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Abstract 

This research presents a vibration analysis for a thin isotropic plate containing an 

arbitrarily orientated surface crack. The work has been motivated by the well known 

applicability of various vibrational techniques for structural damage detection in which the 

detection and localisation of damage to thin plate structures at the earliest stage of 

development can optimise subsystem performance and assure a safer life, and is intended 

to be an enhancement to previous work on cracked plates for which the orientation of the 

crack angle was not included. The novelty of this research activity has been in the 

assimilation of a significantly enhanced crack model within the analytical model of the 

plate, in modal space, and taking the form of a specialised Duffing equation. The 

governing equation of motion of the plate model with enhanced crack modelling is 

proposed to represent the vibrational response of the plate and is based on classical plate 

theory into which a developed crack model has been assimilated. The formulation of the 

angled crack is based on a simplified line-spring model, and the cracked plate is subjected 

to transverse harmonic excitation with arbitrarily chosen boundary conditions. In addition, 

the nonlinear behaviour of the cracked plate model is investigated analytically from the 

amplitude-frequency equation by use of the multiple scales perturbation method. For both 

cracked square and rectangular plate models, the influence of the boundary conditions, the 

crack orientation angle, crack length, and location of the point load is demonstrated. It is 

found that the vibration characteristics and nonlinear characteristics of the cracked plate 

structure can be greatly affected by the orientation of the crack in the plate.  

The dynamics and stability of the cracked plate model are also examined numerically using 

dynamical systems tools for representing the behaviour of this system for a range of 

parameters. Finally the validity of the developed model is shown through comparison of 

the results with experimental work and finite element analysis in order to corroborate the 

effect of crack length and crack orientation angle on the modal parameters, as predicted by 

the analysis. The results show excellent predictive agreement and it can be seen that the 

new analytical model could constitute a useful tool for subsequent investigation into the 

development of damage detection methodologies for generalised plate structures. 
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Chapter 1 
 
Introduction 

 

1.1 Motivation 

In recent years the dynamic behaviour of thin isotropic rectangular plates has received 

considerable attention due to its wide technical importance. Thin plate structures have very 

many broad applications, ranging from those of automotive and structural engineering, up 

to space technology. The demand for this type of structure has rapidly increased due to 

industrial stringency, especially in aerospace vehicles in which light weight is essential. 

However, this type of structure can lead to unwanted instances of high vibration. Over 

time, vibrational effects can have long-term as well as short-term damaging effects on the 

structure. Such phenomena are potentially dangerous as they can create a complete 

unbalance of the structure which can then ultimately fail. Therefore, the detection and 

localisation of damage to thin plate structures at the initial stage of development can 

optimise system performance and safety.    

Two plate theories are widely accepted and used in engineering problems, namely the 

Kirchhoff plate theory, or classical plate theory, and the Mindlin – Reissner plate theory. A 

comprehensive background on plates has been provided by Timoshenko and Woinowsky-

Krieger (1959) in which methods were introduced that can be used in various derivative 

systems. At the end of the 19th century plate theory was routinely applied to engineering 

problems involving vibration and noise in structures (Szilard, 2004) and there are many 

published papers offering vibration analyses of cracked plates. Based on the literature 

which has been reviewed for the vibration analysis of a cracked plate, it is seen that most 

of the published papers have analysed vibrations in plates with part-through surface cracks, 

part-through finite length cracks, all over part-through cracks, and internal cracks. All of 

these cracks have tended to be located at the side or edge of the plate, or have been 

centrally located cracks parallel to one side of the plate. Only a few papers (Maruyama and 

Ichinomiya (1989); Wu and Law (2004); Huang and Leissa (2009); Huang et al. (2011)) 

have investigated the vibration analysis of a plate with a crack which is not horizontally or 

vertically aligned along one side of the plate. However, until now, none of this research has 

provided clarification of the modelling necessary to accommodate a surface crack of 

variable angular orientation which could then be used for nonlinear vibration analysis.  
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Therefore, one of the motivations for this thesis is to provide an extension to the 

development of currently available analytical models for the vibration analysis of a cracked 

plate. A new analytical model of an aircraft panel structure, in the form of a thin flat plate 

with enhanced crack modelling and various boundary conditions, is provided in the form of 

an isotropic cracked plate. This plate is then subjected to a transverse harmonic load and is 

considered for nonlinear vibration analysis. As is known, the different behaviour in the 

vibration characteristic and the nonlinear responses of cracked plates are both dependent 

on several factors, such as plate geometry, external forces and locations, prevailing 

damping coefficients, and the geometry, location and orientation of the crack itself. Thus, 

it is instructive to compare and analyse the effect of orientation of a crack in a plate, in 

order to improve the overall performance of the structure. 

 

1.2 Research Aims and Objectives 

It is necessary still to develop a deep understanding of the derivation of the model of a 

cracked plate, especially for the nonlinear case. Much research work has been undertaken 

on the linear model, and there are restricted nonlinear models available for vibration 

problems in cracked plates. A detailed derivation of the differential equation based on 

classical plate theory for modelling a crack in a plate for a nonlinear model was initiated by 

Israr (2008) and Israr et al. (2009). In these works, the concept of a line-spring model 

based on Kirchhoff’s plate bending theories, as first introduced by Rice and Levy (1972), 

was used for the crack formulation. The idea behind this concept was to reduce the 

problem of a three-dimensional surface crack to a quasi-two-dimensional problem. The 

type of crack considered by these authors was a part-through crack located at the centre 

and parallel to one side of the plate. Hence, the aim of this research is to extend the 

vibration analysis of the cracked plate discussed in paper by Israr (2008) and Israr et al. 

(2009) by considering an alternative geometry whereby the crack orientation is variable. 

Therefore, the work in this thesis seeks to: 

i. Develop the mathematical model of an aircraft panel structure which takes the form 

of a specialised Duffing equation. An aircraft panel structure is modelled as an 

isotropic thin flat plate with an arbitrarily orientated surface crack, subjected to 

transverse harmonic excitation with arbitrarily chosen SSSS, CCSS and CCFF 

boundary conditions based on classical plate theory.  
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ii.  Investigate the nonlinear behaviour of the cracked plate model from the amplitude-

frequency equation by use of the multiple scales perturbation method and to 

compare the results of this with those obtained from direct numerical integration. 

iii.  Study the influence of the orientation of the crack angle on the nonlinear vibration 

characteristics of the plate. 

iv. Perform an appropriate finite element analysis in order to corroborate the effect of 

crack length and crack orientation angle on the modal parameters and vibrational 

amplitude of the cracked plate. 

v. Undertake a dynamical systems analysis of the cracked plate model. 

vi. Verify the developed model through comparison of the results with experimental 

work. 

 

1.3 Thesis Overview 

Chapter 2 presents a critical review of the literature of thin plate structures and plates with 

cracks, particularly for vibration problems. 

Chapter 3 provides a derivation of the equation of motion for the forced vibration of a plate 

containing an arbitrarily orientated surface crack, and based on three different boundary 

conditions. The derivation method is based on classical plate theory. Numerical results are 

presented for the natural frequency of the first mode of the intact plate and for the cracked 

plate, for various aspect ratios and crack orientation angles. The physical parameters that 

control the orientation of the crack angle are also investigated. 

Chapter 4 proposes an analytical solution to the nonlinear governing equation of motion 

for the cracked plate by use of the perturbation method of multiple scales. In this chapter 

the amplitude-frequency equation obtained is used to investigate the nonlinear behaviour 

of square and rectangular plates containing a surface crack of known orientation. The 

influences of the boundary conditions, the crack orientation angle, crack length, and 

location and magnitude of the point load are all demonstrated. In addition, for purposes of 

comparison, numerical results are also calculated by directly integrating the derived 

nonlinear ordinary differential equation. This chapter also summaries a finite element 
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model of an intact plate and a cracked plate both with CCFF boundary conditions, within 

ABAQUS, for a further modal analysis in order to corroborate the effect of crack length 

and crack orientation angle on the modal parameters, particularly the natural frequency as 

predicted by the analysis. The finite element analysis is also performed in order to study 

the effects of parameter changes on the vibrational amplitude of the cracked plate.  

Chapter 5 presents a dynamical systems analysis of the plate with a variably orientated 

surface crack, and includes time domain plots, phase plane representations, Poincaré maps, 

and bifurcation diagrams. The transitions to chaos are analysed using the dynamical tools 

provided within MathematicaTM.  

Chapter 6 gives experimental measurements in order to verify the theoretical cracked plate 

model. The response of intact and cracked plates with various surface crack orientation 

angles is investigated. The tested plates are subjected to a transverse harmonic excitation at 

a selected point with arbitrarily chosen CCFF type boundary conditions. 

Chapter 7 provides the comparative studies between the theoretical modelling and FE 

approaches, and the theoretical modelling with experimental measurements and to extend 

the discussion where appropriate regarding the results obtained from Chapters 3 to 6 

including the method of multiple scales, direct numerical integration method within 

MatematicaTM, and a numerical study into the system’s dynamics. 

Chapter 8 concludes this PhD research and provides suggestions for potential future work. 

 

 



Chapter 2 

   

Chapter 2 
  
Literature Review 

  

2.1 Plate Structures 

Flexible structures are extensively used particularly in many aerospace applications. Plates, 

beams, frames and shells are basic elements for structural analysis and are of great 

practical significance to civil, mechanical, marine, aerospace engineering and other areas 

of practical interest, such as slabs on columns, flexible satellite manipulators, printed 

circuit boards, and solar panels supported at a few points. Flexible plates are initially flat 

structural elements where the thickness is much smaller than the other dimensions. Plates 

can be classified into three groups; thin plates with small deflections, thin plates with large 

deflections, and thick plates. Two plate theories are widely accepted and used in 

engineering problems, namely the Kirchhoff plate theory, or Classical plate theory, and the 

Mindlin–Reissner plate theory. These two main theories can be applied to plate problems 

depending on the value of the plate thickness. Classical plate theory must be employed for 

thin plates when ignoring the effect of shear deformation through the plate thickness, while 

for thick plates Mindlin-Reissner plate theory must be applied so that the effects of shear 

force can be taken into account. A comprehensive background on plates has been provided 

by Timoshenko and Woinowsky-Krieger (1959) in which methods were introduced that 

could be used in various derivative engineering systems.   

This research is focused on thin plate structures in order to develop enhanced modelling for 

reliable, light and efficient structures. Plate materials now lead to designs that are thinner, 

lighter and larger than before. According to the criterion often applied to define a thin 

plate, the ratio of the thickness to the smaller span length should be less than 1/20. If the 

ratio is more than that, then transverse shear deformation must be accounted for and the 

plate is then said to be definitionally thick (Ugural, 1999). However, thin, light and large 

structures lead potentially to high vibration. Vibration of flexible structures causes 

generally reduced system effectiveness, structural fatigue, and possible human discomfort 

or reduced safety. With their potential applications and problems, the vibration of plates 

undergoing installations with complex boundary conditions has received considerable 

attention from researchers.  
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2.1.1 Vibration Problems in Plates 

The vibration of plates has been studied extensively since 1787, due to its importance in 

the design of plate structures, and many of the important studies in this field were 

documented in Leissa’s monograph (Zhou and Zheng, 2006). At the end of the 19th 

century, plate theory and its resultant behaviour was applied to engineering problems 

involving vibration and noise in structures (Szilard, 2004). According to Szilard (2004), 

initial mathematical solutions to the free vibration problem based on the membrane theory 

of plates was formulated by Euler (1776) and Bernoulli (1789), and then in 1813, Lagrange 

developed the governing equation for the free vibration analysis of plates. Subsequently, 

Navier (1836) derived a differential equation for plates subjected to distributed static 

lateral loads, and Kirchhoff (1887) obtained a similar differential equation for plate 

problems through the use of a different energy approach. 

Corrections for rotary inertia and shear were first applied by Timoshenko in 1921 for the 

case of beams. Following Timoshenko, Reissner, in 1944 and 1945, improved the equation 

for vibration of thick plates by including the effects of shear and rotary inertia through a 

complementary energy principle. Afterwards, Mindlin in 1951 also developed an equation 

including these effects with a different approach by utilising a modified theorem and 

assumptions. In this study, he generalised the Timoshenko one dimensional theory of 

beams to the plate and showed a more comprehensive two dimensional theory of flexural 

motions of plates which could be deduced directly from the three dimensional equations of 

elasticity (Tomar, 1962). According to Ugural (1999), analysis methods for plates are 

strongly dependent on their boundary conditions and geometrical shape. It is widely 

recognised that closed-form solutions are possible only for a limited set of simple 

boundary conditions and geometries.  

Warburton (1954) proposed the first comprehensive collection of solutions for rectangular 

plates. In this useful work he obtained the approximate natural frequency formulas for 

plates with all possible boundary conditions for all modes of vibration, by use of 

Rayleigh’s method. All 21 types of boundary condition problem were obtained from a 

combination of free, freely-supported, and fixed edge boundary conditions. The 

approximate natural frequency formula was obtained in term of the boundary conditions, 

the nodal pattern, the plate dimensions, and the material properties. Tomar (1962) studied 

the flexural vibrations of an isotropic elastic plate according to Mindlin’s theory by 

including the effects of shear and rotary inertia. A numerical solution for the equation for a 
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simply supported thin square plate with various ratios of thickness to the side has been 

obtained, and then the results were compared with those from fundamental classical plate 

theory. In 1973, Leissa presented a comprehensive study of the free vibration of all the 21 

combinations of classical boundary conditions for rectangular plates. Accurate frequency 

parameters have been presented for a range of aspect ratios, and comparisons were made 

with useful approximate formulas by Warburton (1954). Dawe and Roufaeil (1980) 

examined the use of the Rayleigh-Ritz method to predict the natural frequencies of flexural 

vibration of isotropic plates based on Mindlin theory, and Bhat (1985) investigated the 

vibration problem of rectangular plates by using a set of characteristic orthogonal 

polynomials within the Rayleigh-Ritz method generated from a Gram-Schmidt process in 

order to express the bending deflection of rectangular plates under static loads. The method 

showed superior results for lower modes and particularly for plates with some free edges. 

Kitipornchai et al. (1993) have also carried out the free vibration analysis of thick 

rectangular plates using the Rayleigh-Ritz method. The energy function derived using 

Mindlin’s plate theory was minimised using the Rayleigh-Ritz method which leads to the 

governing eigenvalue equations. Sets of reasonably accurate vibration frequencies were 

presented for a wide range of plate aspect ratios and relative thickness ratio for the first ten 

modes of 21 sets of boundary conditions involving all possible combinations of clamped, 

simply supported and free edges. They found that the Rayleigh-Ritz method can show 

substantial success in the vibration analysis of thick plates.   

The Galerkin method is one of the more powerful numerical methods for the solution of 

differential equations, and is comparable in ability to other numerical techniques for 

related stability problems such as the differential quadrature method (Saadatpour et al., 

2000). The Galerkin method involves direct use of the governing differential equation, so it 

does not assume the existence of a functional that is usually minimised as in other 

methods. In 1989, Ng and Araar solved the fourth order differential equation for the 

problem of free vibration and buckling of isotropic clamped rectangular plates of variable 

thickness by use of the Galerkin method. In 1997 and 1998, Azhari and Saadatpour, and 

Saadatpour and Azhari, respectively, used the Galerkin method for the dynamic and static 

analysis of simply supported plates of general shapes. Later, in 2000 Saadatpour et al. 

extended their work for the vibration analysis of general plates. By making use of the 

Galerkin method, a theoretical formulation for the free vibration analysis of simply 

supported quadrilateral plates having intermediate line or point supports was presented. 

The results for the natural frequency of trapezoidal, rhombic, skew, and continuous 

rectangular plates, with line supports i.e. one-span, two-span, three-span and etc., and a 
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plate with a central support have been obtained and compared with results of other 

researchers. Close agreement has been obtained for all cases. The Galerkin method was 

also applied by Kopmaz and Telli in 2002 to obtain the eigenfrequencies of a rectangular 

plate carrying a uniformly distributed mass. Using the Galerkin procedure, the equation of 

motion was reduced to a set of ordinary differential equations and then used to obtain the 

frequency equation. 

Gorman, in 1995 and 2005, obtained a series of solutions for the free vibration frequencies 

and mode shapes of thin orthotropic cantilever plates by the superposition method. In his 

study the natural modes were expressed in the form of trigonometric and hypermetric 

series, and the number of terms in the series depended on the requirements of precision. 

Before that, Bardell in 1991 applied a new approach from developments in the finite 

element method called the hierarchical finite element method (HFEM) in order to 

determine the natural frequencies and modes of a flat, rectangular plate for ten different 

boundary conditions. According to Bardell, the finite element method can generally be 

regarded as a special case of the classical Rayleigh-Ritz method with the main difference 

between the two lying in the choice of admissible functions used in the series of 

representation of the solution. The basic finite element approach consists of dividing the 

domain of interest into a number of smaller subdomains called finite elements and then the 

solution is approximated by locally admissible polynomial functions. The HFEM, known 

as the p-version of the finite element method, is one of the techniques needed to improve 

the accuracy of the finite element approximation. The HFEM involves keeping the element 

mesh constant, and letting the degree of the approximating polynomial functions tend to 

infinity. In Bardell’s (1991) study of HFEM, the results obtained have shown good 

agreement with the work of other researchers and any combination of edge condition can 

be incorporated in this analysis.  

Subsequently, Han and Petyt, 1996 (a) studied the linear vibrations of symmetrically 

laminated rectangular plates with clamped boundary conditions by using the HFEM. Their 

results showed that the solutions converged rapidly with the increase in the number of 

polynomials used, and this required far fewer degree of freedom than when using the 

conventional finite element method. In the same year of 1996, Han and Petyt (b) extended 

their study to the forced vibration problems using the same method of HFEM. The loads 

were considered as harmonic acoustic plane waves applying on the plate surface in a 

normal direction and at grazing incidence. The results for the natural frequencies of five 

layer, symmetrically laminated, rectangular plates for different grazing incidents were 
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obtained and they found a decreasing trend of frequencies with the increase of incidence. 

Furthermore, they found that the maximum surface bending strains might not occur at the 

middle of the edges due to distorted mode shapes. Besides FEM, partial differential 

equation models (PDEs) also can be solved by using the finite difference method (FDM) 

and the differential quadrature method (DQM). However, these methods face difficulties 

when applied to problems with complex domains due to the non-coincidence of mesh lines 

and boundaries. According to Shu et al. (2007) , in order to eliminate this problem the so-

called meshless methods have been developed including the moving least-square (MLS) 

approximation, the reproducing kernel particle methods (RKPM), the least-square-based 

finite difference method (LSFD), the element-free Galerkin method (EFG), and the 

differential cubature method (DCM) etc. In Shu et al.’s (2007) study, the meshless LSFD 

method was employed to solve the free vibration problems of isotropic, thin, arbitrarily 

shaped plates with simply supported and clamped edge boundary conditions, in which the 

governing equation for this plate problem was in the form of a fourth order PDE. The chain 

rule was used in the approximation of the higher-order derivatives due to the efficiencies of 

this rule for approximating higher-order derivatives in the LSFD discretisation. They found 

that the present approach of LSFD showed many advantages over the traditional methods 

such as FDM and DQM. For example, numerical errors caused by discretising derivatives 

in the boundary conditions can be completely avoided in the case of clamped edges, and 

considerably reduced in the case of simply supported boundary conditions. 

Wu et al. (2007) proposed a Bessel function method to obtain the exact solutions for the 

free vibration analysis of rectangular thin plates for three different boundary conditions, 

namely fully simply supported, fully clamped, and two opposite edges simply supported 

with the other two edges clamped. According to Xing and Liu (2009) , the Hamilton dual 

method was applied by Ouyang and Zhong (1993), Bao and Deng (2005), and Zhong and 

Zhang (2006) for analyses of the modes and natural frequencies of thin plates, in which the 

natural modes in these solutions were expressed in the form of symplectic eigenfunction 

expansions rather than in closed form, and Cen et al. (2004) gave some Hamiltonian dual 

differential equations for thin plates. In a paper by Xing and Liu (2009) the Hamiltonian 

symplectic dual method was adopted and the separation of variables used in order to solve 

the transverse free vibration problems of rectangular thin plates. The first ten frequencies 

and mode shapes for the SSCC, SCCC and CCCC cases were obtained and validated with 

the FEM results. Xing and Liu (2009) concluded that these exact normal modes and 

frequency equations can be used to obtain results for any combination of separable simply-
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supported and clamped boundary conditions which can thus be taken as a benchmark for 

verifying the different approximate approaches.  

    

2.2 Nonlinearities  

Nonlinear problems are of interest to the scientific and engineering communities because 

most physical systems such as structures are inherently nonlinear in nature. No physical 

system is strictly linear and hence linear models of physical systems have limitations of 

their own in which these linear models are only applicable in a very restrictive domain, for 

instance when the vibration amplitude is very small. Nonlinearities exist in an equation of 

motion when some product of variables, or their derivatives, exists. Nonlinear equations 

are difficult to solve and yet give rise to interesting phenomena such as jumps, saturations, 

sub-harmonics, super-harmonics, combination resonances, self-excited oscillations, modal 

interactions, periodic doubling, and chaos. Detailed explanations about the various types of 

nonlinearities, with examples, can be found in the books by Nayfeh and Mook (1979), 

Moon (1987), Cartmell (1990) and Thomsen and Stewart (2002). 

2.2.1  Nonlinear Plate Theory 

The sources of nonlinear behaviour can be classified into three main categories i.e. 

geometric nonlinearity, material nonlinearity and boundary condition nonlinearity. The 

geometric nonlinearity category is important to systems with large deflections, or systems 

that may fail due to buckling. When plates are deflected beyond a certain magnitude, linear 

theory loses its validity and produces incorrect results. The deflection of the plate may then 

exceed the original dimensions of the plate and can be predicted by linear theory, but it is 

generally unrealistic. Thus, geometric nonlinearity must necessarily be taken into account. 

In plates geometric nonlinearity may arise because of two reasons, namely the nonlinear 

strain-displacement relationship, and the nonlinearity in the governing differential equation 

due to the coupling of inplane and transverse displacement fields. As a result, mid-plane 

stretching of the plate may occur. When the deflection of the plate increases, the stretching 

effect becomes more pronounced than the bending effect, particularly when the edges of 

the plate are restricted. However for beams the nonlinear moment-curvature relationship 

becomes significant when large deflections without stretching are considered.  

Another important category of nonlinearity relates to material properties. Such 

nonlinearities would render the stress strain relationship of the material of the structure 
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nonlinear, so that Hooke’s law is therefore invalid. In the case of nonlinear material 

behaviour, linearity occurs up to the yield point and this region called the elastic region of 

the material, in which the slope of the linear region can be defined as the Young’s 

modulus, but beyond that point it deviates from a linear to a nonlinear response. Nonlinear 

systems are also caused by nonlinear boundary conditions. Examples of such phenomena 

include the use of a nonlinear spring or damper on the edge of a plate, or the case of a 

nonlinear spring in a mass-spring-damper system. Duffing’s equation is a special case of a 

cubic nonlinear spring in a mass-spring-damper system. Besides these categories, inertia, 

impacts, backlash, fluid effects and damping are also capable of categorising other types of 

nonlinearities which exist in structures (Malatkar, 2003). 

According to Malatkar (2003) and Israr (2008), plate structures undergoing transverse 

deflection can be classified into three numerous regimes that describe the nature of their 

behaviour and thus the characteristics of the mathematical problem, namely; (1) small 

deflection theory (linear), (2) moderately large deflection theory (nonlinear), and (3) very 

large deflection theory (highly nonlinear). This behaviour can generally be classified by 

observation of the amount of deflection in comparison to the plate dimensions. Small 

deflection theory can typically be used for deflections less than twenty percent of the 

thickness. Moderately large deflection theory is applied when the deflection is a multiple 

of the plate thickness but much less than the plate side length, whereas very large 

deflection theory is applied when the deflection of the plate is similar in order of 

magnitude of the plate side length. Depending on the plate classification the solution to 

these problems can be relatively simple or highly complex, and typically impossible 

without the implementation of approximating techniques. Problems of linear and 

moderately nonlinear deflection will be discussed in this review, but very large deflections 

are currently not significant to this work and subsequently will not be covered. 

It is interesting to note that the majority of physical systems belong to the class of weakly 

nonlinear (or quasi-linear) systems. For certain phenomena, these systems exhibit 

behaviour only slightly different to that of their linear counterparts. In addition they also 

exhibit phenomena which do not exist in the linear domain. Therefore, for weakly 

nonlinear structures, the usual starting point is still the identification of the linear natural 

frequencies and mode shapes. Then, in the analysis, the dynamic response is usually 

described in terms of its linear natural frequencies and mode shapes. The effect of the 

small nonlinearities is seen in the equations governing the amplitude and phase of the 

structures response. 
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2.2.2 Nonlinear Vibration of Plates 

A selective history of the nonlinear vibration of plates is given below. The credit for the 

discovery of nonlinear theory, that accounts for both bending and stretching of a plate, is 

generally given to G. Kirchhoff (1824-1887). These problems also can be found in the 

book of Nayfeh and Mook (1979). Two highly cited literature reviews on nonlinear 

vibrations are by Chia (1980) and Sathyamoorthy (1998). Chia published a compilation of 

information on nonlinear plates, with methods for approaching the different plate 

problems, in his book, Nonlinear Analysis of Plates, whereas Sathyamoorthy summarised 

work on the nonlinear vibrations of plates from 1983 to 1986. After Kirchhoff established 

the classical linear plate theory, von Kármán (1910) developed the nonlinear plate theory. 

In his study the final form of the nonlinear differential equations governing the moderately 

large deflection behaviour of a statically deflected plate was developed. Solutions for these 

sets of nonlinear equations have been examined extensively in the literature. Following an 

approximation by Berger in 1955, the coupled von Kármán equations were replaced by a 

simplified set of equations describing the large deflection of plates. Berger solved several 

problems in the static deflection of plates and concluded that his simplified theory gave 

results in substantial agreement with more elaborate methods. The Berger formulation can 

be used to investigate nonlinear vibrations when the strain energy due to the second strain 

invariant in the middle surface can justifiably by ignored. This then results in decoupling 

and linearisation of the governing equations.  The applicability and simplicity of this 

approximation to the nonlinear vibration analysis of plates makes it a very useful approach. 

Wah (1963) used the simplified Berger equation by imposing the condition that the in-

plane displacements u and v can be assumed to disappear at the external boundaries, and 

therefore applied this equation for the vibration analysis of rectangular plates with large 

amplitudes, and with various boundary conditions. Vendhan (1975) considered the Berger 

equation for the nonlinear vibration analysis of elastic plates. Research works on 

geometrically nonlinear vibration of thick plate problems are relatively frequent, however 

only some of them are given here because thick plates are not considered in this research. 

In Leissa's monograph (1993) other techniques are illustrated which extend the Berger 

technique to include the vibrational behaviour of these nonlinear plates. Part of this 

approach is to assume a solution based on the spatial modes and on some function in time. 

This has been shown, in this thesis, to reduce to the well known Duffing oscillator 

problem. 



Chapter 2 

29 
 

Nonlinear plate dynamics were studied by Chu and Herrmann (1956) who began with an 

investigation into the effects of large deflections on the free flexural vibration of 

rectangular plates. They used the von Kármán equations in order to study the problem of 

an isotropic plate simply supported on all edges with fixed and hinged edges. The general 

solution of these equations is unknown, but first approximations to the solutions have been 

obtained by these authors using a perturbation method and the principle of conservation of 

energy. Afterwards, in 1961, Yamaki obtained solutions for isotropic rectangular plates for 

simply supported and clamped plates by use the Galerkin Method. Srinivasan (1965) 

applied a Ritz-Galerkin technique to obtain the nonlinear free vibration response of hinged-

hinged beams and plates for different boundary conditions. In 1968, Stanišić and Payne 

introduced a technique based on the Galerkin approach for determining the natural 

frequencies of rectangular plates with discrete masses added for simply supported and 

clamped boundary conditions. Their results indicated the expected trend that natural 

frequencies decreased with added mass whereas the deflections and stresses of the plate 

increased. Next, calculation of the nonlinear natural frequencies of beams and plates for 

large amplitude free vibrations was presented by Mei (1973) using the Finite Element 

Method. In this study, the nonlinearity considered was due to large deflections, and not due 

to nonlinear stress-strain relationships. Mei derived the stiffness matrix formulation for a 

plate element based on a modification of Berger’s hypothesis. As a result, the nonlinear 

behaviour of the hard spring type for the large amplitude lateral oscillations was shown 

clearly as the dimensionless amplitude increases. During the same period Rehfield (1973) 

applied Hamilton’s principle and a perturbation approach for analysing the nonlinear free 

vibration of elastic structures including plates and beams. In 1978 Prathap and Pandalai 

incorporated the effects of transverse shear and rotary inertia in their study of the nonlinear 

vibration of transversely isotropic rectangular plates using the von Kármán field equations. 

The three generalised coordinates together with the Galerkin technique were used to define 

the state of deformation of the plate. Sathyamoorthy (1979) also applied a Galerkin method 

for the large amplitude free flexural vibration of orthotropic rectangular plate problems. 

Dumir and Bhaskar (1988) studied the large amplitude forced vibrations of orthotropic thin 

rectangular plates using the orthogonal point collocation method. Plates with all edges 

clamped or simply supported and fixed edges have been considered in this work.   

Benamar et al. (1993) developed a theoretical model based on Hamilton’s principle and 

spectral analysis for the study of large amplitudes in fully clamped isotropic rectangular 

plates. This investigation was an extension of their previous work on fully clamped 

symmetrically laminated rectangular plates published in 1990, and for simply supported 
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and clamped-clamped beams in 1991. Numerical results for various plate aspect ratios and 

vibration amplitudes were obtained and showed that the mode shapes were amplitude 

dependent. The general trends of the mode shape change were an increase of the 

displacement, or curvature, near the clamps, and flattening near the centre of the plate. A 

good agreement was obtained between theoretical predictions and experimental 

measurements, however the theoretical models employed in these studies considered 

transverse displacements only and neglected the effects of in-plane displacements. 

Bencharif and Ng (1993) conducted a nonlinear analysis of thick rectangular plates by 

using the finite difference method in order to transform the partial differential equations 

into an algebraic system of equations to yields the solutions. Han et al. (1994) applied the 

HFEM for the geometrically nonlinear static analysis of thin laminated rectangular plates 

with clamped boundary conditions. After successfully applying this method, Han and Petyt 

(1996) continued their work in order to study the nonlinear vibration analysis of thin, 

isotropic rectangular plates with the same boundary conditions. They employed the von 

Kármán nonlinear strain-displacement relationship, and the harmonic balance method, for 

formulating the mathematical model and obtaining eigenvalue-like equations, respectively. 

A modified form of Berger’s hypothesis was also employed to study the in-plane 

membrane force averaging effect on the geometrically nonlinear behaviour. In Han and 

Petyt’s (1996) studies, the influences of large vibration amplitude on the frequency and 

mode shape of the fundamental mode have been presented and the results have been 

compared with other results from the published literature.   

The Galerkin method was also used by Leung and Mao in 1995. In that paper the 

geometrically nonlinear free vibration of thin plate and beam problems were studied by 

Hamilton’s formalism instead of using the familiar approaches of the Newtonian or 

Lagrangian formulations. The Galerkin method was applied to discretise the continuous 

Lagrangian in order to obtain the discrete Hamilton equations. Ribeiro and Petyt (1999) 

analysed the steady state, geometrically nonlinear, periodic vibration of rectangular thin 

plates under harmonic external excitations by use of the HFEM and the harmonic balance 

methods. Again in 1999 the theoretical model based on Hamilton’s principle and spectral 

analysis proposed by Benamar et al. (1991 and 1993) was used by Kadiri et al. to calculate 

the second nonlinear mode of a fully clamped rectangular plate. The large vibration 

amplitude problem was reduced to a set of nonlinear algebraic equations and was solved 

numerically. They found that the nonlinear mode showed a higher bending stress near to 

the clamps at large deformations compared with that predicted by linear theory. This model 

was extended by Kadiri and Benamar (2002) in order to study the geometrically nonlinear 
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free vibration of fully clamped rectangular plates, with some improvement observed in 

allowing a direct and easy calculation of the first, second, and higher nonlinear mode 

shapes, associated with the nonlinear natural frequencies and nonlinear bending stress 

patterns. In Kadiri and Benamar’s study, the nonlinear free vibration problem was reduced 

to the solution of a set of nonlinear algebraic equations and was performed numerically 

using appropriate algorithms in order to obtain a set of nonlinear mode shapes for the 

structure. In 2003 these authors proposed an improved form for determining the 

geometrically nonlinear response of rectangular plates which were excited by concentrated 

or distributed harmonic forces. This approach was applied to the cases of fully clamped 

(CCCC), simply supported and clamped-clamped-simply supported (SCCS) rectangular 

plates. The results showed that the relative natural frequency was a function of the ratio of 

the amplitude and thickness of the plate. Bikri et al. (2003) also extended the work by 

Benamar et al. (2003) based on Hamilton’s principle and spectral analysis to the case of 

clamped-clamped-simply supported-simply supported (CCSS) rectangular plates. In this 

study the effects of large vibration amplitudes on the first nonlinear mode shape, the 

fundamental natural frequency, and the associated flexural stress distribution have all been 

determined. Bikri et al. found that the nonlinear natural frequency increases with 

increasing vibration amplitudes for the hardening type nonlinearity, and the geometrical 

nonlinearity was also characterised by a deformation of the first mode shape when the 

vibration amplitude increased. Consequently this was seen to induce a variable rate of 

increase in the maximum flexural stresses when the maximum non-dimensional amplitude, 

obtained in the vicinity of the plate centre, increases, whereas this rate remains constant in 

the linear theory.   

The use of HFEM to study the nonlinear free and forced vibration analyses of skew and 

trapezoidal plates for the clamped boundary condition was presented by Leung and Zhu 

(2004), by considering the effects of transverse shear deformation and rotary inertia. Only 

weak nonlinearity without bifurcation was considered in their study. A new methodology 

that could be employed for plate structure problems with any combination of boundary 

conditions to determine the nonlinear natural frequencies and mode shapes was proposed 

by Saha et al. in 2005. In their study (Saha et al.), the static analysis served as a basis for 

the subsequent dynamic problems, and both these problems were formulated through the 

energy method. The solution methodology was employed as an iterative numerical scheme 

using the technique of successive relaxation. In 2006, Amabili theoretically and 

experimentally investigated the large amplitude vibrations of rectangular plates with 

geometric imperfections subjected to harmonic excitation. Recently, in 2011 Mitra et al. 
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presented a large amplitude free vibration analysis for stiffened plate problems subjected to 

uniformly distributed transverse loading with a single free edge and also associated with 

different combinations of clamped and simply supported boundary conditions. In 2012, 

Mitra et al. extended their work for the large amplitude forced vibration analysis of 

stiffened plates subjected to transverse harmonic excitation. The governing equations in 

both the forced and free vibration cases were derived based on the energy principle 

method, and solved by employing an iterative direct substitution method with an 

appropriate relaxation technique. Results were given as frequency response curves in the 

nondimesional frequency-amplitude plane, and were accompanied by backbone curves for 

the system. Mitra et al. (2012) found that when the amplitude of excitation reduced, the 

nonlinear response of the system tended to attain the shape of a backbone curve.   

 

2.3 Damage Identification Methods in Plate Structur es 

Damage identification techniques, particularly in structures, have received increasing effort 

from many researchers over the last few years. Generally damage identification techniques 

are categorised into local/visual and global methods as shown in Figure 2-1.  
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Figure 2-1: Position of the Vibration-Based Identif ication Methods 
with respect to other damage identification methods  (Loendersloot et al., 2010).  

Local damage identification techniques comprise experimental technique such as 

ultrasonic methods, magnetic field methods, radiography testing, eddy-current methods or 

thermal field methods, and require that the location of damage must be known a priori and 

that the structure being inspected is readily accessible. Global damage identification 

methods, such as the vibration-based damage detection method, refer to numerical methods 

and experimental techniques which can be applied to complex structures by examining 
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changes in the vibration characteristics of the structure. These have led to developments 

which overcome local damage identification method limitations in which such 

experimental methods can only detect damage on or near the surface of the structure 

(Doebling et al., 1998).  

A comprehensive review of the vibration-based damage identification methods has been 

reported by several researchers (Doebling et al., 1998; Wang and Chan, 2009; Fan and 

Qiao, 2011). The basic principle behind this technology is that modal parameters i.e. 

frequencies, mode shapes, and modal damping, are all functions of the physical properties 

of the structure, namely mass, damping, and stiffness. Therefore, changes in such physical 

properties, for example reductions in stiffness which result from the onset of a crack, will 

cause detectable changes in the modal properties. Vibration-based damage detection 

methods are especially attractive because they are global monitoring methods in the sense 

that no a priori information for the location of the damage is needed and immediate access 

to the damaged part is not required. These features are especially important when the 

objects of monitoring are large or complex structures, and when some parts of these 

structures are either inaccessible or very problematically located for taking measurements. 

Doebling et al., in 1998 reported a summary review of vibration-based damage 

identification methods. They provided an overview of methods to detect, locate, and 

characterise damage in structural and mechanical systems by examining changes in the 

measured vibration response. The methods are categorised according to various criteria, 

such as the level of damage detection provided, model-based vs. non-model-based 

methods, and linear vs. nonlinear methods. Besides that, Fan and Qiao (2011) presented a 

comprehensive review of modal parameter-based damage identification methods 

specifically for beam or plate type-structures.  

Many structures or major components in civil, aerospace, and mechanical engineering can 

be simplified to a plate or a beam. However there are relatively few references related to 

damage identification methods for plate-type structures. In 1999, Cornwell et al. applied a 

strain energy method to detect damage in plate-like structures. This method was based on 

the changes in the strain energy of the structure and required only the mode shapes of the 

structure before and after damage. The developed algorithm was found to be effective in 

locating areas with stiffness reductions as low as 10% using relatively few modes. Hu et al. 

(2005) developed a damage index using modal analysis and strain energy methods in order 

to detect a surface crack in a laminated plate. Modal analysis was firstly performed to 

obtain the mode shapes from experimental and finite element analysis results, then the 
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mode shapes obtained were used to calculate the strain energy of the laminated plate before 

and after damage by using the differential quadrature method (DQM) and they 

subsequently defined a damage index. They found that the damage index successfully 

identified the surface crack location, as shown by the peak value of the damage index. 

However, some peak values also emerged at other undamaged areas due to irregularities of 

the mode shapes. Loendersloot et al. (2010) studied a vibration based damage 

identification of a composite plate with stiffeners as are frequently applied in aircraft 

components. They found that the modal strain energy damage index (MSE-DI) algorithm 

is a suitable method for detection and localisation of a delamination of the stiffener. 

Yan and Yam (2002) detected damage in composite plates using the energy variation of the 

structural vibration response decomposed by wavelet analysis. The study shows that the 

proposed technique is capable of detecting extremely small cracks in composite plates. 

Paget et al. (2003) examined the amplitude change of the wavelet coefficients to 

characterise successfully the interactions of Lamb waves with damage in a plate. A 

versatile numerical approach for the analysis of wave propagation and damage detection 

within cracked plates was applied by Krawczuk et al. (2003 and 2004). They considered 

the spectral plate element as a tool for the investigation of such phenomena and showed 

that when a propagating wave runs to the crack location of the plate it divides itself into 

two signals, which can show an indication of the damage section. The use of a spatial 

wavelet based approach for damage detection of a rectangular plate has also been 

discussed by Chang and Chen (2004). In that study they obtained spatially distributed 

signals of the damaged rectangular plate by using the finite element method and then 

analysed this by using wavelet transformation. These spatially distributed signals can exist 

in terms of mode shapes or displacements. Chang and Chen (2004) found that the 

distributions of the wavelet coefficients can identify the damage position in a rectangular 

plate by showing a peak at the position of the damage and that they have a high sensitivity 

to the damage size. However, some indications of damage were also observed at the 

clamped edges of the rectangular plate. Therefore, it was concluded that it was very hard to 

detect the crack position at the edges. The work by Rucka and Wilde in 2006 is also 

devoted to wavelet based damage detection techniques for estimating the damage location 

in beam and plate structures. In their study, the wavelet transform was applied to the 

fundamental mode shape of the beam and plate, and the estimated mode shapes of the steel 

plate with four fixed boundary conditions were analysed by use of the two dimensional 

(2D) continuous wavelet transform.  The location of the damage is indicated by a peak in 

the spatial variation of the transformed response. 
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More recently data-based damage detection in the time domain has been investigated by 

several researchers. In this method, the idea was to use a measured dynamic response in 

terms of time series analysis for damage diagnosis in vibrating structures. Basically the 

time series is a sequence of data points, measured typically at successive times, spaced at 

time intervals. Space-time series are the sets of multiple time series that are location-

related. In 2005, Trendafilova used nonlinear time series based dynamic characteristics for 

the purpose of damage detection and quantification of a reinforced concentrate plate. Later 

in 2007, Trendafilova and Manoach developed two viable methods for damage detection 

and localisation in a thin rectangular plate by use of large amplitude vibrations which are 

based on a state space representation of the time domain structural response. One of the 

methods uses the statistical distribution of state space points on the attractor of a vibrating 

structure, while the other one is based on the Poincaré map of the state space projected 

dynamic response. Hu et al. (2011) developed a method for detecting damage in plate 

structures based on space-time series analysis. All of the proposed damage detection 

methodologies based on time series and space-time series show a capability for the 

detection and localisation of damage, however noise sensitivity has a great influence on the 

results and can even destroy the detection.    

Trendafilova et al. (2005) have suggested a damage detection methodology based on the 

analysis of the vibration response in an aircraft wing scaled model. In this study localised 

and distributed damage was considered, and a simplified FEM in ANSYS was used to 

model the problem for the vibration response. The wing was split into five volumes for the 

purpose of analysing the damage detection for the first ten natural frequencies. It was 

shown that cracks of length less than half of the wing width are undetectable in the case of 

localised damage, whilst in the case of distributed damage less than 30% in any of the 

volumes was not detectable using natural frequencies. The authors proposed in their 

concluding remarks that changes in the lower modal frequencies were affected by damage 

close to the wing root, and these changes decreased when the damage moved towards the 

wing tip, or conversely the higher frequencies were more affected by damage close to the 

wing tip and those changes increased when damage moved from the wing root towards the 

tip. Subsequently in 2006, Trendafilova et al. applied a similar technique for vibration 

based damage detection in aircraft panels modelled as isotropic plates with a crack at some 

specified location. It has been found that the method can produce extremely good results. 

In 2009, Trendafilova et al. applied frequency-based methods for the development of a 

viable vibration health monitoring system (VHM) for thin circular plates. The sensitivity of 

the lower natural frequencies to certain types of damage has been examined and the 
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authors attempted to establish the type and size of defects which maybe detectable using 

these frequencies. Their results show that the sensitivity of the first several natural 

frequencies to damage is rather limited. It is well known that small damage is easier to 

detect by examining large amplitude vibrations, which are much more affected by the 

nonlinearities in a structure. Moore et al. (2011) developed and implemented a Bayesian 

approach for crack identification in a freely vibrating plate using dynamic impulse 

response data. The Bayesian framework is used for identifying the size, location, and 

orientation of a single crack. This parameter estimation process was then implemented by 

means of a simulated time series. The results demonstrated that the credible intervals 

(Bayesian confidence intervals) are extremely small and do not show any definitive trends 

with crack orientation, crack length, etc. 

 

2.4 Cracked Plate Structures 

Failures can occur for many reasons, including uncertainties in the loading or environment, 

defects in the materials or damage in a structures, inadequacies in design, and deficiencies 

in construction or maintenance. The types of damage that happen in structures are cracks, 

fatigue, loosening of bolted joints, and corrosion. Thin plate structures can lead to 

unwanted instances of high vibration. Over time, vibrational effects can have long-term as 

well as short-term damaging effects on the structure. Cracks can form and propagate 

catastrophically with very little warning. Such phenomena are potentially dangerous as 

they can create a complete imbalance of the structure which can then ultimately fail. 

Failure of a structure can result in terrible consequences, economically and most probably 

and importantly in terms of loss of life. Therefore, the detection and localization of damage 

to thin plate structures at the initial stage of development can optimize system performance 

and safety.   

The dynamic responses of rectangular plates with cracks, or minor irregularities under 

different loading conditions, have been investigated in the past by many researchers for 

different boundaries conditions, and various methods have been proposed to deal with the 

problem (Israr, 2008). The length, position, and orientation of a crack will affect the 

vibration characteristics of any host structure, in addition to the effects of material 

properties, plate geometry, and boundary conditions. Cracks in plate elements necessarily 

cause local changes in plate stiffness (Irwin, 1957). Existing methods for the study of 
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vibration analysis in cracked plates can be categorised into three general techniques 

namely analytical, numerical and experimental investigations. 

 
2.4.1 Vibration Analysis of a Cracked Plate Based o n an Analytical 

Approach 

Vibration analysis of a cracked plate was firstly investigated by Lynn and Kumbasar in 

1967. They used the Green’s function approach to obtain a homogeneous Fredholm 

integral equation of the first kind which satisfied the mixed edge condition along a 

fictitious line partially formed by the crack. The result of free vibration analysis of thin 

rectangular plates with narrow cracks for simply supported edges boundary condition was 

presented in terms of variations of frequencies with respect to different crack lengths and 

the relative moment distributions along the uncracked segments. These results (Lynn and 

Kumbasar, 1967) have been used as a comparison by Stahl and Keer (1972), who 

investigated the vibration and stability of a simply supported rectangular plate with; i) a 

crack emanating from one edge, and ii) a centrally located internal crack. In their study 

dual series equation solution methods proposed by Keer and Sve in 1970 were applied by 

taking the stress singularity at the crack tips into account. The dual series equations were 

then converted by the use of certain integral representations to a homogeneous Fredholm 

integral equation of the second kind in which the natural frequencies and the auxiliary 

function to calculate the mode shapes were determined. Studies by Lynn and Kumbasar 

(1967), Keer and Sve (1970) and Stahl and Keer (1972) showed that their methods limited 

the crack to a position along the symmetry axis. In addition, the antisymmetric vibration of 

cracked plate has also been presented by Stahl and Keer, and the result in terms of 

frequency factors as functions of crack length was plotted and compared with the work of 

Lynn and Kumbasar (1967) for which the maximum differences was about 11 %.  

Trying to overcome this existing restriction in which the crack was limited to a position 

along the symmetry axis, Solecki in 1975 and 1980 developed a method that would allow 

the study of isotropic, elastic, simply supported rectangular plates with arbitrarily located 

cracks based on a combination of a finite Fourier transformation and a generalised Green-

Gauss theorem. Fundamental frequencies of natural vibration were obtained for a square 

plate with centrally located but arbitrarily inclined cracks of any length. The results 

showed that the crack parallel to one edge of the plate or diagonal crack reaching the 

corners of the plate show very good agreement with other researches.  Hirano and Okazaki 

(1980) investigated the free vibrations of a rectangular plate having line cracks parallel to 
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its edge while the two opposite edges perpendicular to the line of the crack are assumed to 

be simply supported (Levy’s form of solution). The Fourier expansion and the weighted 

residual methods were used in order to formulate the mixed boundary conditions on the 

line of the crack. Neku (1982) analysed the free vibration of a simply-supported 

rectangular plate with a straight notch which simulates a through-crack in a plate by 

establishing the Green’s functions proposed by Lynn and Kumbasar (1967) via Levy’s 

form of solution. Subsequently, in 1983, Solecki presented the natural flexural vibration of 

a simply supported rectangular plate with an arbitrarily located crack parallel to one edge. 

This problem was analysed by means of a finite Fourier transformation of discontinuous 

functions representing the displacement and the slope across the crack. In his study the 

case of the crack centrally located and off-centre was taken as an example. The results 

obtained were not sufficiently accurate for a crack extending almost to the edges. 

Basically, all of these papers (Solecki, 1975, 1980 and 1983; Hirano and Okazaki, 1980; 

Neku, 1982) applied a finite Fourier transform to the differential equation governing their 

own problems. These authors obtained a system of integral equations which possessed the 

unknown discontinuities of the deflection and slope across the crack. The unknown 

quantities then were expanded into a Fourier series, however this method was restricted to 

plates in which one pair of opposite sides, perpendicular to the line of the crack, was 

simply supported. This has come to be called the Levy plate. 

The use of the Rayleigh method, with a simple subsectioning technique to determine the 

fundamental frequency of annular plates with internal cracks, was presented by Lee (1992). 

This method can be applied to annular plates with various boundary conditions, but the 

results were limited to the first natural frequency. In 1993 Lee and Lim proposed a 

numerical method based on the Rayleigh principle to obtain the natural frequencies of a 

simply supported rectangular plate with a centrally located crack, including the effects of 

transverse shear deformation and rotary inertia, by use of the dynamic equivalent of the 

simplified Reissner theory. Numerical results were presented for cracked isotropic and 

orthotropic rectangular plates. It was found that for cracked orthotropic plates the effect of 

rotary inertia could be neglected because the additional reduction in natural frequency 

caused by this effect was relatively small compared with the effect of transverse shear 

deformation, while for thick isotropic plates with a long crack, the effect of rotary inertia 

reduced the fundamental frequency by a certain amount comparable to the amount caused 

by the effect of shear deformation alone. This method was claimed as a simple alternative 

to the existing analytical and finite element method as the computation only involves the 

integration of simple trigonometric functions. The decomposition method was used by 
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Liew et al. (1994) to determine the vibration frequencies of cracked plates with any 

combination of boundary conditions. In 1996, a comprehensive review of the vibration 

analysis of cracked structures, including plates, has been reported by Dimarogonas. Next, a 

new technique for the vibration analysis of cracked plates by considering the effect of 

compliance due to bending was introduced by Khadem and Rezaee in 2000 (a). Later in 

2000 (b), the same authors established an analytical approach for damage in the form of a 

crack in a rectangular plate under the application of an external load for different boundary 

conditions by employing modified comparison functions using the Rayleigh-Ritz method. 

Khadem and Rezaee, 2000 (b) concluded from their results that the presence of a crack at a 

specific depth and location would affect each of the natural frequencies differently. Chen 

and Bicanic (2000) introduced a method in which the incomplete natural frequencies and 

vibration modes could be used to detect damage within a cantilever plate. Lee et al. (2003) 

then derived the equation of motion for a thin uniform plate with crack-like local damages. 

They presented local damage in terms of the effective orthotropic elastic stiffness based on 

the theory of continuum damage mechanics.  

By applying Galerkin’s method to Von Kármán plate theory, Wu and Shih (2005) 

theoretically analysed the dynamic instability and nonlinear response of simply supported 

plates with an edge crack subjected to a periodic in-plane load along two opposite edges. 

The incremental harmonic balance method was then applied to solve the nonlinear 

temporal model. The results indicated that the stability behaviour and the response of the 

system were governed by the crack location of the plate, the aspect ratio, conditions of in-

plane loading, and the amplitude of vibration. Wu and Shih also explained that increasing 

the crack ratio (the ratio of the crack length to the length of the edge along the direction of 

the crack) and/or the static component of the in-plane load, decreases the natural frequency 

of the system. The nonlinear equations for a moderate thickness rectangular plate with a 

transverse surface penetrating crack on the two-parameter foundation were derived by 

Xiao et al. (2005) based on the Reissner plate theory and the Hamilton variational 

principle. In this study, the Galerkin method and the harmonic balance method were 

employed to obtain the solution to the nonlinear vibration equations.  The influences of the 

position and depth of the crack, the geometric parameters of the plate and the different 

physical parameters of the foundation on the nonlinear amplitude frequency response 

curves of the plate were carried out for free boundary conditions. The results showed that 

for a given vibration amplitude the nonlinear vibration frequency of the plate decreases 

with an increase of the crack depth, and when the crack position was near the symmetry 

plane of the plate. In addition, the nonlinear vibration frequency increases, as the thickness 
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of the plate increases or the aspect ratio of the plate decreases. In 2009, Israr et al. 

proposed an analytical model for the vibrations analysis of an isotropic aluminium plate 

containing a crack in the form of a continuous line with its centre located at the centre of 

the plate, and running parallel to one edge of the plate. The plate was subjected to a point 

load on its surface for three different possible boundary conditions. Galerkin's method was 

applied to reformulate the governing equation of the cracked plate into time dependent 

modal coordinates, and the nonlinearity was introduced by applying Berger's method. The 

results are presented in terms of natural frequency versus crack length and plate thickness, 

and the nonlinear amplitude response of the plate is calculated for one set of 

boundary conditions and three different load locations, over a practical range of external 

excitation frequencies. Based on Mindlin plate theory, Hosseini-Hashemi et al. (2010) 

proposed a method for free vibration analysis of moderately thick rectangular plates with 

all over-part through cracks for different classical boundary conditions. This solution was 

presented for the case where the crack was open, non-propagating and perpendicular to two 

opposite simply-supported edges. It was shown that the crack which was very close to the 

clamped edge, results in a considerable reduction in the natural frequencies of the cracked 

plate.  

    
2.4.2 Vibration Analysis of a Cracked Plate based o n the FE 

approach 

A finite element model for a cracked plate was established by Qian et al. in 1991 for the 

investigation of the vibration characteristics of a simply supported and a cantilevered 

square plate with a crack. According to Qian et al., the additional strain energy of a crack 

is related to the stress intensity factor (SIF) which expresses the flexibility coefficient that 

can be used to obtain the stiffness matrix of the plate element with the crack. Therefore, in 

Qian et al.’s study the element stiffness matrix was derived from an integration of the 

stress intensity factor estimated for a finite plate with a through crack under bending, 

twisting and shearing. Qian et al. compared their results with the model of Solecki (1983) 

with good agreement and claimed that their model provided a more efficient computational 

technique requiring a shorter numerical computation time due to the fact that mesh 

subdivision in the neighbourhood of the crack tip is unnecessary. Later, in 1993, the 

method of the formation of the stiffness matrix for a rectangular plate with a through crack 

was presented in closed form by Krawczuk. He assumed that the crack occurring in the 

plate was nonpropagating, open, and that the crack only changes the stiffness of the plate, 

while the mass is unchanged. The effect of the position and length of the crack on the 
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natural frequencies of the simply supported and cantilever plates was analysed and he 

concluded that the decreasing natural frequencies are a function of the length and location 

of the crack, the mode shape, and the boundary conditions of the plate. In 1994, Krawczuk 

and Ostachowicz used a similar method in order to create the stiffness matrix of a plate 

finite element having a single, nonpropagating, internal, open crack, with an additional 

example to study the influence of the length and position of the crack upon the transverse 

forced vibration amplitude. Similar results for natural frequency were obtained by 

Krawczuk and Ostachowicz (1994) as for previous work, but in terms of the influence of 

the transverse forced vibration amplitude of the cracked plate, the results showed that 

increasing amplitudes are a function of the location and length of the crack.  

Krawczuk et al. (2001) declared that all the research completed by them assumed that the 

material around the crack tip behaved in a purely elastic manner. However, in reality a 

plastic zone appears at the vicinity of the crack tip and affects more the flexibility of the 

structure compared to a purely elastic material.  A model of a plate finite element having a 

single, nonpropogating, open through crack was presented by Krawczuk et al. (2001) in 

which the influence of the plastic zone ahead of the crack tip on the flexibility of the 

element was taken into account. This was done by considering the effect of flexural 

bending deformation within the stiffness matrix. Their study showed that for plate 

structures the influence of crack tip plasticity on changes in natural frequencies can be 

neglected because the differences between the elastic and elasto-plastic crack model were 

rather small. Fujimoto et al. (2003) analysed the vibration characteristics of centrally 

cracked plates subjected to uniaxial tension using a hybrid of the finite element method 

(FEM) and body force method (BFM). In that study a central crack perpendicular to the 

direction of the tensile load was investigated. The loading edges were clamped to constrain 

out-of-plane deformations while the others were left free. The FEM was performed for the 

purpose of eigenvalue analysis in order to study the dependencies of the vibration 

characteristics on the crack length and the in-plane force intensity, whereas the BFM was 

used to study local crack buckling caused by the compressive in-plane stress around the 

crack that affects the vibration characteristics. In particular these authors considered the 

effect of local buckling and ignored the effect of post buckling due to the assumption that 

the in-plane stresses are linearly proportional to the applied tensile load. They concluded 

from their results that the crack length and the range of applied tensile load would affect 

the natural frequency and mode shapes differently, and found that crack buckling occurred 

at a small tensile load, as the crack length increases. In 2009, Saito et al. investigated the 

linear and nonlinear vibration response of a cantilevered rectangular plate with a transverse 
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crack using a finite element model. Bachene et al. in 2009 adopted the extended finite 

element method (XFEM) to analyse the vibrations of rectangular and square plates 

containing through edge and central cracks for different boundary conditions. In this study, 

the effects of shear deformation and rotary inertia were taken into account based on 

Mindlin’s plate theory. The results obtained showed that the XFEM was an efficient 

method for the dynamic analysis of plates containing discontinuities. 

 
2.4.3 Vibration Analysis of a Plate with a Variably  Orientated 

Crack 

Based on the literature which has been reviewed for the vibration analysis of a cracked 

plate it is seen that most of the published papers have analysed vibrations in plates with 

part-through surface cracks, part-through finite length cracks, all over part-through cracks 

and internal cracks. All of these cracks have tended to be located at the side or edge of the 

plate, or have been centrally located cracks parallel to one side of the plate. Only a few 

papers have investigated the vibration analysis of a plate with a crack which is not 

horizontally or vertically aligned along one side of the plate. In 1989, Maruyama and 

Ichinomiya experimentally investigated the effect of the lengths, positions, and inclination 

angles of slits on the natural frequencies and corresponding mode shapes of clamped 

rectangular plates with straight narrow slits, using free vibration analysis by applying the 

real-time technique of time-averaged holographic interferometry. A slit has a long, narrow 

cut or opening. One of the main differences between actual cracks and slits is the crack tip 

diameter. Some cracks which are fully opened at the tip, have a crack tip diameter close to 

that of slits and others have much smaller diameters than slits (Date et al., 1982). In terms 

of crack orientation angle effects, they concluded from their experimental results that most 

of the natural frequencies of the plates with a slit length of 40% of that of a longer side 

monotonously increased up to an angle of 60o and then decreased when the angle exceeded 

this. The natural frequencies of the mode λ21 decrease monotonously with an increase of 

crack orientation angle because the slit gradually approaches a vertical nodal line. Wu and 

Law (2004) presented an anisotropic damage model for a thick plate with a non-

propagating, open and inclined crack. The crack was assumed to be a narrow through-

depth crack, such that it did not change the mass of the plate. An effective anisotropic 

stiffness model of the cracked element was proposed, and the sensitivity for its detection 

was studied.    
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Huang and Leissa (2009) applied the Ritz method with a special displacement function to 

investigate the effects of location, length, and orientation of side cracks on the free 

vibration frequencies and mode shapes of simply supported and completely free square 

plates with side cracks, including cracks which are not along a symmetric axis. A set of 

functions was proposed which more appropriately describes the behaviour of stress 

singularities at the crack tip, and which are able to meet the discontinuities of displacement 

and slope crossing the crack. More recently, Huang et al. (2011) extended their work from 

side cracks to internal cracks. They claimed the first published vibration data for cracks 

oriented at various angular positions by applying the Ritz method to analyse the free 

vibration of a simply supported and completely free square plate with an internal through 

crack having an arbitrary location and angular orientation. Analyses were carried out for 

crack orientation angles varying from 0o to 45o, in 15o steps, and they found that for simply 

supported square plates the first four frequencies decreased when the orientation angle of 

the crack increased. However, in the case of completely free square plates the trend was 

different, and an increase in the crack orientation angle caused a decrease in the first and 

third frequencies, but an increase in the second, fourth and fifth frequencies. In the papers 

of Huang and Leissa (2009) and Huang et al. (2011) the Ritz method was applied based on 

classical thin plate theory. Later a vibration study of a thick cracked rectangular plate using 

the Ritz method with Mindlin plate theory was presented by Huang et al. (2011). In this 

study rectangular plates having a side crack and an internal crack were considered for 

simply supported and cantilevered rectangular plate boundary conditions, and the obtained 

results showed that the proposed new sets of functions appropriately represented the stress 

singularity behaviour around the crack tip and elucidated the discontinuities of transverse 

displacement and bending rotations across the crack.  

 
2.4.4 Line-Spring Model (LSM) 

Generally cracks that exist in a structure take the form of surface or internal cracks. At 

present several techniques are available to study surface crack problems including the 

finite element method, the boundary integral method, and the body force method, 

particularly for evaluating fracture parameters in surface cracked plates and shells 

(Miyoshi et al., 1985). All these methods are regarded as reliable but have a disadvantage 

because a large amount of computer time is needed. To overcome this difficulty a new 

method based on the line-spring model has been developed. The line-spring model has 

been used widely for fracture mechanics analysis of plate and shell structures containing 
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surface or internal cracks. According to Yang (1988), it has been demonstrated in the 

literature that the line-spring model can effectively produce very useful approximate 

solutions for highly complicated three dimensional crack problems in plates and shells. 

This approach is computationally inexpensive compared to treating full three dimensional 

models, and, within certain restrictions, can provide acceptable accuracy. Most importantly 

the line-spring model is also versatile, adapting to a variety of crack geometries and 

loading cases. For instance, the model has been successfully applied to the mixed mode 

case, elastic-plastic fracture problems, crack contact problems, and to the case of arbitrary 

loading due to residual stresses (Cordes and Joseph, 1995).   

The line-spring model was first developed by Rice and Levy (1972) to give an approximate 

treatment for the three dimensional problem of a surface crack penetrating partly through 

the thickness of an elastic plate. The idea behind this concept was to reduce the problem of a 

three dimensional surface crack to a quasi-two-dimensional problem in which the constraint 

effects of net ligaments from the three dimensional problem were incorporated in the form of a 

membrane load and bending moment imposed on the through crack. This transition was 

accomplished using compliance relations from the plane strain, edge-cracked strip solutions.  

In their study, they employed two dimensional generalised plane stresses, and used 

Kirchhoff’s plate bending theories with a continuously distributed line spring to represent a 

part-through crack, and also chose compliance coefficients to match those of an edge-

cracked strip in plane strain. The line of discontinuity was of length 2a and the plate was 

subjected to remote uniform stretching and bending loads along the far sides of the plate. 

These authors computed the force and moment across the cracked section to determine the 

stress intensity factor, and the solution to the problem was characterised in terms of the 

Airy stress function.  

In the literature, the line-spring model has been incorporated with singular integral 

equation formulations of an isotropic elastic plate or shell theory, it has been combined 

with the finite element method, and has also been coupled with the boundary element 

method (LSBEM) in order to study surface crack problems, due to the effectiveness of the 

line-spring model as a tool for evaluating fracture parameters in surface cracked plates and 

shells. In 1981, Delale and Erdogan reformulated the line spring model in the context of 

Reissner plate bending theory to include transverse shear effects. New expressions for the 

stress intensity factor of the plane strain problem of a strip containing an edge crack and 

subjected to tension and bending were used with a valid ratio of depth to thickness value of 

up to 0.8. Then, in 1983, King presented a simplified line-spring model in which some 
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simplifications were made by reducing the line-spring model to a purely analytical one in 

which the actual crack front was replaced with a crack of constant depth, and displacement 

compatibility between the ligament spring and the crack was enforced only at the centre of 

the crack. Despite the simplicity of this, the model also gave reasonably accurate 

predictions for calculating the fracture parameters such as the J-integral or crack opening 

displacement (COD) at the root of a surface crack. Joseph and Erdogan (1987) extended 

the line-spring model for the analysis of mixed mode crack problems. Miyazaki (1989) 

presented a transient analysis of the dynamic stress intensity factor by use of the 

combination of the finite element method with a static line-spring model. Considering the 

advantage of the line-spring model, Zeng and Dai in 1993 developed a line-spring 

boundary element method (LSBEM) in which the line-spring model was combined with 

the boundary element method, based on the theory of Reissner’s plate problem, and the 

elastic plane problem, and then the model was used to analyse the stress intensity factor of 

general part through cracks in a finite plate. 

The problem of a mode I surface or internal crack in a plate with a residual stresses was 

examined by Cordes and Joseph in 1995 with an emphasis on the crack surface contact. 

Residual stresses are usually caused by unintentional activities during manufacturing and 

installation, and need to be determined to ensure that the material responds in a safe, 

predictable manner during its lifetime. In the study of Cordes and Joseph (1995), the line-

spring model was used iteratively to determine the border of the closed portion of the crack 

and the stress intensity factors along the open portion. These authors presented a series of 

results for different crack lengths and depths, and compared their results with the LSM 

classical theory (the Irwin model of 1962) and the finite element model, which showed that 

their model results ranged from 0.6-0.8% higher, whereas the average percentage 

difference was found to be 4.2%. The discrepancy increased slightly as the order of the 

loading increased. It demonstrated that the model could be versatile in solving contact 

problems. 

The basis of the simplified line-spring model proposed by King (1983) was used by Zeng 

and Dai (1994) to derive a closed-form solution for the stress intensity factors at the 

deepest point for an inclined surface crack under the biaxial stress state. This model 

reduced the three dimensional problem of an inclined surface crack into two quasi two 

dimensional problems of a horizontally orientated through crack. Analytical solutions for 

the mode I and mode III stress intensity factors at the maximum depth point of a surface 

crack were derived, and the effects of the biaxial load ratio and the crack inclination angle 
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on these values of stress intensity factors (SIFs) were discussed. The study showed that the 

mode I normalised SIF increases and the mode III normalised SIF decreases as the biaxial 

load ratio increases with fixed values of crack inclination angle, while if the ratio of biaxial 

load is fixed, the mode I normalised SIF decreases and the mode III normalised SIF 

increases as the angle of crack inclination increases. The formulation of a representative 

model for a horizontal part-through crack located at the centre of a plate in a Duffing 

equation was first proposed by Israr (2008) and Israr et al. (2009). Initially this model was 

motivated by results from Rice and Levy (1972) in which a part-through crack formulation 

was initiated using the concept of a line-spring model. After some further developments 

based on this model these authors obtained a set of equations for the relationships between 

the nominal tensile and bending stresses at the crack location and the nominal tensile and 

bending stresses at the far sides of the plate.     

              

2.5 Perturbation Methods 

Solutions for differential equations for plates, as well as for beams, have been examined 

very extensively in the literature. Such solutions are substantially more complicated in the 

nonlinear case, specifically for geometrically nonlinearity as covered in this thesis, than 

those discussed for linear problems. Some of the same solution techniques can be applied 

in nonlinear cases as are applied for linear problems after some modifications have been 

made. Solutions can be classified into two solution groups, the first being exact analytical 

solutions and the second being approximate solutions. Exact solutions to the nonlinear 

plate are obviously difficult to obtain, particularly for the study of the dynamic behaviour 

of nonlinearly deflecting rectangular plates. However, approximate solution techniques 

exist for some general nonlinear plate problems in which these solutions either use 

approximating functions, or assume certain terms to be negligible, or use some form of 

finite discretisation method (Israr, 2008). Such approximation solutions are purely 

numerical, purely analytical, or a combination of both. Useful information on nonlinear 

plates with a variety of methods offered to approach different plate problems can be found 

in detail in the book by Chia (1980).        

In the literature solutions for the vibration analysis of damaged plates have also been 

investigated using various approaches. These including Rayleigh’s method, the finite 

displacement method, the finite Fourier transform, the Rayleigh-Ritz method, the finite 

element method, the Galerkin method, the harmonic balance method, and the 
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decomposition method. Each solution technique is of special relevance, and treatment 

involves some particular type of approximation. The method applied in this thesis is the 

perturbation method of multiple scales, as first used by Israr in 2008 and Israr et al. in 

2009 for the vibration analysis of a plate containing a crack in the form of a continuous line 

with its centre located at the centre of the plate and parallel to one edge of the plate. Thus it 

is intended to be major enhancement of this previous work on cracked plates for which the 

orientation of the angle was not included.  

Perturbation methods are well established and have been used for over a century to 

determine approximate analytical solutions for nonlinear mathematical models. Such 

mathematical models take many forms including differential equations, difference 

equations and integro-differential equations, and can be solved approximately with 

perturbation methods. Perturbation methods work by applying small nonlinear 

perturbations to known linearised solutions. Their correct application is restricted to 

weakly nonlinear systems, so the nonlinear terms are small compared to the linear terms. 

This is usually the case when the motions are finite but not very large. The correctness of 

perturbation analysis decreases with growing amplitude of motion. Many different 

perturbation methods such as the Lindstedt-Poincaré technique (LP), the Renormalisation 

method, the Incremental Harmonic Balance (IHB), Averaging methods, Krylov-

Bogolioubov (KB), Krylov-Bogolioubov-Mitropolski (KBM) and the Method of multiple 

scales (MMS), have all been developed.  

The development of basic perturbation theory for differential equations was fairly 

complete by the middle of the 19th century. Laplace firstly used perturbation methods to 

solve the problem of equilibrium of a large weightless drop on a plane (1749–1827) and 

Delaunay (1816–1872) discovered the so-called problem of small denominators in a study 

of the perturbative expansion of the three body problem. There are books which introduce 

and discuss several perturbation methods that can be used to develop approximate 

solutions to nonlinear problems, such as Nayfeh (1973) and (1981), also Kevorkian and 

Cole (1981). Nayfeh used the perturbation method of multiple scales to solve the 

differential equations for symmetrically excited circular and rectangular plates, and 

documented this in Nayfeh and Mook (1979). According to Israr (2008), Chu and 

Herrmann in 1956 investigated a perturbation solution of the dynamic w (deflection)-F 

(stress function) formulation using a double series and double cosine series, for the first 

mode shape only. Lynn and Kumbasar (1967) solved the integral equation for the vibration 

analysis of cracked rectangular plates by use of the Krylov and Bogoliubov method. In 
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1973 Hamilton’s principle, with a combination of a perturbation procedure, was applied by 

Rehfield in order to study the nonlinear free vibrations of beams and plates. Niyogi and 

Meyers (1981) presented the nonlinear dynamic response of orthotropic plates using a 

perturbation technique. Wang (1990) employed the Lindstedt-Poincaré perturbation 

technique to solve a form of the Duffing equation with an additional quadratic spring term 

that was derived in a vibration analysis of imperfect rectangular plates. The effects of 

random initial geometric imperfections on the vibration behaviour of simply supported 

rectangular plates were studied by Wang (1990). In 1991, Cheung et al. presented a 

modified Lindstedt-Poincaré method for a certain strongly nonlinear oscillator with a 

single-degree-of-freedom. In that study a new parameter was defined, which enables a 

strongly nonlinear oscillation corresponding to the original parameter to be transformed 

into a small parameter system with the new parameter.  

Wang et al. (2009) studied the nonlinear thickness-shear vibrations of an infinite and 

isotropic elastic plate. In this procedure, a perturbation method was used in order to solve 

the nonlinear ordinary differential equation that was obtained by use of the Galerkin 

method. The amplitude-frequency relation showed that the nonlinear frequency of the 

thickness-shear vibrations depended on amplitude and on the thickness of the plate. Hao et 

al. (2011) presented a nonlinear dynamic analysis of a rectangular cantilever plate made of 

functionally graded materials and based on Reddy’s third order plate theory and the 

asymptotic perturbation method. This perturbation method was employed to obtain four 

nonlinear averaged equations which were then solved by the Runge-Kutta method in order 

to find the nonlinear dynamic response of the plate.  

 
2.5.1 Method of Multiple Scales 

The classical perturbation methods, including the method of multiple scales, are really 

restricted to solving weakly nonlinear problems. The restriction of these methods is that the 

perturbation parameter ε must definitionally be very small. Since the nonlinear vibration 

characteristics of basic structural components such as cables, beams, plates and shells can 

often be modelled as a weakly nonlinear system, the method of multiple scales has been 

widely used in many analyses. The main idea of the method of multiple scales is to split 

the single independent variable up into several new independent variables. This method 

allows the construction of a set of perturbation equations that can be solved under the 

condition of removal of secular terms. Cartmell et al. (2003) reviewed the comprehensive 
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literature dealing with the analyses of weakly nonlinear mechanical systems by the method 

of multiple scales. In that paper the role of term ordering, the integration of the small 

perturbation parameter within system constants, non-dimensionalisation and time-scaling, 

series truncation, inclusion and exclusion of higher order nonlinearities and typical 

problems in the handling of secular terms were all examined. These authors showed in a 

comparative example that the form of the adopted power series and the ordering terms can 

have a major bearing on the structure of the solution, with clear suggestion for accuracy 

and physical relevance. Ideas were suggested for how one might deal with ordering by 

basing it on some sort of physical appreciation of the problem in terms of hard and soft or 

strong and weak quantities within the equation of motion such as damping mechanisms, 

excitation amplitudes, and the coefficients of nonlinear terms.  

Some useful theories were highlighted by Israr (2008) regarding the application of the 

method of multiple scales to dynamical systems. Firstly, reduced-order discretisation 

models may be inadequate to describe the dynamics of the original continuous system in 

the presence of quadratic nonlinearities. Studies by Pakdemirli, Nayfeh, and Nayfeh 

(1995), Nayfeh and Lacarbonara (1997), Alhazza and Nayfeh (2001), Emam and Nayfeh 

(2002), and Nayfeh and Arafat (2002) found that the application of the method of multiple 

scales, or any other perturbation method to the reduced-order model, obtained by the 

Galerkin, or other discretisation procedures, of a weakly nonlinear continuous system with 

quadratic nonlinearities can lead to both quantitative and qualitative erroneous results.  

Lacarbonara, in 1999, showed that quadratic nonlinearities produce a second-order 

contribution from all of the modes to the system response in the case of a primary 

resonance. Secondly, the application of the method of multiple scales to dynamical systems 

expressed in second-order form can lead to modulation equations that can be derived from 

a Lagrangian in the absence of dissipation and external excitation, but cannot necessarily 

be shown to lead to closed form or even to numerical steady-state solutions. This is 

potentially contrary to the conservative character of these dynamical systems. More 

specifically, this problem is encountered while determining approximate solutions of 

nonlinear systems possessing internal resonances to orders higher than the order at which 

the influence of the internal resonance first appears, as associated with the work of Rega et 

al., (1999). Interestingly, transforming the second-order governing equations into a system 

of first-order equations and then treating them with the method of multiple scales yields 

modulation equations derivable from a Lagrangian, and is presented in Nayfeh (2000) and  

Nayfeh and Chin  (1999), and Malatkar (2003).   
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Abe (2006) investigated primary and subharmonic resonances on a hinged-hinged Euler-

Bernoulli beam resting on a nonlinear elastic foundation with distributed quadratic and 

cubic nonlinearities. Steady-state responses were found by using the method of multiple 

scales and Galerkin’s procedure. A multiple scales solution for the nonlinear vibration of 

isotropic rectangular plates was presented by Shooshtari and Khadem (2007). In their study 

invariant manifold theory was applied to the plate problem and it was confirmed that the 

nonlinearities were of stiffness and inertia types. The multiple scale method was applied to 

the equations of motion, and closed-form relations for the nonlinear natural frequencies 

and mode shapes of the plate were derived. Using the obtained relation, the effects of 

initial displacement, thickness and dimensions of the plate on the nonlinear natural 

frequencies and displacements were investigated. The results showed that by increasing the 

ratio of thickness to the dimensions of the plate the nonlinear frequencies of the plate will 

increase. Hegazy (2010) studied the dynamic behaviour of a rectangular thin plate under 

parametric and external excitations modelled by coupled second-order nonlinear ordinary 

differential equations, and their approximate solutions were sought by applying the method 

of multiple scales. The steady-state response, and the stability of the solutions for various 

parameters, were both studied numerically using the frequency-response function and 

phase-plane methods. Hegazy found that the system parameters generated different effects 

on the nonlinear response of the thin plate. 

The literature does not appear to contain any substantial references to using the method of 

multiple scales for nonlinear vibration analysis of a cracked or damaged plate except by 

Israr et al. (2006, 2008 and 2009). Starting in 2006, Israr et al. developed an approximate 

analytical solution for the free vibration of cracked isotropic plates using the multiple 

scales method. An elliptical crack and the local stress field with loading conditions were 

incorporated into the partial differential equation (PDE) for an edge loaded plate with 

various types of boundary conditions. Berger’s formulation was used to generate the 

nonlinear term within the model. The plate PDE was converted into a nonlinear Duffing-

type ODE in the time domain by use of the Galerkin procedure, and then an arbitrarily 

small perturbation parameter was introduced in order to apply the method of multiple 

scales. In 2008, these authors extended their work by considering the application of 

periodic loading for forced vibration analysis of cracked plates with different boundary 

conditions. The results were obtained by the use of the method of multiple scales and 

showed the influence of crack length and boundary conditions on the vibration 

characteristics of the plate. It showed that depending on increased crack length, the 

vibration frequency decreases and the amplitude increases. A comparison between the 
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method of multiple scales with direct integration, finite element analysis, and experimental 

work was undertaken and reported. In this study it was shown conclusively, by using a first 

order multiple scales approximation, that the nonlinear characteristics of the steady-state 

responses are encoded within the non-autonomous modulation equations. An extremely 

close agreement between the differently obtained results was noted. However, these studies 

were limited to a crack located parallel to one side of the plate only. 

 

2.6 Routes to Chaos in Nonlinear Systems 

In practice, most models are nonlinear, so a study of dynamic stability, bifurcations, and 

routes from order to chaos in nonlinear systems is usually very important. Such a study 

serves not only to promote further understanding of the complex dynamics under different 

combination of system parameters, but also to capture essential mechanisms that generate 

chaos. Additionally, this sort of study is essential to developing controls of bifurcation and 

chaos. Period-doubling bifurcations, the coexistence of attractors with complicated basin 

structures, strange attractors with the fundamental property of a sensitive dependence on 

initial conditions, and the existence of positive or negative Lyapunov exponents are some 

of the most important features of dynamical behaviour. Chaos theory is the study of highly 

adjustable nonlinear systems i.e. nonlinear systems that are sensitive to initial conditions. 

A system is characterised as chaotic if it meets certain criteria, such as exhibiting an 

exponential rate of period doubling in its return map, or possessing a positive Lyapunov 

exponent.  

In recent years, there has been a lot of literature dealing with bifurcation sequences, the 

stability analysis of Lyapunov, and transitions to chaos.  Exhaustive information on this 

subject is presented in the monographs of Thompson and Stewart (2002), Moon (1987), 

Hilborn (2000) and Solari et al. (1996). According to Thompson and Stewart (2002), the 

founder of geometric dynamics is universally acknowledged to be Poincaré (1854–1912), 

who, alone among his contemporaries, saw the usefulness of studying topological 

structures in the phase space of dynamical trajectories. The theoretical foundations laid by 

Poincaré were strengthened by Birkhoff (1844–1944), but, apart from a few instances such 

as the stability analysis of Lyapunov, Poincaré’s ideas had little impact on applied 

dynamics for almost half a century. Subsequently, in 1927, Van der Pol and Van der Mark 

reported irregular noise in experiments with an electronic oscillator. It has been frequently 

mentioned that chaotic vibrations occur when some strong nonlinearity exits. Some 
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examples of nonlinearities that can be observed in many physical systems are; nonlinear 

elastic or spring elements, damping, boundary conditions etc. In mechanical continua 

nonlinear effects arise from a number of different sources which includes kinematics, 

constitutive relations, boundary conditions, nonlinear body forces, and geometric 

nonlinearities associated with large deformations in structural solids.  

In 1985, Parlitz and Lauterborn presented resonance curves, bifurcation diagrams, and 

phase diagrams for the Duffing equation. This was intended to improve their understanding 

of this type of equation by emphasising the important role of nonlinear resonance. They 

showed a periodic recurrence of a specific and fine structure in the bifurcation set, which 

was closely connected with the nonlinear resonances of the system. They also found 

evidence for a superstructure in the bifurcation set related to nonlinear resonances in a 

model of acoustic turbulence by Lauterborn and Cramer (1981), in the Toda oscillator 

(Meyer-Ilse, 1984), in a nonlinear bubble oscillator (Lauterborn, 1976) and in a nonlinear 

electronic oscillator (Klinker et al., 1984 and Brorson et al., 1983). At the same time, Wolf 

et al. presented a technique that allows the estimation of non-negative Lyapunov exponents 

from experimental time series data. Lyapunov exponents provide a qualitative and 

quantitative characterisation of dynamical behaviour and are related to the average 

exponential rates of divergence or convergence of nearby orbits in phase space. They are 

positive for chaos, zero for a marginally stable orbit, and negative for a periodic orbit. It 

means that an attractor for a dissipative system with one or more positive Lyapunov 

exponents is said to be strange or chaotic. Wolf et al. claimed that their algorithm can 

detect and quantify chaos in experimental data by accurately estimating the first few non-

negative Lyapunov exponents, and they tested this method on famous model systems such 

as those of Hénon (1976), Rössler (1976), Lorenz (1989), and the Rössler-hyperchaos 

problem (1979) with known Lyapunov spectra. They also found that chaos can be 

distinguished in some cases from external noise and topological complexity. 

Numerical and experimental works to study the nonlinear vibration and nonlinear acoustic 

radiation of a typical aircraft fuselage panel forced by plane acoustic waves at normal 

incidence were demonstrated by Maestrello et al. (1992). In this study, they found that the 

motion normally starts periodically, and eventually becomes chaotic with time with the 

increase of the pressure level. A good agreement between the experimental and numerical 

results were obtained, which showed that when a panel is excited at a resonant frequency 

by plane acoustic waves, linear, nonlinear and chaotic responses can be obtained by 

changing the intensity of the loading. Lu and Evan-Iwanowski in 1994, initiated a 
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computational analysis in order to explore the effects of stationary and nonstationary 

excitations on the response of a softening Duffing oscillator in the region of the parameter 

space where the period doubling sequence occurs. They found significant differences 

between these two types of excitation. MathematicaTM packages for analysing and 

controlling discrete and continuous nonlinear systems, and for estimating the Lyapunov 

exponents of continuous and discrete differentiable dynamical systems were devised by 

Guitiérrez and Iglesias (1998), and Sandri (1996), respectively. A program by Guitiérrez 

and Iglesias (1998) was shown to be capable of obtaining the periodic points and the 

stability regions of nonlinear systems, as well as bifurcatory analysis and Lyapunov 

exponents, while a program by Sandri (1996) can compute the Lyapunov spectrum of 

continuous and discrete differentiable dynamical systems. The Lyapunov spectrum can be 

calculated until it shows convergence, or until a maximum iteration count is reached.  

Tan and Kang (2000) studied the forced response of a Mathieu-Duffing oscillator subjected 

to combined parametric and quasiperiodic excitation in the context of a large ratio between 

the excitation frequencies. The response characteristics were examined in terms of the time 

histories, frequency responses, Poincaré sections, and Lyapunov exponents. Numerical 

results were obtained by the use of the spectral balance method, and the Lyapunov 

exponents were computed based on the algorithm proposed by Wolf et al. (1995). They 

observed that routes to chaotic motions were different for a frequency range near the 

natural frequency of the linear system, and also near to the parametric resonance 

frequency. In 2008, Shen et al. investigated the bifurcations and routes to chaos of the 

Mathieu-Duffing oscillator using the incremental harmonic balance (IHB) procedure, 

together with a developed new scheme that can be used for selecting the initial value 

conditions. A series of periodic-doubling bifurcation points and threshold values of the 

control parameters at the onset of chaos of the Mathieu-Duffing oscillator were calculated, 

and they showed that this sequence of periodic doubling bifurcations observed the 

universal rule approximately.       
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Chapter 3 
 
A Plate with a Surface Crack of Variable Angular 
Orientation  

3.1 Introduction 

In this chapter, an analytical approach is presented for the forced vibration analysis of a 

plate containing an arbitrarily orientated surface crack, based on three different boundary 

conditions. The method is based on classical plate theory. Firstly, the equation of motion is 

derived for the plate containing the angled surface crack (angled with respect to one side of 

the plate) and subjected to transverse harmonic excitation. The crack formulation 

representing the surface crack of variable angular orientation is based on a simplified line-

spring model. Then, by employing the Berger formulation, the derived governing equation 

of motion of the cracked plate model is transformed into a cubic nonlinear system which is 

shown to take the form of a specialised Duffing equation.  

 

3.2 Cracked Plate Modelling 

It is necessary still to develop an understanding of the derivation of the model of a cracked 

plate, especially for the nonlinear case. Much research work has been undertaken on the 

linear model, and there are restricted nonlinear models available for vibration problems in 

cracked plates. A detailed derivation of the nonlinear differential equation based on 

classical plate theory for modelling the vibration of a cracked plate was initiated by Israr 

(2008) and Israr et al. (2009). In these works, the concept of a line-spring model based on 

Kirchhoff’s plate bending theories, as first introduced by Rice and Levy (1972), was used 

for the crack formulation. The idea behind this concept was to reduce the problem of a 

three-dimensional surface crack to a quasi-two-dimensional problem. The type of crack 

considered by these authors was a part-through crack located at the centre and parallel to 

one side of the plate.  

King (1983) simplified this line-spring model for surface flaws in a plate in order to predict 

the fracture parameters, for instance, the J-integral or crack opening displacement at the 

root of a surface crack. In his simplification the crack front was replaced with a crack of 

constant depth which reduced the coupled integral equations in the paper by Rice and Levy 

(1972) to a pair of linear algebraic equations, and which was more convenient to 
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implement computationally. Then the basis of this simplified line-spring model was used 

by Zheng and Dai (1994) to propose an analytical model for an angled surface crack under 

biaxial stresses for investigating the effect of the biaxial load ratio and the crack orientation 

angle on the values of stress intensity factors for this type of crack. Hence, the aim of this 

section is to extend the vibration analysis of the cracked plate discussed in the work of 

Israr (2008) and Israr et al. (2009) by considering an alternative geometry whereby the 

crack orientation is variable. The model and methods of Israr (2008), Israr et al. (2009), 

and Zheng and Dai (1994) are used as references and are modified to accommodate a 

nonlinear model for a plate with an arbitrarily orientated surface crack.  

 

3.3 The Classical Dynamic Equation of a Plate with 
Variably Orientated Crack 

In this section, the governing equation of motion for a plate with an arbitrarily orientated 

surface crack of length 2a is developed. The crack is assumed to be located at the centre of 

the top surface of the plate in the x-y plane, and oriented at an angle β with respect to the x 

axis of the plate, and the plate is subjected to a tension σo and bending moment mo, as 

shown in Figure 3-1. The following assumptions are made during the derivation: 

1. The plate is made of thin elastic, homogeneous, and isotropic material, and has a 

uniform thickness which is much smaller than the other dimensions, 

2. The stress normal to the mid-plane σz, is considered to be small when compared 

with the other stress components, and is therefore neglected, 

3. Plane sections initially normal to the middle surface remain plane and normal to 

that surface after bending, so that shear deformation can be neglected, 

4. The effects of rotary inertia and shear forces are also neglected, 

5. The effect of the in-plane forces on the deflection of the plate only acts in the x 

direction, so that the in-plane forces in the y and x-y directions can be discounted 

(Timoshenko and Woinowsky-Krieger, 1959, and Israr et al., 2009). 
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Figure 3-1 : A rectangular plate with a surface cra ck of length 2 a orientated at an angle β to 
the horizontal x-axis and showing the bending and tensile stresses 

 
 
 
To derive the equilibrium equation, an element of the plate of sides dx and dy, aligned with 

the {x, y}  axis, and of thickness h is considered, as illustrated in Figure 3-2, with Qx and Qy 

defining the forces per unit length projected parallel to the z axis, Mx and My are the 

bending moments per unit length, Mxy is the twisting moment per unit length, yM
 
and 

xyM are the bending moments per unit length due to the variably orientated crack situated 

at the centre of the plate, ρ is the density of the plate material, and qz is the lateral load per 

unit area applied normal to the surface of the plate. 

By summing all the forces in the z direction and applying Newton’s Second Law, we 

obtain, 
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(b)  A plate element containing a variably orientat ed crack, with applied moments 

Figure 3-2 : A plate structure loaded by uniform pr essure with a variably orientated crack 
located at the centre of the plate 
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Summing the moments about the x and y axes and then equating them individually to zero 

leads to moment equilibrium about the y axis, 
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After simplification, and the term containing ( ) dydx
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 is neglected in equation (3.3) 

since it is small quantity of a higher order than those retained, gives the following 

equation, 
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Differentiating with respect to x, equation (3.4) becomes, 
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Similarly, by summing for moment equilibrium about the x axis the moment equation can 

be obtained as, 
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Simplifying and also neglecting the term containing ( ) dxdy
y
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Differentiating equation (3.7) with respect to y, leads to,  
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Then, by substituting equations (3.5) and (3.8) into equation (3.2), the following 

equilibrium equation can be derived, 
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Where Mx, My and Mxy are the bending moments per unit length along the x and y 

directions, whereas yM
 
and xyM are the bending moments per unit length due to the 

variably orientated crack situated at the centre of the plate. 

From Timoshenko and Krieger (1959), and Szilard (2004), yx MM , and xyM can be 

written in the following forms, 
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with xσ , yσ and xyτ  representing the stresses along the x and y directions of the plate and 

all these stresses components can be expressed by deflection w of the plate, defined as, 
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Deflection w is a function of the two coordinates in the plane of the plate. Substitution of 

equations (3.13) to (3.15) into equations (3.10) to (3.12), respectively, generates 

expressions for Mx, My and Mxy as follows, 
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D is the flexural rigidity of the plate in the conventional form of 
)1(12 2
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where E is the modulus of elasticity and ν is the Poisson’s ratio. Therefore, equations 

(3.16), (3.17) and (3.18) can now be substituted into equation (3.9). When there is no 

lateral load acting on the plate, the partial differential equation of motion for the plate with 

an arbitrarily oriented surface crack is of this form, 
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For plates subjected to a lateral load per unit area zq  applied normal to the surface of the 

plate, the equation extends to,  
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3.4 The equation of motion of a cracked plate inclu ding 
relevant forces in the middle plane of the plate 

 
Figure 3-3 shows a plate element of thickness h and dimensions dx and dy subjected to in-

plane forces per unit length. These in-plane forces per unit length are denoted by nx, ny, nxy 
= nyx, yn  

and yxxy nn = . The in-plane forces yn  
and yxxy nn =  

are the in-plane forces per 

unit length due to the existance of a variably orientated crack located at the centre of the 

plate. The in-plane force xn  is not needed due to the transformation of the variably 

orientated surface crack into two basic problems namely a horizontal surface crack parallel 

to the x-axis and subjected to normal tensile stress and bending moment, and a horizontal 

surface crack parallel to the x-axis and subjected to a tangential tensile stress and a twisting 

moment.  
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Figure 3-3 : In-plane forces acting on a plate with  an arbitrarily orientated crack of length 2 a 
located at the centre of the plate 

 
 
In order to develop the equation of motion of the system shown in Figure 3-3 an 

equilibrium principle is applied to the plate element, and this is assuming that there are no 

body forces acting in the x and y directions of the plate. Thus, the equilibrium equation of 

the in-plane forces along the x axis gives, 
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and hence, 
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By summing the in-plane forces in the direction of the y axis we obtain the following 

equation of equilibrium, 
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Therefore, 
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However, to consider the equilibrium of forces along the direction of the z axis we must 

take into account the bending of the plate and the resulting small angles between the forces 

nx and ny that act on the opposite sides of the element (Timoshenko and Krieger, 1959). In 

this case an arbitrary choice of boundary condition of the Fixed-Fixed-Free-Free boundary 

condition as applied by Israr (2008) as shown in Figure 3-4 is considered here. However 

other boundary conditions are equally possible. As a result of this selection the equilibrium 

equation of the in-plane forces along the z axis can be written as, 
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Simplification and subsequent neglect of terms of higher than second order, leading to the 

following form, where the terms on the right hand side are all loads per unit area, 
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Figure 3-4 : Boundary condition with two edges fixe d and two edges free and subsequent 
deformation of the plate having an arbitrarily orie ntated crack at the centre of the plate  

(after Israr, 2008)   
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Dividing equation (3.27) by dxdy leads to,  
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In equation (3.21) the lateral load zq  is acting on the plate element in the z direction which 

is normal to the surface of the plate, thus by adding equation (3.28) to the lateral load per 

unit area zq , we obtain the following equation of equilibrium for the cracked plate, 
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At this stage the effect of the in-plane forces on the deflection of the plate is assumed to act 

just in the x-direction, so the in-plane forces in the y and xy directions can justifiably be 

neglected. After neglecting the two terms 
2
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w
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w
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2 , the equation of motion 

for the forced vibration of a thin plate with an arbitrarily orientated surface crack becomes, 
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This equation (3.30) differs from Israr’s equation (2008) because two new terms, xyM , and 

xyn  caused by the crack of variable angular orientation are introduced. 

 

3.5 The Variably Orientated Crack Term Formulations   

 
The formulation of a representative model for a horizontal part-through crack located at the 

centre of an isotropic plate was proposed by Israr (2008) and Israr et al. (2009). Initially 

this model was motivated by results from Rice and Levy (1972) in which a part-through 

crack formulation was initiated using the concept of a line-spring model based on 
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Kirchoff’s bending theory for thin plates and shells. In their research, an approximate 

relationship between nominal tensile and bending stresses at the crack location has been 

obtained. After some further work, Israr (2008) and Israr et al. (2009) obtained a set of 

equations for the relationships between the nominal tensile and bending stresses at the 

crack location and the nominal tensile and bending stresses at the far sides of the plate. 

Thus, in order to use these methods to get more accurate relationships for a thin, elastic, 

isotropic plate containing a variably orientated surface crack of length 2a, it was found to 

be necessary to obtain new relationships for the tension and bending stress fields for this 

problem as shown in Figure 3-1.  

The formulation of the variably orientated surface crack terms is developed by using a 

proposal made by Zheng and Dai (1994). These authors presented a simplified analytical 

model for a variably orientated surface-cracked plate using the concept of the simplified 

line-spring model given by King (1983). The main objective of Zheng and Dai (1994) was 

to develop closed-form solutions for Mode I and Mode III stress intensity factors at the 

maximum depth point of a variably orientated surface crack. These solutions were used to 

investigate the effect of the biaxial load ratio and the crack orientation angle on the values 

of the stress intensity factors for this type of crack. In this research, the model proposed by 

Zheng and Dai (1994) is used with some modification, i.e. by considering the cracked plate 

model loaded in uniaxial tension oσ  and edge bending om  , as depicted in Figure 3-5.   
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Figure 3-5 : A plate with an arbitrarily orientated  surface crack loaded in tension and with a 
bending moment 
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In this particular system the boundary conditions of the cracked plate relative to the x’-y’  

coordinate system are assumed at infinity to become,  

0' =xσ , oy σσ ='  and 0'' =yxτ
  

at   y’ � ∞                                 (3.31) 

0'' =xxM , oyy mM =''  and 0'' =yxM    at  y’ �∞                                         (3.32) 

where the stress oσ  acts along the 0y’ axis. The boundary conditions relative to the x-y 

coordinate system (Timoshenko and Krieger, 1959, and Zheng and Dai, 1994) become,     
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The system illustrated in Figure 3-5 can be transformed into two basic problems. The first 

of these is that the plate is assumed to have a horizontal surface crack parallel to the x-axis 

and subjected to normal tensile stress and bending moment. The second problem is where 

the plate has a horizontal surface crack parallel to the x-axis and is subjected to a tangential 

tensile stress and a twisting moment. Zheng and Dai (1994) developed appropriate 

expressions involving the tensile and bending stresses at the crack location and tensile 

stresses at the far sides of the plate. These expressions are employed here but are modified 

by considering the fact that the cracked plate is also subjected to bending moment, om  as 

well as oσ . These expressions are classified into four types, and are re-arranged by 
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applying the relationship between tensile and bending stresses at the far side of the plate 

(Israr, 2008), as follows, 

( )∫
+

−
==

2/

2/ 12
12

12 ,,
1 h

h
dzzyx

hh

n τσ                                             (3.35)

( )∫
+

−
==

2/

2/ 12212212 ,,
66 h

h
dzzyxz

h
M

h
m τ .                                           (3.36) 

In this case, the subscripts 1, 2 are represented by m, n for the first problem and p, q for the 

second problem. These are intermediate variables required for algebraic simplification. 

Thus, the relationship between the normal tensile stress, mnσ  at the crack location and the 

normal tensile stress, yyσ  at the far side of the plate becomes, 

( )( ) yy

tttb

mn
ahv

a σ
αα

σ
216

2
2 +−+

=                                             (3.37) 

The relationship between the bending stress, mnm  at the crack location and the bending 

moment, yyM  at the far side of the plate is given by, 
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In the tangential direction the relationship between the tangential tensile stress,pqσ  at the 

crack location and the tangential tensile stress, xyτ at the far side of the plate is found to be, 
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The last expression relating the bending stress, pqm  at the crack location and the twisting 

moment, xyM at the far side of the plate is found to be of the form, 
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This relationship is newly presented here because the twisting moment xyM  is specifically 

encountered in this equation. Later, the boundary conditions in equations (3.33) and (3.34) 

are applied to these expressions (3.37)-(3.40), and then the stress relationships for Figure 

3-5 can be represented as, 
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At the crack location, mnσ  and mnm  are acting in the y-direction, whereas pqσ  and pqm  

are acting in the x-y directions. At the far sides of the plate, yyσ  and yyM  act in the y-

direction, whereas in the x-y directions, xyτ  and xyM  apply. h is the thickness of the plate, 

a  is the half crack length, αtt and Ctt are the non-dimensional stretching compliances, αbb 

and Cbb are the non-dimensional bending or twisting compliances, and αbt = αtb and Cbt = 

Ctb represent the non-dimensional stretching-bending or non-dimensional stretching-

twisting compliance coefficients at the crack centre, respectively. The compliance 

coefficients αtt, αbb and αbt = αtb can be found in the paper by Rice and Levy (1972), and 

the compliance coefficients Ctt, Cbb, and Cbt = Ctb can be seen in the papers of Joseph and 

Erdogan (1991)  and Lu and Xu (1986). 

According to Israr (2008), these tensile and bending stresses can be expressed in terms of 

the tensile and bending force effects. Therefore, equations (3.41)-(3.44) can be stated in the 

form of forces and moments by replacing the tensile and bending stress terms at the crack 

location and at the far sides of the plate (Rice and Levy, 1972). These equations therefore 

become, 
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The force and moment equations thus obtained give the desired terms, and these are then 

added into the equation of motion of the plate for a variably orientated surface crack, and 

with a negative sign introduced because in reality damage can cause a reduction in the 

overall stiffness, as discussed by Israr (2008) and Israr et al. (2009). Therefore they can be 

written as follows, 
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where mnn  and mnM  are the force and moment per unit length, respectively, in the y 

direction, and pqn and pqM are the force and moment per unit length in the x-y directions. 

Both the forces and moments are acting at the crack location of the plate. Substituting the 

expressions for yn , yM , xyn , and xyM  from equations (3.49)-(3.52) into the equation of 

motion for the cracked plate model, equation (3.30), results in the following equation form, 
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We note that the bending stresses at the far side of the plate are defined by Timoshenko 

and Krieger (1959) as follows, 
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Therefore, by substituting equations (3.54) and (3.55) into equation (3.53), the final form 

of the equation of motion for the forced vibration of a thin plate with an arbitrarily oriented 

surface crack emerges, as follows, 
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3.6 Application of Galerkin’s Method  

The transverse deflection ( )tyxw ,,  is a function of the two coordinates in the plane of the 

plate and time. It can be separated in the usual manner by recourse to Galerkin’s method. 

Galerkin’s method can be used to obtain global approximations for the solution of 
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differential equations. It is a weighted residual method and has a wider applicability than 

the Rayleigh-Ritz method because in general it is applicable to differential and integral 

equations whereas the Rayleigh-Ritz method is applicable only to variational formulations 

(Vendhan and Das, 1975). Kopmaz and Telli (2002) used Galerkin’s method to reduce the 

equation of motion of a simply supported rectangular plate carrying a uniformly distributed 

mass for free vibration analysis. Zhou and Ji (2006) also studied the free vibration of 

rectangular plates with a continuously distributed spring-mass in which they represented 

the free vibration of a human-structure system. They used a combination of the Ritz-

Galerkin method to derive an approximation for this model with three edges simply 

supported and one edge in the free boundary condition. Israr et al. (2009) used the 

Galerkin method to investigate the forced vibration of a cracked plate with the crack 

located at the centre, and parallel to one edge of the plate.            

In this section Galerkin’s method is applied in the usual manner to discretise the partial 

differential equation and transform the transverse deflection coordinate ( )tyxw ,,  into time 

dependent modal coordinates. The three different types of boundary conditions specified in 

Israr et al. (2009) are re-applied here. In order to use the method, a physical system 

comprising a rectangular plate of length 1l  in the x direction and 2l  in the y direction, as 

shown in Figure 3.6 is considered. This Figure is modified from Israr (2008) by 

considering the crack orientated at angleβ  with respect to the x-axis. A point load zq  is 

applied normal to the surface of the plate at an arbitrary location of (xo, yo), and is based on 

the application of the appropriate delta function. ( )tyxw ,,  is a set of functions dependent 

on time and stated in the generalised form of the transverse deflection of the plate as 

follows, 
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,,
i j

ijjiij tYXAtyxw ψ                                             (3.57) 

This equation describes the important behaviour of the plate, where iX  and jY  represent 

the characteristic or modal functions in the x and y directions of the cracked rectangular 

plate, respectively. ijA  and ijψ  are the arbitrary amplitude and the time dependent modal 

coordinate for the system, respectively, with i, j being the plate mode designators. 
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Figure 3-6 : A cracked plate subjected to an arbitr arily located load, zq  (Israr, 2008) 

 
 
The lateral load zq  at position ( )oo yx , , as illustrated in Figure 3-6, can be expressed as 

follows (Israr et al., 2009), 

( ) ( ) ( )oooz yyxxtqq −−= δδ                                              (3.58) 

By substituting equations (3.57) and (3.58) into (3.56), the following equation results, 
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In this work, three types of boundary condition which were applied by Israr et al., 2009 are 

re-used, namely all edges simply supported (SSSS), two adjacent edges of the plate 

clamped and the other two freely supported (CCSS), and two edges of the plate clamped 

and the other two free (CCFF). The appropriate expressions for the characteristics or modal 

functions that satisfy the stated boundary conditions of the plate are given below, 

 (a) With all edges simply supported (SSSS) 

∑
∞
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(b)    With two adjacent edges of the plate clamped and the other two freely supported 

(CCSS) 
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(c) With two edges of the plate clamped and the other two free (CCFF) 
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3.7 Application of the Berger Formulation 

The Berger formulation can be used to investigate nonlinear vibrations when the strain 

energy due to the second invariant of the strains in the middle surface of the plate can 

justifiably by ignored. This condition is applied in order to determine the deflection of 

plates when that deflection is of the order of magnitude of the thickness of the plate.      

The applicability and simplicity of this approximation to the nonlinear vibration analysis of 

plates makes it a useful approach. Wah (1963) introduced the simplified Berger equation 

by imposing the condition that the in-plane displacements u and v can be assumed to 

disappear at the external boundaries, and therefore applied this equation for the vibration 

analysis of rectangular plates with large amplitudes, and with various boundary conditions. 

Vendhan (1975) considered the Berger equation for the nonlinear vibration analysis of 

elastic plates. In this research the Berger formulation is used to convert the derived 

governing equation of motion of the plate with a variably orientated surface crack into a 

nonlinear ordinary differential equation model. Initially an equation is developed for the 

in-plane forces in terms of the transverse deflection, w. This can be done by taking the 

components of the additional strain in the middle plane of the plate, due to small 

deflections in the x and y directions, as given by Timoshenko and Krieger (1959) . The 

strain in the x direction taken in the middle of the plate is, 
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Similarly the strain in the y direction is, 
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Based on Kirchoff’s assumptions the plane stress equations that relate in-plane stresses to 

in-plane strains for an isotropic material can be represented as (Timoshenko and Krieger, 

1956),  
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−
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                                   (3.65)
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Substitution of (3.63) and (3.64) into equations (3.65) and (3.66) give, 
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Given that
)1(12 2

3

ν−
= Eh

D  then equations (3.67) and (3.68) become, 
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Multiplying equations (3.69) and (3.70) by dxdy, and after integrating them over the plate 

area, leads to,   

∫ ∫ 






















∂
∂+









∂
∂+

∂
∂+

∂
∂=

1 2

0 0

22
21

2

2

1

2

1

12

l l
x dxdy

y

w

x

w

y

v

x

u

D

llhn νν                               (3.71)
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By imposing the condition that u and v can disappear at the external boundaries and around 

the crack because it is symmetrical, the equations reduce to, 
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Substituting then the expression for the transverse deflection ( )tyxw ,,  from equation 

(3.57) into equation (3.73) and (3.74), leads to, the resulting in-plane force equations in the 

x and y directions, in terms of the transverse deflection, which become, 

( ) dxdyX
y

Y
Y

x

X
tA

llh

D
n

l l

i
j

j
i

ijijx ∫ ∫























∂
∂

+








∂
∂

=
1 2

0 0

2

2

2

2

22

21
2

6 νψ                               (3.75)

( ) dxdyY
x

X
X

y

Y
tA

llh

D
n

l l

j
i

i
j

ijijo ∫ ∫






















∂
∂

+








∂
∂

=
1 2

0 0

2

2

2

2

22

21
2

6 νψ                    (3.76) 

These two in-plane force equations for xn and on  can be conveniently re-written as, 

( )tADPn ijijijx
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1 ψ=                                                          (3.77) 
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and, 
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Following on from this by substitution of the in-plane force expressions into equation 

(3.59), then by multiplying each term of this equation by the modal functions iX and jY  

for one of the three types of boundary condition stated above, and then by integrating over 

the plate area, it can be seen that the following equation may be obtained, 
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where '
iX , ''

iX , '''
iX , and iv

iX are the first, second, third, and fourth derivatives of iX  with 

respect to x, and '
jY , ''

jY , '''
jY , and iv

jY denote the first, second, third, and fourth derivatives 

of jY  with respect to y. Equation (3.81) can be re-stated in the form of a nonlinear ordinary 

differential equation in terms of modal coordinates, as follows, 
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and, 

( )
ij

o
ij Q

D

tq
q =                                                           (3.86) 

where ( ) ( )ojoiij yYxXQ =  is the integral of the delta function given by Israr et al. (2009) in 

the form, 

( ) ( ) ( )∫
∞

∞−

=− oioi xXdxxxxX δ                                                         (3.87) 

By considering the system to be under the influence of weak classical linear viscous 

damping µ, and the load to be harmonic, then dividing through by the modal mass in 

equation (3.82) leads to the form of a specialised Duffing equation,  
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also noting that q is the applied load acting on the surface of the plate and ijΩ  is the 

excitation frequency. This equation is also containing a cubic nonlinear term, damping 

term and the excitation term. ijω is the natural frequency of the plate with a variably 
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orientated crack and ijγ  
is the nonlinear cubic term that can be positive or negative. It is 

positive valued when representing a hard spring and negative valued when representing a 

soft spring. 

 

3.8 Enhanced Cracked Plate Simulation 

In this section, simulation results are presented for the intact plate and the enhanced 

cracked plate model with three arbitrarily chosen types of boundary condition, namely 

SSSS, CCSS and CCFF. The type of material used in this investigation is an aluminium 

alloy of 5083 grade, with the following material properties: Modulus of elasticity E = 7.03 

x 1010 N/m2, plate density ρ   = 2660 kg/m3, Poisson’s ratio ν  = 0.33, and a measured 

damping ratio of µ = 0.08. Results are presented for an investigation into the natural 

frequency of the first mode of the intact plate and the enhanced cracked plate model for 

various aspect ratios. These results are divided into three parts. A convergence study is 

firstly carried out for the cracked plate model of Israr et al. (2009) with a centrally located 

crack which is parallel to one side of the plate, in order to verify the correctness of the 

enhanced crack model within an analytical model of the plate. Secondly, studies are 

presented for a plate model with a variably oriented surface crack, and in this case onwards 

the cracked plate model with scaled geometry is used for comparison with the 

experimental results, as discussed later. The natural frequency for this model can be 

calculated using the definition from equation (3.88). The effects of the boundary 

conditions, geometry of the plate, the crack orientation angle, and crack length on the 

natural frequency value are all demonstrated in both sections. Thirdly, factors that 

influence changes in the trend of the natural frequency for the CCFF type of boundary 

condition are discussed in section 3.8.3.   

 

3.8.1 A plate with a horizontally located centre cr ack, β = 0o 

 
The geometry of the plate used in this section is similar to that of Israr (2008) defined as 

l1= 0.5 m, l2 = 1.0 m, and with plate thickness, h = 0.01 m. The magnitude of the load 

chosen acting on the surface of the plate is, q = 10 N at some arbitrarily specified point 

located at xo = 0.375 m and yo = 0.75 m measured from the origin of the plate. Table 1 

shows the results obtained for an intact and cracked plate with a horizontal centre crack, 

and where the middle point of the crack coincides with the centre of the plate. The half 
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crack lengths a chosen are 0.01m and 0.025m. The percentage differences between this 

model and that of Israr (2008) are presented here for the three boundary conditions. The 

results of the comparison of Table 3-1 show a very close agreement for all three boundary 

conditions. The values of the differences in the first mode natural frequencies of these two 

models are small with a maximum percentage error of approximately 0.012. Additionally, 

for all three cases, the results show generally that the natural frequency reduces with an 

increase in half-crack length and it is also influenced when the boundary condition and 

geometry of the plate is changed.  
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Table 3-1 : Natural frequencies of the intact and c racked plate models with a horizontal crack  
located at the centre of the plate for various type s of boundary condition and different aspect ratios

First mode natural Frequency, ijω  (rad/s) 

 
BCs. Length of the 

plate (m) 
Intact Plate Error 

(%) 
Cracked Plate 
 a  = 0.01 (m) 

Error 
(%) 

Cracked Plate 
a = 0.025 (m) 

Error 
(%) 

 l1 

 
l2 This thesis Israr 

(2008) 
 This thesis Israr 

(2008) 
 This thesis Israr 

(2008) 
 

 

 
 
SSSS 

1.0 1.0 77.58 77.58 0 75.54 75.54 0 73.39 73.39 0 

0.5 1.0 193.95 193.95 0 192.54 192.54 0 191.09 191.09 0 

1.0 0.5 193.95 193.95 0 183.18 183.18 0 171.42 171.42 0 

0.5 0.5 310.32 310.32 0 302.17 302.17 0 293.57 293.57 0 

            

 
 
CCSS 

1.0 1.0 445.67 445.67 0 432.51 432.51 0 418.58 418.58 0 

0.5 1.0 1161.77 1161.77 0 1154.27 1154.27 0 1146.53 1146.53 0 

1.0 0.5 1161.77 1161.77 0 1089.99 1089.98 0.001 1011.06 1011.04 0.002 

0.5 0.5 1782.66 1782.66 0 1730.05 1730.04 0.001 1674.33 1674.31 0.001 

            

 
 
CCFF 

1.0 1.0 80.47 80.46 0.012 77.39 77.39 0 74.10 74.10 0 

0.5 1.0 231.08 231.06 0.009 229.97 229.95 0.009 228.82 228.80 0.009 

1.0 0.5 231.08 231.06 0.009 213.87 213.85 0.009 194.63 194.61 0.010 

0.5 0.5 321.87 321.85 0.006 309.56 309.54 0.006 296.40 296.38 0.007 
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3.8.2 A plate with a variably orientated surface cr ack  

In this section scaled geometric values of the plate model are used to make it compatible 

with experimental work specimens. The dimensions are l1= 0.15 m, l2 = 0.3 m, plate 

thickness h = 0.003 m, and the load acting on the surface of the plate, q is assumed to be 

the same as previously used, which is 10 N. Tables 3-2, 3-3 and 3-4 show the results for 

the first mode natural frequency ijω  for different boundary conditions, different lengths of 

half-crack and for different values of crack orientation angle, β. The orientation angle is 

chosen from 0o to 80o, in 20o steps and finishes at 90o. The crack is also located at the 

centre of the plate having 0.003 m and 0.0075 m half-crack lengths, respectively.    

Crack 
angle, 
β 

(deg) 

First Mode Natural Frequency, ijω  (rad/s) 

Intact 
Plate 

Cracked 
Plate, 

a = 0.003  
(m) 

Cracked 
Plate, 

a = 0.0075  
(m) 

Intact 
Plate 

Cracked 
Plate, 

a = 0.003  
(m) 

Cracked 
Plate, 

a = 0.0075     
(m) 

Length of the square plate 
l1 = 0.3 
l2 = 0.3 

Length of the square plate 
l1 = 0.15 
l2 = 0.15 

 258.60 - - 1034.41 - - 

0o  251.81 244.65  1007.24 978.58 

20o  252.61 246.32  1010.46 985.28 

40o  254.64 250.51  1018.55 1002.02 

60o  256.92 255.18  1027.68 1020.74 

80o  258.40 258.19  1033.60 1032.77 

90o  258.60 258.60  1034.41 1034.41 

 Length of the rectangular plate 
l1 = 0.15 
l2 = 0.3 

Length of the rectangular plate 
l1 = 0.3 
l2 = 0.15 

 646.50 - - 646.50 - - 

0o  641.81 636.96  610.60 571.41 

20o  642.36 638.08  614.91 580.69 

40o  643.75 640.92  625.68 603.57 

60o  645.33 644.13  637.72 628.57 

80o  646.36 646.22  645.45 644.37 

90o  646.50 646.50  646.50 646.50 

 

Table 3-2 : Natural frequencies of the intact and c racked plate models with a variably 
orientated surface crack for the simply supported ( SSSS) boundary condition, at various 

orientation angles. 
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As before, the results show that the natural frequency reduces with an increase in half-

crack length, and this phenomenon is illustrated in Figure 3-7, as an example for a plate 

aspect ratio of 0.15/0.3. This ratio is also chosen for the experimental specimen in the next 

chapter since it has an exact rectangular geometry. From Figure 3-7 it can be seen that the 

derived cracked plate model predicts the natural frequency very well for cases with SSSS 

and CCSS boundary conditions compared to the case with CCFF boundary condition for 

which the prediction is rather inaccurate, especially for a half-crack length a  of less than 

0.001 m, as shown in Figure 3-7 for the CCFF case. 

 
Crack 
angle, 
β 

(deg) 

First Mode Natural Frequency, ijω  (rad/s) 

Intact 
Plate 

Cracked 
Plate, 

a = 0.003 
(m) 

Cracked 
Plate, 

a =0.0075 
(m) 

Intact 
Plate 

Cracked 
Plate, 

a = 0.003 
(m) 

Cracked 
Plate, 

a = 0.0075 
(m) 

Length of the square plate 
l1 = 0.3 
l2 = 0.3 

Length of the square plate 
l1 = 0.15 
l2 = 0.15 

 1485.55 - - 5942.22 - - 

0o  1441.70 1395.27  5766.82 5581.10 

20o  1446.84 1406.06  5787.35 5624.25 

40o  1459.88 1433.16  5839.53 5732.63 

60o  1474.63 1463.41  5898.51 5853.66 

80o  1484.22 1482.88  5936.87 5931.50 

90o  1485.55 1485.55  5942.22 5942.22 

 Length of the rectangular plate 
l1 = 0.15 
l2 = 0.3 

Length of the rectangular plate 
l1 = 0.3 
l2 = 0.15 

 3872.56 - - 3872.56 - - 

0o  3847.57 3821.77  3633.32 3370.19 

20o  3850.31 3827.53  3662.06 3432.70 

40o  3857.62 3842.51  3733.95 3586.21 

60o  3866.06 3859.64  3814.09 3753.20 

80o  3871.70 3870.92  3865.53 3858.34 

90o  3872.56 3872.56  3872.56 3872.56 

 

Table 3-3 : Natural frequencies of the intact and c racked plate models with a variably 
orientated surface crack for the clamped-clamped si mply supported (CCSS)  

boundary condition, at various orientation angles 
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 Crack 
angle, 
β 

(deg) 

First Mode Natural Frequency, ijω  (rad/s) 

Intact 
Plate 

Cracked 
Plate, 

a =0.003 
(m) 

Cracked 
Plate, 

a = 0.0075 
(m) 

Intact 
Plate 

Cracked 
Plate, 

a = 0.003 
(m) 

Cracked 
Plate, 

a = 0.0075 
(m) 

Length of the square plate 
l1 = 0.3 
l2 = 0.3 

Length of the square plate 
l1 = 0.15 
l2 = 0.15 

 268.22 - - 1072.89 - - 

0o  247.29 223.78  989.15 895.10 

20o  265.40 247.30  1061.58 989.21 

40o  279.11 268.65  1116.42 1074.59 

60o  282.94 279.22  1131.74 1116.86 

80o  275.47 275.35  1101.90 1101.42 

90o  268.22 268.22  1072.89 1072.89 

 Length of the rectangular plate 
l1 = 0.15 
l2 = 0.3 

Length of the rectangular plate 
l1 = 0.3 
l2 = 0.15 

 770.27 - - 770.27 - - 

0o  743.88 715.78  650.48 498.48 

20o  765.52 742.67  703.75 586.80 

40o  782.78 769.00  757.28 689.93 

60o  788.05 783.03  788.12 762.82 

80o  779.10 778.91  784.84 782.59 

90o  770.27 770.27  770.27 770.27 

 

Table 3-4 : Natural frequencies of the intact and c racked plate models with a variably 
orientated surface crack for the clamped-clamped fr ee-free (CCFF) boundary condition, at 

various orientation angles 
 
 
Furthermore, in terms of the crack orientation angle effect for the boundary conditions 

SSSS and CCSS, as shown in Figure 3-8, it can clearly be seen that the natural frequency 

increases with the increase in the crack angle, up to 90o. But it is different for the case of 

the CCFF boundary condition, where the frequency increases up to 60o, and then decreases 

when β exceeds 60o. This similar trend in the crack orientation effect was also studied by 

Maruyama and Ichinomiya (1989) who did experiments on clamped rectangular plates 

with a crack at various orientation angles. Wu and Law (2004) also investigated 

experimentally a thick plate with an oriented crack for the free boundary condition case, 

where the frequency was found to increase with an increase in the crack angle of up to 60o, 

but which reduced for crack angles exceeding 60o.    
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The results show overall that the cracked plate model is very sensitive to the crack length 

and crack orientation angle and that it is able to predict natural frequency values for the 

crack very well for the cases tested using the SSSS and CCSS boundary conditions. 

However, for a cracked plate with the CCFF boundary condition the prediction showed 

some disagreement between the intact plate and the cracked plate for a crack orientation 

angle of 40o and above. In this case the natural frequency value for the cracked plate is 

higher than for the intact plate, and this does not fulfil the general expectation that cracks 

lower the natural frequencies due to their reductions in the overall stiffness of the plate.  

 
 

 
 

 
 

Figure 3-7: First mode natural frequency as a funct ion of half-crack length  
for the cracked plate model with an aspect ratio of  0.15/0.3, at different values of crack 

orientation angle from 0 o to 90 o for the SSSS, CCSS, and CCFF boundary conditions ( Black, 
0o; Red, 20o; Blue, 40 o; Green, 60 o; Orange, 80 o; Purple, 90 o) 
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Figure 3-8: First mode natural frequency as a funct ion of crack orientation angle 
for the cracked plate model with an aspect ratio of  0.15/0.3, for SSSS, CCSS, and CCFF 

boundary conditions (Dotted line, half-crack length  of 3.0 mm: Black line, half-crack length 
of 7.5 mm) 

 
3.8.3  Factors which influence changes in the natur al frequency  

Besides the effect of crack length it is also found that the vibrational characteristics i.e. the 

natural frequency of the cracked plate structure, can be affected significantly by the 

orientation of the crack in the surface of the plate depending on the type of boundary 

condition applied. In this section a parametric study is performed on the natural frequency 

equation of the cracked plate for the case of the CCFF boundary condition. This type of 
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natural frequency values at an angle of 60o and where this trend is seen to be different to 

that of the SSSS and CCSS boundary conditions. Therefore, the objective of this study is to 

examine cracked plate model configurations in order to determine the physical parameters 

that influence the changeover of the maximum value of crack orientation angle. Here, 

maximum means that value of crack orientation angle for which the natural frequency 

reaches a maximum value before it then decreases. In this simulation the natural frequency 

of the cracked plate model is calculated by using equation (3.89). The series of natural 

frequency equations in term of crack orientation angle is obtained and this is then used to 

calculate the natural frequency value for a range of β values from 0o to 90o. From here, the 

maximum natural frequency can be found. However there are competing effects within the 

analysis at this stage and only a lengthy parametric study could uncover the numerical 

mechanisms causing this effect.  

3.8.3.1 Crack Length 

In this simulation half-crack lengths are chosen from the range of 0.1 mm to 30 mm.  

Results of the crack orientation angle for maximum natural frequency as a function of half-

crack length a, is plotted and shown in Figure 3-9. It is found that the crack length 

influences the crack orientation angle for maximum natural frequency, for example when 

the half-crack length is 1 mm the natural frequency increases for the crack angle β, up to 

50.77o and reduces when β exceeds 50.77o. When the half-crack length increases to 30 

mm, the natural frequency increases up to β = 75.06o and then decreases when β exceeds 

75.06o. The results given in Figure 3-9 shows that the crack orientation angle for which the 

natural frequency is maximum increases with the crack length.  
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Figure 3-9 : β for maximum natural frequency as a function of hal f-crack length  
for the cracked plate model with an aspect ratio of  0.15/0.3 
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3.8.3.2 Plate Thickness, h 

Figure 3-10 shows the crack orientation angle, β, for maximum natural frequency as a 

function of the plate thickness h, from the range of 0.1 mm to 30 mm. The result shows 

that the orientation of the crack for maximum natural frequency is also affected by the 

thickness of the plate, in which the value of β for maximum natural frequency decreases 

with an increase in the plate thickness.         
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Figure 3-10 : β for maximum natural frequency as a function of pla te thickness  
for the cracked plate model with an aspect ratio of  0.15/0.3 

 

3.8.3.3 Plate Aspect Ratio (l1/l2), Rp  

Plate aspect ratio is defined here as the length ratio of the side on the x-direction to the side 

on the y-direction. In this simulation the plate aspect ratio is studied for the range 0.1 to 

1.0. Plate aspect ratio effects on the crack angle for the maximum natural frequency can be 

observed in Figure 3-11. The result shows that the crack orientation angle for maximum 

natural frequency increases with the plate aspect ratio.  
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Figure 3-11 : β for maximum natural frequency as a function of pla te aspect ratio  
for the cracked plate model  

 

3.8.3.4 Poisson Ratio 

The crack orientation angle for maximum natural frequency as a function of Poisson ratio 

is illustrated in Figure 3-12. It can be seen that the crack angle for which the natural 

frequency is maximum decreases up to 0.42, and then increases when the ratio exceeds 

0.42.  
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Figure 3-12 : β for maximum natural frequency as a function of Poi sson Ratio  
for the cracked plate model    
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3.8.3.5 Density, ρ and Modulus of Elasticity, E 

In this simulation density and modulus of elasticity of the cracked plate are varied from the 

range of 1500 kgm-3 to 3000 kgm-3 and 1.0 x 1010 Nm-2 to 10 x 1010 Nm-2, respectively. 

However, both of the results only show a very slight difference in the crack orientation 

angle for a maximum natural frequency value, and no significant changes can be observed 

from Figure 3-13.  

       (a)            (b) 

 
 

Figure 3-13 : β for maximum natural frequency as a function of (a)  Density  
and (b) Modulus of Elasticity    

 

 

3.9 Chapter Conclusions 

The equation of motion for a plate containing a surface crack of variable angular 

orientation in the form of a specialised Duffing equation has been derived. This proposed 

mathematical model is capable of detecting and predicting the vibration behaviour of the 

cracked plate, and showing the trend of the natural frequency values for the SSSS, CCSS 

and CCFF boundary conditions. Besides the boundary conditions, crack length, and 

location of the point load, it is also found that the vibrational characteristics of the plate 

structure can be affected significantly by the orientation of the crack. In addition, the 

physical parameters such as crack length, plate thickness, plate aspect ratio, Poisson ratio, 

plate density and modulus of elasticity also contribute to the changes in the orientation 

angles for which the natural frequency is maximum.  
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Chapter 4  
 
Approximate Solution Methods 

4.1 Introduction 

This chapter presents approximate solutions for the nonlinear problem of a plate with a 

surface crack of variable angular orientation. The solutions obtained are used in order to 

study and interpret the physical behaviour of this cracked plate model. An approximate 

analytical method based on the perturbation method of multiple scales and an appropriate 

numerical solution technique i.e. the Finite Element Method, within the Abaqus/CAE 

environment, are applied here to solve this problem. In addition, for purposes of 

comparison, the numerical results are also calculated by directly integrating the nonlinear 

ordinary differential equation for the model and the results from this are compared with the 

results obtained from the multiple scales method.       

   

4.2 Approximate Analytical Method: First Order Mult iple 
Scales Method 

One of the most widely used perturbation methods is the method of multiple scales. This is 

an approximate analytical technique and is frequently used for obtaining close-form 

solutions for nonlinear problems. The multiple scales method was successfully applied by 

Israr (2008) and Israr et al. (2009) for the horizontal centrally located crack problem. In the 

case of primary resonance analysis the excitation frequency is usually assumed to be close 

to the linear natural frequency of the system, and the detailed derivation of the appropriate 

amplitude frequency-response equations are described in those references. Here this 

method is re-applied in order to investigate the nonlinear behaviour of a plate with a 

variably orientated surface crack. 

The basic idea behind this approach is that the single independent variable, T is uniformly 

split up into several new independent variables T1, T2, T3,...Tn and these independent 

variables define successively slower dependencies for the dependent variables when 

expressed in term of a uniformly valid expansion equation.  The dependent variables are 

typically expressed by the following (Cartmell et al., 2010): 
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( ) ( ) ( )∑
−

=

+=
1

0
10 0,...,,,

m

n
mmn

n TTTTxtx εεε                                                                            (4.1) 

where tT n
n ε=  and the parameter, ε ,  is known as a (small) perturbation parameter with ε  

« 1. ( )ε,tx  is a vector and its expansion in equation (4.1) is considered to be uniformly 

valid for times up to ( )mO −ε . The aim of this section is to find an approximate analytical 

solution to the forced nonlinear vibration problem for a plate with a variably orientated 

crack by using a first order multiple scales expansion. So, for the co-ordinate that we are 

using here, ijψ , the dependent variables would typically have this form, 

)(),(),(),( 2
101100 εεψψεψ oTTTTt ijijij ++=                        (4.2) 

where ij0ψ  and ij1ψ  are solution functions yet to be determined and 0T  and 1T  are 

successively slower time scales. The multiple independent variables Tn are generated with 

respect to real (clock) time t given by, 

tT n
n ε=   for n = 0, 1, 2,…                                                         (4.3) 

So, when n = 0;   

tT =0 ,                                                            (4.4) 

And when n = 1;  

tT 1
1 ε=                                                              (4.5) 

On this basis the first and second time derivatives can be perturbed as follows, 

K+
∂
∂+

∂
∂+

∂
∂=

2

2

1

1

0

0

Tdt

dT

Tdt

dT

Tdt

dT

dt

d
                       (4.6) 

or  K+
∂
∂+

∂
∂+

∂
∂=

2

2

10 TTTdt

d εε                         (4.7) 
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Re-stating equation (4.6) by using the D-operator to represent the term 
nT∂

∂
 gives, 

 

n
nDDDD

dt

d εεε ++++= K2
2

10                       (4.8) 

 
The second time derivative is, 
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(4.9) 

thus, 

( ) K++++++= 2
2

4
21

3
20

2
1

2
10

2
02

2

222 DDDDDDDDD
dt

d εεεε                   (4.10) 

Before applying the method of multiple scales to obtain an approximate solution to this 

problem it is necessary to order the cubic term, the damping, and the excitation term. 

These terms are ordered by means of the small parameter ε  according to their perceived 

relative numerical strength. To accomplish this we assume that the cubic term is a 

definitionally weak term, thus it is assumed to become, 

γεγ ˆ=                          (4.11) 

We also choose to impose a condition of weak damping which gives, 

µεµ ˆ=                          (4.12) 

and we decide to classify the excitation term as a soft excitation, so, 

qq ˆε=                          (4.13) 
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Clearly, all terms are ordered to 1)(εO  so that they will appear at the first order of 

approximation. By substitution of (4.11), (4.12) and (4.13) into equation (3.88) it becomes 

as follows, 

tq
D

tttt ij
ij

ijijijijijij Ω=+++ cosˆ)(ˆ)()(ˆ2)( 32
η

εψγεψωψµεψ &&&                                         (4.14) 

From this, substituting the uniformly valid expansion of equation (4.2) and the time 

derivative equations (4.8) and (4.10) into the ordinary differential equation (ODE) of the 

equation (4.14), we obtain, 
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                              (4.15) 

Expanding equation (4.15) leads to the following form, 
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     (4.16) 

By equating the coefficients of like powers of ε , and neglecting terms of order greater than

1ε  in equation (4.16) leads to a definition of the zeroth order perturbation equation, 

0ε : 00
2

0
2
0 =+ ijijijD ψωψ ,                                             (4.17) 

and also the first order perturbation equation, 

1ε : tq
D

DDDD ij
ij

ijijijijijijij Ω+−−−=+ cosˆˆˆ22 3
0000101

2
1

2
0

η
ψγψµψψωψ                          (4.18)          

The general solution of the zeroth order perturbation equation can be written in pure 

function form or in complex exponential form. In this case we choose the complex 
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exponential form as a general solution for equation (4.17) because this solution is 

ultimately more algebraically convenient, 

00

0
TiTi

ij
ijij eBeB

ωωψ −+=                                   (4.19) 

B is an as yet unknown complex amplitude and a function of the slower time scale 1T  and 

B  is the complex conjugate of B. Next, by substituting this solution appropriately into the 

right hand side of equation (4.18), we get 
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                     (4.20) 

Expanding, and after differentiating as necessary with respect to 0T , gives the following 

equation, 
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                                                                    (4.21)

 It can be seen that equation (4.21) contains secular terms that will lead to non-uniform 

contributions from ij1ψ . Accordingly, to identify secular terms easily, for removal, we have 

in this case to take a common factor of 0Ti ije
ω out from the right hand side of equation 

(4.21), 
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(4.22) 

 

In equation (4.22), if ijΩ  is close to ijω  which means that ijij ω≈Ω  then the second last 

term inside the large brackets becomes almost secular, and if ijij ω=Ω  
then this term is 
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secular. So we take the well known form of the detuning parameter, as given by Nayfeh 

and Mook (1979), 

ijijij εσω +=Ω                                    (4.23) 

In general this is called the primary resonance condition with ijσ  as the detuning 

parameter. The detuning parameter is introduced to signify the closeness of the excitation 

frequency, ijΩ  to a natural frequency, ijω  of this system. Subsequently, substitution of 

(4.23) into (4.22) leads to the following equation, 
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Eliminating the secular terms by setting these terms to zero gives, 

0
2
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ˆ3ˆ22 02
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BBBiBDi εση

γωµω                                           (4.25) 

Imposing the conditions that )( 1TBB =  for the amplitude to be steady-state or nearly so, 

thus the steady-state value of the complex amplitude, B, is given in the usual form of, 

αibeB
2

1=                           (4.26) 

This allows us to introduce real valued amplitude and phase information ( )( 1Tbb = and

)( 1Tαα = ). By differentiating this equation (4.26) with respect to slow time T1 we obtain, 
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+==                       (4.27) 
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Substituting equations (4.26) and (4.27) into equation (4.25) yields, 
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Expanding equation (4.28) and dividing through by αie gives, 

( ) 0
2

ˆ
ˆ

8

3
ˆ'' 13 =+−−− −αση

γωµωαω Tiij
ijijijij

ije
q

D
bbibib                                (4.29) 

Converting the excitation term into real and imaginary parts means that equation (4.29) 

becomes, 
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(4.30) 

Separating this out into its real and imaginary parts leads to the following equations, 
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Im:  ( )ασ
ω

η
µ −+−= 1sinˆ

2
' Tq

D
bb ij

ij

ij
                                                                 (4.32) 

Equation (4.31) contains the slowly varying phase angle 'α  in one term. Equation (4.32) 

contains the slowly varying amplitude b’. Both of these equations also contain explicit 

references to time through the time scale1T . This can conveniently be removed for 

subsequent ease of solution by introducing a transformed phase angle,φ , 

ασφ −= 1Tij                                                (4.33) 
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Thus the slow-time phase and amplitude modulation equations become, 
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For steady state conditions 'band 'φ are taken to be zero, so we obtain, 
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and equation (4.35) becomes, 
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Substituting equation (4.37) into equation (4.36) and applying a basic trigonometrical 

identity, leads to the frequency-response equation, 
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This can readily be re-structured, 
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Next, the first order perturbation solution can be obtained by considering the right hand 

side of equation (4.24) with the secular terms removed, 
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Multiplying out the right hand side, 
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Equation (4.41) can also be written as,  

cceBD
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1
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where cc denotes the complex conjugate of the first right hand side term of equation (4.42).  

The particular solution of ij1ψ  can be obtained by taking a trial solution for this equation, 

and its first and second time derivatives, in the form of, 
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Substituting equations (4.43) and (4.45) into equation (4.42) and grouping terms together 

with the same exponent, we then get the constants A and C, 
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By substituting these quantities back into equation (4.43), gives the particular solution for

ij1ψ , as, 
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=                      (4.47) 

It should be noted that this equation can also be obtained directly by using the DSolve 

function in MathematicaTM. Finally, the uniformly valid expansion for the first order 

approximate solution can be obtained by substituting equations (4.19) and (4.47) into 
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equation (4.2), and after converting the exponent terms into trigonometric forms the full 

solution to first order ε becomes, 

)()33cos(
32
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)cos(),( 2
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εφ
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φεψ ot

b
tbt

ij

ij
ij +−Ω+−Ω=                    (4.48) 

Into which numerically calculated values for b can be obtained from equation (4.39). 

 
 
4.2.1 Linear and Nonlinear frequency response curve s 

The analytical results for the solution based on the approximate method of multiple scales 

are shown in Figures 4.1 and 4.2. These Figures show curves for the nonlinear response 

which represent the behaviour of square and rectangular plates containing the orientated 

surface crack for the three different types of boundary conditions. Equation (4.39) is used 

to plot these curves, in which the nonlinear coefficient, ijγ
 
is initially set to zero to 

generate the linear response curve. The aspect ratio chosen for the rectangular plate is 1:2 

and similar mechanical and geometric properties as used in the previous section are re-used 

here. For ≠ijγ 0 the system displays typical nonlinear characteristics, as evident in the 

Figures, with characteristic hardening and softening phenomena for a 0.003 m half-crack 

length. In these Figures, for the cracked plate model with the SSSS and CCSS boundary 

conditions, the nonlinearity bends the curves to the right, as for a hardening system. In this 

case the nonlinear hardening effect is clearly much stronger for the SSSS boundary 

condition. However, for the CCFF boundary condition the nonlinearity bends the curves to 

the left as for a softening system. It is evident that for all types of boundary condition, the 

cracked rectangular plate model with an aspect ratio of 1:2 displays a much stronger 

general nonlinearity than that for a square plate model.  

 
4.2.2 Factors that influence nonlinearity 

4.2.2.1 Crack orientation angle, β   

The influence of the crack orientation angle on the frequency response is observed. The 

results are shown in Figures 4-1 and 4-2. Cases tested for the SSSS and CCSS boundary 

conditions show no obvious hardening effects for rectangular plates. However for square 
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plates, with an increase in the crack orientation angle, the nonlinear hardening increases. 

For the CCFF boundary condition it can clearly be seen that the nonlinear hardening effect 

increases up to 60o and then reduces when the crack orientation angles starts to exceed 60o. 

It should be noted that the amplitude decreases with the increase in frequency.  

 
   SSSS      SSSS 

 
 
   CCSS      CCSS 
 

 
 
   CCFF      CCFF 
 

 
 
       (a) Linear response curves        (b) Nonlinear response curves 
 

Figure 4-1 : Linear and nonlinear response curves f or the cracked square plate  
model, for three types of boundary conditions (0 o: Red line, 20 o: Blue line, 40 o: Green line, 

60o: Orange line, 80 o: Purple line, 90 o: Black line) 
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   SSSS      SSSS 

 
 
   CCSS      CCSS   
       

 
 
   CCFF      CCFF 
        

 
 
       (a) Linear response curves      (b) Nonlinear response curves 
      

Figure 4-2 : Linear and nonlinear response curves f or the cracked rectangular plate  
model with an aspect ratio of 1:2, for three types of boundary conditions (0 o: Red line, 20 o: 

Blue line, 40 o: Green line, 60 o: Orange line, 80 o: Purple line, 90 o: Black line) 
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4.2.2.2 Location of the applied load 

 
Next, the effect of the location of the applied load (xo, yo) on the plate surface for a cracked 

rectangular plate where l1 = 0.15 m and l2 =0.3 m, with the CCFF boundary condition and 3 

mm half-crack length is investigated, as shown in Figure 4-3. The Figure shows the 

responses for the cracked plate with 0o, 40o, 60o and 90o crack orientation angles. For 

instance, p1 in the caption represents the location of an applied load at point (0.1125, 

0.1125), p2 at point (0.1125, 0.15) and p3 at point (0.1125, 0.225). The point (xo, yo) is 

measured from the fixed end of the plate. As shown in this Figure, it is found that the 

widths of the nonlinear region become narrower as the excitation location moves closer to 

the constrained area. 

 
     β = 0o            β = 40o 
 

 
 
     β = 60o        β = 90o 
 

 
 

Figure 4-3 : Frequency response curves for a rectan gular plate with a variably orientated 
surface crack for different locations of the applie d load  

(p1: Red line, p2: Black line, p3: Blue line. 
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4.2.2.3 Excitation amplitude 

Subsequently, as shown in Figure 4-4, the influence of the excitation amplitude on the 

frequency response curves is shown. A similar plate as investigated to that of the previous 

section is used, with an excitation amplitude value which is varied, i.e. to 5 N, 10 N, 15 N 

and 20 N. The results show that the amplitudes increase when the excitation amplitude 

increases. 

 
    β = 0o        β = 40o   
 

  
 
      β = 60o         β = 90o  
 

 
 

Figure 4-4 : The influence of the excitation amplit ude on the nonlinearity of the rectangular 
plate with a surface crack of variable orientation  

(5N: Red line, 10N: Black line, 15N: Blue line, 20N : Green line) 

 
    
4.2.2.4 Damping coefficient 

In general the damping coefficient will influence the response curves. As the damping 

coefficient becomes larger the peaks of each harmonic gradually reduce, and then finally 

disappear. For the undamped situation i.e. when µ = 0, the predicted peak amplitude is 

infinite. 
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4.3 Direct Integration Method 

In order to make meaningful conclusions some appropriate bench-marking is needed. The 

numerical results are therefore calculated by directly integrating the nonlinear ordinary 

differential equation (3.88). For this numerical computation the NDSolve function is used 

by imposing the initial conditions ijψ (0) = 0 and ijψ&  (0) = 0. In this simulation the 

frequency detuning values are chosen from the range of -400 rad/s to 400 rad/s. The 

simulation is run for 0o, 20o, 40o, 60o, 80o and 90o crack orientation angles. The solution 

can be used to construct plots in the time and frequency domains and then a list of 

amplitude values can be obtained from these graphs. The amplitude values are selected for 

steady state condition. Figure 4-6 shows the responses of the cracked plate for each crack 

orientation angle, and a comparison is made with the approximate analytical solutions 

obtained in section 4.1. In this figure, NI represents the numerical integration result and 

MMS represents the result obtained from the method of multiple scales. The numerical 

integration results qualitatively and quantitatively produce a similarly decreasing response 

in the frequency and an increasing response in the amplitude. It can be seen in all figures 

that there is an apparent changeover from upper to lower branches at around frequency 

detuning value of -150 rad/s in which the jump phenomena can be observed. The NI 

solution captures the amplitude response of the MMS very well for the range of the 

excitation frequencies. However, the overhanging part of the curve represents an unstable 

solution, and this over-prediction of the softening overhang by the multiple scales solution 

is undoubtedly due to an over-correction to the solution from the first order perturbation 

contribution.            
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β  = 0o      β  = 20o 

 

 
 
 
   β  = 40o     β  = 60o 
 

 
 
 
   β  = 80o     β  = 90o 
 

 
 

Figure 4-5 : Comparison of nonlinear response curve s for the cracked rectangular plate 
model with an aspect ratio of 1:2 between numerical  integration and the method of multiple 

scales, for different crack orientation angles (Dot ted line: NI, Solid line: MMS). 
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4.4  Numerical Solution Technique: FE Method 
(ABAQUS/CAE 6.9.1) 

Various numerical solution techniques have been developed and applied to solve numerous 

vibration problems in order to find their approximate solutions. The finite element method 

is one of the major numerical solution techniques and is the most widely applied computer 

simulation method in engineering. The main advantage of the finite element method is that 

a general purpose computer program can be easily modified in order to analyse specific 

problem types. This is very useful for the study of structures of irregular geometry 

subjected to various types of loading and boundary conditions. The finite element 

procedure involves three basic steps for the computation carried out, which may be termed 

as; i) Pre-processing (building the finite element model, loading and imposition of 

constraints), ii) FEA solver (assembly and solution of the system of equations), and iii) 

Post-processing (sorting and displaying the results).  

There are many available commercial FEM software packages, good examples being 

ANSYS, NASTRAN, PATRAN, Dyna-3D, and ABAQUS. In this study, finite element 

analysis using ABAQUS/CAE 6.9.1 is undertaken to model and analyse the vibration of 

the intact and cracked plate problem. ABAQUS can solve problems of relatively simple 

structural analysis to the most complicated linear and nonlinear analyses. In ABAQUS, 

there are several intrinsic methods that can be used to perform dynamic analysis. However, 

for the study and analysis of a nonlinear dynamics problem expressed in ODE form, as 

here, then direct integration of the system must be used. There are two basic types of direct 

integration methods offered in ABAQUS, namely, i) Implicit Direct Integration which is 

provided in ABAQUS/Standard and ii) Explicit Direct Integration provided in 

ABAQUS/Explicit.  

The direct integration method provided in ABAQUS/Standard uses an implicit Hilber-

Hughes-Taylor operator in order to integrate the equations of motion. The integration 

operator matrix is inverted and a set of nonlinear equilibrium equations are solved at each 

time increment. This offers the use of all elements in ABAQUS, however it can be slower 

than the explicit, approach. ABAQUS/Explicit uses a central-difference integration 

operator as the method of solution. In nonlinear dynamic analysis ABAQUS/CAE 

automatically selects appropriate load increments and convergence tolerances and 

continually adjusts them during the analysis to make sure that an accurate solution is 

achieved. For reasons of validation and comparison of the theoretical model a finite 
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element model is used for a further modal analysis in order to corroborate the effect of 

crack length and crack orientation angle on the modal parameters i.e. natural frequency and 

also the vibrational amplitude as predicted by the theoretically-calculated results.  

  
4.4.1 The sequence of steps required to perform the  FE Analysis 

The model used is a 150 x 300 x 3 mm aluminium alloy plate. Table 4-2 shows the 

material and element properties of the model. The material used in this investigation is 

Aluminium type 5083 which was used in the previous section and commonly found in 

many industrial applications. The steps taken to perform the elastic finite element analysis 

using ABAQUS/CAE are as follows: 

1. Creation of the part  

• Initially, the rectangular plate is modelled in three-dimensions, giving a deformable 

solid model by sketching the two dimensional profile of the rectangular plate and 

extruding it. Thirteen plate models are created. One represents the intact plate and 

another twelve plates representing the plates with various crack orientation angles, 

specifically at 0o, 20o, 40o, 60o, 80o, and 90o with respect to the x direction of the 

plate, for a half-crack length of 3 mm and 7.5 mm, respectively. A crack with a 

depth of 1.8 mm is created on each plate by the use of the cut feature under the 

shape entry in the main menu.  

2. Creation of the material definition 

• This defines the material properties in the Property module, including the modulus 

of elasticity, Poisson’s ratio and density of the plate, as listed in Table 4-2. 

3. Definition and assignation of the section properties 

• Here one creates a homogeneous solid section, and performs section assignment of 

the part in the same module. 
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4. Assembly of the model 

• In the Assembly module one creates a new part instance by double clicking the 

entry instances shown in the model tree.  

Property name Details 

Material Name Aluminium 5083 

Density 2 660 kg/m3 

Young’s Modulus 7.03 × 1010  N/m2 

Poisson’s ratio 0.33 

Element Type C3D8R- Linear solid element 

Geometric order Linear 

 
 

Table 4-1 : Properties of the aluminium rectangular  plate model for FE analysis 
 
 
5. Configuration of the analysis 

• Creation of the steps for the analysis using the step module.  

i. Step - Linear Perturbation – Frequency 

A frequency extraction analysis is performed to determine the vibration modes of the 

plate. The standard Lanczos method (ABAQUS, 2011) has been applied to extract the 

natural frequencies and mode shapes for the intact and cracked plates. The frequency 

range allows for 10 vibration modes to be identified. 

ii.   Step – General – Dynamic, Implicit 

An implicit analysis is used to analyse the intact and cracked plates. This procedure is 

used to compute the amplitude response of the plate models. This step specifies the 

initial increment size and the number of increments which is allowed. NLGEOM is a 

geometrically nonlinear switch. The problem is under a geometrically linear analysis 

when the switch is off. When the switch is on geometrically nonlinear analysis is 

performed.   
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6. Application of Boundary Conditions and a Load  

• The boundary conditions and loading are applied in the load module. The Boundary 

condition chosen is CCFF, and a concentrated force of 10 N is applied at a distance 

of 225 mm from the fixed edge parallel to the x-axis and 115 mm from the fixed 

edge parallel to the y-axis. 

7. Meshing the model 

• The Mesh Module is used to generate the finite element mesh. The mesh of the part 

is created using the element shape and analysis with the standard, 3D stress, 

C3D8R -8 node linear brick using reduced integration. The C3D8R is an 8-node 3D 

hexahedral element and a good mesh with this type of element usually provides a 

solution of equivalent accuracy at less cost (ABAQUS, 2011). 

8. Creating and submitting an analysis job 

• When the definition of the plate model is complete, an analysis is created and 

submitted to analyse the model. The job is submitted in the job module and analysis 

is performed. 

9. Viewing the analysis results 

• The results of the analysis are viewed in the visualisation module 

 
4.4.2 Numerical Results 

The finite element analysis is undertaken on thirteen rectangular plate models, comprising 

one for the plate without a crack and twelve for the plate with a crack located at the centre. 

The crack lengths chosen are 3 mm and 7.5 mm, while the orientation angle, β of the crack 

with respect to the x-axis is varied from 0o to 80o in 20o steps, and for an inclination angle 

of 90o as well. The arbitrary boundary condition for all the plate models is CCFF and the 

lengths of the sides of the plate are taken as l1 = 150 mm in the x-direction and l2 = 300 

mm in the y-direction, which means the aspect ratio of the plate is 0.5/1. A concentrated 

force of 10 N is applied at a distance of 225 mm from the fixed edge on the x-axis and 115 

mm from the fixed edge on the y-axis. The plates are discretised using from 22 043 up to 
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24 817 linear solid (C3D8R) elements. The number of elements for each plate differs 

depending on the length and the orientation angle of the crack. Initially, a frequency 

extraction analysis is performed using the Lanczos method to extract the natural 

frequencies and mode shapes of the intact and cracked plate models. The frequency range 

allowed for 10 vibration modes to be identified.  

Subsequently an implicit dynamic nonlinear analysis is employed in order to obtain the 

amplitude responses of this model. In implicit dynamic analysis the integration operator 

matrix is inverted and a set of nonlinear equilibrium equations is solved at each time 

increment (ABAQUS, 2011). In the step module of this analysis a specific value of the 

initial increment size and the number of increments is required. Thus, to perform the 

implicit dynamic analysis for this model, the Step module is edited as follows: 

Basic tab time period: 20 

Incrementation tab type: Fixed 

Maximum number of increments: 2000 

Increment size: 0.01 

Check: Suppress half-step residual calculation. 

NLGEOM: On 

The periodic load is applied with a magnitude of 10 N under the resonant frequency. The 

steps taken in order to define this load are: 

Tools --- amplitude --- create --- periodic. 

In the Edit Amplitude dialog box, one enters a value of frequency for each plate model in 

the circular frequency field. 
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4.4.2.1 Frequency Extraction Analysis  

In Table 4-3 the frequency values taken from the frequency extraction analysis for the 

three first modes of the cracked plate, for orientation angle β, are shown, together with the 

results for an intact plate. It can be seen that the large crack shifts the frequency values of 

the 1st, 2nd and 3rd modes downwards, as expected and due to reduced plate stiffness. In 

terms of the crack orientation angle effects for both crack lengths of 3 mm and 7.5 mm, the 

frequency values increase monotonously from 0o up to 60o (0o < β ≤ 60o), and then 

decrease when β is more than 60o (β > 60o).  

FEA Results 

 Crack 

Orientation 

angle, β 

Frequency (Hz) 

First 

vibration 

mode  

Second 

vibration 

mode 

Third 

vibration 

mode  

Intact 
Plate 

 - 122.94 259.80 525.16 

Cracked 
Plate 

3 mm 

0o 122.73 259.32 524.18 

20o 122.77 259.49 524.37 

40o 122.84 259.82 525.00 

60o 123.05 260.79 527.47 

80o 122.82 259.54 524.38 

90o 122.73 259.36 524.22 

 

7.5mm 

0o 122.69 259.13 524.00 

20o 122.75 259.37 524.18 

40o 122.81 259.74 524.79 

60o 123.04 260.72 527.34 

80o 122.81 259.57 524.29 

90o 122.69 259.33 524.12 

 
 

Table 4-2 : Frequency extraction analysis for 1 st, 2nd, and 3 rd modes of vibration 
 

Figure 4-7 shows the first three modes of vibration for the intact plate. Figures 4-8 to 4-19 

illustrate the first three mode shapes of the plates for a surface crack with an orientation 

angle from 0o to 90o. The dark blue areas in these Figures indicate nodal displacements for 

the first three modes of vibration, representing the areas where the displacement is close to 

zero.  
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4.4.2.1.1 The first three vibration mode shapes of the intact plate 
 
 

 
                      (a) Mode I                            (b) Mode II                                (c) Mode III 

                                                                 

 

Figure 4-6 : 1 st, 2nd and 3 rd  vibration mode shapes for the intact plate 
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4.4.2.1.2 The first three vibration mode shapes of the plate with a crack of variable 

orientation for a half-crack length of 3 mm 
 
 
 

Crack 
Orientation 
Angle, β (deg) 

Vibration Mode Shapes of Cracked Plate 
Mode I Mode II Mode III 

 
 
 
 
 
 

0o 

 

 
 

 

 

 

 
 

 
 
 
 
 
 

20o 

 

 
 

 

 

 

 
 

 
 
 
 
 
 

40o 
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Crack 
Orientation 
Angle, β (deg) 

Vibration Mode Shapes of Cracked Plate 
Mode I Mode II Mode III 

 
 
 
 
 
 

60o 

 

 
 

 

 

 

 
 

 
 
 
 
 
 

80o 

 

 
 

 

 

 

 
 

 
 
 
 
 
 

90o 

 

 
 

 

 

 

 
 

 

 

Table 4-3 : Vibration mode shapes of cracked plates  for half-crack length of 3 mm 
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4.4.2.1.3 The first three vibration mode shapes of the plate having a crack of variable 

orientation for a half-crack length of 7.5 mm 
 
 
 

Crack 
Orientation 
Angle, β (deg) 

Vibration Mode Shapes of Cracked Plate 
Mode I Mode II Mode III 

 
 
 
 
 
 

0o 
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Crack 
Orientation 
Angle, β (deg) 

Vibration Mode Shapes of Cracked Plate 
Mode I Mode II Mode III 

 
 
 
 
 
 

60o 

 

 
 

 

 

 

 
 

 
 
 
 
 
 

80o 

 

 
 

 

 

 

 
 

 
 
 
 
 
 

90o 

 

 
 

 

 

 

 
 

 

 

Table 4-4 : Vibration mode shapes of cracked plates  for half-crack length of 7.5 mm 
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4.4.2.2 Dynamic Implicit Analysis 

Table 4-5 shows the results of the amplitude response for simulations that are carried out 

for an intact and cracked plate with the following crack orientation angles, β are 0o, 20o, 

40o, 60o, 80o and 90o by applying an implicit dynamic nonlinear analysis within the 

ABAQUS/CAE environment, and, as expected, the amplitude values increase due to the 

small crack in the plate. These amplitude responses are also affected by the crack 

orientation angle where the amplitude decreases from 0o up to 60o by increasing the 

frequency value, and then the amplitude increases again when the frequency value 

decreases.    

 Crack 

Orientation 

angle 

FEA Results 

Frequency 

(Hz) 

Amplitude 

(mm) 

First vibration mode 

Intact 

Plate 

 - 122.94 7.372 

Cracked 

plate 

3 

mm 

0o 122.73 7.483 

20o 122.77 7.379 

40o 122.84 7.263  

60o 123.05 7.200 

80o 122.82 7.727 

90o 122.73 7.739 

 
 

 

7.5

mm 

0o 122.69 7.564 

20o 122.75 7.227 

40o 122.81 6.969 

60o 123.04 6.796 

80o 122.81 7.309 

90o 122.69 7.614 
 

 

Table 4-5 : Amplitude responses from the FE analysi s  
 

A comparison of the frequency values and the amplitude responses is made between the 

theoretical model and the FEA results and discussed in chapter 7. 
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4.5 Chapter Conclusions 

An approximate analytical method based on the perturbation methods of multiple scales 

and numerical solution techniques using the Finite Element Method within the 

ABAQUS/CAE environment have been applied. The nonlinear behaviour of the cracked 

plate model has been investigated from the amplitude-frequency equation and this has showed 

that the inclusion of a crack within the plate produces a global effect on the nonlinear response 

of the overall system. In this study it has been found that the SSSS and CCSS boundary 

conditions showed a hardening spring behaviour while a softening spring phenomenon was 

found for the CCFF boundary condition. The influence of the crack orientation angle on the 

frequency response has been observed. For the SSSS and CCSS boundary conditions no 

obvious hardening effects emerged for rectangular plates. However for square plates with an 

increase in the crack orientation angle, the nonlinear hardening phenomenon clearly increases. 

In addition changing the location of the applied load on the plate surface slightly affects the 

nonlinear behaviour of the plate whereby the width of the nonlinear region becomes narrower 

as the excitation location moves closer to the constrained area.  

The solution obtained by the multiple scales method has been compared with numerical 

integration for a cracked plate with the CCFF boundary condition. The NI solution 

captures the amplitude response of the MMS very well for the range of excitation 

frequencies chosen. However, the overhanging part of the curve was obtained during the 

amplitude transitions. This situation was not found in the multiple scales solution because 

of inevitable over-correction to the solution during the first-order perturbation expansion. 

Results from the finite element analysis have also shown that the large crack shifts the 

frequency values of the 1st, 2nd and 3rd modes downwards, and, as expected, the amplitude 

values increase due to the small crack in the plates. As a conclusion, it can be said that the 

vibration characteristics and nonlinear characteristics of the plate structure are affected by the 

orientation of the crack in the plate.   
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Chapter 5  
 
Dynamical Systems Analysis  

  

5.1 Introduction 

In investigating the nonlinear behaviour of the plate it is necessary to study the numerical 

dynamics of the system in order to understand its stability, the relevant bifurcatory 

phenomena, and therefore possible routes from order to chaos. This study is not only 

intended to lead to an understanding of the complex dynamics under different combination 

of system parameters, but also to capture the essential mechanism that generate chaos in 

this system. In this chapter, an analysis of the nonlinear behaviour of a cracked plate that 

contains a surface crack of variable angular orientation and which takes the form of a 

specialised Duffing equation, has been conducted using dynamical system tools within the 

MathematicaTM environment for the calculation of bifurcations, stability of the phase 

states, and  the Poincaré map.  

 

5.2  Equation of Motions for Dynamical System Analy sis 

In investigating the behaviour of the dynamics of this cracked plate model from nonlinear 

transition to chaos, a nonlinear ordinary differential equation of the system which takes the 

form of a specialised Duffing equation (3.88) is used. The equation is rewritten to make it 

easier to use, as follows, 

( )tAxCxCxCx Ω=+++ cos3
321 &&&               (5.1) 

where  µ21 =C
  
                                                                                                  (5.2) 

  2
2 ijC ω=                                                            (5.3) 

                  
ijC γ=3                                                                           (5.4) 
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q
DM

q
A ij

ij

ij η
==

                                                                                                    
 (5.5) 

This equation contains dimensional parameters and Ω is the frequency of excitation. In 

order to make the form of the equation better for numerical simulation and reduced 

computational time scaling needs to be performed first. Nondimensionalisation of the 

timescale in equation (5.1) is introduced as a basis for nondimensionalisation (Israr (2008), 

Atepor (2008), and Lim (2003)), given by, 

tωτ =                  (5.6) 

)()(
2

2

τω
τ

ω xtx
d

xd
x ′′=∴= &&&&              (5.7) 

)()( τω
τ

ω xtx
d

dx
x ′=∴= &&                                                                                   (5.8) 

where ω is the natural frequency of the first mode of the cracked plate model. Therefore 

for the dimensionless timescale, τ, equation (5.1) becomes, 








 Ω=++′+′′ τ
ω

ωω cos3
321 AxCxCxCx                                             (5.9) 

The prime (́) denotes differentiation with respect to the dimensionless time τ. Then, 

dividing through by ω in equation (5.9) leads to, 








 Ω=++′+′′ τ
ωωωωω

cos
111 3

321

A
xCxCxCx                                              

(5.10) 

Assuming that the frequency of excitation, Ω is equal to the natural frequency of the 

fundamental plate mode, ω, then Ω = ω giving, 

( )τω
ωωωω

cos
111 3

321

A
xCxCxCx =++′+′′          (5.11) 
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For these types of analyses the second order differential equation (5.11) is split into the 

more compact first order ordinary differential equation form as, 

yx =′                                                                                                                              (5.12) 










 Ω+−−−=′ τ
ωωωωω

cos
111 3

321

A
xCxCyCy                                                        (5.13) 

 

5.3 Numerical Methods: Mathematica TM code 

Dynamic analysis of the cracked plate is carried out using special integration code written 

in MathematicaTM. The first order equations (5.12) and (5.13) are used to calculate time 

domain responses and phase plane trajectories, also Poincaré maps and predictions of 

bifurcations, by using the program code developed by the author within this software. The 

route to chaos is observed with the above mentioned feature properties. In this work the 

NDSolve integrator, Mathematica’s differential equation package is employed to perform 

the integration and to enable prediction of the dynamics of the cracked plate for a given 

initial conditions. The parameter values for the program code are calculated using the 

similar mechanical properties of the aluminium alloy described in Chapters 3 and 4 with a 

point load of 10N applied at some arbitrarily specified point chosen here, to be located at 

xo = 0.375m and yo = 0.75m. These values are tabulated in Tables 5-1, 5-2, and 5-3 for a 

cracked plate with the following crack orientation angles, β are 0o, 20o, 40o, 60o, 80o and 

90o.  
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System Parameters  
(SSSS) 

Crack 
Angle 
β 

(deg) 

Half-
crack 
length 
(m) 

Damping 
C1 

(s-1) 

Linear 
Stiffness 

C2 
(s-2) 

Cubic 
Nonlinearity 

C3 
(m-2s-2) 

Excitation 
amplitude 

A 
(ms-2) 

Natural 
frequency  

ω 
(rads-1) 

Intact - 

0.16 

417968.00 7.72182 × 1011 

102.91 

646.50 

0 
0.003 411921.00 7.60673 × 1011 641.81 

0.0075 405716.00 7.47524 × 1011 636.96 

20 
0.003 412629.00 7.62019 × 1011 642.36 

0.0075 407150.00 7.50409 × 1011 638.08 

40 
0.003 414420.00 7.65428 × 1011 643.75 

0.0075 410779.00 7.57712 × 1011 640.92 

60 
0.003 416456.00 7.69305 × 1011 645.33 

0.0075 414905.00 7.66018 × 1011 644.13 

80 
0.003 417786.00 7.71835 × 1011 646.36 

0.0075 417599.00 7.71438 × 1011 646.22 

90 
0.003 417968.00 7.72182 × 1011 646.50 

0.0075 417968.00 7.72182 × 1011 646.50 
  

Table 5-1 : Data used for numerical simulations for  the SSSS boundary condition 
 

System Parameters  
(CCSS) 

Crack 
Angle 
β 

(deg) 

Half-
crack 
length 
(m) 

Damping  
C1 

(s-1) 

Linear 
Stiffness 

C2 
(s-2) 

Cubic 
Nonlinearity 

C3 
(m-2s-2) 

Excitation 
amplitude 

A 
(ms-2) 

Natural 
frequency  

ω 
(rads-1) 

Intact -  

 

 

 

 

 

0.16 

1.49967 × 107 3.01634 × 1011 

161.71 

3872.56 

0 
0.003 1.48038 × 107 2.97138 × 1011 3847.57 

0.0075 1.46059 × 107 2.92002 × 1011 3821.77 

20 
0.003 1.48249 × 107 2.97664 × 1011 3850.31 

0.0075 1.46500 × 107 2.93128 × 1011 3827.53 

40 
0.003 1.48812 × 107 2.98995 × 1011 3857.62 

0.0075 1.47649 × 107 2.95981 × 1011 3842.51 

60 
0.003 1.49464 × 107 3.00510 × 1011 3866.06 

0.0075 1.48968 × 107 2.99226 × 1011 3859.64 

80 
0.003 1.49901 × 107 3.01498 × 1011 3871.70 

0.0075 1.49841 × 107 3.01343 × 1011 3870.92 

90 
0.003 1.49967 × 107 3.01634 × 1011 3872.56 

0.0075 1.49967 × 107 3.01634 × 1011 3872.56 
 

 

Table 5-2 : Data used for numerical simulations for  the CCSS boundary condition 
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System Parameters  
(CCFF) 

Crack 
Angle 
β 

(deg) 

Half-
crack 
length 
(m) 

Damping  
C1 

(s-1) 

Linear 
Stiffness 

C2 
(s-2) 

Cubic 
Nonlinearity 

C3 
(m-2s-2) 

Excitation 
amplitude 

A 
(ms-2) 

Natural 
frequency  

ω 
(rads-1) 

Intact -  

 

 

 

 

 

0.16 

593312.00 -1.26484  × 1011 

39.36 

770.27 

0 
0.003 553353.00 -1.24599  × 1011 743.88 

0.0075 512347.00 -1.22445 × 1011 715.78 

20 
0.003 586013.00 -1.70743 × 1011 765.52 

0.0075 551558.00 -1.91314 × 1011 742.67 

40 
0.003 612740.00 -1.95737 × 1011 782.78 

0.0075 591365.00 -2.28903 × 1011 769.00 

60 
0.003 621027.00 -1.87886 × 1011 788.05 

0.0075 613140.00 -2.17624 × 1011 783.03 

80 
0.003 606998.00 -1.50863 × 1011 779.10 

0.0075 606696.00 -1.62755 × 1011 778.91 

90 
0.003 593312.00 -1.26484 × 1011 770.27 

0.0075 593312.00 -1.26484 × 1011 770.27 
 

 

Table 5-3 : Data used for numerical simulations for  the CCFF boundary condition  
 

5.4 Bifurcation Analysis 

Bifurcation theory is the mathematical study of changes in the qualitative behaviour of a 

system. These qualitative changes may occur when the parameter values of a system are 

varied and they can be shown by a bifurcation diagram. In the study of dynamical systems, 

the bifurcation diagram is useful in order to see a possible route from order to chaos. The 

location at which bifurcations occur in this diagram are called bifurcation points. In 

addition bifurcation diagrams can also be used to indicate nonperiodic motion. In this study 

a period doubling bifurcation can readily be observed and analysed. A period doubling 

bifurcation is a bifurcation in which the behaviour of the system changes at integer 

multiples of the periodicity of the original response. The motion may then become chaotic 

if the control parameter is further varied (Moon, 1992).  

In this study the MathematicaTM software environment is used for numerically integrating 

the governing equations of motion to produce a bifurcation diagram in order to understand 

the dynamics within the cracked plate models, as discussed in Chapter 3. The bifurcation 

behaviour of the amplitude responses as a function of normalised excitation acceleration is 
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plotted for three types of boundary conditions with variable crack orientation angles, using 

nondimensionalised parameters as tabulated in Table 5-1, 5-2, and 5-3. All the cases are 

illustrated in Figures 5-2 to 5-10.  

 

5.5 Lyapunov Exponents 

Lyapunov exponents offer a means to study numerically whether a system has a sensitive 

dependence on initial conditions. They measure the average rate of convergence or 

divergence of nearby trajectories in the phase space. A positive exponent means 

divergence and a negative represents convergence. Figure 5.1 provides a visual example of 

divergent trajectories by considering two points in space, Xo and Xo + ∆xo. A trajectory in 

that space is assumed to be generated by using some equation or system of equations. 

These trajectories can be thought of as parametric functions of a variable such as time. If 

one of the trajectories is used as a reference trajectory then the separation between the two 

trajectories will also be a function of time.  

              

Xo + ∆xo 

Xo 

∆x (Xo,t) 

∆xo ∆xo 

Xo+∆xo 

 

 

 

 

 

 

 
Figure 5-1 : An illustration of the divergence of t rajectories (after Israr, 2008) 
 

A system with all negative Lyapunov exponents will have an attracting fixed point or 

periodic points, thus ∆x(Xo,t) diminishes asymptotically with time and will not present 

chaotic behaviour. For chaotic points, the function ∆x(Xo,t) will behaves erratically. The 

Lyapunov exponent, λ can be defined by the natural logarithm of the Lyapunov number as, 

( ),1
lim

o

o

t
ox

x t
In

t x
λ

→∞
∆

∆ Χ
=

∆                                                                                                   (5.13) 
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For systems with negative exponents (λ < 0), the trajectories move together and attract to a 

stable fixed point. These systems exhibit asymptotic stability in which the more negative 

the exponent the greater the stability. For system with zero Lyapunov exponents (λ = 0) the 

trajectory is a neutral fixed point or an eventually fixed point. Such systems are indicated 

to be in some sort of steady-state mode and are physically conservative, and thus exhibit 

Lyapunov stability. Subsequently, for systems with positive exponents (λ > 0) the 

trajectory is unstable and also chaotic. Two initially close trajectories in a system with 

positive Lyapunov exponent will separate very quickly. A positive Lyapunov exponent 

will cause this separation to increase over further iterations, and the more positive the 

exponent the faster they move apart. After separation the two numerical solutions grow 

more dissimilar until they are completely different. Any system containing at least one 

positive Lyapunov exponent indicates chaotic motion (Wolf et al., 1985). 

 

5.6 Bifurcations as Functions of Normalised Excitat ion 
Acceleration 

The chaotic motion of both the intact plate and the cracked plate models is investigated 

here. In this study the first mode is examined in detail around the resonant region. The 

excitation frequency is set equal to the first mode resonance frequency from Tables 5-1, 5-

2, and 5-3 for the SSSS, CCSS, and CCFF boundary conditions, respectively. Figures 5-2 

to 5-10 show the bifurcation diagrams for the amplitude response, x, of the intact and 

cracked plate models, for the cases of half-crack lengths of 0.003 m and 0.0075 m, and as 

controlled by the normalised excitation acceleration. Periodic doubling bifurcation can be 

observed in all the Figures with an increase in the normalised excitation acceleration, and 

when the normalised excitation acceleration value is increased to a high level this periodic 

response bifurcates to chaos. There are five types of system motion which exist over the 

range of normalised excitation acceleration, namely stable single period motion, stable 

period-2 motion, stable period-4 motion, stable multiperiod motion, and finally what 

appears to be chaotic motion. Rho, ρ is the normalised acceleration amplitude of the 

system.  

In the case of the SSSS boundary condition for the intact plate model, as shown in Figure 

5-2, period-2 and period-4 motion can be found in regions of normalised excitation 

acceleration of 11.78 to 11.98 and 11.98 to 12.02, respectively. For the cracked plate 

model with a half-crack length of 0.03 m (Figure 5-3(a)), these regimes can be found in the 

regions of 11.69 to 11.89 and 11.89 to 11.92, respectively, whereas for a half-crack length 
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of 0.0075 m, period-2 motion in the regions of normalised excitation acceleration of 11.61 

to 11.82 and 11.82 to 11.85 for period-4 as shown in Figure 5-4(a). It can be observed from 

these figures that as the periodic response become chaotic less excitation acceleration is 

required in each case. This is due to the decrease in the normalised excitation frequency 

and the effect of the cubic nonlinear coefficient.   

Figures 5-2(a-f) and 5-3(a-f) show the bifurcation diagram for the cracked plate model 

with crack orientation angles of 0o, 20o, 40o, 60o, 80o and 90o and with a half-crack length 

of 0.003 m and  0.0075 m, respectively. The region of normalised excitation acceleration 

for period-2 and period-4 motion is summarised in Table 5-4 as an example. It can be 

clearly seen that by increasing the crack orientation angles the periodic response bifurcates 

to period doubling, and finally leads to chaos, and more excitation acceleration is required 

for each case for the periodic response to become chaotic due to the increase in the 

normalised excitation frequency and the cubic nonlinear coefficient. The same 

phenomenon also exists for the CCSS boundary condition, as shown in Figures 5-5 to 5-7.   
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SSSS 

 

 
 

   Figure 5-2 : Intact plate and the enlarged view of A1 
 

 
 
   SSSS 
 

   
 

(a) Cracked plate with β = 0o and the enlarged view of A1 
 
 
 

 
 

(b) Cracked plate with β = 20o and the enlarged view of A1 
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(c) Cracked plate with β = 40o and the enlarged view of A1 

   
 

(d) Cracked plate with β = 60o and the enlarged view of A1 
 

    
 

(e) Cracked plate with β = 80o and the enlarged view of A1 
 

     
 

(f) Cracked plate with β = 90o and the enlarged view of A1 
  

Figure 5-3 : Bifurcation diagrams for SSSS boundary  condition  
and a half-crack length of 0.003 m for amplitude as  a function of the normalised excitation 

acceleration in the x-direction   
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     SSSS 

     
 

(a) Cracked plate with β = 0o and the enlarged view of A1 
 

     
 

(b) Cracked plate with β = 20o and the enlarged view of A1 
 

     
 

(c) Cracked plate with β = 40o and the enlarged view of A1 
 

     
 

(d) Cracked plate with β = 60o and the enlarged view of A1 
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(e) Cracked plate with β = 80o and the enlarged view of A1 
 

 

     
 

(f) Cracked plate with β = 90o and the enlarged view of A1 
 
 

Figure 5-4 : Bifurcation diagrams for SSSS boundary  condition  
and a half-crack length of 0.0075 m for amplitude a s a function of the normalised excitation 

acceleration in the x-direction   

 
Crack 

orientation 

angle, β (deg) 

Region of normalised excitation acceleration, Rho 

Period-2 

motion 

Period-4 

motion 

0o 11.69 11.89 11.89 11.93 

20o 11.70 11.90 11.90 11.94 

40o 11.72 11.93 11.93 11.96 

60o 11.75 11.96 11.96 11.98 

80o 11.77 11.97 11.97 12.01 

90o 11.78 11.98 11.98 12.02 

 

Table 5-4 : Period doubling bifurcation of cracked plate for the SSSS boundary condition 
and 0.003 m half-crack length. 
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CCSS 
 

  
 

Figure 5-5 : Intact plate and the enlarged view of A1 
 

 
 
   CCSS 

 

    
 

(a) Cracked plate with β = 0o and the enlarged view of A1 
 
 
 

   
 

(b) Cracked plate with β = 20o and the enlarged view of A1 
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(c) Cracked plate with β = 40o and the enlarged view of A1 

    
 

(d) Cracked plate with β = 60o and the enlarged view of A1 
 

  
 

(e) Cracked plate with β = 80o and the enlarged view of A1 

  
 

(f) Cracked plate with β = 90o and the enlarged view of A1 

 

Figure 5-6 : Bifurcation diagrams for CCSS boundary  condition  
and a half-crack length of 0.003 m for amplitude as  a function of the normalised excitation 

acceleration in the x-direction 
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   CCSS 

   
 

(a) Cracked plate with β = 0o and the enlarged view of A1 
 
 

     
 

(b) Cracked plate with β = 20o and the enlarged view of A1 
 
 

    
 

(c) Cracked plate with β = 40o and the enlarged view of A1 
 

    
 

(d) Cracked plate with β = 60o and the enlarged view of A1 
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(e) Cracked plate with β = 80o and the enlarged view of A1 
 
 

  
 

(f) Cracked plate with β = 90o and the enlarged view of A1 
 

Figure 5-7 : Bifurcation diagrams for CCSS boundary  condition  
and a half-crack length of 0.0075 m for amplitude a s a function of the normalised excitation 

acceleration in the x-direction 

 

The bifurcation diagrams in Figure 5-8, 5-9 and 5-10 show the intact plate, a cracked plate 

with an 0.003 m half-crack length, and a cracked plate with an 0.0075 m half-crack length, 

respectively, for the CCFF boundary condition. The region of normalised excitation 

acceleration for period-2 and period-4 motion is listed in Table 5-5. Period doubling is a 
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nonlinear coefficient. However by increasing the orientation angle of the crack less 

excitation acceleration is required from 0o to 40o for the response of the system to become 

chaotic. After 40o more excitation acceleration is needed to get into this regime. In the next 

section, discrete excitation acceleration points, as depicted in Figures 5-2 to 5-10, are 

670 675 680 685 690
Rho0.0140

0.0142

0.0144

0.0146

0.0148

0.0150

0.0152

0.0154

x

688.00 690.00 
680.00 665.00 

A1 

690.00 

A1 

688.50 682.00 673.00 



  Chapter 5  

136 
 

selected for the plotting of trajectories on the phase plane, Poincaré maps, and time plots 

for each boundary condition in order to get more understanding of the system behaviour. 

CCFF 
 

  
  

Figure 5-8 : Intact plate and the enlarged view of A1 
 

 
 
   CCFF 

 

   
 

(a) Cracked plate with β = 0o and the enlarged view of A1 
 
 
 

    
 

(b) Cracked plate with β = 20o and the enlarged view of A1 
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(c) Cracked plate with β = 40o and the enlarged view of A1 
 

    
 

(d) Cracked plate with β = 60o and the enlarged view of A1 
 

  
 

(e) Cracked plate with β = 80o and the enlarged view of A1 
 

  
  

(f) Cracked plate with β = 90o and the enlarged view of A1 
 

Figure 5-9 : Bifurcation diagrams for CCFF boundary  condition  
and a half-crack length of 0.003 m for amplitude as  a function of the normalised excitation 

acceleration in the x-direction 
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   CCFF 
 

   
 

(a) Cracked plate with β = 0o and the enlarged view of A1 
 

 

    
 

(b) Cracked plate with β = 20o and the enlarged view of A1 
 
 

    
 

(c) Cracked plate with β = 40o and the enlarged view of A1 
 

    
 

(d) Cracked plate with β = 60o and the enlarged view of A1 
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(e) Cracked plate with β = 80o and the enlarged view of A1 
 
 

  
  

(f) Cracked plate with β = 90o and the enlarged view of A1 
 

Figure 5-10 : Bifurcation diagrams for CCFF boundar y condition  
and a half-crack length of 0.0075 m for amplitude a s a function of the normalised excitation 

acceleration in the x-direction 
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Plate 
structure 

Half-crack 
length (m) 

Crack 

orientation 

angle, β 

(deg) 

Normalised excitation acceleration, Rho 

Period-2 

motion 

Period-4 

motion 

Intact plate -  41.30 42.00 42.00 42.15 

 

 

Cracked 

plate 

 

 

 

 

0.003 

 

 

 

0o 38.80 39.50 39.50 39.60 

20o 35.10 35.70 35.70 35.80 

40o 34.30 34.90 34.90 34.97 

60o 35.40 36.50 36.50 36.20 

80o 38.70 39.35 39.35 39.50 

90o 41.30 42.00 42.00 42.15 

 

 

Cracked 

plate 

 

 

0.0075 

0o 36.25 36.87 36.87 36.98 

20o 35.10 35.73 35.73 35.78 

40o 34.28 34.87 34.87 34.96 

60o 35.45 36.10 36.10 36.18 

80o 38.69 39.38 39.38 39.48 

90o 41.30 42.00 42.00 42.15 

 

Table 5-5 : Period doubling bifurcation of cracked plate for the CCFF boundary condition. 
 
 
 

5.7 Time Plots, Phase Planes, and Poincaré Maps 

Generally the response of a dynamic system can be in the form of a fixed point, a periodic 

solution, or a non-periodic solution. Poincaré maps can easily differentiate between 

periodic and non-periodic motions, and therefore can assist in the definition of chaotic 

motion. In this section, the definition of the term period(s) for a periodic motion as being 

the number of period(s) for a response function to repeat itself is applied. Taking the period 

as T = 2π/ω means that the Poincaré maps sample the displacements and the velocity of the 

cracked plate model every 2π/ω. If the system repeats itself after every T sec, and 

periodically returns to the same point in the phase space, this is called period-1 motion, and 

in a Poincaré map this will be as a single point. For two points it is indicating period-2 

motion, for four points period-4 motion, and therefore period-n motion generally shows up 

as n points in the Poincaré map. Subsequently chaotic motion reveals itself as an infinite 

number of orderly distributed points as the chaotic orbits visit all parts of the phase space 

(Thomsen, 2003).  
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In this study, the phase planes, Poincaré maps and time plots are produced at discrete 

excitation acceleration points in order to investigate in more detail the qualitative changes 

in system behaviour of Figures 5-2 to 5-10. The phase plane and time plots are plotted at 

assumed steady-state conditions with the interval of time taken from 495.50 to 500 

seconds, whereas the Poincaré maps are plotted after the transient time of 0 to 500 seconds. 

This transient time for plotting Poincaré maps is selected because most of them converged 

to a periodic motion with just a point, therefore as richer diagrams are preferred, and so as 

these maps converge to a point, then the times are sufficient. This is usually called a point 

attractor. The analyses are made for intact and cracked plate models with different 

normalised excitation acceleration values. As an example the results for the plate with a 

crack at an orientation angle of 0o and 60o, with 0.003m and 0.0075m half-crack lengths 

are shown in Figures 5-11 to 5-25. The routes to chaotic motion are investigated by 

observing the dynamic transitions of the plate models between the range of normalised 

excitation acceleration, Rho = 11.60 to Rho = 12.06 for the SSSS boundary condition, Rho 

= 665.00 to Rho = 690.05 for CCSS, and Rho = 34.20 to Rho = 42.30 for the CCFF 

boundary condition. This range of normalised excitation acceleration consists of motion 

from steady-state motion through to chaos. The observations are obtained as in the 

following sub-sections: 

5.7.1 Figures 5-11(a) to 5-25(a), showing Period-1 motion 

All the bifurcation diagrams for the three different types of boundary conditions with the 

two cases of the half-crack length and different values of crack orientation angle show 

periodic and stable motion, as depicted in Figures 5-2 to 5-10. Figures 5-11(a) to 5-25(a) 

show the plate motion in five different normalised excitation accelerations for each type of 

boundary condition, namely SSSS, CCSS, and CCFF. In the case of the SSSS condition, 

the normalised excitation accelerations chosen are Rho = 11.74, 11.60, 11.74, 11.60, and 

11.60 for the intact plate, cracked plate for an 0.003m half-crack length with 0o and 60o 

crack orientation angle, and for the cracked plate for an 0.0075m half-crack length with 0o 

and 60o crack orientation angle, respectively. For the CCSS case, the normalised excitation 

accelerations chosen are Rho = 673.00, 670.00, 673.00, 665.00, and 665.00 while Rho = 

40.50, 38.50, 34.50, 36.15, and 34.50 for the CCFF boundary condition. From these 

Figures it can be observed that: 

• The time plots for the SSS, CCSS and CCFF cases show clear evidence of a 

periodic response. The oscillations repeat every one period.    
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• The phase planes show periodic orbits corresponding to the bifurcation diagrams, 

and these phase plane plots show only stationary and post-transient motion by the 

elimination of the initial part of the solutions.  

• All the Poincaré maps converge into a single point. The maps consist of one single 

point, which implies periodic motion, and indicates a period-1 motion with a stable 

attractor.  

 
5.7.2 Figures 5-11(b) to 5-25(b), showing Period-2 motion 

In these cases all the bifurcation diagrams for the three different types of boundary 

conditions, with the two cases of the half-crack length and different values of crack 

orientation angle, show periodic and stable motion of period-2. The normalised excitation 

accelerations chosen for the SSSS boundary condition, as shown in Figures 5-11(b) to 5-

15(b), are Rho = 11.91, 11.74, 11.74, 11.74, and 11.90 for the intact plate, the cracked 

plate for an 0.003m half-crack length with 0o and 60o crack orientation angle, and the 

cracked plate for an 0.0075m half-crack length with 0o and 60o crack orientation angle, 

respectively. For the CCSS case, the normalised excitation accelerations chosen are Rho = 

682.00, 680.00, 682.00, 675.00, and 675.00 in Figures 5-16(b) to 5-20(b), whereas Rho = 

41.70, 39.20, 35.80, 36.60, and 35.80 for the CCFF boundary condition is used, as depicted 

in Figures 5-21(b) to 5-25(b). From these Figures it can be observed that: 

• All the time plots show evidence of periodic motions.  

• All the phase plane trajectories indicate period doubling behaviour which 

correspond with the bifurcation diagrams, as illustrated in Figure 5-2 to 5-10. All 

these phase plane results depict a period-2 motion.  

•   The Poincaré maps converge to two points which indicate period-2 motion.  

 
5.7.3 Figures 5-11 (c) to 5-25(c), showing Period-4  motion 

The bifurcation diagrams in Figure 5-2 to 5-10 show a period-4 motion for all boundary 

conditions, and this period is explored through Figures 5-11(c) to 5-25(c) for the 

normalised excitation accelerations, Rho = 12.00, 11.91, 11.98, 11.84, and 11.96, Rho = 

688.50, 685.00, 688.00, 682.00, and 687.00, and Rho = 42.10, 39.55, 36.15, 36.93, and 
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36.15 for the SSSS, CCSS and CCFF boundary conditions, respectively. The results 

obtained show that: 

• All the time plots appear to be periodic, in which the oscillations do repeat after 

every 4 periods.  

• Their corresponding phase plane plots also indicate period-4 motion as suggested in 

their bifurcation diagrams.  

• The Poincaré maps consist of four points. The maps converge to four distinct points 

indicating period-4 motions.  

 
5.7.4 Figures 5-11(d) to 5-25(d), showing Chaotic m otion 

All the bifurcation diagrams for these cases show chaotic motion, and the results from the 

time plots, phase plane plots, and Poincaré maps are explored further through Figures 5-

11(d) to 5-25(d) for the normalised excitation accelerations, Rho = 12.06, 11.99, 12.02, 

11.90, and 12.00, Rho = 690.00, 688.00, 689.50, 684.00, and 689.00, and Rho = 42.30, 

39.80, 36.50, 37.71, and 36.50 for the SSSS, CCSS and CCFF boundary conditions, 

respectively. Observations for Figures 5-11(d) to 5-25(d) are as follows:  

• All the time plots show non-periodic motion in which the oscillations do not repeat. 

In these cases this could be a qualitative visual indicator of chaotic motion.  

• In the phase plane plots a densely filled phase plane is obtained. In particular, 

a densely filled phase plane in a diagram is usually taken as a signature of chaotic 

motion. It also can be seen that the plots are very complicated, and overlaid by 

repeated orbit cross-overs.   

• The Poincaré maps show a large number of points and an irregular shape. This 

represents highly nonlinear behaviour and is an indicator of chaotic motion.   
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.74 (Period-1 motion) 

 
 

 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.91 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 

12.00 (Period-4 motion) 
 

 
 

 
(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 

12.06 (Chaotic motion) 
 

Figure 5-11 : Dynamical systems analysis for an int act plate with SSSS boundary condition 
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.60 (Period-1 motion) 

 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.74 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.91 (Period-4 motion) 

 

 
 

 
 

(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.99 (Chaotic motion) 

 

Figure 5-12 : Dynamical systems analysis for a crac ked plate with half-crack length of 0.003  
m and β = 0o m with SSSS boundary condition 
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.74 (Period-1 motion) 

 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.95 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.98 (Period-4 motion) 

 

 
 

 
 

(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
12.02 (Chaotic motion) 

 

Figure 5-13 : Dynamical systems analysis for a crac ked plate with half-crack length of 0.003  
m and β = 60o m with SSSS boundary condition 
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.60 (Period-1 motion) 

 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.74 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.84 (Period-4 motion) 

 

 
 

 
 

(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.90 (Chaotic motion) 

 

Figure 5-14 : Dynamical systems analysis for a crac ked plate with half-crack length of 
 0.0075 m and β = 0o m with SSSS boundary condition 
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.60 (Period-1 motion) 

 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.90 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
11.96 (Period-4 motion) 

 

 
 

 
 

(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
12.00 (Chaotic motion) 

 

Figure 5-15 : Dynamical systems analysis for a crac ked plate with half-crack length of 
 0.0075 m and β = 60o m with SSSS boundary condition 
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
673.00 (Period-1 motion) 

 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
682.00 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
688.50 (Period-4 motion) 

 
 

 
 

 
 

(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
690.00 (Chaotic motion) 

 

Figure 5-16 : Dynamical systems analysis for an int act plate with CCSS boundary condition  
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
670.00 (Period-1 motion) 

 
 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
680.00 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
685.00 (Period-4 motion) 

 
 

 
 

 
(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 

688.00 (Chaotic motion) 
 

Figure 5-17 : Dynamical systems analysis for a crac ked plate with half-crack length of 0.003 
m and β = 0o with CCSS boundary condition 
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
673.00 (Period-1 motion) 

 
 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
682.00 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 

688.00 (Period-4 motion) 
 
 

 
 

 
 

(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
689.50 (Chaotic motion) 

 

Figure 5-18 : Dynamical systems analysis for a crac ked plate with half-crack length of 0.003  
m and β = 60o with CCSS boundary condition 
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
665.00 (Period-1 motion) 

 
 

 
 

 
(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 

675.00 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 

682.00 (Period-4 motion) 
 
 

 
 

 
 

(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
684.00 (Chaotic motion) 

 

Figure 5-19 : Dynamical systems analysis for a crac ked plate with half-crack length of  
0.0075 m and β = 0o with CCSS boundary condition 
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 

665.00 (Period-1 motion) 
 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
675.00 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 

687.00 (Period-4 motion) 
 
 

 
 

 
 

(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
689.00 (Chaotic motion) 

 

Figure 5-20 : Dynamical systems analysis for a crac ked plate with half-crack length of  
0.0075 m and β = 60o with CCSS boundary condition 
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
40.50 (Period-1 motion) 

 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
41.70 (Period-2 motion) 

 

496 497 498 499 500
-0.02

-0.01

0.00

0.01

0.02

timeH�L

x

-0.015-0.010-0.005 0.000 0.005 0.010 0.015
-2

-1

0

1

2

x

y
-0.04 -0.02 0.00 0.02 0.04

-10

-5

0

5

10

x

y

496 497 498 499 500
-0.02

-0.01

0.00

0.01

0.02

Time H�L

x

-0.015-0.010-0.005 0.000 0.005 0.010 0.015
-2

-1

0

1

2

x

y

-0.04 -0.02 0.00 0.02 0.04
-10

-5

0

5

10

x

y



  Chapter 5  

165 
 

 
 

 
 

(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
42.10 (Period-4 motion) 

 

 
 

 
 

(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
42.30 (Chaotic motion) 

 

Figure 5-21 : Dynamical systems analysis for an int act plate with CCFF boundary condition  
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
38.50 (Period-1 motion) 

 
 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
39.20 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
39.55 (Period-4 motion) 

 

 
 

 
(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 

39.80 (Chaotic motion) 
 

Figure 5-22 : Dynamical systems analysis for a crac ked plate with half-crack length of 0.003  
m and β = 0o with CCFF boundary condition 
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
34.50 (Period-1 motion) 

 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
35.80 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 

36.15 (Period-4 motion) 
 

 
 

 
 

(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
36.50 (Chaotic motion) 

 

Figure 5-23 : Dynamical systems analysis for a crac ked plate with half-crack length of 0.003  
m and β = 60o with CCFF boundary condition 
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
36.15 (Period-1 motion) 

 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
36.60 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 

36.93 (Period-4 motion) 
 

 
 

 
 

(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
37.71 (Chaotic motion) 

 

Figure 5-24 : Dynamical systems analysis for a crac ked plate with half-crack length of  
0.0075 m and β = 0o with CCFF boundary condition 
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(a) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
34.50 (Period-1 motion) 

 

 
 

 
 

(b) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
35.80 (Period-2 motion) 
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(c) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 

36.15 (Period-4 motion) 
 

 
 

 
 

(d) Time plot, phase plane, and Poincaré map for normalised excitation acceleration of 
36.50 (Chaotic motion) 

 

Figure 5-25 : Dynamical systems analysis for a crac ked plate with half-crack length of  
0.0075 m and β = 60o with CCFF boundary condition 
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5.8 Chapter Conclusions 

A dynamical analysis of intact and cracked plate models with different crack orientation 

angles has been presented in this chapter. The linear, nonlinear (period doubling 

behaviour), and chaotic responses of these systems can be obtained by changing the 

normalised excitation accelerations. The system is excited at its resonant frequency. 

Periodic doubling bifurcations can be clearly observed in all the Figures. There are five 

types of system motion existing over the range of normalised excitation acceleration, 

namely stable single period motion, stable period-2 motion, stable period-4 motion, stable 

multiperiod motion, and finally chaotic motion. Besides the types of boundary conditions, 

the crack length and the crack orientation angle are also found have a significant effect on 

the system’s motion i.e. on the route to chaotic motion. As the crack length is increased, 

less excitation acceleration is required for the periodic response to become chaotic. This is 

due to the decrease in the value of the cubic nonlinear coefficient and excitation frequency. 

However by increasing the orientation angle of the crack, the systems with the SSSS and 

CCSS boundary conditions are less likely to bifurcate, while for the system with the CCFF 

boundary condition a similar phenomenon occurs when the angle is more than 40o. In 

addition, the phase plane plots and Poincaré maps for the selected discrete normalised 

excitation acceleration values evidently display periodic or chaotic motions corresponding 

to their bifurcation diagrams.   
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Chapter 6 
 
Experimental Validation 

  

6.1 Introduction 

Chapter 6 presents an experimental study of the dynamics of the cracked plate system, 

where the crack is located with variable orientation. Experimental measurements of 

fundamental natural frequency values and vibrational amplitude responses at the resonance 

frequencies are carried out, and then compared with the theoretical results in order to 

verify the theoretical model as far as possible. Details of the experimental set up, including 

the construction of the test rig and the equipment used, are all described here.     

 

6.2 Plate Specimens 

Seven aluminium alloy 5083 plate specimens with equal dimensions of 150 mm x 300 mm 

x 3 mm are used in this investigation. These plate specimens are denoted by A to G 

inclusive. Plate A represents an intact plate, plate B is a plate with a horizontal centre crack 

parallel to the x direction of the plate, and plates C to G represent those specimens with 

various surface crack orientation angles β , with respect to the x direction, specifically at 

20o, 40o, 60o, 80o, and 90o. The test cracks machined into the specimens have equal 

dimensions, i.e. 15 mm x 0.3 mm x 1.8 mm. The cracks are machined in each specimen, as 

shown in Figure 5-1, by using a three axis milling machine.  
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(a) Plate A              (b) Plate B             (c) Plate C           (d) Plate D     
               Intact plate                     β = 0o                         β = 20o                      β = 40o   
                                           

                   

 

             (e)  Plate E          (f) Plate F         (g) Plate G 
      β = 60o                        β = 80o   β = 90o    
                                             

                               
 

Figure 6-1 : Classification of experimental crack o rientations, dark dot denoting excitation 
location point 

 

6.3 Experimental Setup and Procedure 

A schematic layout of the experimental system is given in Figure 6-2. In this Figure, the 

electro-dynamic exciter is driven by a function generator that is connected through a power 

amplifier. A vibrometer controller connected to a spectrum analyser enables the 

identification of plate responses through the signal from the laser vibrometer. Figure 6-3 

shows the arrangement of the equipment used for testing and the list of these instruments is 

included in Appendix D. In this work, the clamped-clamped free-free (CCFF) boundary 

condition is arbitrarily chosen. In order to obtain this boundary condition a heavy steel rig 

was designed and fabricated to function as an extremely rigid support for the two adjacent 

sides of the plate.  These two sides were clamped to the support by a sturdy frame. The 
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whole rig was fitted to a suitably massive base in order to isolate the system from any 

unwanted ambient vibration. A harmonic excitation was applied to the plate by an electro-

dynamic exciter, and this excitation was monitored by means of a calibrated force 

transducer fitted serially in the shaker rod. The excitation point was arbitrarily chosen at 

the location of (112.5, 225) mm. This was measured from the clamped end of the plate in 

the x and y directions, respectively. Generally an excitation signal was taken from a 

function generator and amplified in order to drive the shaker. A 1D laser vibrometer was 

used to get the response and to measure the displacement of the plate, and a spectrum 

analyser was used to monitor this response. In this experiment a mirror was fitted to obtain 

the response of the plate at any required point of interest on the surface of the plate.  

Plate 

                                                                                                                                                 Mirror                  

                                                                                                                            Laser Beam 
 
      
 
 
 
 Force Transducer 
 
 
 
 
 
 
 
 
 
 
 
                      IN 1 OUT 1 
 

 

 
 USB 2 

Exciter 

He-Ne 
Laser 
Vibro-
meter 

 
Power Amplifier 

Signal 
Analyser 
(Quattro) 

Computer 

 
Signal Processing Unit 

 

Figure 6-2 : Layout of the experimental setup 
 
 
Firstly, the test plate was excited with a random excitation signal by the electro-dynamic 

exciter in order to obtain the fundamental natural frequency of each plate. A true random 

force signal was generated within the measurement range of 0-1000 Hz with an input 

voltage level of 0.875V RMS. The excitation level of V rms = 0.875V was equivalent to on 

excitation force of approximately 10N. This was obtained from the sensitivity of the force 

transducer of 123.78 mV/N. Subsequently a sine test was performed to obtain the 

maximum vibrational amplitude in the first mode of vibration of the plate. In this test the 
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resonant frequency was applied, and then the responses at several points on the surface of 

the tested plate were observed and the maximum amplitude value noted. 

  

Mirror 

1D Laser vibrometer 

Test rig 

Force transducer 

Exciter 

Specimen 

 

Figure 6-3 : The experimental test rig 
 

6.4 Experimental results 

Table 6-1 shows the results obtained from the tests. It can clearly be seen that the 

frequency decreases with the inclusion of the crack in the plate, for all three modes of 

vibration. The frequencies of the intact plate obtained were 107.60, 273.40, and 532. 80 Hz 

for the first, second and third mode of vibration, respectively, while they reduce to 99.61, 

262.10, and 525.00 Hz for the addition of a crack of length 15 mm. In terms of crack 

orientation, the same phenomenon was encountered as in the previous chapter, whereby the 

frequency increases up to an angle of 60o then decreases when the orientation angle 

exceeds 60o. Figure 6-3 shows the frequency response function curves for the intact plate 

and the cracked plate specimens, with crack orientation angles of 0o, 20o, 40o, 60o, 80o, and 

90o. In addition, the maximum vibrational amplitudes for the first mode of vibration were 

obtained at the tip of the free end of the plate specimens. However, the results show that 

the amplitude of the vibration behaves conversely to the natural frequency, and decreases 

up to 80o, then increases when the crack orientation angle exceeds 80o.  
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Aluminium 

Plates 

Crack 

Orientation 

Angle β (deg) 

Frequency (Hz) Maximum 

vibrational 

amplitude 

(mm) 

First 

vibration 

mode  

Second 

vibration 

mode 

Third 

vibration 

mode 

First 

vibration 

mode only 

Intact Plate - 107.60 273.40 532.80 7.056 

  
 

 

Cracked 

Plate 

0o 99.61 262.10 525.00 7.498 

20o 102.90 265.60 526.20 7.278 

40o 105.30 266.60 527.30 7.187 

60o 106.40 268.90 529.50 7.176 

80o 104.10 267.80 530.70 7.274 

90o 102.00 265.60 518.20 7.591 

 

Table 6-1 : Experimental results for the first thre e modes of vibration   
for intact and cracked aluminium plates with a 7.5 mm half-crack length for a plate aspect 

ratio of 0.15/0.3 

 

6.5 Chapter Conclusions 

Intact and cracked plates (with variably orientated cracks) have been investigated 

experimentally in this chapter. The insertion of the crack in the plate was found to have a 

strong influence on the frequency and amplitude responses. The orientation of the crack 

also has a significant effect on the vibration characteristics of this system. Plate structures 

undergoing transverse deflection can be categorised as nonlinear systems depending on 

several factors. One of them is when the deflection is a multiple of the plate thickness but 

much less than the plate side length (Malatkar, 2003 and Israr, 2008). Therefore, these 

plate specimens could be exhibiting nonlinear behaviour because the results show that the 

amplitude response is within this category. Besides that, nonlinear dynamical phenomena 

for these plate specimens can also be observed when the excitation frequency is increased 

until a jump phenomenon occurs in the first mode. The comparative study between 

theoretical and experimental results is discussed in Chapter 7.  
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(a) Intact Plate 
 

 
 

(b) Cracked plate with crack orientation angle, β = 0o 
 

 
 

(c) Cracked plate with crack orientation angle, β = 20o 
 

 
 

(d) Cracked plate with crack orientation angle, β = 40o 
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Mode-III  

 Mode-I 

Mode-II  
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(e) Cracked plate with crack orientation angle, β = 60o 
 

 
 

(f) Cracked plate with crack orientation angle, β = 80o 
 

 
 

(g) Cracked plate with crack orientation angle,  β = 90o 
 

 

Mode-I 
Mode-II  

Mode-III  

Mode-I 
Mode-II  

Mode-III  

Mode-I 

Mode-II  

Mode-III  

 

Figure 6-4 : Frequency responses for the first thre e modes of vibration  
for an aluminium rectangular plate 
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Chapter 7  
 
Comparative Study and Discussion 
 

7.1 Introduction 

The equation of motion of a cracked plate model containing a crack of variable angular 

orientation was obtained in Chapter 3, and this system has been analysed using theoretical 

and experimental methods, as discussed in Chapters 3 to 6. For reasons of comparison and 

validation a finite element model and experiments were undertaken to enable a further 

modal analysis in order to corroborate the effect of crack length and crack orientation angle 

on the natural frequency, and also the vibrational amplitude, as predicted by the theory. 

Thus, the purpose of this chapter is to provide a comparative assessment of these methods, 

and to extend the discussion, where appropriate, regarding the results obtained from 

Chapters 3 to 6, including the method of multiple scales, the direct numerical integration 

method within MathematicaTM, and a numerical study into the system’s dynamics, to 

enable conclusions to be defined for this overall study.    

 

7.2 Comparative Assessment  

Comparative studies of the theoretical modelling and finite element approaches, and also 

the theoretical modelling with experimental measurements are carried out for the 

arbitrarily chosen boundary condition of CCFF in order to verify the model proposed in 

this thesis. Intact plate and cracked plates with cracks at orientation angles of 0o, 20o, 40o, 

60o, 80o, and 90o, and different half-crack lengths of 3 mm and 7.5 mm are all compared. 

Tables 7-1 and 7-2 summarise the comparative assessment of the theoretical modelling and 

the finite element modelling approaches, and the theoretical predictions with the 

experimental measurements, respectively. The performance of each method is compared in 

terms of the first mode natural frequency of the cracked plate models and their amplitude 

responses. In Table 7-1 we can see that the results show good agreement between the finite 

element-extracted and analytically-calculated results for the frequencies and amplitudes. 

Both sets of results show a significant change in the natural frequency and response 

amplitude for the different lengths of the crack and also for the varying orientation angle of 

the crack. The natural frequencies obtained for both results decrease slightly with an 

increase in the crack length for every crack inclination angle. In addition, it is apparent that 
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the finite element predicted frequency and amplitude trends are similar to the analytical 

results for which the frequency values increase from 0o up to 60o and then decrease when β 

is more than 60o, while the amplitude responses behave conversely. Very close agreement 

was obtained between the analytical and finite element results, with the maximum error in 

the prediction of the frequency value generally at about 7.7 % and the amplitude response 

at around 7.6 %.  

 Crack 

Orientation 

Angle 

Natural 

Frequency  

for first vibration 

mode   

(Hz) 

Error 

(%) 

Amplitude  

for first vibration 

mode 

(mm) 

Error 

(%) 

Analy. 

result 

FEA 

result 

Analy. 

result 

FEA 

result 

Intact 

Plate 

 - 122.58 122.94 0.29 7.979 7.372 7.61 

Cracked 

Plate 

3 

mm 

0o 118.38 122.73 3.67 8.019 7.483 6.68 

20o 121.82 122.77 0.78 7.220 7.379 2.20 

40o 124.57 122.84 1.39 6.993 7.263 3.86 

60o 125.41 123.05 1.88 6.898 7.200 4.38 

80o 123.98 122.82 0.94 7.524 7.727 2.70 

90o 122.58 122.73 0.12 7.979 7.739 3.01 

 

7.5 

mm 

0o 113.91 122.69 7.71 8.066 7.564 6.22 

20o 118.18 122.75 3.87 6.951 7.227 3.97 

40o 122.37 122.81 0.36 6.659 6.969 4.66 

60o 124.61 123.04 1.26 6.548 6.796 3.79 

80o 123.95 122.81 0.92 7.336 7.309 0.37 

90o 122.58 122.69 0.09 7.979 7.614 4.57 
Analy. = Analytical 

 

Table 7-1 : Comparison of the frequency and amplitu de response results  
for the theoretical and finite element analyses for  Mode I only. 

 
A comparison between the results obtained from the proposed cracked plate model and the 

experimental work was also undertaken and the results are listed in Table 7-2. Similarity 

can be observed between the trends for the theoretical and experimental results for the 

CCFF boundary condition, with the maximum error in the prediction of the frequency 

value showing as around 16.8 % and the amplitude response at about 11.6 %.       
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 Crack 

Orientation 

Angle 

Natural 

Frequency  

for first vibration 

mode  

(Hz) 

Error 

(%) 

Amplitude  

for first vibration 

mode  

(mm) 

Error 

(%) 

Analy. 

result 

Exp. 

result 

Analy. 

result 

Exp.  

result 

Intact 

Plate 

 - 122.58 107.60 12.2 7.979 7.056 11.6 

Cracked 

Plate 

7.5 

mm 

0o 113.90 99.61 12.5 8.066 7.498 7.0 

20o 118.18 102.90 12.9 6.951 7.278 4.7 

40o 122.37 105.30 13.9 6.659 7.187 7.9 

60o 124.61 106.40 14.6 6.548 7.176 9.6 

80o 123.95 104.10 16.0 7.336 7.274 0.8 

90o 122.58 102.00 16.8 7.979 7.591 4.9 
Analy. = Analytical 
Exp. = Experimental 

 

Table 7-2 : Comparison between the experimental and  theoretical results  
for the first mode of vibration 

 

7.3 Discussions of Results 

Discussion of the results from Chapters 3 to 6 is divided into three categories, namely the 

analytical results, numerical results and the experimental results.   

7.3.1 Analytical Results 

A new mathematical model has been proposed for a thin plate with enhanced crack 

modelling which considers an alternative geometry whereby the crack orientation angle 

can be varied, and is used for vibration analysis. The dynamic characteristics of the model 

have been investigated and general observations are summarised from the studies as 

follows: 

• Initially the correctness of the enhanced crack model within an analytical model of 

the plate has been partially checked by referring to the existing model for a 

centrally located crack parallel to one side of the plate, as proposed by Israr (2008), 

and close agreement was found. The values of the differences between the first 

mode natural frequencies of these two models are small, with a maximum 

percentage error of approximately 0.012 (Table 3-1). 
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• The results show generally that the natural frequency reduces with an increase in 

the half-crack length and it is also influenced by the boundary conditions and when 

the geometry of the plate is changed. 

A plate with a crack of variable angular orientation: 

• In comparison with a plate model for a horizontally located centre crack of fixed 

orientation, the natural frequency results for a plate model with a crack of variable 

angular orientation show that the presence of a crack at the centre of the plate with 

variable orientation angle significantly influences the natural frequency of the first 

mode, in all three boundary condition cases that were investigated. These included 

SSSS (Table 3-2), CCSS (Table 3-3), and CCFF (Table 3-4).   

• The results show that the natural frequency reduces with an increase in the half-

crack length, as shown in Figure 3-7, in which the cracked plate model predicts the 

natural frequency very well for the SSSS and CCSS boundary conditions, but the 

prediction is rather inaccurate for a half-crack length of less than 0.001m in the 

case of the CCFF boundary condition.     

• The results show that the natural frequency increases with the increase in the crack 

angle, up to 90o for the SSSS and CCFF boundary conditions. For the case of the 

CCFF boundary condition the frequency increases up to 60o, and then decreases 

when the crack angle exceeds 60o (Figure 3-8). This similar trend was also seen by 

Maruyama and Ichinomiya (1989) and Wu and Law (2004).   

• The physical reason that cracks generally lower the natural frequencies of a plate is 

due to changes to the local flexibility in the vicinity of the crack, which in turn 

reduces the overall stiffness of the structure.  

• In the case of the CCFF boundary condition the orientation angles for which the 

natural frequency is maximum are affected by crack length, plate thickness, plate 

aspect ratio, Poisson’s ratio, plate density and the modulus of elasticity. Simulation 

with standard parameter properties showed changes in the natural frequency values 

at an angle of approximately 59o ≈  60o. 
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• In addition to the effect of the half-crack length and the crack orientation angle, the 

natural frequency is also influenced if the geometry of the plate is changed, 

particularly in the length of the plate (via the aspect ratio) and the plate thickness. 

The analytical developments involved using the perturbation method of multiple scales, a 

direct numerical integration method, and finite element analysis. In the following points 

are summarised which emerged from these studies:  

• The results from the method of multiple scales are given in Figures 4-1 and 4-2 

representing the behaviour of square and rectangular plates containing a crack of 

variable angular orientation for the three chosen of boundary conditions. The effect 

of a crack within the plate model produced a global effect on the nonlinear response 

of the overall system. For the cracked plate model with the SSSS and CCSS 

boundary conditions, the nonlinearity bends the curves to the right, as for a 

hardening system, whereas for the CCFF boundary condition the nonlinearity bends 

the curves to the left as for a softening system.  

• The nonlinear hardening effect is much stronger for the SSSS boundary condition 

compared to the CCSS case. It is evident that for all types of boundary condition 

the cracked rectangular plate model with an aspect ratio of 1:2 displays a much 

stronger general nonlinearity than the square plate model. 

• The influence of the crack orientation angle on the frequency response was also 

observed. For the SSSS and CCSS boundary conditions no obvious hardening 

effects emerged for rectangular plates. However for square plates with an increase 

in the crack orientation angle, the nonlinear hardening phenomenon clearly 

increases (Figure 4-1). Similarly, for the CCFF boundary condition the nonlinear 

softening effect increases up to 60° and then reduces when the crack orientation 

angles starts to exceed 60°. It should be noted that the amplitude decreases with an 

increase in the excitation frequency value.  

• Changing the location of the applied load on the plate surface slightly affects the 

nonlinear behaviour of the cracked plate model whereby the width of the nonlinear 

region becomes narrower as the excitation location moves closer to the constrained 

area (Figure 4-3). In addition the frequency response curve is also affected by 
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changing the value of the excitation amplitude such that the amplitude increases 

when the excitation amplitude increases (Figure 4-4).   

• Increasing the damping coefficient results in a decrease in the amplitudes.  

• The numerical results calculated by directly integrating the nonlinear ordinary 

differential equation (3.89) within the MathematicaTM environment qualitatively 

and quantitative produce a similarly decreasing response in the natural frequency, 

and an increasing response in the amplitude, both corroborating those of the 

method of multiple scales (Figure 4-6). Both the responses show a characteristic 

softening effect, however the overhanging part of the curve in the numerical 

prediction represents unstable solutions, and this over-prediction of the softening 

overhang by the multiple scales solution is undoubtedly due to an over-correction 

to the solution from the first order perturbation contribution.     

• The results from the finite element analysis for the CCFF boundary condition also 

show that a large crack shifts the frequency values of the 1st, 2nd and 3rd modes 

downwards, as expected, and is due to a reduced plate stiffness. For both crack 

lengths of 3 mm and 7.5 mm, the frequency values increase monotonously from 0o 

up to 60o, and then decrease when β is more than 60o (Table 4-3) in which a similar 

trend from the analytical prediction was exhibited.     

• The amplitude responses from the finite element analysis of the cracked plate 

model produced results that corroborate those of the method of multiple scales. As 

expected the frequency results show a decreasing trend at the resonance condition, 

and similarly, the amplitude results show an increasing trend, when using a small 

crack, again fully in-line with the analytical model (4-4). 

• A comparative study of the theoretical modelling and finite element approaches is 

presented in Table 7-1. Both sets of results show a significant change in the natural 

frequency and the response amplitude at the resonance condition for the different 

lengths of the crack and the varying orientation angle of the crack. Very close 

agreement was obtained between the analytical and finite element results, with a 

maximum error in the prediction of the frequency value of about 7.7 % and the 

amplitude response at around 7.6 %. This error might have occurred because in the 

finite element analysis the crack width is taken to be 0.3 mm, whereas it has been 
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proposed as a continuous line spring in the derivation of the cracked plate model 

(chapter 3). 

 
7.3.2 Numerical Results 

Subsequent numerical analyses were conducted using the dynamical systems tools within 

the MathematicaTM environment. From this investigation the following is concluded:  

• Bifurcation diagrams for the amplitude response x as a function of the normalised 

excitation acceleration can be obtained. 

• Periodic doubling bifurcation can be observed in all the results with an increase in 

the normalised excitation acceleration, and when the normalised excitation 

acceleration value is increased to a high level this periodic response appears to 

bifurcate to chaos. There are five types of system motion exists over the range of 

normalised excitation acceleration, namely stable single period motion, stable 

period-2 motion, stable period-4 motion, stable multiperiod motion, and finally 

chaotic motion.  

• Specific boundary conditions are found to have a strong influence on the route to 

chaos. Crack length and crack orientation angle also have a significant effect on the 

system’s motion. As the crack length is increased the system appears to get more 

chaotic. However, as the orientation angle of the crack is increased from 0o to 90o 

the system with SSSS and CCSS boundary conditions seems to get less chaotic. For 

the CCFF boundary condition the same phenomenon occurred when the crack 

orientation angle exceeded 40o.    

Detailed analysis of the bifurcation diagrams in Figures 5-2 to 5-10 was extended to the 

time plots, phase planes, and the Poincaré maps, as shown in Figures 5-11 to 5-25 for 

discrete normalised excitation acceleration points. The following are general observations:  

• Figures 5-11 to 5-25 illustrate the time plots, phase plane, and Poincaré maps for 

the cracked plate model for the SSSS, CCSS and CCFF boundary conditions.  

• All the time plots are for periodic motion.   
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• The periodic orbits in the phase plane move away from each other as the effect of 

the predominant system nonlinearity is changed, either by manipulation of the 

cubic nonlinear coefficient due to the presence of the small crack in the system, or 

by variations in the normalised excitation acceleration. And therefore the 

phenomenon behind this behaviour, as shown on the phase plane, could represent a 

bifurcation to chaos.  

• When the normalised excitation acceleration is increased complicated and richer 

phase plots are obtained which could indicate chaotic motion. However, the orbits 

repeat themselves in the same way, when the simulation time is extended.  

• In the Poincaré maps strange attractors are also obtained for higher value of 

normalised excitation accelerations, and these are clearly indicative of chaotic 

motion.  

 
7.3.3 Experimental Results 

The theoretical predictions of the vibration characteristics of the cracked plate model have 

been successfully validated through experiment measurement. The following conclusions 

are obtained from this work: 

• The insertion of the crack in the centre of the aluminium plate was found to have a 

strong influence on the frequency and amplitude responses. 

•  The results from the experimental measurement qualitatively produce a similar 

decreasing trend in the natural frequencies with the insertion of a crack. The 

frequency value decreases with an increase in the crack length, and increases with 

an increase in the crack orientation angle up to 60o.   

• The results also qualitatively produced a similar increasing trend in the amplitude 

response with the insertion of a crack as for the theoretical prediction, except for a 

crack at an orientation angle of 20o.     

• Similarity can be observed between the trends for the theoretical and experimental 

results for the CCFF boundary condition, with a maximum error in the prediction of 

the frequency value of about 16.8 % and in the amplitude response of about 11.6 %. 
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However the measured values from the experiments are lower than those predicted 

by the theoretical calculations based on approximate techniques. This could be 

because of the fact that microscopic flaws or cracks always exist under normal 

conditions at the surface and within the interior of the body of a material (Griffith, 

1921).  

•  The plate specimens could be exhibiting nonlinear behaviour because the results 

show that the deflection is a multiple of the plate thickness, but is much less than 

the plate side length, as discussed by Malatkar (2003) and Israr (2008).     
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Chapter 8  
 
Conclusions  

This chapter summarises the main conclusions of this thesis and makes recommendations 

for further work.  

8.1 Summary and Conclusions 

The equation of motion for an isotropic plate containing a crack of variable angular 

orientation subjected to transverse harmonic excitations has been derived based on 

classical plate theory. This equation of motion is a nonlinear ordinary differential equation 

with a cubic nonlinearity which was generated by the use of Berger’s formulation. Berger’s 

formulation was used to assimilate the in-plane forces within this mathematical model and 

also to reduce the equation to the form of a specialised Duffing equation. This 

mathematical model has been shown to be capable of detecting and predicting the 

nonlinear vibration behaviour of the cracked plate, and in showing the trend of the natural 

frequency values, and the linear and nonlinear frequency curves for the three chosen 

boundary conditions, namely SSSS, CCSS and CCFF. For a cracked square and 

rectangular plate the influence of the boundary conditions, crack orientation angles, crack 

lengths, and location of the point load have all been discussed. 

Initially the proposed model was validated through convergence studies for a plate with a 

horizontally orientated centre crack. The results showed excellent agreement with those 

obtained by Israr (2008), with the maximum error in the prediction of the first mode 

natural frequency for the boundary conditions taken, of approximately 0.012%. Then the 

proposed model was applied to a plate with a variably orientated surface crack. It was 

found that the vibration characteristics of this plate structure could be greatly affected by 

the orientation of the crack depending on the type of boundary condition applied. For the 

SSSS and CCSS boundary conditions, the natural frequency increases with an increase in 

the crack angle, up to 90°. But it is a different situation for the case of the CCFF boundary 

condition, where the natural frequency increases up to 60°, and then decreases 

when β exceeds 60°. This similar trend for the crack orientation effect was also reported by 

Maruyama and Ichinomiya (1989) and Wu and Law (2004). In terms of crack length 

effects the results show generally that the natural frequency reduces with an increase in the 

half-crack length. The derived cracked plate model predicts the natural frequency very well 
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for cases with SSSS and CCSS boundary conditions. However for the CCFF boundary 

condition the prediction is rather inaccurate, especially for a half-crack length, a of less 

than 0.001 m. The physical parameters such as crack length, plate thickness, plate aspect 

ratio, Poisson’s ratio, plate density and modulus of elasticity also contribute to the changes 

in the orientation angles for which the natural frequency is maximum.  

The physical behaviour of this cracked plate model has been explored in Chapter 4 through 

the approximate solutions that have been obtained based on the perturbation method of 

multiple scales and the finite element method. For purposes of comparison numerical 

results were also calculated by directly integrating the nonlinear ordinary differential 

equation for the model, and the results from this were compared with the results obtained 

from the multiple scales method. The inclusion of a crack within the plate model produced 

a global effect on the nonlinear response of the overall system for both solutions. 

Interesting nonlinear behaviour was observed for the primary resonance condition, and the 

results obtained from the multiple scales method showed hardening spring behaviour for 

the SSSS and CCSS boundary conditions and a softening spring phenomenon for the 

CCFF boundary condition. It was shown conclusively, by using a first order multiple 

scales approximation solution, that the nonlinear characteristics of the steady-state 

responses are encoded within the non-autonomous modulation equations.  

The dynamics of the cracked plate model are investigated using dynamical systems tools in 

Chapter 5 to study the relevant bifurcatory phenomena and stability of the system. From 

the observation of bifurcation diagrams, time plots, the phase plane, and Poincaré maps, 

this study has shown that additional and highly complex dynamics could be observed, 

especially in more strongly excited systems. In addition, the amplitude response 

characteristics for the performance of this system could be effectively achieved by 

applying different combinations of system parameters.      

Finally, the validity of the developed model was shown through a comparison of the results 

with experimental work, in Chapter 6 and 7. The response of an aluminium cracked plate 

for the arbitrarily chosen CCFF boundary condition, and when subjected to transverse 

harmonic excitation, was observed. The insertion of the crack in the plate was found to 

have a strong influence on the natural frequency and the amplitude responses. The 

orientation of the crack also had a significant effect on the vibration characteristics of this 

experimental system in which the same phenomenon was encountered as in the analytical 

model. The comparison showed that the analytical model was able to predict results 
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qualitatively similar to the experimental measurements, however the results vary 

quantitatively. The discrepancies in the results might have arisen because one or more of 

the factors such as the nonlinear damping, shaker-structure interaction, internal 

discontinuities within the plate, and initial curvature of the plate were neglected in the 

analytical model. These factors might be contributing a bigger role than expected, and this 

could be further investigated. The instability region of the boundary condition of the plate 

was manipulated by altering the tightness of the clamped edges of the plates. The tightness 

of the clamped edges can alter the stability characteristics of the system. For a highly 

excited system careful design and assembly of the experimental system components is 

crucial for better overall performance.     

Overall, this research provides some basic theory and understanding of how inclusion of a 

crack in a plate structure and the orientation of the crack can both influence significantly 

the vibration and nonlinear behaviour of a plate structure. It has provided an extension to 

the development of currently available analytical models of the nonlinear characteristics of 

a cracked plate structure, particularly for an alternative geometry in which the crack 

orientation is variable. It can be seen that the new analytical model could constitute a 

useful tool for subsequent investigation into the development of damage detection 

methodologies for generalised plate structures.  

 

8.2 Recommendations for further work 

Generally antinodally located cracks will have a particular significance for resonant 

properties. Such insight could be explored further in the future, as could the effects of 

prescribed wave number and other modal properties. The orientation of travelling waves 

shows a strong relationship with crack orientation, thus the wave numbers in both the x and 

y directions could be used to determine this relationship. 

The effect of the nonlinearity introduced into the analytical model through the crack 

analysis is unlikely to have been as faithfully reproduced within the current finite element 

analysis. This could be a further study in future work. 

It would also be interesting to see if one could extend this work for a thick plate by 

applying Mindlin Plate theory and then investigating the influence of such cracks on the 

responses of that kind of plate structure. Similarly, the study could also be extended for all-

through cracks and elliptical cracks.   
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The route to chaotic motion of this cracked plate system can be further explored by using 

other dynamical systems tools to calculate the Lyapunov exponent in order to underpin and 

provide more evidence of the existing results from the bifurcation diagrams.  
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Appendices 

Appendix A 

i. EQUATION OF MOTION -CHAPTER 3(Equation 3.88) 
 
 
ψij
� @t D+2µ +(1/(( ρ*h)/D1 ) 
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ii. DIRECT INTEGRATION METHOD- SECTION 4.3  
 

eqn = + µ* +(Subscript[ ω, ij]) 2* ψ[t]+ γij* -
ηij/D1 q*Cos Ωij[t] 

 
Solution=NDSolve[{eqn �0, ψ[0] �0, ψ′[0] �0}, ψ 
[t],{t,0,500}, 

   MaxSteps →Infinity,AccuracyGoal →Automatic, 
   PrecisionGoal->Automatic] 
 
 Plot[Evaluate[ ψ[t]/.Solution],{t,0,500}, 
  Frame →True, FrameTicks →Automatic, 
  FrameLabel →{Time[t], ψ[m]}] 
 
 Plot[Evaluate[ ψ′[t]/.Solution],{t,0,500}, 
  Frame →True, FrameTicks →Automatic, 
  FrameLabel →{Time[t], ψ′[m]}] 
 
 
 
 
iii. BIFURCATION DIAGRAM - SECTION 5.6 
 
 M=3000000;step=0.00001;MaxAmp=M*step;a=0;b=0; 
 For[i=1,i<=M,i++,A=step*i;pp=NDSolve[ 

{x'[t] �y[t],y'[t] �-C2*x[t]-C1 y[t]-C3*(x[t])^3+A 
Cos[omega t], 
x[0] �a,y[0] �b},{x,y},{t,0,2 
Pi/omega},MaxSteps →Infinity]; 

   a=Flatten[x[2 Pi/omega] /. pp]; 
   b=Flatten[y[2 Pi/omega] /. pp];rampup[i]=Sqrt[a^ 2]] 
 
 p1=ListPlot[Table[Flatten[{m*step,rampup[m]}],{m,1 ,M}], 
    PlotStyle →PointSize[0.003]]; 
  Show[{p1},PlotRange →{{0,30},{-0.0001,0.005}}, 
   AxesLabel->{"Rho","x"},AxesOrigin →{0,-0.0001}, 
   TextStyle →{FontSize →12},Ticks →Automatic] 
  Quit[]; 
 
 
 Duffing=NDSolve[ 

    {x'[t] �y[t],y'[t] �-C2*x[t]-C1*y[t]-C3*(x[t])^3 + A 
Cos[omega*t], 

    x[0] �0,y[0] �0},{x[t],y[t]},{t,0,500},MaxSteps →Infinity]; 
 
 
 
 
 
 
 
 
 
 
 
 

ψij
� @t D ψij

′ ψij
3 @t D
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iv. PLOTTING OF POINCARÉ MAP - SECTION 5.7 
 
 
ParametricPlot[Evaluate[{x[t],y[t]}/.Duffing],{t,49 5.5,500}, 
FrameLabel →{ x, y},AspectRatio → 1/2,AxesOrigin →{-0.005,-
0.4}, 
Frame→True,PlotRange →{{-0.005,0.005},{-0.4,0.4}}, 
LabelStyle →Directive[FontFamily →"Times New Roman",12]] 
 
 
 
 
v.PLOTTING OF PHASE PLANE- SECTION 5.7 
 
 
ListPlot[Table[Flatten[{x[t],y[t]}/.Duffing],{t,495 .5,500}], 
PlotStyle →PointSize[0.02],FrameLabel →{x, y}, 
AxesOrigin →{-0.005,-1.5},Frame →True, 
PlotRange →{{-0.005,0.005},{-1.5,1.5}}, 
LabelStyle →Directive[FontFamily →"Times New Roman",12]] 
 
 
 
 
vi.PLOTTING OF TIME PLOT- SECTION 5.7 
 
 
Plot[Evaluate[x[t]/.Duffing],{t,495.5,500}, 

FrameLabel →{ "Time( �)",x}, 

LabelStyle →Directive[FontFamily →"Times New Roman",12], 
Frame→True,PlotRange →{{495.5,500},{-0.01,0.01}}, 
AxesOrigin→{495.5,-0.01}] 
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Appendix B  

Experimental Measurement: List of Instruments 

The list of instruments used in this research is: 

• Power Amplifier- LDS PA25E-CE 

• Electro-dynamic Exciter- LING Dynamics Systems LTD Model 201 

• 1D Laser Vibrometer (Polytech OFV 303) 

• Vibrometer Controller (Polytech OFV 3001: 100/115/230v- 50/60Hz)  

• Mirror 

• Force Transducer IEPE  (B&K 8230) 

• Signal Analyser (Quattro)  

• Desktop PC using Signal Calc ACE data acquisition software, Data Physics Corp. 
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         (a) Power Amplifier     (b) Electro-dynamics Exciter 

        

        (c) 1D Laser Vibrometer         (d) Vibrometer Controller  

          

    (e) Force Transducer              (f) Signal Analyser    (g) Computer 

  Figure B1: Schematic view of the instruments used 

 

 

 

 

 


