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SYNTHESIS OF THE AGLYCONES OF PSEUDOPTEROSINS 
by Alessandro Pontiroli 

The stereocontrolled and efficient syntheses of the aglycones of the potent 
anti-inflammatory pseudopterosins A-F and K-L have been achieved starting 
from convenient monoterpenic units and using a novel benzannulation 

protocol partially developed in our laboratories. 
For the synthesis of the K-L compounds a completely substrate-controlled 

stereoselective route was devised starting from commercial isopulegol using a 
sequence of epoxidation and Lewis acid-promoted oxirane opening followed 
by benzannulation and Friedel-Crafts type suiphone displacement to generate 
the tricyclic structure of 3.2.1.13. 
The route to pseudopterosins A-E started from (-)-citronellal and employed 

catalytic asymmetric reduction of a, p-unsaturated ester 8.2.1.5. After the 
formation of the aromatic ring, the second approach was convergent to the 
enantiomers of intermediates used in the first route. Oxidation with Fremy's 
salt led to the unstable aglycones of the natural compounds under mild 
conditions. 

Pseudopterosins A-F Pseudopterosins K-L 3.2.1.13 8.2.1.5 
aglycone aglycone 
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Chapter 1 
Isolation and biological action 

of pseudopterosins. 
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1.1 Discovery and isolation of pseudopterosins and analogues. 

Marine organisms are an invaluable source of molecules with relevant 
biological activities. The class of diterpene monosaccharides named 
pseudopterosins were discovered from the sea whip of the genus 
Pseudopterogorgia in 1986. Four compounds were initially extracted from 
P. elisabethae collected in the Bahamas sea and denominated pseudopterosins 
A-D 1 (scheme 1.1.1). Their structure was determined by X-ray 
crystallographic analysis of pseudopterosin C, the only crystalline 
compound. The absolute configuration of the aglycone portion could be 
assigned after determining that of the sugar fragment. The structures of the 
other three compounds were determined by spectral analysis and conversion 
to the corresponding peracetylated compounds. 
Scheme 1.1.1 

1.1.1.1 Pseudopterosin A: R1= R2 = R3 =H 
1.1.1.2 Pseudopterosin B: R1= Ac, R2 = R3 =H 
1.1.1.3 Pseudopterosin C: R2 = Ac, R1= R3 =H 
1.1.1.4 Pseudopterosin D: R3 = Ac, R1= R2 =H 

Common features are the tricyclic skeleton with an hexasubstituted 
aromatic ring, a D-xylose or monoacetylated xylose attached to one of the 
two phenolic oxygens and four stereogenic centers on the aglycone portion. 
All the metabolites displayed remarkable anti-inflammatory and analgesic 
activity, equivalent in potency to the industry standard indomethacin2 but 
showed acute toxicity in mice. The mechanism of action appeared to be 
unique but not disclosed in full; however, cellular studies2'3 revealed that 
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pseudopterosins inhibit leukotriene biosynthesis rather than cyclooxygenases, 

unlike most non-steroidal anti-inflammatory agents. 
In 1990, the same group4 reported the discovery and characterisation 

of eight novel members of the family, named pseudopterosins E-L (scheme 
1.1.2), from P. elisabethae organic extracts. 
Scheme 1.1.2 

OH 

1.1.2.1 Pseudopterosin E 

1.1.2.3 Pseudopterosin G: Rl = R2 = R3 =H 
1.1.2.4 Pseudopterosin H: R1= Ac, R2 = R3 =H 
1.1.2.5 Pseudopterosin I: R2 = Ac, RI = R3 =H 
1.1.2.6 Pseudopterosin J: R3 = Ac, Rl = R2 =H 

1.1.2.2 Pseudopterosin F 

1.1.2.7 Pseudopterosin K: R=H 
1.1.2.8 Pseudopterosin L: R= Ac 

Pseudopterosins E and F display the same aglycones as the previously 
discovered compounds but their sugar portions, a-L-fucose and a-D- 
arabinose respectively, are attached to the CIO oxygen. Pseudopterosins G 
and its monoacetates (compounds H-J) are C9 a-L-fucose glycosides; the 
aglycone of the molecules is a C7 epimer of the corresponding partial 
components of compounds A-F. 
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Pseudopterosins K and L are the major constituents of the organic 

extracts of P. elisabethae collected in the Bahamas sea and their C9 a-L- 

fucosylated aglycones are enantiomeric to those of the A-F members of the 

family. 
All these compounds, and in particular pseudopterosin E, possess 

superior anti-inflammatory properties and lower toxicity (LD50 > 300 

mg/Kg for 1.1.2.1) than the previously discovered analogues. 
Scheme 1.1.3 

1.1.3.1 Secopseudopterosin A: R1= R2 = R3 =H 
1.1.3.2 Secopseudopterosin B: R1= Ac, R2 = R3 =H 
1.1.3.3 Secopseudopterosin C: R2 = Ac, R1= R3 =H 
1.1.3.4 Secopseudopterosin D: R3 = Ac, R1 = R2 =H 

In more recent years, other compounds bearing relevant structural 
similarities with pseudopterosins have been discovered. The bicyclic terpene 

glycosides named secopseudopterosins A-D (scheme 1.1.3) were isolated in 
1987 from Pseudopterogorgia Kallos5 and have antimicrobial 
(Staphilococcus aureus growth inhibitor) as well as potent anti-inflammatory 
and analgesic activity. 

Higa and coworkers6 isolated the compounds named helioporins A-G 
(scheme 1.1.4) from the blue coral Heliopora coerulea in 1993. The 

structure of helioporin A showed close similarity with those of 
pseudopterosins G-J while compounds B-G are related to 

secopseudopterosins aglycones. Helioporins A and B were inactive in the 

apical anti-inflammatory assay but exhibited antiviral activity against HSV1 

while compounds C-G show cytotoxicity against P 338. 
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Scheme 1.1.4 

1.1.4.1 Helioporin A 1.1.4.2 Helioporin B 

1.1.4.3 Helioporin C: R=01.1.4.5 Helioporin E: A12'13 Z 
1.1.4.4 Helloporin D: R=H 1.1.4.6 Helloporin F: A12,13 E 

Dihydroxyserrulatic acid was isolated7'8 from a completely different 

source, the leaves of the Australian shrub Eremophila serrulatae, in 1978 
(scheme 1.1.5). This compound has in common with secopseudopterosins a 
1,4,6-trisubstituted-8-hydroxytetralin as central unit and a prenyl side chain 
but showed no relevant biological activity. 
Scheme 1.1.5 

02H 

Dihydroxyssrruladc acid 
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A range of semi-synthetic pseudopterosins ethers were recently 

patented as potential analgesic, vulnerary and anti-inflammatory agents9,10 
In particular, pseudopterosin A derivatives 1.1.6.1, named WF-336, and 
1.1.6.2 (scheme 1.1.6) were found to be particularly active during in vivo 

tests in mice and in pig. 
Scheme 1.1.6. 

(CH2)40H 

1.1.6.1 WF-336: R= D-xylose 1.1.6.2: R= D-xylose 

1.2 Biological activities of pseudopterosins. 

The pseudopterosins are among the most potent non-steroidal anti- 
inflammatory agents but their mechanism of action has not been 

characterised in full detail. 
The inflammatory response is mediated by the biosynthesis of 

eicosanoids derived from arachidonic acid, such as leukotrienes, 

prostaglandins and thromboxanes, as well as other agents released locally in 
response to an irritants l -13 Phospholipases A2 (PLA2) are calcium- 
dependent enzymes that specifically catalyse the hydrolysis of esters at the 
sn-2 position of a phospholipid (scheme 1.2.1) releasing a free fatty acid. 
Scheme 1.2.1 

PLA2 

R 

r--b io 

sn-2 
position 

-OR' o ? H20-c11 
C 0-9H O 

CH2O-P-OX 
., - v 
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The increased production of eicosanoids in response to a variety of 

stimuli is believed to be controlled by the release of their precursor, 
arachidonic acid, which is mainly stored in phospholipids. Production of 
arachidonic acid from the action of PLA2 on membrane phospholipids 
provides the substrate for the pathway of eicosanoid biosynthesis known as 
the "arachidonic acid cascade" (scheme 1.2.2). Because eicosanoids are 
potent mediators of inflammation, selective inhibition of their biosynthesis 

can be expected to modify the inflammatory response. 
Scheme 1.2.2 

R2COOH = arachidonic acid 

Target for aspirin 
and conventional 
antiinflammatory 
agents 

Stress, injury 

ý 
ý 

PLA2 Activation 

9 
O 

H2O-CrOR1 
2R-C-0 HR 

1H20-"X 

O- 
y 

------- º 

I 
Lipoxygenase, 
Cyclooxygenase, 
Cytochrome P-450 

Eicosanoids 
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Pharmaceutical agents such as indomethacin and aspirin inhibit the 

cyclo-oxygenase pathway responsible for the conversion of arachidonic acid 
into prostaglandins, thus blocking the cascade without preventing the release 

of the acid. Pseudopterosins appear to block the eicosanoids biosynthesis by 
inhibition of both PLA2 and 5-lipoxygenase. Pseudopterosin A and E were 
initially tested2 and found to inhibit a range of PLA2 from various sources. 
A subsequent study led to the conclusion that the ortho-quinone 1.2.3.1 
derived from oxidation of the aglycone is the active form of these molecules 
(scheme 1.2.3). The glycosides are active in vivo (in mice) and in whole 
cells but in crude enzyme preparations they require the presence of 
fucosidase, suggesting that the molecules are active only after cleavage of the 
sugar portion. Notably, 1.2.3.1 is active towards a wider range of PLA2 
than the natural glycosides. 
Scheme 1.2.3. 

Fucosidase 

1.1.2.1 Pseudopterosin E 1.2.3.1 
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Finally, comparative studies2 suggested that the cell-type selectivity of 
pseudopterosins may be a function of the glycoside moiety, possibly a novel 
example of drug targeting. 
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Chapter 2 
Previous syntheses. 
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2.1 Introduction. 

Since the discovery of the first four members of the class, various 
total and partial syntheses of pseudopterosins and analogues have been 

reported, the interest of chemists being drawn by the challenging structural 
features as well as by the relevant biological activities of these compounds. 

Two main strategic approaches have been devised for the synthesis of 
the aglycone. The first is based on functionalisation of suitable monoterpenic 
starting materials, taking advantage of pre-existing stereocenters to 
introduce chiral centers in a substrate-controlled manner. The major task in 

this approach is the formation of the hexasubstituted aromatic ring. The 

alternative strategy employs functionalised tetralins as starting materials and 
the stereocenters are introduced on the side chain via asymmetric synthesis 
using organometallic reagents. The published syntheses of pseudopterosins 
and analogues are briefly illustrated in the following paragraphs. 

2.2 The Broka total synthesis of pseudopterosin A. 

The first reported synthesis of pseudopterosin A was published by 
Broka and coworkers in 198814. The retrosynthetic analysis for their 
approach is highlighted in scheme 2.2.1. Monoprotected catechol 2.2.1.1 
was chosen as the precursor for the final glycosidation step. Baeyer-Villiger 
oxidation of the corresponding a-hydroxybenzoate was envisioned to 
provide the catechol unit. It was also expected that Friedel-Crafts type ring 
closure of epoxide 2.2.1.3 could provide stereocontrol in the closure of 
ring C of pseudopterosins, due to the induction from the neighbouring 
stereocenters. The approach chosen for the crucial construction of the 
aromatic ring was Mukaiyama reaction of a, ß-unsaturated enone 2.2.1.4 

with diene 2.2.1.5 according to the procedure of Chan and Broadbridge 15 



Scheme 2.2.1. 
12 

Bn 

Pseudopterosin A 

2.2.1.1 

2.2.1.3 

2.2.1.6 

Bn 

ý 
HOSiMe3 

2.2.1.4 

(S)-(-)-iimonene 

2.2.1.2 

ý 

TMSO OTMS 
+ýi 

2.2.1.5 

Me 

Introduction of the desired stereochemistry at the C3 sterocenter 
could conceivably be achieved by substrate-controlled 1,4-addition of an 
organometallic vinyl reagent to enone 2.2.1.6. This bicyclic compound can 
easily derived from the monoterpenic skeleton of (S)-(-)-limonene. 
Initial hydroboration of the commercially available (S)-(-)-limonene 

displayed poor stereoselectivity. The resulting mixture of diols 2.2.2.1 was 
transformed in four steps to lactone 2.2.1.6 which underwent a 1,4-Michael 
addition with vinyl cuprate in the presence of TMSCI to yield the 
intermediate silylated enol ether. Protonation from the least hindered face 
during work-up allowed control of the stereocenter next to the carbonyl 
group to yield 2.2.2.4 as a single isomer. Subsequent hydrolysis and 
conversion to ketone 2.2.2.6, homologation and protection yielded the 
silylated enol ether 2.2.1.4 with loss of stereochemistry at the a-position to 
the ketone. After Mukaiyama reaction with diene 2.2.1.5 followed by 

aromatisation, compounds 2.2.2.7 and the epimer 2.2.2.8 were obtained 
in 2: 3 ratio respectively and separated by chromatography. 



Scheme 2.2.2. 

2.2.2.1 

a, b 
-ý 

2.2.2.2 2.2.2.3 

e 

2.2.2.4 

I 

2.2.1.5 

f 
-ý 

2.2.2.5 

2 
2.2.2.7 

13 

9 

H 
+ 

2.2.2.6 

3 
2.2.2.8 

h 
-- 

H 

2.2.1.6 

2.2.1.4 

Yields, reagents and conditions : 
a- (i) PvCI, Pyr; (ii) DHP, PPTS, CH2CI2; (iii) KOH; (iv) PCC, NaOAc, CH2CI2 
b 90% (ii) NaCIO2, t-BuOH, 2-methyl-2-butene; (ii) AcOH (aq), 80°C 
c 67% p-TsOH, PhMe, reflux 
d'91% (i) LDA, PhSeCI; (ii) H202 
e 79% CH2=CHMgBr, CuI-DMS, TMSCI, THF, -40°C 
f 84% LAH, THE 
g 63% (i) PhSO2CI, DMAP, Et3N, CH2CI2; (ii) LiBHEt3, THF; (iii) PCC 
h 85% (i) HCO2Et, NaH, dioxane; (n) TMSCI, Et3N 
i 66% (i) 2.2.11.5, T04; (ii) NaOMe, MeOH 

The subsequent epoxidation of 2.2.2.7 (scheme 2.2.3) occurred 
without stereoselectivity, then the Friedel-Crafts ring closure yielded again a 
1.1: 1 mixture of epimers 2.2.3.1 and 2.2.3.2 which could be separated by 
HPLC after protection of the primary hydroxyl group. 
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Scheme 2.2.3. 

C 

e 

2.2.2.7 

2.2.3.1 

2.2.3.4 

H 
a 

--ý 

Bn 

-ý 

2.2.1.3 

2.2.1.1 

H 

2.2.1.2 

g, h 
-ý 

Bn 

-io- 

2.2.3.3 

pseudopterosin A 

Yields, reagents and conditions : 
a 64% MCPBA, NaHCO3, CHCI3,55°C 
b 88% (i) SnCI4, CH2CI2, rt; (ii) BnBr, DMSO, K2C03 
C 75% (i) TBDPSCI, imidazole, DMF; (ii) DIBAL,. CH2CI2,20°C 
d 88% (i) PCC, CH2CI2; (ii) MCPBA, Na2HP04, CHC13,20°C 
e 86% (i) TBAF, AcOH, THF; (ii) Swem oxidation 
f 82% (i) Me2C(Li)CO2Li, THF, 20°C; (ii) (dimethylamino)fomialdehyde dineopentyl acetal 

- 4,4'-methylenebis(2,6-di-tertbutylphenol), 55°C, 3 days 
g 51% 1-Bromo-2,3,4-triacetyl-D-xylose, AgOTf, tetramethylurea, CH2CI2,20°C 
h 73% KOH, MeOH; (ii) LiMH3, THE 

Three further steps completed the synthesis of pseudopterosin A 

aglycone which was finally coupled with 1-bromo-2,3,4-triacetyl-D-xylose 

to obtain the target molecule after removal of the protecting groups. The 

synthesis proved lengthy and involved loss of control at various 

stereocenters: this resulted in difficult separations and considerable 
reduction in the overall yield. 

-ý 
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2.3 The Corey total synthesis of pseudopterosins A and E. 

A superior enantiospecific approach to pseudopterosins A and E was 

reported by Corey and Carpino in 198916. Their retrosynthetic analysis 
(scheme 2.3.1) indicated compound 2.3.1.1 as common precursor to both 

natural products. 
Scheme 2.3.1. 

Pseudopterosin A ý\ý 

Pseudopterosin E ;i 

2.3.1.3 

2.3.1.6 

2.31.1 

2.3.1.4 

2.3.1.7 

"ý 

2.3.1.2 

2.3.1.5 

(+)-menthol 

After disconnection at C1 to reveal the key intermediate 2.3.1.2, the 
overall strategy chosen for the synthesis of the tricyclic unit was again the 
building of the aromatic ring after introduction of the stereocenters on a 
monoterpenic unit rather than using an aromatic template as starting 
material. The authors relied mainly on induction of chirality to control the 
newly formed stereocenters and were aware that the oxidation of a phenol to 
catechol in the late stages of the synthesis could be troublesome. 
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Aromatisation of bicyclic enone 2.3.1.4 was to be employed as a concise 
route to the highly functionalised ring of 2.3.1.3. Disconnection of the side 
chain bearing the propargylic ketone identified bicyclic 2.3.1.5 as a suitable 

precursor. It was expected that the introduction of the stereocenter at C3 
(pseudopterosins numbering) could be directed exploiting conformational 
strain in bicyclic lactone 2.3.1.6, easily accessible from 2.3.1.7. 

The synthesis began with photolysis of (IS, 2R, 5S)-(+)-menthol 

nitrite ester 2.3.2.1 (scheme 2.3.2) to yield oxime 2.3.1.7 as a 5: 1 

mixture of epimers at C8. The correct stereochemistry at the newly formed 

center was introduced exploiting the cyclic constraint of a y-lactone ring. 
2.3.1.7 underwent a sequence of hydrolysis of the oxime function, 

oxidation of the lactol and isomerisation to the desired C8 configuration via 
enolisation with LDA to afford 2.3.1.6 as a single stereoisomer in good 
overall yield. Synthesis of key 1,5-diketone 2.3.1.4 was achieved via a 
sequence of five reactions in 40% overall yield. The tricyclic system of 
pseudopterosins was then easily formed treating alkyne 1,5-dione 2.3.1.4 

with KH in THE to form the substituted aromatic ring. Oxidation of phenol 
2.3.1.3 proved challenging: after extensive experimentation, a three-step 
procedure was the only viable method. Treatment with benzenesulfinic 

anhydride and HMDS converted 2.3.1.3 into the corresponding ortho- 
quinone imine17 which was then hydrolysed with AcOH/H2O in presence of 
perchloric acid. Reduction of the resulting quinone with excess Na2S204 
yielded 2.3.1.2 in 74% overall yield. After protection of the sensitive 
catechol unit by the isopropylidene group, side chain extension via 
methylenation of the ketone and Lewis acid-promoted rearrangement of the 
epoxide thus formed 2.3.2.3 as a 10: 1 mixture of axial and equatorial 
aldehydes. Wittig reaction and hydrolysis of the protecting group yielded 
catechol 2.3.2.4 as an oil, identical to the aglycones of pseudopterosins A-E 
by 1H-NMR and TLC analysis. 
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Scheme 2.3.2. 

2.3.2.1 

d 
Iº 

h, i 
ON 

a b 
-ý 

"ONO 
.., Y "'OH 

j 

8 

2.3.1.5 

2.3.1.2 

2.3.1.7 

e, f 

j, k 
-ýº 

Yields, reagents and conditions : 
a 
b 
c 
d 
e 
f 
9 
h 

k 

m 

90% 
60% 

40% 
97% 
61% 
70% 
79% 
71% 
87% 
76% 
81% 
71% 

2.3.2.3 

9 

--V- 

2.3.2.2 

2.3.1.3 

2.3.2.4 

hV 
(i) NaHS03,50°C; (ii) Br2, CaCO3, THF/H2O; (iii) LDA, THF, 0°C; (iv) NH4CI 
(i) DIBAL-H, CH2CI2, -78°C; (ii) Ph3P=C(CH3)SEt, DMSO; (iii) DMSO, TFAA, Et3N 
(i) HgCI2, CH3CN/H20,50°C; (v) NaOCH3, CH3OH, 23°C 
KH, THF-HMPA, then TMSCI 
(i) 2-Butynal, TMSOTf, CH2CI2, -78°C, then H20; (ii) PCC, CH2CI2,23°C 
KH, THF, 23°C 
Benzeneseleninic anhydride, HMDS, PhH, 23°C 
(i) AcOH (aq. ), HCIO4 (cat), 23°C; (ii) NaHSO3, H20 
2,2-Dimethoxypropane, PPTS, CHCI3 
(i) Me2S=CH2, THF, 23°C; (ii) BF3oOEt2, CH2CI2, -30°C -4 23°C 
Ph3P=CHMe2, THF, 0°C 
HCI (aq. ), MeOH, THF, 70°C 

The different steric hindrance of the two hydroxyl groups at C9 and C10 
was exploited for selective glycosylation on the route to pseudopterosins A 
and E (scheme 2.3.3). The C9 position is in close proximity to an isopropyl 
group and hence the C10 hydroxyl is biased to react faster with 

2.3.1.4 

2.3.1.6 
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electrophiles. Hence, for the synthesis of pseudopterosin A the more reactive 

C10 position was protected as the tosylate, 2.3.3.1 was then treated with 

NaH in CH3CN followed by 2,3,4-triacetyl-a-D-xylopyranosyl bromide in 

situ to give the corresponding 10-tosyl-9-triacetyl-(3-xylopyranoside. 

Removal of acetyl and tosyl protecting groups and chromatographic 

separation afforded pseudopterosin A in 54% yield. 

Scheme 2.3.3. 

(a) BuLi (2 eq), THF, then 2.3.3.6 
(b) LiOH, THE 
(c) Li, NH3,55% overall 

2.3.2.4 Pseudopterosin E 

Ts a NaH. 2,3,4-triacetvl 
TsCI, Et3N, CH2CI2 -a-D-xylopyranosylbromide 2.3.2.4 ý/- Pseudopterosin 

-30°C, 85% b KOH, McOH/H2O A 
C NaHg, McOH, 54% overall 

2.3.3.1 

Pseudopterosin E was synthesised by direct attachment of the L-fucose unit 
via a novel protocol, as preliminary studies on this reaction carried out by 
Prof. Fenical suggested that known methods for the formation of a-aryl 
glycosides would not yield satisfactory results. Deprotonation of the 
aglycone with 2 equivalents of BuLi and reaction with glycosyl bromide 
2.3.4.6 proceeded with very good selectivity but low yields. Sequential 

cleavage of the ester and ether protecting groups cleanly produced 
pseudopterosin E in 53% overall yield from the aglycone. The preparation 
of 2.3.4.6 is depicted in scheme 2.3.4. 



Scheme 2.3.4. 

HCI 

Me 

HO'* "" `IOH MeOH HO'' 
ÖH 

L-fucose 

2.3.4.3 

-. Me. 
Arnsoyi cnionae 

0 
DMAP, CH2CI2 RO°" . *OBn 

ÖR 

R= anisoyl 

2.3.4.5 

H2SO4 

2.3.4.2 

H Me,, 
,, 

. HO''ý Bn 
ÖH 

2.3.4.4 

HBr (gas) 

CH2CI2 

Ms,,,, 

RO'""ýýOBn 
ÖR 

R= anisoyl 

2.3.4.6 

An improved approach to intermediate 2.3.1.5 was reported by the same 
authors18 in 1990 (scheme 2.3.5). The (S)-citronellal derivative 2.3.5.1 

underwent FeC13-catalysed ene reaction and the cyclic diester thus obtained 

was transformed into keto ester 2.3.5.4 in two steps. 
Scheme 2.3.5. 

2.3.5.1 

EtAICI2 
CH2CI2 

-30°C -+ 0°C H"''' 
72% from 

2.3.5.2 

FeCI3(20 mol%) ý LIOH 
CH2CI2 ,,,, \, i. H2O/MeOH 

78°C-*rt 
89% yield 

97: 3 selectivity 
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H2SO4 

2.3.5.2 

2.3.5.4 

Li/NH3 
THE 

O2Me eº 

ÖH 

2.3.4.1 

78% 
-78°C Hýýý, 

vZ'viv r. 

O, Me O2Me 

2.3.5.5 

(CICO)2 H' 
CH2CI2 

cat. DMF 

.., oa . 
o2Me 

2.3.5.3 

(a) NaH, then Br2 
THF, 23°C 02Me 2.3.1.5 

(b) LiCI, DMF, 78°C 
then 150°C, 70% 
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Introduction of the new stereocenters at C3 was again carried out via 
hydrogenation, exploiting the strain of the a, (3-unsaturated cyclic enone to 

obtain 2.3.5.5; a two-step procedure consisting of reaction with NaH, 

quenching with bromine and heating the product in the presence of LiCI 

gave desired 2.3.1.5 in 70% yield from 2.3.5.5. 

2.4 The McCombie synthesis of pseudopterosins A-F aglycones. 

An innovative synthesis of the racemic aglycones of pseudopterosins 
A-F was published by S. W. McCombie and coworkers in 199119,20 The 

retrosynthetic analysis (scheme 2.4.1) is based on the oxidation of phenol 
2.4.1.1. in the latest stage of the route. Disconnection of the side chain at 
Cl leads to ketone 2.4.1.2, similar to Corey's pivotal tricyclic intermediate. 

In this case the overall strategy is based on an aromatic starting material, 
2.4.1.5, which is commercially available. Introduction of relative 
stereochemistry would take advantage of substrate induction once the first 

centres had been established and the process was designed as a non- 
enantioselective approach. 
Scheme 2.4.1. 

t> 

Pseudopterosin A-F 
aglycone 

2.4.1.1 2.4.1.2 

ý 

2.4.1.3 2.4.1.4 2.4.1.5 
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Racemic alcohol 2.4.2.1 (scheme 2.4.2) was obtained after 

Reformatsky reaction followed by dehydration and reduction of the ester 
group to a hydroxyl. The free carbinol was exploited to direct 
hydrogenation of the double bond under homogeneous catalysis conditions 
(selectivity > 95: 5 in favour of the desired isomer). Methylation of the 

secondary benzylic position was attained by selective oxidation and addition 
of an organocerium reagent to yield 2.4.2.3. The correct stereochemistry 
was set via an intramolecular version of ionic hydrogenation21 by treating 

silyl ether 2.4.2.4 with trifluoroacetic acid to secure 2.4.1.3 in 65-75% 

yield and >95% isomeric purity. 
Scheme 2.4.2 

2.4.1.5 

f, g 

a, b, c 

2.4.2.2 ý2.4.2.3R=H 
k 

2.4.2.4 R= t-Bu2SIH 

h, i, j 

d, e 
Oo 

I'm 

PNB OR 

Yields, reagents and conditions 
(a) - Zn, McCHBrCO2Et, TMSCI, THF, 65°C (h) - NaOMe 
(b) - MsOH, (CICH2)2 (i) - McCeCI2 
(c) 75% Red-Al (j) 72% TsOH 
(d) - (Ph3P)3RhCl, t-BuOK, H2 (60 psi), THF (k) - (t-Bu)2SiHCI, imidazole, DMF (e) 80% PNBCI, Pyr (I) - TFA, CH2CI2 (f) 80% K2S208, CuSO4, sym-collidine, McCN/H2O (m) 65% TBAF, THF, 23°C (9) 63% PCC, celite, CH2CI2 

Conversion of 2.4.1.3 to a derivative of the secopseudopterosins 
aglycone was easily accomplished (scheme 2.4.3). After attachment of the 
unsaturated side chain, the second oxygen on the aromatic ring of 2.4.3.3 
was introduced via ortho-directed metallation, quenching with B(OMe)3 and 
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oxidation, prior to methylation via a Mannich reaction. Conversion to 

2.4.3.6 allowed spectral comparison with material derived from natural 

secopseudopterosins. 
Scheme 2.4.3. 

OH 

2.4.1.3 

a, b 
ý 

2.4.3.1 

C 
ýº 

h, i, j 
--] 

2.4.3.4 

-N 

2.4.3.2 

2.4.3.5 

Reagents and conditions : 
a TsCI, Pyr 
b Me2C=CHCH(Li)SO2Ph, THF, -70°C -+ 23°C 
C Li, EtNH2 
d MeOCH2CI, i-Pr2NEt 
e t-BuLi, 020,0°C, then B(OMe)3 
f H202, K2CO3, H20 
9 Aq. CH2O, morpholine, EtOH, 80°C 

2.4.3.3 

2.4.3.6 

h CCI3O00CI, sym-collidine 
- CH2CI2,0°C 
i NaBH4, DMSO 
j NaOH, H20 
k Mel, K2CO3, acetone 
I TsOH, MeOH 

For the synthesis of pseudopterosins aglycone, 2.4.1.3 (scheme 
2.4.4) was transformed into tricyclic ketone 2.4.4.1, then reduced to the 
corresponding epimeric alcohols. Experiments under several conditions 
failed to attain the alkylation at CI with the desired stereochemistry. 
However, reaction of the methylated intermediate 2.4.4.2 with Et2AICN 

and SnC14 or BF3. OEt2 in CH2C12 afforded nitrile 2.4.4.3 as the major 
isomer in 70% yield. 
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Scheme 2.4.4. 

C 

2.4.4.1 

2.4.4.4 2.4.1.1 

2.4.4.2 2.4.4.3 

Pseudopterosins 
aglycone 

Yields, reagents and conditions : 
a 60% (i) TsCI, Pyr, (ii) NaCN, DMSO, 65°C; (iii) MsOH, (CICH2)2; (iv) NaOAc, H20,85°C 
b 60% (i) NaBH4; (ii) t BuLi, Et2O, pentane, 35°C; (iii) Mel, 0°C; (iv) Et2A1CN, SnCI4 
c 55% (i) DIBAL-H, toluene, -70°C; (ii) PhSO2C(Li)Me2, THF, -70°C; (iii) Na-Hg, MeOH 
d- BBr3,2,6-dibutylpyridine, CH2CI2,0°C 
e- (i) ON(SO3K)2, KH2PO4, acetone/H20; (ii) Na2S2O4, CH2CI2/H20 

Notably, the presence of the methyl on the aromatic ring showed no 
influence, whereas changing the configuration of the CH3 group at C3 

position resulted in the formation of the undesired pseudoequatorial nitrile 

as the main product, probably due to conformational effects. Conversion of 

the nitrile into the isobutenyl sidechain and cleavage of the methoxy group 
led to 2.4.1.1. The phenol was then oxidised to the sensitive ortho-quinone 
(Fremy's salt, KH2PO4, acetone-H20,0°C) which was immediately reduced 
to the unstable aglycone of the natural products. The synthetic aglycone and 
its diacetate were spectroscopically and chromatographically identical to 

material derived from pseudopterosin E. The overall low yield of the 

synthesis stems mainly from the necessity of overcoming conformational 
effects in the introduction of new stereocenters and makes the approach 
inefficient. 
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2.5 The Buszek and Bixby synthesis. 

The most recent total synthesis of pseudopterosins A-F aglycone was 

reported by K. R. Buszek and D. L. Bixby in 199522. Their original 

strategy is illustrated in scheme 2.5.1. The key steps involved 

intramolecular benzyne Diels-Alder cycloaddition (IMBDA) between the 

tethered cyclohexadiene and the aromatic portion of 2.5.1.2. 

Scheme 2.5.1. 

Benzyne Dials - 
Alder reaction 

Me 
ý 

Pseudopterosin A-F 
agiycone 

Me 

+ 

2.5.1.2 

Birch reduction 
and isomerisation 

02H 

2.5.1.3 

2.5.1.1 

2.5.1.4 2.5.1.5 

Easy disconnection at the protected carbonyl reveals aldehyde 2.5.1.3 and 
diene 2.5.1.4. The cyclohexadiene can be easily obtained from the chiral 
starting material 2.5.1.5 after Birch reduction and base-catalysed 
isomerisation of the 1,3-diene to the conjugated system. 
Their concise synthesis is shown in scheme 2.5.2. The alcohol derived from 

reduction of commercially available (R)-(-)-2-phenylpropionic acid 
(2.5.1.5) was subjected to Birch reduction followed by base-induced 
isomerisation to yield the corresponding 1,3-diene. The Grignard reagent 
derived from bromide 2.5.1.4 was then added to the known aldehyde 
2.5.2.6 (prepared in 7 steps from 2-methylpiperonal) to give the key 
intermediate 2.5.2.2 after oxidation and protection of the ketone. 
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Scheme 2.5.2. 

02H 

2.5.1.5 

2.5.2.4 

Me j, k, i 
-lº 

-ýº -ý Pseudopterosin 

See Scheme 2.3.2 
aglycone 

2.5.2.5 

2.5.2.1 

M 

2.5.2.3a 

Me 

2.5.1.1 

M 

M 

2.5.2.6 

Yields, reagents and conditions : 
a- LiAIH4, THF, 65°C 
b- (i) Na-NH3, EtOH, -78°C; (ii) t-BuOK, DMSO, 65°C 
c 48% PPh3, NBS, Pyr, CH2CI2 
d 78% Mg, THE then 2.5.2.6, THF, 0°C 
e 81% (i) Swem oxidation; (ii) (TMSOCH2)2, TMSOTf (cat. ), CH2CI2, -78°C 
f 63% LDA, THF, -78°C -+rt 
g- NMO, Os04 (cat. ), PhMe, acetone, H20 
h- NaIO4 
i 85% NaBH4 
j 83% TsCI, Pyr 
k- Dess-Martin periodinane, CH2CI2 
I 76% (PPh3)3RhCI, PhCN, reflux 
m 68% LiAIH4, THF, 65°C 
n 100°/a PPTS, acetone, H2O 

MM2 calculations predicted that the desired a-face approach 
transition state would be preferred over the alternative 0-face approach to 
avoid steric interaction between the stereogenic methyl group at C3 and the 
terminal hydrogen of the diene. However, the intramolecular benzyne Diels- 

a, b, c 

2.5.1.4 

M 
-ý 

2.5.2.3 0 
Me TsOCH2 QM 

-ý 
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Alder reaction led to a 58: 42 mixture of diastereoisomers 2.5.2.3u and 
2.5.2.33. Separation by chromatography afforded 2.5.2.3a as a single 
isomer, identified via NOE difference 1H NMR experiments. Oxidative 

cleavage of the ethylene bridge followed by decarbonylation protocol led to 
2.5.2.5. After hydride reduction of the tosylate group of 2.5.2.5 and 
deprotection, introduction of the unsaturated side chain was carried out 
following the method of Corey16 (see scheme 2.3.2). Deprotection of the 

methoxy group with TMSI concluded the enantiospecific synthesis of 

pseudopterosin A and E aglycone. Lack of stereoselectivity in the 

cycloaddition step and the use of a very expensive chiral starting material 
are the major drawbacks of this otherwise elegant and concise approach. 

2.6 The Kozikowski and Wu partial synthesis. 

Several partial syntheses of pseudopterosins and analogues have been 

published since 1991, proving the interest of several organic chemists in this 

class of compounds. 
The first partial synthesis by Kozikowski and Wu3 (scheme 2.6.1) 

was conceived as a flexible approach to the natural compounds as well as to 
selected analogues with a view to exploring the structure-biological activity 
relationships of these compounds. 

It was envisioned that alkene 2.6.1.1 would be a suitable precursor 
for a range of pseudopterosins analogues. Its synthesis was based on 
nucleophilic addition for the closure of ring C of pseudopterosins and 
intramolecular Diels-Alder for the formation of the aromatic core. Diene 
2.6.1.3 could be derived from (S)-carvone. 
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Scheme 2.6.1 

2.6.1.1 

ý 

nucleophilic 
attack 

Y 

2.6.1.2 2.6.1.3 

U 

(S)-Carvone 

Scheme 2.6.2 shows the overall sequence. Key diene 2.6.2.3 was prepared 

after a series of transformations including Shapiro reaction of ketone 

2.6.2.1. Reaction of 2.6.2.3 with dienophile 2.6.2.4 (prepared in four 

steps from methyl-3-bromopropiolate) followed by aromatisation led to 
bicylcic 2.6.2.6. After a rather lengthy series of manipulations of the side 
chains, intramolecular reactions of enamine 2.6.2.10 formed ring C of the 
desired intermediate. Amide 2.6.2.11 was formed as a 1: 1 mixture of 
diastereoisomers which could then be separated by chromatography. 



28 

Scheme 2.6.2. 

ý 
a, b, cr Y/- d, e, f 

(S)-Carvone lp 

h 
-ý 

2.6.2.5 

I, m, n 

2.6.2.8 

2.6.2.6 

o, p 
-ý 

2.6.2.3 

2.6.2.7 

Yields, reagents and conditions 
a 72% Li-NH3, t-BuOH 
b 95% NMO, Os04, t-BuOH 
c 90% (CH3)2C(OCH3)2, PPTS 
d 81% TrisNHNH2, MeOH 
e 57% BuLi, then CH3CHO, THF, 0°C 
f 71% PDC, CH2CI2 
g 99% LHMDS, THE then TMSCI 
h 52% (i) 2.6.2.4,3,5-di-t-butylcatechol, o°C; (ii) 2N HCI, THF 

(iii) DBU, THE 
i 68% (i) TMSI, HMDS, Et3N, (CICH2)2; (ii) DDO, PhH; (iii) Me2SO4 
j 78% DIBAL-H, Et2O 
k 85% (i) TFAA, Et3N, CH2CI2; (ii) H2, Pd/C (10%), 50°C 

(iii) K2C03, H20 
I 98% Ac2O, Et3N, DMAP 
m 82% AcOH, THF, H20 
n 95% TSCi, Et3N, DMAP, CH2CI2 then DBU 
o 94% AI(Oi-Pr)3, PhCH3 
p 84% NCS, Me2S, CH2CI2, -15°C 
q 76% PDC, CH2CI2, then TMSNEt2, p-TsOH 
r 75% EtOH, Nal, dark, then H20 
s 52% (i) NaCiO2,2-methyl-2-butene, K2HP04, t-BuOH; 

(ii)pyrrolidine, Et3N, 2-chloro-l-methylpyridinium iodide 
CH2CI2,40°C 

r, s 

2.6.2.11 

02 
02CH3 

02CH3 

2.6.2.4 

This approach was long and the lack of stereocontrol at C1 (aglycone 
numbering) affected the overall efficiency. 
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2.7 The Jung and Siedeur partial synthesis. 

A novel and concise approach was presented by M. E. Jung and C. S. 
Siedem23 in 1993 (scheme 2.7.1). Their strategy was based on the key 

transformation of the functionalised furanyl derivative 2.7.1.2 into 

phenalene 2.7.1.1. Intramolecular Diels-Alder or Michael addition 
followed by aromatisation were considered as benzannulation methods. 
Scheme 2.7.1. 

Pseudopterosins 
A-F Aglycones 

2.7.1.1 

Bn 
+ 

2.7.1.2 

e OR OR 
2.7.1.3 2.7.1.4 2.7.1.5 

The concise synthesis (scheme 2.7.2) started from racemic enol ether 
2.7.1.5 which was readily transformed into aldehyde 2.7.1.4 after 
allylation followed by hydroboration and oxidation. 2.7.1.4 was added to 
the lithium anion of known furan 2.7.1.3 and the enone 2.7.2.3 was 
obtained after protection. DIBAL-H reduction at -78°C followed by 
elimination on silica gel yielded 2.7.1.2 as a single isomer. 
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Scheme 2.7.2. 

a) Sia2BH 
H202, NaOH 

2.7.1.4 2.7.1.3 

HO 

Allyl bromide 

-78°C, 95% 

Et Me 

+ 

(a) 2.7.1.3 
BuLi, THE 
-78°C 

n then 2.7.1.4 
(b) TBSCI 

imidazole 
53% 

b DMSO 
(COCI)2 
NEt3,58% 

2.7.2.3 

TBSO 

2.7.1.2 

2.7.1.1 2.7.2.5 

2.7.2.4 

Bn 
-ý 

The authors explained the selectivity through the formation of an 
allylic carbocation formed by dehydration of the carbinol formed after 
reduction with DIBAL-H, consequently trapped by the silyl ether to give 
2.7.2.5. Equilibration via a stabilised furfuryl carbocation and hydrolysis 
led to 2.7.1.2. The preference of the furan ring to be equatorial in 2.7.2.5 
results in the formation of 2.7.1.2 as a single isomer. The resulting enone 
failed to undergo intramolecular Diels-Alder, leading to the recovery of the 



31 
product of Michael addition between the electon-rich furan ring and the 

unsaturated system. A delicate balance between Diels-Alder, retroaldol and 
Michael addition is probably responsible for these results. Treatment of 
2.7.2.4 with base led to aldol reaction followed by aromatisation and 

partial loss of the TBS group. Silylation of the mixture finally afforded 
desired phenalene 2.7.1.1. The approach, although overall concise and 

original, is only partial and developed towards racemic compounds. This 

route highlights the numerous regio- and stereochemical issues to be taken 
into account when planning synthetic approaches to these structures. 

2.8 The Harrowven tandem approach. 

An original approach to the hexahydrophenalene system of 
pseudopterosins aglycones was presented in 1994 by Harrowven et a124. 
They envisaged that a sequence of Friedel-Crafts alkylation and Friedel- 

Crafts acylation reaction could easily afford the tricyclic system of the target 

molecules (scheme 2.8.1). 
Scheme 2.8.1. 

R` Lewis Acid-catalysed 
Friedel-Crafts alkylation 

Friedel-Crafts 
acylation 

Scheme 2.8.2 describes their partial route. Treatment of 2.8.2.4 
with a Lewis acid to give tricyclic 2.8.2.5 proceeded with good yield but 
substantial loss of stereocontrol at the secondary benzylic position. 
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Scheme 2.8.2. 

2.8.2.1 

2.8.2.2 
Bu3SnH 

Imp. 
AIBN, then 
2.8.2.3 
KF, 48% 

(a) TsCI, pyr, CH2CI2 

(b) Nal, acetone 
reflux, 6h, 97% 

2.8.2.2 2.8.2.3 

TiCI4 
-30- 
CH2CI2 

74% 

2.8.2.4 2.8.2.5 

Although extremely concise, so far this route has approached only 

analogues of Corey's key intermediates and has not yet tackled the issue of 
introducing the remaining two stereocenters. 

2.9 The Schmalz approaches to pseudopterosins and analogues. 

The strategy devised by H. -G. Schmalz and coworkers is based on the 

reactivity of arene-Cr(CO)3 complexes as sources of chirality and activation 
for aromatic precursors of pseudopterosins and analogues. The presence of 
the metal stabilises both carbanions and carbocations at benzylic positions as 
well as activating the aromatic ring towards nucleophilic substitution. 

In their first commmunication25 published in 1994, the substituted 
tetrahydronaphthalene skeleton was derived from Cr-complexed tetralone 
2.9.1.4 (scheme 2.9.1) after a series of asymmetric alkylations. The 
stereoselective transformations were directed by the presence of the bulky 
ligand on one face of the molecule. 
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Scheme 2.9.1. 

2.9.1.1 

",,,, 

2.9.1.3 

2.9.1.2 

2.9.1.4 

Their original synthesis (scheme 2.9.2) starts from nonracemic 2.9.1.4 
(>97% ee). 2.9.2.1 was obtained after a sequence of alkylation, dehydration 

and hydrogenation of the alkene from the least hindered face to introduce 

the first chiral center before protection. The remaining two stereocenters in 
2.9.2.3 were introduced with complete regio- and stereocontrol by direct 

alkylation of one of the benzylic positions and Michael addition of the anion 
generated on the other. The final key cyclisation and stereoselective 
introduction of the benzylic methyl group completed the synthesis of 
2.9.2.6, a partially saturated analogue of pseudopterosin G aglycone and 
helioporin E. 
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Scheme 2.9.2. 
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Me 

ON 
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NaBH4, MeOH, CH2CI2 

p-TsOH on Si02, C6H6 
5 bar H2, cat Rh/A1203, AcOEt, AcOH 
Lithium-2,2,6,6-tetramethylpiperidide, TMSCI, THF 
BuLi, THF, HMPT, -50°C -+ 0°C 
then ICH2CHMe2, THF, -30°C -4 0°C 
(i) BuLi, THF, HMPT, -55°C -4 0°C, then CH2=C(TMS)C02Me 
(ii) 2N HCI, 0°C; (iii) TBAF, THF 
NaOH, MeOH, H2O 
Polyphosphoric acid, rt -- 70°C 
NaBH4, MeOH, CH2CI2 
Ac2O, pyr, DMAP 
AIMe3, CH2CI2,78°C -+ 0°C 
hv, air, Et20 
BuLi, TMEDA, then McLi 

-o 

A modification of this procedure26 allowed the synthesis of 2.9.3.3, 

an advanced precursor with an unsaturated butylidene side chain (scheme 
2.9.3). Stereoselective vinylation of 2.9.2.1 and attachment of the carbonyl 
side chain of 2.9.3.2 were effected in a fashion similar to that used in their 
preceding paper. A novel radical addition to the chromium-complexed 

cxx (OC)3CI' Lun 

",, 
to 
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aromatic ring led to 2.9.3.3 as a single diasteroisomer after loss of 

methanol upon aromatisation. 
Scheme 2.9.3. 

MS 
Rid i TI41= IaKAPO 

I mb 
.... va. ý. ý .... ý...... .. I P1\I 

2.9.2.1 

me 
-55°C -+ 0°C rvi 

Me then BrCH=CMe2 
Ni(O), THE 

-78°C -+ 0°C 
55% 

(a) BuLi, THF, HMPT 
-55°C -ý 0°C 
then CH2=C(TMS)COMe 

-78°C -ý 0°C 
(b) 2N HCI 
(c) TBAF, THF, 55% 

2.9.3.2 2.9.3.3 

A different protocol, again based on the same overall strategy, was 
employed27 for the synthesis of functionalised tetrahydronaphthalene 
derivative 2.9.4.6 (scheme 2.9.4). The well-precedented introduction of 
the two side chains starting from 2.9.4.1 led to unsaturated 2.9.4.3 as a 
single isomer. Stereoselective hydroboration of the terminal double bond 

proved another advantage of the arene-Cr complexes. As only one face of 
the molecule is strongly hindered, the free rotation of the side chain is 

restrained and the borane attacks the n system from the most accessible side. 
A number of hydride sources were examined for the opening of the oxetane 
2.9.4.5 to yield the corresponding tetrahydronaphthalene system but the 
elimination product 2.9.4.6 was obtained instead. 

2.9.3.1 
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Scheme 2.9.4. 
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2.9.4.1 
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TM S 

2.9.4.2 

2.9.4.5 

2.9.4.3 

f 
-3110 

2.9.4.6 

Yields, reagents and conditions : 
(a) 75% Isopropenyl lithium, THF, -70°C -+ 0°C, then TMSCI, -30°C -+ 0°C 
(b) 87% BuLi, THF, HMPA, -35°C -4 0°C, then Mel, THF, -20°C -+ 0°C 
(C) 52% (i) BH3"SMe2, THF, 28°C; (ii) H2O, 0°C; (iii) H202, NaOH 
(d) - p-TsCI, Pyr 
(e) 63% TBAF, THF 
(f) 50% BF3. OEt 

The latest approach to secopseudopterosins via arene Cr-(CO)3 

complexes was published by the same group in 199728. The approach is 

based on the consideration that attack of an organolithium reagent on the 

exocyclic double bond of complex 2.9.5.2 (scheme 2.9.5) followed by 

diastereoselective protonation from the least hindered face should afford 

preferentially a trans product. 2.9.5.3 was obtained with very good 
diastereoselectivity (10: 1) following this protocol. The synthesis of 

secopseudopterosins aglycone analogue 2.9.5.4 was achieved in a 
straightforward manner and with high yield. Introduction of the remaining 
stereocenter on the side chain, however, remains a major untackled issue in 

this approach. 



Scheme 2.9.5 
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Me a, b 
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cr(co)3 
> 99% ee 
2.9.4.1 
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e, f 
-ý 

g, h 

2.9.5.3 
2.9.5.4 

Yields, reagents and conditions: 
(a) - TMSCH2CeCI2, THF, -75°C- rt 
(b) 85% KH, THF 
(C) 
(d) 
(e) 

(f) 
(9) 
(h) 

BuLi, THF, -78°C, then TMSCI 
BuLi, THF/HMPT, -50 -4 0°C then Mel, -30°C 

90% homoprenyllithium, THF, -60 -* 0°C then HCl 
- 10: 1 mixture of isomers 
75% TBAF, THF, H2O, then chromatography 
94% BuLl, THF, -70 --* -40 °C, then Mel 
98% hv, air 

The use of chiral Cr-arene complexes appears to be an interesting 

approach to the system but so far only the synthesis of analogues of the 
natural pseudopterosins and helioporins has been achieved. Also noteworthy 
is the total synthesis of (+)-dihydroxyserrulatic acid by Uemura and 
coworkers29, the first to employ Cr-arene complexes to control 
stereochemical issues. Their synthesis is shown in scheme 2.9.6. 
Unsaturated side chain of 2.9.6.2 was introduced via stereoselective 
reaction of the corresponding stabilised benzylic cation with (E) - 
crotyltrimethylsilane. Nucleophilic attack and ionic hydrogenolysis yielded 
methylated tetralin 2.9.6.3 as a single isomer. 

Me 

Z*l 
ý' J 

Gr(GO)3 

2.9.5.1 
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Scheme 2.9.6. 

MeÖ CD M 

2.9.6.1 

f, g, h 

2.9.6.4 

j, k, I 

2.9.6.2 

2.9.6.6 

Yields, reagents and conditions : 
a 95% LiAIH4 
b 98% Ac2O, Pyr 
C 72% (E)-MeCH=CHCH2SIMe3 

BF3*OEt2 
d 60% MeLi 
e- Et3SIH, CF3CO2H 
f 50% 2-Lithio-1,3-dithiane, then 12 
9 95% EtSH, NaH, DMF 
h 96% Ac2O, Pyr 

d, e 
-ý 

2.9.6.3 

i 

2.9.6.5 

(f)-Dihydroxyssrruiatic 
acid 

i 77% 9-BBN, then PdCI2(dpp% K2CO3 
E-methyl-ß-bromomethacrylate 

j 90% DIBAL-H, CH2CI2 
k 98% Ac2O, Pyr 
I 69% HgO, BF39OEt2, H20 
m 85% NaCN, Mn02, MeOH, AcOH 
n 60% NaOH, MeOH, H20 

Introduction of the remaining benzylic C1 unit via aromatic nucleophilic 
addition and extension of the side chain followed by minor transformations 
yielded (f)-dihydroxyserrulatic acid in 13 steps from the complexed tetralin 
2.9.6.1. 
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2.10 The Frejd studies towards pseudopterosin A. 

A synthetic approach to pseudopterosin A was published by Frejd et al 30 in 

1996. The functionalised aromatic ring was built through Diels-Alder 

cycloaddition between dimethylacetylenedicarboxylate (DMAD) and the 

suitable diene 2.10.1.5 (scheme 2.10.1) followed by aromatisation. 

Scheme 2.10.1. 

Cj", f Br 

2.10.1.1 

Mg, CuBroSMe2 
THF. -78°C -4 rt (ý --l HCi, THE 

1 -Il i-- 
63% 

2.10.1.2 

Ph3P=CHMe 
020, -78°C -+ rt 

53%, Z: E=2: 1 

2.10.1.5 

---A- 
59% 

Me02 

(a) DMAD, AICI3 
CH2CI2,0°C 

(b) DDQ, DMF, 38% 

2.10.1.6 

Although this route is simple and straightforward, the lack of 

enantioselectivity and stereocontrol in the formation of the diene makes it 

unsatisfactory in its present shape. 

2.11 Conclusions. 

The wealth of total syntheses and approaches to analogues of pseudopterosins 
show the keen interest of researchers in these compounds. Despite the 
biological importance of these natural products, however, none of the 

published routes is sufficiently concise and stereoselective to make it suitable 
for the synthesis of large quantities of final compounds. Stereocontrol and 
introduction of the correct functionalities on the aromatic ring appear the 
major obstacles encountered to date. 



40 

Chapter 3 
The Kocienski group approach. 
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3.1 Retrosynthetic analysis. 

Studies towards pseudopterosins in Professor P. J. Kocienski's group 

were carried out by Dr. S. Gill and Dr. A. Kohler starting in 1987. The 

retrosynthetic analysis for this approach (scheme 3.1.1) started from the 

oxidation of phenol 3.1.1.1 to the natural product aglycone in the last stage 

of the synthesis to avoid problems with the instability of the target. It was 

predicted that the center at Cl of pseudopterosin could be introduced with 

stereocontrol using a Friedel-Crafts type alkylation of the electron-rich 
oxygenated aromatic ring. 
Scheme 3.1.1 

Phenolic 
H loxidation 

`. OH 

Pseudopterosin J-K 
aglycone 3.1.1.1 

Friedel-Crafts 
ý 

I "; i I type alkylation 

3.1.1.2 

II 

(+)-isopulegol 3.1.1.4 

Lewis acid-catalysed 
aromatisation 

R` bR2 

3.1.1.3 

For the pivotal intermediate 3.1.1.3 a non-aromatic precursor was 
chosen, anticipating that the anisole ring with the desired substitution pattern 
could be built via a protocol published by Dieter et a131. Following this 
strategy, two stereocenters of the final target could be derived from 
commercially available (-)-isopulegol and the remaining two would be 
ensured exploiting substrate control. 
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3.2.1 The first Kocienski group approach. 

Scheme 3.2.1 depicts the first approach to pseudopterosins K and L 

aglycone, presented in 1994 after extensive studies32. The synthesis started 
with chromatographic separation of (-)-isopulegol from the commercial 
mixture of isomers (mainly the desired compound and neoisopulegol in 3: 2 

ratio). Direct hydroboration of the monoterpene yielded the 1,4-diol with 
the undesired configuration at the C3 stereocenter of pseudopterosins. 
Inversion of the secondary alcohol of isopulegol had then to be performed 
under Mitsunobu conditions. After easy cleavage of the p-nitrobenzoic ester, 
hydroboration of the newly formed neoisopulegol (3.2.1.2) yielded a 
mixture of diols 3.2.1.3 and 3.2.1.4 in a 2: 1 ratio in favour of the desired 
diastereoisomer. Despite several attempts varying conditions and reagents, 
this ratio could not be improved and the isomers had to be separated by 

chromatography after selective protection of the primary hydroxy group as 
TBS ether. Swern oxidation provided ketone 3.2.1.8, the starting material 
for the aromatisation procedure which will be described in detail in chapter 
5. Synthesis of the unstable cyclic a-oxoketene dithioacetal 3.2.1.8 proved 
a capricious reaction and was achieved with unsatisfactory yield (33% at 
best) and with formation of a number of side products which made 
purification extremely difficult. Aromatisation was then achieved after 1,2- 
addition of methallyl magnesium chloride and treatment of unstable 3.2.1.9 

with BF3. OEt2 in the presence of MeOH. Reaction of analogous acyclic 
dithioacetals led exclusively to the formation of thioanisole products and 
conversion of these substrates to the oxygenated analogues proved lengthy 

and unpractical. 
After tosylation of 3.2.1.10, allylic sulfone 3.2.1.12 was obtained 

as a 1: 1 mixture of epimers after alkylation with the lithium anion derived 
from 3-methyl-l-phenylsulphonylbut-2-ene (3.2.1.17). Closure of ring C 
of pseudopterosins was then achieved in good yield upon treatment of 
3.2.1.12 with A1C13 in Et20 at reflux, although a 1: 1 mixture of 
inseparable diastereoisomers was formed. 
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The final steps of the synthesis were carried out following the 

procedure reported by McCombie et a119. After cleavage of the methoxy 
group to afford free phenol 3.2.1.15, oxidation with Fremy's salt followed 
by reduction of the corresponding intermediate quinone to the catechol 
yielded a 1: 1 mixture of pseudopterosin K-L aglycone and its C1 epimer in a 
disappointing 40% yield. The two diastereoisomers could be partially 
separated after repeated column chromatography. 

3.3 Conclusions. 

The first Kocienski group synthesis presented several drawbacks: 

" the initial chromatographic separation on commercial isopulegol was 
costly and not practical; 

" Mitsunobu inversion as first step was expensive and purification of the 

product from triphenylphosphine oxide was troublesome on a large scale; 

" poor stereocontrol in the hydroboration of 3.2.1.2 to 3.2.1.3 and 
3.2.1.4 led to yet another difficult chromatographic separation and loss of a 
significant share of the material; 

" key formation of cyclic a-oxoketene dithioacetal 3.2.1.8 was 
achieved in low yields and with poor reproducibility; 

" total lack of stereocontrol in the ring C closure step and poor yield in 
the oxidation step lowered unacceptably the overall efficiency. 
With these observations in mind, we set to improve the previously outlined 
synthesis before investigating an entirely new approach. 
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Chapter 4 
Stereoselective synthesis of the ketone precursor for 

the benzannulation reaction. 
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4.1 Introduction. 

In this section we report our first attempts to improve the 

practicability and stereocontrol in the synthesis of diol 3.2.1.4. We 

predicted that securing an easy access to significant amounts of this 
intermediate was essential to be able to investigate the aromatisation step and 
the stereochemical issues in the later stages of the synthesis. 

4.2 Mitsunobu inversion of isopulegol. 

We encountered our first difficulties while attempting to scale up the 
Mitsunobu inversion of isopulegol to neoisopulegol p-nitrobenzoate (scheme 
4.2.1). This transformation is smoothly achieved in good yield on medium 
scale (up to 5 grams of alcohol) while on larger scale it seems to stop after 
conversion of only 30% of the starting material. Recovery of the product 
from unreacted triphenylphosphine-DEAD adduct (a thick orange oil) in 
these conditions is also extremely difficult. 
Scheme 4.2.1. 

p-Nitrobenzoic NaOH, McOH 
acid, DEAD (1Q THF, 51 % 

(-)-Isopulegol 

PPh3, PhMe 
0°C 

3.2.1.1 

over 2 steps ""OH 

NO2 
3.2.1.2 

(+)-neoisopulegol 

It is reported 33 that transformation of this kind can be capricious and 
the yields vary greatly depending on the substrate. The highly exothermic 
nature of the reaction can be responsible for the irreproducibility on large 
scale. Changing solvent from toluene to benzene or THE and using 1.8 
equivalents of DEAD instead of 1.2 did not improve the yield on large scale. 
The mechanism for this reaction is reported in scheme 4.2.2. 

We eventually found a viable alternative in the method reported by 
Kaulen et al 34 in 1987 (scheme 4.2.3). 
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Formation of the adduct 4.2.3.1 between isopulegol and 
dicyclohexylcarbodiimide (DCC) in presence of Cu(I) was followed by 

reaction with p-nitrobenzoic acid to provide crystalline ester 3.2.1.1 in 

good overall yield (> 72%). 
Scheme 4.2.3. 

p-Nitrobenzoic DCC, Cul 
-j 

' acid, PhH 

NO2 
(-)4sopulegol 4.2.3.1 3.2.1.1 

This inversion could be reproduced on up to 15 g scale but initial 

chromatographical separation of commercial isopulegol was still necessary. 

4.3 Hydroboration of isopulegol and neoisopulegol. 

Lack of stereocontrol in the hydroboration step was still the major 
problem in the first steps of the synthesis. 
Hydroboration of isopulegol and neoisopulegol was first reported by 
Schulte-Elte and Ohloff in 196735. Direct hydroboration of (+)-isopulegol 
(scheme 4.3.1) leads to diols 4.3.1.1 and 4.3.1.2 in 5: 95 ratio. 
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(scheme 4.3.1) leads to diols 4.3.1.1 and 4.3.1.2 in 5: 95 ratio. 
Unfortunately, the major product has the wrong relative configuration for 

our final target. 
Reaction of (-)-neoisopulegol under the same conditions reportedly 

led to a mixture of 3.2.1.4 and 3.2.1.3 in 91: 9 ratio. In this case, the 
isomer with relative configuration suitable for the synthesis of 
pseudopterosins is obtained as the major component. 
Scheme 4.3.1. 

(-)-isopulegol 

(i) B2H6"THF, 0°C 

(ii) H202, NaOH 
100% 

5 

4.3.1.1 

(i) B2H6"THF, 0°C 

*"'OH (ii) H202ýN/aOH 

(+)-Neolsopulegol 
91 

3.2.1.4 

+ 

9 

3.2.1.3 

Schulte-Elte and Ohloff investigated the mechanism and the origins of 
selectivity conducting the hydroboration of the preformed trialkylboronic 
ester of isopulegol (scheme 4.3.2). As the same ratio of diastereoisomers 
was obtained, they inferred that 4.3.2.1 was the intermediate in the 
hydroboration of isopulegol. This experiment suggested the postulated 
mechanism reported in scheme 4.3.2. 

In our hands, the selectivity reported in the original paper could never 
be reproduced and the best ratio obtained was 2.5: 1 in favour of desired 
3.2.1.4. Our first attempts to improve this far from ideal situation involved 
the screening of different hydroborating agents and reaction conditions. 
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neoisopulegol the results were disappointing. The best obtained ratio was 2 

:1 in favour of 3.2.1 and changing reaction conditions (different 

temperatures, times and order of addition of reagents) or using BH3"SMe2 

could not improve the stereochemical outcome. When 9-BBN was employed, 
the undesired isomer 3.2.1.3 was obtained as the predominant product (3: 1 

ratio). 
Scheme 4.3.2. 

4.3.2.1 

-H. 

HO 
H 

4.3.1.2 
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product 

-ý»- �_ 
`ý/ w "` -ýº 4.3.1.1 

=0R ry"' ý8; minor 
bR product 

1 
1 

Q, ý 
ý' 

For the first part of our studies, we agreed to employ this route, even 
with poor stereocontrol, keeping in mind that further studies had to be 
undertaken after investigating the challenging problems in the later stages of 
the synthesis. 
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4.4 Synthesis of diol 3.2.1.4 via epoxidation - NaBH3CN oxirane 

opening sequence. 

The decisive improvement came through when we investigated the 

possibility of introducing the C3 center via a sequence of directed 

epoxidation and regioselective oxirane ring opening. 
The substrate-directed epoxidation of homoallylic alcohols is a well-studied 
transformation37 and we were confident that some degree of 
stereoselectivity was achievable after some experimentation. For the overall 
sequence to be stereoselective, however, SN2-type delivery of anhydride to 
the most hindered terminus of the epoxide would have to take place with 
high regio- and stereocontrol. 

Various methods for the regiospecific opening of terminal epoxides 
are known38-41 but many of these procedures are not stereoselective. 
Hutchins et al. 42reported in 1981 an elegant method for this kind of 
tranformations (scheme 4.4.1). 
Scheme 4.4.1. 

C)50 
NaBH3CN (1.5-3 eq) 

BF3-OEt2 (cat) 

bromocresol green 
THF, rt, 6h, 87% 

C 
+H 

97 3 
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O 
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tfý P 

i j1,2-hydride shift 

C6H5CH2CHO 
BD3CN' 

C6H5CHDCH2OH 

70% 

C6H5CH2CHDOH 

30% 

Various epoxides were transformed into the corresponding primary 
alcohols in good yields by treatment with NaBH3CN in THE solution 
buffered between pH 3.8 and 5.4 by addition of BF3. OEt2. The reaction was 
subsequently employed in the synthesis of natural products43-45 with 
stereoselectivity but no mechanism was ever proposed for it. BF3. OEt2 can 
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stereoselectivity but no mechanism was ever proposed for it. BF3. OEt2 can 
coordinate to the oxygen atom of the epoxide weakening the C-O bond and 
creating partial carbocationic character prior to SN2-type attack. 
Complexation with Lewis acid is essential for the reaction to proceed as 
epoxides are inert to treatment with NaBH3CN in basic or neutral media. 
Whatever the complexing Lewis acid, the final effect is stabilisation of the 
incipient positive charge on the most substituted position46. Delivery of the 
hydride takes place with complete inversion of configuration. Therefore 

opening of the epoxide does not occur via a completely cationic 
intermediate, which would lead to scrambling of stereochemistry. This 

pathway is partially supported by investigations made by the authors of the 
original paper42. They reported that treatment of styrene oxide with 
NaBD3CN afforded mainly 2-deuterio-2-phenylethanol, alongside with 30% 

of alcohol carrying deuterium at the Cl position. 
The minor product arose from an alternative pathway. After 

complexation of the oxirane with BF3. OEt2, an intramolecular 1,2-hydride 
shift can occur with inversion of configuration at the most substituted center 
to generate the corresponding aldehyde (scheme 4.4.2). The carbonyl group 
is then reduced by the external hydride source. Transformations of this kind 
have been more recently reported47-50 Both pathways are plausible, 
although the 1,2-hydride shift seems the most commonly accepted for non- 
benzylic epoxides. This could be proved by treating the allylic substrates 
with NaBD3CN but none of the authors reported experiments using 
deuterium labelling. 

Scheme 4.4.2. 

NaBH3CN 
H2OH 

We then set to apply these conditions to our substrate but direct 
epoxidation of isopulegol with MCPBA or VO(acac)2 gave a 1: 1 mixture of 
diastereoisomers. Friedrich and Bohlmann51 reported in 1988 that 
hydroxyl-directed epoxidation of neoisopulegol with VO(acac)2 leads to 
4.4.3.1 (Scheme 4.4.3) with complete stereocontrol. This intermediate 
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displays the correct stereochemistry to be transformed into diol 3.2.1.4 

after reductive opening with inversion. The proposed37 intermediate for this 

epoxidation is 4.4.3.2 and the axial position of the hydroxyl group is 

crucial for stereodifferentiation. We could reproduce this transformation 

with excellent stereocontrol (no trace of isomers by 1H and 13C NMR) to 

obtain crystalline 4.4.3.1 in 88% yield. 
Scheme 4.4.3. 

(-)-Isopulegol 

L-Selectride 

THF, -78°C-+ rt 
98% 

Jones oxidation 

72% 

(+)-Neoisopulegol 

Isopulegone 

t-BuOOH 
VO(acac)2 

benzene, rt 
88% 

4.4.3.1 

Me = 4.4.3.1 

4.4.3.2 

Although transformation of 4.4.3.1 into 3.2.1.4 was never reported 
before, we were pleased to find that the ring opening takes place smoothly 
under Lewis-acid catalysis to produce the corresponding diol as a single 
stereoisomer. Comparison with 1H and 13C NMR spectra of the product 
with those of previously obtained 3.2.1.4 and 3.2.1.3 proved that the 
reduction occurs with complete inversion to afford the desired stereoisomer 
in high yield. Besides, Friedrich and Bohlmann reported in the same paper 
an ingenious and straightforward inversion of isopulegol to neoisopulegol. A 
two-step sequence of oxidation to isopulegone and reduction to the axial 



53 
overall yield. This route is ideal to our purposes as it allows us to start from 

commercial isopulegol (containing up to 33% of neoisopulegol) without the 

initial chromatography separation on large scale. The final sequence is 

shown in scheme 4.4.3. 

Scheme 4.4.3. 
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Selective protection of the primary hydroxyl group of 3.2.1.4 as its 
TBS ether and Swern oxidation to ketone 3.2.1.7 easily completed the 

synthesis of our precursor for the construction of the aromatic ring. 

4.5 Conclusions. 

After extensive experimentation, it became clear that approach to diol 
3.2.1.4 via hydroboration was inadequate because of lack of stereocontrol. 
However, our completely reshaped route involving epoxidation and 
reduction with NaBH3CN in presence of BF3. OEt2 provided excellent 
selectivity and good yield. These results and the alcohol inversion via 

H 

TBS 
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reduction of isopulegone allowed us to synthesise efficiently up to 4g of 
ketone 3.2.1.7. 
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Chapter 5 
Transformations of ketones into phenols and 

catechols. 
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5.1 Introduction. 

Building an aromatic ring with the substitution pattern suitable for 

pseudopterosins is a significant synthetic challenge. Although various 
methods for the construction of aromatic rings starting from aliphatic 
ketones have been reported, a standard procedure for the transformation has 

not been established to date. Some of these methods have already been 

reported in chapter 2. The approaches to pseudopterosins by Buszeck22, 
Kozikowski3 and Jung23 exploit Diels-Alder cycloadditions to build the 
functionalised phenols while Corey16 and Broka14 used a sequence of 
Michael addition on terpenoid precursors followed by aromatisation. 

A short review of the methods for this transformation reported in 
literature is presented in the following paragraphs. 

5.2 Annulations based on Michael and aldol additions. 

Boger and Mulican52 reported a mild and versatile phenol formation 
in 1980. The process is basically a Robinson annulation of 0-ketosulfoxide 

with a vinyl ketone, followed by mild elimination of phenylsulfenic acid to 
give the corresponding phenol (scheme 5.2.1). 
Scheme 5.2.1. 

C 
SOPh CH3 [ 

1.2 eq NaOMe 
rt, 55 h 

43% 

ý 

-PhSOH 

The entire transformation proceeds under extremely mild conditions 
(0-25°C) to give the aromatic ring without isolation of any of the 
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intermediates albeit yields are generally modest (30-58%) and only 

cyclohexanone was used as the ketone partner. 
Another approach to fused phenols based on Michael addition was 

developed by Takaki et a153,54 Robinson annulation of various ketones with 

enone 5.2.2.1 (scheme 5.2.2) led to bicyclic 5.2.2.2. Oxidation of the 

thioether group followed by thermal elimination led to the corresponding 
bicyclic phenols whereas treatment of 5.2.2.2 with PPTS yielded the 

thioanisoles deriving from double dehydration in minor yield. 

Scheme 5.2.2. 
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(b) A 
5.2.2.3 

5.2.2.2 
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70% 

21% + 74% 5.2.2.3 
SPh 
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A similar method was published by Corey and Palam in 199755 for 

the synthesis of monoterpene catechols but in this case the rather lengthy 

sequence (5 steps) and low overall yield make it unpractical. 
An interesting synthesis of catechol monoethers from 

hydroxymethylene ketones was devised by Tius et al 56,57 Their rather 
elaborate route began with 1,2-addition of a allylic lithium reagent to a-keto 
enol ether 5.2.3.1 (scheme 5.2.3), followed by conversion to the 
corresponding enal (5.2.3.2) by treatment with anhydrous pyridinium 
tosylate and Pd-catalysed oxidation of the terminal olefin to ketone. One-pot 
intramolecular aldol reaction and dehydration led cleanly to the desired 
catechol ether in acceptable overall yield (43 - 78%). 

However, the transformation proved to be capricious, mainly due to 
the concurrent formation of ß-hydroxy aldehydes rather than unsaturated 
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aldehydes in the desilylation step and to poor stereoselectivity in the Pd- 

catalysed oxidation. 
Scheme 5.2.3. 
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HOTBS 
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Unfortunately, all these annulations are unsuitable to our purpose as 
the C-O bonds would be formed on the same side as the starting carbonyl 

group, thus with the unsuitable regiochemistry for pseudopterosins starting 
from ketone 3.2.1.7. A route via Michael addition could be employed 
starting from other monoterpene units, such as dihydrocarvone. 

5.3 Synthesis of catechols via chromium carbene complexes. 

The benzannulation of Fischer-type chromium carbene complexes 
with alkynes, known as the Dötz annulation (scheme 5.3.1), is a well known 

58,59 with vast utility , 59 

EtOCH(Li)CH=CH2 
ZnCI2, THF, -78°C 
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Scheme 5.3.1. 
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The commonly accepted mechanism for this [3+2+1] addition is 
illustrated in scheme 5.3.2. The first postulated step is the reversible 
dissociation of a carbon monoxide ligand from the metal center, followed by 

coordination of. the alkyne to give 5.3.2.4. The regioselectivity of the 

reaction is determined at this step by steric factors. The smallest substituent 
on asymmetric alkynes places itself next to the carbene ligand in the most 
stable conformer of the alkyne complex 5.3.2.4 and finally occupies the 

position a to the methoxy group in the hydroquinone monoether. A carbon- 
carbon bond is then formed between the carbene and one terminus of the 
triple bond to give 5.3.2.5. Electrocyclic ring opening of the highly 

strained 5.3.2.5 leads to vinyl complex 5.3.2.6. 

Scheme 5.3.2. 
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5.3.2.8 

RL> Rs 

5.3.2.2 

RL-Rs 
5.3.2.3 (CO)aý 

RL > Rs R 

5.3.2.6 

-R$ 
5.3.2.4 
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The benzannulated product 5.3.2.7 is formed either via insertion of 

CO into the vinyl carbene followed by electrocyclic ring closure, as 
postulated by Dötz, or via the mechanism proposed by Casey, in which the 

order of the two steps is reversed. The final product is generally obtained in 

good yield and with fair to good regioselectivity. In any example, only 
aromatic rings with the hydroxy and methoxy substituents in para relation 
are obtained, under both thermal and photochemical conditions. 

An alternative route to the synthesis of substituted catechols is the 

photochemical intramolecular benzannulation of (Z) - 
dienyl(alkoxy)chromium carbene complexes60,61 (scheme 5.3.3). The 

proposed mechanism proceeds via a ketene intermediate which undergoes 
electrocyclisation to form the aromatic ring in a one-pot process. 
Scheme 5.3.3. 

hv 
(OC)5C 

if Me 
-E-- ý 

(OC)4C 

The catechols are generally obtained in good yield (40 - 90%) and 
excellent regioselectivity but so far only aromatic starting materials have 
been employed, perhaps due to lack of reactivity when aliphatic dienyl 
complexes were subject to photolysis. 

Me 
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5.4 Synthesis of substituted catechols via conjugated addition of 
organocopper reagents to cyclobutenediones and thermal 

rearrangement. 

Liebeskind and Gurski reported in 1993 an interesting approach to 
highly substituted catechol monoethers62. A variety of symmetrically and 
unsymmetrically substituted cyclobutenediones were treated with vinyl-, 
aryl- and heteroarylcuprates to obtain the corresponding enolates (scheme 
5.4.1). After protection as MEM ether, thermal rearrangement smoothly 
affords the monoprotected catechols in high yields (64 - 94%). 
Scheme 5.4.1. 

°! 

+ 
aR 'Ro Ihl kACIkAri .. - -c wý 1-uvrvl c r. Y1RAC6A 
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2 (b) MEMCI 

1 VIYILIYI 

The recent developments in the synthesis of cyclobutenediones and the 
very mild conditions of this method make it particularly attractive for large 
scale synthesis of substituted catechols. 

Another method involving cyclobutanones as intermediates had been 
earlier published by Danheiser et al63,64 Diazoketone 5.4.2.1 was easily 
photolised to vinyl ketene 5.4.2.5 which undergoes a cascade of pericyclic 
reactions to yield the desired benzene 1,2,4-triol derivative with yields 
around 55%. Despite the remarkable simplicity of this one-pot sequence, the 
starting a-diazoketones are not readily accessible and the presence of the 
third hydroxyl group could lead to problems on the route to 
pseudopterosins. 
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Scheme 5.4.2. 
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5.5 The Dieter annulation. 

A simple and straightforward method to form aromatic rings from 
ketones and aldehydes is based on the a-oxoketene dithioacetal chemistry 
developed by Dieter and coworkers31,65 Ketene dithioacetals conjugated to 

carbonyl groups can be readily prepared by reaction of the corresponding 
active methylene compound with carbon disulfide in presence of a base 
followed by alkylation, usually in a one-pot protocol. Further elaboration of 
the products by reduction, 1,2- or 1,4-nucleophilic addition or 
deprotonation provides access to a wealth of products including 
heterocycles, 1,3-enones and thioesters. Junjappa et a166 reported in 1983 

that reduction of the ketone functionality of a-oxoketene dithioacetals 
followed by treatment with Lewis acids in presence of methanol leads 
cleanly to 1,3-carbonyl transposition with loss of the thioalkyl groups 
(Scheme 5.5.1). 

+1 
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Scheme 5.5.1. 

(a) BF3eOEt2 
(b) H20 

0 

The mechanism proposed by the authors involves coordination of the 

alcohol oxygen and of one of the sulphur atoms by boron, resulting in a 6- 

membered boat-like transition state (scheme 5.5.2). 

Scheme 5.5.2. 

Methanolysis of these intermediates would lead to a, ß-unsaturated 

esters while reactions in presence of water afford thioesters in good yield. 
Boron-assisted solvolysis of ketene dithioacetals had been previoulsy 
reported by Corey and Chen67. 

Junjappa68 and Dieter69 reported independently in 1984 that 1,2- 

addition of methallylmagnesium chloride to a-oxoketene dithioacetals 
followed by treatment of the carbinol with HBF4 in THE leads to 
benzannulation reactions instead of 1,3-carbonyl transposition (scheme 
5.5.3). The resulting thioanisole was obtained in good yield, even when 
different Lewis acids (HgC12 in CH3CN, BF3. OEt2 in benzene) were 
employed. 

This protocol was then applied to a variety of substrates, although 
dithioacetals obtained from open-chain ketones led to moderate yields of 
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annulated thiophenols. In all examples only sulphurated arenes were 

obtained. 
Scheme 5.5.3. 
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The mechanism is likely to proceed via a boat-like intermediate, in 

analogy to the 1,3-carbonyl transposition (scheme 5.5.4), to form cationic 
species of type 5.5.4.3. 
Scheme 5.5.4. 
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The presence of a nucleophilic group (alkene or phenyl) on the side 

chain and the use of a non-nucleophilic solvent lead to intramolecular attack 
rather than solvolysis. Loss of an alkylthio group after coordination to the 
Lewis acid and aromatisation are the driving forces for the process. 

The importance of conformational effects on the outcome of this 

cyclisation was outlined by Junjappa70 et al. Treatment of a-hydroxy 
dithioketene acetals 5.5.5.1 (scheme 5.5.5) with BF3. OEt2 in benzene 

afforded the corresponding 3-allyl-1,1-bis(methylthio)-2-alkylindene 
5.5.5.2 instead of the benzannulation products 5.5.5.3. 
Scheme 5.5.5. 
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The authors rationalised this behaviour through the transition state 
5.5.5.4a and 5.5.5.4b. When the side groups R1 and R' have low steric 
bulk, the alkyl chain occupies preferentially the quasi-axial position to 
minimise 1,2-steric interaction (5.5.4.4a). This conformation promotes 
interaction between the x system of the alkene and the endocyclic double 
bond leading to the benzannulation. If R1 = alkyl and R' is a bulky phenyl 



66 
group (5.5.4.4b) the allylic group is forced into the pseudo-equatorial 

position, pointing away from the adjacent it system. The aromatic ring then 

attacks the developing stabilised carbocation on the bismethylthio acetal 
position and leads to the formation of indene-type products. 

This type of cyclisation has been widely exploited by Junjappa and 
coworkers 7l for the synthesis of alkyl aryl thioethers and heterocycles in 

generally good yields. 

5.6 Conclusions. 

Review of the literature concerning the transformation of ketones into 

phenols and catechols highlights a good number of methods, although most 
of these are rather lengthy and have low yields or poor selectivity. Synthesis 

of hydroquinones rather than of catechols is generally favoured and this 
limits the application to the synthesis of pseudopterosins aglycone. 

Work on the Dieter benzannulation and its modifications within 
Professor Kocienski's group with a view to applying this protocol to the 
synthesis of pseudopterosins initiated in 1987. The following chapter 
describes the past studies and our contribution to the project. 
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Chapter 6 
Application of the Dieter aromatisation to the 

synthesis of pseudopterosin aglycone. 
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6.1 Introduction. 

Progresses in the construction of the pseudopterosins aromatic ring 
from ketone 3.2.1.7 were reported by Dr. S. Gill and Dr. A. Kohler in 

their Ph. D. theses32,72 at the University of Southampton. At the end of these 
studies, however, the efficiency of this transformation was far from ideal. 
Formation of the cyclic dithioketene acetal 3.2.1.8 could only be achieved 
in low yield (< 33%) and resulted in a complex mixture of products. 
Achieving reproducibility and higher yields in this transformation was our 
primary target for the overall improvement of the synthesis. 

6.2 The previous studies towards pseudopterosins using the 
Dieter annulation. 

Studies concerning the Dieter annulation for the synthesis of 
pseudopterosins began in 1987. Starting from Dieter's initial report on 
annulation of pulegone69 Gill could achieve the synthesis of dithioketene 
acetal 6.2.1.1 (scheme 6.2.1) after optimisation of experimental 
conditions. 
Scheme 6.2.1. 
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Treatment of 6.2.1.1 with methallylmagnesium chloride in THE 

yielded the unstable carbinol 6.2.1.2, which was readily transformed into 

thioanisole 6.2.1.3 in high overall yield. Formation of hydrogen fluoride 
from reaction of water produced in the cyclisation and BF3. OEt2 resulted in 

convenient cleavage of the TBS ether in one pot. 
Transformation of the thioanisole into the corresponding oxygenated 

arene proved to be challenging. A direct approach could not be found 
despite many attempts and the only viable method was the four-step 

procedure reported in scheme 6.2.2. The sequence was rather lengthy and 
too unreproducible to be of any synthetic use. 
Scheme 6.2.2. 
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A decisive advance was made by Dr. L. Qun, a visiting researcher in 
Southampton during 1989/1990. He discovered that employing cyclic 
dithioacetals and carrying out the reaction in presence of methanol leads to 
the direct formation of anisoles (scheme 6.2.3). 

6.2.2.3 
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Scheme 6.2.3. 
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The reason why reaction of cyclic acetals afford oxygenated arenes is 

not completely clear. The studies on conformational effects reported in 

chapter 5.5 71 may suggest a tentative explanation (scheme 6.2.4). 
After chelation by the electrophilic boron atom and loss of the tertiary 

hydroxy, cationic species 6.2.4.3 is rapidly formed. It is likely, however, 
that the bulky Lewis acid remains in the sphere of coordination of the 

sulphur atom on the dithioketene acetal moiety. At this stage two situations 
are possible. If R= methyl, the C-S bond could rotate freely to minimise 
interaction between the substituents on the sulphur and the alkene on the side 
chain. This would lead to a rapid nucleophilic attack and formation of the 
bicyclic dithioacetal 6.2.4.4, leading ultimately to thioanisoles. In the case 
of a cyclic acetal, the 1,3-dithiane ring limits the number of conformations 
that the substituents can adopt. Steric hindrance might disfavour the direct 

cyclisation and nucleophilic attack from methanol can take place at a 
competitive rate. Attack by the alkene on the cationic center leads then to 

anisole 3.2.1.10 after aromatisation. 
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Scheme 6.2.4. 
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This modification of the Dieter procedure, however, suffered from a 
major drawback. The synthesis of cyclic dithioketene acetals is scarcely 
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documented and with these substrates Gill and Kohler could not obtain yields 

greater than 33% with poor reproducibility. Besides, none of the starting 
material could be recovered. At this stage, this procedure was unsuitable to 
be used in an efficient multi-step synthesis. 

6.3 Improving the synthesis of cyclic dithioketene acetal 3.2.1.8. 

At the beginning of our studies, it was assumed that problems with the 

closure of the 1,3-dithiane ring could be the cause of the low yield and 
complex mixture of products recovered. Acyclic dithioketene acetals could 
be formed in higher yield (up to 80%) by quenching the intermediate 
dianion with with Mel or EtI (scheme 6.3.1). 
Scheme 6.3.1. 
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This reaction is rather delicate from the experimental point of view. 
The enolate formed from 3.2.1.7 at -78°C was stirred for 30 min at the 
same temperature in presence of DMPU. Neat CS2 was then added and the 
orange solution warmed to -30°C over 2 hours, before cooling to -78°C 
again. A second equivalent of base was added to form the dianion. After 25 
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min at the same temperature, a solution of the dihalide was finally added and 
the reaction mixture allowed to warm to room temperature over 16 hours. 
Scheme 6.3.2. 
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The initial experiments using increasing dilution in the final double 
alkylation step to facilitate intramolecular attack did not lead to any 
improvement. Using 1,3-dibromopropane instead of 1,3-diiodopropane, 
however, made the reaction cleaner and more reproducible but the yields 
remained below 35%. On the other hand, experimentation with acyclic 
ketals and more thiophilic Lewis acids (Sn(OTf)2, HgC12) in the cyclisation 
step resulted only in the recovery of thioanisoles. 

The solution to our problems was finally found when more starting 
material had been made available from improvement in early stages of the 
synthesis. Scaling up the dithioketene acetal preparation allowed us to isolate 
the side products, identified as a mixture of 6.3.2.2 and 6.3.2.3 (scheme 
6.3.2) by IR (unconjugated carbonyl, no band of thiols) and 1H NMR. 
Monoalkylated a, ß-unsaturated products of the type 6.3.2.4 or the 
corersponding thioesters could not be detected by IR (no C=S or conjugated 
C=O bands) and 13C NMR (no signals for the C=CS2 or thioester systems). 
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This ruled out the hypothesis that the closure of the 1,3-dithiane was the 

main problem. 
A plausible explanation for the formation of alkylated products 

6.3.2.2 and 6.3.2.3 is that unreacted enoate 6.3.2.1 is still present when 
the dihalide is added at the end of the one-pot procedure. Direct attack of the 

enolate on the halide leads to these side products, possibly after the action of 
the second equivalent of base. Therefore, poor reactivity during the 
nucleophilic attack on CS2 is responsible for the low yield of the reaction. It 
is probable that the formation of the enolate is quite sluggish at temperatures 
below -30°C and CS2 polymerises in presence of the base. Formation of tars 

were always detected using the unoptimised conditions. Addition of a second 
equivalent of base and warming up to room temperature could result in 

more effective enolisation and attack on the halide. 
To prove our hypothesis, the experimental protocol was altered. After 

addition of CS2 at -78°C, the solution was allowed to warm to higher 
temperature (-20°C) and stirred for 90 min at this temperature before 

cooling down again. Formation of polymeric material began to appear upon 
longer periods at -20°C. This procedure brought dramatic improvement. 
The yield more than doubled (from 33% to 71%) and the reaction was clean 
and reproducible. This also eliminated the need for repeated column 
chromatography to get rid of side products and minimised decomposition of 
the dithioketene acetal in the purification process. This resulted in higher 
yields and better reproducibility in the subsequent Grignard addition and 
cyclisation steps. 

The optimised procedure was reliable also on a larger scale (starting 
from 2.4 g of 3.2.1.7). Best overall yields were obtained when the three 
reactions from 3.2.1.7 to 3.2.1.10 were performed in rapid succession 
(within 3 days). The sulphurated intermediates are unstable and should not 
be stored for more than 3-4 days, even at -25°C. The final yields and 
conditions for the synthesis of anisole 3.2.1.10 from ketone 3.2.1.7 are 
illustrated in scheme 6.3.3. 
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Scheme 6.3.3. 
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The Dieter benzannulation of 3.2.1.7 is the pivotal step of our 
approach to pseudopterosins. After observations on the recovered side 
products and considerations on the mechanism of the a-oxoketene 
dithioacetal formation, significant improvement of yield and reproducibility 
were achieved. This made the overall synthesis reliable and suitable for the 

production of larger quantities of key intermediates. The following chapter 
describes the final steps towards pseudopterosins K-L aglycone. 

CIMg-ý g 
H 

-imp THF, 0°C 

TBS 

THF, 0°C 



76 

Chapter 7 
Conclusion of the first approach. 
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7.1 Introduction. 

The final stages of the synthesis offered significant challenges. 
Reaction of sulfone 3.2.1.12 with A1C13 afforded a 1: 1 mixture of 
diastereomeric 3.2.1.13 and 3.2.1.14 in Dr Kohler's hands. This result 
was clearly unacceptable and affected the overall yield and feasibility of the 
approach. The final oxidation step was also unsatisfactory because of the 

yield and of the complex mixture of products obtained. 

7.2 Formation of tricyclic 3.2.1.13 and 3.2.1.14. 

Treatment of alcohol 3.2.1.10 with TsCI and Et3N in presence of 
catalytic DMAP yielded tosylate 3.2.1.11 in high yield (scheme 7.2.1). 
Previously reported conditions employing excess pyridine proved 
unpractical and inefficient. 
Scheme 7.2.1. 
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76%, 2.5: 1 mixture 

of epimers 

3.2.1.12 

3.2.1.17 

For the alkylation of 3.2.1.11 with the anion generated from 
3.2.1.17 and BuLi we adopted a slightly modified procedure. After 
addition of the base to the sulfone at -78°C, the yellow solution was allowed 
to warm up to 0°C before addition of the tosylate at -78°C. The mixture of 
epimeric sulfones 3.2.1.12 was obtained in higher yields but the ratio 
differed from that previously reported. Dr. Kohler recovered a 1: 1 mixture 
of epimers and reported that partial separation of epimers was possible via 
selective recrystallisation. This enabled him to conduct experiments on the 
subsequent cyclisation starting from a single isomer. He claimed that 
different epimers of 3.2.1.12 treated with A1C13 in Et2O at reflux led to 
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different mixtures of tricyclic 3.2.1.14 and 3.2.1.13. This suggested an 
SN2-type mechanism for the cyclisation. However, we obtained the sulfones 
in 2: 1 mixture as a pale yellow oil and despite several attempts we could 
never crystallise them, even after several days at -25°C. The epimeric 
composition might have an influence on the physical state of the mixture. 
Our studies on the cyclisation were even more interesting. An extensive 
review of the literature on sulphones as nucleophilic - electrophilic 
synthones ("chemical chameleons" according to B. M. Trost73) disclosed a 
relevant example published in 198674 (scheme 7.2.2). After complexation 
of the hydroxy group with the first Lewis acid, displacement of the sulphone 
was promoted by EtA1C12 in DCM at low temperature. Excellent 
diastereoselectivity and high yield were easily achieved on these simple 
substrates. 
Scheme 7.2.2. 

ýý"OH 
SO2Ph '' 

_780C 
(case 1) 

u-%,. kcaSEi cJ T H1 

R 

7.2.2.1 7.2.2.2 

1) R= CH3, R1 =H: 68%, trans : cis = 7: 1 
2) R=H, R1 = CH3 : 81 %, trans : cis = 50: 1 

. o''OH 

major product 

The authors75 rationalised their results through an ionic mechanism as 
reported in scheme 7.2.2. Once the allylic carbocation is generated, steric 
effects rather than configuration at the neighbouring stereocenter are 
responsible for the stereochemical outcome. 

(i) AICI3, DCM, 0°C 

H (ii) EtAICI2, DCM 
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Scheme 7.2.3. 

3.2.1.12 

EtAICI2 (10 eq) 
CH2CI2 

-78°C, 79 % 

3.2.1.13 

3.2.1.13: 3.2.1.14 = 9.8: 1 

+ 

3.2.1.14 

We applied their conditions to our highly substituted system with very 

good results (scheme 7.2.3). The tricyclic products were obtained in 79% 

yield and the diastereomeric ratio was now 9.8: 1. Choice of Lewis acid, 

solvent and temperature affected dramatically the selectivity. Certain 

assignment of the relative configuration was not possible from NMR data. 

Partial separation of the diastereoisomers on repeated column 

chromatography allowed us obtain a pure sample of the major isomer as a 

white crystalline solid. After recrystallisation from i-PrOH, the product was 

submitted for X-ray analysis. We were delighted to find that our major 

product had the relative configuration required for the pseudopterosins 
aglycone, as depicted in scheme 7.2.4. 
Scheme 7.2.4 

C(S) 

C(S) 

C(13) 

C(9) 

C(12) 

2 LCu 
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The fact that the diastereomeric ratio of the products does not reflect 

that of the starting mixture of sulfones is significant to understand the 

mechanism. Displacement of the sulfone can take place either via an SN2- or 

an SN 1-type mechanism. The SN2 pathway involves inversion of 

configuration at the allylic center, so starting from a 2.5: 1 mixture of 

epimeric sulfones we should obtain a 2.5: 1 mixture of products. The 

distribution of 3.2.1.13 and 3.2.1.14 clearly indicates that the mechanism 

should be closer to an SN 1 displacement, in which case a planar cationic 
intermediate is formed before the nucleophilic attack takes place. 
Electrophilic aromatic substitution can take place via four conformers 
(scheme 7.2.5). Ring B adopts preferentially a half-chair conformation in 

which the C4 side chain and the C7 methyl occupy pseudoequatorial 

positions. Therefore, the unsaturated side chain must be on the same face of 

the system as the C3-C4 bond and this rules out conformers 7.2.5.4 and 
7.2.5.5. The folded transition state 7.2.5.3 is slightly higher in energy (2 

kcal/mol according to MM2 calculations) than 7.2.5.2 but does not suffer 
from severe steric congestion. The extended cation form 7.2.5.2 has lower 

energy but is disfavoured because of steric hindrance between the methyl 

group on the aromatic ring and those on the side chain. Minor hindrance is 

present in 7.2.5.3, as the C7 methyl and the isopropylidene groups are on 
different faces of the molecule. Moreover, it-yr interactions76 between 

electrons on the unsaturated side chain and the aromatic ring are also 
possible and this would bring further stabilisation to 7.2.5.3. 

Friedel-Crafts type electrophilic attack in 7.2.5.3 leads to the desired 
3.2.1.13, which bears the suitable relative configuration for the 
pseudopterosins aglycone, while reaction of 7.2.5.2 affords the minor 
isomer 3.2.1.14. 

Surprisingly, when the same mixture of sulfones was treated with 
Et2A1C1 a 1: 1 ratio of epimeric 3.2.1.13 and 3.2.1.14 was obtained, as in 
the case when AIC13 was employed (scheme 7.2.6). 
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Scheme 7.2.5. 

3.2.1.13 

t 

7.2.5.1 

+ 

+ 

A possible interpretation for this behaviour is that the Lewis acid may 
coordinate to with the leaving group which then can form a tight ion pair 
with the allylic carbocation. Extra steric effects might thus be introduced 

and influence the distribution of transition states. Formation of these 
complexes would depend on nature of Lewis acid, solvent and temperature. 
The combination of strength and coordinating ability of the metal center 
would be ideal only when EtA1C12 is used. We also noticed than a red colour 
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developed only in Et2A1C1-catalysed reaction and not when EtA1C12 was 

used, indicating the formation of different species in solution. 
Scheme 7.2.6. 

3.2.1.12 

Conditions: 

AICI3, Et20 reflux: 
EtAICI2, CH2CI2, -78°C -ý rt 
Et2AICI, CH2CI2, -78°C ý rt 

1: 1 
9.8: 1 

1 :1 

Similar dependence of the reaction outcome from the Lewis acid 
73 

employed has been reported by numerous researchers'77. 

7.3 Formation of pseudopterosins aglycone. 

Cleavage of the methoxy group of 3.2.1.13 was achieved in good 

yield using BBr3 and 2,6-di-tert-butylpyridine over 30 min. Longer 

exposure to these reaction conditions resulted in partial epimerisation at the 
C7 benzylic center. 

The final oxidation proved problematic, as we partially expected. The 

Fremy's salt oxidation used by McCombie et a119 in their synthesis was 
never achieved in the yield that they reported. The best we could obtain was 
22% using freshly prepared potassium nitrosodisulfonate and KH2PO4 
buffer in acetone/H20 at rt followed by reduction with sodium dithionite 
(scheme 7.3.1). 

3.2.1.13 

+ 

3.2.1.14 

Ratio 3.2.1.13 : 3.2.1.14 
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Scheme 7.3.1. 

3.2.1.13 

2,6-di-tert- 
butylpyridine 

BBr3, CH2CI2 
73% 

Cl) ON(SO3K)2, KH2PO4 
H2O, acetone 

Ilb 
(ii) Na2S2O4, CHCI3, H20,22% 

3.2.1.15 

Pseudopterosin K-L 
aglycone 

Unreacted starting material and a number of side products were 

always recovered. The mechanism78 for this oxidation is reported in scheme 
7.3.2. 
The first step is deprotonation of the phenol to form the corresponding 
radical 7.3.2.1. Reaction with a second equivalent of potassium 
nitrosodisulfonate leads to the quinone derivative 7.3.2.2, rapidly 
hydrolised to ortho-quinone 7.3.2.3. 

Fremy's salt oxidation usually leads to a mixture of ortho- and para- 
quinones if both positions are available. The 1,4-dicarbonyl product is 

generally the major obtained. In these case the para position is blocked and 
the ortho-quinone should be the only product. 
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Scheme 7.3.2. 

3.2.1.15 

'O-N(SO3K)2 

7.3.2.1 

'ON(SO3K)2 

Pseudopterosins K-L 
aglycone 

Na2S2O4 
E--- 

H 20 

7.3.2.3 

-HN(SO3K)2 

7.3.2.2 

N(SO3K)2 

A possible explanation for the low yield of this transformation is that the 

radical 7.3.2.1 can undergo a number of side reactions. In particular, the 

presence of the double bond on the side chain might trigger a series of 

rearrangements and eventual aromatisation to a naphthalene derivative. 
Similar problems were encountered by Corey and Carpino79 during their 

synthesis (scheme 7.3.3). Treatment of 2.3.1.3 with Fremy's salt led to 

unexpected side reactions, while alternative reaction with benzeneseleninic 

anhydride yielded addition products. The problem was solved using Barton's 

method17 for the oxidation of phenols. Phenylselenoimine 7.3.3.2 was 
formed by reaction of 2.3.1.3 with benzeneseleninic anhydride and HMDS 

and was then hydrolysed to the quinone. Reduction cleanly yielded catechol 
2.3.1.2. 
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Scheme 7.3.3 

2.3.1.3 

Hydrolysis 

Fremy's salt 

Benzeneseleninic 
anhydride 

Benzeneseleninic 
anhydride, HMDS 

Decomposition 

Decomposition 

7.3.3.2 

Reduction 

SePh 

2.3.1.2 

When we tried this method on our phenol bearing the unsaturated side 
chain (scheme 7.3.4), none of the desired organoselenium compound was 
obtained while several unstable side products were formed. Reaction with 
benzeneseleninic anhydride alone did not lead to better results. 
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Scheme 7.3.4. 

Benzeneseleninic 
anhydride 

3.2.1.15 

3.2.1.15 

anhydride, HMDS 

7.3.4.1 

7.3.4.2 

SePh 

We then tried an alternative approach based on heteroatom-directed 

ortho-metallation of the aromatic ring. In principle, treatment of 

methoxyarene 3.2.1.13 with sec- or tert-BuLi (scheme 7.3.5) should lead 

to deprotonation on the aromatic position, directed by the presence of a 
methoxy38 or a MEM21 group. Quenching of the carbanion thus formed 

with B(OMe)3 and oxidation with H202 should lead to the desired 

monoprotected catechol derivative 7.3.5.2. 
Scheme 7.3.5. 

Me 

3.2.1.13 

(i) sec-BuLi B(OMe)2 H202 or t-BuLi 

(ii) B(OMe)3 

7.3.5.1 

ON 

7.3.5.2 

All our attempts were thwarted: even after treatment with tert-BuLi 
and reflux for several hours in Et20, the reaction failed. The starting 
material was recovered unchanged and failed incorporation of deuterium 
after quenching with D20 proved that abstraction of the proton was not 
taking place. Changing the protecting group to MEM group was also 

H Benzeneseleninic 
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unsuccessful. At this stage, the final oxidation was still our major problem, 

although it could be achieved in low yield and with poor reproducibility. 

7.4 Conclusions. 

The overall formal synthesis of pseudopterosins K-L aglycone has 

been radically changed by our contribution and is now a feasible and 

reproducible approach. 
The main improvements are: 

" synthesis of neoisopulegol via reduction of isopulegone is easier than 
the Mitsunobu inversion and is suitable to the production of large quantities 
of early precursors from commercial technical isopulegol; 

introduction of the C3 stereocenter via stereoselective epoxidation and 
Lewis acid-catalysed oxirane opening provides complete control and 
therefore avoids the problem of unpractical separation by chromatography; 

" the yield of the dithioketene acetal formation has been increased from 
33 to 71 % and the reaction is now clean and reproducible; 

" selectivity in the closure of ring C of pseudopterosins has been 

enhanced from 1: 1 to 9.8: 1 in favour of the desired isomer and X-ray 
analysis confirmed its structure. 

The main problem at this stage remained the final oxidation step, still 
capricious and with low yields, although formal synthesis was achieved as 
3.2.1.15 is a common intermediate to McCombie's synthesis. 

Rather than repeating again our synthesis, we decided to undertake a 
new approach, this time targeted to the synthesis of the more biologically 
active pseudopterosin E. Our studies and the completion of our second route 
are described in the following chapter. 
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Chapter 8 
A new approach to pseudopterosin E. 
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8.1 Introduction. 

In order to achieve a feasible approach to pseudopterosins A-F aglycones we 
formulated these three goals: 

" to apply our annulation method to different substrates and 
demonstrate its wider scope; 

" to undertake further investigations on the closure of ring C; 

" to improve the synthesis of the final catechol. 

8.2 General strategy. 

The general framework of the new approach was again based on the 
construction of the aromatic ring starting from monoterpenic precursors 
(scheme 8.2.1). We envisioned that the C3 stereocenter could be introduced 

via asymmetric catalytic reduction of an a, ß-unsaturated ester. 
Benzannulation using our modification of the Dieter procedure would lead 
us to 8.2.1.2, a Cl homologue of 3.2.1.10. Final ring closure and 
oxidation could afford the aglycone. 

This route would also increase the flexibility of our approach with a 
view to the synthesis of bioactive analogues. Our aim was also to make the 
synthesis more straightforward by eliminating the initial conversion of 
isopulegol to neoisopulegol. This is quite important as (+)-isopulegol cannot 
be derived from the cheap technical isopulegol but must be obtained from 
less affordable enantiopure starting material (up to 100 times more 
expensive). 
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Scheme 8.2.1. 

Pseudopterosins A-F 
aglycone 

8.2.1.1 8.2.1.2 
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8.3 Synthesis of a, ß-unsaturated ester 8.2.1.5. 

A simple way to synthesise (+)-isopulegol from l-citronellal was 

published in 1978 by Nakatami et a180 (scheme 8.3.1). 

Scheme 8.3.1. 

ZnBr2, PhH 

0°C, 83% 

(-)-citronellal 
97% se 

H3 

(+)-Isopulegol 
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Treatment of (-)-citronellal in benzene with ZnBr2 at 0°C yields (+)- 

isopulegol in good yield and very good stereoselectivity. The six-membered 
transition state for this type I ene reaction (according to Oppolzer's 

classification81 is presented in scheme 8.3.1. Placing the methyl group in 

equatorial position dictates the relative stereochemistry of the two newly 
formed stereocenters. 
The product was formed with very good stereocontrol (83% isopulegol) 

starting from commercial citronellal available in 97% ee (scheme 8.3.2). 
After transformation into the known acetate (95% yield), ozonolysis easily 
afforded ketone 8.3.2.1. 

Scheme 8.3.2. 

Ac20, Et3N 

"'OH DMAP (cat) 
00 

5°C, 95% 

(+)-isopulegol 

(ij 03, McOH/ 

(+)-isopulegyl 
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CH2CI2, -78°C Cý Triethyl phosphonoacetate 

(ýý) SMe2, -78°C -+ rt H""%" 
-"OAc NaH, THF, reflux , 64% 

89% 

8.3.2.1 
O2Me 

8.2.1.5 
9: 1 E: Z 

separable by 
chromatography 

Wadsworth-Emmons reaction of 8.3.2.1 with triethyl 
phosphonoacetate led to a, ß-unsaturated ester 8.2.1.5 as a 9: 1 mixture of E 
and Z isomers. The moderate yield is mainly due to the unexpected volatility 
of the product and to base-catalysed side reactions. The minor Z isomer 
could be separated by column chromatography and the stereochemistry of 
the major product was established by NOE experiments. Our efforts to 
improve the yield varying times and temperature of the reaction were 
fruitless. We also tried to change the hydroxyl protecting group to a TBS 

---10- 
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ether, a benzoate and a pivaloate to decrease the volatility of the product but 

in all these cases the reaction proved sluggish (< 50% conversion after 5 

days in THE at reflux) and with lower stereoselectivity (3: 1 E : Z). 

8.4 The Pfaltz asymmetric reduction of a, ß-unsaturated esters. 

After securing the substrate for the asymmetric reduction in four 

steps from citronellal, we considered the methods for an efficient 
transformation. The asymmetric reduction of a, ß-unsaturated esters has 

great potential in organic synthesis but, surprisingly, very few methods are 
known in literature. 

The use of Cob(I)alamine, the Co(I) form of vitamin B12, for the 

reduction of organic substrates only led to modest ee's39 (scheme 8.4.1). 

Scheme 8.4.1. 

Vitamin B12 
(10 mol%), Zn 

C+H3 

O2Et AcOH/H20' 0°C 6O2Et 
argon, t): )-/o 

22% es 

Various methods have been developed for the asymmetric 
hydrogenation of a-N-acylamido-a, ß-unsaturated acids or esters using Ru 

or Rh catalysis with chiral phosphines82. Hydrogenation of some unsaturated 
carboxylic acids has also been achieved with the same methods in high ee. 
However, there are very few examples of asymmetric hydrogenation of 
unsaturated carboxylic systems without an electron-withdrawing group in 
the a-position. A recent development was published by Buchwald and 
coworkers in 199083. 
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Scheme 8.4.2. 

(S)-[(ebthi)TiH] 
Me (5 mol%) 

Nip 
2000 psi H2 M 65°C, THE 

yield = 86% 
94% ee 

Hydrogenation of the trisubstituted olefins was achieved in good yield 
and ee > 92% with homochiral ethylenebis(tetrahydroindenyl)titanocene 
(ebthi) catalyst generated in situ. (scheme 8.4.2). This procedure, however, 

was not applied to a, ß-unsaturated esters and all substrates reported are 
benzylic olefins, although these are not stated prerequisites. 

Andreas Pfaltz and coworkers84,85 devised a very interesting method 
for the reduction of a, ß-unsaturated esters based on semicorrin ligand-Co 

catalysis. Their procedure (scheme 8.4.3) consists of treatment of the 

substrate with 2 eq of NaBH4 in EtOH/DMF in presence of the semicorrin 
ligand 8.4.3.1 (1-5 mol%) and COC12 (0.1-1 mol%). 
Scheme 8.4.3. 

TBSOH26 " CH2OTBS 

(3-5 mol%) 
1 OIN '-- 

02Me 
COCI2 (0.1-1 mOl%) 

Naöha (z 84) 
EtOH/DMF, 2-5 days 

. 84% yield, 96% ee 

The reduction is usually achieved with excellent yield (>95% after 2-3 
days) and ee (>92%). Both enantiomers of the catalyst are available from 
glutamic acid and, depending on the geometry of the substrate double bond, 
stereocenters are generated with either R or S configuration. 

Although no studies were performed on the mechanism of this 
reaction, the authors presented a speculative rationale for the 
stereoselectivity. According to their hypothesis, Co(II) is complexed by the 
ligand and reduced by NaBH4 to a Co(I) species. The electron-deficient 

8.4.3.1 
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double bond of the substrate then coordinates to the metallic center in the 
fashion shown in scheme 8.4.4. 

Scheme 8.4.4. 

Hydride transfer from NaBH4 to Co is followed by an intramolecular 
hydride shift to the a-atom of the substrate, leading to a cobalt enolate. 
Delivery of hydride to the ß-position of the unsaturated ester takes place 
from the face of the C=C bond which is bound to the catalyst. 
Enantioselectivity is determined by steric interactions between the 
carboxylic group and the substituents on the side chains of the catalyst 
(scheme 8.4.5). 8.4.5.1a is the favoured transition state, leading to the 
major product. 
Scheme 8.4.5. 

EqOC,,., ý ýý 
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R RZ 
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02Et 
R 

)ý. FV 
ý ý/ R 

tj 

disfavoured 
8.4.5.1 b 

Only the (3-hydrogen is introduced stereoselectively, while the a- 
hydrogen is derived from protonation of the enolate by the solvent. 
Reduction of analogue substrates with an a- instead of a ß-substituent led to 
racemic products. 
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Preparation of the catalyst is reported in scheme 8.4.6. Although 

relatively concise and starting from readily available enantiopure materials, 

this procedure gave very low yield (> 3% from pyroglutamic acid). Albeit 

commercially available, the catalyst is too expensive (£33.40 for 10 mg 

from Aldrich) for our purposes. 
Scheme 8.4.6. 

(a) MeOH, Amberlyst H+ tt NCCH2CO2t-Bu 
rnHlw ý 100°C, 80% 

ýNH ß.,.. ýN ý ýNH 

COOH (b)Et3O'BF4, CH2CI2 COOMe COOMe 
reflux, 90% 

CF3CO2H 
(CH2CI)2,65% 

Me2O6 
COOMe 

(a) LIBH4, THF, 23°C 
(b) TBSCI, imidazole 

DMF, 40°C, 40% 

CF3CO2H 
23°C, 60% 

COOMe 

Pfaltz and coworkers employed their method only on very simple 
substrates, usually linear chains, that are very different from our diester 
8.2.1.5. We decided, however, to synthesise the catalyst and to apply this 
procedure to our a, ß-unsaturated precursor of pseudopterosins. 

8.5 Pfaltz reduction of 8.2.1.5. 

Reduction of 8.2.1.5 using the Pfaltz method proceeded with very 
good yield (90%) and very good diastereoselectivity (>95%) using 8% of 
the catalyst. The main drawback, however, is that the reaction takes up to 15 
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days in a vacuum-sealed tube to go to completion on a 2.5 g scale and the 

catalyst could only partially be recovered. Our attempts to scale the 

transformation up starting from 8g of the substrate were not successful: 

only 50% of conversion was obtained after 21 days and side reactions started 
to take place. The stereoselectivity, however, was not ffected. These 

problems could probably be overcome using a larger percentage of the 

catalyst but this would make the whole synthesis quite expensive and 

unpractical. To bypass this obstacle, we had to perform the asymmetric 
reduction in batches (up to 2.5 g each) although this is rather time 
demanding. Steric congestion around the double bond is probably 
responsible for the sluggish behaviour of the reaction. 

Simple reduction of the double bond using MeOH and Mg86 led to a 
1: 1 mixture of epimers, showing that no selectivity is achievable without an 

asymmetric process. 
Scheme 8.5.1. 

(E)-8.2.1.5 

TBSOH2C ,, CH2OTBS 

8.3.3.1 

CoCI2.6 H2O, NaBH4 
DMF/EtOH 
rt, 10 days 

90%, >97% de 
on 2.5 g scale 

DIBAL-H 
PhCH3 

-78°C -+ rt 
75% 

JAN 

8.2.1.4 

Reduction of the diester 8.2.1.4 to the diol 8.2.1.3 was carried out using 
DIBAL-H in good yield (scheme 8.5.1). Reduction with LiAlH4 led to 
lower yield (40-50%). 
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8.6 The second route to pseudopterosins. 

The conclusion of our second approach is illustrated in scheme 8.6.1. 

8.6.1.5 was obtained alongside with 8% of impurities that could not be 

separated after repeated column chromatography. Transformation of 
8.6.1.5 into 8.6.1.8, enantiomer of 3.2.1 12, was achieved in 3 steps. 
Allylic alcohol 8.6.1.7 was formed as a 2: 1 mixture of epimers. Use of the 

organolithium reagent derived from 1-bromo-2-propene instead of the 

corresponding Grignard reagent led to lower yields (60%). 

Presence of Lewis acid appears to be essential to obtain selectivity in the 

ring closure, as treatment of alcohol 8.6.1.7 with trifluoroacetic acid led to 

a 1: 1 mixture of tricyclic products. Cyclisation of 8.5.2.7 with EtAlCl2 

following the procedure used in the first synthesis led to a mixture of 
diastereoisomers in a ratio consistent with our previous results. . 

Cleavage of the methoxy group of 8.6.1.8 with sodium thioethoxide 

eliminated the problem of partial epimerisation of the benzylic center 
observed using BBr3. 
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Scheme 8.6.1. 
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Our studies on the final oxidation step were initially focused on strategies 

different from the use of Fremy's salt. We reasoned that acetylation of 
8.6.1.10 (scheme 8.6.2) followed by Fries rearrangement87 and Baeyer- 
Villiger reaction would provide access to the monoacetylated catechol. 
Scheme 8.6.2. 

AICI3, PhNO2 

reflux 

8.6.2.1 

8.6.2.1 

8.6.2.4 
R=Ac 

8.6.2.3 

decomposition 

no reaction 

Unfortunately, treatment of 8.6.2.1 with A1C13 led to no reaction 
whereas TiC14 led to immediate decomposition even at -78°C (scheme 
8.6.2). Similar results were obtained when bicyclic substrates of the type 
8.6.2.4 were employed. 

We then returned to our initial approach and screened the various 
reaction conditions reported in literature for the Fremy's salt oxidation. 
Reactions of this kind are notoriously capricious and the correct solvent 

TiCI4, CH2CI2 
Baeyer-Villiger 

/-ý ýý ----_-----ý 
78°C 

8.6.2.2 

HMDS, benzeneseleninic anhydride 

R=H 

AICI3, CH2CI2, reflux 

No reaction 
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system has to be found for every substrate. Treatment of 8.6.1.10 with 10 

eq of freshly prepared (KSO3)2NO in H20/CH2C12 with Bu4NHSO4 as 

phase-transfer catalyst led to recovery of starting material. The 

transformation was finally achieved in good yield using the conditions very 

recently reported by Matsumoto et al. 88. Reaction with Fremy's salt in 

DMF/H20 in a flask protected from light was followed by reduction with 
sodium dithionite solution. The aglycone was obtained in 83% yield but it 

proved to be extremely unstable and prone to decomposition in CDC13 

solution in the NMR tube. The quality of the 13C-NMR spectra suffered 
from this but 1H-NMR, HRMS and [a]D are consistent with data reported in 
Dr Carpino's Ph. D. thesis79 and McCombie synthesis 19. Table 8.6.3 

presents a comparison of selected 1H NMR data relative to our synthetic 
aglycone and those reported by Dr. Carpino. 1H NMR chemical shifts 
published by Fenical et al .4 for the C 10-monomethyl ether of pseudopterosin 
E aglycone are also shown. 
Table 8.6.3. 

Observed IH spectrum 
for our synthetic 
aglycone: 
8 (360 MHz, CDC13) = 

IH spectrum reported by 
P. A. Carpino for the 
aglycone: 
8 (500MHz, CDC13) = 

1H spectrum of the 
C 10-monomethyl ether 
of the aglycone: 
6 (360 MHz, CDC13) _ 

5.12(1H, d, J=9.1 Hz) 5.11 (1H, br d, J=9.7 5.12 (1H, d, J=8.8 Hz) 
Hz) 

5.07 (1H, br s) 5.03 (1H, br s) - 
4.87 (1H, br s) 4.89 (1H, br s) - 

3.62- 3.55 (1H, m) 3.57 (1H, m) 3.61 (1H, m) 
2.04 (3H, s) 2.02 (3H, s) 2.05 (3H, s) 
1.76 (3H, s) 1.75 (3H, s) 1.75 (3H, s) 
1.70 (3H, s) 1.67 (3H, s) 1.67 (3H, s) 

1.26 (3H, d, J=7.1 Hz) 1.25 (3H, d, J=7.03 Hz) 1.24 (3H, d, J=7.2 Hz) 
1.05 (3H, d, J=6.1 Hz) 1.03 (3H, d, J=6.2 Hz) 1.03 (3H, d, J=6.2 Hz) 

The 13C data for the aglycone has never been reported in literature 
and Fenicall reported decomposition of the intermediate ortho-quinone 
while attempting to purify it by HPLC. 



101 
Our first attempt to couple this catechol with glycosyl bromide 

3.2.4.6 employed by Corey in his synthesis of pseudopterosin E failed. No 

reaction was observed after 2 days at room temperature in a sealed flask and 
the catechol decomposed. Alternative methods of glycosylation should be 

employed and the aglycone should be treated immediately after its synthesis. 

8.7 Conclusions. 

We achieved a synthesis of pseudopterosins A-F aglycone starting 
from l-citronellal. Our approach is direct and highly stereospecific but we 
encountered some problems on scaling up the Pfaltz reduction. Repeating 

this transformation in small batches (up to 2.5 g) partly solved this problem. 
The final oxidation is now viable in high yield even if the catechol is 

extremely unstable and should be protected immediately. 
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Chapter 9 
Conclusions and aim for future work. 
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9.1 Overview of our syntheses. 

We achieved two syntheses of pseudopterosins aglycones starting from 

readily available monoterpenes. These approaches secure facile entry to 

pseudopterosins A-F aglycone and its enantiomer, suitable for compounds 
K-L. The overall route for the first synthesis is reported in scheme 9.1.1. 

Our contribution to this synthesis provided: 
" an easy access to (+)-isopulegol starting from commercial technical 
isopulegol via oxidation and reduction with L-Selectride, avoiding 
chromatography and in high yield; 

total stereocontrol on the introduction of the C3 center employing 
epoxidation and Lewis acid-catalysed oxirane opening instead of the 
unsatisfactory hydroboration approach; 

" improvement of yield (from 33 to 71%) and reproducibility in the 
first step of the annulation protocol after experimental observations on the 
mechanism of the dithioketene acetal formation; 

" closure of ring C to yield the desired 3.2.1.13 in 9.8 :1 ratio to the 
undesired 3.2.1.14, improving dramatically the 1: 1 ratio obtained in 
previous studies; 

confirmation of the structure of 3.2.1.13 by X-ray crystallographic 
analysis. 
This approach was highly reliable and superior to the previously published 
syntheses in terms of overall yield (4.5% from isopulegol to 3.2.1.15) and 
stereocontrol. 
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Scheme 9.1.1. 

(a) Jones oxidation, 72% 

! hl I _Cclnr+riric T4JC 
OH ̀ý' 

-78s°c 
-+ rt, säýia 

(-)-isopulegol 

VO(acac)2 
t-BuOOH 

--Op- 
"OH PhH, rt, 88% iý -"'OH 

(+)-neolsopulegol 
4.4.3.1 

(a) TBSCI 
imidazole 
DMF, 84% 

THF, rt, 79% ,,, IOH (b) Swern 
oxidation, 88% 

H 
3.2.1.4 

(i) LHMDS, DMPU 
THF, -78°C 

(ii) CS2, -78° -4 -20°C 
30- 

(iii) LHMDS, -78°C (iv) Br(CH2)3Br 
-78°C -+ rt, 71 % 

3.2.1.7 

ta_s_lL, ta_a. 

ýýý (a) memanyi mgca ýVý 
THF, 0°C 

_I 
II _I 

(b) BF3'OEt2 
MeOH, THE 
-40°C -+ rt 
65% over 2 steps 

3.2.1.10 

(a) TsCI, DMAP (cat) 
Et3N, CH2CI2,86% 

(b) 3.2.1.17, BuLi 

THF, -80°C-+ 0°C 
then 3.2.1.10, -78°C 76%, 2.5: 1 mixture 
of epimers 

PhO2S 

3.2.1.17 

2,6-di-tert- 
butylpyridine 

BBr3, CH2CI2 
73% 

3.2.1.12 

(i) ON(SO3K)2, KH2PO4 
H2O, acetone 

IBM 
(ü)Na2S2O4, CHCI3 

H20,22% 

3.2.1.13 

3.2.1.15 Pseudopterosin K-L 
aglycone 
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Before improving the final oxidation step, we devised a novel 

approach to the synthesis of pseudopterosins A-F aglycone, as depicted in 

scheme 9.1.2. 
The introduction of the C3 stereocenter via Pfaltz reduction is the 

first example of application of such methodology to these substrates. 
Unfortunately, we encountered problems scaling up this transformation 

using more than 2.5 g of 8.2.1.5 and 8% or less of the catalyst. The 

reactions is excessively long (50% after 21 days), although the 

stereoselectivity is not effected. 
The cyclisation step was effected in yields comparable with those 

obtained on different substrates, confirming the general applicability of our 
method. The synthesis is convergent to the sulphone intermediate used in our 
first approach, again in good diastereomerical purity. The final oxidation 
step was finally achieved in good yield using very recently published 
conditions. The target aglycone appears to be extremely unstable and prone 
to spontaneous decomposition within 1-2 days, so immediate protection or 
glycosylation is highly advisable in the future. 
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Scheme 9.1.2. 

ZnBr2, PhH 

0°C, 83% 

(-)-citronellal 
97% ee 

/M 

(+)-isopulegol 

Triethyl phosphonoacetate 

NaH, THF, reflux, 64% 

9: 1 E: Z 
separable by 

chromatography 

DIBAL-H 
PhCH3 

-78°C -4 rt 
75% 

'4ý 

(a) Ac2O, DMAP (cat) 
Et3N, 5°C, 95% 

(b) 03, MeOH/CH2CI2 

SMe2, -78°C -> rt 
89% 

-78°C, then w 

CO2Me 

8.2.1.5 

(a) TBSCI, imidazole 
CH2CI2, rt, 90%a 

"OH (b) Swern oxidation, 87/0 

8.2.1.3 

(1) LHMDS, DMPU 
THF, 78°C 

(ii) CS2, -78° -+ -20°C 

(iii) LHMDS, -78°C (iv) Br(CH2)3Br 
-78°C -+ rt, 55% 

H2OTBS 

8.6.1.3 

. OM 

(a) Swem oxidation, 88% 
Im- 

(b) 

MgBr 
THF, 0°C, 80% 

8.6.1.7 

(a) EtSNa, DMF 
reflux, 75% 

(b) Fremy's salt 

DMF/H2O 
KH2PO4 

(c) Na2S2O4,83% 

(a) Methallyl MgCl 
THF, 0°C 
BF3*OEt2 

Do. 
(b) MeOHITHF 

-40°C, 45% 
over two steps 

(a) PhSO2Na 
AcOH, i-PrOH 
rt, 65% 

8.3.2.1 

8.2.1.4 

--Ilp- 

H2OTBS 

8.6.1.2 

(b) EtAICI2, CH2CI2 ý 
H' -78°C-), rt 

75%, 10: 1 

8.6.1.9 

Me 

Pseudopterosin 
aglycone 
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9.2 Suggestions for future work. 

Alternatives to the Pfaltz reduction for the stereoselective reduction of 
a, ß-unsaturated esters are not immediate to find. Direct hydrogenation of 
8.2.1.5 led to a 1: 1 mixture of C3 epimers, however Ru-catalysed 
hydrogenation of analogues with a free secondary hydroxyl group might 
lead to better selectivity (scheme 9.2.1). Examples of this kind of 
transformation in the presence of chiral ligands have been presented and 
investigated by Brown89 
Scheme 9.2.1. 

301, 
''OP 

t 

H2, Ru (cat) 
-------------_ 
chiral phosphine 

H2, Ru (cat) 
-------------- ýW- 
chiral phosphine 

H". 
OH 

,,. 
02Et 

A less elegant alternative might involve the formation of an a, ß- 

unsaturated lactone between the secondary hydroxyl group and the 
carboxylic moiety on the side chain. Hydrogenation of this intermediate 

should lead to the desired stereochemistry taking advantage of substrate 
control as 9.2.2.1 (scheme 9.2.2) is the favoured all equatorial isomer. In 
our hands, reaction of 8.2.2.1 with the Still-Gennari reagent90 failed to 
yield the Z-isomer required for the intramolecular lactonisation of 8.2.1.5. 
Z-selectivity is usually achieved only starting from aldehydes. An alternative 
could be the sequence in scheme 9.2.3, starting from non-stereocontrolled 
reduction of 8.2.1.5 with concomitant lactonisation (achieved with 
MeOH/Mg86). Reintroduction of the unsaturation could be effected via 
enolisation of the lactone, quenching with PhSeCI and elimination under 
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oxidative conditions. This sequence should be effective, albeit not 

particularly concise. 
Scheme 9.2.2. 

III 

hydrogenation 

9.2.2.2 9.2.2.3 

V 

H 

9.2.2.1 

8.2.1.5 

Hydrogenation of substrates analogous to 8.2.1.5 using ebthi-type 
catalysts83 is also a conceivable alternative, although the lack of precedents 
and the not easily accessible catalyst does not make it particularly attractive. 
Reduction to the corresponding unsaturated diol and high-pressure 
hydrogenation in presence of chiral catalysts82 might be more practicable, 
especially on large scale. 

9.3 Alternative approaches in the Kocienski group. 

Another approach to pseudopterosins aglycone was investigated in 
Prof. Kocienski's group by Dr. M. Signer and Dr. C. Anies during the years 
1995-1996. This route is convergent to the enantiomer of our intermediate 
8.6.1.6 and starts from natural monoterpene (+)-dihydrocarvone. Cr- 
carbene complexes are used for the construction of the aromatic ring 
(scheme 9.3.1). 
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Scheme 9.3.1. 

Pseudopterosin 
aglycone 

r(CO)5 

9.3.1.3 

9.3.1.2 

(+)-dihydrocarvone 

> 

Although the bicyclic core is built in only five steps from 

dihydrocarvone (scheme 9.3.2), introduction of the C3 stereocenter is again 
the major challenge. Jacobsen epoxidation91 or a sequence of Sharpless92 

asymmetric dihydroxylation and epoxide formation from the diol could 
achieve the transformation of 9.3.1.2 to 9.3.2.3 more effectively. 
An interesting modification to this approach would be to effect the 

aromatisation photochemically60 starting from a (Z) - 
dienyl(alkoxy)chromium carbene complex (scheme 9.3.3) to obtain a 
monosubstituted catechol instead of a protected hydroquinone. 
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Scheme 9.3.2. 

trisSO2NNH2 

93% 

(+)-dihydrocarvone 

= Sn(iBu)3 

THF, 65°C --ý rt, 57% 
or hv, 0°C, 37% 

MCPBA, 45% 
Dip 

7: 3 mixture of isomers 
then separation 

9.3.2.1 

9.3.2.2 

9.3.2.3 

(a) TsCI, DMAP, Et3N 
CH2CI2,85% 

(b) NaCN, DMSO, 86% 

(c) DIBAL-H, -78°C, PhMe H 
then AcOH/H20,86% 

(a) Tf20 
(b) Pd(OAc)2 

dppp, Et3N 
DMF, 120°C 
76% 

NaBH3CN 

BF3*OEt2 
66% 

9.3.1.1 

9.3.1.3 

9.3.1.2 

3.2.1-10 

r(CO)5 
ý 

This protocol might enable differentiation of the two hydroxyl groups on 
the aromatic ring and enhance the flexibility in the final glycosylation steps. 
A suitable synthesis of ß, y-unsaturated ketones was described by D. Enders 

et a193. The presence of the terminal double bond could cause side reactions 
thus necessitating a protecting strategy. 

NHSO2tris 
BuLi, -78°C 

then Cr(CO)6 H 
MeOTf, 57% 
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Scheme 9.3.3. 

(+)-dihydrocarvone 

hv 
--400- 

(a) LDA 

HO 

SePh 
then MsCI, 
Et3N 

9.3.3.3 

9.3.3.1 9.3.3.2 

pseudopterosins 
aglycone 

Approaches using coupling between squaric acid derivatives and 

cuprates62 are also worth considering, especially for the lower toxicity of 
these compounds in comparison to CS2 and Cr(CO)6. 

9.4 Approaches to glycosylation. 

Total synthesis of natural pseudopterosins and bioactive analogues 
could be achieved by coupling the aglycones with suitable glycosyl units. 
Our attempts to synthesise pseudopterosin E using the method reported by 
Corey16 failed and we had to postpone further investigations due to lack of 
time and to the instability of our aglycone. Extensive experimentations 
towards the glycosylation step might be needed, considering the wealth of 
literature on the synthesis of a-fucosides94. Fully protected glycosyl 
bromides of the type used by Corey are notoriously unstable and usually 
lead to inefficient reactions. Orthoesters-95, imidates-96 and thioethers-based 
methodologies are generally more effective and the corresponding glycosyl 
derivatives are easier to prepare. Both a- and ß-glycosides are accessible via 
these methods. Removal of protecting groups, in most cases benzyl ethers, 
after coupling is almost always necessary. 



112 
A very simple procedure for a-fucosylation was published in 1996 by 

Uchiyama and Hindsgaul97 (scheme 9.4.1). 
The iodide generated in situ from fully protected fucose 9.4.1.1 reacted 
with various alcohols to give a-glycosides in good yield and with no need 
for further activation. 
Scheme 9.4.1. 

L-Fucose 

TMSI (1 eq) 

rt, CH2CI2 

<30 min 

TMSCI, Et3N 

DMF, rt, 98% 

L 9.4.1.2 1 

9.4.1.1 

(a) Benzyl alcohol (2 eq) 
2,6-dimethyl pyridine 

5 h, rt TMS 
(b) MeOH 

TMS 

9.4.1.3 
92% based on 9.4.1.1 

a: ß=13: 1 

One-pot deprotection and the short time of reaction make this method 
quite suitable for our purposes. However, only alcohols were employed in 
the original paper, so coupling with phenols and catechols should be 
investigated before attempting reaction with aglycones of pseudopterosins. 
Using substrates different from benzyl alcohol, up to 5 equivalents of 
9.4.1.1 had to be used to obtain 47% conversion. 

Enzymatic fucosylation98 is also an interesting alternative, although 
rather costly. 

9.5 Final conclusions. 

Our two approaches to pseudopterosin are superior to those 
previously published for stereoselectivity and simplicity. We are confident 
that a wide range of pseudopterosins and biologically active analogues can be 
synthesised using our methodology as it is or with minor modifications. The 
problems we highlighted and solved on our routes should be of great help to 
other researchers in the. synthesis of similar compounds. Finally, our 
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modification of the Dieter procedure appears to be a general application for 

this challenging benzannulation. 
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Chapter 10 
Experimental section. 



10.1 General experimental. 
115 

All reactions requiring anhydrous conditions were carried out in 

flame-dried apparatus under inert atmosphere of dry nitrogen. All glass 

syringes, teflon stirring bars, cannulas and needles were dried in an oven at 
120°C overnight prior to use and allowed to cool to it in a desiccator in the 

presence of CaC12. Plastic syringes were stored in a desiccator under 

vacuum and in the presence of CaC12. Dry solvents were freshly distilled 

prior to use: THE and diethyl ether from sodium/benzophenone; 
dichloromethane and dimethylformamide from calcium hydride; benzene 

and toluene from sodium wire; methanol and isopropanol from the 

corresponding magnesium alkoxides. Petrol ether 40-60°C ("hexanes") was 
distilled before use. 

Oxalyl chloride, carbon disulfide, ethanethiol, DMPU, acetyl chloride, 
BF3. OEt2,1,3-dibromopropane, methallyl chloride, 1-bromo-2- 

methylpropene and 2,6-di-tert-butyl-4-methylpyridine were freshly distilled 

prior to use. DMSO was distilled from calcium hydride and stored over 4A 

molecular sieves under N2. Triethylamine and HMDS were distilled from 

calcium hydride and stored over KOH under N2. Molecular sieves were 
freshly activated by heating with a Bunsen flame until the evolution of water 
ceased and then cooled under a stream of dry N2. Imidazole was 

recrystallised from dry benzene prior to use. Commercial toluenesulphonyl 
("tosyl") chloride was recrystallised from CHC13. Triphenylphosphine was 

recrystallised from hexane. 4-Nitrobenzoic acid was crystallised from 
benzene and kept in a desiccator under vacuum.. Commercial solutions of 
alkyllithium reagents were titrated against solutions of diphenylacetic acid99 
or 1,3-diphenylacetone p-toluenesulphonyl hydrazone100 in dry THF. All 

other reagents were used as supplied. 

Fremy's salt was prepared according to the published procedure78, stored 
under an atmosphere of NH3 (NH4C1) in a desiccator and used within 3 days 
from preparation. 

All reactions were magnetically stirred and were monitored by TLC using 
Macherey-Nagel Düren Alugram Sil G/UV254 pre-coated aluminium foil 
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plates, layer thickness 0.25 mm. Compounds were visualised by UV, then 

with 20 wt. % PMA in ethanol. Organic solutions were concentrated using a 

Büchi Rotavapor R-114 at ca 20 mmHg between 20 and 60°C. 

Flash chromatography was performed on Sorbisil silica gel 60 (40-60 mesh) 

or Merck silica gel 60 (-230 mesh) according to the general procedure of 
'01 Still 

Melting points were measured on a Griffin electrothermal apparatus and are 

uncorrected. 

Optical rotations were recorded on an Optical Activity AA-100 polarimeter 

at ca. 20°C. 

IR spectra were recorded in a Perkin Elmer 1600 series FTIR spectrometer 

as thin films supported on sodium chloride plates or as solutions in 

chloroform when specified. Absorptions are reported as values in cm-1. 
Strong, medium, weak and broad absorptions are designated s, m, w and br, 

respectively. 

Proton NMR spectra were recorded in Fourier Tranform mode on Jeol 
JNX-GX-270 (270 MHz), Bruker AC 300 (300 MHz) or Bruker AM 360 
(360 MHz) spectrometers. Spectra were obtained in CDC13 solutions and the 

chemicals shifts are reported as values in ppm relative to residual 
chloroform (S = 7.27). Multiplicities are described using the following 

abbreviations: (s) singlet, (d) doublet, (t) triplet, (q) quartet, (m) multiplet, 
(app. ) apparent. Coupling constants (J) are reported in Hertz. 

Carbon-13 NMR spectra were recorded in Fourier Tranform mode on Jeol 
JNX-GX-270 (67.5 MHz), Bruker AC 300 (75 MHz) or Bruker AM 360 (90 
MHz) spectrometers. Spectra were obtained in CDC13 solutions and the 
chemicals shifts are reported as values in ppm relative to residual 
chloroform (S = 77.2). Multiplicities were determined using the 
Distortionless Enhancement by Phase Transfer (DEPT) spectral editing 
technique, with secondary pulses at 90° and 135°. Multiplicities are 
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described using the following abbreviations: (0) quaternary, (1) methine, (2) 

methylene, (3) methyl. 

Mass spectra were run on a VG 70-250-SE spectrometer in electron 
ionisation (EI) or chemical ionisation (CI) mode or on a Micromass 
Platform quadrupole mass analyser (Micromass, Tudor Road, Altrincham, 
UK) with an electrospray ion source in positive ions detection mode (ESI+). 
Ion mass/charge (m/z) ratios are reported as values in atomic mass units 
followed, in parentheses, by the peak intensity relative to the base peak 
(100%) and, where shown, the proposed signal assignment. 

10.2 Experimental procedures and data. 

(1S, 2S, 5R)-5-Methyl-2-(1-methylethenyl)-1-[(p- 

nitrobenzoyl)oxy]cyclohexane, (+)-neoisopulegyl p-nitrobenzoate 
(3.2.1.1). 

PPh3, DEAD, 
p-nitrobenzoic acid 

No. 
toluene, rt 

31% 
NO2 

FW=154.25 
CloH180 FW= 303.36 

C17H21NDa 

(-)-Isopulegol (14.5 g, 15.9 mL, 92.8 mmol) was added to a solution of 
PPh3 (29.1 g, 110.8 mmol, 1.2 eq) and p-nitrobenzoic acid (18.55 g, 110.8 
mmol, 1.2 eq) in toluene (350 mL). The mixture was cooled to 0°C in an ice 
bath and DEAD (19.3 g, 17.5 mL, 110.8 mmol, 1.2 eq) was slowly added 
over 40 min via syringe. The cooling bath was removed and the mixture 
stirred at rt for 16 h. The orange suspension was filtered and the filtrate 
washed with a saturated solution of NaHC03 (150 mL). The organic phase 
was separated and the aqueous layer extracted with toluene (75 mL x 3). The 
combined organic phases were washed with brine (25 mL), dried over 
MgSO4 and concentrated in vacuo. The residue was purified by column 
chromatography on silica gel eluting with Et2O-hexanes (5: 95) to give the 
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title compound (9.29 g, 28.8 mmol, 31%) as pale yellow needles, mp 88- 

89°C (hexanes): [a]D= +14.7 (c = 2.77, CHC13) 

IR (nujol): v= 2922 s, 2852 s, 1721 s (C=O), 1647 m, 1598 m, 1520 s, 

1456 s, 1275 s, 1177 s, 1103 s, 717 s cm-1. 

1H NMR (300 MHz, CDC13): S=8.28 (2H, d, AA' portion of an AA'BB' 

system, J AB= 9.0 Hz, CH Ar), 8.17 (2H, d, BB' portion of an AA'BB' 

system, J AB= 9.0 Hz, CH Ar), 5.55 (1H, m, C1H), 4.76 (1H, s, C2'H), 4.71 

(1H, s, C2'H), 2.18 -2.02 (2H, m, C6H2), 2.01-1.82 (1H, m, C2H), 1.78-1.65 

(5H, m, C3'H + C3H + C4H), 1.31 (1H, ddd, J= 14.3,12.1,2.2, C3H), 1.08 

(1H, dq, J= 11.8,3.7, C4H), 0.92 (3H, d, J=6.6 Hz, C5M, ig), 
0.91 (1H, m, 

C5H) 

13C NMR (75 MHz, CDC13): S= 164.0 (0), 150.5 (0), 146.0 (0), 136.5 (0), 

130.8 (2C, 1), 123.7 (2C, 1), 111.2 (2), 72.4 (1), 47.1 (1), 39.3 (2), 34.6 

(2), 27.1 (1), 25.4 (2), 22.6 (3), 22.2 (3). 

Lit reference: Chavan, S. P.; Zubaidha, P. K.; Dhondge, V. D. Tetrahedron 
1993,49,6429. 

(iS, 2S, 5R)-5-Methyl-2-(1-methylethenyl)-1-cyclohexanol; (+)- 

neoisopulegol (3.2.1.2). 

FW= 303.36 
C»H21 NOa 

NaOH, THE 
low 

MeOH, rt; 94% 

NO2 

nH 

FW= 154.25 
C10H180 

To a solution of 9.00 g (29.7 mmol) of the isopulegyl p-nitrobenzoate in 
THF/MeOH (1: 2 mixture, 100 mL) was added NaOH (2 M, 20 mL, 40 

mmol). After 15 h at rt the solvents were removed in vacuo and water (25 

mL) and ether (25 mL) were added. The organic phase was separated and 
the aqueous layer was extracted with Et20 (35 mL x 3). The combined 
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organic layers were washed with Na2CO3 (15 mL) and brine (15 mL) and 

dried over MgSO4. The residue on evaporation was purified by column 

chromatography on silica gel eluting with Et20-hexanes (1: 9) to give the 

title compounds as a colourless oil (4.1 g, 26.2 mmol, 94%): [a]D= +26.8 (c 

= 5.1, CHC13); lit. 35 [a]D = +23.5 (neat). 

IR, 1H NMR, 13C NMR data consistent with those reported in literature35 

(2S, 5R)-S-Methyl-2-(1-methylethenyl)-1-cyclohexanone; (-)- 

isopulegone. 

FW= 154.25 
CtOH1e0 

FW= 152.25 
CloHIs0 

The oxidation was carried out according to the procedure of Friedrich and 
Bohlmann51. To a solution of Na2Cr207.2H20 (25.9 g, 86.7 mmol, 1 eq) in 
H2O (80 mL) was added conc. H2SO4 (19 mL, 34.3 g, 8 eq) at a rate 
sufficient to maintain the temperature below 20°C with an ice bath. The 

solution was then cooled to 0°C and added to a solution of commercial 
technical grade isopulegol (25.5 g, 27.99 mL, 165.3 mmol, 1 eq) in acetone 
(200 mL) at 0°C. The temperature was kept between 5° and 10° C during the 

addition, then the ice bath was removed and the dark green mixture stirred 
at rt overnight. Acetone was partially removed by distillation and the 
organic phase extracted with Et2O (2 x 75 mL), then AcOEt (2 x 50 mL) 
and the organic extracts washed with NaHCO3 (45 mL) and then brine (25 

mL). After drying over Na2SO4, the solvent was removed in vacuo and the 

residual dark brown solution distilled (bp = 121°C/16 mm Hg) to give the 
title ketone (18.1 g, 119.0 mmol, 72%) as a colourless oil. 

IR (film): v= 3074 w, 2928 s, 2869 s, 1712 s, C=O, 1648 w, 1456 m, 1375 
w, 1191 w, 1126 w, 890 m cm-1. 
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IH NMR (300 MHz, CDC13): S(ppm)= 4.92-4.88 (1H, dd, J=2.5,1.4 Hz, 

C2'H), 4.70-4.67 (1H, m, C2'H), 2.92 (1H, dd, J= 12.9,5.5 Hz, C2H), 2.73- 

2.41 (1H, m, C3HO, 2.41-2.32 (1H, m, C6H), 2.26-1.76 (4H, m, C6H + C3H 

+ C4H2), 1.71 (3H, s, C1'Me), 1.50-1.22 (1H, m, C3H), 1.11 (3H, d, J= 6.2 

Hz, C5Me). 

13C NMR (75 MHz, CDC13): S(ppm)= 210.3 (0), 143.6 (0), 113.0 (2), 57.8 

(1), 50.7 (2), 35.5 (1), 34.0 (2), 31.7 (3), 31.3 (2), 22.5 (3). 

LRMS (ESI+ mode, CH3CN): m/z (%)= 153 [(M+H)+, 100] 

Spectroscopic data are consistent with those reported in literature5l 

Friedrich, D.; Bohlmann, F. Tetrahedron 1988,44,1392. 

(1S, 2S, 5R)-5-Methyl-2-(1-methylethenyl)-1-cyclohexanol; 
(+)-neoisopulegol. 

L-SelectrideT"" 

THF, -78°C-4 rt 
98% 

FW-152.25 
CloHIs0 

FW= 154.25 
CloH1aO 

The reduction was carried out according to the procedure of Friedrich and 
Bohlmann5l 
A solution of (-)-isopulegone (18.11 g, 118.9 mmol, 1 eq) in dry THE (220 
mL) was placed in a flame dried three necked flask fitted with thermometer, 
250 mL pressure-equilibrating dropping funnel and condenser under Argon 
atmosphere and cooled to -75°C in an acetone/ dry ice bath. L-SelectrideTM 
(iM solution in THF, 175 mL, 175 mmol, 1.47 eq) was added dropwise 
from the dropping funnel keeping a gentle evolution of gas and maintaining 
the temperature below 70°C. The solution was allowed to warm to rt over 
8h after the end of additions. The solution was cooled to +100C in an ice 
bath and 3M NaOH aqueous solution (85 mL, 256.5 mmol, 2.21 eq) was 
slowly added from the dropping funnel followed by H202 30% (85 mL, 
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256.5 mmol, 2.21 eq) maintaining the temperature between +15° and +35°C 
during the addition. After 15 min from the end of the addition, THE was 
partially removed at the rotavapor before addition of Et20 (80 mL) and 

separation of the organic layer. The aqueous phase was extracted with Et20 

(3 x 50 mL) and the combined ethereal phases washed with 2N HCl (40 mL) 
and brine (20 mL) before drying on Na2CO3/ Na2SO4. The solvent was then 

removed at the rotavapor and (+)-neoisopulegol obtained by distillation 

under reduced pressure (132°C/ 16 mmHg) as a colourless oil (17.98 g, 
116.5 mmol, 98%). 

Spectroscopic data are in agreement with those reported in literature: 35 

Schulte-Elte, K. H.; Ohloff, G. Heiv. Chim. Acta 1967,50,153. 
Procedure: Friedrich, D.; Bohlmann, F. Tetrahedron 1988,44,1392. 

Hydroboration of Neoisopulegol 

+ low I _11 

(i) BH3"SMe2, THF, rt 
Oil NaOH. HoO 

ýýý#'OH (iii)H202, H20,70°C uýýý'OH ý*ý`''0H 95% 

FW= 154.25 
C10H18O 

2' 

H 

FW= 172.26 
C1 oH2002 

To a solution of neoisopulegol (5.4 g, 35 mmol) in dry THE (100 mL) was 
added dropwise over 40 min BH3 (40 mL of 1.0 M solution in THF, 40 

mmol, 1.14 eq) at a rate sufficient to maintain slow gas evolution. When the 
addition was complete, the clear solution was stirred at rt for 3 h, then 
NaOH (3 M, 17.4 mL, 52.2 mmol, 1.5 eq) was slowly added and the mixture 
then refluxed at 60°C for 2 h. The mixture was cooled in an ice bath and 
H202 (30%, 22 mL) was added dropwise at a rate sufficient to maintain the 
temperature below 30°C. After completing the addition, the reaction 
mixture was stirred for 1h at rt and then refluxed overnight. 
The bulk of THE was removed in vacuo and the residue was diluted with 
Et20 (40 mL) and washed with brine (40 mL). After extraction of the 
aqueous phase with ether (35 mL x 3), the combined organic layers were 
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dried over Na2SO4, concentrated in vacuo, and the residue purified by 

column chromatography on silica gel eluting with AcOEt-Et2O (1: 4) to give 
the title compound (5.85 g, 97%) as an inseparable 2: 1 mixture of 
diastereoisomeric (1R, 2S, 5R)-2-[(S)-2-Hydroxy-l-methylethyl]-5- 

methyl-1-cyclohexanol (3.2.1.4) and (1R, 2S, 5R)-2-[(R-2- 
Hydroxy-1-methylethyl]-5-methyl-l-cyclohexanol (3.2.1.3) 
identified by comparison with the reported data35 for IR, 1H and 13C NMR. 

(2S, 5R)-2-[(S)-2-[(t-Butyldimethylsilyl)oxy]-1-methylethyl]-5- 

methylcyclohexan-l-ol (3.2.1.6). 

TBSCI, imidazole 

DMF, rt 
84% 

H 
FW= 172.26 
CjoH2dP2 

FW= 286.53 
C16H3,402Si 

To a solution of 3.2.1.4 (3.50 g, 20.3 mmol) and imidazole (3.18 g, 46.74 
mmol, 2.3 eq) in dry DMF (15 ml) was added TBSCI (3.37 g, 22.35 mmol, 
1.1 eq). After 15 min the reaction mixture was poured into NH4C1 (20 mL) 
and the product extracted into hexanes. The organic layer was washed with 
brine, dried over MgSO4 and concentrated in vacuo. The residue was 
purified by column chromatography on silica gel eluting with Et2O-hexanes 
(1: 25) to give the title compound (4.89 g, 17.05 mmol, 84%) as a colourless 
oil: [a]D = +7.1 (c = 3.9 in CHC13). 

IR (film): v= 3440 br, 2927 s, 2858 s, 1472 m, 1461 m, 1354 s, 1071 s, 
961 m, 937 m, 836 s, 776 s, 666 m cm 1. 

IH NMR (270 MHz, CDC13): S=4.07 (1 H, m, C1 H), 3.66 (2H, overlapping 
br s, OH, and dd, A portion of an ABX system, J AB= 10.4, J AX= 2.4 Hz, 
C2'HA), 3.52 (1H, dd, B portion of an ABX system, J AB= 10.4, J BX= 6.2 
Hz, C2'HB), 1.92-1.59 (6H, m, C6H2 + C3H2 + C4H2), 1.29-0.98 (3H, m, 
C2H + C5H+C1'H), 0.94 (3H, d, J=6.4 Hz, C1'Me), 0.91 (9H, s, t-Bu), 
0.85 (3H, d, J=6.4 Hz, C5Me), 0.08 (6H, s, SiMe2). 
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13C NMR (75 MHz, CDC13): 8= 66.3 (2), 66.2 (1), 46.9 (1), 41.9 (2), 38.4 

(1), 35.6 (2), 26.3 (1), 26.0 (3C, 3), 25.8 (2), 22.6 (3), 18.4 (0), 16.3 (3), 

-5.5 (2C, 3). 

LRMS (Cl mode, NH3): m/z (%)= 287 (MH+, 100), 137 (48). 

HRMS (Cl mode, isobutane): found= 287.2414 (MH)+, C16H35O2Si requires 
287.2406. 

(1S, 2R, 5R)-2-[(R)-1-Methyl-l, 2-epoxyethyl]-5-methyl-l- 

cyclohexanol (4.4.2.1). 

VO(acac)2, PBuOOH 

benzene, rt 
88% 

FW= 154.25 
C10H180 

FW= 170.25 
CloHIe02 

The reaction was carried out following the procedure reported by Friedrich 

and Bohlmann51. 
A solution of tert-butylhydroperoxide in isooctane (4.4 M, 11.2 mL, 49.3 

mmol, 1.41 eq) was slowly added to a solution of vanadyl acetylacetonate 
(872 mg, 3.29 mmol, 0.094 eq) and isopulegol (5.93 mL, 5.40 g, 35.0 

mmol) in benzene (65 mL) at rt. The colour of the solution changed from 

violet to brown during the addition. After 90 min the clear solution was 
poured into NaHCO3 (70 mL) and extracted with ether (3 x 50 mL). The 

combined organic layers were washed with with brine (15 mL), dried over 
MgSO4, and concentrated in vacuo. The residue was purified by column 
chromatography on silica gel eluting with hexanes-Et2O (1: 1) to give the 
title compound (5.25 g, 30.8 mmol, 88%) as white crystals, mp 55-56°C. 

1H NMR (300 MHz, CDC13) and 13C NMR (75 MHz, CDC13) are in 

agreement with data reported by Friedrich and Bohlmann5l. 
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IR (CHC13) :V= 3523 m, br (OH), 3007 m, 2927 s, 1457 m, 1405w, 1124 

m, 946 m, 822 s cm-1 

IH NMR (270 MHz, CDC13): 8 (ppm)= 4.30 (1H, m, C1H), 2.78 (1H, dd, J= 

4.5,0.6 Hz, C2'H), 2.68 (1 H, s, OH), 2.47 (1 H, d, J= 4.5 Hz, C2'H), 1.89- 

1.68 (3H, m, C4H + C5H+C6H), 1.49- 1.37 (6H, m, C2H + C3H2+C2'Me), 

1.12- 0.80 (2H, m, C4H + C6H), 0.84 (3H, d, J= 6.4 Hz, C5Me). 

13C NMR (75 MHz, CDC13): 6(ppm)= 68.0 (1), 60.4 (0), 51.5 (2), 44.4 (1), 

42.1 (2), 34.6 (2), 25.6 (1), 22.3 (2C, 3+ 2), 21.9 (3). 

LRMS (ESI+ mode, CH3CN): m/z (%)= 363 [(2M+Na)+, 15], 193 [(M+Na)+, 

100], 153[(M-OH)+, 121 

(1R, 2S, 5R)-2-[(S)-2-Hydroxy-1-methylethyl]-5-methyl-l- 

cyclohexanol (3.2.1.4). 

NaBH3CN 
BF3*OEt2 

THF, 79% 

FW= 170.25 
C12H1802 

FW= 172.27 
CtoH2a(12 

Sodium cyanoborohydride (4.47 g, 71.2 mmol, 3 eq) was added to a solution 
of epoxide 4.4.2.1 (4.04 g, 23.7 mmol) and a drop of bromocresol green in 
dry THE (5 mL). A solution of BF3. OEt2 in dry THE (0.8 M) was added 
dropwise until the colour changed to yellow. The reaction mixture was 
stirred for 12 h maintaining the yellow colour by dropwise addition of the 
BF3. OEt2 solution, then diluted with brine (35 mL) and extracted with 
AcOEt (5 x 35 mL). The combined organic layers were dried over Na2SO4 

and concentrated in vacuo. The residue was purified by column 
chromatography on silica gel eluting with AcOEt: hexanes (1: 1) to give the 
title compound (3.24 g, 18.8 mmol, 79%) as a pale yellow oil. The product 
gave [a]D, IR, 1H NMR (300 MHz), and 13C NMR (75 MHz) spectra 
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consistent with data published by Schulte-Elte and Ohloff 35 [a]D= +17.5 
(c= 10, CHC13), reported +17.035 

IR (film): v= 3312 br (OH), 2912 s, 1456 s, 1376 m, 1367 w, 1305 w, 1106 

w, 1065 m, 1035 s, 972 w, 936 w, 847 s cm 1. 

1H NMR (270 MHz, CDC13): S (ppm)= 4.16-4.10 (1H, m, C1H), 3.65 (1H, 
dd, A portion of an ABX system, J AB= 10.8, J AX= 2.9 Hz, C 1'HA), 3.54 
(1H, dd, B portion of an ABX system, J AB= 10.8, J BX= 5.7 Hz, C1'H, 
C1'HB), 3.33 (2H, br s, OH), 1.88-1.70 (4 H, m, C6H2 + C3H2), 1.64-1.54 
(1H, m, C4H), 1.52-1.38 (1H, m, C4H), 1.28-1.10 (2H, m, C2H + C5H), 
0.99 (3H, d, J=7.1 Hz, C1'Me), 0.95 (1H, m, C1'H) 0.85 (3H, d, J=6.2 
Hz, CSMe). 

13C NMR (75 MHz, CDC13): S (ppm)= 66.4 (1), 64.8 (2), 46.2 (1), 42.4 (2), 
38.3 (1), 35.5 (2), 26.3 (1), 25.6 (2), 22.5 (3), 16.1 (3). 

(2S, 5R)-2-{(S)-2-[(t-Butyldimethylsilyl)oxy]-1-methylethyl}5- 

methylcyclohexan-1-one (3.2.1.7). 

r 
(I) DMSO, (000Ik 

DCM, -78°C 

H 
"''OH Et3N, -65°C 

88% 

TBS TBS 

FW= 286.53 FW= 284.51 
ClgH3402Si C16H3pO2Si 

DMSO (1.02 g, 926 µl, 13.0 mmol, 2.5 eq) in CH2C12 (15 mL) was added 
dropwise to a solution of oxalyl chloride (0.80 g, 0.55 mL, 6.30 mmol, 1.2 
eq) in dry CH2C12 (8 mL) at -72°C over 7 min. After 5 min alcohol 
3.2.1.6 (1.50 g, 5.23 mmol) in CH2C12 (4 mL) was slowly added over 4 
min at -65°C. After 90 min stirring at -65°C, Et3N (2.18 g, 3 mL, 21.5 
mmol, 4.1 eq) was added over 8 min and mixture allowed to warm to rt 
over 2 h. The white suspension was poured into vigorously stirred aq. 
NH4C1 (15 mL) and extracted into hexanes (3 x 20 mL). The combined 
organic phases were washed with HCl (1.5 M, 10 mL) followed by brine (10 
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organic phases were washed with HC1(1.5 M, 10 mL) followed by brine (10 

mL). The residue obtained on concentration in vacuo was purified by 

column chromatography on silica gel eluting with hexanes-Et20 (95: 5) to 

give the title compound (1.31 g, 4.60 mmol, 88%) as a pale yellow oil: 
[a]D= -7.4 (c = 2.5, CHC13). 

IR (film): v= 2955 s, 2857 s, 1710 s, 1471 m, 1387 m, 1256 m, 1087 s, 836 

s, 776 s cm-1. 

IH NMR (300 MHz, CDC13): S (ppm)= 3.45 (2H, AB part of an ABX 
system, JAB= 9.9, JBX= 7.3, JAX= 5.5 Hz, C2'HAB), 2.43-2.2 (3H, m, C6H2 

+ C2H), 2.05-1.80 (4H, m, C3H2 + C1'H+C5H), 1.41-1.10 (2H, m, C4H2), 
1.02 (3H, d, J=6.2 Hz, C 1'Me), 0.88 (9H, s, t-Bu), 0.80 (3H, d, J=7.0 Hz, 
C5Me), 0.04 (3H, s, SiMe), 0.03 (3H, s, SiMe). 

13C NMR (75 MHz, CDC13): S (ppm)= 212.6 (0), 66.0 (2), 51.0 (2), 50.0 
(1), 35.4 (1), 34.1 (2), 33.3 (1), 27.0 (2), 26.1 (3C, 3), 22.5 (3), 18.4 (0), 
12.9 (3), -5.4 (3), -5.5 (3). 

LRMS (CI+ mode, NH3): mlz (%)= 285 [(M+H)+, 100], 227 (66), 153 (33). 

HRMS (Cl mode, NH3): found (M+H)+, 285.2249 C20H33O2Si requires 
285.2250. 

(2S, 5R)-2-{(S)-2-[(t-Butyldimethylsilyl)oxy]-1-methylethyl}-5- 

methyl-6-(1,3-dithiane-2-ylidene)-cyclohexan-l-one (3.2.1.8). 

(i) LHMDS, DMPU 
(ii) CS2, -78°C-* -20°C (iii) LHMDS, -78°C 

0 (iv) BrCH2CH2CHj3r, THE 
-78°C -4 rt 71% 

TBS '' "ý dTBS 

FW= 286.51 FW= 400.72 
C16H32P2Si C20H3602SiS2 
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1.05 eq) was added slowly over 7 min. The mixture was warmed to rt over 
30 min, then the clear solution was cooled again to -78°C and DMPU (1.06 

mL, 1.11 g, 8.67 mmol, 1.05 eq) was added dropwise over 5 min. After 

stirring for 20 min at the same temperature, a solution of the ketone (2.35 g, 
8.26 mmol) in THE (12 mL) was added dropwise over 10 min and the 

solution stirred at -78°C for a further 30 min before rapid addition of CS2 

(522 µL, 660 mg, 8.67 mmol, 1.05 eq). The orange solution was allowed to 

warm to -20°C over 2 h, stirred at this temperature for 90 min, and cooled 

again to -78°C before addition of a second portion of LHMDS solution in 

THE (1.05 eq) prepared as above. 1,3-Dibromopropane (885 µL, 1.75 g, 
8.67 mmol, 1.05 eq) in THE (28 mL) was added after 30 min, the solution 
was allowed to warmed to rt over 13 h and then poured into aq. NH4C1 (60 

mL). The aqueous phase was separated, extracted with Et20 (3 x 40 mL) 

and the combined organic layers washed with brine (20 mL) before drying 

over Na2SO4. The residue obtained on concentration in vacuo was purified 
by column chromatography on silica gel eluting with hexanes-Et2O (4: 1) to 

give the title compound (2.35 g, 5.86 mmol, 71%) as a dark orange oil: 
[a]D= +14.3 (c = 12, CHC13). 

IR (film): v= 2928 s, 2856 s, 1643s, 1472 s, 1418 m, 1281 m, 1255 m, 
1087 s, 837 s, 775 s, 668 s cm-1. 

IH NMR (300 MHz, CDC13): S (ppm)= 3.40 (2H, m, AB portion of ABX 

system, JAB= 7.1 Hz, C2'H2), 3.21 (1H, app. sextet, J=6.4 Hz, C2H), 2.98 
(2H, ddd, A2 portion of A2BB'XY system, JAB= 13.9, S-CH2), 2.83 (1H, 
ddd, B portion of A2BB'XY system, JAB= 13.9, JBX= 7.7, JBy= 7.3 Hz, S- 
CHB), 2.75 (1H, ddd, B' portion of A2BB'XY system, JAB'= 13.9, JBýX= 
6.6, JB, y= 5.5 Hz, S-CHB), 2.43 (1H, dd, J= 12.9,6.2 Hz, C3H or C4H), 
2.35 (1H, dd, J= 12.5,6.6 Hz, C3H or C4H), 2.22-2.09 (2H, m, S-C-CH')), 
2.03- 1.93 (1H, m, C5H or C1'H), 1.89-1.77 (1H, m, C5H or C1'H), 1.61- 
1.49 (1H, m, C4H or C3H), 1.46- 1.34 (1H, m, C4H or C3H), 1.11 (3H, d, J 

= 7.2 Hz, C1'Me, 0.86 (9H, s, t-Bu), 0.75 (3H, d, J=6.5 Hz, C5Me), 0.02 
(3H, s, SiMe), 0.01 (3H, s, SiMe). 
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13C NMR (67.5 MHz, CDC13): S (ppm)= 200.4 (0), 150.8 (0), 137.1 (0), 

66.1 (2), 48.7 (1), 36.1 (1), 33.9 (1), 29.3 (2), 29.1 (2), 28.9 (2), 26.1 (3), 

23.9 (2), 20.3 (3), 19.8 (2), 18.4 (0), 12.7 (3), -5,2 (3), -5.3 (3). 

LRMS (ESI+ mode, CH3CN): m/z (%)= 823 [(2M+Na)+, 100], 423 

[(M+Na)+, 101,401 [(M+H)+, 161. 

HRMS (Cl mode, NH3): found (M+H)+, 401.2018; C2OH36O2SiS2 requires 
400.1926. 

(5S, 8R)-1-Methoxy-3,8-dimethyl-5-[(S)-2-hydroxy-l- 

methylethyl)-5,6,7,8-tetrahydronaphthalene (3.2.1.10). 

FW= 400.72 
C20H3602SiSE 

MethallylMgCl 

THF, 0°C-+ rt 

ýý 
FW= 456.83 

C24H44O2SiS2 
FW= 248.36 

C16H2402 

To a solution of a-oxoketene dithioacetal (4.09 g, 10.2 mmol) in THE (120 

mL) was added methallylmagnesium chloride [prepared from methallyl 
chloride (7.03 mL, 6.46 g, 71.4 mmol, 7.0 eq) and Mg turnings (5.27 g, 217 

mmol, 21 eq) in dry THE (286 mL)] over 15 min at 0°C via cannula. The 

cooling bath was removed and the mixture stirred at ambient temperature 
for 90 min, which caused the colour to change from dark to pale yellow. 
The reaction mixture was poured into aq. NH4C1 (200 mL), extracted with 
ether (3 x 40 mL) and dried over Na2SO4. Concentration in vacuo gave 
alcohol 3.2.1.9 as a pale yellow oil (4.46 g) which was used immediately in 
the next step. 

To a solution of BF3. OEt2 (11.1 g, 9.83 mL, 78.2 mmol, 8 eq) in methanol 
(40 mL) at -40°C was added slowly crude alcohol 3.2.1.9 (4.46 g) in THE 
(10 mL). The mixture was allowed to warm to rt over 18 h. Saturated 
NaHCO3 solution (45 mL) was added slowly and the mixture concentrated in 
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vacuo to a slurry which was diluted with brine (15 mL) and extracted with 
ether (3 x 15 mL). The combined organic layers were dried over Na2CO3/ 
Na2SO4, filtered, and concentrated in vacuo. The residue was purified by 

column chromatography on silica gel eluting with hexanes-Et20 (7: 3) to 

give the title compound (1.61 g, 6.48 mmol, 63% from the 3.2.1.8) as a 
yellow oil: [a]D= -25.0 (c = 0.62, CHC13). 

IR (film): v= 3354 s, br (OH), 3071 w, 2954 s, 2869 s, 1612 s, 1579 s, 
1462 s, 1373 m, 1344 m, 1272 s, 1096 s, 1029 s, 893 m, 832 m cm-1. 

1H NMR (300 MHz, CDC13): S (ppm)= 6.64 (1H, s, C4H), 6.53 (1H, s C2H), 

3.82 (3H, s, OMe), 3.67 (1H, dd, J= 10.7,6.6 Hz, C2'H), 3.56 (1H, dd, J= 
10.7,5.9 Hz, C2'H), 3.23- 3.13 (1H, m, C5H or C8H), 2.84- 2.74 (1H, m, 
C5H or C8H), 2.31 (3H, s, C3Me), 2.12- 2.04 (1H, m, C1'H), 1.91- 1.65 
(3H, m, C6H2 or C7H2 + OH), 1.58-1.68 (2H, m, C6H2 or C7H2), 1.15 (3H, 

d, J=6.8 Hz, C 1'Me), 0.89 (3H, d, J=7.0 Hz, C8Me). 

13C NMR (75 MHz, CDC13): 8 (ppm)= 157.4 (0), 139.9 (0), 135.3 (0), 
128.9 (0), 122.1 (1), 109.0 (1), 67.0 (2), 55.2 (3), 41.4 (1), 38.4 (1), 27.1 
(2), 26.6 (1), 21.7 (3), 21.6 (3), 19.5 (2), 14.7 (3). 

LRMS (EI mode): m/z (%)= 248 (M+", 37), 189 [(M-C3H70)+", 1001,175 
(26). 

HRMS (EI mode): found M+', 248.1774; C 16H2402 requires 248.1776. 

(SR, 8R)-1-Methoxy-3,8-dimethyl-5-[(S)-1-methyl-2-[(p- 
toluenesulfonyl)oxy] ethyl] -5,6,7,8-tetrahydronaphthalene 
(3.2.1.11). 

TsCI, DMAP 

Et3N, DCM 
86% 

FW= 248.36 FW= 402.55 
CisH2402 C23H3(fJ4S 
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To a solution of alcohol 3.2.1.10 (1.45 g, 5.84 mmol, 1 eq), DMAP 
(0.78g, 6.42 mmol, 1.1 eq) and NEt3 (2.04 mL, 1.48 g, 14.6 mmol, 2.5 eq) 
in CH2C12 (40 mL) at 0°C was added solid TsCI (1.56 g, 8.18 mmol, 1.4 eq) 

portionwise over 10 min. The cooling bath was removed and the clear 
yellow solution stirred at r. t for 18 h before pouring into aq. NH4C1 (50 

mL). The organic layer was separated, the aqueous phase extracted with 
CH2C12 (3 x 25 mL). The combined organic layers were washed with HCl (2 
M, 10 mL) and brine (10 mL), dried over Na2CO3/ Na2SO4, filtered and 
concentrated in vacuo. The residue was purifued by column chromatography 
on silica gel eluting with hexanes-CH2C12 (1: 4) to give the title compound 
(2.02 g, 5.02 mmol, 86%) as colourless needles, mp 69-70°C (hexanes): 
[a]D= +22.5 (c = 1.25, CHC13). 

IR (film): v= 2932 s, 2870 s, 1612 m, 1579 m, 1463 s, 1360 s, 1274 m, 
1176 s, 1097 s, 965 s, 836 s, 791 s, 666 s cm-1. 

1H NMR (300 MHz, CDC13): 8 (ppm)= 7.81 and 7.36 (2H each, d, J=8.3 
Hz, Ar AA'BB' system), 6.51 (IH, s, C4H), 6.44 (IH, s, C2H), 3.99 (2H, d, 
J=5.9 Hz, C2'H2), 3.82 (3H, s, OMe), 3.12- 3.08 (1H, m, C5H), 2.76- 2.71 
(1H, m, C8H), 2.47 (3H, s, ArMe), 2.25 (3H, s, C3Me), 2.10 (1H, m, C1'H), 
1.81- 1.75 (2H, m, C6H2 or C7H2), 1.58- 1.44 (2H, m, C6H2 or C7H2), 1.11 
(3H, d, J=7.0 Hz, C1'Me), 0.84 (3H, d, J=7.0 Hz, C8Me). 

13C NMR (75 MHz, CDC13): S (ppm)= 157.4 (0), 144.8 (0), 138.6 (0), 
135.3 (0), 133.4 (0), 130.0 (2C, 1), 128.7 (0), 128.1 (2C, 1), 121.9 (1), 
109.1 (1), 74.3 (2), 55.3 (3), 38.1 (1), 37.4 (1), 26.8 (2), 26.5 (1), 21.8 (3), 
21.6 (3), 21.5 (3), 19.0 (2), 14.1 (3). 

LRMS (EI mode): m/z (%)= 402 (M+", 59), 230 [(M-C7H8O3S)+', 35], 215 
(41), 189 (100), 173 (38), 91 (25). 

Found: C, 68.40; H, 7.7%. C23H3004S requires C, 68.63; H, 7.51; 0,15.90; 
S, 7.96. 
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(4RS, 5S, 8R)-1- Methoxy-3,8-dimethyl-5-[(1S)(1,5-dimethyl-3- 

phenylsulphonyl-4-hexenyl)-5,6,7,8, -tetrahydronaphthalene 
(3.2.1.12) . 

I 

FW= 402.55 
C23H3(P4S 

FW= 440.65 
C27H36CbS 

To a solution of 3-methyl-l-(phenylsulfonyl)-2-butene (2.78g, 13.2 mmol, 4 

eq) in THE (40 mL) at -78°C was added BuLi (1.58 M solution in hexanes, 

8.36 mL, 13.2 mmol, 4 eq) over 10 min. The orange solution was warmed 
to -30°C over 2 h, then cooled again to -78°C, and a solution of tosylate 
3.2.1.11 (1.33g, 3.30 mmol, 1 eq) in THE (24 mL) slowly added via 
cannula. The solution was allowed to warm to rt over 4h and then poured 
into vigorously stirred aq. NH4C1 (80 mL). The product was extracted into 
Et20 (3 x 50 mL), and the combined organic layers washed with brine (25 

mL) and dried over MgSO4. The residue obtained after filtration and 
concentration in vacuo was purfied by column chromatography on silica gel 
eluting with Et20-hexanes (5: 95) to give the title compound (1.10 g, 2.50 
mmol, 76%) as a 2: 1 mixture of epimers at C14 (1H, 13C NMR). 
Discernible signals relative to the minor isomer are marked with an asterisk 
M. [a]D= +13.2 (c = 6, CHC13). 

IR (film): v= 3048 m, 2956 s, 2869 s, 1668 w, 1613 m, 1580 s, 1447 s, 
1304 s, 1273 m, 1147 s, 1086 s, 743 s, 690 s cm-1. 

IH NMR (300 MHz, CDC13): S (ppm)= 7.90- 7.78 (2H, m, Ph), 7.65- 7.59 
(1H, m, Ph), 7.58- 7.48 (2H, m, Ph), 6.51 and 6.42* (2H, s, C2H and C4H), 
5.00 and 4.92* (1H, dm, J= 10.3 Hz, C4'H), 3.88* and 3.79 (3H, s, OMe), 
3.57 (1H, dt, J= 10.3,3.3 Hz, C3'H), 3.05- 2.98 (1H, m, C8H or C5H), 
2.56- 2.52* and 2.51- 2.48 (1H, m, C8H or C5H), 2.30- 2.10 (5H, m, C8Me 
+ C7H2 or C6H2), 1.90- 1.88 (1H, m, C1'H), 1.73 and 1.69* (3H, s, C6'H3), 
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1.69 and 1.59* (2H, m, C7H2 or C6H2), 1.52-1.46 (2H, m, C2'H2), 1.19* 

and 1.08 (3H, d, J=1.1 Hz, C5'Me), 1.13 * and 1.11 (3H, d, J=7.7 Hz, 
C1'Me), 0.80 and 0.68* (3H, d, J=7.7 Hz, C8Me). 

13C NMR (75 MHz, CDC13): S (ppm)= 157.2* and 157.1 (0), 142.5* and 
142.3 (0), 139.7 and 139.6* (0), 138.2 (0), 135.6 and 135.2* (0), 135.2 (0), 
133.5* and 133.4,133.4 (1), 129.4 (2C, 1), 128.8 (2C, 1), 121.8 (1), 117.8 

and 117.5* (1), 108.8* and 108.7 (1), 64.0*, 63.3 (1), 55.3 (3), 41.8* and 
38.1 (1), 36.5 and 36.2* (1), 33.4* and 32.0 (2), 29.9 (1), 27.6* and 27.4 
(2), 26.0 (3), 21.9 (3), 21.2 (3), 19.2 (2), 18.7 and 18.1* (3), 17.9 and 
15.7* (3). 

LRMS (EI mode): m/z (%)= 440 (M+', 29%), 299 [(M-PhSO2)+', 100], 216 
[(M-C 1OH15SO2)+', 48]. 

HRMS (EI mode): found M+", 440.2377, C27H3603S requires 440.2385 

(3R, 6R, 13S)-7-Methoxy-3,6,9-trimethyl-l-(2-methyl-l- 

propenyl)-2,3,4,5,6,13-hexahydro-lH-phenalene (3.2.1.13 and 
3.2.1.14). 

FW= 440.65 
C27H36()SS 

EtA1CI2, DCM 

-78°C->rt 
86% 

1S 
FW= 298.47 

C21 H30O 

+ 

1R 
FW= 298.47 

C21H300 

To a solution of sulfones 3.2.1.12 (264 mg, 0.6 mmol) in CH2C12 (15 mL) 
cooled to 78°C was added dropwise EtAIC12 (1 M in hexanes, 2.4 mL, 2.4 
mmol, 4 eq) over 5 min. The brown solution was allowed to warm to rt 
overnight and then poured into HCl (2 M, 25 mL). The product was 
extracted into CH2C12 (3 x 25 mL) and the combined organic layers washed 
with NaHCO3 (5 mL), brine (5 mL) and dried over Na2SO4. After filtration 
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and concentration in vacuo, 1H NMR analysis of the crude reaction mixture 
before chromatograpy revealed a 9.8: 1 mixture of C1 epimers. 
The major isomer could be separated by column chromatography on silica 
gel eluting with hexanes. (142 mg, 0.48 mmol, 79%), obtaiined as white 
needles, mp 95-96°C (2-propanol); [a]D= +16.8 (CHC13, c =0.57). 
X-rays analysis identified the major isomer as (iS, 3R, 6R, 13S)-7- 

Methoxy-3,6,9-trim ethyl -1-(2-methyl-l-propenyl)-2,3,4,5,6,13- 
hexahydro-1H-phenalene (3.2.1.13). 

IR (CHC13): v= 2923 s, 2856 s, 1593 s, 1575 s, 1464 s, 1379 m, 1320 m, 
1273 m, 1216 m, 1177 m, 1101 m, 836 s cm-1. 

The 1H NMR assignments were based on COSY experiments. 
1H NMR (300 MHz, CDC13): S (ppm)= 6.63 (1H, s, C8H), 5.19 (1H, dm, J 

= 9.2 Hz, C 1'H), 3.86 (3H, s, OMe), 3.69-3.64 (1H, m, C1 H), 3.43 (IH, 
apparent sextet, J=7.0 Hz, C6H), 2.22 (3H, s, C9Me), 2.21-2.10 (3H, m, 
C13H + C5H2), 1.80 (3H, d, J=1.3 Hz, C3'H3), 1.73-1.60 (6H, m, C2H2 + 
C3H + C2'Me), 1.58-1.45 (2H, m, C4H2), 1.24 (3H, d, J=7.0 Hz, C6Me), 
1.12 (3H, d, J=5.5 Hz, C3Me). 

13C NMR (75 MHz, CDC13): 6 (ppm)= 154.9 (0), 138.7 (0), 134.6 (0), 
129.8 (1), 129.6 (2C, 0), 128.4 (0), 110.8 (1), 55.4 (3), 43.5 (1), 39.4 (2), 
35.2 (1), 30.6 (2), 30.1 (1), 28.2 (2), 26.6 (1), 25.9 (3), 23.3 (3), 21.3 (3), 
19.7 (3), 17.8 (3). 

LRMS (EI mode): m/z (%)= 298 (M+", 87), 283 [(M-CH3)+0,100], 242 
[(M-C4H8)+', 30], 227 [(M-C5H1 i)+', 33]. 

HRMS (EI mode): found M+', 298.2295, C21H300 requires 298.2297 
X-ray analysis data are reported in appendix 1. 
Data for the minor isomer: 

(1R, 3R, 6R, 13S)-7-Methoxy-3,6,9-trimethyl-l-(2-methyl-l- 
propenyl)-2,3,4,5,6,13-hexahydro-lH-phenalene (3.2.1.14) 



134 
1H NMR (300 MHz, CDC13): 8 (ppm)= 6.60 (1H, s, C8H), 4.99 (1H, dm, J 

= 9.6 Hz, C1'H), 3.86 (3H, s, OMe), 3.78- 3.72 (1H, m, C1H), 3.43 (1H, 

apparent sextet, J=7.0 Hz, C6H), 2.23 (3H, s, C9Me), 2.21-2.10 (3H, m, 
C 13H + C5H2), 1.77 (3H, d, J=1.5 Hz, C3'H3), 1.73-1.60 (6H, m, C2H2 + 
C3H+C2'Me), 1.58-1.45 (2H, m, C4H2), 1.26 (3H, d, J=6.6 Hz, C6Me), 

1.08 (3H, d, J=5.9 Hz, C3Me). 

13C NMR (75 MHz, CDC13): S (ppm)= 155.6 (0), 140.7 (0), 135.1 (0), 

131.3 (1), 130.0 (0) 129.8 (0), 127.9 (0), 111.1 (1), 55.2 (3), 45.0 (1), 40.2 
(2), 36.7 (1), 34.2 (2), 31.9 (1), 28.3 (2), 27.8 (1), 25.6 (3), 23.8 (3), 20.8 
(3), 20.3 (3), 17.7 (3). 

(1S, 3R, 6R, 13S)-7-Hydroxy-3,6,9-trimethyl-l-[2-methyl-l- 

propenyl]-2,3,4,5,6,13-hexahydro-lH-phenalene (3.2.1.15). 

But"' K- -'But 
BBr3 

DCM, rt 
77% 

FW= 298.47 
C21 H30O 

FW= 284.44 
C20H280 

To a solution of 3.2.1.14 (366 mg, 1.23 mmol) and freshly distilled 2,6-di- 
tert-butyl-4-methylpyridine (303 mg, 1.48 mmol, 1.2 eq) in CH2C12 (15 
mL) was added dropwise BBr3 (1.0 M solution in CH2C12,2.46 mL, 2.46 

mmol, 2 eq). The brown suspension was stirred for 30 min, then the 
mixture was poured into H2O (50 mL), extracted with Et20 (3 x 25 mL) 
and dried over Na2C03/Na2SO4. The mixture was filtered, concentrated in 
vacuo, and the residue purified by column chromatography on silica gel 
eluting with hexanes followed by hexanes-Et20 (95: 5) to give the title 
compound (270 mg, 0.95 mmol, 77%) as a pale yellow oil: [a]D= +14.5 (c = 
0.5 in CHC13). 

IR (CHC13): v= 3406 br (OH), 2922 s, 2868 s, 1585 s, 1455 s, 1096 m, 
1043 m, 909 s, 843 s, 735 s cm-1. 
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tH NMR (300 MHz, CDC13): S (ppm)= 6.49 (1H, s, C8H), 5.15 (1H, dm, J 

= 8.0 Hz, C1'H), 5.05 (1H, s, OH), 3.61-3.58 (1H, m, C1H), 3.32-3.28 (1H, 

app. sextet, J=7.0 Hz , C6H), 2.24-2.08 (6H, m, C13H + C4H2 + C9Me), 

1.81 (3H, s, C3'H3), 1.75-1.72 (5H, m, C2'Me + C2H2), 1.60-1.42 (3H, m, 
C3H + C5H2), 1.24 (3H, d, J=7.0 Hz, C6Me), 1.10 (3H, d, J=5.8 Hz, 

C3Me). 

13C NMR (75 MHz, CDC13): S (ppm)= 151.0 (0), 139.0 (0), 135.0 (0), 

130.0 (2 C, 0+ 1), 129.7 (0), 126.0 (0), 115.4 (1), 43.6 (1), 39.3 (2), 35.1 

(1), 30.8 (2), 29.9 (1), 28.1 (2), 26.9 (1), 25.8 (3), 23.1 (3), 21.1 (3), 19.1 

(3), 17.7 (3). 

LRMS (Cl mode, NH3): mlz (%)= 285 [(M+H)+, 100], 134 (65), 35 (48). 

HRMS (EI mode): found M+", 284.2141, C20H280 requires 284.2140. 

3-Methyl-l-(phenylsulfonyl)-2-butene (3.2.1.17). 

PhSO2Na, i-PrOH 
H 

AcOH ref lux; 65% 

C5H1op 
FW= 86.13 

C1lH1aO2S 
FW= 210.30 

A mixture of 3-methyl-2-buten- l -ol (5.23 mL, 4.44 g, 51.5 mmol), glacial 
acetic acid (15 mL), 2-propanol (10 mL), sodium benzenesulfinate (10.1 g, 
61.8 mmol, 1.2 eq) was stirred for 10 min at rt and then refluxed for 16 h. 
The mixture was diluted with AcOEt (40 mL) and the acetic acid neutralised 
with aqueous NaHCO3 (50 mL). The aqueous layer was extracted with 
AcOEt (3 x 15 mL). The combined organic layers were dried over MgSO4, 
filtered, and concentrated in vacuo. The residue was purified by column 
chromatography on silica gel eluting with hexanes-Et2O (1: 1) to give the 
title compound (7.04 g, 33.5 mmol, 65%) as white crystals, mp 50-51 °C (2- 

propanol), lit. 102 mp = 50-51 °C. 
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IR (film): v= 3060 s, 2974 m, 2916 m, 1666 w, 1585 s, 1446 s, 1306 s, 

1449 s, 1129 s, 1084 s, 963 m, 772 m, 739 s, 689 s cm-1. 

1H NMR (300 MHz, CDC13): S (ppm)= 7.89-7.84 (2, m, C3'H), 7.64 (1, tt, 

J =7.3,1.6 Hz, C4'H), 7.53 (2, tt, J=6.2,1.6 Hz, C2'H), 5.17 (1, m, C2H), 

3.78 (2, d, J=7.7 Hz, C1H2), 1.71 (3, d, J=0.7 Hz, C3Me), 1.30 (3, d, J= 

1.1 Hz, C3Me). 

13C NMR (75 MHz, CDC13) S (ppm)= 143.1 (0), 138.8 (0), 133.7 (1), 

129.1 (1), 128.6 (1), 110.5 (1), 56.3 (2), 26.0 (3), 17.9 (3). 

(+)-Isopulegol. 

ZnBr2, PhH 
No 

0°C; 83% 

C10H180 
FW= 154.23 

CloHIEP 
FW= 154.23 

(-)-Citronellal (10.53 mL, 9.06 g, 58.7 mmol) was dissolved in dry benzene 
(30 mL) and cooled to 0°C in an ice bath. Powdered ZnBr2 (13.33 g, 58.7 

mmol, 1 eq) was added in small portions over 40 min keeping the 
temperature below 5°C. After complete addition , stirring was continued for 
1 h, keeping the suspension in the ice bath, then the solid was filtered off by 

a sintered glass funnel. The solvent was removed under reduced pressure 
and the residue diluted with Et2O (50 mL) and brine (30 mL). The aqueous 
layer was separated and extracted with Et20 (3 x 35 mL). The organic 
layers was dried on Na2S O4, the solvent removed and the title compound 
was obtained after distillation (0.02 mmHg, 42-43°C) as a pale yellow oil 
(7.57 g, 49.1 mmol, 83%). [a]D= +17.1 (neat), reported 17.5 (neat)80. 
IR , 1H and 13C NMR spectra are consistent with data reported80. 

(iS, 2R, 5S)-1-Acetoxy-5-methyl-2-(1-methylethenyl)- 

cyclohexane, (+)-isopulegyl acetate. 



C1oH180 
FW= 154.23 

137 

Ac20, Et3N 

DMAP, 5°C; 95% 

2 

C12H2oq 
FW= 196.29 

DMAP (185 mg, 1.52 mmol, 0.031 eq) was dissolved in Ac20 (9.28 mL, 
10.0 g, 98.2 mmol, 2 eq), cooled to 0°C and added dropwise to a solution of 
(+)-isopulegol (8.31 mL, 7.57 g, 49.1 mmol) in Et3N (13.78 mL, 9.94 g, 
98.2 mmol, 2 eq) in an ice bath, keeping the temperature below 5°C during 

the addition (20 min). After 30 min the solution was allowed to warm to rt, 

stirred for 90 min and then poured onto crushed ice (100 g). The mixture 

was stirred for 15 min before Et20 (100 mL) was added. The aqueous layer 

was then extracted with Et2O (3 x 40 mL), the organic phases combined and 

washed with NaHCO3 solution (20 mL), then brine (20 mL) and dried over 
Na2SO4 overnight. Distillation (12 mmHg, 134-135°C) gave the title acetate 

as a pale yellow oil (9.155 g, 46.6 mmol, 95%). 

[a]D= +17.3 (c = 2, CHC13) 

IR (thin film): v= 3075 w, 2927 s, 2870 m, 1738 s, 1647 m, 1457 m, 1373 

m, 1244 s, 1028 s, 891 m cm-1 

1H NMR (270 MHz, CDC13): 8 (ppm)= 4.78 (1H, td, J =11.0,4.4 Hz, C1H), 
4.68 (2H, m, C2'H2), 2.07 (1H, ddd, J= 12.4,10.8,3.7 Hz, C6H), 2.00-1.90 
(5H, m, 000M?, + C2H + C3H or C4H), 1.72-1.58 (4H, C1'Me + C3H or 
C4H), 1.56-1.45 (1, m, C5H), 1.34 (1H, app. dq, J= 13.1,4.0 Hz, C3H or 
C4H), 1.04-0.79 (2H, m, C6H, C3H or C4H) 0.92 (3H, d, J=6.6 Hz, 
C5Me). 

13C NMR (75 MHz, CDC13): 8 (ppm)= 170.5 (0), 146.3 (0), 111.7 (1), 73.5 
(1), 50.8 (1), 40.5 (2), 34.2 (2), 31.5 (1), 30.4 (2), 22.1 (3), 21.2 (3), 19.6 
(3). 
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LRMS (ESI+ mode, CH3CN): m! z (%)= 415 [(2M+Na)+, 1001,219 

[(M+Na)+, 23] 

(iS, 2S, 5S)-1-Acetoxy-2-acetyl-5-methylcyclohexane (8.3.2.1). 

(i) 03, -78°C 

0''OAc (ii) DMS, -78--> 
89% 

C12H2oQ 
FW= 196.29 

C»Hl8Cb 
FW= 198.26 

(+)-Isopulegyl acetate (9.15 g, 46.1 mmol) was dissolved in dry methanol 
(75 mL) and dry CH2C12 (25 mL), cooled to -78°C and 03 was bubbled 

through the solution until the formation of a persistent blue colour. The 

mixture was flushed with N2 for 15 min at -78°C before addition of 
dimethyl sulfide (16.8 mL, 14.3 g, 230.5 mmol, 5 eq). The solution was 

allowed to warm to rt over 10 h and the solvent was removed under reduced 

pressure. After addition of water (150 mL) and Et2O (150 mL) the aqueous 
phase was separated, extracted with Et2O (2 x 60 mL) and the organic phase 

washed with brine (30 mL) and dried on MgSO4. Flash column 
chromatography (silica gel, hexanes-Et2O 3: 1) yielded the title compound as 

a colourless oil (8.13 g, 41.0 mmol, 89% yield). 

[a]D= +76.3 (c = 2, CHC13) 

IR (thin film): v= 2930 s, 2870 m, 1738 s (C=O ester), 1715 s, (C=O 
ketone), 1455 m, 1371 s, 1241 s, 1204 m cm 1. 

1H NMR (360 MHz, CDC13): S (ppm)= 4.91 (1H, td, J= 11.0,4.4 Hz, C1 H), 
2.55 (1H, ddd, J= 10.9,10.7,3.8 Hz, C2H), 2.16-2.08 (4H, m, C2'H3 + 
C6H), 1.97 (3H, s, OCO W, 1.91 (IH, dq, J= 13.4,3.4 Hz, C4H or C3H), 

1.79-1.69 (1H, m, C3H or C4H), 1.65-1.53 (1H, m, C5H), 1.33 (1H, app. 
dq, J= 13.1,3.6 Hz, C3H or C4H), 1.00-0.89 (2H, m, C6H+C3H or C4H), 
0.93 (3H, d, J=6.6 Hz, CSMg). 
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13C NMR (90 MHz, CDC13): S (ppm)= 210.0 (0), 170.3 (0), 73.4 (1), 55.7 

(1), 39.6 (2), 33.5 (2), 31.0 (1), 29.2 (3), 27.9 (2), 22.0 (3), 21.3 (3). 

LRMS (ESI+ mode, CH3CN): m/z (%)= 419 [(2M+Na)+, 100], 

221 [(M+Na)+, 48], 216 [(M+NH4)+, 62] 

HRMS (Cl mode, NH3): found= 199.1332 (MH)+, C11H1903 requires 
199.1334. 

Ethyl 3-[(1R, 2S, 4S)-2-acetoxy-4-methylcyclohex-1-yl] -but-2- 
enoate (8.2.1.5). 

Triethyi phosphonoacetate 
No- 

"'"bAc NaH, THF, reflux; 64°! 0 

C11H180a 
FW= 198.26 

Ci51'i24Q} 
FW= 268.36 

NaH (60% suspension in mineral oil, 705.6 mg, 17.64 mmol, 3.5 eq) was 
washed with dry hexane to remove the oil, suspended in dry THE (25 mL) 
and cooled to 0°C in an ice bath. Triethyl phosphonoacetate (4.00 mL, 4.520 

g, 20.16 mmol, 4 eq) was slowly added over 35 min avoiding violent 
development of gas from the suspension. The ice bath was removed and the 

clear solution stirred at rt for 20 min before addition via cannula to a 
solution of ketone 8.3.2.1 (1.00 g, 5.04 mmol) in dry THE (25 mL). The 

solution was heated at reflux for 12 h, then poured into water (50 mL). The 

aqueous phase was extracted with ether (3 x 25 mL) and dried on MgSO4. 
Flash column chromatography (Si02, petrol 9/ diethyl ether 1) yielded the 
title compound as a yellow oil (872 mg, 3.22 mmol, 64% yield). The 

compound was obtained as 9: 1 mixture of isomers. The stereochemistry of 
the major product was confirmed by 1H NMR NOE experiments. 

[a]D= -3.4 (c = 2, CHC13) 
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IR (thin film): v= 2930 (s), 2870 (m), 1736 (s, C=O esters), 1646 (s, C=C), 
1453 (m), 1373 (s), 1242 (s), 1154 (s), 1027 (s), 868 (s) cm-1 

1H NMR (360 MHz, CDC13): S (ppm)= 5.66 (1H, d, J=1.3 Hz, C2H), 4.83 
(1H, dt, J= 10.8,4.4 Hz, C2'), 4.11 (2H, q, J=7.2 Hz, CH2 ethyl), 2.18- 

2.08 (1 H, m, C 1'H), 2.06 (3H, d, J=1.1 Hz, C3Me), 2.04- 1.92 (4H, m, 
C3'H + COOMe), 1.76- 1.64 (2H, m, C6'H + C5'H), 1.61-1.35 (2H, m, C4'H 

+ C5'H), 1.23 (3H, t, J=7.2 Hz, CH3 ethyl), 1.00 (1H, q, J= 12.1 Hz, 

C4'H), 0.98- 0.80 (1H, m, C6'H) 0.90 (3H, d, J=6.6 Hz, C4'L4e!, ). 

13C NMR (75 MHz, CDC13): 8 (ppm)= 170.5 (0), 166.8 (0), 160.0 (0), 117.3 
(1), 73.2 (2), 59.7 (2), 53.4 (1), 40.3 (2), 33.9 (2), 31.3 (1), 30.1 (2), 22.0 
(3), 21.2 (3), 16.0 (3), 14.4 (3). 

LRMS (CI+ mode, NH3): mlz (%)= 332 [(M+Na+CH3CN)+, 951,291 
[(M+Na)+, 91]. 

HRMS (Cl mode, NH3): found= 269.1769 (M+H)+, C15H2504 requires 
269.1753. 

Data for the minor isomer: 

1H NMR (270 MHz, CDC13): 8 (ppm)= 5.65 (1H, s, C2H), 4.82 (IH, dt, J= 
10.6,4.4 Hz, C2'), 4.15 (2H, q, J=7.1 Hz, CH2 ethyl), 2.18-2.08 (1H, m, 
C1'H), 2.06 (3H, d, J= 1.1 Hz, C3He. ), 2.04-1.92 (4H, m, C3'H + 000Me, ), 
1.76-1.64 (2H, m, C6'H + C5'H), 1.61-1.35 (2H, m, C4'H + C5'H), 1.28 
(3H, t, J=7.1 Hz, CH3 ethyl), 1.05-0.80 (2H, m, C3H + C6'H) 0.92 (3H, d, 
J=6.6 Hz, C4'Me . 

13C NMR (75 MHz, CDC13): 8 (ppm)= 170.7 (0), 166.2 (0), 160.0 (0), 118.5 
(1), 73.3 (1), 59.7 (2), 53.4 (1), 43.8 (2), 33.8 (2), 31.4 (1), 29.5 (2), 22.0 
(3), 20.4 (3), 15.3 (3), 14.4 (3). 

(3S)-Ethyl 3-[(1R, 2S, 4S)-2-acetoxy-4-methylcyclohex-1-yl]- 
butanoate (8.2.1.4). 
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O2Et 
C15H24Qf 

FW= 268.36 

TBSOH2C '' vCH2OTBS 

8.4.3.1 
(8 mol%) 

CoCI2.6 H20 
NaBH4, rt, EtOH; 90% 

IN- 

, co2Et 
C15H26Q1 

FW= 270.36 

The catalyst 8.4.3.1 was prepared according to the procedure published by 

Pfaltz et al85,103 and the reduction was carried following their protocol. 
In a flask fitted with a vacuum-tight teflon stopper, a solution of the a, ß- 

unsaturated ester 8.2.1.5 (670 mg, 2.5 mmol) in ethanol (1.0 mL) under 
N2 was treated successively with COC12.6H20 (42 mg, 0.175 mmol, 0.07 eq) 

in EtOH (0.27 mL) and semicorrin ligand 8.4.3.1 (93 mg, 0.2 mmol, 0.08 

eq) in EtOH (0.52 mL) causing the colour to turn from blue-violet to dark 

blue. A solution of NaBH4 (189 mg, 5.0 mmol, 2 eq) in DMF (1.5mL) was 

then added and the colour changed to brown. The suspension was then 
degassed at 0.01 mmHg by repeated (6) freeze-thaw cycles. The reaction 

mixture was stirred at 25°C for 6 days in the vacuum-sealed flask, then 
water (10 mL) was added and the mixture extracted with CH2C12 (4 x 15 

mL). The combined organic extracts were washed with H2O (15 mL) and 
dried on Na2SO4. After evaporation of the solvent at rotavapor, flash 

chromatography (silica gel, hexanes-Et2O 4: 1) yielded the title compound as 

a partially separable mixture with unreacted starting material. Level of 

conversion based on 1H NMR-detected starting material= 90% (weight of 
the crude mixture= 739 mg, weight of the purified product= 592 mg, 2.2 

mol, 87%). 

The catalyst was partially recovered (54 mg) by exhaustive washing of the 
column with EtOAc. 

[a)D= +35.7 (c = 2.5, CHC13) 

IR (thin film) :v= 2953 s, 2929 s, 2870 s, 1735 s, COO esters, 1457 w, 
1373 m, 1244 s, 1184 m, 1027 m cm-1 
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The 1H NMR assignments were based on COSY and 2D C-H correlation 

experiments. 
1H NMR (300 MHz, CDC13): 8 (ppm)= 4.63 (1H, dt, J= 10.7,4.4 Hz, 
C2'H), 4.10 (2H, q, J=7.0 Hz, CH2 ethyl), 2.36 (1H, dd, J= 14.9,4.2 Hz, 

C5'H eq), 2.27-2.19 (1H, m, C4'H), 2.05 (3H, s, OC=O_CH3), 2.03-1.93 (2H, 

m, C5'H + C3'H eq), 1.76-1.64 (2H, m, C2H + C6'Heq), 1.53-1.40 (2H, m, 
C3H +C 1'H), 1.24 (3H, t, J=7.0 Hz, CH3 ethyl), 1.02-0.82 (3H, m, C3'Hax 

+ C6'Hax + C2H) 0.93 (3H, d, J=7.0 Hz, C4'Me or C4H3), 0.90 (3H, d, J= 
6.6 Hz, C4'Me or C4H3). 

13C NMR (75 MHz, CDC13): 8 (ppm)= 173.8 (0), 170.8 (0), 73.6 (1), 60.6 
(2), 46.6 (1), 40.7 (2), 37.5 (2), 34.4 (2), 31.4 (1), 29.3 (1), 25.8 (2), 22.9 
(3), 21.4 (3), 17.6 (3), 14.4 (3). 

LRMS (ESI+ mode, CH3CN): m/z (%)= 563 [(2M+Na)+, 100], 334 
[(M+Na+CH3CN)+, 45], 293 [(M+Na)+, 90]. 

HRMS (CI mode, NH3): found= 271.1926 (M+H)+, C15H2704 requires 
271.1909. 

(1S, 2R, 5S)-2-[(S)-3-hydroxy-l-methylpropyl]-5-methyl-l- 

cyclohexanol (8.2.1.3). 

DIBAL-H 
°'''OAc 

-70 -a 0°C; 75% 

OOEt 

C15H26Q4 
FW= 270.36 

2 
H., nN ý ý. . ý.... . V 

C11 H2202 
FW= 186.29 

Diester 8.2.1.4 (562.3 mg, 2.08 mmol) was dissolved in dry CH2C12 (15 
mL) and cooled to -70°C. A 1.0 M solution of DIBAL-H in hexanes (11.3 
mL, 11.3 mmol, 4.5 eq) was added dropwise over 15 min and the solution 
allowed to warm to 0°C over lh. The mixture was then poured into an ice 
cold solution of sodium and potassium tartrate (10.5 g, 3.3 eq with respect 
to DIBAL-H) in water (15 mL) and CH2C12 (5 mL) and vigorously stirred 
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for 1 h. The aqueous layer was separated and extracted with CH2C12 (3 x 10 

mL), the combined organic extracts washed with brine (5 mL) and dried on 
Na2SO4. Flash chromatography (silica gel, AcOEt-CH2C12 7: 3) yielded the 

title diol as a white crystalline solid (290 mg after recrystallisation from 

petrol, 1.56 mmol, 75%). M. p. = 93-94°C 

[a]D= +75.2 (c = 0.5, CHC13) 

IR (CHC13 solution) :v= 3265 br s, (OH), 2923 s, 2868 s, 1455 m, 1216 m, 
1033 m, 758 s cm-1 

IH NMR (300 MHz, CDC13): S (ppm)= 3.77 (1H, ddd, J= 10.6,5.9,4.6 Hz, 
C3'H2), 3.77 (1H, app. dt, J=9.9,5.1 Hz, C3'H2), 3.48 (1H, dt, i= 10.4, 
4.6 Hz, C1H), 2.90-2.50 (2H, broad s, OH), 2.22-2.09 (1H, m, C5H), 2.01- 
1.95 (1H, m, C6H eq), 1.78-1.62 (3H, m, C3Heq + C2'H + C4eq), 1.50-1.38 
(1H, m, C2'H), 1.29-1.12 (2H, m, C5H + C2H), 1.08-0.80 (3H, m, Max + 
Max + C4Hax), 0.95 (3H, d, J=7.0 Hz, CSMe or C 1'Me), 0.92 (3H, d, J 

= 6.2 Hz, CSMg or Cl'W. 

13C NMR (90 MHz, CDC13): 6 (ppm)= 71.0 (1), 61.4 (2), 50.5 (1), 44.7 (2), 
34.8 (2), 33.7 (2), 31.9 (1), 27.7 (1), 24.2 (2), 22.4 (3), 18.4 (3). 

LRMS (ESI+ mode, CH3CN): m/z (%)= 454 [(2M+2CH3CN)+, 100], 334 
[(2M+CH3CN)+, 73]. 

Found: C, 70.98; H, 11.75%. C11H2202 requires C, 70.92; H, 11.90; 0, 
17.18. 

(1S, 2S, 5R)-2-[(R)-3-[(t-Butyldimethylsilyl)oxy]-1-methylpropyl]- 
5-methyl-l-cyclohexanol (8.6.1.1). 
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H2OH 
FW= 186.29 
C11H2202 

HnnTBS 7 ý. . Lý . ýý 
2 

FW= 300.56 
C17H3602$1 

Diol 8.2.1.3 (4.2 g, 22.5 mmol) and imidazole (3.52 g, 51.7 mmol, 2.3 eq) 
were dissolved in dry DMF (35 ml) and solid TBSCI (3.74 g, 24.8 mmol, 
1.1 eq) was then added. After 15 min, the reaction mixture was poured into 
NH4C1 (40 mL) and the product extracted into hexanes (3 x 30 ml). The 

organic layer was washed with brine (5 mL), dried over MgSO4, and 
concentrated in vacuo. The residue was purified by column chromatography 
on silica gel eluting with Et20-hexanes (1: 25) to give the title alcohol (6.42 

g, 95%) as a colourless oil: [a]D= +29.1 (c = 2, CHC13). 

IR (thin film): v =3416 br, s, 2954 s, 2928 s, 2858 s, 1472 m, 1388 w, 1361 

m, 1255 m, 1095 s, 836 s, 775 s cm-1 

1H NMR (360 MHz, CDC13): S (ppm)= 3.72 (1H, ddd, J=9.9,6.2,4.7 Hz, 
C311), 3.58 (1H, ddd, J=9.9,5.3,5.3 Hz, C3'H), 3.45 (1H, m, C1H), 2.33 
(1H, br. s, -OH), 2.14- 2.02 (1H, m, C5H), 2.01-1.90 (1H, dm, J= 12.0 Hz, 
C6Heq), 1.72- 1.59 (3H, m, C3Heq + C2'H + C4eq), 1.51-1.38 (1H, m, 
C2'H), 1.24- 1.10 (2H, m, C5H + C2H), 0.94- 0.88 (15H, m, Si-t-Bu + 
C5Mg or C1' Mg + C6Hax + C3Hax + C4Hax), 0.93 (3H, d, J=7.2 Hz, 
C5Mg-or C1'Mr, )_0.05 (6H, s, SiMe2). 

13C NMR (90 MHz, CDC13): S (ppm)= 71.2 (1), 62.6 (2), 50.4 (1), 44.4 (2), 
34.9 (2), 34.3 (2') 31.9 (1), 28.3 (1), 26.2 (3,3C), 24.5 (2), 22.4 (3), 18.6 
(3), 18.5 (0), -5.3 (3,2C). 

LRMS (ESI+ mode, CH3CN): m/z (%)= 342 [(M+H+CHCN3)+, 32], 301 
[(M+H)+, 78]. 

TBSCI 
imidazole 

DMF, rt 
95% 

HRMS (CI mode, NH3): found= 301.2547 (M+H)+, C17H36O2Si requires 
301.2563. 
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(2S, 5R)-2-[(R)-3-[(t-Butyldimethylsilyl)oxy]-1-methylpropyl]-5- 

methyl-l-cyclohexanone (8.6.1.3). 

FW= 300.56 
C17H3602Si 

3' CH2OTBS 

FW= 298.56 
C17H3402Si 

DMSO (4.36 g, 3.96 ml, 55.8 mmol, 2.6 eq) in CH202 (15 mL) was added 
dropwise to a solution of oxalyl chloride (3.54 g, 2.40 mL, 27.9 mmol, 1.3 

eq) in dry CH202 (80 mL) at -72°C over 10 min. After 20 min, alcohol 
8.6.1.1 (6.45 g, 21.5 mmol) in CH202 (35 mL) was slowly added over 4 

min at -65°C. After 90 min stirring at -65°C, Et3N (8.90 g, 12.3 mL, 88.0 

mmol, 4.1 eq) was added over 8 min and mixture allowed to warm to over 2 

h. The white suspension was poured into vigorously stirred aq. NH4C1 (50 

mL) and extracted into hexanes (3 x 40 mL). The combined organic phases 
were washed with HCl (1.5 M, 30 mL) followed by brine (20 mL). The 

residue obtained on concentration in vacuo was purified by column 
chromatography on silica gel eluting with hexanes-Et2O (95: 5); the ketone 

was recovered as a pale yellow oil: [a]D= +27.6 (c = 1.1, CHC13) 

IR (thin film): v= 2928 s, 2858 s, 1712 s, 1462 s, 1380 w, 1255 s, 1104 s, 
1005 w, 901 w, 836 s, 775 s, 663 w cm-1 

IH NMR (360 MHz, CDC13): S (ppm)= 3.68- 3.56 (2H, m, C1'H2), 2.30 
(IH, ddd, J= 12.9,3.7,2.2 Hz, C2H), 2.15- 2.09 (1H, m, C6H), 2.06- 1.77 
(5H, m, C1'H + C3H + C4H2 + C6H), 1.64- 1.56 (1H, m, C5H), 1.43 (1H, 
dq, J= 12.6,3.0 Hz, C3H), 1.33- 1.22 (2H, m, C2'H2), 0.98 (3H, d, J= 6.3 
Hz, C5Mr, or C1W, 0.90 (3H, d, J= 6.9 Hz, C5Mg or C 1'e), 0.86 (9H, s, 
Sit-Bu), 0.03 (3H, s, SiMe2), 0.02 (3H, s, SiMe2). 

(i) DMSO, (000Iý 
DCM, -78°C 

(ii) Et3N, -65°C 
87% 
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13C NMR (90 MHz, CDC13): S (ppm)= 211.9 (0), 62.1 (1), 55.2 (2), 51.0 

(2), 36.4 (2), 35.3 (1), 34.1 (2), 28.6 (2), 28.4 (1), 26.1 (3,3C), 22.4 (3), 

18.4 (0), 17.7 (3), -5.2 (3,2C). 

LRMS (Cl mode, NH3): m/z (%)= 316 [(M+NH4)+, 15%], 299 [(M+H)+, 

100%], 241 [(M-C4H9)+, 15%]. 

HRMS (Cl mode, NH3): found= 299.2416 (M+H)+, C 17H35O2Si requires 
299.2406. 

(2R, 5S)-2-[(R)-3-[(t-Butyldimethylsilyl)oxy]-1-methylpropyl]-5- 

methyl-6-(1,3-dithiane-2-ylidene)-1-cyclohexanone (8.6.1.3). 

FW= 298.56 
C17H3402Si 

(i) LHMDS, DMPU 
(ii) CS2, -78°C-4 -20°C (iii)LHMDS, 78°C 

(iv)BrCH2CH2CHý3r, THE 
7$°C-rt; 50% 

-)0- 
H''ý 

3 CH2OTBS 

FW= 414.75 
C21 H3E02SiS2 

A solution of HMDS (4.30 mL, 3.33 g, 20.6 mmol, 1.1 eq) in THE (25 mL) 
was cooled to -78°C and BuLi (1.38M in hexanes, 14.9 mL, 20.6 mmol, 1.1 

eq) was added slowly over 10 min. The mixture was warmed 'to rt over 30 

min , then the clear solution was cooled again to -78°C and DMPU (2.48 

mL, 2.64 g, 20.6 mmol, 1.1 eq) was added dropwise over 5 min. After 

stirring for 20 min at the same temperature, a solution of ketone 8.6.1.2 
(5.60 g, 18.8 mmol) in THE (20 mL) was added dropwise over 10 min and 
the solution stirred at -78°C for a further 30 min before rapid addition of 
CS2 (1.24 mL, 1.57 g, 20.6 mmol, 1.1 eq). The orange solution was allowed 
to warm to -20°C over 2 h, stirred at this temperature for 90 min, and 
cooled again to -78°C before addition of a second portion of LHMDS 

solution in THE (1.05 eq) prepared as above. 1,3-Dibromopropane (885 µL, 
1.75 g, 8.67 mmol, 1.05 eq) in THE (28 mL) was added after 30 min at the 
same temperature, the solution was warmed to rt over 16 h and then poured 
into aq. NH4C1 (80 mL). The aqueous phase was separated, extracted with 
Et20 (3 x 40 mL) and the combined organic layers washed with brine (30 
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mL) before drying over Na2SO4. The residue obtained after concentration 
in vacuo was purified by column chromatography on silica gel eluting with 
hexanes-Et20 (4: 1) to give the title ketene acetal (3.92 g, 9.45 mmol, 50%) 

as a dark orange oil: [a] D= -46.2(c = 1.1, CHC13) 

IR (thin film): v= 2928 s, 2857 s, 1644 m, 1471 s, 1283 m, 1255 s, 1093 s, 
836 s, 775 s cm-1 

1H NMR (360 MHz, CDC13): S (ppm)= 3.64- 3.50 (2H, m, C3'H2), 3.18 
(1H, app. sextet, J= 6.4 Hz, C2H), 3.01 (2H, AA' part of an AA'BB'XY 
system, J AB= 13.8 Hz, J A'B= 13.8 Hz, SCH2), 2.91 (1H, ddd, B part of an 
AA'BB'XY System, J AB= 13.8 Hz, J BX= 8.6, J BY =7.2 Hz, SCH2), 2.71 
(1H, ddd, B' part of an AA'BB'XY system, J AB= 13.8 Hz, J BX= 6.6, J 
By= 4.8 Hz, SCH), 2.19-2.10 (2H, m, SCH2CH2), 2.04- 1.96 (1H, m, C4H), 
1.90- 1.71 (1H, m, C5H), 1.67- 1.54 (3H, m, C2'H2 + C4H), 1.42- 1.24 (2H, 
m, C3H2), 1.10 (3H, d, J=6.9 Hz, C1'Mg), 0.90- 0.36 (13H, m, t-Bu+ 
C5Mg + C1'H), 0.03 (3H, s, SiMe2), 0.02 (3H, s, SiMe2). 

13C NMR (90 MHz, CDC13): S (ppm)= 200.6 (01), 150.0 (0), 137.4 (0), 61.9 
(2), 53.5 (1), 36.7 (2), 34.2 (1), 31.1 (1), 29.1 (2), 28.8 (2), 26.1 (3,3C), 
23.9 (2), 22.7 (2), 21.3 (2), 20.2 (3), 18.4 (0), 18.0 (3), -5.1 (3,2C). 

LRMS (ESI+ mode, CH3CN): m/z (%)= 846 [(2M+NH4)+, 821,415 
[(M+H)+, 1001. 

HRMS (CI mode, NH3): found= 415.2141 (M+H)+, C21H3902S2Si requires 
415.2161. 

(5R, 8S)-1-Methoxy-3,8-dimethyl-5-[(R)-3-hydroxy-l- 

methylpropyl)-5,6,7,8-tetrahydronaphthalene (8.6.1.5). 
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FW= 414.75 
C21 H3E02SiS2 

H2OTBS 

MethallylMgCl 

THF, 0°C--*r. t. 

BF3eOEt2, 
MeOH 

H2OTBS 13 CH2OH 
ý-- 

FW= 470.84 FW= 262.39 
C24H44O2SIS2 C17H2602 

To a solution of a-oxoketene dithioacetal 8.6.1.3 (3.90 g, 9.4 mmol) in 

THE (100 mL) was added methallylmagnesium chloride [prepared from 

methallyl chloride (7.40 mL, 6.81 g, 75.2 mmol, 8.0 eq) and Mg turnings 

(5.4 g, 225.6 mmol, 24 eq) in dry THE (320 mL)] over 15 min at 0°C via 

cannula. The cooling bath was removed and the mixture stirred at rt for 2 h; 

the colour changed from dark to pale yellow. The reaction mixture was 

poured into aq. NH4C1 (400 mL), extracted with ether (3 x 80 mL) and 

dried over Na2S O4. Concentration in vacuo gave the alcohol 8.6.1.4 as a 

pale yellow oil (4.80 g) which was used immediately in the next step. 

To a solution of BF3. OEt2 (13.3 g, 11.6 mL, 94 mmol, 10 eq) in methanol 
(40 mL) at -40°C was added slowly a solution of crude alcohol 8.6.1.4 

(4.80 g) in THE (40 mL). The mixture was allowed to warm to over 18 h. 
Saturated NaHCO3 solution (60 mL) was added slowly and the mixture 

concentrated in vacuo to a slurry which was diluted with brine (40 mL) and 

extracted with ether (3 x 45 mL). The combined organic layers were dried 

over Na2CO3/ Na2SO4, filtered, and concentrated in vacuo. The residue was 

purified by column chromatography on silica gel eluting with hexanes-Et2O 

(7: 3) to give the title compound (1.12 g, 4.27 mmol, 45% over the two 

steps) as a yellow oil: [a]D= +32.9 (c = 3.0, CHC13). 

The compound was contaminated with impurities (8%) that could not be 

removed after repeated column chromatography; IH NMR signals: 6.98 (s), 
6.86 (s), 2.29 (s). 

IR (thin film): v= 3361 s, br, 2933 s, 2869 s, 1612 m, 1579 m, 1462 s, 
13443 w, 1272 s, 1098 s, 1055 m, 832 m, 787 s, 764 m cm-1. 



149 
1H NMR (300 MHz, CDC13): S (ppm)= 6.66 (1H, s, C4H), 6.53 (1H, s, 

C2H), 3.83 (3H, s, OMe), 3.64- 3.56 (1H, A portion of an ABXY system, J 

AB= 10.5 Hz, J BY= 8.2, J AY= 5.1 Hz, C3'HA), 3.50- 3.42 (1H, B portion of 

an ABXY system, J AB= 10.5 Hz, J BX= J BY= 7.3 Hz, C3'HB), 3.20- 3.17 

(1H, m, C5 or C8), 2.73- 2.62 (1H, m, C5 or C8), 2.33 (3H, s, C3Me , 
2.22- 

1.70 (4H, m, C6H2 or C7H2 + C2'), 1.65- 1.49 (2H, m, C6H or C7H + OH), 

1.41- 1.28 (2H, m, C 1'H + C6H or C7H), 1.18 (3H, d, J= 7.0 Hz, C 1'Me), 

1.04 (3H, d, J= 7.0 Hz, CSMe). 

13C NMR (75 MHz, CDC13): S (ppm)= 157.1 (0), 140.1 (0), 135.0 (0), 128.8 

(0), 121.9 (1), 108.6 (1), 61.8 (2), 55.1 (3), 42.2 (1), 36.4 (2), 35.4 (1), 

27.5 (2), 26.5 (1), 21.7 (3), 21.4 (3), 19.2 (3), 18.9 (2). 

LRMS (ESI+ mode, CH3CN): mlz (%)= 262 [M+, 100]. 

HRMS (CI mode, NH3): found = 263.2028, C17H27O2 requires 263.2011. 

(5R, 8S)-1-Methoxy-3,8-dimethyl-5-[(R)-3-oxy-l-methylpropyl)- 
5,6,7,8-tetrahydronaphthalene (8.6.1.6). 

Swem oxidation 

88% 

FW= 262.39 
C17H2602 

FW= 260.39 
C17H24a2 

DMSO (204 mg, 0.186 ml, 2.62 mmol, 2.6 eq) in CH2C12 (0.5 mL) was 
added dropwise to a solution of oxalyl chloride (166 mg, 0.112 mL, 1.31 
mmol, 1.3 eq) in dry CH2C12 (1.5 mL) at -70°C over 5 min. After 20 min 
alcohol 8.6.1.5 (262 mg, 1.0 mmol) in CH2C12 (2.6 mL) was slowly added 
over 4 min at -65°C. After 90 min stirring at -65°C, Et3N (417 mg, . 575 

mL, 4.12 mmol, 4.1 eq) was added over 8 min and mixture allowed to 

warm to rt over 2 h. The white suspension was poured into vigorously 
stirred aq. NH4C1 (10 mL) and extracted into hexanes (3 x 10 mL). The 

combined organic phases were washed with HCl (2 M, 3 mL) followed by 
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brine (2 mL). The solution was concentrated at the rotavapor and purified 
by column chromatography on silica gel eluting with hexanes-Et20 (95: 5); 

the aldehyde was recovered as a pale yellow oil (230 mg, 0.88 mmol, 
88%). [a]D= +32.9 (c = 3.0, CHC13) 

IR (thin film): v= 2928 s, 2870 s, 2717 w, 1725 s (C=O), 1612 m, 1579 m, 
1463 s, 1273 s, 1098 s, 833 m, 733 m cm-1. 

iH NMR (300 MHz, CDC13): S (ppm)= 9.57 (1H, dd, J=3.1,1.2 Hz, CHO), 
6.65 (1H, s, C4H), 6.53 (1H, s, C2H), 3.82 (3H, s, OMe), 3.20-3.12 (1H, m, 
C5 or C8), 2.74-2.69 (1H, m, C5 or C8), 2.64-2.57 (1H, m, C1'H), 2.34- 
2.29 (4H, m, C3Me + C2'H), 2.17 (1H, dd, J= 16.0,10.3,3.1 Hz, C2'H), 
1.97-1.68 (3H, m, C6H2 + C7H), 1.58-1.49 (1H, m, C7H), 1.14 (3H, d, J= 
6.9 Hz, C1'H), 1.08 (3H, d, J=6.8 Hz, C8H). 

13C NMR (75 MHz, CDC13): S (ppm)= 203.2 (0), 157.3 (0), 139.2 (0), 135.6 
(0), 129.0 (0), 121.9 (1), 109.1 (1), 55.3 (3), 48.0 (2), 41.5 (1), 33.9(1), 
27.5 (2), 26.5 (1), 21.8 (3), 21.4 (3), 19.6 (3), 18.8 (2). 

LRMS (EI mode): m/z (%)= 260 (M+", 22), 216 [(M-C2H40)+", 16], 189 
[(M-C4H7O)+', 100]. 

HRMS (EI mode): found M+", 260.1781, C17H2402 requires 260.1776. 

(2'R, SR, 8S)-1- Methoxy-3,8-dimethyl-5-(1,5-dimethyl-3- 
hydroxyl-4-hexenyl)-5,6,7,8, -tetrahydronaphthalene (8.6.1.7). 

gBr 

THF, 0°C 
80% 

FW= 260.39 FW= 316.48 
C17H24Q C21 H320,2 
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To a solution of aldehyde 8.6.1.6 (153 mg, 0.59 mmol) in dry THE (2mL) 

at 0°C was added 2-methylpropene-l-magnesium chloride prepared from 1- 

bromo-2-methylpropene (398 mg, 0.298 mL, 2.95 mmol, 5 eq) and Mg 

turnings (142 mg, 5.9 mmol, 10 eq) in dry THE (2 mL) via cannula over 5 

min. The clear solution was allowed to warm to rt and stirred over 2h, then 

aq. NH4C1(5 mL) was added and the aqueous phase separated and extracted 

with Et20 (3 x5 mL). The combined organic extracts were washed with 
brine (2 ml) and dried on Na2SO4 before removal of the solvent in vacuo 

and column chromatography purification (silica gel, eluent hexanes-Et20 

4: 1-+ 1: 1). The title alcohol was recovered as a 2: 1 mixture of epimers by 
1H and 13C NMR (150 mg, 0.47 mmol, 80%). Discernible signals relative to 
the minor isomer are marked with an asterisk (*). [a]D= +21.2 (c = 5.0, 
CHC13). 

IR (thin film): v= 3360 br (OH), 2927 s, 2863 s, 1612 s, 1580 s, 1462 s, 
1416 s, 1370 m, 1344m, 1271 s, 1097 s, 1043 s, 1370 m, 1344 m, 1271 s, 
1097 s, 1043 s, 1016 s, 820 m, 800 cm-1. 

IH NMR (360 MHz, CDC13): 8 (ppm)= 6.66 and 6.60* (1H, s, C4H), 6.51 
(1H, s, C2H), 5.09 (0.67H, dt, J=8.5,1.4 Hz, C4'H), 4.86* (0.33H, dt, J= 
9.0,1.4 Hz, C4H), 4.34- 4.26 (1H, m, C3'H), 3.82 (3H, s, OMe), 3.17- 3.14 
(1H, m, C5 or C8), 2.69- 2.60 (1H, m, C5 or C8), 2.31 (3H, s, C3N, e), 2.23- 
2.18 (1H, m, Cl 14), 1.94- 1.86 (2H, m, C6H2 or C7H2), 1.78- 1.73 (2H, m, 
C6H2 or C7H2), 1.72* and 1.69 (3H, d, J=1.2 Hz, C5'Me or C6'Me), 
1.67* and 1.66 (3H, d, J=1.2 Hz, C51Me or C6Me), 1.50- 1.43 and 1.40- 
1.33* (2H, m, C2'H2), 1.15 (3H, d, J=6.9 Hz, C1'Me), 1.05 and 1.03* (3H, 
d, J=6.8 Hz, C8Me). 

13C NMR (90 MHz, CDC13): S (ppm)= 157.2 (0), 140.3* and 140.2 (0), 
135.7 and 135.1 (0), 135.0 (0), 131.3 (0), 129.0 and 128.3* (1), 122.1 and 
121.0* (1), 108.7 (1), 67.7* and 67.0 (1), 55.3 (3), 42.4 (1), 41.8 and 41.4* 
(2), 35.3* and 34.9 (1), 27.8* and 27.7 (2), 26.6 (1), 26.0* and 25.9 (3), 
21.8 (3), 21.5 (3), 19.7 and 19.3* (3), 19.2* and 19.0 (2), 18.3* and 18.2 
(3). 
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LRMS (EI mode): mlz (%)= 298 [(M-H2O)+", 8], 216 [(M-C6H 12O)+', 67], 

189 [(M-C8H15O)+', 100]. 

HRMS (EI mode): found M+", 316.2402, C21H3202 requires 316.2402. 

(2'R, 5R, 8S)-1- Methoxy-3,8-dimethyl-5-(1,5-dimethyl-3- 

phenylsulphonyl-4-hexenyl) -5,6,7,8, -tetrahydronaphthalene 
(8.6.1.8). 

PhSO2Na, AcOH 

2-propanol, reflux 
64% 

FW= 316.48 
C21 H3202 

FW= 440.67 
C27H3603S 

Solid PhSO2Na (579 mg, 3.52 mmol, 7.5 eq) was added to a solution of 

allylic alcohol 8.6.1.7(150 mg, 0.47 mmol) in 2-propanol (5 mL). Glacial 

AcOH (0.5 mL) was added dropwise over 2 min, the suspension was stirred 
for 30 min at rt until all the solid had dissolved and then heated to reflux for 

16 h. The pale yellow solution was then allowed to cool to rt, diluted with 
AcOEt (6 mL) and neutralised with aq. NaHCO3 (5 mL). The aqueous layer 

was extracted with AcOEt (2 x5 mL) and the organic phases dried over 
MgSO4 before concentrating at the rotavapor. The residue was purified by 

column chromatography on silica gel eluting with hexanes- Et20 1: 1 to 

afford the title sulfone as a yellow oil (132 mg, 0.3 mmol, 64 %) as a 2: 1 

mixture of epimers. 1H and 13C NMR data are consistent with those 

reported for 3.2.1.12. 

(1R, 3S, 6S, 13R)-7-Hydroxy-3,6,9-trimethyl-l-[2-methyl-l- 

propenyl]-2,3,4,5,6,13-hexahydro-lH-phenalene (8.6.1.10). 
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FW= 298.47 
C21 H300 

FW= 284.44 
C20H280 

A suspension of NaH (121 mg, 5 mmol, 20 eq) in dry DMF (2 mL) was 

added EtSH (311 mg, 0.37 mL, 5 mmol, 20 eq) in DMF (0.37 mL) at a rate 

sufficient to maintain slow gas evolution at 0°C. After 30 min from the end 

of the addition, a solution of 8.6.1.9 (75 mg, 0.25 mmol) in dry DMF (4 

mL)was added via cannula. The clear yellow solution was heated at 155°C 
for 16 h before cooling to it, diluting with Et2O and pouring into aq. NH4C1 

(10 mL). After extraction of the aqueous phase with Et20 (2 x 10 mL), and 
drying of the organic phase over Na2SO4, the solvent was removed in vacuo 
and column chromatography (silica gel, hexanes-Et2O 4: 1) yielded the title 

phenol as a colourless oil (56 mg, 0.197 mmol, 78%). 1H and 13C NMR 
data are consistent with those reported for 3.2.1.15. 

(1R, 3S, 6S, 13R)-7,8-Dihydroxy-3,6,9-trimethyl-l-[2-methyl-l- 

propenyl]-2,3,4,5,6,13-hexahydro-lH-phenalene, pseudopterosins 
A-F aglycone. 

EtSNa, DMF 

ref lux, 780J6 

(i) Fremy's salt 
KH2PO4 
DMF/H20, rt 

(ii) Na2S2O4 
CH2CI2/H2O 

FW= 284.44 
C20H280 

83% 

H 

i4 

\ 
16 17 

FW= 300.44 
C20H2a02 

A solution of phenol 8.6.1.10 (55 mg, 0.16 mmol) in DMF (12 mL) was 
protected from light with aluminium foil and a solution of (KSO3)2NO (518 
mg, 19.3 mmol, 10 eq) and KH2PO4 (198 mg, 1.45 mmol, 7.54 eq) in H2O 
(20 mL) was added via cannula over 15 min. The bright red solution was 
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stirred at rt under N2 for 16 h. The solution was then poured into 2N HCI 

(15 mL), extracted with Et20 (3 x5 mL) and the combined organic 

portions washed with brine (5 mL) before drying over Na2SO4. The crude 

was then dissolved in CHC13 (5 mL) and a freshly prepared saturated 

solution of Na2S2O4 (10 mL) was added at rt. After vigorously stirring at rt 
for 15 min, the colour changed from dark orange to pale yellow. Et20 (5 

mL) was then added, the aqueous phase was separated and extracted with 
Et20 (3 x5 mL). After drying over Na2S O4 for 5 min, column 

chromatography afforded the unstable title compound as a yellow oil (48 

mg, 0.16 mmol, 83%). 

IR and 1H NMR data are in agreement with those reported by A. Carpino79 

and McCombie19. Atom numbers in the NMR assignments and in the scheme 

above are given following the pseudopterosins numbering. 
[UID= +30.5 (c = 0.3, CHC13). 

IR (thin film): v= 3449 br (OH), 2923 s, 2857 s, 1446 s, 1374 m, 1295 s, 
1189 m, 1106 m, 1041 m, 810 m cm-1. 

1H NMR (360 MHz, CDC13): S (ppm)= 5.12 (1H, d, J=9.1 Hz, C14H), 5.07 
(1H, br s, OH), 4.87 (1H, br s, OH), 3.62- 3.55 (1H, m, C1H), 3.23 (1H, 

app. sextet, J=7.3 Hz, C7H), 2.25- 2.13 (3H, m, C6H2 and C4H), 2.04 (3H, 

s, C11 Mg), 1.76 (3H, s, C16H3), 1.70 (3H, s, C17H3), 1.71- 1.41 (4H, m, 
C2H2 and C4H2), 1.26 (3H, d, J=7.1 Hz, C7Mg), 1.31- 1.20 (1H, m, C3H), 

. 1.05 (3H, d, J=6.1 Hz, C3M 

13C NMR (90 MHz, CDC13): 8 (ppm)= 140.0 (0), 139.9 (0), 130.4 (1), 130.3 
(0), 130.0 (0), 126.0 (0), 125.7 (0), 120.0 (0), 43.3 (1), 39.7 (2), 35.5 (1), 
31.1 (2), 30.1 (1), 28.4 (2), 27.5 (1), 25.8 (3), 23.2 (3), 21.2 (3), 17.8 (3), 
11.0 (3). 

LRMS (EI mode): Wz (°lo)= 300 (M+', 100), 285 [(M-CH3)+', 75], 245 
[(M--C4H7)+', 68], 244 [(M--C4H8)+', 52], 229 [(M-C5H1 1)+', 36], 218 (28). 

HRMS (EI mode): found M+', 300.2071, C20H2802 requires 300.2089. 
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Appendix 1 
X-ray data for 3.2.1.13 
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Sample: alp44 b25 

P. O. 2 

X-ray Structure Report 

for 

A. Pontiroli 

32.1.13 

Uni. of Southampton 

Tue Sep 19 1995 
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Introduction 

This is the structural analysis of an organic compound produced as a step towards an end target. 
The purpose of running an x-ray diffraction pattern and solving the structure was to identify the relative 
stereochemistry of the iso-butene group. The cyclic carbon system was well defined in the starting data 
and side groups became clear once this had been set. Hydrogen atoms were placed on the structure using 
geometrically defined positions. 



158 

E'raerimenial 

Data Col ection 

A colourlesstablet tablet crystal of C11 H300 having approximate dimensions of 0.50 x 0.40 x 0.10 mm 

was mounted on a glass fiber. All measurements were made on a Rigaku AFC7S diffractometer with graphite 

monochromated Mo-Ka radiation. 

Cell constants and an orientation matrix for data collection , obtained from a least-squares refinement 
using the setting angles of 19 carefully centered reflections in the range 19.50 < 20 < 22.65 corresponded 
to amonoclinic cell with dimensions: 

a= 10.653(5) A 

b=9.082(7) .1 .3= 101.37(5)° 

c= 18.37(1) A 

V= 1762(1) . i3 

For Z=4 and F. W. = 293.41, the calculates density is 1.12 g/cm3. The systematic absences of: 

hOl: 1r 2n 

OkO: k -7- 2n 

uniquely determine the space group to be: 

P31/c (, =4) 

The data were collected at a temperat_: e of -123 = 1°C using the _-29 scan technique to a maximum 
29 value of 50.0°. Omega scans of several : atense reflections. made prior to data collection. had an average 
width at haif-height of 0.28° with a take-o,: angle of 6.0°. Scans of (1.42 = 0.35 tan 8)° were made at a 
speed of 16.0°Jmin (in omega). The weak -t! ections (I < 15.0c(I)) were rescanned (maximum of 4 scans) 
and the counts were accumulated to ensure good counting statistics. Stationary background counts were 
recorded on each side of the reflection. The ratio of peak counting time to background counting time was 
2.1. The diameter of the incident beam collimator was 0.5 mm and the crystal to detector distance was 400 
mm, The computer-controlled slits were set to 9.0 mm (horizontal) and 13.0 mm (vertical). 

Data Reduction 

Of the 3083 reflections which were cc 1ected, 3894 were unique (R,,,, = 0.041). The intensities of 
three representative reflection were measured after every 150 reflections. Over the course of data collection, 
the standards decreased by 3.6%. A linear correction factor was applied to the data to account for this 
phenomenon. 

The linear absorption coefficient, u, for Mo-Ka radiation is 0.7 c: n't. An empirical absorption correction 
based on azimuthal scans of several reflections was applied which resulted in transmission factors ranging 
from 0.66 to 1.00. The data were corrected : cr Lorentz and polarization et acts. A. correction for secondary 
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extinction was applied (coefficient = 7.7 2816e-O7). 

Structure Solution and Refinement 

The structure was solved by direct methods' and expanded using Fourier techniques2. The non-hydrogen 

atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final cycle of full- 

matrix least-squares refinement3 was based on 1481 observed reflections (I > 2.50a(I)) and 200 variable 
parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted 

agreement factors of: 

R= !: IlFol - JFcjj/LjFoj = 0.061 

R,,, = (rw(IFol - IFcj)2/EwF o=)j = 0.070 

The standard deviation of an observation of unit weight4 was 2.39. The weighting scheme was based 

on counting statistics and included a factor (p = 0.021) to downweight the intense reflections. Plots of 
Su; QFo(-; Fc()2 versus IFol, reflection order in data collection. sin 9/A and various classes of indices showed 
no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 
0.38 and -0.21 e- /A3, respectively. 

Neutral atom scattering factors were taken from Cromer and Wabers . Anomalous dispersion effects 
were included in Fcalcs; the values for -If' and -If' were those of Creagh and McAuley'. The vaiues for the 
mass attenuation coefficients are those of Creagh and Hubbell. All calculations were performed using the 
teXsan9 crystallographic software package of Molecular Structure Corporation. 
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(1) SHELXS86: Sheldrick. G. M. (1985). In: "Crystallographic Computing 3" (Eds G. M. Sheldrick. C. 
Kruger and R. Goddard) Oxford University press. pp. 175-189. 

(2) OTRDIF94: Beurskens, P. T., Admiraal, G.. Beurskens. G., Bosnian. \V. P., de Gelder, R.. Israel. 
R. and' Srnits. J. M. M. (1994). The DIRDIF-94 program system, Technical Report of the Crystallography 
Laboratory, University of Nijmegen, The Netherlands. 

(3) Least-Squares: 

Function minimized: Ew(IFol - jFcj)' 

.ý where wa=oo= ems( ö- j 

o (Fo2) = 
Sý(Ci R°91+(ofo'1° 

7 
S= Scan rate 

C= Total integrated peak count 
R= Ratio of scan time to background counting time 

B= Total background count 

i 
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Lp = Lorentz-polarization factor 

p= p-factor 

(4) Standard deviation of an observation of unit weight: 

s'w(IFoI - IFcD)21(No-. Vv) 

where: No = number of observations 
Nv = number of variables 
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Kynoch Press, Birmingham, England, Table 2.2 A. (1974). 
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ed. ), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992). 

(8) Creagh. D. C. & Hubbell. J. H..; "International Tables for Crystallography", Vol C. (A. J. C. Wilson, 
ed. ), Kluwer kcademic Publishers, Boston. Table 4.2.4.2), pages 200-206 (1992). 

(9) teXsan C: gstal Structure Anaiysis Package, 'Molecular Structure Corporation (1958 & 1992). 
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EXPERIMENTAL DETAILS 

A. Crystal Data 

Empirical Formula 

Formula Weight 

Crystal Color. Habit 

Crystal Dimensions 

Crystal System 

Lattice Type 

No. of Reflections Used for Unit 

Cell Determination (29 range) 

Omega Scan Peak Width 

at Haif-height 

Lattice Parameters 

Space Group 

Z value 

Dcale 

Fooo 

/i(MoKa) 

C21H300 

298.47 

colouriesstablet, tablet 

0.50X0.40X0.10mm 

monoclinic 

Primitive 

19 ( 19.5 - 22.5° ) 

0.2S* 

a= 10.653(5)A 
b=9.082(7) A 

c= 18.57(1) A 
0= 101.27(5)0 

Vs 1i62(1) . 
i3 

P21/c (, T14) 

4 

1.125 g/cm3 

656.00 

0.66 cm-1 

B. Intensity Measurements 

Diffra. ctorneter Rigaku AFC7S 



Radiation 

Attenuator 

Take-off Angle 

Detector Aperture 

Crystal to Detector Distance 

Temperature 

Scan Type 

Scan Rate 

Scan Width 

ZBmaz 

No. of Reflections Measured 

Corrections 

Structure Solution 

Refinement 

Function Minimized 

Least Squares Weights 

p-factor 

Anomalous Dispersion 

No. Observations (I>2.50a(I)) 

No. Variables 

Reflection/Parameter Ratio 
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MoKa (A o 0.71069.1) 
graphite monochromated 

Zr foil (factor = 3.59) 

6.0° 

9.0 mm horizontal 
13.0 mm vertical 

400 mm 

-123.0°C 

-2B 

18.0°/min (in c,: ) (up to 4 scans) 

(1.42 - 0.35 tan B)° 

50.0° 

Total: 3053 
Unique: '2894 (R;,,, = 0.041) 

Lorentz- polarization 
Absorption 
(trans. factors: 0.6618 - 1.0000) 
Decay (3.61% decline) 
Secondary Extinction 
(coei cient: i. i2S16e-07) 

C. Structure Solution and Refinement 

Direct Methods (SHELXS86) 

Full-matrix least-squares 

rw(jFol - JFcº)2 

e2 
7'öl - o"t e") 

0.0210 

All non-hydrogen atoms 

1481 

200 

7.41 
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Residuals: R; Rw 0.061 ; 0.070 

Goodness of Fit Indicator 2.39 

Max Shift/Error in Final Cycle 0.00 

Maximum peak in Final Diff. Map 0.33 e-/A3 

Minimum peak in Final Diff. Map -0.21 e-/A3 



164 

Table 1. Atomic coordinates and B;,, /Bq 

atom xyzB, 

0(1) -0.2915(3) 0.1658(4) 0.9460(2) 3.31(8) 

C(1) 0.2319(4) 0.3399(5) 1.0069(2) 2.26(10) 

C(2) 0.2829(4) 0.3548(5) 0.9352(2) 2.48(10) 

C(3) 0.2591(4) 0.2165(5) 0.8887(2) 2.6(1) 

C(4) 0.1138(4) 0.1910(5) 0.8650(2) 2.40(10) 

C(S) 0.0827(4) 0.0344(5) 0.8363(2) 3.4(1) 

C(6) -0.0578(5) 0.0121(7) 0.8064(3) 5.6(2) 

C(7) -0.1522. (4) 0.1015(5) 0.8406(2) 2. S(1) 

C(S) -0.090.7(4) 0.1791(5) 0.9113(2) 2.17(10) 

C(9) -0.1640(4) 0.20S4(5) 0.9638(2) 2.5(1) 

C(10) -0.1119(4) 0.2s10(5) 1.02S6(2) 2.4(1) 

C(11) 0.0165(4) 0.3216(5) 1.0430(2) 2.39(10) 

C(12) 0.0925(4) 0.2944(5) 0.9911(2) 1.99(9) 

C(13) 0.0379(4) 0.2223(4) 0.9251(2) 2.00(9) 

C(14) -0.3696(4) 0.1921(6) 0.9993(3) 3.6(1) 

C(15) 0.3110(4) 0.2307(5) 1.0581(2) 2.41(10) 

C(16) 0.4066(4) 0.261'. 1(5) 1.1156(2) 2.5(1) 

C(17) 0.4470(4) 0.4133(6) 1.1402(2) 3.5(1) 

C(18) 0.4772(4) 0.1373(5) 1.1605(2) 3.1(1) 

C(19) 0.3240(4) 0.2274(6) 0.5219(2) 3.4(1) 

C(20) 0.0703(4) 0.3993(5) 1.1146(2) 3.1(1) 

C(21) -0.2248(7) 0.2144(7) 0.7870(3) 3. +"(2) 

H(1) -0.1684 0.2945 1.0676 4.2697 

H(2) 0.2967 0.1163 1.0468 1.7238 
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Table 1. Atomic coordinates and B;,, /B,, (continued) 

atom xyZ Bev 

H(3) -0.3731 0.3076 1.0046 2.1297 

H(4) -0.4529 0.1594 0.9741 3.5524 

H(5) -0.3288 0.1417 1.0497 4.3155 

H(6) 0.4427 0.4329 1.1912 6.0582 

H(7) 0.5435 0.4292 1.1372 5.3053 

H(8) 0. -4079 0.5074 1.1156 1.0236 

H(12) 0.4210 0.2374 0.8374 1.5143 

H(13) 0.3080,0.1287 0.7931 4.5798 

H(14) 0.3005 0.3277 0.7944 4.9816 

H(15) 0.0007 0.4010 1.1482 6. -090 

H(16) 0.1483 0.3496 1.1430 3.1472 

H(17) 0.0909 0.5091 1.1066 2.9676 

H(18) -0.1792 0.3016 0.7717 14. -5853 

H(19) -0.2644 0.1587 0.7442 9.7793 

H(21) 0.1289 0.0064 0.1957 5.2293 

H(22) 0.1049 -0.0470 0.. 785 5.2907 

H(23) -0.0696 0.0109 0.7536 7.5502 

H(24) -0.0864 -0.1083 0.035 13.8000 

H(25) 0.2432 0.4481 0.9039 1.5870 

5(26) 0.3753 0.3796 0.9475 3.6128 

H(27) 0.0833 0.2615 0.3260 3.1668 

H(28) -0.2079 0.0308 0. S517 6.1121 

H(29) 0.2437 0.4404 1.0323 2.0712 

H(33) -0.3089 0.2560 0.8164 23.5646 
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Table 1. Atomic coordinates and B;,, /B<q (continued) 

atom xyzB, 

H(34) 0.2934 0.1294 0.9200 0.7923 

H(35) 0.4483 0.0230 1.1466 10.2141 

H(36) 0.5465 0.0907 1.1526 46.0221 

H(37) 0.4618 0.1527 1.207T 7.3731 

Bsq = 
3r=(Ull(aa')'rU?: 

(bb')2+U33(cc')=r? Ui_aa'Sb"cos7+'2G'13aa'cc'cos cc"cosa) 
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Table 2. A. nisotropic Displacement Parameters 

atom U11 U22 U33 U12 U13 U23 

0(1) 0.029(2) 0.054(2) 0.046(2) -0.006(2) 0.014(1) -0.008(2) 

C(1) 0.029(2) 0.029(3) 0.02S(2) -0.001(2) 0.006(2) -0.003(2) 

C(2) 0.029(2) 0.031(3) 0.034(2) -0.002(2) 0.007(2) 0.007(2) 

C(3) 0.031(2) 0.040(3) 0.02S(2) 0.005(2) 0.008(2) 0.006(2) 

C(4) 0.034(2) 0.033(3) 0.024(2) 0.003(2) 0.006(2) 0.004(2) 

C(5) 0.049(3) 0.041(3) 0.039(3) 0.000(2) 0.012(2) -0.016(2) 

C(6) 0.046(3) 0.110(5) 0.061(4) -0.016(3) 0.024(3) -0.050(4) 

C(7) 0.0'40(2) , 0.039(3) 0.027(2) -0.004(2) 0.005(2) -0.003(2) 

C(S) 0.033(2) 0.025(3) 0.024(2) 0.000(2) 0.004(2) 0.001(2) 

C(9) 0.030(3) 0.031(3) 0.034(3) 0.000(2) 0.007(2) 0.002(2) 

C(10) 0.034(3) 0.029(3) 0.029(2) 0.005(2) 0.012(2) 0.000(2) 

C(11) 0.03E(3) 0.026(3) 0.025(2) 0.006(2) 0.005(2) 0.000(2) 

C(12) 0.031(2) 0.025(3) 0.020(2) 0.002(2) 0.006(2) 0.004(2) 

C(13) 0.032(2) 0.024(2) 0.021(2) 0.003(2) 0.007(2) 0.003(2) 

C(14) 0.031(3) 0.059(4) 0.050(3) -0.001(3) 0.020(2) 0.000(3) 

C(15) 0.029(2) 0.036(3) 0.025(2) 0.000(2) 0.003(2) 0.000(2) 

C(16) 0.030(2) 0.043(3) 0.026(2) 0.001(2) 0.011(2) 0.001(2) 

C(17) 0.048(3) 0.047(3) 0.036(3) -0.010(3) 0.002(2) -0.005(2) 

C(18) 0.046(3) 0.048(3) 0.023(2) 0.009(2) 0.004(2) 0.007(2) 

C(19) 0.037(3) 0.057(4) 0.040(3) 0.003(2) 0.019(2) 0.005(3) 

C(20) 0.044(3) 0.043(3) 0.028(2) 0.003(2) 0.001(2) -0.009(2) 

C(21) 0.161(7) 0.070(5) 0.059(4) 0.017(5) -0.075(4) -0.006(4) 

The general temperature factor expression: 

exp(-2, r. L''llh= + b'2Uz. k"- i c'2 U3312 = 2a'b'U1zhk = 2ä c'U; 3hl = 26'c' U23k1)) 
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Table 3. Bond Lengths(.; ) 

atom atom distance atom atom distance 

0(1) C(9) 1.388(4) 0(1) C(14) 1.432(5) 

C(1) C(2) 1.538(6) C(1) C(12) 1.514(5) 

C(1) C(15) 1.511(6) C(1) H(29) 1.02 

C(2) C(3) 1.518(6) C(2) H(25) 1.07 

C(2) H(26) 0.99 C(3) C(4) 1.542(5) 

C(3) C(19) 1.537(6) C(3) H(34) 1.01 

C(4) C(5) 1.533(6) C(4) C(13) 1.526(5) 

C(4) H(27) 0.97 C(5) C(6) 1.505(6) 

C(5) H(21) 1.01 C(5) H(22) 1.07 

C(6) C(T) 1.526(6) C(6) H(23) 0.96 

C(6) H(24) 1.13 C(7) C(S) 1.519(5) 

C(7) C(21) 1.528(7) C(7) H(2S) 0.93 

C(S) C(9) 1.389(5) C(8) C(13) 1.400(5) 

C(9) C(10) 1.390(6) C(10) C(11) 1.391(5) 

C(10) H(1) 1.04 C(11) C(12) 1.398(5) 

C(11) C(20) 1.516(6) C(12) C(13) 1.411(5) 

C(14) H(3) 1.05 C(14) H(4) 0.97 

C(14) H(S) 1.06 C(15) C(16) 1.353(5) 

C(15) H(2) 1.06 C(16) C(17 ) 1.491(6) 

C(16) C(18) 1.512(6) C(17) H(6) 0.97 

C(17) H(7) 1.05 C(17) H(S) 1.02 

C(18) H(35) 1.10 C(18) H(36) 0.69 

C(18) H(37) 0.93 C(19) H(12) 1.02 

C(19) H(13) 1.04 C(19) H(14) 1.05 
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Table 3. Bond Lengths(A) (continued) 

atom atom distance atom atom distance 

C(20) H(15) 1.06 C(20) H(16) 1.00 

C(20) H(17) 1.04 C(21) H(18) 1.00 

C(21) H(19) 0.97 C(21) H(33) 1.20 
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Table 4. Bond Angles(*) 

atom atom atom angle atom atom atom angle 

C(9) 0(1) C(14) 117.6(3) C(2) C(1) C(12) 110.7(3) 

C(2) C(1) C(15) 110.7(3) C(2) C(1) H(29) 106.7 

C(12) C(1) C(15) 110.4(3) C(12) C(1) H(29) 111.1 

C(15) C(1) H(29) 107.0 C(1) C(2) C(3) 111.9(3) 

C(1) C(2) H(25) 112.2 C(1) C(2) H(26) 108.9 

C(3) C(2) H(25) 110.0 C(3) C(2) H(26) 111.5 

3(25) C(2) H(26) 102.0 C(2) C(3) C(4) 109.5(3) 

C(2) C(3) C(19) 110.8(4) C(2) C(3) H(34) 108.9 

C(4) C(3) C(19) 111.4(3) C(4) C(3) 3(34) 105.9 

C(19) C(3) H(34) 110.2 C(3) C(4) C(5) 112.0(4) 

C(3) C(4) C(13) 114.2(3) C(3) C(4) H(27) 106.3 

C(5) C(4) C(13) 108.6(3) C(5) C(4) 3(27) 109.5 

C(13) C(4) H(27) 106.0 C(4) C(5) C(G) 112.6(4) 

C(4) C(5) H(21) 113.0 C(4) C(5) 3(22) 112.6 

C(6) C(S) H(21) 106.6 C(6) C(5) H(22) 103.8 

3(21) C(S) H(22) 107.6 C(S) C(6) C(7) 117.6(4) 

C(S) C(6) H(23) 107.5 C(5) C(6) H(24) 112.7 

C(7) C(6) H(23) 117.6 C(7) C(G) H(24) 110.0 

H(23) C(6) 3(24) 87.7 C(6) C(7) C(S) 113.5(4) 

C(6) C(7) C(21) 112.1(5) C(6) C(7) H(28) 102.9 

C(8) C(7) C(21) 109.4(4) C(8) C(7) 3(2S) 108.4 

C(21) C(7) H(28) 110.2 C(7) C(S) C(9) 119.2(4) 

C(7) C(8) C(13) 121.9(4) C(9) C(8) C(13) 118.9(4) 

0(1) C(9) C(8) 116.0(4) 0(1) C(9) C(10) 123.0(4': 
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Table 4. Bond Angles(e) (continued) 

atom atom atom angle 

C(S) C(9) C(10) 121.0(4) 

C(9) C(10) $(1) 11S. 3 

C(10) C(11) C(12) 120.1(4) 

C(12) C(11) C(20) 121.2(4) 

C(1) C(12) C(13) 121.2(3) 

C(4) C(13) C(8) 117.0(3) 

C(S) C(13) C(12) 120. S(4) 

0(1) C(14)" H(4), 102.4 

H(3) C(14) H(4) 107.7 

H(4) C(14) H(5) 118.5 

C(1) C(15) H(2) 113A 

C(15) C(16) C(17) 124.1(4) 

C(17) C(16) C(18) 115.9(4) 

C(16) C(17) H(7) 109.7 

H(6) C(1T) H(7) 105.0 

H(T) C(17) H(S) 100.3 

C(16) C(18) H(36) 127.2 

H(35) C(18) H(36) 73.; 

H(36) C(18) H(37) 122.1 

C(3) C(19) H(13) 107.3 

H(12) C(19) H(13) 106.0 

H(13) C(19) H(14) 119.9 

C(11) C(20) H(16) 112.6 

H(15) C(20) H(16) 107.6 

atom atom atom angle 

C(9) C(10) C(11) 120.2(4) 

C(11) C(10) H(1) 121.2 

C(10) C(i1) C(20) 118.7(4) 

C(1) C(12) C(11) 119.5(3) 

C(11) C(12) C(13) 119.0(3) 

C(4) C(13) C(12) 122.2(3) 

0(1) C(14) H(3) 105.5 

0(1) C(14) H(5) 110.2 

H(3) C(14) H(ä) 111.4 

C(1) C(15) C(16) 127.0(4) 

C(16) C(15) H(2) 114.4 

C(13) C(16) C(IS) 119.9(4) 

C(16) C(17) H(6) 113.7 

C(16) C(17) H(S) 124.8 

H(6) C(1T) H(8) 101.0 

C(i6) C(1S) H(35) 119.2 

C(16) C(1S) H(37) 104.3 

H(35) C(18) H(37) 105.6 

C(3) C(19) H(12) 111.6 

C(3) C(19) H(14) 110.2 

H(12) C(19) H(14) 101.1 

C(11) C(20) H(15) 109.6 

C(11) C(20) H(17) 112.0 

H(13) C(20) H(17) 105.3 
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Table 4. Bond Angles(°) (continued) 

atom atom atom angle atom atom atom angle 

H(16) C(20) H(17) 109.3 C(7) c(21) H(1s) 120.2 

C(7) C(21) H(19) 105.6 C(7) C(21) H(33) 104.0 

H(18) C(21) H(19) 109.9 H(18) C(21) H(33) 109.1 

H(19) C(21) H(33) 107.2 
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Table 5. Torsion Angles(°) 

atom 

0(1) 

0(1) 

C(1) 

C(1) 

C(1) 

C(1) 

C(2) 

C(2) 

C(3) 

C(3) 

C(3) 

C(4) 

C(4) 

C(3) 

C(5) 

C(6) 

C(G) 
C(Tj) 
C(8) 
C(9) 

C(9) 

atom atom atom angle 

C(9) C(8) C(7) -1.3(6) 

C(9) C(10) C(11) -179.7(4) 

C(2) C(3) C(19) -173.6(3) 

C(12) C(11) C(20) 1.5(6) 

C(12) C(13) C(S) 179.2(4) 

C(15) C(16) C(13) -179.1(4) 

C(1) C(12) C(13) 22.6(5) 

C(3) C(4) , C(5) . 164.5(3) 

C(2) C(1) C(12) -53.5(5) 

C(4) C(5) C(6) . 174.6(4) 

C(4) C(13) C(12) 11.4(6) 

C(13) C(S) C(7) 1.2(6) 

C(13) C(12) C(11) 178.9(4) 

C(4) C(13) C(S) -44.3(5) 

C(6) C(7) C(S) . 11.9(7) 

C(S) C(4) C(13) 58.4(5) 

C(7) C(8) C(13) 28.2(6) 

C(S) C(13) C(12) 179.8(4) 

C(9) C(10) C(11) . 2.0(6) 

C(8) C(7) C(21) 81.9(6) 

atom atom atom atom angle 

0(1) C(9) C(S) C(13) 178.6(4) 

C(1) C(2) C(3) C(4) 63.1(4) 

C(1) C(12) C(11) C(10) 179.5(4) 

C(1) C(12) C(13) C(4) -2.3(6) 

C(1) C(15) C(16) C(17) 2.6(7) 

C(2) C(1) C(12) C(11) -158.6(4) 

C(2) C(1) C(15) C(16) 98.8(5) 

C(2) C(3) C(4) C(13) -40.5(5) 

C(3) C(2) C(1) C(15) 69.3(4) 

C(3) C(4) C(13) C(S) -170.0(4) 

C(4) C(S) C(6) C(7) -30.6(7) 

C(4) C(13) C(S) C(9) -178.6(4) 

C(5) C(4) C(3) C(19) 72.6(5) 

C(S) C(4) C(13) C(12) 137.1(4) 

C(5) C(6) C(7) C(21) 112.7(6) 

C(6) C(7) C(S) C(9) -152.0(4) 

C(7) C(8) C(9) C(10) -173.9(4) 

C(8) C(9) 0(1) C(14) 179.0(4) 

C(S) C(13) C(12) C(11) 0.4(6) 

C(9) C(8) C(13) C(12) 0.0(6) 

C(10) C(11) C(12) 2.5(6) C(9) C(10) C(11) C(20) -179.4(4) 

C(10) C(9) 0(1) C(14) -3.3(6) C(10) C(9) C(8) C(13) 0.8(6) 

C(10) C(11) C(12) C(13) -1.6(6) C(11) C(12) C(1) C(15) 78.3(5) 

C(12) C(1) C(15) C(16) -138.2(4) C(13) C(4) C(3) C(19) -163.5(4) 
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Table S. Torsion Angles(*) (continued) 

atom atom atom atom angle atom atom atom atom angle 

C(13) C(8) C(7) C(21) -97.8(5) C(13) C(12) C(1) C(15) -100.5(4) 

C(13) C(12) C(11) C(20) -179.7(4) 
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Table 6. Non-bonded Contacts out to 3.60 . 
ýi 

atom atom distance ADC atom 

0(1) H(2) 2.57 55703 0(I) 

0(1) H(8) 3.33 56703 0(1) 

C(1) H(3) 3.56 56703 C(2) 

C(2) H(4) 3.29 65501 C(2) 

C(2) H(1) 3.41 36703 C(3) 

C(3) H(5) 3.48 55703 C(4) 

C(4) H(17) 3.59 56703 C(S) 

C(5) H(5) 3.43 55703 C(5) 

C(5) H(1) 3.51 55703 C(6) 

C(6) H(27) 3.32 54602 C(6) 

C(7) H(35) 3.40 55703 C(7) 

C(8) H(17) 2.85 56703 C(9) 

C(9) H(22) 3.23 55703 C(9) 

C(9) H(29) 3.30 56703 C(I0) 

C(10) H(29) 3.00 56703 C(10) 

C(I0) H(25) 3.21 55703 C(11) 

C(11) H(22) 3.2S 55703 C(11) 

C(11) H(29) 3.58 56703 C(12) 

C(13) H(17) 2.80 56703 C(14) 

C(14) H(28) 3.19 45501 C(14) 

C(14) H(34) 3.30 55703 C(14) 

C(14) H(12) 3.40 45501 C(14) 

C(14) H(22) 3.51 53703 C(14) 

C(15) H(28) 3.22 55703 C(15) 

atom distance ADC 

H(35) 2.75 55703 

H(12) 3.33 45501 

H(7) 3.17 66703 

H(3) 3.34 56703 

H(4) 3.21 65501 

H(24) 3.39 55602 

H(1S) 3.22 54602 

H(15) 3.43 55404 

H(15) 3.22 55404 

H(14) 3.33 54602 

H(2) 3.45 55703 

H(17) 3.05 56703 

H(2) 3.25 55703 

H(22) 2.73 55703 

H(17) 3.19 'sö703 

H(17) 3.19 56703 

H(24) 3.41 . 55703 

H(17) 2.98 56703 

H(2) 3.07 55703 

H(36) 3.28 45501 

H(35) 3.31 55703 

H(S) 3.44 56703 

C(16) 3.572(6) 45501 

H(4) 3.27 65501 
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Table 6. Non-bonded Contacts out to 3.60 A (continued) 

atom atom distance ADC atom atom distance ADC 

C(16) H(4) 3.40 65501 C(16) H(3) 3.44 65501 

C(16) H(5) 3.46 65501 C(16) H(28) 3.52 35703 

C(17) 11(26) 3.31 66703 C(17) H(19) 3.36 65504 

C(17) H(12) 3.48 66703 C(17) H(13) 3.47 4 

C(17) H(33) 3.51 56703 C(17) 11(37) 3.55 65702 

C(17) 11(3) 3.58 65501 C(18) 11(5) 3.19 65501 

C(18) 11(28) 3.22 55703 C(18) 11(6) 3.29 64702 

C(18) 11(13) 3.32 . 65703 C(18) H(14) 3.42 4 

C(18) 11(19) 3.43 65504 C(18) H(33) 3.45 65504 

C(18) 11(12) 3.57 65703 C(19) 11(37) 3.01 55404 

C(19) 11(36) 3.20 65703 C(19) H(6) 3.29 . 55404 

C(19) 11(35) 3.29 65703 C(19) 11(4) 3.38 65501 

C(19) 11(24) 3.43 . 55602 C(19) 11(7) 3.45 66703 

C(19) H(16) 3.55 53404 C(20) 11(24) 3.04 55703 

C(20) H(23) 3.32 4 C(20) H(21) 3.41 4 

C(20) 11(18) 3.50 56703 C(20) 11(25) 3.58 56703 

C(21) 11(21) 3.32 55602 C(21) H(17) 3.34 56703 

C(21) H(37) 3.58 45404 C(21) H(7) 3.59 45404 

C(21) H(36) 3.59 45404 11(1) H(22) 2.50 55703 

11(1) 11(25) 2.56 56703 11(1) H(29) 3.05 56703 

H(2) 11(28) 2.63 55703 H(2) H(5) 3.01 55703 

H(2) H(4) 3.07 . 55703 H(2) H(4) 3.24 65501 

11(3) 11(8) 2.76 56703 H(3) H(26) 2.76 45501 

H(3) 11(29) 2.82 56703 H(3) 11(25) 2.97 56703 
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Table 6. Von-bonded Contacts out to 3.60 A (continued) 

atom atom distance ADC 

H(3) H(26) 2.98 56703 

H(3) H(12) 3.49 45501 

H(4) H(34) 2.71 45501 

H(4) 11(35) 2.79 55703 

H(4) H(36) 3.28 55703 

H(4) 9(34) 3.51 55703 

H(4) H(5) 3.56 45703 

H(5) H(36). 2.57,45501 

H(5) H(35) 3.42" 45501 

H(5) H(21) 3.49 55703 

H(6) H(37) 2.79 65702 

H(6) H(33) 3.16 56703 

H(6) H(19) 3.19 65504 

H(6) H(12) 3.41 66703 

H(6) H(14) 3.56 4 

H(7) H(26) 2.60 66703 

H(7) H(25) 2.76 66703' 

H(7) 11(12) 3.08 66703 

H(8) 11(33) 2.80 56703 

H(8) H(12) 2.97 66703 

H(8) H(14) 3.56 66703 

3(12) 3(35) 2.73 65703 

3(12) 3(36) 3.00 65703 

3(13) H(35) 2.96 65703 

atom atom distance ADC 

H(3) H(7) 2.99 45501 

H(4) H(26) 2.69 45501 

H(4) H(12) 2.72 45501 

H(4) H(4) 3.27 45703 

H(4) H(36) 3.38 45501 

H(4) H(8) 3.53 56703 

H(5) H(34) 2.53 55703 

H(5) H(22) 2.64 55703 

H(5) H(7) 3.49 45501 

H(6) H(13) 2.65 4 

H(6) H(35) 3.12 65702 

H(6) H(12) 3.17 4 

H(6) H(36) 3.22 65702 

H(6) H(14) 3.46 66703 

H(6) H(33) 3.60 65504 

H(7) H(19) 2.68 65504 

H(7) H(14) 2.90 66703 

H(7) H(37 ) 3.53 65702 

H(8) H(26) 2.97 66703 

H(8) H(37) 3.56 65702 

H(12) H(37) 2.72 55404 

11(12) H(33) 2.98 65501 

H(13) H(36) 2.60 65703 

3(13) H(16) 2.97 55404 
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Table 6. Non-bonded Contacts out to 3.60 -t (continued) 

atom atom distance ADC atom atom distance ADC 

H(13) H(37) 3.19 55404 H(13) H(18) 3.39 54602 

H(13) H(37) 3.54 65703 H(13) H(24) 3.58 55602 

H(14) H(37) 2.58 55404 H(14) H(24) 2.69 55602 

H(14) H(23) 2.96 55602 H(14) 3(19) 3.10 55602 

3(14) 3(28) 3.27 55602 H(14) H(16) 3.37 55404 

3(15) H(23) 2.37 4 H(15) H(24) 2.90 55703 

3(15) 3(25) 2.93 56703 H(15) H(21) 2.94 4 

3(15) 11(27)" 3.25,56703 H(15) H(22) 3.41 55703 

H(15) H(18) 3.47 56703 3(15) 3(27) 3.57 4 

H(16) H(24) 2.55 55703 H(16) H(21) 3.17 4 

H(16) H(28) 3.51 55703 3(16) 3(18) 3.53 56703 

3(17) H(18) 2. S5 56703 3(17) 3(27) 3.20 56703 

3(17) H(33) 3.27 56703 3(17) H(21) 3.46 4 

3(17) H(23) 3.50 4 3(17) H(25) 3.56 56703 

H(18) H(21) 2.36 55602 3(18) H(22) 3.34 55602 

3(18) H(23) 3.37 55602 3(18) H(36) 3.44 45404 

H(18) H(24) 3.49 55602 H(19) 3(36) 3.29 45404 

H(19) 3(37) 3.34 45404 H(19) H(25) 3.39 54602 

3(19) 3(35) 3.50 55703 H(21) H(36) 3.52 65703 

H(23) 3(27) 2.69 54602 3(23) H(25) 3.19 54602 

3(24) 3(27) 2.69 54602 H(28) 3(35) 2.61 55703 

H(28) 3(37) 3.19 55703 H(33) H(37) 2.97 45404 

H(33) H(35) 3.08 55703 H(33) 3(36) 3.43 45404 

3(34) H(36) 3.10 65703 H(34) 3(35) 3.51 65703 
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The ADC (atom designator code) specifies the position of an atom in a crystal. The 5-digit number 

shown in the table is a composite of three one-digit numbers and one two-digit number: TA (first digit) 

+ TB (second digit) + TC (third digit) + SN (last two digits). TA, TB and TC are the crystal lattice 

translation digits along cell edges a, b and c. A translation digit of S indicates the origin unit cell. If TA = 4, 

this indicates a translation of one unit cell length along the a-axis in the negative direction. Each translation 

digit can range in value from 1 to 9 and thus L4 lattice translations from the origin (TA-3, TB=5, TC=5) 

can be represented. 

The SN, or symmetry operator number. refers to the number of the symmetry operator used to generate 

the coordinates of the target atom. A list of symmetry operators relevant to this structure are given below. 

For a given intermolecular contact. the first atom (origin atom) is iocated in the origin unit cell and its 

position can be generated using the identity operator (SN=1). Thus. the ADC for an origin atom is always 

33301. The position of the second atom (target atom) can be generated using the ADC and the coordinates 

of the atom in the parameter table. For example. an ADC of 47502 refers to the target atom moved through 

symmetry operator two, then translated -1 cell translations along the a axis. +2 cell translations along the 

b axis, and 0 cell translations along the c axis. 

An ADC of 1 indicates an intermolecular contact between two fragments (eg. cation and anion) that 

reside in the same asymmetric unit. 

Symmetry Operators: 

Z (2) -X. 1/2+Y, 1/2-Z 

-Z (4) Y, 1/2-Y, 1/2+Z 
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Appendix 2 
Spectra of representative compounds. 
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