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ABSTRACT 

Young sandeels (0- and 1-group fish) form a substantial part of the total 

stock biomass at Shetland. As well as forming the basis for a local fishery at 
Shetland, they are also an extremely important prey item for many seabird species 
which breed around Shetland coasts. Improving our understanding of recruitment 
dynamics is vital for managing the Shetland fishery whilst minimizing adverse affects 
on breeding seabirds. Therefore, this thesis has concentrated on analyzing 
recruitment patterns and developing models to simulate hypothetical recruitment 
scenarios. 

Various models were developed and/or parameterised to simulate 
recruitment. Firstly, as there appeared to be no clearly defined stock-recruit 

relationship, time series models were applied to expose and improve understanding 

of patterns in the data. However, the relationship between stock and recruitment 
cannot be ignored if spawning stock biomass changes through exploitation. 
Therefore, Shepherd (1982) and Ricker (1954,1975) stock-recruit models are 

parameterised using bootstrap analysis. For the Shepherd model, which is the more 

complex of the two, bootstrap analysis identified models which could be considered 
as "constant recruitment" models - that is no influence of spawning stock biomass 

on recruitment. 
It was found that four very low recruit years, which occurred in the late 1980s 

when spawning stock biomass was generally high or moderate, were strongly 
influencing model fit. This prompted the question: are these low recruit years typical 

of the range of recruitment for the given spawning stock biomasses or can they be 

considered outliers? In the face of uncertainty (although there is no biological 

reasoning) these data points were removed and the stock-recruit models re- 
parameterised. This enabled curves with 95% confidence intervals to be 

parameterised for both stock-recruit models (Shepherd & Ricker). The 

autoregressive model parameterised earlier was combined with the stock-recruit 
models so recruitment in any year was expressed as a function of SSB and of 
recruitment in the previous year. 

Wright (1996) presents evidence that, in some years, there may be a net 
input of recruits that originated from outside the Shetland system. This will obscure 
the stock-recruit relationship at Shetland as not all the recruits originate from the 

local spawning stock and may account for the difficulties in defining stock-recruit 

relationships. External recruitment may also may have implications for the 

persistence of the stock and for breeding seabirds. As the frequency and size of 

XI 



external recruitment to the Shetland stock is unquantified, it was assumed that the 

stock-recruit relationship at Shetland (local recruitment) was similar to that in other 
areas of the North Sea. Ricker models were fitted to the North Sea stock and the 

mean curve was scaled down for use with the Shetland data. This was used to 
develop models to simulate both local and external recruitment at Shetland. 

During the late 1980s, when sandeel recruitment was extremely low, many 
seabird colonies at Shetland showed reduced or complete breeding failure. 

Breeding Arctic terns and kittiwakes are considered among the most vulnerable to 

sandeel availability. A function of potential kittiwake breeding success against 
sandeel biomass was developed as an indicator of possible affects of fishery 

management on seabird breeding success. 
The performance of the all recruitment models developed were tested under 

a range of input fishing mortality rates. With a fishery operating on all age classes, 
the models indicated that a substantial catch (31,000 tonnes), could potentially be 

landed each year with little adverse affect on recruitment or breeding seabirds. 
Simulations were rerun without exploitation of 0-group sandeels. This was assumed 
to mimic the present strategy of closing the fishery for June and July to avoid 

competition with breeding seabirds. It was found that a mean catch from the models 
in range of 37,000-51,000 tonnes (depending on the recruitment model) may have 

little affect on recruitment to the stock and on breeding seabirds. This was higher 
i 

then the mean catches from the models with a fishery operating on all age-classes. 
The model with independent external recruitment model can support high levels of 

exploitation by the fishery with little adverse affect on potential breeding success of 

kittiwakes. However, the underlying local stock size decreases as exploitation 

increases but this is masked by external recruitment - if external larval transport 

mechanisms cease then the local stock may be at too low a level to be self- 

sustaining. 

In summary, a number of models were developed to simulate potential 

recruitment dynamics for sandeels at Shetland - including models with external 

recruitment. Simulations varying fishing mortality rate indicated a fishery that does 

not exploit 0-group fish could sustain higher catches with little adverse affect on 
kittiwake breeding success. Depending on the recruitment model selected, optimal 
catches occur in the range 37,000-51,000 tonnes for this fishery. 
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CHAPTER 1 

GENERAL INTRODUCTION 



1.1 Industrial Fisheries 

In industrial fisheries, such as the Shetland sandeel fishery, the catch is not 
intended for direct human consumption but is generally reduced to fishmeal and fish 

oil. These fisheries tend to target small pelagic or semi-demersal shoaling fish such 

as anchovies (Engraulis sp. ), sardines (Sardinops sp. ), mackerel (Sprattus sp. ), 

herring (Clupea sp. ) and sandeels (Ammodytes sp. ). The first large-scale industrial 

fisheries developed along the west coasts of the Americas and Africa, where major 

up-welling systems of cold, nutrient-rich waters support large stocks of small 

planktivorous fish which are dominated by one or a few schooling species. In the 

North Sea, industrial fisheries developed during the 1950s for small species like 

sandeel (Ammodytes sp. ), sprat (Sprattus sprattus) and Norway pout (Trisopterus 

esmarki, ), and increased dramatically in the following decades (Figure 1.1). 

A large proportion of fishmeal is used for farming and aquaculture purposes 

for example, in feed for poultry and pigs and in food pellets for salmon and shrimp 

farming (Fischer et al., 1997). The aquaculture industry has grown rapidly in the past 

decade (more then doubled in weight and value) as catches of wild fish decline 

(Fischer at al., 1997, Naylor at al., 2000). Although, potentially, fish farming should 

relieve pressure on wild fish stocks this is not necessarily the case, especially for 

species that form the basis of the industrial fisheries (Naylor et al., 2000). For 

terrestrial animals, the ratio between industrial fish used and meat produced is low, 

however the biomass of fish required as fishmeal in aquaculture is often greater 

then the biomass of farmed product produced (Fischer et al., 1997). For example, 

the production of I tonne of farmed salmon uses approximately 3.16 tonnes of wild 

fish as fishmeal (Naylor et al., 2000). The rapidly expanding aquaculture industry, 

together with terrestrial farming, is placing increasing demands on the industrial 

fisheries. 

The stock-recruit relationship is an important concept for fisheries 

management, this assumes there is a relationship between the size of the spawning 

stock (spawning stock biomass: SSB) in any particular year and the average 

number of recruits produced by that spawning that enter the stock. Industrial fish 

species tend to be short-lived fish with a low age at reproductive maturity and high 

natural mortality rates. Inter-annual recruitment may be extremely variable 
depending on environmental conditions. As environmental factors have a strong 
influence on stock size, it is often difficult to define a stock-recruit relationship which 
provides understanding of the underlying dynamics of recruitment for management 
purposes. 



The early maturation and selective fishing of industrial fish species may 

enhance the ability of certain populations to show some recovery after a prolonged 
decline (Hutchings, 2000). As such, industrial fisheries are difficult to regulate and 

often are not regulated as tightly as the more valuable (monetary value of catches) 

whitefish fisheries. This has already been demonstrated by the "collapse" of various 
industrial fisheries throughout the globe bought about by overfishing. Probably, one 

of the best known examples of industrial overfishing is the Peruvian anchoveta, 
Engraulis ringens, fishery (Troadec et a/., 1980). 

Other examples of industrial fishery collapses include the capelin Mallotus 

villosus fishery in the Barents Sea (Beverton, 1990), the sardine Sardinops caerulea 
fishery in the California current (Troadec et al., 1980; Beverton, 1990; Schwartzlose 

et al., 1999), the sardinella Sardinella aurita fishery off Ghana and the Ivory coast 

(Troadec et al., 1980) and the pilchard Sardinops ocellata fishery in the Benguela 

system off Namibia (Troadec et al., 1980; Beverton, 1990; Schwartzlose at al., 

1999). In all of these cases, the associated fishery was implicated in the stock 

collapse and environmental effects were thought to play an important part. Often, 

breeding failures of local seabird colonies occurred and long-term declines in 

seabird populations may be apparent (see Troadec at al., 1980; Furness, 1982; 

Crawford, 1991, Anker-Nilssen et al., 1997; Crawford & Jahncke, 1999). 

1.2 Biology of Sandeels 
Sandeels are small, shoaling fish (up to 25-45 cm length depending in 

species) that are found throughout the North Sea (Macer, 1966; Reay, 1970). Five 

species of sandeel occur in the North Sea - Ammodytes marinus, A. tobianus, 

Hyperplus lanceolatus, H. immaculatus and Gymnammodytes semisquamatus 

(Macer, 1966; Langham, 1971b; Wright & Bailey, 1993). Of these five species A. 

marinus, the lesser sandeel (Figure 1.2), is the most abundant (Langham, 1971b) 

comprising of over 90% of sandeel fishery catches (Macer, 1966; Goodlad & Napier, 

1997). In view of the predominance of A. marinus in fishery landings, any future 

references to sandeel in this thesis will be concerned only with A. marinus unless 

indicated otherwise. 

1.2.1 Habitat requirements 

Sandeels are probably the most abundant fish in the North Sea accounting 
for between 10-15% of the total fish biomass (Yang, 1982; Daan of al., 1990; 

Sparholt, 1990). The distribution of sandeels is patchy, they commonly occur in 

great numbers in shallow coastal waters and on sandbanks. Sandeels do not have a 
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swim bladder for buoyancy therefore, in order to remain in the water column, 
energetically costly swimming movements must be sustained (Reay, 1970). 
Sandeels are morphologically adapted for burying in the sediment and spend a 
considerable part of the year buried in the sand. Lying buried just below the surface 
of the sea bed may conserve energy and also may provide some protection from 

predation (Reay, 1970). 

Sediment grain size together with the strength of currents over the seabed 
will affect aeration of the sediment and consequently the supply of oxygen to buried 
fish. This will influence the distribution of sandeels, because of these habitat 

requirements adult sandeels are restricted to appropriate areas of the seabed 
(Reay, 1970; Wright et al., 2000). Depth is also an important factor, with few 

sandeels found below 70m, probably due to the decline in water movement with 
increasing depth (Wright et al., 2000). Sandeels inhabit a narrow range of 'sand' 

sediment compositions therefore, by analysing seabed characteristics, it should be 

possible to predict where sandeels are found (or not) in the North Sea (Wright at al., 
2000). Major sandeel fishing grounds in the North Sea, such as the Dogger and 
Norfolk Banks, are all areas of coarse sand sediments preferred by sandeels 
(Wright et al., 2000). 

1.2.2 Life Cycle - spawning and pre-recruit 
Sandeels are short-lived fish (up to 8 years) that have both a larval 

dispersive stage and an adult site-attached stage in their life cycle (Figure 1.3; 

Reay, 1970; Wright & Bailey, 1993). Around Shetland, mature sandeels spawn from 

December to late January (Gauld & Hutcheon, 1990). Sandeels generally mature at 

the age of 2 years, although larger fish may mature earlier and a few smaller fish 

may mature later (Macer, 1966; Gauld & Hutcheon, 1990). Generally, the 

reproductive parameters for sandeels in the north western North Sea are considered 

similar to those in other areas of the North Sea with reproductive potential being 

mainly dependent on fish aged two and older (Gauld & Hutcheon, 1990; Macer, 

1966). 

Sandeels lay demersal eggs attached to sand grains on the sea bed (Reay, 
1970; Warburton, 1982). Adults are not thought undertake spawning migrations but 
the eggs are laid, and hatch, on the sandeel grounds (Reay, 1970). Early in spring, 
vast numbers of sandeel larvae appear suddenly in the water column, over short 
periods of time, suggestive of synchronised spawning (Ryland, 1964). 
Measurements of egg size and gonad maturity of adult sandeels indicate A. marinus 
does have a very short spawning period compared to related species (Macer, 1966). 
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Eggs hatch as larvae, generally during March at Shetland, when North Sea 

circulation is largely wind-driven thus larval transport by currents is likely to be 

variable between years (Wright & Bailey, 1996; Proctor et al., 1998). At first, larvae 
drift passively with the currents but as the larvae grow they are able to make vertical 
migrations in the water column (Ryland, 1964). In the water column currents may 
flow in different directions at different depths, so the dispersal distance will be 
determined by the time spent in these layers of water flow. Larvae metamorphose 
into juvenile fish when they are 40 - 55 mm total length and this happens during late 
May to early June at Shetland (Wright & Bailey, 1996). The young sandeels settle 
on sandeel grounds during June and July at Shetland, when they recruit to the fish 

stock and to the fishery simultaneously. 

1.2.3 Life-Cycle - post settlement 
After recruiting to the stock, sandeels show a diurnal cycle of emergence in 

the summer -forming dense shoals in the water column during the day (Winslade, 
1974b, c; Wright & Bailey, 1993). Very few sandeels are caught at the night during 

this time (Macer, 1966). Towards the end of the summer, sandeels disappear from 

the water column as they enter the sediment for overwintering, emerging briefly to 

spawn mid-winter (Winslade, 1974b, c). Burying in the sediment appears to serve the 
dual purpose of conserving energy and avoiding predation (Reay, 1970). 
Emergence from the sediment during the summer is probably influenced by food 

availability and ambient environmental conditions (Winslade, 1974a, b, c). 
Swimming activity is associated with light and feeding, as sandeels are 

visual feeders on zooplankton (Winslade, 1974a, c). Field studies around Shetland 

revealed sandeel shoals were recorded in the top 10m of the water column only 
during early and mid morning, coinciding with the peak in stomach fullness which 

occurred mid-morning (Wright & Bailey, 1993). As swimming activity is directly 

related to feeding, it is supposed that once a sandeel is satiated it will stop 

swimming and rebury (Winslade, 1974c). It appears sandeels have a light intensity 

threshold for feeding - below this they are unable to detect and capture prey. This 

can explain the seasonal variation in sandeel catches as the largest landings usually 

occur in June when light intensity is strong and daylength is long (Winslade, 1974b). 

Outside of the normal fishing season (April - September) it is probable that the 
threshold light intensity is not reached, so this may be one factor limiting sandeel 
activity. Buried sandeels may be able to detect light intensity (Winslade, 1974b), 

hence the penetration of light through sand and through water could restrict the 
depth of burial in the sand and also the maximum depth at which sandeels are 
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found. As mentioned earlier, the aeration of the sediment influences the distribution 

of sandeels (Reay, 1970) and will also affect the depth to which sandeels can bury 

(depending on the depth of sediment aeration). 
During the winter sandeels remain below the sand surface in a state thought 

to be similar to hibernation. In the Pacific sand lance, A. hexapterus, very little 

growth occurs during this period (Blackburn & Anderson, 1997). The disappearance 

into the sand may be linked to fat content (as well as light intensity). Fish may have 

to achieve a certain level of energy reserves in order to survive overwintering and 

spawning (Winslade, 1974c; Ciannelli, 1997). There is generally a relative increase 

in fat content with age hence older fish may reach the condition for overwintering 
before younger fish. There is evidence from fishery catches that the larger sandeels 

vanish first, weight-at-age and mean length-at-age of sandeels in certain areas of 

the North Sea were found to decrease after July (Macer, 1966; Pedersen at al., 

1999). It is thought this apparent decrease in weight is due to the larger sandeels 

entering the overwintering phase early, thus leaving only the smaller fish available to 

the fishery (Winslade, 1974c; Pedersen et al., 1999). 
Observations in situ of the Pacific sand lance, A. hexapterus, revealed that 

the fish were particularly vulnerable to predators during the transition between day 

and night when they were moving from the water column to bury in the sediment for 

the night and vice versa (Hobson, 1986). Therefore, entering the overwintering 

stage as soon as the required body condition is attained will reduce exposure to this 

crepuscular predation. The overwintering stage may be viewed as an adaptation for 

survival during a period when conditions are unfavourable for feeding and predation 

risk is high (Winslade, 1974c). 

The growth rates of sandeels around Shetland are generally slower than 

elsewhere in the North Sea (Wright & Bailey, 1993; ICES, 1999). This could be 

indicative of a latitude trend (Shetland is north-west North Sea). Analysis of length 

and age data of the northern sand lance (A. dubius) in the north-west Atlantic 

suggested a decrease in maximum size, age, length-at-maturity and growth rate 

with declining latitude (Nelson & Ross, 1991). This variation with latitude could be 

due to a number of factors such as temperature, prey availability, temperature 

effects or competition which affect growth and/or survival - Nelson & Ross (1991) 

suggested a combination of factors are acting synergistically and the influence of 
these factors changes from year to year thus producing the fluctuations in the 

abundance of northern sand lance. Similarly, studies of the larvae of the Pacific 

sand lance (A. hexapterus) from the Northwest Pacific found that northern larvae 
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tended to grow slower so larvae of the same level of development were smaller in 
the north although these larvae developed faster (Grigorev & Sedova, 1997). 

Adult sandeels are considered to be site-faithful, once settled, adults tend to 

remain on grounds - Reay (1970) discusses evidence for this and cites a study 
conducted by Popp Madsen (1963) in the southern North Sea. Tagged adult 
sandeels were released and recaptured during the summer of 1958 and 13% (of 
858) were recovered. A later sandeel tagging project carried out on sandeel grounds 
at Shetland showed high recoveries of tagged fish (19%-63% from releases at each 
ground in the study in 1985; Kunzlik et al., 1986). A number of distinct sandeel 
grounds are fished in Shetland coastal waters (Wright, 1996), so the settled sandeel 
stock could be considered as a number of sub-units with little movement between 
them. Thus, the Shetland sandeel stock (with appropriate data) is highly suitable for 

a spatial model of population dynamics. 

1.3 North Sea Sandeel Fishery 
The North Sea sandeel fishery commenced in 1953 with landings of 4,500 

tonnes, although some small catches had been landed before this (Macer, 1966). 
The fishery increased rapidly and 1,039,000 tonnes were landed in 1989, since then 
landings fluctuated below 1,000,000 tonnes (Figure 1.4; ICES 1999). The industrial 
fishery for sandeels initially developed to provide fishmeal factories with supplies 
during the slack period between winter and late summer industrial herring fisheries 
(Macer, 1966). North Sea sandeel fisheries are seasonal, operating during daylight 

between April-October to coincide with the summer diurnal emergence behaviour of 

sandeels, as sandeels are caught by trawling above the seabed (Macer & 

Burd, 1970). 

At present, the sandeel fishery in the North Sea accounts for approximately 
two-thirds of total landings of fish from the North Sea (Kirkegaard, 1999) and forms 

the largest single-species North Sea fishery. In 1998, the EU set a precautionary 
total allowable catch (TAC; maximum catch to be landed per annum) of 1,000,000 

tonnes for North Sea sandeels to halt further expansion of the fishery (Scottish 

Office Press Release). Sandeel fisheries throughout the North Sea are based mainly 

on the lower age classes, that is sandeels less then 2 years old (Warburton, 1982). 

As sandeels generally mature at age 2 (Reay, 1970), this means fish are being 

removed from the stock before they spawn to produce new recruits. 
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1.4 Shetland Sandeel Fishery 

During the late 1980s considerable public attention was paid to the industrial 

sandeel Ammodytes sp. fishery around Shetland. The fish stock was declining as 

was seabird breeding success around Shetland (Monaghan, 1992). Controversy 

arose due to a perceived conflict between fishermen and seabirds (Hilden, 1997). 

Environmental and conservation groups, such as Greenpeace and the Royal 

Society for the Protection of Birds (RSPB), were campaigning (and still are) for 

tighter regulation in sandeel fishing (Avery & Green, 1989; Aikman, 1997). The 

Shetland sandeel fishery was the subject of much public debate. 

In contrast to the attention paid to it, the sandeel fishery around Shetland is 

extremely small. This is not an international fishery as the stock occurs within 6 mile 

fishery limits (within UK territorial waters), so it is managed solely by the UK and in 

addition, is fished only by local vessels (Reeves, 1999). Landings from the Shetland 

fishery are very low, in comparison with the North Sea sandeel fishery, averaging 
20,360 tonnes per annum before 1991 with a maximum of 52,000 tonnes landed in 

1982 (Figure 1.5; ICES, 1999). The North Sea fishery landed on average 677,120 

tonnes per annum for the same period, and a peak of 1,039,100 tonnes was landed 

in 1989 (Figure 1.4; ICES, 1999). The value of industrial fish catches (per tonne) are 

often considerably less then that of whitefish for human consumption. Fisheries 

statistics published by the Shetland Islands Council (1999), valued sandeel landings 

in Shetland at approximately £359,000 (£30 per tonne) in 1986 when whitefish 

landings, such as cod (Gadus morhua) and haddock (Melanogrammus aeglefinus), 

were worth approximately £9,980,000 (estimated at £828 and £565 per tonne 

respectively). So why was so much controversy caused by a small, low-value 

fishery? 

The sandeel fishery around Shetland commenced in 1974 and landings rose 

to a peak of 52,000 tonnes in 1982 (Figure 1.5; ICES, 1999). Landings and 

recruitment then declined and the fishery was closed completely at end of season in 

1990 after several years of extremely low recruitment when it was estimated that the 

spawning stock was at such a low level that the probability of a strong recruitment 

was unlikely (Reeves, 1999). During the 1980s, the marked decline in sandeel 
landings at Shetland concurred with a decline in the breeding success of several 

seabird species in the area (Monaghan, 1992). 

The decline in seabird breeding success was of particular concern as 
Shetland is considered an internationally important breeding site for many seabird 

species (Avery & Green, 1989; Furness, 1990). Very little alternative prey of a 

suitable size and energy content are considered available for seabird chicks around 
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Shetland (Kunzlik, 1989). In particular, very few Arctic terns (Sterna paradisaea) 

were fledged over the seven years from 1984-1990 when the availability of young 

sandeels was extremely low (Monaghan & Uttley, 1989; Monaghan, 1992). It was 

argued that competition between fishermen and seabirds for the same sandeel 
resource accounted for the decline in seabird breeding success (Avery & Green, 

1989). Fisheries can have adverse affects on seabird populations through a number 

of processes for example, by direct competition for prey (Furness & Tasker, 2000). 

In addition, sandeels may form an important prey source for other marine 

predator populations (Furness, 1990; Sparholt, 1990; McConnell et al., 1999), such 

as pinnipeds and also whitefish like cod (G. morhua) and whiting (Merlangius 

merlangus). Sandeels can form a major food source in certain areas or at certain 
times of the year for these larger fish (Greenstreet, 1996). Concerns were raised, 

as early as the 1970s, that the availability of sandeels may have important 

implications on catches for the more valuable whitefish fisheries (Langham, 1971b; 

Doyle & Greenstreet, 1999). Therefore, reducing sandeel availability may have 

adverse effects on the survival and growth of predatory fish populations. 
Initially, environmental groups blamed the sandeel fishery at Shetland for the 

decline in the local sandeel stock (Avery & Green, 1989). However, the decline in 

recruitment commenced before the spawning stock biomass (SSB) reduced (Figure 

1.6), as would be expected if the fishery were the cause (Kuzlink, 1989). In other 

words, if overfishing were the cause of decline, it is expected that firstly a reduction 
in SSB would occur then, as SSB decreases, the number of recruits would start to 

decline. 
After several years of low recruitment at Shetland, the production of an 

extremely large year-class in 1991 (144 billion) signalled the start of the recovery of 

the stock. It is now accepted that environmentally-induced fluctuations in recruitment 

to the sandeel population may be responsible (Wright, 1996). The fishery was 

reopened in 1995 following some recovery of the stock. 

In 1992 changes in legislation, due to the introduction of the Sea Fisheries 

(Wildlife Conservation) Act, requires wildlife conservation considerations to be taken 

into account when discharging functions under the Sea Fisheries Act. Due to the 

high uncertainty in sandeel assessments at Shetland, a precautionary approach to 

the management of this fishery management was adopted (ICES, 1999). This 

approach can be considered as "preventative anticipation", that is action is taken 
before stocks are over-exploited and a wide margin for error is allowed (Internet 

Guide to International Fisheries Law). The precautionary approach taken for 
Shetland sandeels, considers the importance of sandeels for local predators. 
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A management plan for Shetland was determined after consultation with the 
Shetland Fishermens' Association, Scottish Natural Heritage and the RSPB 
(Reeves, 1999). Initially, A TAC of only 3,000 tonnes was set (compared to the 
52,000 tonnes landed by the fishery in 1982), with a closed season during June and 
July (the main seabird breeding season) and a fishery restriction to vessels less 
than 20m length. Due to the recent low level of exploitation, management is 

reviewed every three years (ICES, 1999). For 1998-2000 management period, the 
TAC was increased to 7000 tonnes, with the closed season in June and July still in 

place (Scottish Office Press Release). The 20m length restriction on vessels was 
still in force but this may be raised if it appears the TAC is unlikely to be taken (as 
has occurred in the preceding years). 

Around Shetland, the sandeel fishery is also based on the lower age classes 
but this fishery relies heavily on 0-group fish - fish less then 1 year old - as opposed 
to 1-group fish in the North Sea fisheries. The fishery is seasonal, operating 
between April and September, with 0-groups appearing in catches from June 

onwards (Reeves, 1999). The number and area of sandeel fishing grounds around 
Shetland are limited as the sea bed contains rocky outcrops - rendering areas 
unsuitable for trawling (Warburton, 1982). Very little bycatch is landed in the sandeel 
fishery - analysis of commercial catches at Shetland in 1996 indicated that less than 
0.25% of catches (by weight) were non-sandeel species (Goodlad & Napier, 1997). 

The Shetland sandeel fishery may be small but the importance of sandeels 

as a trophic link in the ecosystem has been recognised for many years. As observed 
by Langham in 1971b, "even if the sandeel fishery in Scottish waters is small, the 
importance of sandeels in the marine food chain, on which the wider fishing industry 
depends, is sufficient justification for a detailed examination". The sandeel fishery at 
Shetland is important as public concern was first raised about potential adverse 
impacts of sandeel fisheries on marine predators in relation to this fishery (Reeves, 
1999). Compared to other systems, the Shetland marine ecosystem is relatively well 
studied - coupled with the history of the fishery this makes the Shetland fishery a 
useful case study (Reeves, 1999). 

Fisheries management covers a wide and complex range of objectives, such 

as optimising profits, employment or government revenues; or conserving rare 

species or ecosystem status; or reducing overexploitation of the stock or managing 
discarding (Jennings et a!., 2001). Generally, fisheries management can be 

considered as ensuring fisheries are exploited on an ecologically sustainable basis 

while also maximising economic returns and conserving the environment (King, 
1995). In order to achieve these aims, it is necessary to have some understanding 
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of the biology and ecology of the exploited sandeel stock and of the surrounding 
ecosystem. 

1.5 Fluctuations in Sandeel Populations 
Some small, prolific fish, such as sardines and herrings, show large 

variations in abundance over a short number of years. The ability to produce large 

population increases over short time scales can be thought of a life history 

adaptation to environmental perturbations (Kawasaki, 1980; Sharp, 1987). This 

ability may allow exploited fish populations to recover after collapses (Schwartzlose 

et al., 1999, Hutchings, 2000). Despite this capacity, other aspects of population 
change need to be considered in the management of industrial fish stocks. For 

example, how will exploitation affect the ability of a population to recover, how will 

predator populations respond and will population collapse cause a change in 

ecosystem structure (Gulland, 1987)? One example of an apparent ecosystem shift 
is the replacement of anchovy by sardines (and vice versa) which has been 

recorded in several systems around the world (Schwartzlose et al, 1999). 
Populations of sardine and anchovies tend to fluctuate out of phase and so 

these are considered as a "species pair", that is one species is thought to "replace" 

the other after a population decline (Daan, 1980; Schwartzlose et al., 1999). The 

exact mechanism is still in doubt but functional replacement, competitive release 

and/or adverse interaction may all be acting (Daan, 1980; FAO, 1997; Klyashtorin, 

1997; Bakun & Cury, 1999; Hall, 1999; Schwartzlose et al., 1999). Functional 

replacement implies the two stocks concerned are functionally related by a 

comparable response to a common base so as one stock goes down, the other 
increases (Daan, 1980). An element of competition is. present in functional 

response. Competitive release occurs when one species limits, for example the 

range or numbers of another species by "out-competing" the other species (for 

space or food for example). When the competitor is removed, the limited species 
expands its range or numbers (see Begon & Mortimer, 1981). The mechanism of 

adverse interaction, in the absence of substantial competition between two 

schooling fish species, proposed by Bakun & Cury (1999) is based on the 

compulsion of these fish to become members of schools of similarly sized fish of a 
similar body form. The less abundant species in the schools may be adversely 
impacted, through differences in food requirements, swimming speeds and spatial 
use, determined by the dominant species in the school. 

Evidence suggests cycles of population growth in sardine/anchovy pairs may 
be triggered by the formation of one or a few powerful age classes and decline 
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occurs at high population levels due to a decrease in production and in survivorship 
of eggs (Schwartzlose et al., 1999). Cannibalism may bean important source of egg 
mortality at high stock levels (Bax, 1998). The life history strategy of anchovies (and 

of sandeels) is such that large, irregular variations in recruitment can occur over 

short periods of time (Kawasaki, 1980). Heavy exploitation (fishing) may influence 

natural population fluctuations, for example by preventing a species becoming 

dominant, and so may change ecosystem functioning (Schwartzlose at al., 1999). 
Sandeel populations also show large fluctuations in abundance over short- 

time scales. During the 1970s and early 1980s, sandeel (Ammodytes sp. ) 

populations increased in the north-west Atlantic (Winters, 1983; Nelson & Ross, 

1991), North Sea (ICES, 1999) and around Shetland (ICES, 1999). The populations 
in the north-west Atlantic and around Shetland then declined (Nelson & Ross, 1991; 

ICES, 1999). There is a diversity of possible causes of fluctuations in sandeel 

populations, such as environmental factors affecting mortality rates and prey 

availability, competitive release, changes in survival due to fluctuations in predator 

populations, and exploitation. 
Sherman et al. (1981) and Jones (1983) present evidence that the increase 

in abundance of sandeel species in the north-west Atlantic and North Sea during the 

late seventies was probably due to changes in the tropic levels of the ecosystem as 

opposed to environmental factors. The collapse of the mackerel (Scomber 

scombrus) and herring (C. harengus) stocks in these areas due to overfishing 

coincided with a population explosion of sandeels. The decrease in the herring and 

mackerel stocks probably resulted in an increase in food supply for sandeels, as 

there is some diet overlap, and also increased survival of sandeels, as herring and 

mackerel are also piscivorous. Predation is an important influence on marine 

ecosystems and fish are a major predator on smaller size fish and fish larvae and 

eggs (Bax, 1998). Sherman et al. (1981) suggest the increases in sandeel and other 

small fast-growing fish concurrent with the decreases in herring and mackerels 

exclude the hypothesis that the changes are due to environmental factors. 

Subsequently, similar hypotheses have been made for population change in 

the north-west Atlantic sandeel populations. In the late seventies the American sand 

lance (A. americanus) populations in the north-west Atlantic increased dramatically 

while the Atlantic mackerel (S. scombrus) stock was rapidly declining (Bowman et 

al., 1984). This led Bowman et al. to suggest food supply was more abundant and 

predation reduced at this time, in part due to the mackerel decline, while spawning 

conditions were more favourable. Also, no fishery existed for sandeels so fishing 

mortality was very low. Therefore, interspecific interactions between mackerel and 



sandeels appear to be important for sandeel population growth and survival. 
Further, Bowman et al. predict that, if the hypothesis is correct, the abundance of 
north Atlantic sandeels would decrease in later years (after 1983) in part as the 
Atlantic mackerel population appeared to be recovering. Later studies, by Nelson & 

Ross (1991) and Fogarty et al. (1991), appear to support this prediction. 
Nelson & Ross (1991) also suggest interspecific interaction between 

mackerel and the northern sandeel A. dubius (which co-occurs with A. americans 
in the north-west Atlantic) is important in regulating sandeel numbers. Relative 

abundance indices of A. dubius increased in the late seventies then declined from 
1982 - 1987 concurrent with an increase in mackerel biomass during the eighties. 
Fogarty et al. (1991) evaluated empirical evidence for the regulation of north-west 
Atlantic sandeel populations by Atlantic herring and mackerel. A significant negative 
interaction between sand lance recruitment and an index of herring and mackerel 
biomass was found. It was concluded that, considered together with the fact that 

sandeels appear to be an important prey species for herring and mackerel, this 

supports the hypothesis of interspecific interactions affecting sandeel abundance 
although alternative hypotheses cannot be dismissed. 

Decline of other predator populations may also influence sandeel population 

dynamics. For example, Winters (1983) analysed population data of northern sand 

lance on the Newfoundland Grand Banks for the period 1968-79 and found a 

substantial increase in abundance since the 1960s. Winters suggested the decline 

in the Grand Bank Atlantic cod (Gadus morhua) population, for which sand lance are 

the dominant prey species, due to over-exploitation led to reduced natural mortality 

and increased recruitment in sandeels. Seabirds often target small fish, the 

maximum size of which depends on the gape of the seabird bill, especially during 

the breeding season when small fish are needed to feed chicks (small gapes) and 

so are considered major predators in some marine systems (Bax, 1998). It has been 

proposed that seabirds may deplete fish prey during the breeding season in waters 

around their colonies (Birt et al., 1987). However, the effect on the fish population 

may be very localised, depending on the spread of seabird colonies and foraging 

ranges, but may be important when considering small-scale systems. 

The sandeel population around Shetland has shown considerable variation 
in abundance since the fishery commenced. During the late eighties, recruitment 
declined drastically, even though SSB was high during the initial decline. Analysis of 
10 years of the continuous plankton recorder (1933-39 & 1947-49) found the annual 

abundance of sandeel larvae in the North sea tends to fluctuate considerably 
between years (Ryland, 1964). Proctor et al. (1998) adapted a two-dimensional sea 
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circulation model to model the transport of sandeel larvae on the north-west 
European shelf, this indicated larval advection into Shetland from Orkney may be an 
important addition to recruitment at Shetland. The model demonstrated that passive 

particle transport into Shetland was high in years of high recruitment and low in poor 

recruitment years. There was also a loss of particles from the Shetland system but 

the correlations with recruitment were much higher for particles entering the system. 
The recovery shown by the Shetland stock in the early 1990s was triggered 

by the appearance of a very large year class in 1991. The question here is where 
did this large year class originate from? Was it internally produced or was there an 
influx of recruits from elsewhere? 

1.6 Sandeels and Seabirds 
As the sandeel stock and fishery landings around Shetland declined in the 

late eighties, a concurrent decline in seabird breeding success occurred (Monaghan, 

1992). Theoretically, competition between seabirds and fishermen can take two 

main forms, they can compete for sandeel recruits in any year or the fishery can 

reduce SSB thereby causing a reduction in recruitment (Tasker & Becker 1992, 

Hilden, 1997). At Shetland, both the fishery and breeding seabirds mainly take 0- 

group sandeels (recruits; Monaghan, 1992). Due to the dependence of seabirds on 

certain fish species in their diet, it has been suggested that seabirds be used as 

monitors of fish abundance (Cairns, 1992; Litzow at at., 2000). However, this is most 

likely to be on a small scale (foraging area for colonies). At certain times of the year, 
there are areas of overlap in the exploitation of sandeels between fisheries and 

seabirds (Wright & Begg, 1997), and this has been recognised in the present 

management of the Shetland sandeel fishery. Since reopening in 1995, the fishery 

now closes during June and July to avoid competition with breeding seabirds. 
Shetland is not the only area where concerns regarding the adverse effects 

of sandeel fishing for seabirds have been recognised and acted on. The sandeel 
fishery moved into the Wee Bankie area, off the Firth of Forth in East Scotland, in 

1990 and a concurrent decline in seabird breeding, as the fishery expanded, 

occurred at nearby colonies (Aikman, 1997; Rindort et al., 2000). This area forms an 
important feeding ground for breeding seabirds in the estuary and on the Isle of May 

so there is strong potential for competition between seabirds and the fishery 

(Wanless et al, 1999). Evidence suggests the fishery could exacerbate the foraging 

success of breeding seabirds when sandeel biomass is low (Rindorf et al., 2000). A 

study of diet composition of kittiwakes by Lewis et al. (2001) indicates environmental 
factors appear to be the dominant influence on the sandeel population hence 
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kittiwake breeding success. In 1999, it was agreed this area will be closed to 

sandeel fishing from April to August (Scottish Executive Press Release 1999). This 
is a more radical decision then the Shetland closure as the Wee Bankie is fished by 

vessels a number of countries, mainly Denmark, hence an international agreement 
was reached between the countries concerned (European Commission Fisheries 
Web Site). 

1.7 Assessment & Management of Sandeel Fisheries 

One of the most basic questions in stock assessment is "How many fish are 
there? ". It is not possible to simply go out and count all the fish in the sea, instead 
data collected from commercial landings and research cruises (which are costly and 
time-consuming) are used to assess stock size and composition. The size of 

commercial fish stocks are generally estimated using Virtual Population Analysis 

(VPA). This is a technique that uses fishery landings to estimate historic fishing 

mortality and the numbers of fish in each cohort (age-class, see Hilborn & Walters, 

1992 for further details). Reasonable estimates of fishing mortality on recent 

cohorts can be obtained if the population is heavily fished. 

At present, an annual VPA model is used to assess the stock (ICES, 1999). 

However, due to the low exploitation in recent years and high natural mortality rates, 

the model is very sensitive to the input data and thus the results can only be taken 
i 

as an indication of trends in the stock. The recent low catch rates and low effort of 

the Shetland fishery will affect input parameters as landed fish may not be 

representative of the entire age-class. Catch data for assessments are 

supplemented with data from bottom trawl research surveys which have been 

conducted at the fished grounds since 1984 (except for 1987 and 1995). It was 

considered inappropriate, for a number of reasons, to define safe biological limits for 

the stock in terms of defined reference points (ICES, 1999). Therefore a 

precautionary approach has been taken which considers the importance of sandeels 
for local predators - as a result the TAC is set at low levels. 

Stock-recruit data for Shetland sandeels are highly variable and there is no 
obvious relationship so does a relationship exist (Figure 1.7)? Myers & Barrowman 
(1996) demonstrated, by analysing stock-recruit data for 364 fish stocks, that strong 

year classes are more likely when SSB is large therefore providing proof of the 

stock-recruit relationship (see Chapters 3&4 for further discussion). Zheng (1997) 

examined stock-recruitment data for 28 anchovy, herring, mackerel and sardine 
stocks world-wide and found that, though recruitment was highly variable, it was 
significantly related to SSB and was generally compensatory density-dependent. It 
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was concluded that the status of spawning stocks is central to the management of 
these fisheries thus overfishing should be avoided. Defining the stock-recruit 
relationship for the Shetland sandeel stock is therefore important for fishery 

management. However if, as suspected, a large proportion of the recruits originate 
from outside Shetland (Wright, 1996) then this relationship will be obscured. 

1.8 Thesis Aims and Structure 

The aims of this project are to produce age-structured population models of 
the sandeel stock at Shetland. Understanding recruitment dynamics is a vital part of 
the project, therefore much of the thesis concentrates on recruitment. Time series 
analysis is applied to the Shetland and North Sea data and stock-recruit models 

parameterised. A model for external recruitment is also developed. A suite of 
baseline models are thus identified, accounting for a number of possible recruitment 

scenarios. Fishing mortality rates are altered and the resulting model output is 

compared to the baseline models. 
The thesis has been split into seven chapters (including this introductory 

chapter). The next chapter (2) reviews available data and analyses synchrony in 

recruit time series on fishing grounds around Shetland. Due to the importance of 
recruitment, Chapters 3,4 and 5 are devoted to stock and recruitment issues. In 
Chapter 3, the basic population model is introduced and methods of simulating 
recruitment using time-series forecasting methods are tested. This uncouples 
recruitment from stock size but increases our knowledge of the underlying patterns 
and these models can be incorporated into the traditional stock-recruit models used 
in Chapter 4. 

Ricker (1954; 1975) and Shepherd (1982) stock-recruitment models are 
fitted to the Shetland data in Chapter 4 and autocorrelated stochasticity around the 

stock-recruit curve added. The models are fitted to the complete data set and to a 

reduced data set, removing four years which may be considered outliers, so two 

sets of curves are parameterised for each stock-recruit model. These are 
incorporated into the population model and simulations carried out. 

Chapter 5 develops models to simulate local and external recruitment. This 
is problematic due a lack of data, as the size and frequency of external recruitment 
is unquantified. It is assumed that the stock-recruit relationship for sandeels around 
Shetland is similar to that in other areas of the North Sea. Ricker stock-recruit 
models are fitted to the North Sea sandeel data and these are scaled for use with 
the Shetland data. By determining the difference in the lognormal variance around 
the curves between the complete Shetland data set and the scaled North Sea data, 
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it is possible to estimate external recruitment. These models were incorporated and 
tested into the population model. 

Chapter 6 discusses the potential effect of sandeel availability on seabird 

breeding success and explores the consequences of varying fishing exploitation 

rate. Species considered particularly vulnerable to sandeel availability are identified 

and functions of breeding success against total sandeel biomass are devised. 

Finally, population dynamics under varying rates of fishing mortality are analysed. 
Chapter 7 is the discussion chapter. 
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Figure 1.1 Landings of sandeels, Norway pout and sprat from the North Sea and 
north-east Atlantic over 1950-1997 inclusive (from FAO Yearbook Statistics). 
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Figure 1.3 Diagram of annual cycles of Shetland sandeels and the 
associated fishery. Outer blue circle represents life stage, green circle 
represents dispersive/site attached stages of fish in first year of life, grey 
circle represents emergence behaviour of settled fish (0-groups and older) 
and inner red/green circle represents the status of the fishery. Main seabird 
breeding season is also indicated (pink outer). 
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Figure 1.4 Landings (000 tonnes) of sandeels from the North Sea and from 
Shetland (from ICES 1999). 
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Figure 1.5 Landings (000 tonnes) from the Shetland sandeel fishery over 1974- 
1996 (from ICES 1999). 
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Figure 1.6 Stock trends for sandeels at Shetland (from ICES 1999). 
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Figure 1.7 Stock-recruit data for sandeels at Shetland over 1974-1997 inclusive 
(from ICES 1999). 
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CHAPTER 2 

POPULATION CHARACTERISTICS AND SYNCHRONY 



2.1 Introduction 

This Chapter is written in two parts, the first part considers the available data 
for sandeels at Shetland and how these are generated while the second part is 

concerned with synchrony between fishing grounds in recruit time series. Bootstrap 

analysis is carried out to determine confidence intervals on mean estimates of 
synchrony and the correlation statistics (for recruitment between sandeel grounds) 

are plotted against distance. Cluster analysis was conducted to determine the 
linkage between sandeel grounds. Finally, conclusions of synchrony in the spatial 

recruit time series are discussed. 

2.2 Population Data PART I 

Before constructing a model of the Shetland sandeel stock, it is necessary to 

have some understanding of influences on population dynamics and how population 

estimates are generated. The biology and ecology of sandeels at Shetland were 
discussed in Chapter 1. Population increases occur due to the addition of juvenile 

sandeels, which are recruited to the exploited population (fished stock) in the 

summer following hatching (that is, as 0-group fish). The population decreases 

occur through natural mortality, M, and fishing mortality, F. Natural mortality refers to 

fish that die due to predation, disease or other natural causes, while fishing mortality 
is death caused by the fishery. The balance between all of these (assuming for now 

no immigration or emigration) will influence changes in population size. For 

example, if recruitment is low and mortality high then the population size will decline 

over time. A population model of the Shetland sandeel stock will need to incorporate 

functions for F, M and recruitment but the model represents the exploited (settled) 

population, pre-recruit mortality is not considered. Population estimates for Shetland 

sandeels are derived from catch-at-age estimates and survey data by an annual 

separable virtual population analysis (VPA) model assuming constant natural 

mortality (see below). 

2.3 Virtual Population Analysis (VPA) 

VPA is a technique that analyses catches from each year class over a 

number of years to estimate historic fishing mortality and stock numbers and 
involves a computationally intensive iterative procedure (see Megrey, 1989; Hilborn 
& Walters, 1992; King, 1995; Jennings et at, 2001 for details). In other words, VPA 

calculates how many fish must have been in the sea to account for the number 

caught (Sparre, 1991). Each cohort (year class: fish in a stock born in the same 
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year) is assessed individually in this model which makes no underlying statistical 
assumptions (Hilborn & Walters, 1992). 

VPA involves working backwards from the most recent year using catch-at- 
age (or length) data from commercial landings. The inputs required for the model 
are the annual natural mortality coefficient M (which is assumed to be constant 
between years), the fishing mortality coefficient F in the most recent year (referred 

to as terminal F) and the catch, C, for each year. M and terminal F are estimated 
prior to running the model (see below). VPA uses the calculated numbers of fish in 

the cohort in year t, together with C and M in year t-1, in an iterative process to 

calculate F and so cohort numbers in year t-1. The results are used to estimate F 

and cohort numbers in year t-2 and so on. 
Age-specific natural mortality rates (M) must be estimated (or guessed) for 

VPA and it is assumed M is constant between years. Using an incorrect natural 

mortality rate may have a major impact on the estimated stock sizes in VPA. If M is 

too large then estimates of cohort size will be too large and if M is too small then 

cohort size will be underestimated (Hilbom & Walters, 1992). However, if 

exploitation is high (so F> M) then an incorrect M will have little impact on estimates 
as fishing mortality dominates (Hilborn & Walters, 1992). An incorrect terminal F 

estimate will have little effect on estimated parameters of younger age-classes as 

estimates of fishing mortality converge asymptotically with their true values when 

working backwards in the sequential procedure (Megrey, 1989). VPA does not 

supply a clear picture in the most recent fishing year as estimates of population size 
in this year depend on the estimate of terminal F (Megrey, 1989). The use of data 

supplied by 'tuning fleets', for example research vessels, allows predictions with 
greater confidence for recent population numbers and these data are used routinely 
with some VPA software such as extended survivors analysis (XSA; see Jennings et 

aL, 2001). 

Fishing mortality rates for the stock at Shetland (mean F (Ogp) = 0.074) are 

considerably less than natural mortality rates (mean M (Ogp) = 0.800). VPA can 
produce reasonable estimates of fishing mortality on recent cohorts if the stock is 
heavily fished. Jennings et al. (2001) suggest, that as a rule of thumb, VPA works 
best when F/Z is between 0.5 and 1.0, where Z is the total mortality rate (Z=F+M). 
For 0-group Shetland sandeels the mean F/Z is only 0.08. Additionally, there are 
missing data years for the Shetland stock. Due to the scarcity or absence of catch 
data in the Shetland data set, an annual separable VPA model was developed by 
Cook & Reeves (1993) to produce population estimates. 
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2.4 Annual Separable VPA 

The closure of the fishery over 1991-1994 and the subsequent low landings 
have led to a lack of suitable data for Shetland sandeel assessment models. As 
VPA works backwards sequentially a complete time series of data are required, 
missing data will stop historic population estimations. Sandeel assessments at 
Shetland are now carried out using an annual separable VPA, which allows 
estimation of all parameters, even if observations are missing in some years (Cook 
& Reeves, 1993; ICES, 1999). However, no recent population estimates for 
Shetland sandeels have been produced due to the poor quality of the input data 
(ICES, 2001). 

In VPA, estimates of historic population numbers are produced 
simultaneously with historic fishing mortality estimates. There are eight age classes 
in the annual sandeel population estimates for which 24 years of fishery assessment 
data are available. These range from 0-group (fish which hatched that year) to the 

oldest age class, 7+, which contains all fish aged 7 and older. In any particular year, 
large number of the population are less then 3 years old (Figure 2.1). Due to the 
high natural mortality rates (Table 2.1), the probability of an individual fish surviving 
beyond a year is very small. 

The annual separable VPA model used in recent years for stock assessment 
at Shetland was found to be highly sensitive to input options (Cook & Reeves, 
1993; ICES, 1999). ICES (1999) warned that stock estimates resulting from the 

latest assessment can only be regarded as an indication of the overall trends in the 

stock and not of absolute levels. For VPA to be effective, it is normally required that 

exploitation rates are high (if most of the population are caught by fishermen than 

eventually most of the fish in each age class will have been landed and counted. 
This is more accurate than trying to estimate how many were eaten by predators). 
For Shetland sandeels, age-specific natural mortality rates are considerably larger 
than fishing mortality rates, so will have a proportionally greater influence on fish 

numbers, thus introducing high uncertainty. 
Evidence suggests that some sandeels recruiting to the Shetland stock may 

originate from outside the system (Wright, 1996; see below). If this is the case, then 
the estimates produced by VPA will be affected. VPA assumes no net emigration or 
immigration. If net immigration occurs, then this will cause cohort sizes to be 

overestimated (Hilborn & Waiters, 1992). This is particularly a problem if immigration 

occurs at older ages, as this will be magnified in the backwards sequential 
calculations. However, tagging studies (Popp Madsen, 1963 cited by Reay, 1970; 
Kunzlik et al., 1986) have indicated that it is unlikely that settled (recruited) sandeels 
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move between grounds so there will be no magnification of numbers backwards 
through the cohort. 

2.4.1 Fishing Mortality Rates F 

Fishing mortality refers to death due to capture by the fishery and is 

estimated from commercial catch data. Catch-at-age data are generated from 
biological information collected by sampling a small portion of the overall catch 
together with a measure of the total commercial catch (Megrey, 1989; Hilbom & 
Walters, 1992). The rate of decrease of a population due to a fishery can be 

expressed as: 

dN 
_ _FNt dt 2.1 

where N is the number of fish at time t and F is the instantaneous fishing mortality 
coefficient (Beverton, 1994). 

F varies between years depending on factors such as the size of the fishing 

fleet, the biomass of fish available to the fishery and the effort with which the stock is 
fished. Fishing mortality rates for Shetland sandeels declined in the 1980s as the 

stock declined and economics forced fishermen to turn to other species. There is no 
fishing mortality over 1991-1994 as the fishery was closed and, since reopening, 
fishing mortality has been extremely low. Fishing mortality rates for sandeels at 
Shetland over 1974-1983 were calculated by VPA (Table 2.2), whereas after 1983 

an annual separable VPA model was used (Table 2.3). 

Z4.2 Natural Mortality Rates M 

Natural mortality rates refer to death by predation (excluding fishing), 
disease and other natural causes. Death due to predation is a major component of 

natural mortality (Sissenwine, 1984), particularly for young fish (Bax, 1998). Natural 

mortality generally decreases with age, as larger fish have fewer predators than 

smaller fish. The maximum size of prey taken by a marine predator is determined by 

the "gape" of the predator (for example, bill gape for seabirds, mouth gape for fish). 
As the predator increases with size, so the size range of available prey increases, 

although predators may actively select a particular size range (Bax, 1998). Thus 

predation pressure is highest on small fish, as these are available to a greater range 
of predators than large fish. 
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As discussed above, using an incorrect natural mortality rate may have a 
major impact on the estimated stock sizes in VPA. Producing estimates of natural 

mortality is problematic as it is difficult to observe and quantify fish dying from 

natural causes, therefore an 'educated guess' is usually taken. Available data, such 
as information on predator biomass and diet composition, may be used in estimating 
natural mortality. The instantaneous rate of decrease of a population due to natural 

causes can be expressed as: 

dN 
_ _MNt dt 

2.2 

where N is the total number of fish at time t and M is the instantaneous natural 
mortality coefficient (Beverton, 1994). 

Natural mortality rates for the stock assessment of sandeels at Shetland are 

assumed to be the same as those used in the main North Sea assessments (Table 

2.1; ICES 1999). In other words, it is assumed that predation pressure on sandeels 

around Shetland is generally similar to the average predation pressure encountered 
by sandeels across the North Sea. Semi-annual estimates of natural mortality for 

North Sea sandeels are derived from multispecies virtual population analysis 
(MSVPA). MSVPA, which is a direct extension of VPA, was developed for exploited 
fish populations in the North Sea (see Pope, 1991; Sparre, 1991; Stokes, 1992; 

Magnusson, 1995 for further details). MSVPA incorporates predator-prey 
interactions between certain fish species. Basically, MSVPA calculates how many 
fish must have been in the sea to account for the number caught by fisheries and 
found in the stomach contents of predators (Sparre, 1991). The model includes four 

prey fish species (sprat Sprattus sprattus, herring Clupea harengus, Norway pout 
Trisopterus esmarkii and sandeel Ammodytes sp. ), two predator species (saithe 
Pollachius virens and mackerel Scomber scombrus) and three species which are 
incorporated both as predators and as prey (cod Gadus morhua, whiting Merlangius 

merlangus and haddock Melanogrammus aeglefinus; Stokes, 1992; Magnusson, 

1995). Predation interactions between fish species were determined by extensive 

stomach sampling programs carried out in 1981 and 1991. 
MSVPA does not require the natural mortality rate to be estimated 

independently as an input into the model, as is required for VPA. Instead natural 
mortality is split into two parts: M1 and M2, where M2 is the predation mortality due 
to predators included in the model and M1 is residual natural mortality (Stokes, 
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1992; Magnusson, 1995). M1 is the natural mortality caused by predators other then 
the MSVPA predators and by disease and other natural causes. M1 is estimated 
externally (that is, it is required as model input), as in VPA, but M2 is calculated 
within the model. The model has provided insight into the magnitude of predator- 
prey relationships and led to revised natural mortality rates, which for the prey 
species were generally higher then previously assumed and were variable from year 
to year (Pope, 1991; Stephenson, 1997). 

MSVPA has produced annual estimates of age-specific natural mortality 
rates for sandeels in the North Sea. For stock assessment of North Sea sandeels, 
natural mortality rates are taken as an average of the rates calculated by MSVPA 
(ICES, 1999). The Shetland sandeel stock is assessed on an annual basis, rather 
than semi-annual as in North Sea assessments. Therefore, the half-year M values 
used in North Sea assessments are combined to produce annual values of M for 
Shetland assessments (Table 2.1). 

It was assumed that the average natural mortality for sandeels at Shetland is 

similar to that in others areas of the North Sea. However, very large concentrations 
of seabirds are found around Shetland during the main breeding season (June-July), 

many of which are dependent on young sandeels to feed their chicks (Monaghan, 
1992). Coupled with the fact that sandeel fishing grounds occur very close inshore 

around Shetland (within breeding seabird foraging ranges), localised natural 
mortality rates for Shetland may vary from those for the North Sea as a whole 
(Bailey et aL, 1991). 

Consumption of sandeels by seabirds can be high around Shetland, a 
bioenergetics model produced by Furness (1978) indicated that seabirds at Foula 

(Shetland) may consume 20-40% of small fish (predominantly sandeels) within 
45km of the colony. In contrast, considering the whole North Sea, seabird 

consumption averages only about 4% of the sandeel stock (Furness & Tasker, 

1997). In the whole North Sea, predatory fish probably consume a far greater 
biomass of sandeels than seabirds (Furness & Tasker, 1997) and so mortality due 

to consumption by seabirds probably has less effect on stock numbers. This may 

also be the case around Shetland, however calculations conducted by Furness 

(1990) for consumption of sandeels at Shetland over 1981-1983 indicated that 

predation by seabirds may be comparable, or greater, than consumption by 

predatory fish. Furness (1990) also suggests that, as the Shetland sea area is 

considered more productive than many other parts of the North Sea, predation by 

fish may also be higher here. However, it would be reasonable to expect sandeel 

production to be higher also, which does not appear to be the case. 
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Due to the high density of seabirds at Shetland, it may be reasonable to 

conclude that natural mortality rates for sandeels are higher around Shetland than in 

the whole North Sea. But, it is not possible to simply alter the value for M used in the 

basic population models. VPA requires M as an input to estimate population size, 
therefore changing M would alter the population estimates produced for Shetland 

sandeels. As the models are using population estimates produced by VPA, it was 

necessary to include M at the rates used in assessments. 

2.5 External Recruitment 
The Shetland sandeel population is assessed as a separate stock from 

North Sea sandeel fisheries, as Shetland sandeels show a relatively slow growth 

rate compared to the main North Sea stocks and the grounds are considered 

isolated from those in the North Sea (Bailey et al., 1991). There is increasing 

evidence that the Shetland population is not a separate stock but forms part of a 

much larger population of North Sea sandeels (Naevdal et al., 1996; Wright, 1996), 

this will have implications for stock assessment. 
The widespread abundance of sandeel larvae in offshore waters in some 

years (Langham, 1971a; Wright & Bailey, 1993) suggests the sandeel population at 
Shetland is not isolated from neighbouring populations. Larval surveys in Scottish 

waters have indicated the presence of several spawning areas around the Shetland 

Isles and the Orkney region (Wright & Bailey, 1993) and larvae have been found all 

around the Scottish coasts (Langham, 1971a). Analysis of aggregated data from 

routine plankton surveys over 1961-1974 indicated that the waters to the north and 

west of Orkney can be considered a major spawning area for sandeels as larval 

production here far exceeds that near Shetland (Wright & Bailey, 1993). 

Unfortunately, the sandeel population around Orkney is unfished, as the grounds 

are not suitable for trawling, therefore there are few data for the Orkney population. 
In certain years, there may be an influx of external recruits into the Shetland 

system (Wright, 1996) but the frequency and size of this input is unquantified. 
Similarly, advection of larvae and pre-settled recruits away from Shetland may 

occur. As this is a loss to the population, assuming the numbers lost by advection 

are related proportionally to sandeel density, it can be considered as part of natural 

mortality M. But if there is a high loss of recruits from Shetland, compared to the 

North Sea, then M may be underestimated for Shetland. However, if immigration at 
Shetland is equal to emigration, there will be little effect on population estimates. 
Proctor et al. (1998) adapted a 2-dimensional sea circulation model to simulate the 

transport of sandeel larvae on the north-west European shelf. This indicated that the 
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loss of pre-recruits from the Shetland area is probably less then the input from other 
areas. As immigration occurs before recruitment to the Shetland stock and fishery, 

this will have little influence on the VPA model but will affect the stock-recruitment 

relationship at Shetland (see Chapter 5 for further discussion). 

2.6 Characteristics of Population Data 

It is intended to produce stochastic models that reproduce the characteristics 
of the historical population time series. Therefore, it was necessary to choose 

population characteristics to compare model output with population assessments 
around Shetland. The two distributions chosen were recruitment numbers and SSB. 
As these are short-lived fish (up to eight years) with high natural mortality rates, 0- 

group fish (recruits) make up a considerable portion of the total stock biomass and 

usually account for a large proportion of annual landings by the fishery (Kunzlik, 

1989). Recruitment is a crucial component of the models, as large fluctuations in 

the number of recruits are thought to be a major factor driving the high variation in 

year class strength. The second set of characteristics selected were those of the 

SSB distribution, which will enable comparison of the population structure. Before 

constructing a model of the population dynamics of the Shetland sandeel stock, it 

was necessary to investigate the underlying distributions and characteristics of the 
SSB and recruitment time series. 

2.6.1 Recruitment 
The highest recruitment on record occurred in 1997, when it was estimated 

330 x109 fish recruited to the stock around Shetland (Figure 2.2b). In 1987, the 

lowest recorded recruitment of 3.7 x 109 recruits occurred, producing a ratio of 89: 1 

for largest to smallest recruitment. This represents a large range in variation but was 

within ranges found by Hennemuth et al. (1980) in eighteen selected fish stocks 

(ranges of 92: 1 and 100: 1 were found in recruit time series of George's Bank 

haddock and North Sea haddock respectively). 

A Kolmogorov-Smirnov 1-sample goodness-of-fit test (hereafter K-S test) 

indicted the recruitment distribution could be considered normal (P=0.229, Z=1.041) 

with a mean of 76 ± 73 x109 (Figure 2.3a). However, the shape of the recruitment 
histogram suggested this distribution could be more appropriately described as 
lognormal (Figure 2.4b). The recruit data were natural log-transformed and retested 
for normality with a 1-sample K-S test. This indicated the distribution could be 

considered lognormal (P=0.813, Z=0.636) and confirmed our suspicion that a 
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lognormal distribution was more appropriate (P(lognormal) > P(normal)). Back- 
transforming the mean produced a median recruitment of 48.4 x109 fish. 

An extremely large recruitment occurred in 1997 (330 x109 fish) and this was 
skewing the data distribution to the right (Figure 2.3a). The 1997 estimate, being 

recent, has a high amount of uncertainty (see VPA section) but high numbers of 0- 

group fish were caught during research surveys. A mean of 3,129,222 0-groups per 
30 minute tow was caught in 1997 compared to the average catch of 648,961 0- 

groups per 30 minute tow over 1974-1997 inclusive (excluding 1987 and 1995 for 

which no data exists; ICES 1999). One question that needs to be addressed is: was 
the occurrence of the extremely large recruitment in 1997 a freak event? If 1997 is 

considered a freak event then a normal distribution would be more suitable then a 
lognormal distribution to describe the data. 

The data point representing 1997 in each distribution was standardized to 
find the normal deviate using Equation 2.3 (Zar 1999): 

Z=Xi P 2.3 
Q 

where Z is the normal deviate, X is the value for 1997, and ,u and a are the mean 
and standard deviation of the distribution respectively. 

The proportion of the distribution which was greater than X; was determined 
from an appropriate statistical table (Zar, 1999). For the normal distribution, the 

probability of obtaining a value of 330 x 109 (1997 value) or greater was 0.03%. For 
the lognormally distributed data, the probability of obtaining the corresponding value 
or greater was 3.75%. Thus in a series of 24 years of recruit data, it would be 

expected that 0.9 years would have a value of 330 x109 or above in the lognormal 
distribution and 0.01 years in the normal distribution. In the historical data, 1 year of 
24 had a value of 330 x109 or greater which corresponds to the expected value from 
the lognormal distribution. Thus, in the absence of further information, it was 
decided to assume the recruit distribution was lognormal. 

Hennemuth et al. (1980) used K-S tests to analyse the recruitment 
distributions of eighteen fish stocks for fits to normality and lognormality. It was 
found that, in most cases, the log transformed data gave a considerably better to 

normality than the untransformed data and the null hypothesis (that the data are 
normally distributed) was rejected for only one stock. Therefore, assuming 
lognormality for the Shetland sandeel recruit data may not be a bad idea. It should 
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be remembered that the sample size in the tests was only 24, so the likelihood of a 
departure from normality being identified is reduced compared to larger data sets. 
Also, only two distributions were considered (normal and log-normal) - there are 
other probability functions, such as a gamma distribution, which may be suitable to 
describe the data. 

2.6.2 Spawning Stock Biomass (SSB) 

Spawning stock biomass (SSB) is defined as the total biomass of all 
reproductively mature fish. Sandeels generally mature as 2-group fish (Gauld & 
Hutcheon, 1990) so it is assumed, for assessment purposes, that 100% of fish aged 
2 and above spawn and 0% of 0-group and 1-group fish (ICES, 1999). However, 

larger fish may mature earlier and a few smaller fish may mature later (Macer, 1966; 

Gauld & Hutcheon, 1990). Values for maturity were determined from biological 

sampling at Shetland by FRS (Gauld & Hutcheon, 1990). Over 1974-1997 inclusive, 
SSB varied between 28,000 - 246,000 tonnes with a mean of 126,800 tonnes 

(Figure 2.2a). 
A K-S 1-sample test was used to determine if the SSB distribution could be 

considered normally or lognormally distributed (Figure 2.4; Zar 1999). The K-S test 

indicated that the distribution could be considered normally distributed (P=0.997, 

Z=0.404). The SSB data were then natural log-transformed and the K-S test 

repeated. This indicated that the distribution could also be considered lognormally 

distributed (P=0.692, Z=0.712) with a median corresponding to 111,100 tonnes. 

SSB showed a higher probability of a normal distribution than lognormal 

(P(lognormal) > P(normal)), therefore it was assumed the actual distribution was 

normal. 

SSB is calculated as: 

7 
S=2N; W 

i=2 
2.4 

where S is spawning stock biomass, i is the age class of sandeel, Ni is the number 
of sandeels in age-class i and W; is the average weight of a sandeel in age class i. 

Weight-at-age, W (average weight of a fish in an age class), was taken from 
the sandeel assessments at Shetland (ICES, 1999; Table 2.4). These represent the 
long-term mean weight-at-age from the first half-year catches - it was assumed that 

weight-at-age was constant between years. This is highly unlikely as weight-at-age 

33 



will be influenced by environmental factors such as food availability. Evidence for 
differing growth rates over 1990-1992 was shown by Wright (1996). Wright analysed 
the length-frequency distributions, and also the age composition from daily otolith 
increments, of 0-group sandeels present around Shetland in June and found that 0- 

groups tended to be larger in 1991. 

It is assumed for the Shetland sandeel assessments that age at maturity and 
fecundity are constant and independent of density and all fish aged two and above 
reproduce. This is probably not the case so may contribute to the apparent lack of 
relationship between spawning stock biomass and recruitment (Figure 1.7; 
Sissenwine, 1984). There is evidence that some sandeels may mature early, as 1- 

group fish, while others may delay maturation (Macer, 1966; Gauld & Hutcheon, 

1990). This may alter the perceived stock recruit relationship based on the 

assumption that all fish aged two and above are reproductively mature. For 

example, if 20% of 1-group fish spawn each year then the spawning stock biomass 

may be greatly underestimated in some years (Figure 2.5). Alternatively if, for 

example, 20% of 2-group sandeels delay spawning then the SSB will be 

overestimated (Figure 2.5). Figure 2.5 assumes that the percentage of sandeels 

maturing early or delaying maturity is constant between years. This assumption is 

unlikely as these percentages will vary between years depending on factors such as 
environmental conditions, food availability and/or density of adult sandeels. As the 

models will be compared to the historical data set it was assumed, for this thesis, 
that 100% of fish aged two and above spawn. Furthermore, without estimates of the 

percentages maturing at age, it is not possible to explore the effects on the stock- 
recruit relationship. 

2.7 Spatial synchrony PART 2 

A seminal work on synchronous fluctuations of populations over large areas 
was that of Moran (1953). Moran found that when captures of lynx (Lynx 

canadensis) in Canada were split into regions, strong synchronisation between even 

widely separated areas became clear. Moran hypothesised the synchrony was the 

effect of large scale climatic perturbations and showed captures of lynx were related 
to weather conditions. The hypothesis has become known as the Moran effect. 
Subsequent evaluations (and documentation) of synchrony in animal populations 
include mammalian species (such as ermine, Mustela erminea; muskrat, Ondatra 

zibethica and red fox, Vulpes vulpes) in Canada (Swanson & Johnson, 1999), 

species of mammals, birds & fish in Finland (Ranta et al., 1995; Ranta et al., 1997), 
bird populations in Britain (Paradis et al., 2000), butterfly populations in Britain 
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(Pollard, 1991; Sutcliffe at al., 1996) and soay sheep, Ovis alles, in the St Kilda 

archipelago (Grenfell et al., 1998). 
Synchrony in population dynamics is hypothesised to arise through two main 

factors (see Ranta et a!., 1995; Swanson & Johnson, 1999). Firstly, dispersal of 
individuals from regions of high density will increase population size in adjacent 
areas thus synchronising regional dynamics. Secondly, large scale climatic 
perturbations can synchronise density changes in populations over large areas 
(Moran effect). Plotting a measure of synchrony of population pairs against the 
distance between them will show the synchrony-distance relationship. Model 

simulations produced by Ranta at al. (1995) revealed that dispersal produces a 
negative relationship between distance and degree of synchrony, and local variation 
in density dependant structure. Whereas, although the Moran effect alone can 

cause synchrony, there is no trend with distance. Dispersal and the Moran effect 

acting together tended to produce a negative correlation between the degree of 

synchrony and distance apart, which is indistinguishable from the results produced 
by dispersal alone. 

Grenfell et al. (1998) analysed time series from sheep populations on two 
islands in the St Kilda archipelago. There is no migration between these populations 
but population fluctuations were highly synchronised. Model simulations indicated 
large-scale weather variations account for part of the high degree of environmental 

correlation needed to produce the population synchrony. However, climatic factors 

may not necessarily act with the same force everywhere. Later model simulations by 
Ranta et al. (1999) indicated that a spatially autocorrelated disturbance (such as 
many climatic factors) can produce a negative relationship between synchrony and 
distance. 

Studies of synchrony in marine populations are inherently more problematic 
due to the difficulty of collecting comparable data. Recently, analysis has been 

conducted on a number of species. Ranta et al. (1995) included Baltic whitefish in 
their studies and found a correlation of -0.43 between synchrony and distance with 
a mean synchrony of 0.44. Zheng (1997) calculated correlation coefficients for 

recruitment time series of herring stocks world-wide. Generally, significant 

correlations were found between stocks in the same region that could not be 

explained by spawning biomass, so environmental forcing on a regional scale may 
be important. 

Fox et al. (2000) analysed recruitment time series for plaice (Pleuronectes 

platessa) stocks around the United Kingdom. Tests for synchrony between pairs of 
stocks all showed positive correlation and synchrony was strongest between 
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neighbouring stocks. Tests for correlation between plaice recruitment and local sea 
surface temperature from different months of the year revealed negative 
relationships with the strongest correlations occurring between February and June 
(recruits in egg and larval stages). It seemed likely that key processes affecting 
recruitment are operating during the egg and larval stages through changes in 

predation pressure. 

2.8 Analysis of Synchrony at Shetland 
There are a number of discrete exploited sandeel grounds around Shetland 

and these can be considered to be sub-populations as, once-settled, tagging studies 
have indicated sandeels do not move very far (Kunzlik et al., 1986). Catch data are 
derived from landings at the local fishmeal plant and no account is taken of the 
fishing grounds from which catches originate (Wright, 1996), therefore it is not 

possible to use these data for analysis of synchrony. However, research surveys 
have been conducted during June and July on many of the grounds since 1984 and 
from these the average number of fish per timed tow has been determined (ICES, 
1999). Unfortunately, there were no similar data available for sandeel populations 
neighbouring Shetland, such as around Orkney, or for sub-populations on 
unexploited grounds around Shetland. 

Time-series of recruitment on 18 sandeel grounds around Shetland were 
available, ranging from East and West Fair Isle in the south, up to Balta and 
Fethaland in the North and from the east mainland, out to Foula (Isle of) in the west 
(Figure 2.6). For three of the grounds (Colsay, South Fethaland and South Foula) 

there were six or less data points available, therefore these grounds were excluded 
from analysis. For the rest, data were generally available from 1984 to 1997 
inclusive excluding 1987 and 1995 when no research surveys were conducted (thus 

giving 12 data points). A few grounds also had further missing years. Plotting the 
time series indicated some grounds may be synchronised (Figure 2.7). Generally, 
Mousa (heavy line Figure 2.7) always appeared to contain high numbers of 0-groups 

compared to the other grounds but this was not the case when considering the 1+- 

groups series. 
For each possible pair of grounds, the degree of synchrony and 

geographical distance between them was determined to evaluate the synchrony- 
distance. Kendall's rank-order correlation (Zar, 1999) was used with In-transformed 
data for each of the two data sets (0-group and 1 +-groups). The distance between 

grounds was estimated and calculated synchronies plotted against this to give the 

spatial extent of synchrony. 
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Bootstrapping (Efron & Gong, 1983, also see Hilborn & Mangel, 1997) was 
used to determine if observed mean synchrony was significantly different from zero 
and to set confidence limits (Ranta et al., 1995; Paradis et al., 2000). Bootstrap 

analyses samples, with replacement, from the data set to be analysed to generate a 
number of new "replicate" data sets. The parameters of interest are estimated for 

each bootstrap data set to obtain probability distributions for each parameter. From 

these, confidence intervals can be calculated. 
Firstly, it was necessary to determine the geographical distance between the 

sandeel grounds. An outline map of the Shetland area was retrieved from JEBCO 
Atlas of the World Oceans CD ROM and imported to Arclnfo GIS 3.2. The latitude 

and longitude of some sandeel grounds were supplied by P. Wright (Table 2.5) and 
these were pasted directly onto the Shetland map using the appropriate tool in 

Arcinfo. For the remaining grounds, the position of the ground was determined by 

eye from ordinance survey maps and from a map of sandeel grounds shown by 

Wright (1996). These were also added to the map in Arclnfo. 

There were two possible ways to calculate the distance between grounds. 
Firstly, linear distance between fishing grounds can be calculated directly by taking 

the ordinates of each ground (supplied by Arclnfo) and using Pythagorus theorem. 
Secondly, the shortest sea route could be determined between grounds. As fish 

cannot disperse across a landmass, the shortest sea route is a more realistic 

measure of distance. For example, the shortest linear distance between Trink (TRI) 

and Mousa Sound (MOU) is only 11 km across land but the shortest distance by sea 
is 42km. It is possible in Arclnfo to place routes along the coastline on the map but 

the coastline for Shetland is extremely convoluted and this may overestimate some 
distances. Instead, the network analyst function was used to draw shortest sea 
routes along the coast between pairs of sites and this returned estimates of 
distances in km. Where two sites were separated by sea only (for example, Trink 

and Ham'o Foula), a straight line was used to connect them. Where a bay 

encroached on the coastline between two sites, the line crossed the mouth of the 
bay. Distances between each pair of sites were determined (Table 2.6). 

To determine synchrony, both data sets were natural log transformed. Due 

to missing data points, it was not possible to determine trends in the data. The total 

recruitment time series for Shetland showed no trend (see Chapter 3), so it was 
assumed the series for the individual grounds also contained no trends. Where 

value in the raw data was a zero (not a missing data point), it was assumed that fish 

were present but at extremely low levels. To allow analysis (as it is not possible to 
In-transform a zero), zeros were replaced with a value equal to half the lowest 
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number recorded over all the grounds. Correlations between pairs of data series 
were determined in SPSS. Kendall's rank-order correlation (Zar, 1999) was selected 
as this made no assumptions about normality in the underlying data sets. The 

correlation statistic, T, and level of significance for each of pair of time series (91 

possible pairs) was determined for each data set (Tables 2.7 & 2.8). 
For 1+ group data, positive correlations of 10 of the series pairs (11%) were 

significantly different from zero at P=0.05. T varied between -0.500 (Fethaland vs. 
Boddam Voe) and +0.636 (West Fair Isle and Breakon, significant at P(0.01)). 
Nineteen of the correlations for 0-group series (21% of total correlations) were 
significantly different from zero at P=0.05. T statistics varied between -0.289 
(Braeside vs. East Fair Isle) and +0.837 (Boddam Voe vs. West Fair Isle, significant 

at P(0.01)). 

Bootstrapping (Efron & Gong, 1983) was used to determine confidence limits 

and test for significant difference from zero (Paradis et al., 2000). For each 
bootstrap simulation, 15 grounds were selected at random with replacement from 

the original 15 grounds. The correlation statistic for each possible set of grounds 
was determined and the mean calculated and stored. For each set of data, 5000 

bootstrap simulations were performed. The resulting histograms of mean synchrony 

with fitted normal curves are shown in Figure 2.8. Interestingly, the mean of the 
historical data was lower than the bootstrap mean in both cases but was within the 
95% confidence limits (Table 2.9). This is probably due to the occasional presence 
of negative correlations in the paired time series (none of these were significant). 
Large negative correlations will reduce the mean (as, for example, the distance 
between 2 and 5 is much smaller than that between -2 and 5). Sampling at random 
with replacement, may result in the selection of no or only a few cases for which 
correlations are negative, therefore the estimates of the mean will be much higher. 

For each set of data, correlation statistics T were plotted against distance 
between sites (Figure 2.9). A trendline was fitted to each graph and the R2 statistic 
calculated. The fitted trendlines showed no variation with distance for either of the 
data sets (Ogp: -0.001; 1+gp: +0.001) and the R2 values were also extremely low 
(Ogp: 0.007; 1+gp: 0.011). Regression analysis indicated none of the fitted 
trendlines were significantly different from a slope of zero therefore it was concluded 
none of the data sets show any decline in synchrony with distance. 

_ 
As synchrony exists and there is no trend with distance, we can conclude 

that fluctuations in the sandeel population are probably due to large scale 
environmental perturbations (Moran effect) and/or to high dispersal rates between 
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grounds. Without further data, it cannot be determined which of these effects, if 

either, is dominant. It is highly likely that large scale environmental perturbations are 
influencing recruitment at Shetland. Amott (unpublished) showed that, after 

accounting for density-dependent population effects, a significant negative 

correlation exists between recruitment in North Sea sandeels and the North Atlantic 

Oscillation winter index - an important atmospheric pressure gradient associated 

with climatic fluctuations in the North Atlantic. However, high dispersal rates of 

recruits between Shetland grounds may also occur. Repeated acoustic transects 

carried out by FRS in June 1991 indicated a net northward shift of around 8km in 5 

hours in the peak density of 0-group sandeels between Sumburgh and Fair Isle 

(Wright & Bailey, 1993). Further, a drifting drogue deployed in the vicinity of south- 

east Shetland during June 1991 moved rapidly south and north along the east coast 
depending on the position of the tidal cycle when released (Wright & Bailey, 1993). 

The numbers of recruits (0-groups) sampled at Mousa Sound always appear 

to be high compared to those on other grounds (Figure 2.7). It has been 

hypothesised that recruits immigrating from Orkney spawning grounds colonise 
Mousa Sound first and, in years of high recruitment, 'excess' recruits spread out 

around Shetland from here (Wright & Bailey, 1993). Effectively, Mousa may be 

acting as a "catchment" for external recruits. If this were the case, it is expected that 

recruits on Mousa and neighbouring grounds would be relatively highly 

synchronised. 
Of the five grounds on the south-east mainland - Braeside (BRA), Mousa 

sound (MOU), Baas (BAS), Boddam Yoe (BOD) and Grutness (GRU) - only two 

pair combinations showed significant correlation between 0-group time series. 
Mousa sound and Braeside could be considered synchronised at a probability level 

of 0.05 and Baas and Grutness at a probability level of 0.01. Could this be indicative 

of external recruits moving north along the coastline? 

2.9 Cluster Analysis 

Hierarchical cluster analysis in SPSS with Pearson's correlation was used to 

determine the linkage between grounds of 0-group abundance. The resulting 
dendogram revealed four groups at a distance of 9 (Figure 2.10). Baas (BAS) off the 

south-east mainland formed 1 group, Grutness (GRU), Mousa sound (MOU) and 
Braeside (BRA) formed a second group. These three grounds are also off the south- 

east mainland, but Grutness is separated from the other two by Boddam Voe and 
Baas. Boddam Voe and Baas appear to be a little further inshore then the grounds 
in the second group so local current flow could be influencing dispersal here. 
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The two Fair Isle grounds (EFI and WFI) form a third group with Boddam 
Voe (BOD) in the south-east mainland while the grounds at Foula (SFO and HAM), 

off the west and east mainland (TRI and SSA) and in the north (SVO, FET, BRE and 
BAL) form the remaining group. 

2.10 Conclusions from Synchrony & Cluster Analyses 

The conclusions that can be drawn from studies of synchrony are that 

population processes in different areas are rarely independent of each other (Ranta 

et al,. 1995). Populations with synchronous fluctuations over large areas have a high 

risk of population extinction (as all areas decline simultaneously; Ripa & Lundberg, 
1996; Heino et aL, 1997). Could this have been seen around Shetland in late 1980s 

when sandeel recruitment on many grounds was extremely low? The effects of 
fluctuations in population size may be exaggerated in sandeels compared to other 

studies (like birds and mammals which live longer) as a large proportion of the stock 

consists of recruits. 
Like sandeels, marine benthic invertebrates are relatively sedentary when 

settled so dispersal of pre-settlement stages are important for population migration 

and expansion. Dispersal of larvae and juvenile stages of marine invertebrates, like 

the dungeness crab Cancer magister and the red sea urchin Strongylocentrotus 
franciscanus, have been shown to have a critical influence on population dynamics 

and the effectiveness of spatial management policies (Botsford et al., 1998). 

Estimated recruitment at Mousa Sound showed little variation over 1984- 

1997 inclusive varying between 33 - 2250 million fish. Even during the late 1980s 

recruitment was still high here (estimated 1800 million recruits in 1989, second 
largest density over the years considered). Cluster analysis revealed the group of 

grounds off the south-east mainland, which include Mousa Sound are linked and the 

synchrony analysis revealed that Mousa Sound and Braeside and Grutness and 
Boddam Voe could be considered significantly synchronised. These regions also 
had high densities of 0-groups in 1989, when the density at Mousa was extremely 
high, although densities were extremely low, or virtually nil, in 1988 and 1990. The 

drifting drogue, deployed by FRS in the vicinity of south-east Shetland during June 

1991 indicated that, on reaching Mousa, the drogue remained in this area (Wright & 

Bailey, 1993). A further deployment, releasing the drogue near Mousa lasted for 30 
hours, during which time the drogue remained in this area. This suggests that local 

circulation features around Mousa will lead to the accumulation of passively drifting 

particles in this area and could account for the high levels of recruits found in Mousa 
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over the study years. When recruitment is extremely high in this area, as in 1989, 

recruits may migrate (actively) to neighbouring areas. 
Wright (1996) proposes that the sandeel grounds around Orkney produce 

recruits that enter the Shetland system and stock changes around Shetland, in part, 
reflect this pre-recruit immigration. A similar occurrence of a lesser harvested 

population acting as a sink (Gunderson et at, 2001) thus ensuring the persistence of 

a heavily fished population has been proposed by Fogarty (1998) for the American 
lobster Homarus americanus. 

Without further information, such as weekly abundance estimates of recruits 
on grounds or local measures of climatic factors, it is impossible to determine the 

underlying causes of population fluctuations in sandeels. If the immigration of 

external recruits is crucial for the persistence of the Shetland sandeel population, 

and is leading to synchrony in population abundance, then research needs to 

concentrate on the external recruit spawning grounds and the larval dispersal paths. 
Fluctuations may also be the result of wide-scale environmental forcing and 

correlating recruitment with measures of environmental parameters, for example sea 

surface temperature or salinity, may indicate possible influences. Drawing 

conclusions from significant results when correlating fish stock recruitment and 

environmental parameters, especially when only considering one population, is 

risky. This subject is considered in detail by Myers (1998) who also suggests 

approaches to improve research in this area. Myers re-examined the success of 

previously published environment-recruitment correlations with new data and found 

very few were verified on retesting. As Myers notes, in an exploratory analysis it is 

difficult not to find environmental variables that are nominally statistically significant. 
Myers suggests the most reliable data for estimating recruitment are from research 

surveys independent of the fishery (as otherwise trends in abundance may be an 

artefact of fishing). 
While population estimates for Shetland sandeel may have high uncertainty, 

additional evidence of fluctuations in sandeel populations may be drawn from 

predator species, namely seabirds. Shetland is important for large numbers of 
breeding seabirds, many of which rely on the young age-classes of sandeel during 

the breeding season (Furness, 1990). Seabirds are considered useful as indicators 

of marine food supplies (Cairns, 1987). Studies at kittiwake colonies in Scotland 
indicate that sandeels are an important part of the kittiwake diet (Harris & Wanless, 
1990; Harris & Wanless, 1997). Kittiwakes in the North Sea are considered to be 

relatively sensitive to changes in sandeel availability (Harris & Wanless, 1997; 
Furness & Tasker, 2000). 
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The reduced pattern of breeding success of kittiwakes around Shetland in 
1988 was repeated elsewhere - at colonies on the east and west coasts of Scotland 

and on the Isle of Man (Harris, 1989; Harris & Wanless, 1990). Evidence suggests 
chicks died mainly due to starvation or exposure after being left unprotected (while 

parents were away on long foraging trips). Hams & Wanless (1990) suggest (in 

some areas) that the breeding success of kittiwakes may be a reasonable indicator 

of sandeel abundance in the water column. Harris & Wanless conclude, the failure 

of kittiwakes in Scotland over a large area in the late 1980s appears to be due to a 
shortage of prey (sandeels) and this was likely to have been caused by some 
widespread environmental or oceanographic factor. 

2.11 Chapter Summary 

" Fishery assessments of Shetland sandeels can only be regarded as 

an indication of the overall trends in the stock and not of absolute numbers 
(ICES, 1999). 

" Cluster analysis of recruitment time series indicated generally the 

grounds on the south-east mainland could be considered more similar to each 

other than to the other grounds. 

" Recruitment on sandeel grounds around Shetland appear to be 

synchronised suggestive of either high dispersal and/or large-scale climatic 

perturbations. 
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Table 2.1. Semi-annual natural mortality rates (M) for sandeels in the North Sea and 

annual rates for sandeels at Shetland (from ICES 1999). 

North Sea M Shetland 

Age Jan-Jun Jul-Dec (annual) M 

o 0.8 0.8 
1 1.0 0.2 1.2 

2 0.4 0.2 0.6 

3 0.4 0.2 0.6 

4 0.4 0.2 0.6 

5+ 0.4 0.2 0.6 

Table 2.2. Estimates of annual mean F over age classes 1 and 2 produced by VPA 

for Shetland sandeels and seasonal XSA (SXSA) for North Sea sandeels (from 

ICES 1999). 

Year'* Shetland 

Mean F (1-2) 

North Sea 

Mean F (1-2) 

1974 0.073 

1975 0.134 

1976 0.189 0.550 

1977 0.214 0.540 

1978 0.222 0.680 

1979 0.094 0.640 

1980 0.160 0.680 

1981 0.287 0.680 

1982 0.307 0.620 

1983 0.224 0.450 
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Table 2.3. Estimates of annual mean F over age classes 1 and 2 produced by 

annual separable VPA (Cook & Reeves 1993) for Shetland sandeels and seasonal 
XSA (SXSA) for North Sea sandeels (from ICES 1999). 

Year Shetland 
Mean F (1-2) 

North Sea 

Mean F (1-2) 

1984 0.186 0.350 

1985 0.088 0.920 

1986 0.099 0.530 

1987 0.046 0.440 

1988 0.061 0.660 
1989 0.042 0.540 
1990 0.044 0.780 

1991 0.000 0.700 

1992 0.000 0.450 

1993 0.000 0.340 

1994 0.000 0.520 

1995 0.012 0.430 

1996 0.009 0.530 
1997 0.023 

44 



Table 2.4: Stock weights at age for sandeels at Shetland (ICES 1999) 

Age I Weight 

(9) 

0 0.746 
1 3.095 

2 5.409 
3 8.585 

4 11.143 

5 13.705 

6 15.605 
7+ 21.254 

Table 2.5. Longitude and latitude of sandeel grounds around Shetland (supplied by 
P. Wright). Three letter code for each ground is shown. 

Ground Code Latitude Longitude 

Mousa Sound MOU 59.97 -1.17 
Braeside BRA 60.00 -1.16 
Baas BAS 59.94 -1.24 
Boddam Voe BOD 59.91 -1.25 
Gruting Ness GRU 59.89 -1.25 
Sands Voe SVO 60.60 -1.33 
Balta BAL 60.72 -0.74 
Colsay COL 59.96 -1.38 
Trink TRI 60.03 -1.33 
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Table 2.9 Mean synchrony and 95% confidence intervals determined by bootstrap 

analysis in 0- and 1-group recruit time series of sandeels on grounds around 
Shetland. 

Data Set Data Bootstrap Upper Lower 

Mean Mean 95% 95% 

0-group 0.264 0.314 0.407 0.235 

1-group 0.184 0.239 0.330 0.154 

*4 
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Figure 2.1 Estimated population structure (from ICES 1999) for sandeels at 
Shetland in five selected years. 
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Figure 2.2 a) Trends in spawning stock biomass (SSB) and b) trends in recruitment 
for sandeels at Shetland (from ICES 1999). Dotted lines indicate mean values. 
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Figure 2.3 Sandeels at Shetland. a) Spawning stock biomass (SSB) distribution and 
b) distribution of In-transformed SSB (ICES 1999). Solid lines show the fitted normal 
curves. 
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Figure 2.4 Sandeels at Shetland. a) Recruitment distribution and b) distribution of 
In-transformed recruitment (ICES 1999). Solid lines show the fitted normal curves. 
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Figure 2.5 Stock-recruit relationships for sandeels at Shetland over 1974-1997 
inclusive (from ICES 1999). 100% >2- spawning stock biomass (SSB) calculated 
as the biomass of all sandeels aged 2 and above. Early maturation - SSB 
calculated as the biomass of all sandeels aged 2 and above plus 20% of the 
biomass of 1-groups. Late maturation - SSB calculated as the biomass of all 
sandeels aged 3 and above plus 80% of the biomass of 2-groups 
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Figure 2.6 Map of showing sandeel fishing grounds at Shetland. SFO=South Foula, 
HAM=Ham o'Foula, NFO=North Foula, SVO=Sands voe, FET=Fethaland, 
BRE=Brekkin, BAL=Balta, SSA=South sands, BRA=Braeside, MOU=Mousa sound, 
BAS=Baas, BOD=Boddam voe, GRU=Grutness, EFI=East Fair Isle, WFI=West Fair 
Isle, COL=Colsay and TRI=Trink 

51 



25.0 
1 7a) 

20.0 

1 5.0 
ni1 

10.0 

5.0 

V! 

.............. 

0.0 

, ý'""'"° r' 
_. ''! f 

r 

f/ 

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 

Year 

2500 
7b) 

20.00 

C\ 

J 

15.00 

p 't t jtt 1. 

10.00 

5.00 

Y, 
-ýZ 

0.00 4-, 
_-, -, _ -T _ -r -, 

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 

Year 

Figure 2.7 Time series for sandeel grounds around Shetland from research surveys. 
a) ln(O-group) series and b) In(1+-groups) series. Heavy line indicates the series for 
the Mousa ground. No data available for 1987 and 1994. 
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sandeel grounds around Shetland returned by 5000 bootstrap simulations: a) 0- 
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TIME SERIES MODELLING 



3.1 Introduction 

In this Chapter, a baseline population model of the Shetland sandeel stock is 
developed together with components to simulate recruitment using time series 

models. The population dynamics produced by these models will simulate the key 

recorded features of the historical data. The models were tested for robustness and 
the underlying biological assumptions considered to select suitable models to 
describe recruitment and population dynamics. 

Traditional stock-recruit models express recruitment as a function of 
spawning stock biomass (hereafter SSB) however there is little evidence of a 

relationship between stock and recruit for the Shetland sandeel data (Figure 3.1a). 
In time series modelling, recruitment is determined as a function of previous 
recruitments so there is no relationship with SSB. While these models cannot be 

used to fully explore potential effects of fishery management practices, analysing 

patterns in the recruit time series will improve our understanding of recruitment 
dynamics. Additionally, these models can be incorporated in traditional stock-recruit 

models to produce recruitment time series that are a function of SSB and also of 

previous recruitments. 
In the first section of this Chapter, the concept of the stock-recruit 

relationship is discussed in more detail together with evidence both for and against 
the relationship. Time series forecasting is analysed as a potential method to 

simulate recruitment. Two models are developed: autoregressive and moving 

average. A basic age-structured population model is then developed and the input 

required for the model and the output produced by the model discussed. The time 

series models parameterised to simulate recruitment are tested in the population 
model and suitable models identified. 

3.2 Is recruitment related to SSB? PART I 

Recruitment is a crucial part of the population models as large fluctuations in 

the number of recruits are thought to be a major factor driving the interannual 

variation in class strength in some exploited fish populations (Spencer & Collie, 

1997). Improving our knowledge of the underlying dynamics of recruitment is critical 
for selecting appropriate harvest strategies. In fisheries modelling, recruitment is 

traditionally described as a function of SSB using stock-recruit curves such as the 
Ricker (1954; 1975) or Beverton-Holt (1957) models. However, stock-recruit data for 
Shetland sandeels is highly variable and there is no obvious relationship (Figure 
3.1 a). Strong environmental forcing may be obscuring the stock-recruit relationship 
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however, the lack of a relationship could also equally be due to measurement errors 
or the limited data range (Hilbom & Walters, 1992). 

The concept of stock and recruitment is a fundamental one in fishery 

management. This assumes there is a relationship between the size of the 

spawning stock (spawning stock biomass; hereafter SSB) in any particular year and 
the average number of recruits produced by that spawning that enter the exploited 
stock. This relationship is probably among one of the most dubious used in biology. 
Hilbom & Walters (1992) describe stock-recruit curves as dangerous, primarily 
because they give the impression of a predictable relationship between stock and 
recruitment rather then the stochastic phenomenon it really is. 

Recruitment to exploited fish stocks is usually extremely variable between 

years. It can be considered as a series of processes: from spawning, survival and 
hatching success of eggs to the growth and survival rate of larvae and pre-recruit 
juveniles (via metamorphosis) to entry of young fish into the exploited stock 
(Hennemuth et al., 1980). The pre-recruit stages generally incorporate a pelagic 
dispersive stage - some fish spawn pelagic eggs that float in the water column and 
most fish have pelagic larvae that drift with currents. Thus the number of recruits 

reaching a stock will be affected by hydrographic regimes - which can alter from 

year to year. Early life-stages are exposed to high mortality rates that are 
determined by factors such as predation, food availability and environmental 
conditions. Houde (1994) calculated that for a 'typical' cohort of marine fish only 
0.12% of the eggs hatched, on average, are alive at metamorphosis. Considering all 
the factors, one can see why the relationship between stock and recruitment is 

usually poor, even when we disregard measurement errors. 
Interpreting the relationship between recruitment and SSB can be 

misled by the effects of environmental factors, as SSB in one year is not 
independent of the stock size in previous years. For example, an exceptionally 
strong recruitment will result in a large year class which may be evident in the stock 
for several years, as illustrated by Sparholt (1996) for Baltic cod. Model simulations, 

with recruitment varying independently of SSB, showed that favourable conditions 
for recruitment persisting over a number of years will lead to an increase in SSB and 
so a positive correlation between the two. In other words, autocorrelation 
(correlation in the time series with lagged values of itself) in recruitment (dependant 

variable) is reflected by dependence, with a time lag, in SSB (independent variable). 
This may be evident in time series where trends in recruitment occur before trends 
in SSB -as seen in the Shetland sandeel data during the 1980s (Figure 3.1 b). 
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Often the variance in recruitment is extremely large, so it has been disputed 
that a relevant relationship actually exists between SSB and recruitment. Koslow 
(1992) argued that for organisms with high fecundities (such as most marine fish), 
the concept of a deterministic stock-recruit relationship does not appear to be 

applicable, and therefore casts doubt on fishery population models dependant on 
such functions. Conversely, Myers & Barrowman (1996) reasoned that stock-recruit 
relationships are relevant. To provide conclusive evidence that strong year classes 
are more likely when SSB is large and so provide proof that there is a relationship 
between SSB and the size of recruitment produced (as more spawners should 
produce more recruits), Myers & Barrowman (1996) analyzed stock-recruitment time 

series for 364 fish stocks. They asked three simple questions: Does the largest 

recruitment occur when spawner abundance is high? Does the smallest recruitment 

occur when spawner abundance is low? and Is the mean recruitment higher if 

spawner abundance is above rather then below the median? Non-parametric 

methods were devised to answer these questions. In general, the answer to the 

questions was "yes", leading Myers & Barrowman to conclude fish populations 

should be managed so spawner abundance is sufficient to yield high recruitment. In 

other words, the stock-recruitment relationship should not be ignored in fishery 

management. 
Subsequent to Myers & Barrowman (1996), Gilbert (1997) argued against 

stock-recruit functions. Gilbert took an alternative approach to analyse the same 

stock and recruitment data sets used by Myers & Barrowman. Gilbert tested two 

alternative hypothesises: that recruitment is positively related to SSB at low SSB 

(generally accepted stock-recruit paradigm) and that a "recruit-states" mechanism 

exists. The recruit-states mechanism proposed is that the stock switches between 

different levels of mean recruitment from time to time. Gilbert found the stock-recruit 

paradigm was not rejected for salmonids but generally, was rejected for marine 

spawning bony fish stocks (which include sandeels). For the marine spawning bony 

fish, the recruitment-states hypothesis was supported. This implies that the positive 

relationship between stock and recruitment found at low stock levels, may be the 

result of the dependence of SSB, with a time lag, on recruitment (as was shown in 

Baltic cod by Sparholt, 1996). Periods of low recruitment, which were not the result 

of low SSB (as was seen in the Shetland sandeel stock in the late 1980s), will result 

in a spurious relationship between stock and recruitment. 

The stock-recruit paradigm is still being debated but in the absence of robust 
alternative methods, traditional stock-recruit models continue to be widely used 
today. Alternative methods are being developed to predict recruitment than as a 
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deterministic function of SSB. For example, Evans & Rice (1988) consider 
recruitment as a probability distribution and developed algorithms that use the raw 
stock and recruitment data. Cook (2000) further explores this probabilistic approach 
to population change in exploited fish stocks, which avoids making strong 
assumptions about the functional relationship between stock and recruitment. Chen 

et al. (2000) apply a fuzzy logic model with genetic algorithm to analyse fish stock- 
recruit relationships. This model incorporates sea surface temperature as an 
environmental intervention. 

3.3 Recruitment Models Using Forecasting Methods 
The stock recruit relationships for sandeels in the North Sea and at Shetland 

(Figure 3.1) show considerable variability so it is difficult to identify models to predict 

recruitment as a function of SSB. Furthermore, the low exploitation rate of the 

Shetland stock reduces certainty in the assessment data used as the basis for 

stock-recruit models. Our understanding of recruitment processes around Shetland 
is complicated by the fact that the Shetland sandeel stock may not be a closed 
population but probably forms part of a much larger population (Wright & Bailey, 
1993; Wright, 1996). Wright (1996) presents evidence that in some years, a portion 
of the recruits originated from outside the Shetland system (external recruits). If a 
net immigration of recruits occurs, this will obscure the stock-recruit relationship at 
Shetland but the frequency and size of external recruitment is unquantified. 

Due to these problems, two approaches are being taken to model 
recruitment in this thesis: the first uses time series models to simulate recruitment as 
an extrapolation of the pattern in the historical series (this Chapter) and the second 
assumes that recruitment can be expressed as a function of SSB (Chapter 4). 
Modelling recruitment using time series models assumes recruitment in any year 
can be predicted as a function of previous recruitments. It was assumed that 

environmental forcing was such that any stock-recruit relationship was obscured. 
However, this method uncouples recruitment from SSB so one must be cautious if 

using these models to assess fishery management practices. In reality, increasing 

exploitation may eventually reduce SSB to such low levels that recruitment may be 

seriously reduced and the stock is no longer self-sustaining. Time series models do 

not account for declines in recruitment due to a decline in SSB. But, exposing 
patterns in recruitment is an important step to understanding recruitment dynamics 
(Zheng, 1997). 
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Modelling recruitment as independent (from SSB) time series will improve 

our understanding of recruitment dynamics and the techniques developed here can 
be combined with the stock-recruit models developed in the next Chapter. 

Statistical forecasting techniques generate forecasts by extrapolating 

patterns in the historical data (Farnum & Stanton, 1989), these methods were 

applied to the recruit time series for Shetland sandeels. Time series analysis and 
forecasting is used extensively in business science to forecast trends in areas such 

as sales, economics and in the stock market (Farnum & Stanton, 1989; for 

examples see Bhawnani & Kadiyala, 1997; Saab et al., 2001; Zucchini & Neumann, 

2001). The techniques are also common in meteorological and oceanographic 

science where they are applied to time series such as sea surface temperature or 

air temperature (for examples see Kite, 1989; Woodward & Gray, 1993; Sfetsos, 

2000; Franses et al., 2001). Time series analysis is used widely in biology for 

analyzing population dynamics (for examples see Vickery & Nudds, 1984; Tourte et 

al., 1998; Erb et al., 2001; Fromentin et al., 2001). 

In fisheries science, time series analysis has generally been used to forecast 

fishery catches (Kirkley et al., 1982; Stergiou, 1991; Park & Yoon, 1996; Stergiou & 

Christou, 1996; Farley & Murphy, 1997) or to identify possible environmental effects 

on fish growth (Calderon-Aguilera, 1991) or recruitment (Henderson & Corps, 1997). 

The techniques could be useful for short-term forecasting where it is impractical to fit 

stock-recruit models (when stock-recruit relationship is very weak) or to supplement 

stock-recruit modelling information. 

There are some considerations to be aware of when using time series to 

predict recruitment. Firstly, estimates of recruitment may not be independent - they 

are usually the result of assessment models. Secondly, while these techniques may 
be useful in predicting future recruitment over a very short time scale, they take no 

account of changes in SSB. Therefore, declines in SSB which lead to a decline in 

recruitment will be missed - this would be disastrous for fishery management as it 

could result in stock collapse. If SSB is allowed to drop to low levels so recruitments 

are small, the stock may no longer be self renewing. 
Traditional stock-recruit models provide insight into the response of the fish 

population to high exploitation which time-series models do not. So why use time 

series models? If the relationship between stock and recruitment is weak, fitting 

stock-recruit models may be difficult but time series models may be useful to predict 

recruitment over the short term (as fluctuations in SSB are slower then fluctuations 

in recruitment). The intention here is not to predict future recruitment but to produce 

models for recruitment that simulate the historical recruitment series. Additionally, 
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quantitative forecasting of recruit time series may reveal underlying patterns of 
fluctuations in recruitment which are important for understanding recruitment 
dynamics. If any trends or autocorrelation is revealed in the recruit time series, then 

these models could be incorporated into the stock-recruit models. 
Before fitting any models, the historical recruit time series are analyzed to 

determine if there is any underlying trend in the data and if the fluctuations are 

random or autocorrelated. The categories of time series models are then discussed 

and a method to compare goodness-of-fit between models. Two models are then 

considered: autoregressive and moving average. 

3.4 Patterns in the recruit time series 
Before forecasting, it is necessary to determine if a particular time series is 

stationary (that is, is the mean constant over time) or if there is a trend in the data, 

and also if fluctuations are random. Randomness in a series may be determined by 

a simple non-parametric test such as the Runs test (Farnum & Stanton, 1989; Zar, 

1999). This test makes no assumptions that the series is drawn from a normal 
distribution. The null hypothesis for the Runs test is that the pattern of distribution of 

points in the series with respect to the median (whether data points are above or 
below the median) is random. Each observation is recorded as being either above 
(+) or below (-) the median and the number of 'runs' (sequences of +'s or -'s) is 

determined. The recruit time series for both Shetland and North Sea stocks were 

natural log-transformed and were analysed using the Runs Test function in SPSS. 

The null hypothesis was rejected for both time series at P=0.05 (Table 3.1) 

therefore it can be concluded, with 95% confidence, that fluctuations are not 

random. The corresponding Z statistic was positive for North Sea sandeels and 

negative for Shetland sandeels (Table 3.1), so it can be assumed that the null 
hypothesis was rejected for different reasons in the two stocks. For the North Sea 

series, the Z statistic was positive thus indicating possible negative autocorrelation 
in the series, while for the Shetland series the Z statistic was negative thus 

indicating either positive autocorrelation or a trend. A Daniel's test was used to 

determine if there was an underlying trend in either series, this test is also 

nonparametric and is based on Spearman's coefficient (Farnum & Stanton 1989). 

The null hypothesis, that the series has no trend, could not be rejected for either 

series (P>0.05, Table 3.1). 

Plotting the Shetland recruit time series indicated possible serial 
dependence in the observations, as observations close together in time fall on the 

same side of the mean (Brown & Rothery, 1993; Figure 3.2). The serial dependence 
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of observations in a time series is referred to as autocorrelation (Brown & Rothery, 
1993). There appeared to be a positive correlation between observations at a lag of 
one year in the recruit time series, as was demonstrated by plotting recruitment in 

year t against recruitment in year t+1 (Figure 3.2b). In general, this implies that a 
`good' recruitment year is likely to be followed by another 'good' year and 'bad' by 
'bad'. In contrast, the North Sea recruit time series (Figure 3.2c) appeared to have a 
negative correlation at a lag of one year (Figure 3.2d). 

The autocorrelation function, ACF, (Brown & Rothery, 1993; Farnum & 
Stanton, 1989) was plotted for lagged intervals up to ten years for the recruit time 

series using the time series graph function for autocorrelation in SPSS (Figure 3.3). 
ACF is a graph of the autocorrelation coefficients, rk (correlation coefficient between 

observations at lag k), plotted against lag k (Farnum & Stanton, 1989). In Figure 

2.6a, the autocorrelation coefficients are large and positive for short lags and the 

ACF appears to have a downward trend. This pattern may indicate a trend in the 

recruit time series however the Daniel's test for trend, carried out above, indicated 
this is unlikely. 

The critical value for rk , above which the null hypothesis, that there is no 
trend in data at lag k, is rejected (P=0.05), was calculated for each lag in the time 

series. This was equal to 2x standard error (Farnum & Stanton, 1989). These 

values are shown in Figure 3.3 as black solid lines. For Shetland sandeels, only the 

autocorrelation coefficient at lag 1, r,, is significant (greater than the critical value) 
hence the series can be considered to have a positive autocorrelation at a lag of I 

year. The autocorrelation coefficient, r,, calculated at lag I was +0.54. 
The positive autocorrelation in the Shetland recruit time series suggests 

strong environmental forcing on recruitment processes. The effects of environmental 
stochasticity, that is random temporal variation in the environment, on a population 
often last longer then one year. Positive serial correlations in recruitment time series 

were found in six of eighteen fish stocks analyzed by Hennemuth et al. (1980). All 

six species (Georges Bank cod, Gadus morhua and silver hake Merluccius 

bilinearis; South African pilchards, Sardinops ocellata and round herring, Eutremus 
teres; Norwegian herring, Clupea harengus and NW Atlantic mackerel, Scomber 

scombrus) had significant (P>0.05) positive correlations at a lag of 1 year. 
Hennemuth et al. speculate that these short term correlations would be expected 
when environmental conditions influencing egg and larval survival were similar in 

adjacent years. Therefore, positive correlations may indicate long term 

environmental regimes. 
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The ACF of the log-transformed recruit time series for North Sea was also 
plotted in SPSS (Figure 3.3b). Again, a significant correlation was found at a lag of 1 

year but in this case the autocorrelation was negative (-0.628) not positive. This 

suggests that total stock biomass may be having an adverse affect on recruitment. 
There is evidence for this in North Sea haddock and whiting where high total stock 
biomass appears to cause a lowered recruitment (Cook & Armstrong, 1986). 

3.5 Forecasting Models 

All of the forecasting models and diagnostics described below were 
determined following techniques described by Famum & Stanton (1989) in 
Quantitative Forecasting Methods. A full account of the methods can be found in this 
book. Where additional information was used, this is referenced in the text as 
normal. 

There are a number of categories of forecasting models depending whether 
the time series is considered stationary, cyclic, seasonal or with a trend and whether 
error terms are random or autocorrelated. The tests conducted above have 
indicated that the recruitment time series for both Shetland and North Sea sandeels 
are stationary. The simplest no-trend model expresses the value in any year as the 

mean of the series plus a random error term: 

Yt=Y+et 3.1 

where yt is the series value at time t, y is the mean level of the series and er is the 

error term. 
As shown by inspection of the autocorrelation function, error terms are 

autocorrelated in both sandeel recruit series (positive in the Shetland data and 
negative in the North Sea data set) therefore this model (Equation 3.1) is not 
suitable. Alternative models to simulate recruitment, which can produce 
autocorrelated time series, include autoregressive and moving average. These may 
also be merged to produce autoregressive-moving average models. All of these 

models can be considered as subsets of models that form part of the methodology 
for time-series modelling commonly referred to as Box-Jenkins forecasting. Box- 
Jenkins time series models are called ARIMA (autoregressive-integrated-moving 

average) models (models with underlying trends need to be integrated 
(undifferenced) to achieve stationarity - hence the I in ARIMA). The number of 
autoregressive parameters (p), the degree of differencing (d) and the number of 
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moving average parameters (q) are identified in Box-Jenkins models which are 
described as ARIMA(p, d, q). For example, ARIMA(1,0,0) refers to an autoregressive 
model of order 1 (as the degree of differencing and number of moving average 
parameters are set to zero) while ARIMA(0,1,2) refers to a second order moving 
average model with 1st degree differencing. 

Autoregressive and moving average models are described and fitted to the 
Shetland recruit time series below. Only the AR model was fitted to North Sea 
sandeels as this model produced a suitable time series. To achieve a full 

understanding for the techniques for each model, the basic techniques of each 
model are discussed then the corresponding Box-Jenkins model is considered and 
fitted. 

To compare between models, the root mean square errors, RMSE, were 
calculated for each time series: 

RMSE = 
(1n(Rr) 

-1n(Rr }ý 3.2 

where Rt is In(R) from the historical time series in year t, At is In(R) in the model time 

series and n is the length of the series. 
An advantage of Box-Jenkins modelling is ARIMA models can easily be 

parameterised using the ARIMA function in SPSS. A disadvantage of Box-Jenkins 

modelling is, ideally, large data sets are needed (>50). It is difficult to identify 

suitable ARIMA models with smaller data sets as the statistical significance of 
autocorrelation or partial autocorrelation coefficients is compromised. Both sandeel 
recruit time series are short (24 years for Shetland and 22 year for North Sea 

sandeels) so this must be remembered when considering the model output. 

3.5.1 Autoregressive Models 

Autoregressive models are models for stationary time series that have serial 
dependence (autocorrelation), the models use only lagged values of the time series 
itself as predictor variables. These models are used when the current level of a 
series is thought to depend on the recent history of the series, so they are useful in 

situations such as sales forecasting as the amount spent in one period may affect 
the amount spent in successive times. In ecological modelling, autoregressive series 
are used when the effects of the random errors, e, are thought to be felt over a 
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number of periods (as often occurs with the effects of climatic perturbations). This 

may give rise to positive autocorrelation as is seen the Shetland recruit time series. 
The basic autoregressive model is: 

Yt =f(yt-l )+sot 3.3 

where f is some function, et is a random normally distributed error term and yt-, is 

such that: 

Yt-i =f (Yr-2) + 46r-i 3.4 

The autoregressive equation is stochastic and y is regressed on lagged 

values of itself (yr-r, Yr-2... ) hence autoregression. Regression makes several 

assumptions: the mean of the series of the random variable e is zero, e follows a 

normal distribution, the variance of o6 is constant and the error terms (et, et_,... ) are 
statistically independent. A problem arising with autoregressive models is that the 
independent values are actually previous values of the dependant variable so the 

error terms are not statistically independent. 

Before fitting autoregression models is it necessary to determine the 
i 

appropriate number of time lags. This can be achieved by analyzing the partial 

autocorrelation function (PACF) of the time series, as this is a measure of the 

correlation at time lag k after removing the effect of all shorter lags. The 

autocorrelation coefficients, rk, for both the North Sea sandeel and Shetland sandeel 
recruit time series determined above indicated that correlations at time lag I may be 

significant (r, =-0.6 and r1=+0.5 respectively). The partial autocorrelation functions 

were determined using the Time Series Graph Function in SPSS. 

The significance of PACF can be tested very simply by using a "rule of 
thumb" procedure to set confidence intervals, c. i.: 

3.5 

where n is the size of the data set. 
Only the lag at time 1 was still significant for either series (Figure 3.4) so the 

order of the autoregressive models will be 1 and take the form of: 
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Yt=ßo +fliyta+et 3.6 

where ßo and , 61 are regression parameters and er is a normally distributed random 

variable with a mean of zero and standard deviation a, 
To determine values for fib and , ß,, a regression of yr on yt_, is carried out: 

Yr =A- Ayr-, 3.7 

For the sandeel data, the time series being considered are those of the 

natural log transformed recruits thus y is substituted with In(R) in Equations 3.6 and 
3.7. Linear regression was carried out using the Regression Function in SPSS. The 

values for ßp and ß1 for Shetland and North sea sandeels determined by linear 

regression are shown in Table 3.2. The Durbin-Watson statistic for testing 

autocorrelation in the residuals returned by linear regression in SPSS was 2.123 for 
North Sea sandeels and 1.983 for Shetland sandeels. As these values are close to 
2, this indicates independent error terms in both cases. 

It was expected the forecast series will fluctuate around the mean of the 

historical series. , ßo does not correspond to the expected mean of the forecast 

series, E(ye), this was calculated as: 

E(yt) _1A 3.8 

For both series, the mean of the historical series was similar to the mean of 
the forecast series (Table 3.2). For a first order autoregressive model, the 

autocorrelation coefficient, r,., at lag k is given by (Brown & Rothery, 1993): 

ik =I3.9 

Thus, for a first-order autoregressive model fl corresponds to r, at lag 1 and 
these values are close to the autocorrelation coefficients at lag I in the historical 

series (Table 3.2). 
The autoregressive models were applied to the historical series and the 

results are shown in Figures 3.5 (North Sea) and 3.6 (Shetland). The RMSE were 
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calculated for each model. Observations of the residual plots are used as a 
diagnostic test for deviations from regression assumptions and mis-specification of 

the functional form of the model. The residuals were plotted against the predictor 

variables, ln(RR_1), against the predicted variables, ln(RR), and against time, t. 

For North Sea sandeels, the autoregressive model produced a time series 
that was similar to the historical series. The RMSE was 0.472 which was much 
lower then the value for the Shetland model of 0.871. The residual plots against the 

predictor and predicted variables revealed random, no-trend series however the 

residual plot against time appeared to have an upward trend (Figure 3.5). This may 
indicate a possible upward trend in historical In(R) time series but the time series 

plot itself revealed no trend and this was verified by the Daniel's test for trend 

conducted earlier. Regression analysis indicated the trend in residuals with time was 

not significant (P=O. 168). The pattern in this residual plot occurs because in the first 

half of the series the autoregressive model tends to overestimate low recruitment 

values while in the second half it underestimates high values. In part, this is the 

result of a change in the pattern of the historical time series from alternating high 

and low recruitments (1981-1986) to a 3-year cycle of 2 high then 1 low recruitment 
(1989-1995). 

Although, the time series produced by the autoregressive model for Shetland 

sandeels lagged behind the historical time series, it did closely track any changes 
(Figure 3.6). This model is simply tracking the noise in the series which suggests, to 

forecast recruitment at Shetland, the most parsimonious model is to simply predict 

recruitment in year t as the recruitment in the previous year, t-I (naive forecasting, 

Equation 3.10). 

Yt+l = Yt 3.10 

The naive forecast model is also shown in Figure 3.6a (red line). The RMSE 

produced by the na7ve forecast model was 0.963, larger then the value for the 

autoregressive model, 0.871 suggesting the autoregressive model is a better fit. 

For the autoregressive model, the residual plots for Shetland sandeels 

against the predictor and predicted variables appeared to be a random no-trend 

series. However, the residual plot against time reveals possible heteroscedasticity. 

An assumption of regression is that variance of the error terms is constant 
(homoscedasticity), for this plot the variance appears to increase with time. This is 

probably a result of changes in the actual time series, in the first half of the plot the 
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series shows strong positive autocorrelation while in the second half, this does not 
always hold true (a good year may be followed by a bad year instead of another 

good year). This produces a few large error terms, so the variance in the residual 

plot is caused by this rather then heteroscedasticity. 

3.5.2 Box-Jenkins Autoregressive Models 

Another form of the autoregressive model is the Box-Jenkins ARIMA(p, 0,0) 

model. The model parameterised above expresses yt as a function of yt. i. Positive 

autocorrelation can lead to a situation termed autocorrelative drift. If yt_, is very large 

or small, it is highly likely that yf will also be very large or small. This can cause the 

series to drift away from the mean. The Box-Jenkins autoregressive model 

expresses yt as a function of the residual at t-1, therefore the series is less likely to 

drift from the mean. 
An ARIMA(1,0,0) model is similar to the autoregressive model described 

above (Equation 3.6) except by convention the parameters are denoted as 0 

instead of /3 

Yr =Oo +01(Yr-i -0o)+e 3.11 

where c1 is the autoregressive parameter for t-1, ' is the constant term which is 

approximately equal to the average level of the series and et is the error term at time 

t. 
ARIMA(1,0,0) models were fitted for both sandeel recruit time series using 

the ARIMA function in SPSS. The values returned for the constant value 0a, the first 

autoregressive parameter 01, and the resulting RMSE's are shown in Table 3.2. 

These were similar to the parameters for the basic autoregressive model. The time 

series forecast based on the actual time series are shown in Figure 3.7 which also 
include forecasts for a further three years in each case. As expected, the model 

series are very similar to the models fitted using the basic autoregressive model. 
The North Sea sandeel recruit time series has negative autocorrelation so a 

good year (In(R) above the mean) is generally followed by a poor year (In(R) below 

the mean). An negative autoregressive model can be thought of as `self-correcting', 

in that a very high or low value in one year will cause an opposing low or high value 
in the-next year. This will have the effect over a number of years of high swings 

above and below the mean which gradually dampen out until the next high or low 

value is generated (through random errors). The opposite situation occurs in the 
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Shetland model as this has positive autocorrelation. A high (or low value) in one 
year will generally lead to a series of years above (or below) the mean, so the series 
tends to drift above or below mean until a random error is generated to counteract 
this. 

3.5.3 Moving Average Models 
Moving average models were also considered for simulating recruitment at 

Shetland as these give most weight to recent observations in a data set. The models 
should reduce the tracking of noise in the series by computing an average mean 
over the most recent observations (referred to as smoothing). The greater the 

smoothing, that is the more terms averaged over, the less the forecasts track noise. 
In moving average models only k number of the most recent observations are used 
to calculated the moving average mean (referred to as the moving average of length 

k). As the most recent set of observations are used in each forecast, the average 
changes over time (moves one step forward each time a new observation is 

obtained). For a moving average of length k, the forecast is calculated as: 

k 
Z, Yt-n+I 
n=l Yt+l -k 3.12 

where y is the observed value is year t and yt+i is the forecast value in year t+1. 
Moving average models for three different lengths of k (2,3 and 4) were 

fitted to the Shetland sandeel data using the Moving Average Function in the Data 
Analysis Toolpak of Excel. The model for k=1 was also determined but this model is 

simply the naYve forecasting model discussed above (k,,, =Yr, Equation 3.6). 

The forecasts, calculated from the historical time series, are plotted together 

with the original time series in Figure 3.8. For Shetland sandeels, the moving 
average models track the actual series but with a lag and the lag increases as k 
increases. The amount of smoothing also increases with k. The root mean square 
errors, RMSE (Equation 3.2), were calculated for each forecast series and the 

results are shown in Table 3.3. k of 1 or of 2 is the optimal moving average length 
for Shetland sandeels but the autoregressive models fitted above had lower RMSEs 
(0.87L& 0.876) so were therefore better fits. 

The RMSE's were high as the predicted series was tracking the actual series 
with a lag. But will this model produce feasible time series if used to simulate 
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recruitment? Recruitment in any year is taken as the mean recruitment in the 

previous years. As these models are using the previous values in the series there is 
little constraint to ensure the simulated time series fluctuates around the historical 

series mean. A positive (or negative) value will generally produce another positive 
(or negative) value and so on, so series will drift away from the historical mean 
value. To stop drift in the mean, Box-Jenkins moving average models, 
ARIMA(0,0, q), were considered as these use a weighted average of the error terms 
from the previous years as opposed to the actual previous values. 

In ARIMA(0,0, q) model, the most recent term is influenced by the most 
recent error terms not the actual values. Hence an ARIMA(0,0,2) model is 

expressed as: 

Yt = 00 + Et - ei eta - 02 't-2 3.13 

where 91 is the moving average parameter at t-1, Bo is the constant term (which is 

similar to the average level of the series) and -t_I is such that: 

ýf-. = Yt-º - yt-I 3.31 

Box-Jenkins moving average models of order 1,2 and 3 were fitted to the 

Shetland recruit time series using the ARIMA function in SPSS. The fitted 

parameters and resulting RMSEs are shown in Table 3.4 and the time series 
predicted using the historical time series are shown in Figure 3.9 (including 
forecasts for a further three years). The moving average models lagged behind the 
historical series but the smoothing effect seen in the previous moving average 
models was reduced. This is due to the different procedures for calculating 
forecasts. In the previous models the moving average was the average of the 

previous observations, in the Box-Jenkins model the error terms are used. Box- 

Jenkins MA models of orders 2 and 3 (RMSE=0.788 and 0.787) were an 
improvement on the previous MA models (RMSE(k=2) = 0.890) and the 

autoregressive models (AR1 = 0.871) as these had the lowest RMSEs.. As there is 
little difference in the RMSE for a Box-Jenkins model of order 2 and 3, model 2 was 
selected for simulations as this is the more parsimonious model. 
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3.6 Stochastic Age-Structured Population Model PART 2 
A basic stochastic age-structured model of the Shetland sandeel stock was 

constructed using ICES stock assessment data (ICES, 1999) discussed in the 

previous Chapter. The model was used to test the time series models parameterised 
above to simulate recruitment. Models considered plausible were selected by 

comparing model output with the historical data as well as considering underlying 
biological assumptions. Due to the limited data available for the Shetland sandeel 
stock and uncertainty in our understanding of biological processes, it was envisaged 
that more than one feasible model would be identified. The baseline population 
models were written in Microsoft® Visual Basic 6.0. The models are stochastic so 
many simulations are run and the distributions of the output analyzed to assess 
model dynamics. 

3.7 Model Structure 

The models consist of an age-structured sandeel population with 

components for recruitment, mortality due to a fishery and natural mortality. Natural 

mortality is defined as death due to predators (excluding the fishery), disease or 
other natural causes. Sandeels are recruited to the population and simultaneously to 
the fishery as 0-group fish (fish less then a year old). Sandeels are removed from 

the population by the fishery, and through death by natural causes. 
There are eight age-classes of sandeel in the models. These range from 0- 

group fish (recruits; fish hatched that year), 1-group fish (fish which hatched and 
recruited to the stock in the previous year) to 7+ group fish (fish seven years old and 
older). The models move in yearly time steps. The change in fish numbers in the 
total population, all age classes summed, over each year can be represented by: 

Nt =Nr_, +Rr -(Cr +mt) 3.14 

where Nr is the total number of fish in the population in year t, R is the number of 

recruits, C is the number of fish caught by the fishery and m is the number of fish 

dying through natural causes. 
The programme runs for a set number of years, each set is referred to as 

one simulation, and for a set number of simulations. At the end of each simulation, 
the output statistics are calculated and these are read into an Excel spreadsheet or 
SPSS data file. 
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A flow diagram of the basic model is shown in Figure 3.10. At the start of the 

programme, the maximum number of simulations and maximum number of years in 

a simulation are required as input. The programme also requires an initial population 
and population parameters at the start of each simulation. These can be stored 
within the programme and read in directly during operation. The population 
parameters required are weight-at-age, age-specific natural and fishing mortality 
rates and the parameters of the stock-recruit model. Each of these is discussed in 
detail below. The SSB (biomass of all fish aged two and above) is calculated using 

weight-at-age and the recruitment component applied to determine the numbers of 
recruits that join the population. The number of fish removed from each age class is 

calculated using the fishing and natural mortality rates, also discussed below. 

At the start of each year, except the first year, fish are 'aged' by increasing 

the age class number. In other words, fish in age class I are moved to age class 2 

and so on. The last class, 7+, is additive, so sandeels being aged remain in this 

class and the 6-group fish are added to them. At the end of each simulation, the 

output statistics are calculated to compare model population with the historical 

population. These are discussed in detail below together with the programme 
details. 

3.8 Model Input 

3.8.1 Initial population 
An initial age-structured sandeel population (0-7+ groups; Table 3.5) was 

taken from the virtual population analysis (VPA) estimates produced by ICES 

(1999). For age classes I to 7+, the average (arithmetic mean) over the years 1974 

to 1997 inclusive was calculated for each age class as input as the starting 
population. The number of 0-groups (recruits) was calculated stochastically within 
the programme. 

3,8.2 Weight-at-age 

Weight-at-age, the average weight of a fish in an age class, was also taken 

from the ICES working group report (1999; Table 3.5). It was assumed weight-at- 

age was constant between years. In reality, this will vary as weight-at-age is 

influenced by factors such as food availability and ambient temperature. Evidence 
for differing growth rates of 0-groups sampled from Shetland in June in 1990-1992 

was presented by Wright 1996. By analyzing length-frequency distributions, and 
also the age composition from daily otolith increments, Wright showed that 0-groups 
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tended to be larger in 1991 and there were significant differences in mean specific 
growth rates between years. For the purposes of model parameterisation, weight-at- 
age was kept constant between years. 

SSB in each year is calculated from weight-at-age as the cumulative 
biomass of all fish aged 2 and above (Equation 3.15). Estimates of maturity for 
Shetland sandeels, originating from biological sampling, indicate 100% of fish aged 
two and above are considered reproductively mature and 0% of 0- and 1-group fish 
(ICES, 1999). 

S=ýN; W 
i=2 

3.15 

where S is spawning stock biomass, i is the age class of sandeel, Ni is the number 

of sandeels in age-class i and W is the average weight of a sandeel in age class i. 

The SSB calculated in the first year of each simulation, calculated in the 

programme from the starting population and weight-at-age (Table 3.5), was 126,800 

tonnes. This is the same as the average of the annual estimates of SSB calculated 
by ICES (1999) over the years 1974-1997 inclusive (126,800 tonnes). 

3.8.3 Natural mortality rates 
Age-specific natural mortality rates (M) were also taken from the ICES report 

(1999) for use in the Shetland population models (Table 3.5). The natural mortality 
rate is highest for 1-group fish (1.2) and 0-group fish (0.8). For stock assessment, it 

was assumed that the mortality rates of sandeels around Shetland are similar to 

other areas of the North Sea, thus the mortality rates from the North Sea 

assessments were used (ICES, 1999). The North Sea stock is assessed on a semi- 
annual basis as opposed to the Shetland stock which is assessed annually so the 
North Sea mortality rates were summed to find the annual rate. It was assumed that 

mortality rates, M, were constant between years although, in reality, these will vary 
depending on factors such as the relative availability of predator and prey 
biomasses. 

The number of fish dying due to natural causes for each age class was 
calculated as: 

me = [MI Z]Nt (1 - exp[- Z]) 3.16 
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where mt is the number of fish in the age class dying due to natural mortality in year 
t, M is the age-specific natural mortality rate, N is the number of fish in the age class 
and Z is the total mortality rate and is such that: 

Z=M+F 3.17 

where F is the fishing mortality rate. 

3.8.4 Fishing mortality rates 
As there are no population estimates for the unexploited stock, a fishery is 

included in the basic population model to allow comparison with the historical data. 
Age specific fishing mortality rates varied greatly over the years in the historical data 

(ICES, 1999). The highest rates occurred in 1982 when the largest recorded landing 

occurred (52,000 tonnes). Fishing mortality rates then declined and were zero over 
1991-1994 inclusive (as the fishery was closed). Since the fishery reopened in 1995 

the fishing mortality rates have been extremely low. 

Mean and standard deviation of age-specific fishing mortality rates were 
calculated by averaging the values from the 1999 ICES report over the years 1974- 

- 1986 inclusive. Catch numbers and fishing mortality rates of 0-group sandeels over 
these years were high (ICES, 1999) with, on average, 5,800 million 0-groups being 

landed each year. During this period, the highest landings occurred in 1982 when 
16,851 million 0-groups were caught, and the lowest landing was recorded in 1974 
(929 million). After 1986, landings for all age classes were extremely low. The age- 

specific fishing mortality rates for each year were selected at random from the 

normal distribution parameterised from the mean and standard deviation fishing 

mortality rates (Table 3.5). Preliminary simulations of the population model with 
recruitment expressed as a Ricker function of SSB (various parameter combinations 
were tested), indicated these values of fishing mortality were suitable. 

The number of fish dying due to capture by the fishery for each age class 

was calculated by: 

Cr = [F/Z]Nr (1- exp[- Z]) 3.18 

where-Ct is the number of fish dying due to the fishery in year t, F is the fishing 

mortality rate, N, is the number of fish in the age-class in year t and Z is the total 

mortality rate (Equation 3.17). 
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3.9 Model Statistical Output 

The base-line models should reproduce the population dynamics observed 
for sandeels at Shetland. Therefore, the assessment data produced by ICES (1999) 
for the population size and structure of Shetland sandeels was considered to be the 

'target' data. Parameters producing model output that gave the best fit to the target 

data were considered to best simulate population dynamics. Various criteria were 

used to assess the fit of model output to target data: the arithmetic mean and 
standard deviation of the recruitment and SSB distributions and the autocorrelation 

coefficient, r,, of the recruit time series. Kolmogorov-Smirnov 2-sample tests were 
used to calculate the probability that the model distributions were the same as the 

target distributions, as while the means of the distributions may be identical, 
differences may lie elsewhere (Dytham, 1999; Zar, 1999). 

3.9.1 Location of Distributions 

The mean and standard deviation of the SSB and recruitment distributions 

are measures of the 'location' of the distribution so these were compared to the 

values from the historical distributions. In Chapter 2, the distributions of SSB and of 

recruitment in the historical data were analysed. It was shown that SSB could be 

considered normally distributed while recruitment was log-normally distributed. 

Therefore, to assess model output, the recruitments produced are natural log- 

transformed and will be referred to as In(R). For each model simulation, the mean 

and standard deviation of the SSB and In(R) distributions were calculated and the 

overall mean and standard deviation was taken as the average of these of a number 

of simulations. 
For recruitment, the mean In(R) was calculated for each run of t years (1 

simulation). The average of these over j simulations was ascertained as: 

1j max 1t max 

n(R) ln(Rt j) 3.19 

,/ 
max 

i, Lt max t-l 

where 17n(R) is overall mean of the mean In(R) produced by each simulation, Rt, is 

the recruitment produced by the model in year t of simulation j, tmax is the number 

of years in a simulation and jmax is the total number of simulations. 

To calculate the overall mean standard deviation, 5 
nR , of the In(R) 

distributions produced by each simulation of the model, the standard, CrI R of each 
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run of t years was calculated. The mean of these, QlnR, over i simulations was then 

ascertained: 

1 jmax 
61nR - 

11 

j max j=1 

tZ(1nRt, 
-1nR, 

) 

t-1 
3.20 

where a: 1nR is the mean standard deviations of log-transformed recruit distribution 

produced by the model, In R,, is the In(R) produced by the model in year t of 

simulation j, IK Rj is the mean In(R) produced by the model in simulation j, tmax is 

the number of years in a simulation and jmax is the number of simulations. 

The overall mean SSB, 9, was calculated using Equation 3.19 by 

substituting ln(R(j) with Stj (SSB in year t of simulation J) and the overall mean 

standard deviation of the SSB was also calculated by substituting Sty and Si for the 

recruitment variables in Equation 3.20. 

3.12 Comparing distributions 

It is possible for two distributions to have identical means but have 

differences elsewhere. The Kolmogorov-Smirnov (K-S) goodness of fit test for 

continuous data delivers a probability that two distributions are the same (Sokal & 
Rhoif, 1981; Zar, 1999). This was used to identify recruitment models that produced 
In(R) and SSB distributions that were similar to the distributions in the historical data 

(target distributions). In this test the cumulative relative frequency in the test 
distribution is compared to the cumulative relative frequency of the historical 
distribution. 

Annual estimates of SSB in the historical data were ranked in ascending 
order of size and the cumulative relative frequencies, relF, ascertained. The ranked 
values of the historical data were used as the classes to determine the cumulative 
relative frequencies of the test distributions. In the model, at the end of each 

simulation j, the SSB distribution was ranked into the classes determined by the 

target-distribution. The test cumulative relative frequencies, relF, , were calculated. 

The test statistic, D, was ascertained for each distribution as (Zar, 1999): 
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D= max[(max D, ), (max D, ')] 3.21 

where 

D; = 
IrelF, 

- relF 1 3.22 

and 

D; =l relF,. _1- reIF 1 3.23 

where i is size class, re/F1 is the cumulative relative frequency of the historical data 

in size class i and rell; is the cumulative relative frequency of the model data in 

size class i. 

This produced a K-S D statistic for each simulation j of t years. The overall 

mean D statistic, U, produced over j simulations was then calculated: 

jmax 

D=1Z Dj 
j max j_, 

3.24 

where Dj is the K-S D statistic produced in simulation j and jmax is the total 

number of simulations. At 
An approximate critical value for D, above which the distributions being 

compared are considered significantly different, was calculated as described by 

Sokal & Rohlf (1981): 

Fn2n, 

+ K 
a 

3.25 

where n, and n2 are the sizes of the two samples (historical data and model data 

sets) and Ka, is such that: 

Ka In 
2 

where a is the probability level. Thus for aa0.05 the value of Ku is 2.0466. 

3.26 
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Zar (1999) suggested that for small sample sizes (say, n5 25) the power of 
K-S testing could be increased by employing a correction (ö-corrected K-S 

goodness of fit test). However, Zar refers to a report that shows if nZ 20 the results 
of the corrected method are practically indistinguishable from the uncorrected 
method. The historical data series are for 24 years, so the models generally 
generated series of 24 years to compare with the historical series, therefore the 

correction to the K-S test was unnecessary. 

3.9.3 Autocorrelation in Model Recruit Time Series 
As discussed above, the historical In(R) time series is positively 

autocorrelated at a lag of 1 year (r, =0.51 as calculated by the method described 
below). To compare the autocorrelation in In(R) time series produced by the models, 
the autocorrelation coefficient r, was calculated in the model as described below. 

The autocorrelation coefficient r, in each simulation of t years was calculated 
as (Farnum & Stanton, 1989; Brown & Rothery, 1993): 

tmax- 

Z(InRt - IR, XlnRt_, 
-1nR`) 

rl _H tmax 
3.27 

(1nRt 
-1nR, 

) 

t=i 

where InRR is In(R) in year t, In R, is the mean of In(R) in simulation j of t years and 

tmax is the total number of years in a simulation. 
The overall mean autocorrelation coefficient, F1, over j simulations was 

ascertained by substituting r, j, the autocorrelation coefficient for simulation j, for D; in 

Equation 3.24. 

3.10 Model Simulations 
Two time series models were parameterised above to simulate recruitment: 

autoregressive and moving average. These were both tested in the population 
model written in Visual Basic. 

To simulate recruitment using the first order autoregressive model (Equation 
3.11), y was replaced with In(R) - log transformed recruitment - so recruitment (log- 
transformed) is expressed as: 
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ln(ä)r = 0o + 0i (1n(R)r-1- 0o) + , et 3.28 

where 4), is the autoregressive parameter for f-1, Oo is the constant term which is 

approximately equal to the average level of the series, R^, is the recruitment 

predicted by the model in year t and et is a normally distributed random number with 

a mean of zero and standard deviation, c r, to: 

6E _ UR 
(1- o2 )0.5 3.29 

where oR is the standard deviation of the historical In(R) distribution. 
The moving average model (Equation 3.13) was also adapted to simulate 

recruitment in the population model as: 

ln(R)t = e0 + Et - e, et-, - 02 t-2 
3.30 

where E, is the normally distributed random error term in year t. Error terms are 
independent and are normally distributed with a mean of zero and a standard 
deviation of: 

_ 
CrR 

ýE (1+92 +02)0.5 
3.31 

where cR is the standard deviation of the In(R) distribution in the historical data. 

These were incorporated into the population model written in Visual Basic 

and, for each model, 1000 simulations of 24 years were carried out. The results, as 
described above, were saved to an Excel spreadsheet. 

3.10.1 Results 

Histograms of the output distributions for mean and standard deviation of 

recruitment and the mean autocorrelation function of the recruit time series together 

with the mean K-S D statistic are shown in Figures 3.11 (autoregressive model) and 
3.12 ýrnoving average model). The results, together with the target values from the 
historical data series, are given in Table 3.6. 
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The distributions of mean and standard deviation of the model time series 
are normally distributed. The mean of the normal distribution of In(R) was similar to 
both models tested (4.01 for autoregressive model and 4.00 for moving average 
model), corresponding to a mean recruitment of about 54.6 billion. This was slightly 
greater then the target value of 3.88, corresponding to a mean recruitment of 48.4 
billion. The standard deviations of the model series (0.99 and 0.98 for the 

autoregressive model and moving average model respectively) were similar to the 
target value of 1.08. 

The output histograms of mean r, (autocorrelation coefficient) produced by 
the models are shown in Figures 3.11 c and 3.12c. The modal values produced by 
the autoregressive model was 0.45 which was slightly greater then the value 
produced by the moving average model (0.40). Both were close to the target value 
of 0.51 so overall, the model series could be considered similar to the target series. 

The SSB histograms produced by the autoregressive model are shown in 

Figure 3.13. The results for both models are given in Table 3.6. The histograms of 
the SSB distributions were log-normally distributed. The modal value of the SSB 

distributions corresponded to a value of 125 x 103 tonnes for the autoregressive 
model and 135 x 103 tonnes for the moving average model, close to the target value 
of 127 x103 tonnes. The modal values of the standard deviation of SSB histograms 
(45 and 55 for autoregressive and moving average models respectively) were 
slightly less then the target value of 60. 

Generally, both models tested (autoregressive and moving average) 
produced model distributions for recruitment and SSB that were similar to the target 
(historical) distributions. The histograms for mean and standard deviation of 

recruitment (and SSB) produced by both the autoregressive and moving average 
models were similar. This is due to a constraint called invertability imposed on Box- 
Jenkins moving average models. A factor of invertability is that every moving 
average model can be inverted and written as a infinite-order autoregressive model. 
The autoregressive model produced a greater range of models with positive 
autocorrelation, comparing the histograms of the r,, autocorrelation coefficient, 
produced by both models (Figures 3.11 c and 3.12c) indicates the moving average 
models produced more recruitment time series with small or negative r, coefficients. 
In view of the similarity between the models, the autoregressive model was selected 
to simulate recruitment in the population model of Shetland sandeels. 
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3.11 Final Autoregressive Models 

The autoregressive model tested above, produced time series with a mean 
In(recruitment) of 4.01 - higher then the target mean of 3.88. This model used 

values for 0,9 and 01 identified by fitting the model to the historical time series. 
Time series modelling is data intensive, it is recommended that a long time 

series, of at least 50 data points, is used (Famum & Stanton, 1989). The Shetland 

series is only 24 years long so confidence in the fitted autocorrelation function (0.51) 

and parameters of the autoregressive and moving average models is reduced. 
Therefore, parameters for the final autoregressive model were selected by 

considering the historical time series and the output from model simulations. 
The mean In(recruitment) of the historical series (3.88) was selected as 

parameter 4 as in the Box-Jenkins autoregressive model, 00 represents the mean of 
the series. 4 represents the degree of autocorrelation at time lag 1 in the series so it 

was assumed this would be close to the value from the historical data set (0.51). 

1000 simulations of 24 years were carried out and the results are shown in Table 

3.6 (AR test 2). 

The parameters of the In(recruitment) and SSB distributions produced by the 

model were very close to the parameters of the historical data distributions (Table 

3.6). However, the autocorrelation coefficient r, of in(recruit) time series returned by 

the model (0.40) was less then that in the historical time series (0.51). Increasing the 

input value of parameter 01 should increase the output mean r, value. r, was varied 
between 0.5 and 0.8 in steps of 0.1 and 1000 simulations of 24 years were carried 

out for each value. An input value of 0.68 was found to produce an output r, of 0.51. 

Increasing the input value of 01 slightly reduced the mean standard deviation of 
In(recruit) and the median SSB (Table 3.6). 

3.12 Conclusions 

Time series models were fitted to the Shetland sandeel recruit data and 

simulations carried out in a population model. A first order Box-Jenkins 

autoregressive model was identified as the most suitable model to simulate 

recruitment. However, simulations indicated that the values for the parameters of the 
Box-Jenkins autoregressive model, fitted using the ARIMA function in SPSS, 

produced model output series which were slightly different to the historical series 
(Table 3.6). The mean of the output In(recruit) distribution (4.01) was higher then the 

target value (3.88) while the median standard deviation of the SSB distribution (45) 

was lower then the target value (60). But, by reducing the constant term, 4o, in the 
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autoregressive model to the mean of the historical In(recruit) series (3.88), model 

output series were produced which were closer to the historical series. 

3.13 Summary 

9 Evidence for a relationship between recruitment and SSB in the 

Shetland sandeel stock is weak so recruitment was predicted using time series 

models. Uncoupling recruitment from SSB will not produce estimates of potential 

changes to the stock size bought about increased/decreased exploitation rate 
but increases our knowledge of recruitment dynamics. 

" An age-structured population model was constructed in Visual Basic 

6.0 to simulate the dynamics of the Shetland sandeel stock but the recruitment 

component needed to be further developed. 

" Autoregressive and moving average models were tested to simulate 

recruitment. 
"A 1St order autoregressive model was selected to simulate 

recruitment. 
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Table 3.1 Analysis of natural log-transformed recruit time series for North Sea 
sandeels and Shetland sandeels (from ICES 1999) using a Runs test for 
randomness (Farnum & Stanton 1989, Zar 1999) and a Daniel's test for trend 
(Farnum & Stanton 1989). n= length of time series, Sig. = significance at 95% level. 

North Sea Shetland 
Median (billions) 587 60 

+ cases (above median) 11 12 
Runs test - cases (below median) 11 12 

n cases 22 24 
Number of runs 17 7 

Z 1.966 -2.296 
Sig. (2-tailed) 0.049 0.022 

Daniel's test Spearman's Rho 0.039 -0.323 
Sig. (2-tailed) 0.863 0.124 

Table 3.2 Time series analysis of natural log-transformed recruit, In(R), time series 
for North Sea sandeels and Shetland sandeels. Historical: analysis of In(R) series 
from historical data (from ICES 1999), r, =autocorrelation coefficient at lag 1. AR: 
model series from a first order autoregressive model (Equation 3.6) fitted to 
historical series, E(y, )=expected mean level of series, /3o and ß, =parameters of 
model, RMSE=root mean square errors (Equation 3.2). ARIMA(1,0,0): model series 
from a Box-Jenkins first order autoregressive model (Equation 3.11) fitted to 
historical series, O� and 01=parameters of model. 

Time Series North Sea Shetland 
Historical rr -0.628 0.540 

Mean In(R) 6.265 3.880 
E(ye) 6.258 3.946 

AR , ßo 10.657 1.585 
Q, -0.703 0.598 

RMSE 0.472 0.871 
ARIMA(1,0,0) ý0 6.255 4.006 

01 -0.669 0.579 
RMSE 0.472 0.876 
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Table 3.3 Root mean square errors (Equation 3.2) for moving average models 
(Equation 3.12) of length k fitted to natural log-transformed recruit time series of 
Shetland sandeels (from ICES 1999). 

k RMSE 
1 0.963 
2 0.950 
3 1.002 
4 1.081 

Table 3.4 Parameters of Box-Jenkins moving average models, ARIMA(0,0, q), fitted 
to natural log-transformed recruit time series for sandeels at Shetland. RMSE=root 
mean square errors 

ARIMA 0,0,1 
Shetland 

ARIMA 0,0,2 ARIMA 0,0,3 
00 3.92 4.00966 4.0241 
0, -0.453 -0.42089 -0.5565 
92 - -0.98982 -0.6621 
03 - - -0.44834 
RMSE 0.931 0.788 0.786 
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Table 3.5 Input parameters for Shetland sandeel population model (from ICES 
1999). Weight-at-age = average weight of a fish in an age class, M= natural 
mortality rate, F= fishing mortality rate and aF = standard deviation fishing mortality 
rate 

Age 
Class 

Population 
(millions) 

Weight-at- 
age (g) M F aF 

0 0.746 0.8 0.074 0.032 
1 17769 3.095 1.2 0.254 0.110 
2 7393 5.409 0.6 0.096 0.041 
3 3796 8.585 0.6 0.056 0.024 
4 1957 11.143 0.6 0.073 0.032 
5 1005 13.705 0.6 0.069 0.030 
6 523 15.605 0.6 0.056 0.024 
7+ 491 21.254 0.6 0.056 0.024 

Table 3.6 Comparison of output from 1000 simulations of 24 years of time series 
models used to simulate recruitment of sandeels at Shetland with values from 
historical distributions. Historical: historical data from ICES (1999), MA: second 
order moving average model, AR: first order autoregressive model, 4o=constant 
term in AR model, 01= first autoregressive parameter in AR model, ln(R)=natural log 
transformed recruitment (billions), SD=standard deviation, r, =autocorrelation 
coefficient of In(R) time series at lag 1, SSB=spawning stock biomass (000 tonnes). 

Median Median SD 
Mean In(R) SD In(R) r, SSB SSB 

Historical 3.88 1.08 0.51 127 60 
MA 4.00 0.98 0.45 138 71 

AR test 1 4.01 0.58 4.01 0.99 0.40 138 75 
AR test 2 3.88 0.51 3.88 1.01 0.40 126 63 
AR test 3 3.88 0.68 3.88 0.95 0.51 119 61 
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Figure 3.1 a) Stock-recruit data for sandeels at Shetland and b) trends in SSB and 
recruitment for sandeels at Shetland (from ICES 1999). 
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CHAPTER 4 

STOCK RECRUIT MODELS 



4.1 Introduction to Chapter 

This Chapter introduces stock-recruit models and fits both Ricker (1954; 
1975) and Shepherd (1982) models to the Shetland data. Although stock-recruit 
analysis using the Shepherd model is presented here with baseline model 
simulations, this was rejected in subsequent analyses due to high uncertainty in the 
data and problems with defining a stock-recruit relationship for this model. 

It is assumed in this Chapter that no net immigration of recruits occurs, that 
is, no net "external" recruitment. After introducing the concept of stock-recruit 
models and discussing stock and recruitment issues at Shetland, the Chapter is 

then split into three parts. In the first part, the Ricker model is discussed and fitted to 
the Shetland sandeel stock using linear regression. In order to estimate confidence 
intervals, bootstrap analysis was applied and the results were compared with the 

output of a direct search method to identify optimal parameters. Ultimately three 

curves were identified, an optimal Ricker curve together with two curves 

representing 95% confidence intervals. 
Shepherd stock-recruit models are parameterised in part 2, these cannot be 

fitted by simple linear regression as for the Ricker model. Initial estimates for the 

parameters of the Shepherd curve were found using the subjective methods 
described by Shepherd (1982). Final estimates were found by minimizing the "sums 

of squared differences" between observed recruits (historical) and predicted recruits. 
Bootstrap analysis was then applied. The histograms returned by bootstrap analysis 
for each parameter were multi-modal so there is more than one optimal stock-recruit 

curve. The reasons for this were considered and plausible curves identified. 

In the third part, the population model written in Visual Basic 6.0 in the 

previous Chapter, was adapted so that recruitment was simulated using the Ricker 

curves parameterised. Autocorrelated stochasticity was added and the models were 
tested for robustness using the population model. Simulations for each recruitment 
model were run and the results analyzed and discussed. 

4.2 Stock-Recruit Models 

As discussed in the previous Chapter, the concept of recruitment as a 
deterministic function of spawning stock biomass (SSB) is fundamental to fishery 

management. However, in many species of exploited fish, the relationship is weak, 
and it has been disputed that it exists. So why use stock-recruitment relationships? 
Stock-recruit curves can provide understanding of the affects of changing harvest 

pressure on recruitment, thus ultimately on stock size. For example, if increasing 
fishing pressure reduces SSB, this could lead to either a reduction or an increase in 
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recruitment. The response to exploitation will depend on the underlying shape of the 

stock-recruit model (see below). Recruitment is usually highly variable about the 
fitted stock-recruit model. Trying to understand and model causes of variation in 

recruitment should improve our ability to manage fish stocks sustainably. However, 

this is one of the most challenging problems in fisheries science. 
Using an unrealistic stock-recruit curve in the population models may make 

the simulated population appear more or less resilient to high exploitation rates than 
the real population. If the model is then used to guide management decisions, the 

consequences could be potentially disastrous. To illustrate this, two different stock- 
recruit curves for a hypothetical fish population are shown in Figure 4.1. For the 

unexploited population, the spawning stock biomass (SSB) is 100% and recruitment 
is at 100%. With curve 1, as SSB is reduced, recruitment also reduces. The 

reduction in recruitment occurs immediately with the reduction in SSB, and the 

decline in both is slow, potentially giving enough warning of stock decrease to allow 

corrective measures to be taken. With curve 2, a decline in SSB initially produces an 
increase in recruitment. It is only when SSB is reduced to 33% of its original value 
that recruitment drops below 100%. Once SSB is below 33%, the decline in 

recruitment is rapid and this situation can quickly lead to stock collapse. It may often 
be difficult to determine if the stock is approaching critical SSB levels. 

Traditional stock-recruit models include those of Ricker (1954; 1975) and 
Beverton-Holt (1957). In the Beverton-Holt model, recruitment increases with SSB 

towards an asymptote (Figure 4.1, curve 1). In the Ricker model, the curve is dome 

shaped so recruitment decreases at high levels of SSB (Figure 4.1, curve 2). These 

models are widely used in fisheries management. 

A full discussion and analyses of stock-recruit models can be found in 
Hilborn and Walters (1992). Observing the stock-recruit scatterplots for sandeels at 
Shetland and in the North Sea (Figure 4.2) one can identify several features. For 

North Sea sandeels, recruitment generally increases with SSB, but is the very low 

recruitment (200 billion) at the highest SSB (1634 x103 tonnes) an outlier or 
indicative of a trend for recruitment to decrease at high SSBs? For Shetland 

sandeels, it appears that initially recruitment increases with SSB, then decreases at 
higher SSBs. The variability in recruitment appears highest at mid-sized SSBs. A 

common feature in both plots, is the occurrence of an extremely high recruitment at 
a mid-sized SSB - although this occurred in different years in the two stocks (1996 
in the North Sea and 1997 at Shetland). Considering the temporal pattern in 

recruitment (by joining the data points), one can see the distinction between the two 

stocks. Recruitment to the Shetland stock generally shows slow changes in 
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recruitment numbers, regardless of SSB, while the North sea stock is much more 
variable and recruitment appears to be more strongly linked with SSB. Both stocks 
show lower then expected recruitments in 1987 and 1988. 

Hilborn & Walters (1992) discuss the simplest assumption regarding stock 
and recruitment, that is recruitment is directly proportional to SSB. This model is 
density independent: the average relationship is shown for Shetland and North Sea 

sandeels in Figure 4.2 (trendlines). This model is too simplistic, as it assumes 
recruitment will continue to rise with SSB indefinitely. This cannot be the case as 
eventually density-dependent factors will dominate, for example, through 

competition for food or space. However, stock-recruit relationships are usually 
density independent near the origin. 

Two stock-recruit models were chosen for analysis: the Ricker model (1954; 
1975; Figure 4.1 curve 2), which is widely used, and the Shepherd model (1982; 

Figure 4.10). The Ricker model having only two parameters (Shepherd model has 

three parameters) is the easier to fit to the data. However, the three parameters in 

the Shepherd curve makes this much more flexible. These models were chosen as 
both can be dome-shaped, so density dependence dominates at high stock levels. 
Ricker (1954) proposed several mechanisms that result in a compensatory stock- 

recruit relationship, such as competition for living space, competition for food 

resulting in starvation and cannibalism (Sissenwine, 1984). It is likely that 

competition for resources occurs on sandeel grounds. Sandeels overwinter buried in 

sediment of a suitable grain size and during the summer they emerge during the day 

to feed in the water column. Wright et at (2000) showed that post-settled sandeels 
actively select well-flushed sediments of particular grain sizes for burying thus 

competition for space may arise on sandeel grounds. Additionally, adult sandeels 
are not thought to make spawning migrations but spawn, and the larvae hatch (in 

early spring), on the sandeel grounds so potential may exist for cannibalism. 
However, it is unknown if adults are feeding at this time. All of these factors suggest 
that the stock-recruit relationship for sandeels at Shetland is likely to be dome- 

shaped. 
Recruitment is very variable in many populations of commercially exploited 

fish so a potential range of recruitments exists for each SSB. Stock-recruit curves 

return either the average or median recruitment for a given SSB. That is, for any 
given SSB the curve passes either through the mean of the potential recruitments or 
potential recruitments are lognormally distributed and the curve passes through the 
"center of gravity" of this distribution. An additional term is often used to incorporate 

random variation (Nilborn & Walters, 1992). Nilborn & Walters (1992) recommend 
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that a log-normal distribution be the starting assumption for stock-recruitment work. 
This assumption was justified by Hilborn & Walters (1992) by considering the 

following theory. The stock-recruitment process consists of a number of life history 

stages progressing from egg to recruit and total survival is the product of these 

stages. If both sides are log-transformed and it is assumed the survival rate in each 
life history stage is an independent random variable, then the sum of the (log- 
transformed) series will have a distribution that approaches the normal distribution 

as the number of summed values increases. Therefore, the overall survival rate 
should be lognormally distributed. 

Hilborn & Walters (1992) summarized, in part, that the observed pattern for a 
number of different actual data sets conform to the lognormal pattern. Features of 
the lognormal distribution are that recruitment cannot be negative, occasionally a 
large recruitment will occur - due to the long tail of the distribution, and the amount 

of variation will be proportional to the recruitment predicted by the stock-recruit 

curve, so variability will be lower at small recruitments and much larger at higher 

recruitments (Nilborn & Walters 1992). 

4.3 Stock & Recruitment at Shetland 
Stock assessments at Shetland are prone to high levels of uncertainty due to 

high natural mortality rates, large variation in recruitment and low exploitation rates 
(Cook & Reeves, 1993) as well as the inherent inaccuracy of the assessment 
measurements. The closure of the fishery over 1991-1994 and the subsequent low 
landings have led to a lack of suitable data for fishery assessment models. 
Assessment models use the numbers and average weight of fish caught per age- 
class to estimate historic fishing mortality and stock numbers (see Hilborn & 
Walters, 1992; Jennings et al., 2001). The recent low catch rates and low effort of 
the Shetland sandeel fishery will affect these input parameters as the landed fish 

may not be representative of the entire age-class, thereby reducing certainty in the 

assessments. In particular, in 1990 the level of sampling was considered too poor to 

provide satisfactory age compositions (Cook & Reeves, 1993). ICES (1999) noted 
that stock estimates resulting from the assessment can only be regarded as an 
indication of the overall trends in the stock, and not of absolute levels. 

There are a number of difficulties in trying to determine a stock-recruit 
relationship for sandeels at Shetland. Firstly, there appears to be strong 
environmental forcing as was shown by the analysis of the time series for 

autocorrelation given in Chapter 3 and seen in the temporal pattern in recruitment in 
Figure 4.2. During the 1980s, recruitment declined and this was followed by a 
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corresponding decline in SSB (see Figure 2.2). As discussed in Chapter 3, this may 
induce a spurious relationship between stock and recruitment as the low SSBs were 
probably the result of low recruitments, not the other way round. 

Additionally, Wright (1996) presents evidence that some recruits to the 
Shetland system may originate from outside Shetland waters. Recruits originating 
from around Orkney may arrive at Shetland either by passive transport during the 
larval phase or active movements immediately prior to settlement (Proctor et at, 
1998). There is also evidence for advection of larvae away from Shetland, but a 2- 
dimensional sea-circulation model, adapted to model the transport of larvae on the 

north-west European shelf, indicated this loss may be less then the gain of recruits 
(Proctor et al., 1998). If net immigration does occur, then this will obscure the stock- 
recruit relationship at Shetland. 

The approach taken to these problems was to construct a number of stock- 

recruit models for recruitment at Shetland. Models which were considered 
biologically plausible were identified and simulations using these models are 

analyzed. Two approaches were taken to produce sets of recruitment models. 
Firstly, it was assumed that there is no net immigration to the Shetland stock and 
stock-recruit models were fitted (this Chapter). For the second approach (next 

Chapter), it was assumed that a proportion of recruitment each year originates from 

outside of Shetland waters ('external' recruits). 

4.4 Ricker Models PART I 
This part of the work is concerned only with the Ricker stock-recruit model - 

full details can be found in Hilborn & Walters (1992). The Ricker model (1954; 1975; 

Equation 4.1) was selected as this is one of the seminal stock-recruit models that, 

though developed in the 1950s, is still widely used today. The model produces 

dome-shaped stock-recruit curves, which for reasons outlined previously, were 
expected for sandeel populations. At low SSBs, recruitment increases with SSB and 
high SSBs density-dependence dominates, so recruitment decreases with further 

increases in SSB (Figure 4.3). The Ricker model is simple to fit, by using linear 

regression, and confidence limits for parameter estimates can by determined by 
bootstrap analysis. 

The Ricker model is expressed as: 

R= Sec -51b) 4.1 
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where R is recruitment, S is SSB and a and b are fitted constants. 
The more common form of the Ricker model is: 

R= aSe-bs 4.2 

where a represents the slope from the origin and b describes how quickly recruits- 
per-spawner drops at high SSB. If a is high then the maximum recruitment is high. b 
is the density-dependent parameter and if b is high then the maximum recruitment 
decreases and the level of SSB at which this occurs decreases (Figure 4.3; see 
Jennings et a!., 2001 for further details). 

4.5 Ricker model fit by linear regression 
Parameters of the Ricker model can be estimated using simple linear 

regression. Equation 4.2 is transformed so it can be expressed as a linear equation 

of the form: 

Y. =a+ßX; +E; 4.3 

where Y is the dependent variable, X is the independent variable, a and ,8 are 

constants and 6 is an error term (Zar, 1999). Linearising Equation 4.2 using natural 
logarithms gives: 

In 
S= 

ln(a)-bS+w 4.4 

where R is the number of recruits, S is SSB, a and b are constants and w is the 

residual (error term). 
Plotting In(R/S) against S and fitting a regression line will give estimates for a 

and b (Figure 4.4a). The intercept of the line will equal ! n(a) and the slope is equal to 

-b (from the equation for a straight line Equation 4.3). Parameters a and b were 
estimated using the linear regression function in the Data Analysis Toolpak of Excel. 

This method produces estimates and variances for parameter b and for In(a) and the 

variance, 6,,, around the stock-recruit curve (Table 4.1). The linearised plots, 

residual plots and the resulting stock-recruit curves (heavy curves) are shown in 
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Figure 4.4. There is no trend in the residuals (Figure 4.4b) so it can be assumed that 
the pattern in the stock-recruit data is reasonably well represented by the curve. 

Equation 4.4 assumes lognormal errors therefore the stock-recruit model 

actually being fitted can be described as (see Hilbom & Walters, 1992): 

R=aSe-"e' 45 

where w is normally distributed with a mean of zero, therefore e"' is lognormally 
distributed. 

This means that, for any given stock size, the residuals are likely to be 
lognormally distributed about the curve. This is not the same as mean (average) 

recruitment. To find the stock-recruit curve which passes through the mean 

recruitment for any given SSB, it is necessary to transform parameter a. Nilborn 

(1985) demonstrated that, to define the average curve, the expected value of ew is 

e-; 
X2 (from the equation to transform the median of a normal distribution to the 

mean, see Evans et al., 2000). Therefore, the average stock recruit curve will have 

parameter a' defined as: 

oZ 
a'=ae W2 4.6 

where a, is the standard deviation of the residuals (w). 

The value of parameter a' (3.768) was greater then parameter a (2.134). 
This was the effect of the large variation about the stock-recruit curve. The Ricker 

curve which passes through the average recruitments is also shown in Figure 4.4c. 
As recruitment will be simulated in the models by using stock-recruit curves with 
lognormal variation, it was not necessary to correct parameter a to a'. 

4.6 Ricker model fit by bootstrap analysis 
Confidence intervals (c. i. ) for parameter estimates can be determined using 

bootstrap analysis (see Efron & Gong, 1983) described in Chapter 2. Bootstrap 

analysis samples at random, with replacement, from the original data set to 

generate probability distributions for parameter estimates. A program to perform 
bootstrap analysis was written in Visual Basic 6 as a Macro behind an Excel 

spreadsheet. For each bootstrap simulation, n stock-recruit pairs were selected at 
random with replacement from the original n pairs (historical data). ln(R/S) was 

109 



determined for every stock-recruit pair and the slope (-1*parameter b) was 
calculated using an equation for simple linear regression (Equation 4.7; Zar, 1999). 

flln(R/S) (S 
-- ln(R/S)) 

n 4.7 
(S-Sy 

where S is SSB, S is mean SSB in the selected series, R is number of recruits, 
ln(R/S) is mean logged residual and n is the length of the stock-recruit series. 

Parameter a was calculated as: 

's 
I-ff (% *§)) 

a= e( 
Sy(-b 4.8 

The standard deviation of the residuals o from the parameterised Ricker 

curve were also determined. 1000 bootstrap simulations were performed and a, b, 

6�,, R and S were recorded for each simulation. From these recorded values, the 

overall mean was calculated for a, b and c., and also the standard error of a, q, and 

of b, o (Table 4.2). 

The probability distributions of parameter estimates returned by 

bootstrapping are shown in Figure 4.5. The upper and lower 95% confidence 
intervals were determined as the 0.05 and 0.95 percentiles respectively. The value 

of parameter a estimated by bootstrapping (2.421)) was similar but not identical to 
the mean value estimated by linear regression (2.134). The histogram of parameter 

a returned by bootstrapping appears to be slightly skewed and so may be better 

represented by a lognormal distribution (Figure 4.5a & b). Parameter a was log- 

transformed in Equation 4.5 and therefore cannot be less then zero. A 1-sample 
Kolmogorov-Smirnov (K-S) test for normality (Zar 1999) indicated that the 

distribution was more likely to be lognormally distributed (P=0.188) then normal 
(P=0.000). 

The histogram of In(a) returned by bootstrap analysis is shown in Figure 

4.5(b). The mean of the distribution corresponds to the log transformed optimal 
value of parameter a. This is slightly different to the value determined from 

parameter a histograms above so has been designated a". Back-transforming the 

mean value of In(a) will return a". The value estimated for a"was 2.191, much closer 
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to the value estimated by linear regression (2.134). The upper and lower 95% 

confidence limits for parameter a were 4.451 and 1.032 respectively. 
For parameter b, the mean and standard deviation returned by bootstrapping 

(0.012763 ± 0.003338) were similar to the values returned by linear regression 
(0.012501 t 0.003782; Table 4.2). 

Bootstrapping estimated confidence intervals for the parameters of the 

Ricker curve. Using these values in the Ricker model should parameterise curves 
representing the upper and lower intervals. Parameters a and b are highly correlated 
as they are related by Equation 4.2. Equation 4.2 can be rearranged to express a as 

a function of b: 

S exp-s 4.9 
R 

Therefore, for a given SSB and recruitment, altering one parameter will 

necessitate a corresponding alteration in the other parameter. This high correlation 
is shown in Figure 4.6, the best fit estimate for the parameters (a", b) found by 

bootstrapping is indicated by the light square. The correlation between the 

parameters is very high (R2=0.735). 
Figure 4.6 shows there is a spread of closely correlated values for a and b 

that all produce 'good fit' stock recruit curves. This can be explained by considering 
the 'landscape' for fits to the historical data produced combinations of a and b. If the 

fit (sums of squares) is plotted on a 3-dimensional graph against parameter a and 

parameter b, the best fits will show as a 'valley' in this landscape. To demonstrate 

this, all fits were calculated for combinations of a and b within specified ranges using 

a direct search method described below. 

4.6.1 Ricker model fit by direct search 
As was shown above, the parameters of the Ricker curve are highly 

correlated. In order to visualise the Ricker function, and this correlation, a direct 

search method was applied. For a range of parameter combinations, the Ricker 

model was applied to the Shetland sandeel data and the least logged square 
differences (Equation 4.10) determined for each combination. The results were then 

compared to the optimal parameter combinations produced by bootstrapping and by 

linear regression. 



For the stock-recruit model, the intention is to parameterise the curve with 
minimal log-normal variance, therefore the least squares of the logged residuals was 
selected for minimisation (Equation 4.10): 

(ln(R/k)f 4.10 

where R is observed recruitment for a given SSB in historical data, Ft is recruitment 

predicted by the model from each historical SSB using the Ricker model and n is the 
length of the historical stock-recruit series. 

A range of plausible parameter values, in appropriate steps, was selected for 

parameter a and parameter b of a Ricker model fitted to the Shetland sandeel data. 

a was varied between 0.3 and 6 in steps of 0.3, while b varied between 0.003 and 
0.022 in steps of 0.001. A direct search program was written in Visual Basic 6 as a 
Macro to an Excel spreadsheet. For each possible combination of a and b, the 

predicted recruitment was determined from the historical values of SSB. The 

square-root of the least logged square differences (RLSD) of the log-transformed 

predicted recruitment and historical recruitment were determined and recorded. All 

possible combinations of a and b for the ranges and step sizes specified were 
tested. 10 

The square root sums of the differences, RLSD, for the parameter ranges 
tested, varied between 5.12 (a=2.10, b=0.012) and 15.93 (a=3.00, b=0.021). The 

'best fit' values returned when a=2.10 and b=0.012 corresponds closely to the 

optimal parameter values identified by linear regression (a=2.13, b=0.013) and by 

bootstrap analysis (a=2.19, b=0.013). Parameter a was tested in steps of 0.3 in the 
direct search method (so a=2.10,2.40,2.70..... ), so reducing the step size should 
identify a best fit combination which is closer to the combinations returned by linear 

regression and bootstrap analysis. 
The 3-dimensional 'landscape' of fits produced by combinations of 

parameters a and b is shown in Figure 4.7. This plot, takes the form of a landscape 

with a valley. The floor of the valley corresponds to the optimal parameter 

combinations shown in Figure 4.6, hence there are a number of closely correlated 

combinations which produce good fits to the historical data. The landscape is shown 
in a 2-dimensional form in Figure 4.8 as it is easier to identify optimal parameter 
combinations from this plot. The light area corresponds to best fits (RLSD between 
5.00 and 5.25), the parameter combinations identified by both linear regression and 
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bootstrap analysis fall within this area. The shape of the best fit areas corresponds 
to the shape of the spread of optimal parameter combinations found by bootstrap 

analysis in Figure 4.6. 

4.6.2 Results of Bootstrap Analysis 

As shown above, there is a close correlation between optimal values of 
parameter a and b of the Ricker model. The correlation is positive logarithmic so if a 
is low then b is low and if a is high then b is high. Each value of parameter a has a 
corresponding optimal value of parameter b. Selecting the values representing 95% 

confidence intervals for each parameter may not return a correlated pair, as these 

values were not selected simultaneously. The correlation equation shown in Figure 
4.6 were used to calculate the optimal value of parameter b for mean and 
confidence interval values of a (Table 4.3). These values were similar to the values 
determined from the bootstrap parameter distributions. 

The fitted Ricker curve and curves representing upper and lower confidence 
intervals are shown in Figure 4.9a. It was expected that the three curves would pass 
through a data point equal to mean SSB and median recruitment as the data only 
determines mean (or median) recruitment at mean SSB well. The data point where 
the three curves cross is equal to a SSB of 155 thousand tonnes and recruitment of 
47 billion (Figure 4.9a, circle). This was different to the values for mean SSB (127 

thousand tonnes) and median recruitment (60 billion) in the historical data. So why 
don't these curves cross at median recruitment and mean SSB? 

Each set of parameters found by bootstrapping in Figure 4.6 represents a 

stock-recruit curves which passes through mean SSB and median recruitment. 
Hilborn & Walters (1992) suggest that the simplest way to explain these alternatives 
is that the data only determines mean recruitment at mean SSB very well, and the 

alternatives represent the family of curves that pass through this point but with 
different slopes. But in bootstrap analysis, for each simulation n pairs of stock-recruit 
values are selected at random, with replacement, from the original data set. 
Therefore, the mean SSB and median recruitment will be different for each 
simulation depending on the stock-recruit pairs selected. In other words, during each 
bootstrap simulation, a stock-recruit curve is fitted through median recruitment and 
mean SSB but these values will alter slightly between simulation depending on the 

stock-recruit pairs selected. 
This method parameterised a Ricker curve with 95% confidence intervals for 

the sandeel stock, but it must be remembered that the decline in recruitment in the 
late 1980s preceded a decline in SSB. This may induce a spurious relationship 
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between stock and recruitment as SSB is dependent, with a lag of 2 years, on 
recruitment (see above and Chapter 3 for further details). Additionally, the curves 
appear to be strongly influenced by the series of four low recruit years that occurred 
during the late 1980s. The effect of these four years is pulling the curves down 
towards the x-axis. The question to be considered is: are these years outliers 
(therefore rare occurrences) or typical of the range of recruit values for the SSB 

range? The curves fitted so far assume these values are not outliers but, in the face 

of uncertainty, these values were removed from the data and further Ricker models 
identified by bootstrap analysis. Although removing data points is not recommended 
practice, in this case the points were removed experimentally to determine if these 
years could be considered biologically different. 

4.7 Ricker Models - Reduced Data Range 

The four low recruitment years (1987-1990 inclusive) were removed from the 
historical stock-recruit data and bootstrap analysis was reapplied, as described 

above, to identify parameter probability distributions. 1000 simulations of 24 years 
were performed and the results saved in an Excel spreadsheet. Estimates for 

parameters a and b were recorded for each simulation together with estimates of 
mean recruitment, mean SSB and the standard deviation of the residuals around the 
Ricker curve, r r, 

Estimates for parameters a and b are shown in Table 4.3 and the curves are 
displayed in Figure 4.9b. Compared to the Ricker curves estimated using all the 
historical data (Figure 4.9a), these curves have steeper slopes from the origin and 
the maximum recruitment estimated by each curve (maximum height of the curve) is 

greater. The mean SSBs of the bootstrap stock-recruit pairs were similar for both 
sets of data (126 x 103 tonnes for all the data, 127 x 103 excluding low years), but 
the median recruitment was higher for the data sets excluding the low years (89 x 
109) then for the complete data set (59 x 108). 

Removing the four low recruitment years, greatly increased the estimate of 
parameter a (from 2.191 to 2.851) but had little effect on parameter b (0.013 

complete data set and 0.012 reduced data set). So, the four low recruit years are 
"pulling" the curve down towards the origin, in other words these years could be 

considered biologically different. But which of these models is the more suitable to 
describe recruitment dynamics at Shetland? The complete and reduced historical 
data sets only contain 24 and 20 points respectively, without many more data points 
or without further data points at low SSB levels (to provide information the slope of 
the curve from the origin) it is difficult to discriminate between them. Additionally, 
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considering the 95% confidence intervals, these curves are not significantly 
different. Therefore, simulations will be carried out using both models. 

4.8 Shepherd Models PART 2 

This part of Chapter 4 is concerned with the Shepherd stock-recruit model. 
Shepherd (1982) proposed a stock-recruit model (Equation 4.11; Figure 4.10) which 
is more flexible then the Ricker model. The model has three parameters so the 

shape of the curve can be altered to be dome-shaped, to increase to an asymptote 
or to increase indefinitely. The greater flexibility of the Shepherd model is due to 
increased complexity but this makes producing parameter estimates inherently more 
difficult. Estimates cannot be found by simple linear regression, as was used for the 
Ricker model. Instead, optimal parameter combinations were identified by least 

sums of logged square differences and by bootstrap analysis. 
The Shepherd stock-recruit model (1982) takes the form: 

R= aS /[1 + (S/K)° ] 4.11 

where R is recruitment, S is SSB and a, K and Q are constants. 
Parameter a is the slope of the curve from the origin and is a measure of the 

maximum recruitment-per-unit-biomass, this is only attained at low stock sizes 

where density-dependent mortality of pre-recruits is least (Shepherd 1982). 

Parameter K is the threshold biomass, that is the biomass above which density- 

dependent effects dominate density-independent effects. Parameter Q, is the degree 

of compensation, which is an aspect of density dependence in recruitment. If Q<1 

then density dependent effects are very small and the number of recruits will 

continue to rise indefinitely as the stock size increases (Shepherd 1982). 

By changing the parameters (a, K and 8), the shape of the Shepherd curve 

can be altered to copy the shape of other stock-recruit curves (Figure 4.10). If, 8= 1, 

then the Shepherd curve takes the shape of a Beverton-Holt curve (1957) which 
rises to an asymptote. As stock size increases the number of recruits also 
increases, and at high stock levels the number of recruits approaches (but does not 

meet) a maximum. Thus at high stock densities, the density-dependent effects 
compensate for any increase in spawning stock size and therefore any potential 
increase in recruitment. If ß>1, the stock-recruit curve is dome-shaped like the 
Ricker (1954,1975) curve. Recruitment increases with spawning stock size to a 
maximum and, beyond this, declines with further increases in recruitment. At high 

115 



stock biomasses, the density dependent effects are so strong that recruitment 
declines as stock size increases (Shepherd 1982). This may occur in cases where 
there is competition for limited resources, such as food or space. Shepherd (1982) 

suggests 'it may be permissible to expect ,8 to lie in the range 0.5 to 2'. 6 should only 
be greater then 2 where strong evidence of density dependence exists. 

4.9 Fitting Shepherd model by 'least squares' 
Initial estimates for parameters a, K and Q were obtained using the 

subjective methods described by Shepherd (1982). Parameter a is a measure of 

recruits-per-unit-biomass which occurs at low SSB so Shepherd suggests 
estimating a by drawing a straight line through the origin just to the left of the data 

points or so 10% of data points are to the left of the line - the slope of the line is an 

estimate of a. A straight line drawn to the left of all data points gives a value 3.20 

(Figure 4.11 dotted line). However, the position of the line was influenced by a very 
high recruitment produced at a mid-sized SSB. As the models being fitted will pass 
through median recruitment and mean SSB with log-normal errors, the stock-recruit 
data was ranked by SSB and the average ln(R/SSB) for the bottom 25% of values 

was selected as an initial estimate for parameter a. This returned a value of 1.48, 

much less then the value estimated (Figure 4.11 solid line). This value was taken as 
an initial estimate of a. 

Selecting a value less then 1 for an initial estimate of parameter 8 assumes 
that recruitment will continue to rise with SSB. This is unlikely in any exploited fish 

stock as eventually density dependent effects will dominate (for example, through 

competition for food). Selecting a value greater then 1 assumes that recruitment 
declines with SSB at high SSBs. While the stock-recruit scatter plot (Figure 4.11) 

suggests this may occur in the Shetland sandeel stock and high density 

dependence is biologically plausible (see Introduction), the degree of 
overcompensation is difficult to determine objectively. Therefore, as an initial 

estimate, Q was taken to be 1 so recruitment increases to an asymptote with SSB. 

Once initial estimates have been made for parameters a and ß, it is possible 
to estimate K by rearranging Equation 4.11 and using values of SSB and R through 

which it is desirable the curve should pass (Equation 4.12). 

K=S * /(aS* I(R * -1))Y 4.12 
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where S* and R* are the desired values of SSB and recruitment respectively through 

which the curve should pass. 
Shepherd (1982) states that S* and R* need not be the mean values from 

the historical data. As the curve will be applied with lognormal variance in the 

population model simulations, R* was taken to be the median recruitment from the 

historical data and S* the mean SSB. The values for a, K and ß estimated 

subjectively, were used as initial estimates for fitting the Shepherd stock-recruit 

model (Table 4.4). To assume log-normal error in the fitted curve, the parameters 

were fitted to minimize square root of Equation 4.10 (RLSD) using the Solver 

Function (Fylstra et a!., 1998) in the Data Analysis Toolpak of Excel. 

A curve was parameterised with a low threshold SSB of 44,000 tonnes 
(above which density dependent effects dominate, Table 4.4). Minimizing RLSD, 

reduces the effect of extremely large recruitments but will increase the relative effect 

of small recruitments. The curve produced by these parameters (Figure 4.12, curve 
1) was strongly influenced by the series of years of extremely low recruitment (<15 

billion) which occurred in the late 1980s. Without a long data set (there are only 24 

years of data), it is difficult to determine if these low recruitments for relatively mid- 

sized SSBs are rare. Therefore, this greatly reduces any confidence in the fitted 

stock-recruit models. 

4.10 Fitting Shepherd Model by Bootstrap Analysis 

Bootstrap analysis (see Efron & Gong 1983) was also applied to the 

Shepherd model to estimate parameters. The problem was more complex than 

solving the linear regression equations for the Ricker model. It is possible to find 

optimal parameter estimates for the Shepherd model by using non-linear regression 
but this is difficult to code in a computer programme. Therefore, the Solver function 

in Excel was used to minimize the RLSD. By writing a Macro to an Excel 

spreadsheet, it is possible to define a basic Solver model, to run Solver and return 
the results to an Excel spreadsheet for each set of randomly selected stock-recruit 
data. This means optimal parameters can be determined quickly and simply with a 

minimum of coding. 
A program was written in Visual Basic 6 as a macro to an Excel spreadsheet 

to perform bootstrap simulations. For each bootstrap simulation, n stock-recruit pairs 

were selected at random, with replacement, from the historical data (series length 

n). For each set of n stock-recruit pairs the mean SSB, mean recruitment and root 
squared log differences (RLSD) were determined. The Solver function was then 

applied (within the program) to minimize the squared log differences. For each 
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simulation, the initial Solver parameters were set to the initial parameters 
determined earlier (Table 4.4). 1000 simulations were run and the mean recruitment, 
mean SSB, squared log differences and Shepherd parameters estimated for each 
simulation, were read into an Excel spreadsheet. 

Estimates, returned by 1000 bootstrap simulations, for parameter a varied 
between 0.35 and 194, parameter K between 0.02 and 249 and parameter ft 
between 0.55 and 17.69. These represent large ranges and portions of each range 
(high values of parameter a and low values of parameter K) will be biological 

unreasonable. According to Shepherd (1982) the feasible range parameter 8 is 0.5 
to 2, much smaller then the range identified by bootstrap analysis. 

Histograms for all three parameter probability distributions are shown in 
Figure 4.13. There appears to be more then one optimal parameter combination. 
Histograms for parameters a and ß could be considered unimodal. There is a strong 

mode for parameter a at category 1-2 and a strong mode for parameter ,6 between I 

and 1.5. These are both feasible ranges, a describes the slope from the origin which 
was subjectively estimated to be approximately 1.48 (within modal histogram range). 
Q represents the density dependence and, for fish species in general, Shepherd 

(1982) suggests this should lie between 0.5 and 2. The modal histogram range for 
,8 

indicates this is probably between 1 and 1.5. Considering the biology and ecology of 
sandeels, it was assumed that 6 would be greater then 1 as there is potential for 

strong density dependence. 

The histogram for parameter K is more complex and could be considered 
multimodal. There is a high frequency of values in category 0-10 but a relatively 
constant frequency of values between 10 and 130. The strong correlation between 

parameters a, K and 8 is shown in the 3d scatterplot in Figure 4.14 and the bubble 

plot in Figure 4.15. Using these relationships, it was possible to identify general 
stock-recruit curves relating to the modal parameter values. 

Firstly the high frequency of values for parameter K in the category 0-10 was 
considered, so all combinations with parameter K in this range were selected. 
Generally, when K was low, parameter p was low (0.55 - 1.9) but parameter a 
ranged from 5.8 to 194 (Figures 4.14 and 4.15). Thus, the high frequency of K 

values below 10 accounts for part or all of the modal values for ,6 (1-1.5) and all the 
high values for parameter a. 

When K was < 10 (modal value = 5.6), the corresponding values for a and ß 

were determined (18 and 1.4 respectively) and the curve parameterised by this 
combination shown in Figure 4.12 (curve 2). This curve is not considered plausible. 
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Basically, the best fit model in this case is a constant recruitment model which can 

account for the modal parameter ranges found by bootstrap analysis. If recruitment 

relatively constant, the best fit Shepherd model will have a very steep line from the 

origin to the constant recruitment value. Hence parameter a will be very high (steep 

line from origin), parameter K will be very low (low turning point) and parameter 6 

will be close to 1 (so curve levels out). Q is not exactly 1 due to the trade off 
between the three parameters. This is not a plausible model for simulating 

recruitment as it basically assumes no relationship between SSB and recruitment. 

Part or all of the modal peak of parameter 6 at category 1-1.5 can be 

accounted for by the combinations with low values of parameter K. Parameter 

combinations where K< 20 were removed and the probability distribution of 

parameters K, ß and a reassessed. The modal value for parameter a is still in the 

range 1-2, but the smaller categories in this histogram has narrowed the range down 

to 1-1.5 (Figure 4.16). This was expected as low values of K were correlated with 

high values of a. The modal value of parameter ß was altered to the category 2- 

2.5. Although Shepherd (1982) suggests a maximum value of 2 for ß, it was noted 

that with strong evidence for density dependence Q may set to greater then 2. Due 

to the potential competition for resources such as space (as only certain areas of the 

seabed are suitable for sandeels to bury themselves), it is expected that density 

dependence will be strong in sandeel populations. 
Taking the modal value for parameter a (1.25) from the reduced histogram, 

the corresponding values for Q and K were estimated (3.2 and 120 respectively) and 

the stock-recruit curve parameterised plotted (Figure 4.12, curve 3). This produced a 
dome-shaped curve that could feasibly describe the stock recruit relationship for 

sandeels at Shetland although parameter Q is fairly high (3.2). Although 6 is higher 

then the maximum value suggested by Shepherd (1982), Shepherd does note that ,6 
could be higher if evidence exists for strong density dependence. For reasons 
discussed earlier (through competition for resources) density dependence in 

sandeels may be very high. Taking the modal value for parameter 8 (2.23) and 

calculating the corresponding values for a and K produces estimates of 2.28 and 70 

respectively (Figure 4.12, curve 4). At very low values of SSB, this curve was similar 

to the curve fitted by non-linear regression. 
The series of four low recruit years in the late 1980s strongly influenced the 

statistical fit of the Shepherd model. When these years were included, it was not 

possible to fit feasible stock-recruit models. In this case, the best model identified 

was a constant recruitment model - therefore there was no influence of stock 
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biomass on recruitment. These four years also influenced the fit of the Ricker 

models parameterised in part 1. Although there is no biological reasoning for 

excluding these data points, for exploration of the data set, the four low recruit years 

were removed from the historical data set and new estimates for the Shepherd 

curve parameters were identified by bootstrap analysis. 

4.11 Shepherd Models - Reduced Data Range 
The four low recruit years that occurred over 1987-1990 inclusive, were 

removed from the historical data. Initial subjective estimates for parameters a, K and 
fl were adjusted accordingly. a was estimated to be 2.5 and parameter ß was set to 

1, for the reasons outlined before (unlikely to less then 1). An initial estimate for 

parameter K was found by using the estimates of a and ,ß in Equation 4.12. S* was 

taken to be mean SSB (126 x 103 tonnes) and R* was median recruitment (66 x 109) 

in the reduced data set. This returned an initial estimate for parameter K of 26. 

Bootstrap analysis was then applied, using the methods described in detail above. 
1000 simulations were carried out and the results saved to an Excel spreadsheet. 

The resulting histograms are shown in Figure 4.17. The major difference 

between these histograms and the histograms determined earlier using the 

complete historical data set (Figure 4.13) is that these histograms are unimodal. 
This means there is just one 'best fit' value for each parameter, compared to the 

multiple values estimated previously and confidence intervals can be estimated. 
From the histograms, the mean value for parameter a was 2.00 and the median 

value of parameter ,6 was 2.6. For parameter K, there is not a distinct modal value, 

but the mode occurs within the range 60 - 120. The mean value was 96, therefore 

this was assumed to be the best estimate for parameter K from the histogram. From 

the relationships between a and K and between 8 and K, estimates for parameter K 

returned from the values for a and 6 specified above were 91 and 94 respectively. 
These are very close to the median value of K (96) from bootstrap analysis. 

As the histograms of parameter distributions were unimodal, it was possible 
to estimate confidence intervals from the appropriate percentiles. The 75% 

confidence intervals were determined and the resulting curves are shown in Figure 

4.18. The parameter values are given in Table 4.4. The upper and lower 75% 

confidence intervals for parameter K were chosen for two reasons: firstly, these 

correspond with the modal range of K shown in the parameter distribution histogram 
(Figure 4.17) and secondly, the lower 95% limit returns negative value for parameter 
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a so this model produces recruitment values between 0 and -2 (billion) over the 
historical data range (recruitment cannot be negative). 

To conclude this section, analysis with the complete data set (all data points) 
indicated the best fit model shows no relationship between SSB and recruitment. 
Removing the four low recruitment years (1987-1990) enabled a Shepherd model to 
be parameterised with 75% confidence intervals. Therefore, the four low recruit 
years appear to be 'biologically different' and so can be considered atypical of the 

recruit data for the SSB range. In other words, some additional factor was affecting 
recruitment during this period. 

4.12 Model Simulations PART 3 
The intention is to produce recruitment models which reproduce the 

parameters of the historical data set. Only the Ricker models are considered here 

due to the difficulties in defining Shepherd stock-recruit models. A term for 

stochasticity was introduced into the Ricker models and the models were written into 

the population model constructed in Visual Basic in Chapter 3. Simulations were 
carried out and the results compared with the historical data set. The Ricker model 
was then further adapted to include a function to autocorrelate the residuals and 

simulations carried out. Finally, the conclusions drawn from all the model 

simulations are discussed. 

4.13 Stochastic Ricker Models 

Ricker models (Equation 4.2) were parameterised for Shetland sandeels in 
Part 1, however the models include no term for stochasticity. Recruitment, in any 

exploited fish population, is variable about the stock-recruit curve so an additional 
term was incorporated to induce stochasticity. As discussed in part 1, the residuals 

of the Ricker model fitted to the sandeel data where lognormally distributed about 

the curve: 

R= aSe-bSew 4.5 

where a and b are constants, R is recruitment, S is SSB and w is normally 
distributed with a mean of zero (therefore ew is Iognormally distributed) and standard 
deviation 6k,. 

Equation 4.5 can be rewritten as: 
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R= aSe'"-bS 4.13 

w represents the lognormal distribution of the residuals about the Ricker model. For 
the 'best fit' Ricker model identified by bootstrap analysis for the complete data set, 
the mean of the residuals was equal to 0.00 and the standard deviation equal to 
1.07. Therefore, it was assumed for simulations that T, equals 1.07. 

4.13.1 Simulations 
The Ricker model with stochasticity (Equation 4.13) was included in the 

population model developed using Visual Basic in Chapter 3.1000 simulations of 24 

years were carried out for the mean Ricker curve identified by bootstrap analysis for 
the complete historical data set. The mean and standard deviations of SSB and 
In(recruitment) for each simulation were calculated in the programme and saved as 

output. In addition, for the first ten simulations, the parameter output values for each 
year were recorded. 

The results are shown in Table 4.5. The observed mean values for mean 
In(recruitment) produced by the model (3.79) were slightly less than the historical 

value (3.88). These correspond to median recruitments of 44 billion and 48 billion 

respectively. The median standard deviation of In(recruitment) produced by the 

model was 1.15, higher then the target value of 1.08. However, inspecting the 

distribution histogram revealed the modal value lay between 1.05 and 1.1 therefore, 

the curve was generally producing In(recruit) distributions with standard deviations 

similar to the standard deviation of the historical distribution. The mean SSB values, 
138 x103 tonnes, was greater than the historical mean value (127 x103) but again 
the distribution histogram revealed the modal values lay between 125-130 x103 
tonnes. The median standard deviation the SSB distribution (61) was close to the 

historical value (60). In conclusion, this model produced ln(recruit) and SSB 

distributions which were generally similar to the target (historical) distributions. 

To visualize the population dynamics, the first six simulations carried out 
Ricker curve were selected and the In(recruit) and SSB time series plotted together 

with the time series from the historical data (Figure 4.19). While the series for the 

mean Ricker curve could be considered to generally be within the maximum and 
minimum values observed in the historical data (heavy line), there were some 
extreme values for SSB and for In(recruits). The large peaks in recruitment 
(produced due to stochasticity), such as that produced in year 15 of Figure 4.19a 
blue time series (573 x109 recruits) are followed, at a lag of 2 years, by a large peak 
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in SSB (Figure 4.19b year 17,410 x103 tonnes). This, in turn, produced an 
extremely small recruitment that year due to the shape of the stock-recruit model 
(year 17,5 x 109 recruits). 

The historical In(recruit) time series showed positive autocorrelation (r1=0.51) 

as determined by Equation 3.14 in the previous Chapter. Although the Ricker model 
did not include a term to autocorrelate the residuals, some inherent autocorrelation 
exists due to the shape of the stock-recruit curve. The mean r, values returned by 
the Ricker model is also shown in Table 4.5 - this was equal to 0.07. 

To summarize, the mean Ricker model with log-normal stochasticity, 
parameterised by bootstrap analysis, could be considered to generally produce 
distributions of In(recruit) and SSB which were similar to the historical series. 
However, the model sporadically produces very large recruitments which greatly 
increase SSB at a lag of two years (as the fish enter the spawning population at age 
2). These large recruitments are the result of the long tail of the stochastic log- 

normal distribution about the stock-recruit model. The model did not show any 
significant autocorrelation in the In(recruit) time series. Incorporating autocorrelation 
in the recruit model may reduce the frequency with which extremely large 

recruitments occur, as the residual of recruitment in any year will be a function of 
SSB and the recruitment residual in the previous year. In order to induce 

autocorrelation, an additional term needs to be incorporated into the stock-recruit 
model. 

4.14 Autocorrelated Ricker Model 

In the model constructed above, variation in recruitment about the stock 
recruit curve, was completely random. This type of variation in a time series about a 
mean, where the observations are distributed randomly and independently from the 

same normal distribution, is referred to as white noise (Brown & Rothery 1993). 
Population models often incorporate environmental stochasticity as random (white) 

noise, however in reality this is rarely the case. Environmental stochasticity can 
induce variation in population size and population growth rate but the effects usually 
persist longer than one season or even one year. These long-lasting effects will 
induce positive autocorrelation in the time series, which is referred to as red noise. 

Environmental factors appear to be a major force driving variability in 

recruitment to the Shetland sandeel stock. There is strong evidence for 

autocorrelation in the Shetland recruit series, therefore introducing autocorrelation in 

recruitment should improve model fit to the historical data. It must be remembered 
that the historical series is short (24 years) so confidence in the autocorrelation 
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estimate is reduced. Autocorrelation in recruitment may be an important aspect of 
Shetland data, particularly due to implications for marine predators. For example, 

seabird breeding success was greatly reduced during the late 1980s (Monaghan 

1992) when a series of very low recruitment years occurred (even though SSB was 
high). To improve our understanding of recruitment dynamics, it is vital 

autocorrelation is incorporated in the stock-recruit model. 
As analyzed in the previous Chapter, the In(recruit) time series for Shetland 

sandeels is positively autocorrelated. The In(recruit) time series can be reproduced 

using an autoregressive model and the order of this model was 1 (year): 

1nýRr) _q$o +0, (ln(Rr-1)-00)+sr 4.15 

where Rt is the recruitment in year t, b, is the autoregressive parameter for t-1, O, is 

the constant term which is approximately equal to the average level of the series 

and st is a normally distributed random number with a mean of zero and a standard 
deviation, o, equal to: 

(r E =0-R(1-Oi 2)0,54.16 

where oR is the standard deviation of the In(recruit) distribution. 

This model simulated a positively autocorrelated In(recruit) time series. By 

combining this model with the Ricker model, it should be possible to autocorrelate 
the residuals around the stock-recruit model. To reiterate, variation around the 

Ricker model is lognormally distributed so the model takes the form: 

R=a Se-bS 4.13 

where a and b are constants, R is recruitment, S is SSB and w is normally 
distributed with a mean of zero. To incorporate autocorrelation, the residuals (as 

described by e°" in Equation 4.13) were autocorrelated by adapting a first order 

autoregressive model (Equation 4.15). As the residuals are distributed about the 

stock-recruit curve with a mean of zero, the series mean, O, becomes zero. 
Substituting w for /n(R) in Equation 4.15 and setting Oo to zero gives: 

wt =A wr-i + er 4.17 
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To avoid confusion with the time series models analyzed in the previous 
Chapter, 0 was expressed as a so: 

Wt =OWt-I +et 4.18 

e is normally distributed random number with a mean of zero and a standard 
deviation cr, which is equal to: 

6E = a'w 1- aZ 4.19 

where a, is the standard deviation of the log-transformed residuals about the stock- 

recruit curve. 
The equation for a Ricker model with autocorrelated residuals is therefore: 

Rt = aSteav, _, -bs+E, 4.20 

where Rt is recruitment in year t, S is SSB, a, b and a are constants and a is the 

coefficient of autocorrelation. 

4.14.1 Simulations 

The autocorrelated Ricker (Equation 4.20) model was incorporated into the 

population model (see Chapter 3) and simulations run using the mean Ricker curve 

parameterised using the complete historical data set. It was assumed that the 

standard deviation of the residuals, O%, was 1.07 (as was returned by analysis of the 

historical recruitment around the Ricker curves). As the autocorrelation in historical 

In(recruit) time series was 0.51 the input autocorrelation coefficient, a, was set to 
this value. 1000 simulations of 24 years were run for each Ricker model and the 

results saved to an Excel spreadsheet. 
Introducing autocorrelation had little effect on the parameters of the 

ln(recruit) and SSB time series produced by the population models compared to the 

output from the stochastic (non-autocorrelated) model (Table 4.5), with the 

exception of the autocorrelation coefficient, r,, of the In(recruit) time series which 
was higher. The In(recruit) and SSB time series produced by the first six simulations 
are shown in Figure 4.20. Compared to the stochastic, non-autocorrelated model 
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output (Figure 4.19), the recruit time series shows autocorrelation, in that the series 
tends to wander one side of the mean or another for a number of years at a time. 

a (input autocorrelation coefficient) was set to 0.51 for the models, but the 

mean output value was 0.37. Considering the output histogram for r, revealed the 

modal value lay between 0.40 and 0.45. Increasing the input value of a should 
increase the output autocorrelation in the In(recruit) time series, r1. To test this, 

simulations using the mean Ricker curve were run with a varying between 0.0 and 
0.8 in steps of 0.1.1000 simulations of 24 years were carried out for each value of 

a. The results are shown in Figure 4.21. As a increases so output r, increases but r, 
is always less then a. A mean output r, of 0.5 is produced when the input value of a 
is 0.73, this represents very strong forcing on the stock-recruit relationship. 

Time series plots of the historical ln(recruit) at Shetland indicate that forcing 

on the stock-recruit relationship may be very high, even though there are only 24 

years of data (Figure 4.2b). Simulations were repeated with the input autocorrelation 

parameter, a set to 0.73, the results are shown in Table 4.5. Increasing a to 0.73 

did produce, on average, In(recruit) time series with higher autocorrelation 

coefficients (r, ). The ln(recruit) and SSB time series produced by the first six 

simulations were plotted together with the time series from the historical data (Figure 

4.22). An input autocorrelation coefficient, a, of 0.73 represents very high forcing on 
the stock-recruit relationship, as can be seen in Figure 4.22 compared to Figure 

4.20 where a=0.51. Series are above or below the mean for longer periods of time, 

on average, then in Figure 4.20. 
In conclusion, a Ricker model with autocorrelated residuals was developed 

for Shetland sandeels, assuming no net external recruitment. Due to the short time 

series in the historical data (24 years) confidence in the calculated autocorrelation 

coefficient (0.51) is reduced. Therefore, in the face of uncertainty, the mean Ricker 

model parameterised by bootstrap analysis will be used in future model simulations 
together with both a high (0.73) and moderate (0.51) input coefficient of 

autocorrelation. 

4.15 Model Simulations - Reduced Data Set 

The sporadic extreme recruitments produced by the models are, in part, due 
to the large variation in the residuals around the stock-recruit curves (standard 

deviation of In(residuals), q, =1.07). The large variation is mostly the result of four 
low recruit years observed in the late 1980s (see above for discussion). Removing 
these will reduce the variation around the stock-recruit model, so reducing the 
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frequency with which large recruitments occur - although it is not good practice to 

remove data points from analyses (without very good reasons). The intention is to 

explore various scenarios for recruitment so removing the four low recruit years 

accounts for the scenario that these were rare events. 
Ricker models (mean plus 95% confidence intervals) were parameterised 

above using the reduced Shetland sandeel data set (minus four low years; Figure 

4.9b). Removing the four low years increased the mean of the historical ln(recruit) 
distribution to 4.25 and reduced the standard deviation to 0.69 (Table 4.5) but had 

little effect on the mean and standard deviation of the SSB distribution. The standard 
deviation of the residuals around the mean Ricker curve was 0.642, much less then 

the standard deviation (1.07) around the Ricker model for the complete data set. 
The mean curve identified will be tested in model simulations. 

The models were tested as described above using the population model 

written in Visual Basic 6.0. Autocorrelated log-normal stochasticity in recruitment 

about the Ricker curves was introduced using Equation 4.20. The standard deviation 

of the residuals, oh,, was set at 0.642 (from the reduced historical series). An 

autocorrelation coefficient was not determined for the reduced historical data set as 

a continuous series is required for this. Instead, it was assumed coefficient would be 

similar to that seen in the complete data set (0.51). The input coefficient of 

autocorrelation, a, was set to 0.51 and 1000 simulations of 24 years were run. The 

time series for the first six simulations for each Ricker curve are shown in Figure 

4.23. 

While the mean and standard deviation of the ln(recruit) distribution was 

similar to the values of the reduced historical distribution, the mean of the SSB 

distributions were larger then the historical mean and the standard deviations less 

(Table 4.5). The In(recruit) and SSB time series from the first six simulations show 
that while recruitment generally varies within the maximum and minimum values of 
the historical data set, the occurrence of low years is rare. However, due to 

autocorrelation, if a low year occurs it is likely this will be followed by more low 

years. 
The mean output autocorrelation coefficient, r, (0.36), was less then the 

input autocorrelation parameter a (0.51), so increasing a should increase r,. As 

before, simulations using the mean Ricker curve were carried out with a varying 
between 0.4 and 0.8 in steps of 0.1.1000 simulations of 24 years were carried out 
for each value of a. The results are shown in Figure 4.19 (squares). An input value of 

a=0.73, is required to produce an mean output autocorrelation coefficient of 0.5, 
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this represents very strong forcing on the stock-recruit relationship. The relationship 
between the input autocorrelation parameter, a, and the output autocorrelation 
coefficient, r,, was similar to the relationship for the Ricker curves parameterised 
using the complete data set. 

The population simulations were rerun with a set to 0.73. Increasing the 
input autocorrelation coefficient from 0.51 to 0.73 had little affect on the mean 
In(recruit) distribution but decreased the standard deviation from 0.64 to 0.55. The 

recruitment and SSB time series produced by the first six simulations are shown in 
Figure 4.24. 

4.16 Summary of Ricker Model Simulations 
Simulations of the population model were carried out using two Ricker stock- 

recruit curves to simulate recruitment. The first curve was parameterised by using 
the complete historical data set and the second using a reduced historical data set 
(minus four low years). The autocorrelation coefficient from the complete historical 

In(recruit) data series was calculated as 0.51, so this value was used as the input 

autocorrelation coefficient in the recruitment models. The output recruit series 

generally had a lower autocorrelation coefficient (0.36-0.37) then the input value. 
Further simulations, varying the input autocorrelation coefficient, indicated an input 

value of 0.73 would produce average output values of 0.50. 
The historical recruit time series is only 24 years long, so confidence in the 

calculated autocorrelation coefficient is reduced. In view of this both input 

autocorrelation coefficients were considered to produce recruit time series which 
were similar to the historical series. 

4.17 Chapter Conclusions 

Bootstrap analysis was used to parameterise a Ricker stock-recruit model for 

the Shetland data set with 95% confidence intervals. However, the series of four low 

recruit years in the late 1980s strongly influenced the statistical fit of these curves. 
Similarly, bootstrap analysis was also applied to the Shepherd stock-recruit model. 
In this case, the best fit model identified was similar to a constant recruitment model 

- therefore there was no influence of stock biomass on recruitment. Again, the four 
low recruit years in the fate 1980s appeared to be influencing the model fit. 

Although there is no biological reasoning for excluding these data points, for 

experimental exploration, the series of four low recruit years was removed from the 
data set and bootstrap analysis was reapplied to fit both Ricker and Shepherd 
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models. A Ricker model was parameterised which, considering 95% confidence 
intervals, was not significantly different to the curve parameterised previously using 
the complete historical data set. Removing the data points also enabled a Shepherd 

curve, with confidence intervals, to be parameterised. Hence, these four low recruit 

years could be considered to be biologically different. There are three main 
hypotheses that could explain this. 

Firstly, assuming recruitment can be expressed as a function of SSB, the 
four low recruit years are atypical of the expected range of recruitment for the SSB 

levels. Some extra factor was suppressing recruitment in these years. There could 
be any number of possibilities affecting pre-recruit stages, for example high sea 
temperature at crucial periods of the year may affect egg survival and hatching, 

ecological changes may reduce availability of suitable plankton for the feeding 

larvae and juveniles, or predation on the pre-recruit stages could have been 

extremely high during these years. 
Some evidence of causes for ecological changes in the North Sea over this 

period (1987-1990 inclusive) can be found in time series of over 50 years from the 

Continuous Plankton Recorder (Lindley et a!., 1990; Edwards et al,. 1997; Holliday & 
Reid, 2001). The appearance of planktonic oceanic indicator species in the North 

Sea during this time suggests an exceptional inflow of Atlantic water resulting in, 

what can be considered as, an ecological regime shift. There may be evidence of 
large-scale changes in the recruitment patterns for North Sea sandeels. As 

discussed in Chapter 3, the North Sea recruit time series shows two periods of 
different patterns: during 1979-1985 recruitment alternates between high and low 

years (see Chapter 3, Figure 3.7a) this then changes to a three year cycle of two 

high recruits followed by one low recruitment (1988-1995). 
The second hypothesis, discussed by Hilden (1997), is that SSB was only 

perceived to be high in the late 1980s. Hilden suggests this is unlikely for Shetland 

sandeels but could occur if the natural mortality rate is seriously overestimated, if 

the age of maturity is underestimated, if catches are overestimated or if the fishing 

mortality of the oldest age group is underestimated. There are no independent 

estimates for the natural mortality rates of sandeels at Shetland, for stock 

assessment these are assumed to be the same as that of sandeels in other areas of 
the North Sea. However, due to the large numbers of seabirds nesting at Shetland it 
is possible that natural mortality rates may even be underestimated here (Furness, 
1990, Bailey et at, . 1991). It is also unlikely that the age of first spawning is 

underestimated, it is assumed that all sandeels aged 2 and above are mature, so 
this may even be overestimated as a proportion of the 1-group fish may be mature. 
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It is also unlikely that catches are overestimated as the stock is fished only by a 
small number of local vessels and all catches are landed at the fishing processing 
plant in Shetland. So was SSB overestimated in the Shetland stock during the late 
1980s? Although possible, it must be concluded this is unlikely. Additional evidence 
exists in research survey indices conducted annually in August at Shetland during 
1984-1997 inclusive (excluding 1987 and 1995). These indicate that SSB was not 
low during the late 1980s. 

The third hypothesis, advanced by Wright (1996), is that an unspecified 
number of recruits originating from outside Shetland waters enter the Shetland 

system in certain years. This makes it difficult to define a stock-recruit relationship 
from locally produced recruits as this input is unquantified. The low recruitment seen 
during the late 1980s, could then be explained by a reduction in the transport of 
larvae and pre-recruits to Shetland (Proctor et al,. 1998). Only locally produced 

recruits are joining the stock during this period, so these four years may provide an 
indication of the underlying true stock-recruit relationship. This hypothesis will be 

considered further in the next Chapter (5) and models developed to simulate 
external recruitment. The addition of external recruits may be vital for the 

persistence of the stock at Shetland. 

4.18 Summary 
10 

9A Ricker model with 95% confidence intervals was fitted to the 

complete historical data set (including low years) by bootstrap analysis. 

9 The Shepherd stock-recruit model was also fitted to the complete 
data set using bootstrap analysis. The model identified was constant 
recruitment, that is stock biomass has no influence on recruitment. Two curves 
were parameterised by removing combinations which showed no relationship 
between stock and recruitment, but the probability of these curves is low. 

" The four low recruit years in the late 1980s could be considered to be 

atypical of the expected range of recruitment for the SSB levels - these years 
are biologically different. Some extra factor may have been affecting recruitment 
in these years. 

" Removing the four low years enabled both a Ricker curve and a 
Shepherd curve to be fitted by bootstrap analysis, with confidence intervals. 

" Simulations were carried out with the two Ricker models 
(parameterised using complete data set and reduced data set) with 
autocorrelated variability about the stock-recruit curve. Two levels of 
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autocorrelation were tested: cr0.51 and cc=0.73. Both produced SSB and 
In(recruit) series which were considered suitable when compared to the 

historical data set. 
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Table 4.1. Ricker model parameter estimates (a & b) and corresponding variances 
(6na & ob) for Shetland sandeels (recruitment in billions, SSB in 000 tonnes). C]K, is 
the resulting variance around the stock-recruit curve. 

Parameter ! Shetland 
b 0.01250 
O, 0.00378 

In(a) 0.75796 
Ana 0.52855 
a 2.134 
aW 1.06641 

Table 4.2 Sandeels at Shetland. Estimates for the parameters (a'; b) of the Ricker 
stock-recruit model fitted to the complete historical data set (from ICES 1999) and 
the data set minus four low recruit years (1987-1990 inclusive). The mean 
parameters estimated by bootstrap analysis and upper and lower 95% confidence 
intervals (c. i. ) shown. Bootstrap b is the value estimated from bootstrap analysis, 
Correlation b is the value estimated from the correlation between a and b 

Bootstrap a" Bootstrap b Correlation b 
mean 2.191 0.012763 0.012762 

All data lower 95% c. i. 1.032 0.007909 0.007930 
upper 95% c. i. 4.451 0.018696 0.017311 

mean 2.851 0.011736 0.011735 
Minus Low Years lower 95% c. i. 1.784 0.008718 0.009178 

upper 95% c. i. 4.538 0.014690 0.014270 

132 



Table 4.3. Parameters (a, b) of the Ricker (1954,1975) stock-recruit model 
estimated by linear regression and by bootstrap analysis for the Shetland sandeel 
stock. a= mean value for parameter a, a, = standard error of parameter e, a" _ 
adjusted a (see text), b= mean value for parameter b, ab = standard error of 
parameter b, 95% c. i. = 95% confidence intervals, a, = standard deviation of the 
residuals. 

Parameter Shetland sandeels 
b± 06 0.012501 + 0.003782 

Linear Regression a 2.134 
or, 1.066 

Mean R 76 
Median R 60 
Mean SSB 127 
b+ (Tb 0.012763 + 0.003338 

b lower 95% c. i, 0.007909 
b upper 95% c. i. 0.018696 

Bootstrap a+ (78 2.4206 + 1.1646 

a lower 95% c. i. 1.032 
a upper 95% c. i. 4.451 

In(a) ± Q1�(. ) 0.7845 + 0.4458 

a" 2.191 
a,, 1.010 

a, lower 95% c. i. 0.746 

o-, upper 95% c. i. 1.244 
Mean R (billions) 59 

Mean SSB x103 tonnes) 127 
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Table 4.4 Estimates of parameters, a, 8&K, of the Shepherd (1982) stock-recruit 
model estimated subjectively, by non-linear regression and by bootstrap analysis 
using the complete historical data set (produced two curves shown in Figure 4.19) 
and using a reduced data set (minus four low recruit years). Parameter probability 
histograms produced using the reduced data set were unimodal allowing 75% 
confidence intervals (c. i. ) to be estimated. 

Shepherd model parameter a 

Shetland 
K 

Initial values estimated subjectively 1.48 54 1.0 

Non-linear regression estimate 2.91 44 1.8 

Bootstrap complete data set (curve 3) 1.25 120 3.2 

Bootstrap complete data set (curve 4) 2.30 70 2.2 

Bootstrap reduced data set mean 2.00 96 2.6 

Bootstrap reduced data set lower 75% c. i. 1.51 69 2.2 

Bootstrap reduced data set upper 75% c. i. 2.81 124 3.3 
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Figure 4.1 Stock-recruit curves for a hypothetical fish stock. SSB=spawning stock 
biomass. R& BH = threshold SSB biomasses for curves 1 (R) and 2 (BH), below 
which recruitment drops below 100% of starting level (when SSB=100%) 
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Figure 4.2 Stock-recruit scatterplot and trajectory of recruitment for sandeels in a) 
North Sea and b) Shetland (ICES 1999). dotted lines represent models expressing 
recruitment as a linear function of SSB. 
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Figure 4.3. Ricker (1954,1975) stock-recruit curves with different values of 
parameter a and parameter b. 
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Figure 4.4 Sandeels at Shetland a) ln(recruits/SSB) against SSB, trendlines fitted 
and equations and R2 shown. b) residuals from Ricker curve (black curve graph c) 
against SSB. c) stock-recruit data with Ricker curve (black line) parameterised by 
linear regression - light curve is the corresponding Ricker curve passing through 
average recruitment. 
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Figure 4.5. Histograms of values for parameters (a, b) of the Ricker stock-recruit 
model returned from 1000 bootstrap simulations (see text for details) for sandeels at 
Shetland a) - parameter a, b) - In(parameter a), c) - parameter b. Expected normal 
curves shown. 
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Figure 4.6. Correlation between estimates of parameters a and b of the Ricker 
stock-recruit model returned by 1000 bootstrap simulations (see text) for sandeels 
at Shetland. Trendlines with corresponding equation and R2 are shown. 
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Figure 4.7 Results of direct search method to find optimal combinations of 
parameters (a, b) of the Ricker stock-recruit model for sandeels at Shetland. Fit 
refers to sums of squares of the differences of the logged recruit series (see text). 
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Figure 4.8 Results of direct search method to find optimal combinations of 
parameters (a, b) of the Ricker stock-recruit model for sandeels at Shetland. Fit 
refers to sums of squares of the differences of the logged recruit series (see text). 
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Figure 4.9 Ricker stock-recruit curves with 95% confidence intervals estimated by 
bootstrap analysis for sandeels at Shetland using a) the complete historical data set 
(from ICES 1999) and b) the data set minus four low recruit years (1987-1990 
inclusive). 
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Figure 4.10 Shepherd (1982) stock-recruit curves with varying values of parameter /3 
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Figure 4.11 Stock-recruit data for sandeels at Shetland (from ICES 1999). Dotted lines 
represent estimates for parameter a of the Shepherd (1982) stock-recruit model 
estimated by drawing a line from the origin to the left of the data. The solid line 
represents the estimate from the average ln(R/SSB) for the bottom 25% data points 
ranked by SSB. 
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Figure 4.12 Stock-recruit data for sandeels at Shetland with fitted Shepherd (1982) 
stock-recruit models. Curve 1: subjectively estimated parameters, Curve 2: curve 
estimated be bootstrap analysis from modal value returned for K (5.6). Curve 3: curve 
estimated using modal value of parameter a from the reduced histograms returned by 
bootstrap analysis (K>20). Curve 4: curve estimated using modal value of parameter /1 
from the reduced histograms returned by bootstrap analysis (K>20). 
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Figure 4.13 Sandeels at Shetland. Histograms of probability distributions for the three 
parameters of the Shepherd (1982) stock-recruit model determined by bootstrap 
analysis using complete historical data set. 
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Figure 4.14 3d scatterplot of the three parameters (a, K& /1 - indicated by B) of the 
Shepherd (1982) stock-recruit model for sandeels at Shetland estimated by 1000 
bootstrap analysis simulations using complete historical data set. 
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Figure 4.15 Sandeels at Shetland. Bubble plot of three parameters of the three 
parameters (a, K& /3) of the Shepherd (1982) stock-recruit model estimated by 1000 
bootstrap analysis simulations using complete historical data set. 
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Figure 4.16 Sandeels at Shetland. Probability distributions for parameters of Shepherd 
model returned by bootstrap analysis after removing combinations with K<20. 
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Figure 4.17 Sandeels at Shetland. Probability distributions for parameters of Shepherd 
model returned by bootstrap analysis using reduced data set (minus four low recruit 
years) 
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Figure 4.18 Sandeels at Shetland. Shepherd (1982) curve with 75% confidence 
intervals parameterised by 1000 bootstrap simulations using reduced data set (minus 
four low years 1987-1990 inclusive). 
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Figure 4.19 Sandeels at Shetland. Results of six simulations of 24 years of a 
population model with recruitment simulated by a Ricker model (parameterised by 
bootstrap analysis using complete historical data set) with stochasticity. a) In(recruit) 
time series and b) SSB time series. 
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Figure 4.20 Sandeels at Shetland. Results of six simulations of 24 years of a 
population model with recruitment simulated by a Ricker model (parameterised using 
complete historical data set) with autocorrelated stochasticity. Input autocorrelation 
coefficient, c--0.51. a) In(recruit) time series and b) SSB time series. Heavy line 
represents historical series (from ICES, 1999). 
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Figure 4.21. Relationship between input autocorrelation parameter, cz, against the 
output autocorrelation, r,, seen in the In(recruit) time series for simulations of a 
population model of sandeels at Shetland. Recruitment is simulated by a stochastic 
Ricker model with autocorrelated log-normal residuals. Two series are shown, 
diamonds: 'best fit' Ricker curve parameterised by historical data set (from ICES 1999), 
standard deviation of residuals = 1.07. Squares: 'best fit' Ricker curve parameterised by 
reduced historical data set (minus four years), standard deviation of residuals = 0.65. 
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Figure 4.22 Sandeels at Shetland. Results of six simulations of 24 years of a 
population model with recruitment simulated by a Ricker model (parameterised using 
complete historical data set) with autocorrelated stochasticity. Input autocorrelation 
coefficient, X0.73. a) In(recruit) time series and b) SSB time series. Heavy lines 
represents historical time series. 
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Figure 4.23 Sandeels at Shetland. Results of six simulations of 24 years of a 
population model with recruitment simulated by a Ricker model (parameterised using 
reduced historical data set) with autocorrelated stochasticity (z=0.51. a) In(recruit) time 
series and b) SSB time series. Heavy lines represent the historical series (from ICES, 
1999). 
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Figure 4.24 Sandeels at Shetland. Results of six simulations of 24 years of a 
population model with recruitment simulated by a Ricker model (parameterised using 
reduced historical data set) with autocorrelated stochasticity (x=0.73. a) In(recruit) time 
series and b) SSB time series. Heavy lines represent the historical series (from ICES, 
1999). 
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CHAPTER 5 

STOCK RECRUIT MODELS WITH EXTERNAL RECRUITMENT 



5.1 Introduction 

This Chapter develops models to simulate both local and external 
recruitment. As introduced in Chapter 2, our understanding of recruitment processes 
around Shetland is complicated by the likelihood that the Shetland sandeel stock is 

not a closed population but probably is part of a much larger population (Wright, 
1996). The young sandeels recruiting to the exploited stock at Shetland appear to 

originate from two sources: 'local' recruits, which are spawned around Shetland and 
'external' recruits which may originate from spawning grounds around Orkney 
(Wright & Bailey, 1993; Wright, 1996). External recruitment is considered to be 

sporadic, so in some years few or no external recruits reach Shetland, whereas in 
other years they may dominate in recruitment (Wright, 1996). It was determined, to 

attempt to increase our understanding to recruitment dynamics, to produce a model 
with external recruitment. 

Firstly, evidence for external recruitment is discussed. To simulate local 

recruitment a scaled Ricker model fitted to the North Sea sandeel stock is applied to 
the Shetland data set -a method of scaling stock-recruit curves between the North 
Sea stock and the Shetland stock is determined. Ricker stock-recruit models are 
then fitted to the North Sea stock and confidence intervals on parameter estimates 
determined by bootstrap analysis. These curves are scaled and applied to the 
Shetland data. The variabjlity around the curve in both the Shetland and the North 
Sea stock are analyzed to develop recruitment models that contain external 
recruitment. Two approaches are taken and simulations carried out. These indicate 

neither of these approaches produces recruit time series which are autocorrelated 
(the historical time series of recruitment at Shetland showed strong positive 
autocorrelation, see Chapter 3). The models were adapted to include autocorrelation 
in the local recruit and/or external recruit functions and tests carried out to determine 
the level of output autocorrelation in the total recruit time series. Two suitable 
models are identified to simulate local and external recruitment. 

5.2 External Recruitment 

External recruitment may be significant for the persistence of the exploited 
sandeel population at Shetland with external spawning stocks, probably around 
Orkney, acting as an important source of recruits. This phenomenon was proposed 
by Fogarty (1998) to explain the strong resilience of coastal American lobster 
(Homarus americanus) stocks to exploitation. Analysis indicated that larval 
dispersal from underexploited offshore populations to the fished inshore populations 
allows persistence of these heavily exploited stocks. Could this be happening with 
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the sandeel population at Shetland? If so, this has implications for management - if 
external recruits form a significant addition to the Shetland stock then the size of the 
SSB of the Shetland population becomes less critical for fishery management. 
Recruitment is therefore more dependent on larval transport mechanisms and the 
SSB of the larval source populations. If larval transport mechanisms, thus external 
recruitment, cease then recruitment at Shetland could potentially be drastically 
reduced - did this happen in the late 1980s? 

Proctor et al. (1998) adapted a two-dimensional sea circulation model for the 
passive transport of particles on the north-west European shelf to simulate the 
transport of sandeel larvae. Proctor at a!. used data (1955-1993) on spawning 
location, age of larvae and time of hatching as input into the model. Particle drift was 
calculated for the larval life stage. The model produced an index, hereafter referred 
to as I, for the strength of the physical transport of passive particles between Orkney 

and Shetland. The index, I(solid line), is plotted with the recruitment (dashed line) to 
the Shetland sandeel stock over the years 1974-1993 inclusive (Figure 5.1). 
Assessment methodology for the Shetland sandeel stock has changed since this 

paper was published (ICES, 1999) with the result that estimates of the sandeel stock 
numbers have increased (Figure 5.1). However, according to ICES, the current 
assessment method is very sensitive to input parameters and so the results should 
be viewed only as an indication of stock trends. Therefore, although the estimates of 
the numbers of fish have increased, the conclusions drawn are unaffected as the 

overall stock trends are similar. 
Proctor et a!. (1998) concluded that in years of relatively low recruitment 

(1983-1990) particle transport from Orkney was generally low, while in 1981 and 
1991, years of relatively high recruitment, particle transport was high. This is 
demonstrated in Figure 5.2, where total recruitment around Shetland (from ICES, 
1999) was plotted against the transport index I As I increases, so the total 

recruitment tends to increase, suggesting a positive relationship between 

recruitment and index I. 1982 was considered an anomaly as, although the particle 
drift model returned a low index V= 0.04; Figures 5.1 and 5.2), a large external 
recruitment is thought to have occurred. Observations and trawl surveys carried out 
by the Marine Laboratory, Aberdeen, indicated it is likely a large number of external 
recruits entered Shetland waters during this year (Wright, 1996). 

If net immigration to Shetland occurs this will obscure the stock-recruit 
relationship for Shetland sandeels and could account for the difficulty in fitting stock- 
recruit models in the previous chapter. In this case, the actual spawning stock for 
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the Shetland population may be underestimated as SSB could be considered as the 
biomass of mature sandeels from a much larger area, which includes Shetland and 

probably Orkney. Rothlisberg et al. (1996), produced models of penaeid prawn 
larval advection to estuaries in Australia that included all the areas from which 
larvae originated - and found SSB could vary considerably annually. Rothlisberg et 
al. termed the SSB in these much larger areas as the effective SSB, that is the SSB 

over all areas from which the larvae originate. The spatial extent of the effective 
SSB, hence size, may change from year to year as larval transport mechanisms 
fluctuate. This probably occurs at Shetland as transport mechanisms for external 
recruitment fluctuate. 

The frequency of external recruitment to Shetland is unknown - does this 

occur every year or sporadically? The transport index, returned by the 2-dimensional 

sea circulation model adapted by Proctor et al. (1998), indicates the passive 
transport rate of particles from Orkney to Shetland was generally high in years when 

recruitment at Shetland was high. The output of this model could be used as an 
indicator for the frequency and the size of external recruitment (assuming high 

transport indices are correlated with high external recruitment). However, there are 

no direct estimates of the size of external or local recruitment in any years so it is 

difficult to determine the nature of this relationship. Additionally, it must be 

remembered the transport index is itself the output of a model with many variables 

and unknown parameters. 
How can a model of local and external recruitment be developed? The 

approach taken was to assume that the stock-recruit relationship for sandeels 

around Shetland is the same as that for populations in other areas of the North Sea. 
Stock-recruit curves can be fitted to the North Sea data and scaled for use with the 
Shetland data - this will give some indication of local recruitment. If the North Sea 

as a whole is considered then immigration and emigration will be negligible 

compared to the stock size (ICES, 1999). 

5.3 Scaling Stock-Recruit Models 

Sandeels in the North Sea can be thought of as a number of distinct 

spawning populations (including Shetland) with some transfer between them 

(Pedersen et al., 1999). If the values for weight-at-age, maturity and natural mortality 

are similar between areas then it is reasonable to assume that the stock-recruit 

relationships are similar. For assessment purposes, the values of maturity (age at 
which sandeels first reproduce) and the natural mortality rates for sandeels at 
Shetland are taken to be identical to those used for the assessment of sandeels in 
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the entire North Sea (ICES, 1999). However, sandeels at Shetland are considered 
to be slower growing the North Sea sandeels, which is one reason why these were 

considered as a separate stock. The mean weight-at-age (from ICES, 1999) from 

catches in the first half of the year for sandeels in the northern North Sea and in the 

southern North Sea over 1993-1997 are shown in Figure 5.3 together with the long- 
term mean weight-at-age from the first half-year catches of sandeels at Shetland 

(from ICES, 1999). 
Generally, weight-at-age is more variable in the northern North Sea than in 

the southern North Sea (Figure 5.3). In 1996, mean weight-at-age of 4 and 5+ group 
sandeels in the northern North Sea was considerably greater then in the other years 
but this was not the case in the southern North Sea. 1996 was also the year with the 

highest recorded recruitment in the North Sea (2.069 x 109), almost double the 

previous record for recruitment (1.206 x 10" in 1985). Variation in weight may be 

due to difference in catchability with age - later in the summer older sandeels may 

not be available to the fishery (Pedersen et al,. 1999). The long-term mean weight- 

at-age for sandeels at Shetland is less then the mean weight-at-ages for sandeels in 

the northern and southern North Sea. Within the northern North Sea the data 

becomes biased after 1990 due to the inclusion of the small fish off the Firth of Forth 

(Wright, P. pers. com. ). For the purpose of this modelling exercise, it was assumed 
that weight-at-age at Shetland was not significantly different from that in other areas 

of the North Sea. Therefore, it can be assumed that the stock-recruit relationship, 
that is the shape of the stock-recruit curve, at Shetland follows that of populations in 

other areas of the North Sea. 

If the sandeel population of the North Sea as a whole is considered, the 
transfer of sandeels in and out of the system will be negligible. Using a stock-recruit 

curve which was fitted to data for the entire North Sea to predict local recruitment at 
Shetland will alleviate any problems of immigration or emigration. As the units 
involved are different (the North Sea is much larger than Shetland), the scale of the 

curves will vary. An appropriate scaling factor would have to be applied to use the 

North Sea stock-recruit curve with Shetland data. 

Two methods of scaling by area were considered, these were: i) the ratio of 
ICES statistical rectangles for Shetland to that of the entire North Sea and ii) the 

ratio of estimated area of suitable sandeel habitat around Shetland to that in the 
North Sea. For ICES stock-assessment work, the North Sea is divided into 

rectangles of %z° latitude and 10 longitude. The ratio of ICES rectangles in Shetland 

to that in the entire North Sea was calculated and was found to be approximately 
1: 11. The latter method (ii) was based on surveys of area of sediment of suitable 
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grain size around Shetland and in the North Sea. This was found to be 

approximately 1: 11.3 (Wright pers. com. ). As both methods produced similar ratios, 

a scaling factor of 1/11 was selected. 

5.4 Ricker Models 
The Ricker (1954; 1975) stock-recruit model (Equation 5.1) was 

parameterised for North Sea sandeels using the technique of bootstrap analysis 
(Efron & Gong, 1983) as described in Chapter 4 for Shetland sandeels. 

R= aSe-bs 5.1 

where R is recruitment, S is SSB and a and b are constants. 
Bootstrap analysis samples at random, with replacement, from the original 

data set to generate probability distributions for parameter estimates. For each data 

set selected from the original set, a Ricker model was fitted and values returned for 

parameters a and b recorded together with the standard deviation of the residuals, 

aW, about the Ricker curve. The mean SSB and mean recruitment of the selected 
data set were also recorded. 1000 bootstrap simulations were performed. The 

results are shown in Table 5.1 together with the corresponding results for the 
Shetland data set (from Chapter 4). 

The North Sea Ricker model parameterised above was scaled down, using 
the scaling factor of 1: 11 identified, and applied to the Shetland data. The resulting 

curve, together with the scaled down curves representing 95% confidence limits, are 
shown in Figure 5.4. Compared to the Ricker curve parameterised previously (in 
Chapter 4) using the entire Shetland data set (Figure 5.5), the slope from the origin 
(parameter a), which represents recruits per unit spawning stock biomass, is lower 

for North Sea sandeels (1.26) than for Shetland sandeels (2.19). 95% confidence 
intervals for parameter estimates are shown in Table 5.1. The estimate of parameter 

a for Shetland sandeels (2.19) falls within the 95% confidence intervals of the 

estimate for North Sea sandeels (0.60 - 2.31) so the curves are not significantly 
different. Although this means that there is no strong evidence that the mean 

estimates for parameter a of the Ricker model for Shetland sandeels and North Sea 

sandeels are different, it does not provide strong evidence that they are similar 
either. 

Parameter b describes how quickly recruits-per-spawner drop at high SSBs 
(density-dependent parameter). Estimates of parameter b for the North Sea are 
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scaled for comparison with the Shetland data (by multiplying by the scaling factor). 
The mean estimate for Shetland (0.0128) is much larger then the mean estimate for 

North Sea sandeels (0.0087) and is within the North Sea 95% confidence intervals (- 
0.0004 - 0.0160). Again, there is no strong evidence that the mean estimates for 

parameter b for Shetland and North Sea sandeels are different (or similar). 
Considering the potential for sampling error in the data sets and the large variability 
in recruitments, the stock-recruit relationships for Shetland sandeels and North Sea 

sandeels are surprisingly similar (Figure 5.5). 
Why is variability in the Shetland data much higher than in the North Sea 

sandeel data? The North Sea stock is probably formed of a number of sub- 
populations (Pedersen et al., 1999) each with SSB and recruitment time series. 
Annual estimates of SSB and recruitment for the North Sea stock can be considered 

as the summed values from all these sub-populations. As has been shown by 

Scheuring & Janosi (1996), variability in a population consisting of a number of sub- 

units is less than the variability of the constituent sub-populations, and reduces as 
the number of sub-populations increases. In other words, the influence of an 

extreme value in recruitment in one sub-population may be reduced by taking the 

average over all sub-populations (as this may be counteracted by high recruitment 
in another sub-population) hence the total average variability is less then the 

individual variability. This could account for the reduced variability in the North Sea 

population compared to the Shetland population. However, if the sub-populations 
fluctuate in phase with each other, as may occur if large scale climatic perturbations 

affect all sub-populations (see Chapter 2 work on spatial synchrony), then total 

average variability may not be less then sub-population variability. Analysis of sub- 
population data sets for the North Sea could distinguish between these two 
hypotheses. 

In the previous Chapter, it was found that the four low recruitments which 

occurred in the late 1980s strongly influenced the statistical fit of the stock-recruit 
models. Although there is no biological reasoning for removing these data points, 
they were removed and the stock-recruit models refitted in order to explain their 

effect here. This allowed a further curve to be parameterised (Figure 5.5) which 

returned much higher estimates of recruitment for a given SSB than the curves fitted 

using the complete Shetland data set and North Sea data set. Hence these four 
"unusual" years have a very strong influence on model fit. 

Although Wright (1996) indicates net external recruitment to Shetland may 
occur, there are no estimates for the size and frequency. As it was determined to 

produce a model with external recruitment, for the purpose of this modelling 
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exercise, the Ricker stock-recruit curve fitted to the reduced Shetland data set 
(minus four low years) was selected. By assuming the difference between this curve 
and the scaled North Sea curve is due to the addition of external recruits, then a 
model can be developed. 

5.5 Modelling External Recruitment 

Two methods were developed to simulate external recruitment, both using 
the reduced Shetland data set. The first calculates total recruitment as the product 
of local recruitment predicted from a Ricker curve with log-normal error distribution 

and a second lognormally distributed factor with a lower limit greater than zero. The 
latter factor represents In(total recruitment) as a multiple of In(local recruitment) and 
is termed external error. When local recruitment is subtracted from total recruitment 

using this method, actual values of external recruitment are produced. The method 

exploits the phenomenon of additive variances in the logs of predicted local recruits 

and external error factor to achieve a greater standard deviation of the log total 

recruit distribution for Shetland compared to the North Sea. The advantage of this 

method is external recruitment is indirectly related to SSB so will be affected by 
density dependence at high SSBs. 

The second method is an adaptation of the first with external recruitment 
independent of recruitment predicted by the Ricker curve (local recruitment). 
Through simulations of the first method, actual values for external recruitment are 
generated. The distribution of external recruitment was analyzed and, in simulations, 
a value for external recruitment is selected at random from this distribution. By 

uncoupling external recruitment from local recruitment, this method does not 
incorporate the effects of density dependence on external recruitment at high SSB, 
but it does have the advantage that at low SSBs a large external recruitment may 
occur (in the first method this is rare as external recruitment is indirectly linked SSB). 

5.5.1 Method I 

Both methods assume that the stock-recruit relationship at Shetland is 

similar to that in other areas of the North Sea. Therefore, the Ricker model fitted to 
the North Sea data, once scaled, can be used to simulate local recruitment at 
Shetland (recruits spawned around Shetland). To produce external recruit models, 
the scaled parameters of the North sea data set are taken to represent the local 

recruitment parameters while the reduced Shetland data set represents total 
recruitment (local plus external). 
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The "best-fit" Ricker model identified by bootstrap analysis above was 
applied to the North Sea sandeel data. Recruitment was found to be lognormatly 
distributed about the curve and the log-transformed residual distribution had a 

mean, uL, of zero and a standard deviation, oj, of 0.625. The North Sea Ricker 
curve was scaled (as described above) and applied to the reduced Shetland data 

set (Figure 5.5). The distribution of Shetland recruits about the scaled Ricker curve 
was also lognormally distributed but with a mean, ur, of 0.429 and a standard 
deviation, 6T, of 0.668. The median recruitment ("center of gravity" of the lognormal 
distribution) was above the Ricker curve, indicating that recruitment at Shetland was 
generally greater then that predicted by the scaled Ricker model. 

If it is assumed that the difference between these two residual distributions is 
due to the addition of external recruits, then a third distribution can be parameterised 
to represent the variance introduced by external recruitment (termed external error, 
denoted by v). It was assumed that the In(residual) distributions, for both the North 
Sea and reduced Shetland data sets, were normally distributed and the external 

error distribution was also normally distributed. Means and variances of normal 
distributions are additive (Evans et al., 2000) therefore the mean of the external 

error distribution, p, can be parameterised as: 

iv -lT /1L 5.2 

where pT is the mean of the logged total recruit residual distribution (from the 

Shetland data set) and uL is mean logged local recruit residual distribution (from the 
North Sea data set). 

The mean standard deviation of the external error distribution, 6j,, can be 

calculated as: 

zz 5.3 

where 6T is the standard deviation of the logged total recruit residual distribution 

(from the Shetland data set) and of is standard deviation of logged local recruit 
residual distribution (from the North Sea data set). 

Substituting the appropriate values into Equations 5.2 and 5.3 produced 
estimates of 0.429 for p� and 0.236 for cc, . 
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Local recruitment, in simulations, is estimated from the scaled Ricker model 
with lognormal error terms using the method described in Chapter 4. The equation 
for local recruitment with lognormal error terms is: 

RL =RRexpw 5.4 

where RL is local recruitment, RR is recruitment predicted by the scaled Ricker 

model and w is a normally distributed random number with a mean of zero and 
standard deviation QL. 

In this case, w is the distribution of the residuals of local recruitment about 
the stock recruit curve so the distribution of w is equal to the logged-transformed 

error terms in the North sea data around the stock recruit curve (0j=0.625). 

Total recruitment is also estimated from the scaled Ricker model with 
lognormal error terms. The distribution of the logged-transformed error terms around 
the stock-recruit curve is assumed to equal the sum of w plus the external error 
distribution, v, so: 

RT =RRexp`"+v 5.5 

where RT is total recruitment, RR is recruitment predicted by the Ricker model and w 
is a normally distributed random number with a mean of zero and standard deviation 

aL and v is a normally distributed random number with a mean of uv and standard 
deviation 6v. The distribution of v is truncated so v cannot be less then zero 
(otherwise external recruitment will be negative). 

Equation 5.5 returns an estimate for total recruitment which is always greater 
than the estimate for local recruitment. External recruitment is simply calculated as 
the difference between total recruitment and local recruitment. The resulting 
lognormal error distribution returned by Equation 5.5 is equal to the lognormal 
distribution of the reduced Shetland data series about the scaled stock-recruit curve 
(total recruitment). 

To illustrate the relationship between total and external recruitment with local 

recruitment, five hundred stock-recruit pairs were selected, at random, from the 
reduced Shetland data set. For each SSB, local and external recruitment were 
simulated using the method described above. The values of local and external 
recruitment calculated for the first fifty stock-recruit pairs selected are shown in 
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Figure 5.6. As can be seen in Figure 5.6a, a high recruitment year (>250 billion) can 
result from a large local recruitment (data point 19), or from a large external 
recruitment (data point 8) or from a mid-sized local recruitment with a mid-sized 

external recruitment (data point 24). Generally, as local recruitment increases so 
external and total recruitment increases (Figure 5.6b&c) although the relationships 

with local recruitment are stochastic. In high recruitment years, a large proportion of 
the recruits may be of external origin, as was indicated by the sea circulation model 
adapted by Proctor et al. (1998). 

5.5.2 Method 2 
This method uncouples external recruitment from recruitment predicted by 

the Ricker model using the results of the model developed above. In the previous 

model (Method 1), five hundred stock-recruit pairs were selected at random from the 

reduced Shetland data set and stochastic values for local recruitment and external 

recruitment calculated. Analysis of the distribution of the log-transformed external 

recruitments produced by Method I indicated this was normal with a mean, PE, of 
3.09 and a standard deviation, crE, of 1.02. 

In Method 2, local recruitment is simulated using the scaled Ricker curve 
with lognormal errors (Equation 5.4) described in Method 1 while external 
recruitment is simply selected at random from the distribution parameterised. 
External recruitment is uncoupled from local recruitment so a large external 

recruitment can be selected when local recruitment is small (in Method 1 this was a 

rare occurrence). 
Fifty stock-recruit pairs were selected, at random, from the reduced Shetland 

data set and local and external recruitment were simulated using Method 2. The 

values of local and external recruitment generated are shown in Figure 5.7. If local 

recruitment is low a high external recruitment may still occur, as seen in Figure 5.7a, 
data point 21. There is still a positive relationship between external recruitment and 
total recruitment (Figure 5.7c) so years of high recruitment tend to be years when 

external recruitment is high (though due to stochasticity, not necessarily so (see 
Figure 5.7a data point 49). 

5.6 Introducing autocorrelation 
Neither of the two methods discussed above include functions to 

autocorrelate the recruit time series. Analysis of the historical In(total recruit) time 

series for the complete Shetland data set revealed a high positive autocorrelation 
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function (+0.51, see Chapter 3). Incorporating a function for autocorrelation in either 
the local or external recruit equations or in both should induce some autocorrelation 
in the total recruit time series. 

In both Methods I and 2, local recruitment is simulated using the Ricker 

model with lognormal errors (Equation 5.4). A function for autocorrelation was 

combined with the Ricker model as described in Chapter 4. The residuals around 
the stock-recruit curve were autocorrelated by applying a first order autoregressive 
model so w at time t (Equation 5.4) is expressed as a function of w at time t-1: 

Wt=aWt-1+-, 5.6 

where t is time, a is a constant (the coefficient of autocorrelation) and e is a 

normally distributed random number with a mean of zero and a standard deviation 

a, equal to: 

a9 QE = QL. 
F-- 

5.7 

where of is the target standard deviation of the log-transformed residuals (local) 

about the stock-recruit curve. 
As the local recruitment residuals about the stock-recruit curve are assumed 

to be similar to the residuals from the North Sea, of = 0.625. 

A similar approach was taken to autocorrelate external recruitment in both 
Methods I and 2 although external recruitment is calculated differently in both 

Methods. A first order autoregressive model, as described in Chapter 3, was 
combined with the external recruitment functions. The autoregressive model takes 

the form: 

yt=q'o+01(Yt-, -q$o)+e 
5.8 

where yt is the value of y at time t, O is a constant term, O, is the autoregressive 

parameter at time t-1 and et is a normally distributed random number with a mean of 

zero and a standard deviation a,. 
In Method 1, sequential dependence in external recruitment is incorporated 

by autocorrelating variable v (external error term) in Equation 5.5. y is substituted 
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with v in Equation 5.8 and OD with the mean of the external error distribution (Uv) 
parameterised above, so v in year t is calculated as: 

Vt =, gv + 01 (vt-1 - luv 
+ et 5.9 

where O, is the coefficient of autocorrelation (constant) and Et is a normally 
distributed random number with a mean of zero and a standard deviation q equal 
to: 

6E = 6v (1 - o2 5.10 

where a-, is the standard deviation of the external error distribution parameterised 

above. 
The autoregressive model (Equation 5.8) was also used to autocorrelate 

external recruitment in Method 2. In Method 2, In(external recruitment) is selected at 
random from a parameterised distribution. To autocorrelate the In(external recruit) 
time series, y is replaced with In(RE) in Equation 5.8 and 00 with the mean of the 
In(external recruit) distribution, pE: 

i 

ln(REt)=f E+SCI(in(REr-º)-fie)+e 5.11 

where RE! is external recruitment in year t, pE is mean In(external recruitment), Q is 
the coefficient of autocorrelation and et is a normally distributed random number with 
a mean of zero and a standard deviation: 

°e `6E 
012 5.12 

where of is the standard deviation of In(external recruit) distribution parameterised 
above. 

5.7 Model Simulations 
The basic population model written in Visual Basic (Chapter 3) was adapted 

to test the recruitment models described above. Combinations of local and external 
recruitment models were tested as shown in Table 5.2. For each Method (1 & 2), 

171 



four models were tested: i) local and external recruitment stochastic, ii) local 

recruitment autocorrelated, iii) external recruitment autocorrelated and iv) both local 

and external recruitment autocorrelated. 
Firstly, simulations of both methods with stochastic (non-autocorrelated) 

local and external recruitment were carried out. For each model, 1000 simulations of 
24 years were conducted and the results of each simulation saved to an Excel 

spreadsheet. The results are shown in Table 5.3. 
Considering the recruitment parameters, both methods produced parameters 

for local and external recruitment which were similar and the distribution of the 
lognormal errors of local recruitment about the stock-recruit model were similar to 
the target (historical) distribution. It was expected that both methods would produce 

similar local recruitment distributions as the same technique is used to generate 
local recruits. Similarly, the parameters of the external recruitment distribution were 

similar for both methods. This was also expected, as Method 2 randomly selected 

external recruits from the distribution parameterised by Method 1. Neither method 

produced local or external recruit series which were significantly autocorrelated (- 

0.056<rl<0.002). 

However, the parameters of the total recruitment distribution produced by 

both Methods differed. Those produced by Method 1 were similar to the target 

values. For Method 2, the mean of the ln(recruitment) distribution (4.41) was higher 

then the target value (4.25) while the standard deviation (0.58) was less then the 

target value (0.69). Correspondingly, the mean and standard deviation of the 

lognormal error distribution around the Ricker curve was greater and less then the 

target values respectively. These differences were due to the technique used to 

simulate local and external recruitment in Method 2. 

In Method 1, the parameters of the North Sea (local) and reduced Shetland 

(total) data sets are used to generate local and total recruitment, hence external 

recruitment. In Method 2, total recruitment is expressed as the sum of local and 

external recruitment. While local recruitment is generated as in Method 1, external 

recruitment is selected at random from the distribution parameterised by Method 1. 

Hence in Method 1, local and external recruitment are correlated (see Figure 5.6b) 

while for Method 2 there is no correlation between the two (see Figure 5.7b). 

Neither method produced significant autocorrelation in the In(total) recruit 
time series (-0.01<r1<0.01). The values for the mean SSB produced by the models 
(150 Method 1,154 Method 2) were greater then the target value (126) while the 

standard deviations (45 Method 1,42 Method 2) were less then the historical value 
(63). The first four years in the historical time series have extremely low values of 
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SSB (<93) and these reduce the mean value. The simulated population starts from a 
SSB of 127, considerably higher hence the mean values produced by the models 
were larger then the target value. 

The remaining combination of models shown in Table 5.2 were tested 
varying the input coefficient of autocorrelation. Local recruitment was autocorrelated 
by the same technique in Methods I and 2 (see Equation 5.6) with an input 

coefficient of autocorrelation a. a was varied between 0 and 0.95 in steps of 0.01 in 
simulations. External recruitment was autocorrelated in both Methods by adapting a 
first order autoregressive model which had an input coefficient of autocorrelation o,. 
0, was also varied between 0 and 0.95 in steps of 0.01 in simulations. 1000 

simulations of 24 years were carried out for each value of a and t' so all 
combinations were tested. 

The results from autocorrelating local recruitment only are shown in Figure 
5.8. For Method 1, inducing sequential dependence in local recruitment produces 
In(local recruit) time series with an output autocorrelation coefficients, rIL, which are 
less then the input coefficient of autocorrelation a. Autocorrelation induced in the 
ln(total recruit) time series is slightly less then that induced in In(local recruit) time 

series. Some autocorrelation is also induced in the In(extemal recruit) time series. In 
Method 1, total recruitment is expressed as the In(local recruitment) plus a random 
number so autocorrelating local recruitment directly autocorrelates total recruitment 
hence external recruitment. 

Autocorrelating local recruitment in Method 2, induces autocorrelation in the 
ln(total recruit) time series but to a much lesser degree than Method 1. For this 
method, external recruitment is unrelated to local recruitment hence autocorrelating 
local recruitment has no effect on external recruitment and a lesser effect on total 
recruitment than in Method 1. The maximum r, of only 0.22 is produced by Method 2 

when a>0.69. 
The results of autocorrelating external recruitment are shown in Figure 5.9. 

As expected, autocorrelating external recruitment has a smaller effect on the output 
autocorrelation in the In(total recruit) time series then autocorrelating local 

recruitment. The median external recruitment produced by the models is 22 billion, 
less then half the median number of local recruits produced (49 billion, Table 5.3). 
Autocorrelation the external error time series in Method 1 has little effect on the 
sequential dependence in the ln(external recruit) time series. Neither model 
produced an output autocorrelation of greater than 0.18 in In(total recruit) time 
series. 
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The final pair of models incorporated autocorrelation in both functions for 
local and external recruitment. The results using Method I are shown in Figure 5.10. 

As indicated by the models above, autocorrelating the external error time series has 

little effect on the output autocorrelation, r,, of the In(total recruit) time series 
compared to autocorrelating the In(local recruit) series. Output values of rl>=0.5 are 
produced when the input autocorrelation coefficient in the local recruitment function 
is greater then 0.73. 

For Method 2, autocorrelating the In(external recruitment) series has a 
greater effect on the output autocorrelation r, of the In(total recruit) series as shown 
in Figure 5.11. Values of r, > 0.5 are produced when the input autocorrelation 
coefficient for local recruitment is 0.62 or greater and when external recruitment is 

0.60 or greater. As the input autocorrelation coefficient for local recruitment 
decreases so the minimum values required to autocorrelate external recruitment 
increase. 

In conclusion, only three models produced high (0.5+) output autocorrelation 
in the In(total recruit) time series. These were two models using Method 1: local 

recruitment autocorrelated and both local and external recruitment autocorrelated 

and one model from Method 2: both local and external recruitment autocorrelated. 
As autocorrelating external recruitment in the latter model of Method 1 had little 

affect on the total autocorrelation, this model was, in effect, similar to the local 

recruitment only autocorrelated model. 
To induce the high autocorrelation (0.51) seen in the complete historical 

ln(recruit) time series required extremely high input coefficients of autocorrelation. 
The historical series contained only 24 data points, less then half the recommended 
minimum number (50) by Farnum & Stanton (1989) for Box-Jenkins forecasting 

models, therefore confidence in the calculated value is reduced. The autocorrelation 
coefficient is strongly influenced by the series of four low recruit years which were 
excluded for the external recruitment models developed above. It was therefore 
decided that 0.5 was an unreasonably high target value (as extremely high input 

values were required) and a reduced value of 0.4 was selected as the target value. 
Of the two suitable models identified, Method I (local recruitment 

autocorrelated) produced output r, of 0.4 or greater when the input autocorrelation 

coefficient was 0.64 or greater. Method 2 (both local and external recruitment 
autocorrelated) produced an output r, of 0.4 when the input autocorrelation 

coefficient a for local recruitment was 0.42 or greater and for external recruitment O, 

was 0.40 or greater. Considering the extreme values along the 0.4 (output r, ) 
boundary in Figure 5.12, when a=0.42,01=0.82 and when a--0.80,01=0.40. A data 
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point from the middle of the boundary line was selected (a 0.54,01=0.6) for the 

population model. 
1000 simulations of 24 years were carried out for each of the two recruitment 

models selected with the input autocorrelation coefficients identified. The results are 
shown in Table 5.3. Incorporating autocorrelation had little affect on the recruitment 
parameters produced by each model when compared to the non-autocorrelated 
models except for the output autocorrelation coefficients, r,. 

For comparison with the stochastic population models shown earlier (Figures 
5.7 and 5.8), a simulation of 50 years was carried out for both models and the 

results are shown in Figures 5.13 and 5.14. Methodl can produce series of very low 

recruitment years even when SSB is high (see years 11-14 Figure 5.12b), as seen 
in the Shetland stock in the late 1980s. Also, a high recruitment can be produced 

when SSB is low (see year 29, Figure 5.12b). High recruitment years tend to be 

years when external recruitment is large. For method 2 (external recruitment 
independent of SSB), large external recruitments can be generated even when local 

recruitment is low (Figure 5.13a). 

As external recruitment to Shetland is unquantified, producing models to 

simulate external recruitment is a very challenging problem and there are many 
limitations and sources of bias in the models produced in this chapter. The models 
used differences between stock-recruit models fitted to the Shetland stock and to 

the North Sea stock to determine external recruitment. This assumes the 

reproductive parameters are similar in different areas of the North Sea, which may 
not be the case. Sandeels at Shetland are considered slower growing than sandeels 
elsewhere in the North Sea (ICES, 1999). Further, assessments assumed that 
100% of fish aged 2 and above spawn (ICES, 1999) although evidence suggests 
some fish may mature earlier or later (Macer, 1966; Gauld & Hutcheon, 1990) - 
these may alter proposed stock-recruit relationships (see Chapter 2). It was 
assumed that net external recruitment occurred in the majority of years but strong 
evidence for external recruitment only exists for one of the historical data years 
(1991; Wright, 1996). It was assumed that the four low recruit years which occurred 

around Shetland 1987-1990 were biologically different so these were removed from 

the historical data set. This is not recommended practice but it was not possible to 

parameterise models for external recruitment if these four years were included. 
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5.9 Summary 

" Evidence (see Wright, 1996) indicates external recruitment may 
dominate recruitment in some years. It was determined to produce a model 
including net external recruitment for the Shetland sandeel population. 

" In order to make progress, it had to be assumed the reproductive 
parameters for sandeels at Shetland were similar to those in the North Sea. This 

allowed a stock-recruit model, parameterised using the North Sea sandeel data 

set, to be scaled to represent local recruitment at Shetland. 

" Comparison of the scaled North Sea Ricker model with the model 
fitted to the Shetland data set revealed the stock-recruit relationships are 
surprisingly similar, so estimates of external recruitment could not be determined 

in the way originally proposed. 

9 The stock-recruit model fitted to the reduced Shetland data set 
(minus four low recruitment years) always returned higher estimates for 

recruitment so, even though there is no biological reasoning to remove data 

points, this curve was selected in order to develop an external recruitment 

models. 

" Using the Ricker models fitted to the North Sea sandeel data and 
reduced Shetland data, two methods were developed to simulate local and 
external recruitment. 

" Functions for autocorrelation were included in both the local and in 
the external recruitment models and simulations carried out for analysis. 

" Comparison of model output with the historical Shetland recruit time 

series identified Model I (additive variances) and autocorrelated local 

recruitment, as the best fit model. 
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Table 5.1 Parameters of the Ricker (1954,1975) stock-recruit model estimated by 
bootstrap analysis for the Shetland sandeel stock and the North Sea sandeel stock. 
a, b= mean estimates for parameters of the Ricker curve, ab = standard error of 
parameter b, 75% c. i. = 75% confidence intervals for estimates returned by 
bootstrap analysis, correlation b= estimates of parameter b returned from 
parameter a using the correlation function between a and b, a" = adjusted a (see 
text), Mean R= mean recruitment (billions), Mean SSB = mean SSB (000 tonnes) 

Parameter North Sea sandeels Shetland sandeels 
b+ ab 0.0007890 + 0.0004802 0.012763 + 0.003338 

b lower 75% c. i. 0.000499 0.010557 
b upper 75% c. i. 0.001140 0.014573 

correlation b 0.000789 0.012762 
correlation b lower 75% c. i. 0.000504 0.010958 
correlation b upper 75% c. i. 0.001100 0.014586 

a+ Qe 1.3664 + 0.5304 2.4206 + 1.1646 

a lower 75% c. I. 0.977 1.654 
a upper 75% c. i. 1.671 2.911 

In(a) ± a, (, ) 
0.2334 + 0.4090 0.7845 + 0.4458 

a" 1.263 2.191 

a, 0.587 1.010 
QW lower 75% c. i. 0.533 0.896 

orK, upper 75% c. i. 0.640 1.118 
Mean R 620 59 

Mean SSB 856 127 

Table 5.2 Combinations of local and external recruitment models incorporating 
autocorrelation. Numbers (1 & 2) refer to Method of modelling recruitment (see 
text). 

Local Re cruitment 
Stochastic Autocorrelated 

External Stochastic 12 12 

Recruitment Autocorrelated External Error 1 1 
Autocorrelated External R 2 2 
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Table 5.3. Results of 1000 simulations of 24 years of stochastic population models 
of sandeels at Shetland (Historical = values from historical data set ICES 1999). 
Local and external recruitment modelled by two methods (Method I and 2 see text), 
Local AC = local recruitment autocorrelated, Ext AC = external recruitment 
autocorrelated. R= recruitment, SD = standard deviation, r, = output autocorrelation 
coefficient, µT and aT = mean and standard deviation of lognormal errors from total 
recruitment about the Ricker curve. µL and aL = mean and standard deviation of 
lognormal errors from local recruitment about the Ricker curve. SSB = spawning 
stock biomass. 

Historical Method I Method 2 
Method I 
Local AC 

Method 2 
Local AC, Ext AC 

Mean In(Recruitment) 4.25 4.32 4.41 4.30 4,40 
SD In(Recruitment) 0.69 0.68 0.58 0.60 0.54 

Median Recruitment (billions) 70 75 82 74 81 

r, Recruitment 0.51 0.01 -0.01 0.40 0.39 

AT 0.429 0.433 0.518 0.434 0.531 

QT 0.668 0.654 0.566 0.594 0.545 

Mean In(Local R) 3.89 3.90 3.87 3.87 
SD In(Local R) 0.64 0.64 0.56 0.60 

Median Local R (billions) 49 49 48 48 
r, Local R 0.00 0.00 0.46 0.41 

µL 0.000 0.002 0.005 0.004 0.000 

aL 0.625 0.621 0.621 0.557 0,584 

Mean in(External R) 3.10 3,10 3.08 3.11 
SD In(External R) 1.03 1.01 0.98 0.93 

Median External R (billions) 22 22 22 22 
r, External R -0.015 -0.056 0.138 0.443 

Mean SSB (000 tonnes) 126 150 154 144 152 
SD SSB 63 45 42 50 50 
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Figure 5.1 Sandeels at Shetland 1974-1993. Recruit time series (Recruits 
0) and index I for passive transport of particles into Shetland, from Proctor 
et al (1998). Recruit time series (Recruits N) from ICES 1999. Assessment 
methods have changed recently for Shetland sandeels and the recruit time 
series (Recruits N) is from recent assessments. 
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Figure 5.2 Sandeels at Shetland 1974-1993. Transport index I indicating the 
strength of passive particle transport from Orkney to Shetland (from Proctor et al 
1998) against total recruitment (from ICES 1999). 
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Figure 5.3 Mean weight-at-age (grams) of sandeels from 15' half year catches in the 
northern North Sea (dark lines) and southern North Sea (light lines) in 1993-1997 
inclusive (ICES 1999) and for long-term mean weight-at-age from 1 S' half year 
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Figure 5.4 Mean Ricker stock-recruit curve with 95% confidence intervals estimated 
by bootstrap analysis for North Sea sandeels scaled and applied to Shetland stock- 
recruit data (diamonds). Four low recruit years indicated by white diamonds. 
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Figure 5.5 Mean Ricker stock-recruit curve estimated by bootstrap analysis for 
North Sea sandeels (N Sea) scaled and applied to Shetland stock-recruit data. 
Ricker curve estimated by bootstrap analysis for Shetland sandeels using the 
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Figure 5.7. Results from recruitment model (Method 2) incorporating local and 
external recruitment with stochasticity. a) Local and external recruitment predicted 
for 50 SSBs selected at random from the reduced Shetland data set. b) External 
recruitment against local recruitment with trendline. c) Total recruitment against local 
recruitment with trendline. 
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Figure 5.8 Results of stochastic population models for sandeels at Shetland with 
autocorrelated local recruitment. External recruitment simulated by a) Method 1 and 
b) Method 2 (see text). Output autocorrelation, r,, for In(total recruit), In(external 
recruit) and In(local recruit) time series against input autocorrelation coefficient, cx, 
for local recruitment model. 
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Figure 5.12 Results of stochastic population model for sandeels at Shetland with 
local and external recruitment simulated using Method 1 (see text). Local 
recruitment function is autocorrelated with an input autocorrelation coefficient of 
0.64. a) Local and external recruitment produced in 50 year simulation b) Total 
recruitment and SSB produced by 50 year simulation. c) External recruitment 
against total recruitment, with trendline. d) Total recruitment against local 
recruitment. 
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Figure 5.13 Results of stochastic population model for sandeels at Shetland 
with local and external recruitment simulated using Method2 (see text). Local 
recruitment function is autocorrelated with an input autocorrelation coefficient of 0.54 
and external recruitment input autocorrelation coefficient is 0.6. a) Local and 
external recruitment produced in 50 year simulation b) Total recruitment and SSB 
produced by 50 year simulation. c) External recruitment against total recruitment, 
with trendline. d) Total recruitment against local recruitment. 
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CHAPTER 6 

SEABIRD FUNCTIONS AND FISHERY MANAGEMENT 



6.1 Introduction 
Shetland is considered internationally important as a breeding site for a 

diverse range of seabird species. According to the RSPB, a million seabirds are 
thought to nest annually around Shetland. Twenty-one species of seabird breed 

regularly at Shetland (Dunnet & Heubeck, 1995). As well as more common species 
such as kittiwakes Rissa tridactyla, fulmars Fulmarus glacialis and puffins Fratercula 

arctica, species which are rare breeders elsewhere in the UK, such as the great 
skua Catharacta skua and Arctic skua Stercoraºius parasiticus, nest in high numbers 
around the Shetland coast. Furness (1990) supplied a table of seabird populations 
censused in Shetland during 1980-87 and expressed these as percentages of the 
North Sea breeding total and British plus Irish breeding total. 60% and 77% of the 
North Sea coast total (67% and 76% British and Irish total), for Arctic skuas and 
great skuas respectively, nest at Shetland. Even for species more commonly 

observed around British coasts, such as fulmars and puffins, a high percentage 
breed at Shetland (68% and 48% of North Sea coast totals and 40% and 18% of 
British and Irish totals respectively). These percentages can represent high numbers 
of birds, for example 208,314 fulmars and 125,000 puffins were censused at 
Shetland over 1980-1987. 

At Shetland, many of these birds rely on young sandeels as prey during the 
breeding season (Furness & Todd, 1984; Blake et at, 1985; Fowler & Dye, 1987; 
Martin, 1989a; Monaghan et al., 1989; Harris & Wanless, 1990; Phillips et al., 1996; 
Wright & Tasker, 1996; Furness, 1999). There is thought to be a lack of alternative 
small fish, which are suitable as a food source, around Shetland (Kunzlik, 1989). 
During the late 1980s, when sandeel recruitment at Shetland decreased to 

extremely low levels, the breeding success at many seabird colonies around 
Shetland also declined (Monaghan, 1992; Dunnet & Heubeck, 1995). In particular, 
very low breeding success or almost complete breeding failure over these years was 
observed at Arctic tern (Monaghan et al., 1989; Monaghan et al., 1992) and 
kittiwake colonies (Harris & Wanless, 1990; Harris & Wanless, 1997) around 
Shetland. The lack of fledglings from these colonies in the late 1980s was linked to 
food shortage. Colonies in southern and eastern Shetland were the most strongly 
affected (Harris & Wanless, 1990; Monaghan, 1992). 

It was with regard to the sandeel fishery at Shetland that concerns were first 

raised about potential impact of sandeel fisheries on the marine ecosystem 
(Reeves, 1999). It was suggested that the sandeel fishery may have caused local 
depletion of stocks in the vicinity of seabird colonies (Monaghan, 1992). Further 

processes by which industrial fisheries could affect foraging seabirds include 
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reducing mean recruitment to the fish stock, increasing variability in recruitment to 
the fish stock or altering trophic structure in the ecosystem (Tasker & Becker, 1992; 
Hunt at al., 1996; Furness, 1996; Bax, 1998; Furness, 1999). In 1992, the Sea 

Fisheries (Wildlife Conservation) Act was introduced which requires wildlife 

considerations to be taken into account when discharging functions under the Sea 

Fisheries Act. Management of the Shetland fishery now considers potential effects 
of the fishery on the availability of sandeels to seabirds. At present, the sandeel 
fishery at Shetland operates with a closed season during June and July, the peak 
seabird breeding season, to avoid competition (Reeves, 1999). 

Although sandeels are important for other marine predators, such as fish, 

pinnipeds and cetaceans (Harwood & Croxall, 1988; Bax, 1991; Doyle & 

Greenstreet, 1999; McConnell of a!., 1999), only seabirds will be considered here for 

various reasons. Firstly, seabird breeding at Shetland is well studied and many of 
these studies are published. Also, for certain species of seabird there appears to be 

a relationship between estimates of sandeel abundance and breeding success 
(Monaghan at al., 1989; Harris & Wanless, 1990; Phillips at a!., 1996). It has been 

suggested that seabird data could provide additional information on fish stock size 

and/or movements and, in some cases, could even act as indicators of fish 

abundance (Springer at a!., 1986; Cairns, 1987; Montevecchi at a!., 1988; Bailey at 
a!., 1991; Cairns, 1992; Montevecchi & Myers, 1996; Litzow at aL, 2000). Finally, 

ecological responses of certain species of seabird could act as an indicator of 
ecosystem health at Shetland. Sandeels are planktivores which can occur in vast 
numbers (there was estimated to be 360 billion sandeels around Shetland in 1997; 
ICES, 1999) so form an important trophic link in the Shetland ecosystem. If seabird 
species that are considered vulnerable to variation in sandeel biomass are doing 

well, then it might be reasonable to assume the sandeel stock and the ecosystem 

are healthy. 

6.2 Vulnerability Index 
As some, but not all, of the seabird species that breed around Shetland 

suffered complete breeding failure in the late 1980s when 0-group sandeel 
abundance was low, it is obvious that certain species could be considered much 
more sensitive to sandeel abundance then others. Although a diverse range of 
seabird species breed around Shetland, including all of them in the model is 
impractical. Instead, species considered particularly vulnerable to sandeel 
availability, were identified and used as indicator species. If potential breeding 
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success for these species is considered high then it can be assumed that potential 
breeding success of other seabird species is also good. 

What characteristics do seabirds possess that makes them vulnerable to 

changes in sandeel abundance? The ability of a seabird to obtain food depends on 

a number of parameters such as the size of the bird, ability to dive and the foraging 

range (Martin, 1989; Furness & Tasker, 2000). Martin (1989) produced a table of the 
foraging characteristics of seabirds breeding around Shetland. Part of this table is 

reproduced in Table 6.1. Martin categorized three foraging characteristics for each 
seabird: Depth; Range; Body Mass (the categorizations are given with Table 6.1). 

The ability of a bird to dive and pursue prey underwater will affect prey 
availability. During the day, sandeels sporadically migrate vertically through the 

water column. So a seabird that can only take fish from the sea surface, such as 
kittiwakes or terns, will have restricted prey availability compared to a bird that can 
dive deep after fish, such as guillemots. Similarly for foraging ranges, seabirds 
which forage over a large area, such as fulmars, have more sea in which to find prey 
then birds which forage near their breeding sites, such as the shag (Martin, 1989; 
Wanless et al., 1990). Finally, the body mass of a seabird is thought to affect the 

energy budget - small birds are less able to increase foraging time if prey availability 
reduces (Pearson, 1968). The species with the poorest breeding season in 1988 
(Arctic terns, kittiwakes, Arctic skuas, black guillemots and puffins) were also the 

smallest in terms of body mass (Martin, 1989). 
The foraging characteristics tabulated by Martin were used to develop a 

"vulnerably index" for these species. This index is a measure of how vulnerable a 
species is considered to be to sandeel abundance. Each characteristic was ranked 
and assigned cumulative numbers, with equal steps, which terminated in 1 (Table 
6.2). For example for Depth; the numbers assigned were surface=0.25, shallow=0.5, 
medium=0.75 and deep=1. The closer to 1 the assigned number, the less vulnerable 
the characteristic is considered to prey abundance. The vulnerability index was 
determined as 100 x the product of the characteristic values each species given in 
Table 6.1: 

Vulnerability Index = 100 x Depth value x Range value x Body Mass value 

The results are shown in Table 6.1, birds with the lowest vulnerability indices 

are considered the most vulnerable to changes in prey abundance. Based on the 
foraging characteristics given by Martin (1989), terns were identified as the most 
vulnerable with an index of 1.7, followed by kittiwakes with an index of 3.3. Gannets, 
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with an index of 50, were the least vulnerable. How do these results compare with 
observations of breeding success in years of low 0-group abundance? Arctic terns 

appeared to be the most hard hit of the seabirds during the late 1980s judging by 

breeding success. Very few or no young were fledged during this period (Monaghan, 

1992; Monaghan et al., 1992). Similarly kittiwakes, which also have a low 

vulnerability index (3.3), showed low breeding success during the late 1980s when 
sandeel abundance was low (Heubeck, 1989; Harris & Wanless, 1990). 

Shags, which were ranked 6/10 for vulnerability indices (vulnerability index 

= 14.9, Table 6.1), generally showed good breeding success during the late 1980s 
(Okill, 1989) although they appeared to retain a diet exclusively of sandeels (Martin, 
1989). Survey data published by Dunnet & Heubeck (1995) show shags nesting at 
Sumburgh Head (see Figure 6.1) maintained a breeding success of 1.10 - 1.58 

young fledged per nest over 1988 to 1993 inclusive, with the exception of 1990 

when breeding success dropped to 0.63. Gannets, which have a high vulnerability 
index of 50, also maintained relatively good breeding success in the late 1980s 

(Okill, 1989). Dietary studies indicated gannets switched to feeding on herring during 

the years of low sandeel abundance (Martin, 1989). These birds show two different 

responses to low prey availability - prey switching and/or increased foraging effort. 
Concurrently, Furness & Tasker (2000) also constructed an vulnerability 

index for seabirds breeding in the North Sea, including Shetland. Furness & Tasker 

scored six foraging characteristics as opposed to the three that I used above. The 

extra three characteristics were "High cost of foraging", "Lack of spare time in 

energy budget" and "Low ability to switch diet". The cost of foraging refers to the 

energetic cost of flight, for example energetically expensive flapping flight compared 
to predominantly gliding flight. Spare time in the energy budget is a measure of the 

amount of time spent chick-rearing, that is the amount of "off-duty" time. Ability to 

switch diet distinguishes between specialized feeders on a single prey type through 

to birds taking a wide range of prey. 
In contrast to the method developed above, the scoring range was between 

0 to 4 in steps of 1 (so each characteristic had five scores) with 0 between awarded 
to the least vulnerable characteristic. The ten species shown in Table 6.1 were 
ranked according to the vulnerability index assigned by Furness & Tasker. The 

vulnerability ranking is similar to the ranking assigned above for the first five species 
in the list and for gannets (the least vulnerable). There is disagreement between the 
two methods for four of the species (fulmars, shags, razorbills and guillemots). This 
is mainly due to the extra categories included by Furness & Tasker (cost of foraging, 
lack of spare time in energy budget and ability to switch diet) and due to differences 
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in defining categories. Furness & Tasker defined five classes in each category 
compared to four classes in the Depth category and three in the Range category in 
the method developed above. 

Furness & Tasker then used the vulnerability indices to calculate sensitivity 
indices to sandeel abundance for seabirds in four areas of the North Sea - 
Shetland, Orkney, Thurso to Peterhead; Peterhead to Fames; southern and south- 
eastern North Sea and north-eastern North Sea. While Furness & Tasker's 

vulnerability index quantifies the vulnerability of seabirds to prey abundance, the 

sensitivity index quantifies the vulnerability to sandeel abundance, which will depend 
on the abundance of alternative prey. The sensitivity index was calculated as the 

vulnerability index multiplied by the proportion of sandeels in the diet of breeding 

seabirds, thus producing regional sensitivities to sandeel abundance. 
The results for the ten species considered above, in the area including 

Shetland, produced by Furness & Tasker were ranked according to assigned 
sensitivity indices (Table 6.1). This decreases the similarity in the results between 
the method developed above. However, all three methods are consistent in 
identifying Arctic terns and kittiwakes as the most vulnerable, or sensitive, species to 

changes in sandeel abundance at Shetland and gannets as the least vulnerable. 

6.3 Seabird Functions 
Breeding success 

of 
certain seabird species at Shetland may be linked to 

foraging success on sandeels. To provide an indication of potential seabird breeding 

success in the models an estimate of foraging success, such as biomass of 

sandeels removed, needs to be determined. The number of sandeels removed by 

predators is calculated as a function of the natural mortality rate in the models. The 

natural mortality rate used in sandeel assessments, is defined as mortality due to 

predation, disease and other natural causes, so includes predation by seabirds 
(ICES, 1999). The natural mortality rate is set by taking a "qualified guess" based on 
information such as analysis of stomach contents of predatory fish (Sparre, 1991). i 

do not have the knowledge of this procedure or the information to determine the 

proportion of the natural mortality rate attributable to a particular species of seabird. 
Therefore, alternative approaches were considered to model potential seabird 
breeding success. 

Assuming breeding success of certain seabird species is linked to sandeel 
availability, "indicator" functions could be constructed to determine potential 
influence of sandeel abundance on seabird breeding success. These functions 
would not be used in the sandeel population model to remove sandeels due to 
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predation by seabirds, as this is still incorporated in the natural mortality rate, but 

applied to the output biomass to identify years with potentially poor foraging 

success. In other words, for a given year the biomass of the sandeel stock is 
determined and the potential seabird breeding success is calculated as a function of 
this biomass. Years when the potential seabird breeding success drops below a 
threshold level are considered "poor" years. 

Firstly, an appropriate parameter from seabird studies needs to be identified 
to reflect sandeel availability. Cairns (1987) proposed relationships between food 
supply and seabird population and behaviour parameters, namely adult survivorship, 
breeding success, chick growth and fledgling weight, colony attendance and activity 
budgets. All of these were assumed to show curvilinear relationships to food supply. 
The response to food supply occurs at different time scales and different levels of 
prey availability for each parameter. For example, adult survivorship is considered to 
integrate food availability over a year and is sensitive to fluctuations when food 

supply is extremely scarce. Chick growth is assumed to vary with food supply when 
this is poor to moderate. Chick growth rate reflects food supply over the chick 
rearing period therefore this has an integration period of one to two months. 

I am concerned with potential adverse affects of the fishery on seabird 
breeding success, so want to identify years when food availability is considered to 
be poor to moderate. Cairns (1987) proposed breeding success and chick growth 
rates as useful indicators over a poor to moderate food availability range. Breeding 

success is considered to reflect food supply over the breeding season, which is 

usually two to several months long, whereas chick growth rate reflects food 

availability over the much shorter chick-rearing period. The sandeel fishery around 
Shetland operates from April or May to September, although since 1995 the fishery 
is closed during June and July (Reeves 1999). These months overlap most or all of 
the breeding periods of seabird species at Shetland (Furness 1990). For example, 
Furness (1990) estimates kittiwakes are present in Shetland (representing the 
breeding period) from the middle of February to the middle of August while Arctic 
terns arrive about the middle of May and depart at the start of August. In view of 
this, it was decided breeding success would be the most suitable indicator of food 

availability for the models. Additionally, there are published studies of breeding 
success at seabird colonies around Shetland. 

The indicator functions will consist of breeding success against sandeel 
abundance but what form should this take? Cairns (1987) suggests a curvilinear 
(sigmoidal) relationship between food supply and breeding success, so breeding 
success increases rapidly at moderate food supply then levels off at high food 
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supply. Monaghan et al. (1989) indicated a non-linear relationship between Arctic 
tern breeding success at Shetland over 1980-1986 inclusive and estimates of 0- 

group sandeel abundance in Shetland waters in 18t July. Phillips et al. (1996) fitted a 
logistic (sigmoidal) curve to the Arctic skua breeding success on Foula over 1986- 
1993 inclusive against estimates of 0- plus 1-group sandeel numbers in Shetland 

waters on 1 st July. Hence, it was assumed the relationships would be non-linear and 
would probably be either sigmoidal or asymptotic. 

It was decided to look for similar relationships using published estimates of 
seabird breeding success. Dunnet and Heubeck (1995) published data on annual 
counts at seabird colonies around Shetland which included breeding success at 
colonies of kittiwakes and fulmars. According to the vulnerability index constructed 
above, fulmars (index of 10) could be considered moderately vulnerable to changes 
in prey availability while kittiwakes (index of 2) could be considered very vulnerable. 

Breeding success was plotted against four measures of sandeel biomass in 
Shetland waters from the stock assessment data (ICES, 1999): 0-group biomass, 0- 

plus 1-group biomass, 1- to 7-group biomass summed, 0- to 7-group biomass 

summed. The assessments estimate 1+ group numbers on 1st January and 0-group 

numbers on 1s` July. 1st July represent the date when the majority of recruits enter 
the exploited stock however, the actual date may very between years depending on 
environmental conditions. This has implications for breeding seabirds which are 
dependant on young sandeels to feed their chicks, such as Arctic terns and 
kittiwakes. If the peak sandeel recruitment is late then chicks may starve and 
breeding success will be low - even if the subsequent sandeel recruitment is high. 
However, the models produced here move in yearly steps so the temporal variation 
in sandeel recruitment will not be explored. Sandeel numbers were multiplied by the 

mean weight-at-age to find estimates of biomass. It was decided biomass was more 
suitable measure of prey availability than fish numbers when considering more than 

one age class of fish as, for example, a 1-group fish is much heavier than an 0- 

group fish so represents a larger energy source for seabirds. 

6.3.1 Fulmars 

Dunnet & Heubeck supply a table for breeding success of fulmars at four 

colonies around Shetland: Sumburgh Head, Troswick Ness and Eshaness (see 
Figure 6.1) over 1985-1993 inclusive and Westerwick over 1990-1993 inclusive. 
Breeding success varied between 0.30 (1988 Sumburgh) and 0.59 (1991 
Sumburgh, 1993 Westerwick) fledged young per apparently occupied nest. Plots of 
breeding success against calculated sandeel biomass are shown in Figure 6.2. All 
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four plots show a positive relationship between breeding success and sandeel 
biomass. Much of the variation, as indicated by extreme data points, occurs in the 
data series for Sumburgh Head and Westerwick. Counts of apparently occupied 
nests were small at these colonies (between 18 and 123) compared to counts at 
Troswick Ness and Eshaness (between 92 and 448). 

To remove the influence of count size, a weighted mean breeding success, 
B, was calculated for each year over all colonies: 

n 
I NiB; 

B='°' n 
J]N; 
1=1 

6.1 

where Ni is the number of apparently occupied nests at site i, B; is the breeding 

success at site i. 
The results are shown in Figure 6.2. This removed some of the variation in 

the data series. Positive relationships of breeding success with sandeel abundance 
are seen in three of the four measures of abundance: 0-group biomass, 0- plus 1- 

group biomass and total biomass. For the first two measures the relationship 
appears to be asymptotic, breeding success increases at low levels of sandeel 
abundance and levels off at high levels of abundance. For the latter measure, the 

relationship appears to be linear. 

Accordingly, an asymptotic model (Equation 6.2) was fitted to the 
relationships with 0-group biomass and 0- plus 1-group biomass (black line, Figure 
6.2). 

a®, Bt =b+ Bt 
6.2 

where Bt is breeding success predicted by the model in year t, e is weighted mean 

breeding success (Equation 6.1) and a and b are constants. 
A linear relationship was fitted to breeding success in relation to total 

sandeel biomass. The R2 was calculated for each model as a measure of the 
proportion of total variance explained by the fitted model. The highest R2 (0.59) was 
returned by the model fitted to breeding success against total sandeel biomass. The 
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models of breeding success against 0-group biomass and 0- plus 1-group biomass 

also had relatively high R2 values (0.45 and 0.41 respectively). 
In the vulnerability index developed above, fulmars were assigned an index 

of 10 and were ranked sixth out of the ten species considered for vulnerability to 

sandeel availability. Therefore, fulmars could be considered to be moderately 
sensitive to changes in prey abundance. Furness & Tasker (2000) developed a 
more detailed seabird sensitivity index to sandeel abundance and indicated fulmars 

were one of the least sensitive seabird species to sandeel abundance at Shetland 
(together with gulls, petrels, cormorants, shearwaters and gannets). Even so, a 
positive relationship with breeding success was found in three of the four measures 
of sandeel abundance. It must be remembered that food supply is not the only 
influence on breeding success, this can also be affected by weather (seabirds may 

not be able to forage under certain conditions), predation and breeding habitat 

quality (Cairns, 1987) so the relationship with sandeel abundance may be 

coincidental. 
While there is a positive relationship with sandeel abundance, fulmar 

breeding success shows limited variation between years (weighted mean breeding 

success varied between 0.43 and 0.55, Figure 6.2). For the purposes of the model, 
this spread of breeding success is too low (no poor years). Therefore, fulmars were 
rejected as an indicator species. 

6.3.2 Kittiwakes 

Dunnet & Heubeck (1995) also supply a table for breeding success of 
kittiwakes at six colonies (see Figure 6.1) around Shetland: Sumburgh Head, 
Troswick Ness, and Eshaness over 1986-1993 inclusive, Kettlaness and Westerwick 

over 1987-1993 inclusive and an estimate for 1993 at Burra. Most of the colonies 
(excluding Burra which has no data) showed almost complete breeding failure 
during 1988,1989 and 1990 except for Eshaness, where breeding success was 
moderate (0.45-0.65 young fledged per incubated nest). No or very few young were 
fledged at Kettlaness between 1987 and 1993 inclusive but Dunnet & Heubeck 

propose this could be due to predation by great skuas which was observed to be 

particularly heavy. As I am concerned with fluctuations in breeding success due to 
food availability, Kettlaness was excluded from further analysis. 

As for fulmars, breeding success was plotted against the four measures of 
sandeel abundance described above (Figure 6.3). There appears to be a positive 
relationship with all four measures of sandeel abundance. The weighted mean 
breeding success (young fledged per incubated nest) was calculated for each year 
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using Equation 6.1 and added to the graphs. The relationships of breeding success 
with 1- plus group biomass and total biomass appear to be linear, therefore linear 

models were fitted to the data. The R2 values were calculated for each linear model 
and this was highest for the relationship with total biomass (0.46). 

The plots of weighted mean breeding success against 0-group and against 
0- plus 1-group sandeel biomass appeared to decrease rapidly at low sandeel 
abundance, therefore asymptotic models were fitted to the data (Equation 6.3). The 
R2 values were calculated as a measure of the proportion of total variance explained 
by the fitted models. The relationship between weighted mean breeding success 
against 0- plus 1-group biomass had an extremely high R2 value of 0.90. Estimates 

of weighted mean breeding success were available over a wide range of sandeel 
abundance for this model. Therefore, the model fitted to these data would provide a 

useful indicator of potential breeding success of kittiwakes and will be used to 

analyze output from the sandeel population model. 
The vulnerability index developed above, indicated that kittiwakes could be 

considered as very sensitive to sandeel availability, kittiwakes were ranked second 

out of ten species. These are small seabirds that are surface feeders and generally 
forage close to the breeding colony. The vulnerability index and sensitivity index 
developed by Furness & Tasker (2000) also indicate that kittiwakes are considered 
very sensitive to sandeel abundance. Low breeding success or almost complete 
breeding failure was observed at kittiwake colonies around Shetland during the late 
1980s when sandeel 0-group availability was low (Harris & Wanless, 1990; Dunnet 
& Heubeck, 1995; Harris & Wanless, 1997). 

Furness (1999) analyzed breeding productivity of kittiwakes from different 

areas of the North Sea against different measures of sandeel abundance that 

excluded 0-group fish and found all correlations were positive. Correlations with 0- 

group fish were found to be negative. The most consistent correlations were found 
to be kittiwake breeding success with the number of 1+ sandeels on the 1st July. 
Breeding productivity at Shetland was also correlated with sandeel abundance and 
showed strong positive correlations with the log of numbers of 1-group sandeels and 
1+ group sandeels. A very weak positive correlation was suggested with 0-group 

sandeel abundance with kittiwake breeding success at Shetland, in agreement with 
the strong positive relationship found in the data analysed above (Figure 6.3). 

Furness (1999) showed positive correlations between breeding success of 
kittiwakes and sandeel numbers in different areas of the North Sea and negative 
correlations with 0-group sandeel numbers. However, Furness also showed that the 
number of 0-group sandeels were negatively correlated with the number of 1-group 
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sandeels in the North Sea. This relationship was also shown for sandeels in the 
North Sea by S. Arnott (pers. com. ) and can be seen in Figure 3.2 of Chapter 3. So 

as the most consistent correlations with breeding success were with 1-group 

sandeel numbers, it is not surprising that negative correlations were found with 0- 

group numbers. Shetland seems unique in showing a positive relationship with 
sandeel availability. At Shetland, the number of 0-group sandeels is positively 
correlated with 1-group numbers (see Figure 3.2b in Chapter 3) and the analysis 
carried out above showed a strong positive relationship with 0-group sandeels. 

In conclusion, weighted mean kittiwake breeding success was plotted 
against measures of sandeel biomass at Shetland. Sandeel biomass was 
considered a more appropriate measure of prey value than numbers when more 
then one age class of fish is considered. A strong positive relationship was found 

between weighted mean kittiwake breeding success and the biomass of 0- plus 1- 

group sandeels (R2=0.90). As estimates of breeding success occurred across a 
wide range of sandeel biomasses it was decided this would be an appropriate 
indicator function for potential seabird breeding success. 

6.4 Breeding success indicator 
The indicator function of breeding success against biomass of 0+1-group 

sandeels developed for kittiwakes at Shetland was used to devise a scoring system 
for potential breeding success. Four categories were selected: poor, moderate, good 
and excellent. It was assumed the upper threshold breeding success for the poor 
category was 0.42 young fledged per incubated nest and this occurred when 0+1- 

group sandeel biomass was 24,000 tonnes (Table 6.3). Moderate breeding success 
(0.42-0.61) was assumed to occur over an 0+1-group sandeel biomass of 24-47,000 
tonnes. A biomass range of 47-140,000 tonnes was selected for good breeding 

success (0.61-0.93) and excellent breeding success (0.93+) was assumed to occur 
when 0+1-group sandeel biomass was above 140,000 tonnes. 

The biomass of 0+1-group sandeels, determined from population estimates 
and mean weight-at-age in the historical data (ICES 1999), was calculated for each 
year over 1974-1997. The potential kittiwake breeding success category was 
determined for each year. This indicated that twelve of the years could be 

considered good for potential kittiwake breeding success and eight years were 
considered excellent (Table 6.3). Three years were considered poor for potential 
kittiwake breeding success (1988,1989 and 1990) and one year was considered 
moderate (1987). The years of potentially poor and moderate breeding kittiwake 
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breeding success (1987-1990) corresponded to years when many kittiwake colonies 
at Shetland failed (Dunnet & Heubeck, 1995). 

6.5 Simulations with Recruitment Models 

A number of recruitment models were developed for sandeels at Shetland: 
the autoregressive model from Chapter 3, Ricker stock-recruit models in Chapter 4 
and Ricker stock-recruit models with external recruitment in Chapter 5. The models 
represent potential recruitment dynamics at Shetland - due to high uncertainty in our 
understanding of these processes a number of alternative models were developed. 
Simulations of these models were carried out with varying rates of fishing mortality 
to indicate potential affects of fishing mortality on the sandeel population structure, 
kittiwake breeding success and the catch landed by the fishery. 

Firstly, a summary of the parameterised models selected from the previous 
Chapters is given together with the baseline output. Then fishing mortality is varied 
and the results analyzed and compared between models. 

6.5.1 Recruitment Models 
Seven recruitment models were selected in the previous Chapters to 

simulate recruitment dynamics of sandeels at Shetland. In Chapter 3, a first-order 

autoregressive model (hereafter AR) was parameterised. This model (Chapter 3, 
Equation 3.28) uncouples recruitment from SSB - recruitment is simply expressed 
as a function of recruitment in the previous year. The model produced In(recruit) 
time series which, on average, had an autocorrelation coefficient of 0.53 - similar to 
that calculated for the historical data series (0.51). 

Chapter 4 fitted Ricker stock-recruit models to the Shetland data set, 
assuming no net external recruitment. Firstly, a Ricker curve was parameterised 
using bootstrap analysis of the complete historical data set. A first-order 

autoregressive model was incorporated in the Ricker function to produce a Ricker 

model with autocorrelated residuals (see Chapter 4, Equation 4.20). Simulations 

were carried out with the model input autocorrelation coefficient set to 0.51 (the 

value of the autocorrelation coefficient from the historical data series). This 

produced model output In(recruit) series which had autocorrelation coefficients of 
0.37 on average - less then the target (historical) value. It was found that increasing 
the input coefficient to 0.73, generally increased the output autocorrelation 
coefficient to 0.50. As an input autocorrelation coefficient of 0.73 represents 
extremely high forcing on the stock-recruit relationship, both the model with this 
input value and with the lesser input value of 0.51 were selected for further analysis 
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(the model with low input autocorrelation coefficient will be referred to as 
CompleteLow hereafter and the high input as CompleteHigh). The historical time 

series is only 24 years long so confidence in the calculated autocorrelation 
coefficient is reduced. 

It was found during fitting both Ricker and Shepherd stock-recruit models in 
Chapter 4, that the four low recruits years which occurred in the late 1980s were 
strongly influencing model fit. Although there was no biological reasoning to remove 
these data points, in the face of uncertainty, these data points were excluded from 
the series and a second Ricker curve parameterised. Simulations were carried out 
using the Ricker models with autocorrelated residuals and it was found that an input 

autocorrelation of 0.51 generally produced an output autocorrelation coefficient of 
0.36 in the In(recruit) time series. As before, it was found that an input 

autocorrelation coefficient of 0.73 was required to produce an average output 
autocorrelation coefficient of 0.50. As 0.73 represents strong forcing on the stock- 
recruit relationship both of these models were selected for further analysis (the 

model with low input autocorrelation coefficient will be referred to as ReducedLow 
hereafter and the high input as ReducedHigh). . 

The final set of models, developed in Chapter 5, included functions for 

external recruitment. It was assumed that the stock-recruit relationship at Shetland 

was similar to that in other areas of the North Sea. Therefore, a Ricker model fitted 

to the North Sea data was scaled down (by area) to represent local recruitment at 
Shetland. It was assumed that the difference between this model and the Ricker 

model fitted to the Shetland data set would be due to the addition of external recruits 
to Shetland. However, the models were surprisingly similar. In addition, the large 

variance about the Shetland curve was due to the four low recruit years. The models 
developed exploit the phenomenon of additive variances but it was not possible to 

produce a model for using these curves that produced this large observed variance. 
In order to develop the model, the Ricker curve parameterised using the 

reduced data set (minus four low years) was used as this was different to the North 

Sea model. Total (local plus external) recruitment is expressed using the scaled 
North Sea Ricker model with lognormal variance. The lognormal variance 
distribution is assumed to be the sum of a lognormal distribution with a mean of zero 
representing local recruit variance around the stock-recruit curve and a second log- 

normal distribution which represents "external error". The local recruitment 
lognormal variance was assumed to be equal to that seen in the North sea data. 
"External error" accounts for the extra variance due to the addition of external 
recruits, this is included by adding a second lognormal variance about the stock- 
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recruit curve which had a mean greater then zero. The variance in the total recruit 
series produced is similar to the variance of the Shetland data about the scaled 
North Sea Ricker model. Functions for autocorrelation were incorporated into local 

variance, into external error and into both. It was determined the most feasible 

model was that with local recruitment autocorrelated with an input autocorrelation 
coefficient of 0.64 - this model will be referred to as ExtMethodl hereafter. 

The second model was produced which was an adaptation of the first. The 
distribution of external recruitment produced by simulations of the parameterised 
first model was determined. In the second model, local recruitment was expressed 
using the scaled North Sea Ricker curve with lognormal variance and external 
recruitment was simply selected randomly from the parameterised distribution. 

Simulations were carried out incorporating autocorrelation in the local recruitment 
function and autocorrelating the external recruit time series. The most feasible 

model selected was that with local recruitment autocorrelated with an input 

autocorrelation coefficient of 0.54 and with the external recruitment series also 

autocorrelation (input autocorrelation coefficient of 0.6) - this model will be referred 
to as ExtMethod2 hereafter. 

6.5.2 Model Simulations 
The population model developed in Chapter 3 was used to carry out 

simulations with the recruitment models discussed above. The mean and standard 
deviation for both the In(recruitment) and SSB series produced for each simulation 
was output together with the autocorrelation coefficient, r,, for the In(recruit) time 

series. To assess potential kittiwake breeding success, the biomass of 0+1-group 
fish was calculated for each year and scored against the breeding success 
categories discussed above (Table 6.3). Finally, the number of fish, hence biomass, 

caught by the fishery in each age class was also calculated. 
Age specific fishing mortality rates were selected as described in Chapter 3 

(from a distribution for each rate calculated from the historical data - see Table 3.5, 
Chapter 3). Eleven levels of fishing mortality were tested - the selected annual 
fishing mortality rate for each age class was multiplied by a constant g. g was 
varied between 0.0 and 5.0 in steps of 0.5. For each value of g, 1000 simulations of 
24 years were carried for each recruitment model discussed above. 

6.5.3 Results 

Firstly, the results for g=1 will be considered as these represent the baseline 

models (Table 6.4). The median values for recruitment and SSB varied between 
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models. The models fell into two groups: those parameterised using the complete 
historical data set (AR, CompleteLow and CompleteHigh) and those parameterised 
using the historical data set minus four low years (ReducedLow, ReducedHigh, 
ExtMethodl, ExtMethod2). For the first group the historical median recruitment and 
median SSB were 48.2 billion recruits and 127 x103 tonnes SSB, while for the 

second group the corresponding values were 70.1 billion recruits and 126 x 103 
tonnes SSB. Generally, the models produced output values close to the historical 

values. All models produced mean catches between 22-28,000 tonnes, close to the 

mean catch of 25,262 tonnes in the historical data over 1974-1986 inclusive (the 

years for which mean fishing mortality was determined as model input). 

To compare potential affect on seabird breeding success, the percentage of 

years in each biomass category were calculated for each simulation and the 

average for 1000 simulations was determined (Table 6.4). For the recruitment 

models in group 1, potentially poor breeding success years occurred with an 

average frequency of 6-7% and moderate years with a frequency of 12-14%. 
Conversely, in the historical data poor years occurred with an average frequency of 
13% and moderate years with a frequency of 4%. If the ratio of the frequency of 

occurrence of poor/moderate years against good/excellent years, is considered the 

ratio in the historical data (1: 5.2) is similar to the ratios produced by the models in 

group 1 (1: 4.2). If the four low recruit years are removed from the historical data, as 
for the developing the group 2 models, all the historical years are potentially good or 
excellent for kittiwake breeding success. The models in group 2 produce very few 

years, on average, when kittiwake breeding success was poor or moderate. 
Simulations were run for each model varying the age-specific mortality rates 

by multiplying each rate by a constant g. g was varied between 0 and 5 in steps of 
0.5. The median recruitment and median SSB produced by each model for each 
value of g tested are shown in Table 6.5 and Figure 6.4. Although the effect on 
median SSB is similar between models, the effect on median recruitment varies 
according to model. As expected, the level of fishing mortality had little effect on the 

median recruitment produced by the autoregressive model (AR) - recruitment was 
uncoupled from SSB in this model. For the remaining group 1 models 
(CompleteHigh and CompleteLow), median recruitment increased to a maximum 
(>45 billion) when g was equal to 1.5-2.0 (CompleteHigh) and 1.5-2.5 
(CompleteLow) then decreased. The decrease was slightly sharper in the model 
with higher autocorrelation. 

Median recruitment reached a maximum (>75 billion) for the two models 
without external recruitment in Group 2, ReducedHigh and ReducedLow, when g 
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was in the ranges 1.5-2.5 and 1.5-3.0 respectively. As before, the decrease with 
high values of g was slightly greater in the model with the higher input 

autocorrelation coefficient. The two models with external recruitment, ExtMethodl 

and ExtMethod2, showed different responses to varying g. The response by 
ExtMethod2 was similar to that of the Reduced models but with higher values for 

median recruitment at low and high values of g. Maximum recruitments occur when 
g was between 0.5-2.5 inclusive. This model used the scaled down North Sea 
Ricker model to simulate local recruitment with a random independent value for 

external recruitment (which was not affected by SSB). The target series was the 

reduced historical series - hence the similarity between the models. The higher 

recruitments at low and high values of g are due to the addition of external recruits. 
The recruitment model, ExtMethodl, was the most sensitive to values of fishing 

mortality. Maximum median recruitment was returned when g=1.5 (74.3 billion), 

above this median recruitment rapidly declined. 

The percentage of years that were considered potentially poor or moderate 
for kittiwake breeding success for each recruitment model are shown in Table 6.6 
together with the percentage produced by each baseline model (g=1). The change 
from the baseline model for each recruitment model is shown in Figure 6.5. The 

change in the percentage of potentially poor and moderate years increases rapidly 
for all models once g>3. A change of less then 5% occurred over a wide range for 

i 
all models. The greatest range (0>=g>=3.5) occurred was produced by models 
ReducedLow and ExtMethod2 (excluding the autoregressive model). 

Mean biomass catch (fishery) under varying levels of fishing mortality rate 
are given in Table 6.7 and shown in Figure 6.6. All models, except AR 
(autoregressive) and ExtMethodl (local and external recruitment linked to SSB), 

show similar responses in mean catch to variation in fishing mortality rate. For all 
models, maximum catches (>40,000 tonnes) occur when g=2 or g=2.5 and above. 

6.5.4 Conclusions 
The recruitment models tested all showed a similar response in median SSB 

to changes in fishing mortality rate (Figure 6.4b) but differing responses in median 
recruitment. The autoregressive model (AR) uncouples recruitment from SSB and, 
although this can reproduce baseline population dynamics of the sandeel stock, it 
does not provide understanding of dynamics when exploitation levels change. 
Therefore, the results from this model will not be discussed further. The remaining 
models fell into two categories, those which were parameterised using the complete 
historical data set (CompleteHigh and CompleteLow) and those which were 
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parameterised using the reduced historical data set (ReducedHigh, ReducedLow, 
ExtMethodl and ExtMethod2). Results from the former group will be considered 
first. 

For the two group 1 models, as input fishing mortality increased the median 
recruitment increased to a maximum at g=1.5-2.0 then decreased. Little change 
occurred in the percentage of years of poor and moderate breeding success for 

seabirds (19.4%) in the model output with low autocorrelation (a=0.51) when g 
reduced from 1 to 0.5 or increased to 2.0. There was little change in median 
recruitment over this period. When g=0 (no fishery), the median recruitment 
decreased from 45/44 billion to 38 billion (CompleteHigh) and 34 billion 
(CompleteLow), while the percentage low poor and moderate breeding success 

years increased by 3-5%. Above g=2.5, median recruitment drops rapidly for both 

models as the percentage of poor and moderate seabird breeding success years 
increases. However, the highest catches by the fishery occurred when g=2-4. The 
increase in catch biomass is due to an increase in the biomass of 1-group fish 

caught as g increases from 0 to 4 (Figure 6.7). 
The second group of models also show an increase in the percentage of 

poor and moderate breeding success years if g=0 (n0 fishery) as median 
recruitment declines slightly. Excluding ExtMethodl model, the models show 
optimum recruitments when g is in the range 1 to 3, which is also the range of low 

percentage of poor and moderate breeding success years. However, optimal 
catches by the fishery occurs when g is in the range 2.5 to 4. 

Model ExtMethodl represents a unique case where external recruitment 

occurs but is linked to local SSB, so if SSB is high then external recruitment is 

generally low (due to density dependence). However, problems arise where local 

SSB is reduced due to heavy exploitation so the likelihood of a large local 

recruitment is reduced as the likelihood of a large external recruitment is also 

reduced. In this instance it is unlikely that external recruitment is linked to local 

spawning stock biomass (as the model should be density independent). 

In conclusion, considering all models except autoregressive model (AR) and 
ExtMethodl, optimal fishery catches of 43-56,000 tonnes occur when g is in the 

range 2.5 to 4- or 0-group fishing mortality rates in the range 0.186-0.298 and a 1- 

group fishing morality range of 0.635-1.016. A minimal number of poor and 
moderate years of potential seabird breeding success occurred when g was in the 

range 0.5-2 for all models, lower than the range for optimal fishery returns. Thus, 

considering all these possible models (except the autoregressive model) removing a 
catch of 38-46,000 (depending on model) should optimize fishery returns without 
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increasing the potential risk to breeding seabirds. It must be stressed though that 
these models represent a simplified view of our perceptions of population dynamics 

- which may be very different. 

6.6 Model Simulations - Restricted Fishery 

Since the sandeel fishery at Shetland reopened in 1995, fishing is 

suspended during June and July to avoid competition with breeding seabirds. If the 

total allowable catch (TAC; at present 7,000 tonnes per annum) has not been 
fulfilled, the fishery may recommence in August. If the TAC is taken before June (or 
fishing does not recommenced in August) then the majority of the catch will consist 

of 1-group fish, as 0-groups are thought to recruit to the stock and simultaneously to 

the fishery from the beginning of June. 

To simulate this scenario, the models were rerun with 0-group fishing 

mortality set to zero - thus assuming all catch is taken before June. For 1+ group 
fish, eleven levels of fishing mortality were tested as before - the selected annual 
fishing mortality rate for each age class was multiplied by a constant g. g was 

varied between 0.0 and 5.0 in steps of 0.5. For each value of g, 1000 simulations of 
24 years were carried for each recruitment model selected above, except the 

autoregressive model. The results were compared with the simulations including 0- 

group fishing mortality. 

6.6.1 Results 
The results for the baseline models (Table 6.8) where g=1, are generally 

similar to those for the models with a fishery on 0-groups (Table 6.4) except for SSB 

and catch. Median SSB increased for all models by a maximum of 6.2% while mean 

catch decreased by a maximum of 9.4%. The percentage of years considered 

potentially poor or moderate for kittiwake breeding success decreased slightly, for 

example from an average of 1 in every 4.2 years for the CompleteHigh model to 1 in 

5.3 years, due to the availability of "extra" 0-group sandeels. The average fishery 

catch also decreased by a maximum of 9.4% (ReducedLow average catch was 
25,810 tonnes for fishery on all age-classes and 23,586 for fishery excluding 0- 

groups). 
The model output values for median recruitment and SSB with varying input 

values of g are shown in Table 6.9 and Figure 6.7. For all models, SSB decreased 

as the fishing mortality rate increased, however the rate of decline was less than in 

the models with a fishery on all age classes (Table 6.5 and Figure 6.4). For the 

models parameterised using the complete historical data set (CompleteHigh and 
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CompleteLow), median recruitment was at a maximum (>75 billion) when input g 
was in the range 1.5-2.5 inclusive of CompleteHigh and 1.5-3.5 for CompleteLow. 

For the remaining models, which were parameterised using the reduced historical 

data set, the optimal ranges for input g which produced the highest median 
recruitment outputs varied between models. A input range for g of 2-3 inclusive 

returned the highest median recruitments for ReducedHigh model and similarly, an 
input range of 2-3.5 inclusive returned the highest median recruitments for 
ReducedLow. ExtMethod2 (independent external recruitment) returned optimal 

recruitments under a largest range of input g, 0.5 -3 inclusive. ExtMethodl 

(external recruitment linked to SSB) performed worst of all the models, an optimal 
recruitment was returned only when g=1.5. 

The potential affect of kittiwake breeding success, that is years which are 

considered poor or moderate, is shown in Table 6.10 and Figure 6.8. The change in 

the percentage of potentially poor and moderate years (% change>5) increases 

rapidly when g>3. All models, except CompleteHigh, showed less then a 5% change 
in the percentage of potentially poor and moderate years when g=0 (no fishery) to 

g=3 inclusive. ExtMethod2 was least sensitive to changes in fishing rate, the 

percentage of potentially poor and moderate years changed by less then 5% over 
the range g=O to g=5. 

6.6.2 Conclusions 

The mean total biomass catch by the fishery under varying levels of fishing 

mortality rate are shown in Table 6.11 and Figure 6.9. The Ricker models with no 
external recruitment (CompleteHigh, CompleteLow, ReducedHigh, ReducedLow) 

showed similar responses in mean catch to changes in input fishing mortality. 
Optimal catches (>40,000 tonnes) for all of these models, except CompleteHigh, 

occurred when g was in the range 2-6.5 inclusive. For CompleteHigh, the optimal 

range commenced when g=2.5. Similarly, ExtMethod2 (independent external 
recruitment) and ExtMethodl (external recruitment linked to local SSB) also 
produced optimal catches when g>=2 but the upper limit of the range for 
ExtMethodl occurred when g=5. 

All models, except ExtMethodl, produced optimal recruitments when g was 
in the range 2.0-2.5 inclusive. This corresponded to catches in the range 37,177 
tonnes to 50,989 tonnes, depending on the recruitment model. ExtMethodl (external 

recruitment linked to local SSB) produced optimal recruitment when g=1.5. As 
discussed above, problems arise with this model when SSB is reduced due to heavy 

exploitation so is model is rejected when fishing mortality (g) is high. This model is 
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excluded from further analysis of results. Including exploitation of 0-group sandeels 
reduced the ranges of g for optimal recruitments for all models (see Tables 6.5 and 
6.9) - considering all models, the optimal range was reduced to 1.5-2.0 inclusive. So 

removing exploitation of 0-group fish in the models increases the level of fishing 

mortality required for optimal recruitments. The decrease in SSB was also greater in 
the models with exploitation of 0-group sandeels. 

Removing exploitation of 0-group sandeels greatly increased the range of 
input fishing mortalities which produced a change of less then 5% from the baseline 

models (g=1) for potentially poor and moderate years of kittiwake breeding success 
(see Tables 6.6 and 6.10). A input range for g of 0.5 -3 produced the fewest years 
of poor and moderate breeding success in all models without exploitation of 0-group 

sandeels. Expanding the fishery to take 0-group fish reduced the optimal range of g 
to 0.5 - 2, when considering all models (except autoregressive and ExtMethodl). 

For the Group 1 models (CompleteHigh and CompleteLow) having no fishery tended 
to increase the potential poor and moderate breeding success years by between 3.4 

-6.5%. 
Maximum catches (53,936 - 62,987 tonnes) occurred in all models when 

g=4 or 4.5 (Table 6.11). Including exploitation of 0-group fish decreased the 

maximum catches to between 47,801 - 55,730 tonnes and these occurred when 

g=3.5 or 4 (Table 6.7). The model with independent external recruitment, 
ExtMethod2, was able to sustain high catches at high exploitation rates, even 
though median recruitment and SSB decreased. 

6.7 Chapter Conclusions 
In the models where there were no exploitation of 0-groups, the sandeel 

population appeared to be more resilient to high exploitation rates compared to 

populations with a fishery on 0-groups. The populations were also less sensitive to 
higher exploitation rates, when considering the percentage of potentially poor and 
moderate kittiwake breeding success years. Not exploiting 0-group fish appears to 

reduce potential adverse effects on seabird breeding success. Catches were also 
higher in the models without 0-group exploitation. In conclusion, catches by the 
fishery of 48-58,000 tonnes have little effect on potential seabird breeding success, 
if exploitation is of 1+ groups only. As the optimal catch depends on the recruitment 
model used, as a conservative estimate, the worse case scenario was selected. 
This was for the model CompleteHigh, where a Ricker model was parameterised 
using the complete data set and the input autocorrelation coefficient was large 

210 



(0.73). The optimal catch, with minimal affects on seabirds, returned by this model 
was 48,000 tonnes on average. 

In conclusion, the models seem to suggest that having no fishery may be 

worse for potential seabird breeding success then having a limited fishery with 
moderate exploitation rates. With the data available at present, it is difficult to 
determine which recruitment model is a good representation of recruitment 
dynamics. The most worrying model is the independent external recruitment - this 

can support high levels of exploitation with little adverse affect on potential breeding 

success of kittiwakes. However, local stock size decreases as exploitation increases 
but this is masked by external recruitment - if external larval transport mechanisms 
cease then the local stock may be at too low a level to be self-sustaining. 

6.8 Summary 

"A index of potential vulnerability of breeding seabirds to sandeel 

abundance was developed. This indicated kittiwakes and Arctic terns are most 

vulnerable. 

" Functions to indicate potential kittiwake breeding success against 

measures of sandeel biomass were constructed - strongest relationship was 
found with 0+1-group sandeel biomass. This was used as an indicator function 
in the models 

" Model simulations were carried out using seven different recruitment 
models developed in previous Chapters varying input fishing mortality rate. 
Simulations were repeated removing exploitation on 0-group sandeels 

" For all models, the sandeel population as well as potential seabird 
breeding success were more robust to exploitation rates if there is no fishery on 
0-group sandeels. 
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Table 6.2 Rank assigned to categories of foraging characteristics of seabirds given by 
Martin 1989. 

Depth Rank Range Rank Body Mass Rank 
Surface 0.25 Near 0.33 <0.5kg 0.20 
Shallow 0.50 Mid 0.66 0.5-1kg 0.40 
Medium 0.75 Far 1.00 1-2kg 0.60 

Deep 1.00 2-3kg 0.80 
>3kg 1.00 

Table 6.3 Characteristics for function to indicate potential breeding success (young 
fledged per incubated nest) for kittiwakes at Shetland. Sandeel biomass = biomass of 0- 
group fish on 18' June plus biomass of 1+group fish on 1'` January (from ICES 1999), 
estimated range of sandeel abundance for each breeding success category. Historical 
Data Score = number of years from the historical data set where the estimated sandeel 
biomass is within the range for breeding success category. %= percentage of years 
represented by each historical data score. 

Mean young 
Breeding fledged per Sandeel Historical Data 
success incubated nest Biomass Score % 

poor 0-0.42 0-24K 3 13 
moderate 0.42-0.61 24-47K 1 4 

good 0.61-0.93 47-140K 12 50 
very ood 0.93+ 140K+ 8 33 
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Table 6.5 Output from simulations of population models for sandeels at Shetland. 
Median recruitment (billions) and median SSB (x103 tonnes) produced by seven 
recruitment models (see Chapter 6 text or Table 6.4 for details) under varying fishing 
mortality rates. g= constant by which each age-specific fishing mortality rate was 
multiplied by. Values in bold indicate optimal recruitment values: >45 billion for 
Group 1 models and >75 billion for Group 2 models. 

AR 

Group I 
Complete 

High 
Complete 

Low 
Reduced 

Hi h 

Group 2 
Reduced ExtMethod 

Low 1 
ExtMethod 

2 
0 47.5 37.7 34.3 59.1 57.7 64.8 71.7 

0.5 48.3 42.5 39.8 66.7 65.6 71.1 78.1 
1 47.9 44.9 43.9 72.3 71.6 73.4 81.6 

1.5 47.8 46.8 46.5 76.4 77.1 74.3 81.6 
2 47.7 45.1 48.9 79.0 79.6 72.3 82.7 

Recruitment 2.5 48.1 41.6 47.2 77.2 80.7 64.0 80.3 
3 49.0 36.3 42.9 74.2 77.4 55.3 74.0 

3.5 48.3 32.7 38.8 68.3 70.1 43.6 67.9 
4 48.9 27.8 31.2 54.8 60.1 31.3 63.4 

4.5 48.9 19.0 25.0 42.9 48.1 21.5 57.8 
5 48.5 13.2 17.4 31.9 34.0 14.1 51.8 
0 175 160 169 177 181 197 204 

0.5 144 139 148 157 162 171 177 
1 119 121 131 137 142 143 150 

1.5 96 102 111 120 123 119 123 
SSB 2 80 88 94 103 105 98 102 

2.5 68 71 78 86 89 77 85 
3 59 58 62 70 72 59 67 

3.5 49 47 51 57 58 45 53 
4 43 37 39 44 45 32 45 

4.5 37 29 30 34 36 26 37 
5 32 22 23 27 27 21 30 
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Table 6.6 Output from simulations of population models for sandeels at Shetland. 
Average % of potentially poor and moderate years for kittiwake breeding success 
produced by seven recruitment models (see Chapter 6 text or Table 6.4 for details) 
under varying fishing mortality rates. % change = change from baseline models 
(g=1). g= constant by which each age-specific fishing mortality rate was multiplied 
by. Values in bold indicate cases where the % change in potentially poor and 
moderate years is less then 5%. 

AR 

Group 1 
Complete 

High 
Complete 

Low 
Reduced 

Hi h 

Group 2 
Reduced ExtMethod 

Low 1 
ExtMethod 

2 
0 19.1 22.6 24.4 3.4 4.9 2.7 0.7 

0.5 18.7 19.6 20.6 2.0 3.0 1.9 0.5 
1 19.4 19.4 19.4 1.7 2.1 1.9 0.4 

1.5 19.9 19.6 19.2 1.9 1.5 2.2 0.5 
2 20.8 22.0 18.2 2.6 1.4 4.3 0.7 

% Poor/Moderate 2.5 21.5 26.3 20.6 3.6 1.9 8.6 1.4 
3 21.4 30.9 24.7 5.8 3.1 14.7 2.5 

3.5 22.3 34.7 28.9 9.6 6.0 23.4 4.8 
4 22.7 38.5 35.5 18.0 11.4 35.7 7.4 

4.5 23.2 46.2 42.2 26.7 20.7 48.3 10.9 
5 24.3 54.2 50.7 36.1 34.4 57.4 16.1 
0 -0.3 3.2 5.0 1.8 2.8 0.8 0.3 

0.5 -0.7 0.2 1.3 0.3 0.9 0.0 0.1 
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1.5 0.5 0.2 -0.2 0.3 -0.6 0.3 0.1 
% change 2 1.4 2.6 -1.2 0.9 -0.7 2.4 0.3 

2.5 2.1 6.9 1.2 1.9 -0.2 6.7 1.0 
3 2.1 11.5 5.3 4.2 1.0 12.8 2.1 

3.5 2.9 15.3 9.5 7.9 3.9 21.5 4.4 
4 3.4 19.1 16.1 16.3 9.3 33.8 7.0 

4.5 3.8 26.8 22.9 25.0 18.6 46.4 10.5 
5 5.0 34.7 31.4 34.4 32.3 55.5 15.7 
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Table 6.7 Output from simulations of population models for sandeels at Shetland. 
Average catch (x103 tonnes) produced by seven recruitment models (see Chapter 6 
text or Table 6.4 for details) under varying fishing mortality rates. % change = 
change from baseline models (g=1). g= constant by which each age-specific fishing 
mortality rate was multiplied by. Values in red are considered optimal catches 
(>40,000 tonnes). 

t AR 
Complete 

High 
Complete 

Low 
Reduced 

High 
Reduced 

Low 
ExtMethod 

1 
ExtMethod 

2 
0 0 0 0 0 0 0 0 

0.5 13757 12828 11885 13594 13039 14307 15208 
1 24485 24036 22256 25810 24958 26336 27866 

1.5 32327 33839 31268 36730 35397 35682 37314 
2 38790 42413 38478 45390 44253 42645 45748 

2.5 45161 47263 43554 52105 49817 44685 50751 
3 50023 48540 45329 55584 53987 45239 51787 

3.5 51863 49896 47445 55731 55662 41779 52007 
4 55254 47115 47801 52645 52007 36782 52073 

4.5 57906 44371 44066 48227 47201 31164 50442 
5 59042 39302 39542 41815 42242 27724 48365 
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Table 6.9 Output from simulations of population models for sandeels at Shetland 
with no fishery on 0-group sandeels. Median recruitment (billions) and median SSB 
(x103 tonnes) produced by seven recruitment models (see Chapter 6 text or Table 
6.4 for details) under varying fishing mortality rates. g= constant by which each age- 
specific fishing mortality rate was multiplied by. Bold values indicate optimal 
recruitments: >45 billion for Group 1 models and >75 billion for Group 2 models 

Group 1 
Complete Complete 

High Low 
Reduced 

High 

Group 2 
Reduced ExtMetho 

Low dl 
ExtMethod 

2 
0 38.1 34.8 60.1 57.7 64.5 73.8 

0.5 41.0 38.5 66.0 64.4 69.2 77.2 
1 43.7 43.0 71.3 69.8 72.9 80.3 

1.5 45.1 45.6 74.7 74.0 75.1 82.7 
2 46.5 48.7 78.4 78.3 73.3 82.2 

Recruitment 2.5 46.9 47.7 80.8 79.9 70.4 81.4 
3 42.1 46.2 78.6 81.5 65.4 78.6 

3.5 38.5 45.1 74.5 78.8 59.4 74.2 
4 34.7 40.3 69.3 73.0 49.1 70.8 

4.5 29.2 35.3 62.5 65.9 38.2 66.0 
5 23.9 29.9 55.4 57.2 28.5 61.1 

5.5 19.3 21.8 44.8 48.1 21.0 58.0 
6 13.3 16.3 33.0 36.6 14.1 53.9 

6.5 11.0 12.3 25.4 28.3 9.6 50.3 
7 7.6 9.6 18.6 18.9 6.6 47.5 
0 161 173 180 182 195 211 

0.5 141 150 162 164 172 182 
1 128 136 146 147 151 156 

1.5 111 120 129 134 132 137 
SSB 2 99 108 116 118 111 118 

2.5 87 92 101 103 94 99 
3 72 78 88 91 80 83 

3.5 60 67 73 77 64 71 
4 51 57 63 64 50 59 

4.5 43 47 51 54 39 50 
5 35 39 43 44 31 42 

5.5 29 29 35 36 25 37 
6 23 24 28 29 21 32 

6.5 20 20 27 24 18 28 
7 17 18 22 20 16 25 
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Table 6.10 Output from simulations of population models for sandeels at Shetland 
with no fishery on 0-group sandeels. Average % of potentially poor and moderate 
years for kittiwake breeding success produced by seven recruitment models (see 
Chapter 6 text or Table 6.4 for details) under varying fishing mortality rates. % 
change = change from baseline models (g=1). g= constant by which each age- 
specific fishing mortality rate was multiplied by. Bold values indicate cases where 
the change in the percentage of potentially poor and moderate years is less then 
5%. 

Group 1 
Complete Complete 

High Low 
Reduced 

High 

Group 2 
Reduced ExtMethod 

Low 1 
ExtMethod 

2 
0 23.6 22.2 4.9 3.0 2.6 0.6 

0.5 21.1 20.0 . 3.1 2.1 2.0 0.4 
1 18.3 18.8 2.0 1.6 1.7 0.3 

1.5 17.1 18.7 1.6 1.3 1.7 0.3 
2 15.5 18.4 1.1 1.5 2.4 0.4 

% Poor/Moderate 2.5 17.3 19.2 1.1 1.6 3.5 0.5 
3 18.0 22.5 1.1 2.7 6.1 0.8 

3.5 20.2 25.7 1.7 4.3 8.9 1.4 
4 23.4 28.2 3.4 6.7 15.2 2.0 

4.5 27.0 32.8 5.9 9.5 24.0 3.4 
5 32.1 37.3 10.2 14.0 33.2 5.2 

5.5 40.4 42.0 15.9 20.8 42.1 6.7 
6 46.2 48.2 25.1 29.7 51.1 8.5 

6.5 52.0 51.0 33.1 36.4 58.3 11.0 
7 55.3 55.7 43.7 43.1 63.0 12.9 
0 5.3 3.4 2.9 1.4 0.9 0.2 

0.5 2.7 1.2 1.1 0.5 0.3 0.1 
1 0.0 0.0 0.0 0.0 0.0 0.0 

1.5 -1.2 -0.1 -0.5 -0.3 0.0 -0.1 
% change 2 -2.8 -0.4 -0.9 0.0 0.7 0.1 

2.5 -1.0 0.4 -0.9 0.0 1.9 0.2 
3 -0.4 3.7 -0.9 1.1 4.4 0.5 

3.5 1.8 6.9 -0.4 2.8 7.2 1.0 
4 5,0 9.4 1.3 5.1 13.5 1.7 

4.5 8.7 14.1 3.8 8.0 22.3 3.1 
5 13.8 18.5 8.2 12.4 31.5 4.8 

5.5 22.0 23.2 13.8 19.3 40.4 6.4 
6 27.8 29.4 23.1 28.1 49.4 8.2 

6.5 33.6 32.2 31.1 34.8 56.6 10.7 
7 37.0 37.0 41.7 41.5 61.3 12.5 
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Table 6.11 Output from simulations of population models for sandeels at Shetland 
with no fishery on 0-group sandeels. Average catch (x103 tonnes) produced by 
seven recruitment models (see Chapter 6 text or Table 6.4 for details) under varying 
fishing mortality rates. % change = change from baseline models (g=1). g= constant 
by which each age-specific fishing mortality rate was multiplied by. Bold values 
indicated optimal catches (>40,000 tonnes) 

t 
Complete 

High 
Complete 

Low 
Reduced 

High 
Reduced 

Low 
ExtMethod 

1 
ExtMethod 

2 
0 0 0 0 0 0 0 

0.5 11397 10537 12165 11872 12834 13721 
1 22308 20536 23586 23139 24355 25692 

1.5 31726 29106 33967 33142 34422 35922 
2 40318 37177 43357 42592 41471 43867 

2.5 46470 43755 50990 50702 46991 50414 
3 51841 47932 57770 56017 50602 54491 

3.5 55688 51346 61546 59458 51513 57162 
4 56440 53507 62988 61550 48961 58801 

4.5 56920 53936 62454 61937 45493 58926 
5 55515 52772 59617 61407 40760 58397 

5.5 48870 52337 56409 57260 36431 58831 
6 45585 45637 50182 51391 33051 57568 

6.5 42268 45769 45736 47225 28496 56723 
7 40122 43272 39879 41162 26676 55913 
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Figure 6.1 Map of Shetland. Black circles indicate seabird colonies mentioned in 
Chapter 6, Hatched areas indicate sandeel fishing grounds. 
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Figure 6.4 a) Median recruitment and b) median SSB produced by 1000 simulations 
of 24 years of a population model with six different recruitment models of sandeels 
at Shetland (see text for explanation of key) with varying values of g. Input fishing 
mortalities selected from a given distribution for each age class (see Chapter 3, 
Table 3.5), were multiplied by a constant g. 
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Figure 6.5 Output from 1000 simulations of 24 years of population model for 
sandeels at Shetland with six different recruitment models (see Chapter 6 for 
explanation of key). % change from the percentage of potential poor plus moderate 
breeding success years for kittiwakes at Shetland produced by the baseline model 
(g=1). Input fishing mortalities selected from a given distribution for each age class 
(see Chapter 3, Table 3.5), were multiplied by a constant g. 
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Figure 6.6 a) Mean total catch produced by 1000 simulations of 24 years of 
population model for sandeels at Shetland with six different recruitment models (see 
Chapter 6 for explanation of key) and b) mean catch of age classes 0-3 inclusive for 
CompleteHigh model only. Input fishing mortalities selected from a given distribution 
for each age class (see Chapter 3, Table 3.5), were multiplied by a constant g. 
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Figure 6.7 a) Median recruitment and b) median SSB produced by 1000 
simulations of 24 years of a population model with six different recruitment models 
of sandeels at Shetland (see text for explanation of key) with varying values of g. 0- 
group fishing mortality set to zero for all models. Input fishing mortalities selected 
from a given distribution for each age class (see Chapter 3, Table 3.5), were 
multiplied by a constant g. 
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Figure 6.8 Output from 1000 simulations of 24 years of population model for 
sandeels at Shetland with six different recruitment models (see Chapter 6 for 
explanation of key) with 0-group fishing mortality set to zero. % change from the 
percentage of potential poor plus moderate breeding success years for kittiwakes at 
Shetland produced by the baseline model (g=1). Input fishing mortalities selected 
from a given distribution for each age class (see Chapter 3. Table 3.5), were 
multiplied by a constant g. 
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Figure 6.9 Mean total catch produced by 1000 simulations of 24 years of population 
model for sandeels at Shetland with six different recruitment models (see Chapter 6 
for explanation of key). Input fishing mortalities selected from a given distribution for 
each age class (see Chapter 3, Table 3.5), were multiplied by a constant g. 
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CHAPTER 7 

CONCLUSIONS AND DISCUSSION 



7.1 Thesis Summary and Conclusions 

Since improving our understanding of recruitment dynamics is vital for 

managing fisheries, this thesis has concentrated on analyzing recruitment patterns 

and developing models to simulate recruitment. In Chapter 3, recruit time series 

were analyzed to determine any underlying trends or patterns in the data and 
forecasting models - autoregressive or moving average models - fitted. Stock-recruit 

models were then parameterised (Chapter 4) but these highlighted the fact that four 

low recruit years, which occurred in the late 1980s when SSB was relatively high, 

were strongly influencing model fits. In Chapter 5, models to represent the 
hypothesis that net external recruitment occurs were developed. Chapter 6 tested 

selected models from the previous Chapters, under different fishing mortality rates, 
to analyze the potential impact on catch biomass and seabird breeding success. 

The stock-recruit data used in this thesis were taken from the Report of the 

Working Group on the Assessment of Demersal Stocks in the North Sea and 
Skagerrak (ICES, 1999). Estimates for population size, SSB and landings, as well 

as population parameters such as age-specific mortality rates, were given for the 

years 1974-1997 inclusive for Shetland sandeels and 1976-1996 inclusive for the 

North Sea stock. Subsequent working groups have provided further estimates for 

the North sea stock (recruit estimates for 1998 and 1999 and SSB for 1998,1999 

and 2000; ICES, 2001) though not for the Shetland stock. 
The Shetland stock is now managed on a three-year basis, so the next 

assessment review is due in 2001. An attempt was made to update the assessment 
by the working group in October 2000 (ICES, 2001). This proved extremely 

problematic for reasons including missing survey data years and the years of 

closure of the fishery. No updated assessment was produced but survey indices 

(mean number of fish per 30 minute tow) indicate that 1998 was probably a 

moderate recruitment year - 559,200 caught 0-groups per 30 minute tow, close to 

the average of 648,962 from previous years. 1999 was a very good year - 
1,166,590 0-groups were caught per 30 minute tow comparable with the 1,009,020 

0-groups caught per 30 minute tow in 1991 when recruitment was extremely high 

(ICES, 2001). However, only 7,920 0-groups were caught per 30 minute tow in 

2000 - this is the lowest survey index for 0-groups returned over 1984 - 2000 

inclusive (excluding 1987 and 1995 for which no data exists). 
Because of high natural mortality rates and few year classes in the fishery, 

deterministic models are difficult to define for sandeel stocks (ICES, 2000). As cited 
by ICES (2001): "stock-recruit relationship for North sea sandeels indicates there is 

no clearly defined relationship between stock and recruitment over the observed 
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stock sizes". Therefore, one of the criteria set within this thesis, namely to simulate 
recruitment using stock-recruit models proved to be very challenging. In view of the 

apparent lack of relationship between spawning stock and recruitment, time series 

analysis was applied to the recruit data to expose patterns in the data. This is an 
important step to understanding fluctuations in recruitment (Zheng, 1997) and these 

models can be combined with traditional stock-recruit models. 
In Chapter 3, the recruit time series for both the Shetland stock and the 

North Sea sandeel stock were analyzed for trends and quantitative forecasting 

models considered. A first-order autoregressive model was parameterised for the 
North Sea sandeel recruit time series (Figure 3.5a). Based on an estimated 

recruitment in the North Sea of 198 billion in 1997 (from ICES, 1999), the 

autoregressive model predicted recruitments of 994 billion in 1998 and 337 billion in 

1999. The actual estimates from the latest assessment (ICES, 2001) are 440 billion 

in 1998 and 874 billion in 1999 - very different to the autoregressive model. Why 

are the predictions so different to the actual estimated recruitments? 
Firstly, the estimate for 1997 (198 billion) on which future projections were 

based was increased in the later assessment (ICES, 2001) to 349 billion. 

Substituting this value in the autoregressive model parameterised in Chapter 3, 

reduces the model projection for 1998 from 998 billion to 683 billion - closer to the 

actual estimated recruitment of 440 billion. While 440 billion in 1998, predicts a 

recruitment of 585 billion in 1999, closer to the actual estimate of 874 billion. 

Secondly, the model assumes an alternating pattern of high and low recruitments, 

but the historical data does not always follow this pattern (Figure 3.2c). In the early 

1990s the pattern changed to a 3-year cycle of 2 high recruitments followed by 1 low 

recruitment. The high recruitment in 1996 appears to have been followed by two low 

recruitments in 1997 and 1998. Based on the estimated historical recruitment in 

1999 (874 billion) the model predicts a low recruitment of 370 billion in 2000. 

For the Shetland data, an autoregressive model was also parameterised to 

simulate recruitment (Chapter 3, Figure 3.5b). The autoregressive model for 

Shetland sandeels closely tracked the noise in the series but with a lag, therefore 

the model could not be used to predict recruitment. However, it was suitable for 

produce recruitment series in population model simulations. 
Although the relationship between stock and recruitment appears weak for 

both North Sea and Shetland sandeels (Chapter 4, Figure 4.2), it cannot be ignored 
if exploitation rates increase. It is expected that as SSB is reduced through 

exploitation, eventually the probability of a good recruitment will be seriously 
impaired. Therefore, stock-recruit models were considered in Chapters 4 and 5 and 
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were combined with first order autoregressive models to autocorrelate recruitment. 
The initial intention was to use a Shepherd (1982) stock-recruit model to simulate 
recruitment at Shetland. However, bootstrap analysis showed that generally no 
relationship was found between SSB and recruitment for the Shetland sandeel data. 
Approximately 25-40% of simulations returned a "constant recruitment" model as the 
best fit, that is there was no influence of SSB on recruitment. The less complex 
Ricker model was therefore applied to the stock-recruit data. 

Ricker stock-recruit models have only two unknown parameters and can be 

parameterised by simple linear regression (unlike Shepherd models). Bootstrap 

analysis was also applied to this model and a curve with 95% confidence intervals 

was parameterised (Figure 4.10a). The lognormal variability about the curve was 

extremely high (1.01) and this was due to the four very low recruit years (<13 billion) 

which occurred in the late 1980s when SSB was generally high (76-184 x103 
tonnes). This prompted the question: are these low recruit years typical of the range 

of recruitment for the given SSBs or can they be considered outliers? 
In 1983, an estimated SSB of 183 x 103 tonnes produced an estimated 

recruitment of 109 billion yet four years later, in 1987, a similar sized SSB of 184 

x103 tonnes produced an estimated recruitment of only 3.7 billion -a reduction of 

approximately 97%. On the other hand, an estimated SSB of 153 x103 tonnes in 
1988 produced an estimated recruitment of 13 billion and similar sized SSBs in 1994 
(155 x 103 tonnes) and 1995 (152 x 103 tonnes) also produced low recruitments of 
34 and 23 billion respectively. Therefore, it is difficult to conclude if these data points 
are outliers. 

Removing the four low recruit years enabled a Shepherd model with 75% 

confidence intervals to be identified, suggesting these years may be extreme values 
(as they were obscuring the model fit previously). A Ricker curve with 95% 

confidence intervals was also parameterised using the reduced data set. 
Biologically, there is no justification for removing the data points, but the 95% 

confidence intervals indicate the two Ricker curves may not be significantly different. 
But how much confidence can we have in the model fits? 

As discussed by Sparholt (1996), if recruitment is positively autocorrelated 
then SSB may not be independent of SSB in previous years and so of recruitment. 
Trends in recruitment may occur before trends in SSB - as is seen in the Shetland 

sandeel data (Figure 3.1b). This can be seen clearly in Figure 7.1 where the 
increase and decline in recruitment between 1979 and 1987 is closely followed, at a 
lag of 3 years, by SSB. This pattern alters when the large recruitment, after several 
poor years, in 1991 causes a large increase in SSB two years later (not three). 
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Therefore, the independent variable (SSB) has some dependence on the dependent 

variable (recruitment) - this violates one of the basic assumptions of linear 

regression and reduces certainty in the fitted models. 
Alternative approaches are being developed to predict recruitment than as a 

deterministic function of SSB, for example the recruit states mechanism, discussed 
in Chapter 3, proposed by Gilbert (1997) or the probabilistic approach proposed by 
Evans & Rice (1988) and further explored by Cook (2000). The deterministic stock- 
recruit model approach was taken in this thesis as this is a fundamental concept for 
fishery management which is still widely used today and generally one of the first 

steps taken when entering this field. Secondly, the relationship between stock and 
recruitment cannot be ignored especially if SSB reduces with heavy exploitation 
(Myers & Barrowman, 1996). 

Chapter 4 produced models for the Shetland stock which assumed no net 

external recruitment. But what if there is a sizable input of external recruits into the 

system? This will obscure stock-recruit relationship at Shetland as not all the recruits 
originate from the local spawning stock and may have implications for the 

persistence of the stock and for breeding seabirds. As the frequency and size of 
external recruitment to the Shetland stock is unquantified the approach taken in 
Chapter 5 was to identify a measure for local recruitment. It was assumed that the 

stock-recruit relationship at Shetland was similar to that in other areas of the North 
Sea, so Ricker models were fitted to the North Sea stock and the mean curve was 
scaled down for use with the Shetland data. Surprisingly, there was very little 

difference between the two curves (Chapter 5, Figure 5.5). Two extra years of data 
(1998 & 1999) are now available for the North Sea sandeel stock and the estimated 
recruitment in 1997 has been increased from 198 billion to 349 billion. The 

parameters of the North Sea Ricker model were updated by re-running bootstrap 

analysis. The new data made very little difference to the mean Ricker curve but 
decreased the 95% confidence intervals (Figure 7.2). 

If the Ricker curve parameterised using the reduced Shetland data set is 

considered, the average recruitment predicted for a given SSB is higher than that 

predicted by the scaled North Sea curve (Figure 5.5). This model was selected to 

develop models with external recruitment the exploit the phenomenon of additive 
variances. The first method simulates total and local recruitment as a function of 
SSB, the difference being external recruits. However, external recruitment is linked 
to local recruitment and SSB in this method, so as the stock reduces the probability 
of a large external recruitment reduces. It was assumed this was unlikely (for the 
hypothesis that external recruitment forms an independant significant addition to the 
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Shetland sandeel stock), so this model was rejected for simulations altering fishing 

mortality rates. The second method assessed the distribution of external recruits 
output by the baseline model of the first method and used this distribution to 

simulate external recruitment. External recruitment is therefore independent of both 
local recruitment and SSB, so a large external recruitment may occur when SSB is 
low. However, there will be no affect of density dependence on external recruits at 
high SSB levels. 

Chapter 6 varied input fishing mortality rate in the models and assessed the 

potential impact on fishery catches and for breeding seabirds. The performance of 
the recruitment models developed in Chapter 4 and Chapter 5 were tested under a 
range of input fishing mortality rates. A function was developed to indicate potential 
breeding success of kittiwakes at Shetland. Two levels of positive autocorrelation 

were also tested for the models with no net external recruitment (input 

autocorrelation coefficient equals 0.51 and equals 0.73). It was found that increased 

autocorrelation reduced the median recruitment, median SSB and mean catch for 

each recruitment model and increased the proportion of years which were potentially 
poor or moderate for kittiwake breeding success. As a result of high autocorrelation, 
low recruitment years were more likely to occur as a series than as a single event. 

With a fishery operating on all age classes, it was found that values of F, 

which were in the range of 1.5 -2 times greater then the average values of F used 
in the baseline models (Table 3.5), produced optimal recruitments for all models and 
increased the potential proportion of poor and moderate kittiwake breeding success 

years by less than 3%. Mean catches produced by all models in this input F range 
were between 31,000-46,000 tonnes. The highest catches (48,000-58,000 tonnes) 

were produced when input F was 3.5-4 times larger than in the baseline models. 
The models indicate that a substantial catch (31,000 tonnes) could potentially be 
landed each year with little adverse affect on recruitment or breeding seabirds. 
Landings of around 52,000 tonnes, the highest on record (1982), may potentially 

reduce median recruitment by as much as a third for the recruitment models 
assuming no net external recruitment and parameterised using the complete data 

set but have less affect in the remaining models. 
Simulations were rerun without exploitation of 0-group sandeels. This is 

assumed to mimic the present strategy of closing the fishery for June and July to 

avoid competition with breeding seabirds (if all catch is taken before this). Very few 
0-groups will be landed before June and fishing only resumes in August if the TAC is 

not taken. It was found, considering all models, fishing mortality rates in the region 
2-2.5 greater than input F in the baseline models optimized median recruitment 
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while increasing the portion of potentially poor and moderate kittiwake breeding 
success years by less than 1 %. The mean catch from the models over this fishing 

mortality range was 37,000-51,000 tonnes - higher than the mean catches for the 

optimal F range identified in the models with a fishery on all age-classes and similar 
to the highest recorded landings of 52,000 tonnes in 1982. 

In summary, a number of models were developed to simulate potential 
recruitment dynamics for sandeels at Shetland - including models with external 
recruitment. Simulations varying fishing mortality rate indicated a fishery that does 
not exploit 0-group fish could sustain higher catches with little additional adverse 
affect on kittiwake breeding success. Depending on the recruitment model selected, 
optimal catches occur in the range 37,000-51,000 tonnes for this fishery. 

These models represent a simplified view of our perceptions of sandeel 
population dynamics at Shetland. The input data was simply the population 
parameters and estimates produced by assessments of the stock (ICES, 1999). 
Therefore, the input data was itself the output of a model and, as stated by ICES 
(1999), cannot be regarded as absolute levels due to the sensitivity of the models to 
input data. Conclusions from the models developed in this thesis therefore cannot 
be taken as absolute levels and must be viewed with caution. 

7.2 Further Work 

There are two main expansion routes for these models, either temporally 

and/or spatially, if suitable data is available. There are a number of fishing grounds 
around Shetland (Figure 2.9) so ideally a spatial model would be based on these 

grounds. A spatial model could supply insight into fishery management strategies 
such as closed areas. Lauck et al. (1998) propose the use of marine reserves - 
protected areas - as a method of "bet-hedging" against management limitations 
thus enhancing long-term sustainable exploitation. Expanding the models to include 
the Orkney grounds, as suggested by the revised stock divisions proposed 
Pedersen et al. (1999), could improve estimates but little data exists for sandeel 
populations in this area. 

The models could also be developed temporally in order to explore the 

potential affects of the current management strategy of a closed season in June and 
July, as well as variation in the availability of sandeels. Evidence suggests that the 
catchability of larger sandeels is reduced earlier in the fishing season than smaller 
sandeels (Pedersen et al., 1999). Rindorf at al. (2000) present evidence that 
breeding success in three seabird species: common guillemot, shag and kittiwake, 
on the Isle of May (Scotland) were related to the availability of 1-group and older 
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sandeels and the timing of peak sandeel availability influenced seabird reproductive 
output. Additionally, the appearance of external recruits is assumed to occur later 
than local recruits (Wright, 1996). The timing of this second peak could have 
important implications for seabird breeding success. 

7.3 Discussion 
As shown in model simulations in Chapter 6, the occurrence of net external 

recruitment may be important not only for fishery management and stock 
persistence, but also for the breeding success of seabirds at Shetland. Potential 
breeding success of kittiwakes was found to be relatively unaffected over a large 

range of fishing mortality rates when independent external recruitment was included 

in the model. The stock could also support relatively high catches by the fishery. 

This raises concerns as the local SSB may have decreased to such low levels that, 

if the pre-recruit transport mechanisms fail, the stock may not be self-supporting. 
Proctor et al. (1998) postulate that larval advection into Shetland waters may 

be an important factor influencing recruitment. It is expected that a net gain of 

recruits from outside the Shetland system would obscure the stock-recruit 
relationship at Shetland and, as seen from the difficulty in parameterising stock- 
recruit models (Chapter 4), there is no clear defined relationship. However, there is 

no clear stock-recruit relationship for North Sea sandeels either (Chapter 5) and it is 

assumed, on a North Sea scale, that immigration to the stock would be negligible. 
How much mixing is there between populations? It appears that mixing of 

sandeels occurs at scales of 200 km or less (Wright et al., 1998 cited by Pedersen 

at al,. 1999). The stock divisions for sandeels in the North sea have been recently 
revised for assessment purposes based on work on the population structure 
(Pederson et al., 1999). The new area proposed for Shetland is much larger and 
includes Orkney and the area North of mainland Scotland. However, little or no 
information exists on population size and structure outside of commercial fishing 

grounds including the area around Orkney. If larval advection results in a net gain of 
recruits to Shetland as suggested by Wright (1996) then the "effective" SSB, that is 
the SSB in the entire region from which recruits originate (Rothlisberg et al., 1996), 
for Shetland sandeels will vary between years depending on the larval transport 

strengths (as the spatial extent of the areas of origin may shrink or expand 
depending on larval transport mechanisms). This could account for the poor 
relationship between stock and recruitment for sandeels at Shetland. 

What did happen in the late 1980s? Four extremely low recruitment years 
occurred (<13.1 billion) when SSB, initially, was high (184 x103 tonnes; Figure 2.2). 
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lt is now accepted that the decline in the stock was not fishery-induced. Could it be 
due to a reduction or halt of larval transport mechanisms as discussed above? 

In Chapter 2, the recruit time series for sandeel grounds around Shetland 

were analyzed for synchrony. This indicated that generally the grounds could be 

considered synchronized - 19 of 105 combinations were significant at P=0.05 for 0- 

group series and 10 of 105 for 1-group series. There are main three routes by which 

synchronization could occur - high dispersal, large-scale environmental 

perturbations or both (Moran, 1953; Ranta et al., 1995). Certainly, high dispersal of 

recruits is feasible - deployment of drifting drogues indicated that current transport 

in the vicinity of south-east Shetland may be rapid (Wright & Bailey, 1993). 

Large-scale environmental perturbations are also hypothesized to 

synchronize populations (Moran 1953) and evidence exists that this may occur in 

fish stocks and is strongest in neighbouring stocks (Ranta et al,. 1995; Zheng, 1997; 

Fox et at, 2000). It would be interesting to see if time series of 0-groups on grounds 

around Shetland are also synchronized with 0-group numbers in adjoining areas and 

at Orkney. Unfortunately, this data was not available. However, an indication of 

sandeel abundance may be found in seabird population data. It has been suggested 
by a number of authors that seabird data could provide additional information on fish 

stock abundance (for example Cairns, 1987; Bailey et al., 1991; Cairns, 1992; 

Montevecchi & Myers, 1996). 

In Chapter 6, it was shown that kittiwakes could be considered particularly 

vulnerable to changes in 0- and 1-group abundance and a function of potential 

kittiwake breeding success against 0- and 1-group biomass was constructed. 
Breeding success at many kittiwake colonies around Shetland was low in the late 

1980s when sandeel recruitment was very weak (Heubeck, 1989; Harris & Wanless, 

1990; Dunnet & Heubeck, 1995). Breeding success of kittiwakes around UK coasts 

over 1986-1988 was assessed by Harris & Wanless (1990) and a negative 

relationship was found between breeding success and latitude of colonies in the 

northern North Sea. In 1988, when the second lowest recorded recruitment occurred 
(after 1987) and many kittiwake colonies at Shetland failed completely (Dunnet & 

Heubeck, 1995), the north-south trend in breeding success was significant over the 

whole length of eastern Britain (Harris & Wanless, 1990). No similar trend was found 

in the breeding success of colonies on the west coast of Britain. Evidence suggests 
that food shortage during chick rearing was responsible. Harris & Wanless postulate 
that this could be result of environmental changes occurring in the North Sea as sea 
surface temperature around Shetland was extremely high between 1986 and 
1988. This warm water extended far down the east coast of Britain in 1988. They 
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conclude that while sea surface temperature alone probably is not a controlling 
factor, it may be indicative of more profound oceanographic changes. 

It is unlikely that a single environmental parameter alone is influencing 

recruitment and identifying the mechanisms by which the two are related may be 

difficult. This area was reviewed by Myers (1998) who retested the success of 
published environment-recruit correlations using new data - only a low proportion 
were verified on retest. Nearly all the correlations with temperature that held were 
with populations close to the northern or southern limits of their ranges. Monaghan 

(1992) showed the sea surface temperatures for Shetland given by Harris & 
Wanless (1990) were significantly negatively correlated with sandeel recruitment. 
Arnott (unpublished) showed that sandeel recruitment in the North sea can be 

considered correlated with the North Atlantic Oscillation (hereafter NAO) -a natural 
large-scale pattern of disturbance of the atmospheric circulation and climate of the 

Atlantic-European region (linked to westerly wind flow). How could this impact on 

sandeel recruitment? 
There are considered to be three major northerly routes for the inflow of 

Atlantic water into the North Sea: through the Fair Isle channel between Orkney and 
Shetland, southwards along the Norwegian Trench and southwards along the east 
coast of Shetland (Turrell 1992). Turrell (1992) considers sandeel recruitment as a 

possible indicator of climate change and suggests the high recruitment at Shetland 

during the mid-late 1970s may be the result of a reduction of the proposed Atlantic 

inflow to the east of Shetland. When sandeel larvae are in the plankton, the inflow 

east of Shetland is predominately wind-driven. A reduction in the strength of the 
inflow may increase the retention of locally spawned larvae at Shetland. The sea 

circulation model adapted by Proctor et at (1998) did not support this hypothesis but 

conversely suggested that larval advection to Shetland is important. 

Holliday & Reid (2001) suggest that there is a connection between pulses 
Atlantic water entering North Sea and ecological changes in the North Sea 

ecosystem. Two ecological shifts appear to have occurred during the late 1980s 
(when sandeel recruitment was extremely low) and in the late 1990s - the 
Continuous Plankton Recorder survey suggests that these events are unusual in a 
time series of more than 50 years. Around 1988 (the second lowest year on record 
for sandeel recruitment after 1987), a significant ecological shift is thought to have 

occurred, as seen in changes of abundance of planktonic species. The incursion of 
Atlantic water, early in the year in 1988, is thought to have been in the form of a 
pulse rather then a prolonged period of increased transport. A further incursion 

occurred late in the year (September onwards) in 1997 (year of highest recorded 
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sandeel recruitment). These pulses happened when circulation in the Rockall 
Trough was unusual and it has been suggested this is related to the NAO (Reid et 

at, 1998). Reid et al. (2001) demonstrated, using a 3-dimensional mathematical 

model to measure integrated Atlantic inflow into the northern North Sea, that 

periodic changes in the plankton records for the North Sea after 1987 are likely to be 

the consequence of changes in atmospheric circulation reflected by the NAO index. 

Is it a coincidence that extremely low recruitments for sandeels at Shetland 

were recorded during the late 1980s when a marked ecological shift is thought to 
have occurred in the North Sea bought about by a sharp intrusion of Atlantic water? 
The regime shift in plankton may affect the trophic structure of the North Sea and 
therefore may affect the survival of sandeel larvae and recruits. Large increases in 

the catch of horse mackerel in areas of the northern North Sea coincided with these 

observed planktonic and environmental changes (Reid et al., 2001). Sherman 

(1981) presented evidence that an increase in abundance of sandeel species in the 

north-west Atlantic and North Sea during the late seventies was probably due to 

changes in the trophic levels of the ecosystem though Sherman suggests this 

excludes the hypothesis of environmental change. The decrease in herring and 

mackerel stocks during this period may have resulted in an increased food supply 
for sandeels through reduced competition and an increased survival of sandeels due 

to reduced predation. 
Planque & Fromentin (1996) and Fromentin & Planque (1996) demonstrated 

a significant negative correlation occurs between the zooplankton Ca/anus 

finmarchicus and the NAO in the north-east and the North Sea. Calanus is known to 
be a prey item of sandeels (Reay, 1970). Wright & Bailey (1993) found trends in 

Ca/anus finmarchicus in the Orkney-Shetland region did generally correspond with 

changes in sandeel recruitment. They conclude changes in sandeel year-class 

strength and zooplankton dynamics could be related by an environmental event - 
nature of which is unclear but the changes in zooplankton have been ascribed to 

increased Atlantic inflow into the North Sea. However, as sandeel larval advection to 
Shetland may also ascribed to changes in Atlantic inflow (Wright, 1996), it is likely 

that a combination of factors are affecting recruitment at Shetland. 

If environmental conditions are an important factor producing extremes in 

sandeel recruitment, deterministic stock-recruit models may not be adequate tools 
for management - especially in light of current concerns about climate change. As 

shown in this thesis, development of robust stock-recruit models is difficult without 
further understanding of processes acting on recruitment. An approach such as that 

suggested for South African anchovy by Cochrane & Starfield (1991) would be more 
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robust. Anchovy stocks also exhibit extreme fluctuations in recruitment and are 

short-lived fish (so the fishery is dependent on the lower age classes). Cochrane & 

Starfield suggest methods to predict recruitment early in the year and demonstrate 

that if good predictions of recruitment could be made before the start of the fishing 

season, TAC could be altered accordingly and model simulations indicated this 

would increase catches theoretically by up to 48%. Although, the increased 

interannual variation in catch may be detrimental to the fishing industry. Troadec et 

al., (1980) also suggest a sound management strategy for mackerel and anchovy off 
California, which exhibit natural long- and medium-term fluctuations, would be to 

capitalise on good years when they occur. 
To conclude, although the TAC for the Shetland fishery is low and SSB 

appears to be recovering, low recruit years are still occurring. Our knowledge of 

ecosystem functioning desperately needs to be improved, especially in light of 

possible climate change. Tragically, reports from the Fair Isle Bird Observatory for 

this year (2001) tell of mass starvation of Arctic tern chicks - latest reports are that 

only seven Arctic tern chicks have been fledged from 2,840 breeding pairs (Fair Isle 

Bird Observatory web site). Breeding guillemots, kittiwakes, puffins and razorbills 

are also badly affected. It seems that sandeel availability, which appeared to be 

abundant at the start of the breeding season, has dropped. 
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Figure 7.2 Sandeels in the North sea. Ricker model with 95% confidence intervals 
parameterised using data 1976-1996 inclusive (solid lines; from ICES 1999) and 
using data 1976-1999 (dotted lines; from ICES 2001). 
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