contribution to the X-ray spectrum for a source located at

µ′ = 0.9. Left: Green’s Matrix A(µ, ǫ′, ǫ)ǫ, for incident photons of energy ǫ′ =

20 (red), 50 (green), 150 (blue) and 500 (purple) keV. Right: Reflected (blue)

and total (red) spectra for a primary spectrum IP (ǫ) ∝ ǫ−2 normalised such that

IP (ǫ = 3keV) = 1. The spiked feature between 6 and 8 keV is due to the Ni and

Fe absorption edges (after Kontar et al. (2006)).

The Compton scattered spectrum IC(ǫ) resulting from primary spectrum a IP (ǫ)

is given by

IC(ǫ, µ′) =

∫ ∞

ǫ

IP (ǫ′)A(µ′, ǫ, ǫ′)dǫ′ (2.13)
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2.4 Effect of anisotropic electron distribution

where A(µ′, ǫ, ǫ′) is the Green’s function representing the Compton scattering

dependence on the variable µ′ = cos θ′, the cosine of the heliocentric angle of the

flare.

The total observed spectrum is found by summing the primary spectrum in the

direction of the observer and the albedo reflection for the heliocentric angle where

the flare occurred.

I(ǫ) = IP (ǫ) +

∫ ∞

ǫ

IP (ǫ′)A(µ′, ǫ, ǫ′)dǫ′ (2.14)

As well as Compton scattering, photoelectric absorption will also have a large

effect on the reflected spectrum (more detail of this effect is given in Section 1.4.1).

Below ∼ 10 keV the absorption cross-section, σA, is greater that the scattering

cross section σC , and so must be correctly incorporated into the albedo Green’s

matrix. As the level of photoelectric absorption is atomic species dependent,

for solar flare spectra accurate elemental abundances for the photosphere are

needed.

2.4 Effect of anisotropic electron distribution

To examine the effect of albedo the reflection from power-law distributions are

considered from several viewing angles.

The primary emission observed for a flare at heliocentric angle θ′ is expected to

come from a small range in angle in the direction of the observed. Considering

the geometry it is clear that the upward directed photon distribution can be

approximated as

IU(ǫ) = I(ǫ, θ0 = 180◦ − θ′) . (2.15)

The albedo reflected component, on the other hand, results from the photons

directed down towards the photosphere. This is likely to be a broader distribution

so that an average is taken over a downwards directed cone concentric with the
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2.4 Effect of anisotropic electron distribution

mean direction of the electron distribution and with half angle α. The downward

directed flux can then be defined as

ID(ǫ) =

∫ α

θ0=0

I(ǫ, θ0) sin θ0dθ0

∫ α

θ0=0

sin θ0dθ0

. (2.16)

The reflected component, due to albedo, of a given X-ray spectrum incident

on the photosphere can then be characterised by using the Green’s function A

dependent on observation angle θ′, described in Section 2.3. Thus, the total

observed X-ray spectrum will be given by the sum of the directly observed and

reflected components (c.f. Equation 2.14):

IO = IU + AID (2.17)

where IO is the total and IU , ID are upward and downward directed compo-

nents.

The upward and downward components of the photon flux are now given by

vectors. The observer directed component is defined as

IU = {IU(ǫi), ..., IU(ǫn)}, i = 1, .., n (2.18)

where ǫi corresponds to the centre energy of the photon bin and n is the number

of bins in photons space. The photosphere directed component is given by ID

defined in the same way. Similarly the angle dependent Green’s function is here

calculated in the form of a n× n Green’s matrix A. The vector representing the

total observed flux is simply given by

IO = IU + AID (2.19)

where A is the albedo matrix constructed from Green’s functions. This is defined

by

Aij(ǫi, µ
′) =

∫ ǫj+1

ǫj

A(µ′, ǫi, ǫ
′)dǫ′ . (2.20)

The integral is calculated in the wavelength domain due to the sharp features of

the Green’s function.
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2.4 Effect of anisotropic electron distribution

The albedo reflection for flares at a range of heliocentric angles (Kontar et al.,

2006) was then calculated (Figures 2.10 and 2.11). Emission close to the solar limb

shows very little influence from albedo as expected, and the expected power-law

in photon energy is recovered, however emission closer to the disk centre shows

a distinctive hump over the entire energy range due to the albedo reflection. For

the case of beamed electron spectrum at low energies, the primary photon flux

directed towards the observer for limb events is several times greater than that

for events on the disk centre as the albedo contribution is low at these energies.

This results in the total observed flux being greater for limb events.
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Figure 2.10: Left: Total observed photon flux for the isotropic case including

reflected albedo component for flares located at different places on the disk - disk

centre (cos θ′ = µ′ = 1) - black, µ′ = 0.9 - purple, µ′ = 0.8 - dark blue, µ′ = 0.7 -

blue, µ′ = 0.6 - bright blue, µ′ = 0.5 - dark green, µ′ = 0.4 - green, µ′ = 0.3 - bright

green, µ′ = 0.2 - yellow, µ′ = 0.1 - orange, and limb (cos θ′ = 0.01) - red. Right:

Photon spectral index for the total observed spectrum against photon energy

Due to the effect of albedo one of the most notable variations with changing

anisotropy is in the photon spectral index, calculated as in Equation 2.6. This

was calculated for both the primary photon spectrum for a range of viewing angles

and for the total observed spectrum, including albedo component, for a range of

positions on the solar disk. The influence of albedo can be seen more clearly in
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2.5 Other distributions
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Figure 2.11: Total observed photon flux including reflected albedo component

for flares located at different places on the disk, ranging from disk centre to limb

Left: intermediate anisotropic case. Right: Highly beamed case. Colours as in

Figure 2.10

flares close to the disk centre which show a large increase in γ above 200 keV,

and this is more pronounced in the strong beaming case (Figure 2.12).

2.5 Other distributions

While beamed distributions are the most popular model for the electron angu-

lar distribution there are many other potential angular distributions. Several

commonly considered distributions were assumed and the full photon spectra

including albedo reflection was calculated for a range of source heliocentric an-

gles.

2.5.1 Pancake

The pancake distribution is the opposite extreme to the beam; here, the majority

of the velocity distribution is perpendicular to the magnetic field i.e. 〈v‖〉 <<
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2.5 Other distributions
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Figure 2.12: Photon spectral index for the total observed spectrum against pho-

ton energy for flares located at different places on the disk, ranging from disk centre

to limb. Left: intermediate anisotropic case. Right: highly beamed case. Colours

as in Figure 2.10

〈v⊥〉. This distribution can be used to describe the behaviour of electrons at

magnetic mirror points. One common form for this distribution is:

H(η) = exp

(−(η − π/2)2

η2
0

)

(2.21)

Similar to the beamed case the strength of the pancake distribution is controlled

by the parameter η0 for η0 << 1 the electrons form a narrow distribution around

π/2, as η0 increases the distribution becomes much broader (Figure 2.13). Pan-

cake distributions have been suggested as an explanation for the looptop hard

X-ray sources first viewed by Yohkoh (Petrosian and Donaghy, 1999).

It has been suggested this distribution can be produced by betatron acceleration

in a collapsing magnetic trap (Karlický and Kosugi, 2004).
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2.5 Other distributions
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Figure 2.13: Polar diagram of the normalised angular variation of the assumed

electron distribution F (E, η). The angle made with the x-axis corresponds to the

pitch angle η of the electron distribution and the radial extent corresponds to the

magnitude of the electron distribution. Left: η0 = 0.07 Right: η0 = 1.1
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Figure 2.14: Polar diagram of the normalised angular variation of the assumed

emitted photon distribution I(ǫ, θ0). The angle made with the x-axis corresponds

to the angle θ0 and the radial extent corresponds to the magnitude of the photon

distribution. The energy distribution is plotted for a range in energies ranging from

10 keV (black) to 5 MeV (light blue). Left: η0 = 0.07, Right: η0 = 1.1. Colour

scheme as in Figure 2.6.
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2.5 Other distributions
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Figure 2.15: Photon spectra I against ǫ for several selected values of θ0 - red 0◦,

orange 45◦, yellow 90◦, green 135◦ and black 180◦. Left: η0 = 0.07 Right: η0 = 1.1
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Figure 2.16: Photon spectral index γ against energy ǫ for several selected values

of θ0 - red 0◦, orange 45◦, yellow 90◦, green 135◦ and black 180◦. Left: η0 = 0.07

Right: η0 = 1.1
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2.5 Other distributions
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Figure 2.17: Total observed electron spectrum including reflected albedo compo-

nent against photon energy for flares located at different places on the disk: disk

centre cos θ′ = 1 black, µ′ = 0.9 - indigo, µ′ = 0.8 - purple, µ′ = 0.7 - blue, µ′ = 0.6

- teal, µ′ = 0.5 - lime green, µ′ = 0.4 - yellow, µ′ = 0.3 -light orange, µ′ = 0.2 -

orange, µ′ = 0.1 - brick red, and limb (cos θ′ = 0.01) - red. Left: η0 = 0.07 Right:

η0 = 1.1
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2.5 Other distributions
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Figure 2.18: Photon spectral index γ for the total observed electron spectrum

including reflected albedo component against photon energy for flares located at

different places on the disk, ranging from disk centre cos θ′ = 1 (black) to limb

cos θ′ = 0.01. Left: η0 = 0.07 Right: η0 = 1.1. Colour scheme as in Figure 2.17
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2.5 Other distributions

2.5.2 Gaussian Loss-cone

Another commonly studied form of the electron angular distribution is the Gaus-

sian loss-cone (e.g. Fleishman and Kuznetsov 2010)

H(µ) =















exp
(

−(µ−µc)2

∆µ2

)

if µ > µc

1 −µc < µ < µc

exp
(

(µ+µc)2

∆µ2

)

if µ < −µc

This distribution can occur when the electrons are magnetically trapped in a

coronal loop. Electrons with pitch angle µ < µc are trapped in the less dense

region whereas electrons with µ > µc precipitate down to the higher density
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Figure 2.19: Polar diagram of the normalised angular variation of the assumed

electron distribution F (E, η). The angle made with the x-axis corresponds to the

pitch angle η of the electron distribution and the radial extent corresponds to the

magnitude of the electron distribution. Left: ∆µ = 0.07 Right: ∆µ = 0.3.
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2.5 Other distributions
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Figure 2.20: Polar diagram of the normalised angular variation of the assumed

emitted photon distribution I(ǫ, θ0). The angle made with the x-axis corresponds

to the angle θ0 and the radial extent corresponds to the magnitude of the photon

distribution. The energy distribution is plotted for a range in energies ranging from

10 keV (black) to 5 MeV (light blue) Left: ∆µ = 0.07 Right: ∆µ = 0.3 . Colour

scheme as in Figure 2.6.
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Figure 2.21: Photon spectra I against ǫ for several selected values of θ0 - red

0◦, orange 45◦, yellow 90◦, green 135◦ and black 180◦. Left: ∆µ = 0.07 Right:

∆µ = 0.3
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2.5 Other distributions
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Figure 2.22: Anisotropy (defined here as ID/IU ) against photon energy for flares

located at different places on the disk ranging from disk centre cos θ′ = 1 (black)

to limb cos θ′ = 0.01. Left: ∆µ = 0.07 Right: ∆µ = 0.3. Colour scheme as in

Figure 2.17.
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Figure 2.23: Photon spectral index γ against energy ǫ for several selected values

of θ0 - red 0◦, orange 45◦, yellow 90◦, green 135◦ and black 180◦.
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2.5 Other distributions
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Figure 2.24: Total observed electron spectrum including reflected albedo compo-

nent against photon energy for flares located at different places on the disk ranging

from disk centre cos θ′ = 1 (black) to limb cos θ′ = 0.01. Left: ∆µ = 0.07 Right:

∆µ = 0.3.Colour scheme as in Figure 2.17.
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Figure 2.25: Photon spectral index γ for the total observed electron spectrum

including reflected albedo component against photon energy for flares located at

different places on the disk ranging from disk centre cos θ′ = 1 (black) to limb

cos θ′ = 0.01. Left: ∆µ = 0.07 Right: ∆µ = 0.3. Colour scheme as in Figure 2.17.
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2.5 Other distributions

2.5.3 Sin-n

Another way of modelling a loss cone is a distribution of the form sinn (e.g.

Fleishman and Melnikov 2003)

H(µ) =















sinn
(

πη
2ηc

)

if 0 < η < ηc

1 ηc < η < π − ηc

sinn
(

π(η−π)
2ηc

)

if π − ηc < η < π
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Figure 2.26: Polar diagram of the normalised angular variation of the assumed

electron distribution F (E, η). The angle made with the x-axis corresponds to the

pitch angle η of the electron distribution and the radial extent corresponds to the

magnitude of the electron distribution Left: n = 2 Right: n = 6
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Figure 2.27: Polar diagram of the normalised angular variation of the assumed

emitted photon distribution I(ǫ, θ0). The angle made with the x-axis corresponds

to the angle θ0 and the radial extent corresponds to the magnitude of the photon

distribution. The energy distribution is plotted for a range in energies ranging from

10 keV (black) to 5 MeV (light blue). Left: n = 2 Right: n = 6. Colour scheme as

in Figure 2.6.
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Figure 2.28: Photon spectra I against ǫ for several selected values of θ0 - red 0◦,

orange 45◦, yellow 90◦, green 135◦ and black 180◦. Left: n = 2 Right: n = 6
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Figure 2.29: Anisotropy (defined here as ID/IU ) against photon energy for flares

located at different places on the disk ranging from disk centre cos θ′ = 1 (black)

to limb cos θ′ = 0.01. Left: n = 2 Right: n = 6. Colour scheme as in Figure 2.17.
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Figure 2.30: Photon spectral index γ against energy ǫ for several selected values

of θ0 - red 0◦, orange 45◦, yellow 90◦, green 135◦ and black 180◦. Left: n = 2

Right: n = 6
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Figure 2.31: Total observed electron spectrum including reflected albedo compo-

nent against photon energy for flares located at different places on the disk ranging

from disk centre cos θ′ = 1 (black) to limb cos θ′ = 0.01. Left: n = 2 Right: n = 6.

Colour scheme as in Figure 2.17.
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Figure 2.32: Photon spectral index γ for the total observed electron spectrum

including reflected albedo component against photon energy for flares located at

different places on the disk ranging from disk centre cos θ′ = 1 (black) to limb

cos θ′ = 0.01. Left: n = 2 Right: n = 6. Colour scheme as in Figure 2.17.
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2.5 Other distributions

2.5.4 Hemispheric average

Unrealistic simple two component distributions were also considered as these are

the most directly analogous to the bi-directional inversions performed in Chap-

ter 4.

The simplest two component distribution takes averages over hemispheres in both

the downward (0 < η < π/2) and upward (π/2 < η < π) directions. This

is similar to bi-directional inversions where the bremsstrahlung cross section is

averaged over α = 90◦. This distribution is taken to have the form:

F (E, µ) =

{

CDE−δ if 0 < η < π/2
CUE−δ if π/2 < η < π

The ratio of the scaling constants CD and CU gives the anisotropy of this distri-

bution

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 2.33: Polar diagram of the normalised angular variation of the assumed

electron distribution F (E, η). The angle made with the x-axis corresponds to the

pitch angle η of the electron distribution and the radial extent corresponds to the

magnitude of the electron distribution. Left: ratio of 2:1 Middle: ratio of 10:1

Right: ratio of 50:1 .
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Figure 2.34: Polar diagram of the normalised angular variation of the assumed

emitted photon distribution I(ǫ, θ0). Left: ratio of 2:1 Middle: ratio of 10:1 Right:

ratio of 50:1. Colour scheme as in Figure 2.6.
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Figure 2.35: Photon spectra I against ǫ for several selected values of θ0 - red 0◦,

orange 45◦, yellow 90◦, green 135◦ and black 180◦. Left: ratio of 2:1 Middle: ratio

of 10:1 Right: ratio of 50:1.
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Figure 2.36: Photon spectral index γ against energy ǫ for several selected values

of θ0 - red 0◦, orange 45◦, yellow 90◦, green 135◦ and black 180◦. Left: ratio of

2:1 Middle: ratio of 10:1 Right: ratio of 50:1.
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Figure 2.37: Anisotropy (ID/IU ) against photon energy. Left: ratio of 2:1 Middle:

ratio of 10:1 Right: ratio of 50:1. Colour scheme as in Figure 2.17.
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Figure 2.38: Total observed electron spectrum including reflected albedo compo-

nent against photon energy. Left: ratio of 2:1 Middle: ratio of 10:1 Right: ratio of

50:1. Colour scheme as in Figure 2.17.
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Figure 2.39: Photon spectral index γ for the total observed electron spectrum

including reflected albedo component against photon energy. Left: ratio of 2:1

Middle: ratio of 10:1 Right: ratio of 50:1. Colour scheme as in Figure 2.17.
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2.6 Conclusions

2.6 Conclusions

These examples show the effect of albedo can be a very significant influence on the

observed photon spectrum, particularly for hard spectra from flares located close

to the disk centre. It is also important to note, similar to the presence of a low

energy cutoff in the electron spectrum, that albedo can cause a flattening of the

observed photon spectrum at low energies. For an initial electron spectral index

δ = 2 the non-relativistic isotropic approximation gives an expected observed

photon spectral index of γ = 3, when albedo is not included. The inclusion

of albedo can lead to a reduction in spectral index of ∼ 1 at low energies and

an increase in spectral index of ∼ 0.5 at high energies for flares at disk center

(Figure 2.10).

The forward modelling shows very clearly that when there is significant beaming

in the emitting electron population it will result in a very strong albedo emission.

The effects of albedo are most pronounced near the disk centre where a greater

proportion of the scattered X-ray photons will be observed. For many cases with

substantial beaming, particularly close to the disk centre, the albedo component

can dominate over the primary component resulting in a spectrum with very

different characteristics to the assumed emitted power-law-like x-ray spectrum

(Figure 2.11). The effect of anisotropy can most clearly be seen via the energy

dependence of the photon spectral index, γ, for a strong beam this should rapidly

increase at high energies, for example, a strongly beamed flare with δ = 2 shows

an increase from γ ≈ 3 at 100 keV to γ ≈ 10 at 400 keV (Figure 2.12).

For non-beamed distributions (Figures 2.13 - 2.32) the influence of albedo on

the observed X-ray spectrum was much less significant as expected, as fewer

downward going electrons result in fewer downward emitted photons which can be

backscattered. However, all perpendicular distributions do show a slight influence

of albedo. For all of the transverse distributions the angular distribution at low

energies is much closer to isotropic than from downward-directed distributions

(Figures 2.14, 2.20 and 2.27).

For the strongly perpendicular distributions, such as the pancake distribution

with ∆µ = 0.07, (Figure 2.13) the variation with viewing angle is greater (Fig-
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ures 2.15 and 2.16). However, the influence of albedo on these distributions is

slightly smaller, due to the smaller fraction of downward-going photons. As these

emit photon distributions which are close to isotropic below 100 keV, where the

strongest influence of albedo occurs, the effect of albedo is similar to the isotropic

case at these energies, resulting in an increase in flux of ∼ 2 and an overestimate

of spectral index of ∼ 0.5 for events on the disk centre (Figure 2.18).

On the other hand for high energies at high viewing angles there is a greater

amount of upward going photon flux, so the effect of albedo is negligible, even

compared to the isotropic case (for example Figure 2.22). As albedo affects even

transverse distributions to a varying degree with position on the disk centre, it

should be considered when performing centre-to-limb studies. As the broader

Gaussian loss-cone distributions and the sinn distributions are very similar to

each other (Figures 2.19 and 2.26) they exhibit similar signatures (Figures 2.25

and 2.32). As with the beamed distributions the broader perpendicular distribu-

tions produce spectra which are similar to the isotropic distribution.

The hemispheric averaged cases (Figures 2.33 - 2.39) show a similar variation to

the downward beam but with a smaller increase in γ at high energies as would

be expected, as the most significant contribution to the albedo spectrum occurs

close to µ = 1 (Figure 2.39). The comparison between the anisotropy in the

electron spectrum and the corresponding anisotropy in the photon spectrum can

most clearly be seen in Figure 2.37, the ratio between ID and IU only approaches

the ratio between the downward and upward going electron at high energies and

for low heliocentric angles.
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3

Effect of Albedo on Data

Inversion

3.1 How Regularised Inversion works

In physics and mathematics there are many questions which are considered in-

verse problems. Generally solving a problem in physics involves applying input

parameters to a model and determining the observable quantities, this is called

the forward or direct problem; the reverse of this, the inverse problem, then at-

tempts to determine which input parameters gave rise to a set of observations.

These are problems involving a a set of measurements which are given by a convo-

lution over the set of source quantities we would like to find. Historically, of these

pairs of forward and inverse problems, the forward problem is often considered

first as it tends to have been the one most straightforward to solve. The common

feature of most of the problems considered inverse problems is that they are ill-

posed in the sense of Hadamard, Kirsch (1996). Under this definition to be well

posed a problem must have a solution which is extant, unique and stable.

Considering an operator A acting on variable x to produce data b, the forward

problem corresponds to the equation b = Ax. To solve the inverse problem and
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3.1 How Regularised Inversion works

determine x naively we should be able to invert the equation to achieve

x = A−1b ; (3.1)

however this in general may not meet any of the requirements for well-posedness.

The equation may not have a solution and if it does it often will not be unique

or stable.

There will also be uncertainty associated with the data, b = Axtrue+δb, and while

these perturbations δb may be small, direct inversion will no longer produce the

true solution and in many cases will be substantially different from xtrue. For

an ill-posed problem, small variations in the data are greatly magnified in the

solution. This is particularly true in the case of experimental data which can

contain significant uncertainties. In order to reliably solve this, further informa-

tion in the form of constraints must be added. These are often constraints on the

smoothness of the solution vector.

In practice, the data we are dealing with is never a continuous function but a vec-

tor of discrete measured points b so the linear problem must be approximated by

the matrix equation b = Ax. This discretisation is likely to make determination

of the solution vector, x, more difficult and amplify errors due to noise.

The classical method of finding this inverse, particularly when the system of equa-

tions is overdetermined, is the least squares approach, which seeks to minimise a

slightly reformulated version of the problem (e.g. Hansen 2010):

‖Ax− b‖2 = min . (3.2)

Here ||x|| represents the Euclidean norm of the vector x a measure of its “length”

defined as ||x|| =
(

∑N
i=0 x2

i

)1/2

. If x and b are of the same dimension this is

identical to Equation 3.1. However this direct least square approach generally

produces a very unstable result when the problem is ill-posed. This can occur

when the solution is unstable, that is, small changes in the data result in large

changes to the solution, this is common when solving an integral equation.

One method of finding the solution is to solve the Lagrange multiplier prob-

lem

L(b) ≡ ‖Ax− b‖2 + λ‖x‖2 = min , (3.3)
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3.1 How Regularised Inversion works

where the constraint term ‖x‖2 aims to reduce the large oscillations which are

caused by noise amplification, λ is the regularisation parameter, a variable which

determines the degree of smoothness imposed on the solution. This method is

known as Tikhonov regularisation (Tikhonov, 1963)

The solution for a given value of λ can be analytically given by (Craig and Brown,

1986)

xλ = Rb = (ATA + λI)−1ATb (3.4)

However there are several practical problems in computing this (Hansen, 1992).

One way of efficiently computing the solution is to use the method of Singular

Value Decomposition (SVD) (e.g. Craig and Brown 1986) or its extension Gener-

alised Singular Value Decomposition (GSVD). The matrix A can be decomposed

into the form

A = USVT , (3.5)

where U and VT are orthogonal i.e. UUT = UTU = 1 and VVT = VTV = 1

and S is a diagonal matrix whose values are the singular values of A, that is

S = diag(σi). The singular values are the eigenvalues corresponding to the shifted

eigenvalue problem AUi = σiVi, ATVi = σiUi.

Substituting these into Equation 1.3 gives (Bertero, Demol, and Pike, 1985)

xλ =

N
∑

i=1

σi

σ2
i + λ

(b · vi)ui (3.6)

There are several methods available to select the regularisation parameter. The

most straightforward is the discrepancy principle (Groetsch, 1984; Morozov, 1967).

Here

‖(Axλ − b)‖2 = ||δb|| (3.7)

Often in practice the calculated value for λ will not provide the best balance be-

tween smoothing and the data, particularly if there are other physical constraints

on the solution which are not accounted for by the method, such as positivity.

For the optimum value for the regularisation parameter, the normalised residuals,
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3.1 How Regularised Inversion works

given by rk = ((Ax)k − bk)/δbk, should be uncorrelated and have a distribution

which is close to Gaussian.

A further parameter, α, tweaking the regularisation parameter can be imple-

mented to manually adjust the solution. This gives additional freedom to obtain

a solution with acceptable statistical properties.

‖(Axλ − b)‖2 = α||δb|| (3.8)

However, Equations 3.7 and 3.8 consider only the total error, but it can be more

instructive to consider the deviation weighted by the error, given by

‖(Axλ − b)(δb)−1‖2 = α (3.9)

A complementary method is to consider the cumulative residuals, Cl, given

by

Cl =
1

l

l
∑

k=1

rk (3.10)

This is close to the common concept of χ2, which is calculated in a similar man-

ner

χ2 =
1

N

N
∑

k=1

r2
k (3.11)

For Gaussian errors the cumulative residuals should decay to zero faster than

±1/
√

k and χ2 should be close to 1.

Depending on the nature of the inverse problem, ‖x‖ may not be the most ap-

propriate constraint, and a term of the form ‖Lx‖ is applied instead, where L is

a linear matrix representing the constraint conditions. The choice of L is related

to the constraint applied to the solution and when solving a physics-based inverse

problem should be motivated by the underlying physics.

Often the constraint matrix, L, is an approximation of a differential operator.

For example, one finite difference approximation of the first derivative operator
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3.1 How Regularised Inversion works

has the form

D1 =















−1 0 · · · 0 0
1 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0
0 0 · · · 1 −1















(3.12)

The Tikhonov functional now has the form

L(b) ≡ ‖Ax− b‖2 + λ‖Lx‖2 = min (3.13)

And consequently the solution for a given value of λ is now given by (Hansen,

1989)

xλ = (ATA + λLTL)−1ATb . (3.14)

The solution to this cannot be found in terms of a Singular Value Decomposition

and its extension Generalised Singular Value Decomposition must now be used

(Kontar et al., 2004). This is similar to SVD but applies to the pair (A,L), when

L = 1 it reduces to SVD.

The decomposition now takes the form

A = U





diag(σA
i ) 0

0 (1)N−P

0 0



W−1 L = V(diag(σL
i )0)W−1 (3.15)

The solution, in terms of the singular values and vectors is now (Hansen, 1992)

xλ =
M
∑

i=1

(

σ2
i

σ2
i + λ

(b · ui)wi

σA
i

)

+
N
∑

i=M+1

(b · ui)wi (3.16)

where σi = σA
i /σL

i

The error associated with Tikhonov Regularisation can be estimated in terms of

the discrepancy between the regularised solution xλ and the true solution xtrue

(Aki, 1980).
δx = xλ − xtrue

= Rb− xtrue

= R(Axtrue + δb) − xtrue

= (RA− 1)xtrue + Rδb ,

(3.17)
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3.2 RHESSI Measurements

This error has two terms, the right hand side gives the magnification of the data

error by the process inversion. The second term gives the spread in the solution

due to the smoothing imposed by the regularisation, it can be thought of as a

horizontal error.

In the case where the amount of additional smoothing is low Rλ→0 → A−1 thus

RAλ→0 → 1. The resolution of each point can be estimated by considering the

matrix RA, as a greater amount of smoothing is applied this matrix diverges

from the identity, rows of the matrix tend to show peaks, centred on the diago-

nal, of increasing width with increasing λ (Hannah and Kontar, 2012). The Full

Width at Half Maximum (FWHM) can then be used as an estimate of the hori-

zontal resolution of the solution (Christensen-Dalsgaard, Hansen, and Thompson,

1993).

3.2 RHESSI Measurements

3.2.1 Photon measurements

The data which we consider here is taken from flare observations made by RHESSI

which can measure X-rays in the range 3 keV up to gamma rays of 17 MeV with a

resolution of up to 1 keV (FWHM) at the lowest energy and ∼ 10 keV at several

MeV. RHESSI can achieve this resolution using 9 germanium detectors which are

split into front and rear segments.

The telescope is the first to allow imaging in this energy range. This is possible

as RHESSI uses a set of 9 rotating collimators which are spun as the spacecraft

rotates. At either end of each collimator is a tungsten grid of parallel slats. As

RHESSI rotates, the amount of X-rays blocked by each grid will vary, depending

on the position of the sources in the telescope’s field of vision. Thus the positional

information of the hard X-ray source is converted into the temporal variation in

the detector counts; this is analogous to a Fourier transform and so many math-

ematical methods exist for recovering the directional information and producing

an image.
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3.2 RHESSI Measurements

3.2.2 Spectral Response Matrix

In order to characterise the relationship between incident photons and measured

counts detailed knowledge of the instrument response is needed (Smith et al.,

2002). This information is encapsulated in a matrix usually referred to as the

SRM (Spectral Response Matrix) or the DRM (Detector Response Matrix). The

SRM is M x N in size where M and N are the number of bins in photon and

count space respectively (Figure 3.1). The SRM is calculated as the sum of 9 sub

matrices reflecting the different contributions to instrument response for each

detector used. The main contributions accounted for are: absorption in the grids

mylar blankets and cryostat windows; noise and the low energy cutoff due to the

spacecraft electronics; Compton scattering both into and out of the detectors;

Compton scattering of X-rays off the Earth’s atmosphere and radiation damage

of the detectors. Some of these aspects are fairly constant, such as the absorption

due to the imaging grids, however others have changed significantly since RHESSI

was launched such as the degradation of the detectors due to radiation damage

so the time interval of observation is needed when calculating the SRM.

3.2.3 Background

As RHESSI orbits in low Earth orbit (LEO), a significant component of the

detected signal is due to charged particles in the Earth’s atmosphere directly

interacting with the detectors and giving false counts. Of particular concern

is the SAA (South Atlantic Anomaly), this is a region where the geomagnetic

field is weaker so the inner van Allen belt is closer to the surface of the Earth,

resulting in a high number of energetic charged particles in this area. RHESSI

frequently passes through this region in its orbit, and its detectors are usually

shut off to avoid overloading the spacecraft memory with spurious counts. As

RHESSI changes geomagnetic latitude during its orbit it encounters a varying flux

of charged particles and secondary photons, produced in cosmic ray interactions

with the Earth’s atmosphere, which will also contribute to the background.
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Figure 3.1: RHESSI Spectral Response Matrix for the combined front segments

commonly used for analysis (all except 2 and 7). A logarithmic colour scale is used

to highlight the non-diagonal components.

There is also background from solar sources during times of high solar activity.

There may be several flares in a short period of time and the signals from each of

these might overlap. These overlapping flares may be from different active regions

in different parts of the solar disk. In this case imaging-spectroscopy techniques

may be applicable to separate out the flare of interest; however, they are often

from the same active region.

The standard method of background subtraction (Schwartz et al., 2002) is to take

the average of the count measurements just before and just after the flare. There

are several more sophisticated approaches built into OSPEX (Object Spectral Ex-

ecutive), the standard RHESSI spectral analysis package1, which allow multiple

time intervals to be selected and linear, quadratic or cubic fits applied to estimate

1http://hesperia.gsfc.nasa.gov/ssw/packages/spex/doc/ospex explanation.htm
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3.2 RHESSI Measurements

the background, and this is particularly useful for long flares as the background

is likely to change over the course of the flare. These background estimates can

be the same over the full energy range, or different fits over different background

intervals can be selected for different energy ranges. When the count measure-

ments before and after the flare appear unlikely to produce a reliable estimate of

the background, information from adjacent orbits may also be used.

3.2.4 Pulse Pileup

Another way in which the count spectrum can be distorted is pulse pileup. This

occurs when two low-energy photons impact on a detector in-between detector

readouts so that they are counted as one photon with the sum of their energies.

This is a significant problem when the count rate is high, but there is always

a finite probability of it happening. The general rule of thumb is that pileup

becomes a significant when the count rate is ∼ 2 × 104 counts s−1 detector−1.

When count rate is very high, pulse pileup can also be the result of 3 photons

arriving in a short period of time (< 1µs), this is known as second-order pileup.

The effect this has on the detected count rate is to decrease the peak value at

low energies and to add a “shoulder” at higher energies (roughly twice the peak

energy value).

Software has been developed to attempt to characterise the level of pulse pileup

for any given time interval of RHESSI observations and to correct for it during

spectral analysis. However,it is a difficult effect to fully account for as it is an

off-diagonal contribution and is non-linear, the number of pileup photons at a

given energy depend strongly on the overall shape of the spectrum. Therefore it

cannot be treated in the same way as the other distortions to the count spectrum

which are accounted for in the SRM. The tool hsi_pileup_check uses parame-

ters derived empirically from calibration tests to estimate the amount of pileup

for any given time interval. When the spectrum for a given observation time

interval is accumulated an attempt to correct for pileup can be made using the

routine hsi_correct_pileup which removes the estimated value of pileup from

the measured counts.
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3.3 Regularised Inversion of RHESSI Data.

3.3 Regularised Inversion of RHESSI Data.

The general integral relating the electron spectrum to the photon spectrum is of

the form of a Volterra integral of the first type:

g(x) =

∫ x

a

k(x, y)f(y)dy . (3.18)

The properties of this equation are well known and solving it is an ill-posed

problem (Bertero, Mol, and Pike, 1988), therefore regularised inversion techniques

are appropriate for solving this equation to determine the electron flux (Craig and

Brown, 1986).

While analytic methods of inverting hard X-ray data to determine the electron

spectrum were first proposed in Brown (1971), these rely on having precise knowl-

edge of the observed X-ray spectrum, and to solve this for arbitrary noisy discrete

data regularised inversion methods are needed. However, regularised inversion of

hard X-ray data was not routinely used until the launch of RHESSI; the reason for

this is that previous hard X-ray telescopes did not have the resolution to justify

using regularised inversion. Previous telescopes had δǫ/ǫ ∼ 0.3 whereas RHESSI

has δǫ/ǫ ∼ 0.01 at 100 keV. The high resolution of RHESSI data compared with

previous instruments allows a range of inversion techniques to be applied which

were previously unused in the field solar flare physics, some of which are described

in Craig and Brown (1986).

The method of Tikhonov regularisation was first applied to solar X-ray data by

Piana (1994) who performed tests of the method using simulated count spectra

and found it was robust at determining the electron spectrum. The method was

then applied to RHESSI flare observations by Piana et al. (2003).

The problem of electrons to X-ray counts can be summarised in the matrix equa-

tion

C = MF , (3.19)

where M, F, and C are matrices which represent the cross-section, mean electron

flux spectrum and observed count spectrum respectively. Here M is a matrix
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3.3 Regularised Inversion of RHESSI Data.

defined by M = SQ where Q is a matrix representing the bremsstrahlung cross-

section, in this case the approximation to the 3BN cross-section calculated by

Haug (1997) is used. To determine the emitting electron spectrum this must be

solved for F̄.

In this case the Tikhonov regularisation equation now has the form

||MF̄− C||2 + λ||LF̄||2 = minimum , (3.20)

as the parameters being studied are physical variables these constraints must

be defined by considering the physical properties of the electron spectrum. In

particular, in the context of solar flare electron spectra both, zeroth and first

order are physically defined parameters. Zeroth order corresponds to ||F|| ≤ α

that is L = 1, this is physically equivalent to the statement that the total flux is

finite, which in turn is limited by the total number of electrons accelerated during

the solar flare.

Alternatively, first order regularisation corresponds to L = D1 where D1 is the

differential operator. That is, the mean electron flux should be a differentiable

quantity. If it is assumed that the source averaged electron flux is the result of an

initial injected electron spectrum and the transportation processes which occur in

the solar atmosphere, then the injected and mean electron fluxes can be related

by

F0(E0) ∼ − d

dE

[

F(E)

E

]

E=E0

(3.21)

and therefore the mean flux should be differentiable (Brown and Emslie, 1988).

The robustness of the solution can be improved if the equation is first precondi-

tioned (Kontar et al., 2004). A forward fit performed on the data using a standard

model of a thermal component plus a broken power law (Holman et al., 2003).

This estimated electron spectrum, Ffit, is used as a starting point for the regu-

larised inversion. The inversion is performed on the difference between the data,

C and the fit, MFfit, This modified data vector and the cross-section matrix are

also scaled by a factor of (MFfit)
− 1

2 . These transforms both make the solution

much flatter and so less prone to errors.
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3.3 Regularised Inversion of RHESSI Data.

Thus the constraint matrix used here has the form

D′
1 =



















−G1 0 · · · 0 0
G1 −G2 · · · 0 0
0 G2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −GM−1 0
0 0 · · · GM−1 −GM



















,

where G = (Ffit)
− 1

2 .

Brown et al. (2006) performed a study on four inversion methods: forward fit-

ting, zeroth order Tikhonov regularisation, first order Tikhonov regularisation,

and matrix inversion using data adaptive binning (Johns and Lin, 1992). These

tests were done blind: several count spectra were simulated from a range of elec-

tron spectra, some with features such as dips and thermal components. These

were then supplied to different researchers who applied each of the regularisation

techniques. The inverted electron spectra were then compared with the original

input spectrum to ascertain the reliability of each method. All methods tested

were able to reliably estimate the input electron spectrum (Figure 3.2). The

implementations of Tikhonov regularisation fared well, particularly in recovering

smaller features in the electron spectra.

The most popular approach to determining F (E) is forward fitting (Holman

et al., 2003). Here a functional form of the electron spectrum is assumed, as

the parameters are adjusted until the best fit with the data is achieved. Usually

an algorithm using a non-linear least squares method varies the parameters and

analyses the resulting change in χ2. Common functional forms include power-

laws in electron energy and isothermal Maxwellian distributions, such as those

described in Section 2.1, along with models based on the apparent shape of the

spectra such as power laws in photon energy, and forms based on physical models

such as thick and thin targets. Forward fitting of this type is available through

OSPEX.
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3.3 Regularised Inversion of RHESSI Data.

Figure 3.2: Comparison of different inversion methods - initial input electron

spectra for 6 models (black dashed lines) were inverted using zeroth order Tikhonov

regularisation (green lines), first order Tikhonov regularisation (red lines), and

matrix inversion using data adaptive binning (brown boxes) and forward fitting

(blue lines). For the Tikhonov regularisation results the upper and lower lines

show the 3 σ confidence intervals. Similarly the size of the boxes for the binned-

matrix-inversion method denotes the 3 σ confidence interval. From Brown et al.

(2006)
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3.4 Low energy cutoffs and local minima

3.4.1 Effect of low energy cutoff on spectra

The spatially integrated spectrum of energetic electrons n̄V F̄ (E) is often approx-

imated as a sum of a thermal Maxwellian distribution and a non-thermal power-

law distribution. The thermal component often dominates the overall spectrum

at low energies ≤ 20 keV, making determination of the characteristics of the low-

energy end of non-thermal distribution difficult. However, this low-energy part

of the non-thermal spectra plays a crucial role in solar flare diagnostics. As with

any steeply decreasing function such as a power-law, most of the non-thermal

electron energy is concentrated in this part, hence this can be used to define the

energy in non-thermal electrons and hence estimate the total energy budget of the

flare. Additionally, the low energy electrons are more heavily influenced by sev-

eral significant electron propagation effects such as collisions (Brown, 1971) and

beam-plasma interactions (Mel’Nik, Lapshin, and Kontar, 1999), thus playing an

important role in the diagnostics of electron transport in the solar flares.

3.4.2 Evidence for features in data

High resolution spectra observed by RHESSI (Lin et al., 2002) allow us to infer

much greater detail in the structure of electron distribution than ever seen before.

RHESSI studies, using Tikhonov regularisation to recover F̄ (E), measured a

significant dip in the mean electron flux spectrum in the range ∼ 17 − 31 keV

(Kontar and Brown, 2006a). This feature, if reliable, would put strong constraints

on acceleration models and would be inconsistent with the collisional thick target

model of Brown (1971). However, the photon spectra of these events will be

influenced by albedo (see Section 2.3). Similarly, Kašparová et al. (2005) have

shown that the spectrum of the August 20, 2002 event has a puzzlingly large

value of the low-energy cutoff when forward fit methods are applied, but that

this can be also understood in terms of the change in the photon spectrum due

to the albedo component.
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3.4 Low energy cutoffs and local minima

Table 3.1: Events with a dip larger than 1σ

Flare Date Flare Time x position y position µ γ0 GOES Class

11-Apr-2002 03:06:08.00 -155.35 -209.38 0.96 1.60 C3.2

25-Apr-2002 05:55:12.00 -108.37 243.69 0.96 1.76 C2.0

29-Jun-2002 09:29:40.00 -886.45 -283.9 0.16 2.67 C2.1

30-Jul-2002 17:37:36.00 140.58 -198.18 0.97 2.12 C2.4

17-Sep-2002 05:51:12.00 567.41 -300.55 0.74 1.65 C2.1

24-Oct-2002 00:09:24.00 53.22 334.72 0.94 2.22 B5.9

22-Nov-2002 13:29:36.00 126.69 -334.59 0.93 2.47 C1.5

10-Mar-2003 10:02:56.00 -619.7 244.46 0.72 2.94 C1.4

20-Nov-2003 05:10:36.00 122.76 -16.32 0.93 2.91 C1.2

1-Apr-2004 23:00:32.00 459.91 33.01 0.88 2.60 B4.3

20-May-2004 17:16:12.00 -896.31 -247.21 0.19 2.90 C3.8

19-Jul-2004 20:56:52.00 -643.29 -4.45 0.73 2.01 C1.9

14-Aug-2004 08:15:30.00 490.5 -241.44 0.82 1.63 C7.7

28-Oct-2004 12:13:32.00 -869.75 -301.96 0.30 3.11 B8.2

9-Nov-2004 15:10:08.00 723.25 45.65 0.66 3.61 C1.1

30-Nov-2004 03:56:12.00 -10.77 -227.6 0.97 2.65 B7.8

21-Jan-2005 06:32:20.00 891.03 269.14 0.29 2.49 C1.7

5-Apr-2006 22:45:28.00 742.09 -129.63 0.62 2.17 B.28

This analysis can be done either by assuming a functional form of the electron

spectrum (e.g. Sui, Holman, and Dennis (2007)) or by using a regularised in-

version technique (Kontar et al., 2004). As a low-energy cutoff in the electron

spectrum will produce a very hard photon spectrum below the cutoff energy of

γ ≈ 1 Holman (2003), flat X-ray spectra can require low-energy cutoffs in the

power-law distributions when a functional form is assumed (Kašparová et al.

2005; Sui, Holman, and Dennis 2007). The model independent approach, via

the regularised inversion technique, (Piana et al. 2003) on the other hand, may

interpret the origin of this as a dip or a gap in the electron distribution (Kontar

and Brown 2006b, Kašparová, Kontar, and Brown 2007).
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3.4.3 Dips in the mean electron flux distribution

We conducted a systematic search for dips in the mean electron flux distribution

using the RHESSI solar flare database for the period of February 2002 - May 2006

(Kontar, Dickson, and Kašparová, 2008). The analysis confirms previous sugges-

tions that the isotropic albedo correction is capable of removing all statistically

significant dips in the mean electron flux distribution.

Table 3.2: Characteristics of dips larger than 1σ

Flare Date Flare Time depth (σ) Energy at Minimum (keV)

11-Apr-2002 03:06:08.00 1.65 15.5

25-Apr-2002 05:55:12.00 2.49 16.5

29-Jun-2002 09:29:40.00 2.04 15.5

30-Jul-2002 17:37:36.00 1.87 18.5

17-Sep-2002 05:51:12.00 2.73 16.5

24-Oct-2002 00:09:24.00 2.03 15.5

22-Nov-2002 13:29:36.00 2.83 17.5

10-Mar-2003 10:02:56.00 1.16 13.5

20-Nov-2003 05:10:36.00 1.33 12.5

1-Apr-2004 23:00:32.00 2.90 15.5

20-May-2004 17:16:12.00 1.36 15.5

19-Jul-2004 20:56:52.00 1.89 16.5

14-Aug-2004 08:15:30.00 1.85 18.5

28-Oct-2004 12:13:32.00 1.48 16.5

9-Nov-2004 15:10:08.00 1.07 15.5

30-Nov-2004 03:56:12.00 1.22 14.5

21-Jan-2005 06:32:20.00 1.04 15.5

5-Apr-2006 22:45:28.00 2.51 17.5

As a basis, we used the list of 398 flares with weak thermal component previously

determined by Kašparová, Kontar, and Brown (2007). Although this has limited

the total number events for our analysis, it has helped us to avoid various effects,

such as pulse pile-up and particle contamination, which would complicate the

81



3.4 Low energy cutoffs and local minima

spectral analysis. Next, we chose the 177 events with the smallest values of

spectral index 1.6 ≤ γ0 ≤ 4.0 where γ0 is the average spectral index of the

photon spectrum, measured in the range between 15 and 20 keV - see Kašparová,

Kontar, and Brown (2007).

For each flare, the spectra were accumulated over the duration of the impulsive

phase, i.e. in the interval when counts at energies above 50 keV were sufficiently

above background (Figure 3.3). The spectra were generated in the energy range

from 3 to 100 keV with 1 keV energy resolution, avoiding detectors 2 and 7 due

to their low resolution (Smith et al., 2002). The background counts were removed

in a standard way (Schwartz et al., 2002).

To obtain a starting point for the regularised inversion, spectra were forward

fitted assuming an isothermal plus a non-thermal double power-law distribution

of F̄ (E) for example Holman et al. (2003). Spectra were then inverted within

OSPEX using the regularised inversion routines described in Section 3.1.

With the mean electron flux determined, the spectrum was examined for local

minima or dips. These dips were analysed to infer the most important dip pa-

rameters: the energy Ed at which the dip minima occurs and the depth of the dip

in terms of σ where σ is the statistical uncertainty on the inferred mean electron

spectrum nV F (E). This depth was calculated by dividing the difference between

the minimum and the following maximum above the dip in units of electron spec-

tra uncertainty at the minimum (Figure 3.4). We have found 18 events with

dip-depth deeper than 1σ in the electron distribution function (Figure 3.5). The

details of these events are presented in Table 3.1. Some of these events were also

found using a thick target fit with a single power law and low energy cutoff Sui,

Holman, and Dennis (2007).

The local minima in the mean electron spectrum tend to be 6-10 keV wide and

hence cover several statistically independent points. For example, if a dip is

three points wide at the 1σ level in each point then the probability of finding

three consecutive points outside the 1σ intervals is (1 − 0.68)3 = 0.03 and the

corresponding statistical significance of the minimum is 1 − 0.03 = 0.97. In

general, given that errors have a normal distribution, the statistical significance

82



3.4 Low energy cutoffs and local minima

10 100
Energy(keV)

10−4

10−2

100

102

104

P
h

o
to

n
s 

s−
1
 c

m
−

2
 k

e
V

−
1

Figure 3.3: Example of a solar flare with flat electron spectrum. Thin lines show

1σ error bars. Upper panel: RHESSI Light curves; the vertical lines show the

accumulation time interval for spectroscopic analysis. Lower panel: Photon spec-

trum and forward fit (solid line), isothermal component (dashed line), nonthermal

component (dotted line).

of the local minimum is 1 −
∏N

i=1(1 − erf(di/
√

2)), where N is the number of

statistically independent points in the dip and di is the depth of each point in

units of the corresponding σi uncertainties. The nature of the smoothing imposed

by the regularisation method means that adjacent energy bins cannot be assumed

to be statistically independent. The sizes of the statistically independent energy

bins can be estimated from the horizontal errors. Thus the local minimum shown

in Figure 3.4 has significance ∼ [1− erf(2.9/
√

2)][1− erf(1.2/
√

2)] ≈ 99.9%
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Figure 3.4: Mean electron distribution spectrum for April 1, 2004 ∼ 23 : 00 UT

solar flare. The observed electron spectrum (solid line) and electron spectrum

after isotropic albedo correction (dashed line) are given with 1σ error bars. The

dip depth, d, is shown.

Figure 3.5: Positions on the solar disk of all flares with a statistically significant

dip. The inner rings indicate heliocentric angles of 30◦ and 60◦.

The dips are located between the thermal and non-thermal component and appear

approximately at the same energy, in the range between 13 and 19 keV. The

dip energies, Ed, are given in Table 3.2 as the bin centre energy. There is no
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Figure 3.6: Left panel: Number of events as a function of cosine of heliocentric

angle; Right panel: Number of events as a function of dip depth in σ.
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Figure 3.7: Histograms of 17 events with clear dip: Left panel: Number of events

as a function of dip energy Ed in keV. Right panel: Histogram of spectral indices

γ0 for events with a dip.

preferential energy in this range (Figure 3.7 - left panel).

There is a clear pattern in the results: flares with dips tend to occur at locations

with large µ = cos θ, where θ denotes the heliocentric angle. Only 4 events are

located close to the solar limb µ < 0.5 while 14 are near the disk centre µ < 0.5
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Figure 3.8: Left panel: Dip energy versus µ; Right panel: Dip depth versus µ.
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Figure 3.9: Left panel: Dip depth versus dip energy: Right panel: Dip depth

versus γ0.

see left panel in Figure 3.5. However, there is no strong evidence for the dip

energy being dependent on the flare location or on the dip depth - see left panels

in Figure 3.8 and Figure 3.9, respectively.
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Figure 3.10: Percentage of flares exhibiting a dip for a given γ0.

3.4.4 Effect of applying albedo correction

Previous works have shown (e.g. Kontar et al. (2004) and Kašparová, Kontar,

and Brown (2007)) that a feature such as a dip can be a signature of distortion by

albedo contribution. Figure 3.10 shows that larger dips appear for flatter X-ray

spectra. Furthermore, events with large depths tend to appear close to the disc

centre, see Figure 3.8 - Right panel. This is consistent with the albedo model

which predicts larger albedo contribution for flat spectra and disc centre events

(see e.g. Section 2.2.2).

To assess whether albedo is a feasible explanation for these observed dips a cor-

rection for albedo to determine the primary photon spectrum must be applied.

The Green’s matrices used in Section 2.3 can be applied as a modification to the

to the SRM

C = SIO = S(1+αGIP) (3.22)

Therefore, the isotropic albedo correction (Kontar et al., 2006) was applied to

all the events with a dip (Table 3.1) and new n̄V F̄ (E), i.e. corresponding to

the primary photon spectra, were derived. Such albedo corrected mean electron

spectra did not reveal any statistically significant dip, i.e. with depth ≥ 1σ.
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3.5 Conclusions

3.5 Conclusions

Our analysis shows that the clear dips are rare, less than 10 % (18 of 177) of

events studied demonstrate a clear dip. The small number of events with a clear

dip or low energy cutoff can be explained by a variety of reasons. Firstly, it

suggests that the number of very flat primary spectra is rather small and that

the vast majority of flares have primary spectral index larger than 2. Indeed,

although the total number of events with a dip is small as a fraction of events,

it could be as high as 60% for small spectral indices (Figures 3.7 (Right panel)

and 3.10). This can be viewed as a lower limit on spectral indices of accelerated

electrons in solar flares. In the case of a thick-target model, this corresponds to

requiring a spectral index of accelerated electrons larger than 3. Secondly, the

small number of events with a dip or low energy cutoff suggests that the thermal

component substantially influences the spectrum in the range of above 10 keV

for the majority of flares. This conclusion is partially supported by Kašparová,

Kontar, and Brown (2007), who have found a large number of events with very

soft spectra with spectral indices γ0 which are larger than 5.

However, when dips do occur in the mean electron spectrum, the local minima in

the electron flux spectrum are consistent with the albedo model (Kontar et al.,

2006). In the standard solar flare model, the electrons are believed to propagate

downwards and hence the reflected flux from the photosphere should be larger

(see e.g. Section 2.4). In this analysis an isotropic primary photon distribution

was used when calculating the albedo contribution, so this should be viewed as

a lower limit on the effect. It therefore seems unlikely that albedo might be

overestimated for these flares. As can be seen in Figure 3.10 flares with a low

value of γ0 are very likely to exhibit a local minimum in the mean electron flux

spectrum, therefore the small number of flares with flat spectra results in the

low number of flares with dips. In addition, the energies of the dip minima

are concentrated near 15 keV, the energy which is expected from isotropic albedo

model (see Figure 1 in Kašparová, Kontar, and Brown 2007). In addition we note

that earlier observations of flat X-ray spectra also appear to be consistent with

the albedo model. The flares suggesting high value of low energy cutoff observed
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by Nitta, Dennis, and Kiplinger (1990), Farnik, Hudson, and Watanabe (1997)

had flat X-ray spectra and were disk centre events, the type of flares strongly

influenced by albedo.

The low-energy cutoff is often introduced to limit the total number of non-thermal

electrons in solar flares. Since all dips found in the electron spectra can be easily

”removed” by applying albedo correction, our results allow us to conclude that if

low-energy cutoff exists in solar flare spectra it should be below ∼ 12 keV. This

upper limit on the low-energy cutoffs is somewhat less than the values published

in the literature. In addition, since the total number of electrons accelerated in

solar flares is dependent on the low-energy cutoff, the lower value of low-energy

cutoff makes the electron number problem even more severe.
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4

Bivariate Inversion of RHESSI

Data

4.1 Introduction

Several techniques have been used to estimate the anisotropy in the pitch-angle

distribution of X-ray emitting electrons in solar flares (Holman et al., 2011; Kon-

tar et al., 2011). The most commonly used method is to look at the centre to limb

variation of solar X-ray properties (Datlowe, Elcan, and Hudson, 1974; Vestrand

et al., 1987) that is comparing the characteristics, most commonly total X-ray

flux (Pizzichini, Spizzichino, and Vespignani, 1974), or the spectral index of solar

flares at the limb to disk centre events. Studies concentrating on lower energy

emission (below 300 keV) tended to find no significant evidence of directivity.

These studies have also been performed using SMM data (Dennis, 1988) study-

ing flares with energies above 300 keV (Bai, 1988; Bogovalov et al., 1985; Vilmer,

1994). Some evidence for directivity at high energies has been reported (McTier-

nan and Petrosian, 1991; Vestrand, Forrest, and Rieger, 1991). More recently

RHESSI data (Lin et al., 2002) has been used to determine the X-ray anisotropy

(Kašparová, Kontar, and Brown, 2007) (Figure 4.1). An obvious disadvantage

of the statistical method is that the variation can only be seen as an average
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4.1 Introduction

over a large number of solar flares, so little can be said about X-ray or electron

anisotropy in a given flare.

Figure 4.1: The directivity, α as a function of heliocentric angle µ calculated

by Kašparová, Kontar, and Brown (2007), who performed a statistical survey of

RHESSI flare measurements (α is the ratio of the X-ray flux towards the sun

to the X-ray flux towards the observer i.e. α(µ) = ID/IU (µ)). The amount of

albedo reflection for flares at different µ was modelled and the results compared

with RHESSI observations assuming that limb events showed no albedo and thus

represented the true distribution. The hatched and crossed areas represent 95%

and 99% confidence that the flares at that µ are drawn from the same distribution

as the limb flares.

An approach which allows individual flares to be studied is the stereoscopic

method (Catalano and van Allen, 1973). Here each individual flare is measured

directly by two spacecraft at two different locations, ideally well separated in

space. Studies that have been performed using this method do not show any

clear evidence of directivity (Kane et al., 1998; Li et al., 1994). A disadvantage

of this approach is the practicality, as there tends to be significant difficulty in

cross calibrating pairs of different detectors which were not designed specifically

to make stereoscopic measurements, which often leads to large errors. Another

drawback is, as in the centre-to-limb method, this technique does not give direct
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4.1 Introduction

information about the downward electron distribution.

As an anisotropic electron distribution will produce polarised X-rays, measuring

the polarisation can therefore give a measure of the anisotropy of the electron

distribution (Leach and Petrosian, 1983). An isotropic source should show low

polarisation, whereas a beam should produce significant polarisation (Bai and

Ramaty, 1978; Emslie, Bradsher, and McConnell, 2008; Leach and Petrosian,

1983). Studies of polarisation have been performed using various X-ray satel-

lites, recently using the Coronas-F satellite (Zhitnik et al., 2006). The reported

measurements vary substantially from observation to observation, adding to the

scepticism of these measurements. A major drawback of this approach is the

observational difficulty in measuring polarisation at HXR energies for transient

events like solar flares. Several attempts have been made using RHESSI (Mc-

Connell et al., 2002; Suarez-Garcia et al., 2006), but so far there have been no

conclusive measurements made. HXR polarisation has not yet been used to its full

potential and future observations could provide a more definitive answer.

4.1.1 Albedo as a Probe of Anisotropy

Another important process which can be used to diagnose the angular distribu-

tion is photospheric albedo Kontar and Brown (2006b). As the spectral shapes

of reflected and primary hard X-ray spectra are sufficiently distinct, these two

components can be distinguished and the albedo reflected flux could be used as

a measure of the downward going electrons (Figure 4.2). RHESSI provides suffi-

cient energy resolution, broad energy coverage, and sensitivity to better constrain

directivity of energetic electrons in individual solar flare events.

Here we use this albedo method to examine the directivity of energetic electrons

in solar flares. The RHESSI flare catalogue has been searched for suitable flares

between 2002 and 2008 and we use the spectral data from the impulsive phases of

several well observed flares to perform a bi-directional inversion, estimating the

fluxes of electrons travelling towards and away from the photosphere.
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4.2 Bi-variate Inversion

The method of regularised inversion has been applied to the problem of inverting

the angle averaged electron spectrum numerous times (e.g. Brown et al. (2006);

Kontar et al. (2005)) but can be extended to determine an angular dependant

electron flux. The cross-section matrix must be extended to take account of

the angular dependence of the bremsstrahlung cross-section. The cross-section

matrix can be split into two components QF representing the bremsstrahlung

cross-section in the forward direction, that is the radiation beamed in the same

direction as the electron was travelling and QB representing the cross-section for

the radiation beamed in the opposite direction to the electron. These matrices

are determined by taking the full angular dependant cross-section and averaging

over a range of angles similar to the method applied to determine the upward

and downward components of the photon flux in Section 2.4.

Q(ǫ, E, θ0) =
1

2π(1 − cos(α))

∫ α

η=0

Q′(ǫ, E, η, θ0) sin ηdη , (4.1)

with α = 90◦ QB(ǫ, E) = Q(ǫ, E, θ0 = 180◦ − θ′) and QF (ǫ, E) = Q(ǫ, E, θ0 =

0◦) F̄u Kontar and Brown (2006b). This results in a directly observed photon

spectrum given by

Iu(ǫ) =
n̄V

4πR2

∫ ∞

ǫ

(QF (ǫ, E)F u(E) + QB(ǫ, E)F d(E))dE (4.2)

and a downward directed photon flux given by

Id(ǫ) =
n̄V

4πR2

∫ ∞

ǫ

(QB(ǫ, E)F u(E) + QF (ǫ, E)F d(E))dE (4.3)

A solution can then be found for an electron flux matrix with two components,

one directed down towards the photosphere, F̄d, and one directed towards the

observer. The Green’s function approach can be used to determine the fraction

of this downward directed photon flux reflected back towards the observer by

albedo Kontar et al. (2006).

The matrix relation between the observed count spectrum, C, and the bi-direc-

tional electron spectra is now given by
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4.2 Bi-variate Inversion

Figure 4.2: The geometry of the X-ray emitting source above the photosphere

and bi-directional approximation. X-rays are emitted in all directions and observed

directly at Earth or Compton back-scattered in the solar photosphere and then ob-

served at Earth. The true angular distribution of electrons F (E, η) is approximated

by downward F d and upward F u going electrons.

C = S
(

QF + AQB , QB + AQF
)

(

F̄u

F̄d

)

, (4.4)

where A is a discretised matrix representing the Green’s function and S represents

the photon to count spectral response of RHESSI.

Equation (4.4) must be simplified so that the array containing the cross-section

and Green’s functions is converted into a standard two dimensional matrix and

the two component electron spectrum is represented as a one dimensional vector.

A method of performing this transformation is described in Hubeny and Judge

(1995). This can be done by defining a new matrix of the form Miν where the

indices of this new matrix are related to the previous 3 dimensional array by

ν = τ(j−1)+k where τ is the maximum value of k. The elements of the original

array are then written into the appropriate elements of the new matrix. The

equation can then be solved using the standard regularised inversion methods

described in Section 3.1.
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4.2 Bi-variate Inversion

4.2.1 Determining anisotropy from count data

The inversion algorithm is applied to the selected time intervals of the flare and

the upward, n̄V F̄u, and downward, n̄V F̄d, electron fluxes calculated. As with the

angle averaged spectra considered in Chapter 3, a first estimate of a thermal plus

double power-law fit is performed here assuming F u = F d. The fit is again used

to precondition the matrices M and L and the data vector C.

The errors on the electron flux components are calculated by combining the errors

on the count flux and the errors on the background. Random perturbations are

applied to the count flux based on the error and the electron flux is recalculated.

The distribution of these realisations is then used to estimate the error on the

electron flux. The regularised solution also has finite resolution. The resolution

matrix is defined as R = M−1
λ Mtrue, where F

−1

true = MtrueC is the true solution to

the inverse problem and Fλ = M−1
λ C is the regularised solution. The resolution

matrix quantifies the horizontal errors of the solution, so the identity matrix

(zero horizontal errors) correspond to the direct inverse M−1
λ . For any practical

situations, the regularisation imposes a spread on the strong peaks centred on

the main diagonal, this is an unavoidable occurrence in any inverse problem. The

FWHM of each of the rows of this matrix is taken as the energy resolution for

that energy bin and is considered here as the horizontal error in the electron flux

(Figure 4.3).

The anisotropy was defined to be the ratio of nV F d to nV F u. Confidence strips

for the total anisotropy were calculated using the same method as the errors in

the electron flux (Figure 4.4). Random perturbations were applied within the

“confidence river” defined by both the horizontal and vertical error bars.

The binning scheme used is important to consider. Here pseudo-logarithmic bin-

ning was used in each case. It was found that the optimum scheme used the

same bin size for count, photon and electron spectra but with different maximum

energies for each. This was determined by applying the method to RHESSI ob-

servations for a variety of binning schemes, ranging from 20 to 800 bins in total

and comparing the residuals and solution errors for each case. The count spectra

was mostly constrained by the data, but a maximum value of 500 keV was also
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4.2 Bi-variate Inversion

imposed to avoid the positron annihilation line. The maximum energy considered

in photon space was roughly half the maximum energy in electron space as pho-

tons are emitted up to a maximum value of the electron kinetic energy. Different

values for the high energy cutoff in electron space were tested for each flare, rang-

ing from 1 to 10 MeV, however this rarely had a significant effect on the result.

If too many bins are used the error for each point increases this can be greatly

magnified by inversion; however if there are too few bins, information about the

spectra is lost. Therefore a range of values for the total number of bins used were

also tested for each flare. The minimum energy was also constrained by the data,

for most flares a value above 10 keV was used to avoid contamination with iron

lines, however for some flares with high background at low energies higher values

of up to 15 keV were used.

4.2.2 Inversion of Simulated Data

In order to test the method, we have applied it to simulated electron spectra.

The electron spectra have been assumed to have simple functional forms and

equivalent photon spectra calculated with reflected albedo component included.

Random noise, at a similar level to the noise estimated from RHESSI observations,

has been added to the resulting count spectrum. This simulated spectrum was

then inverted using the same algorithm as the real data.

The input upward (Fu(E)) and downward (Fd(E)) electron fluxes were assumed

with the functional forms

F d(E) = AE−2 F u(E) =
F d

(

1 + E−10
50

)a (4.5)

where the power-law parameter a sets the level of anisotropy and the scaling

factor A is chosen such that the simulated count spectrum is of the same order

of magnitude as the RHESSI observations.

Spectra from isotropic initial distributions generally give a result which is consis-

tent with the input spectrum within errors and shows a reasonable distribution
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of residuals (Figures 4.3 and 4.4 - left panels). For weak anisotropy the re-

sults generally show broader confidence intervals than for the isotropic case with

the same level of noise, so that the solution is often consistent with the weakly

anisotropic input spectrum and an isotropic input spectrum (Figures 4.3 and 4.4

- right panels). For stronger levels of anisotropy (F d/F u > 10 at 100 keV), the

method tends to give unphysical negative values for the electron flux. This can

be avoided by increasing the regularisation parameter to force the solution to be

smoother and ensure the solution is positive everywhere. However, this approach

leads to under-regularisation and unacceptably large residuals, suggesting that

the method cannot converge on a physically meaningful solution which satisfies

the data. It should be noted that there is an upper limit to the size of the max-

imum anisotropy detectable, as it is difficult to constrain an anisotropy that is

greater than the fractional error in the larger component of electron flux.

The tests also confirm that this method works best for flares with high energy

counts close to the disk centre and that the anisotropy cannot be reliably in-

ferred for weak or limb events, as was expected from the forward modelling. All

the inversions of RHESSI data show physically sound results with reasonable

residuals.

4.3 Application to RHESSI Measurements

4.3.1 Flare Selection

The RHESSI data archive was examined for flares with emission above 300 keV

with particular attention paid to flares close to the solar disk centre. The posi-

tions of the flares were verified by imaging in the 25− 100 keV energy range over

the impulsive phase of each flare. These flares are selected because the forward

modelling (Chapter 2) suggests that the variation due to beaming is strongest

at high energies, and flares closest to the disk centre should have the strongest

albedo reflection and should therefore also show the greatest change due to beam-

ing. In total 8 suitable flares were found (Table 4.1) which were within 60◦ of
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4.3 Application to RHESSI Measurements

the solar centre (Figure 4.5) and showed significant > 3σ counts above back-

ground (Figures 4.6 - 4.8); a number of other flares matching these criteria were

found but they were discounted due to high levels of pulse pileup and particle

contamination.

Table 4.1: Flares suitable for analysis

Flare Date Start Time (UT) GOES Class x position y position µ

A 20-Aug-2002 08:25:21 M3.4 562 -270 0.72

B 10-Sep-2002 14:52:47 M2.9 -622 -244 0.72

C 17-Jun-2003 22:52:42 M6.8 -783 -148 0.52

D 2-Nov-2003 17:16:00 X8.3 770 -343 0.51

E 10-Nov-2004 02:09:40 X2.5 738 116 0.69

F 15-Jan-2005 22:49:08 X2.6 117 325 0.93

G 17-Jan-2005 09:43:44 X3.8 441 301 0.86

H 10-Sep-2005 21:34:26 X2.1 -667 -255 0.69

For each of the flares found, the background was removed in the standard manner

Schwartz et al. (2002). Counts were accumulated over the impulsive phase, as

the differences in the spectra due to anisotropy in the electron spectra are greater

at higher energies. The time intervals studied were selected ensuring a high

number of high energy counts (Figures 4.10 and 4.11). A pseudo-logarithmic

binning scheme between 10 keV and 500 keV was used to initially accumulate

the spectra avoiding detectors 2 and 7 due to their poor resolution Smith et al.

(2002). After background subtraction had been performed, the energy range was

further reduced by discarding the energy bins with counts less than 3σ above the

background.

4.3.2 20th August 2002

This flare was detected on 20th August 2002 around 08:20 UT with the impulsive

peak starting about 08:25 UT. It was detected with a heliocentric angle of ∼
43◦ equivalent to µ = 0.73. The flare also shows good count statistics up to
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400 keV (see Figures 4.6 and 4.10). As this flare had attenuator status changes

from A0 (open telescope) to A1 (thin shutter in) at 08:25:16 UT and to A3

(both shutters in) at 08:25:44 UT, the analysis was only performed over the 16 s

period rather than the 64 s period studied for most flares. There is some particle

contamination over the impulsive phase. This flare was extensively studied by

Kašparová, Kontar, and Brown (2007) and the background subtraction used in

this paper is similar to the subtraction described there. This flare was previously

analysed using bi-directional inversion by Kontar et al. (2006). This is flare A in

Table 4.1.

4.3.3 10th September 2002

This flare was detected on 10th September 2002 between 14:02 and 15:15 UT with

the impulsive peak starting about 14:52 UT. It was detected with a heliocentric

angle of ∼ 44◦ equivalent to µ = 0.72. The flare also shows good count statistics

up to 300 keV (see Figures 4.6 and 4.10). This flare also has an attenuator status

change from A0 to A1 at 14:52:43 UT and to A3 at 14:54:16 UT, so the impulsive

phase is taken to be a 32 s time interval between 14:52:47 and 14:53:19 UT. This

is flare B in Table 4.1.

4.3.4 17th June 2003

This flare was detected on 17th June 2003 starting at approximately 22:30 UT. As

RHESSI shows significant particle contamination during the early stages of this

flare analysis was performed on a later impulsive peak with accumulation starting

at 22:52:42 UT. It was detected with a heliocentric angle of 59◦ equivalent to

µ = 0.51. The flare also shows good count statistics up to 300 keV (see Figures 4.7

and 4.11). This is flare C in Table 4.1.
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4.3.5 2nd November 2003

This flare was detected on 2nd November 2003. It was detected with a heliocentric

angle of ∼ 59◦ equivalent to µ = 0.51. The flare also shows good count statistics

up to 300 keV (see Figures 4.7 and 4.11). RHESSI showed some elevated particle

levels during the impulsive phase of the flare so analysis was confined to the

earlier part of the impulsive phase. This is flare D in Table 4.1.

4.3.6 10th November 2004

This flare was detected on 10th November 2004. It was observed with a he-

liocentric angle of 46.5◦ equivalent to µ = 0.69. The flare shows no significant

particle measurements during the impulsive phase and low probability of pulse

pileup. The flare also shows good count statistics up to 500 keV (see Figures 4.8

and 4.11). This is flare E in Table 4.1.

4.3.7 15th January 2005

This flare was detected on 15th January 2005. It was detected with a heliocentric

angle of 20◦ equivalent to µ = 0.93, the closest of all the flares selected to the disk

centre and therefore the most likely to show evidence of strong downwards direc-

tivity. The flare also shows good count statistics up to 400 keV (see Figures 4.8

and 4.11). This is flare F in Table 4.1.

4.3.8 17th January 2005

This flare was detected on 17th January 2005 between 09:30 and 15:15 UT with

the impulsive peak starting about 09:42 UT. It was detected with a heliocentric

angle of ∼ 31◦ equivalent to µ = 0.86. The flare also shows good count statistics

up to 300 keV (see Figures 4.9 and 4.11). As this flare occurs in the tail of a

previous flare it is has very high background at low energies. Counts below 18 keV
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were not accumulated for this flare. This flare was also previously analysed using

bi-directional inversion Kontar et al. (2006). This is flare G in Table 4.1.

4.3.9 10th September 2005

This flare was detected on 10th September 2005. It was detected with a heliocen-

tric angle of ∼ 46◦ equivalent to µ = 0.69. This flare showed negligible particle

contamination and a low probability of pulse pileup. The flare also shows good

count statistics up to 300 keV (see Figures 4.9 and 4.11). Due to changes in the

attenuator status during the impulsive phase from A1 to A3 at 21:34:12 UT and

the maximum time interval studied for this flare is 32 s starting at 21:34:26 UT.

This is flare H in Table 4.1.

4.4 Anisotropy results

The bi-directional algorithm was applied to the impulsive phase of each of the

flares studied. For most of the flares a 64 second time interval beginning when

the counts above 100 keV are detected was considered. This is not possible for

all flares as the period where the high energy counts are measured is shorter for

some flares. Attenuator status changes can also introduce large discrepancies into

spectral analysis so these were all avoided.
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Figure 4.3: Results from the test on the bi-directional inversion algorithm as-

suming a disk centre event. The top panel shows the simulated observed count

spectrum (orange) with associated errors and the count spectrum corresponding to

the bi-directional solution (blue dashed line). The second panel shows the recov-

ered upward (light blue) and downward (red) regularised electron spectrum with

associated 1-σ vertical and horizontal error bars for each point. Overplotted are

the input upward (dark blue) and downward electron spectra (orange) and the

results of the initial forward fit used to precondition the data (green). The third

panel shows the normalised residuals for each time interval and the bottom panel

shows the cumulative residuals. Left: the case of weak beaming a = 1 Right: an

intermediate beaming case a = 3.
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Figure 4.4: The anisotropy of the electron spectrum (defined as F d/F u) for the

two cases in figure 4.3 Left: weak beaming (a = 1) Right: intermediate beaming

(a = 3). The red line shows the anisotropy of the input electron spectrum, the dark

blue area represents the 1σ confidence interval and the light blue the 3σ confidence

interval.

Figure 4.5: Positions of all 8 flares studied on the solar disk. The inner rings

indicate heliocentric angles of 30◦ and 60◦.
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Figure 4.6: RHESSI lightcurves of the flares observed on 20th August 2002 (A)

and 10th September 2002 (B) accumulated in 7 energy bands - black 7-12 keV,

purple 12-25 keV, blue 25-50 keV, green 50-100 keV, yellow 100-300 keV, orange

300-800 keV, red 800-5000 keV. The vertical lines show the accumulation time inter-

val used. The plots are semi-calibrated, a diagonal approximation of the RHESSI

response is used to estimate the photon flux from the measured counts. There are

still instrumental artefacts present with the very sharp spikes and dips being the

result of attenuator status changes. All times are in UT.
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Figure 4.7: As Figure 4.6 for flares on 17th June 2003 (C), 2nd November 2003

(D) and 10th November 2004 (E). Colour key - black 7-12 keV, purple 12-25 keV,

blue 25-50 keV, green 50-100 keV, yellow 100-300 keV, orange 300-800 keV, red

800-5000 keV.
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Figure 4.8: As Figure 4.6 for flares on 15th January 2005 (F), 17th January 2005

(G) and 10th September 2005 (H). Colour key - black 7-12 keV, purple 12-25 keV,

blue 25-50 keV, green 50-100 keV, yellow 100-300 keV, orange 300-800 keV, red

800-5000 keV.
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Figure 4.9: As Figure 4.6 for flares on 15th January 2005 (F), 17th January 2005

(G) and 10th September 2005 (H). Colour key - black 7-12 keV, purple 12-25 keV,

blue 25-50 keV, green 50-100 keV, yellow 100-300 keV, orange 300-800 keV, red

800-5000 keV.
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Figure 4.10: Impulsive phase count spectra accumulated by RHESSI flare ob-

served on 20th August 2002 (A) and 10th September 2002 (B). The black line

shows the background subtracted counts and the magenta line the background

counts.
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Figure 4.11: As Figure 4.10 for flares on 17th June 2003 (left), 2nd November

2003 (right), 10th November 2004 (E), 15th January 2005 (F), 17th January 2005

(G) and 10th September 2005 (H).
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Figure 4.12: Results of the inversion procedure for full impulsive phase for flares

observed on 20th August 2002 (left) and 10th September 2002 (right). Top panel

shows the measured count spectrum (full line) overplotted with the count spec-

trum corresponding to the calculated regularised electron spectra (dashed line).

The second panel shows the regularised electron spectrum with associated 1-σ ver-

tical and horizontal error bars for each point, the blue line denotes the upward

electron flux and the red line the downward electron flux. The third panel shows

the normalised residuals for each time interval and the bottom panel shows the

cumulative residuals.
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Figure 4.13: As Figure 4.12 for flares on 17th June 2003 (left) and 2nd November

2003 (right)
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Figure 4.14: As Figure 4.12 for flares on 10th November 2004 (left) and 15th

January 2005 (right).
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Figure 4.15: As Figure 4.12 for flares on 17th January 2005 (left) and 10th

September 2005 (right).
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Figure 4.16: The anisotropy of the electron spectrum (defined as Fd/Fu) for

flares observed on 20th August 2002 (A) and 10th September 2002 (B). The dark

grey area represents the 1σ confidence interval and the light grey the 3σ confidence

interval.
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Figure 4.17: As Figure 4.16 for flares on 17th June 2003 (left), 2nd November

2003 (right), 10th November 2004 (E), 15th January 2005 (F), 17th January 2005

(G) and 10th September 2005 (H).
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4.4 Anisotropy results

4.4.1 Temporal variation

Four seconds is roughly the rotation period of RHESSI and thus the shortest

time interval studied here. Longer time intervals of 8, 16, and 32 seconds were

also studied for some flares, depending on the length of the impulsive phase.

The results for these time intervals are very similar to the results for the full

impulsive phase. The inversions for short time intervals generally show confidence

intervals around an anisotropy of 1 at the 1σ level extending to around 2 below

100 keV and sharply increasing above that. As the count statistics are lower

for the shorter time intervals the confidence intervals are wider than for the full

impulsive phase. There was no statistically significant variation in the level of

anisotropy for the duration of the impulsive phase. As an example the recovered

bi-directional electron spectra for each of the 4 second time intervals for the flare

on 10th November 2004 are shown in Figures 4.19 to 4.24.
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Figure 4.18: RHESSI lightcurves for the impulsive phase of the flare observed

on 10th November 2004 (Flare E in Table 4.1) accumulated in 7 energy bands -

black 7-12 keV, purple 12-25 keV, blue 25-50 keV, green 50-100 keV, yellow 100-300

keV, orange 300-800 keV, red 800-5000 keV. The vertical lines show the 4 second

accumulation time intervals labelled a-h. The full extent between the first and

last vertical bars is identical to the impulsive phase shown in Figure 4.7. The plot

is semi-calibrated, a diagonal approximation of the RHESSI response is used to

estimate the photon flux from the measured counts. Time is in UT.
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Figure 4.19: Results of the inversion procedure for full impulsive phase for flare

time intervals a and b. Top panel shows the measured count spectrum (full line)

overplotted with the count spectrum corresponding to the calculated regularised

electron spectra (dashed line). The second panel shows the regularised electron

spectrum with associated 1-σ vertical and horizontal error bars for each point,

the light grey line denotes the upward electron flux and the dark grey line the

downward electron flux. The third panel shows the normalised residuals for each

time interval and the bottom panel shows the cumulative residuals.
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Figure 4.20: As Figure 4.19 for time intervals c and d.
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Figure 4.21: As Figure 4.19 for time intervals e and f.
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Figure 4.22: As Figure 4.19 for time intervals g and h.
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Figure 4.23: The anisotropy of the electron spectrum (defined as F d/F u) for the

first four 4 (a-d) second time intervals for the flare that occurred on 10 November

2004. The first interval starts at 02:09:40 UT and the intervals shown here cover

the most intense part of the impulsive peak. The dark grey area represents the 1σ

confidence interval and the light grey the 3σ confidence interval.
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Figure 4.24: The anisotropy of the electron spectrum (defined as F d/F u) for the

final four 4 second time (e - h) intervals for the flare that occurred on 10 November

2004. The first interval starts at 02:09:40 UT and the intervals shown here cover

the most intense part of the impulsive peak. The dark grey area represents the 1σ

confidence interval and the light grey the 3σ confidence interval.
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4.5 Discussion and Conclusions

This analysis shows consistently that for almost all flares studied by RHESSI

that the recovered F d/F u is close to unity within the confidence intervals, be-

ing consistent with an isotropic pitch angle distribution. For almost every flare

downward beaming of a ratio greater than ∼ 3 : 1 is ruled out to 3σ confidence

below ∼ 150 keV. The size of the uncertainties could be reduced with better count

statistics and better energy resolution, as each of these possible emitting distri-

butions does show different spectral variation. The only clear exception to this is

the flare on 20th August 2002 between 30 and 50 keV, where the recovered flux

appears to be inconsistent with isotropic at the 3σ level and suggests a slightly

greater (1.5 − 2) upward flux. This flare is unusual in several respects. There is

a high level of particle contamination throughout the impulsive phase. Several

background subtractions were examined to attempt to account for this. This flare

also has one of the flattest spectra of all the flares studied, which makes pileup

correction more difficult to estimate. Also, this is one of only 2 flares studied

where the attenuator status was A1 for the examined time interval.

These measurements appear to rule out any strong beaming such as would be

expected in the basic collisional thick target model. While only two compo-

nents are recovered and the confidence intervals can sometimes be fairly large

using this method, these observations are only consistent with a limited range

of possible pitch angle distributions for the emitting electron population. These

include: fully isotropic distributions, pancake distributions and weak beaming be-

low the measured confidence level. As the mean electron flux spectrum is density

weighted, this suggests even an isotropic initial distribution should show some

anisotropy in the mean electron flux spectrum (see Chapter 5). This appears

to cast doubt on any solar flare model which relies on a large flux of electrons

propagating down from high in the corona.

There are several suggested models which do not require beams of electrons pre-

cipitating from high in the corona down to the higher density regions, and there-

fore would be more likely to exhibit isotropic emitting electron populations. Two
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4.5 Discussion and Conclusions

examples of such mechanisms are energy transport by wave propagation and local

re-acceleration.

An Alfvén wave energy transport model was proposed by Fletcher and Hudson

(2008). Here reconnection in the corona causes contraction of the magnetic loops

which produces Alfvén waves. These waves propagate towards the chromosphere

where they can produce strong electric fields and thus accelerate particles. Cal-

culations suggest that for a coronal field of 500G a perturbation of 50G could

provide the Poynting flux for the necessary energies of observed solar flares.

The local re-acceleration thick target model (LRTT) of Brown et al. (2009) begins

with a beam of electrons similar to the standard collisional thick target, but pro-

poses that electrons, instead of simply losing energy in the dense chromosphere,

may be reaccelerated there. One mechanism suggested which could achieve this

is current sheet cascades. Here, the distribution accelerated in the corona is only

needed as a seed, and so can be much weaker than the beams necessary in the

standard CTT model. Modelling of this scenario appears to predict a distribu-

tion which has close to equal numbers of upward and downward going energetic

electrons.

In order to directly compare the measured results to the forward model a plot

of ∆µ against anisotropy (F d/F u) is included (Figure 4.25) both for the func-

tional form described by Equation 3 and for two commonly used forms F ∝
exp

(

−(1−µ)2

∆µ2

)

and F ∝ exp
(

−|1−µ|
∆µ

)

. It should be stressed that the results in

Figures 4.12 to 4.24 are model independent and can be interpreted in terms

of a variety of models, including, but not limited to those considered in Fig-

ure 4.25.

These results are consistent with previous published results which showed little

evidence of directivity below 300 keV. It should be noted that this study mea-

sures anisotropy in terms of the electron flux, whereas for other types of study

the parametrisation of anisotropy is often in terms of the directivity of the X-ray

emission for stereoscopic studies and the centre-to-limb variance for statistical

studies. These are generally related to the electron anisotropy in a model de-

pendant manner. As the X-ray emission can be quite broad, particularly for low
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4.5 Discussion and Conclusions

Figure 4.25: Pitch angle spread, ∆µ, for various anisotropies F d/F u using

F (µ) ∝ exp
(

−(1−µ)2

∆µ2

)

(solid line) and F (µ) ∝ exp
(

−|1−µ|
∆µ

)

(dashed line). The

vertical dotted line shows an anisotropy of 3.

energies, a large anisotropy in the electron spectrum could result in a low photon

spectrum directivity. Kašparová, Kontar, and Brown (2007) performed a centre-

to-limb study using RHESSI data and inferred a directivity ratio between 0.2 and

5 in the range 15 - 20 keV. As the emission below ∼ 30 keV is expected to be

predominantly produced by thermal electrons it is expected that the distribution

in this energy range should be isotropic. This is particularly true for the flares

on 17 June 2003 and 10 November 2004 which show strong thermal components;

however this may not be the case for flares which show a weak thermal component

such as the flare on 20 August 2002.

As this study measured X-rays in the energy range 10 - 500 keV the reliability

of the inversion above approximately 250 keV is questionable. As can be seen

from Figures 4.16 and 4.17 the confidence interval increases significantly at a few

hundred keV. Thus it is difficult to make comparisons with the SMM studies

which examined X-ray measurements above 300 keV. However the measurements

in this study are for the most part in agreement with previous studies (McTiernan

and Petrosian, 1991).
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4.5 Discussion and Conclusions

As electrons propagate through the corona and chromosphere, they will be pitch-

angle scattered by Coulomb collisions (e.g. Leach and Petrosian (1981); MacK-

innon and Craig (1991)), although it seems that collisions will be insufficient to

isotropise an initially beamed distribution (Brown, 1972; Leach and Petrosian,

1981). These results, therefore, suggest that either the accelerated electron pop-

ulation is more isotropic, or other transport effects are more important than

anticipated. Specifically, the electron scattering by various wave-particle interac-

tions could increase the pitch angle spread of the energetic electrons. Further, if

the distribution of energetic electrons is close to isotropic, the role of return cur-

rent should be diminished. In addition we note, that although the return current

itself does contribute to the formation of a backward going beam, it is likely to

be more efficient at energies below ∼ 50 keV, so that the higher energy electrons

are expected to be weakly affected e.g. Holman et al. (2011).
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5

Stochastic Simulations of

Electron Transport

The results from Chapter 4 suggest that the mean electron flux spectrum, F (E, µ),

is consistent with an isotropic distribution and inconsistent with a strongly beamed

distribution. However, to relate this to the accelerated electron distribution, the

effects of particle transport between the dense regions where the bremsstrahlung

x-rays are emitted and the more rarefied regions where the particle acceleration

is thought to occur, the effects of particle transport must be considered. It is

known that many of the transport effects will cause a diffusion in pitch angle

of the distribution, thus a highly beamed accelerated or injected distribution,

F0(E0, µ) will become broadened.

5.1 How Stochastic Simulations Work

The evolution of the distribution of accelerated electrons is the result of numerous

interactions between particles in the distribution and in the ambient plasma of

the solar atmosphere. One way of approaching this is to treat the distribution

statistically. The time dependent evolution of the distribution can be described

by a Fokker-Planck equation. As the particle gyro-radius about the field line is

much smaller than the other length scales considered, it can be averaged over.
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5.1 How Stochastic Simulations Work

It is therefore useful to consider the distribution of the electrons in terms of two

variables: particle kinetic energy, E and pitch angle µ (the cosine of the azimuthal

angle, that is the angle between the downwards direction and the velocity vector

of the electron).

The evolution of the distribution can then be described by combining the ad-

vection, Di, and diffusion Dij terms for these two variables (Hamilton, Lu, and

Petrosian, 1990) to produce a Fokker-Plank equation,

∂F

∂t
= −µβc

∂F

∂s
− ∂

∂E
(DE) − ∂

∂µ
(Dµ) +

∂

∂µ

(

Dµµ
∂F

∂µ

)

+
∂

∂E

(

DEE
∂F

∂E

)

+
∂

∂µ

(

DEµ
∂F

∂E

)

+
∂

∂E

(

DEµ
∂F

∂µ

)

+ S(E, µ, s, t)

(5.1)

where s is the path length travelled by the electron. As electrons are considered

with initial energy up to several MeV, the relativistic forms are used so the speed

of the electron, β, is measured in units of the speed of light (c = 3× 1010 cm s−1);

the Lorentz factor γ = 1√
1−β2

is also used.

This method assumes the beam can be treated as test particles, that is, that the

influence of the beam does not affect the underlying ambient particle distribution

which determines the conditions, such as magnetic force and particle density,

encountered by the test particle. Therefore in this scenario the effect of return

current is not included.

For Coulomb collisions the advection and diffusion terms are given by (Leach and

Petrosian, 1981)

DE = −4πr2
0cn ln Λ

β
Dµ = 0 (5.2)

Dµµ = −4πr2
0cn ln Λ

β3γ2
(1 − µ2) DµE ≈ 0 (5.3)

DEE = −4πr2
0cn ln Λ

β

(

kBT

mec2

)

[

erf

(

√

E

kBT

)

− 2

√

E

πkBT
exp

(

− E

kBT

)

]

(5.4)
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5.1 How Stochastic Simulations Work

The equations here defined in cgs, therefore s is measured in cm, density n in

cm−3 and energy E in erg. The physical constants used are e, the charge on the

electron (4.8×10−10 esu), me is the electron mass (9.1×10−28 g), the Boltzmann

constant kB = 1.38 × 10−16 erg K−1. ln Λ is the Coulomb logarithm, for all cases

here it is assumed that ln Λ = 20 throughout the loop, thus we are neglecting the

effects of partial ionisation (Emslie, 1978).

The term DEE is proportional to the thermal velocity of the ambient plasma, as

the dispersion in energy results from the spread in energies of the target particles,

thus for high energy electrons encountering a thermal plasma it is negligible. The

term DµE is also non-zero, but is smaller than Dµµ by a factor ∼ ln Λ and therefore

is omitted here.

The equation for a distribution influenced only by Coulomb collisions in the cold

plasma limit has the form

∂F

∂t
= −µβc

∂F

∂s
− ∂

∂E

(

−4πe4 n lnΛF

β

)

+
∂

∂µ

(

4πe4 n lnΛ (1 − µ2)

β3γ2

∂F

∂µ

)

(5.5)

This full equation cannot be solved analytically so numerical methods must be

employed.

One method which can be used to solve Equation 5.5 is stochastic simulations.

A Fokker-Plank equation of the form

∂f

∂t
= − ∂

∂xi
(Aif) +

1

2

∂2

∂xi∂xj
(Bijf) (5.6)

is equivalent to a set of stochastic differential equations (e.g. Gardiner 1985,

MacKinnon and Craig 1991).

dx = A(x, t)dt +
√

B(x, t)Wdt (5.7)

where W represents a Wiener process and
√

B is defined such that
√

B
√

B
T

= B.

When these equations are solved for a large number of test particles the statistical

distribution of particles then gives the distribution function f . This method

has previously been applied to the problem of electron transport in solar flares

(Fletcher, 1996; Fletcher and Martens, 1998; MacKinnon and Craig, 1991).
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5.1 How Stochastic Simulations Work

As the time for electrons to propagate along the loop is much shorter than the

time intervals used to accumulate RHESSI spectra (4 - 64 s), the steady-state

approximation is appropriate here (Battaglia et al., 2012). For example a 10 keV

electron would take ∼ 0.1 s to traverse a loop of 7×108 cm if collisions are ignored.

The distribution evolves on the beam decay timescale, Zharkova and Gordovskyy

(2005) calculated that 300 keV electrons in a corona with density ∼ 1×1011 cm−3

would have a decay time of ∼ 7 s and that most electrons are lower energy and so

have shorter decay times while the high energy electrons are likely to precipitate

down to higher densities more quickly so a realistic decay time is ∼ 1 s. The

term ∂F
∂t

can therefore be dropped from Equation 5.5 and a steady state solution

found. Thus Equation 5.5 is equivalent to the set of equations

dz = µds , (5.8)

dE =
4πe4 n lnΛ

meβ2c2
ds , (5.9)

dµ =
4πe4µ n lnΛ

γ2m2
eβ

4c4
ds +

√

4πe4 n lnΛ (1 − µ2)

γ2m2
eβ

4c4
W

√
ds , (5.10)

where z is the height above the photosphere, and W is a random number rep-

resenting the Wiener process, chosen from a Gaussian distribution with mean 0

and variance 2.

This is a very versatile method as the advection and diffusion terms are all that

is needed to describe the system, thus the influence of many processes can be

incorporated straightforwardly by adding the relevant terms to Equations 5.8 -

5.10 . Another advantage is that the accuracy of the solution can be improved

arbitrarily using small values of ds.

The density model takes the form of an exponentially decreasing density out from

the photosphere plus a constant coronal (loop) density

n(z) = n0 exp
(

−z

h

)

+ n1 (5.11)

where n0 = 1.16×1017 cm−3 is the photospheric density, n1 = 5×109 cm−3 is the

coronal density and h = 1.44×107 cm is the scale height (Figure 5.1). This is very

close to the model used by Battaglia and Kontar (2011) which based the values
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5.2 Testing the code

Figure 5.1: The one dimensional density model used: n [cm−3] as a function of

z/hloop, where hloop is the height of the coronal loop modelled (7 × 108cm)

for the photospheric density on the atmospheric models of Vernazza, Avrett, and

Loeser (1981).

5.2 Testing the code

A one dimensional coronal loop model was used to test the effects of Coulomb

collisions on a beamed electron distribution propagating down towards the pho-

tosphere. The test particles were injected at a range of heights near the loop top

with a distribution in energy and pitch angle. They were then allowed to prop-

agate by stepping forward in path length ds, the new height energy and pitch

angle for each particle is then found by applying Equations 5.8 - 5.10.

In order to test that these simulations work as expected, reduced versions of the

code for which analytic solutions are possible were first tested and compared with

the expected values.
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5.2 Testing the code

5.2.1 Spectral Index Change Due to Energy Loss

The first test of the stochastic simulation code considers energy loss in the absence

of pitch angle scattering. Assuming electrons lose energy purely in Coulomb

collisions with no pitch angle scattering for the non-relativistic case, this has the

form dE
dz

= −Kn(z)
E

.

Figure 5.2: Power law spectra at start (left) and end (right) of the simulation

for non-relativistic energy loss with no scattering. Flux is binned in log space and

broken power law fit applied. Top: δ0 = 4 Bottom: δ0 = 6

We can assume electron flux continuity, which is to say that the total number of

electrons in the flare volume remains constant: F0 (E0) dE0 = F (E) dE. The elec-
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5.2 Testing the code

tron energy at height z where the electron now is given by
∫ E

E0
EdE = −KN(z)

where N(z) =
∫ z

0
n(z)dz is the column density experienced by the particle. The

electron spectrum at height z therefore has the form

F (E, z) = F0(
√

E2 + 2KN(z))
E

√

E2 + 2KN(z)
(5.12)

Assuming a power law form for the injected spectrum F0(E0) ∝ E−δ
0 gives

F (E, z) ∝ E

(E2 + 2KN(z))
δ+1
2

(5.13)

The mean electron flux spectrum, F (E), for the one dimensional case is given

by

F (E) =

∫ ∞

0

F (E, z)n(z)dz =

∫ ∞

0

F (E, N)dN (5.14)

using the differential form dN(z) = n(z)dz, substituting Equation 5.13 gives

F (E) =

∫ ∞

0

E

(E2 + 2KN(z))
δ+1
2

dN

=

[

E(E2 + 2KN)
(1−δ)

2

K(1 − δ)

]∞

0

≈ E(2−δ)

K(δ − 1)
(5.15)

Thus the integrated mean electron spectrum has a spectral index two greater

than the injected spectrum.

The stochastic simulation code was run using 105 particles with scattering turned

off. Test particle energies were selected using the IDL randomp function which

uses the inverse transform method (Bevington and Robinson, 1992) to produce

an array of numbers drawn from a power law distribution. A low energy cutoff of

10 keV was assumed and a maximum energy of 2 MeV imposed. Below the low

energy cutoff for the initial power law the electrons were not tracked and were

assumed to be lost to the thermal distribution. The code was run until there

were at most 200 particles left with energy above 10 keV.

A broken power law fit was applied to the electron flux. Single power laws were

tried previously but they did not result in good fits. The graphs below show the
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results of the fit at the start (100 iterations) and end (where there are roughly 100

particles left above 10 keV) and the power law spectral indices compared. The

results are broadly in agreement with a change in spectral index of 2 (Figure 5.2).

This was performed using both the fully relativistic and non-relativistic energy

loss terms, though there is no real difference in the results between the two in the

range of energies considered here.

5.2.2 Comparison With Analytic Solution

The rate of pitch angle scattering can be calculated analytically. Assuming a

mono-energetic electron beam with all particles starting out with the same pitch

angle (µ0) the non-relativistic case the solution has the form MacKinnon and

Craig (1991)

F (µ, t) =
∞
∑

k=0

(1 − 3t)
k(k+1)

3 (k +
1

2
)Pk(µ0)Pk(µ) , (5.16)

where Pk(x) is a Legendre polynomial of degree k. Here dimensionless units are

used with speeds being divided by their initial speed, v0, lengths being divided

by
v4
0m2

e

4πe4 n lnΛ
and times being divided by

v3
0m2

e

4πe4 n lnΛ
.

For the relativistic case under the same assumptions the solution has a similar

form (Lu and Petrosian, 1988)

F (µ, t) =
β2(η)

β2(η + y)

∞
∑

k=0

e−k(k+1)[ρ(η+y)−ρ(η)](k +
1

2
)Pk(µ0)Pk(µ) , (5.17)

where

y =
ct

λ0

(5.18)

is a dimensionless time variable and

η =
√

E2 + 2E + sin−1

(

1

E + 1

)

(5.19)

ρ =
1

2
ln

(

E

E + 2

)

(5.20)
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Figure 5.3: Pitch angle distribution comparison for the non-relativistic case, with

initial conditions µ0 = 1.0 E0 = 64keV. Black histogram is result of Monte-Carlo

simulation, red dotted line is analytic solution. Top left: after 100 iterations. Top

right: after 4000 iterations. Bottom left: after 8000 iterations. Bottom left: after

12000 iterations.

These solutions were compared with the results of the Monte-Carlo simulations

and for several values of µ0 and initial energy. All simulations were performed with

107 electrons, a constant ambient density of 109 cm−3, and a step size equivalent

to 0.001 s with the exception of the final simulation (E0 = 800 keV, µ0 = 1.0)

which used a step size equivalent to 0.01 s. The solutions were found to be very

close to the simulation results in all cases (Figures 5.3 - 5.4).
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Figure 5.4: Pitch angle distribution comparison. Fully relativistic case. With

initial conditions µ0 = 0.5 E0 = 800 keV. Black histogram is result of Monte-Carlo

simulation, red dotted line is analytic solution. Top left: after 100 iterations. Top

right: after 10000 iterations. Bottom left: after 20000 iterations. Bottom left:

after 30000 iterations.
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Figure 5.5: Distribution with all electrons having µ0 = 1. Top: distribution in

height, for several energy bands 10-50 keV (black), 50 - 100 keV (red), 100- 200

keV (yellow), 200 - 500 keV (blue). Middle: distribution in pitch angle (µ) using

the same colour codes. Bottom: electron flux spectrum F d (red) F u (blue) Left:

initial distribution Right: distribution after 2000 iterations).

5.3 Results of Stochastic Simulation Code

5.3.1 Scattering Results from Pure Downwards Distribu-

tion

As with the power-law in energy, a beam of test particles were drawn from a

power-law distribution of electrons and all given pitch angle µ0 = 1, that is, an
138
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Figure 5.6: Results from stochastic simulation with F0(E0) = E−2
0 δ(µ− 1). Top:

anisotropy of mean electron flux spectrum (F d/F u). Bottom: electron flux spec-

trum F d (red) F u (blue).

initial distribution of the form F0(E0, µ) = E−d0δ(µ − µ0)

However, this time both the scattering and energy loss terms were included to

simulate the physical effect Coulomb collisions would have on this distribution.

As anisotropy at several hundred keV is significant, a large number of particles
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5.3 Results of Stochastic Simulation Code

were needed to ensure that the high energy part of the distribution was not

dominated by statistical noise: 108 particles were used in these simulations.

For each iteration the heights of the electrons above the photosphere, the dis-

tribution of particles throughout the loop, the pitch angle distribution in terms

of µ and the energy of each particle are calculated by applying the stochastic

equations. The instantaneous bi-directional electron flux is then computed, this

is given by the sum of all electrons in either the upward or downward hemisphere

for that iteration, binned in energy and multiplied by the average loop density

that particles in that energy bin are encountering. As the coronal density is low

there is not a significant change in the distribution until it has propagated down

the loop.

At each step the total integrated electron flux is calculated for comparison with

the measurements of F (E, µ) made by inversion of RHESSI data. This is done

by cumulatively summing the instantaneous distributions for each iteration. The

final calculation is to determine the anisotropy (F d/F u) of the integrated flux

and the the final integrated fluxes for the run. The code is run until there are at

most 200 particles with energy greater than 10 keV.

5.3.2 Scattering Results from Beam Distribution

In order to compare the results to previous chapters the evolution of an initially

beamed distribution was examined. The injected electrons were drawn from a

distribution of the form

F0(E, η) = E−δ exp

(

−(1 − µ)2

∆µ2

)

(5.21)

As with the initial particle energies, the pitch angles were then selected using the

integral transform method. This method allows random numbers from a uniform

distribution to be transformed into a distribution with an arbitrary probability

density function, P (µ)dµ, normalised such that
∫∞

−∞
P (µ)dµ = 1, using the cu-

mulative probability density C. For the case of a beam of electrons this is given
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Figure 5.7: Electron distribution for an initial beamed distribution with ∆µ =

0.1. Top: Initial distribution in height, for several energy bands 10-50 keV (black),

50 - 100 keV (red), 100- 200 keV (yellow), 200 - 500 keV (blue). Middle: Initial

distribution in pitch angle (µ) using the same colour codes. Bottom: electron flux

spectrum F d (red) F u (blue) Left: initial distribution Right: distribution after

2000 iterations).

by

C =

∫ y

−∞

P (µ)dµ

=

[

1

erf(2/∆µ)
erf

(

µ − 1

∆µ

)]y

−1

=
1

erf(2/∆µ)
erf

(

y − 1

∆µ

)

+ 1

(5.22)
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Figure 5.8: As Figure 5.6 for an initial beamed distribution with ∆µ = 0.1

This equation can be inverted to give y then if C is a random number drawn from

a uniform distribution y is drawn from P

y = ∆µ erf−1

(

(C − 1) erf

(

2

∆µ

))

(5.23)

Several strengths of beaming for the initial distribution were tested. For each

figure the first three panels show snapshots of the Monte Carlo simulation at the

beginning, halfway through and at the end.
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Figure 5.9: Electron distribution for an initial beamed distribution with ∆µ =

0.4. Top: Initial distribution in height, for several energy bands 10-50 keV (black),

50 - 100 keV (red), 100- 200 keV (yellow), 200 - 500 keV (blue). Middle: Initial

distribution in pitch angle (µ) using the same colour codes. Bottom: electron flux

spectrum F d (red) F u (blue) Left: initial distribution Right: distribution after

2000 iterations).

5.4 Comparison with observations

The stochastic simulations show that the effects of particle transport will have

the effect of reducing the anisotropy for a strongly beamed distribution. However
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Figure 5.10: As Figure 5.6 for an initial beamed distribution with ∆µ = 0.4

for the standard thick target configuration where the electrons are injected with

H(µ) = δ(1 − µ) and the energy loss and pitch angle scattering is by Coulomb

collisions the effect is not strong enough to be consistent with the observations

conducted in Chapter 4 (Figures 5.5 and 5.6).

For intermediate levels of anisotropy such as the beamed distributions considered

in Chapter 2 there is also a spread in pitch angle distribution due to Coulomb

collisions as the particles propagate (Figures 5.7 - 5.11). It is, however, not

possible to determine an initial level of anisotropy which is consistent with the

observations detailed in Chapter 4 when the boundary conditions at the top of
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Figure 5.11: Electron distribution for an initial beamed distribution with an

anisotropy of ∼ 10 (∆µ = 0.85). Top: Initial distribution in height, for several

energy bands 10-50 keV (black), 50 - 100 keV (red), 100- 200 keV (yellow), 200

- 500 keV (blue). Middle: Initial distribution in pitch angle (µ) using the same

colour codes. Bottom: electron flux spectrum F d (red) F u (blue) Left: initial

distribution Right: distribution after 2000 iterations).

the loop are reflective. An isotropic distribution in initial pitch angle results in

an anisotropy of the mean electron flux spectrum of ∼ 4 (Figures 5.12 and 5.13).

However if the reflective boundary condition is removed and electrons are allowed

to escape from the top of the ”loop” (Figures 5.15 and 5.16) the anisotropy in

the final mean electron flux spectrum is reduced and weak anisotropy at a level

∼ 5 : 1 is consistent with the measurements made in Chapter 4.

One commonly considered effect not included here is magnetic mirroring due to

the convergence of the magnetic field at the loop footpoints, which could have
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Figure 5.12: Electron distribution for an initial isotropic pitch angle distribution

(∆µ = 10). Top: Initial distribution in height, for several energy bands 10-50 keV

(black), 50 - 100 keV (red), 100- 200 keV (yellow), 200 - 500 keV (blue). Middle:

Initial distribution in pitch angle (µ) using the same colour codes. Bottom: electron

flux spectrum F d (red) F u (blue) Left: initial distribution Right: distribution after

2000 iterations).

a significant effect on the pitch angle distribution of the beam, particularly for

the high energy electrons which are likely to travel further down the loop before

losing energy. In this case a model of magnetic field strength throughout the loop

is needed. The magnetic mirroring does not alter the particle energy so can be

included with the addition of the term

Dµ = −1

2
(1 − µ2)

d lnB

ds
(5.24)

to the pitch angle advection component. While this is not part of the standard

thick target model it has the potential to have an effect of a similar order to
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5.4 Comparison with observations

collisional pitch angle scattering for reasonable estimates of the magnetic field in

a coronal loop. In addition, wave-particle interactions due to plasma turbulence

will also have an effect on the energy and pitch angle distributions.
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Figure 5.13: As Figure 5.6 for an initial beamed distribution with ∆µ = 0.85.
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Figure 5.14: As Figure 5.6 for an initial isotropic pitch angle distribution
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Figure 5.15: As Figure 5.6 for an initial beamed distribution with ∆µ = 0.85 and

no reflection at the top of the loop.
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Figure 5.16: As Figure 5.6 for an initial isotropic pitch angle distribution and no

reflection at the top of the loop.
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6

Conclusions and Future Work

6.1 Conclusions

The aim of this thesis was to investigate the effect of Compton backscattered

hard X-rays (also known as the photospheric albedo) on the observed photon

spectrum at Earth and to determine what implications it has for inference of the

parent electron distribution. In particular, looking at how measurements of the

low energy cutoff of the non-thermal electrons and the directivity of the electron

distribution are affected by albedo. I have used regularised inversion of RHESSI

X-ray data to determine the electron energy distribution, both in terms of the

angle averaged spectrum F (E), and a bi-directional approximation of the angular

dependent electron distribution with downward and upward directed components.

I have also conducted stochastic simulations to examine how this distribution is

altered by particle transport in the solar atmosphere.

Chapter 2 deals with the effect directivity has on the observed photon spectrum,

which is the combination of the components of both the primary, directly emitted,

photon spectrum and the Compton backscattered X-ray flux, directed towards

the observer. Simple commonly used functional forms were used to estimate the

effects of different distributions in pitch angle of electrons in solar flares on the

emitted photon spectrum. This was extended to include the contribution of pho-

tospheric albedo on the observed X-ray spectrum implemented, using the Green’s
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Matrix method of Kontar et al. (2006). The forward modelling shows that when

there is strong downward-directed beaming in the emitting electron population,

this will result in a very strong albedo emission. The characteristics of this re-

flected component can be very different from the directly emitted component,

so the observed photon flux may show a clear signature of electron distribution

anisotropy. For cases with substantial beaming, particularly for events which oc-

cur close to the disk centre, the albedo component can dominate over the primary

component. Here the spectral index of the photon flux increases rapidly above

100 keV for flares close to the disk centre.

Chapter 3 considers the effect albedo has on inversions of the observed photon

spectrum. The technique of regularised inversion was applied to the problem of

inferring solar flare electron distributions from the observed RHESSI photons.

In particular, we aimed to determine if the data showed evidence for a low en-

ergy cutoff, in the non-thermal electron spectrum. When regularised inversion

is applied to simulated spectra with a low energy cutoff it is often seen as a dip

in the recovered mean electron flux spectrum. This analysis was first performed

neglecting the influence of albedo, and showed 17 flares with a clear dip in the

electron distribution. However, this represents only a small proportion of the 177

events studied. Flares with a low value of γ0 are very likely to exhibit a dip, as

are flares located close to the disk centre and this is consistent with the appear-

ance of these dips being due to the failure to take account of albedo. When a

correction for albedo was applied to the observed photon spectrum, the presence

of the dip in the electron spectrum was removed for all flares. The energies of

the dip minima are concentrated near 15 keV, the energy which is expected from

an isotropic albedo model. This work was published as Kontar, Dickson, and

Kašparová (2008).

Chapter 4 ties the expected change in photon spectra with increasing directivity,

modelled in Chapter 2, with the regularisation techniques introduced in Chapter

3. The inversion method was extended for the bi-directional problem of esti-

mating the electron fluxes going downwards towards the photosphere, F d, and

directed towards the observer F u. This method is most suitable when the albedo

contribution is large; thus, flares close to the disk centre, with above background
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counts at energies greater than 300 keV, were selected for analysis. The bivariate

code was applied to the full impulsive phase for the eight flares studied, and the

anisotropy in the electron spectrum determined. This analysis shows consistently

that for almost all flares studied, the recovered F d/F u is consistent, within the

confidence intervals, with an isotropic pitch angle distribution. For almost ev-

ery flare, downward beaming of a ratio greater than ∼ 3 : 1 is ruled out to 3σ

confidence below ∼ 150 keV. Inversions of shorter time intervals (4 - 32 seconds)

during the impulsive phase of the flares studied were also performed, to attempt

to determine if there was any variation throughout the impulsive phase. These

results are consistent with previously published results which showed little evi-

dence of directivity at these energies and seem to rule out strong beaming of the

sort usually expected in the basic collisional thick target model. However, the

observations are consistent with a range of possible pitch angle distributions. The

results of the inversions are model independent and can therefore be interpreted

in terms of a variety of models, including those considered in Chapter 2. This

work has been published as Dickson and Kontar (2012).

Chapter 5 considered the effect of particle transport through the solar atmosphere

on the electron distribution. The Fokker-Plank formulation was used to estimate

the change in the electron distribution due to Coulomb collisions. This was

solved using stochastic simulations, as a Fokker-Planck equation can be written

as a mathematically equivalent set of stochastic differential equations. The code

was tested against the analytical results for several reduced cases and found to

be in good agreement. The test was first run for a beam with all electrons

initially directed downward. The simulations show that the effects of energy loss

and pitch angle scattering by Coulomb collisions will reduce the anisotropy of a

downward beamed distribution. However, the effect of Coulomb collisions alone is

not strong enough to isotropise very strongly beamed distributions such that they

are consistent with the RHESSI observations conducted in Chapter 4. For lower

levels of initial anisotropy, it is possible to determine what level of anisotropy

in the injected distribution would be needed to produce an emitting population

consistent with the observations detailed in Chapter 4. These simulations suggest
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that either the initially injected distribution is not strongly beamed or other

mechanisms of energy loss and pitch angle scattering are significant.

6.2 Future Work

6.2.1 Electron-Electron Bremsstrahlung

The principal mechanism for X-ray production in the regime of RHESSI observa-

tions is ion-electron bremsstrahlung. However, there are several other mechanisms

which will also be responsible for some of the X-ray emission in this energy, and

while these are either never likely to be dominant or will only become significant

under extreme conditions, their influence can have a large effect on the electron

spectra inferred from the combined photon spectra, using techniques such as reg-

ularised inversion.

In particular the electron-electron bremsstrahlung might have an influence at

high energies (> 300 keV). The cross-section of electron-electron bremsstrahlung

is quadrupole (Figure 6.1) whereas the ion-electron bremsstrahlung cross-section

is dipole, therefore the inclusion of e-e bremsstrahlung could have an effect on

the observed X-ray spectra for different levels of anisotropy.

The effect of electron-electron bremsstrahlung on inversion of RHESSI data was

examined for the angle averaged case by Kontar et al. (2007). It was found that

while this component was always much smaller than the usual e-i bremsstrahlung

component, its inclusion could influence the inferred electron spectra, removing

the need for an upward break in spectral index at high energies for one flare

studied.

6.2.2 Further Observations

The spectral modelling in Chapter 2 suggests that there is a large amount of in-

formation on the directivity provided by the reflected albedo component. While
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Figure 6.1: Polar diagram of electron-electron bremsstrahlung cross-section for

an electron of energy 100 keV emitting a photon of 35 keV (blue) 45 keV (yellow)

55 keV (red) c.f. Massone et al. (2004), Figure 2.2.

this is most significant for the case of strong downwards anisotropy, other dis-

tributions including those with F d = F u do show signatures of their angular

distribution, at least for simple power-law distributions in electron energy.

As the drop off of albedo reflectivity is strongest at several hundred keV high

quality observations in this regime are important. RHESSI is equipped to provide

measurements in this regime with good energy resolution, however as the level of

counts is close to the background at these energies in practice measurements are

only possible for the strongest flares.

6.2.3 Stochastic Simulations

One of the advantages of using stochastic simulations to model the transport

effects in solar flares is the flexibility they afford. Many physical interactions

which affect energy loss and pitch angle scattering can be included by adding the
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6.2 Future Work

relevant terms to the stochastic equations. While Coulomb collisions are expected

to be the major source of energy loss and pitch angle scattering, there are many

other processes which will also affect the beam distribution.

In particular, magnetic mirroring due to the convergence of the magnetic field at

the loop footpoints could have a significant effect on the pitch angle distribution

of the beam, particularly for the high energy electrons which are likely to travel

further down the loop before losing energy. The magnetic mirroring does not

alter the particle energy, so can be included with the addition of the term −1
2
(1−

µ2)d ln B
ds

to the pitch angle advection component Dµ. While this is not part of the

standard thick target model, it has the potential to have a significant effect for

real flares. For strong magnetic fields the effect of gyrosynchrotron emission on

energy loss and pitch angle change can also become significant (Petrosian, 1985).

As with magnetic mirroring this can be straightforwardly included by adding

DE = −2
3
(1 − µ2) e4γ2βB2

m2
ec4

to the the energy loss and Dµ = −2
3
µ(1− µ2) e4βB2

m3
ec6γβ2 to

the pitch angle advection terms. As synchrotron emission is optically thin there

is no additional associated diffusion.

With more realistic conditions and the addition of the other effects these simula-

tions will allow us to make more detailed comparisons between theoretical models

and the electron spectra inferred using regularised inversion methods. This will

allow us greater insight into the acceleration processes of solar flares.
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G.J., Kašparová, J., Mallik, P.C.V., Massone, A.M., McConnell, M.L., Piana,

M., Prato, M., Schmahl, E.J., Suarez-Garcia, E.: 2011, Deducing Electron

Properties from Hard X-ray Observations. Space Sci. Rev. 159, 301 – 355.

doi:10.1007/s11214-011-9804-x. 90

Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the

corona and the loop prominence phenomenon. Solar Phys. 50, 85 – 98.

doi:10.1007/BF00206193. 13

Korchak, A.A.: 1967, Possible Mechanisms for Generating Hard X Rays in Solar

Flares. Sov. Astron. 11, 258. 16, 20

168

http://dx.doi.org/10.1007/s11207-008-9249-x
http://dx.doi.org/10.1007/s11207-004-4140-x
http://dx.doi.org/10.1007/s11207-005-7150-4
http://dx.doi.org/10.1051/0004-6361:20053672
http://dx.doi.org/10.1086/521977
http://dx.doi.org/10.1007/s11214-011-9804-x
http://dx.doi.org/10.1007/BF00206193


REFERENCES

Kosugi, T., Makishima, K., Murakami, T., Sakao, T., Dotani, T., Inda, M., Kai,

K., Masuda, S., Nakajima, H., Ogawara, Y., Sawa, M., Shibasaki, K.: 1991,

The Hard X-ray Telescope (HXT) for the SOLAR-A Mission. Solar Phys. 136,

17 – 36. doi:10.1007/BF00151693. 23

Kramers, H.: 1923, On the theory of X-ray absorption and of the continuous X-

ray spectrum. PHILOSOPHICAL MAGAZINE 46(275, 6TH SERIES), 836 –

871. 18

Krucker, S., Christe, S., Glesener, L., McBride, S., Turin, P., Glaser, D.,

Saint-Hilaire, P., Delory, G., Lin, R.P., Gubarev, M., Ramsey, B., Ter-

ada, Y., Ishikawa, S.-N., Kokubun, M., Saito, S., Takahashi, T., Watan-

abe, S., Nakazawa, K., Tajima, H., Masuda, S., Minoshima, T., Shomojo,

M.: 2009, The Focusing Optics X-ray Solar Imager (FOXSI). In: Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 7437.

doi:10.1117/12.827950. 22

Leach, J., Petrosian, V.: 1981, Impulsive phase of solar flares. I - Characteristics

of high energy electrons. Astrophys. J. 251, 781 – 791. doi:10.1086/159521.

127, 129

Leach, J., Petrosian, V.: 1983, The impulsive phase of solar flares. II - Charac-

teristics of the hard X-rays. Astrophys. J. 269, 715 – 727. doi:10.1086/161081.

35, 92

Li, P., Hurley, K., Barat, C., Niel, M., Talon, R., Kurt, V.: 1994, Directivity

of 100-500 keV solar flare hard X-ray emission. Astrophys. J. 426, 758 – 766.

doi:10.1086/174112. 91

Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R.,

Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M.,

Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ra-

maty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg,

P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone,

D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D.,

169

http://dx.doi.org/10.1007/BF00151693
http://dx.doi.org/10.1117/12.827950
http://dx.doi.org/10.1086/159521
http://dx.doi.org/10.1086/161081
http://dx.doi.org/10.1086/174112


REFERENCES

Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro,

D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian,

M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A.,

Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie,

A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T.,

Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Im-

ager (RHESSI). Solar Phys. 210, 3 – 32. doi:10.1023/A:1022428818870. 23, 79,

90

Lu, E.T., Petrosian, V.: 1988, Rapid temporal evolution of radiation

from nonthermal electrons in solar flares. Astrophys. J. 327, 405 – 416.

doi:10.1086/166203. 135

MacKinnon, A.L., Craig, I.J.D.: 1991, Stochastic simulation of fast particle dif-

fusive transport. Astron. Astrophys. 251, 693 – 699. 127, 130, 135

Magdziarz, P., Zdziarski, A.A.: 1995, Angle-dependent Compton reflection of

X-rays and gamma-rays. Mon. Not. Roy. Astron. Soc. 273, 837 – 848. 41, 42

Massone, A.M., Emslie, A.G., Kontar, E.P., Piana, M., Prato, M., Brown,

J.C.: 2004, Anisotropic Bremsstrahlung Emission and the Form of Regular-

ized Electron Flux Spectra in Solar Flares. Astrophys. J. 613, 1233 – 1240.

doi:10.1086/423127. xi, xxiv, 35, 36, 156

Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., Ogawara, Y.: 1994, A loop-top

hard X-ray source in a compact solar flare as evidence for magnetic reconnec-

tion. Nature 371, 495 – 497. doi:10.1038/371495a0. 13

McConnell, M.L., Ryan, J.M., Smith, D.M., Lin, R.P., Emslie, A.G.:

2002, RHESSI as a Hard X-Ray Polarimeter. Solar Phys. 210, 125 – 142.

doi:10.1023/A:1022413708738. 92

McTiernan, J.M., Petrosian, V.: 1991, Center-to-limb variations of characteristics

of solar flare hard X-ray and gamma-ray emission. Astrophys. J. 379, 381 – 391.

doi:10.1086/170513. 90, 126

170

http://dx.doi.org/10.1023/A:1022428818870
http://dx.doi.org/10.1086/166203
http://dx.doi.org/10.1086/423127
http://dx.doi.org/10.1038/371495a0
http://dx.doi.org/10.1023/A:1022413708738
http://dx.doi.org/10.1086/170513


REFERENCES

Mel’Nik, V.N., Lapshin, V., Kontar, E.: 1999, Propagation of a Monoenergetic

Electron Beam in the Solar Corona. Solar Phys. 184, 353 – 362. 79

Miller, J.A., Cargill, P.J., Emslie, A.G., Holman, G.D., Dennis, B.R., LaRosa,

T.N., Winglee, R.M., Benka, S.G., Tsuneta, S.: 1997, Critical issues for under-

standing particle acceleration in impulsive solar flares. J. Geophys. Res. 102,

14631 – 14660. doi:10.1029/97JA00976. 15

Morozov, V.A.: 1967, Choice Of Parameter In Solving Functional Equations By

Regularization Method. Doklady Akademii NAUK SSSR 175(6), 1225 –&. 68

Nakel, W.: 1994, The elementary process of bremsstrahlung. Phys. Rep. 243,

317 – 353. doi:10.1016/0370-1573(94)00068-9. x, 17

Nitta, N., Dennis, B.R., Kiplinger, A.L.: 1990, X-ray observations of two short

but intense solar flares. Astrophys. J. 353, 313 – 322. doi:10.1086/168618. 89

Parker, E.N.: 1957, Sweet’s Mechanism for Merging Magnetic Fields in Con-

ducting Fluids. J. Geophys. Res. 62, 509 – 520. doi:10.1029/JZ062i004p00509.

14

Peterson, L., Winckler, J.R.: 1958, Short γ-Ray Burst from a Solar Flare. Physical

Review Letters 1, 205 – 206. doi:10.1103/PhysRevLett.1.205. 21

Petrosian, V.: 1985, Directivity of bremsstrahlung radiation from relativistic

beams and the gamma rays from solar flares. Astrophys. J. 299, 987 – 993.

doi:10.1086/163765. 157

Petrosian, V., Donaghy, T.Q.: 1999, On the Spatial Distribution of Hard X-Rays

from Solar Flare Loops. Astrophys. J. 527, 945 – 957. doi:10.1086/308133. 47

Petschek, H.E.: 1964, Magnetic Field Annihilation. NASA Special Publication

50, 425. 14

Phillips, K.J.H.: 2004, The Solar Flare 3.8-10 keV X-Ray Spectrum. Astrophys.

J. 605, 921 – 930. doi:10.1086/382523. 21

171

http://dx.doi.org/10.1029/97JA00976
http://dx.doi.org/10.1016/0370-1573(94)00068-9
http://dx.doi.org/10.1086/168618
http://dx.doi.org/10.1029/JZ062i004p00509
http://dx.doi.org/10.1103/PhysRevLett.1.205
http://dx.doi.org/10.1086/163765
http://dx.doi.org/10.1086/308133
http://dx.doi.org/10.1086/382523


REFERENCES

Piana, M.: 1994, Inversion of bremsstrahlung spectra emitted by solar plasma.

Astron. Astrophys. 288, 949 – 959. 18, 75

Piana, M., Massone, A.M., Kontar, E.P., Emslie, A.G., Brown, J.C., Schwartz,

R.A.: 2003, Regularized Electron Flux Spectra in the 2002 July 23 Solar Flare.

Astrophys. J. Lett. 595, L127 –L130. doi:10.1086/378171. 75, 80

Pizzichini, G., Spizzichino, A., Vespignani, G.R.: 1974, On Anisotropy of Solar

Hard X-Ray Emission. Solar Phys. 35, 431 – 439. doi:10.1007/BF00151966. 90

Poutanen, J., Nagendra, K.N., Svensson, R.: 1996, Green’s matrix for Compton

reflection of polarized radiation from cold matter. Mon. Not. Roy. Astron.

Soc. 283, 892 – 904. 41

Priest, E.R.: 1984, Solar magneto-hydrodynamics, Geophysics and Astrophysics

Monographs, D. Reidel Publishing Company, Dordrecht. ISBN 9789027718334.

x, 8, 15

Santangelo, N., Horstman, H., Horstman-Moretti, E.: 1973, The Solar Albedo of

HARD X-Ray Flares. Solar Phys. 29, 143 – 148. doi:10.1007/BF00153445. 27

Schwartz, R.A., Csillaghy, A., Tolbert, A.K., Hurford, G.J., McTiernan, J., Zarro,

D.: 2002, RHESSI Data Analysis Software: Rationale and Methods. Solar

Phys. 210, 165 – 191. doi:10.1023/A:1022444531435. 73, 82, 98

Shih, A.Y., Lin, R.P., Hurford, G.J., Boggs, S.E., Zoglauer, A.C., Wunderer,

C.B., Sample, J.G., Turin, P., McBride, S., Smith, D.M., Tajima, H., Luke,

P.N., Amman, M.S.: 2009, The Gamma-Ray Imager/Polarimeter For Solar

Flares (GRIPS). In: AAS/Solar Physics Division Meeting #40, AAS/Solar

Physics Division Meeting 40, 18.10. 22

Smith, D.M., Lin, R.P., Turin, P., Curtis, D.W., Primbsch, J.H., Campbell, R.D.,

Abiad, R., Schroeder, P., Cork, C.P., Hull, E.L., Landis, D.A., Madden, N.W.,

Malone, D., Pehl, R.H., Raudorf, T., Sangsingkeow, P., Boyle, R., Banks, I.S.,

Shirey, K., Schwartz, R.: 2002, The RHESSI Spectrometer. Solar Phys. 210,

33 – 60. doi:10.1023/A:1022400716414. 72, 82, 98

172

http://dx.doi.org/10.1086/378171
http://dx.doi.org/10.1007/BF00151966
http://dx.doi.org/10.1007/BF00153445
http://dx.doi.org/10.1023/A:1022444531435
http://dx.doi.org/10.1023/A:1022400716414


REFERENCES

Stewart, B.: 1861, On the Great Magnetic Disturbance Which Extended from

August 28 to September 7, 1859, as Recorded by Photography at the Kew

Observatory. Royal Society of London Philosophical Transactions Series I 151,

423 – 430. 9

Sturrock, P.A.: 1966, Model of the High-Energy Phase of Solar Flares. Nature

211, 695 – 697. doi:10.1038/211695a0. 13

Suarez-Garcia, E., Hajdas, W., Wigger, C., Arzner, K., Güdel, M., Zehnder, A.,
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