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Abstract

Feline leukaemia virus is a significant pathogen of domestic cats which causes a

range of proliferative and non-proliferative haematopoietic disorders. This virus

has been extensively studied in the past, however advancements in molecular

techniques now allow long-standing controversial topics to be revisited and

reanalysed. Although FeLV-A is the only transmittable form of the virus, FeLV-B

and –C may arise in infected cats if the initial virus escapes immune clearance

and establishes a chronic infection. These studies aimed to investigate

previously-unanswered questions regarding FeLV pathogenesis, specifically

pertaining to the ability of FeLV-A to evolve into the novel subgroups B and C.

These results indicate that strains of FeLV-A possessing residues D83 and D91 in

their envelope glycoprotein display increased rates of viral replication, mediated

by an enhanced interaction with their cognate receptor, THTR1. Evidence is

provided that these viral proteins are also able to bind efficiently to the FeLV-C

receptor, FLVCR1, and that these mutations represent the first in a step-wise

accumulation of mutations which eventually result in a FeLV-C viral variant

emerging within the host. Subsequent studies aimed to elucidate the respective

roles of the acquired immune response (neutralising antibodies) and receptor

availability in driving this evolutionary process; however a definitive conclusion

regarding FeLV-C selection pressures was not reached due to limitations of the

model.

These studies also describe the first isolation of novel FeLV-B field isolates which

present without a FeLV-A co-infection. Characterisation of these strains revealed

they possessed recombinant genomes, composed of exogenous LTRs and mostly

endogenously-derived env genes. Further investigations into the potential

functionality of endogenous FeLV elements within the domestic cat genome

revealed numerous intact env genes, the proviruses of which may be restricted

from exogenous transmission by their inability to form homodimeric RNA

genomes with functional secondary structures. Although this suggestion requires

experimental validation, this represents a novel mechanism of endogenous

retroviral restriction.



3

This thesis is dedicated to my parents, Ian and Joy,

for their unwavering support.



4

Table of Contents

Abstract...................................................................................... 2

Table of Contents .......................................................................... 4

List of Tables................................................................................ 9

List of Figures .............................................................................. 10

List of Abbreviations ...................................................................... 12

Acknowledgements........................................................................ 14

1. Introduction and Literature Review ............................................... 16

1.1 Introduction to FeLV ......................................................... 17

1.1.1. Prevalence.................................................................. 17

1.1.2. Transmission................................................................ 18

1.1.3. Detection and diagnosis .................................................. 19

1.1.4. Treatment .................................................................. 20

1.1.5. FeLV Vaccines.............................................................. 21

1.2 Genetics and proteins of FeLV.............................................. 23

1.2.1. Non-coding RNA structures............................................... 24

1.2.2. Structural proteins ........................................................ 26

1.2.3. Enzymatic proteins ........................................................ 27

1.2.4. Envelope glycoprotein .................................................... 28

1.2.4.1. Surface Unit domain ................................................ 29

1.2.4.2. Transmembrane domain ........................................... 30

1.3 The retroviral replication cycle ............................................ 31

1.4 Immune responses to FeLV infection ...................................... 34

1.5 Outcomes of FeLV infection................................................. 37

1.6 Endogenous FeLV elements ................................................. 40

1.7 The FeLV subgroups and their host ranges................................ 42

1.8 FeLV-A.......................................................................... 44

1.8.1. FeLV-A receptor: feTHTR1 ............................................... 44

1.8.2. Pathogenesis of FeLV-A infection ....................................... 45

1.9 FeLV-B.......................................................................... 47

1.9.1. Evolution of FeLV-B envelope genes.................................... 47

1.9.2. FeLV-B receptor: fePit1 .................................................. 49

1.9.3. Pathogenesis of FeLV-B infection ....................................... 49

1.10 FeLV-C.......................................................................... 51



5

1.10.1. Evolution of FeLV-C envelope genes.................................... 52

1.10.2. FeLV-C receptor: feFLVCR1 .............................................. 54

1.10.3. Pathogenesis of FeLV-C infection ....................................... 56

1.11 FeLV-T.......................................................................... 57

1.11.1. FeLV-T envelope, FeLIX and Pit1 binding .............................. 58

1.11.2. Pathogenesis of FeLV-T infection ....................................... 59

1.12 Other feline retroviruses .................................................... 61

1.12.1. Feline immunodeficiency virus .......................................... 61

1.12.2. Feline foamy virus......................................................... 63

1.12.3. Feline sarcoma virus ...................................................... 65

1.12.4. Endogenous retroviruses: RD114 and FcEV............................. 67

1.13 Scope and aims of this thesis ............................................... 69

2. Materials and Methods............................................................... 72

2.1 Cell culture techniques ...................................................... 72

2.1.1. Maintenance of cell lines................................................. 72

2.1.2. Transient transfection of adherent cells............................... 73

2.1.3. X-Gal staining of lacZ-expressing cells ................................. 73

2.1.4. Stable transduction of cell lines......................................... 73

2.1.5. Interference assay......................................................... 74

2.1.6. Reverse interference assay .............................................. 74

2.1.7. QN10 focus-forming assays ............................................... 75

2.2 Protein-based assays ......................................................... 75

2.2.1. Reverse transcriptase detection assay ................................. 75

2.2.2. SDS-PAGE and immunoblots.............................................. 76

2.2.3. Immunofluorescence ...................................................... 77

2.2.4. Flow cytometry ............................................................ 77

2.3 Molecular cloning techniques ............................................... 78

2.3.1. Cellular nucleic acid extraction ......................................... 78

2.3.2. Viral RNA extraction ...................................................... 78

2.3.3. cDNA synthesis ............................................................. 79

2.3.4. Plasmid constructs ........................................................ 79

2.3.5. General cloning techniques .............................................. 80

2.3.5.1. Polymerase chain reaction......................................... 80

2.3.5.2. Purification of PCR products ...................................... 80

2.3.5.3. Restriction enzyme digestion and ligation....................... 81



6

2.3.5.4. Transformation ...................................................... 81

2.3.6. Preparation of plasmid DNA.............................................. 81

2.3.7. Genetic sequencing ....................................................... 82

2.3.8. Site-directed mutagenesis of plasmids ................................. 82

2.4 In silico and bioinformatics techniques ................................... 83

2.4.1. RNA structural models .................................................... 83

2.4.2. Multiple sequence alignments ........................................... 84

2.4.3. Transcription factor screens ............................................. 84

2.4.4. Graphs and statistics...................................................... 84

3. Specific FeLV-A strains may be predisposed towards conversion to FeLV-C 85

3.1 Introduction ................................................................... 85

3.2 Results.......................................................................... 91

3.2.1. D83N and N91D-bearing mutants of FeLV-A (Glasgow-1) are

replication-competent.................................................................... 91

3.2.2. The N91D mutation increases viral entry through THTR1 ........... 92

3.2.3. Enhanced binding of FeLV D83:D91 SU to viral receptors ........... 98

3.3 Discussion .....................................................................100

3.3.1. The D83:D91 motif enhances viral replication .......................101

3.3.2. FeLV-A RBDs display promiscuous receptor binding .................103

3.4 Conclusions ...................................................................103

4. Investigation of potential factors which may drive FeLV-A to -C evolution 105

4.1 Introduction ..................................................................105

4.2 Results.........................................................................107

4.2.1. D83N and N91D Env mutations do not alter neutralisation

susceptibility ..............................................................................107

4.2.2. Long-term replication of FeLV in vitro under immune pressure does

not produce FeLV-C variants............................................................108

4.2.3. Evolution of non-functional FeLV Env proteins during long-term viral

replication ..............................................................................112

4.2.4. Specific FeLV Env mutations within the C-domain of SU increase

cellular entry via THTR1.................................................................113

4.2.5. FeLV-A culture within MDTF-huFLVCR1/2 cells does not produce

FeLV-C variants ...........................................................................115

4.2.6. Expansion of FeLV-A subpopulations upon MDTF-huFLVCR1/2 cells ..

..............................................................................116



7

4.3 Discussion .....................................................................119

4.3.1. The role of VNAs in viral evolution ....................................119

4.3.2. Analysis of mutations arising during long-term viral replication ..121

4.3.3. Cell-to-cell transmission in FeLV replication .........................122

4.3.4. Additional factors influencing viral evolution ........................123

4.3.5. In vivo models of FeLV-A to -C evolution .............................124

4.3.6. The role of receptor availability in retroviral evolution............125

4.4 Conclusions ...................................................................126

5. Are endogenous feline leukaemia viruses really endogenous? ...............128

5.1 Introduction ..................................................................128

5.2 Results.........................................................................130

5.2.1. The field isolates FeLV-2518 and -4314 are phenotypically subgroup

B ..............................................................................130

5.2.2. FeLV-2518-infected cells downregulate both THTR1 and Pit1 .....132

5.2.3. FeLV-4314 and -2518 are not encoded by single enFeLV transcripts .

..............................................................................135

5.2.4. A defective exogenous FeLV env gene is present within FeLV-2518 ..

..............................................................................136

5.2.5. FeLV-4314 and -2518 contain exogenous LTRs .......................137

5.2.6. Non-FeLV retroelements are not present in either isolate .........138

5.2.7. FeLV-4314 and -2518 possess recombinant genomes................139

5.2.8. Alteration of the LTRs may alter the pathogenic potential of enFeLV

..............................................................................143

5.2.9. The RNA structure of the RBD displays increased propensity for

recombination ............................................................................147

5.3 Discussion .....................................................................149

5.3.1. FeLV-4314 and -2518 represent distinct recombination events ...150

5.3.2. RNA recombination in gammaretroviruses ............................151

5.3.3. Exogenous LTRs may alter the properties of enFeLV viral strains.153

5.3.4. The potential roles of the defective FeLV-2518(A) genome .......154

5.4 Conclusions ...................................................................155

6. The functionality of endogenous FeLV elements...............................157

6.1 Introduction ..................................................................157

6.2 Results.........................................................................159



8

6.2.1. Multiple intact enFeLV env genes are present in the feline genome .

..............................................................................159

6.2.2. The majority of intact enFeLV env genes are non-functional .....162

6.2.3. EnFeLV env transcripts are not detectable in feline tissues .......166

6.2.4. In silico modelling of MLV RNA structural elements.................168

6.2.5. RNA structural elements are intact in FeLV-A RNA homodimers ..171

6.2.6. EnFeLV RNA homodimers may be non-functional ....................173

6.2.7. Heterodimeric RNA genomes have regained functionality .........175

6.3 Discussion .....................................................................177

6.3.1. The majority of intact enFeLV Env proteins are non-functional ..177

6.3.2. Non-functional packaging signals may prevent horizontal

transmission of enFeLV ..................................................................180

6.4 Conclusions ...................................................................182

7. Concluding Remarks ................................................................184

8. Appendices...........................................................................191

8.1 Buffers and solutions ........................................................191

8.2 List of Primers................................................................192

8.3 Nucleotide mutations arising in long-term FeLV cultures .............193

8.4 Genome sequences of FeLV-2518 and -4314.............................198

8.5 Predicted secondary structures within FeLV env RNA..................211

8.6 Predicted secondary structures within FeLV leader sequences.......212

8.7 Publications arising from this work .......................................215

9. References ...........................................................................216



9

List of Tables

Table 3.1: Primary FeLV isolates........................................................ 87

Table 3.2: Receptors expressed in MDTF and 104C1 cells. .......................... 95

Table 4.1: Mutations arising within the PRR and Cdom during long-term viral

replication. ................................................................................112

Table 5.1: The U3 regions of endogenous and exogenous LTRs contain

differential TF binding sites. ...........................................................144



10

List of Figures

Figure 1.1: The genes and proteins of FeLV. .......................................... 24

Figure 1.2: The FeLV RNA genome...................................................... 24

Figure 1.3: The FeLV virion. ............................................................. 27

Figure 1.4: The FeLV Envelope protein. ............................................... 29

Figure 3.1: RBDs from the envs of anaemogenic strains of FeLV. .................. 89

Figure 3.2: Mutants of the FeLV-A(Glasgow-1) molecular clone produce

replication-competent virus. ............................................................ 91

Figure 3.3: The DD mutant of FeLV-A(Glasgow-1) displays a higher viral titre. . 93

Figure 3.4: The DD Env supports more efficient infection of HEK293T cells. .... 94

Figure 3.5: Stably transduced cells express a range of retroviral receptors. .... 96

Figure 3.6: The DD Env confers enhanced utilisation of THTR1 homologues. .... 97

Figure 3.7: Expression of soluble Fc-tagged FeLV SUs. .............................. 98

Figure 3.8: The DD mutations confer enhanced binding to multiple receptors. 100

Figure 4.1: Neutralisation of FeLV by either pooled serum from FeLV-recovered

cats or anti-gp70 monoclonal antibody. ..............................................108

Figure 4.2: Replication of FeLV in the presence of sub-neutralising

concentrations of anti-FeLV antibodies. ..............................................109

Figure 4.3: Acquisition of non-synonymous mutations in the Envs of FeLV-A

mutants following long-term culture. .................................................111

Figure 4.4: Mutant FeLV Env proteins display inconsistent levels of incorporation

into MLV(FeLV) pseudotypes. ...........................................................113

Figure 4.5: Specific Env mutants which arise through genetic drift increase

cellular entry via THTR1 homologues. ................................................114

Figure 4.6: A 1:103 dilution (vol/vol) of FeLV-C within a FeLV-A population is

detectable by RT detection assay after 50 days in culture upon MDTF-huFLVCR1

cells. .......................................................................................118

Figure 5.1: FeLV-2518 and -4314 can infect both FEA and HEK293T cells. ......131

Figure 5.2: FeLV-2518 and -4314 Env proteins mediate cellular entry through the

Pit1 receptor. .............................................................................132

Figure 5.3: Receptor downregulation by novel FeLV-B isolates. ..................133

Figure 5.4: FEA cells infected with FeLV-2518 are resistant to both FeLV-A and –

B; FeLV-4314 infected cells are resistant solely to FeLV-B superinfection. .....134



11

Figure 5.5: EnFeLV transcripts are not present in FeLV-2518 and -4314. ........135

Figure 5.6: Exogenous Env PCR reveals a truncated FeLV-A env transcript within

FeLV-2518 virions, termed FeLV-2518(A). ............................................136

Figure 5.7: Exogenous LTRs are present in FeLV-2518 and -4314. ................137

Figure 5.8: The endogenous virus RD114 is not present in FeLV-2518 or -4314. 138

Figure 5.9: FcEV transcripts are not present in FeLV-2518 and -4314............139

Figure 5.10: Both FeLV-4314 and -2518 contain recombinant env genes. .......140

Figure 5.11: The genomes of FeLV-2518 and -4314 .................................142

Figure 5.12: The U3 regions of endogenous and exogenous FeLV proviruses

display differential TF binding motifs .................................................146

Figure 5.13: The predicted RNA secondary structures in FeLV env ...............148

Figure 6.1: The feline genome contains multiple intact enFeLV env genes .....161

Figure 6.2: The majority of putatively-functional enFeLV Env proteins are not

incorporated into viral pseudotype particles.........................................162

Figure 6.3: enFeLV Env-5 utilises hPit1 for cellular entry..........................163

Figure 6.4: Non-functional enFeLV Env-2, -3, -6 and -7 are translated ..........165

Figure 6.5: enFeLV env transcripts are not expressed in domestic cat tissues..167

Figure 6.6: The Alifold program accurately reproduces the known structural

elements within the MLV leader sequence ...........................................170

Figure 6.7: The leader sequence of FeLV-A RNA homodimers is predicted to form

the required structural elements for viral replication..............................172

Figure 6.8: The enFeLV RNA leader sequence is not predicted to form the

structures required for viral packaging ...............................................174

Figure 6.9: Heterodimeric RNA genomes are predicted to contain the structural

elements required for packaging.......................................................176



12

List of Abbreviations

AIDS Acquired Immunodeficiency Syndrome

BFU-E Burst Forming Units - Erythroid

bp base pairs

CA Capsid Protein

cDNA complementary deoxyribonucleic acid

CFU-E Colony Forming Units – Erythroid

CFU-GM Colony Forming Units – Granulocyte-Macrophage

CPE Cytopathic Effect

CTL Cytotoxic T-lymphocytes

DMEM Dulbecco’s Modified Eagle’s Medium

DNA Deoxyribonucleic Acid

EDTA Ethylenediaminetetraacetic acid

ELISA Enzyme-Linked Immunosorbent Assay

enFeLV endogenous feline leukaemia virus

env Envelope-encoding gene

Env Envelope glycoprotein

ER Endoplasmic Reticulum

ERV Endogenous Retrovirus

FcEV Felis catus endogenous virus

FeFV Feline foamy virus

FeLV Feline leukaemia virus

FeLV-A Feline leukaemia virus, subgroup A

FeLV-B Feline leukaemia virus, subgroup B

FeLV-C Feline leukaemia virus, subgroup C

FeLV-FAIDS Feline leukaemia virus-Feline AIDS

FeLV-T Feline leukaemia virus, subgroup T

FeLIX Feline leukaemia virus Infectivity Accessory Protein

FeSV Feline Sarcoma Virus

FIV Feline Immunodeficiency Virus

FLVCR Feline Leukaemia Virus Subgroup C Receptor protein

FOCMA Feline Oncornavirus-Associated Cell Membrane Antigen

gag Group-specific antigen-encoding gene



13

Gag Group-specific antigen protein

HA Haemagluttinin

HIV Human Immunodeficiency Virus

IgG Immunoglobulin class G

IN Integrase

kB kilobases

kDa kilodaltons

LTR Long Terminal Repeat

MA Matrix Protein

MAb Monoclonal Antibody

mRNA Messenger Ribonucleic Acid

MLV Murine Leukaemia Virus

NC Nucleocapsid Protein

ORF Open Reading Frame

PBS Primer Binding Site

PBS Phosphate buffered saline

PCR Polymerase Chain Reaction

Pit Sodium-Phosphate Symporter

PRCA Pure Red Cell Aplasia

Pro Protease

pro-pol Protease-integrase-polymerase- encoding gene

PRR Proline Rich Region

RNA Ribonucleic Acid

RT Reverse Transcriptase

SU Surface Unit domain

THTR1 Thiamine Transporter

TM Transmembrane domain

USA United States of America

VNA Virus Neutralising Antibodies



14

Acknowledgements

I would firstly like to thank my supervisors, Prof. Brian Willett and Prof.

Margaret Hosie, for taking me on all those years ago and providing guidance,

advice and countless opportunities during my PhD. A lab as good as theirs is hard

to find and I have been extremely lucky to have had such great mentors over the

last four years. I also would like to thank my fellow scientists and friends from

the Retrovirus Research Group, especially Isabelle, Chi, Linda and Nicola for

providing so much laughter and friendship.

There are many additional people outside our lab group who have helped me and

deserve recognition: Prof. Massimo Palmarini, for his advice over the past four

years; Dr Claudio Murgia, for help with RNA extractions and immuno-

fluorescence; Matt Golder, for performing the original 300-odd interference

assays which led to this research (and his immeasurable help and guidance);

Michael McDonald and the Companion Animal Diagnostics Unit for catering to my

ridiculous requests when it came to reagents; Dorothy Montgomery and the

Leukaemia Research Laboratory for the use of their flow cytometry equipment

and helping with the data interpretation. A special thank you is definitely due to

Dr Andrew Shaw, Dr Filipe Nunes and Dr Mariana Varela for their incredible

patience whilst reading innumerable drafts of papers and chapters.

I would like to thank the University of Glasgow for funding my PhD program and

allowing this research to take place. I would also like to acknowledge Prof.

Andrew Lever and Dr Julia Kenyon at the University of Cambridge, for their

invaluable help with the RNA in silico modelling work, and for giving me desk

space and a lot of their time when I was in their lab.

Finally, a PhD is a long and arduous journey, made a lot easier by the support of

your friends and family. A huge thank you is due to my friends (both in Glasgow

and back home in Brisbane) especially Christine. Finally but most importantly my

parents, who never doubted that I could do it.



15

Authors Declaration

I declare that, except where explicit reference is made to the contribution of
others, this dissertation is the result of my own work and has not been submitted
for any other degree at the University of Glasgow or any other institution.

Signature:

Printed name: Hazel Stewart



16

1. Introduction and Literature Review

Retroviruses are enveloped, single-stranded RNA viruses which, upon infection of

the host cell, use a virally-encoded RNA-dependent DNA polymerase to produce

a double-stranded DNA copy of their genome. This is integrated into the host

DNA, forming the provirus. The provirus is then transcribed and translated as a

standard host gene, producing both viral proteins and genomic RNA for viral

replication.

Early evidence of retroviral associations with cancer led to their description as

RNA tumour viruses or oncoviruses, however the majority of retroviruses are not

oncogenic and this nomenclature is no longer commonly used. Retroviruses were

also classified according to their morphology, which led to the A-, B-, C- and D-

type particle descriptions found in early studies (Bernhard, 1960). The members

of the Retroviridae family are now classified into two subfamilies, the

orthoretrovirinae and the spumaretrovirinae. The latter subfamily contains a

single genus; the spumaretroviruses (see Section 1.11.2). However there are six

genera within the orthoretrovirinae, including the alpha-, beta-, gamma-, delta-

and epsilon-retroviruses and lentiviruses. Most of the orthoretroviruses are

termed “simple” retroviruses as their genomes contain only essential genes

required for viral replication. By contrast, lentiviruses and spumaretroviruses are

“complex” retroviruses which contain accessory genes that may allow avoidance

of the host innate immune system.

Gammaretroviruses are able to infect an unusually broad range of vertebrates

(Gifford & Tristem, 2003) and are associated with leukaemia and lymphoma in

cats, pigs, mice, and marsupials. These pathogenic viruses, especially the

prototype murine leukaemia virus (MLV), have been widely utilised as models of

human retroviral infection and have contributed to the understanding of

numerous diseases, including the events leading to cancer progression. The

gammaretrovirus feline leukaemia virus (FeLV) was the first feline retrovirus to

be described (W. F. Jarrett, Crawford, Martin, & Davie, 1964) and was quickly

recognised to be an important pathogen of both domestic and wild cats.

Discovered in 1964, it was initially described as C-type viral particles, isolated



17

from the plasma of cats with both spontaneous and experimentally-transmitted

leukaemia (W. F. Jarrett, et al., 1964). It is now known to consist of three major

subgroups, FeLV-A, -B, and -C and a fourth, rare variant FeLV–T which differ in

their in vitro behaviour and pathogenic consequences for the host. Almost fifty

years after its discovery, FeLV research has produced both vaccines and

treatment for infected cats; it has also been a useful model for human disease

research. However there are still many questions regarding FeLV infection,

replication and pathogenesis that remain unanswered. This introductory chapter

will provide an overview of the current understanding of FeLV infection and

disease manifestation, and highlight the areas in which further research is

required.

1.1 Introduction to FeLV

1.1.1. Prevalence

FeLV displays a worldwide distribution, although its prevalence varies

significantly across geographical regions. On a local scale the rate of infection

depends highly upon the size of the feral cat population and the degree of

interaction between domestic and feral cats; for example recent studies found

9% of cats in central Italy are infected (Bandecchi, Dell'Omodarme, Magi,

Palamidessi, & Prati, 2006) compared to 4% in Germany where the cats studied

were mainly indoor pets in urban areas (Gleich, Krieger, & Hartmann, 2009).

Early epidemiological studies found 5% of healthy cats and 18% of sick cats

within the UK were FeLV-positive (Hosie, Robertson, & Jarrett, 1989), which

were similar statistics to those determined in the USA (J. K. Levy, Scott,

Lachtara, & Crawford, 2006; Shelton, Waltier, Connor, & Grant, 1989). In

Australia 25% of clinically ill domestic cats were found to be FeLV-positive, a

proportion which has not been observed elsewhere (Sabine, Michelsen, Thomas,

& Zheng, 1988). In mainland Europe infection rates ranged between 1 to 10%

(Moraillon, 1990; Sukura, Salminen, & Lindberg, 1992; Ueland & Lutz, 1992).

Recent studies from both Canada (Little, Sears, Lachtara, & Bienzle, 2009) and

Central America (Guatemala and Costa Rica) (Blanco, Prendas, Cortes, Jimenez,
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& Dolz, 2009; Coelho et al., 2008; Lickey, Kennedy, Patton, & Ramsay, 2005)

indicate this rate of infection has remained constant in some areas. However its

European prevalence has drastically decreased in recent years as a result of

wide-spread vaccination and pet-owner awareness schemes (J. Levy et al.,

2008), decreasing to as low as 1% of healthy cats in some regions (Juvet,

Brennan, & Mooney, 2011). The positive effects these programs have are

apparent when comparing these infection rates to countries where vaccines are

not commercially available; for example Iran where 15% of cats remain positive

for FeLV (Akhtardanesh, Ziaali, Sharifi, & Rezaei, 2010).

FeLV is also a major threat to both the highly endangered Iberian lynx (Lynx

pardinus) and Florida panthers (Puma concolor coryi), as it causes severe clinical

symptoms and high mortality in these felids (M. A. Brown et al., 2008; Meli et

al., 2010; Meli et al., 2009). Infection has also been found in ocelot (Leopardus

pardalis), puma (Puma concolor) and oncilla (Leopardus tigrinus) in Brazil

although clinical symptoms were not observed in these species (Guimaraes et

al., 2009). Within the UK, approximately 10% of Scottish wildcats (a threatened

species) are infected with FeLV (Daniels, Golder, Jarrett, & MacDonald, 1999).

Therefore FeLV remains a significant threat to both domestic and wild cats

despite the decrease in prevalence since its initial discovery.

1.1.2. Transmission

Initial FeLV infection occurs in the oropharynx, with viral replication occurring

mainly in the local lymph nodes and circulating lymphocytes and monocytes

(Hofmann-Lehmann et al., 2008; Rojko, Hoover, Mathes, Olsen, & Schaller,

1979). This initial systemic lymphatic viraemia may be successfully cleared in a

minority of cases; more commonly a successful infection of the bone marrow

follows (Lutz, Pedersen, & Theilen, 1983). This is the major site of viral

replication. A secondary viraemia is then observed during which the virus

spreads via the peripheral vasculature system to peripheral organs and epithelial

tissues. This cycle generally occurs over 3 weeks and viral RNA is detectable in

plasma approximately one week after FeLV exposure. Infectious virus is shed in

the saliva approximately four weeks after the initial infection (O. Jarrett, 1999).
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The main FeLV transmission route is oronasal, therefore both fighting and

mutual grooming are high risk activities between infected and naïve cats.

Infectious virus is shed through saliva, nasal secretions, milk, faeces and urine

(Gomes-Keller et al., 2009; W. D. Hardy, Jr. et al., 1976; Pacitti, Jarrett, & Hay,

1986), although saliva represents the highest potential for virus transmission. As

FeLV does not survive outside the host for extended periods of time (Francis,

Essex, & Gayzagian, 1979) the risk factor presented by faeces and urine was

presumed to be negligible, however recent evidence indicates transmission may

occur through these routes (Gomes-Keller, et al., 2009). There is also

preliminary evidence that fleas may be able to transmit infectious virus between

hosts through their saliva and faeces (Vobis, D'Haese, Mehlhorn, & Mencke,

2005). FeLV is transmissible trans-placentally (Rojko, Hoover, Quackenbush, &

Olsen, 1982), although usually viraemic queens are unable to sustain pregnancy

(Lutz et al., 2009). Transmission has also been observed through blood

transfusions between latently infected and naïve cats; although reactivation of

latently infected cells is rare (Chen et al., 1998).

1.1.3. Detection and diagnosis

FeLV infection is often suspected following assessment of clinical signs and

haematology. The initial diagnosis is then confirmed by screening for either viral

proteins or genetic material. As vaccinated and infected cats are often

serologically indistinguishable, antibody detection is not indicative of a current

infection. Historically, virus culture (the isolation of infectious virus from clinical

samples) was the gold standard for the diagnosis of FeLV (O. Jarrett, 1980),

however due to the time and level of scientific equipment required, this was not

a feasible option for most diagnostic clinics.

Enzyme Linked Immunosorbent Assays (ELISAs) for the detection of the core

capsid protein (CA, or p27) in whole blood is the most common method of

diagnosis in veterinary clinics worldwide (Lutz, Pedersen, Durbin, & Theilen,

1983) and displays very high sensitivity and specificity against all other methods

tested to date (Hartmann, Werner, Egberink, & Jarrett, 2001; Hofmann-Lehmann

et al., 2001). Although tears and saliva may also be used in some ELISAs, whole

blood is the most accurate predictor of clinical status (Hawkins, 1991; Hawkins,
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Johnson, Pedersen, & Winston, 1986). Currently the leading ELISA-based

diagnostic in veterinary clinics is the SNAP FIV/FeLV Combo kit (Idexx

Laboratories), which detects simultaneously FeLV antigen and feline

immunodeficiency virus (FIV) antibodies in serum samples.

Immunochromatography diagnosis kits have also been developed and display

similar sensitivity and specificity parameters to ELISAs, however these are less

economical and more laborious for commercial clinics (Hartmann et al., 2007;

Robinson et al., 1998). Immunofluorescence-based tests, although available, are

not commonly conducted due to their irreproducibility and ambiguity in the

interpretation of results (Floyd, Suter, & Lutz, 1983). A Polymerase Chain

Reaction (PCR) to detect proviral DNA in either whole blood or saliva has also

been developed (Gomes-Keller, Gonczi, et al., 2006; Gomes-Keller, Tandon, et

al., 2006). This method is more sensitive than ELISAs and allows detection at an

earlier stage of infection, as the initial presence of infectious virus in plasma

coincides with the detection of proviral DNA in PCR assays (Hofmann-Lehmann et

al., 2006). However detection of provirus will not distinguish between active

infection and recovered cats and thus confirmatory testing is usually required.

Real-time PCR may be conducted to detect and/or quantify the presence of low

levels of viral RNA or proviral DNA within a sample.

1.1.4. Treatment

Due to the range of clinical symptoms associated with FeLV infection, there are

multiple options for treatment of the infected cat. However these are merely

therapeutic; there is no known method of clearing infection and most

treatments will only relieve symptoms for a short duration.

Although initial studies were not encouraging (Hartmann et al., 1998),

immunomodulators are now used to relieve the immunosuppression caused by

FeLV infection and allow the immune system to attempt to clear the infection

(McCaw et al., 2001). The antiviral recombinant protein feline interferon-ω 

(Virbac Animal Health) is used widely, as this is naturally produced from

leukocytes during FeLV infection. This treatment correlates to a moderate

increase in survival rates (de Mari, Maynard, Sanquer, Lebreux, & Eun, 2004),
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although it does not decrease viraemia. Human interferon-α (Alfa Wasserman, 

Italy) has been used to treat cats infected simultaneously with both FeLV and

FIV; however this is administered infrequently (Pedretti et al., 2006).

Alternatively anti-retroviral drugs may be used; however the only compound

commercially available for treatment of cats is the nucleoside analogue

zidovudine. This reduces plasma viral load and improves clinical status, however

significant side effects may develop at higher dosage concentrations (Hartmann

et al., 1992). Retroviral integrase inhibitors have also displayed promising results

in in vitro assays but are not commercially available as treatment (Cattori et al.,

2011). Treatment of FeLV-C-infected anaemic cats with reverse transcriptase-

inhibitors allows the recurrence of erythropoiesis (Abkowitz, 1991), but must be

continued through the cats life to prevent viral reactivation. Similarly,

leukopaenia may be temporarily relieved by administration of granulocyte

colony-stimulating factor to stimulate haematopoiesis (Fulton, Gasper, Ogilvie,

Boone, & Dornsife, 1991). FeLV-induced lymphomas may be treated with

chemotherapy, although this will not prevent future viraemia (Ettinger, 2003).

It is obvious, therefore, that despite the decrease in FeLV prevalence suitable

treatments remain unavailable for those cats presenting with active infections.

This highlights the necessity of further research into the pathogenic mechanisms

of FeLV infection and the subsequent identification of potential drug targets.

1.1.5. FeLV Vaccines

FeLV was the first retrovirus for which a vaccine was successfully developed,

which at the time was viewed as a promising indication that it was possible to

induce protection against other retroviruses including HIV. Early studies tried

various antigenic preparations, however whole killed virus and envelope-based

subunit vaccines were found to be ineffective (Hunsmann, Pedersen, Theilen, &

Bayer, 1983; R. G. Olsen, Hoover, Schaller, Mathes, & Wolff, 1977; Salerno,

Lehman, Larson, & Hilleman, 1978; Yohn et al., 1976). There were also reports

of enhanced infection occurring during challenge of cats vaccinated with the

early whole inactivated virus preparations (N. C. Pedersen, Johnson, Birch, &

Theilen, 1986).The first commercially available FeLV vaccine was introduced in
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the USA in 1984, and was prepared from purified FeLV antigens (Lewis, Mathes,

& Olsen, 1981). However this vaccine has now been withdrawn from the market

due to poor efficacy (Hoover, Mullins, Chu, & Wasmoen, 1995; Legendre,

Mitchener, & Potgieter, 1990; Lutz, et al., 2009; N. C. Pedersen, et al., 1986).

There were also subsequent investigations into the utilisation of a canarypox-

based virus vector, which expresses retroviral proteins in the host cell upon

infection (Tartaglia, Jarrett, Neil, Desmettre, & Paoletti, 1993). This vaccine is

currently licenced in Europe (Purevax, Merial) but not USA. However this method

does not induce virus-neutralising antibodies (VNA) and the acquired immunity is

mediated through the priming and stimulation of B and T lymphocytes. This is in

direct conflict to the commonly-held view that the vaccination event must

induce VNA to ensure protective immunity (Sparkes, 2003). Currently there are

conflicting opinions as to whether VNAs and/or CTL responses are required for a

protective response against FeLV.

Numerous vaccines are currently available (Sparkes, 2003). The most commonly

used formulation is FeL-O-Vax (Fort Dodge Animal Health), a multivalent vaccine

with a preparation containing antigens from feline herpes virus, calicivirus,

parvovirus and chlamydia. A monovalent vaccine consisting of whole inactivated

FeLV is also available from Fort Dodge Animal Health; this induces high titres of

VNAs associated with high levels of protection (Hoover, et al., 1995). Other

currently available vaccines include Fevaxyn FeLV, a whole inactivated vaccine

available from Schering-Plough Animal Health, and Leukocell, a preparation of

subunit proteins from Pfizer Animal Health. Current recommendations for kittens

are an initial vaccination at 8 weeks of age followed by a booster inoculation 3 –

4 weeks later (J. Levy, et al., 2008). All vaccines are recommended to be re-

administered annually, as the duration of immunity has not been precisely

defined (Harbour et al., 2002; Hoover, Mullins, Chu, & Wasmoen, 1996).

Multiple studies of vaccine efficacy have been conducted and there is no

correlation between any one vaccine and the induction of protective, sterilising

immunity (Sparkes, 2003). Therefore, although vaccination provides a degree of

protection, initial infection may still occur. Indeed, cats displaying low level RNA

viraemia and persistent detection of proviral DNA, without any development of

clinical signs, are often regarded as protected (Lutz, et al., 2009). Recent
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investigations into the viral DNA and RNA loads in vaccinated cats has revealed

that some may possess circulating viral RNA at levels detectable by qPCR,

despite not being antigenaemic (Torres, Mathiason, & Hoover, 2005; Torres,

O'Halloran, Larson, Schultz, & Hoover, 2010). It is possible that these nucleic

acids correlate to non-infectious virions. It was also found that those cats which

successfully controlled infection upon challenge did not always contain high VNA

titres, in direct contrast to the commonly-held assumption that these were

essential for FeLV protection (Torres, et al., 2010). This had been suggested

previously (Haffer, Koertje, Derr, & Beckenhauer, 1990; Hofmann-Lehmann, et

al., 2006).

In recent years attempts at developing more efficient or safer FeLV vaccines

have been rare, however there has been promising research towards utilisation

of the TM of Env as an immunogen (Langhammer, Fiebig, Kurth, & Denner, 2011;

Langhammer, Hubner, Jarrett, Kurth, & Denner, 2011). Despite the initial

promise FeLV vaccines offered for retroviral immunology, the induction of

sterilising immunity has still not been achieved and continues to be regarded as

the ultimate aim of a retroviral vaccine.

1.2 Genetics and proteins of FeLV

The members of the gammaretroviridae genus have a highly conserved genomic

structure, containing three open reading frames (ORFs); gag (group-specific

antigen), pro-pol (protease-polymerase) and env (envelope glycoprotein). The

ORFs encode numerous structural and enzymatic proteins (Figure 1.1). Within

the provirus, the ORFs are bracketed by long terminal repeats (LTRs). All

proteins are translated from the genomic mRNA; however a subgenomic

transcript is also produced via splicing of whole transcripts. The majority of Env

proteins are produced from this RNA.



24

Figure 1.1: The genes and proteins of FeLV.

1.2.1. Non-coding RNA structures

The LTRs of retroviral genomes are non-coding regions at the termini of the

provirus. Each proviral LTR consists of three regions, being U3 (unique 3’

region), R (repeat region) and U5 (unique 5’ region) (5’ to 3’, respectively).

Comparatively, viral genomic RNA contains the R and U5 regions at the 5’

terminus, and the U3 and R regions at the 3’ terminus (Figure 1.2). Duplication

of the U3 and U5 regions occurs during reverse transcription of the viral genome

(see Section 1.3). Although the R and U5 regions are highly conserved, the U3

region differs significantly between endogenous FeLV elements (see Section 1.5)

and exogenous FeLV genomes (Berry, Ghosh, Kumar, Spodick, & Roy-Burman,

1988; Casey et al., 1981; Okabe, DuBuy, Gilden, & Gardner, 1978). For this

reason LTR analysis is often utilised to determine the proviral origin of FeLV

strains (Tandon, Cattori, Willi, Lutz, & Hofmann-Lehmann, 2008).

Figure 1.2: The FeLV RNA genome.
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The 3’ LTR often contributes significantly to the virulence and pathogenic

potential of retroviruses, including FeLV. As promoter and enhancer-like

elements including the CCAAT (Grosschedl & Birnstiel, 1980) and Goldberg-

Hogness boxes (Corden et al., 1980; Proudfoot, 1979) are located within the U3

region, the binding of transcription factors to these elements may activate

proto-oncogenes downstream of the site of insertion (Fan, 1997; L. S. Levy,

Lobelle-Rich, & Overbaugh, 1993; Uren, Kool, Berns, & van Lohuizen, 2005). The

availability of these transcription factors will vary between cell types; therefore

the 3’ LTR affects the pathogenic potential of the virus across various tissue

types (Short, Okenquist, & Lenz, 1987). This insertional activation may also have

long range effects if the U3 enhancer elements increase transcription from host

promoters further downstream from the site of integration.

In addition to the activation of oncogenes, gammaretroviruses may interrupt

host tumour-suppressor genes during proviral integration, thereby leading to

transformation of the host cell. Collectively, these two oncogenic mechanisms

were assumed to be the only two available to gammaretroviruses, as they do not

encode any viral oncogenes which may directly induce transformation. However

there is recent evidence that antisense transcription may occur in MLV, initiated

from multiple positions within the 5’ LTR. This produces chimaeric host-virus

transcripts and therefore contributes to enhanced expression of host oncogenic

proteins (M. H. Rasmussen et al., 2010). Thus the oncogenic mechanisms of

gammaretroviruses may not be as fully explored as previously thought. Whether

this occurs in FeLV infection has not been investigated.

In addition to the LTRs, the non-coding RNA regions of importance in the FeLV

genome are the primer binding site (PBS) and the packaging signal (Ψ). These 

motifs are located across the 3’ region of the 5’ LTR and the initiation codon of

the gag gene, and are both utilised during the retroviral replication cycle (see

Section 1.3). The packaging signal also contains the splice donor site for the

generation of the subgenomic env mRNA transcript. The packaging signal is a

section of cis-acting RNA which forms complex secondary structures including

multiple hairpin regions (Burns, Moser, Banks, Alderete, & Overbaugh, 1996;

Konings, Nash, Maizel, & Arlinghaus, 1992). These structures allow RNA

dimerisation and recognition of such dimers by the structural proteins, resulting
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in packaging of the viral genome by core proteins. Both matrix and nucleocapsid

domains of the Gag precursor protein recognise sections of FeLV-ψ (Linial & 

Miller, 1990; Wang, Norris, & Mansky, 2003). As MLV and FeLV are able to cross-

package in vitro (Burns, et al., 1996) it is assumed that high structural

conservation exists between FeLV-ψ and MLV-ψ, however the primary sequences 

of these genomic regions display low identity. The secondary structures required

for FeLV RNA dimerisation and packaging have therefore not been extensively

investigated. Such studies would allow comparisons between FeLV and other

retroviruses and the identification of essential structures required for retroviral

replication.

1.2.2. Structural proteins

The structural proteins which form the core of the FeLV virion do not contribute

to pathogenicity, nor do they vary to a large degree between subgroups or

strains of FeLV. Therefore they are not as thoroughly studied as the Env proteins

or LTR sequences. The gag (Group-specific antigen) gene encodes a polyprotein,

Pr65, which is translated from the gag ORF within the genomic mRNA transcript.

This polyprotein is cleaved into four mature structural proteins, being the matrix

(MA, or p15), capsid (CA, or p27), nucleocapsid (NC, or p10) and a small protein

of unknown function termed p12.

The FeLV virion structure (Figure 1.3) is similar to that of other retroviruses. The

outermost protein layer of the viral core (i.e., those which face the lipid bilayer)

is composed of MA proteins. The association between these proteins and the

membrane is essential for viral budding and maturation and is often aided by the

presence of myristic acid groups on the protein (Copeland et al., 1988). The CA

protein (p27) forms the inner core of the virion and is the most easily detectable

antigen in FeLV-infected cells. Within the virion core are NC proteins, which

bind to the genomic RNA dimer during production of the virion and remain

associated with the RNA during subsequent cellular entry (Prats et al., 1990). NC

proteins tend to be highly basic and often contain the zinc-finger structures

characteristic of nucleic-acid binding proteins (Katz & Jentoft, 1989).
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Figure 1.3: The FeLV virion.

1.2.3. Enzymatic proteins

The pro-pol gene is in-frame with the gag ORF and encodes the viral enzymes,

which are packaged within immature virions. The precursor polyprotein

(Pr180gag-pol) is translated from genomic mRNA and cleaved and processed into

the individual proteins, being protease, reverse transcriptase and integrase.

The viral protease (Pro) displays many similarities to cellular aspartyl proteases

(Jaskolski, Miller, Rao, Leis, & Wlodawer, 1990). Prior to budding, the protease

is inactive and activity is triggered once the virion has budded. It catalyses the

condensation of the viral core by cleaving structural precursor proteins, leading

to maturation of the virion.

The Reverse Transcriptase (RT) enzyme mediates RNA-dependent-DNA synthesis,

and transcribes the initial nascent DNA strand from the viral genomic RNA. This

enzyme contains an additional RNase H function, which removes the RNA

component of the DNA-RNA heteroduplex to allow cellular DNA polymerase to

synthesise the complementary DNA strand (reviewed in Goff, et al. 1990 (Goff,

1990b)). The RNase H domain (an RNA-DNA hybrid specific ribonuclease) is

located at the C terminus of the protein and is separate to the RT domain.
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The integrase enzyme (IN) has multiple functions, including trimming of the

dsDNA complex prior to integration and cleavage of the host DNA at the

integration site. Integrase also possesses a ligation function to covalently fuse

the viral and host DNA following integration (Bushman & Craigie, 1991).

1.2.4. Envelope glycoprotein

The overall structure of the env gene is highly conserved amongst the

gammaretroviridae (Figure 1.4); as this protein mediates cellular entry there are

numerous structural constraints which limit possible sequence variation. The

production of functional Env glycoproteins is therefore a highly conserved

process within retroviruses (Einfeld, 1996; Hunter & Swanstrom, 1990).The viral

envelope itself is a host-originating phospholipid bilayer, from which the virally-

encoded Env glycoproteins, in their native trimeric form, extend as “spikes”.

After translation from the subgenomic mRNA, the Env precursor protein, gp85, is

cleaved by cellular proteases into the two constitutive proteins, being the

Surface Unit (SU, or gp70) and the transmembrane (TM, or p15E) domains. The

two domains remain associated through disulphide bridges and non-covalent

bonds (Pinter, Lieman-Hurwitz, & Fleissner, 1978). Each domain of Env plays an

essential role in the retroviral life cycle. SU mediates receptor binding and host

cell entry, whilst the TM anchors the Env complex within the viral membrane.

During the processing of gp85, the N terminal signal sequence is recognised by

the cellular transport machinery and directs the polyprotein into the

endoplasmic reticulum (ER). The N terminal regions are translocated across the

ER membrane; however the hydrophobic C terminal membrane anchor halts

translocation at this point. Thus the N terminal region of gp85, the SU domain, is

within the ER lumen whereas the C terminal TM domain remains within the

cytoplasm. Within the lumen, the signal peptide is removed by host proteases,

N-linked glycosylation occurs and disulphide bonds are formed. As a result the SU

domain of mature retroviral virions is significantly more highly glycosylated than

the TM domain. Correct glycosylation is required for future processing of the

domains; additionally, although the sugar chains themselves may not be involved

in receptor-Env binding, incorrectly glycosylated proteins reduce the infectivity

of the virus (Knoper, Ferrarone, Yan, Lafont, & Kozak, 2009; Schultz, Rabin, &
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Oroszlan, 1979). The oligomerisation of Env trimer complexes also occurs in the

ER.

Env complexes are then transported to the Golgi apparatus where N-linked

oligosaccharides are modified and O-linked oligosaccharides may be added to

the SU domain. Cleavage of the SU and TM domains by cellular proteases also

occurs in the Golgi. The Env proteins are then transported to the cellular

membrane where they are incorporated into budding virions through interactions

with viral core MA proteins.

Figure 1.4: The FeLV Envelope protein.

1.2.4.1. Surface Unit domain

As the SU protein (gp70) is the major determinant of both cell tropism and

disease outcome in FeLV, it has been studied intensively for many years (see

Sections 1.8.1 and 1.9.1 for further details). However many aspects of this

protein, including the genetic determinants of disease prognosis and interactions

with host proteins, remain not fully understood. The SU domain of

gammaretroviral envelope proteins is responsible for receptor recognition and

hence entry into host cells. It is this protein which varies significantly between

the FeLV subgroups, through alterations in its receptor usage. The main

determinants of receptor binding are found in the N terminal region. There are

two regions in this area (termed VRA and VRB) that are highly divergent between

the gammaretroviridae, separated by a conserved region approximately 38

amino acids in length. Collectively these motifs constitute the receptor-binding

domain (RBD) (Bae, Kingsman, & Kingsman, 1997; Battini, Danos, & Heard, 1998;
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Battini, Heard, & Danos, 1992; Gray & Roth, 1993; Hoover & Mullins, 1991; Rigby

et al., 1992).

Between the RBD and the C-terminal region of SU is a proline-rich region (PRR),

which also varies significantly between the gammaretroviridae. The PRR is

thought to act as a hinge between the N-terminal globular RBD and the C-

terminal region (Barnett, Davey, & Cunningham, 2001; Fass et al., 1997). It is

essential for viral infectivity as it allows conformational changes within the Env

complexes (Lavillette, Ruggieri, Boson, Maurice, & Cosset, 2002) but does not

appear to contribute to receptor recognition (Gray & Roth, 1993).

Another region of importance within the SU domain is the N terminal fusion

motif (consisting of four sequential amino acids, SPHQ). This is distinct from the

fusion peptide within the TM domain, which is protected by SU prior to the

membrane fusion event. Mutations in the SU fusion motif disrupt the membrane

fusion process although both incorporation of Env into virions and subsequent

receptor binding may still occur (Bae, et al., 1997; Lavillette, Boson, Russell, &

Cosset, 2001; Lavillette & Kabat, 2004). Mutations of the histidine are especially

disruptive; this residue is involved in the formation and disruption of the

disulphide bridges which link SU and TM. The isomerisation of these bridges is

required for exposure of the fusion peptide and its subsequent insertion into the

cellular membrane.

1.2.4.2. Transmembrane domain

In contrast to the SU domain, the TM domain (p15E) of the envelope glycoprotein

is highly conserved between both the FeLV subgroups (Riedel, Hoover, Gasper,

Nicolson, & Mullins, 1986) and retroviruses as a whole (Kobe, Center, Kemp, &

Poumbourios, 1999; Patarca & Haseltine, 1984). Structurally, the TM domain

forms a trimeric coiled complex (Fass, Harrison, & Kim, 1996). The TM domain

consists of a short C-terminal cytoplasmic peptide, followed by a hydrophobic

membrane spanning domain which anchors the protein within the viral

membrane, and finally an N terminal ectodomain.
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The cytoplasmic tail of TM is cleaved by the viral protease shortly before cellular

infection, shortening it from p15E to p12E. The presence of this peptide (termed

the R peptide) prevents membrane fusion until receptor binding has occurred.

The R peptide was initially thought to be dispensable for viral infectivity (Perez,

Davis, & Hunter, 1987), however it is now known that the cleavage of p15E to

p12E is required to allow fusion and subsequent entry of the target cell

(Bobkova, Stitz, Engelstadter, Cichutek, & Buchholz, 2002; Loving, Li, Wallin,

Sjoberg, & Garoff, 2008; Song, Micoli, Bauerova, Pichova, & Hunter, 2005).

N-terminal to the R peptide is the so-called membrane anchor; this highly

hydrophobic region prevents further translocation of the protein through the

cellular membrane, ensuring the final Env trimer is a transmembrane complex.

Between this region and the SU/TM cleavage site is the short TM ectodomain,

which includes a hydrophobic peptide required for mediating host-viral

membrane fusion essential for subsequent viral entry (Einfeld, 1996; Gallaher,

1987). This fusion peptide is buried within the trimer complex during virion

maturation. Fusion is induced once the mature virion encounters a host cell

membrane. SU-receptor binding and isomerisation of the disulphide bridges,

aided by the SU fusion motif, may then occur. The TM ectodomain also contains

a central highly conserved region associated with immunosuppression of the

host, although a mechanism for this has not been established (Cianciolo, Bogerd,

& Snyderman, 1988; Ogasawara et al., 1988). There is also evidence that

particular residues in the FeLV ectodomain are essential for correct Env

precursor processing within the ER and Golgi (Burns, Poss, Thomas, &

Overbaugh, 1995). Thus both the SU and TM domains of Env are required for

successful completion of the retroviral lifecycle.

1.3 The retroviral replication cycle

The retroviral replication cycle is a highly conserved process throughout the

Retroviridae family, reflecting the conserved structure of these viral particles.

When retroviral virions bind to their cognate receptor through non-convalent

binding of the SU glycoprotein, a conformational change is triggered which

exposes the hydrophobic fusion peptide within the TM region (Lavillette, et al.,

2002). This catalyses membrane fusion and entry into the host cell.
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Entry and Un-coating: Gammaretroviral cell entry is pH-independent, although

pH levels within the virion may affect the kinetics of fusion peptide exposure.

Following membrane fusion, the virion core is effectively uncoated of the lipid

envelope and released into the cytoplasm where reverse transcription will occur.

The virion core particle contains the dimeric RNA genome and the virally-

encoded enzymes. Cellular tRNA molecules are also found within mature

retroviral virions, as retroviruses utilise a specific tRNA during reverse

transcription. FeLV utilises the tRNA(Pro) molecule (Laprevotte, Hampe, Sherr,

& Galibert, 1984).

Reverse Transcription: Reverse transcription is a highly complex process which

is still not fully understood, despite being heavily researched for many years (for

an early review, see Gilboa, et al. 1979)(Gilboa, Mitra, Goff, & Baltimore, 1979).

Importantly, the RT enzyme does not possess proof-reading or exonuclease

activity. Mutations through misincorporation are therefore relatively common,

leading to the high evolutionary rate observed in retroviral genomes (10-4 to 10-5

substitutions/site/cycle) (Overbaugh & Bangham, 2001).

The first step in FeLV reverse transcription is binding of the tRNA(Pro) to the

primer-binding site (PBS[-]), an 18 bp sequence complementary to that of the

tRNA, adjacent to the U5 region within the 5’ LTR (Joshi, Van Brunschot,

Robson, & Bernstein, 1990). Thus the tRNA acts as a primer to allow initiation of

reverse transcription. The RT enzyme then extends the complementary region

from the 3’ end of the tRNA to the 5’ end of the viral genome, by synthesising a

singular DNA strand until it reaches the end of the R region. This is termed the

“strong-stop” antisense DNA and is a short single-stranded segment. The RNase H

function of RT allows degradation of the 5’ R region of RNA, leaving this area of

the strong-stop DNA available for complementary base-pairing.

The first strand transfer event now occurs, where the R region of the strong-stop

DNA can bind to the 3’ R region of the viral genome. It then acts as a secondary

primer for RT, allowing reverse transcription of the remainder of the viral

genome producing the full length nascent (antisense) DNA strand. This strand

now contains the entire 3’ LTR of the DNA due to the transfer of R and U5
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domains in the strong-stop DNA. The RNase H motif of RT digests the RNA

component of the heteroduplex, producing single stranded nascent DNA.

A RNase H-resistant area is located between the 3’ U3 and the polypurine tract

(PPR). This remaining RNA is now utilised as a third primer binding site

(commonly called PBS[+]), initiating the positive sense DNA strand synthesis from

the 3’ terminus of the RNA to the end of the viral genome. This produces the U3,

R and U5 regions of the “strong-stop” sense DNA strand. The second transfer

event now occur, during which this short DNA segment translocates and base-

pairs to the 3’ end of the antisense DNA strand. This is then extended, forming a

dsDNA complex which now contains blunt-ended LTRs at both termini. This

entire process is thought to occur within the virion core. The dsDNA is now part

of a high molecular weight pre-integration complex, which is transported into

the nucleus.

Integration: Although retroviral particles contain two molecules of positive-

sense genomic RNA, only a single dsDNA pre-integration complex and therefore a

single provirus is produced from each virion (Hu & Temin, 1990). Integrase is

packaged within the mature virion and acts upon the un-integrated complex,

which is transported into the nucleus alongside viral structural and enzymatic

proteins (Goff, 1990a). Although some retroviruses may actively enter the

nucleus, gammaretroviruses passively enter during mitosis. Cleavage of the host

DNA and the introduction of viral DNA occur in a concerted event; the enzyme

makes a staggered cut within the host DNA, generating short overhangs with 5’

phosphorylated ends which can non-covalently associate with the nicked viral

DNA. Ligation (covalent fusion of the DNA molecules) is then mediated by a

separate domain of the integrase enzyme. After integration, host enzymes

correct the mismatched base pairs at the termini of the provirus, producing the

4 – 6bp of repeated sequence characteristic of retroviral integration sites (direct

repeats). Although there is limited specificity in the targeting of retroviral DNA

to specific host DNA sites, chromatin density may contribute, therefore

increasing the chances of the provirus being inserted into a transcriptionally-

active region. The provirus is then transcribed and translated as standard host

genes.
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Production of Viral Proteins and Nucleic Acid: Transcription of the provirus is

initiated at the U3-R boundary of the 5’ LTR. Polyadenylation of the transcript

then occurs at the R-U5 boundary of the 3’ LTR. Post-transcriptional processes,

including methylation and capping of the viral RNA, are mediated by cellular

enzymes (Stoltzfus, 1988) resulting in functional mRNA transcripts. Viral RNA

may be either directly exported or spliced within the nucleus, producing the

subgenomic RNA from which the majority of Env is translated. After export of

the RNA into the cytoplasm, the expression of Env proteins occurs from

membrane-bound polysomes, whereas the Gag and Pro-Pol protein precursors

are translated by free cytoplasmic ribosomes from the full-length genomic RNA.

Assembly, Egress and Maturation: Within the gammaretroviridae, the assembly

of structural proteins and genomic RNA into core viral particles occurs primarily

at the cellular membrane. For Type C retroviruses such as FeLV, virion

intermediates are therefore not detectable within the cytoplasm (Coffin, 1979).

This is not a conserved process within the simple retroviruses; betaretroviruses

assemble within the pericentriolar regions of the cytoplasm and are then

trafficked to the membrane (Arnaud, Murcia, & Palmarini, 2007; Sfakianos &

Hunter, 2003). Subgenomic mRNAs are excluded from the packaging process as

RNA dimerisation and interactions with NC proteins depend upon a functional

leader and packaging signal. The virion structural core, containing the RNA

dimer, buds from the host membrane and thereby acquires both the lipid bilayer

and Env glycoproteins. Cellular proteins are generally excluded from the

emerging virion. Once released the virion undergoes maturation to become an

infectious particle, hallmarked by cleavage of the Gag precursor proteins and

the accompanying condensation of the viral core.

1.4 Immune responses to FeLV infection

FeLV infection activates multiple branches of the adaptive immune response,

including antibody production and cytotoxic lymphocytes (CTLs) (Flynn, Hanlon,

& Jarrett, 2000). Although most recovered cats produce an efficient antibody

response, CTLs appear prior to VNAs (within a week of virus infection) and play

an essential role in viral clearance (Flynn, Dunham, Watson, & Jarrett, 2002).
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Cytokine responses are also essential for development of protective immunity

(Hanlon et al., 2001). Initial FeLV viraemia induces both Type I and II interferon

responses, as both IFN-ω and IFN-γ are up-regulated following infection (Garch 

et al., 2006).

However, chronic FeLV infection results in a decrease in both T lymphocyte

responses and cytokines such as IFN-γ (Good, Ogasawara, Liu, Lorenz, & Day, 

1990), contributing to the immunosuppression seen in many infected hosts. The

mechanism of this is unknown, however recent investigations into feline

neutrophils indicate that infection of these cells may contribute to FeLV

pathogenesis. Neutrophils play a central role in the innate immune response by

phagocytosing invading pathogens (Nathan, 2006). FeLV-induced immune-

suppression is thought to be partially due to chronic overstimulation of the

infected neutrophils, which are then unable to respond to novel pathogens

(Wardini et al., 2009). This overstimulation is seen in both clinically ill and

asymptomatic infected cats, although to a lesser extent in the latter group.

These neutrophils also display reduced chemotactic responses (Kiehl, Fettman,

Quackenbush, & Hoover, 1987) and impaired phagocytic activity (Hoffmann-

Jagielska et al., 2005). Collectively these reduced responses contribute to the

opportunistic infections often seen in FeLV-infected cats (Lewis, Duska, Stiff,

Lafrado, & Olsen, 1986). Although it is not known how FeLV infection mediates

these effects on neutrophils, it has been suggested that the Env TM domain may

be responsible rather than viral replication itself (Lafrado, Lewis, Mathes, &

Olsen, 1987). This region has been associated with the immunosuppressive

effects of other retroviruses (Cianciolo, et al., 1988; Ogasawara, et al., 1988).

Although the degree to which T cell-mediated and humoral immunity each

contribute to FeLV clearance and protection is still unknown, there has been

significantly more research conducted upon the antibody responses of infected

cats. This is mainly due to the assumption that the induction of VNAs was

required for a protective vaccine. There is now increasing evidence that VNAs

alone may not be sufficient for either protection against challenge or prevention

of disease. Additionally, as research into other retroviruses continues to uncover

novel host-virus interactions, it is becoming increasingly apparent that VNAs may
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play a significant role in FeLV evolution within a host (see Chapter 4). Therefore

much research is still required into the humoral responses to FeLV infection.

The first evidence that VNAs were involved in FeLV clearance was the

observation that transfusion of blood between infected and naïve cats correlated

with protective immunity (O. Jarrett, Russell, & Stewart, 1977). It was also

documented that recovered cats continued to produce VNAs after viraemia had

ceased, and these were notably absent from chronically-viraemic cats (Russell &

Jarrett, 1978a). The degree of Env antibody response to FeLV is now known to

be highly correlative with the disease outcome; by 3 weeks post-infection cats

with low antibody titres can be accurately predicted to develop progressive

infections whereas cats with higher titres will display regressive viraemia and

antigenaemia from that point (Hofmann-Lehmann, et al., 2001).

In addition to Env-specific VNAs, cats mount an immune response against

numerous gag-encoded proteins; however these do not provide protection or aid

viral clearance (W. D. Hardy, 1993). The immunologically dominant region is the

SU domain (Hoover & Mullins, 1991; Lutz, Higgins, Pedersen, & Theilen, 1979),

however the receptor-binding regions and the neutralising epitopes are separate

motifs within this protein (Ramsey, Spibey, & Jarrett, 1998). It is also probable

that the immunogenicity of SU relies heavily upon its glycosylation, as is the case

for other gammaretroviruses (Alexander & Elder, 1984). Recent investigations

into potential recombinant vaccines have also identified neutralising antibodies

against the TM domain (Langhammer, Fiebig, Kurth, & Denner, 2005;

Langhammer, Hubner, Kurth, & Denner, 2006; Marciani et al., 1991).

Neutralising monoclonal antibodies (MAbs) specific to a conserved epitope within

the central region of the SU domain are commercially available (Elder et al.,

1987; Nunberg, Rodgers, Gilbert, & Snead, 1984). This epitope (C11D8) appears

essential but not sufficient for a protective neutralising antibody response.

Although the genetic drift of viral genomes away from this peptide correlates to

an escape from clearance by the immune system (Sheets, Pandey, Klement,

Grant, & Roy-Burman, 1992), external administration of these MAbs do not aid

viral clearance (Weijer, UytdeHaag, Jarrett, Lutz, & Osterhaus, 1986). This

indicates additional VNA binding sites within Env exist and contribute to the
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antibody titre seen in infected hosts. Additionally, the C11D8 epitope is not

found in endogenous FeLV elements (see Section 1.5) (McDougall et al., 1994;

Sheets, Pandey, Jen, & Roy-Burman, 1993). However after the formation of

FeLV-B genomes (see Section 1.8), a single substitution event occurs (C750T)

which reintroduces the epitope into the exogenous viral genome (Pandey et al.,

1995). It is thought that this mutation is driven by further recombination

between FeLV-A and -B genomes occurring during viral replication, replacing the

non-neutralising endogenous epitope with the exogenous sequence (Pandey, et

al., 1995).

1.5 Outcomes of FeLV infection

FeLV infection is variably associated with acquired immunodeficiency syndrome

(AIDS)-like immunosuppression, anaemia and various neoplastic haematopoietic

disorders. The specific clinical manifestation reflects the subgroup present

within the host (see Sections 1.7 to 1.10). Approximately 72% of domestic cats

become infected after exposure (W. D. Hardy, 1993), however 60% of these are

predicted to recover (“regressor” cats) whilst 40% progress to chronic infections

and/or FeLV-related diseases (Hoover & Mullins, 1991). The likelihood of

clearance correlates highly with the cats’ age, with neonatal kittens displaying a

high susceptibility to infection which decreases over time (Grant, Essex,

Gardner, & Hardy, 1980; Hoover, Olsen, Hardy, Schaller, & Mathes, 1976). FeLV-

infected cats generally live for 2.4 years following diagnosis, as compared to 6.3

years for healthy controls (J. Levy, 2009).

Following initial viraemia, cats can be categorised according to the eventual

outcome; these are termed regressive, progressive, abortive and focal

infections. There is evidence that the early viral load (in plasma, saliva, faeces

and urine) correlates highly with the outcome of infection and hence the

classification of the host. Regardless of the eventual outcome, all cats display a

transient period of viraemia, hallmarked by detectable proviral and plasma viral

RNA loads (Hofmann-Lehmann, et al., 2008; Lutz et al., 1980).

Regressive Infection: A majority of cats clear the infection through a

combination of cell-mediated immunity and VNAs, and do not succumb to FeLV-
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related diseases. As these cats only display transient viraemia and antigenaemia

(Cattori et al., 2009), infection may only be detected through the presence of

antibodies and/or proviral DNA (W. D. Hardy, Jr., et al., 1976; Hofmann-

Lehmann, et al., 2001; Torres, et al., 2005). Infectious virus can occasionally be

induced from bone marrow, indicating a latent infection remains in regressor

cats (Madewell & Jarrett, 1983; Rojko, Hoover, Mathes, Krakowka, & Olsen,

1979; Rojko, et al., 1982). The duration of latency is highly variable (Pacitti &

Jarrett, 1985). It is thought that the occasional reactivation of proviral DNA may

contribute to the long term presence of VNAs in these so-called “recovered” cats

(J. Levy, et al., 2008; Torres, O'Halloran, Larson, Schultz, & Hoover, 2008).

Reactivation of a latent infection following years of viral inactivity has also been

observed in a single experimental infection, however as this cat was additionally

infected with FIV the reactivation may have been due to immunosuppression (A.

K. Helfer-Hungerbuehler et al., 2010). The relevance of this particular incident

is questionable considering there are no available data on the rate of natural

infection reactivation after years of latency.

Whether latent FeLV proviruses contribute to disease is a contentious issue.

FeLV latent infection has been associated with anaemia, panleukopenia and

suppurative inflammation, as well as an increase in secondary non-viral

infections (Suntz, Failing, Hecht, Schwartz, & Reinacher, 2010). However other

research has not found a correlation between latent FeLV infection and general

cytopenias in domestic cats (Stutzer et al., 2010). Additionally, FeLV latency has

been documented as correlating with lymphosarcoma in domestic cats (A. T.

Weiss, Klopfleisch, & Gruber, 2010). Given the disruptive and potentially

oncogenic nature of the retroviral replication cycle, this is a plausible

association; however other research has not been able to reproduce these

findings (Stutzer, et al., 2010; Suntz, et al., 2010). It may be that the length of

time required for the individual cat to clear the infection, and thus the degree

of replication and reintegration the virus undergoes, affects the likelihood of

disease occurring after viraemia ceases. Additionally, the role of latent viral

infections in disease development may only become apparent now that

vaccination is widespread, as this has caused the vast majority of infections to

be non-progressive.
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Progressive Infections: Chronic infections occur when the virus cannot be

cleared or contained by the immune system and therefore becomes established

within the bone marrow (Cattori et al., 2008; O. Jarrett, 1999; J. Levy, et al.,

2008). Persistent viraemia and antigenaemia is observed, particularly within

neutrophils and platelets which are unaffected by initial viraemia. FeLV-related

disease may develop depending on both the infecting strain and the

immunological response of the individual cat. The disease which manifests will

depend upon which viral subgroups subsequently develop within the host.

Compared to regressor cats, which do not maintain viral shedding, progressively-

infected cats shed infectious virus as early as 3 weeks post-infection and

maintain a high viral load (Cattori, et al., 2009).

Focal infections: Although rare, focal infections have been observed in both

naturally-infected and experimentally infected cats (Roy-Burman, 1996). Focal

infections are characterised by the host presenting with antigenaemia within

specific isolated tissues, including spleen, lymph nodes, mammary glands or the

small intestine although seroconversion and systemic viraemia do not occur

(Hayes et al., 1989; Hoover, Schaller, Mathes, & Olsen, 1977; Pacitti, et al.,

1986; Rojko, et al., 1982). It is not known to what extent these cats are at risk

of developing disease. It is assumed that the detectable viral antigens are non-

virion-associated and infection had been restricted to the affected organ/s

(Miyazawa & Jarrett, 1997).

Abortive Infections: Abortive infections have been observed only in

experimental infections to date. They are characterised by a confirmed initial

infection followed by an absence of both secondary viraemia and detectable

proviral DNA, indicating the cat successfully cleared all latently-infected cells

(Pacitti & Jarrett, 1985; N. C. Pedersen, Johnson, & Theilen, 1984; Torres, et

al., 2005). This is highly unlikely given the integrative nature of retroviral

infections and the longevity of their target cells. However with the advancement

of highly sensitive quantitative PCR assays the existence of abortive infections

may require reconsideration, as it is possible they represent hosts with

extremely low proviral loads undetectable by previous techniques.
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1.6 Endogenous FeLV elements

Endogenous retroviruses (ERVs) are formed when the integration of viral dsDNA

into the host genome occurs in either a germline cell or during early

embryogenesis. The provirus is therefore present at this locus in every cell of

the embryo, and the latent infection is transmitted vertically as a dominant

Mendelian element. Degradation and an accompanying loss of function occurs as

mutations accumulate within the provirus (Coffin, 1992), eventually resulting in

non-functional endogenous retroviral elements. ERVs are generally conserved

between individual members of a species and most are functionally inactive

(Boeke & Stoye, 1997).

There are 8 to 15 FeLV-related endogenous elements (enFeLV) within the

domestic cat genome (Benveniste & Todaro, 1975; Koshy, Gallo, & Wong-Staal,

1980; Okabe et al., 1976; Soe, Devi, Mullins, & Roy-Burman, 1983). They are

confined to the genomes of the Felis genus, one of the 11 genera within the

Felidae family. Therefore it appears that an ancestral exogenous FeLV initially

became stably integrated into the genome of the last common ancestor of the

Felis group, which now includes all small wildcats as well as domestic breeds (W.

E. Johnson et al., 2006; Mattern & McLennan, 2000; O'Brien, 1986).

EnFeLV are polymorphic elements and therefore each provirus is not necessarily

conserved between individuals (Koshy, et al., 1980; Roca, Nash, Menninger,

Murphy, & O'Brien, 2005). Interestingly, privately-owned cats harbour a much

higher enFeLV copy number than specific-pathogen free cats used for

experimental purposes. Domestic cats also exhibit higher enFeLV loads than

European wildcats (Tandon et al., 2007). This polymorphic nature indicates

reinfection and germline integration has continued over the millennia and

endogenisation of the cat genome is an on-going process. This is supported by

the fact that most enFeLV elements have intact LTRs (Soe, et al., 1983; Soe,

Shimizu, Landolph, & Roy-Burman, 1985), which would not be expected if they

were conserved ancient ERVs.

Theoretically, enFeLV-derived virions would utilise the Pit1 receptor for cellular

entry, as all enFeLV env genes studied to date contain Pit1-specific RBDs.
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However these elements are generally non-functional and do not form infectious

virions (Soe, et al., 1985); although expression of short transcripts has been

documented (Busch et al., 1983; McDougall, et al., 1994; Niman, Akhavi,

Gardner, Stephenson, & Roy-Burman, 1980) the degree of transcriptional activity

they possess remains to be firmly established. It has been suggested that some

defective elements contribute to the innate resistance to FeLV (McDougall, et

al., 1994). This is mediated by the expression of a 35kDa Env fragment,

corresponding to the N terminal region of SU, in both lymphoma and healthy

lymphoid primary cell lines which prevents infection by FeLV-B, presumably by

competitive receptor binding (McDougall, et al., 1994). This may explain the

observation that purified FeLV-B cannot be transmitted between individual hosts

(see Section 1.8) (O. Jarrett & Russell, 1978). However as cats are polymorphic

for each individual enFeLV locus, it is unlikely that every cat would produce

these protective Env fragments. It is possible that cats lacking the corresponding

enFeLV are the individuals that succumb to FeLV-B-related disease. The

protective peptide lacks the C11D8 VNA-inducing epitope (Neil, Fulton, Rigby, &

Stewart, 1991) and would therefore be unlikely to induce a humoral immune

response. A role for endogenous gammaretroviral elements in protection against

exogenous infection has been previously observed in MLV infections in mice and

is therefore a highly possible scenario (Bassin, Ruscetti, Ali, Haapala, & Rein,

1982; Ikeda, Ikeda, & Tsuchida, 1985; Jung, Lyu, Buckler-White, & Kozak, 2002;

T. Wu, Yan, & Kozak, 2005).

In contrast to this potentially protective role against infection, there is also

evidence that enFeLV proteins facilitate infection by exogenous FeLV-T, an

otherwise entry-defective FeLV subgroup (see Section 1.10). It may be that

individual enFeLV loci confer either protective or pathogenic qualities. However

the exact mechanism by which the enFeLV peptide FeLIX contributes to cellular

entry has not been elucidated.

It is apparent that further research is required to define the respective roles of

individual enFeLV loci in FeLV disease and/or resistance. However recent

research into enFeLV elements has focused upon the genomics and phylogenetics

of these polymorphic loci. Full length enFeLV elements with putatively

functional ORFs were recently identified, indicating they may be more active
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than previously assumed (GenBank Accession numbers AY364318 and AY364319)

(Roca, Pecon-Slattery, & O'Brien, 2004). That fact that some of these viral

genomes possess identical 5 and 3’ LTRs indicates they are relatively recent

additions to the Felis catus genome, which became established between half a

million to 2 million years ago (W. E. Johnson & Coffin, 1999). Supporting this

hypothesis are the facts that these enFeLV genomes are only present in 9 - 15%

of individual cats studied to date and have only been isolated from particular

breeds (Roca, et al., 2005). They are also not found in closely-related Felis

species, unlike truncated enFeLV loci (Roca, et al., 2004). Despite being “young”

ERVs, these proviruses still display higher nucleotide homology to enFeLV than

exogenous FeLV proviral genomes.

It is not known if these full-length enFeLV elements are being maintained

through selective pressure or if they will degrade and become defective over

time. The one potential benefit to the host (the protective role against FeLV-B

infection) appears adequately provided by defective enFeLV elements

(McDougall, et al., 1994). It would be of interest to investigate whether these

full-length enFeLV genomes are isolated incidences of recent proviral germline

integration or whether functional enFeLV genes are more widespread than

previously assumed. The transcriptional activity of such loci, and their potential

for incorporation into virions and subsequent horizontal transmission should also

be addressed as this would have implications for the potential generation of

pathogenic FeLV-B strains (see Section 1.8).

1.7 The FeLV subgroups and their host ranges

FeLV isolates can be classified into three main subgroups; FeLV-A, -B, -C (Russell

& Jarrett, 1978b) which are distinguished both by their pathogenic potential and

the receptors utilised for cellular entry. FeLV-T (Anderson, Lauring, Burns, &

Overbaugh, 2000) represents a rare defective virus that confounds classical

assays for viral subgroups; little is known about its frequency of occurrence in

the field. Therefore the main genetic differences between the subgroups lie in

the RBD of their respective SU proteins. Gammaretroviral cellular receptors are

generally proteins displaying multiple transmembrane domains that function as

transporters for small molecules (Overbaugh, Miller, & Eiden, 2001). The
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receptor utilised by a simple retrovirus determines its classification into one of

11 known interference groups (Sommerfelt, 1999). Interference assays rely upon

the fact that infection leads to downregulation or masking of the viral receptor

upon the cell surface, preventing re-infection by a virus that would normally

utilise the receptor. A cell can still be superinfected by a virus utilising a distinct

receptor. Until recently, interference assays and in vitro host range analysis

were the only available methods of classifying FeLV field isolates as the FeLV-A

and –C receptors had not been identified. As the receptors for all FeLV subgroups

have now been characterised and cloned, receptor usage assays utilising murine

cell lines engineered to express the cognate receptors are commonly used.

These allow more accurate analysis of the receptor choice of viral variants.

Although FeLV-A was generally regarded as ecotropic (i.e., able to only infect

feline cells) (W. D. Hardy, 1993; O. Jarrett, Laird, & Hay, 1973; Sarma, Jain, &

Hill, 1975) some isolates can infect canine and human cells in vitro (Moser,

Burns, Boomer, & Overbaugh, 1998). However there are no recorded instances of

humans or dogs being infected with FeLV (W. D. Hardy, Jr., et al., 1976;

Schneider & Riggs, 1973). FeLV-B and FeLV-C are always isolated in conjunction

with FeLV-A (O. Jarrett, Hardy, Golder, & Hay, 1978; Sarma & Log, 1973) and

FeLV-A is the only naturally transmissible variant. FeLV-B and –C exhibit an

expanded amphotropic host range, as they are both able to infect canine, human

and mink cells in vitro (Anderson, et al., 2000; Boomer, Eiden, Burns, &

Overbaugh, 1997; W. D. Hardy, Jr., et al., 1976; O. Jarrett, H.M. Laird, & D.

Hay, 1969b; O. Jarrett, et al., 1973). FeLV-C is also able to infect guinea pig

cells. The cell tropism of FeLV-T is limited to feline T cells, as this is the only

known cell lineage to express FeLIX, the FeLV-T co-receptor (Lauring, Anderson,

& Overbaugh, 2001) (See Section 1.10).

As FeLV-B and –C are generally more pathogenic than the transmissible FeLV-A,

it is of significant interest to identify the blocks to transmission which are acting

upon these subgroups. The observation that FeLV-B and –C cannot be

transmitted without simultaneous FeLV-A infection was previously explained by

the possibility of FeLV-A Env glycoproteins pseudotyping FeLV-B and/or FeLV-C

cores (O. Jarrett, Golder, Toth, Onions, & Stewart, 1984). Pseudotyping has also

been used to explain observations that simultaneous infection with FeLV-C and
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enFeLV-FeLV-C chimaeric viruses significantly increases the rate of disease

progression. In this case, the presence of enFeLV RBDs increases the tropism of

the infectious virus, contributing to the broader host range observed in these

experiments. However, only FeLV-C viruses established a chronic infection in

this study, suggesting that the chimaeric Env preferentially packaged FeLV-C

cores (Mathes et al., 1994).

However, recent studies have shown that co-expression of retroviral Env

glycoproteins may induce the formation of heterotrimers which decrease the

infectivity of the virus particles (Dewannieux & Collins, 2008). This was

suggested to be a novel restriction mechanism of infectious retroviruses, and

raises the question as to whether SU proteins form heterocomplexes in mixed

subgroup FeLV infections. This may contribute to the lack of FeLV-B and –C

transmission between hosts. Alternatively, it is possible that endogenous Env

interact with those of infectious virus and induce heterotrimer formation;

however this would require correct expression and glycosylation of the

endogenous protein, something which is not definitively found in enFeLV

elements to date.

1.8 FeLV-A

FeLV-A[Glasgow-1] is the prototypic strain of FeLV-A. However, much research

has also been conducted on the weakly pathogenic FeLV-61E (Donahue et al.,

1988). This was initially isolated as a helper virus for a highly pathogenic FeLV-

FAIDS-inducing variant (see Section 1.10). FeLV-A is the only subgroup commonly

transmitted between hosts and gives rise to FeLV-B and –C via intra-host

evolution.

1.8.1. FeLV-A receptor: feTHTR1

Early research indicated FeLV-A utilised a 70kDa membrane protein (A. K. Ghosh,

Bachmann, Hoover, & Mullins, 1992). It was later identified to be a thiamine

transporter protein, referred to as THTR1, encoded by the SLC19A2 gene. The

feline gene (feTHTR1) displays 93% amino acid identity to the human orthologue
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(huTHTR1) (Mendoza, Anderson, & Overbaugh, 2006) which also has the capacity

to function as a FeLV-A receptor. FeLV-A is the only retrovirus known to utilise

this receptor and therefore creates a unique interference group.

Both the feline and human THTR1 genes are expressed in a broad range of

tissues including small intestine, liver, kidney, skeletal muscle and peripheral

blood lymphocytes (Diaz, Banikazemi, Oishi, Desnick, & Gelb, 1999; Dutta et al.,

1999), supporting the broad ecotropic in vitro cell tropism of FeLV-A (Rojko,

Hoover, Mathes, Olsen, et al., 1979). FeTHTR1 transcripts are also found in

exceptionally high levels in oral mucosal tissues, corresponding to this being the

initial site of FeLV-A entry and replication (K. A. Helfer-Hungerbuehler et al.,

2011). Notably, the level of feTHTR1 transcripts in this tissue does not vary

significantly in relation to a cats’ age; therefore receptor expression levels

cannot be responsible for the age-related resistance to FeLV-A infection that

domestic cats display. It is also unlikely to be the lack of a functional receptor

that protects most large felids from FeLV-A infection as feTHTR1 appears highly

conserved across the Felidae family (K. A. Helfer-Hungerbuehler, et al., 2011).

The physiological role of THTR1 is to aid absorption of thiamine, or vitamin B1,

in the intestinal tract and kidneys. It is not known whether FeLV-A binding and

the subsequent infection impairs feTHTR1 function; however genetic disorders

have been characterised indicating defective huTHTR1 proteins correlate with a

decrease in intracellular thiamine and the onset of thiamine-responsive

megaloblastic anaemia (Diaz, et al., 1999; Labay et al., 1999; Raz et al., 2000).

The variety of non-thiamine-related disorders seen in infected cats does not

support the hypothesis that FeLV-A binding to feTHTR1 causes a predictable

impairment in function.

1.8.2. Pathogenesis of FeLV-A infection

FeLV-A isolates are often mistakenly regarded as minimally pathogenic

(Donahue, et al., 1988; Roy-Burman, 1996) as severe FeLV-associated diseases

more commonly develop in the presence of subgroups B or C. However highly

pathogenic FeLV-A variants have been characterised, for example the FeLV-945

isolate (Chandhasin, Coan, & Levy, 2005; Chandhasin, Lobelle-Rich, & Levy,
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2004) which causes non-T-cell multicentric lymphomas. This is due to a unique

LTR and an unusually variable envelope sequence which together confer a

replicative advantage and heightened pathogenicity to this isolate (Bolin,

Chandhasin, Lobelle-Rich, Albritton, & Levy, 2011; Chandhasin, et al., 2005;

Prabhu, Lobelle-Rich, & Levy, 1999). Infection with other FeLV-A isolates is

commonly associated with thymic T-cell lymphoma, although a pathogenic

mechanism has not been established (Neil, et al., 1991). Numerous other

diseases have been associated with FeLV-A infection, including inflammatory and

degenerative liver disease (Reinacher, 1989), chronic enteritis (Reinacher, 1987)

and benign peripheral lymphadenopathy (Moore, Emerson, Cotter, & DeLellis,

1986). This confirms that most FeLV-A isolates have pathogenic potential,

although it may not manifest as clearly as during FeLV-B or –C infection.

As FeLV-A does not encode a viral oncogene and infection is not routinely

associated with a specific disease, the pathogenic mechanism/s have not been

definitively established. As binding of FeLV-A Env to feTHTR1 does not appear to

impair its function, it is possible FeLV-A pathogenesis is mostly mediated through

insertional activation of cellular proto-oncogenes. Recent research indicates

common retroviral integration sites exist within feline chromosomes A2 and B2

which may be targeted during FeLV-A infection of lymphoid cells (Fujino, Satoh,

Ohno, & Tsujimoto, 2010). This has been suggested previously; the oncogene c-

myc is activated in up to 30% of FeLV-induced tumours and leukaemias (L. S.

Levy, Gardner, & Casey, 1984; Miura et al., 1987; Mullins, Brody, Binari, &

Cotter, 1984; Neil et al., 1984), indicating it may be preferentially activated

during integration. There is also evidence that the flvi-2 locus is often affected

by insertional mutagenesis during FeLV infection (L. S. Levy & Lobelle-Rich,

1992; L. S. Levy et al., 1993); this is additionally observed in multiple murine

lymphomas and hence may be a conserved viral integration site within the

gammaretroviridae (Uren, et al., 2005). Together c-myc and flvi-2 activation

contribute to approximately half of feline T-cell tumours (L. S. Levy, Lobelle-

Rich, Overbaugh, et al., 1993). Other loci commonly involved in FeLV lymphoma

development are pim-1, bmi-1, flvi-1, fit-1 and flit-1 (Fujino et al., 2009;

Fujino, Ohno, & Tsujimoto, 2008; Levesque, Bonham, & Levy, 1990; L. S. Levy,

Lobelle-Rich, & Overbaugh, 1993; Tsatsanis et al., 1994). It is possible these
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proto-oncogenes contribute to human cancer progression, highlighting the role

of FeLV as a model for other diseases and potential tool for oncogene discovery.

1.9 FeLV-B

FeLV-B isolates are found in approximately 40% of field cases, always alongside

FeLV-A infection (Phipps, Hayes, Al-dubaib, Roy-Burman, & Mathes, 2000; Russell

& Jarrett, 1976). The prototype strain is FeLV-B[Gardner-Arnstein] (Elder &

Mullins, 1983; Nunberg, Williams, & Innis, 1984). FeLV-B genomes are formed via

recombination of FeLV-A genetic material with endogenous proviral transcripts

(Neil, et al., 1991; Overbaugh, Riedel, Hoover, & Mullins, 1988; Stewart et al.,

1986). The phenomenon of retroviral variants arising through recombination is

not restricted to FeLV; other examples include the pathogenic murine mink cell

focus-forming viruses (L. H. Evans & Cloyd, 1984; Khan, 1984) and avian

retroviruses (R. A. Weiss, Mason, & Vogt, 1973).

1.9.1. Evolution of FeLV-B envelope genes

The recombination event that leads to FeLV-B formation is hypothesised to occur

during co-packaging of transcripts from both FeLV-A and enFeLV proviruses

(Overbaugh, Riedel, et al., 1988; Tzavaras et al., 1990). Although the co-

packaging of two distinct FeLV genomes within one viral core has not been

directly observed, co-packaging of MLV retroviral RNAs resulting in a novel

recombinant genome has been documented in vitro (Yin & Hu, 1997).

Additionally, co-transfection of cell lines with multiple retroviral molecular

clones gives rise to recombinant viruses, indicating heterodimeric RNA genomes

must be produced (Pandey et al., 1991).

Although most of the enFeLV gag genes studied to date are highly mutated and

thus assumed to be defective, both the packaging signal (Ψ) and leader 

sequences are intact (Berry, et al., 1988); it is therefore feasible that expression

and packaging of RNA transcripts may occur from these loci. However the

specific enFeLV loci that contribute to FeLV-B formation have not been

identified; it is possible that the recently-characterised full length enFeLV env
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genes (Roca, et al., 2004) contribute to the majority of FeLV-B genomes. Due to

their intact LTRs and ORFs they are more likely to be transcriptionally active.

The endogenously-derived portions of FeLV-B env genes display >98% identity to

enFeLV elements (Mullins, Hoover, Quackenbush, & Donahue, 1991), however

the length of this enFeLV-related portion differs significantly between isolates

and influences the replicative capacity of the final virus. This indicates that not

all enFeLV loci have an equal capacity for replication-competent FeLV-B

formation. The location of the recombination break points differs between

isolates, although a central 250bp region of SU appears preferential (Sheets, et

al., 1992). However, occasional 5’ recombination points in FeLV-B genomes have

been found in the pol gene indicating that this region must be transcriptionally

active in at least some enFeLV loci (Overbaugh, Riedel, et al., 1988; Pandey, et

al., 1991). This again indicates the full-length enFeLV loci are likely to be the

contributing elements.

Although there is evidence from experimental infections that FeLV-A isolates

differ in their capacity to recombine and produce FeLV-B (Phipps, Chen, Hayes,

Roy-Burman, & Mathes, 2000), it is obvious that the transcriptional activity of

specific enFeLV elements in the host is the main deciding factor determining

whether FeLV-B arises during an infection. This is supported by the fact that the

rate at which FeLV-B arises in vitro differs during infection of particular cells

lines, an indication of the differing transcription levels of enFeLV loci in variable

tissue types (Overbaugh, Riedel, et al., 1988).

Given the increase in pathogenicity and mortality associated with FeLV-B

development in a host (see below), an accurate analysis of the transcriptional

activity of various enFeLV loci and their subsequent contribution to FeLV-B

formation would be highly informative. Recent advancements in both feline

genomics and bioinformatics, as well as the ever-decreasing price of genetic

sequencing, would now allow these questions to be readdressed.
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1.9.2. FeLV-B receptor: fePit1

During formation of FeLV–B, the acquisition of a novel enFeLV-encoded RBD

leads to a switch in receptor usage and subsequently an extended host range.

FeLV-B can therefore infect human and canine cell lines in vitro, as well as the

feline cell lines susceptible to FeLV-A (Hoover & Mullins, 1991). The cellular

receptor for FeLV-B is the inorganic phosphate-sodium symporter, Pit1 (Rudra-

Ganguly, Ghosh, & Roy-Burman, 1998). Both the human and feline proteins are

functional viral receptors (Takeuchi et al., 1992) however the murine orthologue

is not (Wilson, Farrell, & Eiden, 1994). This explains the restriction seen in

rodent cell lines despite the broad expression of murine Pit1.

Some FeLV-B isolates can also utilise the homologous fePit2 cellular surface

protein (Anderson, Lauring, Robertson, Dirks, & Overbaugh, 2001; Boomer, et

al., 1997), which displays 60% amino acid identity to Pit1 and is the viral

receptor for the amphotropic MLV (Miller, Edwards, & Miller, 1994; van Zeijl et

al., 1994). The proportion of env which has originated from enFeLV loci

determines whether a FeLV-B isolate can utilise Pit2 (Boomer, et al., 1997), as

there are particular sequences within both the RBD and the SU C domain of Env

that are required for successful utilisation of this protein (Boomer, et al., 1997;

Sugai et al., 2001). The C domain of FeLV-B Env also contributes to the

recognition of particular Pit1 orthologues (Faix, Feldman, Overbaugh, & Eiden,

2002), highlighting that the determinants of gammaretroviral receptor usage are

not restricted to the prototypic RBD. It is thought that the C domain affects the

post-binding steps of viral entry.

1.9.3. Pathogenesis of FeLV-B infection

Compared to other outbred species, both leukaemia and lymphoma occur

amongst domestic cats at significantly high rates (Dorn, Taylor, & Hibbard,

1967). Specifically, FeLV-B infection is highly associated with lymphomas

(Sheets, et al., 1993; Tsatsanis, et al., 1994; Tzavaras, et al., 1990), which

occur in 10% of persistently FeLV-infected cats (Cotter, Hardy, & Essex, 1975; W.

D. Hardy, Jr., et al., 1976). FeLV-B is also more commonly observed in
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leukaemic cats than FeLV-A (O. Jarrett, et al., 1978; Tzavaras, et al., 1990).

Despite these associations, a conserved oncogenic mechanism during FeLV-B

infections has not been identified.

The most common FeLV-induced tumours are clonal T lymphoid tumours, which

display fixed sites of viral integration across numerous cells (Casey, et al.,

1981). They are generally classified according to their location; thymic

(mediastinal), alimentary, multicentric (peripheral), and extranodal lymphomas

have been identified and classified as “FeLV-B induced” (Lutz, et al., 2009).

Although single tumours are most common, disseminated tumours involving

multiple organs have been observed on occasion (Reinacher & Theilen, 1987).

The long latency period associated with these diseases (between 2 and 3 years)

implies FeLV-B infection is necessary but not always sufficient for lymphoma

development, and its causative role(s) in these cancer progressions has not been

determined. Notably, the presence of FeLV-B is specifically highly associated

with thymic lymphoma, whereas non T-cell diseases (such as multicentric

lymphoma) are associated with pure FeLV-A infections (Ahmad & Levy, 2010).

This association indicates FeLV-B has an as-yet undefined pathogenic mechanism

which causes such conditions.

It is generally thought that in addition to altering the clinical outcome, the

development of FeLV-B accelerates disease progression, as a solely FeLV-A

infection may remain asymptomatic indefinitely. However recent evidence

indicates that co-inoculation of cats with FeLV-A and –B actually decreases both

the rate of disease progression and development of chronic viraemia in a titre-

dependent manner (Phipps, Hayes, et al., 2000). It may be that the genotype of

the initial infecting FeLV-A contributes to the pathogenicity of the related FeLV-

B.

It has been suggested that the main contributing factor to the increased

pathogenicity of FeLV-B is the extended host range, conferred by the novel use

of the fePit1 receptor. In addition to infection of naïve cells, this would also

allow reinfection of chronically infected cells as the fePit1 protein would not be

downregulated following the initial FeLV-A viraemia. However FeLV-B associated

diseases do not always show a common cellular progenitor indicating this virus
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does not preferentially target and disrupt a specific cell type. For example,

neurological disorders have been associated with FeLV infection (Carmichael,

Bienzle, & McDonnell, 2002) and recent studies found that both FeLV-B and

enFeLV Env glycoproteins allow viral entry into cerebral endothelial cells

(Chakrabarti, Hofman, Pandey, Mathes, & Roy-Burman, 1994). These are

naturally resistant to FeLV-A and –C and so it appears FeLV-B would be the

clinical cause of such symptoms. However this is not routinely observed; it is

therefore highly difficult to predict disease outcome based purely upon the

cellular tropism of the FeLV-B isolate. It is apparent, however, that FeLV-B

formation is a hallmark for increased disease potential in the host. Research

should be conducted into defining the molecular events which redirect disease

outcome to lymphoma and/or leukaemia in such a large percentage of FeLV-B

infections.

1.10 FeLV-C

FeLV-C is unique amongst the FeLV subgroups as it consistently induces pure red

cell aplasia (PRCA) in infected cats, although it is not associated with any

proliferative (neoplastic) disorders. It is extremely rare and is thought to affect

only 1% of FeLV viraemic cats (Hoover, Kociba, Hardy, & Yohn, 1974; O. Jarrett,

et al., 1984; O. Jarrett, et al., 1978; Mackey, Jarrett, Jarrett, & Laird, 1975).

FeLV-C(Sarma), cloned and genetically sequenced in 1986 (Riedel, et al., 1986),

is the prototype FeLV-C isolate. Experimental infections with this molecular

clone induce the hallmark symptoms of FeLV-C infection, being fatal aplastic

anaemia caused by a suppression of erythroid cellular development within 8

weeks of infection (Onions, Jarrett, Testa, Frassoni, & Toth, 1982; Riedel, et al.,

1986). FeLV-C utilises the cellular protein FLVCR1 as a viral receptor (Tailor,

Willett, & Kabat, 1999).

Similarly to FeLV-B, FeLV-C is only found alongside FeLV-A in naturally infected

cats. Experimentally infected weanling kittens can clear FeLV-C infections unless

it is administered alongside FeLV-A, and in these cases FeLV-C viraemia and the

accompanying anaemia only appeared 20 weeks after FeLV-A (O. Jarrett, et al.,

1984). However experimentally infected neonatal kittens can develop chronic

viraemia and PRCA from FeLV-C alone, provided the virus is administered via
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infected cell inoculation directly into the bone marrow (Dornsife, Gasper,

Mullins, & Hoover, 1989). This correlates with two previous hypotheses; that

FeLV in general displays age-restricted infectivity and FeLV-A is required to

function as a helper virus to establish initial FeLV-B and FeLV-C infections (O.

Jarrett, et al., 1984). It has been suggested that FeLV-A Env may pseudotype

FeLV-C genomes, thus increasing the likelihood of the FeLV-C genome reaching

cells wherein it may replicate and establish an infection (O. Jarrett, et al.,

1984).

1.10.1. Evolution of FeLV-C envelope genes

FeLV-C was originally thought to arise through recombination with enFeLV, in a

manner similar to that of FeLV-B (O. Jarrett & Russell, 1978; Overbaugh, Riedel,

et al., 1988) as the SU of FeLV-C(Sarma) possesses two short regions with

homology to enFeLV (Riedel, Hoover, Dornsife, & Mullins, 1988; Riedel, et al.,

1986). FeLV-C also exhibits the extended host range of FeLV-B (thus it is not

ecotropic) but has the additional capacity to infect guinea pig cells. However,

most FeLV-C isolates do not contain enFeLV domains. It is now assumed that

FeLV-C arises within a host after infection with FeLV-A through genetic drift of

the viral genome, although this has never been shown experimentally. This leads

to a switch in both the receptor usage and the pathogenic potential of the

isolate. Thus FeLV-C isolates arise independently of each other, which is

reflected by the lack of highly conserved regions within the Env of individual

isolates (Rigby, et al., 1992), and the final genetic sequence partially reflects

the original FeLV-A isolate. The specific mutations required within the Env

protein to induce the FeLV-C phenotype and the pressures that may influence

these mutations have not been identified.

Early research identified sequences within the RBD of specific isolates that

correlated with the development of PRCA (Riedel, et al., 1988; Rigby, et al.,

1992), and it was established that a mutation of 11 specific amino acids within

this region of FeLV-A was sufficient to confer a FeLV-C cell tropism (Rigby, et

al., 1992). However comparison of the RBDs from independently-isolated FeLV-C

strains did not reveal any similarities, hence there does not appear to be a

specific mutation essential for FeLV-C development. Mutations have been
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identified that are conserved amongst numerous FeLV-C isolates; however when

these are introduced into FeLV-A genomic backbones they do not alter the cell

tropism (Brojatsch et al., 1992) and are not sufficient to induce PRCA. These

mutations are also not conserved between all FeLV-C isolates characterised since

this report.

As these isolates all induced PRCA in their hosts yet possessed differential

mutations in the RBD, it appears that areas other than the traditional RBD of Env

must contribute to both receptor recognition and disease progression. Mutations

may be required across the entire Env protein to induce a switch from THTR1 to

FLVCR and the subsequent PRCA. This hypothesis was supported by studies

utilising chimaeric Env proteins, which found that replacing the 5’ region of the

FeLV-A RBD with that of FeLV-C did not induce hallmark PRCA symptoms (Rey,

Prasad, & Tailor, 2008). Rather, the chimaeric viruses displayed an altered cell

tropism and induced macrocytic anaemia. It was suggested that the chimaeras

may have been able to utilise both THTR1 and FLVCR, albeit with lower

efficiency (Rey, Prasad, et al., 2008).

Further investigations found the C-terminal region of the FeLV-C SU forms a

second RBD, which binds FLVCR1 independently of the prototype N-terminal RBD

(Rey, Prasad, et al., 2008). This “Cdom” is essential for successful viral binding

and entry. Its binding to FLVCR1 is dependent upon the presence of the C2

disulphide-bonded loop within the C terminal of SU. However the sequence of

the C2 loop is highly divergent between FeLV subgroup env genes, indicating it

may indirectly play a role in receptor recognition. Although it appears that Cdom

and the N-terminal RBD interact, soluble Cdom from FeLV-C is able to bind

FLVCR1 in the absence of the N terminal RBD. The Cdom of FeLV-A may also

recognise FLVCR1 independently of the traditional FeLV-C RBD (Rey, Prasad, et

al., 2008). This observation supports the hypothesis that FeLV-C arises through

the genetic drift of FeLV-A, and may explain why individual isolates may possess

divergent sequences and yet consistently induce PRCA. It has been suggested

that whilst the N terminal RBD confers receptor specificity, the Cdom provides a

secondary receptor binding motif which binds to the viral receptor

independently of the RBD, allowing viral entry to occur (Rey, Prasad, et al.,

2008). A potential role for both the C2 loop and Cdom of SU in receptor
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recognition is not restricted to FeLV, as similar hypotheses have been suggested

for other gammaretroviruses (Barnett & Cunningham, 2001; M. Gemeniano,

Mpanju, Salomon, Eiden, & Wilson, 2006; Lavillette, et al., 2001).

The hypothesis that the viral genome undergoes a series of mutations mediating

the transition from FeLV-A to FeLV-C is supported by the recent discovery that

an isolate previously characterised as being a mixture of FeLV-A, -B and –C was

composed of a heterogeneous viral population including a tri-tropic Env protein

able to use THTR1, FLVCR1 and FLVCR2 (Shalev et al., 2009). This Env contains a

PRR and Cdom (including the C2 loop) similar to FeLV-A while the RBD region

displayed mutations conserved with other FeLV-C genomes. This may contribute

to the extended tropism seen in this isolate. It was suggested that this virus is in

an intermediate stage of evolution towards FeLV-C. It is possible that eventually

intermediate FeLV strains lose the ability to utilise feTHTR1 as mutations

accumulate. Henceforth the viral variant would be limited in its transmission

potential, explaining why FeLV-C is unable to transmit between cats.

1.10.2. FeLV-C receptor: feFLVCR1

As with the majority of retroviral receptors, FLVCR1 (feline leukaemia virus C

receptor) is a membrane-spanning cellular transporter, with 12 transmembrane

domains and 6 extracellular loops. The feFLVCR1 cDNA, sequenced prior to the

discovery of the protein’s function, was predicted to encode a protein

approximately 560 amino acids in length, with a molecular weight of 60kDa

(Tailor, et al., 1999). FLVCR1 was subsequently established as a haem exporter,

a member of the major facilitator superfamily (Quigley et al., 2004; Tailor, et

al., 1999).

The intracellular synthesis of haem proteins commences during maturation of

BFU-E (Burst Forming Units – Erythroid) to CFU-E (Colony Forming Units –

Erythroid). Under natural conditions a negative feedback system is in operation,

as the haem proteins regulate the function of a transcriptional repressor, Bach1,

which then regulates the transcription of globin genes (Rafie-Kolpin et al.,

2000). Thus the presence of haem indirectly initiates the production of globins,

which associate with the haem and are subsequently exported. It is hypothesised
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that the wildtype function of FLVCR1 is as an “overflow valve” (Quigley, et al.,

2004), operating to reduce levels of cytoplasmic haem in both erythroid

precursors and erythrocytes. Inhibition of this function (such as binding of FeLV-

C Env proteins) impairs erythroid maturation by increasing the cellular haem

content, eventually leading to cellular apoptosis (Quigley, et al., 2004) and the

non-regenerative anaemia seen in affected cats. Although expression of FLVCR1

is found in multiple haematopoietic lineages (Tailor, et al., 1999), impairment of

this protein is only detrimental to erythrocytes and their progenitors (BFU-E and

CFU-E cells) and does not affect granulocytes (Quigley et al., 2000).

The functional human orthologue, hFLVCR1, displays 88% nucleotide identity and

83% amino acid identity to the feline protein (Tailor, et al., 1999). A paralogue,

hFLVCR2, has also been identified and displays 52% nucleotide identity to

hFLVCR1. Although this protein functions as a haem transporter it cannot

mediate infection by FeLV-C(Sarma) (Duffy et al., 2010). Although murine cells

are resistant to all subgroups of FeLV, the murine FLVCR1 orthologue appears

functional when over-expressed in host cells (Tailor, et al., 1999). There are

multiple domains within FLVCR1 that contribute to its function as a viral

receptor. Specifically, an aspartic acid residue (D487) within extracellular loop 6

confers receptor functionality upon FLVCR2 (J. K. Brown, Fung, & Tailor, 2006).

Conversely this residue is not essential for FLVCR1, as replacement of D487 with

the corresponding asparagine (N463) found in FLVCR2 does not deplete receptor

functionality. The specific sequence of the first extracellular loop also appears

necessary for the receptor function of FLVCR1, although individual essential

residues within this loop have yet to be elucidated (J. K. Brown, et al., 2006).

Rearrangements within the hFLVCR1 gene have been associated with the

presence of Diamond-Blackfan anaemia (Heyn, Kurczynski, & Schmickel, 1974), a

fatal human congenital disorder characterised by an anaemia highly similar to

feline PRCA. Other individuals with a similar disorder express alternatively

spliced isoforms of FLVCR1 RNA transcripts (Rey et al., 2008). Thus impairment

of the natural function of FLVCR1 may occur without viral interactions and may

result in similar disease manifestations.
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1.10.3. Pathogenesis of FeLV-C infection

During erythropoiesis, early erythroid progenitor cells (BFU-E) develop into late

erythroid progenitor cells (CFU-E). CFU-E then develop into erythroid precursor

cells, which later fully differentiate into erythrocytes. FeLV-C infection impairs

the development of CFU-E cells from BFU-E both in vivo (Abkowitz, Holly, &

Grant, 1987) and in vitro (Rojko et al., 1986), depleting the number of

circulating CFU-E cells. The depletion of BFU-E is not as severe (Boyce, Hoover,

Kociba, & Olsen, 1981; Onions, et al., 1982) although their growth kinetics are

affected (Abkowitz, 1991; Abkowitz, Holly, & Adamson, 1987). The decrease in

CFU-E and BFU-E coincides with the appearance of reticulocytopaenia and

precedes the appearance of PRCA by approximately 2 to 3 weeks (Dornsife, et

al., 1989). Clinical PRCA, hallmarked by a non-regenerative absence of

circulating reticulocytes (Cotter, 1979; Mackey, et al., 1975) is evident by 6

weeks following experimental infection (Onions, et al., 1982); until the anaemia

is quite far advanced non-specific clinical signs including fever, weight loss and

fatigue may be observed. The SU domain of the Env of FeLV-C therefore acts as

a dominant-negative protein, effectively inducing the PRCA phenotype by

reducing and/or interfering with the cellular surface display of feFLVCR1

(Quigley, et al., 2000; Quigley, et al., 2004).

Colony Forming Units – Granulocyte-Macrophage (CFU-GM) cells, which originate

and mature in the bone marrow, are infected but not functionally impaired

during FeLV-C infection (Rojko, et al., 1986; Testa, Onions, Jarrett, Frassoni, &

Eliason, 1983), however myelofibrosis (the replacement of bone marrow with

scar tissue or collagen) has been observed in numerous FeLV-C infections (J. C.

Olsen & Watson, 1980; Onions, et al., 1982). A pathogenic mechanism has not

been determined and it is not known if this contributes to disease symptoms. It

has been suggested that most cats simply die before these symptoms develop.

FeLV-C replication is also associated with the aggregation and subsequent

apoptosis of T lymphoma cells, a phenomenon only seen in infection with either

FeLV-C or FeLV-C-based recombinants (Pandey, et al., 1991). This is thought to

be due to the higher transcriptional activity of the FeLV-C LTR in these cell lines

compared to fibroblastic cultures (Rojko et al., 1992). The implications of this

phenomenon for the host have not been examined.
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There have been attempts to treat the erythroid aplasia seen in FeLV-C

infections with human interferon-α, however these treatments have produced 

conflicting results (Cummins, Tompkins, Olsen, Tompkins, & Lewis, 1988;

Kociba, Garg, Khan, Reiter, & Chatfield, 1995). Treatment of naturally infected

cats which displayed FeLV-C-associated disease with bovine interferon-β also 

reported a decrease in symptoms and short-term recovery (Tompkins &

Cummins, 1982). This is intriguing as FeLV-C infection disrupts the natural

development of erythroid progenitor cells, making regeneration of erythrocytes

highly unlikely whilst the virus is still actively replicating. Generally FeLV-C is

regarded as fatal and with limited options for treatment.

1.11 FeLV-T

FeLV-T was isolated from a FeLV-A infected cat (Rohn, Linenberger, Hoover, &

Overbaugh, 1994) and is a T-cell tropic subgroup of FeLV that induces lymphoid

depletion and immunodeficiency in hosts. It appears to utilise the Pit1 receptor,

despite having an apparently-THTR1-binding domain within Env. This is partially

due to the lack of a functional fusion motif in the 5’ region of SU, as the

prototype FeLV-T virus possesses an asparagine (N) in place of the required

histidine (H) in the fusion motif of SU (SPNQ, not SPHQ). To rescue this defect in

cellular entry, FeLV-T requires expression of a cofactor in order to successfully

infect T-lymphocytes (FeLIX). FeLV-T is the only gammaretrovirus identified to

date that requires a cofactor for cellular entry (Lauring, et al., 2001; Overbaugh

& Bangham, 2001) and thus does not display a traditional receptor-virus

relationship. FeLIX (FeLV Infectivity X-accessory protein) is a truncated enFeLV

envelope protein expressed in certain feline tissues, including T cells (Anderson,

et al., 2000; Lauring, et al., 2001). As Pit1 is widely expressed in feline cells,

FeLIX expression is the main factor limiting the tropism of FeLV-T. A mechanism

of infection regarding how the combination of FeLV-T and FeLIX utilise the Pit1

receptor has not yet been elucidated.

FeLV-associated feline AIDs (FeLV-FAIDS) had been described prior to the

discovery of FeLV-T, and the recent characterisation of FeLV-T and FeLIX mean

that these observations may now be reinterpreted. For example, early research
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identified an isolate that induced immunodeficiency, displayed a host range

limited to T cells, and required the presence of a closely-related helper virus

(Overbaugh, Donahue, Quackenbush, Hoover, & Mullins, 1988; Overbaugh et al.,

1992). It is possible that this virus strain was an early isolation of FeLV-T.

1.11.1. FeLV-T envelope, FeLIX and Pit1 binding

FeLV-T arose through mutations in the SU domain of FeLV-A and the two

subgroups display approximately 96% nucleotide identity (Donahue et al., 1991;

Overbaugh, Donahue, et al., 1988). It is assumed that FeLV-T arose through

genetic drift in a manner similar to that of FeLV-C (Gwynn, Hankenson, Lauring,

Rohn, & Overbaugh, 2000; Rohn, Moser, Gwynn, Baldwin, & Overbaugh, 1998).

The switch in receptor usage may result in FeLV-T being able to re-infect the

initially infected cells, despite the down-regulation of the FeLV-A receptor

(feTHTR1) which would usually prevent super-infection. This correlates with

early evidence that FeLV-FAIDS isolates did not establish interference against

homologous challenge (Moser, et al., 1998; Rohn, et al., 1998).

FeLV-T receptor specificity (that is, the ability to utilise Pit1 alongside a

requirement for FeLIX expression) has been attributed to amino acids 6, 7 and 8

of the SU protein and the presence of a four amino acid insertion, with an

additional adjacent mutation, in the C terminal of envelope glycoprotein (Cheng

et al., 2006). This supports mounting evidence that both the C and N terminal

regions of Env contribute to the receptor usage of FeLV variants, not merely the

traditional RBD. This is further supported by the fact that some viruses

displaying chimaeric envelope glycoproteins can utilise FeLV-C and FeLIX entry

pathways (Cheng, et al., 2006).

FeLIX is 273 amino acids in length and displays 92.3% identity to the FeLV-B SU

domain; in fact FeLV-B SU domains can functionally substitute for FeLIX

(Lauring, Cheng, Eiden, & Overbaugh, 2002). It also possesses a putative signal

peptide marking it for extracellular transport and is therefore a secreted

peptide, as it lacks the hydrophobic transmembrane anchor. The secretion of

FeLIX is confirmed by the fact that it functions in trans, as cell-free FeLIX
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renders previously resistant Pit1-expressing cell lines susceptible to FeLV-T

infection. However secretion is not essential for FeLIX function (Anderson, et

al., 2000). Studies of the crystal structure of FeLIX indicate that it aids infection

by catalysing the membrane-fusion event following receptor binding (Barnett,

Wensel, Li, Fass, & Cunningham, 2003). This supports suggestions that FeLIX is

an endogenous Env peptide that may rescue non-functional exogenous FeLV

isolates. The concept of a soluble RBD transactivating the entry of heterologous

retroviruses has been raised previously. In the case of the porcine endogenous

retroviruses, the ability to infect otherwise restrictive cells is due to the

presence of a soluble heterologous RBD and its cognate receptor (Lavillette &

Kabat, 2004). It is possible that FeLIX allows entry of all non-functional FeLV

isolates in this manner, regardless of their individual subgroup.

Notably, even though FeLV-B is able to utilise Pit2 for cellular entry, only Pit1 is

able to mediate the binding of either FeLV-B SUs or FeLIX to allow FeLV-T

progressive infection. Studies involving chimaeric Pit1/2 proteins have identified

three regions within Pit1 that determine successful FeLIX binding, however these

are not required for FeLV-B infection (Lauring, et al., 2002). Pseudotype assays

with both FeLV-B and FeLV-T envelopes, conducted in the presence of soluble

FeLIX indicated that FeLIX does not interfere with FeLV-B infection, confirming

that they utilise different regions of Pit1 during viral binding (Shojima, Nakata,

& Miyazawa, 2006). Therefore in addition to FeLIX, FeLV-T itself may be

required to bind to Pit1 to ensure successful infection (Lauring, et al., 2002). To

date, although FeLIX binding to Pit1 is known to be essential for FeLV-T

infection, it is not known if FeLV-T itself is able to bind to any cellular receptor.

1.11.2. Pathogenesis of FeLV-T infection

FeLV-induced immunosuppression occurs in every infected cat to a degree, as all

FeLV subgroups are able to infect haematopoietic cells. It may have numerous

manifestations, including thymic atrophy, lymphopaenia, neutropaenia, and the

loss of CD4+ and CD8+ lymphocytes (Ogilvie, Tompkins, & Tompkins, 1988;

Orosz, Zinn, Olsen, & Mathes, 1985a, 1985b; Perryman, Hoover, & Yohn, 1972).

FeLV-FAIDS is clinically characterised by persistent viraemia, weight loss and

lymphoid hyperplasia followed by severe lymphoid depletion and a subsequent
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high susceptibility to opportunistic secondary infections (Hoover, Mullins,

Quackenbush, & Gasper, 1987). These clinical symptoms are assumed to be a

result of cytopathic effect (CPE) within the infected lymphocytes, as FeLV-T

infection of T cells induces syncytia in vitro (Rohn, et al., 1998). In addition to

the lack of circulating T lymphocytes, immunosuppression may be partially due

to the impaired ability of FeLV-T infected hosts to produce a primary antibody

response against invading pathogens. This is associated with the presence of a 34

amino acid region within the C terminal of the SU domain of FeLV-T isolates.

Although a mechanism has not been identified, it is thought that these isolates

may display a heightened ability to infect and impair the function of certain

immune cell subsets (Quackenbush et al., 1990).

Experimental inoculation of cats indicates a fatal immunodeficiency develops

after an incubation period as short as 60 days, dependent on the age of the cat

upon inoculation (Mullins, Chen, & Hoover, 1986). However survival rates depend

highly upon the rate of immunosuppression; cats displaying a rapid depletion of

circulating T-lymphocyte progenitor cells usually survive for approximately 3

months after the onset of clinical symptoms (Quackenbush, Mullins, & Hoover,

1989). However survival for up to a year has been observed in individuals

displaying gradual immunosuppression, although this is associated with a higher

rate of extranodal lymphoma (Hoover, et al., 1987; Mullins et al., 1989).

Unusually high levels of un-integrated viral DNA are often observed prior to the

onset of clinical symptoms, mainly within the bone marrow, intestine and

lymphoid tissues (Mullins, et al., 1986; Mullins, et al., 1991). Although it is

difficult to detect in vivo due to the low level of synchronously infected cells, in

vitro studies indicates this occurs a few days after infection (Hofmann-Lehmann,

et al., 2001). It is not known if this contributes to or is a symptom of the clinical

diseases seen in these infections.

It has been suggested that “discordant” cats, which present with antigenaemia

but are negative in virus-isolation assay, may be infected with fusion-defective

FeLV-T-like isolates which utilise the endogenous FeLIX expressed in T-

lymphocytes. An assay has therefore been developed recently to detect

defective FeLV-T virions in clinical samples. This relies upon an indicator cell
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line which constitutively expresses FeLIX, thus allowing the otherwise-defective

virus to replicate and induce a hallmark syncytia in the monolayer (Nakaya,

Shojima, Hoshino, & Miyazawa, 2010). It remains to be seen whether this assay

proves informative in the characterisation of potentially-defective viruses. It is

true that isolates possessing defective fusion motifs have been identified

previously (Chandhasin, et al., 2005), however as these were present within a

whole viral population they may not require FeLIX expression to enter a cell.

Although there are numerous aspects of FeLV-T infection and replication which

remain un-investigated, the extreme rarity of this subgroup makes this research

less of a priority compared to further characterisation of the pathogenic –B and –

C subgroups.

1.12 Other feline retroviruses

Apart from FeLV, there are numerous other infectious retroviruses of felines

which differ in their pathogenicity and disease associations. Two of these are

complex retroviruses; feline immunodeficiency virus (FIV) is a highly pathogenic

lentivirus, whilst feline foamy virus (FeFV) is an entirely apathogenic

spumavirus. Within the simple retroviruses, feline sarcoma virus (FeSV) is a rare

derivative of FeLV associated with spontaneous sarcoma development.

Additionally, the domestic cat genome contains numerous non-FeLV related

endogenous retroviral elements, including the infectious retrovirus, RD114.

1.12.1. Feline immunodeficiency virus

FIV was isolated in 1986 in the USA (N. C. Pedersen, Ho, Brown, & Yamamoto,

1987). As a lentivirus, it is a complex retrovirus displaying high similarity in both

its genomic structure and pathogenic mechanisms to HIV. However HIV is

commonly transmitted through sexual contact, whereas the primary mode of

transmission of FIV is via salivary transmission. FIV has a worldwide distribution

and the prevalence of infection varies between 1 and 15% of healthy cats,

according to geographic region. Some estimates reach an infection rate of 44%

amongst sick cats (Miyazawa & Mikami, 1993).
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FIV infection is associated with a range of diseases, including gingivostomatitis,

anaemia, neurological conditions and various degrees of immunosuppression

(Ishida, Washizu, Toriyabe, & Motoyoshi, 1988; Yamamoto et al., 1989).

Although FIV is often regarded as a fatal infection, disease progression may only

occur after a long latency period. FIV is thought to escape immune clearance

during this period by acquiring mutations in immunodominant hypervariable

regions (Pancino et al., 1993). It is not known whether FeLV utilises a similar

mechanism to avoid viral clearance.

The initial acute phase of FIV infection is characterised by high viral loads in

circulating blood. This is followed by an extended asymptomatic phase during

which cats may not be shedding infectious virus particles. The third phase of

infection is characterised by a generalised lymphadenopathy, followed by severe

AIDS-related disorders and a final terminal AIDS condition. Opportunistic

infections, including upper respiratory tract infections and gastrointestinal

problems, commonly occur during this latter period, at which point the immune

system is chronically depleted (Ishida & Tomoda, 1990; Miyazawa, 2002).

Vaccines that induce protective immunity are commercially available, however

as vaccinated cats are serologically indistinguishable from infected cats their use

is not routinely recommended (J. Levy, et al., 2008). Cats produce antibodies

against SU, TM, and multiple gag-encoded proteins after approximately four

weeks of infection (Hosie & Jarrett, 1990). However the duration of this humoral

response is questionable (Kohmoto et al., 1998). Protection is also provided by

CTL activity which contributes to viral clearance (Flynn et al., 1995).

Similar to FeLV, the FIV genome contains the gag, pol, and env essential genes

(Maki et al., 1992; Olmsted, Hirsch, Purcell, & Johnson, 1989). However unlike

gammaretroviruses the Gag and Pol proteins are not produced from a singular

polyprotein; although a single RNA transcript is produced, Pol is only translated

following a ribosomal frameshift (Morikawa & Bishop, 1992). Additionally, both

the TM and SU domains of Env are heavily glycosylated (Maki, et al., 1992;

Olmsted, et al., 1989; Poss, Dow, & Hoover, 1992), in comparison to FeLV where

glycosylation is restricted to the SU domain. FIV also contains three accessory

genes, vif, rev and ORF-A. Rev is a regulatory protein involved in the transport
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of immature viral mRNAs from the nucleus into the cytoplasm preceding

translation (Kiyomasu et al., 1991; Phillips et al., 1992; Tomonaga et al., 1993).

The role of ORF-A has yet to be fully elucidated, however it appears to be

involved in post-transcriptional processing of RNA and is essential for viral

infectivity (M. C. Gemeniano, Sawai, Leutenegger, & Sparger, 2003). The Vif

(viral infectivity factor) protein is conserved amongst lentiviruses and is critical

for virus expression from otherwise-resistant cells.

1.12.2. Feline foamy virus

Feline foamy virus (FeFV), also known as feline syncytium-forming virus, is a

complex retrovirus of the Spumavirus genus. It was isolated in 1969 (Fabricant,

Rich, & Gillespie, 1969; Riggs, Oshirls, Taylor, & Lennette, 1969) and

epidemiological studies indicate a worldwide distribution amongst both domestic

and wild felids (Daniels, et al., 1999; Winkler, Lochelt, & Flower, 1999).

Prevalence of infection is estimated to be between 14 to 28% of domestic cats

(Miyazawa, 2002) however it has been suggested that this may rise to 70%

amongst older cats (Flower, Wilcox, Cook, & Ellis, 1985; Winkler, Flugel,

Lochelt, & Flower, 1998; Winkler, et al., 1999). This is reflective of the fact that

infections are of a lifelong duration with chronic viraemia (German, Harbour,

Helps, & Gruffydd-Jones, 2008; Meiering & Linial, 2001). The virus displays a

broad cell tropism both in vitro and in vivo (German, et al., 2008) (Gaskin &

Gillespie, 1973), although the receptor has yet to be identified. Additionally, the

methods of transmission have not been elucidated (Winkler, et al., 1999),

although it is suspected to be through mutual grooming and/or fighting (i.e., an

oronasal primary route of transmission, similar to that of FeLV and FIV).

Spumaviruses are generally regarded as apathogenic (Meiering & Linial, 2001).

However CPE, including syncytia formation and vacuolisation leading to

apoptosis, has been observed in some infected cell lines (Meiering & Linial,

2001) and there has been recent controversy regarding whether or not they are

truly apathogenic (German, et al., 2008). FeFV infection has been associated

with chronic progressive arthritis, although this may merely be due to the high

prevalence of the virus (N. C. Pedersen, Pool, & O'Brien, 1980). Supporting this

hypothesis is the fact that experimentally infected cats did not display any
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clinical symptoms through six months of infection, although histopathology was

noted in the lungs and kidneys upon autopsy (German, et al., 2008). Multiple

previous studies of experimentally infected cats also indicated FeFV is purely

apathogenic (Schwantes, Ortlepp, & Lochelt, 2002) (Alke, Schwantes, Zemba,

Flugel, & Lochelt, 2000; Gaskin & Gillespie, 1973). Despite the asymptomatic

infection, cats mount immune responses to FeFV infection and antibodies can be

detected approximately two weeks post-infection (German, et al., 2008). This

serology can be used to distinguish between the two genetically-distinct

subtypes of FeFV (Flower, et al., 1985) which display 57% nucleotide identity

within the SU domain of their Env proteins (Winkler, et al., 1998). However this

does not correlate to differences in their host range, as would be expected for

FeLV.

As spumaviruses are complex retroviruses, their genomes contain additional

accessory genes as well as the standard gag, pol and env ORFs. FeFV possesses

two accessory genes, both encoding non-structural proteins; tas (previously

termed bel-1) and bet. The bet ORF is not essential for viral replication and is

thought to aid in viral cellular defence by binding to feline restriction factors

(Chareza et. al., 2012). However the Tas protein is essential for viral replication

and plays a role in transactivation of the LTR promoter elements (Keller et al.,

1991). Despite the conserved presence of accessory genes, there are numerous

features that distinguish spumaviruses from their complex lentiviral relatives:

(1) Although the majority of intracellular (immature) virions contain viral RNA,

mature foamy virus particles contain DNA (Roy et al., 2003). The RNA is reverse

transcribed within the particle before viral adsorption and cell entry (Yu,

Baldwin, Gwynn, Yendapalli, & Linial, 1996).

(2) Spumavirus genomes contain an internal promoter within the env gene which

drives transcription of both tas and bet (Lochelt, Flugel, & Aboud, 1994).

(3) FeFV pol genes are expressed from spliced sub-genomic transcripts (Bodem,

Lochelt, Delius, & Flugel, 1998), whereas in other retroviruses a large

polyprotein is translated and cleaved into the respective viral enzymes.

(4) The FeFV virions appear immature, even after budding (a hallmark of

spumaviruses). This is partially due to inefficient cleavage of the Gag

polyproteins and to the Env protein containing a different leader peptide to
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other retroviruses. This induces virion release from the ER, rather than the

plasma membrane (Goepfert, Wang, & Mulligan, 1995).

(5) FeFV is also unique as the Gag proteins do not localise to the nucleus at any

point in the viral replication cycle (Bodem, et al., 1998), unlike the simian

foamy viruses (Schliephake & Rethwilm, 1994). The Gag proteins of other

retroviruses (including FeLV) translocate to the nucleus in order to interact with

nucleic viral RNA prior to nuclear export (Garbitt-Hirst, Kenney, & Parent,

2009).

Due to its apathogenicity and broad cell tropism, FeFV has not been studied in

detail in recent years, and the majority of recent research has centred around

its use as a viral vector for gene therapy applications (Bastone & Lochelt, 2004;

Schwantes, Truyen, Weikel, Weiss, & Lochelt, 2003). Interest in the

spumaviruses has also been revived recently by the discovery of an endogenous

spumavirus within the genome of the two-toed sloth (Choloepus hoffmanni)

(Katzourakis, Gifford, Tristem, Gilbert, & Pybus, 2009) indicating these viruses

have been present as infectious agents of mammals for at least 100 million

years. This was the first endogenous foamy virus to be characterised and indeed

one of the first endogenous complex retroviruses (the first being the discovery of

an endogenous lentivirus of rabbits in 2007 (Katzourakis, Tristem, Pybus, &

Gifford, 2007)).

1.12.3. Feline sarcoma virus

Feline sarcoma virus (FeSV) is a rare retrovirus which induces approximately 2%

of fibrosarcomas in cats. Although this virus has not been the focus of recent

studies, early research indicated it was especially prevalent in young cats

presenting with fibrosarcomas (Snyder, 1971). FeSV isolates are all genetically

unique, as the virus arises from recombination events between exogenous FeLV-

A and host cellular DNA (Frankel, Gilbert, Porzig, Scolnick, & Aaronson, 1979;

Guilhot, Hampe, D'Auriol, & Galibert, 1987). The recombination events ensure

the FeSV genome does not contain intact env sequences; thus all FeSV viruses

are replication defective (Henderson, Lieber, & Todaro, 1974) and require the

continued presence of replicating FeLV to spread. Infected cells therefore

express chimaeric virus-host proteins that induce malignancy. Although the
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specific oncogenic mechanism differs between isolates, the activation and

transduction of a cellular proto-oncogene is essential. For example, the fes gene

is activated in the Snyder-Theilen FeSV strain (Sherr, Fedele, Oskarsson, Maizel,

& Woude, 1980), inducing transformation of the infected cells.

Although systemic FeLV viraemia may be observed in the affected cat, the FeSV

virus is contained within the tumour itself (de Noronha, Grant, Lutz, Keyes, &

Rowston, 1983). Therefore FeSV is not transmissible under natural conditions,

although cats have been experimentally infected with a mixture of both FeSV

and FeLV viruses (de Noronha, et al., 1983). Transfection of naïve cells with the

recombinant proviral genome, in the absence of FeLV, is also sufficient to induce

initial transformation of the host cell (Barbacid, 1981) although the virus is

unable to spread.

FeSV has been reported worldwide and there is no indication that specific FeLV-

A strains are more likely to result in FeSV formation. However there is evidence

of preferential transduction and activation of cellular tyrosine-specific protein

kinases (Barbacid, Beemon, & Devare, 1980; Hampe, Gobet, Sherr, & Galibert,

1984; Naharro et al., 1983; Van de Ven, Khan, Reynolds, Mason, & Stephenson,

1980; Ziemiecki et al., 1984). These genes tend to be highly conserved across

species and transduction of orthologues by other oncogenic retroviruses has been

documented (reviewed in Hampe, et al 1984) therefore they may represent

common retroviral integration sites. FeSV-induced tumours are also distinct from

the vaccination site-associated sarcomas initially described in 1991 (Hendrick &

Goldschmidt, 1991). These are associated with an increased inflammatory

response following vaccination with adjuvanted inactivated FeLV and rabies

vaccines (Hendrick, Goldschmidt, Shofer, Wang, & Somlyo, 1992; Macy, 1995).

FeSV was previously associated with the presence of FOCMA (feline oncornavirus-

associated cell-membrane antigen) (Essex, Grant, Cotter, Sliski, & Hardy, 1979),

which was originally termed a “non-virion tumour specific surface antigen”

(Sliski, Essex, Meyer, & Todaro, 1977). FOCMA is detected at the cellular surface

of infected lymphoid cells within the tumour, but not within non-transformed

cells regardless of their FeLV status. It was thought to be a cellular protein,

induced by either transformation events or the expression of FeSV recombinant
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proteins (Sliski, et al., 1977) as it was found to be immunologically distinct from

viral antigens (Stephenson, Essex, Hino, Hardy, & Aaronson, 1977). It was also

suggested that FOCMA may be incorporated into FeSV pseudotypes (Sliski &

Essex, 1979), therefore cats with sufficient anti-FOCMA antibodies will clear

FeSV infection and exhibit tumour regression, while FeLV continues to circulate

(Essex, 1977; Essex, Klein, Snyder, & Harrold, 1971).

However FOCMA is now known to be a combination of several viral components

and not a tumour-specific antigen as previously thought (Lutz, et al., 2009). The

absence of previous evidence for this may be partially explained by the fact that

although anti-FOCMA MAbs displayed high reactivity to FeLV-C antigens (Vedbrat

et al., 1983), the antibodies only bound to immature viral particles. FOCMA-

specific antibodies were also found in the sera of FeLV “regressor” cats, which

had successfully cleared the active infection but may express occasional

immature viral proteins (Rojko, et al., 1982).

1.12.4. Endogenous retroviruses: RD114 and FcEV

The genome of the domestic cat, Felis catus, contains ERVs from 3 families,

being the primate retrovirus MAC-1, RD114- and FeLV-related elements (enFeLV)

(O'Brien, 1986). Recently a further ERV, Felis catus endogenous virus (FcEV) was

identified as a Type C ERV present as multiple defective copies throughout the

domestic cat genome (van der Kuyl, Dekker, & Goudsmit, 1999).

Similarly to enFeLV, the RD114 viruses are only found within the Felis genus and

have been identified in the genomes of numerous wild small felids (Benveniste &

Todaro, 1975; Reeves & O'Brien, 1984). The Felis genus split from the Felidae

main lineage approximately 6.2 million years ago (W. E. Johnson, et al., 2006),

indicating exogenous RD114 integrated into the Felis ancestral germline at this

time. RD114 is a recombinant retrovirus possessing the gag-pol and LTR regions

of FcEV (van der Kuyl, et al., 1999) alongside the env gene of baboon

endogenous retrovirus, an inducible endogenous betaretrovirus found in

numerous primate species. Comparison of the baboon endogenous retrovirus and

FcEV genomes identified two highly homologous regions which would facilitate

recombination (van der Kuyl, et al., 1999). FcEV and RD114 also both contain an
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intergenic spacer between the pol and env genes (van der Kuyl, et al., 1999),

which is unusual for gammaretroviruses (Thayer et al., 1987). During

recombination these regions ensured reading frames were not disrupted,

allowing for the production of a functional retrovirus.

RD114 belongs to the Type D interference group (Sommerfelt & Weiss, 1990) and

the RD114 receptor is a neutral amino acid transporter (Rasko, Battini,

Gottschalk, Mazo, & Miller, 1999; Schnitzer, Weiss, Juricek, & Ruddle, 1980).

This gene is highly conserved between species and widely expressed across

various tissues (Green, Lee, & Rasko, 2004). The in vitro host range of RD114 is

therefore broad and yet does not include murine cells, similarly to FeLV (Kakimi

et al., 1990; Rasko, et al., 1999). Until recently RD114 was regarded as an

endogenous xenotropic virus as the majority of virus isolates could not

exogenously infect feline cells (Livingston & Todaro, 1973). Although released at

low levels in numerous feline cell lines (Baumann, Gunzburg, & Salmons, 1998;

East, Knesek, Allen, & Dmochowski, 1973; Fischinger, Peebles, Nomura, &

Haapala, 1973; O. Jarrett & Ganiere, 1996; Okabe, Gilden, & Hatanaka, 1973)

and inducible in others (Livingston & Todaro, 1973; Todaro, Benveniste, Lieber,

& Livingston, 1973) it was not thought to be expressed in vivo. However there is

recent evidence that RD114 may be able to infect various feline cells (Sakaguchi,

Okada, Shojima, Baba, & Miyazawa, 2008), although mechanisms to restrict this

may exist. Resistance to infection by two RD114-related viruses with distinct

envelope proteins has been observed (Haapala, Robey, Oroszlan, & Tsai, 1985),

indicating some feline cells restrict viral infection via an envelope glycoprotein-

independent method. This is in addition to a reported novel restriction

mechanism, which indicated that both the producer cell line and the

glycosylation state of the host cell receptor determine the infectious titre of the

virus (Dunn, Yuan, & Blair, 1993), similar to results found in ecotropic MLV

studies (Knoper, et al., 2009). There is also evidence that host-mediated

silencing may reduce potential proviral expression (Spodick, Ghosh, Parimoo, &

Roy-Burman, 1988). The extent of this silencing may be reduced in tissue

culture, leading to the elevated retroviral expression in vitro compared to that

found in actual tissue.
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The copy number of FcEV and RD114-related sequences within the domestic cat

genome is approximately 20 (Reeves, Nash, & O'Brien, 1985). However, only a

single copy of RD114 is responsible for viral production (Reeves, et al., 1985).

The fact that the env genes of many FcEV proviruses are heavily deleted whilst

RD114 has maintained functionality indicates there is a selective pressure upon

RD114, supported by the fact that all RD114-related proviruses identified to date

contain intact LTRs (Reeves, et al., 1985). There may be pressure to maintain

functional 5’ LTRs to drive transcription of the gag-pol genes, which would

contribute to the intracellular transcripts found in many studies (Niman, et al.,

1980).

Increased RD114 expression has been observed in numerous malignant tissues,

predominantly lymphomas. However many of the cancer-affected cats exhibiting

elevated RD114 expression were also exogenously infected with FeLV. It is

possible that expression of RD114 is up-regulated following FeLV infection,

although whether this is a contributing factor to cancer development or a

subsequent effect has not been determined. However FeLV-negative lymphomas

also exhibit elevated RD114 expression in some cases (Niman, Stephenson,

Gardner, & Roy-Burman, 1977), indicating the putative FeLV-R114 interaction is

not essential for RD114 production in malignant tissues. There are also reports of

CPE (mainly syncytia formation) occurring in numerous infected cell lines

(Germain, Roullin, Qiao, de Campos Lima, & Caruso, 2005; Klement & McAllister,

1972; Rand & Long, 1973). Despite these observations, no diseases are

definitively associated with RD114 expression or infection and there is no

evidence that domestic cats produce RD114-specific antibodies (Mandel,

Stephenson, Hardy, & Essex, 1979). Research upon this endogenous virus is

therefore not a priority when compared to the numerous aspects of FeLV which

require attention.

1.13 Scope and aims of this thesis

After an extensive review of the literature, it is apparent that despite the

volume of research conducted since the discovery of FeLV (W. F. Jarrett, et al.,

1964) there remains many areas in which further study is required. These include

clinical aspects, such as the development of safer and more efficient vaccines
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and treatments, identification of the protective correlates of the feline immune

response and the respective roles of both VNAs and CTL responses in FeLV

protection. Considering the threat FeLV represents to endangered wild felids,

such as the Iberian lynx and Florida panthers (M. A. Brown, et al., 2008; Luaces

et al., 2008), this should be a priority for FeLV research despite the decreasing

prevalence of the virus in domestic cats.

In addition to clinical research, there are many questions regarding FeLV

genetics and retroviral biology that require renewed attention, such as

investigating the factors which restrict inter-host transmission of FeLV-B and -C.

Considering the recent advancements in molecular biology and ever-expanding

knowledge of host-retroviral interactions (mainly due to HIV research), many of

these areas may now be revisited.

Firstly, as FeLV-B and –C are highly pathogenic, it is of significant interest to

ascertain which factors influence the development of these subgroups within the

host. Is it purely based upon the infectious strain or do host-derived factors play

a role in the development of FeLV variants? If FeLV-B evolution simply requires

the presence of enFeLV transcripts, what factors prevent transmission of either

wholly enFeLV virions and/or purely FeLV-B viruses to naïve hosts? The recent

discovery of polymorphic putatively-functional enFeLV genomes (Roca, et al.,

2004) has provided novel tools which will prove useful for this research.

Regarding FeLV-C evolution, what factors influence the development of these

viral variants, and why does this occur in only a minority of natural infections? Is

development of FeLV-C purely due to the genotype of the initially infectious

FeLV-A; or does the host immune system affect FeLV-C development, in a

process similar to that seen in other retroviruses to escape the humoral

response? The recent discovery of dual-tropic Env variants in a FeLV-C primary

isolate (Shalev, et al., 2009) suggests that FeLV-A evolves into FeLV-C through

the stepwise acquisition of mutations. If this is the case, can this process be

mimicked in vitro and the Env determinants of FLVCR1 usage mapped?
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It is apparent that these questions, which may have been difficult to address

previously, now have the potential to be solved using modern molecular

techniques. The overall aims of this thesis were therefore:

- To identify Env determinants which may predispose FeLV-A strains to

preferentially develop into FeLV-C variants;

- To investigate potential roles of the host humoral response in FeLV-C

evolution;

- To determine the potential for inter-host FeLV-B transmission without the

additional presence of a FeLV-A “helper” virus;

- To characterise the functionality of enFeLV elements and the possibility

of enFeLV horizontal transmission between hosts.

The results of these investigations will contribute to the knowledge of feline

genetics and immunology, FeLV clinical prognosis and retroviral biology and

evolution.
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2. Materials and Methods

2.1 Cell culture techniques

2.1.1. Maintenance of cell lines

Mus dunni tail fibroblast (MDTF) cells (ATCC Catalogue CRL-2017) and guinea

pig foetal (104C1) cells (C. H. Evans, Cooney, & DiPaolo, 1975) were

maintained in low-glucose DMEM (Life Technologies, Paisley, U.K.),

supplemented with 10% foetal bovine serum, 100U/mL penicillin and

100µg/mL streptomycin. MDTF cells expressing the human Pit1 protein were

kindly donated by Prof C. Tailor, University of Toronto.

Human embryo kidney (HEK293T) cells (Graham, Smiley, Russell, & Nairn,

1977) and QN10 (S+L- feline embryonic fibroblastic AH927) cells were

maintained in high-glucose DMEM (Life Technologies), supplemented with 10%

foetal bovine serum, 100U/mL penicillin and 100µg/mL streptomycin.

Feline embryo A (FEA) cells (O. Jarrett, et al., 1973) were maintained in high-

glucose DMEM (Life Technologies), supplemented with 10% foetal bovine

serum, 100U/mL penicillin, 100µg/mL streptomycin, 2mM L-Glutamine and 0.1

mg/mL sodium pyruvate. FEA cells chronically infected with multiple strains

and isolates of FeLV were obtained from the University of Glasgow Companion

Animal Diagnostics facility.

All cells were regularly subcultured when approaching confluency. During

subculturing, cells were washed with phosphate-buffered saline (PBS) and

treated with 0.5-2mL of 0.05% Trypsin-EDTA (Life Technologies).
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2.1.2. Transient transfection of adherent cells

Adherent cells were transfected with Superfect Reagent (Qiagen, Crawley,

U.K.) according to the manufacturer’s protocol. Cells were seeded the day

before transfection into 10cm plates, to approximately 60% confluency. The

day of transfection, 60µL of Superfect reagent was mixed with 12µg plasmid

DNA and made up to 300µL with incomplete, serum and antibiotic-free DMEM.

Following 15 minutes incubation at room temperature, the DNA-Superfect

complexes were then added directly to the cells and allowed to incubate for 3

hours at 37°C. DNA complexes were then removed and complete DMEM added

to plates. After three days, transfection products were harvested, passed

through a 0.45µm filter and stored at -80°C prior to use.

2.1.3. X-Gal staining of lacZ-expressing cells

Pseudotypes encapsidating transcripts of the pMFG plasmid lead to expression

of the lacZ reporter gene after infection of the target cell. X-gal staining was

performed to detect this expression. Briefly, confluent monolayers of cells

were washed in PBS before being fixed with 0.5% glutaraldehyde (in PBS) for a

minimum of 30 minutes. Fixative solution was removed and cells re-washed

before the addition of staining solution (PBS containing 0.02% X-Gal, 3mM

ferro-cyanide, 3mM ferri-cyanide, 1.3mM MgCl2). Plates were stored at 4°C

overnight before the lacZ-expressing cells (indicated by a blue appearance)

were counted manually.

2.1.4. Stable transduction of cell lines

To engineer MDTF cell lines that stably expressed specific retroviral receptors,

adherent cells were infected with VSV-G-enveloped pseudotypes. The

pseudotypes encapsidated transcripts of the pFB-NEO plasmid containing the

cDNA of the desired receptor. Constructs were kindly provided by Prof. C.

Tailor, University of Toronto. Prior to transduction, 1x105 cells were seeded in

a T25 flask (Thermo Scientific, Loughborough, U.K.) and allowed to adhere
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overnight. The media was then removed and 2mL of pseudotypes, including

4µg/mL hexadimethrine bromide (polybrene, Life Technologies), was added on

to the cells. After eight hours incubation, this medium was removed and

replaced with whole DMEM. Selection of transduced cells was induced two to

three days later by the addition of 800µg/mL G418 (Life Technologies). Cells

were subcultured twice weekly upon confluency for three weeks, at which

point G418 concentration was reduced to 400µg/mL to maintain expression of

the target genes.

2.1.5. Interference assay

Interference assays are a traditional technique in retrovirology used to classify

receptor usage of novel viruses. FEA cells chronically infected with FeLV-A, -B

and –C (“indicator” cells) were kindly provided by the Companion Animal

Diagnostics Unit, University of Glasgow. To classify novel FeLV strains, naïve

FEA cells were infected with a sample of the primary isolate and cultured for

10 days. At this point, supernatant from the cells was titrated upon the

various indicator cells lines. 3 days post-infection, cells were scored for

cytopathic effect. Superinfection was indicated by the presence of multiple

rounded, apoptosing cells, as opposed to the fibroblastic monolayer of FEA

cells usually displayed. A lack of superinfection indicated the novel sample

contains that particular subgroup of FeLV as the downregulated receptor is not

available for cellular entry.

2.1.6. Reverse interference assay

Traditional interference assays require the viruses to have identical producer

cell lines (in the case of FeLV, FEA cells are used). For this reason, reverse

interference assays were utilised to compare receptor usage of viruses from a

range of producer cells, including HEK293Ts. Reverse interference assays also

allow detection of which viral receptors are masked or downregulated within a

cell line infected with a novel isolate. Briefly, virus was harvested from

chronically infected HEK293T and FEA cell lines and passed through a 0.45 nm

filter, before being titrated on to QN10 (S+L-) cells at 20% confluency (the
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primary indicator cells). QN10 cells are feline fibroblastic cells stably

expressing a defective sarcoma virus genome, which may be co-packaged and

transmitted during infection with an exogenous functional retrovirus.

Transformation of this cell line is therefore indicative of the sarcoma viral

genome being mobilised by a functional FeLV; these mixed-population virions

possess the envelope glycoprotein of the novel sample. After transformation

was observed, supernatant was harvested, filtered and titrated upon FEA cells

chronically infected with FeLV of known or unknown classification (the

secondary indicator cells). The presence of transformation, indicative of

superinfection, was scored 3 days after infection.

2.1.7. QN10 focus-forming assays

QN10 (S+L-) cells were seeded into 6 well plates at 20% confluency and

allowed to adhere overnight prior to infection. Titrations of infectious virus

was used to infect the cells for two hours at 37°C. 72 hours post-infection, the

numbers of foci were manually counted and the viral titre (in FFU/µL) was

calculated.

2.2 Protein-based assays

2.2.1. Reverse transcriptase detection assay

A commercially-available ELISA-based kit was used to detect and/or quantify RT

activity within viral supernatants (C-type RT Activity Kit, Cavidi Technology,

Uppsala, Sweden). This utilises a 96-well ELISA plate coated with an RNA

template, which is reverse-transcribed by RT present within the sample. During

reverse transcription BrdUTP is incorporated into the nascent DNA strand. In

accordance with manufacturer’s instructions, samples were prepared with the

provided Dilution Buffers before the ELISA plate was incubated at 33°C for three

hours. After washing, the RT-Product Tracer component was added and the plate

incubated at 33°C for 90 minutes, during which time an alkaline phosphatase-

labelled anti-BrdU antibody binds to the RNA-DNA heteroduplexes. Following a
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secondary wash, alkaline phosphatase substrate is added to the sample. The

processing of this substrate produces a colorimetric reaction which can be

quantified using a spectrophotometer (Ascent Multiskan, U.K.).

2.2.2. SDS-PAGE and immunoblots

Immunoblots were performed to detect expression of specific proteins in both

cell lysates and concentrated virus preparations (prepared by

ultracentrifugation of cell-free virus supernatant, at 30 000 rpm for one hour

in a Beckman Ultracentrifuge with a SW40 rotor). Samples were diluted to the

desired volume using BPB Protein Loading Buffer and heated to 90°C for five

minutes prior to electrophoresis. Electrophoresis was conducted in either 4-

12% gradient precast polyacrylamide gels (Life Technologies) at 90V for two

hours in MES buffer, or in SDS-polyacrylamide gels of variable percentages in

Tris-Glycine buffer. Proteins were transferred to nitrocellulose membranes

using the iBlot transfer system (Life Technologies).

Membranes were blocked overnight using 2% skimmed milk powder and 0.1%

(v/v) Tween-20 in PBS. Primary antibodies were used at suitable dilutions in

blocking buffer, for one hour at room temperature. The anti-capsid (p27) MAb

(clone VPG19.1) was used unpurified as a hybridoma culture supernatant at a

dilution of 1:500. Purified anti-SU (gp70) MAb was used at 1:105. Anti-RD114

SU primary antibody (a kind gift from Hans Lutz) was used at 1:104. The anti-

HA MAb was used unpurified as a hybridoma culture supernatant at a dilution

of 1:500.

After incubation with the primary antibody, membranes were washed three

times in PBS with 0.1% Tween-20 prior to incubation with secondary antibody.

Biotinylated secondary antibodies from various species were utilised (Vector

Laboratories, Peterborough, U.K.) at a 1:1000 dilution in blocking buffer for

one hour at room temperature. The “ABC-AmP” kit (Vector Laboratories) was

then utilised to allow highly sensitive detection of proteins. Following

treatment with the secondary antibody, an alkaline phosphatase-labelled

avidin complex was bound to the membrane. Proteins were then visualised

using a chromogenic alkaline phosphatase substrate.
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Cell membranes to be assayed in immunoblots were prepared from cultured

cells according to previous descriptions (J. K. Brown, et al., 2006). Briefly,

1x106 MDTF cells were Dounce-homogenised in 1mL PBS, after which the

nuclei were removed by centrifugation at 1000g for 15 minutes. Membrane

fractions were then pelleted by ultracentrifugation at 30,000rpm for one hour

at 4°C before being resuspended in 20µL PBS or bromophenol blue protein

loading buffer.

2.2.3. Immunofluorescence

Immunofluorescence was utilised to detect expression of specific proteins in

cell cultures. For the detection of haemagluttinin (HA)-tagged retroviral

receptors, 3x104 receptor-expressing MDTF cells were seeded into each well of

8-well multi-test glass slides (Flow Laboratories, Surrey, U.K.) and allowed to

adhere overnight. Cells were fixed in 3.7% paraformaldehyde for 10 minutes.

Rabbit anti-HA IgG (Sigma-Aldrich, Gillingham, U.K.) was used at a 1:35

dilution (in PBS with 0.1% azide, 1% bovine serum albumin) at room

temperature for 45 minutes. Cells were washed before incubation with a 1:500

dilution of FITC-labelled goat anti-rabbit IgG (Sigma-Aldrich) for 30 minutes

prior to visualisation using a UV microscope (Leica Microsystems, U.K.).

For the detection of internal enFeLV Env proteins within FEA cells, a

permeabilisation step was included after fixation by paraformaldehyde. This

involved incubating cells with cold methanol at -20°C for 10 minutes, before

washing and incubating with the primary antibody (murine anti-gp70 MAb).

2.2.4. Flow cytometry

MDTF cells were dispersed using 1mM EDTA before 50µL of supernatant

containing the protein of interest was incubated with 105 cells, for 30 minutes

on ice. Cells were washed with PBS containing 1% bovine serum albumin and

0.1% sodium azide (PBS-BSA-Az). 0.5µg of PE-labelled antibody specific for

human IgG (eBiosciences, Hatfield, U.K.) was then added to each reaction and

incubated for a further 30 minutes on ice. Cells were washed and re-
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suspended in PBS-BSA-Az before being analysed on a Beckman Coulter

Cytomics FC500 flow cytometer.

2.3 Molecular cloning techniques

2.3.1. Cellular nucleic acid extraction

Genomic DNA was extracted from 1x106 cells using a commercially available

kit (QIAamp Blood Mini kit, Qiagen) according to manufacturer’s instructions.

This protocol utilises DNA binding to a silica gel membrane before repeated

washing in 70% ethanol-based buffers. Purified gDNA was eluted with water

and its concentration and purity analysed with a Nanodrop spectrophotometer

(Thermo Scientific).

Whole RNA was extracted from feline tissue samples using a commercial kit

(RNEasy, Qiagen). Tissue samples were taken from uninfected negative control

cats during in a previous study, snap-frozen in liquid nitrogen and stored at -

80°C. Briefly, 300mg of tissue was disrupted with a mortar and pestle in liquid

nitrogen without thawing. Lysates were passed through a homogenising

column (QIAshredder, Qiagen) before the RNA was purified using the RNEasy

columns and protocol. Final RNA concentration and purity was analysed with a

Nanodrop spectrophotometer.

2.3.2. Viral RNA extraction

Viral supernatant from confluent cultures was harvested and passed through a

0.45µm filter, prior to centrifugation in a Beckman ultracentrifuge (SW40

rotor) at 30 000rpm for one hour at 4°C. Viral pellets were resuspended

overnight at 4°C in PBS. Viral RNA was extracted using the QIAamp UltraSens

Viral kit (Qiagen) according to manufacturer’s instructions. As the silica-based

membranes utilised in this protocol bind all nucleic acid, following elution

with water RNA was DNase-treated to remove potential contaminating cellular

gDNA (Amplification-grade DNase, Life Technologies). In order to allow
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subsequent cDNA synthesis, DNase was inactivated by EDTA-treatment and

heating the sample to 65°C for 15 minutes.

2.3.3. cDNA synthesis

First-strand cDNA synthesis was conducted with a commercial MLV RT enzyme

(Life Technologies) according to manufacturer’s instructions. In order to

preferentially reverse-transcribe polyadenylated mRNA (including viral

genomes) oligo-dT primers were used. Dithiothreitol was included to reduce

secondary structures within the template RNA. Ribonuclease inhibitors

(RNaseOUT, Life Technologies) were included in all cDNA synthesis

preparations.

2.3.4. Plasmid constructs

The pMDG plasmid (Naldini et al., 1996), expressing vesicular-stomatitis virus

G protein (VSV-G), was used to produce pseudotypes that would enter cells

through endocytosis.

The pMFG plasmid (Ohashi et al., 1992), encoding β-galactosidase (lacZ) with 

a MLV-packaging signal, was used to detect pseudotype entry and retroviral

integration through expression of the lacZ reporter gene. LacZ expression was

measured by 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-Gal) staining. 

The pCMVi plasmid (Towers et al., 2000), encoding MLV gag-pol, was used to

produce MLV(FeLV) pseudotypes. The FGA construct contains a functional

molecular clone of the FeLV-A(Glasgow-1) viral genome, in the pUC18 vector.

Retroviral expression vectors, based upon the pFB-NEO plasmid (Agilent

Technologies, Wokingham, U.K.) containing the complete cDNA of various

retroviral receptors with 5’ haemagluttinin (HA) tags were kindly obtained

from Prof C. Tailor (J. K. Brown, et al., 2006; Rey, Prasad, et al., 2008). The

pVR1012 plasmid (Vical Inc., San Diego, U.S.A.) is an expression vector
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modified from the pUC plasmid (Hartikka et al., 1996) containing a

cytomegalovirus early promoter to drive target gene expression.

The pTORSTEN mammalian expression vector drives expression of soluble

proteins with an incorporated C-terminal human IgG1-Fc tag upon transfection

of susceptible cell lines (Spiller et al., 2006).

2.3.5. General cloning techniques

pVR1012 (described above), pcDNA3.1 (Life Technologies) and pBR322 (Bolivar

et al., 1977) vectors were utilised for cloning various genes and sections of

FeLV genomes. Although most PCR protocols incorporated restriction enzyme

sites to facilitate cloning into pVR1012, TA cloning was conducted with the

pcDNA vector (TOPO TA Cloning, Life Technologies).

2.3.5.1. Polymerase chain reaction

Oligonucleotide primers for PCR were obtained from MWG Biotech (Ebersberg,

Germany). All PCRs were conducted using a pre-prepared, commercially

available mastermix (High Fidelity PCR Master, Roche, U.K.) and thermal

cycling was conducted by a GeneAmp PCR System 9700 (Applied Biosystems,

Warrington, U.K.). A list of primers and conditions for specific PCRs is included

in Appendix 8.2.

2.3.5.2. Purification of PCR products

PCR products were electrophoresed on 0.8-1.5% agarose gels containing

ethidium bromide, generally at 100V for one hour in TBE buffer. Amplicons

were visualised under UV light and gel-excised using sterile scalpels. PCR

products were then purified from the agarose using the QIAquick Gel

Extraction kit (Qiagen) according to manufacturer’s instructions. This protocol

effectively precipitates DNA with isopropanol before binding it to a silica-

based membrane and repeated ethanol washing, prior to elution with water.
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2.3.5.3. Restriction enzyme digestion and ligation

When cloning inserts into specific vectors (for example, pVR1012) restriction

digests were conducted upon both the vector and PCR product to create ssDNA

overhangs to aid ligation. All restriction digests were conducted according to

manufacturer’s instructions, regarding the suitable buffer(s) and the presence

of bovine serum albumin in the reaction. Digestions were conducted at 37°C.

Adequate digestion was visualised by an alteration of the migration patterns of

the DNA upon gel electrophoresis (see above). DNA was purified from agarose

as previously described. Overnight ligation of DNA fragments was conducted

with T4 ligase (Life Technologies) at 16°C.

2.3.5.4. Transformation

DH5α Max Efficiency competent cells [genotype F- φ80lacZΔM15 Δ(lacZYA-

argF) U169 recA1 endA1 hsdR17 (rk-, mk+) phoA supE44 λ- thi-1 gyrA96 relA1]

(Life Technologies) were transformed with ligation products according to the

manufacturer’s protocol. Briefly, 2µL of ligation products were added to 20µL

competent cells and incubated on ice for at least 30 minutes before being

heat-shocked at 42°C for 45 seconds. After further two minute incubation on

ice, 900µL SOC broth (Life Technologies) was added and cells were incubated

at 37°C for an hour whilst being shaken continuously. Cultures were spread on

to LB agar plates containing the desired antibiotic (kanamycin at 50µg/mL or

ampicillin 100µg/mL) and incubated overnight at 37°C. Positive transformants

(containing the desired insert within the vector) were identified by restriction

digest of DNA isolated from overnight cultures of individual bacterial colonies.

2.3.6. Preparation of plasmid DNA

A commercial kit was used to isolate small volumes of plasmid DNA, according

to manufacturer’s instructions (QIAquick Minikit, Qiagen). Glycerol stocks of
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bacterial cultures were prepared by mixing 500µL of actively-growing culture

with 500µL sterile 60% glycerol, before being stored at -80°C. Large-scale

plasmid purification from up to 500mL of actively-growing culture was

conducted using commercial kits (HiPure Maxiprep Kit, Qiagen).

2.3.7. Genetic sequencing

All DNA was sequenced using the BigDye Terminator v1.1 Cycle Sequencing Kit

(Applied Biosystems). Briefly, a PCR was conducted using specific primers and

the recommended conditions (1 cycle at 96°C, 1 minute; followed by 25 cycles

of (1) 96°C, 10 seconds; (2) 50°C, 5 seconds; (3) 60°C, 3 minutes). Sequencing

reaction products were precipitated using the ethanol/sodium acetate

method. 100µL of DNA was added to 1µL 3M sodium acetate and 200µL 100%

ethanol. After mixing the solution was stored at -80°C for at least 30 minutes.

DNA was precipitated by a 10 minute centrifugation at 13 000 rpm using a

benchtop microcentrifuge, then washed once with 200µL 70% ethanol. DNA

pellets were air-dried thoroughly before being re-suspended with 20µL highly-

deionised formamide (Applied Biosystems). Sequencing reaction products were

analysed using an ABI Prism 3130xl Genetic Analyser (Applied Biosystems).

2.3.8. Site-directed mutagenesis of plasmids

The QuickChange Lighting Mutagenesis kit (Agilent Technologies) was utilised

to enable accurate and efficient mutation of specific nucleotides within the

FeLV-A(Glasgow-1) molecular clone and the pVR1012 construct encoding the

FeLV-A(Glasgow-1) Env gene. The protocol was conducted according to

manufacturer’s instructions, however PCR products were precipitated with

ethanol/sodium acetate following Dpn1 treatment. They were then re-

suspended in a small volume of water prior to transformation into competent

cells.
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2.4 In silico and bioinformatics techniques

2.4.1. RNA structural models

RNA secondary structures were modelled using the programs RNAStructure

Version 5.3 (Reuter & Mathews, 2010), the mFold webserver (available online,

http://mfold.rna.albany.edu/?q=mfold) (Zuker, 2003) and the Alifold web-

server (available online, http://rna.tbi.univie.ac.at/cgi-bin/RNAalifold.cgi)

(Gruber, Lorenz, Bernhart, Neubock, & Hofacker, 2008) using default

parameters (pH 7.0, temperature of 37°C).

RNAStructure Version 5.3 predicts structures within nucleic acid sequences

based upon the minimal possible free energy of the structure(s). Although an

optimal structure is produced, this program also allows visualisation of

alternative structures with less optimal free energies. This program requires

the input of two distinct RNA sequences and allows modelling of both homo-

and hetero-dimers.

The mFold webserver predicts nucleotide secondary structures based upon the

thermodynamic stability, including free energy, of the resulting model(s).

Multiple predictions are produced for each input sequence; these often

contain conserved structural motifs which are predicted to be highly stable.

The Alifold webserver requires input of a multiple sequence alignment, within

which the individual sequences can be assumed to possess similar secondary

motifs (for example, as a ClustalW alignment or FASTA file). The output file is

a single structural prediction based upon the consensus sequence. The relative

colour coding of the individual nucleotides reflects their conservation within

the original alignment and/or their ability to base-pair (see Chapter 6 for

further details). This structural model takes into account the minimal free

energy as well as to the phylogenetic relationships between the input

sequences.
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Both the mFold and Alifold webservers model the secondary structures within

monomeric RNA. To model dimeric RNA, the two RNA sequences are arranged

consecutively with a string of >9 uridine bases separating them. This synthetic

“linker” forms a hairpin structure from which the monomeric sequences

extend, allowing interactions between them to be modelled.

2.4.2. Multiple sequence alignments

Genetic data was analysed with DNADynamo (Blue Tractor Software Ltd, U.K.).

Both protein and nucleotide multiple sequence alignments were created with

Seaview Version 4.3.2 (Galtier, Gouy, & Gautier, 1996; Gouy, Guindon, &

Gascuel, 2010). Seaview utilises the ClustalW2 program for maximum

alignment and parsimony (Larkin et al., 2007).

2.4.3. Transcription factor screens

MatInspector was used to screen LTRs for potential TF binding sites. This web-

based software is available from Genomatix Software (www.genomatix.de ).

This program analyses a genetic sequence (the input sequence, provided by

the user) for the presence of annotated transcription factor binding sites and

other promoter and enhancer elements (Cartharius et al., 2005; Quandt,

Frech, Karas, Wingender, & Werner, 1995). A quality rating is assigned to each

detected site; this is based upon the degree of similarity between the input

sequence and a matrix describing the TF family.

2.4.4. Graphs and statistics

Graphs were constructed using SigmaPlot 8.0. Error bars represent the

standard error of the mean (SEM). Statistical tests (paired and unpaired

Student’s T tests) were performed using SigmaPlot 8.0.
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3. Specific FeLV-A strains may be predisposed
towards conversion to FeLV-C

3.1 Introduction

There are three main subgroups of FeLV; FeLV-A, -B and –C, from which only

FeLV-A appears to be transmitted efficiently between hosts (W. D. Hardy, Jr., et

al., 1976; W. D. Hardy, Jr., Old, Hess, Essex, & Cotter, 1973). Despite FeLV-C

strains being fully replication competent in vitro (Riedel, et al., 1986),

replication in vivo is thought to require the continued presence of FeLV-A. Thus

the A subgroup is commonly referred to as a “helper” virus required for

transmission and dissemination of novel subgroups within the host. FeLV-A is

often mistakenly termed the “low-pathogenicity” variant (Donahue, et al., 1988)

as approximately 60% of exposed cats mount a competent immune response and

successfully clear infection following a transient viraemia (Hoover & Mullins,

1991; N. C. Pedersen et al., 1977). However, FeLV-A is pathogenic and in cats in

which a chronic infection is established a range of clinical signs may develop,

including immunosuppression, lymphoma and anaemia (Chandhasin, et al., 2005;

Mackey, et al., 1975; Reinacher, 1989).

The disease association and clinical prognosis of an infection is influenced by

both the genotype of the FeLV-A isolate and the presence of other subgroups

which arise in vivo (O. Jarrett, 1992). FeLV-C arises within the infected host

through the gradual acquisition of mutations within the viral genome (Rigby, et

al., 1992) and is thus frequently identified alongside a concurrent FeLV-A

infection (O. Jarrett, et al., 1978; O. Jarrett & Russell, 1978; Sarma & Log,

1973). FeLV-C is found in approximately 1-2% of chronically infected cats and its

emergence is associated with the development of PRCA (O. Jarrett, et al.,

1984; O. Jarrett, et al., 1978; Mackey, et al., 1975). This non-regenerative

anaemia is fatal within approximately 2-3 months of FeLV-C arising in the cat

(Onions, et al., 1982; Riedel, et al., 1986).

The development of FeLV-C infection from an initial infection with a FeLV-A

isolate is accompanied by an alteration in the receptor usage of the virus, from
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the thiamine transporter feTHTR1 utilised by FeLV-A (Mendoza, et al., 2006) to

the haem transporter, feFLVCR1 utilised by FeLV-C (Tailor, et al., 1999). The

binding of FeLV-C to feFLVCR1 impairs the normal cellular function of the

protein, preventing haem transport in erythroid cells and resulting in a depletion

of erythrocyte precursors (Quigley, et al., 2000; Quigley, et al., 2004). Although

the widespread cellular distribution of both feTHTR1 and feFLVCR1 means that

FeLV-A and –C are able to infect multiple lineages of haematopoietic cells

(lymphoid, erythroid and myeloid), the pathogenic potential of subgroup C

viruses appears to be conferred by the ability to interfere with the function of

feFLVCR1 on erythroid progenitor cells, rather than the widespread infection of

diverse cell types (Dean, Groshek, Mullins, & Hoover, 1992).

The development of FeLV–C is due to alterations within the SU domain of the Env

glycoprotein (Brojatsch, et al., 1992; Riedel, et al., 1988; Rigby, et al., 1992).

These mutations affect the RBD, the region that determines the cognate

receptor used for cellular entry. Accordingly, mutations within this region of Env

alter the cellular tropism of the virus and FeLV-C possesses an expanded in vitro

host range (Boomer, et al., 1997; W. D. Hardy, Jr., et al., 1976; O. Jarrett, et

al., 1969b; O. Jarrett, et al., 1973). Previous studies have demonstrated that a

241 amino acid region within the Env of prototype FeLV-C(Sarma) conferred the

ability to induce PRCA in experimental infections (Riedel, et al., 1988).

Subsequently, the primary determinant of this phenotype was mapped more

precisely to a string of 92 amino acids within the RBD of isolates of FeLV-C

cloned biologically (Brojatsch, et al., 1992; Rigby, et al., 1992). It was noted

that there was limited conservation between the sequence of individual isolates

of FeLV-C (Brojatsch, et al., 1992; Rigby, et al., 1992), supporting the assertion

that there is minimal inter-host transmission of FeLV-C and that each isolate

arises de novo within a unique host. Protein signatures or structures that are

conserved between all FeLV-C isolates have yet to be identified, and the critical

residues that are essential and sufficient to confer FLVCR binding upon Env have

not been elucidated.

It has been assumed that the acquisition of the Env mutations that define the C

subgroup would lead to the emergence of two distinct viral populations with

non-overlapping receptor tropisms within the host, resulting in the FeLV-A/FeLV-
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C co-infections observed in clinical cases. However, recent studies have

suggested that the evolution of FeLV-C in vivo may be a gradual process, with

viruses displaying intermediate phenotypes and receptor usages co-existing

within the infected host (Shalev, et al., 2009). Indeed, virus isolates have since

been identified that utilise both THTR1 and multiple FLVCR1 paralogues (Shalev,

et al., 2009). Presumably, these FeLV-A/C dual-tropic viruses would eventually

give rise to a FeLV-C isolate which would utilise feFLVCR1 solely.

Previous research conducted in our laboratory had used 7 primary FeLV field

isolates which had been confirmed previously to contain both subgroups A and C

by interference assays (Table 3.1) (Adema, 2003). Comparisons between the env

genes of these subgroup A strains with those of prototypic FeLV-A would allow

identification of mutations which may contribute to an initial interaction with

FLVCR1. Their presence would therefore enhance the possibility of FeLV-C

development occurring following genetic drift during subsequent cycles of

replication.

Table 3.1: Primary FeLV isolates.

FEA cells were infected with 7 primary FeLV isolates previously classified as

being either A/C or A/B/C co-infections through interference assays (Adema,

2003). Three isolates had been partially characterised previously.

FEA cells were chronically infected with the FeLV-A/C primary isolates and

proviral env genes were cloned from genomic DNA. The PCR conditions, “FeLV-

Env”, are detailed in Appendix 8.2. Consistent with their designations by

interference, multiple unique env sequences were obtained from each isolate,

Isolate

Subgroup

Classification

Previous

References

FA27 A/C

Onions, 1982;

Brojatsch, 1992;
Rigby 1992

FS246 A/C

Onions, 1982;
Brojatsch, 1992;

Rigby 1992

FZ215 A/B/C

Brojatsch, 1992;

Rigby 1992

FA621 A/C N/A

FX343 A/C N/A

L3128F A/C N/A

L3950F A/C N/A
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confirming the heterogeneity of the viral populations within these isolates. The

majority of variation between Envs was located within the region encoding the

RBD (Figure 3.1). These results indicated that primary isolates of FeLV-A/C

mixed infections contain semi-conserved polymorphisms. By comparing the

amino acid sequences of the novel variants with the prototypic FeLV-A(Glasgow-

1) (Stewart, et al., 1986) and FeLV-C(Sarma) (Riedel, et al., 1986) strains, each

Env was tentatively identified as either the subgroup A or subgroup C component

of the isolate. Criteria for classification as a likely FeLV-C Env were the presence

of substantial amino acid substitutions and/or length polymorphisms in the “Vr1”

region (Rigby, et al., 1992) of the RBD. Viral variants that appeared genetically

to be of the FeLV–B subgroup (present in isolates FY981 and FZ215) and which

showed characteristic evidence of recombination with endogenous FeLV

sequences were not included in subsequent analyses.
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The sequences of the FeLV-A components were highly conserved between

isolates, despite the lengthy interim between their isolation. It is widely

assumed that all retroviruses acquire significant levels of variation over time due

to the error prone enzymatic activity of reverse transcriptase, the actions of

cellular antiviral factors and the selective pressure from the host immune

response (Overbaugh & Bangham, 2001). However, while this is indeed the case

for HIV, and to a lesser extent FIV, most isolates of FeLV-A date are remarkably

similar (Donahue, et al., 1988). In comparison, FeLV-C is thought to be poorly

transmissible and each isolate arises independently within the infected cat. This

is reflected by the high degree of divergence observed in the RBD region of Env

between isolates. Despite this heterogeneity, no mutations were identified that

were conserved across all the FeLV-C env sequences.

Within the A/C mixtures Envs were identified that were ostensibly subgroup A by

sequence alignment and yet bore point mutations from the reference strain

FeLV-A(Glasgow-1) (Figure 3.1). It can be assumed that the FeLV-A Envs were

the parental viruses of the FeLV-C isolates within their respective hosts;

therefore these mutations may have affected the receptor utilisation of the

FeLV-A Env, increasing the likelihood of FeLV-C developing.

Within the FA27 isolate, variants were identified with an aspartate to asparagine

substitution D83N, a residue that varied in two of the novel FeLV-Cs. This non-

conservative mutation (D83N) was documented previously in the FY981 virus, a

variant that is able to utilise FLVCR1, FLVCR2 and THTR1 (Shalev, et al., 2009).

Similarly, as asparagine to aspartate substitutions (N91D) was present in three of

the novel FeLV-As (L3128F, FZ215 and FA27), ablating a potential site for N-

linked glycosylation and aligning with a region of FeLV-C Envs that is critical to

the determination of the subgroup C phenotype (Riedel, et al., 1986; Rigby, et

al., 1992). Asparagine-91 of FeLV-A(Glasgow-1) is replaced with a Serine (S91) in

both FeLV-A(3281) and FeLV-A(61E) (Donahue, et al., 1988). In contrast, FeLV-

A(Rickard) which has been shown to give rise to FeLV-C in vivo (Chen, et al.,

1998; Phipps, Chen, et al., 2000) contains an aspartate residue (D91). D91 is also

found in FeLV-C(Sarma) (Riedel, et al., 1986) and FeLV-A(945) (Levesque, et al.,

1990). As the D83N and N91D substitutions were localised to the primary
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A(Glasgow-1) has the genotype D83:N91, the mutants DD, ND and NN were

D83:D91, N83:D91 and N83:N91 respectively. Viral supernatant was harvested 72

hours post-transfection, filtered and ultracentrifuged, separated by SDS-PAGE,

immunoblotted and probed with either anti-gp70 (SU) or anti-p27 (CA).

3.2.2. The N91D mutation increases viral entry through
THTR1

During the preparation of virus stocks of the four variants, it was noted that the

DD mutant appeared to grow more efficiently in HEK293T cells. This was unlikely

to be a reflection of transfection efficiency, as it was observed in multiple

independent experiments utilising a range of transfection volumes from

independently-derived DNA stocks. In order to measure the approximate titre of

the four virus preparations, serial dilutions of the HEK293T-derived viruses were

prepared, plated onto QN10 (S+L-) cells and the number of foci per µL

quantified. This S+L- assay is used widely to confirm the presence of an

infectious feline gammaretrovirus (Russell & Jarrett, 1976) and indicated that

despite transfection of matched inputs of the four molecular clones into

HEK293T cells, the four viruses displayed differences in infectious titre. DD

achieved a significantly higher titre than the reference FeLV-A(Glasgow-1) while

ND and NN achieved lower titres (Figure 3.3). These observations suggested that

the combination of residues D83 and D91 conferred an enhanced replicative

capacity upon FeLV-A.
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Figure 3.3: The DD mutant of FeLV-A(Glasgow-1) displays a higher viral titre.

FeLV-A(Glasgow-1) (A) or the DD, ND and NN mutants were transfected into

HEK293T cells and the supernatant recovered. Serial dilutions of each

supernatant were prepared and plated onto QN10 (S+L-) cells. 72 hours post-

infection, foci were scored manually; values represent the mean +/- SEM of two

independent experiments. The increase in titre between A(Glasgow) and the DD

mutation is statistically significant (Students t test, p value= 0.0474).

As QN10 assays were designed to detect infectious virus rather than quantify

viral entry, the Glasgow-1 (A), DD, ND and NN envs were subcloned into a

mammalian cellular expression vector in order to produce MLV(FeLV) lacZ

pseudotypes (murine leukaemia virus virions bearing the FeLV Envs and carrying

a lacZ marker gene), thus facilitating quantification of viral titre based solely on

viral entry. Following infection of HEK293T cells with matched inputs (equal RT

value) of the MLV(FeLV) lacZ pseudotypes, DD Env-bearing pseudotypes yielded a

higher titre than those bearing the parent FeLV-A(Glasgow-1) Env (Figure 3.4). In

contrast, ND Env-bearing pseudotypes achieved a lower titre than Glasgow-1

Env-bearing pseudotypes. As these pseudotypes undergo a single cycle of

infection, the data suggest that the DD mutation enhanced replication at the

stage of viral entry.
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manipulation of these cells to express specific receptors would allow accurate

assessment of virus-receptor binding and cellular entry.

Table 3.2: Receptors expressed in MDTF and 104C1 cells.

Cells were transduced to express a range of FeLV-A and-C receptors from Felis

catus, Sus scrofa and Homo sapiens.

Receptor
Wildtype

Function

Species of

Origin

FeLV

Subgroup

Known Receptor

Functionality

feTHTR1
Thiamine

transporter
Felis catus FeLV-A Functional

huTHTR1
Thiamine

transporter
Homo sapiens FeLV-A Functional

poTHTR1
Thiamine

transporter
Sus scrofa FeLV-A Functional

huFLVCR1
Haem

transporter
Homo sapiens FeLV-C Functional

huFLVCR2

Putative

haem
transporter

Homo sapiens FeLV-C
Limited functionality

(selected isolates)



(A)

(B)

Figure 3.5: Stably transduced

MDTF (A) and 104C1 (B) c

pseudotypes, encoding retroviral receptor cDNA transcripts cloned into the pFB

Neo construct (kindly provided by C. Tailor, University of Toronto). After

selection with G418, immunofluorescence was conducted upon

paraformaldehyde-

tagged receptor proteins.

tably transduced cells express a range of retroviral receptors

MDTF (A) and 104C1 (B) cells were transduced with VSV

pseudotypes, encoding retroviral receptor cDNA transcripts cloned into the pFB

Neo construct (kindly provided by C. Tailor, University of Toronto). After

selection with G418, immunofluorescence was conducted upon

-fixed cell monolayers to detect surface expression of the HA

tagged receptor proteins.
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express a range of retroviral receptors.

ells were transduced with VSV-G-enveloped

pseudotypes, encoding retroviral receptor cDNA transcripts cloned into the pFB-

Neo construct (kindly provided by C. Tailor, University of Toronto). After

selection with G418, immunofluorescence was conducted upon

detect surface expression of the HA-



The lacZ pseudotype assay was repeated using the MDTF cells, expressing a

range of FeLV receptors. Cells were infected with matched inputs (RT activity)

of MLV(FeLV) lacZ

results indicated that pseudotypes bearing the DD Env displayed a significant

increase in the usage of all three THTR1 orthologues in comparison with the

wildtype FeLV-A(Glasgow

pseudotypes displayed a marked preference for hFLVCR1

Figure 3.6: The DD Env confers enhanced utilisation of THTR1 homologues

MLV(FeLV) lacZ pseudotypes bearing the A (Glasgow

Envs were plated onto MDTF cells expressing the feline (fe), human (hu) or

porcine (po) THTR1 homologues, human FLVCR1 or human FLVCR2. 72 hours

post-infection, cells were stained f

Values represent the mean +/

increase in titre associated with the DD mutation upon feline, human or porcine

THTR1 is statistically significant in comparison with A

test, p=0.0063).

The lacZ pseudotype assay was repeated using the MDTF cells, expressing a

range of FeLV receptors. Cells were infected with matched inputs (RT activity)

lacZ pseudotypes and the efficiency of infection quantified. The

results indicated that pseudotypes bearing the DD Env displayed a significant

increase in the usage of all three THTR1 orthologues in comparison with the

A(Glasgow-1) Env (Figure 3.6). In contrast, C(Sar

pseudotypes displayed a marked preference for hFLVCR1-expressing MDTF cells.

The DD Env confers enhanced utilisation of THTR1 homologues

(FeLV) lacZ pseudotypes bearing the A (Glasgow-1), C (Sarma), DD, ND or NN

Envs were plated onto MDTF cells expressing the feline (fe), human (hu) or

porcine (po) THTR1 homologues, human FLVCR1 or human FLVCR2. 72 hours

infection, cells were stained for expression of lacZ and counted manually.

Values represent the mean +/- SEM of three independent experiments. The

increase in titre associated with the DD mutation upon feline, human or porcine

THTR1 is statistically significant in comparison with A (Gla
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The lacZ pseudotype assay was repeated using the MDTF cells, expressing a

range of FeLV receptors. Cells were infected with matched inputs (RT activity)

fficiency of infection quantified. The

results indicated that pseudotypes bearing the DD Env displayed a significant

increase in the usage of all three THTR1 orthologues in comparison with the

1) Env (Figure 3.6). In contrast, C(Sarma) Env-bearing

expressing MDTF cells.

The DD Env confers enhanced utilisation of THTR1 homologues.

1), C (Sarma), DD, ND or NN

Envs were plated onto MDTF cells expressing the feline (fe), human (hu) or

porcine (po) THTR1 homologues, human FLVCR1 or human FLVCR2. 72 hours

or expression of lacZ and counted manually.

SEM of three independent experiments. The

increase in titre associated with the DD mutation upon feline, human or porcine

(Glasgow-1) (unpaired T



3.2.3.
receptors

In vitro studies with MLV(FeLV) pseudotypes had suggested that the combination

of D83 and D91 in Env conferred enhanced viral entry. This led to the question as

to whether this effect was mediated by increasing binding to the viral

receptor(s), THTR1 (FeLV

B receptor). The SU domains of the mutant FeLV Env proteins were cloned into

the pTORSTEN mammalian expression vector (PCR “FeLV SU”, details in

Appendix 8.2) and recombinant SU proteins were expressed

HEK293T cells as C

with anti-gp70 MAb

of the SU-Fc proteins respectively (Figure 3.7).

Figure 3.7: Expression of soluble Fc

HEK293T cells were transfected with the pTORSTEN vector into which the SU

domains of the Glasgow

Glasgow-1 mutants DD, ND and NN had been

supernatant were separated by SDS

immunoblotted for both gp70 (upper) and the human IgG Fc tag (lower).

SU-Fc binding to receptor

was then assessed by flow cytometry using matched inputs of SU

(informed by immunoblotting of the recombinant SU

from FeLV-A(Glasgow

(C) or the FeLV-A(Glasgow

(NN). The A, DD, ND and NN SU

Enhanced binding of FeLV D83:D91 SU to viral
receptors

studies with MLV(FeLV) pseudotypes had suggested that the combination

of D83 and D91 in Env conferred enhanced viral entry. This led to the question as

to whether this effect was mediated by increasing binding to the viral

receptor(s), THTR1 (FeLV-A receptor), FLVCR1 (FeLV-C receptor) and Pit1 (FeLV

B receptor). The SU domains of the mutant FeLV Env proteins were cloned into

the pTORSTEN mammalian expression vector (PCR “FeLV SU”, details in

) and recombinant SU proteins were expressed

HEK293T cells as C-terminal fusions with human IgG-Fc. Immunoblot analysis

gp70 MAb and anti-human IgG Fc confirmed the antigenicity and yield

Fc proteins respectively (Figure 3.7).

Expression of soluble Fc-tagged FeLV SUs.

HEK293T cells were transfected with the pTORSTEN vector into which the SU

domains of the Glasgow-1 (A), Gardner-Arnstein (B) and Sarma (C), or the

1 mutants DD, ND and NN had been cloned. Matched volumes of

supernatant were separated by SDS-PAGE, transferred to nitrocellulose and

immunoblotted for both gp70 (upper) and the human IgG Fc tag (lower).

Fc binding to receptor-expressing MDTF (murine) or 104C1 (guinea pig) cells

then assessed by flow cytometry using matched inputs of SU

(informed by immunoblotting of the recombinant SU-Fc prot

(Glasgow-1) (A), FeLV-B (Gardner-Arnstein) (B) and F

(Glasgow-1) mutant D83:D91 (DD), N83:D91 (ND) an N83:N91

(NN). The A, DD, ND and NN SU-Fc proteins bound to MDTF
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Enhanced binding of FeLV D83:D91 SU to viral

studies with MLV(FeLV) pseudotypes had suggested that the combination

of D83 and D91 in Env conferred enhanced viral entry. This led to the question as

to whether this effect was mediated by increasing binding to the viral

C receptor) and Pit1 (FeLV-

B receptor). The SU domains of the mutant FeLV Env proteins were cloned into

the pTORSTEN mammalian expression vector (PCR “FeLV SU”, details in

) and recombinant SU proteins were expressed transiently in

Fc. Immunoblot analysis

human IgG Fc confirmed the antigenicity and yield

HEK293T cells were transfected with the pTORSTEN vector into which the SU

Arnstein (B) and Sarma (C), or the

cloned. Matched volumes of

PAGE, transferred to nitrocellulose and

immunoblotted for both gp70 (upper) and the human IgG Fc tag (lower).

expressing MDTF (murine) or 104C1 (guinea pig) cells

then assessed by flow cytometry using matched inputs of SU-Fc proteins

Fc proteins with anti-IgG)

Arnstein) (B) and FeLV-C (Sarma)

tant D83:D91 (DD), N83:D91 (ND) an N83:N91

Fc proteins bound to MDTF-expressed feline and
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human THTR1 with comparable efficiency and with a reduced efficiency to

porcine THTR1 (Figure 3.8). In contrast, B SU-Fc bound to huPit1 expressing

MDTF cells while C SU-Fc bound most efficiently to human FLVCR1-expressing

cells, confirming the specificity of the interactions. Of the four FeLV-A SU-Fcs,

the DD mutant appeared to display higher binding than the A, NN and ND SU-Fcs

to each of the THTR1s suggesting that the DD combination may enhance the Env-

receptor interaction, implicating a molecular basis for the enhanced replication

and viral entry.

These findings were mirrored using independently generated cell lines derived

from 104C1 cells (Figure 3.8). The binding studies with the 104C1 cells also

indicated that the NN and ND SU-Fc proteins bound less efficiently to 104C1-

expressed THTR1s than the parental A Su-Fc, suggesting that while mutations

such as DD may enhanced Su-Fc binding the converse may be true of NN and ND

mutations. Significant weak binding of all SU-Fcs was noted to control MDTF and

104C1 cells although it was notable that the A and B SU-Fcs had higher

background binding than the C Su-Fc protein, with the DD SU-Fc displaying the

highest binding to control cells. As THTR1 are expressed widely and MDTFs

express a murine THTR1, this background binding is most likely due to either

endogenously expressed murine THTR1 or a related protein. It is notable that

while the DD-SU Fc bound with a higher efficiency than the other A SU-Fcs to the

control MDTF cells, it bound with a similar efficiency to huFLVCR2-expressing

cells. As the A, NN, ND and DD SU-Fcs bound to huFLVCR2-expressing cells with

similar efficiencies (Figure 3.8, red lines) these data strongly suggest that the

enhanced binding of the DD SU-Fc to diverse receptors is a specific property of

the DD SU receptor binding domain and not a reflection of variations in the

amount of viable SU-Fc in the preparation. Given that the development of FeLV-

associated PRCA is marked by a shift in receptor usage from THTR1 to FLVCR,

the enhanced binding afforded by the DD mutation may be highly significant in

the spread of such variants into compartments expressing the FLVCR1 receptor;

this likely represents the first step towards the biological selection of subgroup C

viruses.



Figure 3.8: The DD mutations confer enhanced binding

Matched volumes of supernatant containing the Fc
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to C in cats with pure red cell aplasia is marked by amino acid alterations in the
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The DD mutations confer enhanced binding to multiple receptors

Matched volumes of supernatant containing the Fc-SU fusion proteins from

1 (A), Gardner-Arnstein (B), Sarma (C), or the mutants DD, ND and NN,

were added to either MDTF or 104C1 cells expressing feline, human or porcine

THTR1, human FLVCR1 & 2, human Pit1 (MDTF only), or vector only (CON). Fc

binding was detected by flow cytometry with PE-conjugated anti

Each histogram represents 10,000 events collected in LIST mode and are

representative of two independent analyses. Ordinate displa
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Discussion

The amino acid sequence of the receptor binding domain (RBD) of the A

subgroup of FeLV varies little between isolates, constraining the virus to usage

of the thiamine transporter THTR1 for infection. The switch in subgroup from A

to C in cats with pure red cell aplasia is marked by amino acid alterations in the

RBD that shift receptor usage from THTR1 to the haem transporter FLVCR1.

While all anaemogenic strains of FeLV bear such substitutions, little is known

about the genesis of the A to C switch. To date, each isolate of FeLV
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RBD that shift receptor usage from THTR1 to the haem transporter FLVCR1.
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has displayed a unique RBD sequence, suggesting that recombination with

endogenous env sequences is an unlikely source of the mutated RBD. In contrast,

the emergence of subgroup B viruses is associated with recombination between

exogenous and endogenous FeLV env sequences (Pandey, et al., 1991; Sheets, et

al., 1992; Stewart, et al., 1986). A more likely mechanism for the derivation of

subgroup C viruses would be the acquisition of mutations in vivo in response to a

selective pressure from the host, either through pressure to escape the adaptive

immune response or through receptor availability in the tissue in which the virus

replicates. Such a mechanism predicts the presence of variants with an

intermediate tropism; subgroup A viruses with point mutations in the RBD that

confer an enhanced or expanded receptor usage. Previous studies identified a

subgroup C virus, FY981 that had retained the ability to utilise the subgroup A

receptor THTR1 for infection (Shalev, et al., 2009), confirming that there are

indeed “dual-tropic” or “poly-tropic” viruses amongst primary isolates of

anaemogenic strains of virus. FY981 is actually a poly-tropic virus as it is able to

utilise a third receptor (FLVCR2) in addition to THTR1 and FLVCR1 (Shalev, et

al., 2009).

3.3.1. The D83:D91 motif enhances viral replication

Here, it was demonstrated that subtle variations in the RBD of subgroup A

viruses may have significant effects on the way the viruses interact with their

receptors, potentially predisposing the viruses to in vivo mutagenesis.

Accordingly, the presence of the combination of D83 and D91 in the background

of FeLV-A(Glasgow-1) was sufficient to enhance receptor binding, viral entry and

viral replication. Residue D91 is particularly intriguing as it is present in the

well-characterised Rickard strain of FeLV. In two separate studies examining

recombination in FeLV infection, it was noted that inoculation of cats with a

molecular clone (pFRA) of the Rickard strain of FeLV resulted in 1 of 3 (Phipps,

Chen, et al., 2000) and 1 of 5 (Chen, et al., 1998) cats developing an FeLV-C

associated anaemia. As FeLV-C is thought to arise in <1% of infected cats, the

high incidence of FeLV-C emergence following inoculation with FRA (33% and 20%

respectively) may suggest an enhanced propensity for the development of FeLV-

C. Mechanistically, a scenario can be envisaged whereby some subgroup A

viruses may be inherently more pathogenic than others due to an enhanced
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ability to infect and spread in the infected host, a feature determined largely by

the affinity of the Env for the viral receptor. Indeed, such a virus (FeLV-945) has

been described and shown to have a higher binding affinity for its receptor

(Bolin, et al., 2011). Mapping the determinants of the enhanced binding of the

FeLV-945 SU to feline cells suggested that the major determinant of the

enhanced binding of the 945 SU resided in variable region B (VRB) of gp70. FeLV-

945 is a D83:D91 virus, similar to the DD mutant examined in this study;

however, inserting the VRA of 945 in the background of FeLV-61E (an SU that

binds with a lower affinity to its receptor) did not confer an enhanced binding

upon the 61E SU, suggesting that multiple determinants in gp70 may contribute

to the receptor binding affinity. However, it should also be noted that the 61E

SU varies from the Glasgow-1 SU at a number of other residues across gp70; the

context in which D83:D91 is expressed may be critical to its effect on binding

affinity. Moreover, in this study, SU fusion proteins (dimeric) with a C-terminal

IgG Fc-tag were expressed and binding was assessed on both mouse and guinea-

pig cells expressing individual receptors, whereas the 945-SU proteins (Bolin, et

al., 2011) were expressed as C-terminal HA tagged proteins (monomers) and

binding assessed on the feline lymphosarcoma cell line 3201, a cell line that

produces a soluble 35kDa endogenous FeLV Env protein capable of viral

interference (McDougall, et al., 1994). Such experimental differences may

modulate both the affinity and the specificity of the Env-receptor interaction in

the two systems. For example, it has been shown that the context in which the

receptor THTR1 was expressed altered the efficiency of receptor usage by FeLV

(Shalev, et al., 2009) while soluble endogenous FeLV Env produced from 3201

cells conferred infectivity on the otherwise defective FeLV-T Env (Anderson, et

al., 2000). Irrespective of the differences in the experimental systems, the

enhanced binding of the Glasgow-1 DD mutant SU-Fc to THTR1 was consistent

with the enhanced entry and replication of the virus, while the high affinity

binding of the 945-SU was consistent with enhanced binding of intact virus

particles from FeLV-945 to the same cells (Bolin, et al., 2011).
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3.3.2. FeLV-A RBDs display promiscuous receptor
binding

The binding assays with Fc-tagged FeLV SUs suggest that all FeLV-A RBDs are

able to bind to both THTR1 and FLVCR1 homologues, an observation not

described previously. It is possible that both the affinity of the FeLV SU for the

receptor and its ability to induce fusion once bound combine to determine the

eventual route of viral entry. These data may predict that during FeLV-C

evolution, additional mutations accumulate during long-term viral replication

and that these mutations decrease SU affinity for THTR1 whilst increasing the

relative affinity for the FLVCR1 homologues. Such viral evolution would

eventually result in an Env capable of mediating fusion and entry via FLVCR1,

producing the FeLV-C phenotype and associated PRCA symptoms. This theory is

supported by the observation that FeLV-C (Sarma) displayed a severely limited

ability to bind to THTR1 despite possessing the D83:D91 motif. However this

altered binding affinity may be mediated by a range of mutations across the SU,

not comprising a single binding motif, explaining why individual FeLV-C Env

proteins are functionally but not genetically conserved. It is possible that the

overall final Env conformation, rather than specific individual residues, permits

FLVCR1-mediated membrane fusion and cellular entry. The deletions which were

observed in multiple FeLV-C env clones from the primary isolates may be

essential for decreasing the affinity of the THTR1-SU interaction and allowing

FLVCR1-mediated entry. This deletion may represent the final mutation in the

progression from FeLV-A to -C.

3.4 Conclusions

There are particular caveats which must be taken into account during

interpretation of these results. Specifically, the higher-affinity of DD-Env

proteins to receptors assumes this mutation does not alter the proportion of Env

incorporated within a virion. Similarly, RT enzyme activity was used to ensure

an equivalent amount of virus was utilised in the pseudotype assays; it was

assumed mutations would not influence RT protein packaging within virions. The

degree of receptor expression upon the surface of stably-transfected MDTFs was
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observed to be of a similar value; however small discrepancies in their

expression levels may have influenced results.

These studies indicate primary isolates of FeLV-A and C consist of heterogeneous

viral populations and the subgroup A components of these isolates display a

range of subtle mutations in Env. In the context of FeLV-A(Glasgow-1), the

combination of D83 and D91 in gp70 allowed increased binding to both THTR1

and FLVCR1 and enhanced both viral entry and replication. Such properties may

predispose viruses to evolution from subgroup A to subgroup C by enhancing

spread of the virus into cellular compartments where ability to use FLVCR1 is

selected preferentially. These data provide a first step towards elucidating why

FeLV-C emerges infrequently in infected animals and provide further evidence

that despite a high degree of genetic homogeneity, not all FeLV-As are equal.
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4. Investigation of potential factors which may
drive FeLV-A to -C evolution

4.1 Introduction

In the previous chapter, mutations were identified which may predispose

particular strains of FeLV-A isolates to evolve into subgroup C variants by

altering the receptor-binding properties of Env. Subsequent studies, described in

this chapter, aimed to model the process of FeLV-A to –C evolution in vitro. If,

as predicted, the acquisition of substitutions such as D83N and N91D render the

virus more likely to evolve from subgroup A to subgroup C, this evolutionary

process may be observable if a similar viral milieu to that observed in vivo could

be recreated in vitro. Unfortunately, the site of viral replication and evolution

in vivo remains unclear and therefore it can only be surmised that it is a site in

which both A and C receptors are expressed. Moreover, additional selective

pressures may be placed upon the evolution of the viral Env protein in vivo from

the adaptive (acquired) immune response of the host.

It was predicted that the FeLV-A genotype, host humoral immune response and

the relative availability of cognate receptors upon target cells would be the

main determinants of FeLV-C development. These factors are commonly

regarded as the two main selective pressures shaping the evolution of retroviral

variants (Overbaugh & Bangham, 2001). In vitro models mimicking these

pressures would allow accurate mapping of the viral mutations and receptor

usage alterations occurring in real time. As the presence of the D83:D91 motif

within Env enhanced SU binding to FLVCR1, indicating that these viral variants

may be predisposed towards FeLV-C conversion in vivo, the replication-

competent mutants of FeLV-A(Glasgow-1), D83:D91, N83:D91 and N83:N91 (DD,

ND and NN respectively) were included in the in vitro viral replication models.

This would allow comparison of the relative capacity of each Env to evolve

further towards a FLVCR-utilising variant.

The in vitro models also aimed to determine whether the presence of gp70-

specific antibodies during long-term FeLV-A replication would result in the
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accumulation of mutations previously associated with FeLV-C, and whether this

would be more likely to occur in the D83:D91 mutant compared to wildtype

FeLV-A(Glasgow-1). For many retroviruses, the host humoral immune response

exerts a pressure upon circulating virions which selects for those able to escape

virus neutralising antibodies (VNAs) (Manrique et al., 2007; Nakowitsch et al.,

2005; Rwambo, Issel, Hussain, & Montelaro, 1990). In the case of HIV, such

mutations additionally correlate with the development of a specific disease and

the acquisition of an extended cell tropism in a scenario parallel to that of FeLV-

C (Berger, Murphy, & Farber, 1999). It is possible that FeLV virions possessing

the DD Env are able to circumvent these antibodies more efficiently than

minimally-pathogenic FeLV-A strains, either by their heightened cell entry rates

or through alteration of neutralising epitopes. Alternatively, during replication in

the presence of gp70-specific antibodies FeLV-A may acquire specific mutations

to avoid neutralisation, which would then interact synergistically with residues

83 and 91. These mutations may induce the conformational changes presumably

required within the SU domain to enhance the preliminary FLVCR1-SU binding,

eventually allowing FLVCR1-mediated entry. The development of dual-tropic

viruses and eventual FeLV-C phenotype may therefore be a result of this

antibody-mediated escape.

In contrast, the development of viral variants with altered tropism may occur if

the novel receptor is the only such available protein (Overbaugh & Bangham,

2001). Subscribing to this theory, the presence of VNAs would have minimal

effect upon receptor usage without this additional pressure upon the virus.

Therefore in vitro assays in which virus was cultured within cells expressing

solely FLVCR homologues, both with and without prior growth on permissive FEA

cells, were also conducted. This would theoretically allow the expansion of low-

titre FeLV-C viral variants. This technique is similar to traditional methods of

purifying FeLV-B or –C from mixed subgroup primary isolates upon selective cell

lines (Adema, 2003). It must be highlighted that this is a less physiologically

relevant method of mapping the accumulation of Env mutations, as FLVCR1 is

not the receptor initially encountered by the virus in vivo. However these

additional studies would allow comparison of the extent to which both receptor

availability and the host humoral response influence viral evolution.
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The overall aims of these studies were therefore to characterise the relative

roles that VNAs, receptor availability and the initial FeLV-A genotype play in the

development of FeLV-C and dual-tropic viral variants, using in vitro models of

viral evolution.

4.2 Results

4.2.1. D83N and N91D Env mutations do not alter
neutralisation susceptibility

In order to investigate whether the humoral immune response played a role in

the evolution of FeLV-C, sera from FeLV-infected cats were pooled and screened

for reactivity with gp70. During recovery from infection, cats mount a

neutralising response that targets gp70. Accordingly, by pooling sera from

recovered cats, a polyclonal serum was generated which reacted with gp70 on

immunoblot (Figure 4.1A) and which neutralised infection with FeLV (Figure

4.1B). When the relative sensitivities of FeLV-A(Glasgow-1) and the DD, ND and

NN mutants to neutralisation by either the pooled cat serum or a monoclonal

antibody targeting gp70 were compared, no significant differences were

detected, suggesting that the substitutions in amino acids 83 and 91 did not

confer resistance to either of these neutralising antibodies. As it is likely that, in

individual cats, the response to gp70 may be epitope-specific and that the

specificity of the response will vary between cats, the possibility that N83D or

N91D-containing variants may have either a heightened or reduced sensitivity to

neutralisation in vivo cannot be discounted.
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A total of 59 mutations, 42 of which were non-synonymous, were identified

(Figure 4.3). Appendix 8.3 contains a multiple sequence alignment displaying the

nucleotide mutations. With rare exceptions, each mutation was identified in a

single individual clone. When comparing the mutations which arose to those

described previously or those observed in the original primary isolates (Figure

3.1), no evidence was seen for the selective expansion of variants with FeLV-C-

like sequences. The level of variation varied widely between viruses and while

nine non-synonymous substitutions were detected in variants amplified from the

culture infected with the ND mutant, in the presence of anti-gp70 MAb (D30G,

T49A, R263K, D305G, T336A, L476O, R482G, M591T, L608P), no substitutions

were detected in the culture infected with the NN mutant in the presence of

anti-FeLV polyclonal antibody. Mutations were dispersed across both SU (gp70)

and TM (p15E) and were not focussed within variable regions A and B (VRA and

VRB) or the proline rich region (PRR). The data indicate that under the culture

conditions utilised for this study, the four variants had equal propensities to

acquire mutations in vitro and that the combinations of either ND, DD, DN or NN

did not alter significantly the likelihood of the Env acquiring non-synonymous

mutations.
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4.2.3. Evolution of non-functional FeLV Env proteins
during long-term viral replication

Env proteins containing mutations between residues 220 to 400 were selected.

This Env section encompasses the proline rich region (PRR) and the C-terminal

“C domain” (Cdom) of gp70; both these motifs affect receptor usage (Rey,

Prasad, et al., 2008). It has been suggested that whilst the N terminal RBD

confers receptor specificity, the Cdom provides a secondary receptor binding

motif which binds to the viral receptor independently to that of the RBD (Rey,

Prasad, et al., 2008). This is based upon observations that the FeLV-A Cdom

binds weakly to FLVCR1; binding being dependent upon the SU C2 loop, a

disulphide bridge formed between C342 and C396. Specific mutations in this loop

therefore may also affect FLVCR1 usage. It was therefore hypothesised that

substitutions observed in either the C2 loop, Cdom or PRR may enhance SU-

FLVCR1 binding and potentially contribute to either the FeLV-C phenotype or

receptor dual-tropism.

In total, 12 mutations were located in this region (summarised in Table 4.1).

Two clones contained two mutations each; however, four env clones also

contained downstream frameshift mutations, caused by either the loss or gain of

a cytosine residue. As these occurred within a string of cytosines encoding

residues 337 to 400 of Env, these mutations may have been due to “slipping” of

the DNA polymerase during the cloning process. As these env clones would

produce nonsense proteins, they were not investigated further.

Table 4.1: Mutations arising within the PRR and Cdom during long-term viral

replication.

Parental Genotype Culture Conditions Mutation/s Functionality

D83:D91 MAB R263K Functional

N83:D91 AB-free V274A, frameshift N/A

D83:N91 (wildtype) MAB T297A, frameshift N/A

N83:D91 MAB D305G Non-functional

N83:D91 AB-free T309A, T364A Functional

N83:D91 AB-free D311G Functional

N83:D91 MAB L316R, T336A, frameshift N/A

D83:N91 (wildtype) Feline Sera S344P, frameshift N/A

D83:D91 AB-free P366L Non-functional

N83:D91 Feline Sera N374D Non-functional
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The long-term viral replication assay described above indicated that VNAs did

not drive the evolution of FeLV-C variants, regardless of the initial FeLV-A

genotype; it appeared that mutations arose through genetic drift rather than

antibody-mediated escape. Although some of these mutations abrogated

functionality, others enhanced viral entry through the THTR receptor.

4.2.5. FeLV-A culture within MDTF-huFLVCR1/2 cells
does not produce FeLV-C variants

The next aim was to investigate whether receptor availability contributed to the

evolution of FeLV-C or of dual-tropic viral variants. As FEA cells are susceptible

to FeLV-A,-B and -C, continued use of this cell line in the previous assay did not

exert a purifying effect upon the viral cultures. Therefore the long-term

replication assay was reproduced using MDTF cells expressing either huFLVCR1 or

huFLVCR2 proteins.

Initially, MDTF-huFLVCR1 cells were infected at a MOI of 0.01 with the four

FeLV-A(Glasgow-1) based viruses. After the first subculture (72 hours post-

infection), antibodies were included in the culture medium at sub-neutralising

concentration to aid development of neutralisation-escape mutants. The cells

were subcultured upon confluency for 50 days. Supernatants were regularly

harvested, concentrated by ultracentrifugation and screened by immunoblot for

the detection of the FeLV CA and Env proteins. However, replicating virus was

not detected in any of the cultures at any point, regardless of the presence of

antibodies.

The third long-term replication assay was conducted upon MDTF-huFLVCR2

expressing cells. Antibodies (either pooled sera or the Env MAb) were not

included in this assay as stocks of these preparations were limited. As described

previously, the four FeLV-A(Glasgow-1)-based mutant viruses were used to infect

MDTF-huFLVCR2 cells and cells were passaged for 50 days. Concentrated cellular

supernatant was tested regularly for the presence of viral particles by

immunoblots against both CA and gp70. However, after 50 days in culture no

virus replication was detected in any of these cultures.
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4.2.6. Expansion of FeLV-A subpopulations upon
MDTF-huFLVCR1/2 cells

Neither homologue of FLVCR is the initial receptor encountered by FeLV-A

virions, indicating that initial growth upon MDTF-huFLVCR1/2 cells is a

physiologically inaccurate model. A lack of active virus production during these

latter models was therefore partly expected. It must also be highlighted that a

pure culture of virus, produced from an infectious molecular clone, was used in

these assays which does not mirror the natural scenario. A natural isolate of

FeLV-A would contain a cloud of viral variants within the sample, some of which

may give rise to FeLV-C viruses after purification by growth on MDTF-huFLVCR1

cells. However, using a primary field isolate in an in vitro model would prevent

distinction between those mutations which arose during the purifying expansion

process and those which were initially present in the FeLV-A inoculum.

To more closely mimic the natural scenario whilst still utilising whole viral

molecular clones, both MDTF-huFLVCR1 and –huFLVCR2 cells were infected with

virus from the final passage of the FEA cells infected in the first long-term assay.

Although the final env analysis had not detected viral mutations potentially

leading to expanded receptor usage, the nature of the methods (PCR followed by

env cloning) was not exhaustive and did not provide a fully conclusive result. It

is possible that dual-tropic viruses were present in some cultures and had not

been detected during the cloning analysis. Further culture of the viruses on

both MDTF-huFLVCR1 and -huFLVCR2 cells would allow amplification and

purification of variants able to utilise these receptors.

MDTF-huFLVCR1 and –huFLVCR2 expressing cells were therefore infected with

concentrated viral preparations from the originally infected FEA cells, harvested

at 50 days post-infection. Viral supernatant had been stored at -80°C. Antibodies

(either pooled feline sera or the Env MAb) were not included in the media.

Cultures were passaged upon confluency for 50 days. Supernatant was harvested

regularly and concentrated by ultra-centrifugation before being screened by

immunoblotting for the detection of both CA and Env proteins. Virus production

was not detected in any of the cultures at any point throughout this assay. This
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was confirmed by a RT detection assay conducted upon cellular supernatant at

the conclusion of the experiment.

These studies indicated that if low levels of FeLV-C/dual tropic variants were

present at the conclusion of the FEA long-term replication assay, further culture

upon MDTF-huFLVCR1/2 cells did not allow selection and expansion of these

variants. It remains possible that FeLV-C progenitor viruses were present within

the FEA viral cultures at extremely low levels. To quantify the sensitivity of this

FeLV-C expansion method, a control experiment was performed to confirm the

length of passage required for an FeLV-A/C mixture to replicate to detectable

levels upon MDTF-huFLVCR1 cells. A preparation of replication-competent FeLV-

A (Glasgow-1) was prepared, and “spiked” with serial dilutions of FeLV-C

(FY981C). These viral preparations were then used to infect MDTF-huFLVCR1

cells. FeLV-A(Glasgow-1) alone was included as a control for viral genetic drift.

Cellular supernatant samples were taken daily and cells were subcultured upon

confluency. By 50 days post-infection, replicating FeLV-C could be detected

from an initial dilution of 1:10-3 (vol/vol) by RT detection assay (Figure 4.7). This

indicates that FeLV-C viruses initially contributed less than 0.1% of the viral

population during the long-term viral replication assays.
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Figure 4.6: A 1:103 dilution (vol/vol) of FeLV-C within a FeLV-A population is

detectable by RT detection assay after 50 days in culture upon MDTF-

huFLVCR1 cells.

10-fold dilutions of FeLV-C within a stock of FeLV-A were cultured in MDTF-

huFLVCR1 cells. RT activity, measured by absorbance at 405nm, was measured in

cell-free supernatant fifty days post-infection. FeLV-A (only) viruses and a

control sample of cell- and virus-free supernatant (Con) were included as

controls.

To summarise, the development of FeLV-C or dual-tropic viral variants from any

FeLV-A strain was not observed in any long-term viral replication models,

regardless of the presence of VNAs or cognate receptor availability. As these two

variables are thought to be the main influences upon viral subgroup evolution,

these results were unexpected. It may be that pressures other than antibody-

mediated escape and receptor availability are the determinants of FeLV-C

evolution, regardless of the genotype of the infectious FeLV-A strain.
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4.3 Discussion

Having established that subtle variations in the VRA of FeLV-A could have a

significant impact upon the biological properties of FeLV-A(Glasgow-1) (Chapter

3), the subsequent aim was to mimic the selective pressures exerted upon FeLV

in vivo. By culturing virus in the presence of sub-optimal concentrations of

either monoclonal anti-gp70 antibody or pooled serum from FeLV-infected cats,

the acquisition of non-synonymous mutations over time was observed, although a

shift from subgroup A (THTR1-using) to subgroup C (FLVCR1-using) viruses was

not demonstrated. Subgroup C viruses emerge in an estimated 1% of anaemic

cats, suggesting that a relatively rare set of circumstances combines to drive

their evolution. It is possible that the epitope specificity of the antibody

response elicited following infection may prove critical in determining the

composition of variants that evolve, and so serum from cats from which FeLV-C

had been isolated rather than a diverse pool of FeLV-infected cat sera would be

required to mimic this response in vitro. While the working hypothesis was that

the humoral immune response influences the likelihood of FeLV-C emerging in

infected cats, other factors may have a significant impact upon viral evolution;

for example VRA may constitute a T cell epitope in some cats and pressure to

escape a cellular immune response may play a role in driving variation in VRA.

4.3.1. The role of VNAs in viral evolution

It is possible the antibodies in this experiment were used at too low a

concentration to drive selection of escape mutants. The antibody concentrations

were calculated so as to neutralise the majority of virus present but allow a

continuous low level of replication. However, the clones from the viral cultures

containing each antibody preparation (either pooled feline sera or gp70-MAb) do

not contain mutations in common areas. Mutations did not localise to specific

areas; rather, they are randomly and evenly distributed throughout the env

gene. This indicates the antibody concentration in either preparation was not

sufficient to induce purifying selection; had this occurred the mutations would

have clustered within the targeted epitopes. It would then have been of

additional interest to investigate if the mutations which arose conferred

resistance to homologous and/or heterologous neutralisation. However the
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limited availability of the antibody preparations made this impossible in this

study. These results would have provided further evidence as to whether

antibody-mediated escape was occurring, regardless of the association of the

mutations with the FeLV-C subgroup.

It must be highlighted that the selective pressure provided by VNAs does not

alter the mutation rate of a virus, but rather exerts a purifying effect on the

circulating mutants and alters the spectrum of variants able to flourish

(Overbaugh & Bangham, 2001). The choice of antibodies would therefore have

been a major influence on the viral mutants detected in the final cloning

analysis; it is probable that an alternative antibody or sera combination would

have produced very different results. Utilising a MAb specific for a known gp70

epitope may have been more informative, as mutations within the targeted

epitope could be easily identified. The C11D8 MAb may have been a useful

choice; this neutralising MAb targets the MGPNL motif (Elder, et al., 1987). It is

not known which epitope was targeted by the gp70-MAb used in this study or

whether it was linear or conformational. As the mutations which arose in the

MAb-treated cultures are not confined to the one region, these results cannot be

reliably used for epitope-mapping. It is also possible that the mutations present

in natural FeLV-C isolates, potentially including D83N and/or N91D, alter Env T-

cell epitopes. If this were the case, the advantage these mutations conferred

would not be detectable in an antibody-based experimental study such as this.

The inclusion of VNAs in the long-term replication study was based upon the

assumption that FeLV-C evolution may be a result of the replicating virus

escaping antibody-mediated neutralisation. This hypothesis is not without

precedent as there are numerous instances of retroviral antigenic variation and

receptor usage alterations being driven by pressure from the host immune

response. VNA play a role in the selection and expansion of viral variants in both

simple and complex retroviruses, and this has been mimicked successfully in

vitro in numerous cases (Manrique, et al., 2007; Nakowitsch, et al., 2005;

Rwambo, et al., 1990). In the example of equine infectious anaemia virus (EIAV),

an in vitro model of viral evolution found that 13 viral passages were required to

obtain an antibody-escape mutant. This phenotype was conferred by only two

altered epitopes in the SU domain (Rwambo, et al., 1990). This is a similar



121

timespan to that used in this study, indicating it was sufficient to observe

antibody-escape mutants. Despite the lack of FeLV-C-associated mutations in

these results, development of FeLV-C as a consequence of antibody escape

remains a plausible theory. There are numerous variables in this process which

could not be replicated in this model, including the broad range of antibodies

produced in a competent immune response. Before definitive conclusions can be

drawn about the role of VNAs in FeLV-C development, these studies should be

repeated using a more extensive range of both polyclonal and monoclonal

antibodies.

4.3.2. Analysis of mutations arising during long-term
viral replication

A detailed analysis of the mutations that arose during viral replication within

FEA cells allows several inferences to be made (Figure 4.3). Firstly, the rate of

mutation appeared consistent across all cultures, indicating viral genetic drift

occurred at similar rates regardless of the presence of VNAs. Additionally, few

mutations were identified more than once, indicating a single FeLV genome had

not emerged as the dominant viral subpopulation in any culture. However the

limited capacity of the env selection method (cloning as opposed to deep

sequencing) must be taken into account as it is possible that the amplification of

more env sequences, or the use of alternative techniques, may have produced

different results. Amplification and cloning of env genes may not provide a

sufficiently broad picture of the genomes present in the culture. It remains

possible that dual-tropic virus strains, or those containing mutations indicative

of a FeLV-C phenotype were present in some cultures but were not detected

during this analysis. The results presented herein therefore represent a

“snapshot” of the viral genomes present at 50 days post-infection. It was not

possible to determine whether specific viruses formed prominent subpopulations

during the course of infection, indicative of a species with a replicative

advantage expanding.
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4.3.3. Cell-to-cell transmission in FeLV replication

It was initially hypothesised that the mutations within FeLV Env which arose

during escape from antibody-neutralisation may correlate with usage of the

FLVCR1 receptor and a FeLV-C viral phenotype. However other mechanisms of

antibody avoidance, distinct from receptor-usage alteration, were not

investigated. It is possible that FeLV switches to spreading preferentially via

cell-to-cell transmission, as opposed to a cell-free infection route, to reduce

antibody-mediated neutralisation. It was recently suggested that MLV (and

presumably other gammaretroviruses) spreads predominantly via cell to cell

transmission, although this is a contentious issue (Jolly, 2011; Sherer et al.,

2007); nevertheless the ability or preference of FeLV to spread via these two

distinct mechanisms has not been investigated. Therefore the mutations

investigated herein were not studied for their effects on viral transmission

routes. A switch in the main route of viral transmission may allow the virus to

escape immune clearance without altering receptor usage. The concept that

cell-to-cell spread allows escape from VNAs has been suggested previously for

HIV-1 (Jolly, 2011; Martin & Sattentau, 2009). It is thought this transmission

route reduces the exposure of the virus to VNAs, both spatially due to increased

viral budding at cell-cell interfaces and temporally by reducing the timespan

viral antigens are exposed to circulating VNAs.

In further support of this hypothesis, a recent publication described a

neutralisation-resistant mutant of EIAV which had acquired enhanced rates of

cell-to-cell transmission (W. Wu et al., 2011). The escape mutant displayed

resistance to neutralisation by VNAs; however its cell-free viral titre was

significantly lower than that of the parental virus. Despite this, the two viruses

displayed similar rates of cell-to-cell transmission, indicating this route may

overcome the inefficient cell-free infection rate of the mutant and contribute to

its resistance to VNAs. As cell to cell transmission is rapidly being recognized as

a major factor in viral kinetics, it is possible that FeLV Env proteins which

appear less efficient in traditional receptor-binding or single-cycle pseudotype

assays may be successfully utilised for this method of viral expansion. Future

work may be directed towards investigating the effects of the D83N and N91D

mutations upon cell-to-cell transmission rates, and determining whether this
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route of viral infection is enhanced by the presence of the D83:D91 motif.

However this would require methods able to differentiate cell-to-cell and cell-

free viral spread which was out-with the scope of this project. Virions able to

bind receptors whilst displaying budding defects may potentially be used, as

they would be expected to be limited to a cell-to-cell route of transmission.

4.3.4. Additional factors influencing viral evolution

The experimental data presented here indicate that genetic drift, rather than

selective pressure provided by VNAs, induced the env mutations observed in

viruses from FEA cells. However there are numerous alternative mechanisms for

the observed mutations, for example some mutations may have arisen at sites as

a result of structural biochemistry. There is evidence that adenine-thymine

tracts (consisting of four consecutive A or T nucleotides) are associated with

“bends” in the nascent DNA strand, and are more likely to be mutated through

misincorporation (Svarovskaia, Cheslock, Zhang, Hu, & Pathak, 2003). As 13 of

the 59 mutations (~22%) observed in the FEA long-term replication study

occurred in AT-rich tracts (see Appendix 8.3 for nucleotide sequence data) it is

possible these are due to this phenomenon, rather than either neutralisation

escape or receptor tropism expansion as originally predicted. In addition, some

mutations may have arisen as the result of apolipoprotein B mRNA-editing

enzyme catalytic polypeptide (APOBEC) activity. APOBECs mutate retroviral

genomes by deaminating the cytosines during first-strand DNA synthesis,

eventually causing an accumulation of G to A mutations in the genome. However

there was minimal evidence of APOBEC activity in the env sequences analysed in

this study; of the 59 mutations identified only 7 were G-to-A transitions (~12%).

Additionally, only 3 (~5%) are found within likely targets for feline APOBECs

(AGG or GGG motifs) (Geret et al., 2011). This is in accordance with other

reports that APOBECs exhibit weak restriction of FeLV in natural infections

(Geret, et al., 2011; Munk et al., 2008).

In comparison, approximately 50% of the mutations which arose in this study are

A to G hypermutations. The causative factor for this unexpectedly high

occurrence is not known, however these nucleotide substitutions may be due to

double-stranded RNA adenosine deaminases (dsRADs). These cellular enzymes
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deaminate adenosine bases within dsRNA, producing an inosine which is then

converted to guanosine during reverse transcription (Polson, Crain, Pomerantz,

McCloskey, & Bass, 1991). However dsRADs tend to induce “strings” of such

transitions, altering approximately 50% of the adenosine bases within the

targeted region (Hajjar & Linial, 1995; Nishikura et al., 1991), rather than the

isolated single nucleotide polymorphisms which were observed in this study.

Although retroviruses do not produce a dsRNA complex at any point during their

replication cycle, hypermutation attributed to dsRADs has been reported in both

HIV-1 and simple avian retroviruses (Felder et al., 1994; Hajjar & Linial, 1995;

Sharmeen, Bass, Sonenberg, Weintraub, & Groudine, 1991).

Continuing viral replication past 50 days post-infection would be unlikely to have

produced different results; there were multiple reasons to limit the experiment

to this period. In practicality, there were time constraints and a limited amount

of each antibody preparation was available. Regardless of these factors, re-

infection of naïve cells only occurs until a cell line is chronically infected. At this

point, downregulation or masking of the cognate receptor would occur. Although

infectious virions would continually be released reinfection and proviral

integration would not occur, preventing the reverse transcription stage of the

retroviral life cycle during which the majority of mutations are incorporated.

Were the study to be continued after this point, the viruses sampled would have

been transcribed from established proviruses and would no longer represent a

differentiating population. Proviral replication, occurring during cellular mitosis,

plays only a minor role in retroviral mutation rates. It is therefore unlikely that

continuing the experiment for a longer duration would have altered the

experimental outcome.

4.3.5. In vivo models of FeLV-A to -C evolution

There have been no recent attempts to reproduce the FeLV-A to –C conversion

process using in vivo feline infections. However, a recent publication describes

an experimentally-infected cat which displayed FeLV reactivation after

approximately 8 years of clinical latency (A. K. Helfer-Hungerbuehler, et al.,

2010). As this cat was inoculated with FeLV-A(Glasgow-1) this is a fairly accurate

in vivo comparison to the studies presented in this chapter. The disease
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manifestation, being non-regenerative anaemia and multicentric B-cell

lymphoma, is indicative of FeLV-C development. Three variant viruses were

identified within this cat at the time of necropsy. Although the env genes were

predicted to be of subgroup A, receptor usage was not experimentally analysed.

As the determinants of FLVCR1 usage have not been elucidated it should not be

assumed these supposedly FeLV-A viruses could not utilise alternative receptors;

to claim that these strains are not FeLV-C due to a low genetic identity to FeLV-

Sarma is inaccurate.

Evidence that these variants are either FeLV-C or dual-tropic comes from an

analysis of the Env amino acid sequences (GenBank Accession numbers EU359303

to EU359305). This reveals the presence of polymorphisms conserved between

the FeLV-C components of the primary isolates detailed in Chapter 3 (Figure

3.1). These residues are S94, P102, P104, M132, Y138, and P177. Notably, one

Env variant also contains the D83N mutation. The presence of these mutations in

an in vivo study such as this supports the hypothesis that FeLV-C arises from an

FeLV-A isolate through the stepwise accumulation of mutations, gradually

altering the receptor-binding properties of the SU domain and eventually

resulting in a FeLV-C virus solely able to utilise FLVCR1.

4.3.6. The role of receptor availability in retroviral
evolution

The studies utilising MDTF-huFLVCR1/2 cells addressed the possibility that a

switch in retroviral receptor usage will only be induced if the novel receptor is

the solely functional protein available. This is the case for the pathogenic avian

leukosis virus, which acquires an expanded receptor tropism when cultured in

the presence of soluble non-functional receptors (Melder, Pankratz, &

Federspiel, 2003). This alters the subtype classification of the virus, in a manner

similar to FeLV. Therefore receptor availability represents a significant potential

driving force for retroviral evolution, indicating the use of FEA cells expressing

all 3 cognate receptors may have inadvertently decreased the likelihood of FeLV-

C evolving in the initial study. If receptor availability is the main determinant of

viral evolution, the presence of VNAs would also have had minimal effect on the

mutations identified in the study with FEA cells.



126

It must also be noted that although evolution of novel receptor usage allows the

virus to access novel cellular niches and spread further throughout the host, in

the case of FeLV this represents an evolutionary cul-de-sac, as both FeLV-B and –

C do not transmit to naïve hosts in nature. The concept that receptors targeted

during chronic viraemia within a host may be distinct from those required for

transmission between hosts has been suggested for other retroviruses including

HIV (Overbaugh & Bangham, 2001). However, as HIV requires both a receptor

(CD4) and co-receptor (either CXCR4 or CCR5) for successful cell entry (reviewed

in (Philpott, 2003)), this allows the virus a higher level of variation regarding

receptor choices and binding affinities than FeLV, which is constrained by the

fact it must retain a threshold binding affinity to THTR1 until a chronic infection

is established.

4.4 Conclusions

The most significant drawback to these experiments was the inadequate length

of time available; as many retroviral-associated pathologies only arise after

years of infection it remains possible that either VNAs or receptor expression

play significant roles in FeLV-C evolution. Similarly, the VNA neutralisation

studies rely upon the breadth of antibodies present in the pooled feline serum,

which would be unique across individual hosts. Finally, it must be highlighted

that the cloning method utilised for assessing the Env proteins (isolated after

long-term viral culture) would heavily influence the results.

During these studies, an in vitro model of FeLV-A to –C evolution was utilised to

characterise the roles of both receptor availability and VNAs in this process.

FeLV-A mutant viruses displaying differential initial abilities to bind to THTR1

and FLVCR proteins were included, however no association between any one

FeLV-A genotype and the development of FeLV-C or dual-tropism was found.

Using feline cells permissive to FeLV-A, -B and –C in a long-term viral replication

assay, mutations were identified within the Cdom of SU which affected viral

titre and infection rates. However these arose through viral genetic drift and

were not associated with the presence of VNAs. Non-functional Env proteins
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which could not pseudotype gammaretroviral virions were also isolated, although

the cause of this non- functionality was not apparent.

Further studies with selective cell lines, which would expand low-titre viral

variants able to utilise FLVCR1/2, indicated these variants were either absent or

present at a concentration below 1:10-5 (vol/vol) within the FeLV-A virions.

These results indicate receptor availability plays a minimal role in the

development of FeLV-C in infected cats. Viruses appearing phenotypically as

FeLV-C did not arise under any of the experimental conditions, indicating either

extensive incubation periods (>50 days) or other unidentified pressures are

required for this to occur. Before any definitive conclusions can be drawn about

the role of VNAs in FeLV-C development, this study should be repeated using a

more extensive range of both polyclonal and monoclonal antibodies and a more

thorough approach to profiling the final env sequences should be utilised.
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5. Are endogenous feline leukaemia viruses really
endogenous?

5.1 Introduction

The aim of the studies detailed in this chapter was to characterise novel virus

isolates which appeared phenotypically to comprise solely FeLV-B infections.

This would allow investigation into whether inter-host transmission of FeLV-B

may occur without the presence of FeLV-A “helper” viruses. It was hypothesised

that such events may represent horizontal transmission of transcriptionally-

active endogenous FeLV proviruses, posing the question of whether such enFeLV

elements are truly endogenous. Further studies regarding horizontal enFeLV

transmission are discussed in Chapter 6.

Endogenous retroviruses (ERVs) arise after a proviral integration event occurs

within a germline cell or during early embryogenesis. The resultant provirus is

maintained at this locus in every cell of the adult host. “Ancient” ERVs are

therefore fixed Mendelian elements within the genome of the species, whereas

more recently integrated ERVs may display polymorphism between individuals.

There are numerous FeLV-related endogenous elements (enFeLV) within the

domestic cat genome (Benveniste & Todaro, 1975; Koshy, et al., 1980; Okabe, et

al., 1976; Soe, et al., 1983), most of which are polymorphic (Koshy, et al., 1980;

Roca, et al., 2005) and many have intact LTRs (Soe, et al., 1983; Soe, et al.,

1985). The U3 region of the LTRs differs significantly between endogenous and

exogenous FeLV genomes (Berry, et al., 1988; Casey, et al., 1981; Okabe, et al.,

1978), hence this domain is often analysed to determine the nature of FeLV

proviruses (Tandon, et al., 2008). As enFeLV elements are generally mutated and

non-functional, they do not form infectious virions (Soe, et al., 1985), although

expression of short transcripts has been observed (Busch, et al., 1983;

McDougall, et al., 1994; Niman, et al., 1980).

Recently, full length enFeLV elements with intact open reading frames (ORFs)

have been characterised (GenBank Accession numbers AY364318 and AY364319)

(Roca, et al., 2004). These endogenous elements possess identical 5’ and 3’ LTRs
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and are present in only 9 - 15% of domestic cats (Roca, et al., 2005) indicating

they are relatively recent additions to the feline genome. It was hypothesised

that if transcription and packaging of these full-length enFeLV genomes occurred

in vivo, then they may be transmitted between hosts.

FeLV-B arises through recombination events between the env genes of FeLV-A

and enFeLV transcripts (Neil, et al., 1991; Overbaugh, Riedel, et al., 1988;

Stewart, et al., 1986). The recombination event leading to FeLV-B formation is

hypothesised to take place within a virion that has co-packaged two distinct

FeLV transcripts, however to date this has not been observed directly. Thus

FeLV-B is always found alongside FeLV-A, which is generally regarded as the

“helper” virus required for FeLV-B transmission (O. Jarrett & Russell, 1978;

Sarma & Log, 1973). The recombination event leads to an alteration of the

receptor usage of the virus, as this is determined by the receptor-binding

domain (RBD) located within the translocated SU-encoding region (Bae, et al.,

1997; Rigby, et al., 1992). FeLV-A strains utilise a thiamine transporter protein

(feTHTR1) for cell entry (Mendoza, et al., 2006) whilst FeLV-B utilises an

inorganic phosphate-sodium symporter (fePit1) (Rudra-Ganguly, et al., 1998;

Takeuchi, et al., 1992). As the RBD of FeLV-B is encoded by an enFeLV region of

the recombinant genome, infections caused by transmission of enFeLV-encoded

virions would present as subgroup B only in interference assays. Interference

assays, a method of classifying viruses according to their receptor usage, rely

upon the fact that infection with a retrovirus leads to down-regulation or

masking of the receptor upon the cell surface, preventing re-infection by a virus

of the same interference group (R.A. Weiss, 1993).

In this study, a group of FeLV field isolates were examined for the presence of

variants that displayed the FeLV-B phenotype alone. Two isolates were

identified from the sera of naturally infected cats, and the viral genomes were

sequenced to identify their proviral origins. Although there was evidence for

recombination between endogenous and exogenous transcripts in the genomes of

both these isolates, viruses of purely endogenous origin were not identified.

Additionally, one isolate co-packaged a defective exogenous FeLV-A genome

alongside the functional recombinant. It is predicted that these ostensibly-FeLV-

B isolates may be transmitted between hosts without the presence of FeLV-A. It
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appears that enFeLV elements may contribute more to FeLV transmission and

pathogenesis than previously suspected, despite the lack of enFeLV horizontal

transmission.

The overall aim of the studies detailed in this chapter was to characterise novel

virus isolates which appeared phenotypically as purely FeLV-B infections. This

would allow investigation into whether inter-host transmission of FeLV-B may

occur without the presence of FeLV-A “helper” viruses and whether endogenous

FeLV proviruses were actively circulating within the host population.

5.2 Results

5.2.1. The field isolates FeLV-2518 and -4314 are
phenotypically subgroup B

FEA cells were infected with a panel of 300 FeLV field isolates, which were then

classified by interference assay (R.A. Weiss, 1993) into their respective

subgroups (initial assays conducted by Matthew Golder, University of Glasgow).

Two isolates, designated FeLV-2518 and FeLV-4314, displayed the FeLV-B

phenotype alone with no evidence of FeLV-A co-infection. Although FeLV-B

infection is highly associated with FeLV-induced lymphomas (Sheets, et al.,

1993; Tsatsanis, et al., 1994) and leukaemias (O. Jarrett, et al., 1978; Tzavaras,

et al., 1990), the clinical history and disease status of these hosts was not

available, therefore the disease manifestation of these FeLV-B isolates is

unknown.

To confirm these viruses were replication-competent, cell-free filtered

supernatant from the infected FEA cells was used to infect HEK293T cells.

Immunoblots of cell-free virions from both FEA and HEK293T cells were

conducted to detect both the p27 (CA) and gp70 (SU) proteins, confirming the

cells were persistently infected (Figure 5.1). These results indicated that both

isolates produced a full-length envelope glycoprotein.
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In contrast, reverse interference assays demonstrate which receptor/s are

ed within cells infected with the novel isolate, indicated by their

resistance to superinfection by sarcoma viruses pseudotyped with Env p

a known interference group. Transformation, induced by the sarcoma virus
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4314 Env proteins mediate cellular entry through

n MDTF cells expressing a functional

the mean +/- SEM of three

2518 and -4314 titre during

expressing cells as compared to other cell lines is statistically

infected cells downregulate both

s indicate the receptor

binding of the novel SU

be expressed in the target cell.

which receptor/s are

ed within cells infected with the novel isolate, indicated by their

resistance to superinfection by sarcoma viruses pseudotyped with Env proteins of

Transformation, induced by the sarcoma virus



genome, indicates successful infection and indirectly confirms the present of the

required receptor in the indicator cell surface.

Reverse interference assays were

FeLV-2518 and -4314 to indirectly confirm their FeLV

confirmed the expectations that

expression, the FeLV

additionally induced downregulation

(A)

C
e
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L
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e

FEA FeLV-A

FEA FeLV-B

FEA FeLV-C

FEA FeLV-2518

FEA FeLV-4314

FEA

Figure 5.3: Receptor

(A) Summary of reverse interference assay results; X indicates transformation

was observed and hence the

surface. Trends are representative of three independent experiments.

(B) Representative photo

(C) Representative photo

with murine sarcoma virus (x100)

genome, indicates successful infection and indirectly confirms the present of the

required receptor in the indicator cell surface.

Reverse interference assays were conducted using FEA cells infected with both

4314 to indirectly confirm their FeLV-B phenotype. These results

the expectations that both viruses had induced downregulation of

, the FeLV-B receptor (Figure 5.3). However, FeLV

additionally induced downregulation of THTR1, the FeLV-A receptor.

Sarcoma Pseudotype (Env)

A B C 2518

A X X X

B X X

C X X X

2518 X

4314 X X

X X X X

eceptor downregulation by novel FeLV-B isolates

(A) Summary of reverse interference assay results; X indicates transformation

was observed and hence the required receptor was present upon the cell

surface. Trends are representative of three independent experiments.

(B) Representative photomicrograph of untransformed cells

Representative photomicrograph of transformed cells following

ith murine sarcoma virus (x100).
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genome, indicates successful infection and indirectly confirms the present of the

conducted using FEA cells infected with both

B phenotype. These results

induced downregulation of Pit1

FeLV-2518 infection had

A receptor.

Sarcoma Pseudotype (Env)

2518 4314

X

X

X

B isolates.

(A) Summary of reverse interference assay results; X indicates transformation

required receptor was present upon the cell

surface. Trends are representative of three independent experiments.

graph of untransformed cells (x100).

graph of transformed cells following infection



Further evidence for interference by receptor down

when chronically infected FEA cells were infected with

pseudotypes possessing

indicate a lowered

Accordingly, when FEA cells were infected with subgroup A, the titre of FeLV

Env-bearing pseudotypes fell markedly compared with the titre of

bearing pseudotyp

subsequent susceptibility to FeLV

infected cells were resistant to infection with FeLV

bearing pseudotypes.

THTR1 which was

5.4). Cells infected with FeLV

protein alone.

Figure 5.4: FEA cells infected with FeLV

and –B, while FeLV

FeLV-B alone.

MLV (FeLV) lacZ pseudotypes were titrated upon a range of FEA cells infected

with the Glasgow-1 (A),

the novel strains -2518 and

infection. Values represent the mean +/

Further evidence for interference by receptor down-regulation was provided

chronically infected FEA cells were infected with

possessing the FeLV-A, -B or –C Envs. A decrease in

lowered surface expression of the respective cognate receptor.

Accordingly, when FEA cells were infected with subgroup A, the titre of FeLV

bearing pseudotypes fell markedly compared with the titre of

bearing pseudotypes. Conversely, prior infection with FeLV

subsequent susceptibility to FeLV-B Env-bearing pseudotypes while FeLV

infected cells were resistant to infection with FeLV-C, but not FeLV

bearing pseudotypes. These assays confirmed the decrease of

observed previously in FeLV-2518 infect

Cells infected with FeLV-4314 displayed lowered expression of the Pit1

FEA cells infected with FeLV-2518 are resistant to both FeLV

FeLV-4314 infected cells are resistant to superinfection with

pseudotypes were titrated upon a range of FEA cells infected

1 (A), Gardner-Arnstein (B) and Sarma (C) strains of FeLV, or

2518 and -4314. Titres were calculated 72 hours post

infection. Values represent the mean +/- SEM of three independent experiments.
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regulation was provided

chronically infected FEA cells were infected with MLV(FeLV) lacZ

A decrease in lacZ titre would

respective cognate receptor.

Accordingly, when FEA cells were infected with subgroup A, the titre of FeLV-A

bearing pseudotypes fell markedly compared with the titre of -B and -C Env-

es. Conversely, prior infection with FeLV-B reduced the

bearing pseudotypes while FeLV-C

C, but not FeLV-A or –B Env

e decrease of both Pit1 and

2518 infected FEA cells (Figure

4314 displayed lowered expression of the Pit1

resistant to both FeLV-A

to superinfection with

pseudotypes were titrated upon a range of FEA cells infected

Arnstein (B) and Sarma (C) strains of FeLV, or

4314. Titres were calculated 72 hours post-

SEM of three independent experiments.



The decreases in titre marked with asterisks are s

(p<0.001).

5.2.3.
enFeLV transcripts

As the FeLV-4314 and

5.1) and appeared to be solely of the FeLV

genes were of endogenous origin and the

transcriptionally active enFeLV provirus

endogenous env and U3 regions from cell

(“FeLV enEnv” and “FeLV en

However enFeLV env

cDNA, indicating an endogenous

detected earlier. In support of this, endogenous LTRs were only detected in

gDNA from feline cells, indicating transmission of an enFeLV provirus to the

HEK293T cells had not occur

(A)

Figure 5.5: EnFeLV transcripts are not present in FeLV

(A) Virus was pelleted from the supernatant of cells chronically infected with

FeLV-2518 and -4314 and used to prepare cDNA. cDNAs were then screened for

the presence of enFeLV transcripts by PCR with primers specific for enFeLV

Plasmids containing endoge

respectively) were included to confirm primer specificity. Con = no template

control. (B) Genomic DNA

FeLV-2518, -4314 and A (Glasgow

LTR sequences using PCR with enFeLV LTR

uninfected FEA (Con) and from FEA cells chronically infected with FeLV

The decreases in titre marked with asterisks are statistically significant

FeLV-4314 and -2518 are not encoded by
enFeLV transcripts

4314 and -2518 viruses contained full-length Env proteins (Figure

5.1) and appeared to be solely of the FeLV-B subgroup, it was predicted the

genes were of endogenous origin and these isolates may

transcriptionally active enFeLV proviruses. PCRs were conducted

and U3 regions from cell-free virus and proviruses, respectively

(“FeLV enEnv” and “FeLV en-U3”, PCR details included i

env could not be detected in either FeLV

, indicating an endogenous env was not encoding the full

detected earlier. In support of this, endogenous LTRs were only detected in

gDNA from feline cells, indicating transmission of an enFeLV provirus to the

HEK293T cells had not occurred.

(B)

EnFeLV transcripts are not present in FeLV-2518 and

Virus was pelleted from the supernatant of cells chronically infected with

4314 and used to prepare cDNA. cDNAs were then screened for

the presence of enFeLV transcripts by PCR with primers specific for enFeLV

Plasmids containing endogenous and exogenous env clones (En

respectively) were included to confirm primer specificity. Con = no template

(B) Genomic DNA from HEK293T and FEA cells chronically infected

4314 and A (Glasgow-1) were screened for the presence of enFeLV

LTR sequences using PCR with enFeLV LTR-specific primers.

FEA (Con) and from FEA cells chronically infected with FeLV
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tatistically significant

2518 are not encoded by single

length Env proteins (Figure

B subgroup, it was predicted the env

may be the products of

ere conducted to amplify

free virus and proviruses, respectively

U3”, PCR details included in Appendix 8.2).

could not be detected in either FeLV-2518 or -4314 viral

was not encoding the full-length Env protein

detected earlier. In support of this, endogenous LTRs were only detected in

gDNA from feline cells, indicating transmission of an enFeLV provirus to the

2518 and -4314.

Virus was pelleted from the supernatant of cells chronically infected with

4314 and used to prepare cDNA. cDNAs were then screened for

the presence of enFeLV transcripts by PCR with primers specific for enFeLV env.

clones (En-Env and Ex-Env,

respectively) were included to confirm primer specificity. Con = no template

chronically infected with

r the presence of enFeLV

specific primers. Genomic DNA from

FEA (Con) and from FEA cells chronically infected with FeLV-A or



uninfected HEK293T (Con) were included to confirm

indicate the presence of enFeLV LTRs in feline gDNA only.

5.2.4.
within FeLV

The lack of evidence for the involvement of enFeLV in these isolates

an exogenous genome was present

indicate a functional subgroup A virus was present in either case.

conducted with exogenous FeLV

transcripts from viral cDNA (“FeLV Env”, PCR detailed in

could not be detected from FeLV

produced a ~1kB amplicon (Figure 5.

gDNA from both infected HEK293T and FEA cells

proviral form.

Figure 5.6: Exogenous

within FeLV-2518 virions, termed FeLV

Viral RNA was isolated from

and screened by RT

containing endogenous and exogenous

respectively) were included to confirm primer specificity.

Cloning and sequence analysis of the ~1kB amplicon revealed it to be an

exogenous FeLV env

SU/TM cleavage site, hydrophobic membrane anchor and the majority of the TM

uninfected HEK293T (Con) were included to confirm primer specificity. Products

ndicate the presence of enFeLV LTRs in feline gDNA only.

A defective exogenous FeLV env gene is present
within FeLV-2518

he lack of evidence for the involvement of enFeLV in these isolates

an exogenous genome was present, despite the fact earl

indicate a functional subgroup A virus was present in either case.

conducted with exogenous FeLV-specific primers, to amplify exogenous

transcripts from viral cDNA (“FeLV Env”, PCR detailed in Appendix

not be detected from FeLV-4314 templates; however FeLV

produced a ~1kB amplicon (Figure 5.6). This could be reproduced using cellular

gDNA from both infected HEK293T and FEA cells, indicating it was also present in

: Exogenous env PCR reveals a truncated FeLV

2518 virions, termed FeLV-2518(A).

Viral RNA was isolated from chronically infected and uninfected (

RT-PCR to detect exogenous FeLV env

containing endogenous and exogenous env clones (En

respectively) were included to confirm primer specificity.

Cloning and sequence analysis of the ~1kB amplicon revealed it to be an

env transcript, with an internal ~900bp deletion

SU/TM cleavage site, hydrophobic membrane anchor and the majority of the TM
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primer specificity. Products

A defective exogenous FeLV env gene is present

he lack of evidence for the involvement of enFeLV in these isolates indicated

, despite the fact earlier assays did not

indicate a functional subgroup A virus was present in either case. A PCR was

specific primers, to amplify exogenous env

Appendix 8.2). Products

4314 templates; however FeLV-2518 cDNA

). This could be reproduced using cellular

, indicating it was also present in

PCR reveals a truncated FeLV-A env transcript

chronically infected and uninfected (CON) FEA cells,

env transcripts. Plasmids

clones (En-Env and Ex-Env,

Cloning and sequence analysis of the ~1kB amplicon revealed it to be an

ith an internal ~900bp deletion spanning the

SU/TM cleavage site, hydrophobic membrane anchor and the majority of the TM



domain (see Figure 5.11 for a s

contained a premature termination codon, preventing the final 37 amino acids

from being translat

2518(A); the Env amino acid sequence is detailed in Appendix

the absence of a hydrophobic TM region suggests this peptide would be soluble,

it was not detected within supernatant from FeLV

However the FeLV-

downregulation of THTR1 that was observed in FeLV

be speculated that this peptide binds to immature THTR1 proteins within the

cell and prevents display of the functional receptor upon the cell surface.

5.2.5.

To confirm the presence of this exogenous FeLV genome in the virions of FeLV

2518, a PCR to specifically amplify the U3 region of exogenous FeLV LTRs was

conducted upon genomic DNA from both FEA and HEK293T cells

detailed in Appendix

were observed from both Fe

analysis confirmed these were integrated exogenous FeLV U3 motifs.

Figure 5.7: Exogenous LTRs are present in

Genomic DNA was isolated

PCR for the detection of

infected and uninfected

specificity. A water

(see Figure 5.11 for a schematic of the defective genome)

contained a premature termination codon, preventing the final 37 amino acids

translated. This defective exogenous FeLV genome was termed FeLV

; the Env amino acid sequence is detailed in Appendix

the absence of a hydrophobic TM region suggests this peptide would be soluble,

it was not detected within supernatant from FeLV-2518

-A RBD within this peptide was intact. Given the unexpected

ation of THTR1 that was observed in FeLV-2518-infected cells, it could

be speculated that this peptide binds to immature THTR1 proteins within the

cell and prevents display of the functional receptor upon the cell surface.

FeLV-4314 and -2518 contain exog

To confirm the presence of this exogenous FeLV genome in the virions of FeLV

2518, a PCR to specifically amplify the U3 region of exogenous FeLV LTRs was

conducted upon genomic DNA from both FEA and HEK293T cells

ndix 8.2. Surprisingly, amplicons of the expected size (~500bp)

were observed from both FeLV-2518 and -4314 templates (

analysis confirmed these were integrated exogenous FeLV U3 motifs.

: Exogenous LTRs are present in FeLV-2518 and

was isolated from infected FEA and HEK293T cells

for the detection of exogenous U3 proviral motifs

infected and uninfected (control) cells were included to

specificity. A water-only no template control (NTC) was also
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chematic of the defective genome). It also

contained a premature termination codon, preventing the final 37 amino acids

ed. This defective exogenous FeLV genome was termed FeLV-

; the Env amino acid sequence is detailed in Appendix 8.4 (C). Although

the absence of a hydrophobic TM region suggests this peptide would be soluble,

2518-infected cultures.

A RBD within this peptide was intact. Given the unexpected

infected cells, it could

be speculated that this peptide binds to immature THTR1 proteins within the

cell and prevents display of the functional receptor upon the cell surface.

518 contain exogenous LTRs

To confirm the presence of this exogenous FeLV genome in the virions of FeLV-

2518, a PCR to specifically amplify the U3 region of exogenous FeLV LTRs was

conducted upon genomic DNA from both FEA and HEK293T cells (“FeLV ex-U3”,

. Surprisingly, amplicons of the expected size (~500bp)

4314 templates (Figure 5.7). Sequence

analysis confirmed these were integrated exogenous FeLV U3 motifs.

2518 and -4314.

from infected FEA and HEK293T cells and screened by

motifs. DNA from FeLV-A-

were included to confirm primer

also included.



5.2.6.
isolate

Although exogenous LTRs

full length exogenous or endogenous

alternative endogenous

investigate potential

immunoblots against

transcripts were conducted

indicated RD-114 was not involved in the transmission or replication of these

novel isolates (Figure 5.8).

Figure 5.8: The endogenous virus

4314.

Cell-free supernatant from

HEK293T and FEA cells was

separated by SDS-

capsid protein (upper panel). V

PCR for the presence of RD114

samples were obtained by transfection of HEK293T cells with the RD

infectious molecular clone

In addition to RD-

functional retrovirus terme

Non-FeLV retroelements are not present in either
isolate

Although exogenous LTRs were present in both virus isolates, the lack of

full length exogenous or endogenous FeLV env transcripts

alternative endogenous retrovirus may be contributing to

potential involvement of the endogenous feline retrovirus, RD

immunoblots against the RD-114 capsid protein and a PCR to detect RD

transcripts were conducted (“RD-114 Env”, PCR detailed in

114 was not involved in the transmission or replication of these

novel isolates (Figure 5.8).

: The endogenous virus RD114 is not present in FeLV

free supernatant from chronically infected and uninfected (control)

HEK293T and FEA cells was harvested, concentrated by ultracentrifugation and

-PAGE before being probed for the presence of the RD114

capsid protein (upper panel). Viral RNA was also isolated and screened by RT

for the presence of RD114 env transcripts (lower pa

samples were obtained by transfection of HEK293T cells with the RD

infectious molecular clone, pS3C3 (Reeves, et al., 1985).

-114, there exists in the domestic cat genome a putatively

functional retrovirus termed FcEV (Felis catus endogenous virus)
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retroelements are not present in either

present in both virus isolates, the lack of either

transcripts suggested an

viral transmission. To

of the endogenous feline retrovirus, RD-114,

capsid protein and a PCR to detect RD-114 env

114 Env”, PCR detailed in Appendix 8.2). These

114 was not involved in the transmission or replication of these

4 is not present in FeLV-2518 or -

chronically infected and uninfected (control)

harvested, concentrated by ultracentrifugation and

before being probed for the presence of the RD114

RNA was also isolated and screened by RT-

panel). Positive control

samples were obtained by transfection of HEK293T cells with the RD-114

114, there exists in the domestic cat genome a putatively-

endogenous virus) (van der Kuyl,



et al., 1999). To ensure this endogenous retroviral element

to viral transmission

(“FcEV Env”, PCR detailed in

ensure specificity of the PCR. There was no indication this virus contributed to

transmission or replication of FeLV

Figure 5.9: FcEV transcripts

Genomic DNA was isolated

HEK293T and FEA cells

env sequences. Amplicons were not observed in FeLV

non-feline cell lines.

5.2.7.
genomes

As transcripts of endogenous

not present in FeLV

must consist of recombinant FeLV genomes. Prototype FeLV

recombinant origin,

additional presence of a FeLV

enFeLV-env-specific sense primer and an antisense primer specific for a highly

conserved region within the U3 of both enFeLV and exogenous FeLV

therefore selected to amplify recombinant FeLV

infected HEK293T cells

Amplicons of the expected size, 2.2kB, were observed from both FeLV

-4314 templates (

products to be recombinant

. To ensure this endogenous retroviral element

transmission, a PCR for FcEV Env transcripts in viral cDNA

(“FcEV Env”, PCR detailed in Appendix 8.2). Amplicons were sequenced to

ensure specificity of the PCR. There was no indication this virus contributed to

transmission or replication of FeLV-2518 or -4314 (Figure 5.

FcEV transcripts are not present in FeLV-2518 and

was isolated from chronically infected and uninfected (control)

HEK293T and FEA cells and screened by PCR for the presence of proviral

Amplicons were not observed in FeLV-2518 or

feline cell lines.

FeLV-4314 and -2518 possess recombinant
genomes

endogenous retroviral elements (enFeLV,

FeLV-2518 or -4314 isolates, it was conclude

recombinant FeLV genomes. Prototype FeLV

recombinant origin, however the isolation of this subgroup

additional presence of a FeLV-A virus has not been documented previously

specific sense primer and an antisense primer specific for a highly

conserved region within the U3 of both enFeLV and exogenous FeLV

therefore selected to amplify recombinant FeLV env genes from the gDNA of

infected HEK293T cells (“FeLV-Recombinant”, PCR details i

Amplicons of the expected size, 2.2kB, were observed from both FeLV

emplates (Figure 5.10). Cloning and sequence analysis

products to be recombinant env sequences with exogenous FeLV LTR
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. To ensure this endogenous retroviral element was not contributing

PCR for FcEV Env transcripts in viral cDNA was conducted

). Amplicons were sequenced to

ensure specificity of the PCR. There was no indication this virus contributed to

5.9).

2518 and -4314.

from chronically infected and uninfected (control)

and screened by PCR for the presence of proviral FcEV

2518 or -4314 infected

2518 possess recombinant

retroviral elements (enFeLV, FcEV or RD114) were

concluded that these viruses

recombinant FeLV genomes. Prototype FeLV-B viruses are of

however the isolation of this subgroup without the

virus has not been documented previously. An

specific sense primer and an antisense primer specific for a highly

conserved region within the U3 of both enFeLV and exogenous FeLV, were

genes from the gDNA of

ecombinant”, PCR details in Appendix 8.2).

Amplicons of the expected size, 2.2kB, were observed from both FeLV-2518 and

ing and sequence analysis revealed both

exogenous FeLV LTRs. This



correlates with the seemingly

being the presence of exogenous U3 motifs without an accompanying exogenous

env in both FeLV-2518 and

genes encode the full

known which of the viral genomes found within FeLV

the remaining viral proteins.

Figure 5.10: FeLV-

Genomic DNA was isolated from

HEK293T cells and screened by

proviruses.

A multiple sequence alignment was constructed to compare the nucleotide

sequences of FeLV

env genes and LTRs. The genomes of FeLV

M12500), FeLV-A(Rickard) (

(GenBank Accession M18247), enFeLV (AY364318) and enFeLV (AY364319) were

compared with the FeLV

breakpoints were identified

between endogenous and exogenous genes

accompanied by short regions of very high sequence conservation which

presumably facilitated the recombination event between the exogenous and

endogenous RNA strands.

The 3’ recombination breakpoint of FeLV

200bp downstream of the SU/TM cleavage site

correlates with the seemingly-conflicting results produced in other PCR assays

being the presence of exogenous U3 motifs without an accompanying exogenous

2518 and -4314. It is presumed these recombinant

the full-length Env glycoproteins observed in Figure 5.1. It is not

known which of the viral genomes found within FeLV-2518 virions contributes

the remaining viral proteins.

-4314 and -2518 contain recombinant

enomic DNA was isolated from chronically infected and uninfected (control)

and screened by PCR for the presence of

A multiple sequence alignment was constructed to compare the nucleotide

sequences of FeLV-2518 and -4314 with both exogenous and endogenous FeLV

genes and LTRs. The genomes of FeLV-A(Glasgow-1

A(Rickard) (GenBank Accession AF052723), FeLV

Accession M18247), enFeLV (AY364318) and enFeLV (AY364319) were

compared with the FeLV-2518 and -4314 products. T

identified as the site at which the nucleotide identity switched

tween endogenous and exogenous genes (see Appendix 8.4 (A))

accompanied by short regions of very high sequence conservation which

presumably facilitated the recombination event between the exogenous and

endogenous RNA strands.

tion breakpoint of FeLV-4314 was found to be

eam of the SU/TM cleavage site. It consist
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conflicting results produced in other PCR assays,

being the presence of exogenous U3 motifs without an accompanying exogenous

recombinant FeLV env

length Env glycoproteins observed in Figure 5.1. It is not

2518 virions contributes

2518 contain recombinant env genes.

chronically infected and uninfected (control)

for the presence of recombinant env

A multiple sequence alignment was constructed to compare the nucleotide

4314 with both exogenous and endogenous FeLV

1) (GenBank Accession

sion AF052723), FeLV-A(FAIDS)

Accession M18247), enFeLV (AY364318) and enFeLV (AY364319) were

The 3’ recombination

the site at which the nucleotide identity switched

(see Appendix 8.4 (A)). These were

accompanied by short regions of very high sequence conservation which

presumably facilitated the recombination event between the exogenous and

was found to be approximately

. It consisted of a 21bp stretch
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(encoding the SISALEK motif within TM), conserved between both the prototype

FeLV-A(Glasgow-1) and enFeLV viral genomes. Upstream there were 12

randomly-distributed mutations, encoding 7 amino acid substitutions, which

distinguish this from the full-length enFeLV genome AY364318 (Roca, et al.,

2004). This indicated that although the contributing enFeLV locus is not

definitively known it is likely to be a recently-endogenised retrovirus. It is

hypothesised that the majority of the TM domain, and the accompanying U3

region of the 3’ LTR, are derived from an exogenous FeLV-A genome that is no

longer present within the isolate.

In comparison, the 3’ recombination breakpoint of the FeLV-2518 genome is an

18 nucleotide stretch encoding the WTSDFC motif, ~100bp upstream of the

SU/TM cleavage site. This recombination site has been identified previously in

FeLV-B isolates (Boomer, Gasper, Whalen, & Overbaugh, 1994) indicating it may

be a preferential region for RT strand transfer during DNA synthesis. Within the

endogenously-derived region of FeLV-2518, there is only one nucleotide

difference (causing a K to I substitution) when compared to the AY364318

genome, again indicating a recently-endogenised provirus is the most probable

source of this region. Sequence comparison of FeLV-2518 and the defective

FeLV-2518(A) env gene revealed homologous stretches both within the 3’ region

of env and across U3. This provides evidence for FeLV-2518(A) being the source

of the exogenous regions within the functional FeLV-2518 genome. However

numerous mutations were observed clustered within the region immediately

downstream of the stop codon of FeLV-2518(A). This genetic drift may have

occurred since the recombination event that formed the functional FeLV-2518

viral genome, as there was no longer selective pressure upon the exogenous

genome to retain functionality.

Using a series of oligonucleotides conserved between exogenous and endogenous

FeLV sequences, the whole viral genome of both FeLV-2518 and -4314 was

sequenced from viral cDNA. Genome sequence contigs were created for each

virus (Appendix 8.4 (A)). This allowed identification of the 5’ recombination

breakpoints, identified by the alteration from an exogenous sequence to that of

an endogenous FeLV element (Figure 5.11 for a schematic of the overall genome

structures).



Figure 5.11: The genomes of FeLV

Viral RNA was isolated from chronically infected HEK293T cells and

of FeLV-2518 and

multiple contigs, resulting from overlapping PCRs.

between endogenous and exogenous transcripts were identified and compared to

the previously-described FeLV

are detailed in Appendix 8.4..

FeLV-2518 contains

env, whereas the 5’ recombination site of

gene, specifically within the RT ORF.

identified within the

possesses an identical sequence to that of FeLV

hence the two genomes could not be disting

that the now-defective FeLV

recombinant FeLV-

: The genomes of FeLV-2518 and -4314.

Viral RNA was isolated from chronically infected HEK293T cells and

2518 and -4314 were determined and annotated

, resulting from overlapping PCRs. Recombination breakpoints

between endogenous and exogenous transcripts were identified and compared to

described FeLV-B isolates. Nucleotide and a

are detailed in Appendix 8.4..

s a 5’ recombination breakpoint within

the 5’ recombination site of FeLV-4314 is found within the

gene, specifically within the RT ORF. The fact that multiple transcripts were not

the FeLV-2518 viral cDNA at any point suggests

s an identical sequence to that of FeLV-2518 outside the

hence the two genomes could not be distinguished. This supports th

defective FeLV-2518(A) is the parental virus

-2518.
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Viral RNA was isolated from chronically infected HEK293T cells and the genomes

determined and annotated by the assembly of

Recombination breakpoints

between endogenous and exogenous transcripts were identified and compared to

Nucleotide and amino acid sequences

within the signal peptide of

4314 is found within the pol

at multiple transcripts were not

at any point suggests FeLV-2518(A)

2518 outside the env gene, and

uished. This supports the conclusion

virus of the functional
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5.2.8. Alteration of the LTRs may alter the pathogenic
potential of enFeLV

As the Gag and Pol polyproteins of endogenous and exogenous FeLV genomes are

highly conserved (Berry, et al., 1988; Roca, et al., 2004), substituting the

majority of the env gene of FeLV-A with that of enFeLV would exert a similar

phenotypic effect as the transmission of a wholly endogenous enFeLV to a novel

host. It is not known whether this event would be detrimental; as ERVs rarely

display pathogenicity towards their wildtype host (Miyazawa et al., 2010;

Wilson, 2008) an adverse effect would be unlikely. The most commonly-cited

example of pathogenic endogenously-derived retroviruses is that of AKR mice,

which are not a naturally-occurring breed (Fan, 1997). However the acquisition

of exogenous LTRs to an otherwise-endogenous FeLV genome would be expected

to significantly alter the pathogenic potential of the isolate, as these regions

contain differential promoter and enhancer elements (Berry, et al., 1988).

To support this theory, bioinformatics software MatInspector (Genomatix)

(Cartharius, et al., 2005; Quandt, et al., 1995) was used to screen the exogenous

and endogenous FeLV LTRs for potential transcription factor (TF) binding sites.

This program has been used previously to accurately map regulatory elements of

retroviral U3 regions (Kwon, Lee, Greenhalgh, & Cho, 2011). Parameters were

set to detect only those transcription factor binding sites which displayed

maximum conservation between the input sequence/s and the prototype binding

sequence (matrix similarity of 1.00). Although this increases the accuracy of the

predictions, this method also increases the probability that additional TF binding

sites will remain undetected. The results (summarised in Table 5.1) indicated

that the LTRs would be recognised by different TFs and therefore may be

differentially expressed in vivo. Three potential TF binding sites were predicted

within the enFeLV U3 region, whereas 5 and 6 sites were predicted for FeLV-

2518 and -4314, respectively. Additionally, only one TF binding site was

conserved between all three motifs (myeloid zinc-finger protein MZF1).



Table 5.1: The U3 regions of endogenous and exogenous LTRs contain

differential TF binding sites

The MatInspector program

used to screen U3 domains for potential TF binding sites with a matrix similarity

value of 1.00. The sequence described is the motif possessing TF binding

potential; capital letters indicate the core binding sequence.

The U3 regions of endogenous and exogenous LTRs contain

differential TF binding sites.

The MatInspector program (Cartharius, et al., 2005; Quandt, et al., 1995)

used to screen U3 domains for potential TF binding sites with a matrix similarity

value of 1.00. The sequence described is the motif possessing TF binding

potential; capital letters indicate the core binding sequence.
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The U3 regions of endogenous and exogenous LTRs contain

(Cartharius, et al., 2005; Quandt, et al., 1995) was

used to screen U3 domains for potential TF binding sites with a matrix similarity

value of 1.00. The sequence described is the motif possessing TF binding

potential; capital letters indicate the core binding sequence.
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In support of these results, a manual comparison of the known TF binding sites

present in the FeLV-A U3 region (Fulton, Plumb, Shield, & Neil, 1990; A. K.

Helfer-Hungerbuehler, et al., 2010) also indicates the endogenous counterpart

possesses differential TF binding capacities. Although the leukaemia virus factor

B (LVb) site, CAT and TATA boxes are intact in both endogenous and exogenous

LTRs, in contrast the simian virus 40 core enhancer (CORE), nuclear factor 1

(NF1), glucocorticoid response element (GRE) and FeLV-specific binding motif

(FLV1) domains are highly mutated in endogenous sequences (Figure 5.12).



Figure 5.12: The U3 regions of endogenous and exogenous FeLV proviruses

display differential TF binding motifs

A multiple sequence alignment of the U3 motifs from

recently-endogenised enFeLV elements was screened for elements of the

enhancer framework previously described in FeLV LTRs.

The U3 regions of endogenous and exogenous FeLV proviruses

display differential TF binding motifs.

A multiple sequence alignment of the U3 motifs from FeLV

endogenised enFeLV elements was screened for elements of the

enhancer framework previously described in FeLV LTRs.
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The U3 regions of endogenous and exogenous FeLV proviruses

FeLV-2518, -4314 and two

endogenised enFeLV elements was screened for elements of the
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Although this analysis cannot be extrapolated without supportive experimental

data, it does provide preliminary evidence that the acquisition of novel

exogenous LTRs would significantly alter the transcriptional activity and

pathogenic potential of a full-length enFeLV provirus. The switch in LTRs may

have allowed FeLV-4314 to outgrow the exogenous FeLV-A which was presumably

present originally in the host. Given time, this may also occur with FeLV-2518, as

there is no evidence that the defective FeLV-2518(A) genome is required for

transmission or replication of this recombinant variant.

5.2.9. The RNA structure of the RBD displays increased
propensity for recombination

According to the published literature, FeLV-4314 is both the first strain of FeLV-

B isolated without the presence of a FeLV-A “helper” virus, and the first

described recombinant FeLV possessing a 5’ recombination breakpoint within the

RT ORF. However the majority of FeLV-B isolates described to date contain

recombination sites within a central region of the SU domain (Ahmad & Levy,

2010; Sheets, et al., 1992). To investigate why this region appears preferentially

subject to such high rates of recombination, bioinformatics software programs

mFold (Zuker, 2003; Zuker & Jacobson, 1998), Alifold (Hofacker, Fekete, &

Stadler, 2002) and RNAStructure Version 5.3 (Reuter & Mathews, 2010) were

used to model the secondary structures within FeLV env RNA. This aimed to

identify potential recombination “hotspots” which may exist in either the

endogenous or exogenous env genes. Apart from the 5’ leader sequences,

retroviral dimeric RNA is not thought to form interstrand structures within

virions (Murti, Bondurant, & Tereba, 1981; Paillart, Marquet, Skripkin,

Ehresmann, & Ehresmann, 1996), therefore monomeric sequences were used in

these analyses. The original structural predictions are included in Appendix 8.5;

Figure 5.13 displays schematics of the resulting models, redrawn for ease of

reference.
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Figure 5.13: The predicted RNA secondary structures

(B) endogenous FeLV

Schematics are based upon the predicted structures from the mFold and

RNAstructure webservers.

This bioinformatics analysis indicated that the overall RNA secondary structure

was conserved between exogenous and endogenous

region upstream of the RBD forms a helix which is structu

between exogenous and endogenous

to stall at the termini of RNA helices to facilitate RNA “unwinding”, hence such

regions are common site

The presence of this conserved helix immediately prio

may therefore contribute to the high incidence of recombination sites with

5’ sequence of the RBD. In comparison

RBDs form highly divergent

the more conserved

: The predicted RNA secondary structures in (A) exogenous and

(B) endogenous FeLV env transcripts.

s are based upon the predicted structures from the mFold and

RNAstructure webservers. Original files are included in Appendix 8.5.

This bioinformatics analysis indicated that the overall RNA secondary structure

was conserved between exogenous and endogenous env

region upstream of the RBD forms a helix which is structu

between exogenous and endogenous env sequences. Reverse transcriptase

at the termini of RNA helices to facilitate RNA “unwinding”, hence such

ommon sites for recombination events (Galetto & Negroni, 2005

The presence of this conserved helix immediately prior to the RBD

may therefore contribute to the high incidence of recombination sites with

5’ sequence of the RBD. In comparison, the sections encoding the

divergent short unstable stem loops, which

the more conserved sequences. The relatively high proportion of single
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in (A) exogenous and

s are based upon the predicted structures from the mFold and

Original files are included in Appendix 8.5.

This bioinformatics analysis indicated that the overall RNA secondary structure

env RNA transcripts. The

region upstream of the RBD forms a helix which is structurally conserved

sequences. Reverse transcriptase tends

at the termini of RNA helices to facilitate RNA “unwinding”, hence such

Galetto & Negroni, 2005).

r to the RBD-encoding RNA

may therefore contribute to the high incidence of recombination sites within the

encoding the respective

which do not interact with

sequences. The relatively high proportion of single-stranded
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RNA in this region would decrease the probability of further recombination

occurring within this sequence. This supports observations that the majority of

FeLV-B env genes described to date bear RBDs from enFeLV envs.

The sequence downstream of the RBD is once again highly conserved between

exogenous and endogenous FeLV. This results in almost identical predicted

secondary structures forming in the regions encoding the TM of both enFeLV and

FeLV-A env. As there are numerous stable helices within this region,

recombination may occur and remain undetected due to the high primary

sequence conservation.

This preliminary in silico analysis suggests that the high rate of recombination

within the 5’ region of env is due to secondary structures within the RNA which

facilitate increased RT strand transfer within this region. It would be of interest

to determine accurately the frequency of recombination and whether it

additionally occurs in the highly conserved TM domain; however time and

resource limitations made this impossible at this point.

5.3 Discussion

The results presented within this chapter provide evidence that strains of FeLV

appearing phenotypically as purely subgroup B may be circulating in the

domestic cat population. Two strains of this nature were isolated and found to

be replication-competent in multiple cell lines, without the required presence of

a viable FeLV-A helper virus. Genetic characterisation of these field isolates

revealed they are both recombinant viruses, possessing mostly endogenously-

derived env gene sequences and in the case of FeLV-4314, a significant portion

of an endogenous pol gene. FeLV-2518 also packaged a defective exogenous

genome. The expression of an Env-related peptide from this genome appeared to

induce downregulation of THTR1 within cells, presumably by intracellular

peptide-receptor binding prior to display on the cell surface.
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5.3.1. FeLV-4314 and -2518 represent distinct
recombination events

There are 12 nucleotide differences between the exogenous U3 domains of FeLV-

2518 and -4314, making it unlikely that they arose from a conserved parental

virus. Thus a recombination event resulting in a mostly-endogenous viral env

gene with exogenous LTRs appears to have occurred separately on at least two

occasions in naturally infected hosts, and manifests as an FeLV-B infection

without a co-infection of FeLV-A. This is the first reported identification of a 3’

recombination breakpoint being identified within a FeLV-B TM domain, and a 5’

site identified within RT, as the majority of recombination sites span a central

250bp region of SU (Sheets, et al., 1992). There are rare reports of

recombination sites being identified in the pol gene, although these are further

downstream than the position described here (Overbaugh, Riedel, et al., 1988;

Pandey, et al., 1991).

The high sequence identity of the endogenous portions of both FeLV-2518 and -

4314 to the recently-endogenised enFeLV proviruses (Roca, et al., 2004)

indicates that retroelements such as these are transcriptionally active and

contribute to FeLV-B formation. Additional evidence for this comes from the fact

that both FeLV-2518 and -4314, as well as the full-length enFeLV genomes (Roca,

et al., 2004) contain the central-SU C11D8 epitope (MGPNL) (Elder, et al., 1987;

Nunberg, Rodgers, et al., 1984) which is not found in defective enFeLV elements

such as CFE-6 (McDougall, et al., 1994; Sheets, et al., 1993). Thus the CFE-6

provirus and other previously-described enFeLV may no longer be suitable

choices for FeLV-B genetic comparisons. For example, it was recently stated that

geographically diverse FeLV-B isolates display a range of identical non-

synonymous substitutions when compared to CFE-6, providing evidence they are

preferentially selected for during FeLV-B generation (Ahmad & Levy, 2010). A

more probable scenario exists wherein recently-endogenised enFeLV loci are

more likely to be transcriptionally active and thus are the main contributors to

FeLV-B genomes.
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5.3.2. RNA recombination in gammaretroviruses

Recombination occurs during reverse transcription when the RT enzyme switches

from the initially reverse-transcribed “donor” template to an alternative

“acceptor” RNA strand (Worobey & Holmes, 1999). Synthesis of the nascent DNA

strand continues, resulting in a novel recombinant product. Thus two cycles of

infection are required for recombination between exogenous genomes to occur:

(1) the initial infection of a cell by two distinct viruses, the transcripts from

which are later co-packaged, and (2) the subsequent infection of a naïve target

cell by the heterozygous virions, at which point reverse transcription produces

the recombinant genome and subsequent provirus. In the example of FeLV-B

formation, it is endogenous expression of enFeLV transcripts that contributes the

second genome, rather than a distinct secondary viral particle.

It is not known which enFeLV loci contribute to FeLV-B formation or whether this

varies between hosts. As the intact full-length enFeLV elements are polymorphic

between domestic cat genomes (Roca, et al., 2005), it is probable that defective

mutated elements contribute in some cases of FeLV-B development. Early

studies upon enFeLV gag genes indicated they were highly mutated and thus

assumed to be defective; however both the packaging signal and leader

sequences were intact (Berry, et al., 1988). It is therefore feasible that co-

packaging of defective endogenous RNA transcripts alongside exogenous

genomes may occur even in host cats lacking the full-length, putatively-

functional enFeLV loci. It must be noted that co-packaging of this nature has not

been observed directly, although co-packaging of both FeLV and MLV RNAs has

been observed in vitro and results in novel recombinant genomes (Pandey, et

al., 1991; Yin & Hu, 1997). There is also the notable case of AKR mice, which

develop leukaemia following development of a replication-competent virus from

recombination events between three endogenous elements. Interestingly, in this

case a specific locus (Bxv-1) contributes the LTRs which directly influence the

pathogenic potential of the final virus (Coffin, Stoye, & Frankel, 1989).

Therefore the formation of FeLV-B, arising through recombination between

exogenous and endogenous transcripts in infected animals, is not without

parallels.
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HIV has an estimated recombination rate of approximately 1.4 x 10-5 per site per

generation (Neher & Leitner, 2010) whereas MLV recombines at least 10-fold less

(Simon-Loriere & Holmes, 2011). Therefore the frequency of recombination

varies significantly across the retroviral genera, and is influenced by both the

processivity and fidelity of the RT enzyme and the presence of structural motifs

within viral RNA (Simon-Loriere & Holmes, 2011). RT pause sites include highly

stable structures such as the termini of dsRNA helices. These aid strand transfer

events, inducing recombination, by stalling the RT enzyme and increasing the

probability strand transfer will occur during synthesis of the antisense DNA

strand (Lanciault & Champoux, 2006; Simon-Loriere & Holmes, 2011). This

pausing is also thought to allow the RNaseH function of the RT enzyme to further

degrade the donor strand, thereby increasing interactions between the acceptor

RNA and the nascent DNA (Roda et al., 2002).

There are conflicting opinions as to whether RNA recombination offers

advantages to retroviruses. It is often assumed to allow generation of functional

viruses from potentially nicked and damaged genomes, and therefore heightens

replication fidelity by effectively purging deleterious mutations which would

otherwise render the genome non-functional (Temin, 1991). In the case of HIV,

intergenic domains tends to possess highly stable RNA structures, thus

decreasing the probability that recombination will produce deleterious viral

progeny by nucleotide misincorporation and the introduction of frame-shift

mutations (Simon-Loriere, Martin, Weeks, & Negroni, 2010). In contrast,

recombination allows complementation between functional and defective viral

genomes, which decreases the overall fitness of the viral population. It has been

suggested that recombination may merely be a “mechanistic by-product” arising

due to the nature of the retroviral life cycle (Simon-Loriere & Holmes, 2011); as

two strand transfer events are required for a successful infection, the RT

enzyme may have evolved to possess low processivity and template affinity

(Temin, 1993). In the case of FeLV, recombination producing a novel subgroup

(FeLV-B) may increase viral fitness by expanding receptor tropism and allowing

continued viraemia.
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5.3.3. Exogenous LTRs may alter the properties of
enFeLV viral strains

The 3’ LTR is often a contributing factor in the virulence and oncogenic

potential of retroviruses. Promoter and enhancer-like elements, including the

CCAAT (Grosschedl & Birnstiel, 1980) and Goldberg-Hogness boxes (Corden, et

al., 1980; Proudfoot, 1979), are located within the U3 region and may activate

proto-oncogenes downstream of the site of insertion (Fan, 1997; L. S. Levy,

Lobelle-Rich, & Overbaugh, 1993). There are numerous examples of specific

FeLV U3 domains, usually containing short repeats either upstream or within the

enhancer regions, being associated with heightened pathogenesis. In some cases,

the repeats form novel TF binding sites, leading to higher rates of viral

replication and an accelerated disease progression (Finstad, Prabhu, Rulli, &

Levy, 2004; Prabhu, et al., 1999). These include cases of FeLV-related

multicentric lymphoma (Athas, Choi, Prabhu, Lobelle-Rich, & Levy, 1995;

Chandhasin, et al., 2004) and acute myeloid leukaemia (Hisasue et al., 2009;

Matsumoto et al., 1992; Nishigaki et al., 1997). These repeated motifs are not

found in the LTRs detailed within this study; however it would be of interest to

determine the clinical manifestation of FeLV-2518 and -4314 infection and

characterise how this is influenced by the exogenous LTRs they contain.

There is also recent evidence that the U3 region may be directly involved in

FeLV pathogenesis; a short positive-sense RNA transcript is produced from the

FeLV U3 region in vitro and is thought to activate the NFκB signalling pathway 

(Abujamra et al., 2006; Forman, Pal-Ghosh, Spanjaard, Faller, & Ghosh, 2009). It

is not known if this pathway and/or the transcript itself contribute to FeLV-

induced diseases, although the NFκB pathway is associated with cancer 

progression (Okamoto, Sanda, & Asamitsu, 2007). The stimulation of this

pathway may increase cell proliferation and therefore heighten the opportunity

for retroviral activation of proto-oncogenes (Forman, et al., 2009). Supporting

evidence for a direct role of gammaretroviral LTRs in disease progression comes

from the fact that the U3 domain activates the AP-1 signalling pathway

(Abujamra, Faller, & Ghosh, 2003; S. K. Ghosh & Faller, 1999; Weng, Choi, &

Faller, 1995). Notably enFeLV LTR expression does not exert these effects (S. K.

Ghosh, Roy-Burman, & Faller, 2000). Therefore the effective replacement of
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endogenous LTRs with those from an exogenous viral strain would almost

certainly alter the pathogenic potential of the virus. Similar effects have been

described in MLV, wherein a switch in LTR sequences between distinct strains

predictably alters the resulting disease spectrum (Chatis, Holland, Hartley,

Rowe, & Hopkins, 1983; Fan, 1997).

5.3.4. The potential roles of the defective FeLV-2518(A)
genome

It is not known if the truncated exogenous Env peptide encoded by FeLV-2518(A)

plays a role in the transmission and/or replication of FeLV-2518. Were this

protein secreted, it may either prevent FeLV-A infection through competitive

receptor-binding, or enhance infection with other viruses in a similar manner to

that of FeLIX. However gp70-specific immunoblots did not indicate it was

present in cell-free supernatant. The fact that decreased surface expression of

feTHTR1 in FeLV-2518-infected cells was observed with two distinct techniques

(reverse interference assays and lacZ-pseudotype infection) indicates binding

between the 2518(A) Env peptide and the receptor occurs intracellularly and

prevents both peptide secretion and feTHTR1 display. Thus the predicted

behaviour of 2518(A) Env is similar to that of the described protective enFeLV

Env peptide (McDougall, et al., 1994), in that it may reduce cellular

susceptibility to superinfection by downregulating surface expression of FeLV

cognate receptors. A similar mechanism is seen in mice wherein endogenously

expressed polytropic and xenotropic MLVs (the Rmcf and Rmcf2 resistance

genes) interact with the XPR1 receptor (Jung, et al., 2002; T. Wu, et al., 2005).

However it remains possible that low levels of the 2518(A) Env peptide are

secreted and were not detectable. As it would be predicted to form soluble RBD-

like proteins, it was initially suggested that it would possess similar properties to

FeLIX, an endogenously-encoded Env peptide required for FeLV-T infection of T-

lymphocytes (Anderson, et al., 2000; Lauring, et al., 2001). FeLIX consists of the

N-terminal 273 residues of the Pit1-RBD; comparatively the 2518(A) Env peptide

possesses the initial 295 residues of FeLV-A RBD. FeLIX is thought to restore

infectivity to non-infectious gammaretroviruses by “priming” the otherwise non-

functional SU proteins, allowing fusion of the viral and cellular membranes to
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occur. The ability of other soluble gammaretroviral RBDs to restore infectivity to

mutant viruses has also been characterised (Lavillette, et al., 2001; Lavillette,

Ruggieri, Russell, & Cosset, 2000). However the amino acid sequence of FeLV-

2518 Env is predicted to be wholly functional, therefore the 2518(A) Env peptide

would presumably not be required to induce fusion. More importantly, 2518(A)

Env does not possess a functional N-terminal fusion motif. This motif, consisting

of a SPHQ sequence, couples the receptor-binding properties to the fusion

machinery of gammaretroviral Env proteins. Proteins with mutations in the

fusion motif are able to bind receptors but cannot mediate cellular entry

(Barnett & Cunningham, 2001); this is likely to be the case concerning 2518(A)

Env which contains a SPPQ motif. Comparatively, the full-length FeLV-2518

genome encodes a presumably-functional SPHQ, indicating 2518(A) Env is likely

to be obsolete for fusion mediation even if it binds to feTHTR1.

It can therefore be presumed that the lack of a fusion motif in 2518(A) Env

peptides would make it unable to aid infection by defective virions. Conversely,

it may be able to bind THTR1 intracellularly and prevent future FeLV-A

superinfection. Finally, it is not known whether 2518(A) Env forms part of the

Env trimer complex present on released FeLV-2518 virions. Heterodimerisation

of gammaretroviral Env proteins has been observed in vitro (Dewannieux &

Collins, 2008) and results in decreased infectivity of the released virions. Thus it

is possible FeLV-2518 virions contain heterotrimeric Env complexes, although the

lack of a conjugated TM domain makes it difficult to predict the stability of

2518(A) Env peptides. Future experiments may be directed towards unravelling

the respective contributions of the FeLV-2518 and 2518(A) Env proteins to the

receptor-binding and cellular entry processes.

5.4 Conclusions

It must be noted that the interference assays detailed in this Chapter do not

directly measure downregulation of receptor expression upon a cell surface;

rather these are indirect measurements of viral entry which is assumed to be a

consequence of altered receptor availability. As in Chapter 3, MDTF receptor

expression levels were assumed to be approximately equivalent and therefore
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would not restrict infection by either of the novel viruses studied. Equally, Env

incorporation in the pseudotype virions was assumed to be equivalent.

Although enFeLV horizontal transmission events were not identified, two FeLV

field isolates (FeLV-2518 and -4314) were isolated which presented as FeLV-B

without FeLV-A co-infection. These viral genomes are recombinants possessing

unusual recombination breakpoints. It is hypothesised that in the case of FeLV-

4314, the acquisition of an exogenous LTR allowed the recombinant virus to

achieve higher rates of transcription due to the U3 promoter and enhancer

elements, possibly contributing to it outgrowing the exogenous virus that was

originally present. In the case of FeLV-2518, a defective FeLV-A genome is also

packaged and maintained throughout infection of naïve cells, potentially causing

a decrease in functional THTR1 expression.

These studies describe the first isolation of FeLV viruses displaying the B

subgroup phenotype without the presence of a fully functional helper FeLV-A

virus. These results may shed some light upon the biology of FeLV-B formation.

Since both of these ostensibly subgroup B viruses occurred naturally, it is likely

that enFeLV expression contributes to FeLV pathogenesis more than was

assumed previously.
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6. The functionality of endogenous FeLV elements

6.1 Introduction

An ERV is a heritable retroviral element present at fixed loci within the genomes

of all individuals within a species. Therefore all retroelements, including solo

LTRs and defective retroviral genetic relics, represent ancient retroviral

infections by a once-functional exogenous virus which may or may not have a

related viral descendant currently circulating within the host community. In

recent years, advancements in genomics and bioinformatics have resulted in a

significant increase in the identification of recently-endogenised ERVs; these

elements are recognised by their high degree of polymorphism between

individuals of the species and the presence of intact retroviral motifs within the

endogenous provirus. Although the acquisition of mutations and deletions

ensures “ancient” ERVs are defective, in the case of these recent genomic

integration events insufficient evolutionary periods have elapsed for this to be

the case. This leads to the question of whether recently-endogenised proviruses

possess the capacity to function as replication-competent exogenous viruses. It

can be assumed their expression would not exert a pathogenic effect, as natural

selection would ensure a highly pathogenic retrovirus would not become an

established retroelement within its host germline. In contrast, although there

are examples of retroviral genes being co-opted by the host for their beneficial

effects (Varela, Spencer, Palmarini, & Arnaud, 2009), the polymorphic nature of

these retroelements indicates they do not perform an essential role in the hosts’

biology. Such recent endogenisation events have been described in diverse

species, including koalas (Tarlinton, Meers, & Young, 2006), mule deer (Elleder

et al., 2012), laboratory-derived mice strains (Kwon, et al., 2011; Lee, Horiuchi,

Itoh, Greenhalgh, & Cho, 2011; Ribet et al., 2008) and significantly, in particular

breeds of the domestic cat (Roca, et al., 2005; Roca, et al., 2004).

The description of intact enFeLV proviruses, identified within a feline genomic

library, indicates that FeLV is continually invading the host genome. As

exogenous FeLV infection has pathogenic consequences for the host, the study of

these proviruses represents an opportunity to investigate the mechanisms



158

involved in the endogenisation process, which would be expected to attenuate

the virus and allow it to become an established genetic element as opposed to a

horizontally transmissible, pathogenic retrovirus (Oliveira, Satija, Kouwenhoven,

& Eiden, 2007). Alternatively, if these endogenous elements are transcriptionally

active and have retained their ability to transmit horizontally, this leads to the

question of how they are being maintained in the genome considering their

pathogenic potential.

The two genomic regions which differ significantly between endogenous and

exogenous FeLV are the env gene and the U3 domain within the LTRs. It can

therefore be predicted that differences in the functionality of enFeLV compared

to exogenous FeLV-A would be ascribed to either of these regions. Given the

essential function of Env in mediating retroviral infection and the large extent to

which exogenous FeLV Env proteins have been studied, the initial studies

described in this chapter were aimed towards characterising potential

functionality of enFeLV Env. However the presence of a functional env gene

would not automatically indicate an endogenous provirus was truly replication-

competent; the provirus must additionally be transcriptionally active. Although

published descriptions of enFeLV expression in host tissues have provided

inconclusive results to date (Busch, et al., 1983; Kidney, Ellis, Haines, &

Jackson, 2001; McDougall, et al., 1994; Niman, et al., 1980), the presence of a

tentatively endogenous functional RT enzyme in FeLV-4314 (Chapter 5)

displaying high nucleotide conservation with the AY364318 and AY364319

proviruses (Roca, et al., 2004) indicates these enFeLV genomes are

transcriptionally active, although the tissue specificity and level of transcription

is unknown.

Finally, it must be noted that for a complete viral replication cycle to occur an

intact gag-pol ORF such as that found in AY364318 and AY364319 would not

suffice. Genomic retroviral RNA is present in a dimeric form which binds to the

nucleocapsid (NC) component of the Gag polyprotein, driving construction of the

viral core. The dimerisation and packaging signals (Ψ) are found within cis-acting

secondary structures within the 5’ region of the viral RNA (Prats, et al., 1990).

As these elements encompass the 5’ LTR and overlap with the gag ORF, the

primary nucleotide sequence of this region will have a significant effect upon
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the transmission potential of a virus by potentially altering the intramolecular

structures which the RNA is able to attain. Notably, subgenomic mRNA is not

selectively packaged as the Ψ packaging signal is located downstream of the 

splice donor site (Maurel & Mougel, 2010). Therefore env-encoding spliced

transcripts would not suffice for enFeLV transmission despite potentially

encoding functional glycoproteins; an intact leader and 5’ gag sequence is

essential for this process.

The aims of the studies discussed in this chapter were to assess endogenous Env

protein functionality and conduct an in silico analysis of 5’ RNA structural motifs

of enFeLV elements. This would identify potential factors which may restrict

horizontal transmission of otherwise-intact enFeLV elements.

6.2 Results

The primary block to horizontal transmission of whole enFeLV proviruses would

be expected to be the lack of a functional Env protein. Despite possessing an

intact env, the enFeLV provirus AY364318 was identified within a feline genomic

library (Roca, et al., 2005; Roca, et al., 2004) and experimental expression has

not been described. The ability of wholly enFeLV Env proteins to pseudotype

viral cores and/or mediate cellular entry has therefore not been elucidated,

partly due to the lack of a cloned enFeLV env construct. Initial experiments

aimed to clone full-length env genes from the feline embryonic fibroblast (FEA)

cell line.

6.2.1. Multiple intact enFeLV env genes are present in
the feline genome

A PCR was conducted to specifically amplify enFeLV env genes from both

uninfected FEA cells and those infected with FeLV-2518 and -4314 (“FeLV enEnv”

PCR, detailed in Appendix 8.2). Amplicons were cloned into the pVR1012

expression vector and amino acid sequences were determined. Five full-length

env genes with intact ORFs were identified (clones Env-1 to -5). An additional
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two env genes were isolated by the method described above by other laboratory

members and are included in subsequent analyses (Env-6 and-7, Figure 6.1).

1
AY364318 MEGPTHPKPS KDKTFSWDLM ILVGVLLRLD VGMANPSPHQ VYNVTWTITN LVTGTKANAT SMLGTLTDAF
enFeLV-1 .......... .......... .......... .......... .......... .......... ..........
enFeLV-2 .......... .......... .......... .......... .......... .......... ..........
enFeLV-3 .......... .......... .......... .......... .......... .......... ..........
enFeLV-4 .......... .......... .......... .......... .......... ....A..... ..........
enFeLV-5 .......... .......... .......... .......... .......... .......... ..........
enFeLV-6 .......... .......... .......... .......... .......... .......... ..........
enFeLV-7 .......... .......... .......... .......... .......... .......... ..........

71
AY364318 PTMYFDLCDI IGNTWNPSDQ EPFPGYGCDQ PMRRWQQRNT PFYVCPGHAN RKQCGGPQDG FCAVWGCETT
enFeLV-1 .......... .......... .......... .......... .......... .......... ..T.......
enFeLV-2 .......... .......... .......... .......... .......... .......... ...A......
enFeLV-3 .......... .......... .......... .......... .......... .......... ..........
enFeLV-4 ..I....... .......... ....R..... .......... .......... .......... ..........
enFeLV-5 .......... .......... .......... .......... .......... Q......... ..........
enFeLV-6 .......... .......... .......... .......... .......... .......... ..........
enFeLV-7 .......... .......... .......... .......... .......... .......... ..........

141
AY364318 GETYWRPTSS WDYITVKKGV TQGIYQCSGG GWCGPCYDKA VHSSKTGASE GGRCNPLILQ FTQKGRQTSW
enFeLV-1 .......... .......... .......... .......... ....I..... .......... ..........
enFeLV-2 .......... .......... .......... .......... ....I..... .......... ..........
enFeLV-3 .......... .......... .......... .......... .......... .......... ..........
enFeLV-4 .....K.... .......... .......... .......... ....I..... .......... ..........
enFeLV-5 .......... .......... .......... .......... ....I..... .......... ..........
enFeLV-6 .......... .......... .......... .......... ....I..... .......... ..........
enFeLV-7 .......... .......... .......... .......... ....I..... .......... ..........

211
AY364318 DGPKSWGLRL YRSGYDPIAL FSVSRQVMTI TPPQAMGPNL VLPDQKPPSR QSQIESRVTP HHSQGNGGTP
enFeLV-1 .......... .......... .........V .......... .......... .......... ..........
enFeLV-2 .......... .......... .......... .......... .......... .......... ..........
enFeLV-3 .......... .......... .......... .......... .......... .......... ..........
enFeLV-4 .......... .......... .......... .........P .......... ........I. ..P.......
enFeLV-5 .......... .......... .......... .......... .......... .......... ..........
enFeLV-6 .......... .H........ .......... .......... .......... .......... ..........
enFeLV-7 V......... .......... .......... .......... .......... .......... ..........

281
AY364318 GITLVNASIA PLSTPVTPAS PKRIGTGNRL INLVQGTYLA LNVTNPNKTK DCWLCLVSRP PYYEGIAVLG
enFeLV-1 .......... .......... .......... .......... .......... .......... ....E.....
enFeLV-2 .......... .......... .......... .......... .......... .......... ....E.....
enFeLV-3 .......... .......... .......... .......... .......... .......... ....E.....
enFeLV-4 .......... .......... .......... .......... .......... .......... ..........
enFeLV-5 .......... .......... .......... .......... .......... .......... ..........
enFeLV-6 .......... .......... .......... .......... F......... .......... ....E.....
enFeLV-7 .......... .......... .......... .......... .......... .......... ..........

351
AY364318 NYSNQTNPPP SCLSDPQHKL TISEVSGQGL CIGTVPKTHQ ALCKKTQKGH KGTHYLAAPS GTYWACNTGL
enFeLV-1 .......... .......... .......... .......... ...N...... .......... ..........
enFeLV-2 .......... .......... .......... .......... ...N...... .......... ..........
enFeLV-3 .......... .......... .......... .......... ...N...... .......... ..........
enFeLV-4 .......... ..A....... .......... .......... ...N...... .........N ..........
enFeLV-5 .......... .......... .......... .......... .......... .......... ..........
enFeLV-6 .......... .......... .......... .......... .......... .......... ..........
enFeLV-7 .......... .......... ......R... .......... ...N...... .......... ..........

421
AY364318 TPCISMAVLN WTSDFCVLIE LWPRVTYHEP EYIYSHFENK PRFKRDPISL TVALMLGGIT VGGMAAGIGT
enFeLV-1 .......... .......... .......... .......... ......S... .......... ..........
enFeLV-2 .......... .......... .......... .......... .......... .......... ..........
enFeLV-3 .......... .......... .......... .......... .......... .......... ..........
enFeLV-4 .......... ........T. .......... .......... .......... .....Q.... ..........
enFeLV-5 .......... .......... .......... .......... .......... .......... ..........
enFeLV-6 .......... .......... .......... .......... .......... .......... ..........
enFeLV-7 .......... .......... .......... .......... .......... .......... ..........

491
AY364318 GTAALLETAQ FRQLQMAMHT DIQALEESIS ALEKSLTSLS EVVLQNRRGL DILFLQEGGL CAALKEECCF
enFeLV-1 .......... .......... .......... .......... .......... .......... ..........
enFeLV-2 .......... .......... .......... .......... .......... .......... ..........
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enFeLV-3 .......... .......... .......... .......... .......... .......... ..........
enFeLV-4 .......... .......... .......... .......... .......... .......... .T........
enFeLV-5 .......... .......... .......... .......... .......... .......... ..........
enFeLV-6 .......... .......... .......... .......... ...F...... .......... ..........
enFeLV-7 ........V. .......... .......... .......... .......Q.. .......... ..........

561
AY364318 YADHTGLVRD NMAKLRERLK QRQQLFDSQQ GWFEGWFNKS PWFTTLISSI MGPLMILLLI LLFGPCILNR
enFeLV-1 .......... ......G... .......... .......... .......... .......... .F........
enFeLV-2 .......... .......... .......... .......... .......... .......... .F........
enFeLV-3 .......... .......... .......... .......... .......... .......... ..........
enFeLV-4 .......... .......... .......... .......... .......... .......... .........Q
enFeLV-5 .......... .......... .......... .......... .......... .......... ..........
enFeLV-6 .......... .......... .......... .......... .......... .......... ..........
enFeLV-7 .......... .......... ..K....... .......... .......... .......... ..........

631
AY364318 LVQFVKDRIS VVQTLVLTQQ HQRLGQCDSD QPYHPSZ
enFeLV-1 .......... .......... .......... .......
enFeLV-2 .......... .......... .......... .......
enFeLV-3 .......... .........L .......... .......
enFeLV-4 .......... .......... Y......... .......
enFeLV-5 .......... .......... .......... .......
enFeLV-6 .......... .......... .......... .......
enFeLV-7 .......... .......... .......... .......

Figure 6.1: The feline genome contains multiple intact enFeLV env genes.

A multiple protein sequence alignment of the seven intact enFeLV env genes

cloned from gDNA of FEA cells was constructed using the ClustalW algorithm.

Provirus AY364318 was used as the reference sequence (Roca, et al., 2004). Dots

indicate conserved sites.

Comparisons between the predicted amino acid sequences of the 7 cloned

enFeLV Env and the published intact Env AY364318 revealed multiple non-

synonymous mutations in each ORF, although the overall sequence conservation

was extremely high. This supports previous observations that FeLV retroelements

are highly polymorphic within the feline genome (Koshy, et al., 1980; Roca, et

al., 2005). Although Env-1, -2, and -5 were isolated from FEA cells infected with

FeLV-4314 and -2518, none of the Envs possessed 100% sequence identity to the

endogenous portions of these viruses, indicating the parental enFeLV element

had not been identified. This was expected as these recombinant viruses arose

within naturally hosts, which would possess a genome distinct from that of FEA

cells.
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The RBD, fusion motif, fusion peptide and R peptide are intact within all seven

ORFs, therefore virions possessing these glycoproteins would be predicted to be

infectious. To further investigate the functionality of these novel proteins,

pseudotypes were corrected for equivalent RT activity and titrated upon the

range of receptor-expressing MDTF cells described earlier. The results indicated

only one of the seven enFeLV Env proteins (Env-5) was able to mediate cellular

entry (Figure 6.3). This supports observations that this was the sole

endogenously-encoded glycoprotein incorporated into virions. As expected,

enFeLV Env-5 utilised the hPit1 receptor, thus appearing phenotypically as a

FeLV-B strain.

Figure 6.3: enFeLV Env-5 utilises hPit1 for infection.

HEK293T cells were used to prepare MLV (FeLV) lacZ pseudotypes bearing the

seven enFeLV Envs or reference subgroup A (Glasgow-1), B (Gardner-Arnstein) or

C (Sarma) Envs. The viral pseudotypes were then titrated upon MDTF cells

expressing huPit1, feTHTR1, huFLVCR1 or vector only. 72 hours post-infection,

cells were stained for lacZ expression and counted manually. Values represent

the mean +/- SEM of three independent experiments.
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The lack of incorporation of the remaining six enFeLV Env proteins could not be

explained, as they possessed all the motifs and domains required for a functional

gammaretroviral Env protein. It is possible these proteins are translated within

the cell and are either degraded or incorrectly trafficked, preventing budding of

intact virions. To investigate this possibility, immunofluorescence using the anti-

gp70 MAb was performed to detect intracellular Env. HEK293T cells were

transiently transfected to produce MLV(FeLV) lacZ pseudotypes, before being

treated with both methanol and paraformaldehyde to allow visualisation of

intracellular and membrane-associated proteins. The results indicated enFeLV

Env-2, -3, -5, -6, and -7 were translated within cells (Figure 6.4). In contrast,

enFeLV Env -1 and -4 could not be detected, indicating an unidentified block to

translation exists for these proteins. As the gp70-MAb was of the same

preparation as that used for the previously-described immunoblots, this

experiment also confirmed the specificity of the antibody and hence the lack of

incorporation of the Env proteins into viral particles (excluding Env-5).
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be attributed to any single specific residue. At this point it is not known what

difference(s) between the Env proteins prevent synthesis of Env-1 and -4, nor

what causes the subsequent lack of incorporation of Env-2, -3, -6 and -7 into

virions.

These studies indicate that intact enFeLV env genes are present in the domestic

cat genome at a higher copy number than previously assumed, and a minority of

these genes encode functional glycoproteins able to pseudotype gammaretroviral

virions. It is possible that retroviral env genes of low infectivity are able to form

endogenous elements preferentially, a possibility which has been raised

previously (Oliveira, et al., 2007). However if env genes such as that encoding

Env-5 were located within a full-length transcriptionally active enFeLV provirus,

they may be able to mediate cellular infection through the fePit1 receptor and

be transmitted horizontally between hosts as an exogenous FeLV-B infection.

The assumption that such env genes are located within full-length enFeLV

genomes is highly plausible. The high degree of sequence conservation between

the intact env genes described herein and those described in the literature

(Roca, et al., 2004) indicates they are likely to be recent endogenisation events.

6.2.3. EnFeLV env transcripts are not detectable in
feline tissues

There are numerous examples of host-mediated silencing of ERVs through

methylation of the proviral DNA (Feenstra, Fewell, Lueders, & Kuff, 1986;

Gimenez et al., 2009; Groudine, Eisenman, & Weintraub, 1981; Harbers,

Schnieke, Stuhlmann, Jahner, & Jaenisch, 1981; Hsieh & Weinstein, 1990), an

effect which is ablated during the in vitro cloning process. Therefore the

presence of a replication-competent provirus does not necessarily indicate

transcription will occur in host tissues. Such epigenetic methods of retroviral

silencing are especially relevant when considering genomically intact proviruses

resulting from recent integration events (Lee, et al., 2011), however a genome-

wide analysis of the methylation status of ERVs within the domestic cat has not

been conducted. Although expression of full-length genomic enFeLV mRNA has

also not been investigated, short enFeLV env-derived transcripts have been

identified previously in lymphoid and placental tissues (Busch, et al., 1983;
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168

6.2.4. In silico modelling of MLV RNA structural
elements

The fact that enFeLV env transcripts were not detected in this study does not

necessarily indicate enFeLV horizontal transmission is prevented by a lack of

genomic mRNA expression. Transcription of whole enFeLV genomes in certain

tissues is required for recombinant FeLV-B genomes to form, a process which

occurs in approximately 40% of chronic FeLV-A infections (O. Jarrett, et al.,

1978). A currently unidentified block may exist which prevents transmission of

full-length enFeLV viral transcripts in the absence of an exogenous genome. As

the LTRs and env gene are the main genomic regions differing between

endogenous and exogenous FeLV, and the studies described herein had

confirmed specific enFeLV Env proteins were functional (Env-5), it was inferred

that the enFeLV LTRs act to restrict the horizontal transmission of enFeLV

genomes.

The 5’ LTR and adjoining leader sequence of the gag ORF forms RNA secondary

structures (collectively referred to as the packaging signal, Ψ), which allow both 

dimerisation of the RNA monomers and encapsidation of the genomic RNA by the

viral structural proteins. Production of a recombinant FeLV-B genome during

reverse transcription would require the formation of a heterodimeric RNA

genome composed of an exogenous and endogenous FeLV transcript. It can

therefore be assumed that the respective Ψ elements of these viral genomes are 

able to interact. However transmission of a wholly enFeLV virion in the absence

of an exogenous counterpart would require formation of an enFeLV RNA

homodimer.

Ideally, in vitro dimerisation assays would be utilised to quantify the ability of

enFeLV and FeLV-A RNA to form both homo- and heterodimers. However the lack

of a full-length enFeLV molecular clone made this impossible. In silico modelling

of RNA secondary structures was therefore performed to investigate the

dimerisation and packaging potential of both enFeLV and exogenous FeLV-A

leader sequences. Although early studies of enFeLV LTRs indicated that they

possessed intact packaging signals within the U5 region (Berry, et al., 1988), the
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importance of RNA secondary structure conservation during successful RNA

packaging has since been recognised. Given the high degree of divergence

between exogenous and enFeLV genomes in the neighbouring U3 region, it

cannot be assumed that enFeLV forms a functional packaging signal despite

possessing a conserved U5 domain.

The minimal dimerisation active sequence (MiDAS) of murine sarcoma virus is

composed of a stretch of 170 nucleotides within the 5’ LTR (Badorrek & Weeks,

2005). The RNAStructure, mFold and Alifold programs were used to produce

models of the RNA secondary structures in both monomeric and dimeric forms of

this RNA domain (see Chapter 2 for details of these programs). The ability of a

program to accurately predict the known structural elements of importance

within MLV RNA was the determining factor for the use of that program for the

subsequent FeLV models.

The original models produced by the Alifold program are included in Appendix

8.6. This program produced a highly accurate replication of the structures which

contribute to MLV packaging and dimerisation (Badorrek & Weeks, 2005;

Miyazaki, Irobalieva, et al., 2010) (Figure 6.6). These include two hairpins

culminating with GACG “tetraloops” within each monomer (Stem 1 and 2). In the

dimeric RNA genome, these stems form intermolecular “kissing-loops” via

hydrogen bonds which form between the unpaired cytosine and guanosine bases

of the two genomes. These then stabilise the tertiary structure of the dimeric

RNA. MLV also possesses palindromic sequences (Pal-1 and -2) which form loose

stem-loops in the RNA monomer. This region undergoes a structural

rearrangement during dimerisation to form an extended intermolecular RNA

helix (Badorrek, Gherghe, & Weeks, 2006; Badorrek & Weeks, 2005; De Tapia,

Metzler, Mougel, Ehresmann, & Ehresmann, 1998; Miyazaki, Garcia, et al.,

2010). Although the primary nucleotide sequences of MLV and FeLV packaging

signals are not highly conserved, their ability to cross-package alternative

gammaretroviral genomes indicates that these secondary structural elements are

conserved throughout the genus and are able to interact functionally (Doty,

Sabo, Chen, Miller, & Abkowitz, 2010; Metais et al., 2010).
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(B) dimeric MLV RNA genomes. All structures are conserved with those described

in the literature with consideration to both dimerisation (Badorrek & Weeks,

2005) and NC binding elements (Miyazaki, Garcia, et al., 2010). The second

genome in (B) is presented in red for ease of reference.

Given the accuracy of the MLV models, the Alifold program appeared likely to

produce accurate models of FeLV RNA, for which structures that are

experimentally-verified are not available for comparison. Additionally, Alifold

includes phylogenetic relationships of input sequences in the resulting models

(Gruber, et al., 2008), a factor which is not considered in the mFold or

RNAStructure servers. It has been estimated that algorithms for prediction of

RNA structures correctly identify only 60% of helices when a single input

sequence is used (Dowell & Eddy, 2004; Mathews et al., 2004), therefore the

capacity of Alifold to uptake multiple sequences in the form of a FASTA

alignment would drastically increase the accuracy of resulting models.

6.2.5. RNA structural elements are intact in FeLV-A RNA
homodimers

Predicted RNA secondary structures were generated using the Alifold webserver

(Gruber, et al., 2008). In each case a 800bp region was modelled, consisting of

the 5’ LTR and the gag leader sequence from both the FeLV-A(Rickard) and

FeLV-FAIDS genomes. Although the large amount of research upon MLV has led to

the MiDAS being accurately mapped to a short 170bp region, it cannot be

assumed that sequences external to this motif do not contribute to dimerisation

and packaging in FeLV, therefore the entire LTR was included in these analyses.

Models of both monomeric and dimeric exogenous RNA were produced (Figure

6.7). The resulting dimeric structure was highly symmetric and contained four

GACG tetraloops, indicating “kissing” loops would be able to form during tertiary

folding via intermolecular hydrogen bonds. A structural rearrangement was also

predicted to occur during dimerisation; a lengthy 5’ region which formed

numerous intramolecular stem-loops in the monomer formed multiple

intermolecular helices and short stem-loops in the dimer. This is similar to the

events concerning the palindromic sequences within the MLV models, although



the primary sequences

prototypic NC binding domains (consisting of an unbound 5’ U

identified in the RNA dimer. Collectively, the presence of these predicted

structures in the models supports

functional homodimeric RNA genomes

(A)

(B)
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between the two viruses. Four

binding domains (consisting of an unbound 5’ UCUG 3’ motif) were

identified in the RNA dimer. Collectively, the presence of these predicted

observations that FeLV-A forms

during viral replication.

A RNA homodimers is predicted to

form the required structural elements for viral replication.
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Models were produced of the structures within (A) FeLV-A monomeric RNA (free

energy of -316 kcal/mol) and (B) homodimeric RNA genomes (free energy of -

987.7 kcal/mol). The second genome in (B) is presented in blue for ease of

reference.

6.2.6. EnFeLV RNA homodimers may be non-functional

The RNA secondary structures within the 5’ LTR and leader sequences of intact

enFeLV proviruses, AY364319 and AY364318 were then modelled. Importantly,

the free energy predicted for these structures is similar to that of the exogenous

models (approximately -990 kcal/mol for the dimeric form), indicating they are

equally likely to form in a physiological environment and are of similar stability.

The monomeric form of enFeLV RNA was predicted to contain only a single GACG

tetraloop, as the nucleotides correlating to Stem 2 form a short loose stem with

an extended loop. However within the homodimeric form, one of the two

genomes was rearranged at this region into the prototypic 2-stem loop structures

(presented in black in Figure 6.8[B]). Although it is possible weak “kissing” loops

may form between the partial Stem 1 in genome A and full-length Stem 1 in

genome B, the significant disruption in Stem 1 of A as well as the lack of overall

symmetry would sterically hinder this conformation. Additionally, only three NC-

binding motifs are present in the enFeLV homodimeric RNA. Together these

findings indicate that there is likely to be differential exposure of the predicted

functional elements required for packaging of endogenous homodimeric RNA into

nascent virions.



(A)

(B)

Figure 6.8: The enFeLV RNA leader sequence is not predicted to form the

structures required for viral packaging

Models were produced of the secondary structures within (A) enFeLV monomeric

RNA (free energy of

(free energy of -988 kcal/mol).

for ease of reference.

The enFeLV RNA leader sequence is not predicted to form the

structures required for viral packaging.

Models were produced of the secondary structures within (A) enFeLV monomeric

RNA (free energy of -256.3 kcal/mol) and (B) enFeLV homodimeric RNA genomes

988 kcal/mol). The second genome in (B) is presente

for ease of reference.
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The enFeLV RNA leader sequence is not predicted to form the

Models were produced of the secondary structures within (A) enFeLV monomeric

(B) enFeLV homodimeric RNA genomes

The second genome in (B) is presented in blue
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6.2.7. Heterodimeric RNA genomes have regained
functionality

A model was produced of the structures within a heterodimeric RNA genome.

This was composed of a single exogenous FeLV-A (presented in black in Figure

6.9) and an accompanying endogenous FeLV leader sequence (presented in blue

in Figure 6.9). This model possessed a similar free energy to both the dimeric

structures described above. In this heterodimeric genome, a significant

rearrangement of both monomeric RNAs had occurred. Firstly, the exogenous

RNA presented only a single GACG tetraloop (Stem 1). Although this was

composed of a different primary sequence to the Stem 1 in the monomer, it was

of a similar length and stability indicating it would be able to partake in kissing

loop formation. The endogenous RNA strand had also undergone structural

alterations and presented in the heterodimer with two complete stem-loops, in

contrast to both the monomeric and homodimeric forms. Similarly to the

exogenous homodimeric RNA, this heterodimer also contained four NC binding

motifs.



Figure 6.9: Heterodimeric RNA genomes are predicted to contain the

structural elements

A model of the secondary structures within an exogenous/endogenous

heterodimeric RNA genome

Similar to the exogenous homodimer, and in contrast to the endogenous

homodimer, this genomi

exogenous RNA sequence is presented in black, whereas the endogenous

sequence is presented in blue.

Together these results support a model wherein recently

proviruses, although possessing intact ORFs and encoding potentially functional

Env proteins, are unable to spread in a horizontal manner due to their inability

to efficiently dimer

mediated by the presence of a significantly non

their 5’ LTR, despite the primary sequence of both the U5 region and

being conserved with that of the functiona

Heterodimeric RNA genomes are predicted to contain the

lements required for packaging.

A model of the secondary structures within an exogenous/endogenous

heterodimeric RNA genome was produced (free energy of

to the exogenous homodimer, and in contrast to the endogenous

homodimer, this genomic RNA would be packaged into nascent virions.

exogenous RNA sequence is presented in black, whereas the endogenous

sequence is presented in blue.

Together these results support a model wherein recently

proviruses, although possessing intact ORFs and encoding potentially functional

Env proteins, are unable to spread in a horizontal manner due to their inability

to efficiently dimerise and be packaged by viral NC proteins. This restriction is

mediated by the presence of a significantly non-conserved U3 domain within

their 5’ LTR, despite the primary sequence of both the U5 region and

being conserved with that of the functional exogenous virus
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Heterodimeric RNA genomes are predicted to contain the

A model of the secondary structures within an exogenous/endogenous

y of -988.5 kcal/mol).

to the exogenous homodimer, and in contrast to the endogenous

into nascent virions. The

exogenous RNA sequence is presented in black, whereas the endogenous

Together these results support a model wherein recently-endogenised enFeLV

proviruses, although possessing intact ORFs and encoding potentially functional

Env proteins, are unable to spread in a horizontal manner due to their inability

ise and be packaged by viral NC proteins. This restriction is

conserved U3 domain within

their 5’ LTR, despite the primary sequence of both the U5 region and gag ORF

l exogenous viruses. During FeLV-A
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infection, in silico models predict that the presence of the exogenous genome

alongside the expression of an endogenous transcript causes a rearrangement of

the secondary structures within the RNA leader sequences. This leads to the

formation of a stable heterodimeric RNA genome, within which accessible stem-

loop structures required for tertiary RNA folding have been restored. The

transmission of this genomic RNA to a naïve cell, during which recombination

events may occur throughout reverse transcription, leads to the prototypic FeLV-

B infection seen in domestic cats.

6.3 Discussion

With the advancement of molecular biology techniques, the decreasing cost of

whole genome sequencing and increasing power of bioinformatics software there

are now examples of full-length ERVs in the genomes of multiple species that are

predicted to be functional. The presence of retroelements such as the proviruses

AY364318 and AY364319, thought to have become endogenised recently (Roca,

et al., 2005; Roca, et al., 2004), is therefore not unique to the genome of the

domestic cat, however FeLV represents one of few currently-circulating

retroviruses which exist in both endogenous and exogenous replication-

competent forms. Yet pathogenicity and the ability to vertically transmit

throughout multiple generations are presumably mutually exclusive properties,

suggesting a degree of viral attenuation must accompany the endogenisation

process (Oliveira, et al., 2007). As recent genomic integration events are marked

by a high degree of conservation between the novel endogenous provirus and the

exogenous counterpart, the study of these elements allows accurate

identification of the mutations contributing to this process.

6.3.1. The majority of intact enFeLV Env proteins are
non-functional

In the case of FeLV, there are two main regions which are significantly non-

conserved between endogenous and exogenous genomes; the env gene and U3

region of the LTR. In the studies described in this chapter, both regions were

analysed for their effects upon the transmission potential and functionality of
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enFeLV proviruses. The results indicate that although intact env ORFs are

present within the feline genome, only a minority of the corresponding proteins

are able to pseudotype viral cores. Non-conserved mutations within the

remaining Env proteins prevent either protein translation or correct trafficking

and incorporation into viral particles.

It is possible FeLV genomes encoding non-functional Env proteins preferentially

endogenise within the feline genome, although a potential mechanism for this

selection process is not clear. A gene encoding a defective Env protein may

require less host-mediated silencing, as transcripts will have a limited capacity

for successful translation. Additionally, recombinant FeLV-B Env proteins arising

from these transcripts may possess lowered infectivity and be unable to spread

easily. In this case even an enFeLV transcript that is expressed widely will not

necessarily contribute to pathogenic FeLV-B genomes. However this hypothesis

suggests the functionality of Env-5 is acquired through a gain-of-function

mutation. As there is only one mutation unique to Env-5 (R121Q), it would be of

interest to specifically back-mutate this residue and assay its effect upon both

Env incorporation and receptor usage.

Alternatively, rather than selection for the endogenisation of already-defective

enFeLV env genes, a more probable scenario is that the non-functional enFeLV

ORFs independently acquired a range of non-conserved mutations which

depleted their respective infectivity after the integration event. The

comparative prevalence of intact env ORFs encoding defective Env proteins may

therefore be evidence for attenuation of otherwise-functional enFeLV, a process

which would increase the probability of the retroelement becoming established

within the species genome. In the case of Env-1 and -4, the extent of mutations

prevent initial protein synthesis, however expression of Env-2, -3, -6 and -7

could be detected within transfected cells. It is possible these proteins are not

present upon virions due to a lack of association with the gag-encoded structural

proteins; this correlates to their presence within the cytoplasm but not in the

secreted virus preparations. Successful recruitment of Env glycoproteins by the

gammaretroviral Gag polyprotein requires an intermediate stage during which

the proteins colocalise within cytoplasmic vesicles, prior to the final virus

assembly (Sandrin, Muriaux, Darlix, & Cosset, 2004). It is possible these Env
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proteins each possess distinct mutations which alter their intracellular

trafficking and prevent successful association with Gag. However mutations

conferring this phenotype are generally mapped to the cytoplasmic tail (Sandrin,

et al., 2004). Although the blocked Env proteins -2, -3, -6 and -7 do not contain

excessive mutations in this region, there are scattered mutations throughout this

domain which are not present in the functional Env-5. Future work should be

aimed towards assessing the impact of these mutations upon protein trafficking

and Env incorporation.

It is possible that these apparently non-functional enFeLV Env proteins were

present within virions at extremely low levels, below the detection sensitivity of

either the anti-gp70 immunoblot or the pseudotyping system. If this is the case,

this indicates that they are either incorporated at too low a level to initiate

cellular entry via hPit1, or utilise a distinct cognate receptor. Given the high

degree of conservation these proteins displayed with the functional Env-5 (which

utilised hPit1), this is unlikely. However specific FeLV-B isolates may utilise

either hPit1 or the orthologue hPit2, and it has been suggested that the

proportion of endogenously-derived residues within FeLV-B Env affects the

ability of the protein to utilise Pit2 (Boomer, et al., 1997; Nunberg, Williams, et

al., 1984). The determinants for hPit2 usage were tentatively mapped to the

VRB region within the SU domain, whereas hPit1 usage maps to the VRA motif

(Boomer, et al., 1997). Although the ability to utilise hPit2 was not directly

investigated in these studies, it is unlikely that the non-functional Envs are able

to utilise this receptor as MDTF wildtype cells express the murine homologue of

Pit2 (mPit2) and these cells were not susceptible to infection with any enFeLV

pseudotypes. It remains possible that these proteins are synthesised at levels

undetectable with a standard immunoblot, and are able to utilise the feline

homologues of Pit which were not included in these analyses. If cloned

constructs encoding these receptors were available, it would be of interest to

target the mutations present within the VRB motif of these Env proteins and

screen for an altered ability to bind to fePit1 and -2.
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6.3.2. Non-functional packaging signals may prevent
horizontal transmission of enFeLV

The interpretation of the RNA structural in silico models produced in this

analysis relies upon the assumption that the conserved 2-stem-loop structure is

the primary determinant of RNA dimer functionality; i.e., whether the correct

tertiary structure can be obtained and is subsequently recognised by the viral

structural proteins. The validity of this assumption is supported by the fact that

gammaretroviral RNAs are packaged by heterologous viral proteins

promiscuously, despite the fact that the primary sequence of their

corresponding leader motifs are not necessarily conserved (Doty, et al., 2010;

Metais, et al., 2010; Patience, Takeuchi, Cosset, & Weiss, 1998; Suling, Quinn,

Wood, & Patience, 2003; Torrent, Gabus, & Darlix, 1994). The final hypothesis

that enFeLV RNA homodimers are restricted from inclusion in nascent virions due

to their inability to form functional “kissing” loops is therefore highly plausible.

Although it remains possible that the partial stem-loop observed in the enFeLV

homodimeric RNA is able to participate in intermolecular binding, further

support for this interpretation is provided by the observation that although each

“kissing” loop supports dimerisation individually, maximum stability of the RNA

dimer requires the presence of both kissing loops (Ly & Parslow, 2002; Oroudjev,

Kang, & Kohlstaedt, 1999). This suggests exogenous homodimeric RNA genomes

will preferentially be formed, regardless of the presence of endogenous

transcripts, as this was the only dimeric structure which possessed four complete

GACG tetraloops. Combined with the low levels of enFeLV transcription (Busch,

et al., 1983; Kidney, et al., 2001; McDougall, et al., 1994; Niman, et al., 1980),

this presumably contributes to the prevention of FeLV-B developing in all

domestic cats chronically infected with FeLV-A.

Once a dimeric RNA genome has undergone tertiary folding, it must then

interact with the NC proteins to ensure selectivity is maintained during the

packaging process. This occurs prior to the protease-mediated cleavage of NC

from the Gag polyprotein and is distinct from the subsequent “coating” of the

RNA with NC, which eventually forms the viral core particle (Rein, 1994). In the

prototype gammaretrovirus MLV, NC proteins bind to eight exposed UCUG motifs

with high affinity in the dimeric RNA genome. However these motifs are
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sequestered within intramolecular helices in RNA monomers, preventing

monomeric RNA encapsidation (D'Souza & Summers, 2004; Dey, York, Smalls-

Mantey, & Summers, 2005; Gherghe & Weeks, 2006; S. F. Johnson & Telesnitsky,

2010). Mutations of the guanosine within these motifs reduces packaging 100-

fold, therefore the loss of a single NC-binding site may significantly alter the

rate of genome encapsidation and final infectious viral titre (Gherghe et al.,

2010). As the enFeLV homodimeric RNA genome contains only 3 exposed UCUG

motifs this would be expected to exhibit decreased packaging titres compared to

either the exogenous homodimeric or heterodimeric RNA, both of which present

with four unpaired UCUG motifs. Additionally, the overall secondary structure

and long-range tertiary interactions of viral RNA also contribute to the

specificity of NC recognition; it is not merely due to the presence of exposed

UCUG motifs (Gherghe, et al., 2010). Thus the combined effect of the altered

stem-loop structures and the decrease in potential NC-binding sites in enFeLV

homodimeric RNA may significantly decrease the transmission potential of

virions containing this genome.

It must be highlighted that co-packaging and dimerisation of heterogeneous FeLV

genomes has not been directly observed, although this has been documented in

numerous other gammaretroviruses (Mikkelsen, Rasmussen, & Pedersen, 2004; S.

V. Rasmussen, Mikkelsen, & Pedersen, 2002; Suling, et al., 2003; Villanueva,

Campbell, & Roth, 2003). Alternative mechanisms must therefore be considered

for both the lack of enFeLV horizontal transmission and FeLV-B formation. For

example, the degree of epigenetic silencing of retroviral elements within the

feline genome has not been investigated and may prevent expression of

otherwise functional ERVs. During processes involving demethylation (such as

cellular differentiation) a low level of enFeLV transcription may occur, leading

to temporal and spatial determination of FeLV-B formation. Equally, FeLV-B

genomes may arise through homologous recombination of host DNA rather than

through strand-transfer events during reverse transcription. However viral

genetic recombination is more likely to occur during the packaging of two unique

genomes within a single virion, rather than during homologous recombination

within host DNA after infection by two distinct particles (Katz & Skalka, 1990).

Thus if chimaeric viral genomes are routinely observed, such as that which

occurs during FeLV-B formation, this provides indirect evidence for genomic
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dimerisation of the two parental viruses. It can therefore be assumed FeLV-B

arises after dimerisation of two heterogeneous RNA transcripts and a subsequent

RT strand transfer event during reverse transcription. In the absence of an

exogenous FeLV-A genome, the enFeLV genomic RNA monomers may form

homodimers which these models indicate are unable to form stable “kissing”

loops and achieve the tertiary structure required for virion packaging.

6.4 Conclusions

The conclusions which can be drawn from these experimental results

(specifically describing the expression and functionality of enFeLV Env proteins)

have a central caveat which assumes the reactivity of each Env with the gp70

antibody is e qual and consistent. As described within the text, it is unlikely that

any Env has lost the epitope in question, however it cannot be ruled out. The

lack of positive control reagents also means that only preliminary interpretation

of these results is possible (for example, placenta was not available for RT-PCR

studies and this is the only tissue definitely established to routinely express

enFeLV env transcripts). Regarding the in silico RNA structural analysis, although

the results are intriguing it must be stressed that definitive conclusions cannot

be drawn until corresponding experimental data has been obtained.

The results presented in this chapter suggest a novel mechanism of viral

restriction, wherein intact proviral genomes are unable to transmit in an

exogenous manner due to the inability of their dimerisation and packaging

signals to form the required RNA secondary structures. In the case of FeLV, these

ERVs are rescued by the presence of an FeLV-A transcript which initiates

refolding of the RNA and formation of a heterodimeric genome, eventually

resulting in FeLV-B formation. As an increasing number of putatively replication-

competent ERVs are currently being isolated from numerous species, this

mechanism may be relevant to other retroviruses in addition to FeLV.

As this hypothesis is primarily supported by simulations of RNA folding, these

results are preliminary and require validation with experimental data before any

final conclusions can be drawn. The possibility that enFeLV full-length

transcripts are transmitted between hosts at extremely low levels, presenting as
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FeLV-B sole infections, cannot be excluded at this stage. Ideally, in vitro RNA

binding assays using a range of transcripts, including both the leader sequences

alone and whole viral genomes, should be conducted to accurately assess the

dimerisation potential of these viral genomes.
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7. Concluding Remarks

Although protective vaccines have been developed for FeLV, this virus remains a

serious pathogen both for domestic and wild felids. The pathogenic mechanisms

of infection remain poorly understood and treatment options for those hosts

which display chronic viraemia and FeLV-associated disease are limited. In

addition to these unresolved issues, the relevance of FeLV as a model for human

diseases, including HIV-AIDS and cancer progression, means that significant

further research is required to understand this intriguing retrovirus. Although

many aspects of FeLV have been previously investigated, the recent

advancements of molecular biology now allow these areas to be revisited and

viewed from a renewed perspective. The studies discussed in this thesis focussed

broadly upon the evolution of novel subgroups FeLV-B and –C which tend to

display heightened pathogenicity from their parental FeLV-A virus.

There are many aspects which determine collectively whether a FeLV infection

is significantly pathogenic and whether novel subgroups arise within the host.

The majority of studies to date, including those discussed herein, have focussed

upon the LTRs and the Env protein as both these elements play a significant role

in determining whether a productive infection occurs within a host. Whether the

resulting chronic infection proves to be significantly pathogenic over time

depends upon additional factors including the integration site, degree of

resulting immunosuppression (which were not investigated within this research)

and the ability of Env to utilise alternative receptors. Finally, it must also be

considered whether virus binding to the cognate receptor depletes the wildtype

function of that cellular protein, such as in the case of PRCA arising during FeLV-

C infection (Quigley, et al., 2004). Therefore additional research into a number

of areas is required before the development of novel FeLV subgroups can be fully

understood. The studies described within this thesis had four main research

aims: (1) to identify Env determinants which predispose FeLV-A to FeLV-C

conversion; (2) to investigate the potential role of the host humoral response in

FeLV-C evolution; (3) to determine the potential for inter-host FeLV-B

transmission without the additional presence of FeLV-A; and (4) to characterise

the functionality of enFeLV elements and the possibility of enFeLV horizontal
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transmission between hosts. The results, although intriguing and informative,

highlight the degree of further research required in this field before definitive

conclusions can be reached.

As the protective correlates of vaccination have not been definitively

established and no currently-available vaccine provide sterilising immunity, the

development of FeLV-C remains a possibility in all domestic cats. Given the

severe mortality and morbidity of this subgroup, it is of utmost importance to

ascertain which subgroups of FeLV-A may preferentially evolve into FeLV-C and

which factors contribute to this process. These results support a model wherein

FeLV-A isolates containing the D83:D91 motif possess heightened replication

rates and an increased ability to bind to both THTR1 and FLVCR1, compared to

the prototype FeLV-A strains not known to lead to FeLV-C (Chapter 3). Over

time, it is predicted that viral subpopulations would arise as the virus acquires

mutations through genetic drift. These would gradually increase the SU-FLVCR1

binding affinity, eventually resulting in dual-tropic “intermediate” viruses able

to mediate cellular entry through a range of receptors (Shalev, et al., 2009).

Prototype FeLV-C isolates would eventually develop, at which point the virus

would be predicted to have lost THTR-binding ability and rely solely upon

FLVCR1 for entry. This model supports previous observations that the primary

sequences of FeLV-C isolates display low conservation, reflecting their

independent evolution from different FeLV-A isolates despite inducing the

prototypic PRCA disease symptoms (Brojatsch, et al., 1992).

In a parallel scenario to the development of FeLV-C, alterations in receptor

usage induced by the gradual acquisition of mutations has been observed for

HIV-1; this may reflect a common mechanism of evolution for retroviruses. This

further highlights the relevance of FeLV research and its applications to general

retrovirology. However in the case of HIV-1 this switch in receptor usage is

partially due to an escape from host immunity; this could not be replicated in in

vitro models (Chapter 4). The ability of the virus to continuously replicate in the

face of an immune response determines whether FeLV is able to infect bone

marrow cells, resulting in the secondary viraemia and a subsequent chronic

infection. It is therefore logical that a virus able to circumvent this immunity

would display an increased probability of inducing disease and potentially
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developing into FeLV-C. Although these studies did not indicate that the

presence of VNAs increased the appearance of mutations associated with FeLV-

C, this remains a plausible theory given the numerous other examples of

retroviral evolution mediating antibody-escape.

The fact that the mutations studied in Chapter 3 were detected in multiple

independent FeLV isolates indicates an epitope in this region may be commonly

targeted by the host immune response. However these mutations did not confer

neutralisation resistance (Chapter 4), although this should be interpreted with

caution as the use of a broader range of antibodies may have produced different

results. A hypothesis not investigated herein is that these mutations alter a T-

cell epitope. As T cell epitope recognition differs broadly between individuals,

escape from CTL responses by a viral variant is unlikely to result in a viral strain

which has a replicative advantage in a secondary host (Overbaugh & Bangham,

2001). This explanation supports the observations that FeLV-C cannot be

transmitted between hosts, however it does not explain why these mutations

occurred in multiple independent field samples from presumably unrelated

hosts. As B cell epitopes are broadly recognised between individuals of a species,

it is more probable these mutations play a role in immune evasion through this

mechanism.

These results also indicated that a selective pressure in the form of receptor-

availability does not drive evolution of FeLV-C. This is in direct contrast to the

opinion that VNAs and receptor availability on target cells are the main forces

acting during retroviral evolution (Overbaugh & Bangham, 2001). However it

must be noted that the broad expression profile of THTR1 makes it unlikely that

a virion would encounter a cell which solely expresses FLVCR1. This theory may

be physiologically irrelevant to FeLV, whilst holding true for other retroviruses

which utilise receptors with non-overlapping expression profiles.

The low amino acid conservation between Env proteins of individual FeLV-C

isolates, documented in these studies and those of others (Adema, 2003;

Brojatsch, et al., 1992), indicates it may be the overall structure rather than the

acquisition of a defined RBD which determines the success of FLVCR1-SU binding.

This model is applicable to other retroviruses; gibbon ape leukaemia virus
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(GALV), amphotropic MLV and FeLV-B all utilise Pit homologues and yet do not

display high amino acid conservation between their Env proteins, indicating their

tertiary structures may be analogous (L. Pedersen, Johann, van Zeijl, Pedersen,

& O'Hara, 1995; Tailor & Kabat, 1997; Tailor, Nouri, & Kabat, 2000; Tailor et al.,

1993). These results therefore support suggestions that the SU binding site

within a receptor is not a predetermined invariable factor in retroviral cellular

entry (Tailor, et al., 1993). Future work should be aimed towards determining

the relative binding positions of FeLV-A and–C Env proteins to both THTR1 and

FLVCR1. The increase in affinity of SU for FLVCR1 predicted to occur during

FeLV-C evolution may be accompanied by a switch in the receptor domains

involved in binding.

Similar to FeLV-C, FeLV-B development in a host significantly alters the disease

association. The development of lymphomas and/or leukaemias in a domestic

cat confers an increased rate of mortality and morbidity and limited treatments

are available. Although FeLV-B is not thought to occur in endangered wild felids

due to their lack of enFeLV elements, it appears that FeLV-B isolates may be

transmissible between hosts without co-transmission of FeLV-A (Chapter 5). The

isolates FeLV-2518 and -4314 are therefore of significant interest and may

represent a novel pathogen for endangered felids, previously assumed to only be

at risk of FeLV-A infection. Had time and resources allowed, it would have been

of interest to investigate the clinical implications of FeLV-2518 and/or -4314 and

compare these to a prototypic FeLV-A/B infection. It has been previously noted

that FeLV-B variants associated with thymic lymphoma possess further upstream

3’ recombination junctions than those associated with other diseases (Ahmad &

Levy, 2010). Thus the proportion of the viral genome originating from an

endogenous element appears to influence the disease progression during

infection, supporting the notion that ERVs are preferentially selected for their

altered virulence (Oliveira, et al., 2007).

Instances of enFeLV horizontal transmission were not identified in these studies,

despite the prediction that it would be these infections presenting as FeLV-B

alone. Given that FeLV-4314 contains the majority of enFeLV-derived env and

pol genes and the gag ORF is highly conserved between enFeLV and exogenous

genomes, the only remaining portion of the FeLV-4314 genome which remains
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ostensibly exogenous are the LTRs. The analysis of the transcription factor

binding sites contained within the respective LTRs indicates that enFeLV virions

would not exert similar pathogenic effects to FeLV-4314 or -2518, as exogenous

LTRs contain significantly more intact promoter elements.

The in silico analysis of recombination sites within FeLV-B genomes (Chapter 5)

may also have implications for other viral research. Given that FeLV-2518 and -

4314 were produced during natural infections, these results provide an in vivo

comparative model for observations regarding increased recombination at the

termini of RNA helices in vitro. Retroviral recombination contributes

significantly to genetic variation in all retroviruses and may alter neutralisation

susceptibility, receptor-utilisation or replication kinetics (Simon-Loriere &

Holmes, 2011). However accurate identification of recombination breakpoints

may prove difficult within a highly homogeneous viral population; FeLV-B

therefore provides a unique model wherein the contributing genomes differ

significantly in two distinct areas (U3 and env). This allows accurate

recombination-site mapping and the subsequent correlation between predicted

RNA secondary structures. To the best of our knowledge, this analysis is the first

to link RNA structural elements with specific phenotypically-distinct subgroups

of FeLV.

The investigations into the functionality of enFeLV proviruses (Chapter 6) raise

some intriguing propositions. The discovery that full-length intact Env ORFs are

more prevalent than previously observed was partially expected, given the lack

of feline genomic research conducted to date and the knowledge that enFeLV

elements are polymorphic (McDougall, et al., 1994; Roca, et al., 2004). However

the inability of these proteins to express in vitro indicate an intact ORF may not

be indicative of a functional Env. Only one of seven proteins identified was able

to pseudotype viral cores and mediates cellular entry (enFeLV Env-5). The

remaining proteins displayed differential levels of expression within the cellular

cytoplasm; mutations conferring these properties could not be identified. Had

time allowed, it would have been of interest to identify which mutation/s within

each Env was responsible for the respective defects observed.
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These preliminary results also provide further evidence as to the conservation of

RNA secondary structures in the packaging and dimerisation domains of

gammaretroviruses. As the majority of gammaretroviral RNA structural work

conducted to date is concerned with MLV, the study of another virus such as

FeLV would complement these results and highlight similarities and differences.

However in vitro analyses of both the dimerisation and packaging abilities of

enFeLV RNA homodimers and FeLV-A/enFeLV heterodimers are required to

provide definitive answers to whether this is the block preventing enFeLV

horizontal transmission.

The novel suggestion that altered RNA structures provide a mechanism of

restriction for potentially-functional endogenous retroelements supports the

general theory that endogenous retroviral elements are by their nature

inoffensive to the host (Lower, 1999; Oliveira, et al., 2007). An actively

pathogenic endogenous retrovirus would by its very nature be purged from the

host over evolutionary time, although a relic such as a solo LTR may remain. The

exception to this premise is the example of FeLIX. Despite being endogenously

encoded, this peptide rescues defective FeLV-T strains and allows infection of T

lymphocytes (Anderson, et al., 2000). However given the fact that FeLV-T is only

rarely reported, it is probable that the majority of enFeLV peptides confer a

protective advantage to hosts. This is the alternative explanation for the

maintenance of their functionality and expression (McDougall, et al., 1994). In

contrast, it has also been suggested that the likelihood of persistence versus

deletion or inactivation of the retroelement (through, for example,

recombinational deletion during meiosis, resulting in a solo LTR genomic relic)

may simply reflect the gene density and recombination rate of the genomic area

in which it is integrated (Katzourakis, Pereira, & Tristem, 2007). Nonetheless,

the general observation that ERVs are non-pathogenic and display lowered

infectivity compared to their exogenous counterparts is supported by these

results, which indicate apparently-functional enFeLV elements may be restricted

by their inability to form the required RNA structures for efficient viral

transmission.



190

Overall, the studies discussed in this thesis raise intriguing hypotheses applicable

to both FeLV and general retrovirology, and highlight the necessity of further

research upon this significant feline pathogen.
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8. Appendices

8.1 Buffers and solutions

Bromophenol Blue Protein Loading Buffer

0.25M Tris-HCl; 2.5% (w/v) SDS; 10% (w/v) glycerol, 1% (1/v) 2-mercaptoethanol;

0.02% (w/v) bromophenol blue; pH 6.8.

Phosphate-Buffered Saline

137mM NaCl; 2.7mM KCl; 8mM Na2HPO4; 2mM KH2PO4; pH 7.3.

DNA Electrophoresis Loading Buffer (10x concentration)

0.1M EDTA; 15% (w/v) glycerol; 0.05% (w/v) bromophenol blue; 0.25% (w/v)

xylene cyanol.

Tris-Borate EDTA (TBE) Buffer (10x concentration)

890mM Tris Base; 2mM di-sodium EDTA; pH 8.3.

Tris-Glycine Buffer

25mM Tris Base (7.9); 192mM glycine; 0.1% (w/v) SDS; pH 8.3.

Luria Broth (LB)

10% (w/v) bactotryptone; 5% (w/v) yeast extract; 85mM NaCl; pH 7.0.

1.5% agarose included for LB agar plates.

Super Optimal Broth for Catabolite Repression (SOC Broth)

20mM glucose, 10mM MgCl2, 10mM MgSO4; 2.5mM KCl; 10mM NaCl; 2% (w/v)

bactotrypone; 0.5% (w/v) yeast extract.



192

8.2 List of Primers

FeLV Env Sense: 5’ GGTCGACATGGAAGGTCCAACGCACCCAAAA 3’

Antisense: 5’ GGGGTCGACTGGAATCATACATTTAATTGGAAAT 3’

FeLV SU Sense: 5’ CGATCTAGAATGGAAAGTCCAACGCACCCAAAA 3’

Antisense: 5’ CATGGATCCGCTGTGTACACATATTCGGGTTGATG 3’

FeLV enEnv Sense: 5’ GGTCGACATGGAAGGTCCAACGCACCCAAAA 3’

Antisense: 5’ CGCGGCCGCTTAGCTGGGGTGATACGGTTGGT 3’

FeLV en-U3 Sense: 5’ GAGCTAGCAATGCGACTCAGACCAACCGTATCA 3’

Antisense: 5’ GGTACCCGGGGCGGTCAAGTCTCGGCAAAG 3’

FeLV ex-U3 Sense: 5’ GAGCTAGCAATACGATCCGGACCGACCATG 3’

Antisense: 5’ GGTACCCGGGGCGGTCAAGTCTCGGCAAAG 3’

RD-114 Env Sense: 5’ GTTTGACGACCCCCGCAAGGCTAT 3’

Antisense: 5’ GGGCCAGCACCATGGCATGTACAACA 3’

FcEV Env Sense: 5’ ATTCCACCCTCACACCAGAATC 3’

Antisense: 5’ TTGAGTTAGGACCAAGGCCTG 3’

GAPDH Sense: 5’ CCTTCATTGACCTCAACTACAT 3’

Antisense: 5’ CCAAAGTTGTCATGGATGACC 3’

FeLV-Recombinant Sense: 5’ AAGACTAGACGTGGGAATGGCC 3’

Antisense: 5’ AATTTTCCATACCTTGTGAAATGG 3’

All PCRs were conducted using a high-fidelity commercially prepared mastermix

(Roche), which included 200uM of each dNTP and 0.2U/uL of polymerase

enzyme. Primers were added to a final concentration of 0.5uM each, with 50ng

(plasmid) or 200ng (genomic DNA) of template DNA per reaction. Cycling

parameters consisted of an initial denaturation (94°C, 2 minutes), followed by

35 cycles of denaturation-annealing-extension (94°C, 30 seconds; 50°C, 30

seconds; 72°C, 1 minute/kB of template DNA). A final extension period of 5-10

minutes at 72°C was included before reactions were stored at 4°C. In some

cases the annealing temperature was altered to increase reaction specificity.
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8.3 Nucleotide mutations arising in long-term FeLV
cultures

1
FeLV-A ATGGAAAGTC CAACGCACCC AAAACCCTCT AAAGATAAGA CTCTCTCGTG GAACTTAGCG TTTCTGGTGG
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

71
FeLV-A GGATCTTATT TACAATAGAC ATAGGAATGG CCAATCCTAG TCCACACCAA ATATATAATG TAACTTGGGT
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... ........G. .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

141
FeLV-A AATAACCAAT GTACAAACTA ACACCCAAGC TAACGCCACC TCTATGTTAG GAACCTTAAC CGATGCCTAC
FeLV-A Sera ..G....... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB ....G..... .......... .......... .......... ........C. .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

211
FeLV-A CCTACCCTAC ATGTTGACTT ATGTGACCTA GTGGGAGACA CCTGGGAACC TATAGTCCTA AACCCAACCA
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... G.........
D83:D91 MAB .......... .......... .......... .......... .......... .......... G.........
D83:D91 Sera .......... ...CG..... .......... .......... .......... .......... G.........
N83:D91 .......... .......... .......... ......A... .......... .......... G.........
N83:D91 MAB .......... .......... .......... ......A... .......... .......... G.........
N83:N91 Sera .......... .......... .......... ......A... .......... .......... ..........
N83:N91 .......... .......... .......... ......A... .......... .......... ..........
N83:D91 Sera .......... .......... .......... ......A... .......... .......... G...G.....
N83:N91 MAB .......... .......... .......... ......A... .......... .......... ..........

281
FeLV-A ATGTAAAACA CGGGGCACGT TACTCCTCCT CAAAATATGG ATGTAAAACT ACAGATAGAA AAAAACAGCA
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .........C .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......A.. ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

351
FeLV-A ACAGACATAC CCCTTTTACG TCTGCCCCGG ACATGCCCCC TCGTTGGGGC CAAAGGGAAC ACATTGTGGA
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
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FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera ..G....... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

421
FeLV-A GGGGCACAAG ATGGGTTTTG TGCCGCATGG GGATGTGAGA CCACCGGAGA AGCTTGGTGG AAGCCCACCT
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... ......G... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

491
FeLV-A CCTCATGGGA CTATATCACA GTAAAAAGAG GGAGTAGTCA GGACAATAGC TGTGAGGGAA AATGCAACCC
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

561
FeLV-A CCTGGTTTTG CAGTTCACCC AGAAGGGAAG ACAAGCCTCT TGGGACGGAC CTAAGATGTG GGGATTGCGA
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......C.. .......... .......... ..........
D83:D91 Sera .........A .....T.... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... ..G....... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

631
FeLV-A CTATACCGTA CAGGATATGA CCCTATCGCT TTATTCACGG TGTCCCGGCA GGTATCAACC ATTACGCCGC
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB ....G..... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

701
FeLV-A CTCAGGCAAT GGGACCAAAC CTAGTCTTAC CTGATCAAAA ACCCCCATCC CGACAATCTC AAACAGGGTC
FeLV-A Sera ....A..... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......C.. .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........
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771
FeLV-A CAAAGTGGCG ACCCAGAGGC CCCAAACGAA TGAAAGCGCC CCAAGGTCTG TTGCCCCCAC CACCATGGGT
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......A.. .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... C......... ..........
N83:D91 MAB .......... ......G... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

841
FeLV-A CCCAAACGGA TTGGGACCGG AGATAGGTTA ATAAATTTAG TACAAGGGAC ATACCTAGCC TTAAATGCCA
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... ........G. .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

911
FeLV-A CCGACCCCAA CAAAACTAAA GACTGTTGGC TCTGCCTGGT TTCTCGACCA CCCTATTACG AAGGGATTGC
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... ....G..... .G........ .......... .......... .......... ..........
N83:D91 MAB ...G...... .......... .......... ......G... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

981
FeLV-A AATCTTAGGT AACTACAGCA ACCAAACAAA CCCCCCCCCA TCCTGCCTAT CTACTCCGCA ACACAAACTA
FeLV-A Sera .......... .......... .......... .......... .........C .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .....G.... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .T........ .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

1051
FeLV-A ACTATATCTG AAGTATCAGG GCAAGGAATG TGCATAGGGA CTGTTCCTAA AACCCACCAG GCTTTGTGCA
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... ......T... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .........G .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... .........G
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

1121
FeLV-A ATAAGACACA ACAGGGACAT ACAGGGGCGC ACTATCTAGC CGCCCCCAAC GGCACCTATT GGGCCTGTAA
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
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N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... G......... .......... ..........

1191
FeLV-A CACTGGACTC ACCCCATGCA TTTCCATGGC GGTGCTCAAT TGGACCTCTG ATTTTTGTGT CTTAATCGAA
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .C........ ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... ........T. .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... ........G. .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .A........ .......... .......... ..........

1261
FeLV-A TTATGGCCCA GAGTGACTTA CCATCAACCC GAATATGTGT ACACACATTT TGCCAAAGCT GTCAGGTTCC
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ....C.....
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

1331
FeLV-A GAAGAGAACC AATATCACTA ACGGTTGCCC TTATGTTGGG AGGACTTACT GTAGGGGGCA TAGCCTCGGG
FeLV-A Sera .......... .......... .......... .......... .......... .......... .....G....
FeLV-A MAB .......... .......... .......... .......... .....G.... .......... .....G....
D83:D91 .......... .......... .......... .......... .......... .......... .....G....
D83:D91 MAB .......... .......... .......... .......... .......... .......... .....G....
D83:D91 Sera .......... .......... .......... .......... .......... .......... .....G....
N83:D91 .......... .......... .......... .......... .......... .......... .....G....
N83:D91 MAB .......... .......... .......... .......... .......... .......... .....G....
N83:N91 Sera .......... .......... .......... .......... .......... .......... .....G....
N83:N91 .......... .......... .......... .......... .......... A......... .....G....
N83:D91 Sera .......... .......... .......... .......... .......... .......... .....G....
N83:N91 MAB .......... .......... .......... .......... .......... .......... .....G....

1401
FeLV-A GGTCGGAACA GGGACTAAAG CCCTCCTTGA AACAGCCCAG TTCAGACAAC TACAAATGGC CATGCACACA
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... ...C...... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... ......C... .......... ...G...... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .G........ .......... .......... ..........

1471
FeLV-A GACATCCAGG CCCTAGAAGA ATCAATTAGT GCCTTAGAAA AGTCCCTGAC CTCCCTTTCT GAAGTAGTCT
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .....C.... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

1541
FeLV-A TACAAAACAG ACGGGGCCTA GATATTCTAT TCTTACAAGA GGGAGGGCTC TGTGCCGCAT TGAAAGAAGA
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........



197

N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......G.. .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

1611
FeLV-A ATGTTGCTTC TATGCGGATC ACACCGGACT CGTCCGAGAC AATATGGCCA AATTAAGAGA AAGACTAAAA
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera ..A....... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

1681
FeLV-A CAGCGGCAAC AACTGTTTGA CTCCCAACAG GGATGGTTTG AAGGATGGTT CAACAAGTCC CCCTGGTTTA
FeLV-A Sera .......... .....G.... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .G........ .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... A......... .......... .......... ..........
N83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

1751
FeLV-A CAACCCTAAT TTCCTCCATT ATGGGCCCCT TACTAATCCT ACTCCTAATT CTCCTCTTCG GCCCATGCAT
FeLV-A Sera .......... .......... .........G .......T.. .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .........C .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .....G.... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB .......... .......... .C........ .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... .........C

1821
FeLV-A CCTTAACCGA TTAGTACAAT TCGTAAAAGA CAGAATATCT GTGGTACAGG CTTTAATTTT AACCCAACAG
FeLV-A Sera .......... .......... .......... .......... .......... .......... ..........
FeLV-A MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 .......... .......... .......... .......... .......... .......... ..........
D83:D91 MAB .......... .......... .......... .......... .......... .......... ..........
D83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:D91 .......... .......... .......... .......... .......... .......... ..........
N83:D91 MAB ..C....... .......... .......... .......... .......... .......... ..........
N83:N91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 .G........ .......... .......... .......... .......... .......... ..........
N83:D91 Sera .......... .......... .......... .......... .......... .......... ..........
N83:N91 MAB .......... .......... .......... .......... .......... .......... ..........

1891
FeLV-A TACCAACAGA TAAAGCAATA CGATCCGGAC CGACCATGA
FeLV-A Sera .......... .......... .......... .........
FeLV-A MAB .......... .......... .......... .........
D83:D91 .......... .......... .......... .........
D83:D91 MAB .......... .......... .......... .........
D83:D91 Sera .......... .......... .......... .........
N83:D91 .......... .......... .......... .........
N83:D91 MAB .......... .......... .......... .........
N83:N91 Sera .......... .......... .......... .........
N83:N91 .......... .......... .......... .........
N83:D91 Sera .......... .......... .......... .........
N83:N91 MAB .......... .......... .......... .........
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8.4 Genome sequences of FeLV-2518 and -4314

(A) Whole genome nucleotide alignment

enFeLV genomic flanking Region
FeLV-A ---------- ---------- ---------- ---------- ---------- ---------- ----------
AY364318 TGAAAGACCC CTTCCCCTTG TTTTGACCCC CTGTCATAAT ATGCTTAGCA ATAGTAACGC CATTTGCAAG
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

71 Start of 5’ LTR
FeLV-A ---------- -----TGAAA GACCCCCTAC CCCAAAATTT AGCCAGCTAC TGCAGTGGTG CCATTTCACA
AY364318 ACAGCACCAA GAAGT.C.GG .GT.TTA.C. TAAGTCCACC GTTT....G. CAA.CA..AT ATC.G.GGTC
FeLV-2518 .......... .....----- ---------- ---------- ---------- ---------- ----------
FeLV-4314 .......... .....----- ---------- ---------- ---------- ---------- ----------

141
FeLV-A AGGCATGGAA AATTACTCAA GTA---TGTT CCCATGAGAT ACAAGGAAGT TAGAGGCTAA AACAGGATAT
AY364318 ..C..CCCGG CCC..AGAT. .CCACC..GC ..T.A..TGG GA.T....AG ..CT.A..CC .C.C.ATAGA
FeLV-2518 ---------- ---------- ---...---- ---------- ---------- ---------- ----------
FeLV-4314 ---------- ---------- ---...---- ---------- ---------- ---------- ----------

211
FeLV-A CTGTGGTTAA GCACCTGGGC CCCGGCTTGA GGCCAAGAAC AGTTAAACCC CGGATATAGC TGAAACAGCA
AY364318 .CC.A.AG.T .AG...A.T. AG.CA.CCAT .TTTTTC--. CCC.C.TT.T G...A..C.. CCTC.G.AA.
FeLV-2518 ---------- ---------- ---------- ---------- ---------- ---------- ----------
FeLV-4314 ---------- ---------- ---------- ---------- ---------- ---------- ----------

281
FeLV-A GAAGTTTCAA GGCCGCTACC AGCAGTCTCC AGGCTCCCCA GTTGACCAGG GTTCGACCTT CCGCCTCATT
AY364318 ...AAGAA.. A.AAAAA.AA .AA.AAAAAA .AAAAAA... .CCTCATTTA AC.G....AA TAAGAC.CCG
FeLV-2518 ---------- ---------- ---------- ---------- ---------- ---------- ----------
FeLV-4314 ---------- ---------- ---------- ---------- ---------- ---------- ----------

351
FeLV-A TAAACTAACC AATCCCCACG CCTCTCGCTT CTGTGCGCGC GCTTTCTGCT ATAAAACGAG CCATCAGCCC
AY364318 ...CTATG.T TC..G.TT.T GTAAC...GC T.C...-.A. T.CAA.C-.. ......A.TC T.CC......
FeLV-2518 ---------- ---------- ---------- ---------- ---------- ---------- ----------
FeLV-4314 ---------- ---------- ---------- ---------- ---------- ---------- ----------

421
FeLV-A C-CAACGGGC GCGCAAGTCT TTGCTGAGAC TTGACCGCCC CGGGTACCCG TGTACGAATA AACCTCTTGC
AY364318 AA...GA... .......... .......... .......... .......... .......... ..........
FeLV-2518 -.-------- ---------- ---------- ---------- ---------- ---------- ----------
FeLV-4314 -.-------- ---------- ---------- ---------- ---------- ---------- ----------

491
FeLV-A TGATTGCATC TGACTCGTGG TCTCGGTGTT CTGTGGGCGC GGGGTCTCAT CGCCGAGGAA GACCTAGTTC
AY364318 ..T....... .......... .......... .C......A. .......... .......... .........A
FeLV-2518 ---------- ---------- ---------- ---------- ---------- ---------- ----------
FeLV-4314 ---------- ---------- ---------- ---------- ---------- ---------- ----------

561
FeLV-A AGGGGTCTTT CATTTGGGGG CTCGTCCGGG ATCGAGACCC CCGACCCCCG GGACCACCGA CCCACCATCA
AY364318 G......... .......... .......... ..A....... ..A....... .......... ..........
FeLV-2518 ---------- ---------- ---------- ---------- ---------- ---------- ----------
FeLV-4314 ---------- ---------- ---------- ---------- ---------- ---------- ----------

631
FeLV-A GGAGGTAAGC TGGCCGGCGA CCATACCTGT TGTCCTTGTA TAAGTGTCTC TGTCAATTGA TCTGATTTTG
AY364318 .......... .......... .....T.... .......... .G........ .....T.... ..........
FeLV-2518 ---------- ---------- ---------- ---------- ---------- ---------- ----------
FeLV-4314 ---------- ---------- ---------- ---------- ---------- ---------- ----------

701
FeLV-A GCGGTGGGAT CGAAGGAGCT GACGAGCTCG TACTTCGCCC CCGCAACCCT GGAAGACGTT CCACGGGTGT
AY364318 .......AGC .......... .......... A......... .......... .......... ..........
FeLV-2518 ---------- ---------- ---------- ---------- ---------- ---------- ----------
FeLV-4314 ---------- ---------- ---------- ---------- ---------- ---------- ----------

Gag-Pol Polyprotein Start Codon
FeLV-A CTGATGTCTG GAGCCTCTAG TGGGACAGCC ATTGGGGCTC ATCTGTTTGG GGTCTCACC- --------TG
AY364318 .......... .......... .......... .........A GAT....... .A.....T.C GTATTAGG..
FeLV-2518 ---------- ---------- -......... .......... .......... ......C... ..........
FeLV-4314 ---------- --------.T G......... .......... .......... .......... ..........
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841
FeLV-A AATACAGGGT GTTGATCGGA GACGAGGGAG CCGGACCCTC AAAGTCTCTT TCTGAGGTTT CATTTTCGGT
AY364318 .......... .......... .......... .......... ..G.....C. .......... ..........
FeLV-2518 .......... .......... .......... .......... ..G....... .......... ..........
FeLV-4314 .......... .......... .......... .......... ........C. .......... ..........

911
FeLV-A TTGGTACCGA AGCCGCGCGG CACGTCTTGT CATTTTTTGT CTGGTTGCGT CTTTTCTTGT CCCTTGTCTA
AY364318 ......T... .......... .......... ....C..... ..T....... ....C..... ...C......
FeLV-2518 ........A. .......... .......... .........C .......... .......... ..........
FeLV-4314 ........A. .......... .......... .......... .......... .......... T.........

981
FeLV-A ACCTTTTTAA TTGCAGAAAC CGTCATGGGC CAAACTATAA CTACCCCCTT AAGCCTCACC CTTGATCACT
AY364318 .......... ........G. .......... ......G... .......... G......... ..CA.C....
FeLV-2518 .......... .......... .......... ..G....... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

1051
FeLV-A GGTCTGAAGT CCGGGCACGA GCCCATAACC AAGGTGTCGA GGTCCGGAAA AAGAAATGGA TTACCTTATG
AY364318 .......G.. ..A......G ....G...T. .G........ A......... .......... ....AC.G..
FeLV-2518 .......... .......... ........T. ....G..... .......... .......... ..........
FeLV-4314 .......... .......... ........T. .......... .......... .......... ..........

1121
FeLV-A TGAGGCCGAA TGGGTGATGA TGAATGTGGG CTGGCCCCGA GAGGGAACTT TTTCTCTTGA TAACATTTCC
AY364318 ...A...... .....A.... .......A.. T......... ..A....... .CA.CA.... C..T.....A
FeLV-2518 .......... .......... .......... .......... ..A....... .......... ..........
FeLV-4314 .......... .......... .......... .........G ..A....... .......... ..G.......

1191
FeLV-A CAGGTTGAGA AAAAGATCTT CGCCCCGGGA CCGTATGGAC ACCCCGACCA GGTTCCTTAC ATTACCACAT
AY364318 .....C...G .G.GA..... .........G ..A....... ....A..T.. AA.C.....T ........G.
FeLV-2518 .......... .......... .......... ..A....... .......... A......... ..........
FeLV-4314 .......... .......... .......... ..A....... .......... A......... ........G.

1261
FeLV-A GGAGATCCTT AGCCACAGAC CCCCCTTCGT GGGTTCGGCC GTTCCTACCC CCTCCCAAAC CTCCCACGCC
AY364318 ........C. .......... ......C.A. .......C.. A.....G... .....T..G. A.....G.A.
FeLV-2518 .......... .......... .......... .......T.. .......... .......... .......A..
FeLV-4314 .......... .......... .......... .......T.. .......... .......... .......A..

1331
FeLV-A ---CCTCCCT CAACCTCTCT CGCCGCAGCC CTCCGCCCCT CTTACCTCTT CCCTCTACCC CGTCCTCCCC
AY364318 AGAT.CT..C G.G.....T. .......A.. ...A.....C .CC.T...C. .......... ...T......
FeLV-2518 .......... ........T. .......... .........C .......... .......... ...T.....T
FeLV-4314 .......... ........T. .......... .......... .......... .......... ...T......

1401
FeLV-A AAGTCAGACC CTCCCAAACC GCCTGTGTTA CCGCCTGATC CTTCTTCCCC TTTAATAGAT CTCTTAACAG
AY364318 ..AC...... .C.....GG. ......A... ..A..CA... .......... ......T... ..........
FeLV-2518 .......... .C........ .......... .......... .......... ......T... ..........
FeLV-4314 ...C...G.. .C........ .......... .......... ....C..... ......T... ..........

1471
FeLV-A AAGAGCCACC TCCCTATCCG GGAGGTCACG GGCCA---CC GCCGTCAGGT CCTAGGACCC CAACCGCTTC
AY364318 .......... .........T ..G....... .....ACA.. .........C .....A.... ....T..C..
FeLV-2518 .......... .......... ..G....... .......... ...A...... .......... ..........
FeLV-4314 .......... .......... ..G....... .......... ...A...... .......... ..........

1541
FeLV-A CCCGATTGCA AGCCGGCTAA GGGAACGACG AGAAAACCCT GCTGAAGAAT CTCAAGCCCT CCCCTTGAGG
AY364318 .........C ........GC .A........ ......T..A .....GA... .......... ......A...
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

1611
FeLV-A GAGGGCCCCA ACAACCGACC CCAGTATTGG CCATTCTCAG CCTCAGACCT GTATAACTGG AAGTCGCATA
AY364318 ..A.....A. .....A.... ......C... ........G. ....T..... ...C..T... ..A.T.....
FeLV-2518 ..A....... .......... .......... .......... .T........ .......... ..........
FeLV-4314 ..A....... .......... .......... .......... .T......T. .......... ..........

1681
FeLV-A ACCCCCCTTT CTCCCAAGAC CCAGTGGCCC TAACTAACCT AATTGAGTCC ATTTTAGTGA CGCATCAACC
AY364318 .......... ......G... .......... .......... .......... .......... .A.....G..
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... .A........

1751
FeLV-A AACCTGGGAC GACTGCCAGC AGCTCTTGCA GGCACTCCTG ACAGGCGAAG AAAGGCAAAG GGTCCTTCTT
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AY364318 .......... ........A. .......A.. ...T...... ..G.CA..G. .G..A..... ......C...
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

1821
FeLV-A GAGGCCCGAA AGCAGGTTCC AGGCGAGGAC GGACGGCCAA CCCAACTACC CAATGTCATT GATGAGACTT
AY364318 ..A....... ....A..... .......... .......... ....G..G.. .......G.. ..C...G...
FeLV-2518 .......... .......... .......... .......... .......... .......... ..C.......
FeLV-4314 .......... .......... .......... .......... .......... .......... ..C...G...

1891
FeLV-A TCCCCTTGAC CCGTCCCAAC TGGGATTTTG CTACGCCGGC AGGTAGGGAG CACCTACGCC TTTATCGCCA
AY364318 .......... .......... .......... .......... .......... .......... ..........
FeLV-2518 .T........ .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

1961
FeLV-A GTTGCTATTA GCGGGTCTCC GCGGGGCTGC AAGACGCCCC ACTAATTTGG CACAGGTAAA GCAGGTTGTA
AY364318 ......G... .......... .......... .......... .......... .......... ...A......
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... T......... .......... .......... ..........

2031
FeLV-A CAAGGGAAAG AGGAAACGCC AGCAGCATTT TTAGAAAGAT TAAAAGAGGC TTACAGAATG TACACTCCCT
AY364318 .......... .......... ...CT....C .......... .......... .......... ..........
FeLV-2518 .C........ .......... .......... .......... .......... .......... ..........
FeLV-4314 .....A.... .......... .......... .......... .......... .......... ..........

2101
FeLV-A ATGACCCTGA GGACCCAGGG CAAGCAGCTA GTGTTATACT ATCCTTTATA TACCAGTCTA GCCCAGATAT
AY364318 .......... .......... ..G..T.... .......C.. G........C .......... ....G..C..
FeLV-2518 .C........ .......... .....G.... .......T.. ...T..C... .......... ..........
FeLV-4314 .......... .......... .....G.... .......C.. ......C... .......... ..........

2171
FeLV-A AAGAAATAAG TTACAAAGGC TAGAAGGTCT ACAAGGGTTC ACCCTATCTG ATCTGCTAAA AGAGGCAGAA
AY364318 .......... .......... .......C.. ...G...... ..A..G.... ..T....... ..........
FeLV-2518 .......... ........A. .......C.. .......... .......... .......... ..........
FeLV-4314 .......... .......... .......C.. .......... .......... .......... ..........

2241
FeLV-A AAGATATACA ACAAAAGGGA GACCCCAGAG GAAAGGGAAG AAAGATTATG GCAGCGGCAA GAAGAAAGAG
AY364318 .......... .......... .......... .......... .......... .........G ..........
FeLV-2518 .......... .......... .......... .......... .......... .........G ..........
FeLV-4314 .......... .......... .......... ..G....... .......... .........G ..........

2311
FeLV-A ATAAAAAGCG CCACAAGGAG ATGACTAAAG TTCTGGCCAC AGTAGTTGCT CAGAATAGAG ATAAAGATAG
AY364318 .......... ...T...... .......... .......... .......... .......... ....G.....
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

2381
FeLV-A AGAAGAAAGT AAACTGGGGG ATCAAAGGAA AATACCTCTG GGAAAGGACC AGTGTGCCTA TTGCAAGGAA
AY364318 ...G...... ........A. .......... .......... ..G..A.... .......... ..........
FeLV-2518 ......G... .......... .......... .......... ..G..A.... .......... ..........
FeLV-4314 .......... ........A. .......... .......... ..G..A.... .......... ..........

2451
FeLV-A AAGGGGCATT GGGTTCGCGA TTGCCCCAAA CGACCCCGGA AGAAACCCGC CAACTCCACT CTCCTCAACT
AY364318 .....A.... .......... ......G... .......... .......... AG........ .........C
FeLV-2518 .G........ .......... .......... .......... .......... .......... ........T.
FeLV-4314 .......... .......... .......... ......AA.. .......... .......... ..........

2521
FeLV-A TAGGAGATTA GGAGAGTCAG GGCCAGGACC CCCCCCCTGA GCCCAGGATA ACCTTAAAAA TAGGGGGGCA
AY364318 ...A...... .......... .......... .......... .......... ...C.....G ..........
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

2591
FeLV-A ACCGGTGACT TTCCTGGTGG ACACGGGAGC CCAGCACTCA GTACTAACTC GACCAGATGG ACCTCTCAGT
AY364318 ...A.....C ..T....... .T........ .........G .....G.... .......... ..........
FeLV-2518 .......... ..T....... .......... .......... .....G.... .......... ..........
FeLV-4314 .......... ..T....... .......... .......... .....G.... .......... ..........

2661
FeLV-A GACCGCACAG CCCTGGTGCA AGGAGCCACG GGAAGCAAAA ACTACCGGTG GACCACCGAC AGGAGGGTAC
AY364318 ......T... .......... .........A .......... .......A.. .......... ........G.
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........
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2731
FeLV-A AACTGGCAAC CGGTAAGGTG ACTCATTCTT TTTTATATGT ACCTGAATGT CCCTACCCGT TATTAGGGAG
AY364318 .......... .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... ........C. .......... .......... .......... .......A..

2801
FeLV-A AGACCTATTA ACTAAACTTA AGGCCCAAAT CCATTTTACC GGAGAAGGGG CTAATGTTGT TGGGCCCAAG
AY364318 .......... ..C.....C. .......G.. ......C... ........A. .......... ...A....T.
FeLV-2518 .......... .......... .......... .......... .......... .......... ........G.
FeLV-4314 .......... .......... .......... .......... .......... .......... ........G.

2871
FeLV-A GGTTTACCCC TACAAGTCCT TACTTTACAA TTAGAAGAGG AGTATCGGCT ATTTGAGCCC GAAAGTACAC
AY364318 ..C....... .......... C..C..G... C.......A. .......... .........G ......GA..
FeLV-2518 .......... .......... .......... .......... .......... .........A ..........
FeLV-4314 .......... .......... .......... .......... .......... .........A ..........

2941
FeLV-A AAAAACAGGA GATGGACATT TGGCTTAAAA ACTTTCCCCA GGCGTGGGCA GAAACAGGAG GTATGGGAAC
AY364318 T......A.G T.......G. .......... .......... ...A...... .......... ....A....T
FeLV-2518 .......... .......... .......... .......... .......... .......... .........T
FeLV-4314 .......... ........C. .......... .......... .......... .......... .........T

3011
FeLV-A GGCTCATTGT CAAGCCCCCG TTCTCATTCA ACTTAAGGCT ACTGCCACTC CAATCTCCAT CCGACAGTAT
AY364318 .........C .........A .C........ ......A... ........C. .......... ...G.....C
FeLV-2518 .......... .........A .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......C.. .......... .......... .......... ..........

3081 RT Start Codon
FeLV-A CCTATGCCCC ATGAAGCATA CCAGGGAATT AAGCCTCATA TAAGAAGAAT GCTAGATCAA GGCATCCTCA
AY364318 ..C....... .......T.. ...A...... ..A..C.... ....G..... ...G..C... ..........
FeLV-2518 .......... .......G.. .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... ..C....... .......... ..........

3151
FeLV-A AGCCCTGCCA GTCCCCATGG AATACACCCT TATTACCTGT TAAGAAGCCA GGGACCGAGG ATTACAGACC
AY364318 .......... .......... .........C .......... C..A...... ..A....G.. ..........
FeLV-2518 .......... .......... .......... .......... A......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

3221
FeLV-A AGTGCAGGAC TTAAGAGAAG TAAACAAAAG AGTGGAAGAC ATCCATCCTA CTGTGCCAAA TCCATATAAC
AY364318 .......... .......... .......... G..A...... ........C. .......... C.....C...
FeLV-2518 ...A...... .......... .......... ...A...... .......... .......... ..........
FeLV-4314 .......... .......... .......... ...A...... .......... .......... ..........

3291
FeLV-A CTCCTTAGCA CCCTCCCGCC GTCTCACCCT TGGTACACTG TCCTAGATTT AAAAGACGCT TTTTTCTGCC
AY364318 .......... .......A.. T......... ........C. ........C. ......T... .........T
FeLV-2518 .......... .......... .......... .......... .......... ...G...... ..........
FeLV-4314 .......... .......... .......... .......... .......... ...G...... ..........

3361
FeLV-A TGCGACTACA CTCTGAGAGT CAATTACTTT TTGCATTTGA ATGGAGAGAT CCAGAAATAG GACTGTCAGG
AY364318 .......... .C.......C ........C. .......... .....A.... .....G.... .G........
FeLV-2518 .......... .C.......C .......... .C........ .......... .......... ..........
FeLV-4314 .......... .......... ..G....... .......... .......... .......... ..........

3431
FeLV-A GCAGCTAACC TGGACACGCC TTCCTCAAGG GTTCAAGAAT AGCCCCACCC TATTTGATGA GGCCCTGCAC
AY364318 ...A..G... .....T.... ....A..... .......... .......... .......... ......A...
FeLV-2518 .......... .......... ....A..G.. .......... ......G... .......... ..........
FeLV-4314 ...A...... .......... .......G.. .......... .......... .......... ..........

3501
FeLV-A TCAGACCTGG CCGATTTCAG GGTAAGGTAC CCGGCTCTAG TCCTCCTACA ATATGTAGAT GACCTCTTGC
AY364318 .......... .A........ ...G.....T ..A...T... .......... ...C...... ........A.
FeLV-2518 ..G....... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

3571
FeLV-A TGGCTGCGGC AACCAGGACT GAATGCCTGG AAGGGACTAA GGCACTCCTT GAGACTTTGG GCAATAAGGG
AY364318 .......... .....A...C ........A. .......... A......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

3641
FeLV-A GTACCGAGCC TCTGCAAAGA AGGCCCAAAT TTGCCTGCAA GAAGTCACAT ACCTGGGGTA CTCTTTAAAA
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AY364318 T......... .......... .......... .......... A......... ....A..... .......G.G
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

3711
FeLV-A GATGGCCAAA GGTGGCTTAC CAAAGCTCGC AAGGAAGCCA TCCTATCCAT CCCTGTGCCT AAAAACTCAC
AY364318 .....T.... .A........ .........G ..A....... .T..C..... .......... ......C...
FeLV-2518 .......... .......... .........G ..A....... .......... .......... ......C...
FeLV-4314 .......... .......... .........G ..A....... .......... .......... ......C...

3781
FeLV-A GACAAGTAAG AGAGTTCCTT GGAACTGCAG GTTACTGCCG GCTGTGGATT CCCGGTTTTG CCGAGCTCGC
AY364318 .G.....G.. .......... .......... .C........ .......... .......... ..........
FeLV-2518 .T.....G.. .......... .......... .......... .......... .......... ..........
FeLV-4314 .......G.. .......... .......... .......... .......... .......... ..........

3851 FeLV-4314 5’ Recomb. Site
FeLV-A AGCCCCGCTA TACCCTCTCA CTCGACCAGG AACTCTGTTC CAGTGGGGAA CAGAGCAACA ATTGGCCTTC
AY364318 T......... ..T....... .......... .........T .......... ....A..... ..........
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......G.. .......... .......... .......... ..........

3921
FeLV-A GAGGACATTA AAAAAGCCCT CTTGAGTTCC CCTGCCCTGG GGTTGCCAGA TATCACCAAA CCCTTTGAAT
AY364318 ..AA...... .......... ......C... .......... .......... .........G ..........
FeLV-2518 ...A...... .......... ......C... .......... .......... .........G ..........
FeLV-4314 ...A...... .......... ......C... .......... .......... .........G ..........

3991
FeLV-A TATTTATTGA TGAGAACTCA GGATTTGCAA AGGGGGTGTT AGTCCAAAAA CTGGGACCCT GGAAAAGACC
AY364318 .......... .....G.... ..G.....G. .......... .......... .......... ..........
FeLV-2518 .......... .....G.... ........G. .......... .A........ .......... ..........
FeLV-4314 .G........ .....G.... .....C..G. .......... .......... .......... ..........

4061
FeLV-A AGTTGCCTAC CTATCAAAAA AGCTGGATAC AGTGGCATCT GGATGGCCCC CTTGTTTACG CATGGTTGCA
AY364318 .......... .......... .A........ .......... .......... .......... ..........
FeLV-2518 .......... .......... .A........ .........C .......... .......... ..........
FeLV-4314 .......... .......... .A........ .......... .......... .......... ..........

4131
FeLV-A GCCATCGCCA TCCTAGTCAA GGATGCAGGG AAGCTAACCC TAGGACAGCC GCTAACTATC CTGACCTCCC
AY364318 .......... .......... .......... ........T. .......... .......G.. ..........
FeLV-2518 .......... .......... .......... .....G.... .......... .......... ..........
FeLV-4314 .......... .......... .......... ........T. .......... .......G.. ..........

4201
FeLV-A ACCCAGTTGA GGCACTTGTC CGACAGCCTC CAAATAAATG GCTCTCTAAT GCTAGAATGA CTCATTACCA
AY364318 .......... .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

4271
FeLV-A AGCTATGCTC CTCGATGCAG AGCGAGTCCA TTTCGGGCCG ACAGTCTCCC TTAACCCTGC TACCTTGCTC
AY364318 .......... .......... .......... .........A .......... .......... C........T
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .........A .......... .......... C........T

4341
FeLV-A CCCCTCCCCA GCGGGGGAAA CCACCACGAC TGTCTCCAGA TTTTAGCCGA GACCCATGGC ACCAGACCCG
AY364318 .......... A..A...... .......... ..C....... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... .......... ......A...
FeLV-4314 .......... A..A...... .......... ..C....... .......... .......... ..........

4411
FeLV-A ACTTAACTGA CCAGCCGTTG CCGGATGCAG ACCTGACCTG GTACACAGAT GGTAGCAGCT TCATCCGTAA
AY364318 .......... .......... .......... .......... ......G... .......... ..........
FeLV-2518 .......... .......... .......... .......... ......G... .......... ..........
FeLV-4314 .......... .......... .......... .......... ......G... .......... ..........

4481
FeLV-A TGGCGAGAGA GAGGCCGGAG CCGCAGTAAC AACCGAATCT GAGGTAATCT GGGCTGCTCC CCTCCCACCC
AY364318 C..A...... A......... .......... .......... .......... ........T. ..........
FeLV-2518 C......... A........A .......... .......... .......... ........T. ..........
FeLV-4314 C......... A..-...... .......... .......... .......... ........T. ..........

4551
FeLV-A GGAACGTCAG CCCAGCGAGC CGAACTGATT GCCCTGACCC AGGCACTAAA GATGGCAGAA GGTAAGAAGC
AY364318 .......... .......... .......... .......... .......G.. .......A.. ..........
FeLV-2518 .......... .......... .......G.. .......... .......... .......A.. ..........
FeLV-4314 .......... .......... .......... .......... .......G.. .......A.. ..........
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4621
FeLV-A TAACTGTCTA TACGGACAGC CGATATGCCT TTGCTACAAC TCATGTACAC GGGGAAATCT ACAGGCGGCG
AY364318 .......... .......... .......... ........G. .......... .......... ..........
FeLV-2518 .......... .......... .......... ........G. .......... .......... ..........
FeLV-4314 .......... .......... .......... ........G. .......... .......... ..........

4691
FeLV-A GGGCCTACTA ACTTCAGAAG GAAAAGAAAT TAAAAATAAA AATGAAATCC TCGCCCTACT AGAGGCGTTA
AY364318 ......G... .......... .......... .......... .......... ........T. ..........
FeLV-2518 .......... .......... .......... .......... .......... ........T. ..........
FeLV-4314 ......G... .......... .......... .......... .......... ........T. ..........

4761
FeLV-A TTCTTACCCA AAAGACTGAG CATCATCCAT TGCCCGGGAC ACCAAAAAGG TGATAGTCCC CAGGCAAAAG
AY364318 .......... .......... T......... .....T.... .......... .......... .....G....
FeLV-2518 .......... .......... T......... .......... .......... .......... .....G....
FeLV-4314 .......... .......... T......... ..T..A.... .......... .......... .....G....

4831
FeLV-A GAAACAGATT AGCTGATGAT ACAGCAAAGA AAGCCGCCAC AGAGACTCAT TCATCACTAA CCGTCTTACC
AY364318 .......... ...C...... .......... .......... .........A .......... ..A.......
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... ...C...... .......... .......... .........A .......... ..A.......

4901
FeLV-A CACTGAACTT ATAGAGGGTC CCAAAAGGCC TCCATGGGAA TATGATGACA GTGATTTAGA CCTTGTGCAA
AY364318 .......... .......... .......... .......... .......... .......... .........G
FeLV-2518 .......... .......... .......... .......... .......... .......... .........G
FeLV-4314 .......... .....A.... ......A... .......... ...A...... .......... .........G

4971
FeLV-A AAACTCGAAG CTCATTATGA GCCAAAGAGA GGTACCTGGG AGTACCGAGG AAAAACTATC ATGCCTGAAA
AY364318 .....T.... .......... ......A... .......... ......A... G........A ..........
FeLV-2518 .....T.... .......... ......A... .......... .......... .......... ..........
FeLV-4314 .....T.... .......... ......A... .......... ......A... G........A ..........

5041
FeLV-A AATACGCAAA AGAGTTGATT AGCCATCTGC ATAAGTTAAC ACACCTCAGT GCTAGGAAAA TGAAAACTTT
AY364318 .......... .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

5111
FeLV-A ACTAGAAAGA GAAGAAACTG GGTTTTACCT CCCTAACAGA GACTTACACC TCCGGCAAGT AACAGAGAGC
AY364318 .......... .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... ......A... .......... .......... ..........
FeLV-4314 .......... ..G....... .......... .......... .......... .......... ..........

5181
FeLV-A TGCCGGGCAT GTGCTCAAAT CAACGCCGGA AAGATAAAGT TTGGACCTGA TGTAAGGGCC CGAGGCCGCC
AY364318 .......... .......... ......A..G ..A....... .......... .......... .......A..
FeLV-2518 .......... .......... ......A... .......... .......... .......... ..........
FeLV-4314 ....A..... ........G. ......A..G ..A....... .......... .......... .......A..

5251
FeLV-A GGCCCGGAAC ACATTGGGAA GTAGACTTCA CTGAAATCAA GCCAGGAATG TATGGATATA AATACCTCTT
AY364318 .........T .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .........T .......... .......... .......... .......... .......... ..........

5321
FeLV-A GGTGTTCATA GATACCTTCT CTGGCTGGGC CGAAGCTTAC CCCGCCAAAC ATGAAACAGC AAAAGTTGTT
AY364318 .......... ..C....... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

5391
FeLV-A GCCAAGAAAC TCTTAGAAGA AATTTTTCCC CGCTACGGGA TCCCTCAGGT ATTGGGTTCA GATAATGGAC
AY364318 .......... .......... G........T ..T....... .......... .......... ..........
FeLV-2518 .......... .......... ......C... .......... .......... .......... ..........
FeLV-4314 .......... .......... G........T ..T....... .......... .......... ..........

5461
FeLV-A CCGCCTTTAT CTCCCAGGTA AGTCAGTCTG TGGCCACCCT ACTGGGGATT AATTGGAAGT TACATTGTGC
AY364318 .......... .......... .......... .......... .......... ........A. ..........
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ........A. ..........

5531
FeLV-A ATACCGACCC CAAAGTTCAG GTCAGGTAGA AAGAATGAAT AGATCAATTA AGGAGACTTT AACTAAATTA
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AY364318 .......... .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

5601
FeLV-A ACGCTAGAAA CTGGCTCTAA GGATTGGGTG CTCCTCCTGC CCCTGGTTTT ATACCGGGTA CGTAACACGC
AY364318 .......... .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... A......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

5671
FeLV-A CAGGCCCCCA CGGGTTAACT CCTTTTGAAA TCCTGTACGG GGCACCCCCA CCTATGGCTC ACTTCTTTGA
AY364318 ....T..... .......... .......... .......... .......... .......... ..........
FeLV-2518 ....T..... T......... .......... ..T....... .......... .......... ..........
FeLV-4314 ....T..... .......... .......... .......... .......... .......... ..........

5741
FeLV-A TACTGATATC TCTAGCTTCG CTACCTCCCC CACTATGCAG GCACATTTAC GCGCCCTGCA GCTGGTCCAA
AY364318 .G....C... ...G.T.... .......... ...C...... .......... .......... ..........
FeLV-2518 .G........ .......... .......... .......... .......... .......... ..........
FeLV-4314 .G.G..C... ...G.T.... .......... ...C...... .......... .......... ..........

5811
FeLV-A GAAGAGATCC AGAGACCTCT AGCGGCGGCC TACCGAGAAA AACTTGAAAC CCCGGTTGTG CCTCACCCCT
AY364318 .......... .......... ......A... .......... .G..C..... .......... ..........
FeLV-2518 .......... .......... .......... ....A..... .G..C..... .......... ..........
FeLV-4314 .......... .......... ......A... .......... .G..C..... .......... ..........

5881
FeLV-A TCAAACCAGG AGACTCCGTC TGGGTTCGGA GACATCAAAC CAAGAACCTC GAGCCACGGT GGAAAGGACC
AY364318 .......... .......... .......... .......... .......... .......... ....G.....
FeLV-2518 .......... .......... .......... .......... ..G....... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ....G.....

5951
FeLV-A ACATATCGTC CTCCTGACCA CCCCCACAGC CTTAAAGGTA GACGGAGTTG CTGCCTGGAT TCACGCCTCT
AY364318 .......... .......... .......G.. ......A... .......... ....T..... C........A
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......G.. ......A... .......... ....T..... C........A

6021
FeLV-A CACGTGAAAG CTGCAGGACC AACCACCAAT CAAGACCTCT CGGACAGCCC CAGCTCAGAC GATCCATCAA
AY364318 ..T..A..G. .......G.. .......... ..G....C.. .A...GA... .......... ........G.
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 ..T..A..G. .......G.. .......... ..G....C.. .A...GA... .......... ........G.

Env Start Codon
FeLV-A GATGGAAAGT CCAACGCACC CAAAACCCTC TAAAGATAAG ACTCTCTCGT GGAACTTAGC GTTTCTGGTG
AY364318 .......G.. .......... .......... .......... ...T...... ..G..C..AT .A........
FeLV-2518 .......... .......... .......... .......... ........A. .......... ..........
FeLV-4314 .......G.. .......... .......... .......... ...T...... ..G..C..AT .A........

FeLV-2518 5’ Recomb. Site
FeLV-A GGGATCTTAT TCACAATAGA CATAGGAATG GCCAATCCTA GTCCACACCA AATATATAAT GTAACTTGGG
AY364318 ...G...... .A.G.C.... .G.G...... .......... ....G..... .G.G...... .........A
FeLV-2518 .......... .......... .......... .......... ....G..... .G.G...... .........A
FeLV-4314 ...G...... .A.G.C.... .G.G...... .......... ....G..... .G.G...... .........A

6231
FeLV-A TAATAACCAA TATGCAAACT AACACCCAAG CTAATGCCAC CTCTATGTTA GGAACCTTAA CCGATGCCTA
AY364318 C......... CC.TGT.... GGA..AA.G. .......... ...C.....G ......C.G. .A..C....T
FeLV-2518 C......... CC.TGT.... GGA..AA.G. .......... ...C.....G ......C.G. .A..C....T
FeLV-4314 C......... CC.TGT.... GGA..AACG. .......... ...C.....G ......C.G. .A..C....T

6301
FeLV-A CCCTACCCTA CATGTTGACC TATGTGACCT AGTGGGAGAC ACCTGGGAAC CTATAGTCCT AGATCCAACC
AY364318 .......A.G T..T.....T .......TA. .A.A...A.T ..A...A.C. ..TC..AT.A G..A...---
FeLV-2518 .......A.G T..T.....T .......TA. .A.A...A.T ..A...A.C. ..TC..AT.A G..A...---
FeLV-4314 .......A.G T..T.....T .......TA. .A.A.ATA.T ..A...A.C. ..TC..AT.A G..A...---

6371
FeLV-A AATGTAAAAC ACGGGGCACG TTACTCCTCC TCAAAGTATG GATGTAAAAC TACAGATAGA AAAAAACAGC
AY364318 ---------- ---------- -------.T. C..GG..... .....G.TCA GC.TATG..G .GGTGG..A.
FeLV-2518 ---------- ---------- -------.T. C..GG..... .....G.TCA GC.TATG..G .GGTGG..A.
FeLV-4314 ---------- ---------- -------.T. C..GG..... .....GGTCA GC.TATG..G .GGTGG..A.

6441
FeLV-A A-ACAAACAT ACCCCTTTTA CGTCTGCCCC GGACATGCCC CCTCGCTGGG GCCAAAGGGA ACACATTGTG
AY364318 .G.G.....C ....-..... T.....T..A .........- ---------- ----..CC.G .AG..A....
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FeLV-2518 .G.G.....C ....-..... T.....T..A .........- ---------- ----..CC.G .AG..A....
FeLV-4314 .G.G.....C ....-..... T.....T..A .........- ---------- ----..CC.G .AG..A....

6511
FeLV-A GAGGGGCACA AGATGGGTTT TGTGCCGCAT GGGGATGTGA GACCACCGGA GAAGCTTGGT GGAAGCCCTC
AY364318 .G...C.... G........C ..C..T.T.. ....T..C.. .........G ...A.C.AT. ...GA...A.
FeLV-2518 .G...C.... G........C ..C..T.T.. ....T..C.. .........G ...A.C.AT. ...GA...A.
FeLV-4314 .G...C.... G........C ..C..T.T.. ....T..C.. .........G ...A.C.AT. ...GA...A.

6581
FeLV-A CTCCTCATGG GACTATATCA CAGTAAAAAG AGGGAGTAGT CAGG------ ---------- ----------
AY364318 .......... .....C.... .........A ....GT..C. ....GAATAT ATCAATGTAG TGGAGGTGGT
FeLV-2518 .......... .....C.... .........A ....GT..C. ....GAATAT ATCAATGTAG TGGAGGTGGT
FeLV-4314 .......... .....C.... .........A ....GT..C. ....GAATAT ATCAATGTAG TGGAGGTGGT

6651
FeLV-A ---------- ------ACAA TA--GCTGT- ---------- ---------- -------GAG GGAAAATGCA
AY364318 TGGTGTGGGC CCTGTT..G. ..AA.....T CACTCCTCGA AAACGGGAGC TAGTGAA.G. ..CCGG....
FeLV-2518 TGGTGTGGGC CCTGTT..G. ..AA.....T CACTCCTCGA TAACGGGAGC TAGTGAA.G. ..CCGG....
FeLV-4314 TGGTGTGGGC CCTGTT..G. ..AA.....T CACTCCTCGA TAACGGGAGC TAGTGAA.G. ..CCGG....

6721
FeLV-A ACCCCCTGAT TTTGCAGTTC ACCCAGAAGG GAAGACAAGC CTCTTGGGAC GGACCTAAGA TATGGGGATT
AY364318 .....T.... C.....A..T .....A.... ........A. A........T .........T C......GC.
FeLV-2518 .....T.... C.....A..T .....A.... ........A. A........T .........T C......GC.
FeLV-4314 .....T.... C.....A..T .....A.... ........A. A..C.....T .........T C......GC.

6791
FeLV-A GCGACTATAC CGTACAGGAT ATGACCCTAT CGCCTTATTC ACGGTGTCCC GGCAGGTGTC AGCCATTACG
AY364318 A......... ...T...... .......... A...C.G... T....A.... ....A..AAT GA........
FeLV-2518 A......... ...T...... .......... A...C.G... T....A.... ....A..AAT GA........
FeLV-4314 A......... ...T...... .......... A...C.G... T....A.... ....A..AAT GA........

6861
FeLV-A CCGCCTCAGG CAATGGGACC AAACCTAGTC TTACCTGATC AAAAACCCCC ATCCAGACAA TCCCAAACAG
AY364318 .......... .C........ ...T...... C.G....... .......... ......G... ..T....T..
FeLV-2518 .......... .C........ ...T...... C.G....... .......... ......G... ..T....T..
FeLV-4314 .......... .C........ .......... C.G....... .......... ..T.G.G... ..T....T..

6931
FeLV-A GGTCCAAAGT GGCGACCCAG AGGCTCCAAA CGACTGAAAG CGCCCCAAGG ---------- --------TC
AY364318 A....CG... AA.AC.T..C CATTC....G GC.AC.G.G. .A.....G.T ATAACTCTTG TTAATGCC..
FeLV-2518 A....CG... AA.AC.T..C CATTC....G GC.AC.G.G. .A.....G.T ATAACTCTTG TTAATGCC..
FeLV-4314 A....C.... AA.AC.T..C CATTC....G GC.AC.G... .A.....G.T ATAACTCTTG TTAATGCC..

7001
FeLV-A TGTTGCCCC- ---------- ----CACCAC CGTGGGTCCC AAACGGATTG GGACCGGAGA TAGGTTAATA
AY364318 CA.......T CTAAGTACCC CTGT....C. ..CAA..... .....T..A. ....A...A. ..........
FeLV-2518 CA.......T CTAAGTACCC CTGT....C. ..CAA..... .....T..A. ....A...A. ..........
FeLV-4314 CA.......T CTAAGTACCC CTGT....C. ...AA..... .....T..A. ....A...A. ..........

7071
FeLV-A AATTTAGTAC AAGGGACATA CCTAGCCTTA AATGCCACCG ACCCCAACAA AACTAAAGAC TGTTGGCTCT
AY364318 ........G. .G........ T.....T... ....T...TA .......... .......... ..........
FeLV-2518 ........G. .G........ T.....T... ....T...TA .......... .......... ..........
FeLV-4314 ........G. .G........ T.....T... ....T...TA .......... .......... ..........

7141
FeLV-A GCCTGGTTTC TCGACCACCC TATTACGAAG GGATTGCAAT CTTAGGTAAC TACAGCAACC AAACAAACCC
AY364318 .T..A..C.. C.....G... .....T.... .A.....GG. A..G..C..T .......... ....C.....
FeLV-2518 .T..A..C.. C.....G... .....T.... .A.....GG. A..G..C..T .......... ....C.....
FeLV-4314 .T..A..C.. C.....G... .....T.... .A.....GG. A..G..C..T .......... ....C.....

7211
FeLV-A CCCCCCATCC TGCCTATCTA CTCCGCAACA CAAACTGACC ATATCTGAAG TATCAGGGCA AGGACTGTGC
AY364318 .......... ........CG AC..A..... T........T .....A.... .G..C..... ...TT.....
FeLV-2518 .......... ........CG AC..A..... T........T .....A.... .G..C..... ...TT.....
FeLV-4314 .......... ........CG AC..A..... T........T .....A.... .G..C..... ...TT.....

7281
FeLV-A ATAGGGACTG TTCCTAAGAC CCACCAGGCT TTGTGCAATG AGACACAACA GGGACATACA GGGGCGCACT
AY364318 .......... .......... ......A... ........AA ........A. A.......A. ...A.T....
FeLV-2518 .......... .......... ......A... ........AA ........A. A.......A. ...A.T....
FeLV-4314 .......... .......... ......A... ........AA ........A. A.......A. ...A.T....

7351
FeLV-A ATCTAGCCGC CCCCAATGGC GCCTATTGGG CCTGTAACAC TGGACTCACC CCATGCATTT CCATGGCGGT
AY364318 .......A.. ...T.GC..T A....C.... .A..C..... C..G..A... ........C. .......A..
FeLV-2518 .......A.. ...T.GC..T A....C.... .A..C..... C..G..A... ........C. .......A..
FeLV-4314 .......A.. ...T.GC..T A....C.... .A..C..... C..G..A... ........C. .......A..
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FeLV-2518 3’ Recomb. Site
FeLV-A GCTCAATTGG ACCTCTGATT TTTGTGTCTT AATCGAATTA TGGCCCAGAG TGACTTACCA TCAACCCGAA
AY364318 ......C... .......... ........C. G.....G... .......... .A........ .G.G..T..G
FeLV-2518 ......C... ..T....... .......... .......... .......... .......... ..........
FeLV-4314 ......C... .......... ......C.C. G.....G... .......... .A........ .G.G..T..G

7491 SU/TM Cleavage Site
FeLV-A TATGTGTACA CACATTTTGC CAAAGCTGTC AGGTTCCGAA GAGAACCAAT ATCACTAACT GTTGCCCTCA
AY364318 ...A.C..TT .C..C..C.A A..TAAGCC. C.....AAG. ....T..... C..CT.G..A ..........
FeLV-2518 .........T .......... .......... .......... .......... .......... ........T.
FeLV-4314 ...A.C..TT .C..C..C.A A..TAAGCC. C.....AAG. ....T..... C..CT.G..A ..........

7561
FeLV-A TGTTGGGAGG ACTCACTGTA GGGGGCATAG CCGCGGGGGT CGGAACAGGG ACTAAAGCCC TCCTTGAAAC
AY364318 ..C....... .A........ ........G. ....C..AA. A......... ...GCG.... .T..C..G..
FeLV-2518 .......... .......... .......... .......... .......... .......... ..........
FeLV-4314 ..C....G.. .A........ ........G. ....C..AA. A......... ...GCG.... .T..C..G..

7631
FeLV-A AGCCCAGTTC AGACAACTAC AAATGGCCAT GCACACAGAC ATCCAGGCCC TAGAAGAGTC AATTAGTGCC
AY364318 ......A..T ........G. .......... ......G... ..T......T ....G..... ..........
FeLV-2518 .......... .......... .......... .......... .......... ....G..... ..........
FeLV-4314 ......A..T ........G. .......... ......G... ..T......T ....G..... ..........

FeLV-4314 3’ Recomb. Site
FeLV-A TTAGAAAAGT CCCTGACCTC CCTTTCTGAA GTAGTCTTAC AAAACAGACG GGGCCTAGAT ATTCTATTCT
AY364318 ........A. ..T....T.. .......... .......... .......G.. A......... .....G...C
FeLV-2518 .......... .......... .......... ..G....... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

7771
FeLV-A TACAAGAGGG AGGGCTCTGT GCCGCATTAA AAGAAGAATG TTGCTTCTAT GCGGATCACA CCGGACTCGT
AY364318 ....G..... ......A... ..A..G.... .......... ...T..T... ..A....... .....T.A..
FeLV-2518 .......A.. .......... .......... .......... .......... .......... .......T..
FeLV-4314 .......... .......... .......... .......... .......... ..A....... ..........

7841
FeLV-A CCGAGACAAT ATGGCTAAAT TGAGAGAAAG ACTAAAACAG CGGCAACAAC TGTTTGACTC CCAACAGGGA
AY364318 ......T... .......... .A........ .......... ..A....... .A........ ...G......
FeLV-2518 .......... .......... .A........ .......... .......... .......... ..........
FeLV-4314 .......... .......... .AC....... .......... .......... .......... ..........

7911
FeLV-A TGGTTTGAAG GATGGTTCAA CAAGTCCCCC TGGTTCACAA CCTTAATTTC CTCCATTATG GGCCCCTTAC
AY364318 .......... .G........ .......... ........T. .......A.. ......C... .........A
FeLV-2518 .......... .......... .......... .....T.... ..C....... .......... ..........
FeLV-4314 .......... .......... A......... .....T.... ..C....... .......... ..........

7981
FeLV-A TAATCCTACT CCTAATTCTC CTCTTCGGCC CATGCATCCT TAACAGATTA GTACAATTCG TAAAAGACAG
AY364318 .G.....C.. .......T.A ........A. .T........ ....C.G..G ..G..G..T. .C.....T..
FeLV-2518 .......... .......... .......... .......... ....C..... .......... ..........
FeLV-4314 .......... .......... ..T....... ....GG.... ....C..... .......... ..........

8051
FeLV-A AATATCTGTG GTACAAGCCT TAATTTTAAC CCAACAGTAC CAACAGATAA AGCAATACGA TCCGGACCGA
AY364318 ......C..C ..G..GA.T. ..G.GC.... ...G..AC.. ....GCC.GG G.....G... CT.A....A.
FeLV-2518 .......... ........T. .......G.. .......... .......... .......... ........A.
FeLV-4314 .......... .....G..T. .......... .......... ......G... .......... .......A..

Env Termination Codon, start of 3’U3 Region
FeLV-A CCATGAT-TT CCAATTAAAT GTATGATTCC ATTTAGTCCC C-AGAAAAAG GGGGGAATGA AAGACCCCCT
AY364318 ..G.ATCACC ...GC..... .......... ......G.T. .T.AG..... ....A..... ........T.
FeLV-2518 .......... .......... ...A...... .......... .....G.... .......... ..........
FeLV-4314 ........C. .......... .......... .......... .......... .......... ..........

8191
FeLV-A ACCCCAAAAT TTAGCCAGCT ACTGCAGTGG ---TGCCATT --TCACAAGG CATGGAAAAT TACTCAAGTA
AY364318 -....TTGT. ..GA..CC.. GTCAT.A.AT GCT.AG..A. AG.A..GCCA TT..C..G.C AG.A.C.AG.
FeLV-2518 .......... .....T.... .....T.... .......... .......... T......... ..........
FeLV-4314 .......... .......... .......... .....T...A .......... .......... ..........

8261
FeLV-A TGTTCCCATG AGATACAAGG AAGTTAGAGG CTA------A AACAGGATAT CTGTGGTTAA GCACCTGGGC
AY364318 A....AGGG. TCT..TCCTA .GTCC.CC.T T..GCTGCC. .......... .......C.G C....C..C.
FeLV-2518 .......... .....T.... .......... .A........ .......... .......... ..........
FeLV-4314 .......... .....T.... .......... .G........ .......... .......... ..........

8331
FeLV-A C--------- ---CCGGCTT GAGGCCAAGA ACAGTTAAAC CCCGGATATA GCTGAAACAG C----AGAAG
AY364318 .TAAGATAGC CAC.T...CC T.A.ATGG.. .TG.A-..GT A.T.AC.CC. C.C..T.G.C .CTAG...T.
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FeLV-2518 .......... .......... .........G .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... .......... ..........

8401
FeLV-A TTTCAAGGCC GCTACCAGCA GTCTCCAGGC TCCCC----- -AGTTGACC- ---------- ----------
AY364318 AGC.T..T.A ..C...CATG T.T.T.CCC. ..ATTCTGGG A.A.C.C..T CAGAAAAGAA AAGAAAAAGA
FeLV-2518 .......... ...G...... .......... .......... .......... .......... ..........
FeLV-4314 .......... A..G.....T .......... .......... .......... .......... ..........

8471
FeLV-A ---------- --AGGGTTCG ACCTTCCGCC TCATTTAAAC TAACCAAT-- --CCCC---- --ACGCCTCT
AY364318 AAAAAAAAAA AA.AAAAAAA .AAAC.A... ........CT GG......AA GA....GTAA CT.T..T...
FeLV-2518 .......... ....A..... .......... .......... .......... .......... ..........
FeLV-4314 .......... ....A..... .......... .......... .......... .......... ..........

8541
FeLV-A CGCTTCTGTG CGCGCGCTTT C--------- -TGCTATAAA ACGAGCCATC AGCCCC-CAA CGGGCGCGCA
AY364318 .........A AC.......C TGCCACTCCA ACC....... .A.TCT.CC. .....AA... GA........
FeLV-2518 .......... .......... .......... .......... .......--- ------.--- ----------
FeLV-4314 .......... .......... .......... .......... .......... ........-- ----------

8611
FeLV-A AGTCTTTGCT GAGACTTGAC CGCCCCGGGT ACCCGTGTAC GAATAAACCT CTTGCTGATT GCATCTGACT
AY364318 .......... .......... .......... .......... .......... .......T.. ..........
FeLV-2518 ---------- ---------- ---------- ---------- ---------- ---------- ----------
FeLV-4314 ---------- ---------- ---------- ---------- ---------- ---------- ----------

8681
FeLV-A CGTGGTCTCG GTGTTCTGTG GGCGCGGGGT CTCATCGCCG AGGAAGACCT AGTTCAGGGG TCTTTCA---
AY364318 .......... ......C... ...A...... .......... .......... ....AG.... .......AGT
FeLV-2518 ---------- ---------- ---------- ---------- ---------- ---------- -------...
FeLV-4314 ---------- ---------- ---------- ---------- ---------- ---------- -------...

(B) Gag-pol polyprotein alignment

1
FeLV-A (Rickard) MSGASSGTAI GAHLFGVSP- --EYRVLIGD EGAGPSKSLS EVSFSVWYRS RAARLVIFCL
enFeLV AY364318 .......... ..R...I.SV LG........ ......R.P. .......... .......L..
FeLV-4314 .....M.... .......... .......... ........P. ........Q. ..........
FeLV-2518 .....M.... .......... .......... ......R... ........Q. ..........

61
FeLV-A (Rickard) VASFLVPCLT FLIAETVMGQ TITTPLSLTL DHWSEVRARA HNQGVEVRKK KWITLCEAEW
enFeLV AY364318 .......... .....A.... .V........ N.....Q... R......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........

121
FeLV-A (Rickard) VMMNVGWPRE GTFSLDNISQ VEKKIFAPGP YGHPDQVPYI TTWRSLATDP PSWVRPFLPP
enFeLV AY364318 .......... ...TI..... ..ER...... ......I... .......... .P........
FeLV-4314 .......... ......S... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........

181
FeLV-A (Rickard) PK-PPTPLPQ PLSPQPSAPL TSSLYPVLPK SDPPKPPVLP PDPSSPLIDL LTEEPPPYPG
enFeLV AY364318 ..H.R.DP.E .........P I......... P....A.... .N........ ..........
FeLV-4314 .......... .......... .......... PG........ .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........

241
FeLV-A (Rickard) GHGP-PPSGP RTPTASPIAS RLRERRENPA EESQALPLRE GPNNRPQYWP FSASDLYNWK
enFeLV AY364318 ....T..... .......... .......... .K........ .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........

301
FeLV-A (Rickard) SHNPPFSQDP VALTNLIESI LVTHQPTWDD CQQLLQALLT GEERQRVLLE ARKQVPGEDG
enFeLV AY364318 L......... .......... .......... .......... A......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........

361
FeLV-A (Rickard) RPTQLPNVID ETFPLTRPNW DFATPAGREH LRLYRQLLLA GLRGAARRPT NLAQVKQVVQ
enFeLV AY364318 ........V. .A........ .......... .......... .......... ..........
FeLV-4314 .......... .A........ .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... .........P

421
FeLV-A (Rickard) GKEETPAAFL ERLKEAYRMY TPYDPEDPGQ AASVILSFIY QSSPDIRNKL QRLEGLQGFT
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enFeLV AY364318 .......S.. .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........

481
FeLV-A (Rickard) LSDLLKEAEK IYNKRETPEE REERLWQRQE ERDKKRHKEM TKVLATVVAQ NRDKDREESK
enFeLV AY364318 .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........

541
FeLV-A (Rickard) LGDQRKIPLG KDQCAYCKEK GHWVRDCPKR PRKKPANSTL LNLGDZESQG QDPPPEPRIT
enFeLV AY364318 .......... .......... .......... ......D... ...E...... ..........
FeLV-4314 .......... .......... .......... .K........ .......... ..........
FeLV-2518 .......... .........R .......... .......... .......... ..........

601
FeLV-A (Rickard) LKIGGQPVTF LVDTGAQHSV LTRPDGPLSD RTALVQGATG SKNYRWTTDR RVQLATGKVT
enFeLV AY364318 ..V....... .......... .......... .S........ .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........

661
FeLV-A (Rickard) HSFLYVPECP YPLLGRDLLT KLKAQIHFTG EGANVVGPKG LPLQVLTLQL EEEYRLFEPE
enFeLV AY364318 .......... .......... .......... ........M. .......... ..........
FeLV-4314 .......... .......... .......... ........R. .......... ..........
FeLV-2518 .......... .......... .......... ........R. .......... ..........

721
FeLV-A (Rickard) STQKQEMDIW LKNFPQAWAE TGGMGTAHCQ APVLIQLKAT ATPISIRQYP MPHEAYQGIK
enFeLV AY364318 .EL..G..S. .......... ...I.M.... ..I....... .......... ..........
FeLV-4314 ........T. .......... .....M.... .......... .......... ..........
FeLV-2518 .......... .......... .....M.... ..I....... .......... ..........

781
FeLV-A (Rickard) PHIRRMLDQG ILKPCQSPWN TPLLPVKKPG TEDYRPVQDL REVNKRVEDI HPTVPNPYNL
enFeLV AY364318 .......... .......... .......... .G........ .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........

841
FeLV-A (Rickard) LSTLPPSHPW YTVLDLKDAF FCLRLHSESQ LLFAFEWRDP EIGLSGQLTW TRLPQGFKNS
enFeLV AY364318 .......... .......... ......P... .......K.. .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... ......P... .......... .......... ..........

901
FeLV-A (Rickard) PTLFDEALHS DLADFRVRYP ALVLLQYVDD LLLAAATRTE CLEGTKALLE TLGNKGYRAS
enFeLV AY364318 .......... .......... .......... .......K.. .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ..........
FeLV-2518 .A........ .......... .......... .......... .......... ..........

961
FeLV-A (Rickard) AKKAQICLQE VTYLGYSLKD GQRWLTKARK EAILSIPVPK NSRQVREFLG TAGYCRLWIP
enFeLV AY364318 .........K ........E. .......... .......... .P........ ..........
FeLV-4314 .......... .......... .......... .......... .P........ ..........
FeLV-2518 .......... .......... .......... .......... .P........ ..........

1021 FeLV-4314 5’ Recomb. Site
FeLV-A (Rickard) GFAELAAPLY PLTRPGTLFQ WGTEQQLAFE DIKKALLSSP ALGLPDITKP FELFIDENSG
enFeLV AY364318 .......... .......... .......... N......... .......... .......S..
FeLV-4314 .......... .......... .......... N......... .......... .......S..
FeLV-2518 .......... .......... .......... N......... .......... .......S..

1081
FeLV-A (Rickard) FAKGVLVQKL GPWKRPVAYL SKKLDTVASG WPPCLRMVAA IAILVKDAGK LTLGQPLTIL
enFeLV AY364318 .......... .......... .......... .......... .......... ........V.
FeLV-4314 .......... .......... .......... .......... .......... ........V.
FeLV-2518 ......I... .......... .......... .......... .......... ..........

1141
FeLV-A (Rickard) TSHPVEALVR QPPNKWLSNA RMTHYQAMLL DAERVHFGPT VSLNPATLLP LPSGGNHHDC
enFeLV AY364318 .......... .......... .......... .......... .......... ..NE......
FeLV-4314 .......... .......... .......... .......... .......... ..NE......
FeLV-2518 .......... .......... .......... .......... .......... ..........

1201
FeLV-A (Rickard) LQILAETHGT RPDLTDQPLP DADLTWYTDG SSFIRNGERE AGAAVTTESE VIWAAPLPPG
enFeLV AY364318 .......... .......... .......... .........K .......... .....S....
FeLV-4314 .......... .......... .......... .........K .......... .....S....
FeLV-2518 .......... .T........ .......... .........K ..T....... .....S....
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1261
FeLV-A (Rickard) TSAQRAELIA LTQALKMAEG KKLTVYTDSR YAFATTHVHG EIYRRRGLLT SEGKEIKNKN
enFeLV AY364318 .......... ........K. .......... .....A.... .......... ..........
FeLV-4314 .......... ........K. .......... .....A.... .......... ..........
FeLV-2518 ........V. ........K. .......... .....A.... .......... ..........

1321
FeLV-A (Rickard) EILALLEALF LPKRLSIIHC PGHQKGDSPQ AKGNRLADDT AKKAATETHS SLTVLPTELI
enFeLV AY364318 .......... .......... .......... .......... ........Q. ...I......
FeLV-4314 .......... .......... .......... .......... ........Q. ...I......
FeLV-2518 .......... .......... .......... .......... .......... ..........

1381
FeLV-A (Rickard) EGPKRPPWEY DDSDLDLVQK LEAHYEPKRG TWEYRGKTIM PEKYAKELIS HLHKLTHLSA
enFeLV AY364318 .......... .......... .......... ....Q..... .......... ..........
FeLV-4314 ....K..... N......... .......... ....Q..... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........

1441
FeLV-A (Rickard) RKMKTLLERE ETGFYLPNRD LHLRQVTESC RACAQINAGK IKFGPDVRAR GRRPGTHWEV
enFeLV AY364318 .......... .......... .......... .......... .......... .H...I....
FeLV-4314 .......... .......... .......... Q....V.... .......... .H...I....
FeLV-2518 .......... .......K.. .......... .......... .......... ..........

1501
FeLV-A (Rickard) DFTEIKPGMY GYKYLLVFID TFSGWAEAYP AKHETAKVVA KKLLEEIFPR YGIPQVLGSD
enFeLV AY364318 .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........

1561
FeLV-A (Rickard) NGPAFISQVS QSVATLLGIN WKLHCAYRPQ SSGQVERMNR SIKETLTKLT LETGSKDWVL
enFeLV AY364318 .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........

1621
FeLV-A (Rickard) LLPLVLYRVR NTPGPHGLTP FEILYGAPPP MAHFFDTDIS SFATSPTMQA HLRALQLVQE
enFeLV AY364318 .......... .......... .......... ......A... G......... ..........
FeLV-4314 .......... .......... .......... ......A... G......... ..........
FeLV-2518 .......... .......... .......... ......A... .......... ..........

1681
FeLV-A (Rickard) EIQRPLAAAY REKLETPVVP HPFKPGDSVW VRRHQTKNLE PRWKGPHIVL LTTPTALKVD
enFeLV AY364318 .......... .......... .......... .......... .......... ..........
FeLV-4314 .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... Q......... .......... ......R... .......... ..........

1741
FeLV-A (Rickard) GVAAWIHASH VKAAGPTTNQ DLSDSPSSDD PSRWKVQRTQ NPLKIRLSRG TZ
enFeLV AY364318 .......... .......... .P..D..... .......... .......... ..
FeLV-4314 .......... .......... .P..D..... .......... .......... ..
FeLV-2518 .......... .......... .......... .......... ........H. ..

(C) Env protein precursor alignment

FeLV-2518 5’ Recomb. Site Fusion motif
FeLV-A (Rickard) MESPTHPKPS KDKTLSWNLA FLVGILFTID IGMANPSPHQ IYNVTWVITN MQTNTQANAT
FeLV-4314 ..G....... ....F..D.M I...V.LRL. V......... V.....T... LV.G.T....
enFeLV AY364318 ..G....... ....F..D.M I...V.LRL. V......... V.....T... LV.G.K....
FeLV-2518 .......... .......... .......... .......... V.....T... LV.G.K....
FeLV-2518(A) .......... .......... .......... ........P. M......... V.........

61
FeLV-A (Rickard) SMLGTLTDAY PTLHVDLCDL VGDTWEPIVL DPTNVKHGAR YSSSKYGCKT TDRKKQQQTY
FeLV-4314 .........F ..MYF....I IDN..N.SDQ E.F------- ---PG...GQ PM.RW..RNT
enFeLV AY364318 .........F ..MYF....I I.N..N.SDQ E.F------- ---PG...DQ PM.RW..RNT
FeLV-2518 .........F ..MYF....I I.N..N.SDQ E.F------- ---PG...DQ PM.RW..RNT
FeLV-2518(A) .......... .......... .......... N......... ......R... ..........

121
FeLV-A (Rickard) PFYVCPGHAP SLGPKGTHCG GAQDGFCAAW GCETTGEAWW KPSSSWDYIT VKRGSSQDNS
FeLV-4314 .........- ----NRKQ.. .P......V. .......TY. R.T....... ..K.VT.GIY
enFeLV AY364318 .........- ----NRKQ.. .P......V. .......TY. R.T....... ..K.VT.GIY
FeLV-2518 .........- ----NRKQ.. .P......V. .......TY. R.T....... ..K.VT.GIY
FeLV-2518(A) .......... .......... .....Y.... .......... ..T....... ..........

181
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FeLV-A (Rickard) ---------- C--------- -----EGKCN PLILQFTQKG RQASWDGPKI WGLRLYRTGY
FeLV-4314 QCSGGGWCGP .YDKAVHSSI TGASEG.R.. .......... ..T......S .......S..
enFeLV AY364318 QCSGGGWCGP .YDKAVHSSK TGASEG.R.. .......... ..T......S .......S..
FeLV-2518 QCSGGGWCGP .YDKAVHSSI TGASEG.R.. .......... ..T......S .......S..
FeLV-2518(A) .......... .......... .......R.. ..V....... .......... ..........

241
FeLV-A (Rickard) DPIALFTVSR QVSAITPPQA MGPNLVLPDQ KPPSRQSQTG SKVATQRLQT TESAP-----
FeLV-4314 ......S... ..MT...... .......... ...FG...IE .Q.TPHHS.G NG.T.GITLV
enFeLV AY364318 ......S... ..MT...... .......... ........IE .R.TPHHS.G NGGT.GITLV
FeLV-2518 ......S... ..MT...... .......... ........IE .R.TPHHS.G NGGT.GITLV
FeLV-2518(A) .......... ...T...... .......... .....L...R .......P.. N.........

301
FeLV-A (Rickard) -RSVAP---- -TTVGPKRIG TGDRLINLVQ GTYLALNATD PNKTKDCWLC LVSRPPYYEG
FeLV-4314 NA.I..LSTP V.P.S..... ..N....... .......V.N .......... ..........
enFeLV AY364318 NA.I..LSTP V.PAS..... ..N....... .......V.N .......... ..........
FeLV-2518 NA.I..LSTP V.PAS..... ..N....... .......V.N .......... ..........
FeLV-2518(A) .......... ...I...... .......... XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

361
FeLV-A (Rickard) IAILGNYSNQ TNPPPSCLST PQHKLTISEV SGQGLCIGTV PKTHQALCNE TQQGHTGAHY
FeLV-4314 ..V....... .........D .......... .......... ........KK ..K..K.T..
enFeLV AY364318 ..V....... .........D .......... .......... ........KK ..K..K.T..
FeLV-2518 ..V....... .........D .......... .......... ........KK ..K..K.T..
FeLV-2518(A) XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

421 FeLV-2518 3’ Recomb. Site SU/TM Cleavage Site
FeLV-A (Rickard) LAAPNGAYWA CNTGLTPCIS MAVLNWTSDF CVLIELWPRV TYHQPEYVYT HFAKAVRFRR
FeLV-4314 ....S.T... .......... .......... .A........ ...E...I.S ..ENKP..K.
enFeLV AY364318 ....S.T... .......... .......... .......... ...E...I.S ..ENKP..K.
FeLV-2518 ....S.T... .......... .......... .......... .........S ..........
FeLV-2518(A) XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

481 FeLV-4314 3’ Recomb. Site
FeLV-A (Rickard) EPISLTVALM LGGLTVGGIA AGVGTGTKAL LETAQFRQLQ MAMHTDIQAL EESISALEKS
FeLV-4314 D......... ...I....M. ..I....A.. .......... .......... ..........
enFeLV AY364318 D......... ...I....M. ..I....A.. .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........
FeLV-2518(A) XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

541
FeLV-A (Rickard) LTSLSEVVLQ NRRGLDILFL QEGGLCAALK EE-------C CFYADHTGLV RDNMAKLRER
FeLV-4314 .......... .......... .......... .......... .......... ..........
enFeLV AY364318 .......... .......... .......... .......... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........
FeLV-2518(A) XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

601
FeLV-A (Rickard) LKQRQQLFDS QQGWFEGWFN KSPWFTTLIS SIMGPLLILL LILLFGPCIL NRLVQFVKDR
FeLV-4314 .......... .........K .......... .......... .......WV. ..........
enFeLV AY364318 .......... .......... .......... ......M... .......... ..........
FeLV-2518 .......... .......... .......... .......... .......... ..........
FeLV-2518(A) XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXX... .......--- ----------

661
FeLV-A (Rickard) ISVVQALILT QQYQQIKQYD PDRP----Z
FeLV-4314 .......... .....V.... .........
enFeLV AY364318 .....T.V.. ..H.RLG.C. S.Q.YHPS.
FeLV-2518 .......... .......... ..Q......
FeLV-2518(A) ---------- ---------- ----.....
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8.5 Predicted secondary structures within FeLV env RNA

FeLV-A env RNA

enFeLV env RNA
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8.6 Predicted secondary structures within FeLV leader
sequences

FeLV-A Monomeric RNA

enFeLV Monomeric RNA
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FeLV-A Homodimeric RNA

enFeLV Homodimeric RNA
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FeLV-A/enFeLV Heterodimeric RNA
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8.7 Publications arising from this work

Stewart H, Jarrett O, Hosie M, Willett B. (2013). Complete genome sequences of

two feline leukaemia virus subgroup B isolates with novel recombination sites.

Genome Announcements (in press).

Stewart H, Adema K, McMonagle E, Hosie M, Willett B. (2012). Identification of

novel subgroup A variants with enhanced receptor binding and replicative

capacity in primary isolates of anaemogenic strains of feline leukaemia virus.

Retrovirology 9(48).

Stewart H, Jarrett O, Hosie M, Willett B. (2011). Are endogenous feline

leukaemia viruses really endogenous? Journal of Veterinary Immunology and

Immunopathology 143(3-4): 325-331.
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