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Abstract 

Periodontal disease is associated with an inflammatory response to a pathogenic 

biofilm. The host response may cause gingival inflammation, which can progress 

to irreversible gingival recession, alveolar bone destruction and tooth loss. 

Enhanced understanding of the host-biofilm relationship may inform novel 

therapeutic approaches. A key molecule involved in inducing and mediating pro-

inflammatory responses are the IL-17 cytokine family. An in vitro model system 

potentially provides a platform to investigate biofilm interaction with epithelial 

cells. The aim of this study was to develop in vitro mono-species and multi-

species biofilms and investigate the survival of biofilms in cell culture 

conditions, and simultaneously assess the epithelial response to the bacterial 

biofilms and planktonic cells with respect to viablility, apoptosis and 

inflammatory mediators. This study also looked to determine whether IL-17A is 

expressed within and released from periodontal tissues and to investigate its 

role in the regulation of epithelial cell cytokine and chemokine production.  

 

Mono- and multi-species biofilms of P. gingivalis, F. nucleatum, A. 

actinomycetemcomitans and S. mitis were developed, which were assessed for 

survival in cell culture conditions, recovery from biofilms and morphology. 

Gingival tissue from patients with chronic periodontitis or healthy controls were 

analysed for IL-17A gene expression by qPCR. Protein expression and cellular 

localization was determined by immunofluorescence. Single cell suspensions of 

gingival tissue were stimulated in vitro and IL-17A release assessed. Epithelial 

response after bacterial and IL-17A co-culture was assessed. 

 

The individual bacteria survived preferentially in multi-species biofilm compared 

with mono-species biofilm in cell culture conditions. The viability, apoptosis and 

inflammatory mediator response depended on the type (pathogen or commensal) 

and form (planktonic or biofilm) of bacteria. Diseased gingival tissues expressed 

significantly higher levels of IL-17A mRNA than healthy samples. IL-17A localised 

to mast cells in the inflamed gingival tissue, and was released in cell culture 

supernatants following stimulation. Stimulation of epithelial cells with IL-17A 

resulted in the transcriptional regulation and release of numerous cytokines and 

chemokines.  

 



 v

The initial component of the entire investigation has provided a quantitative and 

qualitative assessment of both mono- and multi-species biofilms that can be 

used to investigate how oral biofilms interact with the host epithelium. The 

epithelial-biofilm co-culture model has demonstrated clear differences between 

(i) planktonic and biofilms, (ii) pathogens and commensals, and (iii) live and 

dead bacterial challenge. These observations and the utility of the model will 

provide a platform to investigate key questions relating to pathogen and host 

within the oral cavity and beyond. From this study, it appears that IL-17A plays 

an important role in the protective periodontal immune response to bacterial 

pathogens. The upregulation of acute inflammatory mediators (such as IL-8) will 

promote neutrophil recruitment and potentiate the removal of any invading 

microbial threat. Therefore it is important to understand the benefits of this 

cytokine, before systemic therapeutic agents are used to antagonise its actions. 

The hope for the future is to unravel the details of the mechanisms involved and 

thereby identify novel therapeutic targets for inflammatory and infectious 

disease. 
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CHAPTER 1:  

INTRODUCTION 
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1.1 Periodontal disease 

1.1.1 Clinical classification 

Periodontal diseases include a long list of conditions involving the supporting 

structures of the tooth. Of these diseases, the most prevalent are dental-plaque 

induced gingivitis and chronic periodontitis. Gingivitis is defined as gingival 

inflammation without any loss of attachment and may be purely plaque related 

or may be exacerbated by local or systemic factors. Gingivitis may be associated 

with a slight increase in clinical probing depth as a result of erythema and 

swelling of the gingivae. This condition is entirely reversible with removal of the 

aetiological agent (dental plaque) with no permanent loss of periodontal 

attachment (Tatakis and Kumar, 2005).  Periodontitis is defined as “an infectious 

disease resulting in inflammation within the supporting tissues of the teeth, 

progressive attachment loss and bone loss” (Flemmig, 1999). Periodontitis, 

classified as either chronic or aggressive, may present either as clinical probing 

depths greater than the depth of the physiological sulcus or as gingival recession 

or a combination of both (Novak et al., 2008). Chronic periodontitis, the most 

common, may be further described as mild moderate or severe (Lindhe et al., 

2008). Aggressive periodontitis is a severe and widespread form, which is 

characterised by rapid attachment loss and bone destruction. Both chronic and 

aggressive periodontitis can occur in a localised form affecting a small number 

of teeth or a generalised form affecting the majority of the teeth.   

The primary aetiological factor in periodontal disease is dental plaque 

(Socransky et al., 1998). It is a multi-factorial disease, which affects a 

significant proportion of the general population (60%) to some degree or 

another. Severe disease is, however, affects approximately 8% of the dentate 

adult population in Britain (Morris et al., 2001). There are a number of suggested 

reasons for an increase in susceptibility to periodontitis. The differences 

between patients have been suggested to be due to the amount of plaque, the 

microbial composition of the plaque or the host response to the presence of 

dental plaque. In fact, it is well recognised that the bacteria in dental plaque 

are responsible for the initiation of periodontal disease. This is supported by 

studies that confirm the association between the accumulation of dental plaque 

and periodontal disease and the absence of plaque in health (Löe et al., 1986).  

There is also clear evidence that removal of plaque will result in clinical 
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improvement and that when plaque control is poor the disease will recur (Becker 

et al., 1984, Axelsson et al., 2004). 

The bacterial accumulation on teeth induces an inflammatory response in 

associated gingival tissues. The vast majority of patients who experience an 

accumulation of plaque will develop non-destructive periodontal inflammation 

(gingivitis) (Löe et al., 1978).  Removal and disaggregation of the plaque leads to 

resolution of the classical signs of this inflammation (Löe et al., 1965, Theilade 

et al., 1966). Existing evidence indicates that gingivitis precedes the onset of 

periodontitis; however, not all gingivitis cases develop into periodontitis. This is 

because for the development of periodontitis, accumulation of plaque bacteria 

alone is not sufficient but a susceptible host as well (Listgarten et al., 1985, 

Lindhe et al., 1973, Löe et al., 1986, Page, 1999). Periodontitis is a disease that 

involves complex interactions of the biofilm with the host immune response and 

subsequent changes in bone and connective tissue homeostasis (Offenbacher et 

al., 2007, Tatakis and Kumar, 2005, Taubman et al., 2007). 

 

This chapter will detail the microbiological and host factors associated with 

periodontal disease.  

 

1.2 Microbiology of periodontal disease 

Dental plaque has been defined as the diverse community of microorganisms, 

found on the tooth surface as a biofilm embedded in an extracellular matrix of 

polymers of host and microbial origin (Marsh, 2004). Essentially this is the basic 

definition of a biofilm, i.e. matrix enclosed microbial populations adherent to a 

surface and/or to one another (Ramage et al., 2010).  

 

1.2.1 Biofilms 

Historically microbiologists have focused upon free-living (planktonic) cells in 

pure-culture, resulting in the common perception that microorganisms are 

unicellular life forms. However, literature has emerged within the past 3 

decades demonstrating a link between the surface attached growth state to 

microbial pathogenesis and human infection (Costerton et al., 1981a, 

Costerton et al., 1981b). Extensive research efforts since then have now 

revealed that a wide range of bacteria and fungi alternate between planktonic 
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and surface attached (sessile) multicellular communities, or biofilms, which is 

illustrated in Figure 1.1 (Ramage et al., 2010). Within their natural ecosystems 

most microbes have been shown to exist as attached communities of cells 

within an organized biofilm and not as planktonic organisms. Biofilms can form 

in the natural environment as well as inside the human host, and can be 

considered as complex cities of microbes that cooperatively interact in an 

altruistic manner (Coghlan, 1996). The advantages to an organism of forming a 

biofilm include protection from the environment, resistance of physical and 

chemical removal of cells, metabolic cooperation and a community based 

regulation of gene expression (Stoodley et al., 2002, Donlan and Costerton, 

2002). In recent years there has been an increased appreciation of the role 

that microbial biofilms play in human medicine, particularly because microbes 

growing within biofilms exhibit unique phenotypic characteristics compared to 

their planktonic counterpart cells, including increased resistance to 

antimicrobial agents and protection from host defences (Donlan and 

Costerton, 2002, Ramage et al., 2010). Therefore, they pose a major problem 

to clinicians as they are difficult to treat, none more so than those associated 

with the oral cavity, specifically periodontitis.  
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Figure 1.1: Scanning electron micrographs of clinically important biofilms 
formed in vitro. (a) Biofilm representative of subgingival periodontal plaque. 
The biofilm consists of Streptococcus mitis (Sm), Fusobacterium nucleatum (Fn), 
Aggregatibacter actinomycetemcomitams (Aa) and Porphyromonas gingivalis 
(Pg). (b) Streptococcus mutans biofilm. Note the polymeric matrix material 
(arrow) surrounding the coccoid cells because it was grown in media 
supplemented by 1% glucose. (c) Candida albicans biofilm. Note the combination 
of yeasts (Y) and hyphae (H) that form a lattice network to support the dense 
structure. The scale bar represents 10 μm. Taken from (Ramage et al., 2010).  
 

 

1.2.2 Plaque biofilms 

The microflora of the oral cavity is diverse and more than 700 bacterial species 

have been detected (Aas et al., 2005, Paster et al., 2006, Faveri et al., 2008). 

Nonetheless, in the maintenance of oral health and in the aetiology of oral 

diseases in humans, a relatively small number of bacterial species are thought to 

play an important role (Socransky et al., 2002, Kumar et al., 2005). The 

bacterial composition often changes from a sparse Gram-positive bacteria 

biofilm, usually found in healthy individuals, to more Gram-negative anaerobic 

rod bacterial biofilm, usually observed in diseased individuals. The biofilm 

communities are complex and dynamic structures that accumulate through 

sequential and ordered colonization of multiple oral bacteria (Kolenbrander et 

al., 2002). Phenotypical differences are observed in the oral bacteria growing in 

the biofilms and planktonic bacteria like increased tolerance to antibiotics, pH 

and oxygen (Bradshaw et al., 1998, Welin-Neilands and Svensater, 2007, 

Sedlacek and Walker, 2007). Bacterial species in dental biofilm communities 

interact with other bacteria in the biofilm either cooperatively or competitively 

through physiological and metabolic routes. Planktonic bacterial cells attach 

directly to the oral tissue surfaces or bind indirectly to other bacterial cells that 

have already been colonized (Kolenbrander et al., 2002). The communication 
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within the dental biofilms can occur through metabolic communication, genetic 

exchange and importantly, quorum-sensing (Chalmers et al., 2008, Sedgley et 

al., 2008). The defined and sequentially ordered steps in the formation of oral 

biofilms are outlined in Figure 1.2. 

 

 

 

Figure 1.2: Oral biofilm formation. This diagram represents each step of oral 
biofilm formation. (A) Pellicle formation. The pellicle is a thin film derived from 
salivary glycoproteins attached to a clean tooth surface. (B) Initial adhesion. 
Pioneer bacteria in saliva recognize the binding proteins in acquired pellicle and 
attach to them. This adhesion is reversible. (C) Maturation. Different bacterial 
species coaggregate and mature biofilm forms. (D) Dispersion. Bacteria disperse 
from the biofilm surface and spread to colonize a new site. Taken from Huang 
and colleagues (Huang et al., 2011). 
 
 

1.2.2.1 Adhesion to tooth surfaces 

Bacterial adhesion to and subsequent colonization of the surfaces of teeth and 

tissues are the first steps towards the formation of dental biofilms. Oral bacteria 

such as streptococci can colonize the tooth surface by binding to the complex 

proteinaceous pellicle (Rogers et al., 2001, Kolenbrander et al., 2002). Many oral 

streptococci have that ability to bind to proteins such as alpha-amylase, proline-

rich proteins, and proline-rich glycoproteins, and are recognized as early 

colonizers. This capability may present an advantage on the streptococci in 

establishing early dental plaque (Kolenbrander et al., 2002).  

 

1.2.2.2 Co-aggregation among oral bacteria 

Planktonic bacteria that cannot directly colonize the tooth surface may bind via 

receptors to the cell surfaces of early colonizers that adhere to the tooth 

surface. Co-aggregation is a specific cell-to-cell reaction that occurs between 
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distinct bacterial cells and is one of the most important mechanisms underlying 

oral bacterial colonization and dental biofilm formation (Kolenbrander et al., 

2002). Early colonizers bind via adhesins to the complementary pellicle 

receptors on the tooth surface followed by secondary colonizers binding to early 

colonizers that are previously bound to the teeth. The process of bridging 

between a co-aggregation of cells consisting of more than 3 bacterial species is 

very important, because it connects a few species that are not co-aggregation 

partners. F. nucleatum can co-aggregate with many oral bacteria, including 

streptococci and obligate anaerobes like P. gingivalis. Therefore, F. nucleatum 

is a key component of dental biofilms and serves as a coordinator that bridges 

the late and early colonizers making it an “intermediate colonizer” 

(Kolenbrander et al., 2002).  This is illustrated clearly through the schematic 

diagram in Figure 1.3.  

 

1.2.2.3 Metabolic communication among oral bacteria 

Oral bacteria use nutrients which are available from saliva, gingival crevicular 

fluid, food containing sugars, food debris, and metabolic products of other 

bacteria (Hojo et al., 2009). Metabolic communication among oral bacteria may 

occur through the excretion of a metabolite by one organism that can be used as 

a nutrient by a different organism. This can also occur through the breakdown of 

a substrate by the extracellular enzymatic activity of one organism that creates 

biologically available substrates for different organisms (Kolenbrander et al., 

2002). For example, the hydrolysis of host glycoproteins by S. oralis and the 

subsequent utilization of released monosaccharides are important in the survival 

of this and other oral species (Byers et al., 1999).  
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Figure 1.3: Bacterial colonization of a tooth surface. This shows the 
colonisation of bacteria through various adhesion molecules. The diagram shows 
the acquired pellicle on the tooth surface. Early colonisers mainly consisting of 
various streptococcal species bind the acquired pellicle. Actinomyces and 
Veillonella species associate closely with the streptococcus species and start 
forming the primary layer of the biofilm. Intermediate colonisers such as F. 
nucleatum adhere to members of the primary complex. Lastly, pathogenic 
bacteria such A. actinomycetemcomitans and P. gingivalis bind to the 
intermediate colonisers, thus forming a multi- species biofilm (Bakaletz, 2004). 
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1.2.2.4 Quorum-sensing 

Quorum-sensing is a process of chemical communication among bacteria. It is 

defined as gene regulation in response to cell density, which influences various 

functions like virulence, acid tolerance and biofilm formation {Li, 2001 #40}. 

Quorum-sensing is considered an important bacterial function because bacteria 

within biofilms reach a high cell density (Hojo et al., 2009). Auto-inducer 2 (AI-

2) is one of the most well-known signalling molecules associated with quorum-

sensing for cross kingdom communication (Bassler et al., 1994). The synthesis of 

AI-2 is catalyzed by LuxS, an enzyme encoded by the luxS gene, which is 

conserved in the genome of a wide range of Gram-positive and Gram-negative 

bacteria. Many studies suggest that oral bacteria have a quorum-sensing system 

that depends on LuxS/AI-2 (Hojo et al., 2009). For example, LuxS-deficient P. 

gingivalis mutant was found to produce low levels of protease (Burgess et al., 

2002) and an inability to form a mixed-species biofilm with S. gordonii (Lamont 

et al., 2002). 

 

1.2.3 Dental plaque composition 

A variety of Gram-positive (e.g., Streptococcus spp, Actinomyces viscosus) and 

Gram-negative species (e.g., Campylobacter gracilis, Fusobacterium nucleatum, 

Prevotella intermedia) have been implicated in gingivitis (Theilade et al., 1966, 

Macuch and Tanner, 2000, Kremer et al., 2000). The distinct role of the dental 

plaque in periodontitis has been established by various investigators in the field 

over many years. Historical studies indicate that periodontal diseases occur in 

response to the quantity of plaque (non-specific plaque hypothesis), whereas 

others implicate specific microbial species in the aetiology of the disease 

(specific plaque hypothesis) (Loesche, 1976, Loesche and Grossman, 2001). This 

concept is illustrated in Figure 1.4, where the acquisition of a ‘foreign’ bacteria 

can alter the balance of the microbial consortia, resulting a change from health 

to disease (Marsh, 2006).  
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Figure 1.4: Schematic representation of the relationship between the 
microbial composition of dental plaque in health and disease. Potential 
pathogens (grey) may be present in low numbers in plaque, or transmitted in low 
numbers to plaque; both situations may be compatible with health. A major 
ecological pressure will be necessary for such pathogens to outcompete other 
members of the resident microflora (white) and achieve the levels (numerical 
dominance) needed for disease to occur. Possible ecological pressures for caries 
include a sugar-rich diet, conditions of low pH, or low saliva flow. Disease could 
be prevented not only by targeting the pathogen directly (e.g. with 
antimicrobial or anti-adhesion agents) but also indirectly by interfering with the 
ecological pressure responsible for the selection of the pathogen (Marsh, 2006). 
 

 

Seminal studies of sub-gingival plaque by Socransky demonstrate that certain 

species frequently occur in complexes (Socransky and Haffajee, 2005). For 

example, the red complex of species, which includes P. gingivalis, Tannerella 

forsythia and Treponema denticola, is strongly associated with the clinical signs 

of periodontitis. A. actinomycetemcomitansis also strongly associated with 

certain forms of periodontal disease, specifically aggressive periodontitis 

(Berthold et al., 1986, Slots and Ting, 1999, Cortelli et al., 2005). A further 

group are classified as the amber species and these are less strongly associated 

with periodontal destruction. These include Prevotella intermedia, Prevotella 

nigrescens, Peptostreptococcus micros, Fusobacterium nuc. vincentii, 

Fusobacterium nuc. nucleatum, Fusobacterium nuc. polymorphum and 

Fusobacterium periodonticum.  Eiknella nodatum, Campylobacter gracilis, 

Streptococcus constellatus and Capnocytophaga rectus (Socransky et al., 1998, 

Socransky and Haffajee, 2002, Zambon, 1985). Figure 1.5 illustrates the 

different complexes described by Socransky and colleagues (review (Socransky 

and Haffajee, 2005)). All of these species are commonly present at sites of 

periodontal destruction at the time of initial diagnosis and their elimination or 
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persistence is associated with prognosis after treatment. Each bacterium has 

specific virulence factors, which confer biological feasibility on their proposal as 

putative periodontal pathogens. The following section will focus on some of 

these key organisms in more detail, particularly those used in subsequent 

studies. 

 

 

 

Figure 1.5: Diagrammatic representation of the relationships of species 
within microbial complexes and between the microbial complexes (Socransky 
and Haffajee, 2005).  
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1.2.3.1 Porphyromonas gingivalis 

Porphyromonas gingivalis is a Gram-negative, anaerobic, non-motile, 

asaccharolytic coccobacilli associated with periodontal disease. This bacteria 

initially grows as white to cream coloured raised colonies on agar surfaces which 

starts to darken from the edge to the centre to a deep red to black colour with 

time (4-8 days) (Holt et al., 1999). P. gingivalis appears to colonise the inflamed 

gingival sulcus. In healthy subjects this is a 0.5 mm deep crevice between the 

tooth and the gum, the portal of entry and recess for periodontal biofilms. The 

subgingival sites of the oral cavity are the main areas colonized by P. gingivalis 

but has also been recovered from saliva, tongue, tonsils and supragingival plaque 

samples (Socransky and Haffajee, 1992). P. gingivalis makes up less than 5% of 

the cultivable subgingival flora of individuals with gingivitis but increases with 

advanced periodontal disease (Forng et al., 2000). For P. gingivalis to be 

associated with the disease, they have to accumulate in the subgingival dental 

plaque and start to proliferate in high numbers, as P. gingivalis can only be 

found in low numbers in a healthy mouth (Haffajee et al., 1998, Papapanou et 

al., 1997).  

 

The microbial aetiology of periodontitis is inconclusive, but only a few specific 

bacteria, including P. gingivalis have been implicated as major pathogens of 

chronic periodontitis (Socransky et al., 1998), and has recently been assigned as 

a ‘keystone pathogen’ of periodontal disease, capable of causing a shift in 

microbial diversity even thought present in low numbers in the final microbial 

community (Hajishengallis et al., 2012). P. gingivalis produces a variety of 

virulence factors, including bioactive metabolic products, fimbriae and an array 

of proteolytic enzymes (Lamont and Jenkinson, 1998). Among the proteolytic 

enzymes, cysteine proteases (gingipains) have been implicated in at least 85% of 

the total proteolytic activity exerted by various strains of P. gingivalis and are 

considered major contributors to the pathogenic potential of P. gingivalis 

(Potempa et al., 1997). Gingipains, categorized into arginine-specific gingipains 

[Arg-gingipain-A (RgpA) and Arg-gingipain-B (RgpB0] and the lysine-specific 

gingipain [Lys-gingipain(Kgp)], are encoded by three different genes, referred to 

as rgpA, rgpB and kgp, which are conserved among laboratory and clinical strains 

of P. gingivalis (Curtis et al., 1999). P. gingivalis participate in the disease 

process sequentially by (i) adherence and colonization, (ii) nutrient acquisition, 
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(iii) neutralization of host defences, (iv) manipulation of inflammatory response 

and (v) tissue destruction, invasion and dissemination to tissue sites (Guo et al., 

2010), which are now discussed. 

 

(i) Adherence and colonization 

Initial colonization of P. gingivalis is facilitated by its ability to adhere to a wide 

variety of biotic host surfaces, including epithelial cells, extracellular matrix 

(ECM) and other bacteria. Gingipains are involved directly or indirectly in this 

process and are therefore crucial in the initial stages of periodontal infection by 

P. gingivalis (Guo et al., 2010). Dental plaque is formed by the specific 

coaggregation of different species of oral bacteria (Kolenbrander et al., 2006, 

Rickard et al., 2003) and this leads to formation and maturation of a biofilm that 

facilitates the adherence and colonization by periodontal pathogens. P. 

gingivalis, which is a late colonizer of the bacterial biofilm on the tooth surface 

of sub-gingival sites, promotes co-aggregation by a variety of surface 

components, including lipopolysaccharides, carbohydrates, gingipain complexes 

and fimbriae, with the latter two being the best characterized (Guo et al., 

2010). Discrete hemagglutinin-adhesin domains of RgpA, Kgp and hemagglutuinin 

A (HagA) have shown evidence in a direct role in coaggregation (Abe et al., 

2004, Kamaguchi et al., 2003, Yamada et al., 2005). Therefore, P. gingivalis 

triple-knockout mutants devoid of gingipains (rgpA rgpB kgp-), or devoid of 

proteins bearing hemagglutinin-adhesin domains (hagA rgpA kgp-), exhibit no 

coaggregative activity (Abe et al., 2004).  

 

The initial step of P. gingivalis attachment to the oral cavity is fimbriae-

mediated [Long fimbriae (FimA) and short fimbriae (Mfa)] which are involved in 

cell invasion and induction of inflammatory responses (Amano, 2010). The 

maturation of the long fimbriae requires RgP activity (Nakayama et al., 1996). 

FimA, which is secreted onto the P. gingivalis surface in a precursor form 

requires Rgp to process it into the filamentous structure of the mature fimbriae 

(Shoji et al., 2004). The precursor form of FimA on the cell surface of Rgp 

devoid gingipain-null mutant can be converted into biologically active polymeric 

fimbriae by exogenous gingipains (Kato et al., 2007b).  
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Gingipains are potent non-fimbrial adhesions that actively bind several 

extracellular proteins (Pathirana et al., 2010) and also mediate tight adherence 

to epithelial cells and gingival fibroblasts (Chen and Duncan, 2004, Chen et al., 

2001a), most of the binding provided by Kgp (Pathirana et al., 2007, Pathirana et 

al., 2008). Gingipains are also involved in P. gingivalis adherence through 

generation of cryptic ligands, by the degradation of extracellular matrix proteins 

by Rgps, which exposes the peptides with C-terminal arginine, for which FimA 

has specific affinity (Kato et al., 2007a, Kontani et al., 1997).  

 

To summarise, gingipains are essential for P. gingivalis adherence to different 

sites within the oral cavity; either directly by acting as non-fimbrial adhesins or 

indirectly by arranging the assembly of fimbriae. The next step in the disease 

process for the pathogen is to acquire nutrients for growth and neutralize host 

defenses. 

 

(ii) Nutrient acquisition 

P. gingivalis, is a fastidious asaccharolytic bacteria which acquires energy by 

fermentation of both carbon and amino acid residues.  The iron and porphyrin 

essential for the growth of P. gingivalis is provided by heme. Gingipains are 

responsible to a large extent to satisfy the nutritional needs of P. gingivalis by 

exploiting different sources of heme and iron in the human host (Guo et al., 

2010). 

 

Red blood cells are the largest reserves of heme and iron in the human hosts. P. 

gingivalis initially clumps the erythrocytes together and slowly lyses them to 

release the haemoglobin and the hemagglutinin activity is related to the 

hemagglutinin-adhesin domains of RgpA, Kgp and HgA (Shi et al., 1999).  The 

slow hemolysis by P. gingivalis is not fully understood, although proteolytic 

activity has been implicated in this process (Chu et al., 1991). The study showed 

that the hemolysin was concentrated on the outer membrane of the bacteria 

with significant haemolytic activity concentrated on the outer membrane 

vesicles. The expression of haemolytic activity was increased by Ca2+ and Mg2+ 

ions while the activity was inhibited by proteinases K, trypsin, the proteinase 

inhibitors Na-P-tosyl-L-lysine chloromethyl ketone and benzamidine, the 

metabolic inhibitor M-chlorophenyl hydrazone, and iodoacetate. The effect of 
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heme limitation on increased haemolytic activity was also studied. Purified 

gingipains do not seem to have a direct involvement in hemolysis but a Kgp-null 

mutants show about half of the hemolytic activity of the wild-type strains or 

complemented mutants suggests a role for Kgp in hemolysis (Lewis et al., 1999).  

 

Transferrin and lactoferrin act as stores of extracellular iron within mucosal 

surfaces. Hemoglobin leaking out from erythrocytes is taken up by haptoglobin, 

while the heme released from the erythrocytes are taken up by hemopexin and 

albumin. Because of these scavenging proteins, there is low concentration of 

free iron and heme in the physiological human fluids. Pathogenic bacteria uses 

siderophores, which are scavenger molecules, to get iron out from carriers of 

iron in the host (Raymond et al., 2003). As P. gingivalis lacks the siderophore 

action it uses gingipains to degrade haptoglobin, transferrin and hemopexin to 

grow on minimal media with serum human serum as the source of heme or iron 

(Sroka et al., 2001). The study showed that the lysine-specific gingipains Kgp can 

cleave haemoglobin, transferrin, haptoglobin and hemopexin. Degradation of 

hemopexin and transferrin in the human serum was also detected. However, the 

degradation of haemoglobin in serum by Kgp was not detected. The arginine-

specific gingipains (RgpA and RgpB) also degraded hemopexin and transferrin in 

serum but only at high concentrations of the enzymes (Sroka et al., 2001).  

 

P. gingivalis depends on peptides for its source of carbon and nitrogen for its 

growth, as it does not utilize free amino acids (Milner et al., 1996). Milner and 

colleagues developed a chemically defined media that used bovine serum 

albumin as the source of carbon and nitrogen, and alpha-ketoglutarate to 

prevent the blackening of the cells due to the deposition of metal sulphides.  P. 

gingivalis uses its extensive proteolytic system, which is composed of 

endopeptidases (gingipains), oligopeptidase and di- and tripeptidylpeptidases, in 

a cascade-like manner, to fulfil this nutritional need (Potempa et al., 2000).  

 

(iii) Neutralization of host defenses 

After successful colonization of the oral mucosa by P. gingivalis, it has to 

confront the host defense system. The innate immune system presents the first 

obstacle, comprising of antimicrobial peptides and peptides, the complement 

system, neutrophils and tissue-resident macrophages. As P. gingivalis is 
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embedded deep in the biofilm, they resist the acute inflammatory reaction 

induced by neutrophil influx and complement activation. Hence, the second line 

of defense is activated, composed of antibodies, activated macrophages and T-

cells. Even the concerted effects of both the systems (synchronized by the 

cytokine network) does not eliminate P. gingivalis, which makes the innate 

immune system cause extensive collateral damage to the surrounding gingival 

and periodontal tissues, with the pathologic changes associated with 

periodontitis (Guo et al., 2010). 

 

The first line of mucosal defense against the invading bacteria is cationic 

antimicrobial peptides. Antimicrobial peptides, which are secreted from cells of 

the gingival tissues, include human beta-defensins, the cathelicidin-type peptide 

LL-37 and neutrophil-derived alpha-defensins, which maintain homoestasis in 

spite of constant exposure from a variety of invading bacteria (Diamond et al., 

2008). This review states that antimicrobial peptides are secreted in the gingival 

epithelium in response to a small subset of bacteria and TLR ligands, via 

different pathways. The environments into which these peptides are secreted in 

the saliva and gingival crevicular fluid differ greatly and can affect their 

respective activities in host defense. Significantly increased levels of alpha-

defensins and LL-37 were reported in the gingival crevicular fluid from chronic 

periodontitis patients in comparison with healthy controls (Puklo et al., 2008, 

Turkoglu et al., 2009). The Turkoglu study included 59 subjects who had their 

GCF levels of LL-37 and IL-18 measured using ELISA. Probing depth (PD), clinical 

attachment level (CAL), plaque index (PI), bleeding on probing, and papilla 

bleeding index (PBI) were also assessed for the chronic periodontitis and 

gingivitis patients and healthy controls. Elevated levels of LL-37 in GCF of 

chronic periodontitis patients were reported in comparison to other groups. 

There was also a positive relationship between the levels of LL-37 and PD, CAL, 

PI and PBI at the sites sampled. Puklo and colleagues (2008) collected GCF 

samples from 14 aggressive periodontitis patients, 17 chronic periodontitis 

patients and 9 healthy subjects. Samples were analysed for periodontopathogen 

load by real time PCR. The levels of methyloperoxidase and alpha-defensins 

(HNP 1-3) were determined by ELISA, and the level of cathelicidin (hCAP18/LL-

37) assayed by Western blot. There was no correlation between myeloperoxidase 

concentration and the levels of LL-37 and HNP 1-3 in patient samples compared 
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to control. Aggressive periodontitis and chronic periodontitis patients showed 

elevated amounts of HNP 1-3 and those with chronic periodontitis had elevated 

levels of mature LL-37. The increased levels of both the peptides in chronic 

periodontitis correlated with the P. gingivalis load.  

 

Chronic periodontitis does not resolve by itself unless there is therapeutic 

intervention due to the resistance of the bacterial biofilm to killing by the 

antimicrobial peptides (Guo et al., 2010). The sensitivity of P. gingivalis killing 

by LL-37 and human beta-defensins are strain dependent: ATCC 33277 is more 

susceptible than W50, W83 and ATCC 49417 (Ji et al., 2007, Joly et al., 2004, 

Ouhara et al., 2005). In the Ji study, 20 strains of 13 oral bacteria were tested 

for their susceptibility to LL-37 and human beta-defensin 3 by liquid dilution 

assay to determine the minimum inhibitory concentration (MIC). It reported that 

the MICs varied greatly depending on the strains and species. The study by Joly 

and colleagues (2004) tested the effectiveness of HBD-2 and HBD-3 against an 

array of oral microbes, including P. gingivalis by radial dilution assays on at least 

three strains of each species. The variability in MIC was strain specific rather 

than species specific. Ouhara and colleagues (2005) tested the antimicrobial 

activity of synthetic antimicrobial peptides human beta-defensin 1 (hBD-1), hBD-

2, hBD-3 and LL-37 (CAP18) against oral bacteria, including six strains of P. 

gingivalis. Beta-defensin resistance was induced in P. gingivalis by pre-treating 

with 1 ng/mL of defensins, heat stress, oxidative stress and peroxide stress 

(Shelburne et al., 2005a), which in turn enhances the expression of rgpA and 

rgpB genes (Shelburne et al., 2005b). A study by Carlisle and co-workers (2009) 

used cell culture supernatants which fully or partially degraded human alpha-

defensins and human beta-defensins after 30 minutes (Carlisle et al., 2009). 

Another study by Gutner and colleagues showed that P. gingivalis was capable of 

degrading LL-37 by utilizing its RgpA and RgpB (Gutner et al., 2009).  

 

P. gingivalis has the ability to survive in the inflamed tissue environment from 

the attacks of phagocytic cells, neutrophils and macrophages. The interplay 

between phagocytic oxidative burst of the host and the oxidative stress response 

of P. gingivalis was investigated; here the oxidative burst by the neutrophils 

enhanced the survival of P. gingivalis (Mydel et al., 2006). P. gingivalis  can also 

survive phagocytosis by macrophages by inducing cross-talk between CXCR4 and 
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TLR2 (Hajishengallis et al., 2008).The gingipains’ role in evading the neutrophil 

and macrophage phagocytosis is either directly by degrading the receptors and 

cytokines essential for phagocyte functions or indirectly by C5a, which is used by 

P. gingivalis to weaken TLR2-dependent immunity (Wang et al., 2010). 

 

(iv) Manipulation of the inflammatory response 

Inflammation is a complex interaction between the cytokines and their receptors 

expressed by the host tissues and immune cells, in response to a foreign agent. 

The immune response is disrupted by the invading bacteria by targeting the 

cytokine mediators (Guo et al., 2010). P. gingivalis uses gingipains to disrupt the 

cytokines and cytokine receptor networks of the host, including interleukin-1 

beta (IL-1 beta) (Sharp et al., 1998), interleukin-6 (IL-6) and its receptors 

(Banbula et al., 1999, Oleksy et al., 2002), interleukin-8 (IL-8) (Mikolajczyk-

Pawlinska et al., 1998), interleukin 12 (IL-12) (Yun et al., 2001, Yun et al., 

2002), interleukin-4 (IL-4) (Yun et al., 2003), interferon-gamma (Yun et al., 

1999), tumor necrosis factor-alpha (Calkins et al., 1998), CD4/CD8 (Kitamura et 

al., 2002), CD14 (Sugawara et al., 2000) and intercellular adhesion molecule-1 

(CD54) (Tada et al., 2003). P. gingivalis is able to manipulate the cytokine 

network through many factors in order to evade the host defence. 

 

(v) Tissue destruction 

Morphological changes associated with advanced periodontal disease include 

alveolar bone resorption and periodontal ligament destruction, which lead to 

attachment loss and periodontal pocket formation. Gingipains play an important 

role, directly and indirectly, in the remodelling of the pathologic tissue 

associated with the development and progression of periodontal disease by 

excessive expression of MMPs over their inhibitors (tissue inhibitors of 

metalloproteinases [TIMPs]), release of proteases from necrotic cells and 

activated neutrophils, inactivation of endogenous protease inhibitors and 

uncontrolled conversion of zymogenic MMPs into their proteolytically active 

forms (Guo et al., 2010). The broad consensus is that P. gingivalis cells, cell 

extracts, spent media or LPS can stimulate the secretion of MMPs at a higher 

level than TIMPs in dendritic cells (Jotwani et al., 2010), human periodontal 

ligament cells (Sato et al., 2009), human gingival fibroblasts (Zhou and Windsor, 

2006) and an engineered human oral mucosa (Andrian et al., 2007). The latent 
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MMPs can be directly activated by gingipains (DeCarlo et al., 1997, Grayson et 

al., 2003). Inflammatory neutrophils are the main source of serine proteases and 

metalloproteases, which are released into the environment and usually 

neutralized by endogenous serine proteinase inhibitors. It has been shown that 

serine proteinase inhibitors are proteolytically inactivated by P. gingivalis-

derived proteases (Nelson et al., 1999, Potempa et al., 1998, Into et al., 2006, 

Kantyka et al., 2009). If this occurs, the host proteases could attack various 

targets in the periodontium. This shows that P. gingivalis can be directly or 

indirectly involved in causing damage to periodontal tissues. 

 

From this it can be concluded that the virulence factors of P. gingivalis are 

essential at every step of the infection: from attachment and colonisation, to 

nutrient acquisition, to evasion of host defences and to tissue invasion. 

 

1.2.3.2 Fusobacterium nucleatum 

Fusobacterium nucleatum are Gram-negative, anaerobic, non-motile, non-spore 

forming, spindle-shaped bacilli associated with periodontal disease. Colony 

morphology is not a consistent parameter of the Fusobacteria and is not 

sufficient for species identification (Tuner et al., 1992). It is one of the first 

Gram-negative species to become established in dental plaque and is considered 

as an intermediate colonizer, which helps in bridging the attachment of non-

pathogens (commensals) and true pathogens (Kolenbrander, 2000, Kolenbrander 

et al., 2002). It is one of the most common species in both supragingival and 

subgingival plaque in both healthy individuals and patients with periodontal 

disease (Kononen et al., 1994, Moore and Moore, 1994, Ximenez-Fyvie et al., 

2000). It is also one of the most common oral species isolated from extra-oral 

infections, including blood, brain, chest, lung, liver, joint, abdominal, 

obstetrical and gynaecological infections and abscesses (Signat et al., 2011). The 

ability of F. nucleatum to co-aggregate with many plaque bacteria suggests that 

it acts as a microbial bridge. 

 

(i) Adhesion and co-aggregation 

F. nucleatum is involved in both adhesion and co-aggregation reactions and 

seems to play a key role in the multi-species co-aggregation network found in 

the periodontal pocket (Bolstad et al., 1996). It is proposed that fusobacteria 
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act as a bridge between early and late colonisers. The early colonizers adhere to 

the tooth pellicle and co-aggregate with other early colonizers and also with F. 

nucleatum. Late colonizers such as P. gingivalis, A. actinomycetemcomitans and 

T. denticola co-aggregate almost exclusively with F. nucleatum, which seems to 

play an important role by bridging these co-aggregations with early colonizers 

(Kolenbrander et al., 1989, Kolenbrander et al., 1993, Kolenbrander and London, 

1993). The adhesins in F. nucleatum are outer membrane proteins (OMPs) which 

are essential for their attachment to specific substrates as a first step of 

colonization. OMP is a receptor polypeptide involved in fusobacterial corncob 

coaggregations (Kaufman and DiRienzo, 1989). Attachment of early colonizers 

streptococci to fusobacteria is mediated through fimbriae on the surface of the 

cocci (Handley et al., 1985, Hasty et al., 1992) by at least two types of corncob 

receptors, one which binds to lipoteichoic acid and which that does not 

(DiRienzo and Rosan, 1984, Kaufman and DiRienzo, 1988, Kaufman and DiRienzo, 

1989). F. nucleatum coaggregates with the late colonizer P. gingivalis through 

an OMP from F. nucleatum and a galactose-containing carbohydrate on P. 

gingivalis (Kinder and Holt, 1989, Kinder and Holt, 1993, Kolenbrander, 1988).  

 

(ii) Immune response induction 

F. nucleatum cell wall extracts have been shown to induce significant changes in 

the expression of genes associated with immune and defence responses which 

were mainly chemokines and cytokines, innate immune or inflammatory 

markers, antimicrobials, or protease inhibitors. The genes of defence responses 

include chemokines IL-8 and CXCL1, 3, 5 and 10, which attract neutrophils, 

monocytes, macrophages, lymphocytes and CSF2 and -3 that stimulate 

neutrophil development. F. nucleatum also up-regulated the genes encoding 

antimicrobial peptides and proteins. Multiple protease inhibitors were also up-

regulated in response to F. nucleatum cell wall extracts (Signat et al., 2011). 

These inhibitors can target the proteases released by neutrophils (Magert et al., 

2005) and bacteria (P. gingivalis, T. denticola and T. forsythia) (Curtis et al., 

2001, Fenno et al., 2001, van der Reijden et al., 2006) and thereby control likely 

tissue damage. F. nucleatum can induce an inflammatory response by up-

regulating pro-inflammatory cytokines and metalloproteases (MMP-9 and MMP-

13) which has several functions in the regulation of inflammation. F. nucleatum 

can also secrete serine proteases which can damage the periodontal tissues. To 
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conclude, F. nucleatum has been shown to possess protective and aggressive 

qualities which asks the question if the bacteria is a commensal or a pathogen. 

 

1.2.3.3 Aggregatibacter actinomycetemcomitans 

A. actinomycetemcomitans are Gram-negative, microaerophilic and facultative 

anaerobic, non-sporulating, non-motile coccobacilli (Zambon, 1985, Pulverer and 

Ko, 1970). The colony morphology shows transparent rough surfaced and opaque 

smooth surfaced types. There is also a transparent smooth surfaced type, which 

is intermediate between the other two types. The colonial variation is 

associated with fimbriation (Inouye et al., 1990, Rosan et al., 1988, Scannapieco 

et al., 1987, Slots, 1982).  

 

A. actinomycetemcomitans possess numerous virulence factors that can enhance 

its survival and may be involved in the pathogenesis of periodontitis (Fives-

Taylor et al., 1999). These include the ability to attach to extracellular matrix 

proteins (Mintz and Fives-Taylor, 1999) and epithelial cells (Meyer and Fives-

Taylor, 1994); antibiotic resistance (Roe et al., 1995); a bacteriocin (Hammond 

et al., 1987, Stevens et al., 1987); bone resorption by either endotoxin (Saglie et 

al., 1990) or surface-associated material (Meghji et al., 1995); a chemotactic 

inhibitor (Ashkenazi et al., 1992a); a collagenase (Robertson et al., 1982); a 

cytotoxin (Shenker et al., 1982a); Fc-binding proteins (Mintz and Fives-Taylor, 

1994b); a leulotoxin (Baehni et al., 1979); immunosuppressive factors (Chen et 

al., 1991, Kinane et al., 1989, Kurita-Ochiai and Ochiai, 1996, Shenker et al., 

1982b, Shenker et al., 1990); and the ability to invade epithelial cells (Meyer et 

al., 1991) and tissues (Christersson et al., 1987).  

 

(i) Adhesion 

A. actinomycetemcomitans increase their numbers in the dental plaque by 

aggregation, intra-generic and inter-generic coaggregation. Vesicles and 

extracellular amorphous material are likely to mediate the aggregation (Meyer 

and Fives-Taylor, 1993, Meyer and Fives-Taylor, 1994). While the intra-generic 

coaggregation by A. actinomycetemcomitans has not been demonstrated 

(Kolenbrander et al., 1990), inter-generic coaggregation has been demonstrated 

with F. nucleatum (Kolenbrander, 1989).  
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The adhesion of A. actinomycetemcomitans to the gingival crevice epithelium is 

an important step in the colonization and subsequent tissue destruction 

associated with periodontal disease. The adhesion of the bacteria to the tooth 

surface has also been investigated using an in vitro tooth model which showed 

that bacteria with fimbriae adhere 3- to 4-fold better than non-fimbriated 

strains (Rosan et al., 1988). A. actinomyecetmcomitans fimbriae (Holt et al., 

1980, Scannapieco et al., 1983) are peritrichous (Scannapieco et al., 1987) and 

often occur in bundles (Rosan et al., 1988). The adhesion of A. 

actinomycetemcomitans has been shown to be strong with the epithelial cells 

with most of the strains (Meyer and Fives-Taylor, 1994). Cell surface 

ultramicroscopic structures that mediate adherence include fimbriae (Meyer and 

Fives-Taylor, 1994, Rosan et al., 1988), extracellular vesicles (Meyer and Fives-

Taylor, 1993) and extracellular amorphous material (Meyer and Fives-Taylor, 

1994). The fimbriae are implicated in the adherence of A. 

actinomycetemcomitans but some strains expressing the smooth colonial 

phenotype which have little or no fimbriae can still adhere to the epithelial cells 

(Meyer and Fives-Taylor, 1994, Mintz and Fives-Taylor, 1994a), indicating 

adhesion molecules or mechanisms unrelated to fimbriae. Poorly adherent A. 

actinomycetemcomitans which were suspended in extracellular amorphous 

material became coated with the material and exhibited increased adherence 

(Fives-Taylor et al., 1995). Vesicles, which are a major feature of the non-

fimbriated A. actinomycetemcomitans surface, are associated with a non-

fimbrial A. actinomycetemcomitans adherence mechanism (Meyer and Fives-

Taylor, 1993). To conclude, the adhesion of A. actinomycetemcomitans to 

epithelial cells is multi-factorial with several adhesins and mechanisms playing a 

role.  

 

(ii) Invasion of epithelial cells 

Many pathogenic bacteria have the capability of penetrating and surviving within 

eukaryotic cells (Finlay and Falkow, 1997, Meyer et al., 1997). A. 

actinomycetemcomitans has been shown to penetrate the gingival epithelium 

(Christersson et al., 1987, Saglie et al., 1986). Based on in vitro models using 

cultured cell lines it has been shown that A. actinomycetemcomitans invasion of 

epithelial cells is a highly dynamic complex involving the attachment of bacteria 

to the host cell with initiation of some form of signalling, binding to a receptor, 
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entry into a vacuole, escape from the vacuole, rapid multiplication, intracellular 

spread, exit from the cell and cell-to-cell spread (Meyer et al., 1996). Many 

clinical and laboratory isolates have shown invading capabilities in a variety of 

cell lines but invasion efficiencies vary with individual strains and cell lines used 

(Blix et al., 1992, Meyer et al., 1991, Sreenivasan et al., 1993). The invasion is 

initiated by A. actinomycetemcomitans coming into contact with microvilli of 

the epithelial cells. The contact induces the epithelial cells to produce ruffled 

apertures and the bacteria seems to pass through these apertures into the 

interior of the host cell (Meyer et al., 1996). The invasion of phagocytes by A. 

actinomycetemcomitans involves the rearrangement of the host cytoskeletal 

network which is inhibited by cytochalsin-D demonstrating a role of actin in the 

invasion process (Brissette and Fives-Taylor, 1999). There are a few A. 

actinomycetemcomitans  isolates which enter the cells via receptor-mediated 

endocytosis exhibit actin-independent entry, suggesting multiple mechanisms for 

the A. actinomycetemcomitans entry into the epithelial cells (Brissette and 

Fives-Taylor, 1999). Host-derived membrane bound vacuole takes up A. 

actinomycetemcomitans which the bacteria lyses to enter the cytoplasm 

(Sreenivasan et al., 1993). The bacteria now transits through the cell to 

adjacent cells via bacteria-induced protrusions. If there are no adjacent or 

neighbouring cells, bacteria are just released from the host cell (Meyer et al., 

1996). Microtubules have been strongly implicated in the intra- and inter-cellular 

spread of A. actinomycetemcomitans and its release into the extra-cellular 

environment (Meyer et al., 1996). All these observations show a dynamic process 

by which A. actinomycetemcomtans invades the epithelial cells to enable it to 

spread to the gingival and connective tissue and initiate the tissue destruction 

associated with periodontal disease. 

 

(iii) Immunosuppressive factors 

A. actinomycetemcomitans has been shown to possess many factors to suppress 

the host defense mechanisms which play a major role in controlling the 

concentrations of bacteria in the dental plaque. The bacteria produces a protein 

which inhibits DNA, RNA and protein synthesis in mitogen-activated human T 

cells (Shenker et al., 1982a). The protein has also been shown to inhibit IgG and 

IgM synthesis by human lymphocytes (Shenker et al., 1982b). In addition to this, 

leukotoxin also impairs the ability of lymphocytes to respond to mitogens by 
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inhibiting DNA, RNA, protein, IgG and IgM synthesis (Rabie et al., 1988). A. 

actinomycetemcomitans secretes a low-molecular-weight compound which 

inhibits polymorphonuclear leukocyte chemotaxis which is the host’s first line of 

defense against invading bacteria (Van Dyke et al., 1982). A. 

actinomycetemcomitans has also been shown to be capable of inhibiting 

polymorphonuclear leukocytes from producing certain compounds which aid in 

the the fusing of PMN leukocytes with lysosomes. This protein in A. 

actinomycetemcomitans inhibits the production of hydrogen peroxide by PMN 

leukocytes and some strains are naturally resistant to high concentrations of 

hydrogen peroxide (Ashkenazi et al., 1992b, Miyasaki et al., 1984). A. 

actinomycetemcomitans are also resistant to defensins that are found in 

neutrophils (Miyasaki et al., 1990). 

 

(iv) Tissue destruction 

A. actinomycetemcomitans has been shown to stimulate bone resorption by 

several different mechanisms: lipopolysaccharide (LPS) (Kiley and Holt, 1980), 

proteolysis-sensitive factor in microvesicles (Nowotny et al., 1982) and surface-

associated material (Meghji et al., 1995). A. acinomycetemcomitans LPS 

(endotoxins) has been well characterized in tissue destruction (Kiley and Holt, 

1980). Low concentrations of A. actinomycetemcomitans LPS stimulate 

macrophages to produce IL-1 α, IL-1 β and TNF-α, which are cytokines involved 

in tissue inflammation and bone resorption (Saglie et al., 1990).  

 

(v) Leukotoxin 

Leukotoxin is one of the most studied virulence factors of A. 

actinomycetemcomitans which is produced by 56% of the strains isolated from 

aggressive periodontitis patients (Zambon et al., 1983). The leukotoxin binds to 

neutrophils, monocytes and a subset of lymphocytes to form pores in the 

membranes of these target cells (Iwase et al., 1990, Taichman et al., 1987) 

which reduces the ability of these cells to sustain osmotic homeostasis, resulting 

in cell death (Karakelian et al., 1998).  

 

1.2.3.4 Streptococcus mitis 

S. mitis are Gram-positive, facultative anaerobic, non-sporulating, non-motile, 

chains of cocci (Bensing et al., 2001). S. mitis is a primary coloniser which is 
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predominantly associated with the early stages of plaque formation and is a 

member of Socransky’s yellow complex (Socransky and Haffajee, 2005). S. mitis 

and other streptococcal species can bind to the acquired pellicle through a 

number of adherence strategies such as proline-rich proteins (PRP-1) and lectin-

like bacterial proteins. PRP-1 is found within the saliva and different regions of 

PRP-1’s can bind to early colonisers such as streptococcal species. Lectin-like 

protein is a bacterial protein which can interact with pellicle-associated 

glycoproteins causing adhesion of primary colonisers to the pellicle (Marsh, 

2006). This pioneer bacterium allows other bacteria to bind receptors such as 

adhesion molecules, which are present on its surface, leading to biofilm 

formation (Lindhe, 2008, Sardin et al., 2004).  

 

(i) Commensal properties 

S. mitis have generally been considered a somewhat benign oral streptococcus 

and a member of the oral commensal flora. The interaction of S. mitis with the 

host innate immune system is not known exactly. It has shown some strong 

immunomodulatory effects on human cells. S. mitis can induce the expression of 

human β-defensin 2 (hBD2) after incubation with gingival epithelial cells 

(Eberhard et al., 2009), which is a host antimicrobial peptide which can kill oral 

pathogens. S. mitis is also very tolerant to the action of antimicrobial peptides 

(Nishimura et al., 2004, Ouhara et al., 2005). S. mitis also modulates the 

expression of IL-8, which is a pro-inflammatory chemokine responsible for the 

chemotaxis of neutrophils to the site of infection (Eberhard et al., 2009). S. 

mitis does not promote IL-8 expression on its own but with co-incubation of S. 

mitis with other oral pathogens F. nucleatum or A. actinomycetemcomitans can 

dampen the production of IL-8 induced in response to the pathogens (Zhang et 

al., 2008, Sliepen et al., 2009). From these observations, it can be concluded 

that S. mitis can supplement host immunity and can survive in the complex oral 

environment from the competition of oral pathogens, as a beneficial commensal. 

 

Overall, these four oral bacteria that have been described all possess unique 

properties that allow them to persist within the oral cavity to different extents. 

However, it is clear from this literature that the immune system plays an 

important role in protecting the host from these bacteria. This will now be 

discussed. 
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1.3 Immunology of periodontal disease 

Microbial plaque is considered necessary, but not sufficient for the progression 

of periodontal disease. Thus, the host response plays a pivotal role in disease 

pathogenesis (Graves, 2008, Preshaw, 2008). Many studies, both in vivo and in 

vitro, have confirmed the periodontopathic virulence of many key oral 

pathogens (Holt and Ebersole, 2005). Nevertheless, it has been clearly 

demonstrated that the presence of dental plaque does not necessarily lead to 

advanced periodontal disease. Moreover, key periodontal pathogens can be 

found at sites of relative periodontal health (Wolff et al., 1993, Van der Velden 

et al., 2006). Therefore, it can be concluded that in addition to the necessary 

role of the dental biofilm in initiating the inflammatory response, other host 

factors must also be involved (Kinane et al., 2006). These factors may determine 

whether the inflammatory response will be an effective protective/preventive 

one, or whether an inappropriate/inefficient inflammatory response leads to 

host induced tissue destruction.  

 

The pathogenesis of periodontal disease is categorised into four stages, based on 

histopathological examination of the development of periodontal inflammation 

as a result of plaque accumulation. These stages are called the (i) initial, (ii) the 

early, (iii) the established, and (iv) the advanced lesion (Page and Schroeder, 

1976).  A brief description of each stage in lesion progression follows. 

 

(i) Initial lesion 

Without normal oral hygiene measures, within 2 - 4 days of plaque 

accumulation, the early inflammatory response is observed histologically.  It is 

characterised by vasodilatation, loss of perivascular collagen, and active 

migration of neutrophils and monocytes into the periodontal tissues and 

junctional epithelium mediated by intercellular adhesion molecules (ICAM) and 

endothelial leucocyte adhesion molecules (ELAM) are observed. The exudation of 

serum proteins from the dilated capillaries leads to an increase in GCF fluid 

flow. 

 

(ii) Early lesion 

The early lesion presents after 7 - 14 days plaque accumulation. This is clinically 

detectable as gingivitis, with more pronounced vascular changes and an increase 
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in extra-vascular neutrophils. Histologically the inflammatory infiltrate consists 

of numerous lymphocytes (predominantly T lymphocytes), immediately below 

the proliferating basal cells of the junctional epithelium. Destruction of the 

gingival connective tissue occurs, through apoptosis of fibroblasts and a 

reduction in the collagen fibre network of the marginal gingivae, via host and 

pathogen derived matrix metalloproteinases (Page and Schroeder, 1976, 

Takahashi et al., 1995). 

 

(iii) Established lesion 

This is similar to the established with a shift in the cell population in the 

inflammatory infiltrate. Here, a large numbers of plasma cells are the main 

histological feature in older patients, whereas in younger patients the infiltrate 

continues to be dominated by lymphocytes (Fransson et al., 1996). Clinically, 

inflammation becomes more pronounced with an increase in swelling, and the 

development of false pocketing. T and B lymphocytes and antibodies and 

complement are present in the inflamed marginal gingivae and gingival sulcus. 

 

(iv) Advanced lesion 

At this stage the inflammatory lesion extends into the periodontal ligament and 

alveolar bone. There is destruction of connective tissue attachment to the 

tooth.  The junctional epithelium migrates down the root surface to form a true 

periodontal pocket. Destruction of the periodontal ligament and the surrounding 

alveolar bone is mediated through matrix metalloproteinases and through 

enhanced osteolytic activity. Direct tissue damage can occur through direct 

cytotoxicity of bacterial products such as proteinases, collagenases, 

epitheliotoxin, cytolethal distending toxin, hemolysin, hydrogen sulphide and 

ammonia (Haffajee and Socransky, 1994). Moreover, dysregulation of host 

derived factors such as proteinases and proteinase inhibitors, matrix 

metalloproteinases (MMPs) and TIMPs, pro-inflammatory cytokines such as IL-1α, 

IL1β, TNFα and others, prostaglandins and the products of polymorphonuclear 

leukocytes lead to damage to the connective tissue attachment (Kornman, 

2008).  
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1.3.1 Innate immune response to periodontal biofilms 

The innate host response primarily involves the recognition of microbial 

components such as LPS, bacterial DNA, and peptidoglycan by the host cells and 

subsequent production of inflammatory mediators. The Toll-like receptors 

(TLRs), which are expressed by leukocytes and resident cells in the periodontal 

tissues, can activate the innate immune response by the binding to various 

bacterial components (Garlet, 2010, Mahanonda and Pichyangkul, 2007). The 

developing biofilm consists of initially Gram-positive cocci in health, changing to 

increased numbers of motile Gram-negative anaerobes in gingivitis and 

periodontitis (Moore and Moore, 1994, Socransky and Haffajee, 1997). Gram-

negative bacteria possess cell wall endotoxin (lipopolysacharide [LPS]), a potent 

stimulator of TLR4. LPS is released from Gram-negative bacteria through cell 

lysis and becomes linked to the extracellular acute phase protein LPS binding 

protein before binding to CD14. This leads to transfer of LPS to the extracellular 

domain of the TLR4 receptor and subsequent TLR4 signalling (Akira, 2006). 

Gram-negative bacteria also activate TLR2 through their cell membrane 

proteins, TLR5 through flagella, TLR9 through recognition of bacterial CpG DNA 

and nucleotide-binding oligomerization domain-containing protein 1 and 2 (NOD 

1,NOD 2) through peptidoglycan derivatives (Akira, 2006, Mogensen, 2009).  

Periodontal pathogens have been reported to stimulate TLRs in vitro.  For 

example, P. gingivalis LPS and fimbriae is a potent TLR2 agonists (Hirschfeld et 

al., 2001, Asai et al., 2001, Erridge et al., 2004). A actinomycetemcomitans and 

F. nucleatum LPS, and whole P gingivalis will stimulate (Kikkert et al., 2007, 

Nussbaum et al., 2009, Darveau et al., 2004, Mochizuki et al., 1999, Yoshimura 

et al., 2002).  Moreover, many bacteria can initiate an immune response via 

TLR9, which also detects viable bacterial DNA (Bauer et al., 2001). It is 

therefore clear that the myriad of bacteria that are present in both health and 

increasing severity of periodontal disease will present a challenge to the innate 

immune response in the periodontal tissues. Following TLR activation, an 

intracellular signalling cascade occurs which can lead to the activation of 

transcription factors and subsequent inflammatory cytokine expression, 

leukocyte migration and tissue destruction (Nakamura et al., 2008, Ukai et al., 

2008, Gelani et al., 2009, Lima et al., 2010). The nucleotide-binding 

oligomerization domain (NOD) and the inflammosome system have also been 
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suggested as possible accessory molecules in the induction of innate immune 

response against periodontal pathogens (Uehara and Takada, 2007, Okugawa et 

al., 2010, Bostanci et al., 2009).  

The junctional epithelium is the front line between the host and the oral 

microflora. It is well equipped to recognise invading pathogens, with studies 

showing the presence of mRNA encoding TLR2, 3, 4, 5, 6 and 9 in gingival 

epithelial cells (Kusumoto et al., 2004). Tissue dendritic cells and Langerhans 

cells are also present within the gingival epithelium and the underlying 

connective tissue.  These antigen-presenting cells express a wide range of TLRs 

including TLR1, 2, 3, 4, 5, 6, 8 and 10 (Mogensen, 2009, Mahanonda and 

Pichyangkul, 2007). These cells will monitor invasion of the bacteria or bacterial 

products initiating the adaptive immune response.  

The alveolar bone is the supporting structure into which the periodontal 

ligament inserts and is the tissue that is ultimately destroyed by the 

inflammatory lesion of periodontal disease.  Osteoblasts and osteoclasts involved 

in bone turnover also express TLR1, 4, 5, 6 and 9 (Asai et al., 2001) and TLR1, 2, 

3, 4, 5, 6, 7, 8 and 9 (Itoh et al., 2003), respectively. It is therefore possible 

that TLR signalling within the bone can generate an inflammatory response to 

invading pathogens, leading to pathological resorption of bone through excessive 

or prolonged production of osteolytic host molecules, including: IL-1, Tumour 

Necrosis Factor-α (TNFα) and Prostaglandin E2 (PGE2), which stimulate 

osteoblast inhibition and osteoclast activation and maturation through the 

receptor activator of nuclear factor kappa-B ligand/osteoprotegering 

(RANKL/OPG).  

 

Many biological events in periodontal disease are strictly regulated by cell-cell 

interactions, which may be categorized into two forms: cognate (adhesive) 

interaction, achieved by mutual recognition between membrane bound cell-

surface molecules, and cytokine-mediated interactions (Okada and Murakami, 

1998). Adhesion molecules include ICAM-1 (Intercellular Adhesion Molecule-1, 

CD54) and ITGB2 (Integrin Beta 2, CD18), which stabilize cell-cell interactions 

and facilitate leukocyte migration across the endothelial barrier (Yang et al., 

2005, Kotovuori et al., 1999).  
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1.3.2 Pro-inflammatory cytokines 

Cytokines are a large and diverse family of soluble mediators including 

interleukins, colony stimulating factors, growth factors, and cytotoxic factors. 

Cytokines play an important role in numerous biological activities including 

proliferation, development, differentiation, homeostasis, regeneration, repair 

and inflammation (Okada and Murakami, 1998). Cytokines networks are an 

important aspect of periodontal inflammation, and subject to several excellent 

reviews, and are illustrated in their complexity in Figure 1.6 (Preshaw and 

Taylor, 2011, Kinane et al., 2011). Pro-inflammatory cytokines IL-1α and IL-1β 

belong to the IL-1 family of cytokines, which has diverse activities and roles in 

immunity, inflammation, tissue breakdown, and tissue homeostasis (Dinarello, 

1988, Gowen et al., 1986, Havemose-Poulsen and Holmstrup, 1997, Mizel, 1989, 

Mizel et al., 1981, Nguyen et al., 1991, Schmidt et al., 1982, Stashenko et al., 

1987b, Tatakis, 1993, Stashenko et al., 1987a). TNF-α is a pro-inflammatory 

cytokine that is secreted mainly by monocytes and macrophages. It induces the 

secretion of collagenase by fibroblasts, resorption of cartilage and bone, and has 

been implicated in the destruction of periodontal tissue in periodontitis 

(Alexander and Damoulis, 1994, Chaudhary et al., 1992, Elias et al., 1987, Meikle 

et al., 1989). IL-1α, IL-1β and TNF-α stimulates bone resorption and inhibit bone 

formation (Stashenko et al., 1987a, Nguyen et al., 1991, Tatakis, 1993). IL-6 is a 

pleiotrophic cytokine influencing immune responses and inflammatory reactions 

(Hirano T, 1991). IL-6 is of particular importance in the human B-cell responses, 

hence it has been speculated that the expansion of B-cells/plasma cells seen in 

periodontitis lesions may result from an increased production of IL-6 at diseased 

sites (Fujihashi et al., 1993). It has also been suggested that IL-6 plays an 

important role in the local regulation of bone turnover (Ishimi et al., 1990, 

Lowik et al., 1989, Kurihara et al., 1990). 
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Figure 1.6: Cytokine networks in periodontal diseases. Schematic to illustrate the 
multiple interactions between cytokines and cellular functions in periodontal diseases. 
Taken from Kinane and colleagues (Kinane et al., 2011). 
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1.3.2.1 Interleukin-1 α and β (IL-1 α/ β)  

IL-1 is a polypeptide, which has diverse activities and roles in immunity, 

inflammation, tissue breakdown, and tissue homeostasis (Dinarello, 1988, Gowen 

et al., 1986, Havemose-Poulsen and Holmstrup, 1997, Mizel, 1989, Mizel et al., 

1981, Nguyen et al., 1991, Schmidt et al., 1982, Stashenko et al., 1987b, 

Tatakis, 1993, Stashenko et al., 1987a). IL-1 is synthesized by various cell types, 

including fibroblasts, lymphocytes, skin cells, macrophages, monocytes, vascular 

cells and bone cells, following its activation. IL-1α and IL-1β belong to the IL-1 

family of cytokines which have similar biological functions and bind to the same 

receptors found on many cell types (Okada and Murakami, 1998). Local excessive 

production of IL-1 by periodontal ligament cells stimulates gingival and 

periodontal ligament fibroblasts to induce the production of other mediators, 

prostaglandin E2 (PGE2) and matrix degrading enzymes that can cause 

connective tissue destruction and attachment loss. IL-1 has also been implicated 

in the pathogenesis of periodontitis, which involves bone destruction (Okada and 

Murakami, 1998). IL-1 α and IL-1 β have been shown to stimulate bone resorption 

and inhibit bone formation (Stashenko et al., 1987b, Nguyen et al., 1991, 

Tatakis, 1993) and also accentuates the bone resorptive actions of TNF-α 

(Bertolini et al., 1986, van der Pluijm et al., 1991). IL-1 β has been shown to 

have significantly more potent in mediating bone resorption compared with IL-1 

α and TNF-α (Alexander and Damoulis, 1994). IL-1 can also stimulate elevated 

production of matrix metalloproteinases (MMPs) (Havemose-Poulsen and 

Holmstrup, 1997), procollagenase (Meikle et al., 1989, Lark et al., 1990) and 

plasminogen activator (Mochan et al., 1988) but no significant change in the 

synthesis of TIMP (Meikle et al., 1989).  

 

1.3.2.2 Interleukin-6 (IL-6) 

IL-6, which belongs to the IL-6 family of cytokines, is a pleiotropic cytokine with 

a wide range of biological functions including influencing immune response, 

inflammatory reactions, acute phase response, oncogenesis and hematopoiesis 

(Kishimoto, 1989, Le and Vilcek, 1989, Sehgal, 1990, Heinrich et al., 1990, 

Hirano and Kishimoto, 1992, Van Snick, 1990). Stimulated monocytes, 

macrophages, T- and B- cells, fibroblasts, keratinocytes and endothelial cells 

have been shown to produce IL-6 after stimulation (Okada and Murakami, 1998). 

In the periodontium, IL-6 is expressed by osteoblasts (Feyen et al., 1989), 
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gingival fibroblasts (Takashiba et al., 2003) and periodontal ligament cells 

(Jonsson et al., 2008). Increased levels of IL-6 have been detected in the 

gingival crevicular fluid (Lin et al., 2005). IL-6 has been implicated in the local 

regulation of bone turnover (Lowik et al., 1989, Ishimi et al., 1990, Kurihara et 

al., 1990). The cytokine has also been shown to stimulate bone resorption in 

mouse calvarial bone (Palmqvist et al., 2002, Ahlen et al., 2002). Simultaneous 

treatment of mouse osteoblastic cells and bone marrow cells with soluble IL-6 

and IL-6 receptors induced osteoclast formation, in an in vitro study (Tamura et 

al., 1993). These observations imply a role for IL-6 in the pathogenesis of 

periodontal tissue destruction in periodontal disease.  

 

1.3.2.3 Tumor Necrosis Factor alpha (TNF-α) 

TNF-α is a pro-inflammatory cytokine released by activated monocytes and 

macrophages (Okada and Murakami, 1998). TNF-α functions include inducing the 

up-regulation of adhesion molecules and chemokines which are involved in the 

cell migration to inflamed and infected sites (Peschon et al., 1998, Dinarello, 

2000, Wajant et al., 2003, Kindle et al., 2006). The cytokine can also induce the 

secretion of collagenase by fibroblasts, resorption of cartilage and bone, and 

destruction of periodontal tissue (Elias et al., 1987, Meikle et al., 1989, 

Chaudhary et al., 1992). Both gingival crevicular fluid (GCF) and diseased 

periodontal tissues have shown high levels of TNF-α and showed positive 

correlation to MMP and RANKL expression (Graves and Cochran, 2003, Garlet et 

al., 2004). Animal studies also demonstrated that TNF-α plays a key role in 

inflammation and periodontal tissue destruction including bone resorption and 

loss of connective tissue attachment (Graves et al., 2008, Graves and Cochran, 

2003). TNF-α also up-regulates the production of other pro-inflammatory 

cytokines, such as IL-1 β and IL-6, which are also associated with inflammatory 

cell migration and bone resorption (Okada et al., 1997, Dinarello, 2000, Wajant 

et al., 2003, Kwan Tat et al., 2004, Musacchio et al., 2009, Graves, 2008, 

Fonseca et al., 2009).  

 

1.3.2.4 Interleukin 17 (IL-17) family 

IL-17A, which was initially identified in T cells (Liang et al., 2010), has been 

shown to be released from other cellular sources including γδ T cells, NK cells, 

neutrophils, eosinophils, LTi CD4 cells (Kimizuka et al., 2012) and mast cells 
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(Hueber et al., 2010). IL-17 A has the potential to induce production of cytokines 

(Fossiez et al., 1996, Numasaki et al., 2004a, Numasaki et al., 2004b), 

chemokines (Yang et al., 2008, Kawaguchi et al., 2003), matrix 

metalloproteinases (Yang et al., 2008, Park et al., 2005, Yagi et al., 2007) and 

antimicrobial peptides (Kao et al., 2004). IL-17 has been shown to participate in 

periodontal disease but the role which it plays, host protective or destructive, is 

not clear (Kramer and Gaffen, 2007). In sterile inflammatory situations, IL-17 is 

destructive but the protective role of IL-17 is in line with the protective role of 

Th17 cells in infectious diseases (Cua et al., 2003). Conversely, IL-17 has also 

been shown to take part in the destructive phase of periodontal disease (Oda et 

al., 2003). Figure 1.7 illustrates the central role it plays in periodontal disease 

and its interaction with other key cytokines. 
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Figure 1.7: Cytokine regulation of matrix degradation and bone resorption in 
periodontal and periapical environments. The presence of microbial pathogens 
in periodontal and periapical environments trigger an initial production of 
proinflammatory cytokines, such as TNF-α and IL1β, which stimulate expression 
and activation of MMPs that degrade extracellular connective tissue matrix. 
Cytokines such as TNF-α can stimulate osteoclastogenesis independently while 
other cytokines stimulate RANKL expression that leads to formation of 
osteoclasts and osteoclast activity. The combined innate and adaptive immune 
responses are likely to lead to the high levels of inflammation and bone 
resorption. These proinflammatory cytokines are thought to generate an 
amplification loop that contributes to periodontal and periapical lesion 
progression. Conversely, cytokines produced by Th2 cells and Tregs, such as IL-4 
and IL-10 have the opposite effect, in part, through stimulating production of 
TIMPs and OPG as well as restrain inflammatory cytokine production. Taken from 
Graves and colleagues (Graves et al., 2011).  
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1.3.3 Chemokines  

Development of the periodontal diseases seems to be related to the progression 

of the inflammatory cell infiltrate into the deeper periodontal tissues (Graves et 

al., 1998). The chemokines, which are found in the gingival tissue and GCF have 

been implicated in the immunopathogenesis of periodontal diseases (Silva et al., 

2007).  

 

1.3.3.1 Interleukin-8 (IL-8) 

IL-8/CXCL8 is a chemoattractant of polymorphonuclear leukocytes (PMNs) which 

has been detected in healthy periodontal tissues and low subclinical 

inflammation closely associated with PMNs (Payne et al., 1993, Mathur et al., 

1996). The levels of IL-8 increase rapidly in GCF preceding the clinical signs of 

disease (Zhang et al., 2002). In early periodontal lesions, PMNs are the first cell 

types found in high numbers (Garlet et al., 2005). Periodontitis patients show a 

drastic increase in the levels of IL-8 in both periodontal tissue and GCF which 

has been correlated with disease severity (Tsai et al., 1995). IL-8 production has 

been shown in gingival fibroblasts, gingival epithelial cells, endothelial cells, and 

in in vitro studies (Takashiba et al., 1992, Takigawa et al., 1994, Huang et al., 

1998, Yumoto et al., 1999). Figure 1.8 illustrates the central role of the 

chemokine IL-8 in periodontal disease. 
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Figure 1.8: Chemokines and chemokine receptors in oral tissues: potential 
involvement in the induction and maintenance of inflammatory reactions. A 
schematic representation of chemokine and chemokine receptor networks in oral 
tissues. Chemokine expression can be triggered by microbial components, 
inflammatory mediators, host factors such as dentin proteins, or even by 
mechanical stress. Both resident (such as osteoblasts, fibroblasts, mast, 
epithelial, and endothelial cells) and inflammatory cells (polymorphonuclear 
leukocytes [PMNs], lymphocytes, monocytes/ macrophages) can be sources of 
chemokines in the oral environment. The chemokines produced in oral tissues 
selectively attract different cell types to the tissues, such as PMNs, lymphocyte 
subsets, monocytes/macrophages, and osteoclasts, and, consequently, can 
determine the course of inflammatory reactions and the clinical outcome of 
potentially associated diseases (Silva et al., 2007). 
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1.3.4 Antimicrobial peptides 

It has been shown that gingival epithelial cells serve as physical barriers to 

microbial challenge and also play an active role in sensing and initiating host 

response, by expression of various pattern recognition receptors and other 

innate host defense molecules such as antimicrobial host defense peptides 

(Dale, 2002). Antimicrobial peptides are very important functional components 

of the innate defense system (Boman, 1995, Zasloff, 2002), which have strong 

antimicrobial activity against both Gram-positive and Gram-negative bacteria by 

disrupting the integrity of their cell membranes (Boman, 1995, Harder et al., 

1997). They also contribute to the homeostasis of the microbe-host interactions 

through immunoregulation of innate and adaptive host response (Boman, 1995, 

Peschel and Sahl, 2006). Defense peptides consist of mainly defensins, 

cathelicidin LL-37 and histatins (Dale, 2002, Marshall, 2004). 

 

1.3.5 Human defensins 

Human defensins are classified into α and β subforms based on the cysteine 

spacing and connecting patterns of three sulphide bonds (Ganz and Lehrer, 

1995). Human β-defensins are produced by the epithelial cells. Human β-

defensin 1 is constitutively expressed in various epithelial cells, suggesting a 

surveillance-like role in the absence of infection and a protective role in the 

presence of infection (Mathews et al., 1999, Zhao et al., 1996). Human β-

defensin 2 is an inflammation-induced defensin and can be detected in saliva 

and gingival (Mathews et al., 1999) which are active against Gram-negative 

bacteria but not so much against Gram-positive bacteria (Harder et al., 1997). 

Human β-defensin 2 expression has been shown in inflamed tissues (Lehmann et 

al., 2002, Mathews et al., 1999). Exposure of human keratinocytes to 

inflammatory cytokines and microbes have shown induction of human β-defensin 

2, in in vitro studies, suggesting a more specialized role in the innate epithelial 

defence compared with human β-defensin 1 (Krisanaprakornkit et al., 2000, 

Mathews et al., 1999).    
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1.4 Periodontal disease models 

To facilitate our understanding of the complexity of periodontal disease, various 

in vitro and in vivo models have been used. The following section describes 

some of the key models and how these have contributed to the literature. 

 

1.4.1 Human in vivo study models  

The pathogenesis of human periodontal disease is a dynamic and complex 

process. Interpreting and translating data from studies, which have investigated 

the pathogenesis of periodontal disease in laboratory or animal models can be 

tricky. The optimal model to study this would obviously be in humans, even 

though this would be an expensive and highly regulated process. Experimental 

gingivitis model in man was first developed by Löe et al as early as 1965 (Löe et 

al., 1965). This was a seminal paper in understanding the causal aspects of 

gingivitis. This study significantly impacted on periodontal research because of 

the simple and instructive demonstration of the causal role of plaque bacteria in 

gingivitis. The experimental gingivitis model described by Löe et al. (1965) 

inspired many researchers in the field to modify and use this within their area of 

interest (Johnson et al., 1997, Biesbrock and Yeh, 2000, Offenbacher et al., 

2010, Grant et al., 2010, Smith et al., 1978, Offenbacher et al., 2009). These 

studies investigated various aspects in the pathogenesis of gingivitis and other 

periodontal diseases. Cell mediated immune responses to plaque antigens was 

also investigated in an experimental gingivitis model in man (Smith et al., 1978). 

Offenbacher and co-workers performed investigated changes in gingival 

crevicular fluid inflammatory mediator levels and gingival transcriptome during 

the induction and resolution of experimental gingivitis in humans (Offenbacher 

et al., 2010, Offenbacher et al., 2009). 

 

Of notable interest was the recent seminal study by Offenbacher and colleagues 

(Offenbacher et al., 2009). An experimental gingivitis study was performed in 

humans to understand changes in patterns of whole-transcriptome gene 

expression that occur during the induction and resolution of experimental 

gingivitis in humans. Gingival biopsy samples were collected from 14 subjects 

during a 28-day plaque-induced experimental gingivitis model. This was followed 

by treatment and resolution at days 28 through to day 35. Biopsy samples were 

collected at different sites within each subject at baseline (day 0), at the peak 
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of gingivitis (day 28), and at resolution (day 35) and processed using whole-

transcriptome gene-expression arrays (Offenbacher et al., 2009). Interestingly, a 

high proportion of the genes demonstrating greatest differences between health 

and disease were genes encoding chemokines, cytokines, adhesion molecules, 

antimicrobial peptides.   

 

Another practical use of these models is for the assessment of chemical agents, 

such as chlorhexidine, for their potential to inhibit plaque formation and 

prevent gingivitis (Löe and Schiott, 1970), which over time has been shown 

through systematic review to be an effective anti-plaque compound (Van 

Strydonck et al., 2012).  

 

1.4.2 Animal in vivo study models  

Prospective studies to investigate the mechanisms underlying the progression of 

periodontitis cannot always be answered by in vivo studies of humans due to 

important ethical considerations. Instead, several rodent models have been used 

to study host-bacterial interactions that have assisted in elucidating the 

mechanisms of periodontitis (Graves et al., 2008).   

 

1.4.2.1 Calvarial model 

A calvarial, or scalp, model was developed by Boyce and colleagues to study the 

effect of cytokines on osteoclastogenesis (Boyce et al., 1989). Other workers 

adapted this model to study host-bacterial interactions in vivo by inoculating P. 

gingivalis into the connective tissue overlying the calvarial bone to study the 

inflammatory infiltrate and fibroblast death stimulated by this organism (Graves 

et al., 2001, Leone et al., 2006). This model introduces the bacteria into the 

connective tissue but has no interactions with the epithelial cells. Therefore, no 

information about the immune response in the epithelial cells is obtained.  

 

1.4.2.2 Oral gavage model  

Most periodontal pathogens are not present in the oral microflora of mice and 

laboratory mouse strains, so alternative models introduced human strains of 

bacteria by oral gavage and the consequent impact on the periodontium has 

been investigated (Chang et al., 1988, Klausen et al., 1991). A mouse 

periodontitis model was developed, in which P. gingivalis oral gavage induced 
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pro-inflammatory cytokines, gamma interferon and interleukin-6, which 

contributed to alveolar bone loss (Baker et al., 1999, Lalla et al., 1998). Other 

studies have looked at similar immune responses involved in bone loss using 

other periodontal pathogens, including A. actinomycetemcomitans (Garlet et al., 

2006) and Tannerella forsythia (Sharma et al., 2005). For enhanced 

reproducibility of the model, prior antibiotic treatment to reduce the oral flora 

and repeated inoculations of the organisms are needed, which leads to 

complexity of the model (Graves et al., 2008).  

 

1.4.2.3 Airpouch model  

The airpouch model was originally developed in mice and rats by the Willoughby 

group to study the function of synovial membrane by producing an airpouch 

subcutaneously followed by the analysis of both the exudate fluid and the 

epithelial lining of the airpouch to assess the acute immune response (Edwards 

et al., 1981). This model was adapted for periodontitis by Pouliot and co-

workers to study the acute inflammatory response to P. gingivalis (Pouliot et al., 

2000). By injecting P. gingivalis into the airpouch, Pouliot and colleagues 

demonstrated that P. gingivalis is a strong pro-inflammatory stimulus. Another 

observation was that PGE2, which is an important marker in the pathogenesis of 

periodontitis, was found in neutrophils in addition to monocyte/macrophage in 

the inflammatory lesion (Pouliot et al., 2000). The main drawback of this model 

is that chronic inflammation experiments could not be performed because 

maintenance of the airpouch is a limiting factor, so inflammatory response could 

be assessed only in the acute context.  

 

1.4.2.4 Tissue cage and Chamber model  

The chamber model is a modification of the airpouch model to study the chronic 

aspect of inflammation. The chamber is a coiled stainless steel wire that is 

surgically implanted subcutaneously into the back of the mouse and the wound 

allowed to heal for 10 days. The interior of the chamber becomes epitheliasised 

and it also allows the injection of bacteria into the lumen of the chamber. Fluid 

can be aspirated from the chamber or the entire chamber can be excised for 

histological studies (Graves et al., 2008). This model was adapted for use in 

periodontal studies by Genco and colleagues mainly for the assessment of the 

virulence of bacteria (Genco et al., 1991). The chamber model was used to 
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demonstrate the development of acquired immune response to P. gingivalis and 

strain differences within the bacteria by injecting the bacteria into the chamber 

(Genco et al., 1991). It has also been utilised to examine the role of 

complement in the clearance of P. gingivalis (Schenkein, 1989), immunisation 

studies (Genco et al., 1992), and the activation of the kinin system which is 

involved in the breach of the vascular barrier and the subsequent dissemination 

of P. gingivalis (Hu et al., 2006). The main advantage of the chamber models is 

the ability to perform long-term experiments that can be adapted to chronic 

inflammation and pathogenesis experiments. The limitation of all animal models 

is that there is no single model that represents all aspects of the human 

periodontal disease (Graves et al., 2008). 

 

1.4.3 In vitro study models  

1.4.3.1 Multi-species biofilm models 

Various plaque biofilm models have been used to study plaque formation, 

structure and antimicrobial susceptibility (Table 1.1). Guggenheim has used a 

defined multi-species model of supragingival and subgingival plaque to study 

structure, antimicrobial susceptibility and host-pathogen interaction 

(Guggenheim et al., 2001a, Guggenheim et al., 2009, Guggenheim and Meier, 

2011, Guggenheim et al., 2001b). Figure 1.9 illustrates the Guggenheim multi-

species biofilm structure as visualized by CLSM and TEM, showing the various 

bacteria in the model stained by multiplex fluorescent in situ hybridisation. 

Moreover, constant depth film fermenter (CDFF) models have been used to study 

the structure and spatial distribution of plaque bacteria (Netuschil et al., 1998). 

 

These defined multi-species biofilm models have been used to mimic gingival 

plaque (Guggenheim et al., 2009, Guggenheim et al., 2004, Periasamy and 

Kolenbrander, 2009b, Peyyala et al., 2011b), while others have used undefined 

microcosm of bacteria from either pooled saliva or pooled plaque samples (Hope 

et al., 2012, Pratten, 2007). Table 1.1 summarises some of the key in vitro 

biofilm models reported in the literature that have been used to study supra-

gingival and sub-gingival plaque structures. In some instances biofilms have been 

produced using undefined bacteria from pooled saliva or plaque samples. 

Although structurally the composition of the biofilm retains the complexities of 

the original sample (Pratten et al., 2003), it is difficult to delineate from these 
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the exact mechanisms used in host-pathogen interaction model when compared 

with the defined multi-species biofilm models.  

 

 

 

 

Figure 1.10: Example of model multi-species biofilm structure visualized by 
CLSM and TEM. CLSM images of a 9-species biofilm stained by multiplex FISH for 
(A) V. dispar (purple), C. rectus (blue), F. nucleatum (red), and P. intermedia 
(green), (B) V. dispar (purple), A. naeslundii (red), S. intermedius (green), and 
S. oralis (blue), and (C) V. dispar (purple), T. forsythia (green), P. gingivalis 
(red), and C. rectus (blue). Images are 1-μm-thick transverse (large images), 
sagittal (right) and coronal (bottom) slices at the positions indicated by the fine 
lines. The length of the bars indicates 20 μm. (D) TEM image of a multi-species 
biofilm demonstrating the predominance of varius cocci or very short rods (S. 
oralis, S. intermedius, V. dispar, P. intermedia) and of the fusiform F. 
nucleatum cells. Bar = 5 μm (Guggenheim et al., 2009). 
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1.4.3.2 Host-pathogen interaction models 

Supra-gingival and sub-gingival in vitro biofilm models have been used to study 

antimicrobial agents against the biofilms, chemical and biological components of 

the biofilms and host-pathogen interaction. Guggenheim’s group have 

investigated host-pathogen interaction using multi-species biofilm-epithelial cell 

co-culture model looking at apoptosis and inflammatory mediator response of 

the epithelium to bacterial biofilms (Belibasakis et al., 2011b, Belibasakis et al., 

2011a). In these studies, primary gingival epithelial cells were challenged with 

the bacterial biofilms to study host-pathogen interactions. The Ebersole group 

used immortalized epithelial cell line OKF4 to co-culture with bacterial biofilms 

and planktonic cells to investigate host-pathogen interactions by investigating 

the inflammatory mediator response of the epithelial cells to the bacteria 

(Peyyala et al., 2012, Peyyala et al., 2011a).  

 

Organotypic 3-dimensional tissue models have also been used to study host-

pathogen interaction and test antimicrobials (Dongari-Bagtzoglou and Kashleva, 

2006a, Gursoy et al., 2012, Oksanen and Hormia, 2002). Even though these 

tissue models are more representative of the oral and gingival mucosa in vivo, 

they are time-consuming and labour-intensive to develop. The Dongari-

Bagtzoglou 3-D model takes about 2-3 weeks to develop with a sub-mucosal 

component to and the multi-layered epithelium (Dongari-Bagtzoglou and 

Kashleva, 2006a, Gursoy et al., 2012, Oksanen and Hormia, 2002). It uses 

immortalized OKF6-TERT2 oral epithelial cells, which has been used in the 

current study. This model has been used to study the Candidal and Candida-

Streptococcal interaction with the tissue model (Dongari-Bagtzoglou and 

Kashleva, 2006b, Diaz et al., 2012), but has the capacity to be used in the 

context of periodontal disease. Other investigators have investigated the effect 

of F. nucleatum biofilms in the 3-D models  (Gursoy et al., 2012). Primary oral 

epithelial cells have also been used to develop the 3-D tissue models 

(Moharamzadeh et al., 2009).  

 

Commercially available organotypic tissue models have also been described, 

including Mattek® and SkinEthic®, which have human epithelial and gingival 

tissue models with a submucosal component. These models have been used for 

toxicological studies and host-pathogen interaction studies (Yadev et al., 2011, 
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Kimball et al., 2006). These studies show the potential of using the organotypic 

3-dimensional tissue models for the study of host-pathogen interaction in 

periodontal disease. There is a range of models which can be used to investigate 

host-pathogen interaction in periodontal disease in vitro including monolayer of 

primary gingival epithelial cells, monolayer of immortalized oral epithelial cell 

lines, primary organotypic 3-D tissue models and organotypic 3-D tissue models 

using immortalized oral epithelial cells. Selection of the models for host-

pathogen interaction would depend on the reproducibility of the model, time 

involved in its development, labour-intensity, cost factor and the application it 

is intended for.  
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Biofilm model Media Substrate Innoculum Application Reference 

Marsh’s Porcine gastric mucin, 
2.5 g/L; KC1 2.5 g/L; 
proteose peptone 2 g/L; 
yeast extract 1 g/L; 
trypticase peptone 1 
g/L ; cysteine 
hydrochloride 0.1 g/L; 
haemin, 0.001 g/L. 

Polytetrafluor
oethylene 
(PTFE) 

Multispecies biofilm: 
Streptococcus mutans R9 
Streptococcus oralis EF186 
Streptococcus sanguis 209 
Lactobacillus casei AC413 
Actinomyces naeslundii WVU627 
Neisseria subfava A1 078 
Veillonella dispar ATCC 17745 
Porpbyromonas gingivalis W50 
Prevotella nigrescens T588 
Fusobacterium nucleaturn ATCC 10953 

Assay chemical and 
biological components 
of the biofilm. For 
example, pH 

(Kinniment et al., 1996a) 
 
(Kinniment et al., 1996b) 

Zurich 60% Human saliva, 10% 
Human serum, 30% 
modified fluid universal 
medium 

Pellicle-
coated HA disc 

Multispecies biofilm: 
C. rectus OMZ 697 
F. nucleatum subsp. vincentii KP-F2 (OMZ 596) 
P. gingivalis ATCC 33277T (OMZ 925) 
 P. intermedia ATCC 25611T (OMZ 278) 
T. forsythia OMZ 1047 
T. lecithinolyticum ATCC 700332T (OMZ 684),  
V. dispar ATCC 17748T (OMZ 493) 
A. naeslundii OMZ 745 
S. intermedius ATCC 27335 (OMZ 512) 
S. oralis SK 248 (OMZ 607) 

Epithelial cell 
apoptosis 
 Inflammatory 
mediator response 
 
Antimicrobial testing 

(Guggenheim et al., 
2009) 
 
(Belibasakis et al., 
2011b) 
 
(Belibasakis et al., 2011a) 
 
(Stathopoulou et al., 
2010) 
 
(Guggenheim and Meier, 
2011) 
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Kentucky Brain heart infusion 
medium supplemented 
with 5 g hemin/mL and 
1 g menadione/mL 

Rigid gas-
permeable 
hard contact 
lenses 

Multispecies biofilm: 
S. gordonii, S. oralis, and S. sanguinis or  
S. gordonii, A. naeslundii, and F. nucleatum or 
S. gordonii, F. nucleatum and P. gingivalis 
Monospecies biofilm: 
S. gordonii 
S. oralis 
S. sanguinis 
A. naeslundii 
F. nucleatum 
P. gingivalis 

Inflammatory 
mediator response 

(Peyyala et al., 2011b) 
 
(Peyyala et al., 2012) 

CDFF Artificial saliva with 
mucin 

HA discs Undefined oral bacterial inoculum from pooled 
saliva 

Antimicrobial testing (Hope and Wilson, 2003) 
 
(O'Neill et al., 2002) 

Florida Trypticase soy broth Pellicle-
coated HA disc 

Undefined subgingival bacterial inoculum Antibiotic resistance 
studies 

(Walker and Sedlacek, 
2007) 
 
(Sedlacek and Walker, 
2007) 

Eastman Artificial saliva with 
mucin 

Bovine enamel 
discs 

Undefined oral bacterial inoculum from pooled 
saliva 

Antimicrobial testing (Pratten, 2007) 
 
(Pratten et al., 2003) 
 
(Pratten and Wilson, 
1999) 
 
(Pratten et al., 1998a) 
 
(Pratten et al., 1998b) 
 
 

Table 1.1 Summary of in vitro supragingival and subgingival multi-species biofilm models. The table summarises some of the models 
which have been developed of supragingival and subgingival periodontal plaque biofilms. The models use a variety of growth media, 
substrates and inoculum for the biofilm development.  
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1.5 Summary and aims of study 

From this brief review of the literature it can be seen that both microbiological 

and immunological factors are pivotally important for the development and 

progression/or otherwise of periodontal disease. Plaque, or microbial biofilm, 

resides at the gingival margin and on the root surface, setting up an interface 

with host cells and tissues. The composition of the microbial biofilm determines 

the extent of host cell interactions, whilst the highly adaptable pathogens within 

the biofilm aim to subvert the protective effects of host immune factors. 

Nevertheless, innate immune factors continue to protect the gingivae through 

cell signalling from the first line of defense, the epithelium. Both in vivo and in 

vitro models have been developed to investigate these complex interactions, 

which have provided greater knowledge into host-pathogen interactions.  

 

To gain further insight into this, the aim of this study was to develop an in vitro 

multi-species biofilm model relevant to periodontal disease, which can be used 

to investigate host-pathogen interactions. The specific aims were as follows: 

 

1) Develop a multi-species biofilm of periodontal  biofilms 

2) Create a host (epithelial) - pathogen (biofilm) model 

3) Investigate how in vitro periodontal biofilms impact cellular responses  

4) Investigate how cytokines modulate immune response in periodontal 

disease
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2.1 INTRODUCTION 

Microbiologically the oral cavity is an important milieu where complex interplay 

exists between host immune factors and diverse microbial populations. This 

environment is abundant with heterogeneous planktonic bacterial suspensions in 

saliva or as adherent biofilm communities contained within distinct 

microenvironments (Kolenbrander, 2000). Molecular analysis of oral microbial 

communities by cloning and sequencing the bacterial 16S rRNA genes present has 

indicated that the oral cavity provides a habitat for approximately 700 species of 

bacteria, of which between 100 and 200 different species are present in the 

healthy mouth of any individual (Kolenbrander et al., 2010).  

 

The gingival crevice represents an important site within the oral cavity where 

bacterial biofilm adheres to an enamel surface and bathes within gingival 

crevicular fluid. Here the biofilm (or plaque) is a diverse population of inter-

connected bacteria that coexist within an oxygen-limited environment, that are 

anchored to the enamel surface by pioneer species, such as oral streptococci 

(Rogers et al., 2001, Kolenbrander et al., 2002). Understanding their growth 

requirements, interactions and composition will help provide clues as to how the 

biofilm is formed and regulated, and how this structure interacts with its 

environment. However, with hundreds of bacteria associated with both supra- 

and sub-gingival plaque it is difficult to delineate how each of these bacteria 

interacts specifically with its environment. Therefore, oral microbiologists have 

developed a variety of methods to grow and study periodontal biofilms. 

 

Many groups have undertaken work to develop complex periodontal biofilm 

models using a variety of approaches (Belibasakis et al., 2011a, Guggenheim et 

al., 2009, Kinniment et al., 1996a, Kolenbrander et al., 2010, Stathopoulou et 

al., 2010, Hope and Wilson, 2006). Systems reliant on flow and perfusion, static 

models, media composition and selection of appropriate substrates are all 

considered paramount, and that is before consideration of the microbial 

composition and the research question being asked (Sissons, 1997).   

 

Philip Marsh’s group first reported the development of a 9-species oral biofilm 

using the CDFF. Spatially differentiated steady-state biofilm communities 

composed of obligate and facultative anaerobes were described (Kinniment et 
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al., 1996a), and these could be employed to evaluate orally relevant 

antimicrobial compounds (Kinniment et al., 1996b). More recently the model has 

been utilised to produce undefined biofilms created from inoculation from 

pooled saliva (Hope et al., 2002). This study illustrated differential viability of 

bacteria throughout different layers of the biofilms using vital dyes, which has 

implications for host-pathogen interactions. Moreover, the choice of growth 

media has implications for the final biofilm structural composition. For example, 

artificial saliva and a model glycoprotein have both been used in model biofilm 

systems (Kinniment et al., 1996a, Hope et al., 2012), whereas Guggenheim and 

colleagues (2009) reported the use a more orally relevant nutrient source, i.e. 

human saliva and human serum (Guggenheim et al., 2009). This is in stark 

contrast to other studies that have relied on conventional bacteriological media, 

such as brain heart infusion (Peyyala et al., 2011b), or a selection of different 

media such as chemically defined media (Standar et al., 2010). Clearly, these 

factors play a critical role in the resultant biofilms that are formed. 

 

Other groups have used alternative methods to grow biofilms, including flow cell 

models. It has been recently reported that flow cells preferentially enable two- 

and three-species biofilms to demonstrate mutualistic behaviour compared to a 

static peg-based model (Periasamy and Kolenbrander, 2009a). These same 

systems have been used to demonstrate the structural and spatial role of P. 

gingivalis throughout biofilm formation (Periasamy and Kolenbrander, 2009b). 

However, these excellent models are technically complex and labour intensive, 

so others have opted for the more traditional static model.  For example, a rigid 

gas permeable lens has recently been described for the development of a multi-

species biofilm model (Peyyala et al., 2011b). Biofilms of early and late 

colonising species were produced and evaluated by qPCR and fluorescence 

microscopy. Here it was shown that substantial qualitative and quantitative 

differences were observed, with spatial heterogeneity between the biofilms 

evident. Notably, Guggenheim and colleagues described a sub-gingival biofilm 

model used for host-pathogen interaction studies that was grown on 

hydroxyapatite (HA) discs using nine species of periodontal bacteria 

(Guggenheim et al., 2009). These biofilms were shown to be thick (50um) with 

evidence of defined architecture, including microcolonies, with a considerable 

variety of cell morphotypes. 
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Collectively, these models show a plethora of different ways of developing 

periodontal biofilms, which has its advantages and disadvantages depending on 

its downstream applications. Therefore, the purpose of this piece of work was to 

design and develop a simple, reproducible and defined in vitro multi-species 

biofilm that could be used to investigate host cell interactions with sub-gingival 

biofilm. 

 

2.2 AIMS 

Gingival biofilms are heterogeneous with complex three-dimensional 

architecture, which are therefore difficult to reproduce accurately within the 

laboratory. Moreover, several key species of bacteria are implicated in 

periodontal disease progression, either through direct pathogenic mechanisms or 

indirectly through host mediated pathogenesis. In order to understand host-

pathogen interactions more carefully the initial aim of this study was to: 

1. Create a simplified and reproducible gingival biofilm model 

2. Qualitatively and quantitatively compare and contrast mono- and multi-

species biofilms  
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2.3 MATERIALS & METHODS 

2.3.1 Growth conditions and standardisation of periodontal bacteria 

Porphyromonas gingivalis ATCC 33277, Fusobacterium nucleatum ATCC 10953, 

Aggregatibacter actinomycetemcomitans ATCC 43718 and Streptococcus mitis 

ATCC 12261 were used in the course of these studies. The bacteria were stored 

in the -80oC freezer in cryovials (Fisher Scientific, Loughborough, UK). From 

beads P. gingivalis and F. nucleatum bacteria were revived at 37oC on fastidious 

anaerobic agar (Oxoid, Cambridge, UK) with 5% defibrinated horse blood (E&O 

laboratories, Bonnybridge, UK) in an anaerobic chamber (85% N2, 10% CO2 and 5% 

H2, [Don Whitley Scientific Limited, Shipley, UK]) for 3 days and 2 days, 

respectively. From beads A. actinomycetemcomitans and S. mitis bacteria were 

revived at 37oC on blood agar (Oxoid, Cambridge, UK) in microaerophilic 

conditions (5% CO2, [Binder GmbH, Tuttlingen, Germany]) for 1 day. These 

bacterial strains were used for experimental procedures after the second 

passage. These strains were maintained on the respective agar plates as 

described above.  

 

For experimental procedures, P. gingivalis and F. nucleatum were grown at 37oC 

in Schaedler anaerobe broth (Oxoid, Cambridge, UK) for 2 days and 1 day, 

respectively. A. actinomycetemcomitans and S. mitis were grown at 37oC in 

tryptic soy broth (Sigma, Poole, UK) supplemented with 0.8% w/v glucose (BDH, 

Poole, UK) and 0.6% w/v yeast extract (Oxoid, Cambridge, UK) for 1 day in 5% 

CO2.  

 

All four bacterial species were centrifuged individually at 3000 rpm for 5 min 

and the pellet washed 3 times with phosphate buffered saline (PBS; pH 7.4, 

Oxoid, Cambridge, UK). P. gingivalis, F. nucleatum and A. 

actinomycetemcomitans were standardized at an OD550 of 0.2 in a colourimeter 

(Model 45, Fisher Scientific, Loughborough, UK) to obtain approximately 1  108 

cfu/mL. S. mitis was standardized at an OD550 of 0.5 in a colourimeter (Model 45, 

Fisher Scientific, Loughborough, UK) to obtain approximately 1  108 cfu/mL. 

This was confirmed by standard plate counting method using the Miles and Misra 

method (Miles et al., 1938).  
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2.3.2 Artificial saliva 

Artificial saliva (AS) was prepared as previously described (Pratten et al., 

1998b), containing the following constituents: porcine stomach mucins Type III 

(0.25% w/v), sodium chloride (0.35 w/v), potassium chloride (0.02 w/v), calcium 

chloride dihydrate (0.02 w/v), yeast extract (0.2 w/v), lab lemco powder (0.1 

w/v), proteose peptone (0.5 w/v) in ddH2O (Sigma, Poole, UK). Urea was then 

added to independently to a final concentration of 0.05% (v/v). 

 

2.3.3 Development of bacterial biofilms 

2.3.3.1 Mono-species biofilm 

P. gingivalis and F. nucleatum were standardized to 1  107 cfu/mL in AS, 

Schaedler anaerobe broth, chemically defined medium (Milner et al., 1996), 

tryptic soy broth (Sigma, Poole, UK), tryptic soy broth + 5% defibrinated horse 

blood, brain heart infusion broth and brain heart infusion broth + 5% 

defibrinated horse blood. The standardized bacteria (500 µL) were transferred to 

24 well plates (Corning, NY, USA) containing customised hydroxyapatite (HA) 

discs (13 mm diameter, 1.5 mm thick [Plasma Biotal Ltd, Tideswell, Derbyshire, 

UK]) and Thermanox™ coverslips (13 mm diameter [Thermo Scientific, NY, USA]). 

P. gingivalis was incubated at 37oC in an anaerobic environment for 48 and 96 h. 

F. nucleatum was incubated at 37oC in an anaerobic environment for 48 h. A. 

actinomycetemcomitans and S. mitis were standardized to 1  107 cfu/mL in AS, 

Schaedler anaerobe broth and chemically defined medium; and 500 µL 

transferred to 24 well plates (Corning, NY, USA) containing customised 

hydroxyapatite (HA) discs (13 mm diameter, 1.5 mm thick) and Thermanox™ 

coverslips (13 mm diameter). A. actinomycetemcomitans was incubated at 37oC 

in 5% CO2 for 48 and 96 h. S. mitis was incubated at 37oC in 5% CO2 for 48 h. For 

all bacterial species the media was replaced daily.  

 

After incubation the HA discs were washed 3  with sterile PBS to remove the 

non-adherent cells, and biofilms disaggregated by mild sonication in a sonic bath 

at 35 kHz (FB11021, Fisherbrand, Loughborough, UK) for 5 min. The sonicate was 

then used for viable cell counting using the Miles and Misra plate technique 

(Miles et al., 1938). This was performed in triplicate on at least two separate 

occasions for each organism.  
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2.3.3.2 Multi-species biofilm 

S. mitis biofilms were formed for 24 h, as described above. The media was 

removed, and standardised F. nucleatum in AS added to the 24 h S. mitis 

biofilm. These were incubated at 37oC in an anaerobic environment for a further 

24 h. The media was then removed and standardised P. gingivalis and A. 

actinomycetemcomitans in AS added to the S. mitis/F. nucleatum biofilm. This 

was incubated at 37oC in an anaerobic environment for a further 4 days, each 

day replacing the AS, to finally produce a four species biofilm (Figure 2.1). Total 

viable cell counts were performed on bacterial species-specific plates. This was 

performed in triplicate on at least two separate occasions. 

 

 

 

Figure 2.1: Development of mixed species biofilm. Diagrammatic 
representation of the sequence of events for developing the four-species biofilm 
consisting of S. mitis, F. nucleatum, P. gingivalis and A. actinomycetemcomitans 
over a period of 7 days.  
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2.3.3.3 Bacterial species-specific agar plates 

(i) A. actinomycetemcomitans agar: This agar contains 4% w/v of tryptic soy 

agar (Oxoid, Cambridge, UK) and 0.1% w/v of yeast extract (Fluka analytical, 

Sigma, Poole, UK) in ddH2O. After autoclaving and cooling, 10 mL of 75 µg/mL 

bacitracin (Sigma, Poole, UK), 10 mL of 5 µg/mL vancomycin hydrochloride from 

Streptomyces orientalis (Sigma, Poole, UK) and 100 mL of filtered horse serum 

(E&O laboratories, Bonnybridge, UK) was added to the agar. 

 

(ii) Mitis salivarius agar (S. mitis): The agar contains 9% w/v of mitis salivarius 

agar powder (MSA) (Fluka analytical, Sigma, Poole, UK) in ddH2O. After 

autoclaving and cooling to 50oC, 1 mL of potassium tellurite solution (Fluka 

analytical, Sigma, Poole, UK) was added to the cooled agar.  

 

(iii) P. gingivalis agar: These plates were commercially sourced and consisted of 

42.5g of Columbia agar, 5 mL (0.1%) hemin, 1 mL (1%) vitamin K1, 6.5 g of agar, 

15 mg of nalidixic acid, 15.37 mg of colistin methanesulfonate, 10 mg of 

bacitracin, 5% sheep blood in 1 L of ddH2O (Anaerobe systems, CA, USA) 

 

(iv) Fastidious anaerobic agar for F. nucleatum: The agar contains 4.6% w/v of 

fastidious anaerobic agar (E&O laboratories, Bonnybridge, UK) in ddH2O. After 

autoclaving and cooling, 5% defibrinated horse blood (E&O laboratories, 

Bonnybridge, UK) was added to the cooled agar. 

 

2.3.4 Impact of freezing on biofilm viability 

To assess the effects of freezing the biofilm, as a means of creating reproducible 

biofilm stocks, media was removed from the mono- and multi-species biofilms, 

which were then sealed within 24 well plates and stored at -80oC. These were 

latterly revived by adding 500 L of AS and incubating within respective 

environments at 37oC for 24 h. Total viable cell counts were then performed as 

described above to compare to the fresh biofilms. The experiment was 

performed in triplicate on least two separate occasions.   

 

2.3.5 Survival of biofilms in cell culture media 

Frozen biofilms were revived in AS overnight at 37oC in the respective 

environments at 37oC. The biofilms were maintained in defined keratinocyte 
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serum-free media (K-SFM, Invitrogen) for 4 and 24 h at 37oC in 5% CO2. After 

incubation, the bacterial biofilms were washed three times with sterile PBS to 

remove the non-adherent biofilm, sonicated and viable counts obtained using 

standard plate counting method, as described above. 

 

2.3.6 Scanning electron microscopy (SEM) 

All biofilms on HA were examined by SEM, as previously described (Erlandsen et 

al., 2004). Briefly, the biofilms were fixed in 2% para-formaldehyde, 2% 

gluteraldehyde and 0.15M sodium cacodylate and 0.15% alcian blue (pH 7.4). The 

fixative was then replaced with 0.15M sodium cacodylate buffer and samples 

washed 3  5 min. A 1% (w/v) osmium tetroxide (OsO4) was then added to an 

equal volume of 0.15M sodium cacodylate buffer for 1 h. Samples were rinsed 3 

 with ddH2O for 10 min. 0.5% (v/v) aqueous uranyl acetate was then added to 

the wells and incubated in the dark for 30 min at room temperature. Samples 

were then dehydrated in an ascending ethanol series (30%, 50%, 70%, 90%, 

absolute alcohol and dried absolute alcohol) then fixed in hexamethyldisilazane 

(HMDS, TAAB, Berks, UK) for 2  5 min in separate containers. These were then 

placed in a dessicator overnight. The fixed and dried denture base samples were 

sputter-coated with gold/paladium and viewed under a JEOL JSM-6400 scanning 

electron microscope.  

 

2.3.7 Statistical analysis  

The statistical analyses on the difference in viable bacteria recovered from the 

biofilms were performed with GraphPad Prism (San Diego, CA, USA) using two-

tailed unpaired student t test. This method gives an unpaired two sample 

student t test with a confidence interval for the difference between the means. 

The unpaired t method tests the null hypothesis that the population means 

related to two independent, random samples from an approximately normal 

distribution are equal (Altman, 1991; Armitage and Berry, 1991). The 

significance level was set at p < 0.05 in a two-sided test.   
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2.4 RESULTS 

2.4.1 Quantitative and structural analysis of mono-species biofilms grown in 

different media. Periodontal bacteria exist in the oral cavity as heterogeneous 

and structurally complex biofilms (Kolenbrander, 2000, Rosan and Lamont, 

2000). However, in order to gain a clearer understanding of how different 

bacteria influence biofilm composition and architecture then analysis of biofilms 

formed by single species was first performed. Taking this reductionist approach 

mono-species biofilm development of P. gingivalis, F. nucleatum, A. 

actinomycetemcomitans and S. mitis was investigated, as described in section 

2.3.3.  

 

The quantitative recovery of bacteria from monospecies biofilms grown on 

Thermanox™ coverslips in the different media is presented in Table 2.1. P. 

gingivalis biofilms grew marginally better in AS (6.44 X 104 CFU/mm2) compared 

to THM (5.41 X 104 CFU/mm2). No viable P. gingivalis was recovered when grown 

in SAB. F. nucleatum biofilms grew preferentially in BHI+B (1.61 X 107 

CFU/mm2), followed by TSB (5.16 X 106 CFU/mm2), AS (1 X 106 CFU/mm2), SAB 

(3.25 X 105 CFU/mm2) and TSB+B (1.93 X 105 CFU/mm2). No growth was observed 

in the F. nucleatum biofilms grown in THM, CDM and BHI. A. 

actinomycetemcomitans biofilms grew preferentially in SAB (4.56 X 105 

CFU/mm2), followed by SAB (2.65 X 105 CFU/mm2) and AS (1.62 x 105 CFU/mm2). 

Finally, S. mitis biofilms grew preferentially in AS (7.90 X 105 CFU/mm2), 

compared with those grown in SAB (2.25 x 102 CFU/mm2) and THM (5.72 x 103 

CFU/mm2).  
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Table 2.1: Quantitative analysis of mono-species biofilms grown in different media on Thermanox coverslips for 48 h 

 CFU/mm2 (SD) 

 P. gingivalis F. nucleatum A. actinomycetemcomitans S. mitis 

 mean SD mean SD mean SD mean SD 

AS 6.44 X 104 

 
1.15 X 104 1 X 106 

 
4.57 X 105 

 
1.62 X 105 

 
1.94 X 103 

 
7.90 X 105 

 
3.87 X 104 

 

SAB NG  3.25 X 105 2.46 X 105 

 
4.56 X 105 

 
2.22 X 104 

 
2.25 X 102 

 
5.04 

 

THM 5.41 X 104 

 
1.98 X 104 

 
NG  2.65 X 105 

 
1.27 X 104 

 
5.72 X 103 

 
2.22 X 102 

 

CDM NG  NG  ND  ND  

TSB NG  5.16 X 106 1.49 X 105 ND  ND  

TSB+B NG  1.93 X 105 

 
1.31 X 104 

 
ND  ND  

BHI NG  NG  ND  ND  

BHI+B NG  1.61 X 107 

 
6.22 X 105 

 
ND  ND  

AS = Artificial saliva; SAB = Schaedlers anaerobic broth; THM = Tryptic soy broth supplemented with haemin and menadione; CDM = 
chemically defined media; TSB = Tryptic soy broth; TSB+B = TSB plus blood; BHI = Brain heart infusion broth; BHI+B = BHI plus blood; NG 
= No growth; ND = Not determined. (n=3) 
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The structure of these monospecies biofilms was evaluated using SEM. For P. 

gingivalis, diffuse clusters of bacterial cells were observed at low magnification 

(1000x) when it was grown in AS and THM. In SAB the biofilms were very sparse 

with no evidence of 3-D architecture. At higher magnification (5000x), 

microcolonies of short rod-shaped P. gingivalis with extracellular matrix were 

observed when it was grown in AS and THM (Figure 2.2A). However, in SAB whilst 

occasional adherent cells were observed, there were no microcolonies with 3-D 

architecture.  

F. nucleatum biofilms grown in AS and SAB were densely populated (1000x), 

particularly compared to the sparse monolayers of those grown in THM (Figure 

2.2B). At higher magnification (5000x) the biofilms grown in AS and SAB were 

structurally complex, with those in AS showing the presence of matrix material. 

A. actinomycetemcomitans biofilms grew sparsely with minimal architectural 

complexity when it was viewed under low magnification in AS, SAB and THM 

(Figure 2.2C). However, under higher magnification (5000x) these biofilms 

showed evidence of microcolonies with matrix production within all the media 

tested. 

S. mitis biofilms displayed contrasting biofilm architecture when grown in the 

different media. At low magnification (1000x) the biofilm grown in SAB was 

densely packed compared to those in AS and THM (Figure 2.2D). At higher 

magnification (5000x) the SAB grown biofilms were shown to be chains of cocci 

densely packed, whereas those in AS and THM showed microcolony architecture 

with pairs of cooci and matrix material. 
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 (A) P. gingivalis biofilm  

 

  

(B) F. nucleatum biofilm 
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(C) A. actinomycetemcomitans 

 

 

(D) S. mitis biofilm 

 

Figure 2.2: Scanning electron micrographs of 48 h biofilms grown in artificial 
saliva. (A) P. gingivalis and (B) F. nucleatum were grown as monospecies 
biofilms in AS, SAB and THM on Thermanox™ coverslips for 48 h in the anaerobic 
chamber at 37oC. (C) A. actinomycetemcomitans and (D) S. mitis were grown as 
monospecies biofilms in AS, SAB and THM on Thermanox™ coverslips for 48 h in 
5% CO2 at 37oC. The coverslips were dip-washed three times in sterile PBS before 
fixing for SEM. Biofilms were viewed under JEOL JSM-6400 scanning electron 
microscope using 1000x and 5000x magnifications. The red arrows denote 
microcolonies and extrapolymeric matrix.  
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2.4.2 Quantitative and structural analysis of P. gingivalis and A. 

actinomycetemcomitans biofilms grown in artificial saliva for 96 h. F. 

nucleatum and S. mitis yielded dense mono-species biofilms with 3-D structure 

when grown in AS for 48 h compared to P. gingivalis and A. 

actinomycetemcomitans, which were sparse monolayers. Therefore, to 

investigate if the poor biofilm phenotypes was a factor of time P. gingivalis and 

A. actinomycetemcomitans were grown in AS for 48 and 96 h at 37oC in the 

anaerobic chamber and 5% CO2, respectively.  

 

Significantly more bacteria were recovered from the 96 h P. gingivalis biofilm 

(5.38 x 105 CFU/mm2, p<0.0001) compared with the 48 h biofilm (6.44 x 104 

CFU/mm2) (Figure 2.3). SEM analysis also revealed increased numbers of 

bacterial cells present as microcolonies of greater complexity after 96 h 

compared with the 48 h P. gingivalis biofilms (Figure 2.4A). Similarly, A. 

actinomycetemcomitans biofilms yielded significantly more viable bacterial cells 

after 96 h biofilm growth (2.61 x 105 CFU/mm2, p<0.0001) compared with the 48 

h biofilm (1.62 x 105 CFU/mm2). SEM analysis showed greater coverage of the 

coverslip clearly covered in extra polymeric material.  
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Figure 2.3: Viable cell recovery of P. gingivalis and A. 
actinomycetemcomitans. P. gingivalis and A. actinomycetemcomitans were 
grown as monospecies biofilms in AS on Thermanox™ coverslips for 48 and 96 h in 
the anaerobic chamber and 5% CO2 respectively at 37oC. The coverslips were dip-
washed three times in sterile PBS before sonicating in sterile PBS for 5 min in an 
ultrasonic bath. Viable counts of the bacteria were obtained by performing Miles 
and Misra plate counting method on the bacterial agar plates. Data shown are 
viable bacteria recovered from the monospecies biofilms in CFU/mm2. Five 
technical replicates were performed for three independent biofilms. 
(***p<0.0001). 
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(A) P. gingivalis biofilm 

 

 

(B) A. actinomycetemcomitans biofilm 

 

 

Figure 2.4: Scanning electron micrographs of 48 and 96 h P. gingivalis and A. 
actinomycetemcomitans biofilms grown in artificial saliva on Thermanox 
coverslips. (A) P. gingivalis and (B) A. actinomycetemcomitans were grown as 
monospecies biofilms in AS on Thermanox™ coverslips for 48 and 96 h in the 
anaerobic chamber and 5% CO2 respectively at 37oC. The coverslips were dip-
washed three times in sterile PBS before fixing for scanning electron microscopy. 
The bacterial biofilms were viewed under JEOL JSM-6400 scanning electron 
microscope using 1000X and 5000X magnifications. In the panels, the biofilms are 
shown between the red arrows and extracellular matrix within yellow arrows. 
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2.4.3 Quantitative analysis of monospecies biofilms grown on different 

substrates. The main biomineral component of the human hard tissues, tooth 

and bone, is hydroxyapatite (HA), which is represented by the formula 

Ca10(PO4)6(OH)2 (LeGeros, 2002, Santos et al., 2004). Therefore, HA surfaces 

were selected to investigate mono-species bacterial biofilm formation of P. 

gingivalis, F. nucleatum, A. actinomycetemcomitans and S. mitis, grown in AS 

and compared to biofilms grown on Thermanox™ coverslips.  

 

Significantly less viable bacteria were recovered from the P. gingivalis biofilm 

grown on HA (2.60 x 105 CFU/mm2, p<0.0001) compared with those grown on CS 

(5.40 x 105 CFU/mm2). Similarly, significantly less viable F. nucleatum and A. 

actinomycetemcomitans were recovered from those biofilms on HA compared 

with CS. For F. nucleatum biofilms 3.09 x 105 CFU/mm2 were recovered from CS 

compared with 3.41 x 104 CFU/mm2 from HA biofilms (p<0.0001), and for A. 

actinomycetemcomitans 4.22 x 104 CFU/mm2 were recovered from CS compared 

with 8.03 x 102 CFU/mm2 from HA (p<0.0001).  S. mitis biofilms also showed a 

reduction in the viable recoverable bacteria on the HA compared with CS, but 

this was not significant (Figure 2.5).  
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Figure 2.5: Viable cell recovery of optimised mono-species biofilms grown on 
Thermanox coverslips and hydroxyapatite discs. P. gingivalis and A. 
actinomycetemcomitans were grown as mono-species biofilms in AS on CS and 
HA substrates for 96 h in the anaerobic chamber and 5% CO2, respectively, at 
37oC. F. nucleatum and S. mitis were grown as mono-species biofilms in AS on CS 
and HA substrates for 48 h in the anaerobic chamber and 5% CO2, respectively, at 
37oC. Thereafter, biofilms were processed for total viable cell counting using the 
Miles and Misra plate counting method on the species-specific bacterial agar 
plates. Data shown are viable bacteria recovered from the monospecies biofilms 
in CFU/mm2. Five technical replicates were performed for three independent 
biofilms. Statistical analysis was performed by two-tailed unpaired t test 
(***p<0.0001).  
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2.4.4 Quantitative analysis of multi-species biofilms grown by two different 

methods. Periodontal bacteria exist in the oral cavity as complex multi-species 

biofilms opposed to simple mono-species biofilms (Kolenbrander, 2000, Rosan 

and Lamont, 2000). Attachment and growth of these different bacterial species 

occur in a sequential manner to form dental plaque (Kolenbrander and London, 

1993). Therefore, it was an aim of this study to create a defined multi-species 

biofilm. Biofilms were grown using two defined methods: (A) P. gingivalis, F. 

nucleatum, A. actinomycetemcomitans and S. mitis were mixed together at 

defined concentrations and grown collectively for 96 h (4 days) in AS, and (B) 

early colonising S. mitis grown in artificial for 24 h, followed by intermediate 

coloniser F. nucleatum for 24 h, followed by late colonisers P. gingivalis and A. 

actinomycetemcomitans for 96 h, as illustrated in Figure 2.1. Quantitative 

analysis was performed as described previously.  

 

Mixed species biofilms formed by two different methods yielded statistically 

more recoverable viable bacteria when they were grown on HA compared with 

CS (Figure 2.6). The mixed species biofilm grown by the basic combination of all 

4 bacteria (A) yielded more total recoverable bacteria when it was grown on HA 

(3.71 x 105 CFU/mm2, p<0.001) compared with CS (2.87 x 105 CFU/mm2). Multi-

species biofilms formed by the sequential method (B) contained statistically 

greater quantities of bacteria on HA (3.44 x 106 CFU/mm2, p<0.001) compared 

with CS (2.28 x 106 CFU/mm2). Of both methods statistically greater quantities 

of bacteria were recovered from the mixed species grown on HA using the 

sequential method (3.44 x 106 CFU/mm2, p<0.0001) compared with the 

combined method (3.71 x 105 CFU/mm2). 

 



 

 69

 

 
Figure 2.6: Viable cell recovery of multi-species biofilms grown by two 
different methods on Thermanox coverslips and hydroxyapatite discs. (A) P. 
gingivalis, F. nucleatum, A. actinomycetemcomitans and S. mitis were grown 
together on CS and HA substrates in AS for 96 h in the anaerobic chamber at 
37oC. (B) S. mitis was grown in AS for 24 h in 5% CO2, followed by F. nucleatum 
for 24 h in the anaerobic chamber, followed by P. gingivalis and A. 
actinomycetemcomitans for 96 h in the anaerobic chamber at 37oC. Thereafter, 
biofilms were processed for total viable cell counting using the Miles and Misra 
plate counting method on the species-specific bacterial agar plates. Data shown 
are viable bacteria recovered from the multi-species biofilms in CFU/mm2. Five 
technical replicates were done for three independent biofilms. Statistical 
analysis was performed by two-tailed unpaired t test (**p<0.01, ***p<0.001).  



 

 70

2.4.5 Quantitative and structural analysis of fresh and frozen mono-species 

and multi-species biofilms grown on hydroxyapatite discs. Mono-species and 

multi-species bacterial biofilm growth is lengthy and labour intensive, therefore 

to improve efficiency of the model system the effects of freezing the biofilm as 

a means of creating biofilm stocks was explored, as described in section 2.3.4.  

 

Significantly more viable bacteria were recovered from the fresh P. gingivalis 

biofilms (1.97 x 105 CFU/mm2, p<0.001) compared with the frozen biofilms (7.67 

x 104 CFU/mm2) (Figure 2.7). The micrographs appeared to show similar 

bacterial quantities for the fresh and frozen P. gingivalis biofilms, but the P. 

gingivalis revived from the frozen biofilms cellular structure was more defined 

and absent of extrapolymeric matrix (Figure 2.8A). In contrast, significantly 

greater viable bacteria recovered from frozen F. nucleatum biofilms (7.22 x 106 

CFU/mm2, p<0.01) than the fresh biofilms (7.97 x 105 CFU/mm2). The structure 

of the fresh F. nucleatum biofilm was comparable to its frozen form, as was the 

cellular abundance (Figure 2.8B). Viable bacteria recovered from A. 

actinomycetemcomitans and S. mitis biofilms did not show significant 

differences when its fresh and frozen forms were compared. Fresh A. 

actinomycetemcomitans biofilms yielded 1.99 x 105 CFU/mm2 compared to 1.76 

x 105 CFU/mL. The micrographs revealed comparable bacterial structure and 

abundance for the fresh and frozen (Figure 2.8C). Viable bacteria recovered 

from fresh S. mitis biofilms yielded 6.90 x 105 CFU/mm2 compared to 7.14 x 105 

CFU/mm2). Visually bacterial numbers were comparable, both showing similar 

cocci structure in its fresh and frozen forms (Figure 2.8D).  
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Figure 2.7: Viable cell recovery of fresh and frozen optimised mono-species 
biofilms grown on hydroxyapatite discs. P. gingivalis and A. 
actinomycetemcomitans were grown as mono-species biofilms in AS on HA discs 
for 96 h in the anaerobic chamber and 5% CO2, respectively, at 37oC. F. 
nucleatum and S. mitis were grown as mono-species biofilms in AS on HA for 48 
h in the anaerobic chamber and 5% CO2 respectively at 37oC. The AS was 
removed; plates sealed with parafilm and kept in the -80oC freezer till used. The 
frozen biofilms were revived by thawing the biofilms and incubating with fresh 
AS within respective environments at 37oC for 24 h. Thereafter, biofilms were 
processed for total viable cell counting using the Miles and Misra plate counting 
method on the species-specific bacterial agar plates. Data shown are viable 
bacteria recovered from the mono-species biofilms in CFU/mm2. Three 
replicates were performed for two independent experiments. Statistical analysis 
was performed by two-tailed unpaired t test (*p<0.01, **p<0.001). 
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(A) P. gingivalis biofilm  

 

 

 

(B) F. nucleatum biofilm 
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(C) A. actinomycetemcomitans biofilm 

 

 

 

(D) S. mitis biofilm 
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Figure 2.8: Scanning electron micrographs of fresh and frozen mono-species 
biofilms grown on hydroxyapatite discs. (A) P. gingivalis and (C) A. 
actinomycetemcomitans were grown as monospecies biofilms in AS on HA for 96 
h in the anaerobic chamber and 5% CO2, respectively, at 37oC. (B) F. nucleatum 
and (D) S. mitis were grown as mono-species biofilms in AS on HA for 48 h in the 
anaerobic chamber and 5% CO2, respectively, at 37oC. The AS was removed; 
plates sealed with parafilm and kept in the -80oC freezer till used. The frozen 
biofilms were revived by thawing the biofilms and incubating with fresh AS 
within respective at 37oC for 24 h. The biofilms were dip-washed three times in 
sterile PBS before fixing for scanning electron microscopy. The bacterial biofilms 
were viewed under JEOL JSM-6400 scanning electron microscope using 1000X and 
5000X magnifications. The bacterial biofilms are shown between the red arrows 
on the panels. 
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Significantly more viable P. gingivalis were recovered from the fresh multi-

species biofilms (1.10 x 106 CFU/mm2, p<0.01) compared with the frozen 

biofilms (5.73 x 105 CFU/mm2) (Figure 2.9), whereas marginally more viable F. 

nucleatum were recovered from the frozen multi-species biofilms (4.57 x 106 

CFU/mm2) compared with the fresh biofilms (3.54 x 106 CFU/mm2). Comparable 

quantities of viable A. actinomycetemcomitans were recovered from fresh multi-

species biofilms (1.91 x 106 CFU/mm2) compared with the frozen biofilms (1.75 x 

106 CFU/mm2). Finally, significantly more S. mitis was recovered from the fresh 

multi-species biofilms (1.29 x 106 CFU/mm2, p<0.0001) compared with the 

frozen biofilms (6.13 x 105 CFU/mm2).  

Structural analysis by SEM of the fresh and frozen multispecies biofilms revealed 

showed similar bacterial distribution, which contained 3-D architecture in both 

types of biofilm. At higher magnification (5000x), the four constituent bacteria 

were shown to be present as indicated by arrows on the micrographs for both 

the fresh and frozen biofilms (Figure 2.10A and B). 
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Figure 2.9: Viable cell recovery of fresh and frozen multi-species biofilms 
grown on hydroxyapatite discs. S. mitis was grown in AS for 24 h in 5% CO2, 
followed by F. nucleatum for 24 h in the anaerobic chamber, followed by P. 
gingivalis and A. actinomycetemcomitans for 96 h in the anaerobic chamber at 
37oC. The AS was removed; plates sealed with parafilm and kept in the -80oC 
freezer till used. The frozen biofilms were revived by thawing the biofilms and 
incubating with fresh AS within respective at 37oC for 24 h. Thereafter, biofilms 
were processed for total viable cell counting using the Miles and Misra plate 
counting method on the species-specific bacterial agar plates. Data shown are 
viable bacteria recovered from the multi-species biofilms in CFU/mm2. Three 
replicates were done for two independent experiments. Statistical analysis was 
performed by two-tailed unpaired t test (*p<0.01, ***p<0.0001). 
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 (A) Fresh multi-species biofilm 

 

(B) Frozen multi-species biofilm 

 

 

Figure 2.10: Scanning electron micrographs of (A) fresh and (B) frozen multi-
species biofilms grown on hydroxyapatite discs. S. mitis was grown in artificial 
for 24 h in 5% CO2, followed by F. nucleatum for 24 h in the anaerobic chamber, 
followed by P. gingivalis and A. actinomycetemcomitans for 96 h in the 
anaerobic chamber at 37oC. The AS was removed; plates sealed with parafilm 
and kept in the -80oC freezer till used. The frozen biofilms were revived by 
thawing the biofilms and incubating with fresh AS within respective at 37oC for 
24 h. The biofilms were dip-washed three times in sterile PBS before fixing for 
scanning electron microscopy. The bacterial biofilms were viewed under JEOL 
JSM-6400 scanning electron microscope using 1000x and 5000x magnifications.  
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2.4.6 Survival of mono-species and multi-species biofilms in cell culture 

conditions. Periodontal bacteria survive under a range of harsh microaerophilic 

and hypoxic conditions within the oral cavity. The ultimate aim of the study was 

to investigate host-pathogen interactions between these biofilms and epithelial 

cells. Therefore, investigating the survival of the periodontal bacterial biofilms 

under cell culture conditions was a critical component of these studies. To 

investigate the survival of periodontal bacterial biofilms under cell culture 

conditions, mono-species and multi-species biofilms were suspended in cell 

culture media as described in section 2.3.5.  

 

Significantly less viable bacteria were recovered from the P. gingivalis mono-

species biofilms grown in cell culture media after both 4 h (3.62 x 103 CFU/mm2, 

p<0.001) and 24 h (7.74 x 102 CFU/mm2, p<0.001) compared with those control 

biofilms not exposed to cell culture media (7.67 x 104 CFU/mm2). F. nucleatum 

biofilms showed a significant reduction in viable bacterial numbers within cell 

culture media after 4 h (5.63 x 105 CFU/mm2, p<0.01) and 24 h (2.99 x 104 

CFU/mm2, p<0.01) compared with bacteria not maintained in cell culture 

conditions (7.23 x 106 CFU/mm2). For A. actinomycetemcomitans biofilms, a 

significant reduction in viable bacteria was observed after 4 h (3.17 x 104 

CFU/m2, p<0.0001) in cell culture media compared with the bacteria not 

maintained in cell culture conditions (1.75 x 105 CFU/mm2), but not at 24 h. 

Finally, significantly more viable S. mitis were recovered after 24 h (3.08 x 107 

CFU/mm2, p<0.01) in cell culture media compared with the bacteria not 

maintained in cell culture conditions (7.14 x 105 CFU/mm2). A marginal 

reduction in viable S. mitis was observed after 4 h (4.72 x 105 CFU/mm2) in cell 

culture media compared with the bacteria not maintained in cell culture 

conditions (Figure 2.11). 
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Figure 2.11: Survival of monospecies biofilms in cell culture conditions. The 
mono-species biofilms were grown in AS on HA discs. The biofilms were dip-
washed three times in sterile PBS before adding into 24-well cell culture plates 
containing 1 mL of defined K-SFM and incubated at 37oC in 5% CO2 for 4 and 24 
h. The biofilms were dip-washed three times in sterile PBS before sonicating in 
sterile PBS for 5 min in an ultrasonic bath. Total viable counts of the bacteria 
were obtained by performing Miles and Misra plate counting method on the 
bacterial agar plates. Data shown are viable bacteria recovered from the mono-
species biofilms in CFU/mm2. Three replicates were done for two independent 
experiments. Statistical analysis was performed by two-tailed unpaired t test 
(*p<0.01, **p<0.001, p<0.0001). 
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Viable P. gingivalis recovered from multi-species biofilms was shown to be 

significantly greater after 24 h (9.89 x 105 CFU/mm2, p<0.01) in cell culture 

conditions compared with the biofilms not maintained in cell culture conditions 

(5.73 x 105 CFU/mm2). P. gingivalis recovered from the multi-species biofilms 

not maintained in cell culture conditions and which were maintained in these 

conditions for 4 h (5.70 x 105 CFU/mm2) were comparable. There was 

significantly less viable F. nucleatum recovered from multi-species biofilms after 

4 h (7.39 x 105 CFU/mm2, p<0.0001) and 24 h (1.72 x 106 CFU/mm2, p<0.001) in 

cell culture conditions compared with those recovered from the biofilms not 

maintained in cell culture media (4.57 x 106 CFU/mm2). Similarly, viable A. 

actinomycetemcomitans recovered from multi-species maintained in cell culture 

media for 4 h (7.03 x 105 CFU/mm2, p<0.0001) and 24 h (7.79 x 105 CFU/mm2, 

p<0.001) were significantly less compared with those recovered from the 

biofilms not maintained in cell culture (1.75 x 106 CFU/mm2). S. mitis recovered 

from multi-species biofilms was significantly less after 4 h (8.61 x 104 CFU/mm2, 

p<0.001) in cell culture media compared with those which were not maintained 

(6.13 x 105 CFU/mm2). More viable S. mitis was recovered from multi-species 

biofilms maintained in cell culture media for 24 h (1.34 x 106 CFU/mm2) 

compared with those that were not maintained (Figure 2.12).  
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Figure 2.12: Survival of multispecies biofilms in cell culture conditions. The 
multi-species biofilms were grown in AS on HA. The biofilms were dip-washed 
three times in sterile PBS before adding into 24-well cell culture plates 
containing 1 mL of defined K-SFM and incubated at 37oC in 5% CO2 for 4 and 24 
h. The biofilms were dip-washed three times in sterile PBS before sonicating in 
sterile PBS for 5 mins in an ultrasonic bath. Total viable counts of the bacteria 
were obtained by performing Miles and Misra plate counting method on species-
specific bacterial agar plates. Data shown are viable bacteria recovered from 
the multi-species biofilms in CFU/mm2. Three replicates were done for two 
independent experiments. Statistical analysis was performed by two-tailed 
unpaired t test (*p<0.01, **p<0.001, p<0.0001). 
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2.5 DISCUSSION 

The data described herein reports a simple and reproducible in vitro model 

capable of comparing and contrasting the composition and structural 

arrangement of mono- and multi-species periodontal biofilms. This model has 

been shown to grow optimally on HA discs grown in AS over a defined time 

period of 2-4 days and 7 days, respectively. Biofilms of a multi-species nature 

were shown to be the most complex, which were densely packed with structural 

heterogeneity. Conversely, those mono-species biofilms of P. gingivalis and A. 

actinomycetemcomitans displayed sparse monolayers with occasional micro-

colonies observed. The ability of these mono-species biofilms to survive in cell 

culture conditions was poor compared to the multi-species biofilm. Moreover, 

the multi-species biofilms were conducive to freezing. Some of the caveats of 

the development of this model will now be discussed.  

 

Initially, in order to evaluate the bacterial composition of the biofilms, total 

viable cell counts were performed using specialised media, as described 

elsewhere (Hunt et al., 1986). For mono-species biofilms the resultant colony 

counts was minimally variable in AS under optimised conditions, ranging from 

~105 to 106 CFU/mm2 for all four species. However, this could not be verified 

through SEM analysis. For example, densely packed biofilms of F. nucleatum 

were in stark contrast to those of P. gingivalis. This difference could be 

explained by the dense nature of the F. nucleatum biofilms, which would be 

difficult to make into a homogenous suspension following sonication. Therefore, 

clumps of dislodged cells may have represented only one colony, therefore 

impacting and underestimating the cell counts, as has been reported elsewhere 

(Coco et al., 2008, Yadev et al., 2011). This may be an inherent problem with 

this methodology for biofilm enumeration (Childers et al., 2011). In fact, several 

other studies have relied on molecular techniques to quantify their biofilm 

numbers. qPCR was shown to be an effective method for enumerating biofilm 

composition in a three-species lens model system (Peyyala et al., 2011b). The 

data from this study showed substantial differences in cell numbers when mono-

species and multi-species biofilm were compared, often 2 or 3 log differences, 

and which were consistently 1-2 log above what was reported herein. However, 

the numbers are similar to those reported from a 9-species for both F. 

nucleatum and P. gingivalis, of approximately 107 CFU/mL (Kinniment et al., 
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1996a). Nevertheless, consideration of nuclease activity should be given, as this 

has been shown to alter qPCR sensitivity (Nadkarni et al., 2009).  

 

The multi-species biofilms in this study were also quantitatively superior (1 log) 

to the mono-species biofilms. In this case the SEM analysis clearly showed 

structural differences. The biofilms showed evidence of 3-D architecture, spatial 

heterogeneity and an increased biomass. However, SEM may not have been the 

optimal method for this analysis due to the inherent problems with SEM and 

post-processing, i.e. dehydration of sample resulting in altered morphology and 

ultrastructure. Confocal laser scanning microscopy (CLSM) may have been useful 

in this context for both qualitative and quantitative analysis, but was not 

available at the time of this work. It was interesting that the cells within this 

biofilm multi-species environment were able to flourish compared to those 

grown as mono-species biofilms. Biofilms of this structural complexity have been 

reported by others, both in vitro and in vivo (Walker and Sedlacek, 2007, Zijnge 

et al., 2012). Various studies have consistently reported that once the cells 

within the biofilm are heterogeneous then the resultant biofilms form a robust 

biofilm with stable proportions of each organism present (Guggenheim et al., 

2009, Periasamy and Kolenbrander, 2009b, Peyyala et al., 2011b). However, the 

use of colony counts is limited in these studies. 

 

The use of molecular tools combined with fluorescence microscopy has become 

more frequently utilised by researchers as an alternative (Childers et al., 2011). 

Recently, Sanchez and coworkers (2011) reported the use of CLSM and RFLP to 

study biofilm development of a 6-species sub-gingival model on HA (Sanchez et 

al., 2011). Here it was used to show the developmental characteristics, 

structural composition and relative abundance of each bacterial species as the 

biofilms reached a steady state. Similarly, Guggenheim and coworkers (2009) 

demonstrated the structural composition of the nine species by using CLSM and 

transmission electron microscopy (TEM). Using fluorescence in situ hybridisation 

(FISH) it was shown that the biofilms after 64.5 h were approximately 40-60um, 

and TEM demonstrated a morphological abundance of short cocci and rods. 

Peyyala and colleagues (2011) also examined the three species biofilms under 

CSLM, where they found substantial differences in the quantities and distribution 

of the species in the multi-species biofilm. As observed from the studies 



 

 84

mentioned above multi-species biofilm development is a very complex and time-

consuming process. This study has tried to create a simple multi-species 

periodontal biofilm, which could be used in industrial setting to screen active 

compounds in a quick and reproducible manner. Here an organism characterised 

for its pioneer status was used (S. mitis). Furthermore, F. nucleatum was used, 

which is one of the first Gram-negative species to become established in dental 

plaque and is considered as an intermediate colonizer, helping bridge 

attachment of non-pathogens (commensals) and true pathogens (Kolenbrander, 

2000, Kolenbrander et al., 2002). These two pivotal organisms provided the 

structural stability of the biofilm in the early phases of growth, allowing the 

successful introduction of A. actinomycetemcomitans and P. gingivalis, which 

judging from SEM analysis were unable to form structurally secure biofilms. The 

sequential attachment of the periodontal bacteria on the tooth surface to form 

the periodontal plaque biofilm has been reported by various researchers 

(Socransky et al., 1998). In this study HA was used, representative of enamel. 

This has been shown to be an acceptable substrate for studies of this nature 

(Guggenheim et al., 2009). However, alternative substrates, such as contact 

lenses have been used (Peyyala et al., 2011b). Collectively each of the 

organisms selected in this study represent bacteria that play a critical function 

in periodontal biofilm formation, and which also represent organisms across the 

pathogenic spectrum. This was an essential requirement for downstream host-

pathogen analysis.  

 

Overall, the data from this study and those performed by other groups 

demonstrate that although biofilm models are diverse in terms of the substrate, 

nutrients and the specific oral bacteria used, the multi-species biofilms that are 

formed are largely similar, i.e. being spatially heterogeneous and abundant in 

different species. However, given that the end-point of this study was to 

investigate host-pathogen interactions, it was important to evaluate how the 

biofilm responded to an environment optimised for cell culture. Here it was 

shown that the mono-species biofilms, particularly P. gingivalis and F. 

nucleatum (obligate anaerobes), did not tolerate the 5% CO2 conditions well 

compared to S. mitis. Interestingly, within the multi-species biofilm there was a 

minimal fluctuation of the cells over 24 h incubation. Given that the gingival 

crevice has differential microenvironments that enables different bacteria to 
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survive and flourish, it is likely that an element of mutualism enables the four 

species to maintain a homeostatic balance within the biofilm, as has been shown 

elsewhere (Periasamy and Kolenbrander, 2009b). Several analogous studies have 

recently reported biofilm models to investigate host-pathogen interactions 

(Belibasakis et al., 2011b, Belibasakis et al., 2011a). From these studies it is not 

apparent that any consideration has been given to how the multi-species 

biofilms from these studies respond to cell culture environments. Moreover, 

these biofilms are able to survive freezing, as shown from our investigations. 

The structure and composition is maintained when revived. This was critical in 

developing robust and reproducible biofilms for downstream testing in a host-

pathogen co-culture system.   

 

In summary, this initial component of the entire investigation has provided a 

quantitative and qualitative assessment of both mono- and multi-species 

biofilms that can be used to investigate how oral biofilms interact with the host 

epithelium.  
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CHAPTER 3:  

ASSESSING IMPACT OF 

PERIODONTAL BIOFILMS ON 

EPITHELIAL CELLS 
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3.1 INTRODUCTION 

The previous chapter presented a novel biofilm model for use in host-pathogen 

interaction studies. Various oral bacteria associated with periodontal disease 

have been shown to possess virulence factors that aid intracellular invasion, 

intracellular persistence and host cell apoptosis (programmed cell death), of 

which P. gingivalis is a paradigm (Curtis et al., 2005, Curtis et al., 2011, Curtis 

et al., 2001, Kinane et al., 2008). These are factors that have the potential to 

significantly affect mammalian cell viability and function.   

 

Apoptosis is prevalent in the gingivae at sites of chronic bacteria-induced 

inflammation (Koulouri et al., 1999, Tonetti et al., 1998), particularly in the 

superficial cells of the junctional epithelium (Tonetti et al., 1998). The caspases 

(cysteine-dependent aspartate-specific proteases) are of central importance to 

apoptotic signalling network which are activated in most cases of apoptotic cell 

death (Bratton et al., 2000). So far, 14 different members of the caspase family 

have been identified which are divided into two subfamilies, initiator and 

executor caspases. The initiator caspases are activated by forming heteromeric 

complexes with accessory molecules. This is followed by the cleavage and 

subsequent activation of downstream caspases, such as caspases 3 and 6 

(Nakata, 2000). Cleavage of a select group of substrates by downstream caspases 

(Stroh and Schulze-Osthoff, 1998) is responsible for the dismantling of essential 

cell components, which results in the morphological and biochemical changes 

that characterize apoptotic cell death.  

 

A frequently activated death protease is caspase-3 which is also required for 

some of the characteristic changes in cell morphology and certain biochemical 

events associated with the execution and completion of apoptosis (Porter and 

Janicke, 1999). Caspase-3 is also required for apoptotic chromatin condensation 

and DNA fragmentation in all cell types (Woo et al., 1998, Janicke et al., 1998, 

Oberhammer et al., 1993). Thus caspase-3 is essential for certain processes 

associated with the dismantling of the cell and the formation of apoptotic 

bodies, but it may also function before or at the stage when commitment to loss 

of cell viability is made (Porter and Janicke, 1999). The degradation of nuclear 

DNA into nucleosomal units is one of the best-characterized biochemical 

features of apoptotic cell death (Wyllie, 1980, Earnshaw, 1995). When cells are 
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induced to undergo apoptosis, caspases, in particular caspase-3, cleave ICAD to 

dissociate the CAD:ICAD complex, allowing CAD to cleave chromosomal DNA 

(Nakata, 2000). Oral bacteria, including P. gingivalis, have been shown to use 

this strategy to survive within the gingivae. 

 

P. gingivalis has been shown to induce apoptosis in a time and dose dependent 

manner with significant apoptosis occurring between 12 and 24 h hours of 

challenge via a gingipain-dependent (arginine or lysine) mechanism 

(Stathopoulou et al., 2009). This was demonstrated was through caspase-3 

activity. It was shown that live bacteria strongly up-regulate intrinsic apoptotic 

pathway, such as caspase-3, -8, -9, and that DNA fragmentation was present. It 

was also shown that P. gingivalis blocks camptothecin-mediated apoptosis of 

epithelial cells, up-regulates anti-apoptotic molecule expression Bcl-2 

expression, and down-regulates pro-apoptotic molecule Bax expression (Nakhjiri 

et al., 2001). These studies collectively indicate that P. gingivalis has multiple 

mechanisms to interfere with apoptosis and cellular functions, unlike other 

bacteria of the oral cavity that are considered commensals, such as oral 

streptococci. However, its distant relatives, S. pneumoniae, have been shown to 

induce apoptosis (Marriott and Dockrell, 2006).   

 

Modulation of cellular functions by periodontal bacteria has also been reported 

elsewhere. For example, apoptosis (characterized by Annexin-V staining) was 

shown to increase in the gingival epithelial cells (GEC) multi-layers following 

challenge with A. actinomycetemcomitans, F. nucleatum and S. gordonii. In 

contrast, P. gingivalis induced a transient increase in early apoptotic markers, 

which returned to control levels after 24 h (Dickinson et al., 2011). It was also 

shown that P. gingivalis was able to up-regulate the anti-apoptotic pathways in 

GECs in a time-dependent manner (Mao et al., 2007). Therefore, apoptotic 

events depend not only on the species present but also on the 

duration/frequency of interaction. Moreover, it was shown that P. gingivalis 

blocks apoptotic pathways in GECs through manipulation of the JAK/Stat 

pathway (Mao et al., 2007). This controls the intrinsic mitochondrial cell death 

pathways. As P. gingivalis is predominantly located intracellularly, this is 

thought to represent a strategy of the bacteria to prolong the life of its 

eukaryotic host cell (Mao et al., 2007). Clearly, P. gingivalis is adept at living 
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within differential microenvironments of the gingival crevice and resisting 

immune defence mechanisms.  

 

3.2 AIM 

In order to investigate the impact that a multi-species biofilm model has upon 

oral epithelial cells when compared to mono-species biofilms, the direct cellular 

effects must first be investigated. For this component of the study P. gingivalis 

and S. mitis were selected for use, each representing a pathogenic and 

commensal mono-species biofilm. Each of these was compared to a multi-species 

biofilm, as described in Chapter 2.   

 

Therefore, the aim of these experiments was to investigate the responses of oral 

epithelial cells to bacterial biofilms with respect to (i) viability and (ii) 

apoptosis.  
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3.3 MATERIALS AND METHODS 

3.3.1 Oral keratinocyte cell line growth and maintenance 

OKF6-TERT2 cells (kind gift of the Rheinwald laboratory, Brigham and Woman’s 

Hospital, Boston) are an immortalized human oral keratinocyte cell line. These 

cells have been immortalized by forced expression of telomerase, and resemble 

primary oral keratinocytes in studies of cytotoxicity or inducible cytokine and 

beta-defensin expression (Dongari-Bagtzoglou and Kashleva, 2003). All cell 

culture media and supplements were purchased from Invitrogen (Paisley, 

Scotland) unless otherwise indicated.  

 

OKF6-TERT2 cells were cultured in keratinocyte serum-free medium (KSFM) 

[37010-022 Invitrogen, Paisley, UK] supplemented with 100 IU penicillin, and 100 

µg/mL streptomycin, 25 µg/mL bovine pituitary extract (BPE), 0.2 ng/mL 

epidermal growth factor (EGF) and 0.3 mM CaCl2 (0.4 mM total Ca2+). BPE and 

EGF were filter-sterilised (0.2 µm). Cells were seeded at 5 x 105 cells/mL in a 75 

cm2 cell culture flask (Corning, NY, USA). Cells were passaged at approximately 

90% confluence, with 0.05% Trypsin EDTA. Following detachment of the cells the 

trypsin was neutralized with 15 mL of Dulbecco’s modified Eagle’s media (Sigma, 

Poole, UK) supplemented with 10% foetal calf serum (Sigma, Poole, UK). Cells 

were washed in Hanks balanced salt solution (Sigma, Poole, UK). The cells (20 

µL) were mixed with Trypan blue (10 µL) (Sigma, Poole, UK) to obtain a dilution 

factor of 1.5. The cells were then transferred to a haemocytometer and viewed 

under the microscope to count the cells and study cell morphology. Dead cells 

were observed as blue because of the loss of cell wall integrity, which allows the 

Trypan blue to enter the cells. Live healthy cells were round and transparent, 

which were counted using the haemocytometer grids. The cells were re-seeded 

at around 5 x 104 cells/ mL (1 x 106 cells / flask). For assays, cells were cultured 

with defined-KSFM to remove batch variability found in BPE. In defined-KSFM, 

BPE is replaced with defined growth-promoting additives including insulin and 

fibroblast growth factor (proprietary solution). Also, BPE has only 4-week 

stability in medium (may deteriorate before this), compared to 3 months 

stability of defined-KSFM. 

 

Frozen stocks of OKF6-TERT2 epithelial cells were also prepared. The epithelial 

cells (2 x 106 cells/mL) were resuspended in DMEM containing 20% foetal calf 
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serum. Equal volumes of the resuspended epithelial cells and 20% DMSO were 

transferred to a cryo tube to obtain a final volume of 1 mL. The vials were kept 

in an insulated box in the -80oC freezer overnight, for slow cooling, and then 

transferred into liquid nitrogen for prolonged storage. The cells were revived 

from frozen by thawing the cells rapidly in a 37oC water bath and transferring 

the cells into a cell culture flask containing warm K-SFM. The cells were 

passaged after it reached 90% confluence. The OKF6-TERT2 cells were harvested 

after the third or fourth passage for use in the experiments.   

 

3.3.2 Development of an epithelial biofilm co-culture model  

The OKF6-TERT2 cells were harvested, seeded at a density of 1 x 105 cells per 

well in 24 well cell culture plates (Corning, NY, USA) with Thermanox™ 

coverslips in a total volume of 1 mL of defined K-SFM. When the cells reached 

80-90% confluence, the cells were washed once with defined K-SFM to remove 

the non-adherent cells. The epithelial cells were then challenged with previously 

frozen inverted biofilms (as described in chapter 2). These were adhered using 

Vaseline® to hanging cell culture inserts (Millipore, MA, USA) and inserted into 

24 well plates with the epithelial cells at the bottom of the well, as illustrated 

in Figure 3.1. The biofilms on the HA discs were separated from the epithelial 

cells on the bottom of the well by 0.5 mm gap, which modelled the gingival 

crevicular fluid filled space. After 4 and 24 h, cell culture supernatants were 

harvested and stored at -80oC for subsequent protein evaluation.  
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(B) 

 

 

 

 

 

 

 

 

 
Figure 3.1: Epithelial biofilm co-culture model system. (A) Transverse view of hanging basket design. Hanging inserts (Millipore) with the 
HA discs were introduced into each well of a 24 well plate (Corning). (B) Close-up transverse view of the hanging insert, HA disc and 0.5 
mm space between the HA disc and epithelial cells. An inverted HA disc was secured to the hanging insert using sterile Vaseline®.  
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3.3.3 Assessment of epithelial cell viability 

The viability of epithelial cells challenged with bacterial biofilms for 4 and 24 h 

were analysed using AlamarBlue® dye (Invitrogen, CA, USA). The epithelial cells 

were washed with fresh K-SFM and replaced with fresh K-SFM containing 10% 

AlamarBlue® for 4 h. AlamarBlue® is a sensitive oxidation-reduction indicator 

that fluoresces and changes colour upon reduction by living cells. The reduction 

of Alamar blue is believed to be mediated by mitochondrial enzymes (O'Brien et 

al., 2000). Viable cells elicit a colour change from blue to pink. The percentage 

reduction of the absorbance values was calculated using the AlamarBlue® 

colorimetric calculator, as per manufacturer’s instructions, which indicates the 

viability of the epithelial cells.  

 

3.3.4 Histone-associated cell death detection apoptosis ELISA 

The OKF6-TERT2 epithelial cells challenged with bacterial biofilms for 4 and 24 h 

were analyzed for cell death by determination of cytoplasmic histone-

associated-DNA-fragments (mono- and oligonucleosomes) by using the Cell Death 

Detection ELISAPLUS (Roche Applied Science, Mannheim, Germany) according to 

manufacturer’s instructions. The assay is based on a quantitative sandwich-

enzyme-immunoassay-principle using monoclonal antibodies, directed against 

DNA and histones, respectively. This allows the specific determination of mono- 

and oligonucleosomes in the cytoplasmic fraction of cell lysates. 

 

To obtain epithelial cells with induced apoptosis, the OKF6-TERT2 epithelial 

cells were incubated at 37oC for 24 h with a titration of camptothecin (CAM, 

Sigma, Poole, UK) in serially declining concentrations from 4 µg/mL to 2 ng/mL. 

After incubation, the cells were lysed by adding 1 mL of Lysis buffer (provided 

with the kit) for 30 min at room temperature. The lysed cells were stored at -

80oC for subsequent use.  

 

The biofilm challenged epithelial cells were also lysed as mentioned above and 

the cell lysates stored. Before use in the assay the cell lysates were centrifuged 

at 200 x g for 10 min. The lysates (20 µL) of the CAM and biofilm treated cells 

were transferred into the streptavidin coated microtitre plate with 80 µL of the 

Immunoreagent. The plate was incubated under gentle shaking (300 rpm) for 2 h 

at room temperature. After thorough rinsing using Incubation buffer, ABTS 
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solution was added to the wells and incubated by shaking until sufficient colour 

was developed. The stop solution was added to the ABTS solution. The 

developed colour was measured at 405 nm against ABTS solution + ABTS stop 

solution as a blank (reference wavelength 490 nm). The values from the double 

absorbance measurements of the samples were averaged and the background 

value subtracted from each of these averages. The specific enrichment of mono- 

and oligonucleosomes released into the cytoplasm from these values was 

calculated using the formula:  

 

Enrichment factor = mU of the sample (dying/dead cells)        

                                  mU of the corresponding negative control  

   (cells without CAM treatment) 

 

   mU = absorbance (10-3) 

 

3.3.5 Statistical analysis  

The statistical analyses on the difference in viable bacteria recovered from the 

biofilms were performed with GraphPad Prism (San Diego, CA, USA) using two-

tailed unpaired student t test. This method gives an unpaired two sample 

student t test with a confidence interval for the difference between the means. 

The unpaired t method tests the null hypothesis that the population means 

related to two independent, random samples from an approximately normal 

distribution are equal (Altman, 1991; Armitage and Berry, 1991). The 

significance level was set at p < 0.05 in a two-sided test.   
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RESULTS 

3.4.1 Metabolic changes in epithelial cells after challenge with bacterial 

biofilms. To investigate changes in cellular metabolism that may reflect changes 

in cell viability, OKF6-TERT2 epithelial cells were challenged with live or 

methanol-fixed (dead) mixed or single species biofilms (mixed: P. gingivalis, F. 

nucleatum, A. actinomycetemcomitans and S. mitis), P. gingivalis biofilm and S. 

mitis biofilm for 4 and 24 h. The viability of the epithelial cells was assessed 

with fresh media containing 10% AlamarBlue® and the percentage reduction of 

the absorbance values was calculated using the AlamarBlue® colorimetric 

calculator which indicates the viability of the epithelial cells. Data shown are 

percent survival of the epithelial cells relative to OKF6-TERT2 cells cultured with 

cell culture medium (medium control). Statistical analysis was performed using 

an unpaired t-test.  

 

Epithelial cells challenged with live mixed or single species biofilms maintained 

their viability for 4 h, However, a reduction in viability was observed after 24 h. 

Assuming 100% viability after culture in medium alone, epithelial cells 

challenged with live mixed species biofilm demonstrated 93% survival after 4 h, 

compared with 57% after 24 h (p<0.001) (Figure 3.2). Interestingly, the viability 

of the epithelial cells after 4 h of challenge with live P. gingivalis and S. mitis 

was maintained but the viability dropped to 19% (p<0.0001) and 60% (p<0.001) 

respectively after 24 h. The viability of the epithelial cells reduced to about 54% 

after 4 h when challenged with dead mixed species, P. gingivalis and S. mitis 

biofilm. The epithelial cell viability reduced further after 24 h challenge when 

challenged with dead mixed species biofilm (47%). However, the epithelial cell 

viability reduced to 87% (p < 0.001) and 71% after 24 h challenge with dead P. 

gingivalis and S. mitis biofilms, respectively. Overall, the epithelial cell viability 

reduced after 24 h challenge with live biofilms compared with 4 h. Live P. 

gingivalis biofilm caused more epithelial cell death than the other biofilms after 

24 h.   
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                                        A                   B                   C                           A                  B                   C 

 

Figure 3.2: Survival of epithelial cells after challenge with live or dead bacterial biofilms. OKF6-TERT2 epithelial cells were challenged 
with (A) multi-species, (B) P. gingivalis and (C) S. mitis biofilm for 4 and 24 h. The media was removed from the epithelial and washed 
with fresh media before replacing with fresh media containing 10% AlamarBlue™. Cell viability was calculated as percentage of the 
difference between the reductions of Alamar Blue in treated cells versus controls. Results are presented as percentage of controls, means ± 
SEM of triplicate measurements of two independent experiments and analysed using an unpaired t-test (**p<0.001; ***p<0.0001). 
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3.4.2 Apoptosis of epithelial cells after bacterial biofilm challenge assessed 

by DNA fragmentation. The plaque bacterial biofilms may express numerous 

virulence factors which promote host cell apoptosis (Kinane et al., 2008). To 

characterize the biofilm-associated apoptosis of epithelial cells under various 

conditions, OKF6-TERT2 cells were challenged with live or methanol-fixed (dead) 

mixed- or mono-species biofilms (mixed: P. gingivalis, F. nucleatum, A. 

actinomycetemcomitans and S. mitis), P. gingivalis biofilm and S. mitis biofilm 

for 4 and 24 h. The apoptosis of the epithelial cells were determined by the 

detection of DNA fragmentation by ELISA. Statistical analysis was performed 

using an unpaired t-test. 

 

Unchallenged OKF6-TERT2 cells were used as negative controls and the positive 

control was OKF6-TERT2 cells challenged with 4 µg/mL camptothecin for 24 h. 

Data represents the enrichment factor (EF) of the specific mono- and oligo-

nucleosomes in the cytoplasm of the epithelial cells.  

 

Increased DNA fragmentation was observed in the epithelial cells after 24 h 

challenge with bacterial biofilms compared with 4 h (Figure 3.3). Time-

dependent increase in DNA fragmentation was observed in epithelial cells 

challenged with live mixed species (4 h, 1.9 EF; 24 h, 3.6 EF), P. gingivalis (4 h, 

1.6 EF; 24 h, 8.6 EF [p<0.01]) and S. mitis biofilm (4 h, 1.6 EF; 24 h, 6.8 EF). 

Dead P. gingivalis biofilm (11.2 EF) induced greater DNA fragmentation in the 

epithelial cells compared with live biofilms (8.6 EF) after 24 h challenge. DNA 

fragmentation was observed more in the epithelial cells stimulated with live or 

dead mixed-species and mono-species biofilms compared with the unstimulated 

medium control after 24 h. Significantly increased DNA fragmentation was 

observed in the epithelial cells after it was challenged with live and dead P. 

gingivalis (Live; p<0.01, Dead; p<0.05) and S. mitis biofilm (Live; p<0.05, Dead; 

p<0.05) compared with unstimulated media control. Overall, some degree of cell 

death of the epithelial cells due to DNA fragmentation was observed after 

challenge with bacterial biofilms. 
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Figure 3.3: Histone-associated apoptosis of epithelial cells after challenge with bacterial biofilms. OKF6-TERT2 epithelial cells were 
challenged with mixed species, P. gingivalis and S. mitis biofilm for 4 and 24h. Medium control was unchallenged OKF6-TERT2 cells. 
Positive control was OKF6-TERT2 cells challenged with camptothecin 4 µg/mL. Histone concentration in the epithelial cells was assessed by 
ELISA. Data represents the enrichment factor of mono- and oligo-nucleosomes released into the cytoplasm of the epithelial cells. Values 
are means ± SEM of two independent wells of two independent experiments that were analysed using an unpaired t-test (*p<0.05; 
**p<0.001). 
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3.5 DISCUSSION 

A pathogenic (P. gingivalis) and commensal (S. mitis) mono-species biofilm were 

compared with a multi-species biofilm, both dead and live, with respect to 

epithelial cell viability and apoptosis. It was demonstrated that the OKF6-TERT2 

epithelial cells challenged with both live multi-species biofilms or P. gingivalis and 

S. mitis mono-species biofilms for 24 h resulted in reduced cell viability when 

compared both media control and 4 h stimulated cells. Dead biofilms on the other 

hand were shown to variably reduce cell viability at both 4 and 24 h. When 

apoptosis was evaluated, both live and dead biofilms showed a progressive increase 

from 4 to 24 h, with P. gingivalis showing the greatest levels, followed by S. mitis 

and then multi-species biofilms. Collectively, these data show that biofilms have a 

negative impact on cellular function, which will now be discussed (Zhang et al., 

2008). 

  

In this study, all biofilms were shown to affect cellular viability, and have variable 

effects upon apoptosis. This is in agreement with other studies, which have shown 

P. gingivalis planktonic cells to negatively impact cellular viability of GECs 

(Johansson et al., 1996, Sandros et al., 1993). Johansson et al (1996) showed that 

P. gingivalis ATCC 33277 were cytotoxic to the target cell lines used after 24 h of 

incubation. Guggenheim and colleagues also demonstrated that their 9-species 

biofilm model affected apoptosis and cell morphology (Guggenheim et al., 2009), 

which is supported from observations within mono-species infection cell culture 

models (Stathopoulou et al., 2009). In contrast, however, other studies that have 

used multi-species periodontal biofilm models have failed to take this into account 

for their downstream analysis (Peyyala et al., 2012). This has direct implications for 

the interpretation of cellular effects, particularly cytokine analysis. The study 

discussed herein also tried to investigate the epithelial cell morphology after 

incubation with the bacterial biofilms, using Rapi-Diff II stain pack. Due to technical 

difficulties in the capture of the images, the data has not been presented here. 

 

For cell viability assessment Alamar blue is often used as an assay to determine 

cytotoxicity of the epithelial cells exposed to different stimuli. For example, it has 

been used in studies of oral epithelial cells (TR146) and in a reconstituted human 
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epithelial (RHE) organotypic model to evaluate the effects of dentally relevant 

compounds (Moharamzadeh et al., 2008, Boyle et al., 2010). Alamar blue is a 

sensitive oxidation-reduction indicator that fluoresces and changes colour upon 

reduction by living cells. The reduction of Alamar blue is believed to be mediated 

by mitochondrial enzymes (O'Brien et al., 2000). There are several other commonly 

used cytotoxicity screening assay that are currently being used, including ATP 

measurement (Untch et al., 1994), MTT (Mosmann, 1983), neutral red (Babich and 

Borenfreund, 1991), XTT (Ramage et al., 2012), membrane integrity/LDH release 

(Korzeniewski and Callewaert, 1983), macromolecular synthesis (Grojean et al., 

2000) and glutathione depletion (Baker et al., 1990). A study compared the Alamar 

blue assay to the most common in vitro toxicity assay, MTT, by evaluating the 

cytotoxicity of 117 drugs on a human hepatoma cell line HepG2 (Hamid et al., 

2004). It was shown that MTT assay was less sensitive compared with the Alamar 

blue assay in detecting an effect for certain drugs, as defined by the improved Z-

factor, a statistical parameter of assay quality.  

 

In this study, it was shown that live and dead mixed species, P. gingivalis and S. 

mitis biofilms all induced cell death in epithelial cells after 24 h of stimulation, as 

evidenced by DNA fragmentation (Figure 3.3). These results agree partly with 

previous reports on epithelial cells (Stathopoulou et al., 2009). They showed that 

live P. gingivalis induced more apoptosis in epithelial cells after 24 h of challenge, 

while the dead P. gingivalis did not, using the same assay system. Two other studies 

contradicted these results, stating that P. gingivalis did not induce apoptosis in 

epithelial cells even after 24 h (Nakhjiri et al., 2001, Dickinson et al., 2011). It was 

shown that even though apoptosis in GEC multilayers was increased following 

challenge with A. actinomycetemcomitans, F. nucleatum or S. gordonii, only P. 

gingivalis induced a transient increase in early apoptotic markers, which returned 

to control levels after 24 h. Nakhjiri and co-workers (2001) also showed that P. 

gingivalis inhibited apoptosis in epithelial cells by up-regulation of the anti-

apoptotic molecule Bcl-2. Both these studies used planktonic P. gingivalis instead of 

biofilms for the challenge of the epithelial cells. This may explain the differences in 

apoptosis observed in the study described herein, as the different cell phenotypes, 

i.e. biofilm and planktonic behave differently (Lo et al., 2009).  
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The reason why the dead biofilms induced more apoptosis in the epithelial cells 

compared with the live after 24 h is not clear. One hypothesis is that the there was 

still some residual methanol, which was used to fix the biofilms, retained within the 

biofilms which could have reacted with the epithelial cells. Another hypothesis is 

that the dying cells may be releasing some undefined secreted protein or molecule, 

which may induce apoptosis in the epithelial cells (Kravchenko et al., 2011). In this 

study, only DNA fragmentation was used to ascertain the apoptosis in the epithelial 

cells. Evaluation of apoptotic factors, such as Bax (Bcl-2 associated X protein), 

Caspase 3 and anti-apoptotic factors (Bcl-2) may provide a more thorough 

understanding of the overall role of apoptosis in these cellular interactions.  

 

Apoptosis of host cells by P. gingivalis has been attributed to gingipains (Urnowey 

et al., 2006, Sheets et al., 2005, Sheets et al., 2006, Chen et al., 2001b, Kobayashi-

Sakamoto et al., 2006). Gingipains are cysteine proteases produced by P. gingivalis 

that are either secreted or membrane bound and are arginine or lysine specific 

(Kadowaki et al., 2000). For future studies, gingipain deficient P. gingivalis mutants 

could be used, or wild-type P. gingivalis pre-treated with specific gingipain 

inhibitors. Another useful study would be to use filtered cell-free supernatants to 

stimulate the epithelial cells to evaluate if gingipains on their own can induce 

apoptosis.  

 

From this study, it was concluded that bacterial biofilms have the ability to induce 

cytotoxicity and apoptosis in epithelial cells. This induction is dependent on the 

type of the biofilm (pathogen or commensal) and the form (live or dead) of the 

biofilm.   
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CHAPTER 4:  

THE INFLAMMATORY 

RESPONSE OF ORAL 

EPITHELIUM TO 

PERIODONTAL BIOFILMS  
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4.1 INTRODUCTION 

Periodontal disease is induced by bacterial biofilms that accumulate at the gingival 

margin. A series of aberrant inflammatory responses are initiated in periodontal 

tissues by a small subset of gram-negative periodontal bacteria, including P. 

gingivalis, A. actinomycetemcomitans and F. nucleatum (Feng and Weinberg, 

2006). These microbes possess numerous potent virulence factors aimed at 

neutralizing local host defences and destroying periodontal tissues, as evidenced 

from studies in the previous chapter. However, periodontal diseases progresses in 

only a limited number of individuals harbouring the pathogens, suggesting a 

complex multifactorial aetiology relating to an imbalance between host and 

pathogen (Kinane et al., 2007). Therefore, the interactions between the microbes 

and the immune system have been a major topic of investigation with regard to 

aetiology of periodontal disease.  

 

There are numerous microbiological factors affecting the host-oral bacteria 

relationship. For the purposes of these investigations, these have been categorized 

as: 

 

1. Bacterial species and whether they are pathogens or commensals?  

2.   Whether the bacteria are present in planktonic or biofilm state? 

3.   Whether the bacteria are dead or alive?   

 

Oral bacteria can be broadly classified as commensals or pathogens (Feng and 

Weinberg, 2006). Previous studies have concluded that different dental plaque 

bacteria, both in planktonic and biofilm states, induce different host response 

profiles depending on the their pathogenic or commensal status (Hasegawa et al., 

2007, Krisanaprakornkit et al., 2000, Sliepen et al., 2009, Stathopoulou et al., 

2010, Zhang et al., 2008). For example, it has been shown that F. nucleatum 

preferentially induced IL-6 and IL-8 production from epithelial cells compared to S. 

gordonii (Hasegawa et al., 2007). This was also shown in a study of primary human 

gingival epithelial cells (Stathopoulou et al., 2010). Moreover, in this same study 

cellular challenge with P. gingivalis was shown to produce high levels of IL-1β, and 

challenge with A. actinomycetemcomitans induced high levels of IL-8.  
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Host-pathogen interaction studies previously used putative periodontal pathogens in 

planktonic state to stimulate human primary cells or cell lines (Mans et al., 2006). 

However, the periodontal bacteria in dental plaque exist as a complex microbial 

biofilm (Kolenbrander, 2000, Rosan and Lamont, 2000); therefore in vitro 

planktonic bacteria are far disconnected from the in vivo situation. A number of 

investigators have more recently used mono-species and multi-species periodontal 

bacterial biofilms to study host-pathogen interactions and demonstrated differences 

in the host response to biofilms and planktonic bacteria (Oscarsson et al., 2008, 

Daep et al., 2008, Ramsey and Whiteley, 2009, Guggenheim et al., 2009, Peyyala et 

al., 2011b). The periodontal pathogen A. actinomycetemcomitans strain D7S, in 

both planktonic and in biofilm form were shown to release free-soluble surface 

material independent of outer membrane vesicles. This material enhanced 

production of pro-inflammatory cytokines (IL-1β, TNFα, IL-6, IL-8, MIP-1 β), as 

evidenced by using a cytokine antibody array. There was enhanced pro-

inflammatory cytokine production with the biofilms as compared with the 

planktonic form (Oscarsson et al., 2008). 

 

Until recently, heat-killed bacteria were the method of choice to study host-

pathogen interactions in vitro. Bacteria considered putative periodontal pathogens 

elicit a strong inflammatory response. When these bacteria are killed cytokines that 

are released early (IL-1β) and later (IL-6 and IL-8) are reversed; i.e., IL-1β levels 

were reduced and IL-6 and IL-8 levels enhanced (Eskan et al., 2008, Hasegawa et 

al., 2007, Stathopoulou et al., 2010, Zambon, 1985). The differential regulation of 

the host response to live and dead bacteria should be considered when conducting 

host-pathogen relationship studies in vitro.  

 

Microbial plaque is considered necessary, but not sufficient, for the progression of 

periodontal disease. Thus, the host response plays a pivotal role in disease 

pathogenesis. Many biological events in periodontal disease are strictly regulated by 

cell-cell interactions, which may be categorized into two forms: cognate (adhesive) 

interaction, achieved by mutual recognition between membrane bound cell-surface 

molecules, and cytokine-mediated interactions (Okada and Murakami, 1998). 

Adhesion molecules include ICAM-1 (Intercellular Adhesion Molecule-1, CD54) and 
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ITGB2 (Integrin Beta 2, CD18), which stabilize cell-cell interactions and facilitate 

leukocyte migration across the endothelial barrier (Yang et al., 2005, Kotovuori et 

al., 1999). Cytokines are a large and diverse family of soluble mediators including 

interleukins, colony stimulating factors, growth factors, and cytotoxic factors. 

Cytokines play an important role in numerous biological activities including 

proliferation, development, differentiation, homeostasis, regeneration, repair and 

inflammation (Okada and Murakami, 1998). Epithelial cells are not only physical 

barriers but also a source of potent cytokines and other soluble mediators including 

antimicrobial peptides. Antimicrobial peptides, such as human beta-defensins and 

S100A8 are produced by epithelial cells and induced by microbial products, 

inflammatory cytokines and epidermal growth factor (McCormick and Weinberg, 

Hiroshima et al.). 

 

Offenbacher and colleagues (2009) performed an experimental gingivitis study in 

humans to understand changes in patterns of whole-transcriptome gene expression 

that occur during the induction and resolution of experimental gingivitis in humans 

using bioinformatics tools (Offenbacher et al., 2009). Gingival biopsy samples were 

collected from 14 subjects during a 28-day stent-induced experimental gingivitis 

model, followed by treatment, and resolution at days 28 through 35 were analysed 

using gene-expression arrays. Biopsy samples were collected at different sites 

within each subject at baseline (day 0), at the peak of gingivitis (day 28), and at 

resolution (day 35) and processed using whole-transcriptome gene-expression arrays 

(Offenbacher et al., 2009). Interestingly, a high proportion of the genes 

demonstrating greatest differences between health and disease were genes 

encoding chemokines, cytokines, adhesion molecules, antimicrobial peptides, and a 

number of these have been selected for an in vitro model of experimental 

gingivitis.  
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4.2 AIMS  

The aim of this study was to investigate the response of oral epithelial cells to 

bacterial biofilms with respect to (i) biofilms versus planktonic microbes, (ii) live 

biofilms versus dead biofilms and, (iii) pathogenic biofilms versus commensal 

biofilms. The response of the epithelium was investigated by assessing cytokine and 

chemokine mRNA and protein expression at various times following exposure to 

biofilms.  
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4.3 MATERIALS AND METHODS 

4.3.1 Gene expression studies 

Analysis of inflammatory mediators was initially performed using gene expression 

analysis using two different methods. A list of genes of interest are shown in Table 

4.1 

 

4.3.1.1 RNA extraction and purification 

Biofilms were formed as described in chapter 2 and epithelial cells challenged as 

described in chapter 3. RNA extraction and purification from these epithelial cells 

was performed using the RNeasy Mini Kit (Qiagen, Hilden, Germany), according to 

the manufacturer’s instructions. Buffer RLT (350 μL) was added to the monolayer 

epithelial cells in the 24 well cell culture plates (Corning, NY, USA) to dislodge and 

lyse the cell, mixed and transferred to RNA free microcentrifuge tubes. An equal 

volume of 70% ethanol was added to the lysed cells, mixed and transferred to the 

RNeasy spin column and centrifuged at 13,000 rpm for 15 sec. The RNA on the spin 

column membrane was washed with buffer RW1 by centrifugation at 13,000 rpm for 

15 sec. DNase 1 solution (Qiagen, Hilden, Germany) was added directly to the 

membrane and incubated at room temperature for 10 min. The membrane was then 

washed with buffer RW1 by centrifugation at 13,000 rpm for 15 sec. The RNA on the 

membrane was precipitated by adding buffer RPE and centrifuged at 13,000 rpm for 

15 sec and then again for 2 min. The RNA was then eluted into RNase free water 

and stored in -80oC freezer. 
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Table 4.1: List of genes assessed in the study 

Gene Name Class Functions 
1. IL-1 α Interleukin-1 alpha Cytokine Initiates cytokine cascade & vascular adhesion 

molecule expression 

2. IL-1 β Interleukin-1 beta Cytokine Initiates cytokine cascade & vascular adhesion 
molecule expression 

3. IL-6 Interleukin-6 Cytokine Pro-inflammatory pleiotrophic cytokine 
4. TNF α TNF-alpha Cytokine Regulation of immune cells 
5. CSF2 GM-CSF Cytokine Stimulates stem cells to produce granulocytes 

& monocytes 

6. CSF3 G-CSF Cytokine Initiates differentiation, proliferation and 
survival of PMNs & macrophages 

7. IL-8 Interleukin-8 Chemokine PMN chemoattractant 
8. CXCL1 Gro alpha Chemokine PMN chemoattractant  
9. CXCL3 Gro gamma Chemokine Suppresses hematopoietic progenitor cell 

proliferation 

10. CXCL5 ENA78 Chemokine Chemotaxis of neutrophils promoting 
angiogenesis 

11. CCL5 RANTES Chemokine Promotion of inflammatory infiltrate & T-cell 
chemotaxis 

12. CCL4 MIP-1 beta Chemokine Attracts CD4+ T lymphocytes 

13. CX3CR1 Chemokine receptor 
1 

Chemokine Mediates leukocyte migration and adhesion 

14. CCL3L3 Chemokine ligand 3 
like 3 

Chemokine Immune response and chemotaxis 

15. CXCL10 IP-10 Chemokine Chemotactic effect on activated T, NK and 
TH-1 cells 

16. CXCL11 I-TAC Chemokine Interferon inducible T-cell alpha 
chemoattractant 

17. ICAM1 Intercellular adhesion 
molecule-1 

Adhesion 
molecule 

Stabilizing cell-cell interactions 

18. ITGB2 Beta integrin 2 Adhesion 
molecule 

Facilitate leukocyte migration across 
endothelial barrier 

19. DEFB4 Beta-defensin 2 Antimicrobial 
peptide 

Antimicrobial activity against Gram negative 
& monocyte chemoattractant 

20. S100A8 S100 calcium binding 
protein A8 

Antimicrobial 
peptide 

Phagocytic granule protein 

21. PROK2 Prokineticin 2 Angiogenic Regulates angiogenesis 

22. NFκB Nuclear factor kappa-
light-chain enhancer 
of activated B cells 

Pathway Regulates immune response to infection 

23. TBP TATA binding protein Endogenous  Transcription factor that specifically bind to 
DNA sequence  called TATA box 

24. GAPDH Glyceraldehyde 3-
phosphate 
dehyrogenase 

Endogenous Catalyses the conversion of glyceraldehydes 
3-phosphate 

 

 



 

 109

4.3.1.2 RNA quantification and quality check 

A NanoDrop 1000 spectrophotometer (Thermo Scientific, DE, USA) was used to 

assess RNA concentration and quality. The pedestal was wiped clean and 1.5 μL of 

RNA samples in solution added to the pedestal to quantify the RNA. An A260 reading 

of 1.0 is equivalent to 40 ng/μL of RNA and the OD at 260 nm is used to determine 

the RNA concentration in a solution. The quality of the RNA was assessed by the 

ratio of the absorbance at 260 nm and 280 nm. Pure RNA has an A260/A280 of 2.1 and 

a value of 1.8 and 2.1 indicates that the RNA is pure. 

 

4.3.1.3 Reverse transcription  

The purified RNA was reverse transcribed into complementary DNA (cDNA) using 

high capacity RNA to cDNA kits (Applied Biosystems, Foster City, CA, USA), 

according to the manufacturer’s instructions. To reverse transcribe the RNA, 500 ng 

of RNA was added to each reverse transcription reaction. A no-RT control was also 

included for each RNA sample, where reverse transcriptase enzyme was not 

included in the reaction. This was to ascertain that there was no genomic DNA in 

any of the cDNA samples.  

 

4.3.1.4 Real time PCR analysis of cDNA samples using SYBR® Green 

SYBR® Green and the primers were purchased from Invitrogen (Paisley, Scotland) 

unless otherwise indicated. For each condition, 1 µL of cDNA sample was PCR-

amplified using 200 nM of the IL-8 and GAPDH primers (0.5 µL forward and reverse 

primers at 10 µM), as illustrated in Table 4.2. Each 25 µL real-time PCR reaction 

contained the following: 1 µL of 500 ng/µL cDNA, 0.5 µL forward and reverse primer 

(10 nM), 12.5 µL SYBR® Green and 10.5 µL of molecular biology grade dH2O. 

Reactions were performed in triplicate in 0.2 mL optical tube strips (Agilent 

Technologies, South Queensferry, West Lothian, UK) using the Mx3000P QPCR 

machine (Stratgene, Amsterdam, Netherlands). A standard dissociation curve 

protocol was included after the 40 amplification cycles to confirm that only one 

product was made. The threshold cycle (Ct) was automatically determined and 

verified manually. Amplification plots were observed at the logarithmic scale and 

threshold selected to be above any baseline fluorescence, in the region where 
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amplification was exponential and where the majority of replicates gave similar Ct 

values, i.e. where triplicate amplification plots were parallel. IL-8 was normalised 

using GAPDH as a housekeeping gene. No-RT controls were included to check for 

DNA contamination and no template controls, with water, were run to rule out 

other contamination problems. The no-RT and no-template controls should ideally 

show no amplification and therefore no Ct values.  

 

Table 4.2: PCR primer sequences of IL-8 and GAPDH 

Target Primer sequence Binding site Product size (Base pairs) 

IL-8 F CAGAGACAGCAGAGCACACAA 21-41 170 

IL-8 R TTAGCACTCCTTGGCAAAAC 171-190 

GAPDH F CAAGGCTGAGAACGGGAAG 282-300 133 

GAPDH R GGTGGTGAAGACGCCAGT 397-414 

 

 

4.3.1.5 Real time PCR analysis of cDNA samples using Taqman® Low Density 

Array (TLDA) 

For gene expression analysis Custom-designed ABI microfluidic Taqman® Low 

Density Array ([TLDA] Applied Biosystems, Foster City, CA, USA) was used in a 

reverse transcriptase polymerase chain reaction (RT-PCR) process using the ABI 

Prism 7900 HT Sequence Detection System (Applied Biosystems, Foster City, CA, 

USA). This allowed 384 real time PCR reactions to be carried out simultaneously in 

order to determine the transcription of several genes. The TLDA used in this study 

was designed to contain gene expression assays to measure mRNA levels of NFκB, 

PROK2, CSF3, ITGB2, IL-8, IL-1α, CCL5, IL-1β, CXCL3, CCL3L3, CX3CR1, S100A8, 

CCL4, CXCL10, CXCL11, TNFα, GM-CSF, GROα, IL-6, ICAM1, DEFB4 and CXCL5 

(Offenbacher et al, 2009). Two control genes, TBP and GAPDH were utilized to span 

the relative abundance/Ct range of the genes on the card. A total of 100 uL 

reaction mixture with 20 μL cDNA template, 30 µl of RNAse free water and 50 µL of 

TaqMan universal master mix (Applied Biosystems, Foster City, CA, USA) was added 

to each port of TLDA after gentle pipetting to mix. Thermal cycler conditions were 

as follows: 10 min at 94.5°C and 30 s at 97°C and 1 min at 59.7°C for 40 cycles and 

thermal cycling and fluorescence detection was performed on Applied Bio-Systems 
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ABI Prism 7900HT Sequence Detection System with ABI Prism 7900HT SDS Software 

2.1.  

 

4.3.1.6 Gene expression analysis 

Gene expression was quantified using the comparative threshold (Ct) method as 

suggested by the manufacturer.  This technique utilises the formula 2−ΔΔCt in order 

to calculate the relative number of gene transcripts (Livak and Schmittgen, 2001).  

The Ct value represents the PCR cycle at which the amplified gene target reaches a 

defined threshold.  40 PCR cycles were performed; accordingly the Ct values can 

range from 0 to 40.  Ct values for each immunological molecule were calculated. Ct 

values were calculated for the bacterial stimulated samples and the unstimulated 

medium controls.  The Ct of the endogenous control genes was also calculated.  

GAPDH was calculated to be the most reliable endogenous control.  The ΔCt value 

was calculated [ΔCt = Ct (target gene) − Ct (GAPDH)].  This was performed for each 

gene in the bacterial stimulated samples and the unstimulated medium control 

samples.  The relative expression of each gene was then calculated with the 

formula ΔΔCT = ΔCt (positive sample) − ΔCt (control sample).  This was the expressed 

in terms of fold change relative to the control sample with the formula [fold change 

= 2- ΔΔCT] (Livak and Schmittgen, 2001).  For down regulated genes (value less than 

1) the negative inverse of the value was taken.  This allowed down regulation to be 

expressed as a negative value.   

 

4.3.2 Protein expression studies 

4.3.2.1 Protein analysis by human cytokine protein array 

A human cytokine protein array kit, Proteome Profiler panel A (ARY005, R&D 

Systems, Abingdon, UK), was used to measure cytokine production from OKF6-TERT 

epithelial cells in response to medium control, mixed biofilm (P. gingivalis, F. 

nucleatum, A. actinomycetemcomitans and S. mitis), P. gingivalis biofilm and S. 

mitis biofilm for 24 h. The kit contains nitrocellulose membranes pre-blotted with 

duplicates of 36 capture antibodies to human cytokine proteins (Figure 4.1). Figure 

4.1A illustrates the position of each protein on the nitrocellulose membrane, and 

Figure 4.1B illustrates an example of the array following processing. Cell 

supernatants can be mixed with a cocktail of biotinylated detection antibodies and 
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incubated with the membrane. Any cytokine/detection antibody complex will bind 

to the membrane via the capture antibody. Proteins are detected using 

streptavidin-horseradish peroxidase and chemiluminescent detection reagents. The 

level of light produced at each spot is proportional to the amount of bound 

cytokine. The densitometry analysis was performed on X-ray film using the Quantity 

One® 1-D Analysis Software (Gel Doc™, Bio-Rad, Hertfordshire, UK) by calculating 

the adjusted volume of the spots from the pixel density after subtracting from the 

background. 

 

 

Figure 4.1: Human cytokine protein array. (A) Schematic of the membrane 
layout. (B) Example of a processed membrane. 
 

4.3.2.2 Protein analysis by Luminex® multiplex beads 

Supernatants harvested from OKF6 epithelial cells at 4 and 24h after bacterial 

biofilms and planktonic cells challenge were tested for the presence of IL-1β, TNF-

α, IL-6, IL-8, GM-CSF and G-CSF using Luminex® multiplex beads (Invitrogen, UK) 

according to the manufacturer’s instructions. Briefly, 25 μL of 1 x beads (2.5 × 106 

beads/mL/cytokine) with defined spectral properties were covalently conjugated to 

analyte specific monoclonal antibodies and then pipetted into each well of a 96 

well filter bottom microplate.  The conjugated beads were exposed to 50 μl of cell 

culture supernatant sample or standard solution containing a known concentration 

of each cytokine [IL-1 β (7330 pg/mL), TNF-α (7410 pg/mL), IL-6 (5350 pg/mL), IL-8 

(10010 pg/mL), GM-CSF (9820 pg/mL), G-CSF (28670 pg/mL)] and incubated at 

room temperature on an orbital shaker (500-600 rpm) for two hours in the dark.  

After three washes and filtration by vacuum manifold to remove unbound protein, 

(A) 

(B) 
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biotinylated detection antibodies specific for a different epitope on the analyte was 

added to the reaction and incubated for 1 hour at room temperature on an orbital 

shaker (500 – 600 rpm).  Following this incubation step, two sets of washes and 

vacuum filtration were performed to remove unbound antibody. To the reaction 

mixture, 100 µL of Streptavidin – R Phycoerythrin (Streptavidin-RPE) was added, 

which binds with high affinity to the biotinylated antibodies.  A further three sets 

of washes and vacuum filtrations were then performed to remove any unbound 

material.  The beads were then resuspended in 100 μl of working wash solution.  

The reaction mixtures were analysed using Luminex® 100 hardware (Luminex, USA) 

and the concentrations of the analytes were determined using the software 

compared with a standard curve for each assessment. The instrument monitors the 

spectral properties of the capture beads while simultaneously measuring the 

quantity of associated fluorophore. The standard curves were obtained using a five 

parameter algorithm. Samples from two separate experiments were tested. 

 

4.3.2.3 Protein analysis by Enzyme Linked Immunosorbent Assay (ELISA) 

Supernatants harvested from OKF6 epithelial cells at 4 and 24h, after challenge 

with bacterial biofilms and planktonic cells, were analyzed for the presence of 

CXCL1 (Gro-α), CXCL10 (IP-10) and CCL5 (RANTES) using ELISA (Peprotech, London, 

UK), according to the manufacturer’s instructions. Fresh solution of antigen-specific 

antibody (capture antibody) was prepared in PBS (1.0 μg/mL) and 100 μL aliquots 

added to each well of Nunc Maxisorp® Flat Bottom Microtiter® Plates (Fisher, 

Loughborough, UK). The plates were sealed and incubated at room temperature 

overnight. After washing, blocking agent (1% bovine serum albumin [BSA]) was 

added to the wells and incubated for at room temperature to block non-specific 

proteins. The plates were washed again and standards, samples and controls added 

to the wells. The plates were incubated at room temperature. After washing, 

biotinylated antigen-specific antibody (detection antibody) was added to each well 

and incubated at room temperature. After washing and drying, avidin-peroxidase 

conjugate was added to each well and incubated at room temperature for 30 

minutes. After washing and drying, 3,3’,5,5’-tetra-methylbenzidine (TMB, R&D 

systems, Abingdon, UK) was added to each well and the developing optical density 

read at 5 minute intervals using a plate reader (FLUOstar Omega. BMG Labtech, VA, 
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USA) set at 405 nm with a 650nm wavelength correction. A standard curve was 

generated using a four-parameter algorithm to calculate the concentration of the 

cytokines in the samples. The standard curve was obtained by plotting the mean 

absorbance for each standard (x-axis) against the target protein concentration (y-

axis) using Omega Analysis Software. The R2 for the standard curve, which predicts 

the outcome of one value from the other, must be greater than 0.98.  

 

4.3.3 Statistical analysis 

The statistical analyses on the difference in gene expression and the protein release 

from the epithelial cells after the different treatments were performed with 

GraphPad Prism using one-way analysis of variance (ANOVA) with Bonferroni 

correction. One-way ANOVA is a method used to compare means of two or more 

samples with numerical data. The ANOVA tests the null hypothesis that samples in 

two or more groups are drawn from populations with the same mean values 

(Howell, 2002). Bonferroni correction is a method used to counteract the problem 

of multiple comparisons. The problem of multiplicity occurs when there is an 

increase in the number of hypotheses in a test, there is also a likelihood of 

witnessing a rare event, and a chance to reject the null hypotheses when it’s true. 

Bonferroni correction is the most naive way to address this issue (Dunnett, 1955). 

Differences were considered significant if p<0.5. 
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4.4 RESULTS 

4.4.1 IL-8 mRNA expression in epithelial cells stimulated with P. gingivalis 

biofilms or planktonic cells. IL-8 release is a key function of epithelial cells, 

promoting neutrophil recruitment and activation (Tonetti et al., 1994). Therefore, 

this chemokine was investigated initially as a likely candidate for demonstrating 

epithelial cell regulation. To investigate the variability of IL-8 production of 

epithelial cells co-cultured with bacterial biofilms or planktonic cells, OKF6-TERT2 

epithelial cells were challenged with both live or dead (heat-killed) P. gingivalis 

biofilms and planktonic cells for 4 and 24 h. IL-8 mRNA expression was assessed by 

SYBR Green real time reverse-transcriptase PCR. Gene expression was normalised 

to GAPDH endogenous control. Data presented as fold change in gene expression 

relative to OKF6-TERT2 cells cultured only with cell culture medium (‘medium 

control’). Statistical analyses were performed by one-way ANOVA with Bonferoni 

correction using GraphPad Prism (San Diego, CA, USA). Differences were considered 

significant if p<0.5. 

 

Live P. gingivalis biofilm (4 h: ~61-fold vs medium control; 24 h: ~32-fold vs 

medium control) induced greater levels of IL-8 expression compared with live 

planktonic cells (4 h: ~2-fold vs medium control; 24 h: ~13-fold vs medium control). 

Dead biofilms and planktonic cells induced minimal changes in the IL-8 expression 

(maximal ~10-fold increase vs medium control) (Figure 4.2). To conclude, P. 

gingivalis biofilms induce more IL-8 expression than the planktonic cells.  
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Figure 4.2: IL-8 mRNA expression in OKF6-TERT2 epithelial cells challenged with 
live or dead (heat-killed) P. gingivalis biofilms or planktonic cells. OKF6-TERT2 
epithelial cells were challenged with P. gingivalis biofilm and planktonic cells for 4 
and 24 h. mRNA expression was assessed by SYBR Green real time PCR for IL-8. 
Gene expression was normalised to GAPDH endogenous control. Data shown are 
gene expression as fold change relative to medium control. 
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4.4.2 Expression of a panel of gingivitis-related genes in epithelial cells 

stimulated with P. gingivalis biofilms or planktonic cells. Marked changes in IL-8 

expression were observed following stimulation with the bacterial biofilms. To 

investigate the effect of P. gingivalis biofilms or planktonic cells on a broader 

spectrum of the epithelial cell inflammatory armamentarium, expression of a panel 

of gingivitis related genes was next investigated (gene functions described in Table 

4.1. The studies in the preceding section (4.4.1) were extended to include analysis 

of a larger panel of genes (NFB, PROK2, CSF3, ITGB2, IL-1α, CCL5, IL-1β, CXCL3, 

CCL3L3, CX3CR1, S100A8, CCL4, CXCL10, CXCL11, TNFα, CSF2, GROα, IL-6, ICAM1, 

DEFB4, CXCL5 and TBP). Gene expression was assessed by TaqMan low-density 

array (TLDA). Gene expression was normalised to GAPDH endogenous control and 

then data expressed as fold change relative to OKF6-TERT2 cells cultured only with 

cell culture medium. Bacterial biofilm co-culture with epithelial cells resulted in 

little change in gene expression of CXC3R1, CCL3L1, CCL4, ICAM1, ITGB2, S100A8, 

DEFB4, NFκB, and PROK2 (Figure 4.3 A & B). 

 

Minimal changes in chemokine gene expression were observed with both dead P. 

gingivalis biofilm and planktonic cells after 4 and 24 h, compared with medium 

control. Some chemokine gene expression was observed with live P. gingivalis 

planktonic cells after 24 h only. Similar to the observed effects on IL-8, a greater 

increase of CXCL1, CXCL3, CXCL5, CXCL10, CXCL11, CCL5 and IL-8 mRNA expression 

was observed following co-culture with live P. gingivalis biofilm compared with 

planktonic cells after 4 and 24 h (Figure 4.3 A & B). CXCL1 expression was greater 

following stimulation with live biofilms (~13-fold vs medium control) compared with 

planktonic cells (~1-fold vs medium control) after 4 h. Overall, epithelial cell 

chemokine gene expression was greater following co-culture with the biofilms 

compared with the planktonic cells.  

 

Similar to the chemokine expression, minimal changes were observed with live and 

dead P. gingivalis planktonic cells, and dead P. gingivalis after 4 and 24 h. The 

expression of IL-1α, IL-1β, IL-6, CSF2 and TNF-α were elevated following co-culture 

with the live P. gingivalis biofilms compared with planktonic cells after 4 and 24 h 

(Figure 4.3 A & B). Overall, inflammatory cytokine mRNA expression in epithelial 
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cells was increased more following stimulation with biofilms compared with 

planktonic cells. 
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 (A) P. gingivalis biofilm 
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(B) P. gingivalis planktonic 

 

 
Figure 4.3: Expression of a panel of gingivitis-related genes in epithelial cells 
with P. gingivalis biofilms or planktonic cells. OKF6-TERT2 epithelial cells were 
challenged with (A) P. gingivalis biofilm and (B) P. gingivalis planktonic cells for 4 
and 24 h. mRNA expression were assessed by TLDA for gingivitis-related genes 
(NFκB, PROK2, CSF3, ITGB2, IL-8, IL-1α, CCL5, IL-1β, CXCL3, CCL3L3, CX3CR1, 
S100A8, CCL4, CXCL10, CXCL11, TNFα, GM-CSF, GROα, IL-6, ICAM1, DEFB4, CXCL5). 
Gene expression was normalised to GAPDH endogenous control. Data shown are 
gene expression as fold change relative to medium control.  
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4.4.3 IL-8 mRNA expression in epithelial cells stimulated with mixed and mono-

species bacterial biofilms. The data presented above demonstrate that P. 

gingivalis biofilms induced greater levels of chemokine and cytokine mRNA 

expression in epithelial cells than planktonic cells. To investigate i) time-

dependant, ii) live versus dead, and iii) pathogen versus commensal variability of 

IL-8 production by epithelial cells co-cultured with more bacterial biofilms, OKF6-

TERT2 epithelial cells were challenged with live or dead (methanol-fixed) multi- or 

mon-species biofilms (multi: P. gingivalis, F. nucleatum, A. actinomycetemcomitans 

and S. mitis), P. gingivalis biofilm, and S. mitis biofilm for 1, 2, 4, 6, 8, 12, 18, 24 

and 48 h. IL-8 mRNA expression was assessed by SYBR Green real time RT-PCR. 

Gene expression was normalised to GAPDH endogenous control. Data shown are 

gene expression as fold change relative to OKF6-TERT2 cells cultured only with cell 

culture medium (‘medium control’).  

 

(i) Time-dependent regulation of IL-8. Live and dead multi-species biofilms 

induced time dependent up-regulation of IL-8 mRNA. Elevated IL-8 mRNA expression 

was evident after 6 h (~200-fold) and there was a continued modest increase in IL-8 

mRNA expression until 24 h (~1250-fold). IL-8 mRNA expression remained constant 

from 24 to 48 h (Figure 4.4A), suggesting the maximal response was reached by 24 

h. There were similar changes in IL-8 mRNA expression upon stimulation with live P. 

gingivalis biofilm (Figure 4.4B). Live S. mitis biofilm induced somewhat erratic 

changes in IL-8 mRNA expression. The IL-8 mRNA expression was increased after 2 h 

(~150-fold), decreased after 4 h (~3-fold), increased again after 6 h (~125-fold) and 

decrease again after 8 h (~65-fold) (Figure 4.4C). These data demonstrate that IL-8 

mRNA expression is regulated over time, and that this regulation varies depending 

on the nature of the biofilm to which the cells are exposed.  

 

(ii) IL-8 mRNA expression upon co-culture with live versus dead biofilms. Live 

mixed biofilm induced similar IL-8 mRNA expression compared with dead mixed 

biofilm (Figure 4.4A). IL-8 mRNA expression was elevated following stimulation with 

live, but not dead P. gingivalis nor live S. mitis biofilm. Stimulation with dead P. 

gingivalis or S. mitis biofilms resulted in minimal changes in IL-8 mRNA expression 

compared with medium control (maximal ~19-fold for P. gingivalis) (Figure 4.4B & 
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C). To conclude, live bacterial biofilms induce more IL-8 expression than dead 

biofilms. 

 

(iii) IL-8 mRNA expression following co-culture with pathogenic or commensal 

biofilms. The pathogenic P. gingivalis or multi-species biofilms elicited more IL-8 

expression than the commensal biofilm (Figure 4.4). Only the live P. gingivalis 

biofilm caused increased IL-8 mRNA expression. This demonstrates that pathogens 

and commensals differentially regulate IL-8 expression in epithelial cells. 
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Figure 4.4: IL-8 mRNA expression in OKF6-TERT2 epithelial cells challenged with 
live and methanol-fixed (dead) bacterial biofilms. OKF6-TERT2 epithelial cells 
were challenged with (A) mixed biofilm (P. gingivalis, F. nucleatum, A. 
actinomycetemcomitans and S. mitis), (B) P. gingivalis biofilm and (C) S. mitis 
biofilm for 1, 2, 4, 6, 8, 12, 18, 24 and 48 h. mRNA expression was assessed by 
SYBR Green real time PCR for IL-8. Gene expression was normalised to GAPDH 
endogenous control. Data shown are gene expression as fold change relative to 
medium control.  
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4.4.4 Expression of a panel of gingivitis-related genes in epithelial cells with 

multi- or mono-species biofilms. Marked changes in IL-8 expression were observed 

following stimulation with different biofilms. To investigate the biofilm effect on a 

broader spectrum of the epithelial cell inflammatory armamentarium, expression of 

a panel of gingivitis related genes was next investigated (gene panel selection 

described in Table 4.1). The studies in section 4.4.3 were extended to include 

analysis of a larger panel of genes (NFκB, PROK2, CSF3, ITGB2, IL-8, IL-1α, CCL5, IL-

1β, CXCL3, CCL3L3, CX3CR1, S100A8, CCL4, CXCL10, CXCL11, TNFα, GM-CSF, GROα, 

IL-6, ICAM1, DEFB4, CXCL5 and TBP). Gene expression was assessed by TaqMan 

low density array (TLDA). Gene expression was normalised to GAPDH endogenous 

control and then data expressed as fold change relative to OKF6-TERT2 cells 

cultured only with cell culture medium. Bacterial biofilm co-culture with epithelial 

cells resulted in little measurable gene expression of CXC3R1, CCL3L1, CCL4, 

ICAM1, ITGB2, S100A8, DEFB4, NFκB, and PROK2.  

 

(i) Time-dependent regulation of genes. The kinetics of chemokine and cytokine 

gene regulation was investigated in epithelial cells co-cultured with bacterial 

biofilms. Similar to the effects on IL-8, there was time dependent upregulation of 

CXCL1 and CXCL3 following co-culture with live mixed species biofilm and P. 

gingivalis biofilm (Figure 4.5A & B; 4.6 A, B & D).  

 

Inflammatory cytokines, IL-1α, IL-1β, IL-6, GM-CSF and TNFα, were upregulated in a 

time-dependant manner following co-culture with live multi-species biofilm from 1 

to 6 h (Figure 4.5A; 4.6 E, F, G, I & J). For instance, TNFα gene expression 

increased from 6.54 fold after 1 h, then 60.85 fold and 129.56 fold after 4 and 6 h, 

respectively (Figure 4.5A; 4.6J). Live P. gingivalis biofilms induced mRNA 

upregulation of all cytokines analysed from 1 to 4 h in a time-dependent manner 

(Figure 4.5B; 4.6 E-J). After 6 h, there were minimal changes in cytokine gene 

expression indicating an early transcriptional upregulation following co-culture with 

the P. gingivalis biofilm. Thus, a range of inflammatory chemokines and cytokines 

are regulated in a time-dependent manner in the epithelial cells co-cultured with 

bacterial biofilms.   
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ii) Gene expression upon stimulation with live versus dead biofilms. Similar to 

the observed effects on IL-8, a greater increase in CXCL1 and CXCL3 mRNA 

expression was observed following co-culture with live mixed species biofilm 

compared with dead biofilms after 4, 6 and 24 h (Figure 4.5A & B; 4.6A, B & D). 

There was elevated expression of CXCL1, CXCL3, CXCL5, CXCL10, CXCL11, CCL5 and 

IL-8 following co-culture with live compared with dead P. gingivalis biofilm after 4 

and 6 h (Figure 4.5B; 4.6A-D). Live S. mitis biofilms induced more CXCL1, CXCL3, 

CXCL10, CXCL11, CCL5 and IL-8 gene expression after 6 and 24 h compared with 

dead biofilms (Figure 4.5C; 4.6A-D). Overall, epithelial chemokine gene expression 

was greater following co-culture with live biofilms compared with dead. 

 

The expression of IL-1α, IL-1β, IL-6, CSF2 and TNFα was elevated following co-

culture with live mixed species and P. gingivalis biofilms compared with dead after 

4, 6 and 24 h (Figure 4.5A & B; 4.6E, F, G, I & J). CSF3 expression was increased by 

co-culture with live mixed and P. gingivalis biofilm only after 4 and 24 h, as no 

detectable expression was observed after 6 h (Figure 4.6H). Live S. mitis biofilms 

induced a greater increase in expression of IL-1α, IL-1β, IL-6, CSF2 and TNFα after 6 

and 24 h compared with dead biofilm (Figure 4.5C; 4.6E, F, G, I & J). Overall, 

inflammatory cytokine mRNA expression was increased more with live biofilms 

compared with dead. 

 

iii) Gene expression following co-culture with pathogenic or commensal 

biofilms. Chemokine and cytokine mRNA expression was investigated to evaluate 

differences in the epithelial cell response to pathogenic (multi-species and P. 

gingivalis) or commensal (S. mitis) biofilms. 

 

Co-culture with pathogenic biofilms induced more CXCL1, CXCL3, CXCL5, CXCL10, 

CXCL11, CCL5 and IL-8 expression than co-culture with commensal biofilm after 4 h 

(Figure 4.5A, B & C; 4.6A-D). Interestingly, pathogenic mono-species P. gingivalis 

biofilm induced generally greater chemokine expression than the mmulti-species 

biofilm; only CXCL3 expression was greater following stimulation with the mixed 

biofilm compared with P. gingivalis biofilm.  
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Increased cytokine mRNA expression (IL-1α, IL-1β, IL-6, CSF2 and TNFα) was 

observed following co-culture with the pathogenic biofilms compared with 

commensal biofilm after 4 h (Figure 4.5A, B & C; 4.6E, F, G, I & J). P. gingivalis 

induced greater IL-1α and IL-6 expression than the mixed biofilm. Overall, 

pathogenic biofilms show a greater propensity to increase mRNA expression of 

numerous chemokines and cytokines than commensal biofilms. 
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 (A) Multi-species biofilm 
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(B) P. gingivalis biofilm 
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(C) S. mitis biofilm 
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Figure 4.5: Expression of a panel of gingivitis-related genes in epithelial cells 
with multi- or mono-species biofilms. OKF6-TERT2 epithelial cells were challenged 
with (A) multi-species biofilm (P. gingivalis, F. nucleatum, A. 
actinomycetemcomitans and S. mitis), (B) P. gingivalis biofilm and (C) S. mitis 
biofilm for 1, 4, 6 and 24 h. mRNA expression was assessed by TLDA for gingivitis-
related genes (NFκB, PROK2, CSF3, ITGB2, IL-8, IL-1α, CCL5, IL-1β, CXCL3, CCL3L3, 
CX3CR1, S100A8, CCL4, CXCL10, CXCL11, TNFα, GM-CSF, GROα, IL-6, ICAM1, DEFB4, 
CXCL5). Gene expression was normalised to GAPDH endogenous control. Data shown 
are gene expression as fold change relative to medium control. These graphs show a 
global view of the data, which includes all the inflammatory cytokine genes 
expressed by the epithelial cells after co-culture with the different biofilm 
conditions at all the time points tested. 
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(A) CXCL1 

 

(B) CXCL3 

 

(C) CXCL5 
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(D) IL-8 

 

(E) IL-1α 

 

(F) IL-1β 
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(G) IL-6 

 

(H) CSF3 

 

(I) CSF2 
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(J) TNFα 

 

Figure 4.6: Kinetics of mRNA expression in OKF6-TERT2 epithelial cells 
challenged with live and dead (methanol-fixed) bacterial biofilms. OKF6-TERT2 
epithelial cells were challenged with multi-species biofilm (P. gingivalis, F. 
nucleatum, A. actinomycetemcomitans and S. mitis), P. gingivalis biofilm, S. mitis 
biofilm for 1, 4, 6 and 24h. mRNA expression were assessed by TLDA for gingivitis-
related genes (A) CXCL1, (B) CXCL3, (C) CXCL5, (D) IL-8, (E) IL-1 α, (F) IL-1 β, (G) 
IL-6, (H) G-CSF, (I) GM-CSF and (J) TNF-α. Gene expression was normalised to 
GAPDH endogenous control. Data shown are gene expression as fold change relative 
to unstimulated control cells. These graphs represent the same data as in Figure 4.6 
but are presented as changes in individual genes. 
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The gene expression profiles of the epithelial cells challenged with the bacteria can 

be summarised from the heat map shown in Figure 4.7. Greater levels of gene 

expression are shown in red and lower levels of gene expression in green. In the 

right hand panel of the heat map, within the yellow box, the two left hand columns 

are the unstimulated cells. What is somewhat surprising is that there is some 

cytokine and chemokine gene regulation but not as much as might be expected 

compared with the unstimulated cells. This panel consists of epithelial cells 

stimulated with commensal bacteria (in either biofilm or planktonic state) or 

stimulated with pathogenic bacteria such as P. gingivalis in a planktonic state. 

However, the left hand panel of the heat map, within the blue box, shows striking 

changes in gene expression, i.e. a range of chemokines and cytokines are 

upregulated by the epithelial cells when these pathogens were presented to the 

cells as a biofilm. 
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Figure 4.7: mRNA expression in OKF6-TERT2 epithelial cells challenged with live 
and dead (methanol-fixed) bacterial biofilms. OKF6-TERT2 epithelial cells were 
challenged with live and dead (methanol-fixed) multi-species biofilm (P. gingivalis, 
F. nucleatum, A. actinomycetemcomitans and S. mitis), P. gingivalis biofilm, S. 
mitis biofilm and P. gingivalis planktonic cells. mRNA expression was assessed by 
TLDA for gingivitis-related genes (NFκB, PROK2, CSF3, ITGB2, IL-8, IL-1α, CCL5, IL-
1β, CXCL3, CCL3L3, CX3CR1, S100A8, CCL4, CXCL10, CXCL11, TNFα, GM-CSF, GROα, 
IL-6, ICAM1, DEFB4, CXCL5). Gene expression was normalized to GAPDH endogenous 
control. The gene expression is presented as heat maps, which graphically display 
results of hierarchical clustering based on the ΔCT values using Pearson’s 
Correlation, showing a global view of the average linkage of the various genes of 
duplicate measurements of two independent experiments. The x-axis represents 
the different bacterial conditions used to stimulate the epithelial cells. The y-axis 
represents the gingivitis-related genes that were expressed after stimulation with 
the different bacterial conditions. Each square represents the expression of one of 
the genes on the y-axis to the corresponding bacterial condition on the x-axis. The 
brighter the shade of red, the greater the up-regulation of the genes. The brighter 
the shade of green, the greater the down-regulation of the genes.  
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4.4.5 IL-8 release from epithelial cells stimulated with bacterial biofilms or 

planktonic cells. IL-8 mRNA expression was increased in epithelial cells co-cultured 

with P. gingivalis biofilms compared with planktonic cells (Section 4.4.1). To 

investigate whether this change in gene expression translated to protein expression 

and release, epithelial cells were co-cultured with bacterial biofilms and planktonic 

cells. OKF6-TERT2 epithelial cells were challenged with live and dead (heat-killed) 

P. gingivalis biofilms and planktonic cells for 4 and 24 h. IL-8 release from the 

epithelial cells was assessed by ELISA. Statistical analyses were performed by one-

way ANOVA using GraphPad Prism program (San Diego, CA, USA) with the 

Bonferonni correction. Bonferonni correction was used because many different data 

sets were being compared simultaneously. Differences were considered significant 

if p<0.05. 

 

Minimal changes in IL-8 release were observed after 4 h culture with dead P. 

gingivalis planktonic bacteria, or live P. gingivalis biofilm or planktonic cells co-

cultured for 4 and 24 h. IL-8 protein release was significantly increased in cell 

culture supernatants of epithelial cells stimulated with dead P. gingivalis biofilms 

after 4 (p<0.01) and 24 h (p<0.001) compared with medium controls. Dead P. 

gingivalis biofilms induced significantly more IL-8 release after 4 (308 pg/mL, 

p<0.001) and 24 h (962 pg/mL, p<0.001) compared with planktonic cells at the 

same time points, 4 (43 pg/mL) and 24 h (63 pg/mL) (Figure 4.8). To conclude, P. 

gingivalis biofilms induce more IL-8 release than the planktonic cells.  
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Figure 4.8: IL-8 release from OKF6-TERT2 epithelial cells challenged with live 
and dead (heat-killed) P. gingivalis biofilms and planktonic cells. OKF6-TERT2 
epithelial cells were challenged with P. gingivalis biofilms or planktonic bacteria for 
4 and 24 h. IL-8 release was assessed by ELISA. Data shown are protein 
concentrations in pg/mL. Values are means ± SEM of triplicate measurements of 
two independent experiments. Statistical comparisons are to the medium control 
and biofilms versus planktonic cells (**p<0.01, ***p<0.001).  
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4.4.6 Chemokine and cytokine release from epithelial cells co-cultured with 

bacterial biofilms or planktonic bacteria. The previous studies demonstrate 

changes in the IL-8 protein release were observed following stimulation with the 

bacterial biofilms. Biofilms induced expression of numerous cytokine and chemokine 

genes and therefore to investigate the biofilm and planktonic effect on a range of 

gingivitis-related proteins, these studies were extended to include analysis of 

protein products of a number of the upregulated genes, including: CXCL1, CXCL10, 

CCL5, IL-1β, IL-6, CSF2, CSF3 and TNF-α). Release of IL-1β, IL-6, IL-8, CSF2, CSF3 

and TNF-α were assessed by Luminex, while CXCL1, CXCL10 and CCL5 were 

assessed by ELISA. Data shown are protein concentrations in pg/mL.  

 

Minimal changes in the release of CCL5 were observed following stimulation with P. 

gingivalis biofilms and planktonic bacteria after 4 and 24 h. CXCL10 release 

remained constant with P. gingivalis biofilms and planktonic cells after 4 and 24 h. 

Similar to the observed effects on IL-8, greater increase of CXCL1 release was 

observed following co-culture with dead P. gingivalis biofilm (4 h: 1334 pg/mL; 24 

h: 1768 pg/mL) compared with planktonic cells after 4 (1029 pg/mL) and 24 h (904 

pg/mL) (Figure 4.9A & B). Overall, the chemokine protein release was greater 

following co-culture with biofilms compared with the planktonic bacteria in the 

epithelial cells.  

 

The inflammatory cytokine protein release from the epithelial cells was minimal 

with the planktonic cells after 4 and 24 h. Similarly, IL-1β, GM-CSF and TNFα 

protein release was minimal with the biofilms. Marginally higher protein release of 

IL-6 and G-CSF was observed from epithelial cells co-cultured with biofilms 

compared with planktonic cells (Figure 4.9A & B). To conclude, inflammatory 

cytokine protein release was marginally increased with the biofilms compared with 

the planktonic cells. To summarise, biofilms induce more protein release compared 

with planktonic cells in the epithelial cells. Interestingly, more protein release was 

observed with dead P. gingivalis compared with live.  
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(A) P. gingivalis biofilm 
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(B) P. gingivalis planktonic 

 

Figure 4.9: Protein release of a panel of gingivitis-related proteins in epithelial 
cells with bacterial biofilms. OKF6-TERT2 epithelial cells were challenged with (A) 
P. gingivalis biofilm & (B) P. gingivalis planktonic cells for 4 and 24 h. Protein 
release of IL-1β, IL-6, IL-8, GM-CSF, G-CSF and TNFα in the cell culture 
supernatants was assessed by Luminex while CXCL1, CXCL10 and CCL5 were 
assessed by ELISA. Data shown are protein concentrations in pg/mL. Values are 
means ± SEM of two independent experiments.  
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4.4.7 Protein release of IL-8 in epithelial cells stimulated with bacterial 

biofilms. The characteristics and advantages of using IL-8 have been described 

previously. It was also noted that the biofilms induced greater protein release than 

the planktonic cells in the epithelial cells. To investigate the time-dependant, live 

versus dead and pathogen versus commensal variability of IL-8 protein release from 

the epithelial cells with more gingivitis-related bacterial biofilms, OKF6-TERT2 

epithelial cells were challenged with live and dead (methanol-fixed) multi-species 

biofilm (P. gingivalis, F. nucleatum, A. actinomycetemcomitans and S. mitis), P. 

gingivalis biofilm, S. mitis biofilm for 1, 2, 4, 6, 8, 12, 18, 24, 48 and 72 h. Protein 

release of IL-8 was assessed by ELISA. Data shown are protein concentrations in 

pg/mL.  

 

(i) Time-dependent release of IL-8. Live multi-species and P. gingivalis biofilms 

induced time-dependent IL-8 release from the epithelial cells. Time-dependent 

increase of IL-8 was observed with dead mixed species biofilm from 8 to 18 h, after 

which it remained stable. IL-8 concentration was 121, 311 and 732 pg/mL after 8, 

12 and 18 h, respectively. Dead P. gingivalis and S. mitis induced somewhat erratic 

changes in IL-8 protein release (Figure 4.10A, B & C). These data suggest that IL-8 

protein release is regulated over time but the regulation varies depending on the 

nature of the biofilm to which the cells are exposed.  

 

(ii) IL-8 protein release upon co-culture with live versus dead biofilms. Live 

mixed biofilm induced similar IL-8 protein release with dead mixed biofilm (Figure 

4.10A). IL-8 protein release was higher following stimulation with live (12 h: 314 

pg/mL; 18 h: 204 pg/mL), but not dead P. gingivalis (12 h: 86 pg/mL; 18 h: 87 

pg/mL) nor dead S. mitis biofilm (12 h: 95 pg/mL; 18 h: 43 pg/mL). Elevated IL-8 

concentrations were observed with live S. mitis biofilm compared with dead Figure 

4.10B & C). To conclude, live bacterial biofilms induce marginally more IL-8 protein 

release than dead biofilms. 
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(iii) IL-8 protein release following co-culture with pathogenic or commensal 

biofilms. The protein release of IL-8 was investigated to evaluate differences in the 

epithelial cell response to pathogenic (multi-species and P. gingivalis) or 

commensal (S. mitis) biofilms. The pathogenic dead mixed species biofilms elicited 

more IL-8 protein release than the dead pathogenic monospecies biofilm and 

commensal biofilm (Figure 4.10). This demonstrates that pathogens differentially 

regulate IL-8 protein release in epithelial cells, and this depends on the type of 

pathogenic biofilm.  

 

IL-8 ELISA on the cell culture supernatants was useful in determining that the 

epithelial cells were releasing proteins upon co-culture with bacterial biofilms. This 

also showed that the protein release occurred in a time-dependant manner, and 

also showed the live versus dead and pathogen versus commensal variability.  
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(A) Mixed 

(B) P. gingivalis 

(C) S. mitis 



 

 146

Figure 4.10: Protein release of IL-8 in OKF6-TERT2 epithelial cells challenged 
with live and methanol-fixed (dead) bacterial biofilms. OKF6-TERT2 epithelial 
cells were challenged with (A) multi-species biofilm (P. gingivalis, F. nucleatum, A. 
actinomycetemcomitans and S. mitis), (B) P. gingivalis biofilm and (C) S. mitis 
biofilm for 1, 2, 4, 6, 8, 12, 18, 24, 48 and 72 h. Protein concentrations of IL-8 in 
the cell culture supernatants were measured by ELISA. Data shown are protein 
concentrations in pg/mL. Values are means ± SEM of duplicate measurements of 
two independent experiments.  
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4.4.8 Protein release in epithelial cells stimulated with bacterial biofilms on 

multiplex protein array. For a quick and easy evaluation of cytokines and 

chemokines in the cell culture supernatants of epithelial cells with bacterial 

biofilms, Proteome ProfilerTM antibody arrays (RnD systems, Inc, UK) were used. 

OKF6-TERT2 epithelial cells were challenged with medium, multi-species biofilm (P. 

gingivalis, F. nucleatum, A. actinomycetemcomitans and S. mitis) (Mix), P. 

gingivalis biofilm (Pg) and S. mitis biofilm (Sm) for 24 h. The cell culture 

supernatants were used in the human cytokine array. The cell culture supernatants 

were mixed with a cocktail of biotinylated detection antibodies, and then 

incubated with the human cytokine array. The array was then incubated with 

streptavidin-HRP followed by chemiluminescent detection. Light was emitted at 

each spot in proportion to the amount of cytokine bound. Array images shown are 

from 5 min exposures to X-ray film (Figure 4.12). The densitometry analysis was 

performed on X-ray film using the Quantity One® 1-D Analysis Software (Gel Doc™, 

BioRad) by calculating the adjusted volume of the spots from the pixel density after 

subtracting from the background (Supplementary Figure). Data was also 

represented as heat map of the protein concentration as fold change relative to 

medium control (Table 4.3). 

 

The chemokines, cytokines and acute phase proteins which were present in the cell 

culture supernatants of the epithelial cells co-cultured with the bacterial biofilms 

appeared as duplicate spots on the X-ray films. When densitometry analysis was 

performed on the X-ray films, the adjusted volume of the spots of IL-1α and IL-1β 

were observed more with live P. gingivalis compared with dead (Figure 4.11). 

Similar IL-1 ra volume was observed with live and dead mixed species and P. 

gingivalis biofilms. Only live S. mitis biofilms induced increased IL-1 ra volume 

compared with dead (Figure 4.11). IL-6 protein appeared on the X-ray films only in 

the supernatants of epithelial cells challenged with dead S. mitis biofilm (Figure 

4.11). Dead mixed species (3657 pixel intensity/mm2), P. gingivalis (559 pixel 

intensity/mm2) and S. mitis biofilms (3412 pixel intensity/mm2) induced more IL-8 

protein volume on the X-ray films compared with live mixed species (2039 pixel 

intensity/mm2), P. gingivalis (0 pixel intensity/mm2) and S. mitis (0 pixel 

intensity/mm2) biofilm (Figure 4.11). Marginally more sICAM1 and G-CSF protein 
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volumes were observed with live P. gingivalis biofilms compared with the dead 

biofilms, while dead mixed species biofilms induced more volume of the same 

proteins compared with live (Figure 4.11). Increase GM-CSF volumes were observed 

on the X-ray films with the dead mixed species, P. gingivalis and S. mitis biofilms 

compared with live (Figure 4.11). Serpin E1 and MIF volumes were higher with 

medium control compared with the bacterial biofilms (Figure 4.11).  

 

Data was also represented as heat map of the protein concentration as fold change 

relative to medium control (Table 4.3). The heat map summarises the chemokine 

and cytokine protein volumes in the cell culture supernatants from epithelial cells 

co-cultured with bacterial biofilms. More IL-8, G-CSF, GM-CSF and ICAM1 protein 

concentrations were observed with the dead mixed biofilm compared with the live. 

Dead P. gingivalis biofilms induced more IL-8 protein volume compared to the live 

biofilms.  IL-1 α, IL-6, IL-8 G-CSF and GM-CSF protein volumes were increased more 

with dead S. mitis compared to live. To conclude, dead bacterial biofilms induce 

more cytokine and chemokine release from the epithelial cells compared with live.  
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Figure 4.11: Human cytokine array of proteins from epithelial cells challenged 
with live and methanol-fixed (dead) bacterial biofilms. OKF6-TERT2 epithelial 
cells were challenged with media, multi-species biofilm (P. gingivalis, F. 
nucleatum, A. actinomycetemcomitans and S. mitis) (Mix), P. gingivalis biofilm (Pg) 
and S. mitis biofilm (Sm) for 24 h. The cell culture supernatants were mixed with a 
cocktail of biotinylated detection antibodies, and then incubated with the human 
cytokine array. The array was then incubated with streptavidin-HRP followed by 
chemiluminescent detection. Light was emitted at each spot in proportion to the 
amount of cytokine bound. Array images shown are from 5 min exposures to X-ray 
film.  
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Table 4.3: Densitometry analysis of human cytokine array of proteins from 
epithelial cells challenged with live and dead (methanol-fixed) bacterial 
biofilms. OKF6-TERT2 epithelial cells were challenged with media, muti-species 
biofilm (P. gingivalis, F. nucleatum, A. actinomycetemcomitans and S. mitis) (Mix), 
P. gingivalis biofilm (Pg) and S. mitis biofilm (Sm) for 24 h. The cell culture 
supernatants were mixed with a cocktail of biotinylated detection antibodies, and 
then incubated with the human cytokine array. The array was then incubated with 
streptavidin-HRP followed by chemiluminescent detection. Light was emitted at 
each spot in proportion to the amount of cytokine bound. Arrays were exposed to 
the X-ray film for 5 minutes. The densitometry analysis was performed on X-ray film 
using the Quantity One® 1-D Analysis Software (Gel Doc™, BioRad) by calculating the 
pixel density after subtracting from the background. Data is represented as heat 
map of the protein concentration as fold change relative to unstimulated control 
cells represented as 1.  

↓↓↓↓↓↓Serpin E1

↓↓↓↑↓↑MIF

↑↑↑sICAM-1

↓↓↓↓↓↓Gro α

↑↑↑↓GM-CSF

↑↑↑↑G-CSF

↑↓↑↓↑↑IL-8

↑IL-6

↓↓↑↑↑↑IL-1 ra

↑↑↑↑IL-1 β

↑↓↑↑↑↑IL-1 α

Sm 
Dead

Sm 
Live

Pg 
Dead

Pg  
Live

Mix 
Dead

Mix 
Live

↓↓↓↓↓↓Serpin E1

↓↓↓↑↓↑MIF

↑↑↑sICAM-1

↓↓↓↓↓↓Gro α

↑↑↑↓GM-CSF

↑↑↑↑G-CSF

↑↓↑↓↑↑IL-8

↑IL-6

↓↓↑↑↑↑IL-1 ra

↑↑↑↑IL-1 β

↑↓↑↑↑↑IL-1 α

Sm 
Dead

Sm 
Live

Pg 
Dead

Pg  
Live

Mix 
Dead

Mix 
Live

Fold change
<0.5      0.5-1         1           1-2          2-3         >3

Fold change
<0.5      0.5-1         1           1-2          2-3         >3



 

 151

4.4.9 Protein release of a panel of gingivitis-related proteins in epithelial cells 

with bacterial biofilms. Marked changes in IL-8 protein release were observed 

following stimulation with the different biofilms. To investigate the time-

dependant, live vs dead and pathogen vs commensal variability of protein release of 

the inflammatory cytokines (IL-1β, IL-6, G-CSF, GM-CSF, TNF–α) by the epithelial 

cells with bacterial biofilms, OKF6-TERT2 epithelial cells were co-cultured with live 

and methanol-fixed (dead) mixed species, P. gingivalis and S. mitis biofilms for 1, 

4, 6, 8, 12, 18 and 24 h. Protein release into the cell culture supernatants was 

assessed by Luminex. Bacterial biofilm co-culture with epithelial cells resulted in 

little measurable concentrations of IL-1β, GM-CSF and TNFα in the cell culture 

supernatants.  

 

(i) Time-dependent protein release. Time-dependent regulation of inflammatory 

cytokines was investigated in epithelial cells co-cultured with the bacterial 

biofilms. Similar to IL-8 release, there was time-dependent increase of protein 

concentration of IL-6 in the epithelial cells co-cultured with live and dead mixed 

species biofilms (Figure 4.12A; 4.13A & B; Table 4.4A). Dead mixed species and P. 

gingivalis biofilms induced regulation of IL-6 and G-CSF in a time-dependent 

manner only after 8 h of stimulation suggesting a later translational regulation of 

the proteins (Figure 4.12A & B; 4.13B & C; Table 4.4A & B). These data demonstrate 

that the proteins are regulated over time, and that this regulation varies depending 

on the nature of the biofilm to which the cells are exposed.  

 

(ii) Protein release upon stimulation with live versus dead biofilms. A greater 

increase in IL-8, IL-6 and G-CSF protein concentrations was observed following co-

culture with dead mixed species biofilm compared with live biofilms (Figure 4.12A; 

4.13A-C; Table 4.4A). For instance, after 24 h of stimulation with mixed species 

biofilm induced increased release of IL-8 with dead biofilms (6994 pg/mL) 

compared with live biofilms (602 pg/mL). There was higher IL-8 concentration with 

dead P. gingivalis and S. mitis biofilms compared with live only after 24 h (Figure 

4.12B & C; 4.13A; Table 4.4B & C). The concentration of G-CSF was elevated in 

epithelial cells co-cultured with dead P. gingivalis and S. mitis biofilm only after 24 

h (Figure 4.12B & C; 4.13C; Table 4.4B & C). Overall, the cytokine and chemokine 
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release was increased more with the dead biofilms compared with live in the 

epithelial cells. 

 

(iii) Protein release following co-culture with pathogenic or commensal biofilms. 

The protein release of inflammatory cytokines was investigated to evaluate 

differences in the epithelial cell response to pathogenic (multi-species and P. 

gingivalis) or commensal (S. mitis) biofilms. Increased protein release of IL-8, IL-6 

and G-CSF was observed following co-culture with the pathogenic biofilms 

compared with the commensal biofilms. Furthermore, pathogenic mixed species 

biofilm induced greater cytokine release than the mono-species P. gingivalis biofilm 

(Figure 4.12 & 4.13; Table 4.4). Overall, pathogenic biofilms show a greater 

tendency to increase protein release of the cytokines than commensal biofilms. 

To summarize, the data demonstrated that the chemokine and cytokine protein 

regulation occurred in a time-dependent manner depending on the nature of the 

biofilm. Interestingly, the protein release was increased more with the dead 

biofilms compared with the live biofilms in the epithelial cells. The pathogenic 

biofilms also show a greater propensity to increase protein release than the 

commensal biofilms. 
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(A) Mixed species biofilm 

Cytokine IL-8 IL-1β IL-6 GM-CSF G-CSF 

BIOFILM 

TIME 
L D L D L D L D L D 

1 h 55.99 138.81 0.77 0.77 18.31 58.08 14.26 14.26 32.10 50.92 

4 h 777.91 1896.46 19.11 16.48 275.25 609.16 15.44 41.23 99.15 361.53 

6 h 407.57 568.32 4.74 10.67 113.21 471.12 14.26 36.85 108.48 320.42 

8 h 459.92 1001.44 2.56 10.99 56.79 219.26 14.26 14.26 93.30 208.33 

12 h 661.23 1854.72 2.18 21.56 57.17 498.09 14.26 21.39 129.39 446.57 

18 h 992.20 5750.75 8.37 34.25 135.27 1087.33 14.26 118.42 158.90 1072.69 

24 h 602.52 6994.63 3.73 24.23 194.74 972.22 4.75 87.03 54.68 1543.09 
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 (B) P. gingivalis biofilm 

Cytokine IL-8 IL-1β IL-6 GM-CSF G-CSF 

BIOFILM 

TIME 
L D L D L D L D L D 

1 h 42.49 72.67 0.77 0.77 12.16 29.48 14.26 14.26 32.10 32.10 

4 h 812.62 777.58 5.06 4.56 152.53 211.03 7.14 7.14 85.48 127.39 

6 h 517.10 305.15 11.27 7.92 62.28 181.89 14.26 14.26 197.31 114.68 

8 h 1152.38 307.81 8.78 3.42 148.24 106.92 14.26 14.26 492.67 32.10 

12 h 1013.65 276.99 11.63 3.81 87.57 108.23 21.39 14.26 218.71 83.67 

18 h 600.84 361.10 13.50 6.52 48.80 146.37 14.26 14.26 274.41 124.76 

24 h 310.96 2095.94 5.54 6.75 236.93 265.89 15.44 31.49 277.81 436.45 
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(C) S. mitis biofilm 

Cytokine IL-8 IL-1β IL-6 GM-CSF G-CSF 

BIOFILM 

TIME 
L D L D L D L D L D 

1 h 61.45 82.22 0.77 0.77 19.91 39.36 14.26 14.26 13.27 32.10 

4 h 224.16 372.94 0.36 0.36 67.84 63.19 4.75 4.75 15.75 49.94 

6 h 993.30 254.63 18.87 11.50 586.22 229.76 53.76 14.26 225.38 94.63 

8 h 849.03 306.31 11.93 3.81 337.12 125.93 43.98 14.26 158.90 114.68 

12 h 727.50 486.49 16.38 8.32 473.32 165.20 53.76 14.26 249.39 119.50 

18 h 551.71 230.79 21.89 5.22 574.70 143.47 59.44 14.26 222.36 76.59 

24 h 577.38 1457.35 2.37 0.54 143.62 112.71 4.75 7.14 75.25 150.20 

 

Table 4.4: Protein release in OKF6-TERT2 epithelial cells challenged with live and methanol-fixed (dead) bacterial 
biofilms. OKF6-TERT2 epithelial cells were challenged with (A) mixed biofilm (P. gingivalis, F. nucleatum, A. 
actinomycetemcomitans and S. mitis), (B) P. gingivalis biofilm, (C) S. mitis biofilm for 1, 4, 6, 8, 12, 18 and 24 h. Protein 
concentrations in the cell culture supernatants were measured by Luminex for inflammatory cytokine panel of genes (IL-8, IL-
1 β, IL-6, G-CSF, GM-CSF and TNF-α). Data shown are protein concentrations in pg/mL. Values are means of duplicate 
measurements of two independent experiments. 
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(A) Mixed species biofilm 
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(B) P. gingivalis biofilm 
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(C) S. mitis biofilm 

 

 

Figure 4.12: Protein release in OKF6-TERT2 epithelial cells challenged with 
live and methanol-fixed (dead) bacterial biofilms. OKF6-TERT2 epithelial cells 
were challenged with (A) mixed biofilm (P. gingivalis, F. nucleatum, A. 
actinomycetemcomitans and S. mitis), (B) P. gingivalis biofilm, (C) S. mitis 
biofilm for 4, 12 and 24 h. Protein concentrations in the cell culture 
supernatants were measured by Luminex for inflammatory cytokine panel of 
genes (IL-8, IL-1 β, IL-6, G-CSF, GM-CSF and TNF-α). Data shown are protein 
concentrations in pg/mL. Values are means ± SEM of duplicate measurements of 
two independent experiments. These graphs show a global view of the data 
which includes all the inflammatory cytokine proteins released by the epithelial 
cells after co-culture with the different biofilm conditions at the time points 
tested. 
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 (A) IL-8 
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(B) IL-6 
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(C) G-CSF 

 

 

Figure 4.13: Protein release in OKF6-TERT2 epithelial cells challenged with 
live and methanol-fixed (dead) bacterial biofilms. OKF6-TERT2 epithelial cells 
were challenged with media, multi-species biofilm (P. gingivalis, F. nucleatum, 
A. actinomycetemcomitans and S. mitis), P. gingivalis biofilm and S. mitis 
biofilm for 1, 4, 6, 8, 12, 18 and 24h. Protein concentrations in the cell culture 
supernatants were measured by Luminex for inflammatory cytokine panel of 
genes (A) IL-8, (B) IL-6 and (C) G-CSF. Values are means ± SEM of duplicate 
measurements of two independent experiments. These graphs represent the 
same data as in Figure 4.13, but based on individual proteins. 
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4.5 DISCUSSION 

The current study investigated interactions between oral bacteria and the 

epithelium, aiming to further understand the aetiology and pathogenesis of 

periodontal disease. The epithelial-bacterial biofilm co-culture model created in 

earlier chapters 2 and 3 makes strides in part to successfully recapitulate the 

inflammatory changes in the host (epithelial cells) upon challenge with bacteria 

responsible for periodontal disease. Overall, the current study demonstrated: (i) 

the inflammatory response of the epithelium was different after stimulation 

with pathogenic or commensal bacterial biofilms, (ii) variability in the response 

of the epithelium when stimulated with bacteria in planktonic state compared 

with stimulation with biofilms, and (iii) stimulation of the epithelial cells with 

live or dead bacterial biofilms yielded differential inflammatory response from 

the epithelial cells. 

 

In this study the chemokines, including CXCL1, CXCL3, CXCL5, CXCL10, CXCL11 

and IL-8 were expressed more in the epithelial cells stimulated with pathogenic 

biofilms compared with commensal biofilms. These chemokines are responsible 

for the recruitment of immune cells responsible for innate (neutrophils) and 

adaptive (T cells) immune response to the site of inflammation. For example, IL-

8 acts as a neutrophil chemoattractant aiding in the migration and extravasation 

of neutrophils into the sites of inflammation (Tonetti et al., 1994). Furthermore, 

greater levels of expression of the inflammatory cytokines including IL-1α, IL-1β, 

IL-6, TNF-α, CSF2 (GM-CSF) and CSF3 (G-CSF) was observed when epithelial cells 

were stimulated with pathogenic biofilms compared with commensal biofilms. 

The increased activities of these chemokines and cytokines by the pathogenic 

mixed species and P. gingivalis biofilm compared with the commensal biofilms in 

this model agrees with what other investigators observed (Guggenheim et al., 

2009, Peyyala et al., 2012, Peyyala et al., 2011a). Therefore, the current model 

may have a role to play in studies to understand the effects of host response to 

pathogens and commensals.  

 

Pathogens (mixed species, P. gingivalis) were shown to induce greater 

inflammatory response in the epithelial cells compared with the commensals (S. 

mitis) at the mRNA and protein level, which was time dependant. In the current 

study lower levels of IL-8 production were observed from epithelial cells 
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stimulated by commensal bacteria compared with the pathogens, whereas P. 

gingivalis induced high levels of IL-8. Previous studies have also concluded that 

different dental plaque bacteria induce different host response profiles 

depending on their pathogenic or commensal status (Eberhard et al., 2009, 

Hasegawa et al., 2007, Krisanaprakornkit et al., 2000, Stathopoulou et al., 2010, 

Sliepen et al., 2009). In the study performed by Eberhard et al (2009), IL-8 

mRNA expression was higher when the GECs were stimulated with S. mutans and 

naturally formed multi-species biofilms compared with S. mitis biofilm. Similar 

results were observed for this study where the pathogenic multi-species and 

mono-species biofilms induced greater gene expression in the epithelial cells 

compared with the commensal S. mitis biofilm. It was also shown that 

planktonic S. mitis, S. salivarius and S. sanguinis induced production of IL-8 from 

the epithelial cells and fibroblasts at a similar level to uninfected cells, whereas 

A. actinomycetemcomitans and F. nucleatum induction was significantly higher 

(Sliepen et al., 2009). Moreover, Hasegawa and co-workers (2007) showed that 

S. gordonii, which is a commensal in the oral cavity, induced significantly less 

gingival epithelial cell transcriptome compared with the pathogenic P. gingivalis 

and A. actinomycetemcomitans (Hasegawa et al, 2007). The study also showed 

IL-6 and IL-8 production was induced more by F. nucleatum compared with S. 

gordonii, a stereotypical commensal. In summary, these studies have 

demonstrated that inflammatory mediators produced by the host, depends on 

the pathogenic properties of the bacteria involved.  

 

Biofilm formation is a key pathogenic characteristic of bacteria, particularly 

amongst those residing within the oral cavity (Ramage et al., 2010). It has been 

demonstrated from these studies that the putative periodontal pathogen P. 

gingivalis induces a greater IL-8 response in the epithelium at the mRNA and 

protein level in its biofilm state compared with planktonic bacteria. Previous 

studies have demonstrated differences in the host response to biofilms and 

planktonic bacteria (Daep et al., 2008, Oscarsson et al., 2008, Ramsey and 

Whiteley, 2009, Peyyala et al., 2011a). Oscarsson et al (2008) showed that there 

was enhanced IL-8 production from biofilms compared with planktonic A. 

actinomycetemcomitans. Using a biofilm rather than planktonic bacteria to 

study host-pathogen interaction is more representative with the in vivo situation 

because the periodontal bacteria in the dental plaque exist as complex microbial 
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consortia (Kolenbrander, 2000, Rosan and Lamont, 2000). Lo et al (2009) 

demonstrated that bacterial biofilms, which are dominant within the oral cavity, 

behave in a different manner to planktonic bacteria, as a comparative 

transcriptomic analysis of the P. gingivalis biofilm and planktonic cells revealed 

a difference in the genomic expression between the biofilms and planktonic 

bacteria (Lo et al., 2009). It was shown that several of the putative virulence 

determinants, sialidase (extracellular protease) and ADP-heptose-LPS 

heptosyltransferase (thiol protease), were up-regulated in biofilms compared to 

planktonic bacterial cells. Also, the transcriptomic profiling indicated a biofilm 

phenotype of slow growth rate and reduced metabolic activity. The altered gene 

expression profiles observed herein and elsewhere reflect the adaptive response 

of P. gingivalis to survive in a mature biofilm.  

 

Studying host-pathogen interaction using bacterial biofilms instead of planktonic 

bacteria is more representative to the in vivo situation. At initiation of this 

thesis work no published studies existed that specifically investigated the host-

pathogen interaction using a multi-species biofilm model at an orally relevant 

interface. However, subsequently several studies have appeared in the literature 

(Guggenheim et al., 2009, Guggenheim et al., 2001b, Peyyala et al., 2011a, 

Peyyala et al., 2012). These groups independently reported the creation of 

multi-species biofilm systems specifically created to model the oral epithelial 

inflammatory response. Peyyala and colleagues (2012) reported the use of 

planktonic, mono- and multi-species (3) biofilms containing Streptococcus 

sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, 

Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable 

contact lenses. Challenge of OKF4 epithelial cells for up to 24h from planktonic 

or biofilm forms of these species induced Gro-1α, IL1α, IL-6, IL-8, TGFα, 

Fractalkine, MIP-1α, and IP-10. Interestingly, in agreement with this study herein 

P. gingivalis biofilms significantly inhibited the production of inflammatory 

mediators. Moreover, oral streptococcal species in both biofilms and planktonic 

forms showed poor stimulation, as did our study. This study did not however 

appear to monitor cell survival or bacterial parameters within the biofilm, and it 

was limited to only 3-species within the biofilm. Guggenheim and colleagues also 

produced a model was based on the Zurich biofilm model (Guggenheim et al., 

2004). This 9-species sub-gingival biofilm model was shown to invoke apoptosis 
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of cells, and trigger the release of pro-inflammatory mediators, whilst degrading 

cytokines through biofilm-specifically generated enzymes. Whilst this group 

undertook a detailed systematic approach to evaluating the effect of the biofilm 

on primary gingival epithelial cells, they did not provide a direct comparison to 

planktonic and mono-species biofilms, thus limiting the interpretation of the 

role of each bacteria within the biofilm.  

 

The selection of bacterial species within the biofilm plays a key role in defining 

the immune response. Interestingly, the dead bacterial biofilms induced greater 

chemokine and cytokine release from the epithelial cells compared with the live 

biofilms. Conversely, live bacterial biofilms induced greater chemokine and 

cytokine mRNA expression in epithelial cells compared with dead biofilms. 

Therefore, transcription and translation of inflammatory mediators was not 

consistent. This study and other studies have shown that periodontal pathogen 

bacteria, especially P. gingivalis, induce transcriptional up-regulation of 

chemokine and cytokine expression in the epithelial cells, but often 

inflammatory mediators are modulated downstream (Guo et al., 2008). P. 

gingivalis has been shown to inhibit IL-8 accumulation at two levels: (i) IL-8 

degradation by proteinases and (ii) IL-8 regulation by unidentified factors 

(Darveau et al., 1998, Mikolajczyk-Pawlinska et al., 1998, Huang et al., 2001, 

Zhang et al., 1999). P. gingivalis gingipains may play a vital role in the evasion 

of host defenses by disrupting cytokine signalling networks (Andrian et al., 

2006). Gingipains cleave and degrade most pro-inflammatory cytokines, 

including IL-1 β (Fletcher et al., 1997), IL-6 (Banbula et al., 1999), TNF-α 

(Calkins et al., 1998), and IL-8 (Mikolajczyk-Pawlinska et al., 1998, Zhang et al., 

1999). Killing P. gingivalis by methanol-fixation would have essentially 

immobilized the gingipains rendering it inactive to degrade the cytokines and 

chemokines. Another question that arises is if the chemokine or cytokine 

transcription actually translates into protein production? Sandros et al (2000) 

investigated whether cytokine transcription was translated into protein 

production by performing immunohistochemistry (IHC) on epithelial cells with 

biotinylated α-human IL-1β, IL-2, IL-6, IL-8 and TNF-α to visualise intracellular 

cytokines (Sandros et al., 2000). All the infected samples showed positive 

reactions in 80-90% of the cells, while no apparent differences were observed 

among the 4 tested cytokines, suggesting that any effect of inflammatory 
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mediators was result of direct effect against the mature protein. This suggests 

that the changes in cytokine and chemokine expression within the different 

parameters may have been the result of live periodontal pathogens, including P. 

gingivalis due to the degrading properties of gingipains. However, we cannot 

discount entirely the potential for technical problems. 

 

In summary, the current study showed differential immune responses to the 

pathogenic and commensal biofilms in epithelial cells. Even though both the 

pathogens and commensals had effects on the chemokine and cytokine 

expression and release, the pathogens induced more expression and release by 

the epithelial cells. Epithelial cells stimulated with mono-species biofilms does 

not reflect the immune responses demonstrated by a multi-species biofilm but it 

is useful in characterizing each individual bacterial species, which serves as a 

useful comparison in order to delineate complex inflammatory responses 

induced by multispecies biofilms. The current study was performed on 

monolayer of immortalized human oral keratinocytes but in the oral cavity, the 

bacterial biofilms come into contact with gingival tissue, which consists of 

multilayer of epithelial cells and connective tissue. The present study was 

performed in vitro and the conclusions drawn from these results must be 

interpreted with caution. Further studies are required to understand the 

workings of the host with regards to the bacterial biofilms and vice versa. The 

current study has established an in vitro model system, which allows to clearly 

differentiate, in vitro, the different response to commensals versus pathogens. 

This is a critical step to understanding both periodontal and other diseases. The 

hope for the future is to unravel the details of the mechanisms involved and 

thereby identify novel therapeutic targets for inflammatory and infectious 

disease.  
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CHAPTER 5:  

ROLE OF INTERLEUKIN-17A 

IN PERIODONTAL DISEASE  
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5.1 INTRODUCTION 

The previous chapter investigated a panel of cytokines and chemokines that 

were shown to be associated with experimental gingivitis, in particular those 

mediators produced by epithelial cells, which are central to orchestrating the 

immune response. These molecules were released from epithelial cells as a 

means of alerting the immune system that periodontal biofilms were present. 

Recent data indicates that early cell migration to the gingivae in periodontitis is, 

surprisingly, strongly mediated by a cytokine associated more with the adaptive 

response, IL-17A (Yu et al., 2007), which is key molecule to inducing and 

mediating numerous pro-inflammatory responses (Aggarwal and Gurney, 2002).  

 

Interleukin-17A (IL-17A) was initially identified in T cells (Liang et al., 2010), 

although subsequent studies identified numerous other cellular sources of IL-

17A, including γδ T cells, NK cells, neutrophils, eosinophils, LTi CD4 cells 

(Kimizuka et al., 2012) and mast cells (Hueber et al., 2010). IL-17A induces 

cytokine and growth factor production predominantly via signalling through the 

IL-17RA and IL-17RC heterodimer. IL-17RA is ubiquitously expressed, especially 

within hematopoietic tissues, and also by epithelial cells, endothelium, and 

fibroblasts (Gaffen, 2009). A protective role for IL-17 in bacterial and fungal 

infections emerged through studies in IL-17/IL-17RA deficient animals, which are 

susceptible to mucosal candidiasis (Takahashi et al., 2005), Klebsiella 

pneumoniae (Conti et al., 2009), Legionella pneumonia (Allam et al., 2011) and 

Porphyromonas gingivalis (Yu et al., 2007). In the latter model investigating IL-

17R deficient animals, IL-17 conferred protection by promoting neutrophil 

migration to the gingival tissues. The absence of IL-17R signalling significantly 

compromised the antimicrobial effects of infiltrating neutrophils, rendering the 

animals more susceptible to periodontal disease.  

 

IL-17A has been implicated in the pathogenesis of many chronic inflammatory 

diseases, such as Rheumatoid Arthritis, Psoriasis, Crohn’s Disease and Multiple 

Sclerosis (Korn et al., 2009). Numerous studies of models of arthritis, a diseases 

process with notable parallels to periodontal disease, demonstrate IL-17 may 

contribute to initiation and perpetuation of chronic, destructive inflammation 

(Miossec et al., 2009). Neutralising IL-17A is therapeutically beneficial, and a 

neutralising anti-IL17A monoclonal antibody has demonstrated promise as a 
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treatment for Rheumatoid Arthritis in human trials (Genovese et al., 2010). 

Therefore, IL-17 plays a potentially double-edged role in periodontal disease 

(PD), with the ability to both protect against infection and perpetuate 

inflammation.  

 

This conundrum is highlighted by findings in aged mice, which, in contrast to the 

findings in IL-17RA deficient animals, demonstrate increased periodontal bone 

loss, with associated substantial elevation of local IL-17A mRNA (Duarte et al., 

2010). In human studies, IL-17A mRNA expression is elevated in the gingival 

crevicular fluid and tissues of individuals with chronic periodontitis, compared 

with healthy controls (Vernal et al., 2005, Beklen et al., 2009). Systemically 

elevated serum IL-17A has been documented in patients with aggressive 

periodontitis (Schenkein et al., 2010). Further highlighting the association of IL-

17A with infection and inflammation, successful periodontal therapy results in a 

reduction in IL-17 expression (Cua and Tato, 2010). However, further studies 

have suggested that periodontitis may associate with reduced IL-17 in saliva 

(Zhao et al., 2011) and reduced concentration of IL-17 in the GCF of patients 

with GAP (Dutzan et al., 2011). Therefore, it may seem that in certain patients, 

at certain stages, IL-17 may mediate conflicting roles of both promoting 

protective neutrophil recruitment and perpetuating destructive inflammation. 

IL-17 is an attractive target for modulating bone destructive diseases including 

periodontitis. We sought to investigate alternative cellular sources of IL-17A, 

establish if it might be released from the tissue, and investigate potential 

effects of IL-17A on local epithelium.  

 

5.2 AIMS 

The aim of this study was to determine whether IL-17A is expressed within and 

released from periodontal tissues and to investigate its role in the regulation 

epithelial cell cytokine and chemokine production.  
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5.3 MATERIALS AND METHODS 

5.3.1 Human periodontal tissues 

Gingival tissues (n = 34) were obtained from patients with written consent, 

undergoing open flap debridement in the Unit of Periodontics at Glasgow Dental 

Hospital. Ethical review and approval was provided by the West of Scotland 

Research Ethics Committee. Patients undergoing open flap debridement had 

probing pocket depths of ≥ 6.0 mm, with clinical attachment loss of ≥ 4.0 mm, 

which persisted after non-surgical treatment. Patient age ranged from 38-64 

years with a mean age of 47 years. Healthy control tissues were obtained from 

patients with clinically healthy periodontal tissues undergoing surgical crown-

lengthening procedures.  

 

5.3.2 mRNA and protein detection  

Tissue samples were stored in RNA Later (Ambion) at -80°C prior to RNA 

extraction using RNeasy Fibrous Tissue Kit (Qiagen), as section 4.3.1, but with 

addition of a proteinase-K digest step. Cultured cells were processed as in 

Section 4.3.1. Reverse transcription, and Real time PCR was carried as in section 

4.3.1, with primers as in table 4.2 and additionally for IL-17A: Forward primer – 

GGAATCTCCACCGCAATGAG, Reverse primer – ACACCAGTATCTTCTCCAGCC. Data 

were analyzed Proteins in cell culture supernatants were detected by either 

EILSA (IL-6, IL-8 – both eBiosource, Invitrogen) or Luminex™ (G-CSF and GM-CSF – 

both Invitrogen) according to the manufacturer’s instructions and as described in 

section 4.3.2.  

 

5.3.3 Fluorescent microscopy and immunohistochemistry 

Five μm sections paraffin embedded periodontal tissues were deparaffinized and 

rehydrated. The 0.5% hydrogen peroxidase/methanol incubation and heat 

retrieval in 0.5 M citrate buffer (pH 6) was followed by incubation in 2.5% 

species/2.5% human serum with Avidin D (Vector Laboratories, Petersborough, 

U.K.). Staining for 1 h with mouse anti-mast cell tryptase [MCT] [0.43 mg/ml; 

Dako UK], was followed by 30 min incubation with biotinylated Abs (1:200; 

Vector Laboratories) with subsequent staining with streptavidin QDot605 (1:250; 

Invitrogen, Paisley, U.K.) for 45 min. Goat anti–IL-17 (5 mg/ml; R&D Systems, 

Abingdon, U.K.) was added overnight at 4oC, then incubated with a biotinylated 

Ab for 30 min, and stained with Avidin FITC (1:500; Vector Laboratories) for 45 
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min. Slides were mounted with Vectashield containing DAPI (Vector Labo- 

ratories) and analyzed on a fluorescent imaging microscope (BX50; Olympus, 

Essex, U.K.). Images were captured using Apple Open laboratory software. For 

immunhistochemistry, prepared periodontal tissue sections were incubated with 

goat anti–IL-17 overnight, incubated with ImmPRESS reagent anti-goat Ig for 30 

min (Vector Laboratories), and signal-developed using the peroxidase sub- strate 

nickel diaminobenzidine tetrahydrochloride (Vector Laboratories). 

 

5.3.4 Cell culture  

OKF6-TERT oral epithelial cells (kind gift of Rheinwald laboratory, Brigham and 

Woman’s Hospital, Boston) were grown at 37°C, with 5% CO2 in 75 cm2 cell 

culture flask (Corning NY, USA) in KSFM (Invitrogen). The cells were replated and 

grown to confluence in defined KSFM (Invitrogen) then stimulated as indicated in 

the figure legends. Cells were used were between passage 13 and 15. 

Periodontal tissue was transferred immediately after collection to chilled RPMI 

(Invitrogen), then a single cell suspension prepared using Liberase™ (Invitrogen) 

according to the manufacturer’s instructions. Cells were cultured at 2x106/ml in 

conditions indicated in the figure legends.  

 

5.3.5 Statistical analysis 

Microsoft Excel and GraphPad Prism were used to process raw data and 

implement statistical analysis in conjunction with graphical design.  Differences 

in mRNA abundance in healthy and periodontitis tissue biopsies as assessed by 

real-time PCR analysis were analysed by the Mann-Whitney U-test. Mann-

Whitney U-test is a non-parametric statistical hypothesis test for assessing 

whether one of two samples of independent observations tends to have larger 

values than the other. This test can be used when the data is not normally 

distributed; if the variances for the two conditions are noticeably different or if 

the data are measurements on an ordinal scale (allowing for rank order) 

(Kruskal, 1957). Differences between the mean cytokine protein levels between 

stimulated and control samples were analysed by one-way ANOVA the Levene’s 

test to test for the equality of variances in the samples and a post hoc Dunnett 

t-Test. Levene’s test is used to test if different samples have equal variances. 

Statistical tests like ANOVA assume that variances are equal across groups or 

samples and Levene test can be used to verify that assumption (Levene, 1960). 
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Dunnett’s test compares group means where all the groups are compared against 

one control group. The goal of this test is to identify groups whose means of the 

distributions are significantly different from the mean of the control group 

(Dunnett, 1964). Correlations between the cytokine levels were assessed using a 

bivariate Pearson correlation analysis. The bivariate Pearson correlation analysis 

is used to test the correlation between variables. Results are between -1 and 1. 

A result of -1 means that there is a perfect negative correlation between the 

two values, while a result of 1 means that there is a positive correlation 

between the two variables (Rodgers and Nicewander, 1988). 
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5.4 RESULTS 

5.4.1 Expression of IL-17A in human periodontal tissues. IL-17A gene 

expression was significantly elevated in diseased compared with healthy human 

periodontal tissues (Figure 5.1). Protein expression was confirmed by 

immunohistochemistry (Figure 5.2). There was considerable variability in the 

number of IL-17 positive cells within the diseased tissue samples, ranging from 

between 2 and 4 positive cells per field of view to over 20 positive cells per field 

of view. The healthy tissue did not demonstrate any IL-17A positive cells (data 

not shown). In order to identify the cellular source of the IL-17A protein, 

samples were initially investigated for CD3 and variable numbers of CD3 positive 

cells were found infiltrating the diseased tissue. When assessed by 

immunoflouresence, the CD3 positive cells did not account for all the IL-17 

present, therefore, as previous studies document high expression of IL-17 by 

mast cells in inflamed tissues (Hueber et al., 2010), therefore, IL-17 expression 

by mast cells was investigated. A composite overlay (Figure 5.3) demonstrates 

that the mast cells were predominantly IL-17A positive. 
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Figure 5.1: Expression of IL-17A in human periodontal tissue. IL-17 mRNA 
expression in gingival tissue obtained from patients with chronic periodontitis (n 
= 9) or healthy controls (n = 6). Each dot represents an individual patient 
sample. The difference in the IL-17A mRNA expression between the diseased and 
healthy tissue samples were assessed by Mann Whitney U test (* p < 0.005). 



 

 175

 

 

Figure 5.2: Expression of IL-17A in human periodontal tissue by 
immunohistochemistry. Sections of paraffin embedded periodontal tissue, from 
patients with chronic periodontitis, demonstrating IL-17A positive cells stained 
brown (inset box shows isotype control) at 100 X (A) and 400 X (B). 
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Figure 5.3: Expression of IL-17A in human periodontal tissue by Immunofluorescence. Immunofluorescence demonstrating IL-17A in 
green (A), mast cells in red (B), and composite overlay showing co-localization of IL-17A to mast cells (C). 
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5.4.2 Release of IL-17A from periodontal tissue. Single cell suspensions 

obtained from diseased human periodontal tissues were stimulated with 

PMA/ionomycin for 48 h. Only following stimulation, IL-17A was detectable by 

ELISA in the cell culture supernatants of 9 out of 10 patients’ samples. There 

was an apparent dichotomy: cultures from 50% of the patients releasing 

considerably more IL-17A than the other samples. There was no correlation 

between these patients’ clinical condition (probing pocket depths at surgical site 

or age) and the concentration of IL-17A released. Interestingly, IL-17 release was 

not stimulated by LPS (either P. gingivalis or E. coli, data not shown). Next, the 

release of other inflammatory cytokines into the cell culture supernatants was 

investigated to establish if the IL-17 release reflected a different inflammatory 

profile overall. Considerable IFN� was released only upon cell stimulation, 

(Figure 5.4B). TNFα was found in high concentrations in both the unstimulated 

and the stimulated cell culture samples (Figure 5.4C). IL-1β release was highly 

variable amongst the unstimulated and stimulated samples (Figure 5.4D). IL-6 

concentrations decreased upon stimulation compared with the unstimulated 

samples (Figure 6.4E). High concentrations of IL-10 were released from both the 

unstimulated and stimulated samples (Figure 5.4F). There was a possibility of a 

link between the baseline concentration of IL-6 and the final concentration of IL-

17A, however this was not statistically significant. Due to the small number of 

patient samples no link or correlation between the different cytokines could be 

inferred with certainty. Nevertheless, it was noted in baseline samples that IL-

1β, IL-6 and IL-10 concentrations were all correlated (all > 0.730, p < 0.025). 

These apparent relationships were lost on stimulation, where after IL-6 

correlated with IFNγ (0. 733, p=0.024). No correlation between IL-17A 

concentrations and the other cytokines could be found, therefore there was no 

apparent ‘profile’ or cassette of cytokines associated with particular patient 

samples. 
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Figure 5.4: Cytokine release from tissues obtained from patients with chronic 
periodontitis. Diseased periodontal tissue samples (n=10) were enzymatically 
digested to single cell suspensions and then stimulated with PMA/Ionomycin for 
48 hours. Cytokine release was assessed by Luminex™ of cell culture 
supernatants. Each point represents an individual patient sample. Data shown 
are cytokine concentrations of (A) IL-17A, (B) IFNγ, (C) TNFα, (D) IL-1β, (E) IL-6 
and (F) IL-10 in pg/mL in the stimulated and unstimulated samples. Differences 
between pre- and post-stimulation levels of cytokines secreted by periodontal 
tissue cells were assessed by paired sample Wilcoxan signed ranks test. (* p < 
0.05; **p < 0.005). 
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5.4.3 Effect of IL-17A on OKF6 oral epithelial cells. It was hypothesised that 

IL-17 released in the periodontium likely acts locally on epithelial cells and this 

was first investigated by confirming expression of the IL-17 Receptor (IL-17R) 

subunits on the oral epithelial cell line, OKF6, by PCR (data not shown). Culture 

with IL-17A for 4 and 24 h resulted a dose and time dependent upregulation of a 

number of chemokine and cytokine genes (Figure 5.5), including CXCL-1, -3 -5, 

IL-8, CCL5, IL-1α, IL-1β, GMCSF and GCSF. Protein release was investigated by 

ELISA and Luminex™ of cell culture supernatants. OKF6 cells demonstrated a 

dose response to IL-17A, which resulted in a statistically significant release of IL-

8, IL-6, G-CSF and GM-CSF after 4 h stimulation (p = 0.037, p = 0.0040, p = 0.037 

and p = 0.0012, respectively) and after 24 h for all but the GM-CSF (p = 0.0023, p 

= 0.0040, p = 0.035 and p = 0.060 respectively) (Figure 5.6). IL-1α and TNFα 

were also analysed, however, no protein product was detected in the culture 

fluids (data not shown). Thus, IL-17A appeared to have potent effects on 

epithelial cells, inducing a dose and time dependent upregulation of numerous 

chemokines and cytokines by oral epithelial cells. 
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Figure 5 .5: Gene expression changes in epithelial cells stimulated with IL-17. 
OKF6 cells were stimulated with 100 ng/ml IL-17A for 4 h (A) and 24 h (B). Gene 
expression was analysed by TaqMan Low Density Array (TLDA) allowing multiple 
genes to be analysed simultaneously. Graphs demonstrate fold change in gene 
expression following IL-17A stimulation. Data are mean fold change +/- SEM of 
duplicate measurements from two independent experiments. 
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Figure 5.6: Cytokine and chemokine release from epithelial cells stimulated 
with IL-17A. OKF6 cells were stimulated with 1, 10 or 100 ng/ml IL-17A for 4 h 
or 24 h, after which the cell culture supernatants were analysed by 
ELISA/Luminex™. Data are mean +/- SEM of triplicate measurements of two or 
more independent experiments. The difference in dose response of the IL-17A 
with respect to IL-8, IL-6, G-CSF and GM-CSF release from the epithelial cells 
were assessed by Jonckheere-Terpstra Test (*p < 0.05, **p < 0.005). 
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5.5 DISCUSSION 

IL-17A expression was significantly increased in diseased, chronically inflamed 

periodontal tissues, compared with healthy tissues, and a considerable 

proportion of this IL-17 localised to mast cells. Moreover, IL-17 could be released 

in response to calcium and protein kinase C agonists. IL-17A may locally activate 

a number of cells including oral epithelial cells resulting in increased chemokine 

and cytokine expression. This study is, to the best of our knowledge, the first to 

document the expression of IL-17 in mast cells in periodontal disease. Previous 

studies have documented elevated IL-17A mRNA expression in chronically 

inflamed periodontal tissues compared with gingivitis models and healthy 

controls (Vernal et al., 2005, Takahashi et al., 2011, Beklen et al., 2009), and 

elevated IL-17A protein in GCF (Vernal et al., 2005). These data confirm these 

findings and imply that the IL-17 detected in GCF is likely to be predominantly 

derived from local cells rather than the serum, although elevated serum IL-17A 

has been reported in patients with aggressive periodontitis (Schenkein et al., 

2010).  

 

Following periodontal treatment both local and systemic effects on IL-17 

expression have been documented (Perregaux and Gabel, 1998, Cua and Tato, 

2010), suggesting that the elevated IL-17 expression is driven either directly by 

the pathogenic plaque biofilm or secondarily to mediators induced by the 

biofilm. Cardoso et al elegantly demonstrate the presence of Th17 cells in the 

periodontitis lesion (Cardoso et al., 2009), and the current study suggests that 

these cells, and mast cells, are likely to both provide sources of IL-17 in these 

tissues. Recent data suggests that at different stages of disease, periods of 

disease intensity and even at different locations within lesions adjacent to the 

same tooth, there may be variable expression of IL-17 as the cellular 

composition of the lesion changes (Liang et al., 2006). The role of the mast cell 

in periodontal disease although intriguing, remains relatively poorly understood 

(Berglundh and Donati, 2005, Gemmell et al., 2004). Both mucosal (Mu) and 

connective tissue (CT) mast cells are consistently identified in both health and 

inflammatory disease in the oral cavity (Gemmell et al., 2004, Steinsvoll et al., 

2004). The density of mast cells is increased in chronic periodontitis and, as 

would be expected the Mu mast cells appear to dominate the oral mucosa 

(Gemmell et al., 2004). Mast cells produce numerous cytokines (Galli and Tsai, 
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2010) implicated in periodontal pathogenesis, including IL-1 and TNF, and the 

current study described their capacity to produce IL-17. It could be argued that 

in the context of bacterial infection, the protective roles of IL-17 at mucosal 

surfaces may dominate the pathogenic. Clearly, the timing of such cytokine 

release is likely to be critical to its ultimate role. Mast cells are positioned to 

rapidly release numerous mediators capable of promoting neutrophil 

recruitment, which is essential to early bacterial control, but likely contributes 

to later stages of chronic inflammation. Thus, perhaps mast cell derived 

cytokines and other mediators offer potential novel therapeutic targets.   

 

Here it was also documented that IL-17 exerts a broad range of functions in oral 

epithelial cells, which extends previous studies investigating IL-17 augmentation 

of TLR mediated IL-1β and TNFα release from gingival epithelial cells (Beklen et 

al., 2009). Given the previously reported synergism between both IL-17A and IL-

17F and IL-22 (Liang et al., 2006, Kolls et al., 2008) this was investigated in the 

current study system; however, no additional effect above that of IL-17 was 

observed. The lack of release from the epithelial cells of IL-1α and TNFα is 

somewhat surprising, given their apparent gene regulation, however, this may 

reflect the requirement for processing prior to release (Perregaux and Gabel, 

1998). Similarly, TNFα requires processing by TACE ADAM17 (Pradines-Figueres 

and Raetz, 1992). 

 

From this data, it appears that IL-17A plays an important role in the protective 

periodontal immune response to bacterial pathogens. The upregulation of acute 

inflammatory mediators (such as IL-8) will promote neutrophil recruitment and 

potentiate the removal of any invading microbial threat. Therefore it is 

important to understand the benefits of this cytokine, before systemic 

therapeutic agents are used to antagonise its actions. The previous chapter 

discussed the potential roles that the innate inflammatory mediators play in the 

pathogenesis of periodontal disease. Some demonstrated protective roles and 

some destructive. IL-17 seems to play a role in the protective periodontal 

immune response by the release of IL-8 to counter the bacterial pathogens. It 

would be interesting to investigate the IL-17 expression using the epithelial cell-

biofilm co-culture model used in the previous chapters to understand the effects 

of the bacterial biofilms in the IL-17 expression.   
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CHAPTER 6:  

DISCUSSION 
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6.1 INTRODUCTION 

6.1 Summary 

Periodontal disease involves a complex network of interactions between 

bacterial (biofilm and planktonic) and cellular responses. This series of 

investigations has demonstrated this phenomenon through a reductionist 

approach, i.e. the successful development of an epithelial-bacterial biofilm co-

culture model system, which recapitulates the inflammatory changes in host 

epithelial cells upon challenge with bacteria associated with periodontal 

disease. In summary, this model has demonstrated clear differences between (i) 

planktonic and bacterial biofilms, (ii) pathogens and commensals and (iii) live 

and dead bacterial challenge. These observations and the utility of the model 

will provide a platform to investigate key questions relating to pathogen and 

host within the oral cavity and beyond.  

 

6.2 In vivo studies of periodontal disease 

In vivo study models have been used extensively to investigate the pathogenesis 

of periodontal disease. These models include human and various animal models. 

The quest for understanding the pathogenesis of periodontal disease is rooted in 

an important human experimental gingivitis study almost half a century ago (Löe 

et al., 1965). This study significantly impacted on periodontal research because 

of the simple and instructive demonstration of the causal role of plaque bacteria 

in gingivitis. Similar studies latterly showed that cell-mediated immune response 

played an important role in the process (Smith et al., 1978). Recently, 

Offenbacher’s group evaluated the inflammatory mediators in the GCF during 

the induction and resolution of experimental plaque-induced gingivitis in humans 

(Offenbacher et al., 2010, Offenbacher et al., 2009). Ultimately, these studies 

showed that the destructive inflammatory mediators produced in response to 

the bacterial plaque are reversed once the causative factor (bacterial plaque) is 

removed. Even though these studies were instrumental in understanding 

periodontal disease, prospective studies to investigate the mechanisms 

underlying the progression of periodontal disease cannot be answered by in vivo 

studies of humans alone due to important ethical considerations (Williams et al., 

2012). This is especially true given the growing body of literature showing an 

association between periodontal disease and systemic health (Offenbacher et 

al., 2010, Offenbacher et al., 2009, Lockhart et al., 2012).  
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To overcome these ethical limitations animal models have been used extensively 

to study host-bacterial interactions and have assisted in elucidating the 

pathogenesis of periodontal disease (Graves et al., 2012). These studies have 

helped demonstrate the clinical progression of periodontitis as subclinical 

gingivitis, clinical gingivitis and periodontal breakdown. However, as in human 

models there are limitations, including species differences and diverse 

microflora, they only provide a ‘snapshot’ of the disease process, and of course 

the ethical implications of animal use (Gruber and Hartung, 2004). To illustrate 

this point, a murine Calvarian model was used to investigate host-bacterial 

interactions with P. gingivalis (Boyce et al., 1989, Graves et al., 2001, Leone et 

al., 2006). This model was not performed within an oral environment and also 

provides no information relating to the interactions with the epithelial tissues, 

therefore its validity must be questioned. Moreover, an oral gavage model using 

human periodontal pathogens to study the consequent impact on periodontium 

has been used extensively (Baker et al., 1999, Chang et al., 1988, Garlet et al., 

2005, Klausen et al., 1991, Lalla et al., 1998, Sharma et al., 2005). These key 

pathogens are not indigenous mouse oral microflora, so prior antibiotic 

treatment is required to reduce the resident microflora, so the impact on the 

host and its translation to human oral disease is questionable. Similar arguments 

can be made about tissue cage, chamber models and airpouch models (Edwards 

et al., 1981, Pouliot et al., 2000, Genco et al., 1991, Genco et al., 1992). 

Ultimately, the main drawback of these animal models is that they do not 

accurately recapitulate human periodontal disease, creating more questions 

than answers. Moreover, P. gingivalis from Socransky’s red complex is touted as 

the alpha-periodontal pathogen (Socransky et al., 1998), and is therefore 

subject to the majority of studies (Hajishengallis et al., 2012). Yet, increasing 

evidence from recent studies indicate that bacteria such as Filifactor alocis 

appear to play a significant role in periodontal disease (Schlafer et al., 2010). 

Moreover, the contribution of uncultivable bacteria and multispecies consortia 

should not be discounted (Peters et al., 2012). Modelling a large number of 

experimental parameters in animal models is therefore problematic, so in vitro 

studies provide an opportunity to refine and reduce these parameters.  
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6.3 In vitro modelling of periodontal disease 

Modelling biofilms associated with periodontal disease has been subject to 

numerous studies over the years (Hope et al., 2012, Marsh, 2006, Periasamy and 

Kolenbrander, 2009b, Peyyala et al., 2011b, Pratten, 2007). Defined and 

undefined biofilm consortia have been evaluated to provide insight into how oral 

bacteria interact with one another (Lamont and Jenkinson, 1998). However, 

recent studies have evolved this concept to include mammalian cells in an 

attempt to understand how these interact with the host (Dickinson et al., 2011, 

Belibasakis et al., 2011b, Belibasakis et al., 2011a, Guggenheim and Meier, 2011, 

Peyyala et al., 2011a, Peyyala et al., 2012). These have a number of advantages 

over in vivo periodontal disease models, the most obvious being the ethical 

argument. These controlled and reproducible systems enable evaluation of 

periodontal biofilms in ‘real-time’, allowing for the analysis of both biofilm 

consortia and cellular responses and how they modulate one another. The 

control of the system is of critical importance particularly when dissecting 

immune pathways. Guggenheim’s group pioneered the use of in vitro host-

pathogen interactions using a multi-species biofilm-epithelial cell co-culture 

model to investigate the cellular response to oral biofilms (Belibasakis et al., 

2011b, Belibasakis et al., 2011a, Guggenheim and Meier, 2011), an innovative 

approach that has been recently emulated (Peyyala et al., 2011a, Peyyala et al., 

2012). These studies have independently shown differences in cytokine and 

chemokine response to the different bacterial biofilms and planktonic cells.  

 

The aim of the work presented herein was to develop a simple in vitro 

periodontal biofilm model to study host-pathogen interactions with respect to 

pathogen versus commensal, and biofilms versus planktonic cells. Ultimately, 

the study was aimed at creating a model that could be used to evaluate the 

effects of various bioactive molecules associated with oral health. To this end a 

simple in vitro 4-species biofilm model was successfully produced. This 

minimalist approach was employed because models, which use pooled saliva or 

pooled plaque samples are associated with problems of reproducibility (Hope et 

al., 2012). The current model delivered mono-species and multi-species biofilms 

grown on hydroxyapatite in artificial saliva through the sequential addition of 

the bacteria. The advantage to this approach was reproducibility, growth on a 

biologically relevant substrate and in a biologically relevant media, and 
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development of a biofilm in a manner similar to plaque. However, the limited 

number of bacterial species involved can be construed as a flaw to the model. 

However, in this scenario this was used as an advantage because the limited 

parameters enabled careful dissection of their contribution to inflammatory 

mediators. Therefore, this model can be used for high throughput analysis of 

host-pathogen interactions without worrying about ethical approvals for using 

human biological samples.  

 

Specifically, the model showed that the individual bacteria preferentially survive 

when grown as multi-species biofilms compared with mono-species biofilms in 

cell culture conditions, and was successfully used to investigate host-pathogen 

interactions. This is in agreement with previous multi-species biofilm models, 

demonstrating mutualistic behaviour (Periasamy and Kolenbrander, 2009b). The 

current study also showed differential immune responses of various cytokines 

and chemokines to the pathogens and commensals. Even though both the 

pathogens and commensals affected the expression and release of inflammatory 

mediators, the pathogens preferentially induced expression and release by the 

epithelial cells as illustrated by the defined array patterns. Moreover, there is a 

high level of confidence in the data generated as IL-8 gene expression was 

observed following P. gingivalis biofilm challenge, whereas the release of IL-8 

did not correlate with the gene expression. This is explained by gingipain 

release, a key immunomodulatory component of P. gingivalis (Mikolajczyk-

Pawlinska et al., 1998). Therefore, the hypothesis that this model system could 

differentiate clearly between commensal and pathogenic, and planktonic and 

biofilms, was satisfactorily demonstrated. This offers improvements on others 

studies that investigated protein release without gene expression (Peyyala, 2012 

#360), or focussed predominantly only on pathogenic biofilms (Guggenheim et 

al., 2009).  

 

In summary, a novel in vitro model has been developed which successfully 

recapitulates the inflammatory changes in the host (epithelial cells) upon 

challenge with bacteria responsible for health and disease in periodontal 

disease. 
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6.4 Pathogens, commensals and the immune system 

There have been several studies pertaining to the gut or intestinal epithelium 

(Pott and Hornef, 2012, Brandtzaeg, 2011, Brandtzaeg, 2010). These studies 

discuss how immune homeostasis in the gut environment is modulated by 

adaptive and innate immune responses and coordinated by antigen-presenting 

cells. Immune homeostasis in the oral cavity could also be explained in a similar 

manner. The oral cavity also consists of a range of commensals and pathogens 

that are in a state of homeostasis with the epithelium. This may be due to the 

fact that the innate immune system is highly active in the healthy tissues 

(Darveau, 2010). An imbalance of this system can contribute to the destruction 

of the periodontal tissue (Page and Kornman, 1997). Also, the recognition that 

both the commensals and pathogens can initiate innate immune responses 

through TLRs, which recognise microbes (Beutler et al., 2003). The current study 

demonstrated clear differences in the epithelial cell responses after challenge 

with commensals and pathogens. This was in agreement with a study showing 

similar epithelial cell responses to pathogenic P. gingivalis and commensal S. 

gordonii. This group investigated the gingival epithelial responses to pathogens 

and commensals in vitro using a co-culture model (Dickinson et al., 2011, 

Hasegawa et al., 2007). The oral commensal S. gordonii and opportunistic 

commensal F. nucleatum were shown to induce the gingival epithelial cell 

transcriptome less significantly compared with the oral pathogens P. gingivalis 

and A. actinomycetemcomitans. The limitation of this study was that the 

bacteria were in suspension when cultured with the epithelial cells. The study 

by Jeff Ebersole’s group also investigated the differential epithelial cell 

response to commensal and pathogen biofilms with respect to protein release of 

various cytokines and chemokines (Peyyala et al., 2012). The current study 

showed similar protein profile with IL-8 and IL-1α where there was lower 

production of these proteins with P. gingivalis and Streptococcus species 

stimulation. In summary, all these studies show that pathogens and commensals 

behave differently when they come in contact with the epithelial cells. The 

exact mechanisms have not been fully understood. 

 

It is not known how exactly the commensal S. mitis interacts with the innate 

immune system. It has been shown that S. mitis is remarkably tolerant to human 

β-defensin 2 (hBD-2) and other antimicrobial peptides (Nishimura et al., 2004, 
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Ouhara et al., 2005). In addition to this, S. mitis can also modulate the 

expression of the pro-inflammatory chemokine IL-8 by not promoting the IL-8 

expression (Eberhard et al., 2009). Taken together, these data indicate that S. 

mitis, as a beneficial commensal, can supplement host immunity by maintaining 

tissue homeostasis. On the other hand, the pathogenic mixed species and P. 

gingivalis biofilms boasts of a huge array of virulence factors, which can induce 

the innate immune response. The putative periodontal pathogen P. gingivalis 

attaches to the epithelial cells using fimbriae and gingipains and invades the 

cells {Weinberg, 1997 #231; Guo, 2010 #60}. The lipopolysaccharide (LPS) with 

its lipid A component in P. gingivalis induces a strong response from the host 

immune systems as it binds the toll-like receptor complex which promotes the 

secretion of pro-inflammatory cytokines in the epithelial cells including many 

other cell types (Loppnow et al., 1990). P. gingivalis uses gingipains to disrupt 

the cytokines and cytokine receptor networks of the host, including IL-1 beta 

(Sharp et al., 1998), interleukin-6 (IL-6), interleukin-8 (IL-8) (Mikolajczyk-

Pawlinska et al., 1998), interferon-gamma (Yun et al., 1999) and TNF-alpha 

(Calkins et al., 1998). This could explain why protein release of these cytokines 

and chemokines does not correlate with the gene expression. All these factors 

prove the pathogenic potential of P. gingivalis. The host immune system does 

not rely totally on epithelial cells to act as defense against pathogenic plaque. A 

mixture of cells and other inflammatory mediators play a role in maintaining 

homeostasis within the gingival crevicular space.  

 

6.5 IL-17 A – Important protection against pathogens 

A protective role for IL-17 in oral microbial infections emerged through studies 

in IL-17/IL-17R deficient animals, which are susceptible to mucosal candidiasis 

(Takahashi et al., 2005) and P. gingivalis (Yu et al., 2007). The study by Yu et al 

demonstrated increased periodontal disease susceptibility in IL-17R deficient 

animals and elucidates to a protective role of IL-17 against P. gingivalis induced 

periodontal disease by promoting the migration of neutrophils to the site of 

infection to combat the pathogenic threat. However, a recent study by Eskan et 

al using an ageing mouse model of periodontal disease demonstrated that 

elevated IL-17 levels are associated with excessive neutrophil infiltration 

through the inhibition of development endothelial locus 1 (Del1) and the 

promotion of lymphocyte function associated antigen 1 (LFA-1) dependant 
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recruitment of neutrophils (Eskan et al., 2012). Therefore, these contrasting 

studies suggest that although IL-17 is required to protect mucosal surfaces of the 

periodontium from potential pathogens an over excessive IL-17 response may 

promote the pathogenesis of periodontal disease. Indeed, clinical studies have 

shown elevated levels of IL-17 mRNA in gingival tissue of periodontal disease 

patients (Vernal et al., 2005, Takahashi et al., 2011, Beklen et al., 2009) and 

elevated IL-17A protein levels in GCF (Vernal et al., 2005), serum and saliva of 

patients with periodontal disease (Ozcaka et al., 2011, Schenkein et al., 2010). 

Furthermore, IL-17 levels in serum and saliva have been demonstrated to 

correlate with clinical parameter of periodontal disease and IL-17 levels have 

been shown to fall after periodontal therapy (Duarte et al., 2010, Schenkein et 

al., 2010). 

 

The current study confirmed that elevated levels of IL-17 mRNA in gingival tissue 

are associated with periodontal disease. This also suggests that levels of IL-17 

detected in GCF by other groups are likely to be primarily derived from local 

cells rather than serum. In this study we demonstrated that mast cells may be a 

key source of IL-17 in the periodontium and although oral epithelial cells 

themselves do not express IL-17 they can respond to exogenous IL-17 by 

upregulating the expression of a range of pro-inflammatory mediators including 

IL-8, IL-6, TNF-α, IL-1 α and the colony stimulating factors. The upregulated 

expression of these mediators by oral keratinocytes maybe a key mechanism by 

which IL-17 protects mucosal surfaces from pathogens. For example, increased 

expression of CXCL8 (IL-8) expression will promote neutrophil recruitment to the 

site of infection and potentiate the removal of any microbial threat. However, 

studies of models of arthritis, a diseases process with notable parallels to 

periodontal disease, demonstrate IL-17 may contribute to initiation and 

perpetuation of chronic, destructive inflammation (Miossec et al., 2009). 

Furthermore, mast cells have also been demonstrated to be one of the key IL-17 

producing cells in the synovium of patients with arthritis (Hueber et al., 2010). 

Therefore, it is interesting to speculate that mast cells through the expression of 

IL-17 may play a key role in the regulation of the periodontal immune response 

and contribute to the pathogeneisis of periodontal disease.  
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6.6 Future studies 

These studies have developed a simple co-culture model to investigate host-

pathogen interactions in the context of oral disease. This provides the 

opportunity to evaluate how small molecules of anti-microbial or immuno-

modulatory capacity interact with biofilms and host cells. These would prove 

useful for the development of novel oral healthcare products. From a basic 

scientific standpoint this system would be useful to evaluate the role of 

virulence factors, such as gingipains, through the use of defined mutants. It 

would be particularly interesting to supplement the biofilm with other oral 

pathogens and to evaluate the contribution these make through analogous 

studies described herein. Finally, and potentially the most interesting, would be 

to investigate the immunity in more detail. Given the interesting IL-17 data 

generated and the role of the mast cells, it would be useful to introduce new 

mammalian cells types either singly or as a 3-D cell culture model. This would 

provide the opportunity to evaluate the individual component that these cells 

types play in oral health whilst concomitantly evaluating their impact on plaque 

biofilms.  

 

6.7 Conclusion 

In summary, the current study has shown differential immune responses to the 

pathogenic and commensal biofilms in epithelial cells. Even though both the 

pathogens and commensals had effects on the chemokine and cytokine 

expression and release, the pathogens induced more expression and release by 

the epithelial cells. Epithelial cells stimulated with mono-species biofilms does 

not reflect the immune responses demonstrated by a multi-species biofilm but it 

is useful in characterizing each individual bacterial species. The current study 

was performed on monolayer of immortalized human oral keratinocytes, but in 

the oral cavity bacterial biofilms come into contact with gingival tissue, which 

consists of multilayer of epithelial cells and connective tissue. The present study 

was performed in vitro and the conclusions drawn from these results must be 

interpreted with caution. Further studies are required to understand the 

workings of the host with regards to the bacterial biofilms and vice versa. The 

current study has established an in vitro model system, which allows to clearly 

differentiate, in vitro, the different response to commensals versus pathogens. 

This is a critical step to understanding both periodontal and other diseases. This 
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study also investigated a novel cytokine IL-17, which has been shown to have a 

protective role against the influx of the periodontal pathogens. The hope for the 

future is to unravel the details of the mechanisms involved and thereby identify 

more novel therapeutic targets for inflammatory and infectious disease.  
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