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Abstract 

Major accidents and incidents, such as Three Mile Island or the Bristol Royal 

Infinnary Inquiry (a.k.a. the Bristol Baby Case, Kennedy et aI., 2000) are often 

mediated by what is tenned 'human error'. The analysis of these 'human errors' 

provides the basis for safety recommendations and thus has a crucial, albeit indirect 

impact on system design and the prevention of future accidents. 

The analysis process often entails instances of erroneous behaviour (or its effects) 

being classified according to error taxonomies. These taxonomies might be grounded 

in psychological theory in order to provide more analytic power to the investigator. 

However, the classification process itself is often left unsupported when using these 

psychological error taxonomies as part of accident or incident investigation. 

The reasoning process behind classification decisions is typically not being made 

explicit in the analysis process, and thus suffers from a lack of traceability. Human 

error classification that uses psychologically grounded taxonomies depends heavily 

on the expertise of the analyst. Although error categorizations are a useful basis for 

quantitative analysis as part of system safety management, they tend to elucidate 

mainly the ''what'' and "how" of an accident's causation, and not the "why". 

TIle reasoning process that leads to the categorization often embodies several 

competing causal hypotheses being generated and tested by the analyst. This 

reasoning process itself, if documented, can provide valuable diagnostic insights into 

the complexity of an accident's cause. It can also embody important analytical 

infonnation for the investigator when considering safety recommendations that are to 

address the system's weakness. 

In this thesis, a cognitive error analysis framework is proposed as a tool to support 

accident and incident investigators in the analysis of "human error". A cognitive 

architecture is used to provide an analytic vocabulary that is grounded in 
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psychological theory. This cognitive error analysis approach provides a structured 

framework for expert analysts to reason about competing hypotheses on the role of 

'human error' in an accident's or incident's causation. 

By using the proposed cognitive error analysis approach, the rationale behind error 

analysis and classification can be made more transparent and be documented for 

future reference. The cognitive framework can provide a structured, grounded 

vocabulary for validating and reasoning about competing error explanations and 

safety recommendations. 

These arguments will be illustrated in this thesis by means of case studies in human 

error analysis in accident and incident investigation. Retrospective analyses of 

accident and incident data drawn from aviation and medical work domains provide 

proof of concept and initial insights into the strengths and weaknesses of the 

cognitive error analysis approach that is proposed in this thesis. 

The two core case studies presented here both concern the analysis of human error in 

incident investigation in intensive care units. The cognitive error analysis approach 

was applied both times in the context of real existing safety management in two 

Scottish hospitals (referred to as 'the Edinburgh scheme' and 'the Glasgow scheme' 

respectively). Both case studies were conducted in collaboration with the local 

medical and nursing staff. 

A database of 10 years' worth of medical incident data gathered in an Edinburgh 

Intensive Care Unit was analyzed using the proposed cognitive error analysis 

approach. In the second live case study, the error analysis approach was evaluated in 

the field by applying it to incident reporting data that was collected with a newly 

implemented incident reporting scheme in a Glasgow Neonatal Intensive Care Unit. 

The insights gained by analyzing the Edinburgh incident scheme were used to inform 

the design and implementation of the Glasgow incident scheme as part of the unit's 

existing safety management. Since both were local incident reporting schemes, it was 
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seen as an important factor for its success to take the local context and conditions into 

account while situating the cognitive error analysis approach as part of these 

hospitals' safety management strategies. 

The evaluation of this incident reporting and analysis framework demonstrated the 

benefits of a structured, psychological "human error" analysis approach that centres 

on the human aspect of the incident, without isolating it from its context. It is argued 

that not only could the understanding of the underlying error mechanisms be 

improved for individual incidents, but the generation of safety recommendations 

could be supported, and these could then also be evaluated as to their impact on the 

human "in the loop". The resulting error analysis models could further be used as 

basis for comparing competing analyses, and also improve analysis traceability by 

documenting the analysis process and its resulting safety recommendations. Further 

work is needed in providing "best practices" for the application of the cognitive 

analytical framework. Further work is also needed in formalizing a way to situate the 

cognitive error analysis approach within the investigation of local work system 

factors in the search for the overall incident and accident causation. 

Thesis statement 

This thesis aims at demonstrating the benefits of grounding the analysis of human 

error as part of incident and accident reporting in a cognitive theoretical framework. 

This will provide the means and the vocabulary to reason about alternative causal 

hypotheses while also acting as a tool to document and communicate the 

psychological analysis of human error and its resulting safety recommendations. This 

approach is proposed as complementing the analysis of human error data by means of 

error taxonomies grounded in psychological theory. 
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CHAPTER 1 INTRODUCTION 

MOTIVATION 

Human involvement often plays a major role in the occurrence of accidents in safety 

critical systems such as in aviation, hospital systems, or nuclear power plants 

(Reason, 1990). Accident reports often resort to naming human error ("pilot error", 

"operator error") as the 'reason' why the accident happened. This 'blame' approach 

has frequently been criticized (op. cit.) but it still seems to prevail, such as illustrated 

by the all too frequent mention of it in news coverage of accidents and incidents (e.g. 

Kleinfield,2001) 

Identifying human involvement in an accident's causation does not necessarily mean 

that "human error" is the cause, or the only cause, of that accident. Human action (or 

inaction) is always stimulated by either the external context or an internal motivation 

(such as a set of expectations), it does not take place in a vacuum. Therefore, the 

identification of "human error" in an accident's causation should more often than not 

be the starting case for further investigation, rather than provide a convenient 

category where blame apparently has been found, and no need for more in-depth 

analysis exists. The label "human error" should not be equated with a stopping case 

for accident analysis. 

The following case study of recent events illustrates this further. In the American 

Airlines crash of an Airbus A-300 in Queens, NY, on November 12th 2001 

(Kleinfield, 2001), 260 passengers and all crew died when the plane plunged into a 

residential neighbourhood minutes after leaving Kennedy International Airport at 



9: 14 am for Santo Domingo (Dominican Republic). Eyewitnesses said they saw the 

burning engine separating from the plane and plummeting to the ground shortly 

before the crash. 

The plane had broken into pieces in midair, with parts of the tail, most of the fuselage 

and both engines having broken off the plane and fallen to the ground. Although 

initially considered a material fault, later this was hypothesized as caused by the 

pilots' performance putting too much stress on the tail through the rudders "more than 

they were designed to handle". Thus, after initially concluding the accident was the 

result of a mechanical, the New York Times announced on January 5th 2002 that now 

the "crash inquiry is focusing on the pilots" (op. cit.). 

By international regulation, a civil aircraft's tail is supposed to be able to withstand a 

force 50 percent stronger than the largest it is likely to ever encounter, and the A300 

tail exceeded even that standard. However, certain rudder manoeuvres are known to 

temporarily increase a force that is seemingly larger than "likely ever to be 

encountered", and this had been known to aircraft manufacturers for a number of 

years. Crews at American Airline were trained in the mid-1990's to use the rudder to 

recover from "flight upsets", but Airbus, Boeing and the F.A.A. later warned against 

this practice, saying it could produce "dangerous stresses". American Airlines said it 

changed its training in 1999 to de-emphasize use of the rudder. However, the 

training's effectiveness might need to be evaluated, since evidence recovered from 

the plane'S data recorder indicates that the pilots were using the rudder to try and 

stabilize the plane. This might have led to stress on the plane's tail that eventually led 

to the plane breaking apart. Furthermore, it might be argued that since it is known that 

these rudder manoeuvres create untenable material stress, pilot should be prohibited 

from carrying out these manoeuvres through the system's design, not through a 

"blame and train" approach. This, however, is likely to require further analysis of 

how pilots interact with the system in order to find an optimal technical design 

solution. 
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Implicating "pilot perfonnance" in an accident's causation still means that this human 

behaviour needs to be contextualized and analyzed in order to shed light on its origin 

and potential courses of action to improve future safety performance. Thus, 

identifying hazardous human involvement in accidents does not necessarily imply the 

identification of the actual 'cause' of the accident. The design of technology, task 

procedures, or organisational issues may be precursors to "human error", for instance 

if they are not well matched to human capabilities and thus present an 'unkind' work 

environment that precipitates the occurrence of human error. Analysis of the human 

factor in an accident's causation, therefore, cannot just focus on the human 

component alone, but must see it in relation and in interaction with the system which 

suffered the accident. This thesis builds on this insight and views errors and accidents 

as the result of a 'mismatch' between human capabilities and system design (see e.g. 

Rasmussen, 1982). It thus postulates viewing the human as 'just another system 

component' (with some set of known characteristics such as human cognitive 

capabilities and limitations). This human system component is seen as being in 

continuous interplay with the other system components, rather than as a malleable 

entity external to (and interfering with) the system. Thus, this 'human factors' 

approach to accident analysis (which corresponds to a 'human computer interaction' 

approach when dealing with computerized systems) stresses the need to consider the 

interaction between the human and the system in the accident's causation, with view 

of determining potential mismatches that could be remedied through system re

design. 

The understanding of human error and its relationship to the overall system is thus 

essential to further our understanding of accidents in complex systems. Insights into 

the causes and the course of accidents will help avoid similar events and situations in 

the future. For this goal it is necessary to more thoroughly understand why "human 
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error'" occurred and to be able to offer a sound basis for safety recommendations 

from the analysis process. 

BACKGROUND 

Human Error analysis in incident and accident investigation is often supported by 

error taxonomies or classification schemes (Maddox and Reason, 1996). These 

provide 'buckets' of common characteristics of error classes in which instances of 

assumed erroneous behaviour can be categorized. Some of these taxonomies aim at 

being grounded in some theoretical framework (e.g. a psychological theory of human 

action), others aim at being comprehensive in describing surface characteristics of 

incidents, and thus tend to be more domain-dependent (i.e. the behaviour and 

circumstances are not described generically, but in relation to their situated work 

context). These taxonomies also offer a terminology to describe, distinguish, and 

compare errors, or instances of erroneous behaviour. 

However, these error categories can be ambiguous, vague, and overlapping (Busse, 

1998). This is further exacerbated by error data often being under-specified and 

conflicting, requiring a high degree of interpretation on part of the analyst. For 

instance, a medical incident analyst might be presented with a description of a 

proximal incident cause that reads "forgot to check heart monitor". Given analysis 

, "Human Error" is the term that is commonly used in contemporary work on the 

subject to denote human involvement in an accident's causation. It is an arguably 

controversial term, but it will be used throughout this dissertation (interchangeably 

with related terms such as the 'human factor' in accidents' causation, or 'human 

involvemenf). The decision to use this term was made not only since the term has 

been coined by leaders of the field (e.g. Reason, 1990), but also because the 

juxtaposition of this term with the central thesis of this work (the relativity of 'human 

error') will further highlight the benefit of the suggested error analysis approach. 
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taxonomies such as the one used in the Australian Incident Monitoring Scheme 

(AIMS) (Runciman et aI., 1993), the incident analyst will then have a choice of 

categories such as "inattention", "fatigue", "haste", or "stress" to document the 

underlying 'cause' of the human error. Clearly, any choice of categories in this 

situation must be pure conjecture, relying solely on the "good judgement" of the 

analyst. Furthermore, such categories do not provide much substance or 

discriminatory power to help describe, distinguish, and compare errors in a 

meaningful way. 

Thus, these error taxonomies often do not attempt to provide a 'causal' explanation as 

to why the error occurred. Instead, they list descriptive categories of what happened, 

and how. (I will return to this in more detail in Chapter 5 when evaluating the 

Edinburgh I~cident Reporting Scheme). 

There are more analytic taxonomies that ground the classification of erroneous 

behaviour in theoretical frameworks. For instance, Reason's (1990) error taxonomy 

bases its error categorization scheme on generic underlying cognitive mechanisms, 

such as cognitive biases (e.g. it defines cognitive biases such as the "confirmation 

bias" which has been shown to hold for human decision-making: humans tend to 

form an initial hypothesis to understand a situation, and thereafter are biased towards 

only collecting evidence which further confirms this initial hypothesis2
). But even 

these present in their categorization at most the result of a 'causa\' analysis, but not 

how these conclusions were arrived at. Thus the path from the incident description to 

the categorization of the instance of human behaviour is a) based on the analysts 

'good judgement' and b) not documented. 

2 It could be argued that this is one reason why "scientific" (i.e. unbiased and 

objective) decision-making does not come natural to humans, and why there needs to 

a rigorous method in place (such as the idea of 'hypothesis falsification') in order to 

avoid un-scientific, "common sense", decision-making tainting analytic conclusions 

(e.g. Popper, 1934). 
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The rationale for choosing one error category over another is not documented, but left 

implicit. In this way, the reasoning behind the safety recommendations that result 

from the investigation process often cannot be traced back to the original error 

analysis. Safety recommendations provide the bridge between accidents and the 

prevention of future occurrences through advocating changes in the total system's 

design. Thus, the error analysis process will impact system redesign through its 

resulting recommendations, and would benefit from being documented. 

The following list summarizes the weaknesses of current human error analysis 

approaches that this thesis will try to address. 

In the case of error analysis by means of classification (common for incident 

reporting schemes): 

• Incident and accident related error data is often underspecified and 

conflicting. Several layers of interpretation thus taint the eventual result of 

the incident's analysis. Especially in incident reporting, this is exacerbated 

by inadequate data collection tools and mechanisms, and poor staff 

awareness. 

• Domain-dependent taxonomies are not generalizable (which prohibits e.g. 

cross-industry fertilisation, or even cross-department comparisons and 

exchange), they are inflexible and thus not change absorbent (cannot 

accommodate new technology, new procedures) 

• Theoretical error taxonomies' categories can be ambiguous, vague, and 

overlapping, so that error classification does not show high reliability even 

given adequate data. 

• Both domain-dependent and theoretical taxonomies can be pitched at 

different levels: the more detailed and low-level the classification the less 
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generalizability it affords, the more high-level and abstract the taxonomy, 

the less valuable information (understanding, precision in its specification, 

discriminatory value) it embodies and conveys. 

• The classification process typically is not documented, nor is a justification 

of the classification provided. Classification decisions, especially in 

ambiguous category cases, can therefore seem arbitrary, and the taxonomies' 

reliability is further reduced. 

In the case of error analysis without classification (the case of traditional accident 

reports): 

• error analysis that is based mostly on 'common sense', i.e. that benefits from 

the analysts' expertise, but relies on implicit and highly individual 

knowledge 

• Implicit use of error theories and taxonomies (such as 'slip') that have made 

their way into the expertise's knowledge base 

• Imprecise and ill-defined use of error descriptors (such as 'mistake') 

• The documentation of the analysis and conclusion finding proceeds in the 

form of the accident report. There are numerous problems associated with 

such a natural language based approach (Burns, 2000) 

• There is a gap between the generation of safety recommendations and both 

taxonomical as well as natural language analysis data; intervention points for 

system redesign are not suggested or revealed by traditional analysis 

techniques. So far, the analyst'S decision is left unsupported by the analysis 

methodology. 

• In traditional analysis techniques there is no method of validating the chosen 

intervention points and the outcome of suggested interventions. 
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THESIS GOALS 

The principal goal of this thesis is to introduce an approach to support the human 

error analysis process that addresses its above-mentioned weaknesses. To this end, 

cognitive modeIling techniques are employed as a tool to reason about competing 

interpretations of human error and its underlying cognitive processes. Thus, the goal 

for the approach that is put forward here is to guide error classification, while basing 

the error analysis in a cognitive-analytical framework rather than a behavioural

descriptive one. Furthermore, the reasoning process underlying the classification will 

be explicated and documented. An additional goal is for the cognitive error modelling 

approach to strengthen the bridge between the analysis of the 'causes' of human error 

and the resulting safety recommendations, and thus measures for system redesign. 

The cognitive error modelling approach thus also aims at providing support for the 

choice of system redesign decisions by grounding them in cognitive theory. In this 

way, the link between the analysis of human error and its implications for safety 

recommendations is made explicit and substantiated by an analysis that is situated in 

a cognitive theoretical framework. 

This benefit of this error analysis approach will be illustrated throughout this 

dissertation by use of real-life case studies drawn from the domains of aviation and 

medicine. An incident reporting scheme was implemented from scratch in a Neonatal 

Intensive Care Unit addressing above-mentioned issues of data collection and staff 

awareness, and demonstrating the cognitive error modelling technique in the context 

of a clinical safety management framework. 
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PROOF OF CONCEPT 

The cognitive error modelling approach that is put forward in this thesis was piloted 

in an initial study that involved analysing user error when interacting with the 

Netscape internet browser (Busse and Johnson, 1998) (see Appendix A). The study 

confirmed the above-mentioned weaknesses of commonly used human error 

taxonomies, and the need for documenting the error analysis process. It was 

concluded that this approach of cognitive error modelling supported the analysis 

process. It offered a framework and method for evaluating competing error 

categorisations based on cognitive theory. Thus, interpretations of user behaviour and 

hypotheses as to its motivation could be expressed, compared and evaluated in a 

cognitive framework. The results also showed how design recommendations could be 

based on an in-depth cognitive analysis of user error, which thus provided a means 

for justifying and documenting design choices. Thus, this pilot work showed 

promising results for the cognitive error modelling framework to be applied to error 

analysis. The observations made in this investigation of user error refined the goals 

for this thesis. 

CONTRIBUTION TO THE FIELD 

The core contributions to the field of the work presented here is the examination of 

the weaknesses of current error analysis practices in incident and accident 

investigation, and addressing these with the application of a novel cognitive error 

modelling approach in a revised incident reporting framework. 

This dissertation provides theoretical justifications and practical, worked examples of 

how the analysis of human error in accidents and incidents can be supported by 

cognitive error modelling. It provides a framework for reasoning about alternative 

classifications and causal hypotheses. It also deals with the relationship between error 

9 



analysis and the resulting safety recommendations. A goal of this work is to support 

the generation and corroboration of safety recommendations by grounding error 

analysis and its implication for system redesign in a cognitive theoretical framework. 

This thesis gives examples of how an error analysis that is supported by cognitive 

error modelling can be used to compare choices of safety recommendations and 

substantiate system redesign decisions. 

A further goal is to support the practice of human error analysis in a real-life 

application. Thus, the analysis is not limited to the retrospective investigation of error 

as described in. accident reports. It could be shown (see chapter 5) that a post-hoc 

cognitive analysis of error data in accident reports can be used to evaluate safety 

recommendations. 

However, accident reports are rhetorical documents (Snowdon and Johnson, 1998), 

and can serve to layout an argument that justifies the investigation's conclusions 

more than portray the analysis process. Therefore, the cognitive error modelling 

approach was also applied to error data drawn from incidents reports. Incidents are 

near-miss accidents, where the chain of events leading to an accident was recognised 

in time and the accident was prevented from occurring. This means, the potential 

causation of accidents is investigated, rather than a post-hoc analysis of the causation 

of an accident that actually occurred. Incident reports are a means of documenting 

those near-miss system breakdowns and are authored solely by the person who 

detected the deviation and prevented the accident. 

Thus, the error data drawn from near-miss incident reports provide less of a rhetoric 

argumentation but an (albeit subjective) description and interpretation of events 

leading to a near-miss system breakdown. This description presents raw error data 

with no other level of interpretation than that of the witness filtering the information. 

Therefore, one of the goals of this thesis is to propose a cognitive error modelling 

approach to support the analysis of error and the validation of safety 

recommendations when dealing with data drawn from incident reports. 
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An intermediate benefit of the work presented here also is to test the transferability of 

human error analysis concepts and techniques researched in safety-critical fields such 

as aviation and process control to the domain of medical (clinical) environments from 

a safety-critical field with high demands for error management techniques (Leape et 

aI., 1991). A further goal addressed in this report, therefore, is to cover a range of 

characteristically different domains, such as aviation and medicine, in the application 

of our cognitive error modelling approach. 

Subgoals also include a comparative evaluation of different cognitive architectures 

and their use as error analysis supporting expressive frameworks. The architectures 

considered here are EPIC and ICS (see Chapter 3). 

CAVEAT 

This thesis does not present a novel cognitive framework or architecture - it draws on 

existing work in the field of cognitive psychology. The error analysis approach in this 

thesis is also does not supposed to replace existing error taxonomies, but to 

complement their value and support their application. Furthermore, the cognitive 

error analysis approach that is proposed in this thesis has not yet been cross-validated 

in the context of human error analysis in incident and accident investigation. 

Currently, it has only been applied to the field of safety-critical systems analysis 

within the Glasgow Accident Analysis Group. The approach has been, however, 

cross-validated in its original field of applications, Human-Computer Interaction 

(Buckingham-Shum et aI., 1996). 
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CHAPTER BREAKDOWN 

Chapter 2 will introduce the state of the art of error analysis in accident and incident 

investigation, and point out weaknesses in current error analysis methods. 

Chapter 3 suggests the use of cognitive modelling techniques to aid human error 

analysis in accident and incident reporting. It investigates and outlines the relative 

strengths and weaknesses of different cognitive modelling traditions when used to 

tackle human error analysis. One focus of this chapter is to provide a comparative 

evaluation of two architectures as to their suitability to support the error analysis 

process. After having identified one suitable cognitive architecture for error analysis, 

the chapter demonstrates a proof of concept of how this cognitive modelling 

technique can aid human error analysis from data drawn from an aviation accident 

report. A further implication of the analysis carried out in the work presented in 

chapter 3 will be shown to be the value of cognitive modelling in the grounding of 

safety recommendations. 

In Chapter 4, it is shown how this cognitive error modelling technique can be used to 

complement conventional error analysis. This will be demonstrated by retrospectively 

re-analysing the human factor in the causation of selected aviation incidents and 

accidents. 

In Chapter 5, the error modelling technique is taken to a real-life setting (rather than 

being applied retrospectively to an existing report). The established safety 

management process in a real-life clinical environment is investigated, and it is 

shown how it can benefit from using the cognitive error modelling approach for its 

error analysis process as put forward by this thesis. The application of cognitive 

modelling to error data drawn from a clinical incident reporting scheme is examined. 
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This chapter also again explicitly tackles the relationship of human error analysis and 

safety recommendations for system redesign. 

In Chapter 6, the process of establishing an incident reporting scheme that is specially 

designed for contextual human error analysis is documented. Conventional treatment 

of human error analysis has been shown to be at times insufficient and at worst 

misleading, and thus alternatives are spelled out in this demonstration of a safety 

management approach that is geared towards a meaningful, contextual analysis of 

human error. 

The final chapter (Chapter 7) provides a summary of our findings, conclusions, and 

suggestions for further research. 
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CHAPTER 2 HUMAN ERROR 

ANALYSIS IN ACCIDENT AND 

INCIDENT INVESTIGATION 

DEFINITIONS OF TERMS 

In the field of accident analysis, there has been much discussion as to the difference 

between terms such as 'failure', 'accident', 'incident', 'occurrence', or 'adverse 

event'. This is partly since they are used differently in the various domains that 

concern themselves with accident analysis (aviation, medicine, process control to 

name but a few). In this chapter, I will give definitions and an introduction to these 

key concepts of this thesis. I will also present an overview of the current state of the 

art research and practice in human error analysis in incident and accident 

investigation in safety-critical domains. Throughout this overview, I will highlight the 

role of human involvement in an accident's causal chain, and how this is dealt with in 

the relevant research and practice. 

In this dissertation, a 'failure' refers to a system failure, in which there is a "non

performance or inability of the system or component to perform its intended function 

for a specified time under specified environmental conditions" (Leveson, 1995). A 

system failure does not necessarily lead to undesirable consequences. It might not 

even ever be detected. 'System failure' is often used implicitly to denote a purely 

mechanical failure, with no human involvement. However, a human interacting with 

the system is necessarily to be seen as one of its components. This dissertation will 

explicitly note human involvement (or lack of it) whenever it is relevant when talking 

about 'system failures'. 
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An 'accident' is defined as "an undesired and unplanned [ .. J event that resulted in (at 

least) a specified level of loss" (op.cit.). A incident (referred to interchangeably as 

'critical incident') is here defined as an event ''that involves no loss (or only minor 

loss) but with potential for loss under different circumstances" (op.cit.). 

Leveson does not explicitly refer to the medical domain in her definitions of accidents 

and incidents. As is often the case, terms take on different meanings in other domains, 

and so the term 'accident' takes on a different meaning in the medial domain. What is 

referred to as an "accident" in e.g. aviation is referred to in medicine as an 'adverse 

event'. Thus, in this thesis the definitions of accidents and incidents will be modified 

to suit the appropriate terminology as this work progresses to discuss "human error" 

in the domain of medicine. Other terms relevant to the medical domain in this context 

are the concepts of "iatrogenic injury" or "iatrogenic events". These refer to 

''treatment-caused injury" (sometimes commonly referred to as "doctor-caused 

injury"), and these terms are specific to the clinical field. 

'Human Error' is here defined as any (expected or unexpected) human behaviour 

(including lack of action) that led to undesirable consequences of some specified level 

(i.e. not including violations, and not of terrorist intent, or sabotage) in the case of an 

accident, or that could have led to undesirable consequences of (at least) some 

specified level, in the case of an incident (as defined above). "Undesirable 

consequences" includes a specified level of loss (in the case of an accident). 

"Unexpected behaviour" here refers to both "unplanned" (i.e. unexpected by the 

individual) and "planned behaviour", and it is also set in relation to other people's 

expectations. The latter is of course subjective, and thus often brought in relation to 

rules laid down by a working community, such as standards and protocols, but also 

implicit 'best practice'. 

It can also refer to behaviour that was planned by the individual, but where the plan 

was either inappropriate (i.e. it was correct plan to achieve some goal, but the wrong 
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situation (or goal) to apply it to), wrong, or incomplete (again, as measured against 

the (potential) negative consequences of that behaviour resulting from the plan). 

Crucially, 'human error' as used in the literature can also refer to expected human 

behaviour (not in relation to an inappropriate, wrong and incomplete plan) that 

nevertheless resulted in some level of loss, or had the potential to do so. 

The example given in the introduction of the November accident of Flight 587 is a 

case in point. The pilots had been trained to use the rudder, and to their best 

knowledge the rudder was supposed to adhere to the international standard of 

withstanding any pressure level that could possibly occur during flight. But when the 

rudder failed to withstand the pressure of their manoeuvring, accident investigation 

turned to the pilots' performance as the "cause" of the accident. 

The above definition of 'human error' reflects one interpretation of error that is 

prevalent in the literature (e.g. Reason, 1990) and it will be this definition that is 

referred to in this dissertation. However, this definition can invite contradiction and 

misunderstandings, and this thesis aims at elucidating why this is so, and suggests 

ways of dealing with 'human error' to avoid these pitfalls. 

For instance, expected 'work according to rule' is near equivalent of "strike" in any 

trade-union's book, and implicit rules are still to a large part subjective and flexible. 

Often, standards contain inappropriate, wrong, or incomplete rules that are 

compensated for by humans. They may even contain contradictory rules, which the 

nurse or pilot must choose from without guidance and at their own risk. Plans often 

are trained, and expectations are set in advance, often without choice or control of the 

individual. Furthermore, the design of machines, devices, interfaces, and work 

contexts might be more error-inducing than helpful, with humans often compensating 

for their weaknesses (Kanse and van der Schaaf, 2000). 

'Human error' can also be seen as inevitable part of human behavioural variability, 

and thus as the flipside of the coin that also enables humans to think and act flexibly 
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and economically, to compensate for poor machine design, poor work protocols, and 

sub-optimal work conditions, to recover a system from near-miss incidents back into 

a healthy state, and also often enough to prevent accidents from occurring. This view 

thus holds that the variability of behaviour that includes 'human error' is inevitable, 

and thus the design of the work system must take this human variability into account, 

and be error-tolerant, 'forgiving', and aim at an optimal match with humans' abilities. 

The above definition of 'human error' will require further discussion throughout this 

dissertation, especially, as will be shown, when placed in the context of categorizing 

accident causes and instances of human behaviour involved in the chain of causation. 

This is exacerbated by the need for any definition of human error in the context of 

categorization to enable a "relevant" description (i.e. providing an analytic, 

constructive vocabulary), the distinction and comparison of instances of human 

behaviour over time, and across individuals, situations, locations and even domains. 

The dissertation examines accidents and incidents in "safety-critical systems". These 

are here defined to be systems whose incorrect function (Le. failure) may have very 

serious consequences, such as loss of human life, severe injuries, large scale 

environmental damage, or considerable economical penalties. The safety-critical 

systems dealt with in this dissertation are the domains of aviation and clinical 

medicine (intensive care). Other domains that are defined as safety-critical and that 

the field of accident analysis deals with are e.g. process control (especially in nuclear 

power plants and chemical plants, but also manufacturing), the naval domain, 

automobile engineering and traffic, fire safety (internal and external) and associated 

crowd control. These are the fields that most of the work relevant to this thesis' 

accident analysis aspects is informed by. In the following section, I will introduce the 

current state of the art in accident analysis research as the basis of this thesis. 
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ACCIDENT ANALYSIS 

Accident analysis should be an integral part of safety management in any safety

critical organisation or industry. Morone and Woodhouse (1986) identified "learning 

from experience", which takes place thorough incident and accident analysis, as one 

of five vital strategies for risk regulation in safety critical domains, next to e.g. 

"protection against potential hazards", and "prioritising potential risks". 

Next to the financial implications of the loss associated with accidents, there is also 

the moral obligation of accident prevention towards the employees that are at risk in 

safety-critical industries, towards anyone who might be impacted by the negative 

consequences of accidents, and also to society at large in terms of economic impact 

or, in the worst case, large-scale loss of life. Public scrutiny therefore rests on these 

industries, which will not only have to try their best to prevent (seemingly inevitable) 

accidents from happening, but also present a transparency of their decision-making 

processes concerning safety management, documenting any measures taken in the 

name of accident prevention, and their justification. 

The International Civil Aviation Organization (ICAO) document of "International 

Standards and Recommended Practices: Aircraft Accident and Incident Investigation 

- Annex )3" (ICAO, 1994) details the standards and recommended practices of 

reporting, analyzing, and acting upon civil aviation accidents and incidents. I will use 

this standard as a baseline to illustrate the current state of the art in accident analysis 

practices in this chapter. In contrast, the later sections in this chapter will delve deeper 

into current accident analysis research. 

Standards and Recommended Practices for Aircraft Accident Inquiries were first 

adopted by the ICAO Council in 1951 (op. cit.). The document details the duties and 

recommendations for every contracting state with respect to accident investigation, 

and especially, as is stressed in the document, the prompt dissemination of accident 
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occurrences, and of the analysis results. The ICAO document clearly lays down that 

"the sole objective of the investigation of an accident or incident shall be the 

prevention of accidents and incidents." It further stresses explicitly that "it is not the 

purpose of this activity to apportion blame or liability" (op. cit.). The ICOA 

recommended format of aviation accident and incident reports is taken as a blueprint 

(or at least as a framework) for accident reporting by ICOA's contracting states. The 

following lists the sections and accident report format that is recommended by ICAO 

(see Figure 2-1). 

It is noted that much diverse expertise is brought to populating these sections -

meteorologists, metallurgists, fire safety experts, and of course aircraft specialists, 

and many others, all contribute to the analysis of these sets of factors. Under analysis, 

ICAO recommends to "analyse, as appropriate, only the information documented 

[under "Factual Information"] and which is relevant to the determination of 

conclusions and causes." There is only one section out of 19 main sections of the 

report format's body, however, that concerns itself with the human factor in the 

accidents causation, "personnel information". 

This section, "Personnel information", includes the following, according to ICAO: 

I. Pertinent information concerning each of the flight crew members, including: 

age, validity of licenses, ratings, mandatory checks, flying experience (total 

and on type), and relevant information on duty time. 

2. Brief statement of qualifications and experience of other crew members. 

3. Pertinent information regarding other personnel, such as air traffic services, 

maintenance, etc. when relevant. 

These are all factors that impact the flight crew members' psychological 

predisposition, and their psychological disposition (their mental abilities, decision

making powers, concentration levels etc.) at the time of the accident. However, it is 

unclear how these factors got to be included in this list of "factors influencing human 
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cognition", (do they all stem from one coherent psychological theory?), or why other 

psychological factors were left out. 

On another level, however, it is, surprising that 'human error' does not warrant its 

own analytical section, given the fact that it is so often described as the major single 

cause of modern accidents (up to 80% of aviation accident and medical adverse 

events are frequently cited as the accident's cause, see e.g. (Busse and Johnson, 

1999». 

There seems to be a tendency to assume that if 'the system' ostensibly did not do 

wrong, there must have been a mistake by the people who operated the machines. 

This is corroborated by the observation which I will return to in later chapters, that 

accident causation taxonomies tend to focus on the classification of technical causes 

(material conditions), and environmental conditions, such as weather. The part of 

those taxonomies that relates to "human error" often serves as a bucket for instances 

of human behaviour that are associated with one or other non-human causal event in 

the accident chain for which no sufficiently satisfying technical explanation can be 

found (Hollnagel, 1983). 
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1. Title 
2. Synopsis 
3. Body 

a. Factual Information 
I. History of the flight 

ii. Injuries to persons 
iii. Damage to aircraft 
iv. Other damage 
v. Personnel information 

VI. Aircraft information 
VII. Meteorological information 

Vlll. Aids to navigation 
ix. Communications 
x. Aerodrome information 

XI. FI ight recorders 
xii. Wreckage and impact information 

XlII. Medical and pathological information 
xiv. Fire 
xv. Survival aspects 

XVI. Tests and research 
xvii. Organizational and management information 

XVIII. Additional information 
xix. Useful or effective investigation techniques 

h. Analysis 
c. Conclusions 
d. Safety Recommendations 

4. Appendices 

Figure 2-1- ICAO recommended accident report format 
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There is typically no justification, however, why that instance of human behaviour is 

assumed to have caused' this accident chain4
, rather than just being associated (i.e. 

correlated) with i{ Moreover, the "analysis" of human factors that then takes place 

often is constrained to take place within the boundaries of this category, neglecting 

the interaction of human behaviour with the environmental context. Whether the 

human involvement in an accidents' chain of events is explicitly considered or not, it 

is often implied as the 'final' cause (or the "root cause") in the absence of any 

'satisfying' technical or environmental factors. It has been noted that this decision 

often is a highly subjective one6
, and especially the interpretation and analysis of that 

instance of human behaviour that is reasoned to have 'caused' the accident is often 

implicitly influenced by background 'knowledge' and assumptions on part of the 

analyse. This phenomenon has also been investigated empirically by Lekberg (1997), 

with comparable conclusions. 

3 See the second half of this Chapter (on 'Human Error') for a discussion and 

definition of the term 'cause'. 

4 Benner refers to the beginnings of accident analysis theory to explain this 

phenomenon: He states that "the statistical work of Greenwood and Woods in ]919 

[ .. ] suggested the "accident proneness" concept. Their work still influences some 

accident investigation [ .. ]. Investigators still look for data in accidents that will 

support the idea that "conditions" such as attitudes, attentiveness and so forth "cause" 

accidents. This statistical work focused on static conditions and set the pattern for 

untold man years of research into "unsafe conditions" as causes of accidents" 

(Benner, 1975). 

5 The confusion between correlation and causation is common in "common sense" 

thinking, and has been pointed out especially by statisticians repeatedly (e.g. Blalock, 

]972). 

6 See for instance, (Snowdon and Johnson, 1998), and Snowdon, 2002. 

7 "Investigators unconsciously base their investigative methods on methodologies 

adapted from their academic disciplines or previous work experience; this leads to 

highly individualized, personalized investigative methodologies" (Benner, ] 98]). 

22 



Furthermore, point 3d ("Safety Recommendations") only states "[aJs appropriate, 

briefly state any recommendations made for the purpose of accident prevention and 

any resultant corrective action. There is no recommendation of linking the "causal 

analysis of factual information" to the generation of safety recommendation, as would 

be necessary in order to trace back the justifications for certain recommendations, and 

in order to review the recommendations in case other factors come to light, and the 

analysis process is to be revised. 

Of interest is the inclusion of point of 3.a.xix: "useful or effective investigation 

techniques". This section recommends that "wheI1 useful or effective investigation 

techniques have been used during the investigation" analysts should "briefly indicate 

the reason for using these techniques and refer [ .. J to the main features as well as 

describing the results under the appropriate subheadings [ .. J." This point is of interest 

since its frequent omission in ICAO inspired accident reports leads to the question 

whether the investigation techniques used are indeed hardly useful or effective 

enough to be mentioned8
• 

The official accident investigation handbook by the US Department of Energy (DoE, 

1997) similarly short-changes human error investigation methods. In chapter 7, it lists 

recommended analysis techniques to address critical areas of investigation. Under 

"advanced methods", fault tree techniques such as MORT (Management Oversight 

and Risk Tree, e.g. Knox and Eicher, 1980), but only under "other analytic 

techniques" can a mention of human factors analysis techniques be found. To quote, 

it states that "Human factors analysis identifies elements that influence task 

performance, focusing on operability, work environment, and management elements. 

Humans are often the weakest link in a system and can be the system component 

8 see for instance http://www.ntsb.gov/ntsb/guery.asp, the US National Transport

ation and Safety Board's Aviation Accident Database and collection of aviation 

accident synopses (current January 8th
, 2002). 
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most likely to fail. Often machines are not optimally designed for operators, thereby 

increasing the risk of error. High-stress situations can cause personnel fatigue and 

increase the likelihood of error and failure. Therefore, methods that focus on human 

factors are useful when human error is determined to be a direct or contributing cause 

of an accident." But despite these insights, and the fact that 60-80 % of accidents are 

said to involve 'human error', the DoE handbook does not list or recommend any 

specific human factors investigation technique. 

Accident Causation 

Accident analysis is informed, albeit often implicitly (Bibbings, 200 I), by accident 

causation models. In accident causation models, as is shown below, any system's 

human component is central to the system description that forms the framework to 

describe the web of contributing factors that led to the accident. Human involvement 

in any accident is seen as inevitable when looked at from the perspective of 'active 

and latent' human error (see chapter 5 for an in-depth discussion). Whatever the focus 

of the investigation, accident causation models make clear that the accident's 

causation needs to be viewed from several different levels of system components. 

Accident Causation: Causal Trees 

Arguably one of the most common and intuitive approaches to the analysis of causal 

factors that led to the accident, next to the chronological time line of events, is the 

"causal tree" family of methods. 

An accident seldom happens in isolation: usually it is a concatenation of events. This 

idea initially gave rise to the concept of a 'causal chain' (e.g. Heinrich's Domino 
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Theory, 1936). However, this concept is mostly unhelpful in a meaningful analysis of 

the accident, since it is an oversimplification that ignores the interplay of causal and 

environmental factors (see also e.g. Perrow, 1984). 

The reality is likely to be a complex web of interacting events, culminating in the 

accident. To grasp such a web of events while investigating the accident can be 

difficult. To present it in purely verbal form in an accident report, in such a way as to 

be comprehensible to even a well-informed reader, can be very difficult, if not 

impossible (Zotov, 1996). 

Fault trees are a family of analysis and investigation methods that support the 

uncovering of the multitude of casual factors during accident analysis. Most fault tree 

methods are diagrammatic, and can facilitate the presentation of the culmination of 

events leading to an accident. They require the system, task, procedure, or component 

in question to be logically decomposed into functional elements. Once the 

relationships among these elements are identified, a diagram is developed that depicts 

the elements and their relationships. A typical fault tree consists of an outcome (either 

successful operation or a particular failure) shown at the top, or most general level, of 

the tree. Elements that contribute to the outcome are listed below it in the diagram 

with connections (branches) showing the logical relationship between the element and 

the outcome. Once an outcome is defined, then contributing factors are identified and 

placed into the diagram. The appearance of a fault tree is that many elements 

combine, in pyramid fashion, to produce a single outcome. The trick is to identify all 

of the underlying elements (and combinations of elements) that might combine to 

produce a particular outcome (Reason and Maddox, 1996). 

Fault trees are used specifically in the field of Probabilistic Risk and Safety Analysis 

(e.g. Fullwood and Hall, 1988), and some variants of it concern themselves explicitly 

with 'human error' next to technical risks and faults. 
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For instance, the NTSB accident/incident database contains sections with factual 

elements ("who, what, where"), sequence of events, and a narrative description of the 

incident. The NTSB uses a multiple-cause classification system with allowance for up 

to seven "occurrences", and several "findings" for each occurrence. Any of the 

findings may be prescribed as a cause or contributory factor. The probable cause 

statement is usually an integrated text. Each "finding" may, in turn, be divided into 

"subjects". The subjects come from a coded list and refer to whether the finding was 

person-related, and whether it was a proximal cause or not (NTSB, 1998). Therefore, 

the database allows for a causal tree being constructed by ascribing the level of 

proximity of the findings to the reported occurrence. Thus, it can be distinguished 

between causal factors and conditions facilitating the occurrence, and suggested root 

causes. However, the available constructs largely identify who was involved in a 

finding but often stop short of an assessment of why the error was made. Even the 

probable cause statements are largely descriptive in nature, without reference to latent 

failures or human information processing. This information, however, is important in 

developing preventive strategies (Luxhoj et aI., 1997). 

It has thus been pointed out repeatedly in the recent past that accidents that 

presumably result from "human error" are better characterized as a complex interplay 

of technical, social, organisational, and managerial factors (e.g. Leveson and Turner, 

1993). Thus, the design of the operating environment - displays, controls, and so on 

(Norman, 1983; 1990; Rizzo et aI., 1996) - has profound implications for the ability 

of the system to be maintained effectively and safely. More progressive models of 

accident causation attempt to capture the broader view on human error, taking the 

'total system' view. Two established models that take a broader view are Helmreich's 

and Reason's. Both aim at contextualising the human factors in accident causation, by 

placing the human and the 'erroneous' behaviour in relation to other factors, such as 

the environment, and also the technical system. These two models are introduced in 

the upcoming section. 
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Helmreich's Accident Causation Model 

Helmreich envisaged e.g. aircraft crews as working within a series of environments, 

each of which might put pressure on the crew, and degrade their performance. This 

series of environments was visualised as concentric spheres of influence, each 

affecting those inside (see Figure 2-2). In this diagram, the innermost environment 

concerns matters among the crew such as communication, personality, and Crew 

Resource Management. The crew is affected by the physical environment: the 

aircraft, with its idiosyncrasies, defects, and performance characteristics; the weather, 

both local and general; and the aerodrome environment. Outside these is the 

organisation of the airline, which purchased and maintained the aircraft, trained the 

crews, and should support their actions. Surrounding all of these is the regulatory 

environment, in which regulatory action by e.g. Transport Canada (i.e. the relevant 

regulatory authority) should ensure safe standards of operation. 

Reason's Accident Causation Model 

To produce effective recommendations from accident analysis, the information 

collected and the conclusions reached must be analysed in a way that reveals the 

relationships between the individuals associated with the occurrence, and the design 

and characteristics of the systems within which those individuals operate. 
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Regulatory 

Organisational 

Physical 

Figure 2-2 - Flightcrew Environments: Factors Influencing Behaviour 

(Helmreich et aI., 1990) 

For the purposes of broad systems analysis, an analytical model researched and 

developed by James Reason can be used. The Reason accident causation model is 

becoming an industry standard, and has been recommended by ICAO (1993) for use 

in investigating the role of management policies and procedures in aircraft accidents 

and incidents (Zotov, 1996). 

Central to Reason's approach is the concept ofthe 'organisational accident', in which 

latent failures arising mainly in the managerial and organisational spheres combine 

adversely with local triggering events (weather, location, etc.) and with the active 

failures of individuals at the 'sharp end' (errors and procedural violations) (Reason, 

1990). 

The relationship between these elements in the process of accident causation is shown 

in the accompanying diagram (Figure 2-3). 
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Organisation Task/Environment Individuals Defences 

Organisational Local Factors Active Failures 

~ Factors • Morale Slips/Lapses 

Communicati L Fatigue Mistakes • ons Equipment Violations 

Management • Procedures 

structure etc. 

• IncomMlihie 

Latent Failures (L) 

Figure 2-3 - ' Organisational Accidents (Reason, 1997) 

Thus in both these influential accident causation models, 'human error' as a causal 

factor is een as intertwined with 'causes ' of vel)' diverging origins - from 

technological failure to managerial oversight, to organizational weakness or 

vu lnerability (Johnson, 1999). These factors are demonstrated to not only stand in 

relation with the ' human error' but more drastically, the instance of 'erroneous' 

human beha iour would not have occurred were it not for the circumstances. Thus, 

the situational context can be seen as defining the causation of ' 'human error". 

INCIDENT INVESTIGATION 

Accident in estigation is a form of post-hoc analysis, i.e. it is done after the fact. The 

under! ing goal of any accident analysis is to prevent future accidents. Accident 
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analysis is employed towards this goal (as stated in the above-mentioned ICAO 

reporting standard), since it is reasoned that an understanding of one accident's 

causation can lead to safety recommendations that improve on the system sufficiently 
. 9 to prevent Its reoccurrence . 

This pressing motivation (the goal to prevent future accidents) has led to the idea of 

"early warning systems" (Van der Schaaf et aI., 1991). This refers to incident 

reporting schemes (or: "Critical Incident Reporting"), i.e. schemes that record near

miss accidents. These are seen as indications of accident potential within a system, 

and it is reasoned that if the thus identified weakness in the system is addressed as 

soon as a near-miss accident is identified, then actual accidents can be prevented from 

occurring. Not surprisingly, the concepts of causal analysis for accidents and 

incidents are closely related. 

In many medical incident reporting schemes, in-depth analysis and a search for the 

root causes of adverse events does not take place (Leape, 1994; Chappell, 1996). In 

contrast, the formal investigation of adverse events in industry is an increasingly 

well-established concept. Studies of accidents in industry, transport and military 

spheres have led to a much broader understanding of accident causation, with less 

focus on the individual who makes the error, and more on pre-existing organisational 

factors. 

9 The shorter term vIew on the benefits of accident analysis also stresses the 

importance of prompt dissemination of the accident's occurrence, the identified 

circumstances and causation, and the "lessons learned", i.e. the safety 

recommendations. In the case of an aviation accident, or course the airline company 

needs to be notified promptly, as well as the manufacturer. But also other airlines that 

fly the same planes, or use the same procedures, or use the same runways etc. need to 

be notified. This communication of accident data is seen as crucial in the overall 

strategy of future accident prevention (ICAO, 1994). 
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For instance, Reason's organisational accident causation model (see Figure 2-3) 

shows how latent failures can pave the way for an accident to occur. To produce 

effective recommendations, the information collected must be analyzed in a way that 

reveals the relationships between the human error that occurred, the design, and 

characteristics of the systems. 

The benefits of analysing a case using a formalised model are that it allows an 

analysis in a structured format based on theories of accident causation and human 

error. This type of analysis allows analysts not only to identify the active failures, 

which they are accustomed to do, but also the potentially more important latent 

failures which create the conditions in which people make errors. Stanhope et al. 

(1997) suggested that a more systematic approach dealing with a smaller number of 

cases in more depth is likely to yield greater dividends in understanding incident 

causation and generating action recommendation than the 'many' cases currently 

analysed quite briefly and hence less effectively. 

Barnhart et al. (1975) present a seminal paper on NASA's accident investigation 

method. Combined with Reason's accident causation model (Eagle et aI., 1992), it 

can be described as consisting of three steps: 

"When": 

• Assembly of facts and generation oftimeJine 

• Embed event within task sequence 

"What": 

• Identification of active failures 

• Description of all behaviours 

• Root Cause Analysis, assembling proximal and distal causes and work 

conditions factors 
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"Why" 

• Identification of latent failures, for instance: 

• "Information Processing Analysis", e.g.: 

• sources of information available (latent) 

• what information perceived, used, and in what ways 

• which decisions made, listing all choices 

• whether actions matched decisions (latent and active) 

• consideration of managerial and organisational failures; follow-up of root 

cause analysis 

Therefore, this model extends the above-described NTSB model by including the 

analysis of the "why" of the incident. The incident analysis proceeds from 

identification of 'active failures' and local working conditions that precipitate those to 

the identification of latent system failures. For instance, Reason (1990) has proposed 

a list of General Failure Types of organizations. They include: incompatible goals; 

organizational deficiencies; inadequate communications; poor planning; inadequate 

control and monitoring; design failures; inadequate defences; unsuitable materials; 

poor procedures; poor training; inadequate maintenance management; and inadequate 

regulation. 

I will return to incident reporting in chapters 6 and 7 of this thesis (and in detail also 

in Appendices B and C). 
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THE ROLE OF HUMAN ERROR 

Introduction and Definition of Terms 

Next to accident causation models, accident analysis is typically informed just as 

implicitly by the analyst's model of the nature of human error lO
• The human factor is 

a central part in the above-mentioned accident causation models. The human 

operators can thus be seen as another "system component" that needs to be 

investigated in accident and incident analysis. Therefore, methods are needed that 

specialize in the analysis of the human contribution to an accident's causation. 

There are many theories on the causation and underlying mechanisms of human error, 

just as there are as many on the general workings of the human mind. The human 

error models used in accident analysis, however, (or those found in the literature on 

accident analysis, even if they are not explicitly used in the process) are not solely 

influenced by psychological theory. 

Human error research is traditionally not bound to anyone particular discipline, but is 

distributed over several communities, such as psychology, reliability analysis, system, 

software and usability engineering, and cognitive science. Within each paradigm, the 

domain specific perspective dominates definition and scope of the term 'human 

error'. As we will see later, research into error focuses on those aspects of the topic 

that are relevant to the respective discipline or perspective. 

The First Human Error Conference in Maine (see Reason, 1990) (and the preceding 

Three Mile Island accident) in 1980 brought into being a human error research 

community that started to pool the efforts scattered across disciplinary boundaries. 

10 There are some notable examples where the theories that were assumed to explain 

"erroneous" human behaviour were made explicit in accident reports (BASI, 1994). 
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The body of research has grown considerably since then, lead prominently by 

cognitive engineers and psychologists such as Jens Rasmussen, James Reason, and 

e.g. Veronique DeKeyser. 

In order to review the field of error research, I will first draw attention to different 

views on what constitutes an 'error', and specifically, a 'human error'. 

Within psychology, human error is typically viewed as a deviation from an 

individual's preliminary intention to reach a norm (Bes and Johnson, 1998). Error is 

seen in the context of cognitive processing and decision-making models (see for 

instance Ashcraft, 1994). For instance, Reason states that human error occurs because 

of either inappropriate planning (action specification), or inappropriate action 

execution on side of the individual (see Norman's Action Theory below). 

In a system failure ll context, the term 'human error' might be misleading (see for 

instance Leveson, 1995). An 'error', according to Reason (1990), is the consequence 

and not tantamount to 'erroneous action'. The term 'human error' is seen by manyl2 

as conveying oft-unjustified responsibility and blame in a system failure context. 

1\ A Failure is defined to be the non-performance or inability of the system or 

component [including the human as a component] to perform its intended function for 

a specified time under specified environmental conditions (Leveson, 1995) 

12 Rasmussen (Rasmussen et aI., 1987, see below), in his error taxonomy uses the 

descriptive phrase 'external mode of human malfunctioning' (inappropriate task 

performance) in order to avoid the term 'human error' "with its flavour of guilt". 

Norman (1990) suggests that: "one major step would be to remove the term 'Human 

Error' from our vocabulary and re-evaluate our need to blame individuals". This is an 

attempt to shift away from blame, error, and cause. The search for cause, as Norman 

(1990) further suggests, ends the search for meaning, for once we have found the 

cause we can 'explain' it away. The idea of 'cause' can be seen as a legacy of the 

legal community (Hale et at., 1997). 
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Senders and Moray (1991) point out one useful distinction between system fault and 

human error. In the former the system did not provide the functionality necessary for 

performing certain tasks. In the latter, the system did provide the 'tools' (such as 

actions, operators and information) for carrying out a task, but the user failed to 'use' 

them. However, this distinction poses further questions. 

For instance, Rasmussen et al. (1987) point out that, in accident analysis, the 

identification of an event as a human error depends entirely upon the stop rule applied 

for the explanatory search after the fact. 

The backtracking of the causal chain will stop, according to Rasmussen et al. (op. 

cit.), when one or more changes are found which are familiar and therefore acceptable 

as explanations, and to which something can be done for correction. He states that the 

characteristics of a fault (which might include human error)13 are: 

I. It is the cause of deviation from a standard 

2. It is found on the causal path backwards from this effect 

3. It is accepted as a familiar and therefore reasonable explanation 

4. A cure is known 

This means, he says, that allocation of causes to people or technical parts in the 

system is a purely pragmatic question regarding the stop rule applied for analysis 

Hollnagel (Hollnagel, 1 991)argues the idea of 'human error' should be removed and 

replaced with a less emotive term like 'erroneous action'. 

13 A fault is to be distinguished from failure (Leveson, 1995). Failure is defined to be 

the event (a behaviour) (i.e. something fails). All failures are faults. Not all faults are, 

or lead to, failures. Failures are basic abnormal occurrences. Faults are higher-order 

events. 
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after the fact. There is thus no defined 'start' of the causal chain involved III 

accidents, and this fact should be reflected in the error data taxonomy. 

Events, according to Rasmussen et al. (op. cit.), should be considered occurrences of 

a man-machine mismatch, which can only be characterised by a multifaceted 

description (see below). Faults and errors cannot be defined objectively by 

considering the performance of humans or equipment in isolation. 

Furthermore, since the system itself is built, programmed, and maintained by humans 

one can argue that faults are ultimately human error. Indeed, one school of thought 

seeks to ascribe the cause of all failures to human origins (Bignell and Fortune, 1984). 

Reason picked up on this by pointing out, as noted above, that an error is not to be 

seen as the accident or failure itself, but as preceding the failure (Reason, 1990). 

'Error' can lead to 'active failure' as well as 'latent failure'. 

Reason maintains that active failure is usually associated with the performance of 

'front-line' operators (such as pilots and control room crews) and has an immediate 

impact upon the system. Latent failure is most often generated by those at the 'blunt 

end' of the system (designers, high-level decision-makers, construction crews, 

managers, etc.) and may lie dormant for a long time. 

In this thesis I will concentrate on 'human error' leading to active failure. The 

analysis of these is most likely to benefit from cognitive modelling techniques. Latent 

failures are best analysed in 'total system' approaches, which go beyond individuals' 

cognition and take for instance organisational aspects into account (see also Reason 

and Maddox, 1996; or Hale et aI., 1997). 
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THE NATURE OF HUMAN ERROR: MODELS AND 

TAXONOMIES 

Given a more defined scope of 'error', the question 'what is human error, and how 

does it come about?' is still subject of discussion, and several theories and approaches 

have been put forward, each with their perspective on this issue, or sometimes 

building up on, or modifying, previous work (e.g. Reason, 1990). I will discuss some 

of the most influential approaches in the following sections. 

Error classification's distinction between varieties of human error are important 

because different error types have different underlying mechanisms (different 

psychological origins), occur in different parts of the system, and require different 

methods of error management, and remediation (Reason and Maddox, 1996). 

Although a classification system is not likely to give insights into the underlying 

causes of error, Freitag (1997) notes that "the philosopher's stone which we are all 

seeking is how to recognise the events we can learn from without actually having to 

analyse them all in detail first" (compromise between the generation of enough events 

to learn from, and avoiding swamping the analysis system with too much work which 

will cost more than its added value for improving management). 

The distinction between varieties of human error plays a significant role in accident 

analysis because different error types have different underlying mechanisms 

(different psychological origins), occur in different parts of the system, and require 

different methods of error management and remediation (Reason and Maddox, 1996). 

The nature of 'human error' is still subject of discussion, and several theories and 

approaches have been put forward. I will discuss some of the most influential 
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approaches in the following sections, notably Rasmussen's Skill, Rule, Knowledge 

(SRK) framework, and Reason's Generic Error Modelling System (GEMS). 

Behavioural Classification 

Norman (1981) pointed out that error data examination reveals that errors can be 

categorised and fall into patterns. However, the categorisation and interpretation is 

theory dependent. There have been several attempts to categorise human error in 

terms of behaviouristic criteria (errors of commission, of omission, of substitution) 

(op. cit.). 

Most notably, Hollnagel (1991) suggested focusing on the overt behaviour of the 

human leading to, or constituting an 'error'. 

Thus, Reason (1990) argues that Hollnagel's error classification scheme is an 

example of a behaviour-based taxonomy of human error. It starts with the observable 

phenomena, such as errors of omission or commission, rather than cognitive theories. 

The observable phenomena, he states, make up the empirical basis for error 

classification. He referred to these behavioural descriptions as the phenotype of 

human error. The error genotype denotes the mental mechanism hypothesised to 

underlie the overt erroneous behaviour. 

The main aim of this approach at the time was to develop a system that can recognise 

possible erroneous actions and alert the user of their occurrence. From this point of 

view, Hollnagel argues, it is in principle sufficient to be concerned only with the 

phenotype of erroneous actions. The purpose of his taxonomy of phenotypes of 

erroneous actions is to establish a basis for a working, computationally implemented, 

action classification system. It does not attempt to explain the erroneous actions. 
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Behaviourist classifications such as Hollnagel's do not aid in understanding the 

underlying mechanism. Hollnagel points out that the phenotype is useful for 

computerised detection, but, since it does not provide any explanation, it cannot be 

used for correction and improvement. For that purpose a theory of error genotypes is 

needed. This will be a model description of human erroneous behaviour, which can 

be useful in clarifying how the user-system interaction takes place, and thus how it 

can be improved when necessary (op. cit.). 

Moreover, behavioural classifications quickly become large and unwieldy. A 

complete error theory seems likely to require autonomous, subconscious processing, 

with intentions, past habits, thoughts, and memories all playing some role in 

corrupting the intended behaviour (Norman, 1981). Also, Rasmussen (1987) 

observes, that if the analysis is based only on the consideration of human error in 

terms of their external manifestation (such as omission, commission, and 

inappropriate timing) a priori error identification will be hindered by a combinatorial 

explosion. 

Conceptual Classification Schemes 

At the conceptual level of classification, assumptions about the cognitive mechanisms 

involved in error production are the basis for human error taxonomies (Reason, 

1990). In contrast to the behavioural level, these classifications are based more upon 

theoretical inference than on observable characteristics. Conceptual categorisation 

schemes seek to identify causal mechanisms underlying human error. 
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Action Theory and Errors 

Theories of action present core concepts of applied cognitive theory. They often form 

the basis for the conceptual error models introduced below. For instance, Norman's 

Seven Stages of Action model (Figure 2-4) combines a simple cognitive processing 

model with action stages of human-computer interaction. It suggests how an intention 

is represented and acted upon. He articulates how the Gulf of Execution (stages of 

intention, specification of action sequence, and execution) and the Gulf of Evaluation 

(stages of perception, interpretation, and evaluation) bridge between the user's goal 

and the world. 

Several errors can arise along the line of these gulfs. Norman in particular 

distinguished between slips and mistakes. Mistakes were defined as inappropriate 

planning (action specification), whereas slips are inappropriate action execution. This 

distinction, along with the assumptions embodied in the above action theory playa 

major role in the following conceptual error models. 

Level of Performance and Human Error 

One influential model of human decision making in complex environments is 

Rasmussen's (1986) decision ladder (Figure 2-5) that distinguishes between skill-, 

rule-, and knowledge-based behaviour. As Reason (1990) and Sanderson and 

Harewood (1988) pointed out, Rasmussen's Skill-Rule-Knowledge framework has 

become "a 'market standard' for the human reliability community the world over". 
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Figure 2-4 - Norman's (1988) Seven Stages of Action 

Levels of Performance: Skill, Rule, Knowledge (SRK) 

Skill-based behaviour represents sensory-motor performance during acts or activities 

that, after a statement of an intention, take place without conscious control as smooth, 

automated, and highly integrated patterns of behaviour. 

In rule-based behaviour, the composition of a sequence of subroutines in a familiar 

work situation is typically consciously controlled by a stored rule or procedure. A rule 
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may have been derived empirically during previous occasions, communicated from 

other persons' knowledge as an instruction, or it may be prepared on occasion by 

conscious problem solving or planning. 

In general, skill-based performance flows without conscious attention and the actor 

will be unable to describe the information used to act. The higher level rule-based co

ordination in general is based on explicit know-how, and the rules used can be 

reported by the person, although the cues releasing a rule may not be explicitly 

known. 

During unfamiliar situations, for which no rules for control are available from 

previous encounters, the control must move to a higher conceptual level, in which 

performance is goal controlled and knowledge based. The goal is explicitly 

formulated. Then a useful plan is developed. Different plans are considered and their 

effect tested against the goal, physically by trial and error, or conceptually by means 

of 'thought experiments' . 

Rasmussen (1990) maintains that a very important aspect of the cognitive control to 

be captured by models of human behaviour is the dynamic interaction between the 

activities at the three levels. Only insights into this interaction would make cognitive 

models of human performance fit for complex environments, and thus for cognitive 

engineering; cognitive models derived from the cognitive science tradition suffers in 

this novel context from focusing on a well-bounded aspect of mental representation. 
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Errors as Human-Machine Mismatch 

Rasmussen et al. (1987) see human error as man-machine or man-task mismatch. In 

the case of systematic or frequent mismatches, the cause can typically be considered a 

design error. Occasional mismatches are either caused by variability on part of the 

system or the human, and will typically be considered component failures or human 

errors, respectively. 

Rasmussen states that human variability is an important ingredient in adaptation and 

learning, and the ability to adapt to peculiarities in system performance and optimise 

interaction is the very reason for having people in the syst~m. Human errors can in a 

way be considered to be unsuccessful experiments with unacceptable consequences. 

An 'unkind' work environment is then defined by the fact that it is not possible for a 

man to correct the effects of inappropriate variations in performance before they lead 

to unacceptable consequences. 

Error Taxonomy 

Rasmussen et al. (1987) stress that a consistent taxonomy (see Figure 2-6) is 

necessary in order to extract data from reports on accidents and incidents. The 

analysis of this data is for instance useful for design of error-tolerant systems (see 

also Rasmussen and Vicente, 1989). 

Rasmussen's 'External Mode of Malfunction' can be seen as a counterpart of 

Hollnagel's phenotype description. The SRK framework, however, also aims at 

relating mismatches to psychological mechanisms. 
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Causes of Human Malfunction Situation Factors 

• 
• 

External Events (distraction etc) 

Expressive Task Demand 

(force, time, knowledge, etc) 

• 
• 
• 

Task characteristics 

Physical environment 

Work time characteristics 

• Operator incapacitated 

(sickness etc) 

• Intrinsic human variability 

Mechanisms of Malfunction 

• Discrimination 

• Input Information 

Processing 

• Recall 

• Inference 

• Physical Co-ordination 

Factors affecting Performance 

Subjective goals and intentions 

Mental load, resources 

Affective factors 

Personnel Task 

• Equipment Design 

• Procedure Design 

• Fabrication 

• Installation 

• 

Internal Human Malfunction 

• Detection 
/ 

Inspection 

• Operation 

• Test and calibration 

• Maintenance, Repair 

• Identification • 
• 

• Decision 
• 

• Action 

External Mode of Malfunction 

• Specified task not performed 

• Omission of act 

• Inaccurate performance 

• Wrong timing 

• Commission of erroneous act 

• Commission of extraneous act 

• Sneak-path (accidental timing of several events 

or faults) 

Logistics 

Administration 

Management 

Figure 2-6 - Taxonomy for Description and Analysis of Events involving 

Human Malfunction (Rasmussen, 1982) 
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For this purpose, a cognitive task analysis '4 (within the SRK framework) is necessary 

(see also Chapter 3) to identifY the element of the internal cognitive decision process 

which was affected, either by not being properly performed or by being improperly 

bypassed by a habitual short-cut. Rasmussen (1987) states, that for the more familiar 

routine task'5 it is possible for a knowledgeable expert to judge the internal mode of 

malfunction from a case study. 

Consideration of the 'mechanisms of malfunction', in terms of the above described 

levels of performance and control, further characterises an event. 

Rasmussen (op. cit.) points out, that human system interaction cannot be described 

adequately on Iy considering the cognitive level. The dimensions 'Personnel task', 

'Factors Affecting Performance (FAP)" and 'Situation Factors' are therefore also to 

be taken into account in the analysis of the event. Importantly, these dimensions, 

along with the dimension 'Causes of human malfunction' (similar to the FAP 

dimension, but with discrete events as opposed to continuing conditions), allow the 

causal backtracking to be continued "upstream from the human" (op. cit.). Thus it can 

help to bridge the gap between models of human error and system failure. 

Rasmussen suggests a multifaceted description system rather than an exclusive, 

generic classification tree (see Figure 2-6). The described taxonomy is not intended to 

lead to a generic, hierarchical classification system. Complex scenarios can be 

identified (i.e. errors can be classified and analysed) directly from the underlying 

14 Rasmussen's work epitomises the introduction of Cognitive Task Analysis (CTA). 

The decision ladder (Figure 2-5) is used as a framework to carry out CT A. It defines a 

set of prototypical information processing activities and reSUlting states of 

knowledge, which are used for examining task strategies and cognitive functions (Bes 

and Johnson, 1998) 

IS this refers to the rule-based level of performance only. 
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psychological mechanisms. So human error (or 'events involving human 

malfunction') is categorised on the basis of the mechanisms at its origin. 

Concluding Remarks on the SRK Model 

Rasmussen's SRK framework can in particular account for rule-based errors. There is 

no detailed method to investigate the nature of occurring slips other than a one-way 

short cut on the decision ladder, and behaviourist identification on the overall 

framework level. Slips, however, make up a significant proportion of operator error 

(since expertise makes them possible in the first place), and are also much more 

readily predictable than for instance knowledge-based mistakes (Rasmussen, 1987). 

SRK does not deal with knowledge-based mistakes. Rasmussen (op. cit.) notes that 

on the other levels, error mechanisms are described in terms of established, 'normal' 

action sequences (rules, procedures) in a rather behaviourist way (based on task 

analysis). On the knowledge level this is impossible. It is thus very difficult to 

cha~cterise the mental data processing and the related mechanisms leading to 

mismatch. The sequence of arguments an operator will use during problem solving 

cannot be described in general terms (see also Reason, 1988). The goal to pursue 

must be explicitly considered, and the actual choice depends on very SUbjective and 

situation-dependent features. Rasmussen maintains that in present-day control rooms, 

the context in which operators make decisions at the knowledge level is far too 

unstructured to allow the development of a model of their problem-solving process, 

and hence, to identify typical error modes, except in very general terms. 

This also leads to the observation that Rasmussen's model, though aiming at being a 

generic cognitive performance model, has its origins and application in control rooms 

of for instance nuclear power plants (NPPs), and is limited in the sense that it is 

domain dependent. In NPPs' control rooms, operators' tasks are proceduralised to a 
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high degree. Knowledge-level perfonnance, as is needed when faced with novel 

situations, is to be avoided. The same holds for skill-based tasks, since monotony 

often related with automated task perfonnance is highly error-prone, too. Thus, SRK 

focuses on the rule-based level of behaviour, having evolved in response to NPP 

requirements. 

Furthennore, the representation of cognitive processing is pitched on a considerably 

high level, when compared to local theories of cognitive functioningl6
• Since not 

intended as such, the SRK model is something rather different from a psychological 

model. It emphasises psychological products rather than processes (Sanderson and 

Harwood, 1988). It is intended to be a "functional model to illustrate general aspects 

of the operator's situation at a higher level as seen by the system designer" 

(Rasmussen, 1969, cited in op. cit.). This hinders a thorough analysis of the cognitive 

processing underlying the 'external human malfunction'. 

Furthennore, in a study of several Human Error Identification (HEI) techniques in 

1992 (Kirwan, 1992), SRK obtained the lowest ratings on all but one category. Only 

its theoretical validity was judged moderately satisfactory, but on scales concerned 

with for instance comprehensiveness, consistency, validity, and acceptability (usage 

to date and availability of technique) it performed very poorly. However, 

Rasmussen's SRK model paved the way for several other techniques, such as 

Reason's, as described next. 

Cognitive Primitives, Cognitive Biases, and Human Error 

Reason's (1990) taxonomy of human error also represents a conceptual classification 

of error. It is predicated on assumptions about the cognitive mechanisms involved in 

error production. He locates basic human error tendencies within the general working 

16 As opposed to framework theories (Reason, 1988) 
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mechanism of the human cognitive system, paying particular attention to cognitive 

primitives and biases, rather than detailed information processing principles. His 

categorisation scheme is widely referred to in research into error modelling (Logan, 

1984; Green, 1985; Rasmussen, 1985; Rouse and Morris, 1987; Woods and Roth, 

1988; De Keyser, 1989; Rouse and Cody, 1989; Rasmussen, 1990; Rasmussen, 

1990). 

Rasmussen's SRK model is at the heart of Reason's model of human error 

tendencies. Reason's Generic Error Modelling System (GEMS) combines the SRK 

approach with the distinction of slips (and lapses) and mistakes introduced by 

Norman (1988). Norman (op. cit.) defined that slips result from automatic behaviour, 

mistakes from conscious decisions. Automatic behaviour means cognitive control is 

non-conscious, i.e. it takes place on the skill-based level of performance. Conscious 

decision-making relates to the knowledge-based level of cognitive control, as well as 

to the rule-based level (although to a lesser extent). In this way, Reason takes on 

board SRK performance levels, also associating them with levels of cognitive control 

as Rasmussen did in his model. 

Thus, Reason bases his error classification on the definitions of skill-based slips and 

lapses on the one hand, and rule- and knowledge- based mistakes on the other. He 

defines slips and lapses to result in actions or states that deviate from the current 

intention due to execution and/or storage failures. Mistakes, on the other hand, result 

in actions that may run according to plan, but where the plan is inadequate to achieve 

its desired outcome (see also Norman's Action Theory, 1981, Figure 2-4). 

Reason distinguishes between type and form of an error. Error types are related to the 

perfonnance level (Rasmussen, 1983) at which the error occurs. On the skill-based 

level he lists inattention and overattention as major reasons for slips of action, on the 

rule-based level he indicates misapplication of good rules and application of bad 

rules as main forms of errors. On the knowledge based level he enumerates 10 

different forms of mistakes and failures, namely selectivity. workspace limitations. 
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out oj sight out of mind, confirmation bias, over-confidence, biased reviewing, 

illusory correlation, halo effects, and problems with causality and complexity. 

Error forms are basically dependent on two cognitive primitives, or biases: similarity 

matching and frequency gambling. Reason accumulated varied experimental results 

as evidence that these two processes are 'computational primitives' of the human 

cognitive system. These biases denote automatic retrieval processes, by which 

knowledge structures are located and their products delivered to consciousness or to 

the outside world. Reason postulates as a useful, working approximation of human 

information processing principles, that, when cognitive operations are underspecified, 

they tend to default to contextually appropriate, high-frequency responses. This 

approximation and the two primitives hold across all three levels of performance (see 

also chapter 4 and 5 for a more detailed description of some error types and forms). 

CONCLUSION 

Although Reason's model provides for the analysis of slips to a much greater extent 

than Rasmussen's SRK, GEMS particularly assists the analyst in understanding the 

errors that may occur when the operator moves into the rule-based and knowledge

based behavioural domains (Kirwan, 1992). GEMS is notably comprehensive in its 

coverage of different types of cognitive failure. 

However, the technique only gives limited guidance on which error shaping factors 

are likely to apply to the identified error forms. The classification of knowledge

based mistakes is also mainly assisted by heuristic "guidance". Kirwan notes17, that it 

17 Kirwan (1992) reviewed 12 Human Error Identification techniques in a seminal 

"Applied Ergonomics" paper. He measured the techniques against a set of criteria 

qualitatively and also by means of an empirical comparison study. The criteria 
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is very much left up to the analyst's insight and experience to ascribe particular error 

shaping factors to any individual task step, and then to propose measures by which 

these negative factors may be overcome. Furthermore, since guidance on how to 

choose the cognitive mechanisms underlying the categorised errors is ultimately 

relying on the assessor, GEMS is still largely treated as a taxonomy rather than an 

explanatory action and cognition model of human error. 

Both SRK and GEMS are based on insights derived from cognitive theory, but do not 

present these in a systematic, model-oriented manner. They ultimately define static 

error classification systems, along with high level heuristic psychological knowledge. 

Although a classification system is not likely to give insights into the underlying 

causes of error, it offers the first step towards theory by identifying systematic 

patterns in otherwise unordered error data. Also, Freitag (1997) notes that "the 

philosopher's stone which we are all seeking is how to recognise the events we can 

learn from without actually having to analyse them all in detail first". A more 

observational error classification scheme can provide this kind of initial guidance. A 

more thorough, in-depth error analysis approach can then be applied to further 

investigate the c1assification choices and decisions (as proposed in this thesis). 

In conclusion, the error taxonomies described provide for an error analysis that is 

pitched at a very high level in respect to the underlying cognitive error mechanisms. 

Typically, error categories are general, not necessarily discriminative, ambiguous, 

and the cognitive concepts used are partly loosely defined. A structured vocabulary, 

in which the error classes can be expressed as constrained by cognitive theory, will 

help to highlight error properties. 

included comprehensiveness, consistency, and e.g. auditability. A follow-up 

evaluation was conducted in 1998 (Kirwan, 1998), with similar results for GEMS and 

SRK. 
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The possible mappings from category to underlying mechanisms can be examined by 

reasoning about the underlying processing within a cognitive architecture. In cases of 

mapping ambiguity, a systematic approach to the investigation of the relevant 

cognitive aspects will prove helpful. This also points to the issue of documentability, 

i.e. the degree to which the technique lends itself to auditabJe documentation. GEMS 

performed very poorly when rated on a scale for documentability (Kirwan, 1992). 

Complementary cognitive modelling of the error forms identified would provide an 

additional source of modelling decision documentation. 

In this thesis, I detail how this approach of complementing Reason's GEMS 

taxonomy with a cognitive modelling approach can be put into practice. In the 

following chapter J will delineate the field of cognitive modelling and introduce a 

cognitive architecture that lends itself to cognitive error modelling, and was thus used 

in the combined approach. 

One important implication from either accident causation model is that the specific 

analysis of "Human Error" is an essential concept in accident analysis. Furthermore, 

the analysis of the psychological side of Human Error has to be situated in accident 

causation models that take the interplay of all levels of system factors into account, 

ranging from individual 'active' error to team interactions, and the impact of 

governmental regulation policies. Thus far, accident analysis only often takes a 

'common sense' approach to error analysis. 

Reason points to several shortcomings of what he ca1ls error management (EM) 

techniques. Though of proven value, these existing forms of EM have a number of 

limitations, particularly narrowness of focus. In brief, they tend to be "piecemeal 

rather than planned, reactive rather than proactive, fashion-driven rather than theory

driven" (Reason and Maddox, 1996). They also ignore the substantial developments 

that have occurred in the behavioural sciences over the past 20 years in understanding 

the nature, varieties, and causes of human error. 

52 



A thorough, grounded, i.e. theory-based, understanding of Human Error, its nature, its 

causes, and its relation to the rest of the 'total system' is needed. In order to fully 

comprehend an accident's causation, the focus cannot only be on the technical aspects 

of system failure, with 'human error' as the label that provides the stopping case for 

the investigation process. This will prohibit us to effectively prevent their re

occurrence. Human error models, as introduced in this chapter, when embedded in 

broader accident causation frameworks, can provide the tools for this more 

comprehensive accident and incident analysis. However, current methods for 'human 

error' analysis typically are "more of an art than a science" (Kirwan, 1992), and thus 

lack support for the human factors analyst in their application in accident and incident 

investigation. 
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CHAPTER 3 COGNITIVE ERROR 

MODELLING 

INTRODUCTION 

Bainbridge (1987) observed the "ironies of automation" more than a decade ago, and 

described it as a side effect of increasing automation in industry that operators' tasks 

shifted towards control, with cognitive tasks (such as decision-making) 

predominating. A similar trend is noticeable in the corresponding forms of operator 

error. 

These 'cognitive errors' demand a suitable taxonomy and method of analysis in order 

to be understood and explained thoroughly. An error analysis technique that is rooted 

in cognitive theory aJlows the anaJyst to gain an understanding of the processes 

underlying the error - the mechanisms of human cognition. This thesis argues that the 

use of a cognitive architecture as a structural framework for expressing the cognitive 

processing underlying operator error will lead beyond an observational approach to 

error modelling. Further research into cognitive error modelling and simulation is also 

discussed. 

Human error plays a major role in the occurrence of accidents in safety critical 

systems such as those used in aviation, railway systems, or nuclear power plants (e.g. 

HollnageJ, 1991). Identifying human involvement in accidents is, however, not 
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necessarily tantamount to identifying the actual 'cause' of the accident. The design of 

technology, task procedures, or organisational issues might not be well suited to 

human action and cognitive processing (Norman, 1993), and thus present an 'unkind' 

work environment. The understanding of the causes, principles and effects of human 

error is thus essential if we want to further our understanding of major accidents. 

Insights into the causes and course of accidents and incidents will help us to deal with 

them appropriately: avoiding similar events and situations in future, or by being 

prepared for their occurrence (for example through error-tolerant design, or 

emergency procedure based training). To attain this goal it is necessary to perform an 

accident analysis which identifies as many contributing factors as possible and to 

suggest actions for removing or blocking each contributing factor (Svenson and 

Sjostrom, 1997). Human error makes up a substantial portion of the pool of 

contributing factors. Their identification is commonly guided by error taxonomies, 

some of which consider the origins of the classes of human error identified. 

Research into human error has been dominated by work on 'error' classification 

schemes and 'error' models. Domain dependent error models and taxonomies cater 

for the instances of human erroneous behaviour that are typical for, or conditioned 

and postulated, by the domain at hand (e.g. SRK and proceduralised tasks in control 

rooms). 

Domain-independent human error taxonomies can be seen as being based primarily, 

and to different extents, on generic theories of human cognition (such as Reason's 

taxonomy). Even those taxonomies that adhere more closely to cognitive theory in 

their explanation of human fallibility are pitched at a level too high to track the 

underlying cognitive processing undergone by the operator. 

Examination of this processing could provide leads to the causes and 'inner workings' 

of the error. It is therefore useful to provide a framework to model the cognition that 

underlies human error. This will enable error analysts to benefit from error 

taxonomies' abstracting and simplifying effect on the wealth of error data, as well as 
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from the more refined, structured, and detailed information gained by systematic 

cognitive modelling. 

With increasing automation, the operator's role transformed to one of control rather 

than action (Bainbridge, 1987). With the attempt to decrease the user's (physical) 

workload, cognitive load increased inadvertently. Easily performed (physical or 

mental) tasks are transferred to the system's responsibility, while delegation, decision 

making and other general control processes stay within the operator's task space. This 

led to an increase in the demands posed on the mental capabilities of the human 

operator, and thus increases the occurrence of errors that originate in the constraints 

imposed by the human cognitive system. 

Current error models, as noted above (and in later chapters in this thesis), do not 

provide an analysis detailed enough to trace the cognitive processing preceding or 

constituting human error. Our approach suggests utilising the cognitive 'vocabulary' 

that an information processing model offers to express error specifications. 

However, most current cognitive modelling techniques focus on expert, error-free 

behaviour. Assumptions of 'idealised' task performance are built into the technique, 

hindering its adaptation to real-life behaviour of users and operators. Similar 

observations hold for current cognitive simulation architectures. Those cognitive 

architectures that do have the potential to incorporate error classification are typically 

either rather general (e.g. Interacting Cognitive Subsystems, ICS), or bound to a 

specific domain, such as nuclear plant operation (e.g. COSIMa, Cacciabue, 1998). 

The goal of this thesis is to demonstrate the use of a cognitive architecture as a 

framework for expressing error classes using a cognitive vocabulary. The vocabulary 

of a cognitive architecture, like the syntax of a language, can help to constrain and 

guide the modelling process. The framework is structural in as much as it represents 
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the constraints imposed by the structure inherent in the underlying cognitive theory 

(such as the stages in an information processing model). 

Modelling erroneous behaviour within a cognitive architecture can thus provide a 

more in-depth description of the course the error took, and complement higher level 

description given by error categories. Non-executable cognitive models can present a 

medium for communicating the causes of error, and the processes and mechanisms 

underlying its production. This is demonstrated in this report by modelling user and 

operator error within the Interacting Cognitive Subsystems architecture (lCS, 

Barnard, 1993). 

DEFINITION OF TERMS 

Several, quite different, research areas refer to the term "user modelling" when not 

necessarily referring to the same activity or product of that activity. 

Newman and Lamming (1995) described various defmitions of 'User Model' as 

follows: 

• A user's conceptual (or mental) model of a system (a mental picture a user has of 

a system and how it works). 

• A model of the user held within the system software (a representation of the 

user's abilities, limitations, beliefs and goals. May form the basis for automatic 

adaptation). 

• A model or definition of the typical user referenced by the interface designer to 

aid hisiher formulation of the system being built. 
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With the various theories of mental models, a whole range of terms has been 

introduced. The lack of a unified terminology is confusing, especially when different 

authors use different terms to describe the same type of model, and the same term is 

sometimes used for very different types of models (Nielsen, 1990). 

In an attempt to bring some order into the great user model confusion, Nielsen (op. 

cit.) proposed a meta-model to classify models of user-system interaction. This meta

model encompasses a wider range of models than those mentioned here. His notation 

describes 'models' in terms of the relationships between 7 elements or participants of 

models: 

• U - the user; 

• D - the designer; 

• C - the computer system; 

• M - manuals and other documentation of C; 

• T - the task performed by the user; 

• W - the surrounding world in which U performs; 

• R - the researcher looking at any of the above. 

These elements can be combined, using a simple notation, to denote who holds a 

representation of what. For example, a user's model of a computer system is DC, the 

designer's model of a user's model is D(UC), and so on. This notation offers a 

parsimonious way of distinguishing between different models. The notation will be 

employed to clarify the exact nature of models involved in the theoretical and 

empirical work reviewed in this section. 

The cognitive modelling approaches relevant to my work are the ones characterised 

by Newman and Lamming (1995) as defining "models or definitions of the typical 
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user referenced by the interface designer to aid hislher formulation of the system 

being built". Thus, the term 'cognitive user modelling' will in this report refer to the 

user model as characterised by the relationships of RU, and also of R(OU). It 

describes the activity of capturing and communicating (diagrammatically or text

based) users' cognitive processes when performing some task, or what the designer 

perceives those processes to be. These can then be used to complement the analysis of 

error as provided by the describe taxonomies. 

User Modelling 

Tognazzini (1991) suggests that designers should construct simple design models 

which: 

• reflect users' tasks, rather than the underlying hardware and software of the 

system; 

• correspond to users' experiences and expectations. 

Similarly, Norman points out that "ideaJly, the model is based on the user's task, 

requirements and capabilities ... (AAIB, 1989) must also consider the user's 

background, experience and the powers and limitations of the user's information 

processing mechanisms." (Norman, 1986). 

To follow these recommendations, we need to include three sets of representations to 

the model-building process: users' tasks, general knowledge and experience, and 

information processing mechanisms. 

Three types of methods that fulfil some or all of these requirements are briefly 

described and discussed below. 
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Behavioural Task Analysis 

The goal of behavioural task analysis is to study the capabilities and perfonnance of 

human operators versus task demands necessary to achieve system goal( s) (Kirwan 

and Ainsworth, 1992). Task description techniques include charting and network 

techniques (including timelines, input-output diagrams, process charts, functional 

flow diagrams, infonnation flow charts), decomposition methods, and operational 

sequence diagrams. 

An almost universal part of this process is hierarchical decomposition, for example by 

Hierarchical Task Analysis (HT A). HT A is a broad framework originally articulated 

in Annett et al. (197 I) and e.g. Kirwan and Ainsworth (1992). 

Kirwan and his co]]eague (1992) investigated several diagrammatic task description 

methods. They stress how charting and network techniques (such as Petri Nets, or 

Functional Flow Diagrams) can present an integrative method, displaying the human 

embedded within the system context. However, they note in conclusion, that, as the 

cognitive task content increases, the mentioned chart representations become less 

satisfactory. Concurrency of mental operations, as we]] as processing complexity is 

difficult to capture by these techniques. 

Thus, complex cognitive aspects of human perfonnance are typically not addressed 

by this approach. It concerns itself exclusively with nonnative task sequences, in 

order to provide a system interface that meets the functional requirements of the user 

or operator. Behavioural task analysis, however, often represents the initial stage, or 

the prerequisite, for Cognitive Task Analysis, Cognitive User Modelling, and also 

Human Error Identification techniques. 
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Cognitive Task Analysis 

One typical, well-established model of calculational task analysis is Card, Moran and 

Newell's GOMS technique (Card et aI., 1983). 

GOMS stands for Goals, Operators, Methods, and Selection Rules. As many other 

cognitive task analysis models, it makes use of a model of mental processing in which 

the user achieves goals by solving subgoals in a divide-and-conquer fashion. 

A goal is something the user wants to do; goals are often related hierarchically. 

Operators are actions that the user does, which may be external (perceptual or motor) 

or mental (e.g., make decision, store an item in working memory). Methods are a 

sequence of steps (operators) used to accomplish a goal. Methods can call 

submethods to accomplish subgoals. When multiple methods are possible to 

accomplish a goal, selection rules are used to choose an appropriate method. GOMS 

has been used as the basis for constructing production-rule simulations of users and 

for redesigning help systems. 

Analysis of the GOMS goal structures can yield measures of performance. The 

stacking of a goal structure can be used to estimate short-term memory requirements. 

The model of the users' mental processes implied by this is highly idealised. 

However, GOMS was not intended for anything else but describing how experts 

perform a routine tasks. Furthermore, the GOMS (and associated Keystroke-level) 

model had been criticised (see for instance Sasse (1992» by designers as being: 

• too low-level; 

• too limited in scope; 

• focused on outdated technology; 

• too difficult to apply. 
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A further cognitive task analysis technique is presented by the Cognitive Complexity 

Theory (CCT) approach introduced by Kieras and Polson (Kieras and Polson, 1985). 

It begins with the basic premises of goal decomposition from GOMS and enriches the 

model to provide more predictive power. CCT has two parallel descriptions: one of 

the user's goals and the other of the computer system (caJled a device in CCT). The 

description of the user's goals is based on a GOMS-Iike hierarchy, but is expressed 

primarily in production rules. CCT can represent more complex plans than the simple 

sequential hierarchies of GOMS. Concurrent plans can be expressed. CCT attempts to 

measure interface complexity by relating the number of production rules in the CCT 

description to the degree of complexity ofthe interface. 

Knowles (1997) dealt with the CCT approach in her thesis on interface complexity. 

She identified m::yor shortcomings: 

• No underlying theory of knowledge sources and their interaction 

• Restricted in application, by virtue of its reliance on GOMS to tasks involving no 

problem solving 

• No empirical validation of proposed theory 

• Over-reliance on quantitative components at the expense of qualitative aspects. 

Especially the last point addresses a weakness most of the calculational CT A 

approaches share. 

Carroll & Campbell (1989) suggest that, rather than reducing the psychological 

contribution to HC} to quantitative measurements and calculations, psychologists 

should ensure that the value of explanatory and conceptual HCl research is 

recognised and applied. 

Application of quantitative methods to behavioural and cognitive phenomena which 

have not been sufficiently well described and understood can lead to the garbage in, 

garbage out problem well known in computer science. Carroll & Campbell (1989) are 
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right to point out that the imposition of methodological strictures alone will not make 

HC} more creditable or applicable. It could have the opposite effect: a discipline can 

be strangled by methodology strictures that become more important than the theories 

they are supposed to serve (Sasse, 1997). 

Theories of the user should ideally not restrict themselves to collecting observable 

quantitative data for mechanistic models, without trying to explain the underlying 

cognitive concepts. The trade-off between applicability and generality often causes 

explanatory and conceptual models to fall behind. The next section will discuss two 

approaches to the analysis of the cognition underlying more overt, observable 

phenomena: cognitive simulation, and approximate cognitive modelling. The latter is 

a more qualitatively oriented cognitive modelling approach, which nevertheless 

strives at achieving applicability. 

Cognitive Simulation 

Human error models thus cannot convincingly model, classifY, or predict knowledge

based mistakes, in spite of ongoing and well-developed research into problem solving 

within cognitive psychology. Bringing the insights gained in this field to bear on 

human error modelling would appear to be an appropriate contribution to the field. 

Cognitive modelling techniques that do concern themselves with decision-making 

and problem-solving are to be found in the field of cognitive simulation. 

Roth et al. (1992) define cognitive simulations as "runnable computer programs that 

represent models of human cognitive activities". They maintain that their approach to 

cognitive simulation can be used to uncover the cognitive demands of a task, to 
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identifY where intention errors are likely to occur, and to point to improvements in the 

person-machine system. 

Cognitive architectures employed in cognitive simulation tend to concentrate on 

higher order cognition - knowledge-based reasoning, problem-solving, or decision 

making (see for instance SOAR's reasoning by analogy mechanisms, (Newell, 

1990». Thus, executable cognitive models, or cognitive simulations, offer further 

means for exploring human error, beyond the approach taken in this report. Further 

research is suggested to the effect of exploring the potential of computationally 

implementing operator high-level thought processes in an error-oriented, domain

independent cognitive architecture. 

As a first step, suitable architecture candidates need to be identified. Some cognitive 

architectures, as we have seen in earlier sections of this chapter, may lend themselves 

more easily to error modelling than others. 

In order to choose an architecture, selection criteria need to be defined and explicitly 

stated. Current models can then be examined in the light of these criteria. 

Grant (1996) investigated the range of cognitive theories, architectures, models, and 

simulations. He set about to find in how many significant ways works about cognition 

could differ. He discovered six dimensions along which to differentiate the 

approaches: 

• Domain dependency 

• Level of specification 

• Coverage 

• Correspondence with experimental or practical findings 

• Parsimony 
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These dimensions will influence the choice of selection criteria that need to be 

adopted. Grant (op. cit.) classified Reason's GEMS (see Chapter 2) as "domain~ 

independent but still cognitive", and as low level specified. He indicates its 'direction 

for possible future developments' as moving towards a coded, or executable, level of 

specification. This relates to my proposal for further research into linking an 

executable cognitive model with GEMS in order to investigate knowledge~based 

mistakes. 

Approximate Cognitive Modelling 

As we have seen above, Cognitive Task Analysis looks at a system from the point of 

view of the user, and identifies aspects of the (interface or task) design that place 

heavy demands on the user's cognitive resources· their memory, attention, and so on. 

This information allows the designer to focus upon the features that users will find 

hardest to learn, and where they are most likely to make errors. May and Barnard 

(1995b) state that "by highlighting the sources of ambiguity, eTA helps designers to 

iterate towards design specifications that are cognitively straightforward, leaving 

users freer to concentrate on performing the tasks that the system supports rather 

than on using the interface itself. .. 

This section concerns a rather qualitative, though systematic analysis of the mental 

processes in the light of cognitive theory. 

For instance, Barnard's diagrammatic ICS framework examines users' mental load in 

terms of the resource demand and allocation issues that arise through parallel 

functioning. At its best, the linkage between the input and output of the black box 

cognitive processor with the environment is also described: reception of information 

as much as acting on the world. 
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Kirwan and Ainsworth (1992) noted in relation to task description methods, that 

graphic descriptions in this context can offer substantial benefits over purely textual 

approaches. The principal aim, so they state, of these techniques is to use a formal 

graphical representation of the task which is either easier to understand or 

significantly more concise than a textual description, or else to emphasise particular 

aspects of the task. 

les 

ICS offers a diagrammatic approach to task description that focuses on complex 

cognitive processing of a human in interaction with his or her environment. It 

presents a distributed, parallel cognitive architecture approach, and is therefore well 

suited to represent concurrent, and overlapping mental tasks. 

ICS is a technique reflecting a resource-based view of the mUltiple subsystems 

involved in cognition (Barnard, 1987). ICS provides a model of perception, cognition, 

and action. But unlike other cognitive user models, it is not intended to produce a 

description of the user in terms of sequences of actions. Rather, IeS provides a more 

holistic view of the user as an information processing system. The emphasis is on 

determining how easy particular sequences of actions become as they are made more 

automatic and proceduralised within the user (Young and Abowd, 1994, and see also 

a more detailed description in Chapters 4 and 5). 

Barnard (1987) maintains that a CTA based on ICS framework can give qualitative 

information on users' mental processing involved in task performance. It does not 

force the complexity of the human mind into a calculational straightjacket. The 

representation constructed includes a specification of mental processes; procedural 

knowledge; the contents of episodic memory; and a characterisation of the way in 
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which the cognitive mechanism is controlled during task execution. Pre-specified 

mappings from the contents of Task Models then predict aspects of user behaviour. 

We conducted a feasibility study concerning the error modelling potential in ICS. 

This study can be found in the appendix in full detail. It was shown that ICS provides 

a good vocabulary to reason about error in interactive system users, and it also opens 

avenues for design implications dependent on the undertaken error analysis. 

EPIC 

The second approximate cognitive architecture we investigated is EPIC - an 

engineering model of cognitive task performance. A comparison study of ICS and 

EPIC and their potential to contribute constructively to accident investigation was 

conducted. The results of this study will be discussed in the remainder of this chapter. 

In conclusion it can be said that the EPIC architecture and its focus on performance 

and timing in an idealised task setting proved less suited to human error analysis in 

the context of accident investigation in complex, safety-critical systems, than ICS. 

COGNITIVE MODEL COMPARISON 

The investigation of pilots' cognitive processing plays an important role in the 

analysis of aviation accidents. Increasing cockpit automation led to an increase in the 

demands posed on the mental capabilities of the pilot, and thus increases the 

occurrence of errors that originate in the constraints imposed by the human cognitive 

system (Woods, ]987). Cognitive user modelling can capture and communicate an 

analytic view of pilots' cognitive processes when performing some task. Cognitive 

modelling can then also be used to enhance the analysis of pilot error by relating it to 

the constraints of the human cognitive system. 
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Cognitive modelling is employed by organisations such as NASA and the CAA to 

further their understanding of the cognitive processes that underlie pilot perfonnance. 

One "classic" approach to cognitive modelling uses knowledge-based cognitive 

architectures, such as Soar (Laird et aI., 1986) or ACT (Anderson, 1993). Such 

models focus on higher-level cognitive processes, such as reasoning and decision

making. However, sensory and physiological data often contribute to aviation 

accidents, but still are widely neglected in cognitive modelling approaches. In this 

chapter we will look into two cognitive modelling approaches that can also represent 

sensory and physiological data, EPIC (Executive ProcesslInteractive Control) (Kieras 

and Meyer, 1995) and ICS (Interacting Cognitive Subsystems, (Barnard, 1993). 

EPIC is a knowledge-based simulation architecture. In other words, analysts can use 

it to simulate pilots' cognitive processes and draw conclusions about the complexity 

and time demands of the cognitive processing required to carry out a task. EPIC also 

provides features that aim at integrating perceptual and motor processes in a holistic 

approach to cognition. 

However, we argue that the investigator also needs a cognitive model which accounts 

for built-in constraints in the human cognitive system, such as memory limitations or 

problems with translating from one mental code to another (Bainbridge, 1993). These 

are central to making de~iled recommendations based on cognitive analysis. Barnard 

(1987) provides a modular approach that does focus on these aspects of cognition, the 

Interacting Cognitive Subsystem (ICS) architecture. ICS offers a diagrammatic 

approach focusing on humans in interaction with their environment. Sensory as well 

as internal knowledge input into the cognitive system is integrated in the ICS 

approach. 

The foJlowing sections demonstrate that pilots' perception, cognition and action can 

be modelled within these two cognitive architectures. We argue that a holistic 

approach offers a deeper understanding of the pilot's cognitive and physiological 
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processes in aviation accidents. We conclude that EPIC lacks provision for 

retrospective modelling or non-expert behaviour, unless simple cognitive-behavioural 

processes are to be analysed. ICS offers these possibilities, but requires an analyst to 

be highly skilled in the complex psychological theory of the model. 

In the remainder of this chapter, we first introduce the case study, an attempted night 

visual approach to a runway at Gatwick Airport. Then we review alternative cognitive 

modelling approaches for the representation and investigation of the pilots' cognitive 

processes. We look at EPIC, an executable human cognitive performance model. 

Then, we review Barnard's (1987) ICS technique, which combines a domain

independent view on human's cognitive processing capabilities. For each of the 

modelling approaches presented, a task model is constructed to show their scope. 

Also, their applicability to 'human error' modelling is tested by detailing 'real life' 

pilot error within each approach. 

THE CASE STUDY 

The modelling of pilots' cognitive processes in this chapter will be illustrated by the 

events recorded in an Air Accident Investigation Branch (AAIB) incident report. This 

report is appropriate as a case study because it represents a relatively frequent 

occurrence (AAIB, 1989, p. 22). It also shows a variety of causal factors. These 

include higher cognitive mistakes as well as perceptual slips. The incident involved a 

Boeing 737 and a British Aerospace One-Eleven (BAC 1-11) at Gatwick Airport. The 

BAC 1-11 landed on taxiway 2 after making a night visual approach to runway 08L. 

A Boeing 737 had been ordered onto taxiway 2 just previously by the air traffic 

controller. The Boeing's commander attempted to tum off to the side after observing 

the landing lights of the BAC approaching. The manoeuvre immediately led to the 

aircraft's port main wheels leaving the paved surface. It bogged down in the soft 

ground partially blocking the taxiway with its left wing and rear fuselage. The BAC 

stopped only 190 metres short of the Boeing 737. There were no injuries. 
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The AAIB report lists as one causal factor that the BAC commander inaccurately 

interpreted the cues provided to him by the visual scene on the approach to runway 

08L. He consequently landed on taxiway 2 believing it to be runway 08L. The other 

'causes' describe various factors believed to have facilitated the cue 

misinterpretation. This includes the use of runway edge lighting as well as the 

taxiway green centreline. Communication between the BAC commander and the first 

officer, which might have facilitated the 'misjudgement', are also mentioned (see 

(Johnson, 1995) for a systems analysis approach to the incident that draws together 

the contributing factors). 

EPIC 

Cognitive modelling techniques give us the opportunity to reason in more detail about 

the potential causes, or (cognitive) precedents, of the commander's misinterpretation. 

However, there exist a variety of modelling approaches to choose from. We will now 

investigate two techniques that each represent different traditions in cognitive 

modelling. By using the AAIB report as illustration, we will show how the two 

traditions serve different needs, and can delineate complementary perspectives on the 

data provided. 

The two approaches we will assess in this chapter are based on diagrammatic 

cognitive modelling and on computational cognitive simulation. 

As mentioned above, (Roth et aI., 1992) define cognitive simulations as "runnable 

computer programs that represent models of human cognitive activities". Cognitive 

simulation approaches can potentially uncover the cognitive demands of a task, to 

identifY where intention errors are likely to occur, and to point to improvements in the 

person-machine system. Cognitive processes are coded typically in production rules 

in the IF <CONDITION> THEN <ACTION> format. 
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EPIC is a computational performance simulation model. The "primary goal" in the 

development of EPIC has been ''to account for human multiple-task performance in 

situations such as aircraft cockpit tasks" (Kieras et aI., 1997). EPIC was designed to 

explicitly couple perceptual-motor and basic information processing mechanisms like 

those in the MHP (Card et aI., 1983), ACT-R (Anderson, 1993), and SOAR (Laird et 

aI., 1986). Although it is mainly demonstrated as a predictive performance model, it 

is also stated to achieve insights as an explanatory model of human behaviour and its 

underlying cognitive processes (Kieras and Meyer, 1995). 

Figure 3-1 shows the overall architecture of an EPIC model interacting with a 

simulated system. 

Human performance in a task is simulated in EPIC by programming the cognitive 

processor with production rules organised as methods for accomplishing task goals. 

The EPIC model is then run in interaction with a simulation of the external system 

and performs the same task as the human operator would. The model generates events 

(e.g. eye movements, keystrokes, vocal utterances) and the timing of these events is 

predictive of human performance. 

These predictors also include various aspects of mental workload, such as how much 

information must be maintained in short-term memory. If the predicted performance 

is unsatisfactory, either in terms of overall system performance, or in comparison to 

another design, further examination of the simulated performance will reveal the 

cause of the performance limitation. For example, humans can perform many 

activities concurrently, but a poor interface design will limit the amount of 

overlapping that can be done. For example, requiring that the eyes be kept mostly on 
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one location, thereby preventing a second, otherwise compatible task from being 

executed concurrently. 

Sil1lUlated 
Interaction 

r-________ ~~~D-e-vi-~-S~-mI 

Task 
Environment 

4'-----tIl 

Audit~ 
input 

Cognihe 
Processor 

PrOduction Rule 
Interpreter 

Working 
I1eJqOr'lj 

Figure 3-1 - The EPIC Cognitive Architecture 

EPIC models are based on prior task analysis, using some established behavioural 

technique, such as Hierarchical Task Analysis (HTA, Kirwan and Ainsworth, ]992). 

This is then translated into production rules using cognitive task analysis. Note that 

the tasks mentioned in an HT A model derive from a nonnative task model, and thus 

presume the successful completion of each task, in other words, they assume error 

free goal achievement. 
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Since the accident arguably occurred due to non-successful completion of the "Locate 

Runway" task, this is the task we will concentrate on in our cognitive analysis. 

EPIC MODEL "LOCATING TARGET" 

Figure 3-2 shows an EPIC model that, given parameters specifying the details of the 

visual situation, will result in runway identification. 

The code shows the current state of the EPIC production system database, showing 

the various items present in the simulated human operator's working memory. 

The 'pilot error' from the Gatwick incident will thus be located in the matching 

process of the working memory (WM) target pattern and the pattern received in the 

visual field. This will show how, for example, underspecification of visual clues can 

lead to confusion between the taxiway and runway 08L. 

The rule-based approach of EPIC forces the analyst to precisely specify the task 

parameters. Thus, the specification of the pilot's mental model of the runway (WM 

TARGET-PATTERN) will be an assumed pattern of visual cues necessary for runway 

identification. This can then be run against the environmental input, namely the actual 

visual cues available to the pilot. Therefore, a mismatch can be identified, and a fine

grained analysis of the pilot's visual perception is possible. 

However, the pilot's communication with the tower and his co-pilot are not included 

in the model. EPIC does not prompt the analyst to consider these environmental 

aspects. Visual perception is seen as a pure pattern matching process with no other 

modalities or task aspects interfering. Thus, important contributory factors to the 

73 



(IF-NOT-TARGET-THEN-SHIFT-VISUAL-FIELD 

IF 

«GOAL LAND PLANE 

(STEP LOCATE RUNWAy) 

0NM CURRENT-PATTERN IS ?OBJECT) 

(MOTOR OCULAR PROCESSOR FREE) 

(VISUAL ?OBJECT FEATURES ?NOTIARGET) 

(NOT0NM TARGET-PATTERN IS ?VAR))) 

THEN 

«DELDB0NM CURRENT-PATTERN IS ?OBJECT) 

(ADDDB(WM CURRENT-PATTERN IS ?NEXT-OBJECT» 

(SEND-TO-MOTOR OCULAR MOVE ?NEXT-OBJECT») 

(TARGET -IS-LOCATED-BEGIN-HOMING-IN 

IF 

«GOAL LAND PLANE 

(STEP LOCATE RUNWAy) 

CNM TARGET-PATTERN IS ?TARGET) 

(VISUAL ?TARGET-FIELD FEATURES ?TARGET) 

(WM PLANE IS ?PLANE-OBJECT) 

(MOTOR MANUAL PROCESSOR FREE) 

THEN 

«DELDB0NM STEP LOCATE RUNWAy) 

(ADDDB(WM STEP HOME-IN» 

(SEND-TO-MOTOR MANUAL PERFORM POINT ?PLANE-OBJECT ?TARGET

PATTERN))) 

Figure 3-2 - EPIC Rules: Locating the Target 

visual misperception are ignored. 

The above two production rules show a high level representation of two steps in the 

goal hierarchy. both relating to the sub-task "Locate Runway". Although presented 
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here in the form of production rules as used in EPIC models, these two rules only 

present a high level view. To enable their implementation in a computational EPIC 

model, every line in the rules' body has to be a fine-grain (atomic), low-level, 

perceptual or motor activity, This means, for an EPIC model, each line will need to be 

further decomposed into its component parts, down to specification of the angle of the 

current visual field (perceptual), and the current position of the pilot's hand when 

preparing to move (motor). This is difficult, if not impossible, to determine in the 

aftermath of an accident. 

This low-level specification of units of behaviour and the provision of experimentally 

derived fixed timing parameters enables EPIC to provide the analyst with 

performance time predictions (Kieras et aI., 1997) as well as real-time simulated pilot 

performance. However, the data necessary for this grain of analysis can typically not 

be derived from an accident report. EPIC modelling thus lends itself more to a priori 

modelling as part of a normative cognitive task analysis than to explanatory 

modelling of a specific, erroneously performed task instance. 

Table 3-1 overleaf briefly summarises strengths and weaknesses of the application of 

EPIC modelling in Human Error analysis. 

ICS 

Cognitive simulations, as most other cognitive modelling techniques, are typically 

intended to represent expert, error-free behaviour. ICS, however, is a general 

architecture, in which the cognitive basis of erroneous behaviour can be expressed 

without violating or changing architectural principles. Instead of aiming at simulating 

the human, ICS is a diagrammatic cognitive process-model, which enables the analyst 

to inspect information flow and resource demands in the human cognitive system. 
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Strengths 

• Detailed, forces precision 

• Grounded in cognitive theory (albeit not very 

complex) 

• Takes perceptual and motor processes into account 

• Can generate timing of task performance 

Weaknesses 

• Requires expertise and time 

• Does not model for interaction between central and 

peripheral cognitive processing 

• Does only incorporate routine expert performance 

• Very low level tasks only to be specified 

• Focus is only on timing aspect, cognitive resource 

allocation is not covered 

• Precise low-level data is post hoc not available 

Table 3-1- The EPIC cognitive architecture reviewed 

ICS represents a comprehensive account of human cognition, which has proved 

powerful in explaining cognitive phenomena such as the stability of users' mental 

models during dual task interference effects (Duke et aI., 1995). It has been applied to 

real-life systems and tasks, such as cinematography (May and Barnard, 1995a). ICS 

provides a great level of detail in the representation of cognitive processes and also 

the inherent constraints these have to satisfy. ICS was designed to provide a 

theoretical framework in which to place user cognition. It attempts to "satisty the 
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need for applicable theory" (Barnard, 1987). ICS, therefore, bridges the gap between 

theory-oriented cognitive architectures and task-oriented cognitive user models 

«Grant and Mayes, 1991); (Simon, 1988). 

Sensory subsystems: 

VIS visual: hue, contour etc. from the eyes 

AC acoustic: pitch, rhythm etc. from the ears 

BS body-state: proprioceptive feedback 

Effector subsystems: 

ART articulatory: subvocal rehearsal & speech 

LIM limb: motion of limbs, eyes etc. 

Structural subsystems: 

OBJ object: mental imagery, shapes etc. 

MPL morphonolexical: words, lexical forms 

Meaning subsystems: 

PROP propositional: semantic relationships 

IMPLIC implicational: holistic meaning 

Table 3-2 - The ICS Cognitive Subsystems 

Cognition is represented in ICS as the flow of information between a number of 

different subsystems (see Table 3-2), and as the processing performed on this data. 

The nine subsystems cover both high level cognitive and low level perceptual and 

motor processors. Each of these can act in parallel. Each of the subsystems has 

associated with it a unique mental code in which it represents the information it 

receives and processes. It will transform its data output into the corresponding mental 

code of the subsequently receiving subsystems. Each subsystem can receive several 
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input streams and achieve a blending of these data streams under certain 

circumstances as described below (May and Barnard, 1995a) (see also Appendix A 

for more details). Each subsystem also has at its disposal a local image store. This 

serves as an episodic memory buffer of infinite size. A copy of any input the 

subsystem receives will automatically be copied to the local image store, before being 

further processed. 

ICS MODEL OF ERROR-FREE VISUAL RUNWAY 

IDENTIFICATION 

Figure 3-3 illustrates the error-free performance of a task of locating an object in the 

visual field (such as a runway). 

This is modelled in ICS in terms of information flow between the subsystems, and 

thus the different resources that are employed. Visual information concerning the 

target arrives at the visual subsystem and is copied into the local store. It is 

transformed into object code (1). The propositional subsystem has generated a 

representation of the target of the location task (by conferring with its local buffer) 

and transforms this into object code (3). This is sent to the object subsystem, and can 

there be blended with the incoming structurally encoded visual information (2). The 

matching representation can be sent back to the propositional subsystem - the target 

has been located. During unsuccessful attempts to locate the target, visual information 

other than that concerning the target will not be able to blend with the object code 

data sent by the propositional subsystem. A loop between the two subsystems will be 

maintained until the representations match and the target, in this case the runway, is 

located. 
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Fiaure 3-3 - Error Free Visual rdentification of Runway 
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FAULTY VISUAL IDENTIFICATION IN ICS 

In a high-level, non-normative, task model, pilot's communication with the tower and 

his co-pilot can now be included. The inclusion of task contributing factors such as 

tower communication, which in itself does not form an explicit 'goal' of the pilot's 

task is specific to the subsequent ICS modelling. A conventional task analysis 

approach would not have considered this factor. ICS encourages the analyst not to 

treat perceptual and motor processes as peripheral, but as equal to cognitive 

processes. A task analysis prior to ICS modelling will therefore select the tasks to be 

included in the model prompted by the holistic process (rather than task) approach of 

ICS. 

Thus, Figure 3-4 not only illustrates the visual perception configuration (1), but also 

how communication impinged on the higher-level processors (2). The consequence of 

the conflicting statements is increased central processor activity (3). The subsystems 

responsible for extracting the propositional and implicational meaning from the 

information presented to them by the peripheral processors form a loop between them 

in order to arrive at definite conclusions as to the further course of action to be taken. 

This loop takes up the processing resources from the peripheral subsystems, and also 

leads to reduced processing of novel information extracted from the environment. 

Table 3-3 and Table 3-4 briefly summarise the strengths and weaknesses of the ICS 

approach to modelling the cognitive basis of erroneous action. 
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Figure 3-4 - Faulty Visual Identification of Runway 
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Strengths 

• OptionalIy supports low-level precision 

• Clear link to (complex) cognitive theory 

• Comprehensive in cognitive coverage 

• Perceptual and motor processes are not only taken into 

account, but put on equal standing with cognition 

(holistic view) 

• Interaction between all processors is made explicit 

• Could be used to look at timing aspect, though not 

intended 

• High explanatory power 

• Easily incorporates non-expert, erroneous behaviour 

• Assesses cognitive resource demand and alJocation 

Table 3-3 - The ICS cognitive architecture reviewed (I) 

Weaknesses 

• Weak on generating recommendations for error 

avoidance (though can act as a means to contextualise 

the effects) 

• Requires expertise and time 

• Understanding of underlying low level cognition is 

necessary. The analysis process has not much 

methodology support. 

Table 3-4 - The ICS cognitive architecture reviewed (II) 
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RESULTS OF THE COGNITIVE MODEL COMPARISON 

Cognitive models may help us to understand the causes of major accidents. Both 

EPIC and ICS highlight the perceptual and motor aspects of pilot performance. 

EPIC's fine-grain analysis enables the analyst to identify mismatches in the required 

and actual visual cues. ICS explicitly shows the concurrency in cognitive processing. 

It also details the cognitive resources necessary for task completion. Thus, 'pilot 

error' can be examined in the light of the cognitive precursors of the actions that have 

taken place. 

ICS is a rich and expressive modelling approach. Still, compared to EPIC, the grain 

of analysis is not predetermined by the architecture. Importantly, no assumptions 

regarding a certain level of performance (such as novice/expert) are made in rcs. 
Therefore, there are no obstacles to modelling erroneous behaviour directly. EPIC 

models are based on normative tasks and performance and have to be iteratively 

altered to pinpoint the trace when erroneous performance simulation has been 

induced. Only then can hypotheses about the cognitive precursor of the 'error' be 

formed and validated. EPIC architectural constraints also do not invite wide-scope 

inclusion of contributing factors, as does ICS. However, rcs as it stands now does 

not provide a clear modelling strategy and the outcome depends to a great part on the 

expertise of the analyst. Neither of the models provides an easy link between 

modelling outcome and action recommendations for future error prevention. 

It has been suggested that the problem of the gap between research and application in 

the case of user models lies in the fact that much research has been based on the 

wrong type of psychology, an information processing view of psychology that is 

reductionist and context-free. An alternative, richer view of human behaviour that is 

holistic and contextualized is needed. ICS is a step towards this more holistic view of 

human cognition. Further research will need to concern itself with the integration of 
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analysis approaches and explanation frameworks that look beyond the individual's 

cognition. 

CONCLUSION 

Behavioural task analysis, as the tenn suggest, deals only with the behavioural 

analysis of users' tasks. The modified task analysis approach embodied in Cognitive 

Task Analysis (eTA) methods also attempts to capture the psychological task - goal 

hierarchy, and associated attributes such as infonnation needs, interface complexity, 

or timing infonnation. Typically, CTA approaches embody infonnation on human 

infonnation processing mechanisms implicitly, as a basis of the respective approach 

(see for instance GOMS). However, these cognitive principles are biased towards 

expert, error-free behaviour (Simon, 1988; Booth, 1991; Grant and Mayes, 1991). 

These assumptions are ingrained in the structure of those approaches, and thus major 

changes to the methods themselves would be necessary (if at all possible) in order to 

represent erroneous action. Finally, cognitive processing models, or cognitive 

architectures, such as ICS, present a framework in which both error-free as well as 

erroneous behaviour can be expressed. It embodies descriptions of the users' tasks, as 

well as user knowledge and general human information processing mechanisms. 

Furthermore, the consideration of time is important for the analysis and description of 

human error (and human action more generally). Surprisingly, few of the existing 

action and error taxonomies include the aspect of time, but rather describe and 

classifY human error on an atemporal (static) basis, i.e. a classification of past and 

observed events. Time may enter only in a few cases as one of the possible causes 

(i.e. incorrect timing of actions) (HollnageJ, 1991). Cognitive modelling based on the 

ICS framework can complement the identified error categories by providing temporal 

information. 
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ICS seems to be a potential candidate for the combined approach to error analysis 

proposed in this thesis. Most importantly, it lends itself to modelling the cognition 

underlying erroneous action, and is not dependent on cognitive models assuming 

ideal users in ideal situations. The cognitive error modelling approach was piloted in 

a study on how Barnard's ICS framework can be used to model human error in the 

context of interface design (see Appendix A). 

In the remainder of this dissertation, the extent to which an ICS based cognitive 

modelling approach can complement a conceptual error taxonomy (such as Reason's) 

is examined, and its application to incident and accident analysis will be 

demonstrated. 
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CHAPTER 4 SUPPORTING THE 

UNDERSTANDING AND 

CATEGORISATION OF HUMAN 

ERROR THROUGH COGNITIVE 

ANALYSIS 

INTRODUCTION 

This thesis argues that error analysis and categorisation techniques in accident 

analysis will benefit from representing a cognition-based error model within a 

cognitive architecture, such as ICS. Using a cognitive framework to analyze the 

'erroneous' instance of human behaviour can underpin any error categorization and 

support the reasoning process about alternative interpretations. It can also help 

document and communicate the analysis results and its rationale to the parties 

involved in the accident investigation as well as to feHow experts. Lastly, it can be 

used as a means to ground the error analysis in a theory of human thought. 

Throughout this chapter the above described critique on current human error analysis 

models in the context of accident analysis will be elucidated by further examples. The 

goal is to demonstrate how the cognitive error modelJing approach suggested here can 

complement current error analysis models and support the meaningful analysis of 

human error. The suggested cognitive error analysis approach is shown to aid the 

analysis of and reasoning about human error and its potential causes. Thus a more 

complete understanding of human error in accidents can be achieved. 
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As described in Chapter 2 of this thesis, current human error analysis approaches in 

accident investigation leave a lot to be desired. The main shortcomings in accident 

investigation that were identified in this thesis concerned the use of "common sense" 

theories of human thought and action (i.e. not grounded in psychological action 

theories and empirical data)18. Thus, there might be an implicit use of personal 

theories on human error mechanism and accident causations being used, that might 

lead to the questionable, one-sided labelling of instances of human behaviour through 

subjective classification into "human error" categories. Furthermore, analysts (as 

humans prone to biasesJ9) might jump to conclusions and link human error analysis 

and safety recommendations without referring to a grounded, theoretical 

understanding which can be communicated and validated in more than just a 

subjective, verbal, manner. 

The nature and causes of failures due to human error remain relatively poor 

lyunderstood (O'Hare et aI., 1994). Reason et al (Reason, 1990) maintained that 'one 

18 "Common sense" reasoning is typicalJy characterized by its seemingly 

unproblematic and self-evident explanation of observed phenomena, explanations 

which often harbour contradictions and are often applied either randomly or they may 

fall prey of psychological biases (such as the confirmation bias) themselves (see e.g. 

Mills, 1970; Porter, 1981). "Scientific thought or method" tries to counteract these 

biases by grounding theories in empirical data or placing it within the scientific 

discourse. One critical distinction between the scientific method and 'common sense' 

is that scientific discourse highlights the necessity to unearth the assumptions upon 

which any explanations of an observed phenomenon are based. Thus, it aims at an 

'explicit' reasoning process, i.e. transparent and open to criticism and further 

discourse. 

19 See also Johnson (2000) for analysts' biases, and, as mentioned previously, 

Lekberg (1997), and of course, Reason (1990). 
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ofthe applied psychologist's more pressing tasks is to provide accident investigators 

with a better classification of the possible varieties of human failure'. O'Hare and his 

colleagues analysed a database of aircraft accidents and incidents by applying two 

different error classification schemes. They stress that they only attempted to 

investigate what failed in each of these events, and not the 'mechanism of 

malfunction', meaning how it failed (Rasmussen, 1982). This, however, needs to be 

determined 'to trace the information processing failures associated with each event'. 

This chapter illustrates an approach with which a catalogue of theory-based error 

classifications can be translated into the framework of a cognitive architecture, thus 

bridging the gap experienced by O'Hare between mere categorisation of error and 

'probing (Johnson, 1999) more deeply by means of theoretically based models of 

human information processing'. 

As O'Hare also pointed out more recently in his review of the first 5 years of the 

International Journal of Aviation Psychology (O'Hare and Lawrence, 2000), the focus 

in the community of aviation researchers and practitioners could still be shown to be 

on a "blame and train" approach, rather than to focus on a meaningful, contextual 

analysis of "human error" with associated safety recommendations targeting the 

system on the whole, rather than e.g. an individual's memory (an approach that is not 

sufficient for the systematic prevention of accidents (e.g. see Busse and Wright, 2000; 

Westrum, 2001; or Johnson, 2002). Thus, the cognitive error analysis approach that is 

put forward here also aims at the generation and evaluation of safety 

recommendations, next to the initial analysis and categorization of the accident. The 

benefit of this approach will be demonstrated in this chapter, and in the case studies 

reported in the remainder of this thesis. 
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CASE STUDY: THE TWIN SQUIRREL HELICOPTER 

ACCIDENT 

On October 22 1996, five people were killed in an accident involving a helicopter AS 

355Fl Twin Squirrel. The accident occurred when the helicopter was returning to 

London from a private landing site in Lancashire with one pilot and four passengers 

on board. The aircraft was being flown at night in visual contact with the ground 

when the pilot decided to climb to a higher altitude. During the climb he was deprived 

of external visual references and the aircraft adopted a steep nose-up attitude during 

which the air speed reduced below a minimum recommended speed for instrumental 

flight. This unintentional manoeuvre then developed into a fast, spiral descent. The 

helicopter did not recover from the dive and it crashed into a field on the outskirts of 

Middlewich, broke up and caught fire. The accident was not survivable (Air Accident 

Investigation Branch (AAIB), 1997). 

The investigation identified six causal factors, one of which concerned the 

commander's workload in marginal weather conditions. Another one suggested that 

the commander may have been distracted at a critical time by the opening of a cabin 

door. Furthermore, the entire situation is underpinned by the pilot's disorientation and 

the inability to recover from it. 

Examining the pilot's behaviour in the light of these causal factors can give rise to 

several interpretations. Two of the possible viewpoints are discussed in detail as the 

section progresses. They refer to Reason's taxonomy of human error, and identify two 

rule-based failure modes underlying the pilot's inabiJity to perform the appropriate 

recovery manoeuvres. On the one hand, as shown below, this could be put down to a 

rule-based mistake such as the 'First Exception' class of errors (described above). 

Alternatively, Reason identifies 'Information Overload' as a possible failure mode at 
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rule-based level of perfonnance. This could be seen as being a major contributing 

factor in the given accident sequence. 

As can be seen, these two categorisations of pilot error are general in nature. We will 

show below how they can be complemented by an anlysis of the underlying cognition 

within the ICS framework. The more precise and detailed vocabulary offered by the 

ICS architecture can accommodate modelling to reach beyond surface 

characterisation of human error. We will illustrate this in the following section. 

ANALYSIS OF ERRORS IN TERMS OF THEIR 

UNDERLYING COGNITION 

In the following section we show how errors leading up to the Middlewich accident 

can be categorised according to Reason's classification scheme and subsequently 

modelled in the ICS architecture. Thus, the relationship of these errors to the 

underlying cognitive mechanisms as proposed by Reason can be established. 

At a crucial point in the run up to the accident, the pilot became disoriented after he 

lost external visual attitude reference, and in spite of several observed coping 

manoeuvres, he never recovered. 

Attitude information was available through the main attitude indicator, and should 

have been confinned by the standby attitude indicator. The latter, however, had most 

probably not been switched on at the beginning of the flight, and therefore showed 

erroneous indications. Furthermore, the pitch rate was sufficiently slow and steady for 

the commander not to be aware of the attitude change. He thus was faced with a 

mismatch of his expectations and two diverging indications on the standby and main 

attitude indicators. If both instruments had been giving much the same attitude 

information, the pilot may safely have assumed that he is suffering from an illusion. 
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Figure 4-1- Rule-based Mistake: First Exception 
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According to Reason's taxonomy, the pilot's cognition and resulting behaviour in this 

chain of events could be classed as a misapplication of a good rule (see above). 

Reason stresses the role of 'first exceptions' to a general rule, which are most likely 

to be overridden by 'strong-but-wrong' rules. The pilot's instrument flying skilIs had 

not been formally examined since April 1992, and he had not been required to 

rehearse recoveries from unusual positions. His loss of orientation combined with 

facing a mismatch of sensory perception and instrument indication can be seen as the 

'first exception' to the general rule when not experiencing a mismatch. 

The underlying cognition can be modelled in ICS as shown in Figure 4-1. 

The visual data is received at the visual subsystem (I), sent to the object subsystem 

for the recovery of a structural description (2), and finally interpreted by the 

propositional subsystem (3). The information is fed forward into the implicational 

subsystem, which interprets the data in the light of the current context. In the 

meantime, the implicational subsystem receives contradictory information from the 

body-sensory subsystem (4), which claims to sense no change in attitude. If, however, 

the propositional subsystem receives ambiguous structural information, and it proves 

unable to blend the incoming data streams, a selection process will take place, based 

on the rules available to it and their respective strengths. The feedback information 

received from the implicational subsystem also plays a guiding role in input and thus 

rule selection. 

The choice of input stream taken by the propositional subsystem might fit in with the 

implicational interpretation of what is perceived, and thus stabilise in the cognitive 

system. If the assumption underlying the choice of what data is used to eliminate the 

ambiguity is wrong, however, the representation of what is thought to be perceived 

will also be incorrect. The wrong data will be favoured. 

The modelling of the resulting rule-based mistake (as defined by Reason) in terms of 

a cognitive architecture sheds light on the underlying cognitive processes and hence 

the underlying causes of user error. 
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REASONING ABOUT ALTERNATIVE ANALYSES OF 

ERROR CAUSES 

Modelling this scenario in ICS showed how an instance of Reason's class of rule

based mistakes could be investigated at a more detailed level. This complements the 

more general categorisation of human error by Reason's taxonomy alone. 

The above interpretation of causal factors represents one possible underlying cause of 

the described error. However, the same manifestation of user behaviour might also 

point towards a second, different underlying cognitive mechanism. Employing 

Reason's taxonomy, the commander not being aware of the attitude change can be 

classed as a rule-based mistake as modelled above. On the other hand, it could also be 

classed as a rule-based mistake as mediated by information overload. 

Reason cites the abundance of information confronting the problem-solver in most 

real-life situations as one basis for rule-based mistakes. He states that this almost 

invariably exceeds the cognitive system's ability to apprehend all the signs present in 

a situation. Applied to our case study, the interplay of contradictory attitude 

information on the one hand, and the opening of the cabin door on the other can be 

seen as leading to cognitive information overload. 

This scenario particularly lends itself to being expressed in the 'cognitive language' 

provided by ICS. The limitations of human cognition in the face of information 

overload, or cognitive strain. is built into ICS as the architectural constraint of 

subsystems not to processing simultaneous inputs which belong to distinct 

configurations. Using ICS can help to express the details of Reason's 'information 

overload' more precisely. 
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The problem-solving configuration described above remains, but now is 

supplemented b a econd configuration, which describes the cognitive resources 

required when processing the opening of the cabin door (see Figure 4-2). 
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Figure 4-2 - Information Overload - Competing Configurations 
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The second configuration (2) originates from the input at the acoustic subsystem by 

the noise of the opening cabin door. This information demands access to the meaning 

subsystems, currently utilised by the first configuration (1). Since Principle 1 in ICS 

does not allow access to a process by more than one configuration at a time, the two 

configurations compete for the available cognitive processing resources. Thus, on the 

on the grounds of ICS Principle 1, cognitive overload is established. 

Using ICS to model the underlying cognition of the error provides a means of further 

investigating the behaviour trace leading to an accident. Expressing the rationale for 

different interpretations within a cognitive framework facilitates their more precise 

communication and more detailed analysis. In that way, not only what failed in 

accidents, but also how and why it failed is examined and thus included in the 

investigation of human error. 

LINKING THE ANALYSIS OF HUMAN ERROR AND 

SAFETY RECOMMENDATIONS 

Introduction 

The human error analysis process as part of accident and incident investigation often 

entails erroneous behaviour being classified according to error taxonomies. However, 

the error data to be classified is often under-specified and conflicting. Also, error 

categories can be ambiguous, vague, and overlapping. Error analysis that is rooted in 

cognitive theory allows the analyst to gain an understanding of the generic processes 

underlying the 'error', the mechanisms of human cognition. This thesis argues that 

the use of a cognitive architecture supports error analysis when used as a structural 

framework for expressing hypotheses about the cognitive origin of human error. By 
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doing this, the rationale behind error classification can be explicated and documented. 

Cognitive frameworks can provide a vocabulary for reasoning about different 

possible explanations of the 'error', and a vocabulary for validating resulting safety 

recommendations. In the following sections of this chapter the link between the 

analysis of human error and safety recommendations is explored. 

Examination of the cognitive processing underlying those classification instances 

could provide leads to the causes and 'inner workings' of the error mechanisms. We 

have, therefore, employed an analysis framework to model the cognition that 

underlies human error. This enables analysts to benefit from error taxonomies' 

abstracting and simplifying effect on the wealth of error data, as well as from the 

more refined, structured, and detailed information gained by systematic cognitive 

modelling. Thus, the mappings from category to underlying mechanisms can be 

examined by reasoning about the underlying processing within a structural 

framework. This also supports the documentation of the error modelling process. 

Furthermore, safety recommendations that result from the error analysis can be 

validated by embedding reasoning about their impact in the existing cognitive error 

model. 

Case Study: The Gatwick BAC 1-11 Incident 

The Air Accident Investigation Branch (AAIB) incident report on the Gatwick BAC 

1-11 incident is used to illustrate the link between error analysis and safety 

recommendations. This incident report, as mentioned in the previous chapter, shows a 

variety of causal factors. These include higher cognitive mistakes as well as 

perceptual slips. The incident will be described in more detail in the following, and 

the cognitive description of human involvement in the incident (as modelled 

previously) will be shown to act as a backdrop against which possible safety 

recommendations can be contextualised and evaluated as to their effectiveness. 
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The incident involved a near-miss ground collision of a Boeing 737 and a British 

Aerospace One-Eleven (BAC 1-11) at Gatwick Airport. To remind the reader, the 

BAC 1-11 landed on taxiway 2 at 2123 hours after making a night visual approach to 

runway 08L. A Boeing 737 had been ordered onto taxiway 2 just previously by the air 

traffic controller. The Boeing's commander attempted to turn off to the side after 

observing the landing lights of the BAC approaching. This manoeuvre led to the 

aircraft's port main wheels leaving the paved surface. It bogged down in the soft 

ground partially blocking the taxiway with its left wing and rear fuselage. The BAC 

stopped only 190 metres short ofthe Boeing 737. There were no injuries. 

The AAIB report lists as one causal factor that the BAC commander inaccurately 

interpreted the cues provided to him by the visual scene on the approach to runway 

08L. He consequently landed on taxiway 2 believing it to be runway 08L. The other 

'causes' describe various factors believed to have facilitated the cue 

misinterpretation. This includes the use of both white runway edge lighting as well as 

bi-directional green taxiway centreline lighting for runway 08L. Communication 

between the BAC commander and the first officer, which might have facilitated the 

'misjudgement', are also mentioned. 

From March 1988 to November 1988, there were major night-time reconstructions of 

runway 08R under way, the main runway at Gatwick. As a result, runway 08R was 

closed routinely at 2100 hours and runway 08L, which had been serving as taxiway 

during the day, took over as the main runway. 08L was also known as the 'emergency 

runway', and featured visual ground (lighting) aids that could signal both its status as 

a runway or a taxiway. 

Taxiway 2 is situated parallel and next to 08L. In order to speed up traffic flow, 

National Air Traffic Services (NATS) lifted the prohibition of the use of taxiway 2 

while aircraft were taking-off or landing on runway 08L during the time of runway 

08R reconstruction. This made it possible for the BAC to approach runway 08L for 

landing while the nearby taxiway 2 was being utilised by the Boeing 737. 
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The crew of the Boeing saw the plane approaching and attempted to leave the 

runway, whereas it was not possible for the crew of the BAC to identify obstruction 

of the runway by another aircraft. Maximum Braking and/or maximum reverse thrust 

were not used for the whole of the landing run by the BAC, which suggests that the 

crew was unaware that they had landed on the (obstructed) taxiway until well into the 

landing roll (AAIB, 1989, p.18). 

The prime 'cause' of the incident was identified by the AAIB report to be the 

"fundamental error by the crew" when they "convinced themselves that taxiway 2, 

with standard green taxiway centreline lighting, was runway 08L and landed on it" 

(AAIB, 1989, p.17). The report's conclusion focuses primarily on the ambiguity of 

the visual ground aids as the main contributing factor for the 'pilot error' . 

Accordingly, the safety recommendations Jist changes to the ground lighting system 

and updating of the Aeronautical Information Publication (AlP) manual that detailed 

the visual ground aids provided at Gatwick's main runway. In the following sections 

we will demonstrate how the ICS cognitive architecture can be employed to reason 

about the underlying mechanisms of the cited 'pilot error', and also how resulting 

safety recommendations can be embedded in the resulting cognitive analysis. 

Contextualising Safety Recommendations within the ICS 

Model 

The Gatwick incident report focuses primarily on the inadequacy of the visual ground 

aids in its treatment of the incident's causes and of the given safety recommendations. 

This view of the priorities in the investigation's findings can be illustrated and 

weighed up in an ICS model as shown in Figure 4-2. 
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Figure 4-3 below details the cognitive processing relevant to the runway 

identification specific to this case. In the diagram, (1) depicts the conflict between 

incoming visual infonnation and the pilot's expectation as derived from his mental 

model of the situation (2). Thus, there is an unsuccessful attempt at matching the 

propositional and the visual input. Again, visual information other than that 

concerning the target will not be able to blend with the data originating in the 

propositional subsystem. A loop between the two subsystems will be maintained until 

the representations match. Such a match is possible only if either the correct runway 

is in the field of vision and provides sufficient discriminatory visual cues, or, if this is 

not the case, then only if the propositional infonnation is underspecified or incorrect. 

According to the investigator's judgement on the relevant processes, the faulty 

identification was caused predominantly by insufficiently discriminatory visual input 

by means of ambiguous visual ground aids. Thus, the focal point in the ICS model 

lies in this case at (1), with the visual input wrongly blending with the propositional 

specification. However, given the ICS architectural constraints, the model also shows 

how the propositional subsystem, conferring with the implicational processor, has 

generated a representation of the target (2) and passes this expectation to the object 

subsystem. This explicates the importance of anticipation and top-down infonnation 

in human visual processing, and in the pilot's processing ofthe infonnation available 

to him. Mirroring the report's interpretation, the 'cause' of the 'pilot error' is to be 

found in the visual infonnation provided to the pilot. However, the ICS architecture 

draws attention to the fact that the pilot's expectation also played a significant role. 

The incident report emphasises that the BAC crew were aware of the use of 08L as 

emergency runway while not being certain as to which of the light patterns 

constituted runway 08L as opposed to taxiway 2. Crucially, also the crew's 

uncertainty about whether the switch to the emergency runway had already taken 

place can be viewed as a major factor influencing the interpretation of the visual cues 

available. For instance, one factor dismissed by the report was the radio infonnation 

transmitted up to 2109 hours to crew stating runway 08R as the current runway 

without warning the crew of the impending change of runway. 
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Figure 4-3 - The safety recommendations contextualised 
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The broadcast message at 2109 infonned the crew that the runway in use was OSL, 

but did not explicitly draw attention to the change. This fact was dismissed by the 

investigation as unimportant since the pilot had responded to subsequent pilot-tower 

communication, repeating clearance to runway 08L. In Figure 4-2, the propositional 

expectation is shown as being infonned by auditory/morphonolexical as well as 

implicational input (3). Thus, different hypotheses as to the cognitive processing 

underlying 'human error' can be reasoned about and documented by utilising a 

cognitive architecture such as ICS. 

The effects of safety recommendations that result from the error analysis process can 

now be embedded and thus evaluated within the cognitive model. The above 

described approach to error analysis therefore also provides a 'field' (or backdrop) on 

which proposed safety recommendations and their effect on cognitive processing 

capabilities can be validated. In the given case study, safety recommendations that 

target visual ground aids only rely on an undisturbed propositional specification. 

However, there is ample evidence in the AAIB report that points to the contrary. 

CONCLUSION 

Human error has been recognised as a predominant factor in aviation mishaps. 

O'Hare and colleagues (O'Hare et aI., 1994) cite estimates of the proportion of 

mishaps due to human error as ranging between 60% and 80%. 

Describing human cognitive errors occurring in the run-up to accidents in detail, or 

analysing in tenns of underlying psychological factors is difficult, since typicalIy, 

error taxonomies do not provide the necessary depth of analysis. Expressing such 

error classes within the framework of a cognitive model will allow us to investigate 

and reason about their underlying psychological causes. A conceptual, systematic 

technique for categorisation of errors is a prerequisite. 

101 



It has been argued that cognitive modelling may help us to understand the causes of 

accidents and incidents. Furthermore, architectures such as ICS can provide a 'tool 

for thought' and for reasoning about competing explanatory hypotheses on the causes 

and underlying cognitive mechanisms of 'human error'. They can provide theoretical 

grounding and a documentation facility for such speculations, and a backdrop against 

which effects of safety recommendations can be validated. 

ICS explicitly shows the concurrency in cognitive processing. It also details the 

cognitive resources necessary for task completion. Thus, 'pilot error' can be 

examined in the light of the cognitive precursors of the actions that have taken place. 

Although ICS is a rich and expressive modelling approach, the grain of analysis is not 

predetermined by the architecture. Importantly, no assumptions regarding a certain 

level of performance (such as novice/expert) are made in ICS. Therefore, there are no 

obstacles to modelling erroneous behaviour directly. ICS architectural and structural 

constraints invite the wide-scope inclusion of contributing factors, such as interacting 

with the environment through auditory, visual or other sensory channels. However, 

ICS in its current form does only partly provide a modelling strategy, and the analysis 

outcome depends ultimately still on the expertise and modelling skill of the analyst. 

Although the potential impact of safety recommendations can be assessed, ICS 

models do not provide an easy link between modelling outcome and action 

recommendations for future error prevention. However, as was shown in this chap, an 

ICS analysis can provide the theoretical framework in which the effect of potential 

safety recommendations can be evaluated. 

Thus, this chapter showed the adoption of Reason's error taxonomy and Barnard's 

ICS for the systematic representation of operator error within a theoretical cognitive 

framework. Operator error in accidents can be described more precisely by linking it 

to its underlying cognition. Analysis can reach beyond surface categorisation, and it is 

made possible to reason about the actual causes of error. As a consequence, this 

approach paves the way for ergonomic design that takes full advantage of the insights 

expressed in cognitive theory. 
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Embedding human error modelling into a cognitive theoretical framework helps to 

express analysts' understanding of the error sources. Communication of their 

reasoning, based on expertise and experience, has been i1Justrated in this chapter by 

using Reason's taxonomy and ICS, as well as by the error analysis provided by 

existing aviation incident reports. Although the potential impact of safety 

recommendations can be assessed, ICS models do not provide an easy link between 

modelling outcome and action recommendations for future error prevention. 

However, as was shown in this chapter, an ICS analysis can provide the theoretical 

framework in which the effect of potential safety recommendations can be evaluated. 

The table below summarizes the key points of critique on current error analysis 

approaches in accident investigation and provides an overview whether the suggested 

cognitive error modelling approach would contribute to the solution of the problem. 

Critique of existing error How the proposed cognitive error analysis 

analysis approaches approach addresses these criticisms 

The cognitive error analysis approach 

Analysis of human behaviour embodies erroneous as well as error-free 

only in terms of "error" (no behaviour and thought processes. Error is 

room for non-erroneous seen as the other side of the coin of an 

behaviour) otherwise efficient thought, emotion, and 

action apparatus. 

Table 4-1 - Benefits of the proposed approach (I) 
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Critique of existing error How the proposed cognitive error analysis 

analysis approaches approach addresses these criticisms 

Analysis of 'human error' only Human behaviour is analyzed in its interaction 

in terms of isolated behaviour with external situation and events. 

There is a gap between 
Cognitive error analysis models the 

behavioural description and its underlying 
describing human behaviour as 

cognition in a theoretical framework. The 
implicated in the accident's 

framework can be used to reason about 
causal chain, to assigning a 

competing categorizations. This justification 
label to it through 

process, the rationale, is thus traceable and 
categorization 

documented. 

The framework supports diagrammatic 

reasoning, which has been shown to aid 

understanding and communication of the 

Verbal description of human analysis results (Moran and Carroll, 1996). 

behaviour as implicated in an 

accident's causation. The symbolic implementation of the model 

(May et aI., 1993; Barnard, 1988) will aid 

precision, flexibility, standardization, and 

predictive power. 

Table 4-2 - Benefits of the Proposed Approach (II) 
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Critique of existing error analysis 
How the proposed cognitive error 

analysis approach addresses these 
approaches 

criticisms 

The cognitive architecture allows 'what-if 

scenarios to be executed, and presents a 

Human error predictions based on framework to reason about potential mental 

implicit assumptions and behavioural consequences of cognitive 

precursors. 

Modelling the cognition underlying the 

Taxonomical labels alone often lack error's categorization contextualizes its 

explanatory power causal processes, and thus adds explanatory 

power grounded in a theoretical framework 

The cognitive error model can help to 

identify intervention points for future 
Taxonomical labels do not support 

safety measures in the causation processes. 
the generation of safety 

It can also be used to validate (or reject) 
recommendations, and might even 

suggested safety recommendations, by 
mislead the analyst (such as in the 

grounding both (the error analysis and the 
case of "reminder statements") 

simulation of safety measures' impacts) in 

a common theoretical framework. 

Table 4-3 - Benefits of the Proposed Approach (III) 
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Critique of existing error analysis 
How the proposed cognitive error 

analysis approach addresses these 
approaches 

criticisms 

The cognitive error model can be used to 

Taxonomic labels do not provide compare competing recommendations, help 

any support for evaluating safety predict their outcomes, and test the 

recommendations. compatibility of recommendations with 

analysis evidence and results. 

It is possible to model interactions between 

Error categorizations do not 
several individuals in the proposed 

cognitive error framework, and also the 
sufficiently take team factors into 

interplay of team members' commun-
account. 

ication and their knowledge and mental 

processes. 

Since the proposed cognitive error analysis 

approach is grounded in a generic 
Taxonomies are finite, they cannot 

psychological theory, the range of 
be exhaustive, and typically cover 

behaviour and cognition that can be 
only a limited range of errors. 

described is much wider than a restricted 

enumerations of categories 

Table 4-4 - Benefits of the Proposed Approach (IV) 
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Critique of existing error analysis How the proposed cognitive error 

approacbes analysis approach addresses these 

criticisms 

Taxonomies often list mental and 

emotional states (such as stress, The cognitive error framework can 

fatigue) as causal categories, but model emotions (Teasdale and Barnard, 

fail in contextualizing the human's 1993) and can thus contextualise the 

mental state in terms of its impact human actor's mental state in terms of 

on cognitive processes or action in a their interactions with their environment. 

situated work activity. 

Seemingly 'conclusive' labelling of Encourages in-depth analysis of the 

instances of human behaviour, contextualized cognitive precursors 

rather than starting point for human defining the human involvement in the 

error analysis. accident's causation. 

Common sense analysis, based on 
Encourages use of appropriate expertise 

on human thought, decision-making, and 
implicit assumption on theories of 

action processes. 
accident causation as well as of the 

human psyche. 

Varying levels of "Goodness of Fit" 
The next two chapters in this thesis will 

evaluate the feasibility of the cognitive 
to the accident investigation process 

error analysis approach in two real-life 
and overall safety-management 

clinical safety management strategies. 
strategy. 

Table 4-5 - Benefits of the Proposed Approach (V) 
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In the remaining chapters of this thesis, the suggested cognitive error analysis 

approach will be validated in real-life case studies in the medical domain: one 

retrospective analysis of an incident reporting scheme, and its associated analysis of 

"human error", that had been run in an adult Intensive Care Unit for over 10 years, 

and one case study in which a full incident reporting system, including the suggested 

error analysis approach, was implemented and evaluated from scratch as part of 

existing safety management in a Neonatal Intensive Care Unit. 
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CHAPTER 5 RETROSPECTIVE 

COGNITIVE ERROR ANALYSIS IN 

AN INCIDENT REPORTING 

SCHEME IN ADULT INTENSIVE 

CARE 

INTRODUCTION 

As noted in Chapter 2, accident investigation is only one part of a safety management 

strategy that aims at preventing loss through system failure of any kind. One other 

prominent method is incident reporting. Incidents are typically defined as near-miss 

(or minor) accidents. The concepts of accidents and incidents are thus closely related. 

Vander Schaaf summarized their relationship in a diagram as shown in Figure 5-1. 

This diagram (Figure 5-]) ilJustrates the core concepts in safety management - the 

factors that might influence an accident's causation, and the role that system defences 

and recovery (typically accomplished by a human) play in preventing an accident 

from occurring. 

Heinrich (1936) studied the relationship of accidents and incidents in further detail in 

the early half of the last century, and noted the overwhelming rarity of actual 

accidents (with associated major loss). He identified a ratio of 300: 1 of accidents and 

incidents, coining what is now known as the "Heinrich ratio". The diagram shown in 
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Figure 5-2 illustrates this ratio - The Heinrich ratio has also become known as the 

"iceberg model". 

Technical F Fwl~ ~ 

Organisational I j ...--Dan-gero----.us 

Failure Situation 

I~=/ 
Developing 

incident 

Figure 5-1 - The Relationship of Incidents and Accidents 

(Vander Schaaf et aI., 1991) 

One assumption that is conveyed by the iceberg diagram is that accidents and 

incidents share the same root causes. It is also an accepted assumption that incidents 

are much more frequent than accidents, and that they thus lend themselves much 

more readily to large-scale statistics analysis. There is just not enough data on 

accidents to make this worthwhile, especially given that accidents themselves are 
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often assumed to be a one-off occurrence, whose causation is rooted in an 

unrepeatable web of unique causation. Whereas incidents are assumed to cluster 

around failure potential in safety-critical systems, and they are assumed to give clues 

to "accidents waiting to happen" (Reason, 1990). 

Collecting incident data in a database provides a much bigger sample size that 

enables the drawing of conclusions and generalizations based on statistical analysis 

that would not be possible with one-off accident occurrences. The need for causal 

classifications becomes even stronger in the context of incident analysis, since its 

statistical analysis is dependent on quantitative measures (rather than qualitative 

descriptions). This need overlaps e.g. with Probabilistic Risk and Safety Analysis 

(PSA, see e.g. Apostolakis, 1991) and the related Human Reliability Analysis (HRA), 

which also rely on quantifications for their results - and thus on distinct 

classifications of 'human error'. However, as is argued in this thesis, a human error 

classification approach that does not explicate its analysis process and assumptions 

bears the risk of leading to meaningless, subjective and untraceable classifications, 

with error categories functioning as empty labels of instances of human behaviour 

rather than carrying any real semantics. Furthermore, incident classifications may also 

help in prioritizing future analysis efforts. Thus, an efficient, but grounded, method 

for error analysis and categorization is needed. 

I-____ ....;;;;:a~-... Minor Injuries 
} Incidents 

Figure 5-2 - Heinrich Ratio: Incidents and Accidents 

111 



This chapter will further demonstrate the suggested cognitive error analysis approach 

by means of a retrospective analysis of an incident reporting scheme and its collected 

data. Since standardized reporting forms were used in the incident reporting scheme, 

the data obtained adhered to a certain format. The incident data used had been 

collected (and pre-analyzed) over the last 10 years. I will first introduce the field of 

incident reporting and human error analysis as it pertains specifically to the medical 

domain, before I describe how the cognitive error analysis approach was applied to 

the incident data in order to shed light on underlying causes, and possibly remedies. A 

detailed overview of medical incident reporting and an analysis of the Edinburgh 

Incident Scheme are available in Appendix B. 

IDENTIFICATION AND ANALYSIS OF INCIDENTS IN 

COMPLEX, MEDICAL ENVIRONMENTS 

Medical risk management is often seen as lagging behind other safety-critical 

industries, where there has been considerable research into safety and accident 

causation models. Accident analysis models used in, for instance, aviation and 

process control recognise the importance of formalised root cause analysis, and the 

multi-level nature of incident causation. Latent factors, such as management and 

organisational issues, are stressed as underlying structural precursors for incident 

occurrence. Also, the constraints ofthe human cognitive system and their relationship 

to task performance are taken into account. These considerations are reflected in the 

use of incident reporting schemes, the analysis of the collected incident data, and the 

generation of remedial action recommendations. In this chapter, we will illustrate 

how these concepts can be applied in a clinical setting. An incident reporting scheme 

implemented at an Edinburgh Intensive Care Unit will serve as a case study. 
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Clinical Adverse Events 

In 1990, the Harvard Medical Practice Study (Harvard University, 1990) investigated 

the occurrence of patient injury caused by treatment - so-called adverse events. It 

found that nearly 4% of patients suffered an injury that prolonged their hospital stay 

or resulted in measurable disability. Leape (1994) pointed out that, if these rates are 

typical of the US, then 180000 people die each year partly as a result of iatrogenic 

('doctor-caused') injury. Since most of the precursors to iatrogenic injuries are per

ceived to be 'Human Error' (Runciman et aI., 1993), the possibility of negligence 

causes great concern. This is mirrored in the litigious climate in the US (Leape et al., 

1991), and led to a considerable increase in interest in the causes of adverse events 

(Bogner, 1994). The cost of adverse events is high; not only in human suffering, but 

also in compensation claims and the need for prolonged treatment of afflicted 

patients. 

Learning from Adverse Events 

In the UK, the drive towards clinical effectiveness (Dawson et aI., 1998) has led 

investigators to concentrate on increasing the quality of care while lowering the costs 

associated with our current health care system. In the course of the clinical 

effectiveness program, the idea of clinical audits has gained in strength - a 

"professionally led initiative which seeks to improve the outcome of patient care as a 

result of clinicians examining their practice and modifying it appropriately" 

(Wedderburn, 1998). However, the data collected for audits concerns itself only with 

factors peripheral to adverse events - cost effectiveness being the focus of the 

investigation (see e.g. Van der Schaaf, 1996). Formal analysis of the causes of 

adverse events does not take place. Rather, a variety of committees and commissions 

are typically set up locally, meeting regularly to review any cases of iatrogenic injury 



that had occurred and had been brought to attention by the staff involved (Leape, 

1994). The reporting as well as the analysis of these events, however, are subject to 

local convention, and thus express the self-regulating policy of the health care 

community. 

In some cases, incident reporting schemes are in place. This concerns "near miss" 

adverse events, i.e. cases in which iatrogenic injury was likely to have occurred, but 

the hazardous situation could be recovered from successfully. However, it was noted 

that even under the clinical reporting schemes, in-depth analysis and search for root 

causes of adverse events does not take place (Leape, 1994). 

Human Error Analysis in Aviation and Process Control 

Revisited 

In safety-critical domains other than health care, accidents (i.e., like clinical adverse 

events, non-intended events which lead to negative outcomes and loss) have received 

a great deal of attention. Research into their causes and prevention has made 

considerable advances. Accident causes formerly described solely as 'Human Error' 

have come under close scrutiny, notably with the work of Rasmussen (e.g. 

Rasmussen et aI., 1987), Reason (Reason, 1990), Hollnagel (1991), and Hale (Hale et 

aI., 1997), as also described in Chapter 2. They have systematically analysed 

cognitive mechanisms underlying the various phenotypes of human error. Also, latent 

contributing factors are taken into account. These concern organisational as well as 

managerial influences on the course of the accident. Thus, there was a shift from 

'blaming the human' (such as the oft-cited 'pilot error') to the insight that error 

invariably occurs in complex systems. The aim now is to create error-tolerant systems 

that absorb errors through 'system defences' and provide redundancy and possibilities 

for error recovery. The move away from the blame culture also made possible the 

introduction of institutionalised, anonymous, and non-punitive incident reporting 
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schemes. Subsequent detailed comparison and analysis of the identified root causes is 

carried out by organisations such as the US National Transportation Safety Board 

(NTSB), or the US Federal Aviation Administration (FAA) and NASA. In the clinical 

domain the argument has also been put forward for the use of incident reporting to 

complement post-hoc accident investigation with the inherent problems for scant 

information, altered perception and outcome bias (Runciman et aI., 1993). Further

more, analysis of the reported events should extend beyond the investigation of 

proximal causes to include latent system failures. Thus, the use of incident reporting 

schemes and theories on accident causation are the two main contributions so far to 

safety applications in the medical domain. 

This chapter looks at incident management practices in a clinical setting, as compared 

to the approaches in other safety-critical domains. The main issues we will investigate 

in this chapter concern the problems associated with incident reporting, categorisation 

and subsequent analysis. We will illustrate existing risk management in medicine by 

an incident reporting scheme employed in an Edinburgh Intensive Care Unit (lCU). 

First, we will introduce current applications of the Critical Incident Technique 

(Flanagan, 1954) in medicine and give an outline of the Edinburgh implementation. 

Then incident reporting, categorisation, and analysis with reference to the Edinburgh 

scheme will be described in tum, mirroring the stages of the incident investigation 

process. A later section will then investigate the generation of action 

recommendations from the prior analyses. In each section, we will compare and 

contrast theory and methodology 'lessons' from safety-critical domains such as 

aviation with the implementation of the Edinburgh incident reporting scheme. 

The Edinburgh leu Incident Reporting Scheme 

The Edinburgh incident reporting scheme was set up in an adult intensive care unit in 

1989. It has been maintained by Dr David Wright, who is an anaesthetist and one of 
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the ICU consultants. The unit has 8 beds at its disposal, and there are roughly 3 

medical staff, one consultant, and up to 8 nurses per shift on the ward. Equipment in 

an ICU ranges from monitors displaying life sign data, such as heart rate and intra

cranial pressure (ICP), to drug administration equipment, automatic breathing 

machines, and oxygen humidifier masks. Patient management involves tracking and 

transcribing monitored vital data, laying and maintaining lines such as endotracheal 

tubes, and chest drains, and handling equipment, such as three-way taps for drug 

administration, ventilators and defibrillators. 

Incidents reported over ten years (see Wright, 1999) fell mainly in four task domains: 

relating to ventilation, vascular lines, drug administration, and a miscellaneous group. 

The incident scheme employed reporting forms that encouraged staff to describe the 

event in narrative form, as well as noting contributing factors, detection factors, grade 

of staff involved in the event and that of the reporting staff. 

One crucial factor in the implementation ofthe scheme was its anonymity. Dr Wright, 

in his role of the scheme manager, was the only person who had access to the 

completed forms. The collected data was coded into categories and summarised. It 

was then collated into frequency tables. Information that may identify staff was 

removed, and action recommendations were proposed. The results of this initial 

analysis were then iterated over by Dr Wright and the Senior Nurse of the unit. 

Together, the data was again inspected and final revisions of action recommendations 

were carried out. The findings and recommendations were disseminated regularly 

among the staff of the unit, and thus an effective feedback loop was created. 

For a more detailed description of the implementation and findings of the incident 

reporting scheme, see Wright et a1. (1991), Wright (1999), Busse and Johnson, 

(1999), and Appendix B. 
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There are several definitions of what constitutes an 'incident'. Incidents might be 

considered adverse events only. near miss events only, or both. In the Edinburgh 

study, staff are asked to report 'critical incidents', which are defined as any 

occurrence that might have led (if not discovered in time) or did lead, to an 

undesirable outcome. In consequence, each recorded incident: 

I. was caused by an error made by a member of staff, or by a failure of equipment 

2. can be described in detail by a person who was involved in or who observed the 

incident 

3. occurred while the patient was under our care, though ( ... J it could be patients in 

transit 

4. was clearly preventable 

The Edinburgh Categorisation Scheme 

In the Edinburgh study, information drawn from the incident reports were categorised 

into 'causes', 'contributory factors', and 'detection factors' (see Wright, 1999). The 

categories were arrived at through informal coding of the narrative incident data. This 

bottom-up approach led to a domain-specific, behavioural categorisation scheme. 

'Causes' offers the subcategories of Human Error and Equipment Failure. Any 

incident that has some degree of human involvement is considered a Human Error. 

Furthermore, the human error incidents are classified as to the various task and 

equipment domains these refer to, such as "vascular lines related", "drugs

administration-related", or "ventilator-related". Thus, the categorisation mainly labels 

the incidents without providing a step towards causal analysis. Rather, it points to 

where in the patient management task sequence the incident occurred. 'Cause' here 

refers to the task domain of the proximal causal factor. Mostly, the actual proximal 

'cause' of the incident cannot be inferred from this categorisation per se. A summary 
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of the narrative description of the occurrence is referred to in order to reconstruct the 

proximal cause. 

However, the categorisation of the contributing factors sheds some light on more 

distal, and less domain-dependent, 'causes'. Both, the task/equipment domain and the 

contributory factors together can be seen as representing pointers as to in which task 

sequence, and where in the task sequence, the underlying problems that led to the 

incident might be found. Thus, they can focus further enquiry. 

The initial categories (Wright et aI., 1991) were: 

• Inexperience with equipment 

• Shortage of trained staff 

• Night time 

• Fatigue 

• Poor Equipment Design 

• Unit Busy 

• Agency nurse 

• Lack of Suitable equipment 

• Failure to check equipment 

• Failure to perform hourly check 

• Poor Communication 

• Thoughtlessness 

The 'contributing factors' categorisation scheme evolved since the time of creation, 

and nearly doubled from 12 categories to 23. This was the result of the ongoing 

iterative coding of the collected incident data, and of experience with the reporting 

scheme. The added categories are: 

• Presence of students/teaching 
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• Too many people present 

• Poor visibility/position of equipment 

• Grossly obese patient 

• Turning the patient 

• Patient inadequately sedated 

• Lines not properly sutured into place 

• Intracranial Pressure Monitor not properly secured 

• Endotracheal tube not properly secured 

• Chest drain tube not properly secured 

• Nasogastric tube not properly secured 

In the initial version of the taxonomy, mainly so-called Performance Shaping Factors 

(see also Rasmussen, (1982» are listed as contributing causes, such as Fatigue, Unit 

Busy, and Night Time. Poor Communication can also be considered a performance 

shaping factor. The one factor notably not a PSF is 'Thoughtlessness'. The only 

factor that clearly denotes a latent failure is 'Poor Equipment Design'. 

Thus, the initial categorisation scheme concerned itself mostly with factors that 

created the situation precipitating the incident. However, the refined categories are 

increasingly task and domain specific, and do not denote generic Performance 

Shaping Factors. Instead, a behavioural and task domain dependent taxonomy is 

introduced, see especially the last seven factors above. These categories can provide 

the basis for descriptive statistics on the relative frequency of occurrences and for 

denoting trends in the distribution and combination of incidents. However, analysis 

of the underlying causes of the incident is not facilitated. 

The evolution of the categorisation scheme itself provides valuable information. The 

novel factors were created by filtering them out of the incident data reported and 

analysed over the years. Such a bottom-up approach establishes and clarifies problem 
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areas within both the task domain and the handling of the provided equipment. Thus, 

insights into task characteristics and performance can be gained. 

This can be put to use, for instance, for providing training focus, while offering strong 

empirical support. For instance, action recommendations in the period form August 

1995 to August 1998 pay heed to the recurring problem of dislodged endotracheal 

tubes. Initially, reminders are repeatedly publicised about this common problem. 

Reasons for dislodgement are given. Then, a list is devised that summarises "reasons 

for endotracheal tubes coming out". This is disseminated, and later 'suggested 

actions' recommend to revise this list and publicise it further. 

In comparison of the revised categorisation scheme with the categorisation 

approaches discussed above it can be noted that a linear causal chain can still be 

constructed by dividing the data according to, for instance, Rasmussen's Taxonomy 

for Description and Analysis of Events involving Human Malfunction (see Figure 

2-6). For instance, contributing factors on the AIMS-leU form are divided into 

'system-based factors', which detail work condition factors as well as latent failures, 

and 'human factors', which note factors that impact on the human cognitive 

processing levels. There is a trade-off, however, since the provision of fixed 

categories lessens the flexibility of the data reported, and might stifle creativity for 

staff attempting to explain how and why the incident occurred. 

Multi-causal Classification 

In the classification of data into the contributing causes categories, combinations of 

factors are allowed, and are noted frequently in the data sample. The data analysis 

might thus also be based on noting the frequency or likelihood of certain factors 

correlating. Trends could be established, and conclusions drawn that are justified by a 

richer data set than only noting the occurrence of single factors. To illustrate this, we 

took two data samples (see Table 5-1 and Table 5-2), one sample covering the first 
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categorisation interval, January and February 1989 (sample89), and the other 

covering a more recent interval from May to November 1998 (sample98). Both 

samples cover 25 incident reports. 

'Cause' Occurrence 'Contributing Factors' Occurrence 'Detection' Occurrence 

'89 '89 '89 

'Ventilator' : 10 Poor Communication: 14 Dl Regular Checking: 

'Vascular line': 6 Poor Equip. Design: 11 D2 Alarms: 

'Miscellaneous' : 5 Inexperience with Equipment: 5 D3 Experienced 

'Disposable Equip- Lack of Suitable Equipment: 4 Staff: 

ment': 4 Night Time: 3 D5 Patient Noticed: 

'Drug-administration': 3 Fatigue: 3 

'Non-disp. Unit Busy: 2 

Equipment': 2 Failure to Perform Hourly 

Check: 2 

Thoughtlessness: 2 

Table 5-1 - Causal Categorisation Sample '89 

In sample98, the predominant factors are 'Thoughtlessness' (lO occurrences), 'Poor 

Communication' (9 occurrences), and 'Inexperience with Equipment' (5 

occurrences). In contrast, in sarnple89, factors 'Poor Communication' (14 

occurrences), 'Poor Equipment Design' (11 occurrences), 'Inexperience with 

equipment' (6 occurrences), and 'Lack of suitable Equipment' (4 occurrences) were 

most implicated in incidents. 
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'Cause' Occurrence 'Contributing Factors' Occurrence 'Detection' Occurrence 

'98 '98 '98 

'Drug-administration' : Thoughtlessness: 11 D 1 Regular Checking: 

10 Poor Communication: 8 D3 Experienced Staff: 

'Ventilator' : 8 Inexperience with Equipment: 4 D2 Alarms: 

'Vascular line': 4 Night Time: 3 D4 Unfamiliar Noise: 

'Miscellaneous': 4 Failure to Check Equipment: 3 D5 Patient Noticed: 

'Non-disp. Failure to Perform Hourly D7 Handover Check: 

Equipment' : 1 Check: 2 

Endotrach. Tube Not Properly 

Sutured: 2 

Poor Equipment Design: 1 

Patient Inadequately Sedated: 1 

Turning the Patient: 1 

Table 5-2 - Causal Categorisation Sample '98 

A closer look at the data reveals that in the 1989 interval, half of aU 'Poor Equipment 

Design' incidents and one third of 'Poor Communication' are not single factor 

categorisations, but are placed in combinations. 'Poor Equipment Design' is 

predominantly (four out of five incidents) paired with 'Lack of Suitable Equipment'. 

'Poor Communication' is combined with a variety of factors, such as 'Fatigue', 

'Thoughtlessness', and 'Unit Busy'. This use of combinatorial categorisation embeds 

behavioural and person factors (e.g. Failure to Check Equipment, Thoughtlessness) 
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within latent system and work condition factors such as Poor Equipment Design, 

Fatigue, and Poor Communication. 

Also, in sample 98, 'Poor Communication' is paired with other factors in 6 out of 9 

incidents. 'Thoughtlessness' is shown in combination with other factors (such as 

Inexperience with Equipment) in 4 out of 10 incidents. 'Inexperience with 

Equipment' is only ever mentioned in combination. In sample 89, 'Inexperience with 

Equipment' is left as sole contributory factor only twice out of a total of six incidents. 

Three times it is mentioned in combination with 'Poor Equipment Design' and 'Lack 

of Suitable Equipment', respectively. Again, this shows how factors that warrant 

further explanation can be placed in context by considering the multi-combinatorial 

categorisation. It also shows, however, that descriptive statistics neglecting this facet 

of analysis shed a slightly misleading light on the collected incident data. 

Incident Detection 

The crucial role of detection factors is being recognised in the Edinburgh scheme. 

This is reflected on the incident fonn, as well as in the conclusions that are drawn 

form the data (see Table 5-1 and Table 5-2). 

Not only needs to be observed that although humans cause incidents, it is also 

humans who detect it and either remedy the consequences or prohibit the course of 

the incident to proceed. Staff is encouraged specifically to note which factors are 

believed to have aided detection. This is not only the data that can with significant 

confidence be assumed to be the reporter's own experience, but also that what 

ultimately can assist in finding ways of reducing the number of incidents and 

consequently, accidents. 

The detection factor taxonomy evolved alongside the iterative development of the 

contributory factors taxonomy. Initially it consisted of the categories 'Repeated 

Regular Checking', 'Presence of Alarms on Equipment', 'Presence of Experienced 
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Staff', 'Hearing Unfamiliar Noise', 'Patient Noticed', and 'Relative Noticed'. A task 

specific factor 'Having Lines or Three Way Tap Visible' was added, as well as the 

factor 'Handover Check'. These added factors point to possible system improvements 

to facilitate detection. They can be actively influenced by system factors such as work 

procedures, design, training, and staffing levels. 

This is pointed out in the initial presentation of the incident scheme (Wright et al., 

1991). It states that "regular checking by experienced staff is critical in detecting 

errors, but this may be adversely affected by nurse staffing policies where agency 

staff are commonly used or where little time is available for handovers". 

The iteration over the collected incident data thus clarified two more detection 

facilitating conditions. The importance of handover checks to make up for 

contributing causes 'Failure to Check Equipment' and 'Failure to Perform Hourly 

Check' is pointed out. Without iterative revision and coding of the data 

categorisation, these factors might have gone neglected. A formalised framework of 

analysis, such as those used in the aviation domain, can aid the recognition of 

detection factors and the generation of suggested actions (see also later sections in 

this chapter). 

THE EDINBURGH STUDY: INCIDENT ANALYSIS 

The narrative given by the reporting staff on the incident report form provides the 

first level of interpretation of what happened. In the case of the person reporting the 

incident not being the same as the one having 'caused' it, the reporter provides a 

second-level interpretation of the events. 
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The narrative, together with the contributory and detection factors mentioned, 

typically lays out a timeline of the events. Otherwise, this is inferred when analysing 

the data. One method of establishing a task-related timeline is to embed the erroneous 

task event into a sequential, high-level task model. This is partly carried out by 

classifying occurrences according to task aspects, as shown in the examples below. 

The classification of events involves informal (and non-documented) analysis 

followed by the above noted categorisation into 'causes', contributory, and detection 

factors. This can be seen as representing an informal root cause analysis process (see 

below). However, to repeat, the categorised data often seems to present behavioural 

descriptions or proximal 'causes'. 

Following Reason's accident causation and analysis model (see Figure 2-3), Table 

5-3 shows a tentative classification of the provided 'contributing factors' categories 

into latent failure types (distal causal factor), work conditions failure types (distal 

causal factor), and active failures (proximal causal factor). The latter constitute in our 

case task and behaviour oriented categories, rather than the error types based on 

cognitive theory as suggested by Reason. This classification can be compared to 

Rasmussen's event description scheme (see Figure 2-6), where latent factors and 

work conditions are mirrored in 'Personnel Task', and the 'Causes of Human 

Malfunction', 'Situation Factors', and 'Factors Affecting Performance' respectively. 
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Contributing Factor Categories Failure Type 

1. Inexperience with equipment 1. Distal: Training, Protocol 

2. Shortage of trained staff 2. Distal: Management, shift arrangement 

3. Night time 3. Distal: e.g. Fatigue/Staffing level 

4. Fatigue 4. Distal: Shift 

5. Poor Equipment Design 5. Distal: System Design 

6. Unit Busy 6. Distal - refined by # I 3 and # 14 

7. Agency nurse 7. Distal: Contract work, training 

8. Lack of Suitable equipment 8. Distal: management of equipment 

9. Failure to check equipment maintenance 

10. Failure to perform hourly check 9. Proximal, behavioural 

11. Poor Communication 10. " 

12. Thoughtlessness 11. Distal - Team Communication or 

13. Presence of students/teaching Training 

14. Too many people present 12. Proximal 

IS. Poor visibility/position of equipment 13. Distal (refining #14) 

16. Grossly obese patient 14. Distal (refining #6) 

17. Turning the patient 15. Distal - detection facilitating factor 

18. Patient inadequately sedated 16. Patient characteristic 

19. Lines not properly sutured into place 17. Proximal - Tasklbehavioural 

20. ICP monitor not properly secured 18. Proximal " 

21. Endotracheal tube not properly secured 19. Proximal " 

22. Chest drain tube not properly secured 20. Proximal " 

23. Nasogastric tube not properly secured 21. Proximal " 
22. Proximal " 

23. Proximal " 

Table 5-3 - Failure Type Categorisation 
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In order to be able to categorise the proximal failure types into Reason's cognitive 

Error Types, more detailed incident data is required than could be accessed from the 

samples. There is no one to one relationship between contributing factors and their 

underlying cognitive mechanisms (see for instance Busse and Johnson (1998), and a 

more in-depth analysis of the error types is required. 

Despite informal causal analysis during the categorization process, the Edinburgh 

study does currently not proceed much beyond the "what" phase within the above 

mentioned analysis model. However, given the contributing factors classification 

above, root cause analysis can be used to reflect the variety of levels in the incident 

causation tree. The consideration of latent and work condition factors draws attention 

to the deficiency of single-cause categorisation. Multi-causal categorisation can be 

used to reconstruct a possible root cause analysis as an example. 

For instance, the above-mentioned combination of factors 'inexperience with 

equipment', 'poor equipment design', and 'lack of suitable equipment' can be 

illustrated in a causal tree as shown in Figure 5-3. The incident (e.g. ventilator 

related) was 'caused' by staff 'inexperience with equipment'. This is then 

hypothesised to be mediated by 'lack of suitable equipment', which in turn pointed to 

'poor equipment design'. Thus, a causal chain is established, formalised, and 

documented. 

It could also be argued that 'lack of suitable equipment' contributed directly to the 

occurrence of the incident. This hypothesis, again, has different implication for 

potential system redesign. Thus, this kind of analysis, taking several levels of 

causation into account, can aid precise and structured reasoning about the incident 

occurrence. Factors to be considered in lower levels of causation are work conditions 

and latent system failure types, for instance Training, and alternative contributing 

factors why a failure to check equipment occurred. 



A structured, fonnalised analysis framework is also necessary to prevent hindsight 

from biasing error analysis. Attribution of error is a social and psychological 

judgement process rather than a matter of objective fact. Hindsight view is 

fundamentally flawed because it does not reflect the situation confronting the 

practitioners at the scene. Thus, rather than being a causal category, human error 

should be seen as representing a symptom, and a starting point for investigation 

(Woods et aI., 1994). 

Levell 

Level 2 

Level 3 
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Incident Occurrence 

Inexperience with 

Equipment 

r----------~, 
: Training : 
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, , , , , , , , , , , 
\ , , , 

Lack of Suitable 

Equipment 
'-----------~ 

... -----------£.---, 
: Management Issues : 
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Poor Equipment Design 
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, 1 

~----.---------------~ 

Figure 5-3 - Example of Incident Root Cause Analysis 
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ACTION RECOMMENDATION 

In order to arrive at sound and relevant action recommendations, a systematic and 

structured way of bridging the result of the analysis process to remedial measures is 

needed. The documentation of this process plays an important role, for instance to 

aIJow monitoring of the effect of the measure. 

In industry domains such as aviation and process control, cognitive analysis of error 

occurrences is often used to point towards remedial actions. For instance, Reece et al. 

(Reece and Hill, 1995) investigated human error in radiation exposure events. The 

proximal cause to the incident was situated in the task sequence and, additionally, 

cognitive failure analysis was carried out. Then the relationship between them was 

analysed, and thus it could be identified: 

• where training might be most effective 

• where equipment interface enhancements may be most appropriate 

• where job aids might help performance (e.g. checklists). 

In a similar vein, van der Schaaf (1996) proposed the Eindhoven Classification 

Scheme for classifying events and identifying incident causes in process control. The 

main categories represent Technical Factors, Organisational Factors, and Human 

Error categorised according to Rasmussen's Skills Rules and Knowledge (SRK) 

framework. The translation into proposals for effective, preventive, and corrective 

action can then be guided by means of a proposed Classification! Action Matrix. Thus, 

the action categories relate back to the SRK error types, and include Equipment, 

Procedures, Information & Communication, Training, and Motivation. 

This shows how error categorisation, when done according to cognitive level of 

performance and latent factors, can provide the basis for sound, structured, and 

theory-based remedial recommendations. Without error categories being based on 
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sound psychological theory, systematic and relevant action recommendation 

generation is not possible. 

'Cause' Contributing Factors Detection Factors Action 

Recommendations 

Ventilator 10 Thoughtlessness: 14 Reg. Checking: 11 4 Ventilator 

Vasco Line 6 Poor Equip. Alanns: 11 3 Vascular Line 

Misc. 5 Design: 11 Exp. Staff: 8 2 Drugs 

Disp. Equip. 4 Inexperience with Pat. Noticed: 1 1 Miscellaneous 

Drug-admin. 3 Equipment: 5 1 Equipment 

Non-disp. Lack of Suitable 

Equip. 2 Equipment: 4 

Night Time: 3 

Fatigue: 3 

Unit Busy: 2 

Failure to Perform 

Hourly Check: 2 

Thoughtlessness 2 

Table 5-4 - Action Recommendations for the reporting period JanlFeb 1989 
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Incident 'Cause' Contributing Detection Action 

98 Factors 98 Factors 98 Recommendations 

98 

Drug-admin. 10 Thoughtlessness 11 Reg. Checking: 9 3 Ventilator 

Ventilator 8 Poor Communication 8 Exp. Staff: 8 2 Vascular line 

Vasco Line 4 Inexperience with Alarms: 2 1 Drugs 

Misc. 4 Equipment: 4 Unfamiliar 2 Miscellaneous 

Non-disp. Equipl NightTime: 3 Noise: 1 

Failure to Check Patient 

Equipment: 3 Noticed: 1 

Failure to Perform Handover 

Hourly Check: 2 Check: 1 

End. Tube not 

Properly Secured: 2 

Poor Equip. Design: 1 

Patient Inadequately 

Sedated: 1 

Turning the patient: 1 

Table 5-5 _ Action Recommendations for the reporting period MaylNov 1998 
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The Edinburgh Study: Action Recommendations 

In the Edinburgh study, the incident data was categorised and summarised by the 

scheme manager. Action recommendations were arrived at in an iterative process, 

whereby the scheme manager suggested remedial actions and presented those 

together with the summary data to the senior nurse of the leu. Together, the data was 

discussed and the rationale for the action recommendations reviewed. This led to a 

final version of suggested actions for each incident analysis period. Table 5-4 and 

Table 5-5 show a categorisation of the suggested actions for our two samples 

(sampJe89 and sampJe98). The revised action recommendations are listed below. 

Revised classification (Sample 89): 

• 3 "Remind Staff ... " 

• 2 change equipment 

• 2 create protocol for equipment use 

• 2 review protocol for equipment use 

• 1 create protocol for equipment maintenance 

• 1 review equipment 

Revised Classification (Sample 98): 

• 4 "Remind Staff ... " 

• 1 Training viz new equipment 

• 1 Equipment maintenance (management) 

• 1 Create protocol for equipment use 

• 1 Review procedure viz home patients'safety 



First, we related the recommendations back to the initial 'cause' categories, with the 

scheme manager's assistance. Then we re-interpreted the suggested actions in the 

Jight of system safety design concepts, such as presented by van der Schaaf or 

Reason. In sample89, Thoughtlessness and Poor Equipment Design featured most 

often as contributing factors. This is mirrored in the action recommendations falling 

in the 'remind staff ... ', 'change equipment' and 'create protocol for equipment use'. 

Entries under 'remind staff ... ' typically are in the form of a reminder statement, 

drawing attention to problematic task or equipment characteristics, for instance 

"Remind all staff of the importance of careful, correct use of 3-way taps on central 

venous and arterial lines" (February 1989). 'Change equipment' is represented by 

recommendations such as "Particular sort of disposable ventilator tubing used on trial 

should no longer be used". 'Create protocol for equipment use' mentioned for 

instance "Consider use of small Graseby syringe drivers with smaller volumes of 

solution". 

In the period of May to November 1998, a marked increase in reminder statements 

can be noted. Following inspection of recommendation data, the dissemination of 

reminder statements were noted to be the single most often suggested action. In the 

period August 1995 to August November 1998, 82 "Remind Staff ... " statements out 

of a total number of I I I recommendations could be noted. The 29 other 

recommendations concerned procedure creation or change suggestions (e.g. "produce 

guidelines for care of arterial lines ~ particularly for femoral artery lines post coiling" 

), or were equipment related (e.g. "Obtain spare helium cylinder for aortic pump to be 

kept in ICU"). 

Reminder statements as potential error prevention mechanism have come into 

disrepute in domains such as aviation (Reason, 1990). Rather than further burdening 

operators' and pilots' memory capacity, indirect safety methods such as reduced 

complexity, standardisation, proceduralisation, and work aids such as checklists have 

been introduced. 
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However, on closer inspection, the nature of the Edinburgh reminder statements 

proves to be interesting. Reminders seem to target either very common, but still error

prone, details of tasks and practices, or problem points that occur very infrequently, 

or otherwise problematic parts or uses of procedures. 

Distinguishing thus between types of recommendation, a link to Rasmussen's SRK 

framework can be created. Skill (S) level performance concerns automatic behaviour 

routines, such as the common but still error prone details of tasks. Rule (R) level 

performance concerns the conscious but practiced following of procedures and 

protocols, and Knowledge-based (K) performance relates to potentially effortful, fully 

conscious problem solving and decision making. In aviation and process control, it 

has been realised that performance on the rule-based level is the least error-prone. 

Therefore, design methodologies such as Ecological Interface Design (EID, 

Rasmussen and Vicente, 1989) emphasise proceduralised tasks, and ensure that task 

features that relate to S or K level performance are assisted accordingly. For instance, 

K based performance can be supported by careful information design. 

The Eindhoven classification/action matrix (Van der Schaaf, 1996) is also based on a 

SRK style cognitive classification of error. It details, as described above, that R-based 

error is best targeted with Training measures, K-based error with improvements in the 

Information & Communication domain, and S-based error with change in equipment. 

Thus, this is at odds with the Edinburgh results of the recommendation generation. 

Instead of reacting with reminder statements indiscriminately of cognitive 

performance level, these could be taken into account when suggesting remedial 

actions. The categorisation of error according to cognitive mechanisms will also 

further the understanding of performance problems. 

We have illustrated how methods and insights from safety-critical domains other than 

medicine can be applied in a clinical setting. This concerns the use of incident 
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schemes, as well as the application of accident causation models in the analysis of 

incidents, and in the generation of action recommendations. These recognise the 

importance of latent failure as part of the causal chain of an incident, which is 

reflected in the incident analysis process. 

Incident investigation schemes often neglect formalised, in-depth analysis of single 

incidents in favour of a quantitative surface analysis. Also, the crucial role of 

detection factors and the need to support those is often underestimated. The 

Edinburgh incident scheme caters for those in the data collection process as well as in 

the generation of action recommendations. Thus, the analysis process and its results 

of the Edinburgh study showed how not only theoretical 'top-down' approaches can 

inform incident analysis, but also how practical incident avoidance can be supported 

by a 'bottom-up', detailed (albeit non-formalised) analysis process. 

In the remainder of this chapter, we will demonstrate the benefit of the suggested 

cognitive error analysis approach for further in-depth analysis of incidents' human 

factors, as well as for the evaluation of safety recommendations. 

COGNITIVE ANALYSIS OF HUMAN ERROR IN ICU 

INCIDENT REPORTS 

As described above, 'human error' is often assumed to be the prime 'cause' of 

incidents and accidents in clinical systems. This chapter investigates incidents in an 

adult intensive care unit (JeU). Our human error analysis approach stresses the 

importance of taking cognitive factors into account. The case study presents data 

drawn from an incident reporting scheme that has been running for over ten years. An 

in-depth analysis of example cases is carried out which considers human cognitive 

constraints during task performance. The genesis of erroneous action can thus be 
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considered in relation to the underlying cognition. We embed work practice and the 

problems encountered in a holistic cognitive perspective that recognizes the 

importance of physical and visual input into human cognitive processing. Also, the 

cognitive analysis can provide pointers to constraints of humans' performance in 

context. It does not suffice to only consider the behavioural aspect of 'Human Error'. 

We argue that understanding of 'Human Error' is limited unless full credit is given to 

the impact that the characteristics of the human cognitive system has on task 

performance. 

Instead of only investigating what happened in each incident, much can be gained 

from understanding the underlying why of the event. The cognitive 'mechanism of 

malfunction' (O'Hare et aI., 1994) can be traced by using cognitive architectures. 

These provide the basis for cognitive models, which strive to represent some aspects 

of people's understanding, knowledge, or cognitive processing when performing 

some task. These models can, therefore, contribute to our understanding of the 

cognitive limitations interacting with task perfonnance, for example the effects of 

cognitive load on perfonnance (Barnard, 1993). 

The distinction between varieties of human error according to their cognitive origin 

plays a significant role in accident analysis because they require different methods of 

error management and remediation (Maddox and Reason, 1996). In this thesis a 

cognitive architecture is used as a vehicle for expressing not only expert task 

perfonnance but also the more realistic error-prone thought and action sequences 

processed by the human operator. By doing this, the error modelling capability 

implicit in the cognitive architecture is made the focus of inquiry into the underlying 

cognition of user perfonnance. Such explicit modelling of erroneous perfonnance can 

thus help to communicate user cognition analyses, and to ground incident analysis 

and subsequent action recommendation in a cognitive theoretical framework. 
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Interacting Cognitive Subsystems (ICS; Barnard, 1993) is used to illustrate the 

modelling of human error within a cognitive architecture. Errors resulting in medical 

incidents are rarely described in such detail, or even analysed in terms of underlying 

psychological factors (Busse and Johnson, 1999). Expressing human error within a 

cognitive model will allow us to investigate and reason about their underlying 

psychological causes. The model is thus used as a tool for reasoning about human 

error on a further, more detailed level. 

As stated above, in the Edinburgh scheme, analysis of the underlying cognition of 

those proximal causal factors of the incident was not facilitated. In analysing the 

scheme, we took two data samples (Table 5-1 and Table 5-2), one sample covering 

the first categorisation interval, January and February 1989 (sampJe89), and the other 

covering a more recent interval from May to November 1998 (sample98). Both 

samples cover 25 incident reports. 

In the classification of data into the contributing cause categories, combinations of 

factors are allowed, and are noted frequently in the data sample. For instance, in 

sample98, one of the predominant factors is 'Thoughtlessness' (10 occurrences). 

Looking at the combinations, however, shows that 'Thoughtlessness' is paired with 

other factors (such as Inexperience with Equipment) in 4 out of 10 incidents. 

One common problem identified in the Edinburgh study is the endotracheal tube 

coming back out through the larynx. Over time, incident analysis resulted in a list of 

factors that led the tube to come out. Some of those now constitute 'contributory 

factors' in the incident data categorisation. One factor is that the tube was not 

properly secured. Another is that the patient was inadequately sedated, which led to 

the patient being able to pull out the tube. Judging the appropriate level of sedation is 

difficult, since oversedating the patient can lead to vital signs being disrupted, while 
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under-sedation increases the possibility of the endotracheal tube being pulled out, 

which can itself be life threatening. 

The tube can also be dislodged when turning the patient. Care must be taken to ensure 

the tube is long enough to be securely located in the larynx, while being short enough 

to prohibit it being caught in, for instance, the near-by intra-cranial pressure monitor 

during the turning manoeuvre. Often, several lines need to be monitored while turning 

the patient. Thus, dislodging the tube during turning can be exacerbated by not per

ceiving the relationship of the patient's position and the various tubes connecting 

measurement and drug administration equipment to the patient. 

Thus, the scenario described above can be modelled in ICS as shown in Figure 5-4. 

The visual data., the patient and the position of the lines in relation to the surrounding 

environment, is received at the visual subsystem (1), sent to the object subsystem for 

the recovery of a structural description (2), and finally interpreted by the 

propositional subsystem (3). A loop is entered in order to maintain a stable cognition. 

The resulting interpretation on the propositional level of the success of the turning 

strategy influences the further view of the object. If the visual infonnation perceived 

is inadequate, for instance, the position of the endotracheal tube is neglected, an 

inappropriate turning strategy will be chosen, and this inappropriate infonnation is 

sent to limb subsystem (4) to initiate the motor movements. 

This details a perspective on the cause of a dislodged endotracheal tube that 

emphasises the perception and interpretation of visual information. By modelling the 

underlying mechanisms of the causes of the incident during turning the patient within 

ICS, we can shed some light on the processes that are fundamental to the production 

of the incident as mediated by human error. 
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Contrasted to the categorisation scheme (table J) this analysis high lights the 

relationship between two separate ' contributory factors': ' Poor Visibility of 

Equipment' and 'Turning the Patient'. It is worth noting that these factors are not 
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placed in multi-factor categorisation, but appear as single contributory factors to 

endotracheal tube incidents in the sample data. 

REASONING ABOUT ALTERNATIVE ERROR CAUSES 

The third factor listed as a contributory factor for dislodged endotracheal tube 

incidents is listed as 'Endotracheal Tube Not Properly Secured'. Endotracheal tubes 

are typically secured in the patient's larynx by means of a cuff (situated on the lower 

end ofthe tube) being pumped with air until it sits firmly in the larynx. The failure to 

secure the tube suggests a 'human error' based on skill-level performance. Attentional 

resources are only minimally required and the action can be at least partly automated. 

Figure 5-5 presents an ICS model that details skill-based error leading to a dislodged 

endotracheal tube. 

As can be seen in Figure 5-5, minimal resources are required to perform the task of 

placing the tube. The fixing of the tube in the larynx by pumping air into the cuff is 

carried out on a skill-based level, not requiring knowledge-based processing as would 

be provided by the implicational subsystem. Instead, body state information from the 

proprioceptive subsystem (I) is sufficient to enable the propositional subsystem (2) to 

interpret the state of the tube and to send motor movement information to the limb 

subsystem (3). 

However, the task problem might not be based on failures on the skill-base level of 

performance, but alternatively on failures on a higher level of human cognition. Using 

ICS, alternative hypotheses as the underlying cognition of the dislodged endotracheal 

tube class of incidents can be investigated. 

For instance, securing the endotracheal tube via the air cuffwas taken as a skill-based 

task, with the procedural skill readily available. However, this is not always the case. 
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Not only does the level of staff experience playa significant role, but so do possible 

exceptions to the rule. For instance, in certain cases, the air cuff on the endotracheal 

tube is of a different make. Usually, when staff noted that the tube is not properly 

secured, the first measure is to re-secure the tube by pumping air into the cuff. With 

the different make of cuff, however, this has a counterproductive effect. In this 

specific case, pumping air into the cuff will force the cuff, and therefore the 

endotracheal tube, even further out of the larynx. This special case needs to be 

considered by staff when re-securing the tube . 

. Since it is an exception, a mistake on the rule-based level of performance is likely. It 

is one of the predispositions of the human cognitive system to opt for a well-known 

and practised rule even when faced with the exceptional situations. Reason (1990) 

calls this a misapplication of a 'Strong but Wrong' rule. This cognitive mechanisms 

comes into play especially in emergencies, since knowledge-level performance tends 

to be attenuated during high attentional requirements (Rasmussen et aI., 1987). The 

human cognitive system then tends to fall back on well-practised strategies and 

procedures. Thus, in an environment such as an ICU, where emergencies are part of 

prototypical work situations, remembering the precise demands associated with rare, 

exceptional tasks is a resource intensive requirement. This can be modelled in ICS as 

shown in Figure 5-6. 

Figure 5-6 demonstrates that the processing of an exceptional case involves more 

cognitive complexity, and requires increased cognitive resources. The body state 

information (I), being passed on to the propositional subsystem (via a PIP loop 

passed the implicational subsystem) (2), now only presents a small aspect of the 

cognitive demands posed upon the human. The decision to be taken as to what make 

of tube is involved, and how the body state information can be interpreted needs to 

draw on implicational input (3). This hypothesis, again, has different implications for 

potential system redesign. Thus, this kind of analysis, taking the impact of cognitive 

constraints into account, can aid precise and structured reasoning about the incident 

occurrence. 
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The examples elaborated above show clearly how different cognitive mechanisms 

might be implicated in the same overt task performance problem. This multi-way 

relationship between cause and error might go undetected if systematic error 

modelling within a cognitive architecture does not take place, this helps analysts to 

explicitly consider the detailed causes of task performance problems. 

Human Error leading to a dislodged endotracheal tube might be grounded in varying 

cognitive processes, and not stem from one kind of cognitive mechanism alone. 

Unless these two different causes are considered, an analysis might misdiagnose an 

important problem in the task. Using a cognitive architecture to reason about the 

potential underlying cognitive error production processes allows work system and 

equipment designers to investigate the detected task problem in a systematic way. 

Often, error categorization systems do not proceed much beyond the "what" phase 

within the above mentioned analysis model. A structured, formalised analysis 

framework also helps prevent 'hindsight' from biasing error analysis. Attribution of 

error is a social and psychological judgement process rather than a matter of objective 

fact. Hindsight view is fundamentally flawed because it does not reflect the situation 

confronting the practitioners at the scene. Thus, rather than being a causal category, 

human error should be seen as representing a symptom, and a starting point for 

investigation (Woods et aI., 1994). 

Often, especially in the case of clinical staff trained for taking on responsibility for 

their actions (Berwick, 1998), error analysis can be tainted by human cognitive 

mechanisms such as the 'Fundamental Attribution Error'. According to this, humans 

are significantly more likely to attribute error occurrence to situational aspects when 

the error was 'committed' by themselves. However, when looking for reasons why 

others were involved in 'error', one is most likely to blame the person rather than the 

situational aspects. This is another reason why an analysis framework is needed that 

aids objectivity in interpreting the actions of others. 
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ACTION RECOMMENDATION 

In order to arrive at sound and relevant action recommendations, a systematic and 

structured way of bridging the result of the analysis process to remedial measures is 

needed. The documentation of this process also plays an important role, for instance, 

to allow monitoring of the effect of the measure. 

In industry domains such as aviation and process control, cognitive analysis of error 

occurrences is often used to point towards remedial actions. For instance, Reece et al. 

(Reece and Hill, 1995) investigated human error in radiation exposure events. The 

proximal cause of the incident was situated in the task sequence and, additionally, 

cognitive failure analysis was carried out. Then the relationship between them was 

analysed, and thus it could be identified: where training might be most effective; 

where equipment interface enhancements may be most appropriate; and where job 

aids (e.g. checklists) might help performance. 

This shows how error categorisation, when done according to cognitive level of 

performance and latent factors, can provide the basis for structured remedial recom

mendations, rooted in theory. Without error categories being based on sound 

psychological theory, systematic and relevant action recommendation generation is 

often not possible. 

In the Edinburgh study, the incident data was categorised and summarised by the 

scheme manager. Action recommendations were arrived at in an iterative process, 

whereby the scheme manager suggested remedial actions and presented those along 

with the summary data to the senior nurse of the ICU. The data was discussed and the 

rationale for the action recommendations reviewed. This led to a final version of 

suggested actions for each incident analysis period. Table 5-4 and Table 5-5 show a 

categorisation of the suggested actions for our two samples (sample89 and sample98). 
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We categorised the suggested actions in the light of system safety design concepts, 

such as those presented by Reason (1997). Entries under 'remind staff' typically are 

in the fonn of a reminder statement, drawing attention to problematic task or 

equipment characteristics, for instance "Remind all staff of the importance of careful, 

correct use of 3-way taps on central venous and arterial lines" (February 1989). 

'Change equipment' is represented by recommendations such as "Particular sort of 

disposable ventilator tubing used on trial should no longer be used". 'Create protocol 

for equipment use' mentioned for instance "Consider use of small Graseby syringe 

drivers with smaller volumes of solution". 

In the period of May to November 1998, a marked increase in reminder statements 

can be noted. Following inspection of recommendation data, the dissemination of 

reminder statements was noted to be the single most often suggested action. In the 

period August 1995 to November 1998, there were 82 "Remind Staff ... " statements 

out of a total number of III recommendations. 

Instead of reacting with reminder statements indiscriminately of cognitive 

performance level, these could be taken into account when suggesting remedial 

actions. The categorisation of error according to cognitive mechanisms can also 

further the understanding of performance problems. 

Using ICS to detail risk situations and arrive at action 

recommendations 

The Edinburgh Study also notes incident detection factors, which is often neglected in 

other reporting systems. It has been suggested that provisions for incident detection 

and recovery provide more effective safety measures than an approach solely 
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targeting accident prevention or avoidance (Rasmussen and Vicente, 1989; Reason, 

1990). 

However, even if detection factors are noted, they are typically not being analysed in 

depth. The analysis should include system factors as well as cognitive aspects of the 

task and work environment. Unless we can monitor those adverse situations which 

are, and those which are not, reported, we can have little confidence in the accuracy 

of the system. 

The detection factor taxonomy evolved alongside the iterative development of the 

contributory factors taxonomy. The factors added over time are 'Having Lines or 

Three Way Tap Visible', and 'Handover Check'. The iteration over the collected 

incident data thus clarified the importance of handover checks to make up for 

contributing causes 'Failure to Check Equipment' and 'Failure to Perform Hourly 

Check'. Without iterative revision and coding of the data categorisation, these factors 

might have gone neglected. A formalised, cognitive analysis of the incidents can aid 

the recognition of detection factors and the generation of suggested actions. 

For instance, one recurring incident concerned the use of three-way taps. These are 

used to feed, for instance, two different drugs to the patient via one intravenous line. 

On changing one of the drug syringe drivers, the corresponding line connecting to the 

three-way tap is turned off. After the drug change, staff must remember to return the 

tap settings back to allow both drugs to run. 

Currently, this procedure is being supported by the memory aid T.A.P. - an acronym 

for Tap Aligned Properly. Thus, this problem initially prompted 'Reminder' 

statements in the recommended actions summaries. It was then modified, through an 

iterative analysis process, to recommend keeping the three-way tap visible, to 

facilitate staff recognition that the tap was still left in the turned off position. The 

suggestion to counteract three-way taps being left in the incorrect setting evolved 

over time. An analysis framework, such as ICS, can point towards weak points in 
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human cognitive task performance such as this. The problem of three-way tap 

(in)visibility is detailed in ICS in Figure 5-7. 

The ICS model illustrates how the process of changing the drug takes over the 

implicational and propositional subsystem processes. Higher-level, semantic 

cognition is involved. since active problem-solving is required for the task. The 

procedure to be followed prescribes the returning of the tap to the correct setting. 

However, relying solely on the semantic subsystems in remembering all steps in the 

procedure is insufficient, especially when inexperienced staff are involved (one of the 

main contributing factors of incidents, see Table 5-2). 

By providing prompts for the next step in the procedure, task performance can be 

pulled onto the rule-based level of performance, rather than requiring knowledge

based problem-solving (Rasmussen and Vicente, 1989). Thus, cueing information can 

be fed into the system via the peripheral subsystems. This principle is often realised, 

for instance, by providing alarms on equipment. In ICS tenns, the peripheral cueing 

information is in this case being fed in via the acoustic subsystem, for instance by 

using alarms. Alternatively, and often overlooked, information can also be provided 

via the visual subsystem. 

In the task at hand, the visual subsystem has been focused on observing the status of 

the syringe driver task. After completion of the task, the resources of the visual 

subsystem are freed to take in additional status information. The Visibility of the 

three-way tap comes to take a crucial cueing role. After processing the goal hierarchy 

for selecting a link, the cognitive system can shift its focus back onto the visible 

three-way tap. Only if the procedural step is remembered, wiIJ the propositional 

subsystem signal anticipation of the three-way tap via internal input into the object 

subsystem. Thus, the visibility of the tap is crucial to change the propositional 

representation. 

148 



Acoustic Image Record 

Three-way 
tap 11,.1 

Morphonolexical Image Record 

( ~orphonolexical Image Reco d 

'I 
U g .c::====~ 

Articulatory image Record 

Limb Image Record 

Figure 5-7 - Three-way tap visibility as Task Cue 

149 



Using ICS to model the underlying cognition of the error provides means of 

investigating the behaviour trace leading to an incident. Expressing the rationale for 

different interpretations within a cognitive framework facilitates more precise 

communication and more detailed analysis. In that way, not only what failed in incid

ents, but also how and why it failed is examined in an investigation of human error. 

CONCLUSIONS 

There is a need in medicine to recognise the inevitability of error and adverse events 

(Leape, 1994). Safety culture that takes this into account in clinical system design is 

still lacking (Leape et aI., 1998). There have been some notable exceptions in the 

recent past where incident reporting schemes were implemented and the identified 

incidents analysed, such as Runciman et al. (Runciman et aI., 1993) and (Battles et 

aI., 1998). However, these focus on the data collection process and somewhat neglect 

the in-depth analysis, with which valuable insight into incident causation and remedy 

can be achieved. 

Incident investigation schemes often neglect formalised, in-depth analysis of single 

incidents in favour of a quantitative surface analysis. Also, the crucial role of 

detection factors is often underestimated. The Edinburgh incident scheme represents 

those factors in the data collection process, as well as in the generation of action 

recommendations. However, this process has not been formalised, and is not based 

on insights gained from cognitive theory. 

We have illustrated in this chapter how cognitive modelling can be applied to focus 

more narrowly on the psychological precursors of the human actions leading to 

incidents, by means of retrospective analysis of incidents that had occurred in an adult 

intensive care unit during the last decade. In the following chapter, we address the 

weaknesses identified here by implementing and evaluating an incident reporting 
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scheme from scratch in a Neonatal Intensive Care Unit (NICU), to which we will 

further demonstrated the benefit of the suggested cognitive error analysis approach, as 

situated in ongoing clinical safety management. 
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CHAPTER 6 IMPLEMENTATION OF 

CRITICAL INCIDENT REPORTING 

IN A NEONATAL INTENSIVE CARE 

UNIT 

INTRODUCTION 

The occurrence of medical adverse events is a growing cause for concern worldwide. 

Critical incident reporting schemes have recently been suggested as an effective 

means to tackle the problem of medical adverse events. There are few comprehensive 

frameworks that accommodate the specific requirements of local settings as well as 

generic issues in incident reporting. The local setting radically influences a scheme' s 

successful implementation and maintenance. Issues that impact the overall success of 

incident reporting schemes concern the format of data collection, and especially. a 

meaningful data analysis. This chapter reports on the introduction of a critical 

incident reporting scheme to a neonatal intensive care unit (NICU). Issues concerning 

the implementation and maintenance of the reporting scheme are discussed. Incident 

analysis is described in terms of the process and the results of incident categorization. 

The implications of such a viewpoint are considered. 
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Critical incident reporting schemes have been cited as a major safety tool to combat 

human error and adverse events in medicine. Typically, a distinction can be drawn 

between standardized, national schemes of broad scope but less depth, and smaller, 

local schemes. Local schemes permit close scrutiny of in situ adverse events. Their 

implementation can also be fine-tuned to the local culture and conditions, a 

prerequisite for successful delivery of the scheme. This is at the expense of the 

benefits of statistical evaluation of the collected data that a more extensive, 

standardized data set offers. Both types of scheme operate by presenting employees 

with a data collection form, which prompts for a number of characteristics of the 

problem description. The nature of the fonn varies, but there are some fundamentals 

common to most schemes: general circumstances of the adverse events need first to 

be established (e.g. at what time did the incident occur?), as well as general facts 

about the reporters themselves (e.g. how experienced they are). Typically, this is 

followed by asking for a narrative description of the incident, and includes questions 

about the presumed 'causes' and contributing factors, and how the incident was 

detected. The question on detection factors is not typically included, but is clearly 

valuable for future incident avoidance. This data can then be used to instigate further, 

more in-depth investigation of the incident. It can also be categorized and archived 

for statistical purposes, if the data set permits. Major national safety schemes are 

NASA's Aviation Safety Reporting System (ASRS), and its UK equivalent CHIRP 

(Confidential Human Factors Incident Reporting Programme). An example for a local 

incident reporting scheme that has been implemented in healthcare and maintained 

for over] 0 years is described in (Busse and Wright, 2000). 

This chapter offers a report on the prerequisites to successfully running an incident 

reporting scheme. The implementation that is described here attempted to localize an 

incident reporting scheme by taking contextual factors such as safety culture into 

account. It had staff actively participate in the conception of the scheme and the 

design of the reporting form. This is argued to be crucial in achieving long-term staff 

participation, and is argued to optimize the scheme's efficiency. The scheme that is 
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described here also attempted to incorporate standardization issues that are posed by 

schemes implemented on a grander, e.g. national, scale. The experiences with this 

standardization approach will be discussed. This chapter thus presents a matrix of 

issues that still need to be addressed in any safety-critical domain that employs 

critical incident reporting schemes as part of ongoing safety management. 

INCIDENT REPORTING 

In the UK, a Department of Health report (2000) revealed that as many as 850,000 

adverse incidents are happening in UK hospitals each year. This, in tenns of litigation 

and the extra care needed by victims, added up to a £2bn bill. (BBC News, 200 I). 

There is an urgent need to make patient safety one of the highest priorities. The BBC 

also cites fears that the medical community is "complacent" about the toll of 

accidents, and notes that to date the National Health Service "did not even collect 

figures on the number of medical accidents". 

Until recently, evidence of medical incidents (or near-misses) was mostly anecdotal. 

In the case their existence was acknowledged, the data typically did not leave a 

hospital's boundaries. This lack of distribution of incident data can lead to the 

replication of similar, preventable incidents across hospitals. This not only concerns, 

e.g. faulty or badly designed equipment which might lead to deadly consequences, it 

also concerns badly designed work procedures that might be in place in hospitals 

across the country, the safety threat of which might only be recognized locally and 

SPOradically. Similarly, it concerns drugs that might have similar sounding names, but 

that have very different effects on a patient's condition. In order to prevent incidents 

needlessly repeating themselves, incident data must be recorded, analyzed, and then 

made available for distribution. In industries such as process control for chemical 

plants and power stations, incident reporting schemes have often been used as 'early 

warning schemes'. This has yet to translate fully to the medical domain. 
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Obstacles to the implementation of safety measures in medicine as established in 

aviation also lie in the differences between the two work domains. Accidents in 

aviation are comparatively infrequent but very visible, receiving high media attention, 

and often involve massive loss of life (Helmreich, 2000). In contrast, accidents in 

medicine typically only involve not more than one patient (or member of staff), with 

less or no media coverage, with news about adverse events often not leaving a 

hospital's boundaries. 

Also, the type of standardized, unified safety management measures implemented in 

aviation often cannot translate to the less standardized, less regulated, and thus less 

clear-cut work environment that medicine presents. Doctors and clinical staff often 

learn 'on the job' to a large extent, in contrast to aviation or nuclear power plant 

operation (a domain that also has a long-term history of use of safety management 

measures such as incident reporting). Medicine, described recently again as a 

"humbling art and a complex team activity" (Berger, 2001), deals with humans, 

whose conditions and responses are typically less predictable than an aircrafts' 

(Helmreich, 2000). 

Errors may be particularly difficult to recognize in health care because variations in 

an individual's response to treatment is expected. In addition, medical professionals 

may not recognize that a particular product or procedure may have contributed to or 

caused the problem because the patient is already ill, the product is not expected to 

work perfectly at all times, or the event appears unrelated to the product or procedure 

(QuIC, 2000). 

Studies suggest, for instance, that uncertainty about the most effective diagnostic and 

therapeutic approaches is pervasive (Macias-Chapula, 1997). One area in medicine 

that resembles more closely the more proceduralized and well-defined and thus more 

predictable task space of aviation is often cited to be anaesthesia. Correspondingly, 

safety measures such as in-depth error analysis (e.g. Gaba et aI., 1987) and incident 
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reporting (e.g. Runciman et aI., 1993) have been applied to anaesthesia prior to a 

more wide-spread adoption in other areas in medicine. The work of Runciman and his 

colleagues forms the basis of the incident analysis method described in this chapter as 

applied to neonatal intensive care. 

The tendency to lay blame on staff involved in the incident rather than e.g. error

prone equipment design (Busse and Johnson, 1999) further prohibits the use of 

incident reporting as a constructive safety measure in medicine. Thus, incidents might 

not necessarily be perceived by staff to be 'accidents waiting to happen' (Reason, 

1990). Incidents might be seen as mere task characteristics, with mistakes seen as 

human fallibility, and with incident detection and recovery taken for granted. Incident 

reporters might also not be aware of 'upstream precursors' to the incident, such as 

underlying system faults ('upstream' since in systemic incident analysis, mUltiple 

layers of incident causation are assumed, with systems factors being the lowest layer). 

Staff might not acknowledge the significance of local workplace factors. For instance, 

if staff have been accustomed to working with substandard equipment, they may not 

report this as a contributing factor since they see it as the 'normal' work context; if 

they habitually perform a task that should have been supervised but was not, they 

may not recognize the lack of supervision as a problem (Reason, 1997). This 

tendency, and the associated 'work-around' culture in medicine, emphasizes the need 

for explicit scrutiny of potential upstream precursors (i.e. system factors) in incident 

reporting and analysis. 

System factors might be organizational in nature, such as the notorious under-staffing 

in healthcare, with its associated stress on hospital staff, and the known increase in 

error-prone behaviour of individuals under stress. There might also be a lack of end

user consideration when choosing and procuring equipment, and also, for instance, 

neglect of training requirements on part of the organization purchasing the equipment 

(Jeffcott and Johnson, 200]). Accidents can often be traced back to equipment design 

that induces 'human error'. It is rarely the case that accidents are caused by one single 
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point of failure, and failure histories can usually be traced back through several layers 

of causation. While it is important for hospitals to prioritize error-tolerant and usable 

design and functionality in equipment procurement, there is often no empirical or 

analytical data available evaluating the system at hand in those terms. Thus, given 

difficult to use equipment design that seems obvious on scrutiny, accidents often 

seem preventable in retrospect. This seems particularly unforgivable in safety-critical 

work environments such as surgery or intensive care units. 

Introducing incident reporting into hospital wards is the first step towards recording 

information on incidents' nature and frequency. Summary data can then be used for 

trend analysis to identify systematic sources of error, and to prompt more in-depth 

analysis of potential causes. However, in order to base valid and relevant conclusions 

on this frequency counts, the classification of incidents clearly needs to be 

meaningful. 

For instance, in current incident studies, most of the incidents' precursors are 

perceived to be 'human error' (e.g. Runciman et aI., 1993). There are doubts, 

however, how meaningful this category, and its implications, reaJly are. Often, the 

fact that an incident does not fit a category such as 'equipment failure' alone is seen 

as justifying labelling the incident as 'human error' (see also e.g. Rasmussen et aI., 

1981). Such categorization might provide an initial filtering of immediately 

attributable equipment faults, but does not tell us much about how to prevent future 

instances of such 'human error'. 

Furthermore, as soon as poor equipment design is considered as an instance of 

equipment failure, there is no telling as to what constitutes error-inducing design 

(such as similarly named drug containers) and what constitutes human error 

(mistaking the drug containers). Thus, the artificial distinction between equipment 

failure and human error (more meaningfully described by Rasmussen as 'Human

Machine Mismatch') is cemented and perpetuated by such a classification. 
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Critical Incident Reporting Form 

The incident 

Description of what happened: 

(please also answer the questions overleaf in case of Drug Error) 

\\'hat factor contributed (0 the incident? 

What factors minimi ed the incident? 

The Circumstances 

Date: 

What procedure was being carried out? 

What monitoring was being used? 

Did the equipment alarm? 

Time: 

If equipment failure give detail of equipment: 

Personnel 

Place: 

Grade of relevant responsible staff: 
Grade of staff discovering the incident: 

Were you involved in the incident? 

Outcome 

What happened to the patient? 

What is the severity of potential outcome for the patient? 

Prevention 

How might such incidents be avoided in the future? 

Figure 6-1 - NlCU Incident Reporting Form (I) 
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Kind of Drug Error 

Was it a Drug Pre cription Error or a Drug Administration Error or other (please explain)? 

Details of Drug Error 

Was it the wrong drug or the wrong dose or the wrong baby or other (please explain)? 

Please give details: 

Critical Incident Study 

This is a study that looks at how and why people make mistakes. Information is collected from inciden1 

reporting form (ee 0 erlea1) and \\ ill be analy ed. The results of the analysis and the les ons leam1 

from the reported incident \\ ill be presen1ed to staff in due course. The reporting forms are anonymou . 

there is no interest in criticism or blame. We would encourage everyone working in the NICU. at 

whatever level of experience. to take part. Every incident reported, no matter how trivial. will give 

information about the wa) people ",or\.. and rna) help to save a life. 

When you have completed the form please place it in the Incident Form Box. 

Definition of a "Critical Incident" 

A critical inciden1 is an occurrence that might have led (or did lead) - if not discovered in time - to an 

undesirable outcome. Complications that occur despite nomlal management are n01 critical incidents. 

But ifin doubt, fill in a form. 

Thank you for your panicipation! 

--Please contact Dr B Holland (QM IC ) or Daniela Busse (3398855 x0917) with any querics--

Figure 6-2 - NICU Incident Reporting Fonn (IT) 
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This clearly poses a very real problem for the validity of incident data and its 

analysis. However, this subjectivity in the incident classification process, and the 

resulting spurious precision of trend analyses based on the data, is not sufficiently 

recognized as would seem necessary for any wider distribution of incident data 

beyond the local setting. 

As we know, an example of notable attempts at creating grounded and relevant 

categorizations schemes is reported in Runciman et al. (1993) who studied 

anaesthesia incidents in Australian hospitals as part of the Australian Incident 

Monitoring Study (AIMS). This study was subsequently extended to also investigate 

intensive care unit (ICU) incidents. The AIMS categorization scheme presents an 

integrated summary of previous categorization schemes, and has had substantial 

impact on future ones. For the study reported in this chapter, the AIMS-leU 

categorization scheme was utilized to analyze incident data that had been collected in 

a neonatal intensive care unit. In the following sections, the outcome of this process is 

reported 

THE NICU INCIDENT REPORTING SCHEME 

In the Neonatal Intensive Care Unit (NICU) in which the study took place, current 

safety management included informal checks, communication and consultation with 

fellow members of staff. morbidity and mortality meetings, and an adverse events 

reporting scheme, which addresses incidents that in fact resulted in harm to the 

patient or to staff and that legally require investigation. Near-miss adverse events that 

do not require legal investigation, but that could also lead to harm to the patient or 

staff, were dealt with on a local and immediate basis. They were not documented or 

kept track of, and distribution of known sources of error in the system was at best 

infrequent. There was demand to complement the existing safety management 

measures with a critical incident reporting scheme. 
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Critical Incident Definition 

A 'critical incident' was here defined as follows: "A critical incident is an occurrence 

that might have led (or did lead) - if not discovered in time - to an undesirable 

outcome. Complications that occur despite normal management are not critical 

incidents." Staff that participated in the study were also asked to fill in an incident 

reporting form "if in doubt". This reflected the intention to collect rich, qualitative 

data, rather than data that would be fit for exact statistical analysis. 

SetUp 

A 'critical incident' thus includes near-misses as well as actual adverse events. 

Reporting schemes involve staff reporting critical incidents using the provided 

reporting forms on a voluntary and anonymous basis. The incident reports are 

regularly analyzed and categorized. The main aim of the analysis is to identify factors 

contributing to the causation of incidents that may be rectified. Accordingly, similar 

incidents are hoped to be avoided in future. 

Vander Schaaf (Vander Schaaf et aI., 1991) suggested a model of incident data 

collection and analysis which was considered for the NlCU scheme's 

implementation. Vander Schaaf (op. cit.) provided a convenient summary of the 

steps that need to be present in a successful evenfo analysis system, as summarized in 

Figure 6-3. They represent the inputs to the system (1-3), the way these are processed 

(4-6) and the output and monitoring which allows the recommendations (7). 

20 Hale et al. (1997) define an event to be a deviation in an activity or technology 

which leads towards unwanted, negative consequences. 
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1. Detection (recognition and reporting) 

2. Selection of events for deeper analysis 

3. Detailed description and deeper study ....... _________ ......:;. ____ ---J .----~ Review of design of ERAS 

1 
4. Classification of organisational causes 

5. Computation (where necessary) to 

recognise patterns or priorities 

6. Interpretation, leading to recommendations 

7. Implementations and monitoring 

Figure 6-3 - The Seven Modules of an ERAS - Event Reporting and Analysis System 

(Van der Schaaf et aI., 1991) 

In the NICU scheme, however, it was proposed to use the AIMS causal classification 

taxonomy on every incident that was detected and reported. Only subsequent meta

analysis of the classified incidents, and any specific observations that were noted 

during this first classification system would then lead to further in-depth analysis of 

the incident. This way it was to be evaluated whether the benefits of both approaches 
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- the quick and efficient surface categorisation approach to classity all data and to 

prepare the data for meta-analysis, as well as the in-depth cognitive error analysis 

applied to individual incidents - could be captured in one methodology. Therefore, 

the scheme's set up was suggested as illustrated in Figure 6-4 below. 

]. Detection (recognition and reporting) 

2. Surface Classification (using AIMS 

3. Identification of urgent safety measures 

4. Meta-analysis for patterns and trends 
Review of design of ERAS 

5. Selection of incidents for deeper analysis 

6. Interpretation, leading to recommendations 

7. Implementation, evaluation and 

monitoring of safety recommendations 

Figure 6-4 - NICU incident analysis process 

This approach aims at maximising the benefit from a short-hand surface classification 

system such as the one used by the AIMS project (as described earlier), as well from 

a further in-depth analysis that reaches beyond surface classification and infonns 

interpretation and safety recommendations. 
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This is the approach taken in the here described case study of incident reporting in 

Neonatal Intensive Care. The aim was to validate the suggested incident reporting 

model, including the cognitive error analysis approach. The implementation and 

evaluation of the approach is described in the remainder of this chapter (with respect 

to previously identified weaknesses in incident reporting), as is the in-depth analysis 

of sample incidents that occurred in the time of the study, using the cognitive error 

analysis approach. 

The Incident Reporting Form 

The incident form was developed iteratively, and evaluated by means of a 

questionnaire survey of the unit staff (Busse, 2000). The current form covers the 

following questions: the first section asked for a "description of what happened"; 

'Drug Confusion Error' is treated as a category distinct from other types of critical 

incident on the form, due to its known frequency (Bogner, 1994). This separate 

treatment allowed for more specific data to be gathered on drug errors. Other 

questions related to what factors contributed to the incident, and which factors 

minimized it. The next section covers details on the circumstances: which procedure 

was being carried out, which monitoring was being used, and which equipment failed 

(if any). A question on the presence of alarms was added to the form, since it was felt 

that incidents discovered through alarm sounding fell in a sufficiently distinct 

category of incident circumstances. This was then validated by the data that was 

collected. One section of questions touched on the personnel that were involved in the 

incident and its detection. The data was collected on an anonymous basis, so the 

reporting staff was not asked to provide contact details. However, experience levels 

and job titles were covered in the personnel section. Another section noted the 

estimated and actual outcome of the incident to the patient (or in terms of other costs). 

The final section provided an open-ended question regarding suggestions for 
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improvements by the reporting staff - future prevention of similar incident being the 

primary goal of the incident reporting scheme. 

3.4. Incident Analysis using AIMS 

The AIMS-ICU analysis scheme was used. AIMS used a reporting form that 

consisted primarily of given categories which were to be ticked off by the reporting 

staff (see Figure 6-5). This way of recording staff reports could potentially lead to 

decreased analysis time (since the reporters essentially did the categorization 

themselves). It could also be argued that this decreased the degree of indirection in 

the analysis process - categorization based on subjective second-hand interpretation 

of gathered data could be replaced by the reporter's own interpretation of the actual 

events. In the NICU study, the form that was used was specifically developed to 

address the local needs. However, the collected data was subsequently analyzed by 

assigning it to categories as listed in the AIMS. The breakdown of the results is 

shown in the following section. 

RESULTS 

As can be seen in Figure 6-5, 14 causes of incidents were classified as system factors, 

whereas only ) ) where classified has human factors. This is in contrast to findings in 

comparable studies, where up to 80% of causal factors were classified as human 

error. The most commonly attributed subgroup of causal factors was 'equipment' 

with 7 occurrences, followed by 'physical environment/infrastructure' (4) and 

'knowledge-based errors' (4). Furthermore, the categories 'rule-based errors', 'skill

based errors', 'technical errors'. and 'work practices' were also all represented in the 

results. An causa) factors could be categorized, and 'other system factors' and 'other 

human factors' were not assigned in this study. 
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SYSTEM-BASED FACTORS 

Physical environment I infrastructure 

Lack of space I room 

Lack offacility 

Excessive noise 

# 

High unit activity level. ............................... ' .. 4 

Staff mealtime 

Handover I ward round 

Lack of support staff 

Equipment (including monitors) 

Unavailable equipment 

Inadequate equipment 

Poor design. ................. ...... ............ ......... 4 

Poor maintenance 

Equipment failure ..................................... ·· 3 

Inadequate inservice 

Work Practices I Policies I Protocols 

Communication problem ............... ···.··········· 

Inadequate assistance 

Lack of supervision 

Inadequate training 

Inadequate protocol 

InSUfficient staff ................................ ' ...... . 

Unable to contact staff 

Inapprop. staff I patient allocation .................. · 

HUMAN FACTORS 

Knowledge-based error # 

Lack or faulty knowledge .......... , .................... . 

Error of: 

Judgement .............................................. 1 

Problem recognition I anticipation 

Diagnosis 

Treatment decision 

Use of investigation procedures 

Timing of investigation procedures 

Omitting intended treatment ............... " .......... . 

Incorrect charting ........................................ . 

Incorrect prescription 

Incorrect interpretation of information 

Information not sought 

Information not available 

Rule-based error 

Patient assessment inadequate 

Patient preparation inadequate 

Failure to check equipment 

Misuse of equipment 

Unfamiliar equipment 

Unfamiliar environment 

Unfamiliar patient 

Failure to follow protocol................................ 2 

Labelling error 

Calculation error 

Skill-based error 

Distraction I inattention ................................. . 

Fatigue 

Haste 

Stress ...................................................... . 

Technical error 

Fault of technique 

Inexperience .............................................. . 

Uncooperative patient. .................................. . 

Difficult patient body habitus .......................... . 

Patient physiological factors 

Figure 6-5 - Incident Categorization and Analysis with the AIMS Classification 
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5 +---,1 

System Factors Human Factors 

Figure 6-6 - Distribution of stem vs. Human Factors contributing to NICU 

incidents 

However, it wa found that for most incidents, multiple categorizations were 

necessary. There were mostl several cau al factors per incident, for instance the 

categorizations listed abo e show at least two categorizations of causal factors per 

incident. The combination of factors proved to provide a more meaningful picture of 

the incident's cau ation and it potential future prevention, than single 

categorizations. This confirms previous findings (Busse and Wright, 2000). The mo t 

striking finding in this tud was arguably the difficulty of arriving at a meaningful 

classification of incidents. The nature of a meaningful classification has not yet been 

sufficiently discus ed, let alone been operationa lized, in the current discourse on 

incident reporting. Earl work in the process control domain has covered substantial 

ground in delineating a meaningful analysis of Human Error (Rasmussen, 1982), but 

such work has still be addre sed in incident categorization and analysis. The 

suggested cognitive error analysis approach aims at presenting a step in this direction. 
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COGNITIVE ERROR ANALYSIS IN THE NICU SCHEME 

In this section, some sample NICU incidents are introduced that had been collected 

by the incident reporting scheme, and the analysis process is demonstrated by 

juxtaposing the in-depth cognitive error modelling approach with the AIMS 

classification that was arrived at by a collaboration of the 'human error expert', the 

clinical consultant, and one representative nurse. By doing this, the benefit of the 

cognitive error analysis approach is further illustrated. The remainder of this chapter 

then reports on the evaluation of the incident reporting scheme with a questionnaire 

survey of implicated hospital staff. 

Analysis Case 1: 

Incident Number 2 that was recorded in the incident reporting scheme concerned a 

drug error. The record entries read (in sum): "drug error due to heavy workload, 

negative consequences minimized by vigilance of staff". Measure for "Future 

Avoidance" that were suggested were "Vigilance of Staff" and "Lighter Workload". 

The AIMS categorization of this incident comprised the following causal factors: 

• High unit activity level 

• Omitting intended treatment 

• Distraction/inattention 

• Stress 
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Clearly, the information given in the incident reporting form is not very informative 

as to the "causal context" in which this incident occurred. And clearly, the AIMS 

classification, although being able to reflect all the core points that were raised by the 

incident report, does not aid a meaningful understanding of the incident's causation or 

potentially effective safety recommendations, nor does it promise any meaningful 

(quantitative) meta-analysis of a set of incidents that might share the causal factors as 

listed by the AIMS classification. Interestingly, all but one of the causal factors that 

were "identified" from the incident record using AIMS were 'human factors', and as 

such impacted the distribution of 'human factors' versus 'system factors' (Figure 6-6 

above). 

As a response, and also in the knowledge of the magnitude of drug error occurrences 

reported elsewhere (Webster et aI., 2001), the incident reporting form was thus 

changed to enable future elicitation of decisive situational factors that led to "drug 

error" (see Figure 6-1 and Figure 6-2 above, illustrating the revised fonn). 

There is a fundamental contradiction in the classification of the causal and the 

minimizing factors in incidents such as these. On the one hand, stress and distraction 

are assumed to have Jed to crucial staff oversights with respect to their drug 

administration task. On the other hand, however, staff Vigilance, and thus alertness 

(which can be understood as an opposite of distraction), have prevented this incident 

from becoming a full-blown adverse event. Both 'stress' and the state of 'vigilance' 

refer to psychological states. It is assumed that "high workload" led to nurses to go 

into one mental state (i.e. 'stress', with the underlying assumption that stress 'causes' 

oversight), but with the same high workload present, the opposite mental state 

(vigilance) was possible, too. Thus, the classification system is insufficient, since its 

categories do not provide differentiation power to discriminate between two instances 

of two different classes. Neither does the classification system shed any light on the 

"causes" of the incident that might be addressed and remedied by safety 

recommendations. By implication, it does not support bridging the gap between 
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analytical classification of incidents and the generation of safety recommendations to 

address these. 

This incident classification thus raises questions as to exactly which external or 

internal factors influenced the nurses' mental state in such a way that it led to a drug 

error (given that unit activity level is high by norm, not by exception), and also as to 

exactly which aspects of the nurses' task performance were impacted by these mental 

states and why? 

Were the nurses overloaded with alarms, for instance? (A common problem in 

intensive care (Stanton, 1994». Or was their mental capacity to pay attention to their 

drug administration maybe taken up by higher-level decision-making that was 

necessitated by the task context? Were there any assumptions or expectations present 

that conflicted with how the situation actually unfolded, and thus slowed down the 

comprehension or mental processing of further relevant data? What was the state of 

the nurses' existing knowledge and expectations, and what 'processing input' did 

these have to compete with? Since these questions concern the psychological 

underpinnings of this incident's causation, it will be necessary to enlist a cognitive 

vocabulary for its further investigation, and the use of a cognitive error framework 

suggests itself. 

Thus, these questions illustrate the kind of information that would shed further light 

on the underlying cognitive causes of nurses' "high workload"-related oversight on 

the one hand, and to their vigilance and prevention behaviour on the other. ICS can 

support the formulation of these questions, since, using the cognitive error analysis 

approach, the actual cause of events is scrutinized within a cognitive framework. 

Figure 6-7 below shows which aspects of the ICS model would be implicated in 

investigating this incident further, relating to the questions posed previously. 

Thus, employing a cognitive architecture such as ICS to further investigate incidents 

such as Case 1 will help scrutinizing the psychological, cognitive, underpinnings of 
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the incident's causation. It will certainly highlight the insufficiencies of categorical 

labels such as the 'human error' classification suggested elsewhere with respect to 

providing a stepping stone to an understanding of the incident that goes beyond 

surface classification. 

Case 1 presents a crucial example for the weakness of existing analysis approaches of 

drug administration approaches. Although their incidence is well-known (Webster et 

aI., 2001), it was observed that "there seems to be no definite strategy for the 

elimination of drug error'" (Merry and Peck, 1995) although it was also observed that 

"error is inherent in drug administration in anaesthesia, as it is in any complex human 

endeavour". 

The New Zealand Green Lane Hospital (Auckland) instead found their own way of 

tackling the Ubiquitous drug administration error by adapting the work environment 

(rather than human fallibility) to the task (Merry et aI., 2001). They noted that 

"conventional methods of injectable drug administration makes little use of 

technology to support manual checking and are idiosyncratic and relatively error

prone" (op. cit.). They further noted, in line with my previous reasoning, that "most 

anaesthetists, if not all, make drug administration errors at some stage during their 

career (Apostolakis, 199]) no amount of good intent or harsh deterrence will stop 

them" (Merry and Webster, 1996). They therefore proceeded to develop a drug 

administration system to combat the potential for human error that has now been 

successfully used for over 2 years, and that is in daily use in Green Lane hospital. The 

core components of this system were the aspects that tackled the system's support for 

the anaesthetists' cognitive capacities during drug administration. 

Analysis Case 2: 

In another incident that wasn't considered strictly technical failure, an intravenous 

infusion into a neonate's hand became interstitial (dislodged). Contact of the 
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intravenous injection fluid with the baby's skin might have resulted in tissue burns, 

but was discovered in time, and thus dle damage was contained and limited to a 

swollen arm. 

Existing Knowledge and 
Expectalions 

II igher Level Processing 
irem en ts 

--, 

----------------

IImplicationallmage 

o IC=::======:J; 
l C:==:=====:::;l 

Object Image Record 

ArtieulalOI)' lmasc Record 

Body-Sensory Image 
Record 

Limb Image Record 

Fiaure 6-7 - ICS ouidance on incident investi2:ation e I:> ~ 
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The incident report listed as "contributing factors" only that "each nurse had 2 Ie 
babies in her care". There were no minimizing factors listed. Suggestion for future 

avoidance was to have resources available to achieve a "one nurse: one patient" ratio. 

AIMS classifications arrived at in the analysis team were "High unit activity level"; 

"Insufficient staff"; "Inappropriate staff/patient allocation"; "Distraction/inattention"; 

and finally, "stress". 

Once more, it can be seen that the AIMS classifications of this incident are not 

conducive to either further understanding of the incident's causation, nor to the 

identification (or even evaluation) of constructive safety recommendations. 

Meaningful quantitative analysis based on such classifications also seems hard to 

attain. 

However, when the "human error expert" on the investigation team further probed the 

clinical and nursing staff as to possible causes and contexts of this incident, a 

different, more meaningful picture emerged. After lengthy discussion on the nuinber 

of checks nursing staff are obliged to run on each patient, and the inherent high risk 

of missing one, and the importance of "vigilance" for staff to detect and prevent 

potential adverse events, questioning slowly led the investigation team to consider the 

technological component in this incident. It was noted that the intravenous infusion 

pump is built to react to pressure and would start sounding an alarm if the pressure 

limit is reached (which would be the case if the infusion became dislodged out of the 

vein onto the tissue). Thus to investigate this incident is was important to know 

whether an alarm had sounded or not, since if the pressure limit had been reached, 

and the pump properly set, but no alarm sounded, a technical failure could have been 

identified. 

In reaction to this, and to the general literature on the importance of alarms in safety

critical environments (Stanton, 1994), a specific question regarding the presence of 

alarms was included in the incident reporting form (see earlier this chapter). 
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In the case that there was no technological failure implicated in this incident, a further 

causal option should be investigated: was the pump's pressure limit set appropriately? 

Was the limit set at all (or left at a previous setting)? Was the alarm switched off? 

Was the alarm sounding, but could not be heard? Was the agility state of the baby 

misjudged, which, when too agile, often precipitates these kinds of incidents? 

Again, these questions probe further into the context of the incident's causation, and 

its interaction with the key players' mental state, knowledge, assumptions, and 

available processing capacities, i.e. in short, their cognitive processes. Thus, a 

cognitive framework is called for in order to further elucidate the events, internal or 

external, that led to this incident. 

One further benefit of the suggested cognitive error analysis approach that is 

underlined by this incident case study is the importance and the nature of the 

questions that are brought up by the "human error expert" and that guide the 

discussion in the investigative team. Furthermore, rather than in lengthy verbal 

protocol transcripts, these discussion items could be documented in an appropriate 

modelling framework for future reference. The benefit of e.g. timelines and other 

diagrammatic modelling frameworks (such as fault trees, see the previous chapter) in 

elucidating accident causation (Johnson, 1998) or complex work processes (De 

Keyser and Nyssen, 1997) has been well demonstrated. A diagrammatic modelling 

framework that is based and grounded in cognitive theory, and which can also show 

and model an individual's cognitive processes in interaction with their environment, 

will thus support the elicitation, capture, and documentation of the reasoning 

underlying the identification of the cognitive precursors of incidents. Figure 6-8 

demonstrates this by means of the above described incident case 2. 
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The figure illustrates the interplay of auditory input, higher-level mental processing, 

and data flow in the human cognitive system. The model can be used to play through 

"what if' scenarios. for instance concerning the nursing staff's assumptions on pump 

pressure limit settings, and how this would be affected by the presence of alarms. 

This can then be structured and captured in the model, and the reasoning process in 

the investigation can be documented. Furthermore, safety recommendations that arise 

from such modelling are unlikely to focus on staff vigilance as the remedy to such 

incidents. They are more likely to scrutinize the appropriateness of the technology 

and work context for the capacities, boundaries, and idiosyncrasies of the human 

cognitive processing system, including their dealing with alarms in an overly noisy 

and alarm-saturated environment, or with the detailed technical implementation of the 

pump pressure limit setting in terms of providing a user-friendly, safety-oriented 

system design. 

FORM VALIDATION 

As part of the effort to take the local context of the incident reporting scheme into 

account, a questionnaire survey was carried out as an investigation of staff perception 

of the Critical Incident Reporting scheme as part of existing safety management at the 

unit. The study should also present an opportunity for staff to suggest improvements 

of the incident reporting scheme itself, as well as unit safety management in general. 

22 questionnaires were administered to two II person day shifts on the ward. 2 I were 

returned and 19 were included in the analysis. The two outliers that were excluded 

from the analysis were responses from temporary staff. Both medical and nursing 

staff contributed to the study. 

Out of a total of 19 responses, 13 indicated awareness of the scheme, 4 said they had 

participated, and 11 could define "Critical Incident" (see Figure 6-9). Several 
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valuable suggestions (see Table 6-1) on fonn and scheme improvement were given by 

the study participants. Most survey participants responded positively to the overall 

impact of the scheme as part of safety management at the unit. Most participants 

stressed the crucial importance of feedback of incident data and analysis results back 

to unit staff. Raised awareness of existing error potential can be inferred from the 

'shock reaction' that was reported on seeing the (anonymized) incident data and 

analysis results. Understandably, this led to frequent calls for urgent safety 

intervention on the part of the survey respondents. 

Survey Question Staff Suggestions 

Fonn improvement Include question on staff baby ratio 

Include question on workload levels 

Effectiveness of the scheme Good for Awareness (N=4) 

Need Action (N=3) 

Need Feedback (N=2) 

Safety management improvement Need Extra Staff (N=6) 

Need Review (N=5) 

Need Action (N=3) 

Need Training (N=2) 

Table 6-1- Summary of Staff Suggestions for Form Improvement 

177 



The level of ' afety cu lture"' at the unit seems encouraging with 2/3 of staff aware of 

the scheme and of the nature of critical incidents. Temporary staff, however, are still 

largely unaware. The scheme's intended implications for safety management needs 

better publication. Further mea ures are needed to feed analysis and action resu lts 

back to the staff. Reassurance of staff is needed to let them know that the identified 

safety deficiencies are urgently and thoroughly addressed through safety interventions 

where possible. 

15 +---------------------------------------~ 

10 -+--

5 -+----

0 -+----

Awareness Participation CI Definition 

Figure 6-9 - Staff Awarene , Participation, and Abi lity to define 'Critical Incident' 
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CONCLUSIONS 

The NICU incident reporting scheme succeeded in achieving staff engagement and 

participatory design of the reporting fonn. Most importantly, it impacted the overall 

safety culture in the unit, by raising awareness of clinical incidents, and raising the 

belief that the occurrence of 'mistakes' can be dealt with in a constructive way by 

higher level management (rather than following a 'punitive perfection model' (Leape, 

1994)). Equipment failures could be followed up by either contacting the 

manufacturer directly, or also, for instance, by being able to refer to the incidents as 

evidence of insufficient design of specific devices. This data provides the basis to 

pass on valuable lessons to other NICUs that e.g. use similar devices. 

The UK Department of Health (2000) stated as their main conclusion to the Chief 

Medical Officer's report: "We believe that, if the NHS is successfully to modernize 

its approach to learning from failure, there are four key areas that must be addressed. 

In summary, the NHS needs to develop: 

• unified mechanisms for reporting and analysis when things go wrong; 

• a more open culture, in which errors or service failures can be reported and 

discussed; 

• mechanisms for ensuring that, where lessons are identified, the necessary 

changes are put into practice; 

• a much wider appreciation of the value of the system approach m 

preventing, analyzing and learning from errors." 

Additional to this, however, it needs to be stressed that the incorporation of the 

specific local conditions and requirements are necessary for the successful 

maintenance of an incident reporting scheme. Furthennore, if a unified mechanism 

for analysis is determined, it needs to take into account that the classification scheme 

should not only aid 'causal factor counting', but also their meaningful analysis. This 
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thesis proposes a cognitive error modelling approach that supports the meaningful 

analysis of incidents and their classification. This chapter worked through real-life 

examples applying this cognitive incident analysis approach. 
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CHAPTER 7 CONCLUSIONS AND 

FURTHER RESEARCH 

THESIS CONTRIBUTION 

It has been established that human involvement often plays a major role in the 

occurrence of accidents in safety critical systems such as in aviation, or medicine. 

Accident reports often resort to naming human error ("pilot error", "operator error") 

as 'the reason' why the accident happened. 

However, identifying human involvement in the accident's causation does not 

necessarily mean that 'human error' is the cause, and the only cause, of that accident. 

Human action (or inaction) never takes place in a vacuum, and is always stimulated 

by either the external context or an internal motivation (such as a set of expectations. 

or a mental goal). Therefore, the identification of human involvement in the events 

that led to an accident that is often misleadingly called 'human error' should be the 

starting point for further investigation, rather than provide a convenient category 

where blame, and thus the 'cause', have apparently been found. 

This thesis scrutinized the current use of error cause taxonomies that is widespread in 

safety-critical domains such as aviation, process control, and clinical safety 

management. Several weaknesses were identified that related either to the taxonomies 

themselves (even if grounded in psychological theory), or to their use, which is often 

characterized by a "common sense" approach to categorization. The link to the 
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generation and evaluation of safety recommendations was also highlighted in this 

thesis. 

This thesis proposed the use of a cognitive error analysis approach that addresses 

critical weaknesses in current taxonomical approaches. The thesis' main contribution 

to the field, next to identifying and illustrating these weaknesses of current 

taxonomical approaches, is the elaboration of the potential benefits of the proposed 

cognitive error analysis approach in addressing these. The thesis presented these 

potential benefits through worked examples covering two safety-critical domains, in 

which accident case studies were analysed retrospectively, and in which the cognitive 

error analysis approach's feasibility was validated in a "live" clinical setting, through 

the implementation of integrated safety management measures. 

It is put forward in this thesis that the proposed approach would stand a better chance 

to successfully address recurring system weaknesses than more traditional accident 

analysis approaches. Future work will also need to validate the effectiveness of the 

proposed approach in actually reducing the number of incidents and accidents (e.g. 

with a longitudinal study following up the implementation of the NICU incident 

reporting scheme), especially in direct comparison with alternative approaches. 

It is reasoned that there are two core benefits of the proposed approach as compared 

to more traditional approaches: the method, involving an expert in "the human factor" 

(most likely a trained psychologist), and giving this expert a tool that will help them 

explore the context of the accident, and specifically the interaction of the human (who 

was involved in the accident's causation) with the system that suffered the accident. 

One of the core concepts in this thesis is that an accident's causation is viewed in this 

thesis as the result of a potential mismatch between the human system component and 

the rest of the system, rather than a system failure that was brought about by "human 

error" in isolation. The method put forward in this thesis (involving the expert and the 

tool) is proposed as an approach to address this viewpoint on accident investigation. 

This thesis presented an elaborate proof of concept for this approach. 
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The core points that were the focus of this thesis are: 

• 

• 

Human error analysis, if grounded in a cognitive theoretical framework, 

steers away from a common sense approach to analysis, by exposing implicit 

assumptions on the factors underlying human involvement in an accident's 

causation. 

The cognitive error analysis framework provides the tools and the 

vocabulary to reason about human error. Using the cognitive framework, 

alternative hypotheses about the underlying cognitive mechanisms of human 

error can be compared and substantiated. 

• The modelling approach helps to document and communicate this reasoning 

process by explicating it in the (diagrammatical) cognitive framework 

• Safety recommendations that are based on the analysis of Human Error need 

to be evaluated as to their theoretical validity and their compatibility with 

the findings of the accident/incident investigation. The cognitive error 

analysis approach provides the tools to support both these evaluations. 

Specifically, in Chapter 4 (this thesis), an extensive table listed points of critique of 

existing error analysis approaches, and whether the proposed cognitive error analysis 

approach addresses the criticisms (table 4.1). The folJowing section will summarize 

the key contributions of the proposed cognitive error analysis approach to the 

problem of effectively categorizing and analysing 'human error' data. 
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Critique of existing error How the proposed cognitive error analysis 

analysis approaches approach addresses these criticisms 

The cognitive error analysis approach embodies 

erroneous as well as error-free behaviour and 
Analysis of human behaviour 

thought processes. Error is seen as the other side of 
only in terms of "error" (no 

the coin of an otherwise efficient thought, emotion, 
room for non-erroneous 

behaviour) 
and action apparatus (as illustrated throughout the 

thesis examples, especially in chapter 4, where non-

erroneous behaviour is explicitly modeled) .. 

Human behaviour is analyzed in its interaction with 

Analysis of 'human error' only 
external situation and events (this is shown, for 

instance, in modelling a pilot interacting with the co-
in terms of isolated behaviour 

pilot, situated in a moving plane, as done e.g. in 

chapter 3). 

Table 7-1- Benefits of the Proposed Approach (I) 
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Critique of existing error How the proposed cognitive error analysis approach 

analysis approaches addresses these criticisms 

There is a gap between Cognitive error analysis models the behavioural description 

describing human behaviour and its underlying cognition in a theoretical framework. The 

as implicated in the accident's framework can be used to reason about competing 

causal chain, to assigning a categorizations (as illustrated e.g. in chapter 4,5, and 6), This 

label to it through justification process, the rationale, is thus ~ceable and 

categorization documented. 

The framework supports diagrammatic reasoning, which has 

been shown to to aid understanding and communication of the 

Verbal description of human 
analysis results (Moran and Carroll, 1996). 

behaviour as implicated in an 
The symbolic implementation of the model (lCSpert; May et 

accident's causation. 
aI., 1993; Barnard et aI., 1988) will aid precision, flexibility, 

standardization, and predictive power (see also Burns (2000) 

for the value offormal accident modelling). 

The cognitive architecture allows 'what-if' scenarios to be 

executed, and presents a framework to reason about potential 

Human error predictions 
mental and behavioural consequences of cognitive precursors 

(this is an inherent property of modelling frameworks such as 
based on implicit assumptions 

ICS, and is illustrated in competitive modelling (ie modelling 

of competing hypotheses) throughout the thesis). 

Table 7-2 - Benefits of the Proposed Approach (II) 
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Critique of existing 
How the proposed cognitive error analysis approach addresses 

error analysis 
these criticisms 

approaches 

Modelling the cognition underlying the error's categorization 

contextualizes its causal processes, and thus adds explanatory 

power grounded in a theoretical framework (as illustrated in e.g. 

Taxonomical labels the modelling of the Gatwick incident. Explanatory power here 

alone often lack refers not to supporting a layman's understanding of the causal 

explanatory power process, but an explanatory power that rises from a theoreticaJJy 

grounded, guided exploration of the incident's context and causal 

processes). 

Taxonomical labels do The cognitive error model can help to identify intervention points 

not support the for future safety measures in the causation processes. It can also be 

generation of safety used to validate (or reject) suggested safety recommendations, by 

recommendations, and grounding both (the error analysis and the simulation of safety 

might even mislead the measures' impacts) in a common theoretical framework (as 

analyst (such as in the illustrated e.g. in the TAP examples, especially in comparison with 

case of "reminder "reminder statements" as generated by the previously used 

statements") approach to error modelling in the Intensive Care Unit}. 

Taxonomic labels do The cognitive error model can be used to compare competing 

not provide any support recommendations, help predict their outcomes, and test the 

for evaluating safety compatibility of recommendations with analysis evidence and 

recommendations. results (see especially Chapter 4 for an illustration). 

Table 7-3 - Benefits of the Proposed Approach (III) 
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Critique of existing error How the proposed cognitive error analysis approach 

analysis approaches addresses these criticisms 

It is possible to model interactions between several 

Error categorizations do not 
individuals in the proposed cognitive error framework, and 

also the interplay ofteam members' communication and 
sufficiently take team factors 

their knowledge and mental processes (this was not the 
into account. 

focus ofthis thesis, but a pilot-copilot communication 

scenario is included for instance in Chapter 4). 

Since the proposed cognitive error analysis approach is 
Taxonomies are finite, they 

grounded in a generic psychological theory, the range of 
cannot be exhaustive, and 

behaviour and cognition that can be described is much 
typically cover only a limited 

wider than a restricted enumerations of categories (by 
range of errors. 

definition). 

Taxonomies often list mental 

and emotional states (such as 

stress, fatigue) as causal 
The cognitive error framework can model emotions 

categories, but fail in 
(Teasdale and Barnard, 1993) and can thus contextualise 

contextualizing the human's 
the human actor's mental state in terms of their interactions 

mental state in terms of its 
with their environment. 

impact on cognitive processes 

or action in a situated work 

activity. 

Table 7-4 - Benefits of the Proposed Approach (IV) 

187 



Critique of existing error analysis 
How the proposed cognitive error analysis 

approaches 
approach addresses these criticisms 

Encourages in-depth analysis of the 

Seemingly 'conclusive' labelling of contextualized cognitive precursors defining the 

instances of human behaviour, rather human involvement in the accident's causation 

than starting point for human error (the framework provides the analyst in essence 

analysis. with a 'checklist' of subsystems and subsystem 

interactions (configurations) for consideration). 

Common sense analysis, based on 
Encourages use of appropriate expertise on 

human thought, decision-making, and action 
implicit assumption on theories of 

processes (the framework's vocabulary targets 
accident causation as well as of the 

human factor experts). 
human psyche. 

The feasibility of the approach in live hospital 

settings was evaluated in this thesis, and the 
Varying levels of "Goodness of Fit" to 

approach was put to use in collaboration of the 
the accident investigation process and 

human factors experts (using ICS modelling) 
overall safety-management strategy. 

and the hospital staff (the domain experts). 

Table 7-5 - Benefits of the Proposed Approach (V) 
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As detailed in Table 7.1, the proposed cognitive error analysis approach holds 

promise to address a list of weaknesses of current error analysis approaches that are 

utilized in accident and incident investigation. This thesis contributed to identifying 

and exploring these weaknesses (such as the lack of error modelling capabilities of 

existing cognitive models, the potential inadequacy of safety recommendations when 

derived with existing analysis approaches, without guidance by human error analysis 

expertise, and the ambivalence and lack of explanatory power of taxonomic 

approaches), as well as illustrating how a cognitive modelling framework could be 

used to support the analysis of human error in a way that would address these 

weaknesses (e.g. by including error modelling capabilities, by grounding the 

generation and evaluation of safety recommendations in a holistic theoretical model, 

and by adding explanatory power by utilizing the theoretical framework as a 

constraining (and thus structure-giving) vocabulary). This problem space was 

explored, and issues were identified and refined in the process. Future work will need 

to set about conducting a rigorous validation of the suggested benefits of the approach 

(such as using measures of total increase or decrease of numbers of incidents as an 

indicator of the method's merits). 

Thus, this thesis concentrated on demonstrating the broad range of weaknesses of 

current error analysis approaches (summarized in tables 4.1 and 7.1), and the 

corresponding broad value of a systematic error anaJysis approach that is grounded in 

a theoretical framework that can account for error-free as well as erroneous human

machine interaction (or human-human interaction). It also examined the proposed 

analysis approach in a series of exploratory case studies. In doing this, an analysis of 

the process of the cognitive error analysis approach's application there was not the 

explicit focus of this thesis. However, in the course of the theoretical and practical 

exploration of the issues involved in error analysis in accident and incident 

investigation, several interesting points regarding an analysis process emerged (such 

as the advisory role of the human error analysis expert in conjunction with the domain 

experts' analysis process, and the role of a modelling tools like ICS as an expert's 

tool that is used by the human error analyst to systematically ground their reasoning 
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process and their contextualization of the error analysis process in a cognitive 

theoretical framework). Future work will need to explore and formalize 

considerations on the process of applying the technique, including the role of the 

expert in the analysis process, and a proceduralized way ICS can be used to support 

the analysis process. 

CRITIQUE OF THE SUGGESTED COGNITIVE ERROR 

MODELLING APPROACH 

ICS, compared to other Cognitive Task Analysis methods, is a rich and expressive 

modelling approach. The cognitive primitives are well defined, and no assumptions 

regarding a certain level of performance (such as novice/expert) are made. It also 

presents the possibility to model temporal information (such as concurrency and 

sequentiaIity), the lack of which Hollnagel (1991) pointed out among typical human 

error modelling techniques. 

However, there are a number of shortcomings of the approach presented above. If the 

in-depth error modeIling approach is used (Barnard and May, 1998; Barnard et aI., (in 

press», then the specification of the cognitive processing modelled is required at a 

very low level. It requires, next to modelling time and effort, an amount of equalIy 

well-defined error data, which is typically hard to come by. However, the design of 

the incident reporting scheme could counter-act this by targeting the data elicitation 

accordingly. Also, the incident reporting scheme could be voluntarily confidential 

(rather than anonymous) and include follow-up interviews with the incident reporters 

to clarify their responses. 

Furthermore, cognitive modelling in ICS requires a degree of expertise and modelling 

craft skiH (May and Barnard, 1994), which leads to training requirements for the 
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analyst, and a background in cognitive psychology will be highly desirable. Ideally, a 

human error expert with training in relevant psychological theories will be involved 

in the investigation process, as illustrated in the case studies in this thesis. 

Even if a high degree of expertise and skill is employed in the modelling process, a 

conclusive validation of the obtained modelling results is difficult, since it is not 

based on data derived from an empirical, laboratory·based, experiment, but from 

contextual field data. Thus, inter-judge reliability of the approach is estimated to be 

low. The complexity of human behaviour and cognition outperforms the fine·tuned 

and fine-grained ICS specification (as is typically the case with low· level, predictive 

processing models (Dix, 1997». However, if the framework is utilized to model 

possible error processes and to reason about alternative hypothesis of accident 

causation, it is not the conclusive validity of each individual model that is required, 

but the explanatory power of the models in comparison. 

This presumed low inter-rater reliability is shared with the human error model 

approaches presented in Chapter 2, where more complex causal analyses are 

concerned. As is noted above, the techniques only give guidance on which error 

shaping factors are likely to apply to the identified error forms, but no specific 

guidelines. A methodology that enables the modelling product to be validated is not 

provided either. It is very much left up to the analyst's insight and experience to 

identify human error fQrms. It was argued in this thesis that complementary cognitive 

modelling, even if difficult to validate on an individual model basis, can act as a tool 

to inform the error analysis process. 

Another weakness which both cognitive as well as error modelling approaches share 

is the lack of methodology for translating the modelling product into design 

guidelines, or post-accident recommendations (e.g. Sanderson and Harwood, 1988). 

May et al (1993) attempted to embody this translation process in an expert system. 

This, however, never became fully operational. The generation of safety 

recommendation is, again, left up to the analyst's expertise. However, the cognitive 
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error modelling approach as proposed in this thesis supports the analyst by enabling 

the identification of intervention points through the explicit detailing of the error 

processes. Furthermore, the impact of safety recommendations can be evaluated 

against the original findings and analysis model in the cognitive error analysis 

approach. 

FUTURE RESEARCH DIRECTIONS 

Detection Factors and Safety Recommendations 

It is important to note that human involvement in incidents or near-miss accidents is 

not limited to 'human error', but humans also playa major role in detecting an 

'accident waiting to happen', and in its avoidance and recovery. This insight mirrors 

Reason's (1990) metaphor of 'human error' being only one side of the coin of a well

functioning and efficient cognitive system. These aspects are typically neglected in 

the human error literature, and in human error taxonomies. 

Seeing human error as one side of the 'cognitive coin' also resets the focus on the 

inevitability of erroneous behaviour, especially when interacting with complex 

systems. This leads to the conclusion that not only error detection and recovery 

mechanisms need to be further investigated, but also that systems need the capability 

to 'absorb' error (Rasmussen and Vicente, 1989) and to degrade 'gracefully' in the 

case of an incident or accident. Thus, system design needs to be based on a 

sophisticated understanding of error production as we]] as human error handling 

mechanisms. Future work could scrutinize the relationship between detection factors 

and safety recommendations systematically, thus exploring one further potential 

source for the generation and validation of safety recommendation. 
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Beyond Individual Cognition 

There has been increasing research into the analysis of team errors in safety-critical 

environments. Taxonomies such as these described in this thesis usually do not focus 

on team factors that play into the causation of accidents or incidents. One team factor 

that is usually included in taxonomies is "communication" (though this category 

typically runs the risk of being used as a 'catch all' for a very generic class of error 

fonns - these might range from 'protocol' errors e.g. during shift hand-over, to 

patient records not being updated in time, to describing a 'cranky' surgeon that does 

not communicate appropriately with the anaesthetist). The generic nature of this 

category leads to decreased differentiation and explanatory power when it is used to 

classify human involvement in an accident's causation. However, recent research has 

recognized the need for a whole vocabulary that specifically describes the facets 

found in team interactions, and especially the breakdown of these interactions (Harris 

et aI., 1999; Kostopoulou and Shephard, 1999; Sasou and Reason, 1999). 

This report has focused on the cognitive aspects of an individual's involvement in 

accidents and incidents. The impact of teamwork aspects on the tasks in intensive 

care units (as well as in the cockpit - as illustrated in chapter 4) cannot be 

overemphasised, however. In ICUs, medical staff and nursing staff are continuously 

interacting in the process of carrying out their tasks (Kostopoulou and Shephard, 

1999), and especially when dealing with emergency situations. The impact of this 

team interaction on an individual's perfonnance and on 'human error' thus needs to 

be investigated further. As a prerequisite, it thus needs to be examined whether 'team 

error', pragmatically, fonns a separate entity from individuals' errors, as current error 

taxonomies suggest. Initial research in this direction has already been pursued by the 

thought leaders in this field (Sasou and Reason, 1999). More work is needed to fully 

understand the team processes in these safety-critical environments, and to 

incorporate them successfully into the analysis of incidents and accidents. 
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Towards a 'Total System' Approach 

Reason maintains that active failure is usually associated with the perfonnance of 

'front-line' operators (such as pilots, nurses). Latent failure, however, is most often 

generated by those at the 'blunt end' ofthe system (e.g. designers, high-level decis

ion-makers, and managers) and may lie donnant for a long time. 

So far in this work we have concentrated on 'human errors' leading to active failure. 

The analysis of these is most likely to benefit from cognitive modelling techniques. 

We suggest that latent failures are best analysed in 'total system' approaches that go 

beyond an individual's cognition and also take organisational aspects into account. 

This infonnation is only implicitly embodied in cognitive models. 

Recent research has suggested that it is valuable to investigate whether knowledge of 

the regulation, organisation, and management of complex systems can be 

incorporated in the analysis process and in safety management (Jeffcott and Johnson, 

2001). The 'external' influences on human cognition and task perfonnance need to be 

clearly demarcated by the analysis method. The scope of current modelling 

techniques can be delineated, and potential extensions or integration with system

oriented models could be investigated. This means that, ideally, there would be an 

integration of the individual error model and a model of the total system, and their 

interactions. Models of overall work systems usually do not lend themselves to 

modelling error or accidents, and to integrating models of finer grain, such as models 

of individuals' cognition. 

However, two approaches to modelling overall work systems could be identified that 

promise to be appropriate for modelling not only ideal, error-free work environments. 

One, Cognitive Work Analysis (Vicente, 1999), is based on Rasmussen's cognitive 

engineering approach, which itself holds as a premise the inevitability of occurrences 

of human-machine mismatch. 
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Another promising work modelling approach might be based on activity theory 

(Vygotsky, 1978). Activity theory is one psycho-social theory of human action that 

confronts the concept of "conflict" as one of its core concerns. This concept of 

conflict often accompanies descriptions of mismatches, errors and accidents in 

activity theoretical case studies (Nardi, 1995), and it warrants further investigation in 

as much a work model based on activity theory might add value to the process of 

analysing the human involvement in accidents and incidents. 

CONCLUSION 

The case studies detailed in this thesis have shown how human error taxonomies on 

their own, even if rooted in cognitive theory, may not sufficiently contribute to 

human error analysis in accident or incident investigation. They provide limited 

explanatory power, and they also do not provide constructive value in that they do 

little to support the generation of safety recommendations. Although error 

categorisation does provide a basis for labelling analysis results, the resulting 

quantitative categorisation data itself does not aid the understanding of the error or 

the Substantiation of safety recommendations. Labelling of instances of human 

behaviour does provide the basis for larger scale statistical analysis of error data, and 

aids the prioritization of further in-depth analysis and intervention. However, the 

categories can be misleading, and the value of the resulting statistical analysis might 

thus be doubtful. We demonstrated in this thesis how a cognitive error modelling 

approach can be used to address those weaknesses, when applied to human error 

analYSis in accident and incident investigation, across safety-critical domains. The 

cognitive error analysis approach is not a panacea, however, and ideally, analysis of 

team factors and organizational work context factors also need to be taken into 

accOUnt in accident and incident analysis. 
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Modelling Human Error within a Cognitive 

Theoretical Framework 

1 INTRODUCTION 

Current cognitive user models enable interface designers to describe, analyse and 

predict aspects of user cognition. However, none of the major cognitive user models 

such as ICS, or GOMS tackle the human error aspect of cognition explicitly. The 

represented operator performance is constrained to be error~free, expert performance. 

This report argues that human-machine system analysis as well as current error

modeHing techniques will greatly benefit from representing a cognition~based error 

model within a cognitive architecture, such as ICS. The Netscape Internet browser 

acts as a case study throughout. The resulting approach is shown to aid the analysis of 

human error. Reasoning about potential error causes as well as the generation of 

design recommendations can thus be grounded in cognitive theory. 

1.1. Integrating Error Models and Cognitive Architectures 

Cognitive architectures seek to represent the building blocks of human cognition. 

They provide the basis for cognitive user models, which strive to represent some 

aspects of the user's understanding, knowledge, or cognitive processing. These 

models can then contribute to our understanding of the cognitive limitations of an 

operator performing a task, for example the effects of cognitive load on user 

performance (Barnard and May, 1993; Ashcraft, 1994). 

Erroneous task performance highlights precisely these limitations of human 

cognition. It is surprising, therefore, that the major cognitive user models do not 

explicitly tackle issues associated with erroneous performance based on cognition. 

They strive to represent error-free performance, assuming expert performance in 

211 



some perfect context (see for instance Simon, 1988; Grant and Mayes, 1991; Booth, 

1991). This idealises real-life conditions of task performance. 

User error can point to problems in human-system interaction that need to be resolved 

in order to enhance the system's usability. Human error taxonomies aid the prediction 

and detection of error classes. They can thus be exploited for error prevention and 

recovery mechanisms (Reason, 1990; Taylor, 1988). Those can then be incorporated 

into the interface design. 

On the other hand, stand-alone human error theories highlight possible sources of 

erroneous performance without providing a language in which to express these error 

tendencies when applied to human cognitive task performance. Section 4 and 5 use a 

cognitive architecture as a vehicle for expressing not only expert task performance 

but also the more realistic error-prone thought and action sequences processed by the 

human operator. By doing this, the error modelling capability implicit in the 

comprehensive ICS cognitive architecture is made the focus of inquiry into the 

underlying cognition of user performance. Such explicit modelling of erroneous per

formance can thus help to communicate user cognition analyses, and to ground design 

decisions in a cognitive theoretical framework. 

As a running example, error modelling will be applied to tasks concerning the use of 

Netscape Navigator™. This example is appropriate because it represents a mass

market application where errors frequently lead to high levels of frustration during 

common tasks (Johnson, C., 1997). 

1.2. Interacting Cognitive Subsystems (ICS) and GEMS 

We will use Interacting Cognitive Subsystems (ICS) (Barnard and May, 1993) to 

illustrate the modeHing of human error within a cognitive architecture. ICS provides a 

comprehensive account of human cognition. It has proved powerful in explaining 
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cognitive phenomena such as the stability of users' mental models during dual task 

interference effects (Duke, et al. 1995). It has been applied to real-life systems and 

tasks, such as cinematography (May and Barnard, 1995a). 

Alternative cognitive user models, such as Task Analysis for Knowledge based 

Descriptions (TAKD) (Johnson, P. et aI., (994), User Action Notation (UAN) 

(Hartson et aI., 1990), or Soar (Newell, 1990) might have been used. However, they 

lack the level of detail in ICS's representation of cognitive processes, or, in the case 

of Soar, the inherent constraints these have to satisl)' (WiJson et aI., 1988; Kjaer

Hansen, 1995). ICS was designed to provide a theoretical framework within which to 

place user cognition. It attempts to "satisfy the need for applicable theory" (Barnard, 

1987). ICS, therefore, bridges the gap between theory-oriented cognitive architectures 

and task-oriented cognitive user models (Grant and Mayes, 1991; Simon, 1988). 

As noted in Section 2, Reason's taxonomy of human error (Reason, 1990) represents 

a conceptual classification of error, as opposed to a contextual or a behavioural one. 

The latter, exemplified for instance by Hollnagel's (1991) classification of error 

phenotypes, does not lend itself to the in-depth analysis of the underlying cognitive 

sources of error. For instance, a behavioural error category might include errors that 

exhibit the same surface characteristics without sharing the same cognitive basis. 

1.3. The Netscape Navigator Case Study 

According to user population estimates, the Internet is gaining roughly 150,000 new 

users per month, joining 20 million existing Internet users (Pitkow and Recker, 1994). 

Internet browsers facilitate global communication by providing supporting hypertext 

navigation. Familiarity with such browsers, and therefore their usability constitutes a 

prerequisite for taking part in this novel information exchange. Maximising this 

usability therefore represents a continuous concern for designers of successively 
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modified versions of Intemet browsers. The Netscape Interface (see Figure 1) will be 

used for illustration throughout this report. 

Prompt for URL 

Net earch Facility 

Navigation 

A User Provided 

Navigation Button 

Figure 1 - The Netscape Internet Browser 

2 A COGNITIVE ARCHITECTURE AND A HUMAN 

ERROR MODEL 

This section reminds the reader Barnard's rcs model and Reason 's human error 

taxonomy introduced earlier. lCS will provide the framework in which the 

representation of erroneous operator interaction can be placed. 
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SeDsory subsystems: 

VIS visual: hue, contour etc. from the eyes 

AC acoustic: pitch, rhythm etc. from the ears 

BS body-state: proprioceptive feedback 

Effector subsystems: 

ART articulatory: subvocal rehearsal & speech 

LIM limb: motion of limbs, eyes etc. 

Structural subsystems: 

OBJ object: mental imagery, shapes etc. 

MPL morphonolexica]; words, lexical forms 

MeaDing subsystems: 

PROP propositional: semantic relationships 

IMPLIC implicational: holistic meaning 

Figure 2 - The Cognitive Subsystems 

2.1. Interactive Cognitive Subsystems (ICS) 

Cognition is represented in ICS as the flow of information between a number of 

different subsystems, and the processing performed on this data. Each of the 

subsystems has associated with it a unique mental code in which it represents the 

information it receives and processes. It will transform its data output into the 

corresponding mental code of the subsequently receiving subsystems. Each 

subsystem can receive severa] input streams and achieve a blending of these data 

streams under certain circumstances as described below (May and Barnard. 1995a). 

Each subsystem also has at its disposal a local image store. This serves as an episodic 

memory buffer of infinite size. A copy of any input the subsystem receives will 

automaticaJly be copied to the local image store, before being further processed. 
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The nine subsystems can be grouped into four categories. Figure 2 above presents an 

overview. 

2.1.1. Modelling a Netscape Task in ICS 

Figure 3 illustrates how the error-free performance of a task of locating an object (an 

up-arrow, such as shown in the visual subsystem) is modelled in ICS in terms of 

information flow between the subsystems, and thus the different resources that are 

employed. Visual information concerning the target arrives at the visual subsystem 

and is copied into the local store. It is then transformed into object code (1). The 

propositional subsystem has generated a representation of the target of the location 

task (by conferring with its local buffer) and transforms this into object code (2). This 

is sent to the object subsystem, and can there be blended with the incoming struc

turally encoded visual information (3). The matching representation can be sent back 

to the propositional subsystem - the target has been located. 

Thus, Figure 3 i1Justrates how human mental processing underlying error-free 

performance can be represented within ICS. In the case of erroneous performance, 

however, usability designers might resort to an error classification scheme in order to 

analyse this particular instance of user behaviour. The following section will 

introduce the relevant aspects of Reason's taxonomy. We will then go on to show 

how a more detailed, cognitive analysis can be based on initial error classification, 

and thus provide a further perspective on user behaviour. 
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Acoustic Image 
Record 

M honolexical Image Record 

<structure of 

ArticullllOry 
lmage Record 

Limb Image 
Record ] 

Figure 3 - Processing associated with the task of locating an icon on 

Netscape 

2.2. Reason's Error Taxonomy 

Reason (1990) investigated the more general underlying error production mechanisms 

withjn human cognition and produced a conceptual classjfication of error types. He 
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bases his error classification skill-based slips and lapses on the one hand, and rule

and knowledge- based mistakes on the other (see also Norman, 1981, and Rasmussen, 

1983). 

Reason furthermore asserts that instances of his three basic error types are indirect 

results of what he calls the 'underspecification' of cognitive operations. In case of an 

ambiguity of the situational requirements, the cognitive system defaults to 

contextually appropriate, high frequency responses. This idea of default assignments 

features in most other cognitive theories, such as Bartlett's (1932) theory of schemata, 

and is well backed up by empirical evidence. 

ICS provides for this cognitive principle by referring to the depository role of image 

records attached to the individual subsystems. Thus ambiguous external input is 

complemented by internal input. In this way, ICS can be used to examine Reason's 

elementary concept of cognitive underspecification. 

2.2.1. Skill-based Slips and Lapses 

Slips and lapses are error types that these manifest themselves as actions or states that 

deviate from the current intention due to execution failures (slips) and/or storage 

failures (lapses). Slips and lapses are observed at the skiU-based level of performance, 

and originate from either the omission of attentional checks (inattention) during the 

routine action sequence or making an attentional check at an inappropriate moment 

(overattention ). 

A slip caused by inattention occurs in particular when current intention is to deviate 

from common practice. For instance, entering a well-known URL of a website cons

titutes a routine task. If the URL is changed and the user, although aware of that 

change, still happens to enter the old URL, then this is a typical example of an action 

slip. 
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A lapse might arise from what Reason calls 'Reduced Intentionality'. For instance, if 

selecting a link on the current site results in a considerable delay for this site to be 

loaded, the users might become distracted, and then experience disorientation upon 

facing the loading site. This can be seen as one of Reason's described reduced 

intentionality states, such as a 'what-am-I-doing-here' experience (see below). 

Skill based errors such as these contribute to the sources of user frustration when 

accessing the World Wide Web (as described in more detail in Johnson, C., 1997). 

These errors need to be taken into account in future design decisions. Applying 

Reason's categorisation of error helps to identifY error classes and presents a step 

towards dealing with the underlying usability problems of the system. 

However, error taxonomies such as Reason's typically confine themselves to broad 

error categories such as slips and lapses. A more detailed, lower level description of 

such classes might aid the further investigation of its instances. Thus, the design 

process might be tuned more finely to the usability needs pointed to by the user error. 

Cognitive modelling techniques such as ICS can provide a more precise vocabulary to 

augment the general descriptions of error taxon,omies. Examples of this lower level 

modelling of classes of human error are given below. 

2.2.2. Rule-based Mistakes 

Mistakes are apparent in actions that may run according to plan, but where the plan is 

inadequate to achieve its desired outcome. For any task, rules must be selected by the 

cognitive system which describes methods to reach a given (sub)goaJ. The selection 

occurs according to certain criteria. These include best match, specificity, and rule 

strength. Rule strength is defined to be the number of times a rule has performed 

successfully in the past. Occasionally, rule strength might override the other factors 

resulting in misapplications of otherwise 'good' rules to inappropriate situations 
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(what Rasmussen calls a 'procedural trap' - m "The Human as a System 

Component", 1980). 

As an example, an animated icon at the bottom of a page, near the contact 

information is quite often the mail-me icon (commonly found are self-folding 

envelopes, self-writing letters, or moving mailboxes). A corresponding rule will be 

formed and strengthened over several successful applications. In the case of a home

page icon being animated and located at a similar position in the screen layout, this 

rule might be applied and could lead to non-intended actions such as clicking on the 

icon when intending to mail the author of the page. 

Such error classes can be predicted as increasingly adding to usability deficiencies as 

the use of animated icons accelerates in web page design (Nielsen, 1997). By being 

able to predict these errors, preventative measures can be taken and further user 

frustration (Johnson, c., 1997; Ramsay et aI., 1998) can be curbed. 

3 USING ICS TO EXPRESS REASON'S ERROR TYPES 

In this section, we will examine more closely the modelJing of errors as identified by 

Reason's taxonomy within the ICS architecture. 

Commonly occurring errors and usability problems when interacting with Internet 

browsers' interfaces gave rise to numerous design guidelines and principles21
• 

Interface design issues such as the use of counter-intuitive icons and download delays 

are all well known to aggravate usability problems (see for instance Nielsen, 1996; 

Johnson, C., 1997; Ramsay et a!., 1998). Rarely, however, are the errors resulting 

from those usability problems described in detail, or even analysed in terms of 

21 See for instance Yale C/ AIM WWW Style Manual (URL: ''http://info.med.yale.edulcaiml_ 

manuaVindex.html" current at 08.12.1997) or The Ten Commandments ofHTML 

(URL: .. http://www.visdesigns.comidesignlcommandments.htrol .. current at 08.12.1997 
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underlying psychological factors (Johnson, C., 1998). Expressing such errors within a 

cognitive model will allow us to investigate and reason about their underlying 

psychological causes. The model is thus used as a tool for reasoning about user error 

on a further, more detailed level. 

3.1. Analysis of Errors and their Underlying Cognition 

High download latency of web pages was identified as major source of frustration and 

decreased satisfaction with the downloading site and also as attenuating user 

perfonnance (Ramsay, Barabesi and Preece, 1998; Johnson, C., 1997). For instance, 

as introduced above, if selecting a link on the current site results in a considerable 

delay for this site to be loaded, the users might become distracted, and then 

experience disorientation upon facing the loading site. 

This disorientation can be classed as the effect of a phenomenon which Reason 

termed 'Reduced Intentionality'. If a delay occurs between the formulation of an 

intention to do something and the time for this activity to be executed, the intention 

needs to be periodically refreshed. Other cognitive processes such as secondary 

intentions will otherwise claim the workspace resources. This mechanism can lead to 

lapses in the form of reduced intentionality states, the above described surprise and 

disorientation. 

The cognitive processes underlying this scenario can be represented in ICS as shown 

in Figure 4. 

After processing the goal hierarchy for selecting a link, the cognitive system shifts its 

focus back onto the current page (3 and 4). If novel external (I) and the current inter

nal input are not coherent, and thus cannot be blended (2), a decision must be made as 

to which of those to accept as valid input. The longer the delay, the stronger the influ

ence of the novel input grows, with it eventually replacing the internal propositionally 
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influenced representation (3). The recognition of this mismatch will lead to a lapse as 

described abo e. 

Acoustic Image Record 

Visual Record : 

Image of 
requested page 
(page 2) 

MoIphonoleXlcal Image Record r ritOfPhonoleXlcallmage Recojd ., 
LJg~----------~ 

r'----LL---~I _ ---, _______ j 

Amcul.,ory Image Record 

Limb Image Record 

Figure 4 - Reduced Intentionality: A Lapse 
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By modelling the underlying mechanisms of manifestations of attenuated 

performance, such as user error, and the causes of decreased satisfaction within IeS 

we can shed some light on the processes fundamental to the production of the user 

error as mediated by the described usability problems. 

Reasoning about Alternative Analyses of Error Causes 

Misinterpreting user interface icons is a common source for user error in interactive 

systems (Norman, 1988, 1993). However, the mistake might be grounded in varying 

cognitive processes, and not stem from one kind of cognitive mechanism alone. 

TypicalJy, user interface design manuals and textbooks stress the importance of 

intuitiveness of the icons chosen (Preece, 1994) and thus identify 'counter

intuitiveness' as a source of faulty identification of icons. However, further insight 

into the source of such user error can be obtained by investigating it in greater detail. 

As will be shown below, mistaking for instance a mail-me button with a homepage 

icon can be modelled in respect to two differing underlying cognitive mechanisms. 

Unless these two different causes are considered these designs might misdiagnose an 

important problem in user utilisation of icons. Using a cognitive architecture to 

reason about the potential underlying cognitive error production processes allows 

designers to investigate the detected usability problem in a systematic way. 

The above described user error could according to Reason's scheme be classified as a 

slip termed 'Perceptual Confusion'. In perceptual confusion, something that looks 

like the proper object, is in the expected location, or does a similar job is accepted as 

a match for the proper object. These slips could arise because, in a routine set of 

actions, it is unnecessary to invest the same amount of attention in the matching 

process. Thus acceptance criteria concerning the expected input might degrade, and 

result in rough and ready matches. 

223 



The processing carried out can be modelled in ICS as shown in Figure 5. 

The visual data is received at the visual subsystem (1), sent to the object subsystem 

for the recovery of a structural description (2), and finally interpreted by the 

propositional subsystem (3). A loop is entered in order to maintain a stable cognition. 

The resulting interpretation on the propositional level influences the further view of 

the object. If, however, the object subsystem receives ambiguous visual information, 

it will make use of its local image record and fill in the assumed missing information. 

This principle of ICS resembles closely what Reason describes as the cognitive 

system's reaction to underspecification of a mental operation as described above. 

The data thus acquired from the image record of the object subsystem might also fit 

in with the propositional interpretation of what is perceived, and thus stabilise in the 

cognitive system. If the assumption underlying the choice of what data is used to 

eliminate the underspecification is wrong, however, the representation of what is 

thought to be perceived will also be incorrect. The wrong icon will be chosen, and the 

information necessary for a mouse click sent to limb subsystem (4). 

This represents one possible underlying cause of the described error. However, the 

same manifestation of user behaviour might also point towards a second, different 

underlying cognitive mechanism. Employing Reason's taxonomy, the mistaking of an 

icon can be classed as a perceptual slip as modeIJed above. On the other hand, it could 

also be classed as a rule based mistake. Using ICS to model the underlying cognition 

of the error provides a means to further investigate the behaviour trace and its 

associated usability problem. 
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Articulatory 
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Limb Image 
Record 

Figure 5- Perceptual Confusion: A Slip 

Thus the error de cribed abo e could be classed as a rule-based mistake as oppo d 

to a slip. IdentifYing the home-icon might well be based on rules that are utilised b 

the cognitive s stem in order to discriminate different sets of icons. Features which 
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positively discriminate icons fulfilling one function from those fulfilling another 

might be listed in the set of conditions which when matched cause to fire the rule. 

Indiscriminative features in icons might thus lead to a rule wrongly being fired. 

This can be modelled in ICS (see Figure 6) similar to the modelling approach applied 

to the perceptual confusion approach, but this time with the implicational subsystem 

playing the major role in accepting information augmented wrongly by the 

propositional subsystem and its local image store. Thus for the goal 'press home 

button', a subgoal hierarchy can be formulated as 'iflpcate home button, move cursor 

to click on it', and 'if object has X features, it is the home button'. By mistaking the 

icons on a propositional level, the mail-me button might be clicked instead. 

The examples elaborated above show clearly how one overt form of user error can 

stern from several different 'errors' within the cognitive processing taking place. This 

M:N relationship between cause and error might have gone undetected if systematic 

error modelling within a cognitive architecture had not taken place, this helps analysts 

to explicitly consider the detailed causes ofusabiIity problems. 

Generating Design Recommendations 

Since underspecification proved the major source of error in the above example, once 

for perceptually and then for semantically discriminative features of the icon, this 

should be targeted by designers to remedy misidentification of icons. Thus, two 

functionally dissociated sets of icons should not share the same superficial perceptual 

features. 
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J 

Limb Image Record 

Figure 6 - Rule Strength: A Mistake 

Features common) used to di criminate one set of icons from another should be 

taken into account hen designing future sets (Moyes, (995). These feature 

considerations should not limit themselves to ambiguity concerning structural 

characteristics of icon , but al 0 to features such as those mentioned in the examples 
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earlier. This included as discriminative features of mail-me buttons not only their 

shape and internal composition, but also for instance the location of the icon on the 

screen, and characteristics commonly unique to mail-me buttons such as animation as 

present in self-folding envelopes, self-writing letters, or moving mailboxes. 

The important point to highlight here is that the modelling approach described does 

present a method for providing a grounded rationale for design decisions, and can 

guide the designer in making informed choices when faced with design alternatives. 

Another example of how this modelling technique can aid the generation of design 

decisions is introduced as this section progresses. 

Johnson (C., 1997) describes how download latency of web pages affects the usability 

of the World Wide Web. The effects range from user dissatisfaction with time 

investment to the psychological devaluation of the anticipated page (Ramsay et aI., 

1998). Consider the following scenario of user error resulting from download latency: 

After having selecting a link on the current site, a delay in downloading might lead to 

attention being focused on reading the current page. An intention to scroll down the 

page just before the new page is downloaded might lead to the scrolling action being 

carried out on the new page instead. 

This scenario fits Reason's description of 'behavioural spoonerisms', namely slips 

based on interference errors. As defined above, a slip is an action that deviates from 

intention due to failure in the execution stage of processing operations. An 

interference error occurs, when two concurrent actions compete for control over 

cognitive processing and a transposition of actions within the same sequence takes 

place. For instance, intending to speak and perform an action at the same time can 

lead to inappropriate blends of speech and action. In our example, waiting for the new 

page to load, and scrolling the old page can be seen as two concurrent actions 

interfering and leading to an execution failure, the scrolling of the new page. 
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This can be modelled in ICS very similarly to the skill-based example of reduced 

intentionality. Only this time the focus is not on the delay but on the shift of focus 

back to the current page. A 'mental model' of the current page will be constructed (or 

reactivated). The unexpected appearance of the new page might lead to a blending of 

representation and the action included in one cognitive configuration carried out as 

part of a secondary one. 

As a consequence, future browser designers should beware of the error-inducing 

character of non-interrupted browser functionality when downloading a site. 

Alternatively, browser functionality should only be available to the current site 

accessed. A clear distinction should be made when transferring functionality to the 

downloading site to alert users to the new context. This design flaw in Internet 

Browsers has not received much attention. We hypothesise that it may become 

increasingly important as the interweaving of the user population of the Internet 

grows and the World Wide Web becomes an increasingly common tool for 

communication and infonnation exchange. Detailed, error-oriented cognitive analysis 

of such design problems can help to predict future generations of interface problems. 

CONCLUSION 

Cognitive user modelling enables engineers to gain a deeper understanding of the 

complexities of human task perfonnance. Current techniques typically constrain this 

performance to be idealised, error-free and often at an expert level. However, human 

error during perfonnance represents a major source of insights into the workings and 

limitations of operator cognition, and therefore into usability problems. 

By being based on cognitive models, the possibility of representing erroneous 

performance is inherent in these techniques. Few modelling techniques to date 

explicitly represent human error precisely, as embedded in cognitive theory. 

229 



This section showed the adoption of Reason's error taxonomy and Barnard's ICS for 

the systematic representation of user error within a theoretical cognitive framework. 

The utilisation of such a combined approach was illustrated to benefit several areas of 

application. User error can be described more precisely by linking it to its underlying 

cognition. Analysis can reach beyond surface categorisation, and it is made possibJe 

to reason about the actual causes of error. As a consequence, an informed choice 

concerning competing design options is facilitated. This paves the way for usability 

design that takes full advantage ofthe insights expressed in cognitive theory. 
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Classification and Analysis of Incidents in 

Complex, Medical Environments 

ABSTRACT 

Risk management in medicine is often seen as lagging behind other safety-critical 

domains, where there has been considerable research into incident causation models. 

In this paper, incident analysis theory and methodology from outside medicine is 

appJied to an incident reporting scheme in an Edinburgh Intensive Care Unit. The 

incident analysis model used emphasises the importance of latent, organisational 

factors and complex, multi-layered incident causation. It also takes the role of 

cognitive performance shaping factors into account. This provides an analysis frame

work that supports the identification of distal causal factors and reasoning about alter

native causal hypotheses. 

INTRODUCTION 

In 1990, the Harvard Medical Practice Study [1] investigated the occurrence of 

patient injury caused by treatment, so-called adverse events. This study found that 

nearly 4% of patients suffered an injury that prolonged their hospital stay or resulted 

in measurable disability. Leape [2] pointed out that, if these rates are typical of the 

US, then 180.000 people die each year partly as a result of iatrogenic ('treatment

caused') injury. Since most of the precursors to iatrogenic injuries are perceived to be 

'Human Error' [3], there is an increasing interest in human involvement in adverse 

events [4]. The cost of adverse events is high, not only in human suffering, but also in 

compensation claims and the need for prolonged treatment of afflicted patients. 

In order to address this problem, a number of clinical incident reporting schemes have 

been set up in the last decade. These look at 'critical incidents', which are typically 
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defmed as near miss adverse events, where iatrogenic injury could have occurred but 

did not. In these schemes, however, in-depth analysis and search for root causes of 

adverse events typically does not take place [2]. 

In safety-critical domains other than health care, research into accident causes and 

prevention has made considerable advances. Accident causes formerly described as 

'Human Error' have come under close scrutiny. Notably Rasmussen [5], Reason [6], 

Hollnagel [7], and Hale [8] have systematically analysed the cognitive mechanisms 

underlying human error as well as organisational influences on the evolution of 

accidents. This has led to a shift from 'blaming the human' to the understanding that 

error invariably occurs in complex systems. This has encouraged the creation of 

error-tolerant systems, which absorb errors through 'system defences', and that can 

allow for error recovery. The design of such systems can be guided and informed by 

in-depth analysis of 'human error' data. This data can be obtained by implementing 

an anonymous and non-punitive incident reporting scheme. 

In aviation, the US Federal Aviation Administration (FAA) established a confidential 

reporting system (the Aviation Safety Reporting System - ASRS) for safety 

infractions as early as 1975. Self-reports of incidents were collected and a closed 

feedback loop was ensured by disseminating the results of data analysis and 

suggested remedial measures. The system's success was found to be based on its 

confidential non-punitive approach. In medicine, there has heen a belief in a punitive 

'perfectibility model', where there will be no mistakes if staff are properly trained and 

motivated [2]. Outside medicine, however, it is now widely accepted that punishment 

of individuals as a means to prevent future adverse events is the wrong approach to 

error management [9]. Thus, there is a need in medicine to recognise the inevitability 

of error and adverse events, and to adapt a more constructive elTOr management 

approach. 

Safety culture that takes this into account in clinical systems is still lacking [10]. 

There have been some notable exceptions in the recent past where incident reporting 
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schemes were implemented and the identified incidents analysed. In this paper, we 

will look at one such example, an incident reporting scheme at the Western General 

Hospital (WGH) in Edinburgh. 

The Edinburgh incident reporting scheme was set up in an adult intensive care unit 

(ICU) in 1989 [11]. The unit has 8 beds, and there are usually 1-3 junior medical 

staff, I consultant, and 8 nurses per shift. Equipment includes monitors that display 

information such as heart rate and blood pressure, life support equipment such as lung 

ventilators, and drug delivery systems such as pumps and drips. Complex tasks 

include recording observations and measurements, altering the settings of equipment 

according to changing situations, and carrying out such procedures as inserting 

intravascular lines, endotracheal tubes, and chest drains. 

This paper reviews and analyses the incident classification and analysis process in the 

Edinburgh scheme as compared to the approaches in other safety-critical domains. 

The paper firstly describes the Edinburgh system. It then reviews the relatively simple 

process of incident classification and analysis that has been used in running it. 

Finally, the data is re-examined using theory and methodology from other safety

critical disciplines, such as aviation. 

THE EDINBURGH WGH ICU INCIDENT REPORTING 

SCHEME 

By the 1970s, critical incident studies had been used to investigate anaesthetic 

mishaps [12]. Modelled on this work, leu critical incidents have been investigated at 

the WGH since 1989. For data collection, a questionnaire was used that was based on 

one that had been developed by Williamson and colleagues [131 for use in anaesthetic 

practice. 

237 



A critical incident was defined to be an occurrence that might have led (if not 

discovered in time). or did lead, to an undesirable outcome. The incident must have 

been caused by an error made by a member of staff or by a failure of equipment. It 

had to be described in detail by a person involved in or who had discovered the 

incident. It had to have occurred while a patient was under the care of the ICU staff 

(though not necessarily in ICU). It had to be clearly preventable. 

Such incident reporting schemes need a fonn for describing the incidents; a system 

for coJlection of the forms; classification and analysis of the incidents; a review of the 

incidents by senior staff that includes proposals for strategies to reduce the likelihood 

of future incidents; and feedback to staff that includes summaries of the incidents and 

the proposed preventative strategies. 

The essence of such studies is anonymity and absence of criticism and these points 

should be constantly emphasised. 

The scheme was set up in 1989 and its first year's experience was published in 1991 

[11]. By early 1999. over 700 incident forms had been completed. This paper presents 

an analysis based on 710 reports from the period January 1989 to February 1999. 

Earlier studies confirm how important human error is in the generation of critical 

incidents [12; 13]. Similarly, in the Edinburgh study most incidents were associated 

with errors by staff. only a minority being associated with equipment failure. These 

human errors fell into four groups (see table 1): those related to ventilation, those 

related to vascular lines, those related to drug administration and a miscellaneous 

group. 
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Human Error 

Drug related 204 

Ventilation related 202 

Vascular line related 94 

Miscellaneous 108 

Equipment Related 

Non disposable equipment 44 

Disposable equipment 39 

Miscellaneous 7 

Not a Critical Incident 12 

Total 710 

Table 1 - Edinburgh Classification System 

When the incidents were analysed and classified, a number of contributing factors 

could be coded from the data (table 2 lists the commonest). Factors such as 

inattention/thoughtlessness, inexperience, and failure to check equipment were 

identified. In addition, a number of factors could be noted as contributing to the 

detection of incidents (table 3 lists the commonest). Such factors were the presence of 

experienced staff, repeated regular checking, protocols, and the presence of alanns. 
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Inattentionffhoughtlessness 

Inexperience 

Failure to Check Equipment 

Poor Equipment Design 

Poor Communication 

197 

175 

109 

86 

86 

Table 2 - Commonest Contributing Factors 

Presence of Experienced Staff 212 

Repeated Regular CheckslProtocols 165 

Presence of Alarms 86 

Handover Checks 79 

Hearing an Unusual Noise II 

Table 3 - Incident Detection Factors 

Nurses completed just under 90010 of the forms (table 4) and the vast majority of 

incidents recorded had no serious sequelae for patients (table 5). 

Nursing 

Medical 

621 

77 

Table 4 - Person Reporting the Incident 
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NothingINot Serious 

Serious/F atal 

Table 5 - Outcome of Incident 

688 

10 

The incidents, together with suggestions for preventative strategies, were periodically 

summarised in draft reports. These were then reviewed by a core group of senior staff 

before being issued as formal reports to all staff. This feedback allowed the 

opportunity to change practice and attitudes. 

Preventative strategies which aim at reducing the likelihood of future events have 

included writing new and redrafting existing protocols, emphasising the importance 

of handover checks, changing equipment suppliers and providing photographs of 

correctly assembled equipment as visual aids. 

Notably. while the frequency of the equipment related incidents has reduced 

markedly over the 10 years, the type of incident related to human error has changed 

little over this time (the frequency of the two commonest fields of errors, ventilation 

related and drug related incidents being relatively constant). 

REVIEW OF THE EDINBURGH INCIDENT CLASSIFIC

ATION 

In accident causation research. the categorisation and analysis of 'human error' has 

received considerable attention. Several taxonomies exist, ranging from behavioural 

classifications [7] to classification of error according to underlying cognitive mechan

isms [6]. Behavioural analysis is based on the consideration of human error in terms 

of their external manifestation (such as omission, commission, and inappropriate 

timing). It does not provide a link to the cognitive origin of error types, but adopts a 
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purely descriptive approach. Thus, behavioural classifications do not aid the under

standing of the underlying mechanism of erroneous actions. The distinction between 

varieties of human error according to their cognitive origin, however, plays a signif

icant role in accident analysis. Different types of error require different methods of 

error management and remediation [14; 15]. 

Rasmussen's error modelling framework [16] has been widely applied in safety

critical domains. Rasmussen sees the behavioural manifestation of human error as 

'External Mode of Malfunction', which is brought about by a combination of task and 

work environment factors. such as time pressures, mental load, and equipment design. 

These Performance Shaping Factors (PSF) [17] impact on task performance and 

produce erroneous behaviour that, in tum, might lead to an accident. 

The Edinburgh classification in its current form represents a hybrid system, 

combining PSFs and behavioural categories. The initial classification system [11] had 

covered 12 categories (see table 6). Throughout the evolution of the reporting 

scheme, the collected incident data was coded into novel categories to fit the current 

requirements. Thus. II further categories were created through informal coding of the 

narrative incident data. 

In the initial taxonomy. the 'contributing factors' represented mainly Performance 

Shaping Factors (such as Fatigue, Unit Busy, and Night Time). Poor Communication 

could also be considered a PSF. The one factor notably not a PSF was 

Thoughtlessness. The only factor that clearly denoted a latent failure was Poor 

Equipment Design. 

The categories added since the initial scheme (see table 6) are of a notably different 

type. The ongoing coding approach led to a predominantly domain-specific, be

havioural classification scheme. The revised categories do not reflect potential 

underlying cognitive mechanisms, nor organisational influences. Mostly, they denote 
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where in the task sequence a step had been omitted, or had been executed wrongly 

(e.g. Turning the Patient). 

Initial Categories Added Categories 

• Inexperience with equipment • Presence of students/teaching 

• Shortage of trained staff • Too many people present 

• Night time • Poor visibility/position of equipment 

• Fatigue • Grossly obese patient 

• Poor Equipment Design • Turning the patient 

• Unit Busy • Patient inadequately sedated 

• Agency nurse • Lines not properly sutured 

• Lack of Suitable equipment • Intracranial Pressure Monitor not 

• Failure to check equipment properly secured 

• Failure to perform hourly check • Endotracheal tube not properly secured 

• Poor Communication • Chest drain tube not properly secured 

• Thoughtlessness • Nasogastric tube not properly secured 

Table 6 - Edinburgh Classification of Contributing Factors 
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These categories can provide the basis for descriptive statistics on reported incidents. 

They do not help in the analysis of the underlying causes of incidents, since only a 

superficial, descriptive account of the incident is given. In the next section we will 

demonstrate an approach to a more in-depth analysis of 'human error' and incidents. 

INCIDENT ANALYSIS 

Incident analysis ought to uncover what happened in an incident occurrence (e.g. 

wrong drug administered), how it happened (e.g. drug confusion), and, most 

importantly, why it happened (e.g. illegible handwriting on drug container; unusual 

storage location; similarity of appearance). Current incident analysis approaches often 

only record the 'what' and 'how' of an incident occurrence [18; 19; 20]. In the 

Edinburgh system, this is exemplified by the classification of incidents focussing on 

'proximal causes' rather than on possible 'root causes', and by employing a 

behavioural classification. 

Furthermore, research in other disciplines has shown that incidents are typically not 

caused by a single, unique factor, but by a concatenation of conditions and events 

[21]. 

Multiple Levels of Causation 

According to Rasmussen, incidents and accidents are occurrences of a human-system 

mismatch, which can only be characterised by a multi-faceted description. Thus, 

faults and errors cannot be sufficiently defined by considering only a single 'cause'. 

Any incident occurrence is precipitated by a number of factors that can be organised 

in a 'causal tree' [17; 9; 22]. 

In such a causal tree, the incident is preceded by several levels of causal factors 

organised in a hierarchy. The factors immediately preceding the incident are seen as 
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'proximal', whereas those further removed from the actual incident occurrence are 

seen as 'distal causal factors'. 

Reason [6] introduced the related concepts of 'active failure' and 'latent failure' to 

express the multi-level nature of incident causation. Reason maintains that active 

failure is usually associated with the performance of 'front-line' operators (such as 

pilots, or nurses) and has an immediate impact upon the system. Latent failure is most 

often generated by those at the 'blunt end' of the system (equipment designers, 

decision-makers, managers, etc.) and may lie dormant for a long time. 

In the Edinburgh study, the classification of events involves a non-formalised 

classification and analysis process. Classification takes place according to what was 

identified as the main contributing factor to the incident occurrence. However, as 

noted above, the categorised data often seems to present behavioural descriptions of 

proximal 'causes'. 

Following Reason's accident causation and analysis model (see figure 1), we 

classified the 'contributing factors' into latent failure types and work conditions 

failure types (intermediate/distal causal factors), and active failures (proximal causal 

factors), as shown below in table 7. 

Multiple Contributing Factors 

It is argued that the categorisation of 'causes', or precursors, of the incident needs to 

reflect the hierarchical nature of the presumed causal chain. This chain involves latent 

system failures that influence work conditions, which in turn provide the context for 

the proximal incident cause to occur. 
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• Management 

decisions / 

L 
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Currcnt Conditions 

of Work 

• Fatigue 

• Equipment 

Procedures 

Latent Failures (L) 

Individuals 

Activc Failures 

• S lips/Lapses 

• Mistakes 

• Violations 

Figure 1 - Reason's Organisational Accident Model 

Defences 

(adapted with kind pennission from Reason J., Managing the Risks of Organizational Accidents, 1997, © 

Ashgate Publishing Ltd.) 

Rasmu sen's model also reflects this hierarchy of incident causation. Most of his PSF 

can be seen in relationship to Reason's latent failures. This perspective on accident 

causation is mirrored in most accident causation and analysis models. 

For instance, the National Transport and Safety Board (NTSB) accident/incident 

database uses a multiple-cause classification system, and allows for a causal tree, or 

hierarchy, being constructed. In this classification system, 'causal factors', 

'conditions facilitating the occurrence, and 'suggested root causes' can all be 

di tingui hed. Still, the classification still often stops short of an assessment of why 

the error was made. Even the probable cause statements are largely descriptive in 

nature. without reference to latent failures, or how the 'error' is related to human 

information processing constraints. Without such information, it is difficult to 

de elop pre enti e strategies [23]. 



Proximal Causal Factors Intermediate and Distal Causal Factors 

I. Failure to check equipment 1. Inexperience with equipment 

2. Failure to perform hourly check 2. Shortage of trained staff 

3. Thoughtlessness 3. Night time 

4. Turning the patient 4. Fatigue 

5. Patient inadequately sedated 5. Poor Equipment Design 

6. Lines not properly sutured 6. Unit Busy - refined by #9, 10 

7. ICP monitor not properly secured 7. Agency nurse 

8. En. tube not properly secured 8. Lack of Suitable equipment 

9. Chest drain tube not properly 9. Presence of students/teaching 

secured 10. Too many people present 

10. Nasogastric tube not properly 11. Poor visibility of equipment 

secured 12. Poor Communication 

I O. Grossly Obese Patient I 
I 

Table 7 - Failure Type Categorisation 

In the Edinburgh system, multiple factors may be combined in the classification of 

the contributing factors, and combinations of factors frequently occur in the data 

sample. The data analysis might thus also be based on noting the frequency or 

likelihood of certain factors being correlated with one another, rather than on one 
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factor's occurrence only. In that way, conclusions can be drawn that are justified by a 

richer data set. To date, however, this has not been the focus of the Edinburgh 

categorisation, and such benefits of multi-causal categorisation go as yet unheeded. 

Associating multiple contributing factors with one incident occurrence embeds 

behavioural factors within latent system and work condition factors. Thus, factors that 

warrant further explanation (such as Thoughtlessness) can be placed in context by 

considering the more diverse, multiple categorisation. A single factor classification 

neglects this facet of analysis and therefore sheds a misleading light on the collected 

incident data. 

For instance, a closer look at the data reveals that a significant proportion of 

Thoughtlessness incidents are not single factor categorisations, but are placed in 

combinations with Fatigue, Inexperience With Equipment, Poor Communication, and 

Unit Busy. 

To illustrate muIti-causal categorisation, we will consider some commonly occurring 

'contributing causes' in more detail in the following section. 

Causal Tree Analysis 

The US Department of Energy developed a diagrammatical root cause analysis 

method [24] for the investigation of industrial incidents. 'Root causes' are defined as 

the causal factors that, if corrected, would prevent recurrence of the incident. Root 

causes are derived from and generally encompass several 'contributing causes'. These 

are higher-order, fundamental 'causal factors' that address classes of deficiencies, 

rather than single problems or faults. Root causes can include system deficiencies, 

management failures, performance errors, and inadequate organisational communic

ation. The incident causation factors are then listed in a tree-shaped diagram, which 

guides the data collection, interpretation, and analysis. Thus, root cause analysis 
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provides a 'tool for thought' and a documentation means for causal chain analysis. 

The final aim is to identifY management weaknesses, or in Reason's terminology, 

latent organisational failures. 

Currently, the Edinburgh study does not proceed much beyond the "what and how" 

stage of incident analysis [25]. Given the contributing factors classification above, 

root cause analysis can be used to reflect the variety of levels in the incident causation 

tree. Multi-causal categorisation can then be used to reconstruct a root cause analysis. 

For instance, the common 'contributing factor' Inexperience With Equipment is often 

combined with several other factors in the data classification. This can be illustrated 

in a causal tree as shown in figure 2. 

The incident (e.g. ventilator related) was 'caused' by staff Inexperience With 

Equipment. This was then hypothesised to be mediated by Lack Of Suitable 

Equipment, which in tum pointed to Poor Equipment Design. Thus, a causal chain is 

established and documented. During root cause analysis, it could also be argued that 

Lack Of Suitable Equipment contributed directly to the occurrence of the incident. 

This hypothesis, again, has different implication for potential system redesign. Rather 

than focusing solely on targeting staff inexperience (by training, or worse, by blaming 

the individual's motivation), the provision of suitable equipment ought to be 

considered from an organisational and managerial point of view. 

Thus, this kind of analysis takes several levels of causation into account and aids 

reasoning about the 'root causes' of incident occurrence. Other factors that could be 

considered in lower levels of causation include work conditions, latent system 

failures, and alternative 'causes' and contributing factors (see figure 2). Rather than 

being a causal category, 'human error' should be seen as representing a symptom, and 

a starting point for investigation [26]. 
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Figure 2 - Incident Root Cause Analysis I 
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Lack of Suitable 

Equipment 

Furthermore, the classification of incidents might be influenced by human thought 

biases such as the Fundamental Attribution Error [27]. This bias leads us to favour a 

situational perspective when explaining our own mistakes, but to overestimate 

personal factors, such as inattention, clumsiness, or thoughtlessness, when explaining 

others' behaviour. Clearly, this cognitive bias can exert an undesirable influence on 

error analysis. warranting a structured, formalised analysis approach. For instance, 
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Inexperience represents a personal factor that was listed as one of the commonest 

'contributing factors' in the incident data of 10 years (see table 2). Above we showed 

how this factor can be put into perspective by employing a formalised analysis 

approach that embeds personal factors in system factors such as the design or 

availability of equipment. 

The most common 'contributing factor' overall in the Edinburgh scheme is Thought

lessness (see table 2). This represents a personal factor that on its own does not 

present much of a starting point for the analysis of latent factors potentially under

lying the incident. The consideration of the other factors that were typically 

associated with Thoughtlessness, however, emphasises the benefits of multi-causal 

classification, as shown in figure 3. 

Figure 3 illustrates one common constellation of factors preceding an incident that 

involved Thoughtlessness. A Failure to Check Equipment led to these types of 

incident. Other contributing factors listed were Unit Busy, Night Time, and 

Thoughtlessness. The Edinburgh classification does not indicate the main 

contributing factor, or which factors are considered proximal or distal causal factors. 

There are several different interpretations of such a list of multiple contributing 

factors: Thoughtlessness could be considered the main causal factor; alternatively, 

Thoughtlessness could be considered a negligible causal factor, with PSFs (such as 

Night Time) being of prime importance in the incident's causation. In the Edinburgh 

classification system, there is no inherent way of expressing relative impact of 

different causal factors, or of reasoning about these alternative causal hypotheses. A 

causal tree analysis can show the factors' relative importance, whether they are 

considered proximal or distal, and thus it can be used to evaluate contrasting causal 

hypotheses. 
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Figure 3 - Incident Root Cause Analysis II 

NightTime 

Figure 3 also demonstrates how descriptive statistics that are based on single factor 

occurrences can be misleading in that they misrepresents a single factor's 

contribution to the incident. ~ore importantly, a causal tree analysis such as shown in 

figure 3 can also detail intervention points for preventative strategies. Since 

Thoughtlessness as causal factor on its own can seemingly only be targeted by 

reminding staff to be more thoughtful, the tree in figure 3 points towards alternative 

intervention points, such as staff fatigue at night time, or a busy unit. These can then 
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specificaIly be addressed by strategies that target lower levels of causation, such as 

management issues. 

CONCLUSIONS 

We have illustrated in this paper how research into incident causation from safety

critical domains other than medicine and its resulting understanding and methodology 

can be applied in a clinical setting. 

In many medical incident reporting schemes, in-depth analysis and a search for the 

root causes of adverse events does not take place [2; 28]. Thus, although active 

failures may be noted, the potentially more important latent failures may not be 

identified. In this paper, we applied a theory-driven analysis framework that 

supported the identification of latent factors. It also supported the reasoning about 

alternative hypotheses on incidents' causation. 

Incident investigation schemes often neglect formalised, in-depth analysis of single 

incidents in favour of a quantitative surface analysis. Stanhope et al. [29] suggested 

that a more systematic approach dealing with a smaller number of cases in more 

depth is likely to yield greater dividends in understanding incident causation and 

generating action recommendation than the 'many' cases currently analysed quite 

briefly and hence less effectively. We have shown in this paper how in-depth analysis 

of a few types of incidents can lead to valuable insights. 
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Implementation of Critical Incident 

Reporting in a Neonatal Intensive Care Unit 

ABSTRACT 

The occurrence of medical adverse events is a growing cause for concern worldwide. 

Critical incident reporting schemes have recently been suggested as an effective 

means to tackle the problem of medical adverse events. There are few comprehensive 

frameworks that accommodate the specific requirements of local settings as well as 

generic issues in incident reporting. The local setting radically influences a scheme's 

successful implementation and maintenance. Major issues that impact the overall 

success of incident reporting schemes concern the format of data collection, and 

especially, a meaningful data analysis. This paper reports on the introduction of a 

critical incident reporting scheme to a neonatal intensive care unit (NICU). Issues 

concerning the implementation and maintenance of the reporting scheme are 

discussed. Incident analysis is described in terms of the process and the results of 

incident categorization. The implications of such a viewpoint are considered. 

1. INTRODUCTION 

Adverse events in medicine have become a major public concern in recent years, after 

hospital tragedies such as the Bristol Baby Case in the UK (Kennedy et al. 2000). 

This spurned scientific studies into the nature of medical adverse events, their 

incidence, and whether their characteristics contain any clue as to how they can be 

remedied (Leape, 1994). Both the UK and US national governments have 

acknowledged the issue and have called into being organizations such as the US 

National Patient Safety Foundation, and the UK National Patient Safety Agency. The 
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need to reduce 'human error' in medicine has thus been publicly recognized, and 

there is an urgent demand to implement safety measure that can tackle the problem 

effectively. 

Critical incident reporting schemes have been cited as a major safety tool to combat 

human error and adverse events in medicine. These kinds of schemes are established 

in safety-critical domains such as aviation and process control as complementary 

safety management tools. Incident reporting schemes facilitate the collection and 

archiving of data concerning critical incidents, or near-misses, that have occurred in 

those industries. Typically, a distinction can be drawn between standardized, national 

schemes of broad scope but less depth, and smaller, local schemes. Local schemes 

permit close scrutiny of in situ adverse events. Their implementation can also be fine

tuned to the local culture and conditions, a prerequisite for successful delivery of the 

scheme. This is at the expense of the benefits of statistical evaluation of the collected 

data that a more extensive, standardized data set offers. Both types of scheme operate 

by presenting employees with a data collection form, which prompts for a number of 

characteristics of the problem description. The nature of the form varies, but there are 

some fundamentals common to most schemes: general circumstances of the adverse 

events need first to be established (e.g. at what time did the incident occur?), as well 

as general facts about the reporters themselves (e.g. how experienced they are). 

Typically, this is followed by asking for a narrative description of the incident, and 

includes questions about the presumed 'causes' and contributing factors, and how the 

incident was detected. This is question is not typically included, but is clearly 

valuable for future incident avoidance. This data can then be used to instigate further, 

more in-depth investigation of the incident. It can also be categorized and archived 

for statistical purposes, if the data set permits. Major national safety schemes are 

NASA's Aviation Safety Reporting System (ASRS), and its UK equivalent CHIRP 

(Confidential Human Factors Incident Reporting Programme). An example for a local 

incident reporting scheme that has been implemented in healthcare and maintained 

for over 10 years is described in (Busse and Wright, 2000). 
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This paper offers a report on the prerequisites to successfully running an incident 

reporting scheme. The implementation that is described here attempted to localize an 

incident reporting scheme by taking contextual factors such as safety culture into 

account. It had staff actively participate in the conception of the scheme and the 

design of the reporting form. This is argued to be crucial in achieving long-term staff 

participation. and is argued to optimize the scheme's efficiency. The scheme that is 

described here also attempted to incorporate standardization issues that are posed by 

schemes implemented on a grander, e.g. national, scale. The experiences with this 

standardization approach will be discussed. This paper thus presents a matrix of 

issues that still need to be addressed in any safety-critical domain that employs 

critical incident reporting schemes as part of ongoing safety management. 

2. INCIDENT REPORTING 

The cost of adverse events is high; not only In human suffering, but also in 

compensation claims and the need for prolonged treatment of afflicted patients. In 

1990, the Harvard Medical Practice Study (Leape, 1994) investigated the occurrence 

of patient injury caused by treatment - so-called adverse events. It found that nearly 

4% of patients suffered an injury that prolonged their hospital stay or resulted in 

measurable disability. Leape (1994) pointed out that, if these rates are typical of the 

US, then 180000 people die each year partly as a result of iatrogenic ('treatment

caused') injury. In the UK, a Department of Health report (2000) revealed that as 

many as 850,000 adverse incidents are happening in UK hospitals each year. This, in 

terms of litigation and the extra care needed by victims, added up to a £2bn bill. 

(BBC News 02115/200 I). There is an urgent need to make patient safety one of the 

highest priorities. The BBC also cites fears that the medical community is 

"complacent" about the toll of accidents, and notes that to date the National Health 

Service "did not even collect figures on the number of medical accidents". 

Until recently, evidence of medical incidents (or near-misses) was mostly anecdotal. 

In the case their existence was acknowledged, the data typically did not leave a 
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hospital's boundaries. This lack of distribution of incident data can lead to the 

replication of similar, preventable incidents across hospitals. This not only concerns 

e.g. faulty or badly designed equipment which might lead to deadly consequences. It 

also concerns badly designed work procedures that might be in place in hospitals 

across the countr)" the safety threat of which might only be recognized locally and 

sporadically_ Similarly, it concerns drugs that might have similar sounding names, but 

that have very different effects on a patient's condition. In order to prevent incidents 

needlessly repeating themselves, incident data must be recorded, analyzed, and then 

made available for distribution. In industries such as process control for chemical 

plants and power stations, incident reporting schemes have often been used as 'early 

warning schemes'. This has yet to translate fully to the medical domain. 

Obstacles to the implementation of safety measure in medicine as established in 

aviation also lie in the differences between the two work domains. Not only are 

accidents in aviation comparatively infrequent but very visible, receiving high media 

attention, and often involve massive loss of life (Helmreich, 2000). In contrast, 

accidents in medicine typically only involve not more than one patient (or member of 

staft), with less or no media coverage, with news about adverse events often not 

leaving a hospital's boundaries. Also, the type of standardized, unified safety 

management measures implemented in aviation often cannot translate to the less 

standardized, less regulated, and thus less clear-cut work environment that medicine 

presents. Doctors and clinical staff often learn 'on the job' to a large extent, in 

contrast to aviation or nuclear power plant operation (a domain that also has a long

term history of use of safety management measures such as incident reporting). 

Medicine, described recently again as a "humbling art and a complex team activity" 

(Berger, 200 J). deals with humans, whose conditions and responses is typically less 

predictable than an aircrafts' (Helmreich, 2000). Errors may be particularly difficult 

to recognize in health care because variations in an individual's response to treatment 

is expected. In addition, medical professionals may not recognize that a particular 

product or procedure may have contributed to or caused the problem because the 
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patient is already ill, the product is not expected to work perfectly at all times, or the 

event appears unrelated to the product or procedure (QuIC, 2000). 

Areas of Impact Local Incident Reporting 'Global' Incident Reporting 

Schemes Schemes 

Growth and • Learning opportunity • Learning opportunity is 
• Reflect on local work somewhat limited 

Training practice • Analysis removed from local 
• Discuss with superiors and setting 

peers 
• Co-analysis of incident data 

by staff representatives 

Safety Intervention • Identification of possible • Identification of possible 
safety intervention in local industry-wide safety 
context interventions 

• 'Trial and error', iterative • Identification of appropriate, 
solution development is context specific safety 
appropriate and possible solution is more difficult 

• Frequent testing and revision 
of local solutions is not 
feasible 

Threat Awareness • Keep staff 'in the loop' about • Staff awareness only of 
error potential in their local industry-wide safety threats 
work environment • Building safety culture 

• Inevitability of incidents is • Often focuses on 'human 
highlighted, as opposed to error' (guilt seems more 
'human error' easily assigned, since the 

involved parties seem 
'anonymous' and distant) 

Safety Culture • Building a safety community • Building safety culture, e.g. 
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through staff participation in through political weight 
scheme design and data co- given to the project 
analysis • public acknowledgement of 

• Raising safety culture importance of safety 
through active participation measures and awareness 
and heightened awareness 

Current safety level Statistical significance of Can gather more valid data on 

frequency data is limited industry-wide error frequency 

Safety level Statistical significance of trend Can gather more valid data on 

evolution data is limited industry-wide error trends 

Business Case • Incident data and generated • Incident data and analysis 
analysis and recommendations can be used as business case 
can be used as evidence of e.g. for equipment 
safety threat and safety effort procurement 
vis-a-vis management • Incident data can be used 

• Incident data can be used to for backing-up safety 
back-up business decision- strategy decisions 
making processes 

Table 1 - Local versus 'Global' Incident Reporting 

Studies suggest.. for instance. that uncertainty about the most effective diagnostic and 

therapeutic approaches is pervasive (Macias-ChapuJa, 1997). One area in medicine 

that resembles more closely the more proceduraJized and well-defined and thus more 

predictable task space of aviation is often cited to be anaesthesia. Correspondingly, 

safety measures such as in-depth error analysis (e.g. Gaba et aI., 1987) and incident 

reporting (e.g. Runciman et aI., 1993) have been applied to anaesthesia prior to a 

more wide-SPread adoption in other areas in medicine. The work of Runciman and his 

colleagtJes forms the basis of the incident analysis method described in this paper as 

applied to neOnatal intensive care. 

264 



The tendency to lay blame on staff involved in the incident rather than e.g. error

prone equipment design (Busse and Johnson, 1999) further prohibits the use of 

incident reporting as a constructive safety measure in medicine. Thus, incidents might 

not necessarily be perceived by staff to be 'accidents waiting to happen' (Reason, 

1990). Incidents might be seen as mere task characteristics, with mistakes seen as 

human fallibility, and with incident detection and recovery taken for granted. Incident 

reporters might also not be aware of 'upstream precursors' to the incident, such as 

underlying system faults ('upstream' since in systemic incident analysis, multiple 

layers of incident causation are assumed, with systems factors being the lowest layer). 

Staff might not acknowledge the significance oflocal workplace factors. For instance, 

if staff have been accustomed to working with substandard equipment, they may not 

report this as a contributing factor since they see it as the 'normal' work context; if 

they habitually perform a task that should have been supervised but was not, they 

may not recognize the lack of supervision as a problem (Reason, 1997). This 

tendency, and the associated 'work-around' culture in medicine, emphasizes the need 

for explicit scrutiny of potential upstream precursors (i.e. system factors) in incident 

reporting and analysis. 

System factors might be organizational in nature, such as the notorious under-staffing 

in healthcare, with its associated stress on hospital staff, and the known increase in 

error-prone behaviour of individuals under stress. There might also be a lack of end

user consideration when choosing and procuring equipment, and also, for instance, 

neglect of training requirements on part of the organization purchasing the equipment 

(Jeffcott and Johnson, 2001). Accidents can often be traced back to equipment design 

that induces 'human error'. It is rarely the case that accidents are caused by one single 

point of failure, and failure histories can usually be traced back through several layers 

of causation. While it is important for hospitals to prioritize error-tolerant and usable 

design and functionality in equipment procurement, there is often no empirical or 

analytical data available evaluating the system at hand in those terms. Thus, given 

difficult to use equipment design that seems obvious on scrutiny, accidents often 
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seem preventable in retrospect. This seems particularly unforgivable in safety-critical 

work environments such as surgery or intensive care units. 

Hospitals and healthcare trusts are increasingly confronting this issue of iatrogenic 

(treatment caused) illness as is shown by the recent debates in public media as well as 

in the increasing interest in safety management measures such as incident reporting. 

Incident reporting itself can help raise awareness of the risks of 'human error' in the 

day to day clinical work environment. It can also, of course, help gather data on near

miss incidents, events that could have led to a full-blown adverse event, but didn't. 

These near-miss events were captured in time by observant staff, often enough 

coincidence playing a large role in their detection and recovery. Analyzing this data, 

and distributing it within the hospital unit and external to it, can help identifying 

system aspects that are prone to error. It can also help distinguishing random, 

coincidence based mishaps from systematic, design-induced error tendencies. This 

data can then provide valuable feedback to both the organization that targets a work 

environment with reduced risks associated with working its machines, and also to 

equipment designers and manufacturers that might not have been aware of the devices 

pitfalls, and that now are able to improve on their future design and also alert its 

current customer base. Equipment can be designed and developed in such a way as to 

minimize error and maximize safe productivity. Thus, device design can 

accommodate error prevention and tolerance to a certain degree. Medical equipment 

manufacturers, however, will need the appropriate feedback from the 'real-life', 

front-end users, in order to iteratively improve their systems. Current incident 

reporting schemes still often adhere to the 'old-school' punitive model, attempting to 

identify guilty individuals rather than constructively capturing improvement 

information. Still, even more notable attempts than punitive reporting often tend to be 

geared towards identifying error potential with the aim at finding work-arounds, with 

statffinding arrangements to 'make substandard systems work', rather than gathering 

information that would enable the generation of safety recommendations towards 

system re-design. 
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Introducing incident reporting into hospital wards is the first step towards recording 

infonnation on incidents' nature and frequency. Summary data can then be used for 

trend analysis to identify systematic sources of error, and to prompt more in-depth 

analysis of potential causes. However, in order to base valid and relevant conclusions 

on this frequency counts, the classification of incidents clearly needs to be 

meaningful. 

For instance, in current incident studies, most of the incidents' precursors are 

perceived to be 'human error' (e.g. Runciman et aI., 1993). There are doubts, 

however, how meaningful this category, and its implications, really are. Often, the 

fact that an incident does not fit a category such as 'equipment failure' alone is seen 

as justifying labelling the incident as 'human error'. Such categorization might 

provide an initial filtering of immediately attributable equipment faults, but does not 

tell us much about how to prevent future instances of such 'human error'. 
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Critical Incident Reporting Form 

Th Incident 

Description of what happened: 

(please also answer the questions overleaf in case or Drug Error) 

What factors contributed to the incident? 

What factors minimised the incident? 

The Circumstances 

Date: 

What procedure was being carried out? 

What monitoring was being used? 

Did the equipment alarm? 

Time: 

If equipment failure give details of equipment: 

Personnel 

Place: 

Grade of relevant responsible staff: Grade of staff discovering the incident: 

Were you involved in the incident? 

Outcome 

What happened to the patient? 

What is tile severity of potential outcome for the patient? 

Prevention 

H.ow might such incidents be avoided in the future? 

Figure 1 (I) - NICU Incident Reporting Form 
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Kind of Drug Error 

Was it a Drug Prescription Error or a Drug Administration Error or other (please explain)? 

Detai Is of Drug Error 

Was it the wrong drug or the wrong dose or the wrong babv or other (please explain)? 

Please give details: 

Critical Incident Study 

This is a study that looks at how and why people make mistake. Infonnation is collected from incident 

reporting forms (see overleaf) and will be analysed . The results of the analysis and the Ie sons learnt 

from the reported incidents will be presented to staff in due course. The reporting fonns arc anonymous. 

there is no interest in criticism or blame. We would encourage everyone working in the NI U. at 

whatever level of experience. to take part. Every incident reported. no matter how trivial. will give 

infonnation about the way people work and may help to save a life. 

When you have completed the fonn please place it in the Incident Fonn Box. 

Definition of a "Critical Incident" 

A critical incident is an occurrence that might have led (or did lead) - ifnot di covered in time - to an 

undesirable outcome. Complications that occur de pite nonnal management are not critical incidents. 

But if in doubt, fill in a fonn . 

Thank you for your participation! 

--Please contact Dr B Iiolland (QM NICU) or Daniela Busse (3398855 x09 17) with any qucries--

Figure 1 (II) - N1CU Incident Reporting Fonn 
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Furthennore. as soon as poor equipment design is considered as an instance of 

equipment failure. there is no telling as to what constitutes error-inducing design 

(such as similarly named drug containers) and what constitutes human error 

(mistaking the drug containers). Thus, the artificial distinction between equipment 

failure and human error (more meaningfully described by Rasmussen as 'Human

Machine Mismatch') is cemented and perpetuated by such a classification. This 

clearly poses a very real problem for the validity of incident data and its analysis (a 

problem sometimes denoted as "GIGO" ("garbage in- garbage out». However, this 

subjectivity in the incident classification process, and the resulting spurious precision 

of trend analyses based on the data, is not sufficiently recognized as would seem 

necessary for any wider distribution of incident data beyond the local setting. 

There have been some notable attempts at creating grounded and relevant 

categorizations schemes in the recent past. An influential example is reported in 

Runciman et a!. (1993) who studied anaesthesia incidents in Australian hospitals as 

part of the Australian Incident Monitoring Study (AIMS). This study was 

subsequently extended to also investigate intensive care unit (ICU) incidents. The 

AIMS categorization scheme presents an integrated summary of previous 

categorization schemes. and has had substantial impact on future ones. For the study 

reported in this paper. the AIMS-ICU categorization scheme was utilized to analyze 

incident data that had been collected in a neonatal intensive care unit. In the following 

sections. the outcome of this process is reported 

3 THE NICU INCIDENT REPORTING SCHEME 

In the Neonatal Intensive Care Unit (NICU) in which the study took place, current 

safety management included informal checks, communication and consultation with 

fellow members of staff, morbidity and mortality meetings, and an adverse events 

reporting scheme, which addresses incidents that in fact resulted in harm to the 

patient or to staff and that legally require investigation. Near-miss adverse events that 

do not require legal investigation, but that could also lead to harm to the patient or 
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staff, were dealt with on a local and immediate basis. They were not documented or 

kept track of, and distribution of known sources of error in the system was at best 

infrequent. There was demand to complement the existing safety management 

measures with a critical incident reporting scheme. 

3.1. Critical Incident Definition 

A 'critical incident' was here defined as follows: "A critical incident is an occurrence 

that might have led (or did lead) - if not discovered in time - to an undesirable 

outcome. Complications that occur despite normal management are not critical 

incidents." Staff that participated in the study were also asked to fill in an incident 

reporting form "if in doubt". This reflected the intention to collect rich, qualitative 

data, rather than data that would be fit for exact statistical analysis. 

3.2. Set Up 

A 'critical incident' thus includes near-misses as well as actual adverse events. 

Reporting schemes involve staff reporting critical incidents using the provided 

reporting forms on a voluntary and anonymous basis. The incident reports are 

regularly analyzed and categorized. The main aim of the analysis is to identify factors 

contributing to the causation of incidents that may be rectified. Accordingly, similar 

incidents are hoped to be avoided in future. 

3.3. Incident Reporting Form 

The incident form was developed iteratively, and evaluated by means of a 

questionnaire survey of the unit staff (Busse, 2000). The current form covers the 

following questions: the first section asked for a "description of what happened"; 

'Drug Confusion Error' is treated as a category distinct from other types of critical 

incident on the form, due to its known frequency (Bogner, 1994). This separate 

treatment allowed for more specific data to be gathered on drug errors. Other 

questions related to what factors contributed to the incident, and which factors 
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minimized it. The next section covers details on the circumstances: which procedure 

was being carried out, which monitoring was being used, and which equipment failed 

(if any). A question on the presence of alarms was added to the form, since it was felt 

that incidents discovered through alarm sounding fell in a sufficiently distinct 

category of incident circumstances. This was then validated by the data that was 

collected. One section of questions touched on the personnel that were involved in the 

incident and its detection. The data was collected on an anonymous basis, so the 

reporting staff was not asked to provide contact details. However, experience levels 

and job titles were covered in the personnel section. Another section noted the 

estimated and actual outcome of the incident to the patient (or in terms of other costs). 

The final section provided an open-ended question regarding suggestions for 

improvements by the reporting staff - future prevention of similar incident being the 

primary goal of the incident reporting scheme. 

3.4. Incident Analysis 

The AIMS-ICU analysis scheme was used. AIMS used a reporting form that 

consisted primarily of given categories which were to be ticked off by the reporting 

staff (see Figure 2). This way of recording staff reports could potentially lead to 

decreased analysis time (since the reporters essentially did the categorization 

themselves). It could also be argued that this decreased the degree of indirection in 

the analysis process - categorization based on fairly subjective interpretation of 

gathered data could be replaced by the reporter's own interpretation of the actual 

events. In the NICU study, the form that was used was specifically developed to 

address the local needs. However, the collected data was subsequently analyzed by 

assigning it to categories as listed in the AIMS. The breakdown of the results is 

shown in the following section. 
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SYSTEM-BASED FACTORS 

Physical environment I infrastructure 

Lack of space I room 

Lack offacility 

Excessive noise 

# 

High unit activity level. ................................. .4 

Staff mealtime 

Handover I ward round 

Lack of support staff 

Equipment (including monitors) 

Unavailable equipment 

Inadequate equipment 

Poor design............................................. 4 

Poor maintenance 

Equipment failure....................................... 3 

Inadequate inservice 

Work Practices I Policies I Protocols 

Communication problem ............................. . 

Inadequate assistance 

Lack of supervision 

Inadequate training 

Inadequate protocol 

Insufficient staff .... , .................................. . 

Unable to contact staff 

Inapprop. staff I patient allocation .................. . 

HUMAN FACTORS 

Knowledge-based error 

Lack or faulty knowledge .............................. .. 

Error of: 

Judgement. ............................................. . 

Problem recognition I anticipation 

Diagnosis 

Treatment decision 

Use of investigation procedures 

Timing of investigation procedures 

Omitting intended treatment. .......................... . 

Incorrect charting ....................................... .. 

Incorrect prescription 

Incorrect interpretation of information 

Information not sought 

Information not available 

Rule-based error 

Patient assessment inadequate 

Patient preparation inadequate 

Failure to check equipment 

Misuse of equipment 

Unfamiliar equipment 

Unfamiliar environment 

Unfamiliar patient 

# 

Failure to follow protocol................................ 2 

Labelling error 

Calculation error 

Skill-based error 

Distraction / inattention ................................. . 

Fatigue 

I-Iaotp 

Figure 2 Incident Categorization and Analysis 
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3.2. RESULTS 

As can be seen in Figure 2, 14 causes of incidents were classified as system factors, 

whereas only II where classified has human factors. This is in contrast to findings in 

comparable studies, where up to 80% of causal factors were classified as human 

error. The most commonly attributed subgroup of causal factors was ' equipment' 

with 7 occurrences, followed by ' physical environment/infrastructure' (4) and 

'knowledge-ba ed errors' (4). Furthermore, the categories ' rule-based errors', 'ski ll 

based errors ', 'technical errors', and ' work practices' were also all represented in the 

results . All causal factors could be categorized, and ' other system factors ' and 'other 

human factors ' were not assigned in this study. 

System Factors Human Factors 

Figure 3 - Distribution of System vs. Human Factors contributing to NICU incidents 

However, it was found that for most incidents, multiple categorizations were 

necessary. There were mostly several causal factors per incident, for instance the 
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categorizations listed above show at least two categorizations of causal factors per 

incident. The combination of factors proved to provide a more meaningful picture of 

the incident's causation and its potential future prevention, than single 

categorizations. This confirms previous findings (Busse and Wright, 2000). The most 

striking finding in this study was arguably the difficulty of arriving at a meaningful 

classification of incidents. The nature of a meaningful classification has not yet been 

discussed. let alone been operationalized, in the current discourse on incident 

reporting. Early work in the process control domain has covered substantial ground in 

delineating a meaningful analysis of Human Error (Rasmussen, 1982), but such work 

has still be addressed in incident categorization and analysis. 

4. FORM VALIDATION 

A questionnaire survey was carried out as an investigation of staff perception of the 

Critical Incident Reporting scheme as part of existing safety management at the unit. 

The study should also present an opportunity for staff to suggest improvements of the 

incident reporting scheme itself, as well as unit safety management in general. 

22 questionnaires were administered to two 11 person day shifts on the ward. 21 were 

returned and 19 were included in the analysis. The two outliers that were excluded 

from the analysis were responses from temporary staff. Both medical and nursing 

staff contributed to the study. 

Out of a total of 19 responses, 13 indicated awareness of the scheme, 4 said they had 

participated. and 11 could define "Critical Incident" (see graph below). Several 

valuable suggestions (see below) on form and scheme improvement were given by 

the study participants. Most survey participants responded positively to the overall 

impact of the scheme as part of safety management at the unit. Most participants 

stressed the crucial importance of feedback of incident data and analysis results back 

to unit staff. Raised awareness of existing error potential can be inferred from the 
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'shock reaction' that was reported on seeing the (anonymized) incident data and 

analysis results. Understandably, this led to frequent calls for urgent safety 

intervention on part of the survey respondents. 

Survey Question Staff Suggestions 

Form improvement • Include question on sta~baby ratio 
• Include question on workload levels 

Effectiveness of the scheme • Good for Awareness (N=4) 
• Need Action (N=3) 
• Need Feedback (N=2) 

Safety management improvement • Need Extra Staff (N=6) 
• Need Review (N=5) 
• Need Action (N=3) 
• Need Training (N=2) 

Table 2 - Summary of Staff Suggestions for Form Improvement 

The level of "safety culture" at the unit seems encouraging, with 2/3 of staff aware of 

the scheme and of the nature of critical incidents. Temporary staff, however, is still 

largely unaware. The scheme's intended implications for safety management needs 

better publication. Further measures are needed to feed analysis and action results 

back to the staff. Reassurance of staff is needed to let them know that the identified 

safety deficiencies are urgently and thoroughly addressed through safety interventions 

where possible. 
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Awareness Participation CI Definition 

Figure 4 - Staff Awareness, Participation, and Ability to define 'Critical Incident' 

6. CONCLUSIONS 

The NICU incident reporting scheme succeeded in achieving staff engagement and 

participatory design of the reporting form. Most importantly, it impacted the overall 

safety culture in the unit, by raising awareness of clinical incidents, and raising the 

belief that the occurrence of ' mistakes ' can be dealt with ill a constructive way by 

higher level management (rather than following a ' punitive perfection model' (Leape, 

1994)). Equipment failures could be followed up by either contacting the 

manufacturer directly, or also, for instance, by being able to refer to the incidents as 

evidence of insufficient design of specific devices. This data provides the basis to 

pass on valuable lessons to other N1CUs that e.g. use similar devices. 

The UK Department of Health (2000) stated as their main conclusion to the Chief 

Medical Officer' s report: "We believe that, if the NHS is successfully to modernize 
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its approach to learning from failure, there are four key areas that must be addressed. 

In summary, the NHS needs to develop: 

~ unified mechanisms for reporting and analysis when things go wrong; 

~ a more open culture, in which errors or service failures can be reported and 

discussed; 

~ mechanisms for ensuring that, where lessons are identified, the necessary 

changes are put into practice; 

~ a much wider appreciation of the value of the system approach in 

preventing, analyzing and learning from errors." 

Additional to this, however, it needs to be stressed that the incorporation of the 

specific local conditions and requirements are necessary for the successful 

maintenance of an incident reporting scheme. Furthermore, if a unified mechanism 

for analysis is determined, it needs to take into account that the classification scheme 

should not only aid 'causal factor counting', but also their meaningful analysis. 
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Medical Incident Reporting and the 

Longitudinal Design Evaluation of Clinical 

Systems 

ABSTRACT 

Poor design of medical systems is a major factor in the causation of medical 

accidents. This paper argues for the use of incident reporting data in the longitudinal 

design evaluation of medical systems. Incident reporting schemes are first described, 

and then scrutinized for their failure of leading to safety recommendations that target 

system redesign. Similarly, the medical systems and human factors profession is 

called on to take advantage of the 'live' system use data offered by incident reporting 

by guiding fonn design and incident analysis. 

1. INTRODUCTION 

The costs of medical accidents are estimated to exceed billions of dollars, and 

thousands of preventable deaths per year are brought about by 'technical failure' or 

'human error' in medicine (Leape, 1994). Hospitals now increasingly use incident 

reporting schemes that gather data on error potential in their day-to-day work and in 

their use of medical equipment (QuIC, 2000). Incident data reflects actual system use, 

and can offer a longitudinal evaluation of medical systems design. This paper argues 

that this data needs to feed back into the design and development of medical systems. 

Currently, there is no such direct link. This means that there is a wealth of error

oriented, 'live' human-system interaction data in hospital archives that is not put to 

use by medical system developers. 
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Healthcare work environments such as hospitals are often highly computerized, with 

information displays and devices fulfilling vital roles, e.g. in intensive care units, 

emergency medicine, radiology, and operating theatres. The usability of medical 

systems and devices has crucial impact on the success of the healthcare provided, and 

on the safety of the patient. Poor design of equipment (as well as its plain 

malfunction) still plays a major part in medical incidents and accidents, often with 

serious consequences. 

Despite this, the implications of such 'adverse events' for system and device design 

often go unnoticed. Incidents relating to the same design faults keep re-occurring, 

threatening patient safety and the effective health care delivery. 

Blame is often apportioned to the human operating the system rather than to the 

system design. Common responses to incidents thus include cautioning or 

reprimanding the staff involved, i.e. the users of the medical system. Evidently, such 

approaches are doomed to failure in preventing future incidents, since the actual 

'cause' for the incident in such cases typically is not human malice or negligence, but 

inherent usability or design deficiencies (Busse and Wright, 2000). 

2. MEDICAL SYSTEM DESIGN 

There is typically no usability feedback to designers and manufacturers in the case of 

medical incidents. This is so especially where 'human error' is concerned, and where 

work-arounds can be found by the clinical staff to provide a 'quick fix' to the 

perceived problem. The 'free lessons' offered by system deficiencies as revealed in 

real-life, day-to-day system use, often go un-used. The lack of proactive error data 

collection on the side of medical system providers might also seem surprising since 

most cater for a highly specialized market, and the difficulties that do occur often 

have a high probability of re-occurring (Busse and Wright, 2000). Even the early 

THERAC-25 accidents (Jacky, 1991) are a case in point. They showed that not only 

can design flaws in medical systems lead to loss of life, but they also show that a lack 
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of communication between system manufacturers and hospitals can lead to 

preventable accidents re-occurring in other hospitals. Incident reporting is one 

method to combat this lack of communication. 

3. MEDICAL INCIDENT REPORTING 

Incident Reporting is used in safety critical domains as part of systematic safety 

management that tries to ensure communication, and widespread dissemination, of 

potential sources of accident and error. An incident is typically defined as an 

occurrence that might have led (or did lead) to an undesirable outcome if not 

discovered in time. Thus, this definition includes near-misses as well as actual 

'adverse events'. Reporting schemes involve staff reporting incidents on a voluntary 

and confidential basis, using the provided reporting forms. Incident reports are 

regularly analyzed and categorized. The main aim of analysis is to identify factors 

contributing to the causation of incidents that may be rectified. Thus, similar incidents 

are hoped to be avoided in future. 

An incident reporting form, can collect data on, for example: a description of what 

happened, factors that contributed to the incident, and factors that minimized it; 

which tasks were being carried out, and which equipment was used; whether there 

were any alarms, and what grade of personnel was involved in the incident and its 

detection; and also on the estimated and actual consequence of the incident to the 

patient. Finally, it can include an open-ended question regarding suggestions for 

future prevention of similar incidents. This example is drawn from a form that was 

developed iteratively and in interaction with clinical staff (Busse, 2000). Form design 

needs to reflect human factors concerns in order to yield information that benefits 

ergonomic system evaluation and redesign. Thus, form designs might also need to be 

adapted, for instance, to address questions on the context of collaborative work 

among clinical staff. Lack of communication is a typicaJ cause for accidents arising 

out of collaborative work, and is often included as a category in incident taxonomies. 

However, incident forms rarely focus on information that would shed light on the 
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particulars of the communication and its context, or how this source of accidents 

could be addressed. 

4. DESIGN AND SAFETY RECOMMENDATIONS 

If the collected incident data does come to use to inform system redesign, this 

typically occurs in the form of creating local 'work-arounds' to deficient equipment 

and work procedures. However, these work-arounds tend to increase the learning 

burden for new staff on training. They can often not be considered stable solutions 

that robustly tackle the accident source. And importantly, they are not communicated 

to other hospitals, or to the system manufacturer. 

Furthermore, the safety recommendations generated from incident analysis frequently 

focus on human input to error avoidance and recovery, instead of providing design 

recommendations for more fail-safe, error-tolerant, and usable systems. Incidents are 

initially categorized as either caused by technical or human factors. The latter 

category frequently draws up to 80% of the total incidents. The routine response to 

this category of incidents can be described as a 'blame and train' approach, since, 

apparently, no technical failure was existent that could be addressed by redesign 

measures. However, so-called 'human-error' is often induced by 'unkind work 

environments' (Rasmussen, 1980) and system design flaws (Busse and Wright, 

2000). The major distinction in error analysis schemes between 'technical failure' and 

'human error' often creates the misleading impression that technical failures can be 

remedied by technical measures, whereas the human error ought to be remedied by 

'changing the human'. Given this distinction, it is routinely overlooked that the prime 

contributing factors to 'human error' still constitute technical deficiencies such as 

'poor design', lack of consistency, misleading error messages, and confusing displays 

(Busse and Wright, 2000). 

5. THE NEED FOR EFFECTIVE INCIDENT ANALYSIS 
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Therefore, an effective analysis method is needed in order to fully realize the positive 

potential of incident reporting. Data analysis should offer insights into an incident's 

existence and causation. But it also needs to lead to an understanding of the role of 

the human-system interaction that led to the incident, and how this can be addressed 

to avoid future re-occurrences. System redesign, rather than 'blame and train', should 

be envisaged as potential remedy. Lekberg (1997) observed that the analyst's 

background has crucial impact on the analysis result, and on the recommendations 

given. It might thus be argued that the focus on training as panacea is contingent on 

the professional background of the experts that are consulted for incident analysis. 

This suggests that if effective design recommendations are to be drawn from medical 

incidents, the system engineering perspective needs to play a major role in their 

analysis. 

Unfortunately, there is currently not one theoretical analysis framework that details 

how analysis results might feed into design recommendations and improve the 

usability and safety of medical systems. This clearly exacerbates the lack of design 

recommendation drawn from incident analysis. It seems ironic that the initial 

conceptions which paved the way for research into the design implications of 'human 

error' (Rasmussen, 1980; Norman, 1983) have led to a flurry of error models that are 

now widely applied, but that do not include pointers towards potential system re

design. Current incident analysis models do not provide any support for the analyst in 

identifying potential systemic remedies. There is an urgent need to address this 

missing link between data collection and the generation of safety recommendations 

that target the design and usability of medical systems 

6. CONCLUSIONS AND FURTHER WORK 

Medical error is widespread, and many preventable deaths are its consequence. 

Usable and error-tolerant medical systems could prevent accidents from re-occurring. 

The healthcare community has recently embraced the use of incident reporting 

schemes to capture potential error sources, to the point of introducing national laws 
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and regulations. Therefore, medical system designers and manufacturers should 

respond to this opportunity and take advantage of the information gathered in 

hospitals that put their systems to everyday use. Incident reporting offers a wealth of 

data on problematic human-system interaction. It also presents an opportunity to 

actively support the data gathering process by fine-tuning reporting forms, and to 

make the most of data analysis by directly focusing on recommendations for 

improved system design. Both of these areas are still largely unexplored by research. 

Incident diaries are not unknown in human factors research, just as error reports 

inform iterative system development in practice. However, incident reporting data is 

largely gathered .on an ad-hoc basis, and data analysis techniques as well as safety 

recommendations need improving. Taking advantage of rich and relevant data 

sources like incident reporting is a prerequisite for the reduction of design-related 

medical accidents. 
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