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Abstract

Recognition-based graphical passwords are a suggested alternative authentication
mechanism which have received substantial attention in research literature. The
literature often presents new schemes, usability studies or propose countermea-
sures for specific attacks. Whilst this is beneficial, it does not allow for consistent
comparison of the security of recognition-based graphical password schemes.

This thesis contributes a proposed solution to this problem. Presented in this
thesis are models for estimating the number of attacks required before success
for four aspects of the security of a recognition-based graphical password scheme.
This includes two types of guessing attacks and two types of observation attacks.
These models combine to provide an overall metric of the security of recognition-
based graphical password schemes.

Attacks to be incorporated into the metric were established by reviewing the
literature and establishing the scope and context. The literature review allowed
extraction of the variables of a recognition-based graphical password scheme
which represent the scheme.

The first aspect examined was that of guessing attacks. The first guessing
attack considered was random guessing, the model for this aspect was an adaption
of the frequently reported mathematical model. The second guessing attack was
a newly proposed attack which prioritised images from more popular semantic
categories e.g. animals. The model for this attack was constructed as a further
adaption of the random guessing model based on the success rates for the attack
which were established by simulations which incorporated user selected images.

The observability attacks modelled were shoulder surfing and frequency at-
tacks. The observability attack models were constructed by simulation of the at-
tacks for a wide range of potential configurations of the recognition-based graph-
ical password schemes. A mathematical model was fitted to the resulting data.

The final metric combined these models and was evaluated against a list of
metric requirements established from relevant literature. The metric results in a
consistent, repeatable, and quantitative method for comparing recognition-based
graphical password schemes. It can be directly applied to a subset of schemes
which allows their security levels to be compared in a way not possible previously.

Also presented are details on how the metric could be extended to incorporate
other recognition-based graphical password schemes. The approach detailed also
allows the possibility of extension to incorporate different attack types and au-
thentication contexts. The metric allows appropriate selection of a recognition-
based scheme and contributes to a detailed analysis of the security aspects of
recognition-based graphical passwords.
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Chapter 1

Introduction

This chapter provides the motivation for this work, an introduction to user au-
thentication, and the thesis statement.

1.1 Motivation

Motivation for this thesis primarily evolved from the following quote by Herley et
al. who noted that “in the absence of tools to measure the economic losses and
the effectiveness of new technological proposals, we expect the adoption of pass-
word alternatives to continue to be difficult to justify” [42]. This thesis focuses
on contributing to the measurement of the security of one type of alternative
authentication, recognition-based graphical passwords (RBGPs). RBGPs will be
discussed in detail in Section 2.3, but first the process of user authentication is
considered.

1.2 User Authentication

User authentication (which will be referred to as authentication henceforth) is
the process during which a (human) user proves they are who they claim to be.
This is achieved by a distinctive characteristic. This characteristic can differ-
entiate one individual from another [80, Page 3]. These characteristics can be
called authentication factors and are said to fall into three categories: things you
know (knowledge-based authentication, e.g. a password), things you have (token-
based authentication, e.g. a card or key), and things you are (physical biometrics
e.g. finger prints, or retina scans) [73]. Rejman-Greene expands this by two
further factors, authentication by geographical location and authentication by
behavioural biometrics [67]. Geographical location is when a user provides evi-
dence of being in a physical location to authenticate. Behavioural biometrics are
similar to physical biometrics, but are based on user’s behaviour. The behaviour
is distinctive and unique enough to be used for authentication e.g. keystroke dy-
namics [36]. Brainard et al. also propose authentication by someone you know,
called “fourth factor authentication” [8], in this situation another user electron-
ically “vouches” for the user attempting to authenticate. This work focuses on
knowledge-based authentication.
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1.2.1 Passwords

Passwords are currently a frequently deployed knowledge-based authentication
mechanism. One need only consider the number of passwords they have to see
how pervasive they are. For the purposes of this work, an “alphanumerical pass-
word” is a password which can consist of any combination of characters from the
printable ASCII set. Upper and lower case characters are considered distinct.
Such a password can also be referred to as “text-based”. In password authenti-
cation, a user registers a secret word (their password) to be associated with their
claimed identity.

Research on user password behaviour has highlighted a number of problems.
Seminal work on password behaviour was conducted by Klein [49] who collected
the unix passwd files of 15,000 users. Klein tried to break the hashed passwords
(to obtain their plaintext equivalent) using a number of dictionary attacks. Dic-
tionaries were constructed based on usernames and account numbers, character
sequences, numbers, place names, common names, uncommon names, myths and
legends references, Shakespeare references, science fiction references, film titles,
actors, and bible references amongst others. The total dictionary size was 62727
words. Klein had 4 DECstation 3100 machines which could check approximately
750 passwords per second giving a total peak processing power of 3000 tests per
seconds (since not all machines were always available). Twelve CPU months using
the setup described resulted in 25% of passwords being cracked with 21% guessed
in the first week and 2.7% within 15 minutes. Klein’s experiment showed that
users were selecting English words from common use, which made the passwords
easier to guess.

Since Klein’s experiment, there has been further research into the issues with
password use and the mechanisms employed by users to cope with these issues.
Evidence has been reported regarding password forgetting, password re-use, writ-
ing passwords down, and password sharing. Adams and Sasse collected evidence
of all these issues. Adams and Sasse [2] performed an examination of password
habits of users. The authors report the results of a web-based questionnaire
which obtained quantitative and qualitative data on user behaviors and percep-
tions relating to password systems. There were 139 participants, approximately
half of whom were from a telecommunications organisation, and the remainder
of participants were from other organisations. The questionnaire was followed by
30 in-depth interviews with a cross section of users from two organisations. The
responses collected provided evidence of users having multiple passwords which
resulted in password re-use, password modification, writing passwords down and
password sharing. All of these behaviours potentially reduce security since it is
easier to guess and capture the passwords.

There has been additional evidence that users forget passwords, as shown by
Florencio and Herley [30] who conducted research to obtain quantitative informa-
tion on users’ password habits. In this research they created a piece of software
which measured user web-based password behaviour. The software obtained over
half a million users and Florencio and Herley’s paper reports results on the av-
erage number of passwords, average number of accounts (per user), how many
passwords they type per day, how often passwords are shared amongst sites and
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how often they are forgotten. The program also obtained data on the password
strength, types and lengths of passwords and how they varied by site. In this
study, 2149 out of 50100 users requested a password reset over three months.
The data gathered per client assumed one user per machine and so the results
reported may overestimate the number of passwords etc. for a single user.

Evidence is also provided in research by Yan et al. regarding users forgetting
passwords [105]. Yan et al. recruited 288 first year University students to use a
system which required password authentication using different password compo-
sition policies. Each participant was assigned to one of three groups. Each group
had different forms of password composition advice [105]. Only 6 users required
their password to be reset, indicating a low frequency of forgetting passwords.
However, these passwords were frequently used and, as highlighted by Adams
and Sasse, it is light use passwords which are most often forgotten [2].

Komanduri et al. [51] examined the effect of password composition policies
on user password behaviour by conducting a two-part online study. The study
asked users to create a password (conforming to a randomly selected password
policy) and fill out a survey and enter the password again. Participants were
then asked to return a few days later and enter the password and fill in another
survey. In the study 31% of participants wrote down the password created and
11.1% of participants forgot their password. In the survey Komanduri et al. also
collected evidence of password re-use. 34.6% of the 5000 participants admitted
to password re-use, and 17.7% admitted to modified re-use (where a previous
password was manipulated by e.g. addition of a number). Both types of re-use
were also evidenced in Adams and Sasse’s work (reported in [2]) .

Inglesant and Sasse also established evidence of users writing passwords down
by collecting information from employees a University and a financial services
company. Information was collected using password diaries and interviews [46].
Users were 15 members of University staff, the remaining participants were from
a financial services organisation. From the financial company 12 members of
a security team and 5 HR staff were recruited. In total 32 participants were
recruited. Nine of the 15 users of organisation A admitted to writing down
their passwords. Whilst none from organisation B reported this, organistation
B’s policy allowed modification of prior passwords (where organisation A did
not) and this may have contributed to memorability. It is also possible that the
employees of organisation B did not admit to writing down passwords when they
did.

Evidence of password re-use was collected by Dhamija and Perrig [20] who
interviewed 30 participants to examine password behaviour. The results reported
that users had 10-50 accounts of various forms where password authentication
was required and users had from one to seven unique passwords. The number
of unique passwords appears less than the number of accounts reported, however
these values have a large range and it is difficult without further detail to deduce
password re-use.

Brown [10] also conducted a survey of 218 students’ password habits and
gathered further evidence of password re-use. Password systems included systems
such as e-mail access, security codes for alarms, copier machine PINs, mobile
phone PINs and ATM PINs in addition to online passwords and other computer
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passwords. The mean number of password systems was 8.18 (with a standard
deviation of 2.18 and a range of 3-20), while the mean number of unique passwords
was 4.45 (with a standard deviation of 1.63 and a range of 1-11).

Gaw and Felten [35] also provide evidence of a high number of passwords per
user and password re-use. The study asked 49 student participants to report their
use of passwords, counting the number of passwords for online accounts. Partic-
ipants were offered two approaches. The first approach was to authenticate for
any sites they were already registered with on a pre-composed list (139 websites
grouped into 12 categories). The second approach was to recall as many websites
as they could and authenticate for them. The second approach excluded sites
already covered in the first and the participants were allowed memory aids (they
were told to use “any tools that will help you recall your passwords.). The par-
ticipants counted the number of passwords and repeated passwords and reported
them. The results showed no significant difference in password recall where mem-
ory aids were used. There was a mean of 4.67 passwords (with a minimum of 1,
maximum of 11 and standard deviation of 4.67) where users were asked to use
the pre-composed list. Users then came up with a mean of an additional 7.86
passwords (with a minimum of 1, maximum of 24 and standard deviation of 7.86).
In the first attempt users reported a mean of 3.06 passwords which were re-used
(standard deviation of 2.19, minimum of 0 and a maximum 11) and the second
approach resulted in a further mean of 3.76 passwords which were re-used (with
a minimum of 0, maximum of 25 and standard deviation of 3.96). It is unclear
why the values for passwords recalled with and without the pre-composed list
were separated.

Notoatmodjo and Thomborson [60] examined how users mentally group their
passwords and showed that password re-use was more limited in passwords with
a perceived high importance. Notoatmodjo and Thomborson surveyed and in-
terviewed 26 university students. Participants were asked to describe their pass-
words using length, perceived security level and difficulty of recall. As noted
by the authors, results showed insufficient evidence for correlations between per-
ceived security level and length or length and difficulty of recall. However, there
was some evidence for significant correlation between perceived security and diffi-
culty of recall. The authors measured the number of password re-use occurrences
and obtained evidence that the increase in number of password re-use occurrences
is related to the increase in the number of accounts. Whilst the authors noted
there was some subjectivity in the results arising from the users perceptions, they
showed that perceived “high importance” password groups (which were identified
by the users using a 5 point Likert scale where one extreme of the scale was an
unimportant account and the other was very important) had less passwords in
them. There was a mean of 1.84 unique passwords in the high importance group
compared to a mean of 2.78 unique passwords in the low importance group. In
total there were 68 passwords in the high importance groups, of which 43 (63%)
were assigned passwords which were unique, 25 (37%) were re-used. Of the 253
accounts in the low importance groups, only 82 (32%) were given unique pass-
words and 171 (68% ) were given re-used passwords.

The study provided by Florencio and Herley [30] discussed earlier also pro-
vided evidence of password re-use. The reported results include an average of 6.5
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unique passwords for each client which was used over an average of 3.9 websites.
Each client had 25 accounts which required authentication (thus each password
was re-used an average of 3.85 times) and passwords were entered eight times
daily. Over two months, an average password was eventually used at approxi-
mately six websites, with the first four sites being visited within the first week.
In contrast to the report of 6 out of 275 passwords requiring a reset by Yan et
al. [105] (which equates to approximately 2.18%), Florencio and Herley report
2149 out of 50,100 Yahoo! users forgot their passwords over three months giving
a rate of forgetting as approximately 4.28%.

Whilst the highlighted literature shows variation in the quantitative values
reported there is evidence for a number of common password coping mechanisms
which are employed by users. From this literature the following coping mecha-
nisms have been identified:

• use of easily remembered passwords

• writing passwords down

• password sharing

• password re-use (including password modification)

1.2.2 Graphical Passwords

It is due to these issues that research into alternative authentication has been es-
tablished. One proposed alternative knowledge-based authentication mechanism
is that of graphical passwords, thought to have originated from Blonder’s patent
in 1996 [6]. In a graphical password, the user selects, draws or identifies part of
an image (or images) as their secret instead of constructing a text-based pass-
word. The user is then challenged to recognise their image(s) from a collection
of other images, reproduce their image, or recognise a specific point in an image
to successfully authenticate.

This research focuses on recognition-based graphical passwords (RBGPs). For
a RBGP, instead of selecting a password, the user selects a number of images
called their “passimages” [12]. Instead of being challenged to recall a password,
the challenge for a RBGP consists of a screen which presents a grid of images,
containing at least one of the user’s passimages and a number of other images
called “distractor” images. To successfully authenticate, the user must recognise
and select their passimage from the collection of distractor images. This process
can be repeated multiple times where each screen contains a different passimage
from the user’s set of passimages (their passimage set). This whole process forms
a complete challenge session. This is discussed in further detail in Chapter 2, but
in the subsection which follows a summary of the research on RBGP memorability
and usability is provided.
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1.3 Graphical Passwords Memorability and Us-

ability

Graphical passwords have been proposed to address the perceived deficiencies of
alphanumerical passwords. Experiments such as those conducted by Standing
[82] provided evidence that recognition of pictures was higher than recognition of
English words. This is referred to as the picture superiority effect [82] .

Memorability has been examined for recognition-based schemes by Valentine
[93], Davis et al. [15], and Dhamija and Perrig [20]. Valentine examined the
memorability of the PassFaces scheme. 77 participants were asked to use the
Passfaces scheme under one of three conditions. The first condition involved
authenticating each working day for two weeks. The second condition involved
authenticating approximately seven days after registration. The final condition
involved authenticating one month after registration. The first two conditions
had 29 participants allocated and the third had 19 participants. Various levels of
successful authentication were reported. The first condition participants success-
fully authenticated for 99.98% of attempts. The second condition participants
successfully authenticated for 83% of the first attempts, and 100% by the third
attempt. The final condition reported 84% success rates for the first attempt at
authentication, and 100% success rate by the third attempt.

Dhamija and Perrig examined the memorability of their Deja vu scheme [20]
by conducting a user study with 20 participants over a period of one week. Par-
ticipants were selected to reflect the general population (ten “novice” and ten
“expert” computer users were selected). Participants were asked to perform au-
thentication using the Deja Vu scheme, a PIN scheme and a password scheme.
There were no unsuccessful authentications reported immediately after registra-
tion. One week later 90% of authentication attempts were successful for random
art, 65% were successful with PIN authentication and 70% of authentication
attempts were successful with password authentication. The Deja Vu scheme
performed the best of the different types examined, however there was no statis-
tical analysis of the significance of these results reported in the paper. The users
were given all three types of authentication methods to carry out (graphical, PIN,
and password) which could have potentially affected the results by increasing the
cognitive load on the user. An alternative approach could have been an inbetween
users design.

Davis et al. [15] examined the memorability of the Faces and Story schemes
over four months. Participants were computer science and engineering students
from two separate universities, and three separate classes resulting in a total of
154 users. In the study, users were randomly allocated either the Face scheme or
the Story scheme. During the four month period, there were 2648 login attempts,
of which 2271 (85.76%) were successful.

The usability of RBGP schemes has also been researched. For example, DeAn-
geli et al. [16] evaluate three VIP system configurations and a PIN system in
terms of three aspects of usability; effectiveness, efficiency and user satisfaction.
Effectiveness is measured by authentication success, efficiency is measured in
reaction and entry times and user satisfaction was assessed by a Likert scale
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questionnaire. Significance between the VIP schemes and the PIN system were
reported using the χ2 test. This demonstrated an increase in usability from PIN
to a RBGP scheme.

Also, Brostoff and Sasse [9] examined whether PassFaces were more usable
than passwords. 34 users participated in a study using the PassFaces system over
a 10 week period in which recall rates for passwords were compared to that of
PassFaces. The results showed significant improvement through application of
an ANOVA test comparing the error rate for logins with p = 0.001. One possible
issue is that the users had to use both a password and a PassFaces set, which
may have increased the cognitive load and impacted results. This is an issue with
the within groups approach taken. This could potentially have been reduced
if the group was split into two and one group performed authentication using
passwords for a period of time then PassFaces and the other group performed
authentication the other way around. Despite this potential limitation, the work
provides evidence for an increased usability of a RBGP scheme compared to a
password scheme.

The graphical password concept is still relatively new (thought to have origi-
nated from Blonder’s patent in 1996 [6]) and commercial applications are limited,
but do exist. Confident Technologies1 offer a range of “Image-based authenti-
cation and verification products” which include graphical authentication solu-
tions for mobile authentication, web-based authentication and an image-based
CAPTCHA alternative.

GrIDsure2 provide a one time password solution by allowing the user to select
a pattern on a grid of squares. To authenticate, the user is shown a grid of
numbers (a random number in each grid location), from which the user extracts
their new passcode by entering the numbers corresponding to their grid sequence.
Id-Arts Ltd3 provides a commercial enterprise implementation of the Passfaces
scheme where the passimages are images of human faces.

“PassLogix”4 is a commercially available implementation of a cued-recall scheme.
In this scheme, the user is presented with a scene which has a number of objects
in it. The password is then a sequence of actions performed on those objects.
For example, presented with a kitchen and a number of jars and ingredients, the
password may be a jar filled with a subset of those ingredients presented. Mi-
crosoft is also purported to be developing a graphical authentication mechanism
for the Windows 8 operating system5.

As discussed above, research has contributed evidence for usability and mem-
orability of graphical passwords. Despite this, as Herley et al. note, alternative
authentication mechanisms have not been widely adapted as alternatives to pass-
words [42]. One potential reason for this is as noted by Herley et al. who
commented that without tools to measure security, it will be difficult to justify
adoption of alternative authentication. As will be demonstrated in Chapter 2,

1http://www.confidenttechnologies.com/products
2http://www.gridsure.com/
3http://www.realuser.com/
4http://www.passlogix.com/site/
5http://blogs.msdn.com/b/b8/archive/2011/12/16/signing-in-with-a-picture-password.

aspx
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the security of RBGPs is lacking in consistent and comparable security analysis.
For this reason, this research focuses on the construction of a metric to measure
the resistance to attacks for RBGPs. This is reflected in the thesis statement
which is presented in the next section.

1.4 Thesis Statement

The thesis statement was established as follows:

The security of a recognition-based graphical password scheme can be quantifi-
ably measured in terms of resistance to observation and guessing attacks.

The thesis statement was further refined into five objectives as follows, each of
which is addressed separately in this thesis.

Objective 1

Identify potential attacks (where the aim of the attacker is to impersonate a user
and to achieve a false positive authentication) and examine current recognition-
based schemes in terms of resistance to these attacks.

Objective 2

Identify a list of requirements from current security metric literature against
which the metric will be assessed.

Objective 3

Establish measurements of the guessability (how easily a user’s passimage set
can be guessed) of a RBGP scheme by means of a mathematical model which
estimates the attacks required before success for each identified guessing attack.

Objective 4

Establish measurements of the observability (how easily a user’s passimage set
can be observed) of a RBGP scheme by means of a mathematical model which
estimates the attacks required before success for each identified observation at-
tack.

Objective 5

Combine the measurements established into a comprehensive metric which meets
the requirements identified by Objective 2.

1.5 Thesis Contributions and Publications

The main contributions of this work are summarised as follows:
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• Threat model for RBGP schemes - A threat model for RBGPs was con-
structed from a literature review. This threat model incorporates the se-
curity aspects of guessability, observability and recordability established by
De Angeli et al. [17] (Chapter 2).

• Construction and analysis of a new guessing attack - for RBGP schemes
which permit user selection of passimages which can be categorised ac-
cording to their content, a semantic ordered guessing attack (SOGA) was
proposed. This attack prioritises guessing images from more popular cate-
gories in a challenge screen. The attack demonstrated a higher probability
of success compared to random guessing. (Chapter 4)

• Models of attack success - models were established for guessing attacks and
observation against RBGPs which allow calculation of an estimated number
of attacks before success for a given RBGP scheme. (Chapters 6 and 7)

• Security metric - this allows comparison of the security of RBGP schemes
in a way which is repeatable, reproducible, quantitative, objective and ex-
tensible. This is presented in Chapter 8. As noted by Henning, “a metric
that is meaningful and relevant today may be less relevant tomorrow” [41].
However, the metric was designed to be extensible to allow it to be adapted
to different contexts. This is discussed further in Chapter 9.

A selection of the work presented in this thesis has been peer-reviewed and
published in academic conference proceedings as follows:

• “Towards a Metric for Recognition-Based Graphical Password Security” ,
5th International Conference on Network and System Security (NSS) , Sept.
2011

• “Measuring the Revised Guessability of Graphical Passwords” , 5th Inter-
national Conference on Network and System Security (NSS) , Sept. 2011

• “The Effectiveness of Intersection Attack Countermeasures for Graphical
Passwords”, TrustCom, 2012 11th International Conference on Trust, Se-
curity and Privacy in Computing and Communications, June 2012

1.6 Research Methods

A number of different research and analysis methods were utilised in this research.
For details on the approaches and techniques employed, please refer to Appendix
B

1.7 Overview of Thesis

The structure of this thesis can be separated into three areas; background, data
gathering and modelling, and final results and conclusions. The background
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information is covered in chapters 2 and 3. Chapter 2 provides background in-
formation on graphical passwords and addresses Objective 1 by presenting the
results of a review of literature relating to the security of RBGPs. This culmi-
nates in a threat model. Chapter 3 presents a review of related security metric
research, culminating in a list of requirements for the security metric presented
in this thesis which addresses Objective 2. Chapter 5 presents a preliminary
attempt at measuring the security.

The data gathering and analysis is covered in Chapters 4 , 6 and 7. Chapter 4
presents an examination of guessing attacks against RBGPs relating to Objective
3. Objective 4 is addressed by Chapter 6 which examines a selection of observation
attacks. A model relating to the observation attacks is presented in Chapter 7,
also related to Objective 4.

The final results and conclusions are presented in Chapters 8 and 9. The
final objective is addressed in Chapter 8, where the final metric (a culmination
of the measures presented till this point) is presented and evaluated against the
requirements established by Objective 2. The concluding chapter is presented in
Chapter 9 which discusses the results of the thesis, the contributions to research
and possible future work.

The first step in this research involved consideration of the relevant back-
ground for authentication and graphical passwords, this is presented in the fol-
lowing chapter.
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Chapter 2

Graphical Passwords Literature
Review and Security Analysis

As noted by Biddle et al., graphical password schemes can be split into three
categories; recall, cued-recall, and recognition-based [5]. This chapter discusses
each of these types of graphical password in Sections 2.1,2.2, and 2.3.

2.1 Recall Graphical Passwords

In a recall authentication scheme, the user is asked to draw an image upon regis-
tration. This image must then be replicated to provide subsequent authentication.
The archetypal example for this category is the “Draw A Secret” (DAS) scheme,
proposed by Jermyn et al. [48].

The DAS scheme presents the user with square grid of dimension G [48]. In
the grid the user draws their graphical password. An example DAS password
is shown in Figure 2.1. To authenticate the user must draw the same graphical
password using the same order of pen strokes (a stroke or line drawn by the pen)
and pen-up events (lifting the pen from the grid). The scheme records the strokes
and pen-up events which then allows the division of drawings into equivalence
classes. One DAS password is equivalent to another if they both have the same
encoding i.e. they cross the same cells with the breaks between strokes occurring
in the same places. This approach means that the DAS password must start in
the same cell each time it is drawn. A DAS password is accepted if it is in the
same equivalence class as the one stored.

Figure 2.1: DAS Grid
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There have been a number of proposed extensions to the DAS scheme to
increase the potential DAS password space and the password complexity . To
increase the password space a grid selection approach was suggested by Thorpe
and van Oorschot. In this approach a large fine-grained grid is presented to
the user, from which they must select a smaller sub-grid in which to enter their
password [89].

Dunphy et al. propose an extension to the DAS scheme by including a back-
ground image when users are creating their drawings, this is called Background
DAS or BDAS [23]. In their work they report the results of a study involving
21 users who were randomly assigned to the control DAS group or the BDAS
group. The experimenters allowed users to select the background images from
a total of six alternatives. The aim was to examine the user choice distribution
of the graphical passwords drawn using the background images compared to no
background. Overall, an improvement in complexity of the drawings was achieved
by using background images. Use of background images produced an increase in
stroke count, password length and reduction of global symmetry and centering of
drawings when compared to drawings created without a background. Significance
was established using a one tail t-test with t=2.948 and p<0.01.

It could be argued that different background images may influence the number
of strokes. This impacts complexity and potentially security through guessability.
Using one image instead of the six options provided would have reduced the
number of independent variables to the use of the BDAS scheme alone (and not
the particular image) ensuring significance of difference was due to the BDAS
scheme and not the image selected.

Another proposed improvement on the DAS scheme is presented by Gao et
al. and is called YAGPS. Gao et al. claim the YAGPS scheme does not have
restrictions on the position of a drawing for authentication associated with DAS
i.e. the drawing need not be drawn in the same location on the grid [33]. This
is achieved by using a neighborhood grid for encoding the strokes of the pen. No
matter where the user starts on the grid, the positions surrounding the initial po-
sition are allocated labels of 1 through to 9 (excluding 5 which is used to denote
pen up and pen down events). A similarity threshold is used to establish if the
drawing is sufficiently matched to the stored password to allow successful authen-
tication. The authors claim a potentially larger password space than the original
DAS scheme, however the probable password space may not necessarily equal the
theoretical password space. That is to say that users may be inclined to chose
more simple passwords than the possible range as with alphanumerical passwords
evidenced by Klein [49]. Also, making it possible to replicate the drawing any-
where on the grid whilst decreasing false negative authentications (where the user
is incorrectly rejected), could also potentially increase false positives (where an
attacker is incorrectly accepted).

A commercial example of a recall authentication mechanism is the Android
pattern lock, which allows the user to lock their phone by drawing a pattern
connecting dots on a grid, this is discussed by Shabtai et al. [78].
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2.1.1 Security of Recall Graphical Passwords

In terms of security of recall graphical passwords, the password space of the DAS
scheme has been examined. In the defining DAS paper, the authors consider the
security of the scheme by calculating the theoretical password space. The authors
define the length of a password to be the sum of the length of its component
strokes, where a stroke is a line drawn on the grid starting with the pen being
placed on the grid and ending with it being lifted from the grid. The grid is
referenced by co-ordinate pairs, and the length of a stroke is the number of grids
it passes through (i.e. the number of co-ordinate pairs). The total number of
passwords (drawings) on a grid of dimension G given a maximum length Lmax is
defined as the number of passwords of each length L from 1 to Lmax. A shorter
password of length L − l can have l strokes added to it to give a password of
length L. Thus the number of passwords of a given length L is defined as the
number of passwords of length L− l multiplied by the number of strokes of length
l. The number of passwords of length L = 0 on a grid of dimension G is defined
as 1. The number of passwords of length L a grid of dimension G (denoted
P (L,G)) is then defined recursively as the sum of all passwords of a length L− l
multiplied by the number of strokes of length l for each value of l from 1 to L i.e.
P (L,G) =

∑L
l=1 P (L− l, G)N(l, G)

The number of strokes of length l on a grid of dimension G (denoted N(l, G))
is defined as the number of strokes of length l ending in each cell on the grid.
For each cell the number of strokes of length 1 is defined as 1. The number of
strokes of length l ending in cell (x, y) is then defined recursively as the number of
strokes of length l− 1 ending in the immediately surrounding cells. This allows a
calculation of the number of passwords of length L since the authors have defined
P (L− l, G) and N(l, G) recursively.

The authors compare the password space of alphanumerical passwords with
a given number of characters to the number of DAS passwords with the same
number of strokes. For example, on grid of dimension G = 5 with Lmax = 8, the
log2 of the number of passwords of length 8 is 38, where a password of length 8
with an alphabet of length 26 has entropy of 8 ∗ log226 = 8 ∗ 4.70 = 37.6 which
is marginally less than 38.

To counteract the potentially smaller theoretical password space of the DAS
scheme, Thorpe and van Oorschot suggest a grid selection before drawing the
password in order to increase the password space [89]. The user selects a square
on the grid, which then zooms in and displays a second grid in which they must
draw their password.

Thorpe et al. [88] also construct a graphical dictionary to attack the DAS
scheme. They consider the “memorable space” of graphical passwords (the whole
set of possible passwords less passwords which are potentially forgettable). The
authors postulate that, from psychological studies, people are better at recalling
symmetrical images and thus would be inclined to use symmetrical images as
passwords. This allows the authors to restrict the password space they are con-
sidering one smaller than the theoretical password space presented by Jermyn et
al.. The memorable space is then further restricted by proposing that users would
choose symmetry around the horizontal or vertical axis when drawing their pass-
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word. To support this reasoning, the authors examine the examples presented in
the original DAS paper [48] and these exhibit the symmetry discussed.

Van Oorschot and Thorpe extend the work reported in [88] by defining classes
of possible graphical passwords [94]. The authors present a model for the com-
plexity of a password. This model is based on complexity properties such as
the length of the password, the symmetry of the password and the number of
components i.e. the number of “visually distinct parts of the graphical pass-
word” [94]. DAS graphical passwords are then split into classes based on these
complexity measures. It is from these classes that the authors then propose an
attacker might build a dictionary attack. The attack is based on a multi-class
graphical dictionary which consists of graphical passwords belonging to each class
identified, with an increasing number of components. A dictionary attack would
thus try all graphical passwords from each class with one component, then two
components and so forth. Examples of the classes include class one probable
passwords, which exhibit mirror symmetry about a vertical or horizontal axis in
its components.

In addition to the examination of the password space and possibility of dictio-
nary attacks, shoulder surfing for the DAS scheme has been examined by Zakaria
et al. [106]. Zakaria et al. proposed and evaluated three approaches to countering
shoulder surfing attacks on the DAS scheme; decoy strokes, disappearing strokes
and line snaking. In the decoy strokes approach, fake strokes were drawn at the
same time as the user’s genuine strokes. In the disappearing strokes approach,
after a stroke was completed (signified by a pen-up event) the stroke disappeared
from the display. Line snaking involved a similar approach as the disappearing
stroke approach, but this time strokes disappeared from the screen as they were
drawn.

The first user study reported an evaluation of the efficiency of these counter-
measures. The study involved 68 students, with 17 in each of the groups DAS
(the control group), decoy strokes, disappearing strokes, and line snaking. Par-
ticipants were asked to view an authentication session and attempt to replicate
the DAS password (this included recalling the order and direction of strokes).
Decoy strokes did not show a statistically significant improvement on the control
setting. However disappearing strokes and line snaking showed an equivalently
significant improvement on the control setting.

In the second study, usability of the disappearing strokes and line snaking
approaches were examined by considering the number of authentication attempts
required before success and the time taken to authenticate. Line snaking took
significantly longer and significantly more attempts to successfully authenticate
compared to both the DAS control and the disappearing strokes. This indi-
cates challenges with regards to usability of the disappearing strokes counter-
measure. The disappearing strokes countermeasure also took more login attempts
and longer than the DAS scheme alone. Again, this shows possible issues with
the usability of this approach.

Analysis of security of recall scheme has been consistent as the work reported
considers the complexity of recall graphical passwords and the implications for
guessing attacks. Shoulder surfing attacks have also been considered. There could
be room for further examination in this instance, for example by examination of
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Figure 2.2: Example Click Points Screen

how easily guessed the drawings for a known user are.

2.2 Cued-Recall Graphical Passwords

In a cued-recall scheme the user registers by selecting a number of memorable
points, “passpoints”, from a provided image as their password. The PassPoints
scheme proposed by Wiedenbeck et al. [100] demonstrates this type of graphical
password scheme well. An example of an image and passpoints is shown in
Figure 2.2. To authenticate the user selects the points previously indicated as
their passpoints.

The PassPoints approach was further refined by Chiasson et al.’s Cued Click
Points (CCP) scheme [14], shown in Figure 2.3. In this scheme, users are prompted
to click on one point on an image for a number of images. The images in the
sequence are dependent on the point selected in the prior image. This provides
an alternative to remembering a number of points on one image which was noted
by participants in Wiedenbeck et al.’s PassPoints scheme as being easier than
multiple points on one image [100].

Figure 2.3: Cued-Click Points Sequence Example
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2.2.1 Security of Cued-Recall Graphical Passwords

Research on the security of the cued-recall scheme “PassPoints” has primarily
been conducted by by Thorpe et al. [90], Salehi-Abari et al. [74] and van Oorschot
[95]. In the papers analysing the security, the authors demonstrate that the
PassPoints scheme is subject to “hot spots”, locations in the pictures which users
are more likely to select as their passpoints.

Thorpe and van Oorschot implement human-seeded attacks on the PassPoints
scheme and report the existence of hot spots in many images [90]. Human-seeded
attacks were constructed by clustering observed passpoints of 43 users who were
asked to select 5 distinct points on 32 to 40 separate images. The extracted
hotspots were then used as areas for guessing passpoints of different users. The
attacks successfully guessed 36% of user passpoints using a dictionary of size
231 for user passpoints in one image and 20% with a dictionary of size 233 for a
second image. Also implemented is a purely automated attack based on image
processing techniques, e.g. corner detection, which is reported to guess up to
30% of user passpoints using a dictionary of size 235 for some cases, but under
3% in other cases. Confidence intervals are provided for the user selections which
seeded the human-seeded attacks, which contributes evidence to identifying that
the highlighted passpoints are hotspots.

Salehi-Abari et al. [74] report and evaluate different methods of automated
attacks on the PassPoints scheme. The attacks employ a model of visual attention
of a user which identifies areas of an image which are visually distinct from their
surrounding areas. The authors propose that users will not only select passpoints
in these regions, but that passpoints will be selected from distinct regions in a
specific “click order”. The automated attacks presented achieved success rates
comparable with the human-seeded attacks reported by Thorpe and Oorschot
[90] . The images and data sets used for testing were those used by Thorpe and
Oorschot [90]. Dictionaries were composed of the likely passpoints established by
the algorithm which combined the visual model and click order. Attacks were
automated based on these points. Using one click order provided a dictionary
size of 233 and resulted in 21.1% of passpoints being successfully attacked (c.f.
20% using the human-seeded approach reported by Thorpe and Oorschot [90] )
and 27.5% of passpoints being attacked successfully for the other image (c.f. 36%
using the human-seeded approach reported by Thorpe and Oorschot [90]). Al-
ternative approaches to establishing click orders resulted in an increased number
of passpoints being successfully attacked. Though the effectiveness of the differ-
ent approaches are not compared statistically in the paper, the work contributes
further evidence to the hotspots issue.

Chiasson et al.’s Cued Click Points scheme [14] may also be susceptible to
hot points. This is examined by van Oorschot et al. [95] who perform automated
attacks on cued-click point schemes. The results report that their graph-based
algorithm recovered 7% to 16% of passwords for two images where the full pass-
word space was 243 using a dictionary of size 226. When they increased the size of
the dictionary to 235 entries the results were substantially improved to discovering
48% to 54% of passwords. Both these sets of figures are larger than the success
rates of human seeded hot spot attacks described by Thorpe and Van Oorschot
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in [90] which reported results between 1% and 9% on the same dataset with 235

guesses.
Further work was also completed on the PassPoints scheme by LeBlanc et al.

[53]. The authors presented a study in which participants were asked to look at
the images used for the PassPoints scheme. This gaze data was then examined to
determine any similarity between the gaze data and the hotspots identified in a
prior study by Chaisson et al. [14]. The gaze data was transformed into potential
passpoints by a number of different methods e.g heat map inspection. However,
as noted by the authors themselves, the similarity between the gaze data and
the passpoints data was minimal. However, this still presents an approach which
could be used to improve a guessing attack.

In an attempt to reduce hotspots in cued-recall schemes where selection is
achieved by gazing at the desired point using eye tracking (as with [53]), Bulling
et al. [11] introduce the concept of “saliency masks”. These masks aim to cover
the points on the picture which could be susceptible to hotspots. This encourages
users to select other points on the image as their passpoints. There were two
stages in the evaluation of this proposed countermeasure. The first stage was to
collect a number of “gaze-based passwords” for three schemes; PIN (a PIN pad is
presented to the user), gaze passpoints with saliency masks, and gaze passpoints
without saliency masks. Four users provided five gaze passwords each. This
provided a total of seven PINs, 7 with saliency masks and 6 without saliency
masks.

The next stage was a study involving 12 users asked each participant to attack
five gaze-based passpoints. This was achieved by showing the image and a video of
the eyes of a user performing a genuine authentication and asking the participants
to attack. Participants could view the video of the genuine authentication as
many times as they liked. Once the participant believed they had the right point
located, they attempted to authenticate. Participants were given three attempts
per image.

Results showed a significantly higher attack success rate for the PIN scheme
compared to the scheme with no saliency masks. This was not unexpected, as
there is less complexity in the image of a PIN pad. Saliency masks showed sig-
nificantly less successful attacks than the image alone, this suggests that saliency
masks help to reduce the success rate of shoulder surfing attacks. However, as
shown in the paper, the gaze detection threshold has a significant impact on the
number of successful login attempts (attacks). Thus the use of the eye-tracking
itself could impact on the success of the attacks. It would be beneficial to ex-
amine the efficacy of saliency masks in a normal passpoints approach where the
impact of the “gaze-based” approach could be removed. This could contribute to
a reduction in hotspots.

It can be seen from this research that examination of the security of cued-
recall graphical passwords is consistent as each analysis considers the hotspots
problem. This allows comparison of the security of cued-recall schemes in terms of
the hotspots analysis. Cued-recall schemes are often similar (with less variation
than configurations available for recognition-based schemes) since the common
variables which can change are the number of challenges, the images used and
the number of passpoints. In comparison RBGPs have more potential variations
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Figure 2.4: RBGP Registration and Authentication Process

in the number of distractors, how distractors are selected and so forth. It is for
this reason RBGP schemes were selected as the focus for this work.

The state of research on recognition-based graphical passwords security will
be discussed in the remainder of this chapter.

2.3 Recognition Based Graphical Passwords

In the registration stage for a recognition-based graphical password (RBGP)
scheme, the user is presented with a set of images from which they select a
number of passimages to be used to authenticate. Alternatively, they upload
their own images. In an authentication session (after providing their username)
the user is presented with a number of screens which contain a grid of images.
Each screen contains at least one passimage and a number of alternative non-
passimages called distractors. The user must select their passimage from the
screen, repeating the process for each of the challenge screens. Upon successful
selection of the user’s passimage from each screen, the user is authenticated. This
process is demonstrated in Figure 2.4 where the registration process a user select-
ing a subset of the potential passimage set to be their passimage set is depicted.
In the authentication process the user is presented with a number of challenge
screens with a passimage on each screen. The user selects the correct passimages
to authenticate successfully.

The archetypal example of a recognition-based scheme is the PassFaces scheme
created by Id-Arts Ltd [1]. In this scheme the user authenticates by selecting the
faces allocated to them upon registration as their passimage set (or pass set)
from a collection of eight alternative distractor faces, consisting of four challenge
screens. An example challenge screen is shown in Figure 2.5.

Other examples of recognition-based schemes include the Deja vu scheme by
Dhamija and Perrig [20] and the Story scheme by Davis et al. [15]. In the Deja
vu scheme the set of passimages used is randomly generated art. In the Story
scheme proposed by Davis et al. [15] the user selects a password as a sequence of
unique images selected by the user to make a “story” from a larger set of images.
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Figure 2.5: PassFaces Challenge Screen (obtained from [1])

The images used represent every day objects e.g. food, animals, children, and
scenic landscapes.

The security of recall and cued-recall graphical passwords have been con-
sidered in terms of guessability in a consistent manner (by examining potential
password space and bias in user selections). In contrast, analysis of the security
of RBGPs has been inconsistent. For example, one approach to calculating the
entropy (hence guessability) of a RBGP is proposed by Hlywa [43], whilst a dif-
ferent approach to measuring guessability is reported by DeAngeli et al. [17] and
Dhamija and Perrig [20]. This thesis focuses on the analysis of RBGP schemes
due to the inconsistency of work in this area to date.

2.3.1 RBGP Definitions

For clarification, the definitions of aspects related to RBGPs which will be used
frequently throughout the thesis are provided as follows:

• passimage - A passimage is an image selected from the set of all possible
images by the user to be used as their authentication factor.

• distractor - An image shown on a challenge screen which is not a passimage
for the user.

• challenge screen - When a user authenticates, they are presented with
multiple grids of images which includes a passimage and a number of dis-
tractor images. Each grid is called a challenge screen.

• challenge session - An authentication session which consists of a number
of challenge screens from which the user must select their passimages.

• passimage set - The set of images which comprise the user’s selection of
passimages.
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2.3.2 RBGP Configurations

To establish the possible threats and attacks for a RBGP scheme, first a list
of aspects which contribute to the configuration of these schemes needed to be
established. This was extracted from the information gathered in the literature
review. The different aspects contributing to the configuration of RBGPs ex-
tracted from the literature review covered all aspects of the schemes reviewed.
The aspects were established as follows:

• Image Types

– Abstract e.g. Deja Vu presented by Dhamija and Perrig [20]

– Disguised e.g. Use Your Illusion presented by Hayashi et al. [39]

– User uploaded e.g. the scheme presented by Tullis and Tedesco [91]

– photographic images e.g. the Story scheme presented by Davis et al.
which used categories such as transport [15]

– user created/drawn e.g. the Doodles scheme presented by Poet and
Renaud [64] and the mikons scheme presented by Renaud [70]

• Image Source

– User supplied e.g. personal photographs as for Tullis and Tedesco [91]

– User selected e.g. the Story scheme presented by Davis et al. [15]

– Assigned to user e.g. the VIP variants presented by De Angeli et al.
[17]

• Distractor Selection - how the distractors are selected for a given passimage

– using a similarity measure e.g. the Doodles scheme by Poet and Re-
naud [64] and the scheme presented by Tullis and Tedesco [92]

– random selection where distractor images are randomly selected by the
system e.g. ImagePass by Mihajlov et al. [56]

– random selection from images belonging to categories other than that
to which the passimage belongs e.g. the VIP1, VIP2, and VIP3
schemes by De Angeli et al. [16]

– random selection from images belonging to distinct categories other
than that to which the passimage belongs e.g. Moncur and Leplatre
[58].

• Challenge Screen Set Up

– Number of challenge screens per challenge session

– Number of passimages per challenge screen

– Number of distractors per screen
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• Strike Out Policy -users are permitted a limited number of unsuccessful
authentication sessions before being locked out of the system. e.g. Davis et
al. [15], and Tullis and Tedeco [91]

• Use of constant distractors for a given users’ passimage(s) e.g. Dhamija
and Perrig [20] and Tullis and Tedeco [91]

• Image selection is disguised - either by not highlighting the image selected
or not clicking directly on the image e.g. convex hull click presented by
Wiedenbeck et al. [101]

• Keyboard entry is allowed for selection of passimages e.g. the PassImages
scheme by Charrau et al. [12]

More precisely, each RBGP scheme was examined for details on the different
configurations. The results indicated the important aspects as being the number
of passimages (denoted p for this work), the number of challenge screens (s), the
number of distractors per challenge screen (d), the number of constant distractors
per passimage (c), and whether the images were assigned to the user or not. 19
RBGP schemes were identified. However, Hasegawa et al. [37] presented no
specific details of configurations in their paper. Also, Hoanca and Mock reference
the PassFaces scheme, but discuss selection of points and not overall images and
so is more akin to a cued-recall scheme. Therefore these two schemes are not
included in the summary. This left 17 schemes which could be defined by the
configurations which are summarised in Table 2.1. Where the information was
not available from the paper, “NA” is used to denote not available. If the number
of passimages selected by the user was determined by the user and not the system,
p is used. If a range or maximum number of passimages was provided, this is
provided. Occasionally (e.g. Everitt et al. [28]) the authors note that the number
of passimages or challenge screens can vary, where this is the case the example
configuration provided in the paper has been used.

It can be seen from Table 2.1 that RBGP schemes can be split into two groups.
One approach consists of a single challenge screen with multiple passimages pre-
sented on this screen. Nine of the 17 RBGP schemes presented only one challenge
screen. This approach can be further refined by the passimage selection being
restricted to a specific order, or order being irrelevant. For example consider
three passimages, one of a fox, one of a dog and one of a rabbit. If order is
important, they must be selected fox, dog, rabbit to authenticate successfully.
Selecting dog, rabbit, fox will result in an unsuccessful authentication. If order is
unimportant then both attempts will be successful. Five of the schemes identi-
fied in Table 2.1 have ordered selection with one challenge screen (Story, Moncur,
Komanduri, VIP1 and PassImages). Three have unordered selection with one
challenge screen (Deja Vu, Use Your Illusion and Tullis). This leaves one notably
different approach, PassImages, presented by Charrau et al. where a total of six
passimages have to be selected from four challenge screens in the correct order.

The remaining eight schemes presented represent the group of schemes which
present a single passimage on multiple challenge screens. All eight of these ap-
proaches have no order restriction.
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In addition to the other factors (e.g. number of passimages etc.) the type
of images used and whether the passimage set is assigned to the user is also a
factor in the configuration of RBGP schemes. Of the 17 schemes identified six
use photographs of objects, three use photographs of faces, four use personal
photographs, two use drawings or doodles, one uses random art, and the last uses
icon pictures. Images can also be assigned to the user (five schemes), selected by
the user (six schemes) or uploaded by the user (six schemes).

2.4 Threat Model for Recognition-Based Graph-

ical Passwords

Potter proposes that security can be assessed in terms of the likelihood of suc-
cessful attacks [65] and so the next step in analysing the security of a recognition-
based graphical password (RBGP) scheme was to construct a threat model.

In this work the definitions of Anderson [?] will be used when constructing
the threat model. For this work a vulnerability is defined as a flaw in the RBGP
mechanism or the user’s interaction with it which results in a potential attack. An
attack exploits a vulnerability to gain unauthorised access to a system (through
authentication).

Once these definitions were established, it was necessary to identify areas
of potential threats. DeAngeli et al. propose that security of authentication
mechanisms can be judged in terms of three aspects; guessability, observability,
and recordability [17]. Definitions of each are as follows:

1. guessability: the probability an attacker can guess the user’s password
(graphical or otherwise)

2. observability: the probability of an attacker being able to observe the au-
thentication process

3. recordability: the ease with which a user can record the user’s password
(graphical or otherwise)

Renaud extends these areas to include analysability and resistability in [69].
Analysability refers to implementation details of the software itself e.g. bugs in
the code which could be exploited. Resistability refers to “auxiliary attempts
to secure the system”, an example provided is a three strikes policy where the
user is locked out after three unsuccessful authentication attempts. This research
focuses on measuring the security of attacking the user’s passimage set and thus
not auxiliary security controls or attacks which by-pass the mechanism itself.

The three aspects of guessability, observability, and recordability are used to
evaluate the security of recognition-based graphical passwords in this chapter.
Resistability and analysability are considered outside the scope as they relate to
attacking the system rather than the secret for example through software bugs
which are specific to an implementation.

Presented in Figure 2.6 is the threat model for RBGP schemes, where the aim
of the attacker is to obtain a user’s passimages. This arose from the analysis of
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RBGP Scheme Passimages Screens Distractors Constant
Distractors

Image As-
signment

Image Type Order

PassFaces [1] 4 4 8 8 Assigned
to user

Faces No

Deja Vu [20] 5 1 20 NA Selected by
user

Random Art No

Use Your Illu-
sion [39]

3 1 24 24 Provided
by user

Personal Pho-
tographs Ob-
scured

No

Faces [15] 4 4 8 8 Selected by
user

Faces No

Story [15] 4 1 5 5 Selected by
user

Photographs of
Objects

Yes

Doodles [63] 4 4 15 NA Provided
by user

User drawn doo-
dles

No

ImagePass [56] p=max of
12

1 12-p 12-p Selected by
user

Photographs of
Objects

Yes

Awase-e [85] 9 4 8 0 Provided
by user

Personal Pho-
tographs

No

Pering [61] p 10 3 0 Provided
by user

Personal Pho-
tographs

No

Everitt et al.
[28]

5 5 8 8 Selected by
user

Faces No

Komanduri [50] 8 1 72 72 Assigned
to user

Drawings Yes

Moncur [58] 4 1 6 NA Assigned
to user

Photographs of
Objects

Yes

Mikons [70] 4 4 15 15 Provided
by user

Combination
of icon-type
images

No

VIP 1 and 2 [16] 4 1 6 0 Assigned
to user

Photographs Yes

VIP3 [16] 8 1 but
only 4
passim-
ages

12 0 Assigned
to user

Photographs No

PassImages [12] 6 4 but all
6 passim-
ages to be
selected

25- number
of passim-
ages on the
screen

NA Selected by
user

Photographs of
objects

Yes

Tullis [91] 8-20 1 with 2-
5 passim-
ages

15 less 2
to 5 pas-
simages

NA Provided
by user

Personal pho-
tographs

No

Table 2.1: RBGP Configurations Summary
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Figure 2.6: Threat Model

literature and the review is presented in the remainder of this chapter. The main
attacks are categorised into the three areas of concern; guessability, observability
and recordability. The vulnerabilities corresponding to each of these areas were
identified and attacks are shown which exploit these vulnerabilities.

The following attacks are considered in the threat model (as shown in Fig-
ure 2.6)

• Random guessing

• Guessing based on knowledge of biases in choice of a general population

• Guessing based on knowledge of a specific user

• Shoulder surfing

• Intersection/Frequency attacks

• Eavesdropping resulting in a replay attack

• Phishing

• Replay of passimages captured by recording

Each aspect of the threat model is evaluated in turn based on current research
in the following section.

2.4.1 Guessability

Random Guessing

One of the key aspects of security of a recognition-based graphical password
(RBGP) is the probability of guessing the correct images for a complete challenge
session. Researchers often report a chance of guessing (or guessability) as shown
in Equation 2.1 where X is the number of images displayed on a challenge screen
and n is the number of challenge screens.

1

Xn
(2.1)
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For example, the Doodles scheme [63] has a guessability value of 1
164

since it
has four challenge screens and displays 15 distractors and a single passimage per
screen. In Deja Vu [20] and Use Your Illusion [39] the probability of guessing
one image correctly is reported as 1

(t
p)

. In this equation t is the total number of

possible images, p is the number of passimages on a challenge screen and
(
t
p

)
is

the number of combinations of p passimages which can be selected from t images.
These values are correct where only one challenge screen is presented and the user
must select all the passimages from the challenge screen. If p = 1 this reduces to
1
t
.

These values relate to random guessing. If users are allowed to select their own
passimages, this random guessing value could potentially overestimate the real
probability of guessing due to a potential bias in user selection of passimages. This
work considers only schemes which present one passimage per challenge screen,
adaption of this work to incorporate multiple passimages on a single screen (such
as in Deja Vu and Use Your Illusion) is discussed in Chapter 9. A summary of
the scope is provided in Section 2.5.

In a different approach to measuring guessability, Hlywa et al. calculate a
value for the entropy. Entropy is a measure often used to approximate the
strength of an alphanumeric password. Entropy counts the number of guesses
required by an attacker in a guessing attack if each guess except the last one is
wrong [80, Page 63]. Entropy is a measure of the randomness of the password (or
how difficult it is to guess) and is based on Shannon’s work in information theory
[79]. The equation for entropy is shown in Equation 2.2, where the probability
of each letter in the alphabet is multiplied by the log2 of the probability and
summed. The sum is multiplied by -1 because probabilities are of the form 1

x

which, when logged is negative. Multiplying by -1 makes the result positive.

H(X) = −
∑
x∈X

pilogpi (2.2)

Hlywa et al. calculate a value for the entropy as follows: log2(n
s) [43] where

n is the number of images per screen, and s is the number of challenge screens.
This approach is similar to that for an alphanumeric password where the log2 of
the password space is multiplied by the length of the password. Entropy is often
used as an indication for how difficult an offline brute force attack would be and
as such may not be directly applicable to RBGPs. The passimage is presented in
each challenge screen and so the process of guessing is reduced to selection of one
of the images in the challenge screen. This is because the number of challenges
presented is known (i.e. the number of passimages required to authenticate) and
that each challenge contains one passimage. With a password the attacker does
not know the length and cannot be sure of the characters used to construct the
password. Offline attacks are discussed further in Section 2.5.

Van Oorschot and Wan present the “TwoStep” authentication scheme which
combines alphanumeric password entry and a graphical recognition-based scheme
[96]. In terms of security, they discuss several theoretically possible attacks. Mea-
suring the level of security of the TwoStep scheme is presented as a combination of
the entropy of the alphanumeric password and the graphical passwords’ entropy.

38



The entropy of the graphical password element is calculated as r.log2t = log2t
r

where r is the number of challenge screens, and t is the number of possible choices
(calculated using binomial coefficients). This is the same approach as Hlywa et
al. [43].

Guessing With Knowledge of Predictable Choices

Davis et al. examine how permitting user selection of their passimage set affects
the guessability. Davis et al. [15] implement two recognition-based schemes,
Face and Story. Face is based on the PassFaces scheme by Id Arts Ltd, but
users are limited to choices from distinct categories. The Story scheme asks the
user to select a sequence of images to construct a “story” password, where each
image selected is from a distinct category. In both the schemes, the images are
categorised into non-overlapping subsets of images. For example typical white
male, white male model etc. for the Faces scheme, and cars, landscapes etc. for
the Story scheme.

Davis et al. estimated the probability of a given set of passimages (which they
refer to as a password) being selected from either scheme. Graphical password
selection was restricted as images had to be selected from distinct categories, and
only a subset of categories were presented to the user upon selection. Assump-
tions in their estimated probability included that choices of the later images in a
user’s password were influenced only by the choice of the immediately preceding
images (due to the distinct categories restriction). Use of a maximum likelihood
estimation allowed the authors to estimate the parameters in their model of prob-
ability using 80% of the password data collected from 154 users. The probability
model using the values in the data set allowed the authors to establish an ordering
of the passwords from most probable to least probable.

The remaining 20% of password data was then used for attacking, which
prioritised more probable passimage sets. To attack a password, the set of all
combinations of passwords was first reduced based on the categories presented to
the users upon selection (removing any passwords which contained images from
any categories not presented to the user). The set of all passwords was then
ordered by calculation of the probabilities using the model established by Davis
et al. [15]. The position of the passimage set in this ordered list was then the
number of guesses required to correctly guess the user’s password (passimage set).

The work by Davis et al. considers the probability of the whole passimage set
being selected, and not the probability of images from individual categories being
selected indicating an area which could benefit from further research. The bias
could be exploited by selecting the image on a challenge screen from the “most
likely” category. This is examined in Chapter 4.

Guessing for a Known User

In the “Use Your Illusion” scheme proposed by Hayashi et al. [39] (where images
are degraded so only colours and shapes are recognisable) the authors discuss an
“educated guess” attack. This is a form of social engineering where the attacker
tries to guess the correct image based on previously acquired information about
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the user. In the Use Your Illusion scheme, the authors conjecture that it would
not be possible to pick out an individual’s obvious choice of image due to the
degradation of the image.

The work was extended by Hayashi et al. [40] where experiments which eval-
uated “individualized educated guess attacks” for user taken photographic pas-
simages were conducted. A friend was defined for the purposes of the experiment
as someone the participant had friend status with on Facebook, who met with
each other at least twice a week and had known each other at least three months.
The hypothesis tested in the experiment was :

“An attacker can make more accurate guesses about authentication images if
the attacker possesses information about the user who chose them.”

Attackers were given 10 attempts to guess the three authentication images of
the target user. Eight out of 15 attackers correctly identified the target set of three
images within 10 guesses. This approach reflects the set up of Hayashi et al.’s “Use
Your Illusion” scheme [39] in which users must select their images from decoys
presented on one challenge screen. This does not reflect the RBGP approach
where one passimage is shown per challenge screen and multiple challenge screens
are presented. If a three strikes policy was in place which restricted the number
of guessing attacks, success would be reduced. Of the eight successful attackers,
only three managed to perform a successful attack within three guesses.

2.4.2 Observability

Progressing to the second area of concern, the vulnerabilities associated with
observability are considered.

Shoulder Surfing

As noted by Wiedenbeck et al., shoulder surfing graphical passwords is the process
of observing authentication sessions and noting the images selected to be used
to impersonate the user at a later time [101]. In the “Use Your Illusion” scheme
proposed by Hayashi et al. [39], users authenticate by selecting the degraded
version of their images (a non-photo-realistic rendering algorithm which removes
the majority of the image features, but retains some colours and shapes) from a
set of challenge degraded images. The claim is that an observer would find it more
difficult to capture the degraded image, but users can easily recognise it. The
user recognition is established by a user study by Hayashi et al. [39], but no user
study is reported relating to resistance to shoulder surfing. Instead the authors
propose two countermeasures for shoulder surfing. Firstly, they propose allowing
selection of passimages using keyboard entry. They ensure that the location of
authentication images are not constant so the observer cannot memorise the key
pressed for the location of the image. The second countermeasure is to avoid any
indication on the screen which highlights which image has been selected (hence
reducing likelihood of successful shoulder surfing).
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Hasegawa et al. [37] present a method in which they combine low frequency
components of a distractor image with high frequency components of the passim-
age. A discrete wavelet transform was applied to a passimage and a distractor
image and the lowest frequency band of the distractor image (which contains the
“average information of the picture”) was combined with the higher frequency
bands of the passimage. The authors propose the hypothesis that the user will
be able to establish which picture has been combined with their passimage, but
shoulder surfers will be unable to detect the high-frequency components of the
passimage. The results showed that users were able to recognise the passimage
at least half the time, whilst observers couldn’t. The results also note the scheme
doesn’t work well for camera shoulder surfing.

Other attempts at providing counter measures for shoulder surfing include
Hoanca and Mock [44] who proposed a camera-based eye tracking system to
allow the user to select their graphical password by fixation of their eyes on the
passimage. There are potential limitations of this approach. First, there is a
possibility a user’s eye may wander, making it difficult to select the passimage.
Secondly, there could also be an issue with hardware availability, as the camera
required might not always be available. It should be noted that this was a short
paper which indicated potential work and thus no experimental evidence was
presented.

Indirect selection of images is proposed as a countermeasure for shoulder surf-
ing by Gao et al. [34] who proposed a scheme in which users selected their
passimages in a specific order. To authenticate the users have to draw a path
through their passimages presented in a grid in the correct order. A 20 partici-
pant user study over one week was reported which examined usability, however
the authors performed no study to examine whether this approach is effective
against shoulder surfing. In addition, the approach could result the possible re-
duction in password space. A path could be drawn which covers all the images
presented, all that would remain is to establish the correct order.

Sreelatha et al. also propose an indirect selection method [81]. The authors
propose that users select image pairs and “key positions” on a challenge screen. A
challenge screen consists of a grid of images as normal, but the user must locate
the passimages in the key position and (instead of selecting this image) must
then select the corresponding pair. If there is only one passimage pair shown on
screen, this may not reduce shoulder surfing. In this case the attacker views the
image selected and repeats this, the position and identity of the key passimage is
not required. If however there are multiple pairs of passimages on the challenge
screen, this could reduce shoulder surfing.

Another possible limitation of this approach is the guessability factor, if a user
were to select an obvious pairing (e.g. the cartoon characters Tom and Jerry)
this could reveal key positions.

A study which performed an evaluation of the efficacy of shoulder surfing at-
tacks was performed by Tari et al. who reported the results of a study in which
users were asked to attempt to steal the password and passimages of a “victim”
by shoulder surfing [87]. 20 participants were recruited to attempt to capture
the passwords and passimages of the experimenter. The participants were pro-
vided with a notepad and pen and told to sit/stand wherever they thought best.
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The study used four configurations for knowledge-based authentication schemes.
These were PassFaces with mouse selection, PassFaces with keyboard selection,
a strong alphanumeric password and a dictionary alphanumeric password. The
PassFaces configuration used 5 challenge screens with 9 images displayed on each
screen. The passwords had 5 characters with the aim of providing a comparable
length. The characters and passimages had to be selected in the correct order,
which may have made the PassFaces configurations more difficult and could over-
estimate the resistance to shoulder-surfing in cases where order is unimportant.
If the same passimage set was used for both PassFaces configurations a poten-
tial limitation could be a learning effect which could potentially overestimate the
success rate of whichever configuration was performed second.

The results indicated that the least susceptible configuration to shoulder surf-
ing was PassFaces with keyboard selection (an average of 0.55 images from five
were recalled in the correct order) and the other extreme was the most suscepti-
ble being a non-dictionary alphanumeric password (an average of 3.65 characters
were recalled in the correct order). The Duncan’s multiple range test statistic was
applied to establish if there was a significant difference in performance between
each configuration. There was no significant difference between a non-dictionary
5 character password and an ordered 5-passface set, but each other configuration
was significantly different from the others. The conclusions of the work were that
the significant differences in performance are due to the variation in setup (dic-
tionary passwords, non-dictionary passwords, passimages with mouse selection,
and passimages with keyboard selection). If the same passimages were used for
both the keyboard and mouse selections there may have been a learning effect.
This paper contributes evidence for the resistance of the authentication schemes
to shoulder surfing. It provides a comparison of different configurations of RBGP
schemes with dictionary and non-dictionary passwords.

Intersection/Frequency Attacks

An intersection attack, as defined by Dhamija and Perrig [20] (and discussed by
Dunphy et al. [21], Hayashi et al. [39] and Poet and Renaud [64]) is an attack in
which the attacker records multiple challenge screens and notes the images which
are constant between two screens. Assuming the distractor images all change
this would result in the passimage being identified. Takada et al. also identify a
similar attack which they call a frequency attack [85]. In a frequency attack, the
attacker notes multiple challenge screens and notes the frequency with which each
image appears, they then select the image which occurs most frequently for any
given screen. For this work a frequency attack will primarily be considered as an
intersection can be thought of as a special case of a frequency attack. This can be
seen by considering where multiple screens are recorded and if all the distractors
change then the distractors appear with a frequency of 1 and the passimages
appear with higher frequency. Dhamija and Perrig [20] successfully summarise
general approaches to counter measures for this issue as:

• Use the same distractor images and passimages for each session.
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• A small subset of distractor images could be shown for a given passimage
each time that passimage is used in a challenge screen. The result being
that the subset of distractors will occur with the same frequency as the
passimage it is associated with. This would mean the attacker would need
to make a selection from the images with the same frequency. Thus this
approach only mitigates the attack.

• If a user fails any challenge screen, all subsequent screens display only dis-
tractor images, “dummy screens”. The aim is to reduce the number of times
an attacker sees the correct passimages for an intersection attack.

• Implement a limit on the number of incorrect authentications a user can
perform, this stops an impersonator attempting to discover all of the images.
(A “three strikes and you’re out” approach).

The authors note that these solutions may impact memorability, as re-use of
distractor images may result in users recognising distractor images and selecting
them instead of their passimages [20]. However, maintaining the same distractors
for a given passimage does ensure that an intersection attack is not possible since
all images occur with equal frequency. The remaining three options minimise the
potential for an intersection attack.

Hayashi et al. implement the first countermeasure in their Use Your Illusion
Scheme [39] by using the same distractor images for each authentication session.
Thus, the challenge sets are the same each time for any given image from the
user’s passimage set.

Takada et al. propose that including the possibility that a challenge screen
contains no passimages stops intersection attacks [85]. One possible limitation of
this approach is that it is likely that at least one challenge screen must have a
passimage on it. This image could be attacked by a frequency attack. It is likely
this approach mitigates the attack rather than stopping it completely. Takada et
al. also propose a variation on maintaining constant distractors by using a set of
“priority” distractors, which are not always used, but are given preference which
would increase their frequency. This is a less strict version of using a subset of
constant distractors.

Man in the Middle Attack

A man in the middle attack is an attack in which the user is led to believe they are
authenticating legitimately, but they are actually authenticating to the attacker
who has intercepted the communication. The attacker then uses the gathered
credentials for authentication on the legitimate service. As noted by Biddle et.
al [5], a phishing attack could use a man in the middle attack and be applied to
a RBGP scheme. If the attacker is already in possession of the user’s username,
they can capture challenge screens by entering the username for the legitimate
service. These screens can then be used to construct a phishing attack. If the
attacker had no username, the attack would be carried out in real time. A man-
in-the-middle attack would be performed and the user’s username is sent to the
attacker who then uses this in the legitimate site to obtain a valid challenge
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screen. This is then relayed back to the targeted user. The process is repeated
until full authentication has occurred.

Eavesdropping Resulting in Replay Attack

Application of a replay attack to a recognition-based graphical authentication
scheme is similar to considering a replay attack on an alphanumeric password
scheme. A man-in-the-middle attack is constructed and the data copied when a
user performs the authentication process and sends the authentication data to
the server. The data is then “replayed” to the server at another time, potentially
resulting in a successful attack.

2.4.3 Recordability

Recordability refers to the ease with which a user can record their password or
passimages. Passwords can be recorded by writing them down. Considering
this issue, Dunphy et al. [22] examined the feasibility of recording PassFaces by
description. A user study was performed in which 18 participants were asked
to give verbal descriptions of 15 random face images. This resulted in a total
of 6 descriptions per face. Participants were then asked to listen to descriptions
of faces (not described by themselves) and select the image they thought the
description related to. The reasoning behind this was that if people could describe
the photo well enough, then they could potentially record their passfaces by
description and hence share passwords or have them captured. One potential
limitation of this approach is that people could use a mobile phone camera to
capture the image, making recording by description redundant.

Dunphy’s argument against this is that “sometimes digital devices will fail
and description might be the only means of sharing a graphical password” [22].
Examples of these types of situations would have been of benefit at this point,
as would an explanation of why pictures would have to be sent using network
connections. This does not invalidate the results of the paper which indicate that
describing PassFaces in general doesn’t work well. Dunphy’s examination was
the only work found regarding recordability showing that work in this area has
been limited. This could be attributed to the ease with which one can record
using digital devices (e.g. taking a photograph on a mobile phone and storing
the images). It could also be due to the lack of information as to what extent
this could affect the security since it relies on user behavior which is difficult to
control.

2.4.4 Summary

It can be seen from this examination that most research concentrates on one
aspect of the security of RBGP schemes e.g. shoulder surfing or guessability,
and often fails to provide a complete analysis covering all aspects. To provide a
complete overview of analysis to date, the results of this review are summarised
in Table 2.2 which presents a selection of RBGP schemes and summarises their
security aspects in terms of guessability, observability and recordability.
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Scheme/Authors Guessability Observability Recordability
VIP ([17]) Guessability for schemes

VIP1 and VIP2 is reported
as 1

xn

VIP2 aims to reduce
shoulder surfing by hav-
ing a passimage set larger
than the number of
challenge screens

VIP was described as
difficult to record or
describe, however this
did not consider cam-
eras or screen captures.

Faces and Story
([15])

Guessing entropy was calcu-
lated.

Not reported Not reported

PassFaces (Id Arts
Ltd.)

PassFaces are assigned to the
user, and so user choice has
no application. Random
guessability is not reported.

Not reported Dunphy [22] showed
that it was difficult
to describe faces, how-
ever as for VIP this
does not thoroughly
consider the possibility
of using a digital cam-
era or screen capture
to record the images.

Use Your Illusion
[39]

Chance of guessing one image
= 1

(n
p)

where n is the number

of images in the challenge set
and p is the number of images
in the passimage set. The
probability of guessing within
t attempts is reported as t

(n
p)

.

An educated guess attack is
mitigated by applying a dis-
tortion the original images so
that only the real user will
recognise them.

Keyboard entry mitigates
shoulder surfing whilst
constant distractors for a
given passimage to stop
intersection attacks.

Not reported

Hasegawa et al.
[37]

Not reported Images are obscured to
mitigate successful shoul-
der surfing.

Not reported

Komanduri &
Hutchings [50]

Not reported Keyboard selection of pas-
simages to reduce shoul-
der surfing.

Not reported

Hoanca & Mock
[44]

Password space reported,
though the calculations are
not explained.

No feedback to the user is
given on which image has
been selected.

Not reported

Deja Vu [20] Guessability value of 1

(n
m)

Passimage sets are selected
from random art to reduce ex-
ploitation of user choice.

Shoulder surfing counter
measures are hiding image
selection and altering im-
ages so they are unrecog-
nisable to the attacker.
Intersection attack coun-
termeasures are provided
as follows: the challenge
set is always the same,
a subset of distractor im-
ages are constant within
the challenge screen, use
of dummy screens

Not reported

Table 2.2: RBGP Security Summary
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2.5 Context and Scope

As a result of the literature review and analysis, the context and scope of this
work is refined and presented as follows. The scope was restricted to allow the
work to be completed in the time frame with the resources available. Future work
includes extension of the scope, this is discussed further in Chapter 9.

2.5.1 Authentication Environment & ‘Passimages’

The environment being considered is a local authentication environment which
can be physically observed by the attacker. Since local authentication is the au-
thentication environment under consideration, observation attacks which involve
intercepting authentication communication between the client and server (e.g.
man in the middle attacks) are excluded.

At each stage of the research it was necessary to apply hypotheses to a concrete
implementation of a RBGP scheme. The passimages scheme (the term passimages
was established by Charruau et al. [12]) was selected as it reflects a number of
recognition-based schemes. It is similar to schemes proposed by Davis et al.
[15] and the commercial application PassFaces [1], though these schemes use a
variation of image content. Focusing on this configuration allowed the framework
for a metric to be constructed and adaption to different contexts is discussed
further in Chapter 9.

In the passimages scheme the following values are configurable: the number
of challenge screens in a session, the number of distractors per challenge screen,
the number of passimages in a user’s passimage set, and the number of constant
distractors. In the default configuration, the user is presented with four challenge
screens comprising of nine images per screen, one of which is a passimage. An
example challenge screen is shown in Figure 2.7.

In each configuration of the passimages scheme, the order of passimage se-
lection is not considered. This is because of the 17 RBGP schemes presented in
Table 2.1 only six (roughly 35%) used passimage sets which had to be selected in
a specific order. Also Davis et al. recommended order be avoided as the images
were successfully recognised, but order was often not [15]. Since order of selection
is defined as outside the scope of this work the RBGP scheme type which employs
multiple challenge screens is examined. This is because all ordered schemes iden-
tified (with the exception of Charrau et al. [12]) used a single screen. To extend
the application of the metric presented in this work to incorporate all schemes
identified in Table 2.1 further work is discussed in Chapter 9.

In addition to the selection of the number of challenge screens, choice of images
and number of images per screen it was necessary to consider how distractor
images were to be selected. It was decided that three different distractor selection
algorithms would be used. The first was based on random selection of distractors
(using ORDER BY RAND in SQL and the Random class in Java). Random
selection is seen for example in the ImagePass system by Mihajlov et al. [56].
The second, modelled on a VIP1, VIP2, and VIP3 schemes by De Angeli et
al. [16] selected distractors randomly from any category except the category
that the passimages presented in the challenge session belonged to. The final
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Figure 2.7: Passimages Challenge Screen

selection algorithm was an extension of the VIP1 algorithm where distractors
were selected randomly from distinct categories excluding the category that the
passimage belonged to. This algorithm was used by Moncur and Leplatre [58].
These reflect the majority of selection algorithms covered in literature at the time
of writing.

Finally, the images to be used were established as photographs of objects the
largest proportion of schemes identified (six of 17) used this image type. Six of
the schemes were selected by the user, an equal number were provided by the
user, and five were assigned to the user. User selected images are examined in
this research as half of the photographs of object schemes use this approach. In
total 144 images were collected for use in this work. Further details on the images
are provided in Section 4.2.2.

2.5.2 Attacker Model

To put the attacks into context an attacker model is now discussed. This repre-
sents the attacker under consideration in this work, what information they have
access to and their abilities. The attacker attacks the authentication stage where
the users select their passimages. At this point it is assumed the attacker has
already identified a target user and has obtained their username. The aim of the
attacker is to authenticate as the targeted user by impersonating them. Thus
they do not exploit any bugs in the implementation of the mechanism. To im-
personate a user they must identify the user’s passimage set. The attacker does
this through guessing and observation attacks.

The attacker does not attempt offline guessing attacks such as dictionary
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attacks. In this situation for a password, a dictionary attack works as follows.
The attacker captures the hash of the password when it is sent from the client
to the server. They then apply a hash function to a list of possible words (a
dictionary) until a match for the hash captured is found. The password is then
known to be the plain text which was hashed to result in the value captured. If
one were to consider such an attack on a recognition-based graphical password
scheme the form of communication sent from the client to the server when the
user selects their image must be considered. There are a number of possibilities:

1. a hash of the image itself

2. an identifier for the image

3. a hash of the identifier for the image

4. a temporary identifier for the image (identified by Mihajlov [56])

Each of these approaches relies on some secret detail regarding the implementa-
tion of the scheme. The attack relies on the attacker copying this communication
and establishing the connection between the information sent and the passimage.
As the focus of this work is on local authentication and communication obser-
vations attacks are outside the scope, this attack is not considered any further.
Since a RBGP scheme presents the attacker with the passimage on the challenge
screen, an offline attack examining all possible images may not be optimal.

The attacker is unable to access user recorded prompts of their passimages.
This effectively excludes all recordability attacks from the scope of this work.
The reason for this is that it is unclear to what extent users may record their
passimages and how easily an attacker may gain access to this information.

The attacker can continuously attempt authentication without being locked
out of the system. This is because for this work limiting the number of authenti-
cation attempts (e.g. “three strikes and you’re out”) is considered as an auxiliary
attempt to secure the system which are considered outside the scope of this work
as they do not pertain to the mechanism itself.

In general for this work, the attacker can use information which could feasibly
be leaked by or extracted from the RBGP interface. Thus, the attacker can cap-
ture as many challenge screens as required by observation. The attacker doesn’t
know if there are dummy screens employed, or if there are a number of constant
distractors for a passimage. They don’t know how many passimages a user has
in their passimage set. They do know there’s one passimage per challenge screen
and hence how many distractors per screen.

In addition an assumption about the ability of the attacker to deduce the
categories to which potential passimages belong is made. The assumption applies
if images can be split into categories based on their semantic content. It is
assumed the attacker can establish which semantic categories each image belongs
to by examination of the content of the images. It is assumed the attacker
establishes a distribution which is insignificantly different to that of the scheme.
The attacker can also establish an order of bias of user choice for the categories
(e.g. users will select animals more than scenery).
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The attacker attempts each of the attack types separately. That is they do
not combine attacks to increase the chance of success.

These details assume an optimal attacker. This assumption may not be realis-
tic. The purpose of the metric is to provide a comparison of the potential security
of multiple RBGP schemes. Assuming the optimal attacker may not be realistic,
but provides consistent comparison. Fixing the level of the attacker allows us to
focus on the metric and not the skill of the attacker.

2.5.3 Scope Summary

As detailed in this section, a number of details are considered with and outside
the scope of this work. These are summarised as follows:

• The purpose of the attacker is to impersonate a targeted user.

• The attacker will not attempt offline brute force/dictionary attacks.

• The attacker does not have access to the communication between client and
server and so cannot perform replay or phishing attacks.

• The attacker does not have access to user recorded graphical passwords.

• The RBGP schemes modelled have one passimage per screen and have no
restrictions on order of selection.

• Attacks types are attempted separately and not combined.

• The attacker is unaware of the use of dummy screens or constant distractors.

• The attacker can deduce semantic categories and user selection biases where
appropriate.

• The attacker can attempt to authenticate as many times as necessary.

• The attacker is assumed to be “optimal”.

• Intersection attacks are defined as a special case of frequency attacks and
so frequency attacks are considered for the final model.

In summary, this work considers guessing and observation attacks (exclusive
of phishing and replay attacks) for RBGP schemes were one passimage is shown
per challenge screen, where order of passimage selection is irrelevant. This con-
figuration reflects a common configuration for a RBGP scheme e.g. PassFaces
[1], Davis et al.’s Faces [15], and Pering et al. [61] though these schemes use a
variation of image content.
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2.6 Summary

This chapter has summarised current literature related to graphical passwords.
The current state of security research relating to RBGPs has now been examined.
In particular it has highlighted an inconsistent approach to measuring security
levels of RBGPs. The first step in addressing this is to consider what requirements
a security metric for RBGPs should have. Approaches to measuring security and
metric requirements are considered in the next chapter.
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Chapter 3

Measuring Security

This chapter aims to introduce some research regarding a high level approach to
examining the security of authentication mechanisms in general. The potential
qualities of the metric are then considered. The chapter concludes with a list of
metric requirements, qualities against which the metric will be assessed.

3.1 Measuring Authentication Security

Attempts at examining the security of authentication mechanisms in general have
been made. For example Renaud presents an overall evaluation of an authenti-
cation mechanism as a calculation of an “opportunity” measure of the attacker.
This aims to reflect how much opportunity the attacker has. It is proposed in
terms of a function of the guessability, observability, recordability and analysabil-
ity divided by the resistability [69]. Values for the component parts are discussed
on a high level, for example any password as strong as a 4 digit pin (which has
guessability of 1 in 10,000 due to the 10,000 four digit combinations) is assigned a
0, any password which is weaker is assigned a “proportionally higher guessability
figure”. The paper is focused on the approach and details on how the proportion
would be established are limited. Similarly, a value of 1 is assigned to record-
ability if the password is easily recorded, details are limited regarding at which
point a password is easily recorded. The function adds the constituent parts and
divides by the resistability. One potential limitation of adding the values is that
a system could be deemed less secure if it has a poor level for one aspect (such
as observability) but this aspect may not be important in a given context (e.g.
if the system will only be accessed from a secure location where only the user
is present). The resulting opportunity value could be skewed. This work con-
tributes to the area by highlighting the areas of consideration for authentication
security, and suggesting a high level approach to examining the security.

A similar approach to measuring security of authentication mechanisms is
given by Mihajlov et al. in [55] and [57]. In these works the authors establish
a quantitative evaluation of the quality of authentication mechanisms in terms
of meeting their identified requirements for security and usability. The values
assigned for the component parts are high level, similar to those presented by
Renaud in [69]. The approach taken assesses the suitability in terms of quality
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criteria (the requirements) which are: secrecy, abundance, revelation, privacy,
and breakability.

Secrecy relates to the predictability of a key where the score is assigned based
on “how many people find the key predictable” [55]. Abundance refers to the
effective password space (the size of the collection of likely passwords), a value
of low medium or high is identified based on the size. Calculation of this value is
indicated as the use of a combination or a permutation calculation. Details on how
this relates to high, medium or low levels of predictability presented in the work
are not presented in the paper and thus assumptions regarding this cannot be
made. Revelation measures the “disclosure level of the authentication key from a
user and system perspective”. This is further split into system revelation and user
revelation and each of these aspects has a maximum value of 0.5. Privacy relates
to the “amount of private details required by the authentication mechanism”.
The items of data considered are name, DOB, email and “additional data”, each
of which reduces the value of 1 by 0.25. The reasoning is that each of these items
contributes to a possible identity theft, but this could equally depend on how
securely the information is stored and who has access to this data. Breakability
refers to the effort required to get access to an account. This is categorised
into the types of attack e.g. brute-force, dictionary and key-logging, with each
attack providing a deficiency maximum of 0.25. The attacks mentioned appear
specific to passwords, and details on how to calculate the value for deficiency of
each attack are not presented in the paper. A similar approach is taken to the
usability aspects, but usability is outside the scope of this work and so shall not
be discussed.

A single overall quality value is then defined as the Euclidean distance of the
security criteria and the usability criteria where the individual squared values are
summed and the square root is applied. The work is based on concepts proposed
by Renaud in [68], where the qualities are considered in terms of a 3D space.
The Euclidean distance is applied by Renaud and a similar approach is taken by
Mihajlov et al. [55].

3.2 Security Metrics Background

Since a large proportion of this work relates to the construction of a measure
or metric for the security of RBGP mechanisms, it is appropriate to consider
relevant security metric research. This section aims to provide an overview of
the attributes to be considered when constructing a metric. As a result a list
of requirements to be applied to the metric proposed in this research will be
established.

The metric qualities identified in this chapter are primarily based upon those
qualities identified in the Workshop on Information Security System Scoring and
Ranking, reported by Henning et al. [41]. As indicated by Henning, within the
workshop there were multiple opinions on what constituted a “good” security
metric. The qualities identified here are used as a benchmark to assess the final
metric. It is not claimed that these qualities are exhaustive. However, many of
the identified qualities are noted as important by other researchers and for this
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reason it is proposed they are sufficient for evaluating the final metric.
Henning et al. [41], Wang [98] and Jansen [47] agree that the term “security

metrics” is often used but with no clear singular interpretation or definition.
Jansen also comments on the “misnomer” of using the word metric. He argues
that metric implies that well established concepts from physics and other sciences
apply equally to information technology, where in reality this is not the case.
However, for the purpose of this research, the term metric will be used to denote
a measurement of resistance to the attacks covered in this research.

Henning et al. categorised metrics (in the Workshop on Information Secu-
rity System Scoring and Ranking, reported in [41]) into three areas: technical,
operational and organisational. Technical metrics are used as comparison for
technical objects such as algorithms and products. An example of a technical
metric discussed by Vaughn et al. [97] is the “number of vulnerabilities of a
program which can be detected with a scanner”. Operational metrics are used
to depict operational environments such as operating practices. An example of
an operational metric discussed by Vaughn et al. [97] is an operational practice
metric which measures the security practices of those who affect the information
assurance policies, e.g. the number of users with a policy compliant password.
Organisational metrics are related to processes of organisations. An example
of an organisational metric discussed by Vaughn et al. [97] is process maturity
metrics such as the software security engineering capability model (SSE-CMM).

Other taxonomies follow a similar approach with those proposed by Jansen
[47] and Savola [77] each proposing a version of technical and organisational
metrics. Savola divides metrics for information security management into three
categories; management, operational and technical [77]. Management is the same
as Henning’s organisational definition, and definitions of operational and technical
remain identical. Bohme notes that management metrics, e.g. return on security
investment, are often used to establish where to spend money in terms of security
[7]. This work differs as it aims to establish a measurement related to the ease
with which a recognition-based graphical password system can be attacked by
examining possible threats, attacks and related counter measures. The work
presented in this thesis is related to the security of a specific system, therefore it
falls under the category of technical as defined by Henning et al. [41].

While a large proportion of literature relates to business management or soft-
ware metrics, there are a number of attributes of “good” security metrics dis-
cussed in related literature. These are discussed in this chapter to provide a
method of evaluating the metric produced by this research. Some examples of
proposed criteria for metrics were presented in the Workshop on Information
Security System Scoring and Ranking by Henning et al. [41] and discussed by
Jansen [47], Vaughn et al. [97], and Wang [98]. Each is discussed here in turn
with specific attention to why they have been included or excluded from the final
requirements.

In this work these qualities are categorised into two distinct groups. The first
group contains attributes that, whilst useful, rely somewhat on the context in
which they are applied and so these qualities are termed as Context Dependent.
The remaining qualities are context independent and can be assessed with no
consideration of context. The context dependent qualities are aims of this re-
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search, but cannot always be easily assessed. This can be seen by considering an
example such as effectiveness. Vaughn et al. note that effectiveness means that a
metric can be quickly evaluated with minimal cost [97]. The problem arises when
one tries to establish how quick is quick enough, and at what point is the cost
low enough. A metric may be effective in one situation or context such as for
local machine authentication, but not for mobile authentication. In contrast the
context independent qualities can be evaluated to determine if they have been
achieved and so are included explicitly in the metric requirements. The qualities
are detailed in the following section. The chapter concludes in Section 3.4 by
summarising the requirements established for evaluation of the metric proposed
in this work.

3.3 Potential Qualities of a Security Metric

3.3.1 Context Dependent Qualities

Clear Scope

As highlighted by Vaughn et al. [97], scope dictates that the problem domain
should be clearly identified. This is achieved throughout the thesis by the litera-
ture review and research hypothesis and is also disseminated in related publica-
tions ( [25], [24], and [26]).

Sound foundation

Extending the scope quality, Vaughn et al. [97] state that sound foundation means
that the metric should be based on a “well-defined model of the portion of the
problem domain it describes”. An important aspect of this work is to establish
a mathematical model of the security of recognition-based graphical passwords
(with respect to observation and guessing attacks) which is incorporated into a
metric. This work aims to provide a well-defined model but, as with all qualities
in the context dependent category, this quality is not easily assessed. It is unclear
at what point the model is well enough defined. For this reason, whilst sound
foundation is addressed in construction of the metric, it is not explicitly assessed
as part of this research.

Process

Vaughn et al. [97] identify that the process for evaluation of the metric should be
thoroughly defined, i.e. details of the information necessary to apply the metric
should be provided. The definition of the final metric and instructions on how to
apply it are provided in Chapter 8.

Relevance

Vaughn et al. [97] highlight that a metric must be relevant to the context in which
it is being used. The authors say this can be achieved by being useful to decision
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makers. Both Vaughn et al. and Jansen agree on this attribute. Relevance is
context dependent and so it is not included in the requirements of the metric.

Effectiveness

Vaughn et al. [97] claim that for a metric to be useful, it should be possible to
quickly evaluate the metric. This is also agreed by Jansen [47], but as with the
preceding context-dependent qualities it would be difficult to ascertain at which
point this quality is achieved, and so it is not included in the requirements which
are directly assessed.

3.3.2 Context Independent Qualities

Repeatable

Jansen states that in order to be of value, a metric must be repeatable [47].
This means that a second assessment by the same evaluator provides an identical
result. Vaughn et al. agree [97]. Thus due to agreement and the ability to
evaluate this quality, this is included in the final requirements.

Reproducible

Jansen states that in order to be of value, a metric must be reproducible [47].
This means that second assessment by a different evaluator provides an identical
result. Once more, Vaughn et al. [97] are in agreement with Jansen. Thus due
to agreement and the ability to evaluate this quality, this is included in the final
requirements.

Quantitative

Wang [98] notes that some proposed metrics are qualitative rather than quan-
titative and that this is not suitable, this is in agreement with Vaughn et al.
[97]. Also, if the metric is quantitative it is then easier to make comparisons
between RBGP schemes which is an essential aim of this work as Herley et al.
indicate ability to compare authentication schemes is essential [42]. Thus due to
agreement and the ability to evaluate this quality, this is included in the final
requirements.

Objective

Objectivity ensures that an individual’s perception has no influence on the result
of the metric when evaluated, and links into reproducibility since if an individual’s
perception impacts their interpretation of the metric then this could result in a
different evaluator obtaining a different result. Wang [98] notes that metrics are
often subjective rather than objective and states this is not preferable, this is also
noted by Vaughn et al. [97].

55



Dynamic

As noted by Vaughn et al. [97], dynamic metrics are those which can evolve over
time whilst static metrics do not. This links to the repeatability and reproduca-
bility qualities and would mean that dynamic metrics would not be repeatable
and reproducible since they could have different values at a different point in
time.

Extensible

Extensibility of the metric is achieved by allowing new components to be added.
Wang notes that there is often no time aspect associated with current metrics,
essentially saying that something which may be secure today might not be to-
morrow [98]. Extensibility of the metric will be established by making the metric
easily adaptable. This means it will be possible to change the definitions of “se-
cure” not only to match the situation, but also to match any new attacks or
countermeasures.

Absolute/Relative

Absolute measures are independent of other measures whilst relative metrics are
only meaningful within context. No preference is highlighted here by Vaughn et
al. and so neither attribute will be included in the final requirements.

Direct/Indirect

Hasle et al. note that direct metrics are obtained by measurement of the property
of interest [38]. Hasle et al. also note that indirect metrics are derived from a
measurement of other properties which have a strong correlation with the prop-
erty of interest [38]. Vaughn et al. claim that direct metrics are often preferable,
but sometimes not possible [97]. Thus a direct measure is aimed for, but it is
acknowledged that this may not be possible thus it shall not be included in the
metric requirements.

3.4 Identified Metric Requirements

From the literature reviewed a number of attributes of good security metrics were
recurrent and will be used to assess the finalised metric. The final metric should
be:

• Repeatable - Multiple evaluations by the same evaluator result in the same
end value.

• Reproducible - Multiple evaluations by different evaluators result in the
same end value.

• Extensible (called dynamic in [97]) - The metric should be designed in
such a way which makes it theoretically possible to extend the metric to
incorporate further attacks .
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• Objective - The metric should not be subjective, that is it should not be
based upon the opinions of the evaluator but on the configuration of the
RBGP under evaluation.

• Quantitative - The metric should be numerical in nature.

At this stage, the review of relevant background information has been pre-
sented. This culminated in a threat model which represents the areas of concern
and a list of identified metric requirements. The next stage is to consider the
individual areas of concern with the aim of establishing mathematical models.
The first area is “guessability” which is addressed in the following chapter.
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Chapter 4

Guessability Evaluations

Users often select easily remembered passwords which results in more successful
guessing attacks (shown by Gaw and Felten [35] and Klein [49] for example). It
reasonably follows that there is potential for user choice of passimages to reduce
the passimage space and hence the security of RBGPs. Guessability is an aspect
of authentication security which refers to the ease with which an attacker can
guess the user’s authentication secret. As with passwords, user choice of RBGPs
could impact guessability. As indicated in the threat model (Figure 2.6 on page
37) there are three approaches to a guessing attack:

• Random guessing

• Guessing based on predictable user choices for a population of users (group
bias)

• Guessing based on an individual user’s preferences (individual bias)

In this chapter, each of these approaches is discussed in turn. The aim is to
establish a model which estimates the number of attacks against a user’s passim-
age set for a RBGP authentication scheme before success. The model could be
established in a number of ways:

• Mathematical calculations of combinations

• Simulation

• Combination of user experiments and simulations

The first approach was taken for random guessability as user choice has no im-
pact on the random guessability and the calculation is feasible. This is discussed
in Section 4.1. Mathematical calculations of combinations or simulations alone
were not appropriate for the second or third types of guessing attack as these
aimed to exploit user bias, which could not realistically be predicted mathemat-
ically. Thus for the second and third types of guessing attacks, a combination of
user studies and simulations were used, these are discussed in Sections 4.2 and
4.3.
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4.1 Random Guessability

Assuming one passimage per challenge screen, x images per screen (i.e. the
number of distractors per screen plus one passimage) and s challenge screens, the
probability of correctly guessing the correct passimages for a challenge session
is shown in Equation 4.1. This is calculated by multiplying the probability of
one correctly guessing one screen, which is 1

x
s times (where s is the number

of screens). This provides the probability of correctly guessing each screen in
succession.

1

xs
(4.1)

The denominator of Equation 4.1 will be used directly to reflect the maximum
number of random guessing attacks required before success, this is shown in
Equation 4.2.

xs (4.2)

This reflects an estimate, and such an attack could be successful achieved
with more or less attempts. Applying this to the passimages scheme (discussed
in Chapter 2, Section 2.5.1) gives an example random guessability value as shown
in Equation 4.3 .

94 = 6561 (4.3)

4.2 Guessability for a User Group: General Pop-

ulation

User choice influences the security of passwords by making them susceptible to
dictionary attacks. Thus user choice may also influence the security of recognition-
based graphical passwords. This is highlighted by De Angeli et al. [16] who noted
that the issue of predictability in user selected passimages still required evaluation
at the time of writing. The research reported in this section aims to contribute
evidence for a bias in user choice of images and considers the impact this could
have on guessability.

Related works include that by Davis et al. [15] who examined the effect
of user choice of images on the security of the Story and Face schemes. The
authors estimated the probability of a given set of passimages (which they refer
to as a password) being selected from either scheme. Password selection was
restricted as images had to be selected from distinct categories (established by the
experimenters), and only a subset of categories were presented to the user upon
selection. To attack a password, the set of all combinations of passwords was first
reduced based on the categories presented to the users upon selection (removing
any passwords which contained images from any categories not presented to the
user). The set of all passwords was then ordered by calculation of the probabilities
using the model established by Davis et al. in [15]. The position of the passimage
in this ordered list was then the number of guesses required to correctly guess
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Figure 4.1: Example Passimage - Image: Maggie Smith / FreeDigitalPhotos.net

the user’s password (passimage set).
It could be argued that the restriction of having only one image per category

significantly increases the chance of guessing the passimage set due to the con-
sequently reduced password space. The work also considers the probability of
the whole passimage set being selected, and not the probability of images from
individual categories being selected and this bias being exploited by selecting the
image on a challenge screen from the “most likely” category. Accordingly there
was scope to consider this type of attack. For the purposes of this research, this
attack will be referred to as a semantic ordered guessing attack (SOGA). The
attack is examined in this section with an aim to establish an estimate of the
required number of attacks of this type against a user before success.

The passimages scheme, described in Chapter 2 was used in this research. An
example passimage from the scheme is shown in Fig. 4.1. The scheme had a total
of 144 potential images split into twelve semantic categories (this process will be
discussed in Section 4.2.2) and three distractor selection algorithms were used as
follows:

1. Random distractor selection - images other than the passimage were selected
using a pseudo-random number generator.

2. Random distractor selection avoiding the passcategory - distractor images
were randomly selected from all categories except the category to which
the passimage belonged (the passcategory). Multiple distractors could be
selected from the same category.

3. Random distractor selection from distinct categories avoiding
the passcategory - distractor images were selected randomly from all cat-
egories except the passcategory, with at most one distractor selected from
any given category.

4.2.1 Hypothesis

The research hypothesis of this experiment was as follows:

Users’ choice of passimages will not be uniformly distributed between semantic
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categories. This bias can be used to construct an attack which has a higher suc-
cess rate than random guessing. The success rates of the attack are contingent on
the algorithm used to select distractor images.

This was split into the following sub-hypotheses:

• H1 User selections for passimages will be non-uniformly distributed between
the semantic categories.

• H2 Bias in user selections for passimages could be exploited to achieve more
successful attacks than expected by random guessing.

• H3 The distractor selection algorithm has a significant impact on the success
rate of SOGAs.

To examine the research hypothesis, four stages were proposed:

1. Categorisation of the passimages into non-overlapping semantic categories.

2. Examination of the distribution of passimage choices between the categories
to determine any user bias.

3. Exploitation of the bias as extrapolated from the second step by construc-
tion of an attack.

4. Analysis of attack success rates for different distractor selection algorithms
to determine if there exists a correlation between the distractor selection
algorithm and success rates of SOGAs.

The first two stages related to hypothesis H1. The third stage related to
hypothesis H2 and the fourth related to H3 .

4.2.2 Categorisation of Image Passwords

The first stage involved splitting the passimages into non-overlapping semantic
categories based on the image content. For the passimages scheme there was con-
sidered to be little ambiguity over the image content and hence the images were
categorised by the experiment conductor. This assumption may have influenced
results, and this is discussed further in Section 4.2.7. 144 digital photographic
images were split into twelve categories which were identified based on the main
semantic content of the images. The categories were as follows:

• Food and Drink

• Cartoon and Fictional Characters

• Scenery

• Animals

• Faces and Body Parts
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Figure 4.2: Passimages Image Selection Counts

• Transport

• Clothing

• Entertainment

• Trees, plants and flowers

• Skyscapes

• Buildings, tools and devices

• People

Each category had 12 images to remove potential bias in the selection due to
more images being in any particular category. Example images are shown with
their designated categories in Appendix A.

4.2.3 Passimages User Selection Results - H1 Analysis

A total of 64 individuals participated, primarily students and employees of the
University of Glasgow. Each participant selected a passimage set of four images,
resulting in 256 passimage selections. Of the 144 images, 42 images were not
selected at all. This indicates potential for bias towards individual images, shown
in Figure 4.2 which shows the number of images selected at each value of times
selected (i.e. selected 0,1,2,... times).

The uneven distribution of user choice between semantic categories is shown
in Figure 4.3, where error bars are also shown and were calculated as described
in Appendix B Section B.2.3 (95% confidence intervals for proportions, details
provided by Rumsey in [71, Page 207]). Food and drink was the most popular
category with 37 selections; cartoon characters came a close second with 30 selec-
tions. The confidence interval for the category “People” could not be calculated
as the condition np̂ ≥ 10 required to calculate the confidence interval was not
met. The value of n was 256, the value of p was 0.01, resulting in a value of 2.56.

To prove the significance of the bias in user selection (H1) it was necessary
to establish a significant difference in the observed distribution of the image se-
lections compared to a uniform distribution. The chi-square test was applied as
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Figure 4.3: Passimages Semantic Categories Selection Distribution (with Error
Bars)

this compares the probability of at least two samples of non-ordered categorical
data to establish if they are statistically different from each other (see Howell,
[45]). Table 4.1 shows the number of selections in each category and calculates

the individual chi-square values (O−E
2

E
where O is the observed frequencies and

E is the expected frequencies) to be summed to calculate the overall χ2 value.
The expected frequencies were calculated as the total number of selections (256)
divided by the number of categories (12), giving an expected value of 21.33 se-
lections in each category for a uniform distribution. The degrees of freedom is
the number of independent variables in the final calculation less one (see Howell,
[45, Page 521]). In this instance since there are 12 categories, minus one gives 11
degrees of freedom. Using a 0.05 significance level (giving a 95% confidence level)
the value required to reject the null hypothesis was 19.68 (see Howell, [45, Page

697]). The individual values of O−E2

E
sum to 42.78 which means the null hypoth-

esis related to H1 can be rejected. This contributes evidence of a significant bias
in user selection of passimages.

4.2.4 Exploiting User Choice- Semantic Ordered Guess-
ing Attack (SOGA) H2

To exploit the established bias in user choice of passimages, the attack proposed
in this work is referred to as a “Semantic Ordered Guessing Attack” (SOGA). In
this attack the attacker has knowledge of the categories from which passimages
are most likely to be selected by users. It should be noted that a SOGA involves a
human element in the categorisation of the images. The attacker could make the
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Category Observed
Number of
Selections

Expected
Number of
Selections

(O−E)2

E

Food and Drink 37 21.33 11.50
Cartoon and Fictional
Characters

30 21.33 3.52

Scenery 29 21.33 2.75
Animals 28 21.33 2.08
Faces and Body Parts 23 21.33 0.13
Transport 22 21.33 0.02
Clothing 20 21.33 0.08
Entertainment 20 21.33 0.08
Trees, plants and flowers 17 21.33 0.88
Skyscapes 15 21.33 1.88
Buildings, tools and devices 12 21.33 4.08
People 3 21.33 15.75

Table 4.1: Passimages Selection Analysis

assumption of what people would be most likely to choose given an authentication
screen, or they could perform work to establish what kind of images users may
prefer from a given image set. This information could be obtained in a similar
method to that described in Section 4.2.2 by asking people to select images from
the same group of images presented in registration. Alternatively, the attacker
could make assumptions regarding the category bias and hence the “most likely”
image.

To perform a SOGA, the attacker enters the username of the victim and is
then presented with an authentication challenge screen which has a passimage
from the user’s passimage set and a selection of distractors. The attacker then
attempts to authenticate by selecting the image from the most likely category
given the challenge screen presented.

An example attack is illustrated by Figure 4.4 which represents a challenge
screen where the attacker identifies the categories to which the images belong.
The passimage has been highlighted by a square border for illustration only. The
right side of Figure 4.4 shows the attacker ordering the categories from most
likely (at the top) to the least likely (at the bottom). The attacker would then
select the image from the category at the top of the list, in this case the attack
is successful as the attacker picks the image of a steak.

To examine the significance of the success rate of SOGAs compared with
random guessing (H2), simulations of SOGAs were constructed by assuming the
“perfect” attacker who has knowledge of the categories and bias of user choice
within those categories. Each passimage selection was used to generate challenge
screens using each of the distractor selection algorithms. A total of 256 ∗ 3 =
768 (256 selections multiplied by three distractor selection algorithms) challenge
screens were generated and attacked. If the passimage for a screen was in the
most likely category using the ordering established previously (when compared
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Figure 4.4: SOGA Example

Figure 4.5: Percentage of Successful SOGA for Each Scheme Variation

to the categories of the other images on screen) then the attack was deemed
successful.

The results of the SOGA for the passimages scheme are shown in Figure 4.5,
with error bars calculated in the same way as for the user choice distribution. It
can be seen from this figure that the most resistant distractor selection algorithm
was random selection from categories other than the passimage category, in this
case the attack was successful for 20%± 4.9% of the 256 attacks. The second most
effective algorithm was random selection, which resulted in an attack success rate
of 21% ± 4.99%. The worst resistance to attacks was with the distractor selection
of distinct categories which resulted in an attack success rate of 23% ± 5.16%.
This was as expected since a user bias in image selection towards more popular
categories meant selection from the remaining categories for distractors (when a
user has selected from a highly popular category) would mean the distractors will
be from less popular categories providing optimal conditions for a SOGA.

The next step was to establish the significance of the success rates. To select an
appropriate significance test, the distribution of the data needed to be established.
The attack simulation data which resulted was a binomial distribution since it
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Successful
Attacks

Failed Attacks Total

Observed 53 203 256
Expected 28.44 227.55 256
Chi
Squared
Value

21.20 2.65 23.85

Table 4.2: SOGA Random Distractor Selection Chi-square Analysis

met the following criteria (as detailed by Rumsey in [71, page 135])

1. There were a fixed number of attacks (768).

2. Each attack had two possible outcomes, success or failure.

3. The probability of success (p) was the same for each attack (1
9
, since nine

images were shown per challenge screen).

4. The attacks were independent of each other i.e. success on one screen had
no influence on the success or failure of subsequent attacks

H2 stated that bias could be exploited to achieve a success rate significantly
higher than that expected by chance. To establish this aim and since the data was
binomial, it was appropriate to use a chi-square goodness-of-fit test to conclude
if the observed frequencies of success and failure was significantly different from
that expected by chance [45, page 142].

The number of expected successful attacks was calculated as n ∗ p where n
was the number of attacks (256 for each distractor algorithms, 64 users selecting
4 passimages) and p was the probability of success on a given screen (which was
1
9
, the random probability of success where 9 was the total number of images

on the challenge screen). The expected number of failed attacks was calculated
as n − (n ∗ p) = 256 − (256 ∗ 1

9
) = 227.56, i.e. the total number of attacks

less the number of expected successful attacks. The significance value was set at
0.05 to provide 95% confidence in the rejection of the null hypothesis related to
H2. Tables 4.2, 4.3, and 4.4 show the results with the chi-square values for each
distractor selection algorithm. There was only one degree of freedom (since there
were two categories, success or failure) and so using the table given by Howell in
[45, Page 697] a chi-square value greater than 3.84 indicated significance. This
allowed rejection of the null hypothesis related to H2 for each of the distractor
selection algorithms, showing SOGAs were more successful than random guessing
for each distractor selection algorithm.

4.2.5 H3 Analysis - Establishing a Distractor Selection
Contingency

The final hypotheses to be tested for significance was H3. The aim of H3 was
to establish contingency between the algorithm for distractor selection and the
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Successful
Attacks

Failed Attacks Total

Observed 51 205 256
Expected 28.44 227.55 256
Chi
Squared
Value

17.88 2.23 20.11

Table 4.3: SOGA Avoiding Passcategory Distractor Selection Chi-square Analysis

Successful
Attacks

Failed Attacks Total

Observed 58 198 256
Expected 28.44 227.55 256
Chi
Squared
Value

30.71 3.84 34.55

Table 4.4: SOGA Distinct Categories Avoiding Passcategory Distractor Selection
Chi-square Analysis

success of the attacks. Due to this and the categorical nature of the data, it
was appropriate to apply a contingency chi-square table provided by Howell on
[45, Page 10, Figure 1.1]. The contingency table is shown in Table 4.5, where
the expected values are shown in parenthesis next to the observed values. The
expected values in a contingency table are calculated as Eij =

RiCj

N
where Ri is

the total for the row of the related observed value, Cj is the total for the column
of the related observed value and N is the total number of observations. The
number of degrees of freedom are calculated as (R − 1)(C − 1) where R is the
number of rows (exclusive of headings and totals) and C is the number of columns
(exclusive of headings and totals), thus Table 4.5 has 2 degrees of freedom. The
total chi-square value was χ2 = 0.61, the value for significance ( at 0.05 level,
from Howell [45, Page 697]) is 5.99, and so the null hypothesis relating to H3

could not be rejected. Thus, it is not clear if using a different distractor selection
algorithm has a significant impact on the success rate of SOGAs.

Distractor Algorithm Passes (O−E)2

E
Fails (O−E)2

E
Total

Random 53 (54) 0.019 203 (202) 0.005 256
Non-distinct Categories
Avoiding the Passcategory

51 (54) 0.17 205 (202) 0.044 256

Distinct Categories Avoid-
ing the Passcategory

58 (54) 0.30 198 (202) 0.079 256

Total 162 606 768

Table 4.5: SOGA Distractor Selection Algorithm Contingency Analysis
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Distractor Selec-
tion Algorithm

Percentage
of Suc-
cessful
Attacks

Revised x
Value

SOGA Value Random Guess-
ing Value

Random 21% 4.76 513 6561
Passimages from
categories other
than the passim-
age category

20% 5.00 625 6561

Passimages from
distinct cate-
gories other than
the passimage
category

23% 4.35 358 6561

Table 4.6: SOGA Results and Values Summary

4.2.6 Computing the Guessability

It has been shown by the work reported in this section that it is possible to
construct a guessing attack based on the bias of user choice of passimages. This
attack results in more success than would be expected by chance alone. The bias
in user selection towards particular image categories was shown for the passim-
ages scheme and was summarised in Figure 4.3. Success rates were examined
for SOGAs with three distractor selection algorithms, and were shown to have
statistically significant higher success rates than random guessing.

21% ±4.99% of passimage screens were successfully attacked where distrac-
tors were selected randomly (ignoring the semantic categories). 23% ±5.16%
of passimage screens were successfully attacked where distractors were selected
from distinct passimage categories (excluding the passimage category) and 20%
±4.90% of screens were successfully attacked where distractors were selected from
passimage categories (excluding the passimage category). These figures relate to
attacks on individual screens, and it should be noted that SOGAs are made more
difficult by using multiple challenge screens.

A calculation of an ordered guessability value for RBGPs is now presented.
This is achieved by first calculating a revised number of passimages per challenge
screen and calculating the ordered guessability using Equation 4.1 with the revised
number of passimages value. The steps are as follows:

1. Collect a sample of user selected images, a large sample is better.

2. Establish the bias in user choice by examining the categories of the passim-
ages selected and ordering the categories from most to least popular.

3. Simulate screen generation and establish the percentage of screens from
which the passimage is in the “most popular” category.

4. Calculate the revised number of images per screen by solving Equation 4.4
for x, the revised number of images per challenge screen, where p denotes
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the percentage of successful attacks.

1

x
=

p

100
(4.4)

5. Calculate the revised guessability as xs where x is as calculated in Equation
4.4 and s is the number of challenge screens.

Using this approach, success rates and SOGA values are summarised in Table
4.6, where a comparison to the random guessing value is also shown. Passimage
guessability varied between 10 and 18 times larger (rounding to the nearest inte-
ger) than predicted using the random guessing value for 9 images with 4 screens.
It is acknowledged that steps 1-3 are the optimal solution in terms of calculating
this for a realistic estimate of a specific scheme. However, in terms of assessing
this value for the final metric it is recommended that the percentages obtained in
this work are used as estimates. This limits the results, which is discussed further
in the next section.

4.2.7 Limitations and Further Related Work

Limitations

There are some limitations of this experiment which are now discussed. The
primary limitation of this work is that the percentages of success reported were
specific to the users and passimages used in this experiment. It is proposed that
if a more accurate rate were required for a different set of images with different
categories the process of gathering the biases should be repeated. These biases
could then be used in simulations to establish a more representative success rate.

There may also have been ambiguity in the image content resulting in a bias
in the categorisation. To examine this further, a fellow researcher was asked to
examine the semantic content of the images. They were asked to place the im-
ages into the correct category given the list of categories previously established in
Section 4.2.2. Five of the twelve categories were exactly as established initially,
however the remaining categories had differences in the distribution of the im-
ages resulting in a different number of images in these categories. This bias in
categorisation could have had an effect on the success rates of SOGAs.

To determine if there was a significant statistical difference in the success
of the SOGAs using the different category distribution, the simulations were
performed again with the adjusted distribution. Chi-squared analysis was then
applied to establish if the success rates were significantly different to that of the
success rates for the original category distribution. Each of the three algorithms
(random selection, non-distinct categories avoiding the passcategory and distinct
categories avoiding the passcategory) had chi-square values less than the 3.84
value required for significance (using the table given by Howell on [45, Page 697]
a value greater than 3.84 indicated significance for 0.05). The values were 0.0238,
0.881, and 0.357 respectively. Thus, the issue of differing distributions was not
perceived to be a significant issue. However, there could also have been issues
with the uneven distribution of images in the categories. If some categories had
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less than 12 images it may not have been an equal comparison to the success
rate when the original distribution had 12 images in it. To ensure no ambiguity,
multiple examiners could have been used to establish the categorisation of the
images. In particular, the food, animal, cartoon, clothing, and trees, plants
and flowers provided the best categories for lack of confusion over the semantic
category.

Another limitation of this work was that the attacks were performed against
the same data used to populate the category biases. Ideally the data should have
been separated into testing data and category bias data. This would have helped
confirm the predictive power of the model. Also, attacks were performed against
individual screens which does not reflect the success of attacking a user for a
challenge session. Multiple challenge screens were accounted for by including
the number of screens in the final calculation of the number of attacks required.
This was to provide consistency with the random guessing value. An alternative
approach would be to attack a user’s whole passimage set and not individual
challenge screens.

The attack algorithm was such that if a passimage was in the most popular
category on a screen then the attack would be successful. This made the assump-
tion of an optimal attacker. For this attack if there are other images in the same
category then the attacker has a 1

n
chance of success, where n is the number of

images on the challenge screen in the most popular category.
It should also be said that distractor selection will likely not be the only po-

tentially influential factor, though it was the only one explicitly examined in this
work. To account for different factors the experiment should be repeated for mul-
tiple variables and examining the resulting success rates by use of a contingency
table as conducted for the distractor algorithms examined in Table 4.5. Exam-
ples of variables could include the number of images on screen and the number
of categories.

The attacker is assumed to have knowledge of the bias in user selection in
this attack, this may not be a reasonable assumption. To examine this further it
would be beneficial to perform an experiment in which participants were asked to
categorise images. The level of agreement could then be evaluated. Participants
could then be asked to rate the categories in order of which they believe would
be most likely to be selected to the least likely. This could then be compared to
the bias obtained and the differences evaluated.

Further Related Work and Discussion

In addition to the limitations discussed, related work by Hayashi et al. was
published approximately six months after this work was completed. Hayashi et al.
[40] considered educated guess attacks against the Use Your Illusion scheme where
the users provide their own passimages. Educated guessing attacks are further
subdivided into collective educated guess attacks (where guessing is based on the
images thought to be more popular by a collection of users) and individualized
educated guess attacks (where guessing is based on the images likely to be selected
by an individual user). The authors performed two user studies to examine these
attacks, and evaluated the use of the distortion of images approach taken in [39]
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to mitigate these attacks. They presented five hypotheses, of which two were
similar to this work:

1. “If a recognition-based authentication system lets users choose original,
undistorted pictures as authentication images, an attacker can predict the
images more accurately by using educated guesses than by guessing ran-
domly. ”

2. “Users tend to choose specific categories of images as their authentication
images.”

Differences between this work and that reported in [40] include that here an attack
based on collective information about user biases was presented, where in [40] the
authors asked participants with no knowledge of a user (or potential biases) to
attack their images. Also, the images used were provided by the participants,
and not selected from a provided set as in this work. Another difference is that
participants were asked to guess three authentication images from a set of 27, this
does not reflect the RBGP scheme under consideration in this work. In addition,
the participants were asked to make their “10 best guesses”, which also doesn’t
reflect the common format where guesses would be limited to one per screen.

For strangers’ guesses (educated guess attacks) 3 of the 15 attackers correctly
identified all three passimages from the set of 27 images shown within 10 guesses.
These attackers reportedly selected the images which had similar properties, high-
lighting a connection between the images taken by the victim which was exploited,
unlike the attack proposed in this work which takes commonly selected images
and prioritises them for automated guessing. Hayashi et al. also independently
identified the attack detailed in this work (though they do not call it a semantic
ordered guessing attack). This contributes evidence of the relevance of this work.

It is also possible that the bias established could be for the image set used
here only. This is unlikely as bias in user choice of images has been demonstrated
elsewhere (e.g. [13],[15], and [40]). Ideally, to establish the success rate for a
different set of images, a similar experiment should be conducted with a repre-
sentative population and the passimages under consideration. An attack could
be constructed which considers the bias to a specific image rather than a cat-
egory. The attack would be adjusted slightly to establish a bias to individual
images and then performed again using this ordering. If this were extended to a
complete passimage set, this would be very similar to the work reported by Davis
et al. in [15], the only difference would be in the ordering obtained by Davis by
calculations but in this work it would be by ordering the frequency of selections.
Another difference would be that Davis’s work covers all possible combinations
of passimages into passimage sets, where extending this work as described would
not.

The SOGA will only work where images can be split into semantic categories,
and could be avoided completely if images are assigned to users or all images
are presented from the same category. However, assigning images from the same
category as the user’s passimage has resulted in an increased number of incorrect
selections as reported in [16] where the VIP3 configuration presented challenge
screens from one category to a user. This was termed “intra category error”.
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4.3 Guessability for Individual Users

The final aspect of guessability is related to bias in individual user choice of im-
ages. It is conjectured that if an attacker has knowledge of the user’s preferences,
they may be able to guess the user’s passimages more successfully than expected
by chance.

As discussed previously, Hayashi et al. also carried out experiments which
evaluated “individualized educated guess attacks” for photographic passimages
taken by the user [40]. Attackers were given “10 best guesses” to guess the three
authentication images of the user based on personal knowledge of the user. Eight
out of 15 attackers correctly identified the user’s set of three passimages within
10 guesses.

To examine guessing for an individual user where the images are predeter-
mined for the scheme and not uploaded by the user, a simple approach could be
as follows. Users could be asked to volunteer a close friend or relative to guess
the images they had selected for authentication. However, the approach would
be flawed. The attacker’s chance of guessing the correct images would increase
if they were shown authentication screens with only nine images (one passimage
and eight distractor images) compared to the complete set of potential passim-
ages. Thus, the experiment could not accurately reflect an attacker trying to
gain access to the system by posing as a legitimate user. In an attempt to better
examine this a larger experiment was conducted of which known-user guessing
was a part, this is reported in Chapter 6 Section 6.1.

4.4 Conclusion

The result of this evaluation was two guessing models to be used in the final met-
ric, one model related to random guessing (an adjustment to an approach which
has already been reported in other research) and the other related to guessing
based on bias in passimage selection from semantic categories. The first model is
as shown in Equation 4.5, where x denotes the number of images per challenge
screen and s denotes the number of challenge screens in a challenge session.

guessing value = xs (4.5)

The second model related to semantic ordered guessing attacks. Depending
on the distractor selection algorithm, different success rates were achieved for the
SOGAs. The success rates of simulations for the image set and distractor selection
algorithm were used to calculate an “ordered guessability” value by calculating a
revised value for the number of images per screen by solving for x in Equation 4.6,
where the percentage of successful attacks is denoted by p. This value was then
used in the normal calculation for guessability as discussed in Section 4.1. The
final equation for semantic ordered guessability is then as presented in Equation
4.7

1

x
=

p

100
(4.6)
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semantic ordered guessability = (
100

p
)s (4.7)

It is proposed that, if unable to obtain ordering data for the image set to be used
for a given scheme, the estimates provided in Section 4.2.4 be used to calculate a
SOGA value. The values for success are based on the ordering and selections of
64 individuals for the passimages scheme based on a collection of 144 images split
equally into 12 categories. Due to this, one might argue that these results are
not directly applicable to other schemes as they would have potentially different
categories and user selections. Whilst this is true, it still provides an estimate
and a basis of comparison. If one desired a more accurate value for percentage
of success for their particular system, the program which simulates the SOGA
could be updated to incorporate a collection of users choices and the image details
with their corresponding categories. This could be used to establish an ordering
for the categories and a simulation to establish a percentage of success could be
carried out.

At this stage, the guessability of RBGPs has been examined with further
research on the observability still to be completed. At this point it was decided
that an initial elementary metric be established to examine the feasibility of the
thesis statement. This is reported in the following chapter.

73



Chapter 5

Elementary Security Metric

5.1 Security Analysis and Results

At this stage it was decided that a preliminary measure of the level of security
(incorporating analysis to date) be established to ensure the feasibility of the
thesis statement. A heuristic approach was taken at this stage as this could be
constructed based on knowledge already available. To construct a basic heuristic
model for evaluating the security of RBGPs the proposed approach was as follows:

1. Examine the relevant literature and extract the possible countermeasures
to the attacks presented in the threat model.

2. Abstract the identified countermeasures from specific implementations to
general approaches.

3. Construct a series of “key questions” regarding countermeasures for each
attack which determine a level of resistance to the attacks.

4. Construct flow charts which combine the key questions for each attack to
establish overall levels of resistance. Flow charts were used as they were
considered a simple way of combining the key questions in a way which
allows a final value to be easily determined.

5. Combine the flow charts to provide a metric of security which reflects resis-
tance to the attacks modelled. Resistance to attacks can also be dependent
on the context in which the authentication mechanism is used, this is dis-
cussed further in Section 5.4.

Area of concern and a subset of related attacks from the threat model shown
in Figure 2.6 (page 37) subject to the scope established in Section 2.5 (page 46)
are considered in this metric. Specifically, semantic ordered guessing attacks,
shoulder surfing attacks, and frequency attacks are considered in Sections 5.2
and 5.3.
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5.2 User Generic Guessability: SOGAs

Chapter 4 discussed the impact of bias in user choice on guessability. The ex-
periment involved collecting a number of user selections for passimages which
belonged to distinct semantic categories. The number of selections in each cate-
gory was then counted and using these frequencies, categories were ordered from
most to least probable (to be selected). An attack was then launched by con-
structing a challenge screen for each passimage selection and then checking if
the passimage was from the most likely category given the bias established. If
the passimage was in the most likely category for the screen presented, then the
attack was successful. Bias in user choice significantly increased the chance of
success when compared to random guessing. From the study reported in Chapter
4, the following key questions were identified to be incorporated into the model
for SOGAs:

• Are images assigned to the user?

• Are the images split into semantic categories by the authors who proposed
the scheme? For example, the VIP schemes presented by De Angeli et al.
[16].

• Is there only one distractor per category?

The evaluation of semantic ordered guessing is presented in Figure 5.1, a flow
chart which combines the aforementioned key questions relating to the configu-
ration of a RBGP scheme which coincide with the results of Chapter 4.

5.3 Observability

5.3.1 Shoulder Surfing

An examination of shoulder surfing literature was presented in Section 2.4.2. This
section provides a summary of the results of the review. This allows a list of key
questions to be established which are then incorporated into a flowchart modelling
shoulder surfing.

On a high level, there are three approaches to mitigating shoulder surfing at-
tacks. Tao and Adams propose that countermeasures for a shoulder surfing attack
can be placed under two categories; using no indicators of passimage selection or
disguising indicators of passimage selection [86]. This is extended here by in-
clusion of an additional approach taken by DeAngeli et al. in [17] and Dunphy
et al. in [21], where the number of passimages in a user’s passimage set (which
DeAngeli et al. termed “key image portfolio”) exceeds the number of challenge
screens in a challenge session. This means that in any authentication session, a
subset of the users passimage set is presented.

There are a number of implementations of countermeasures for shoulder surf-
ing. Examples of schemes where no indicators of passimage selection are shown
include the work by Komanduri and Hutchings (who allow keyboard selection
of passimages [50]) and Wiedenbeck et al. (who allowed indirect selection by
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Figure 5.1: SOGA Flowchart
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a convex-hull click scheme [101]). Examples of schemes where image selection
is disguised is presented in PassFaces where, upon selection of the passface, a
“mask” is applied to all faces on the challenge screen [66] .

For the purposes of the shoulder surfing flow chart, the key questions were
established as follows:

• Does the scheme provide details of whether an image is selected on a chal-
lenge screen?

• Does the scheme highlight the passimage on selection?

• Does the scheme disguise passimage selection?

• Does the scheme use more passimages than challenge screens?

• Does the scheme allow keyboard selection?

These questions were combined into the flowchart shown in Figure 5.2.

5.3.2 Frequency/Intersection Attack

An examination of literature related to frequency and intersection attacks was
presented in Section 2.4.2. This section provides a summary of the results of
the review which allows a list of key questions to be established, which are then
incorporated into a flowchart modelling frequency attacks. The calculation for
the number of attacks was not incorporated into the metric at this stage. This
is because the heuristic approach is a preliminary attempt at constructing a
metric to explore the feasibility and similar models for the remaining attacks
had not yet been established. As noted by Takada et al., a frequency attack is
an attack in which the attacker records multiple challenge screens and notes the
images which occur with the highest frequencies then select these images in an
attack [85]. Dhamija and Perrig [20] successfully summarise general approaches
to countermeasures for intersection (and hence frequency) attacks as:

• Use the same distractor images and passimages for each session.

• Repeat a small subset of distractor images for each passimage. This would
result in an attacker recording the same frequencies for these distractors
and the passimage and the attacker would be unable to tell which is the
passimage. Thus, they would have to randomly select one of the images
with the same frequency of occurrence.

• In any given challenge session, if a user selects a distractor on a chal-
lenge screen, subsequent screens only display distractor images - “dummy
screens”.

• Implement a limit on the number of incorrect authentications a user can
perform, this stops an impersonator attempting to discover all of the im-
ages. (A “three strikes and you’re out” approach which is classified under
resistability for this work and so is outside the scope)
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Figure 5.2: Shoulder Surfing Flowchart
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Figure 5.3: Frequency Attack Flowchart

Dhamija et al. note that these solutions are not perfect, as reuse of distractor
images may result in users recognising distractors and selecting the wrong image
[20]. However, maintaining the same distractors for a given passimage does ensure
that intersection and frequency attacks are not possible, since each image appears
with equal frequency. The remaining three options only serve to minimise the
potential for an intersection or frequency attack.

Figure 5.3 shows the flowchart for frequency attacks which combines the fol-
lowing key questions:

• Does the scheme provide the same distractors for a given passimage?

• Does the scheme implement any other countermeasure against a frequency
attack?

As with the shoulder surfing value, it was not possible to differentiate be-
tween the efficacy of different countermeasures, again indicating further work.
Contributions to this area are presented in Chapter 7.

5.4 Heuristic Model for Security Evaluation

The heuristic model for security evaluation presented here arose from the com-
bined flowcharts shown in Figures 5.1, 5.2, and 5.3 which covered semantic or-
dered guessing, shoulder surfing, and frequency attacks respectively. Each factor
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provided one value of a 3-tuple, where the score for each value starts at 0 and is
increased or decreased depending on the route taken through the appropriate flow
chart. A tuple approach was considered appropriate instead of combining values
(e.g. by summing the scores) or using a Euclidean metric since the interpretation
of security is context sensitive.

For example, in the context of authentication in a home environment where
no other individual is present, a negative shoulder surfing value would not be a
concern. Thus, it would not be appropriate to reduce the overall security score
due to this. Another approach could have been to weight the individual values
before combining them. However, this does not remove the need to apply context.
The resulting tuple represents the security of a RBGP scheme in terms of these
aspects, that is {guessing value, shoulder surfing value, frequency value}. For
example a scheme which is the most insecure in terms of the model presented
would have a 3-tuple of {-2,-1,-1} whilst the most secure setup would result in a
3-tuple of {1,2,2}. Where insufficient information is available to define a score,
the notation * is used.

In general, where countermeasures are implemented scores are increased by
one, where no countermeasures are implemented, scores are decremented by one.
In the shoulder surfing flow chart (Figure 5.2), there is the possibility of increasing
the security value by two. This is due to the perceived significance (identified
by the quantity of research in this area) of the threat caused by shoulder surfing
resulting in the graded levels of counter measures available as described in Section
5.3.1. In addition, there are two instances where no adjustment to the security
level is possible. The first case is related to images in a semantic ordered guessing
attack (shown in Figure 5.1), where if images are not separated into semantic
categories, no adjustment is made. In this case it is not possible to determine
how successful a more specific ordered guessing attack, where images are given
priority rather than categories, might be without further analysis. The second
instance is when considering frequency attacks, where there are counter measures
which mitigate (but do not remove the possibility of) frequency attacks.

5.5 Examples

5.5.1 Application To PassFaces Scheme

An example is provided by application to the PassFaces scheme [1]. From review-
ing the white paper “The Science Behind PassFaces” [66] the following informa-
tion regarding the configuration of the PassFaces scheme was extracted:

• The basic configuration includes assignment of four passfaces to a user and
the use of four challenge screens, each showing one passface and eight dis-
tractor faces.

• The order of faces on the screen is random.

• No challenge screen contains faces from the other challenge screens. Dis-
tractor faces are similar in appearance to the passface. It is not clear how
the similarity is established.

80



Scheme Tuple
VIP (2,1,*)
Faces/Story (*,1,1)
Use Your
Illusion

(*,1,1)

Deja Vu (*,1,1)
PassFaces (1,2,2)

Table 5.1: Popular Schemes Elementary Metric Values Summary Table

• Challenge screens are constant, i.e. the same distractors are selected each
time for a given user’s passfaces.

• Keyboard selection of a passface is permitted.

• A “mask” is applied to all faces on a challenge screen upon selection, this
obscures the image selection.

From this information it was possible to rule out semantic ordered guessing
attacks completely due to the random assignment of passfaces, which gives a
secure semantic ordered guessability value of 1. In terms of shoulder surfing the
mask application after selection meant image selection was disguised, resulting in
a shoulder surfing security value of 2. If there was no masking, the use of keyboard
selection would result in a shoulder surfing value of 1. However the highest of
the two possibilities was considered appropriate as this represents the most secure
configuration possible. Since the scheme provides the same distractors for a user’s
passface, the scheme has a frequency security value of 2. This results in a security
3-tuple of {1,2,2}.

5.5.2 Other Examples

Applying the same process to VIP, Faces/Story, Use Your Own Illusion and Deja
Vu schemes resulted in the values as presented in Table 5.5.2, where * denotes a
lack of sufficient information from the defining literature. It can be seen from this
table that insufficient information is available for most schemes, and PassFaces
provides the most secure configuration by this assessment.

5.6 Metric Evaluation and Conclusions

To evaluate the metric, each of the requirements established in Chapter 3 Section
3.4 (page 56) are considered in turn.

5.6.1 Repeatable

Repeatability, as previously discussed, requires that the metric produce the same
result when applied multiple times by the same evaluator. Repeatability was eval-
uated by having an evaluator apply the metric twice to the schemes summarised

81



in Table 5.2. The schemes evaluated were a subset of those presented in Table
2.2 (page 45), selected as they represented the schemes with the most available
information on their configuration. The schemes were evaluated based on the
information provided to produce values for the tuple. The results are shown in
Tables 5.3, 5.4, 5.5, 5.6, and 5.7 by the rows Participant 1 and Participant 1-
repeat. Repeatability was achieved in all schemes except PassFaces. This was
due to the fact that keyboard selection was allowed by the scheme, but it was
unclear whether this constituted disguising selection. If this metric had not been
an elementary attempt, this would have been repeated with multiple evaluators.
However, this was to ensure feasibility of the overall aim of the thesis and so this
was deemed sufficient.

5.6.2 Reproducible

To check reproducability, the details shown in Table 5.2 were provided to another
researcher along with a Java program which asked the key questions relating to
the setup of the scheme. As a result the program produced details of the metric
values. This was then measured against the results achieved by the author to
ensure reproducability.

There was an issue with reproducability for the PassFaces scheme in partic-
ular. This was due to multiple possible countermeasures for shoulder surfing
and confusion upon interpretation of the questions proposed. This indicates that
reproducability is not guaranteed by this approach and so the metric does not
achieve the requirements established. The results are shown in Tables 5.3, 5.4,
5.5, 5.6, and 5.7 by the rows Participant 1 and Participant 2.

5.6.3 Quantitative

Whilst the resulting tuple is quantitative, it is very high level. As noted for similar
attempts by Mihajlov et al. [55] and Renaud [68]. Whilst this is a useful starting
point, it would be beneficial to establish a metric which provides an estimate of
the number of attacks required before success. This could allow schemes to be
compared in terms of security at a level of finer granularity.

5.6.4 Objective

Objectivity is achieved for the metric as it depends only on the configuration
of the RBGP scheme, and not on the evaluator’s perception of it. However, as
noted for reproducability, the key question approach introduced an element of
ambiguity due to the interpretation of the questions which may affect objectivity.

5.6.5 Extensible

The metric is designed in such a way that it is extensible. If further research is
conducted, the results can be incorporated into the initial framework by further
key questions to already established attacks. Also, addition of new attack flow
charts which would result in additional elements in the tuple.

82



Scheme Image Assign-
ment

Image Highlight-
ing and Passim-
age Set Size

Intersection
Setup

VIP Assigned to
users, split
into semantic
categories

No details on
highlighting.
Number of pas-
simages exceeds
the number
of challenge
screens

No details

Faces/Story Users select ,
split into seman-
tic categories

No details on
highlighting.
Number of pas-
simages exceeds
the number
of challenge
screens

Constant set of
distractors for
given passim-
ages

PassFaces Assigned to
users, split
into semantic
categories

Keyboard entry
allowed. Im-
ages are high-
lighted by a bor-
der. No details
on passimage set
size.

Constant set of
distractors for
given passim-
ages

Use Your
Illusion

Users select No details on
highlighting.
Number of pas-
simages exceeds
the number
of challenge
screens

Constant set of
distractors for
given passim-
ages

Deja Vu Users select No details on
highlighting.
Number of pas-
simages exceeds
the number
of challenge
screens

Constant set of
distractors for
given passim-
ages

Table 5.2: Popular Schemes Configuration Details Summary Table

Participant Guessing Score Shoulder Surfing Score Frequency Score
Participant 1 1 1 *
Participant 1 -repeat 1 1 *
Participant 2 1 1 *

Table 5.3: VIP Scores
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Participant Guessing Score Shoulder Surfing Score Frequency Score
Participant 1 -1 1 2
Participant 1 -repeat -1 1 2
Participant 2 -1 1 2

Table 5.4: Faces/Story Scores

Participant Guessing Score Shoulder Surfing Score Frequency Score
Participant 1 1 1 2
Participant 1 -repeat 1 2 2
Participant 2 1 2 2

Table 5.5: PassFaces Scores

Participant Guessing Score Shoulder Surfing Score Frequency Score
Participant 1 * 1 2
Participant 1 -repeat * 1 2
Participant 2 * 1 2

Table 5.6: Use Your Illusion Scores

Participant Guessing Score Shoulder Surfing Score Frequency Score
Participant 1 * 1 2
Participant 1 -repeat * 1 2
Participant 2 * 1 2

Table 5.7: Deja Vu Scores
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5.6.6 Conclusion

The aim of this chapter was to establish the feasibility of achieving the research
thesis statement. The approach taken analysed potential attacks and countermea-
sures and as a result constructed a series of key questions in order to determine
resistance to these attacks. The attacks included were semantic ordered guess-
ing, shoulder surfing, and frequency attacks. Analysis of each aspect resulted
in a flowchart which provided one score of a 3-tuple. The score for each factor
started at 0 and increased or decreased depending on the route taken through the
corresponding flowchart. The resulting tuple represented the security of a RBGP
scheme in terms of these factors. The following issues were identified with the
metric established when evaluated against the requirements:

1. Reproducablity was not guaranteed.

2. Values reported were quantitative, but too high level.

3. The frequency attacks value was limited as the efficacy of the different
countermeasures was unclear.

4. Shoulder surfing efficacy of different countermeasures was unclear.

5. The flowchart approach introduced ambiguity.

6. The information presented to the second evaluator was organised to opti-
mise use of the metric. This may have resulted in more success than would
be expected if an evaluator had to read the documentation for the scheme
and extract the relevant information.

The remainder of this dissertation aims to construct a different model which
meets all the metric requirements and corrects the issues highlighted here. Specif-
ically Chapters 6 and 7 aim to address points two, three, and four. Chapter 8
presents the final metric and evaluation.
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Chapter 6

Observability Attacks

At this stage the feasibility of constructing a metric for RBGPs which models
guessability and observability attacks has been confirmed. Several aspects of
guessability have also been examined. It remains to examine and model observ-
ability attacks. To estimate the success rate of the observation attacks under
consideration (shoulder surfing and intersection attacks) two approaches were
identified for data gathering as follows:

1. User studies

2. Simulations and mathematical modelling

The first approach involved recruiting a group of users who worked in the same
office/computer lab on a regular basis (approximately five days a week), and
asking them to authenticate and attack each other. This approach was the first
attempted, but was unsuccessful due to lack of participation in the experiment.
This is discussed further in Section 6.1. Simulation and modelling was the final
approach taken and the results are discussed in Sections 6.2 and 6.3. The final
metric which incorporates these results is presented in Chapter 7.

6.1 User Studies for Observability Data

The first approach to gathering data on the success rates of observability attacks
was a user study. In this study, the aim was to establish the frequency of differ-
ent attacks (both guessing and observation), success rates of those attacks and
the impact of countermeasures on their success rates. Guessing was included in
this experiment with the aim of gathering data on known user guessing. This
was approached by constructing an online experiment which allowed users to
authenticate (using a RBGP scheme) and attack each other’s passimages.

Adams and Sasse [2] highlighted that password mechanisms are an enabling
task, they are an action performed to gain access. The main goal of authentication
is to gain access to a service such as e-mail. It is due to this that performing
experiments where authentication is the primary goal will not provide realistic
results. This is also highlighted by Sasse et al. [76]. Thus the end goal (from a
user’s perspective) for this experiment was not authentication, but was use of a
web-based forum which offered Java programming advice.
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A web-based approach was taken as short-term use within a lab environment
is not an accurate prediction of user behaviour (as argued by Beautement et
al. [4]). A forum was selected since it would be relatively easy to implement
and use of web-based forums was popular. Such a goal would aim to emulate
a normal authentication situation. The web-based approach aimed to reduce
the lab environment and reflect a normal environment. Another end goal option
considered included a game scenario, however the time and effort required to
implement this would have been excessive.

The forum used the passimages RBGP scheme (as described in Section 2.5.1).
After two weeks using the forum, participants were asked to attack their class-
mate’s passimages through an “attack mode”. It was emphasised to participants
that the attacks were artificial and would not grant access to the victim’s account,
but would count towards a running total of correct attacks. The participant at
the end of the experiment with the most successful attacks would be awarded
a prize in the form of a gift voucher. This was to incentivise attacks aiming to
maximise participation. The high level aim of the experiment was to examine
the nature of the attacks performed, the distribution between the attack types
and their relative success. The design of the experiment was refined further by
the hypothesis and variables presented in Section 6.1.1.

6.1.1 Hypotheses and Variables

Two hypotheses were established as follows:

• H1 Attacks will not be evenly distributed between guessability and observ-
ability.

• H2 Countermeasures for the identified attacks result in a significant reduc-
tion in the number of successful attacks.

To examine these hypotheses, users registered for the website and were al-
located to one of four groups. An approximately even distribution between the
groups was achieved by allocating the next participant to the next group and so
forth. There was no control over who participated and when they registered, thus
assignment to the groups was effectively random. The groups were as follows:

1. No Countermeasure Group (the control group) - the authentication con-
figuration for this group involved no countermeasures and was intended to
reflect the most insecure configuration for a RBGP scheme. In particular,
it highlighted image selection (maximising potential for shoulder surfing
attacks) and had no constant distractors for passimages (maximising po-
tential for frequency attacks). The configuration used four passimages and
four challenge screens.

2. Anti-Guessing Group: this configuration was designed to minimise poten-
tial for guessing attacks. The approach taken involved presenting the user
with images from the same category as the passimage. This was to avoid a
semantic ordered guessing attack. There was the possibility that the guess-
ing attack could be more specific e.g. the user likes dogs. However, the
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alternative anti-guessing approach was to assign images to users and this
was dismissed as it would completely eradicate guessing attacks.

3. Anti-Observability Group: this configuration was designed to minimise ob-
servation attacks (specifically frequency and shoulder surfing attacks). The
following countermeasures were implemented: the same challenge screens
were used for each passimage (i.e. constant challenges, therefore no fre-
quency attacks), no feedback was provided to the user when an image was
selected on screen (to minimise shoulder surfing). Keyboard entry was not
used as it was difficult to implement on the web, avoiding highlighting of
the image was deemed sufficient.

4. Anti-Attack Group: this configuration combined the countermeasures from
the anti-guessing group and the anti-observability group providing a com-
paratively attack resistant configuration.

The independent variables of the experiment were as follows:

• countermeasures against observability (the anti-observability configuration)

• countermeasures against guessability (the anti-guessability configuration)

The dependent variable was the number of successful attacks in each group where
the countermeasures were implemented. The control group was set up with no
resistance to any attack, establishing a base level of successful attacks to compare
the success rates for the anti-observability and anti-guessing groups.

6.1.2 Forum Implementation Details

There were a number of aspects of implementation which required considera-
tion, this section discusses these aspects. Masters in Information Technology
students were invited to participate in the experiment. The group was selected
as they worked together, knew each other, had a working knowledge of computers,
and could potentially be authenticating frequently in front of each other in their
computer lab. This was an important consideration because the potential for
exploiting observability and guessability needed to be maximised. Observability
aspects required close proximity and guessability required knowledge of the user.

It was possible that an individual might forget their passimages, in this case
participants were asked to email the experimenter to reset their images. The
email address from which a request was received was checked against the email
address registered to stop participants attempting to reset other participant’s
images. There was also potential for a participant to cancel part way through an
authentication session. If this happened incomplete data was recorded but not
used. The data logged included an indicator of success or failure of authentication,
the date, time and duration of the authentication process. Incorrectly selected
images were not recorded as this data related to memorability and was outside
the scope of this work.

To ensure a participant did not attempt to duplicate entries in the database
for successful attacks the session variables relating to an attack were deleted.
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Authentication Count Number of Users
< 10 11
32 1
36 1

Table 6.1: Forum Authentication Sessions Summary

If the page was then reloaded the data was not re-inserted into the database.
Attack data recorded was the same as the authentication data with the addition
of the number of passimages correctly identified, the ID of the attacker and the
ID of the victim. Upon completion of an attack, users were asked to fill in a short
questionnaire relating to how the data which resulted in the attack was gathered.
This questionnaire is presented in Appendix C.

To minimise the potential for one participant to create multiple fake accounts,
an email address was required upon registration and was checked for validity. A
valid email was required for the purpose of distributing a prize used to incentivise
participation, so it was in the user’s best interest to supply a real address. The
prize was selected to be small enough to encourage participants, but not so large
that they would go to excessive extremes to break or dupe the system. This
was awarded for the most successful attacks. An alternative would have been to
award the participant who launched the largest number of attacks, however this
could have resulted in multiple “wrong” attacks on any one account where the
attacker had no interest in trying to successfully authenticate. In the end there
were no successful attacks, and so the prize was awarded randomly.

Another consideration was for the anti-attack group in which there was an
issue with the number of images available in each category. If the user were to
pick four images in one category there would be insufficient images for distractors.
To remedy this, users in this group were restricted to one image per category. If
sufficient images were gathered to remove this restriction, this could potentially
have provided too much choice for users to select their images from. This could
have potentially skewed the results (since users may select images shown first
rather than traversing the whole set of potential passimages) more than restricting
the users to one image per category.

6.1.3 Results

A total of 13 users participated in the experiment. Whilst the users agreed to
participate, participation was desultory. As a result, the data gathered was also
limited and insufficient to draw conclusions from. For this reason, an analysis
of results would have no purpose. A summary of the activity is provided in Ta-
bles 6.1 and 6.2 which summarise the authentication sessions and attack sessions
respectively.

An alternative approach would be to have smaller controlled lab-based studies
for each attack type. However, there would still potentially be an issue with
recruitment of participants. In addition, as noted by Salkind, controlling the
experiment extensively could result in a loss of generalisability [75, Page 137].
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Attack Type Number of Attacks Relationship Successful Attacks
Random Guessing 13 Stranger 0
Random Guessing 1 Acquaintance 0
Knowledge of User Guess 1 Acquaintance 0
General User Bias 1 Acquaintance 0
General User Bias 1 Stranger 0

Table 6.2: Forum Attacks Summary

6.1.4 Experiment Limitations

In addition to the lack of data, there were a number of limitations in the experi-
ment design, these are summarised as follows:

• Attack Mode- There was a possibility people did not use the “attack mode”
to attack other users, and instead attacked them by attempting a normal
authentication session as the victim. Participants would have no incentive
to perform an attack outside the “attack” mode since it would not be noted
as an attack and hence would not be counted towards the prize.

• Security awareness - There may have been limitations to the awareness of
how to attack the system by the participants. The attacks could also have
been influenced by the post-attack questionnaire which indicated potential
attack methods. Thus not all attackers would be optimal as assumed in the
attacker model.

• Variables- There were a number of variables which were not included in
the experiment design, e.g. the number of distractors per screen, and the
number of challenge screens.

• Varied levels of countermeasures- A number of counter measures were not
examined, e.g. use of dummy screens. In addition, there are different num-
bers of constant distractors which can be used, these were not examined.

Due to these limitations and the lack of participation, the next approach was
to consider simulations. This is discussed in Sections 6.2 and 6.3.

6.2 Shoulder Surfing Attack Simulations

In related work, Dunphy et al. examined the effect on security of using RBGPs
on mobile devices [21] and performed simulations of shoulder surfing attacks.
The key image portfolio approach (where the number of passimages exceeds the
number of challenge screens) of the VIP system proposed by DeAngeli et al.
[16] was extended to include a distractor image portfolio where passimages and
distractor images are randomly selected from a larger fixed set of images (called
key image portfolio and decoy image portfolios respectively).

In addition to the key image portfolio and the decoy image portfolios a ratio
of the passimages in a challenge set to the passimages assigned to the user is kept
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the same as the ratio of distractors shown in the challenge set to the distractors
set from which the images are selected. For example, if the user’s passimage set
contains four passimages and one passimage is shown per challenge screen then
this ratio is 4:4, i.e. 1:1. Thus, if there were 8 distractors and 4 screens, a total
of 32 distractors per challenge set, the size of the distractor image portfolio is 32,
since 32:32 is the same ratio as 1:1.

The shoulder surfing algorithm reported by Dunphy et al. was that an au-
thentication session was observed with probability p of recalling the image. An
attack is then performed, and if the attacker has recalled all the passimages shown
in the challenge screen then the attack is successful. If not, then the process re-
peats until success. The average number of observations before successful attacks
were reported and results showed an increase in the number of observations be-
fore success when the key image and distractor image portfolios were used with
increasing number of passimages in the passimage portfolio (passimage set sizes
of 6, 8 ,10, 12 and 14 were examined).

However, there were no details in the paper as to whether the results were
significantly better than a control setting where no portfolio was used. In ad-
dition, there was no examination as to whether the results when increasing the
passimage set size were significantly different. Since a portfolio was used for both
distractors and passimages, it was not possible to tell from the results reported if
the increase in observations before success was due to the passimage portfolio or
the distractor image portfolio. The resistance to shoulder surfing is maintained
from the key image portfolio approach as presented by the VIP scheme. To es-
tablish the significance of the use of a larger passimage set size and gather the
raw data required to construct a model, further analysis was required.

The following sections discuss the high level simulation algorithms and the
results of the simulations. For further details on the design of the simulation
software, please refer to Appendix D.

6.2.1 Shoulder Surfing Algorithm

On a high level, the algorithm used in the simulations for this work was the same
as that discussed by Dunphy et al. [21]: observe a session and record the images
selected, then attempt login and repeat till success. To account for the recall rate,
if the recall rate being simulated was 100% then all images viewed were added to
a list of viewed images which was then used to attack. If the recall rate was less
than 100%, a number of images from the session to be recalled was calculated as
shown in Equation 6.1. If this value was greater than one, then it was rounded
to the next whole integer and the list of images seen was reduced to this size. If
this number was less than one, then multiple sessions would be required before
a single image was recalled, and so a different approach was taken. In this case,
the number of times an image had to be viewed before recalling it was calculated
as shown in Equation 6.2. Each time an image was observed by an attacker,
a count of the frequency shown was incremented. If this number reached the
value calculated by Equation 6.2 then the image was kept in the attacker’s list
of recalled images, otherwise it was removed. The attack continued until the
recalled image set had all the images presented in a challenge set.
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numRecall = passpicsSeen ∗ recallRate
100

(6.1)

numSessionsBeforeRecall =
100

recallRate
(6.2)

Further details of the algorithm and implementation are provided in Appendix
D. This includes an activity diagram showing the process of the shoulder surfing
algorithm. Variables for the simulation were identified as follows:

• Experimental Variables

– percentage of recall

– number of passimages in users’ set

– number of challenge screens

• Constant variables

– number of distractors per challenge screen (eight)

• Dependent Variable

– number of sessions viewed before a successful attack is made.

Note that the number of distractors per challenge screen was not an experi-
mental variable but a constant variable. This was because the simulation algo-
rithm assumes that in a shoulder surfing attack the attacker views the correct
image selection, thus distractor images are not noted. Another possible variable
is the potential passimage set size, this was not examined since the algorithm
assumes the correct passimage is selected and so the size of the set from which
passimages are selected would not impact the success of the attack. The configu-
ration of a RBGP scheme will now be referred to by p−n−d, where p is the size
of the passimage set, n is the number of challenge screens in a challenge session
and d is the number of distractors per screen.

6.2.2 Hypotheses

It was not feasible to model the different countermeasures presented in litera-
ture which claim to minimise shoulder surfing by simulation alone. To achieve
this, individual user studies would need to be carried out to establish the effi-
cacy of these countermeasures. Instead, to incorporate the variability of success
of countermeasures, the recall percentage is included. Thus, if a user study is
carried out, the success rate given the countermeasure employed can be used in
the simulation. The other possible independent variables are the number of pas-
simages and the number of challenge screens. As highlighted by Dunphy et al.
[21] and DeAngeli et al. [16] increasing the size of the number of passimages in a
user’s passimage set could have an impact on the success rate of shoulder surfing
attacks.
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All simulations were run with eight distractors since changing the number of
distractors would no effect on the success of the attack since it is assumed the
attacker notes only the passimage. In reality, this assumption may be invalid as
more images on a screen may make it harder for an attacker to observe which
image is being selected. It should also be noted that the impact of increasing the
number of challenge screens is examined. This is examined since an increased
number of screens will mean an attacker collects more images in one session.
For example, consider a passimage set of size 6 with 5 challenge screens. On first
observation the attacker collects 5 passimages where if there were only 4 challenge
screens only 4 images would be collected. This is further evidenced by considering
the probability of observing the same challenge set for each situation. For five
challenge screens, the probability is 1

(6
5)

= 1
6

i.e. calculate the number of ways of

selecting 5 passimages from 6, then the chance of getting the same screen twice is 1
divided by the number of possible screens. Similarly, with four challenge screens,
the probability is 1

(6
4)

= 1
15

. Based on these identified potential independent

variables, the hypotheses to be tested for the shoulder surfing simulations were
as follows:

• H1 - Increasing the size of the passimage set increases the number of sessions
before a shoulder surfing attack is successful.

• H2 - Increasing the number of challenge screens in a session reduces the
number of sessions before a shoulder surfing attack is successful.

• H3 - Increasing the memorability of the attacker reduces the number of
sessions before an attack is successful. This is a check that the implemented
algorithm is valid and reflects anticipated behaviour.

6.2.3 Results

The simulation program was run with different configurations shown in Tables
6.3, 6.4 and 6.5. The aim of these simulations was to establish the hypotheses set
out in Section 6.2.2. A number of diagrams are used to represent the data in this
section, further details of the types of analysis used are provided in Appendix B.

The first step was to establish the distribution of the simulation data which
allows correct selection of statistical tests. Recall that data is a binomial distri-
bution if it meets the following criteria (as detailed in [71, page 135])

1. There are a fixed number of trials

2. Each trial has two possible outcomes, success or failure

3. The probability of success (p) is the same for each trial

4. The trials are independent of each other

The distribution of the shoulder surfing attack simulations was not binomial
because the second criterion was not met. A number of screens before success
were recorded, not success or failure of an attack. The distribution was also not
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Figure 6.1: Shoulder Surfing Simulations 6-4-8 100% Recall Histogram

Figure 6.2: Shoulder Surfing Simulations 6-4-8 100% Recall Normality Plot

a normal distribution, this can be seen by the skew in the data presented in
Figure 6.1 where it can be seen that the data is skewed to the right. In a normal
probability plot, if the points lie very close to the straight line which represents
the normal distribution, the data is normally distributed ([18, Page 115]). It can
be seen from Figure 6.2, that this is not the case for the shoulder surfing data.
This was assessed for other configurations with similar results.

For non-normal data the statistical measurements of mean and standard de-
viation are are inappropriate [18, Page 80]. The median is a more appropriate
measure of spread of the data and the interquartile range is an appropriate mea-
sure which reflects variability of the data. More generally, standard parametric
statistics are inappropriate for non-normal data [27]. Instead, robust methods
are a more appropriate option as they are designed to perform well whether the
data is normally distributed or not [27].
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Configuration (Passimage Set Size) Test Statistic Critical Value Null rejected?
5 v 6 6.04 1.96 Yes
5 v 7 10.23 1.97 Yes
5 v 8 16.44 1.97 Yes
5 v 9 30.35 1.96 Yes
5 v 10 25.13 1.97 Yes

Table 6.3: Shoulder Surfing Simulations H1 Summary Stats

For the purpose of hypothesis testing, the Yuen statistic with 20% trimmed
mean and an alpha value of 0.05 was used. Details of this statistic are provided
in Appendix B. The statistic was highlighted by Wilcox as yielding robust results
(i.e. provide a more accurate statistic for non-normal data) which were better
for smaller sample sizes than other approaches [104, page 157]. Wilcox [104] has
written robust statistical functions for the statistical program “R”1. For this
analysis, the R program was used. If the test statistic value was higher than
the critical value (which is automatically calculated by the R program given the
data input) then the null hypothesis was rejected (this is shown in [103, Page
252]). Each hypothesis is now considered in turn, applying the Yuen statistic to
establish acceptance or rejection of each hypothesis.

H1- Increased Passimage Set Size

The null hypothesis related to H1 was rejected in all configurations examined as
detailed in Table 6.3. This demonstrates that increasing the number of passimages
in a passimage set significantly increases the number of attacks before success.
This is further evidenced in Figure 6.3 where the median value of number of
attacks required increases between each value for the passimage set size. In each
configuration four challenge screens were used with eight distractors, and the
passimage set size was varied to establish the effect on the number of attacks
before success.

H2 - Increased Number of Challenge Screens

Where the number of passimages exceeded the number of challenge screens, the
null hypothesis was rejected in all configurations examined. This is detailed in
Table 6.4. This is further evidenced in Figure 6.4 where it can be seen that
the median value of number of attacks required decreases between each value
for the number of challenges. In each case, ten passimages were used with eight
distractors and the experimental variable of number of challenge screens was
varied from 4 to 9.

H3 - Increased Memorability (Algorithm Verification)

H3 was primarily verification of the implementation of the shoulder surfing al-
gorithm (which was also tested using JUnit). If this null hypothesis was not

1Available at: http://www.r-project.org/
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Figure 6.3: Shoulder Surfing H1 Boxplot

Configuration (No. of Challenge Screens) Test Statistic Critical Value Null rejected?
4 v 5 5.09 1.96 Yes
4 v 6 9.41 1.96 Yes
4 v 7 16.41 1.96 Yes
4 v 8 21.47 1.97 Yes
4 v 9 27.72 1.97 Yes

Table 6.4: Shoulder Surfing Simulations H2 Summary Stats
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Figure 6.4: Shoulder Surfing H2 Boxplot

Configuration (Percentage of Recall) Test Statistic Critical Value Null rejected?
100 v 10 166.23 1.97 Yes
100 v 20 99.33 1.96 Yes
100 v 30 50.99 1.97 Yes
100 v 60 7.69 1.97 Yes
100 v 90 0.85 1.96 No

Table 6.5: Shoulder Surfing Simulations H3 Summary Stats

rejected then there was a problem with the logic of the simulation. The null hy-
pothesis was rejected in all configurations examined as detailed in Table 6.5 with
the exception of 100% vs. 90%. This could be because there is an insignificant
difference between one session required to attack with 100% recall compared to
two sessions with 90% recall. Thus the hypothesis overall was accepted. This
is further evidenced in Figure 6.5 where it can be seen that the median value
of number of attacks required decreases as the value for the percentage of recall
increases (right to left). In each case, four passimages and four challenge screens
were used with eight distractors. The percentage of recall was varied in incre-
ments of 10% from 10% through to 100%. Figure 6.5 shows the data for recall
rates of 10%, 20%, 60%, and 100% for comparison.
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Figure 6.5: Shoulder Surfing H3 Boxplot

6.2.4 Shoulder Surfing Simulations Discussion

Shoulder surfing attacks were simulated, varying the independent variables (num-
ber of passimages, number of challenge screens, percentage of recall ) to examine
the impact on the dependent variable (number of attacks before success). Results
showed increasing the number of passimages in a user’s passimage set significantly
increases the number of attacks before success, and increasing the number of chal-
lenge screens significantly decreases the number of attacks before success.

One possible limitation of this work is that it requires an estimate of the per-
centage of recall of the attacker. However this was designed as such to incorporate
the varying impact of different counter measures. The impact of different counter-
measures cannot easily be incorporated into a singular mathematical model due
to the potential variation. Inclusion of the percentage of recall allows researchers
to construct their own experiments to determine a success rate of the attack when
their countermeasure is employed. This can be used in conjunction with different
configurations for the number of passimages and challenge screens to estimate the
overall attack success rate using the mathematical model presented in Chapter 7.

6.3 Frequency Attack Simulations

Unlike shoulder surfing, it was easier to incorporate countermeasures into the
simulations of frequency attacks as modeling the countermeasures did not involve
a human element. The approach involved creating a simulation of frequency
attacks using each of five possible counter measures. The number of attacks
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which had to be performed before a successful attack for each approach was
noted and compared to a control simulation.

For the purposes of this work, a frequency attack is defined as follows. The
attacker starts the challenge session which comprises of n challenge screens, each
of which has one passimage from the user’s passimage set (of size p) and a number
of distractors (d). The attacker attacks each screen in turn by noting all the
images on the screen (which is referred to as the challenge set). A count of the
number of times each image has been viewed over all the attacks the attacker
has launched against this set of passimages is then incremented. The attacker
then attempts to pass the challenge set by selecting the image which has been
viewed most frequently. Further details of the design and implementation of the
frequency attack simulations is provided in Appendix D.

This is repeated for each challenge screen within the session. If each image
selected corresponds to the passimages, then the attacker is successful and the
process is complete. If the attacker selects a distractor for any one of the challenge
screens, they must start a new attack. This repeats until the attacker is successful.
Once the attacker has achieved successful authentication, the number of attacks
before success is reported. The configuration of a recognition-based graphical
password scheme is referred to by p− n− d, where p is the size of the passimage
set, n is the number of challenge screens in a challenge session and d is the number
of distractors per screen.

The dependent variable was the number of attacks before success. The inde-
pendent variables for the simulations were identified as follows:

• The number of passimages

• The number of distractors per screen

• The number of challenge screens

As with shoulder surfing, the size of the potential passimage set was not included
in the independent variables examined. This could have an impact if this set of
images is used for the distractors. This is a potential limitation of this work,
which could benefit from further examination. The distractor selection algorithm
was also not examined. This was primarily due to the lack of evidence for sig-
nificant impact of distractors selection on the success rate of SOGAs. This could
potentially have been overlooked as a dependent variable since if a distractor
selection algorithm has a preference for some distractors over others (hence in-
creasing their count), there is potential for the number of attacks required to be
increased. Further work to examine this could allow an improved model to be
constructed.

The following sections discuss the high level simulation algorithms and the
results of the simulations. For further details on the design of the simulation
software, please refer to Appendix D.

6.3.1 The Countermeasures

Dhamija and Perrig [20] successfully summarise counter measures for intersection
attacks (and hence frequency attacks) as follows:
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• Use the same distractor images and passimages for each session.

• Repeat a small subset of distractor images for each passimage. This the-
oretically results in an attacker recording the same frequencies for these
distractors and the passimage and the attacker would be unable to tell
which is the passimage. Thus, they would have to randomly select one of
the images with the same frequency of occurrence.

• In any given challenge session, if a user selects a distractor on a chal-
lenge screen, subsequent screens only display distractor images - “dummy
screens”.

• Implement a limit on the number of incorrect authentications a user can
perform, this stops an impersonator attempting to discover all of the images.
(A “three strikes and you’re out” approach)

The first approach where the distractors are set for a given passimage will re-
duce an intersection attack (and also frequency attacks) to a random guessing
attack. However, as Dhamija and Perrig note, re-use of distractor images may
result in users recognising the distractors and selecting a distractor image in-
stead of their passimage during authentication [20]. Dhamija and Perrig indicate
that this requires further work to establish, however an experiment by Deffen-
bacher et al. [19] provides further evidence to support this opinion. Deffenbacher
et al. conducted an experiment which assessed the amount of retroactive in-
terference (difficulty of remembering old information due to acquisition of new
information) for landscape images, line drawings of objects, faces and nouns. A
recognition memory test was performed in which participants viewed target stim-
uli (the aforementioned image types and nouns) followed by distractor stimuli.
After two minutes of performing an unrelated task, the participants were asked
to recognise and distinguish targets from distractors. Two weeks subsequently,
the same recognition task was performed.

The results showed no significant retroactive interference for line drawings
of objects, but significant interference for faces and landscapes which resulted
in distractor images being selected instead of targets. For the two week test,
significant retroactive interference was established for all image types i.e. partici-
pants had difficulty distinguishing the targets from the distractors. This provides
evidence for the claim that constant distractors could interfere with correct se-
lection of passimages. However, further work would still be required to establish
this concretely in the context of graphical authentication.

Due to the potential interference and the additional work required to imple-
ment constant challenge screens, it is feasible that other countermeasures may
be used and so the efficacy of those countermeasures will be examined. In addi-
tion, as noted by Smith [80, Page 163], there are “different secrets for different
uses”. That is to say, there are different levels of security required for different
environments. Thus it is feasible to consider that one might not wish to go to the
effort of eradicating frequency attacks, but merely reduce the risk to an accept-
able level. This research aimed to establish how effective the different mitigation
countermeasures are to allow this to be incorporated into the mathematical model
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of frequency attacks reported in the following chapter. Specifically the following
countermeasures were examined:

• Repetition of a subset of distractors for a given passimage

• Use of “dummy” screens if an attacker selects the wrong image at any point
within a session

• Using a passimage set which is larger than the number of challenge screens
in a session (proposed by DeAngeli et al. [17] and extended by Dunphy et
al. [21])

Additionally, there has been no claim that increasing the number of distractors
shown per challenge screen or increasing the number of challenge screens would
mitigate a frequency attack. Thus these were also examined for significance. The
algorithm is reported in the next section, and hypotheses to be examined are
reported in the following section.

6.3.2 Frequency Attack Algorithm

The collection of 144 images established earlier in the research was used in the
simulation. The content of the images was unimportant as they were selected
randomly for both passimage sets and distractors. The control configuration
which included no counter measures against frequency attacks was as follows.
The first step was to select a specified number of passimages from the potential
passimage set. A subset of the user’s passimage set is then selected. To create
a challenge session, the number of challenge screens to be generated matched
the number of images in the selected passimage subset. A specified number of
distractors were then randomly selected from the remaining images (the complete
collection, less the passimages for the current set of passimages) for each of the
challenge screens required.

An attack on the set of passimages was then conducted as follows. A list of
images seen by the attacker is created. For each challenge screen presented to the
attacker, the images are either added to the list of viewed images, or the number
of times they have been seen is incremented. To attack the screen, the attacker
identifies the most viewed image on the screen (the image on the screen with the
highest count in the list of viewed images) and selects that image as the passimage.
If there are a number of images with equal frequencies, a random image is selected
from this set. If the image is the passimage, a counter for the number of screens
passed in that session is incremented. If at the end of the session the number
of screens passed is equal to the number of challenge screens in a session the set
of passimages was successfully attacked. The program then exits returning the
number of attacks which were attempted before success (the dependent variable
being examined in this research). For each experimental configuration (p− s− d
and any applicable countermeasure variables), this process was run one hundred
times because Wilcox notes that the probability of a Type I error (where the null
hypothesis is true, but is falsely rejected) is suitably minimised with a sample
size of 100 observations [104, Page 154].
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6.3.3 Hypotheses

The dependent variable being examined in this research was the number of attacks
before success. The independent variables included the number of passimages in
the user’s passimage set (p), the number of challenge screens per session (s), the
number of distractors per challenge screen (d), the number of distractors kept
constant per passimage and the use of dummy screens. The hypotheses to test
the relationships between the independent variables and dependent variable were
established as follows:

• H1 It takes significantly more attacks before a successful frequency attack
when there are a subset of distractors kept constant between challenge ses-
sions.

• H2 It takes significantly more attacks before a successful frequency attack
when the number of distractors kept constant is increased.

• H3 It takes significantly more attacks before a successful frequency attack
when dummy screens are presented if one screen in a challenge set is failed.

• H4 It takes significantly more attacks before a successful frequency attack
when a passimage set larger than the number of challenge screens in a
session is used.

• H5 It takes significantly more attacks before a successful frequency attack
when the number of challenge screens in a session is increased.

• H6 It takes significantly more attacks before a successful frequency attack
when the number of distractors per challenge screen is increased.

For hypothesis testing, where an independent variable was altered, the remaining
independent variables are kept constant so that the effect of only one indepen-
dent variable was measured at any given time. The independent variable being
examined is referred to as the experimental variable. The corresponding null hy-
potheses (referred to by the hypothesis number, with a subscript of 0 after e.g.
the null hypothesis for H1 is H10) detail that there is no significant difference in
the number of attacks before success. Control configurations had no countermea-
sures implemented and were used to compare to the other configurations where
each countermeasure was implemented, or in the case of H2 a lesser number of
constant distractors was used. A number of different variations were used to test
each hypothesis, detailed as follows:

H1 Experimental Configurations

The simulation configurations run to examine H1 were as detailed in Table
6.6. Each configuration was run 100 times. The number of distractors used
were selected as eight, nine and fifteen. This was to reflect common choices in
recognition-based schemes. Eight distractors are used in passfaces 2, nine distrac-
tors are used in VIP [16] and fifteen distractors are used in the doodles scheme
[62]. The last size provided a comparison of a larger distractor set.

2Available at : http://www.realuser.com/
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p s d c
4 4 8 0
4 4 8 1
4 4 8 2
4 4 8 3
4 4 9 0
4 4 9 1
4 4 9 2
4 4 9 3
4 4 15 0
4 4 15 1
4 4 15 2
4 4 15 3

Table 6.6: Frequency Attack H1 Configurations

p s d c
4 4 8 1
4 4 8 2
4 4 8 3
4 4 9 1
4 4 9 2
4 4 9 3
4 4 15 1
4 4 15 2
4 4 15 3

Table 6.7: Frequency Attack H2 Configurations

For this hypothesis, the number of images in the passimage set was kept
consistent (at four) as was the number of challenge screens. The number of dis-
tractors changed, but hypothesis testing always compared a control configuration
with a corresponding configuration with only the experimental variable changed
(in this case the number of distractors kept constant per passimage) . To test H1,
configurations with the same values of p, s, and d were compared with different
values for c. For example, the configuration 4-4-8 with 1 constant distractor was
compared to the 4-4-8 configuration with no constant distractors.

H2 Experimental Configurations

The simulation configurations run to examine H2 were as detailed in Table 6.7.
Each configuration was run 100 times. To test H2, configurations with the same
values of p, s, and d were compared with increased values for c. For example,
the configuration 4-4-8 with 3 constant distractors was compared to the 4-4-8
configuration with one constant distractor.
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p s d dummy screens
4 4 8 yes
4 4 8 no
4 4 9 yes
4 4 9 no
4 4 15 yes
4 4 15 no

Table 6.8: Frequency Attack H3 Configurations

p s d
4 4 8
4 4 9
6 4 8
6 4 9
8 4 8
8 4 9
12 4 8
12 4 9

Table 6.9: Frequency Attack H4 Configurations

H3 Experimental Configurations

The simulation configurations run to examine H3 were as detailed in Table 6.8.
Each configuration was run 100 times. To test H3, configurations with the same
values of p, s, and d using dummy screens were compared to those without dummy
screens. For example, the 4-4-8 configuration which employed dummy screens was
compared to the 4-4-8 configuration which didn’t use dummy screens.

H4 Experimental Configurations

The simulation configurations run to examine H4 were as detailed in Table 6.9.
Each configuration was run 100 times. To test H4, configurations with the same
values of s and d were compared to configurations with larger values for p. For
example, the configuration 6-4-8 was compared to the configuration 4-4-8. Values
of p were selected to reflect 1.5 times the number of passimages (e.g. p=6 c.f.
p=4), double the number of passimages (e.g. p=8 c.f. p=4) and three times the
number of passimages (e.g. p=12 c.f. p=4).

H5 Experimental Configurations

The simulation configurations run to examine H5 were as detailed in Table 6.10.
Each configuration was run 100 times. To test H5, configurations with the same
values of p and d were compared to configurations with an increased number of
challenge screens. For example the configuration 10-4-8 was compared with the
configuration 10-5-8. The number of passimages was kept constant at ten. This
value had to be large enough that the number of screens was always less than the
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p s d
10 4 8
10 5 8
10 6 8
10 7 8

Table 6.10: Frequency Attack H5 Configurations

p s d
4 4 8
4 4 9
4 4 15

Table 6.11: Frequency Attack H6 Configurations

number of passimages in the set, but the number of screens could be increased.

H6 Experimental Configurations

The simulation configurations run to examine H6 were as detailed in Table 6.11.
Each configuration was run 100 times. To test H6, configurations with the same
values of p and s were compared to configurations with increased values for d.
For example the configuration 4-4-8 was compared with the configuration 4-4-9.

6.3.4 Results

The histogram showing the distribution of one hundred simulations for a control
setting with four passimages, four challenge screens and eight distractors is shown
in Figure 6.6. It can be seen from this figure that the distribution is skewed to
the right, indicating that the use of standard deviation and other parametric
statistics such as mean may not be appropriate [18, Page 80]. The frequency
distributions for the countermeasures configurations also indicated asymmetric
distributions. Examples for each of these are provided in Figures 6.7, 6.8 and
6.9 respectively. Some of these appear more skewed than others (e.g. Fig. 6.7).
The asymmetric distribution was also confirmed using a normal probability plot
(for the control configuration of 4-4-8), as shown in Figure 6.10. In a normal
probability plot, if the points lie very close to the straight line which represents
the normal distribution, the data is normally distributed ([18, Page 115]).

Due to the non-normal distribution of the results, it was decided that a sta-
tistical approach which was robust to outliers in data and skewed distributions
should be taken. The Yuen statistic with 20% trimmed means and an alpha value
of 0.05 was applied, as it is highlighted by Wilcox in [104, Page 157] that this
approach yields robust results. As for the shoulder surfing analysis, analysis for
the frequency attacks was performed using the statistical program “R” 3. In the
hypothesis testing, if the Yuen test statistic value was higher than the critical
value (which is automatically calculated by the R program for the data input)

3Available at http://www.r-project.org/
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Figure 6.6: Frequency Attacks Control 4-4-8 Histogram

Constant Dis-
tractors

Min 1st Qu. Median Mean 3rd Qu. Max.

0 2.00 3.00 3.00 3.48 4.00 6.00
1 2.00 7.00 13.00 17.76 23.00 85.00
2 2.00 27.00 57.50 83.45 110.00 670.00
3 2.00 72.75 178.50 264.90 348.20 1604.00

Table 6.12: Constant Distractors Summary Stats Table

then the null hypothesis was rejected (this is shown by Wilcox in [103, Page 252]).
Each hypothesis is now considered in turn and the results reported.

H1 - Constant Distractor Subset: Results

A summary of the results for the use of constant distractor subsets is demon-
strated by the boxplot in Figure 6.11. This figure demonstrates the effect of the
number of distractors kept constant per passimage on the number of attacks re-
quired before success for values 0 (control), 1,2 and 3. The plot shows that the
use of a number of constant distractors reduces the number of attacks required
before success when compared to zero constant distractors.

In each case represented in the plot, four challenge screens with four passim-
ages and eight distractors were used, the experimental variable (the number of
constant distractors per passimage) was varied using values of zero, one, two and
three. The values for minimum, first quartile, median, mean, third quartile and
maximum for each configuration is given in Table 6.12. This tables shows that the
minimum stays approximately equal in each case, but the values for median and
the quartiles increase between each value for constant distractors. It should be
noted that due to the skew of the distribution, mean is not an accurate measure
of spread but is included for completeness.

Applying the Yuen statistic with 20% trimmed means, the null hypothesis H10

was rejected for each of the configurations used to test H1 with the test statistic
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Figure 6.7: Frequency Attacks 4-4-8 Subset of One Constant Distractor His-
togram

Figure 6.8: Frequency Attack 4-4-8 Dummy Screens Histogram
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Figure 6.9: Frequency Attack 8-4-8 Larger Image Set Histogram

Figure 6.10: Frequency Attacks 4-4-8 Normal Probability Plot
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Figure 6.11: Frequency Attacks H1 Boxplot- Constant Distractors

value ranging between 16.84 and 20.38 and the critical value of approximately
1.97 in each instance. Thus the number of attacks before success when a subset of
distractors are kept constant is significantly more than that when no distractors
are kept constant.

H2 - Increasing the Number of Distractors Kept Constant: Results

A summary of the results for the use of constant distractor subsets is demon-
strated in Figure 6.11 when examining the second, third, and fourth boxes corre-
sponding to one, two and three distractors kept constant respectively. It can be
seen from this plot that increasing the number of constant distractors increases
the number of attacks required before success. This is also shown in the statistics
in Table 6.12 where the values for median increase substantially between each
value. In each case here, four challenge screens with four passimages and eight
distractors were used, the variable of interest (the number of constant distractors)
was increased from one to two and then to three.

Applying the Yuen statistic with 20% trimmed means, the null hypothesis
H20 was rejected for each of the setups used to test H2. The test statistic value
ranged between 12.70 and 19.57 and the critical value was approximately 1.97
in each instance. This result is as expected from examination of the evidence
shown in the boxplot in Figure 6.11. This means that increasing the number
of distractors kept constant per passimage significantly increases the number of
attacks before success.
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Figure 6.12: Frequency Attacks H3 Boxplot - Use of Dummy Screens

Dummy Screens Min 1st Qu. Median Mean 3rd Qu. Max.
No 2.00 3.00 3.00 3.48 4.00 6.00
Yes 2.00 3.00 4.00 3.70 4.00 6.00

Table 6.13: Dummy Screens Summary Stats Table

H3 - Dummy Screen Results

A summary of the results for the use of dummy screens (upon incorrect selection)
is demonstrated in Figure 6.12. It can be seen from this plot that the use of
dummy screens appears to have little effect on the overall number of attacks
required before success. In each configuration four challenge screens with four
passimages and eight distractors were used. The experimental variable (the use
of dummy screens) was varied by either being used or not. When dummy screens
were not used, this was the control configuration.

The values for minimum, first quartile, median, mean, third quartile and
maximum for each set up is given in Table 6.13. One can see from Table 6.13
that the only value which changes between the control configurations (using no
dummy screens) and the set up using dummy screens is the median, which changes
by 0.22. Thus the use of dummy screens appears to show little evidence of an
increase in the number of attacks required before success.

Applying the Yuen statistic with 20% trimmed means, confirmed that the
null hypothesis H30 could not be rejected for each of the set ups used to test H3.
The test statistic value ranged between 0.79 and 1.70 and the critical value was
approximately 1.98 in each instance.

H4 - Larger Image Set Results

A summary of the results for the use of larger passimage sets (from which a
subset is selected for any given authentication screen) is demonstrated in Figure
6.13. It can be seen from this plot that the use of a larger passimage set reduces
the number of attacks required before success when compared to smaller sets.
In each configuration, four challenge screens and eight distractors were used, the
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Figure 6.13: Frequency Attacks H4 Boxplot - Use of a Larger Image Set

No.
of
Pas-
sim-
ages

Min 1st Qu. Median Mean 3rd Qu. Max.

Four 2.00 3.00 3.00 3.48 4.00 6.00
Six 3.00 6.00 8.00 7.79 9.00 13.00
Eight 5.00 10.00 13.50 13.85 17.00 25.00
Twelve 7.00 38.75 48.00 49.62 62.25 96.00

Table 6.14: Larger Passimage Set Summary Stats Table

experimental variable (the number of passimages in a set) was varied using values
of four, six, eight and twelve.

There is an increase in the number of attacks when moving between lower
values of passimage set sizes and larger values. This indicates that increasing the
number of passimages has a significant effect on the number of attacks required.
The values for minimum, first quartile, median, mean, third quartile and maxi-
mum for each set up is given in Table 6.14. As expected from the boxplot, it can
be seen from Table 6.14 that there is a large jump in all the statistics between
each of the number of passimages.

When applying the Yuen statistic with 20% trimmed means, the null hypoth-
esis H40 was rejected for each of the configurations used to test H4. The test
statistic value ranged between 15.89 and 24.17 and the critical value was approx-
imately 2.00 in each instance. This is in line with the results shown in Table
6.14 and Figure 6.13 and means that there is a significant increase in the num-
ber of attacks required before success when the number of passimages in a user’s
passimage set is increased.
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Figure 6.14: Frequency Attacks H5 Boxplot - Increased Number of Challenge
Screens

H5 - Increasing the Number of Challenge Screens Results

A summary of the results for the use of an increased number of challenge screens
is demonstrated in Figure 6.14. It can be seen from this plot that the use of a
larger number of challenge screens reduces the number of attacks required before
success when compared to a smaller number of screens. This was the case until the
number of screens approaches the number of passimages. In each configuration,
the number of passimages in the set was kept constant at 10. This is because the
number of passimages in the set has to be larger than the number of challenge
screens in each instance. Eight distractors were used and the variable of interest
(the number of challenge screens) was varied using values of five, six and eight.

The values for minimum, first quartile, median, mean, third quartile and max-
imum for each configuration is reported in Table 6.15. These statistics demon-
strate the increase in number of attacks before success until the number of chal-
lenge screens approaches the number of passimages. In the boxplot (Fig. 6.14)
the median is consistent when using four and five screens. However as the number
of screens approaches the number of passimages in the set this reduces. One rea-
son for this could be that if the number of passimages is approximately equal to
the number of screens then the attacker will see the passimages more frequently,
making the attack more successful. Thus it is possible that it is not merely in-
creasing the number of screens producing this effect, but that the value is close
to the number of passimages.

Applying the Yuen statistic with 20% trimmed means, the null hypothesis H50

was rejected for four of the five configurations used to test H5. The test statistic
value ranged between 0.29 and 5.87 and the critical value was approximately 1.99
in each instance. Where the test statistic was not significant was for the use of five
challenge screens, the remaining results established a significant difference in the
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No. of Challenge
Screens

Min 1st Qu. Median Mean 3rd Qu. Max.

Two 2.00 9.00 14.00 15.73 20.00 47.00
Three 5.00 15.75 21.00 21.98 28.00 49.00
Four 5.00 16.00 23.00 24.09 31.00 51.00
Five 9.00 19.00 23.00 23.86 27.00 54.00
Six 8.00 17.00 21.00 20.84 24.00 42.00
Seven 7.00 15.00 18.00 18.27 21.00 29.00
Eight 8.00 15.00 16.00 16.63 19.00 30.00

Table 6.15: More Challenge Screens Summary Stats Table

No. of Distrac-
tors

Min 1st Qu. Median Mean 3rd Qu. Max.

Eight 2.00 3.00 3.00 3.48 4.00 6.00
Nine 2.00 3.00 4.00 3.91 4.00 7.00
Fifteen 3.00 5.00 6.00 5.64 6.00 8.00

Table 6.16: Increased Distractors Summary Stats Table

distributions. This is in line with the results shown in Table 6.15 and Figure 6.14.
However, the statistic is a two-sided test meaning the result could significantly
less or significantly more attacks before success. Thus using the boxplot it can be
seen that increasing the challenge screens has a detrimental effect on the number
of attacks required instead of a positive effect (i.e. it decreases the number of
attacks instead of increasing them).

H6 - Increasing the Number of Distractors Results

A summary of the results for the use of an increased number of distractors in
each challenge set is shown in Figure 6.15. It can be seen from this plot that the
use of more distractors in each challenge screen increases the number of attacks
required before success when compared to smaller numbers of distractors. In
each configuration, four challenge screens and four passimages were used, the
experimental variable (the number of distractors per screen) was varied using
values of eight, nine and fifteen.

The values for minimum, first quartile, median, mean, third quartile and
maximum for each configuration is given in Table 6.16. As expected from the
boxplot in Figure 6.15, it can be seen from Table 6.16 that there is an increase
in the median values between each of the variations. There is a larger increase
of median attacks before success between the use of fifteen distractors and eight
and nine. This is as expected as there is a larger difference in the number of
distractors being compared.

When applying the Yuen statistic with 20% trimmed means, the null hy-
pothesis H60 was rejected for each of the configurations used to test H6. The
test statistic value ranged between 3.84 and 13.67 and the critical value was
approximately 1.98 in each instance. This means that increasing the number of
distractors per screen significantly increases the number of attacks required before
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Figure 6.15: Frequency Attacks H6 Boxplot - Increased Number of Distractors

success.

6.3.5 Frequency Attacks Simulations Discussion

Frequency attacks were simulated varying a range of independent variables (the
number of challenge screens, number of distractors, number of passimages, use
of dummy screens, and the number of constant distractors). The effect on the
number of attacks before success was examined. Whilst some of the previously
identified countermeasures had a significant impact on the number of attacks re-
quired before success, others did not. In particular, the use of dummy screens
(where only distractor images are shown if the user selects the incorrect image
on any given challenge screen within a session) did not show significant results.
Also, increasing the number of challenge screens increases the number of attacks
required before success until the number of challenge screens approaches the size
of the passimage set. Use of constant distractors increased the number of attacks
required, as did use of a larger passimage set and increasing the number of dis-
tractors per challenge screen. Increasing the number of constant distractors used
also significantly increased the number of attacks required.

Of the methods which achieved significant increases in the number of attacks
before success, increasing the number of distractors per screen and the passimage
set size and using a subset of constant distractors provided effective results. The
most effective countermeasure was established as using a number of constant
distractors per passimage. When comparing the median number of attacks before
success to the control configuration (with four passimages, four challenge screens
and eight distractors) using one constant distractor per passimage resulted in an
approximate 5.17 times increase. Using two constant distractors resulted in an
approximate 20.17 times increase and using three constant distractors resulted in
an approximate 57.17 times increase compared to no constant distractors.
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The second most successful countermeasure was using a larger passimage set.
When compared to a control of four passimages, using six passimages gave ap-
proximately 2.67 times increase. Eight passimages gave approximately 4.5 times
increase and twelve passimages gave an approximate increase of 16 times. The
least effective of the significant countermeasures was using more distractors per
screen, which when nine distractors was compared to eight resulted in approx-
imately 1.3 times increase and fifteen distractors resulted in a 2 times increase
compared to eight distractors.

6.4 Observability Data Collection Conclusion

In this chapter gathering data on observability attacks was approached in two
ways; a user study and simulations. The user study approach provided insuf-
ficient data due to lack of participation. The final approach taken was that of
simulations. This approach provided a better flexibility as further variables could
be easily incorporated and data was gathered with relative ease. The simulation
approach also provided an improvement on the user study approach as it allowed
the attacker’s ability to be set as constant, which meant that the results were not
dependent on the ability of the attacker. Shoulder surfing attacks were shown to
take a significantly larger number of attacks when the number of passimages in a
user’s passimage set exceeded the number of challenge screens. Also, increasing
the number of challenge screens decreased the number of attacks required before
success.

The efficacy of countermeasures for frequency attacks and the impact of in-
dependent variables were also established by the simulations. Now observability
data has been established, and variables which impact the number of attacks
required have been identified, it is now necessary to establish a model for these
attacks. This is achieved by mathematical modelling and is reported in Chapter
7. The final metric and the corresponding evaluation are reported in Chapter 8.
The final chapter presents conclusions and future work.
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Chapter 7

Observability Models

The previous chapter helped identify aspects to be included in the models for
shoulder surfing and frequency attacks. To construct these models mathematical
modelling was applied to the results of the simulations detailed in Chapter 6.
The modelling process and results are reported in Sections 7.1 and 7.2. Mathe-
matical modelling was used instead of running the simulation each time. This is
because running the simulation each time the metric was evaluated for a configu-
ration may give slightly different results, resulting in the metric not meeting the
reproducability and repeatability criteria.

7.1 Modeling Shoulder Surfing Attacks

To establish a mathematical model which would allow an estimate of the number
of attacks before success, the approach taken was to run the simulations already
established in Chapter 6 (for a variety of configurations) 500 times. Wilcox notes
that the probability of a Type I error (where the null hypothesis is true, but
is falsely rejected) is suitably minimised with a sample size of 100 observations
[104, Page 154]. To ensure minimisation of the probability of a Type I error, 500
observations were simulated. The median value of each configuration was noted
from the results and stored. These median values were then used in multiple
regression (a mathematical modelling technique) to fit a model. This section
discusses the results of this fitting process for shoulder surfing. As discussed in
Chapter 6 Section 6.2, simulations were performed in two stages; a viewing session
followed by an attack session. In a viewing session a challenge set is generated
for the user and the attacker notes the passimages selected. However the set of
passimages viewed is then reduced according to the recall rate of the attacker.
The attack session is then generated. If the attacker has viewed and remembered
all the passimages shown in this session, then the attack is successful.

7.1.1 Variables

The independent variable under consideration was the median number of attacks
required against a targeted passimage set before successful authentication. As
previously noted, the median value was used instead of the arithmetical mean as
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Variable Values
Number of Pas-
simages (p)

{1,...,10}

Percentage of
Recall (r)

{5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,100}

Number of Chal-
lenge Screens (s)

{1,...,p}

Table 7.1: Shoulder Surfing Simulation Configurations

the distribution of the data was skewed. The independent variables were identified
as:

• recall percentage (how much the attacker recalls of the images seen in view-
ing sessions, r)

• the number of passimages in the user’s passimage set (p)

• the number of challenge screens in a challenge session (s)

The values used for the configurations of the simulations were as shown in Table
7.1. Note the caveat that the number of challenge screens had to be less than
or equal to the number of passimages. Otherwise passimages would need to be
repeated within a session.

7.1.2 Initial Models

Since there were a number of independent variables to be examined, the data
was multivariate. Multivariate data is more difficult to model than the situation
where one has only one independent variable and one dependent variable. The
approach taken in this work to fit a model to the data follows that proposed by
Maindonald and Braun [54, Page 190] which is as follows:

• Examine the distribution of the dependent variables and the independent
variable.

• Examination of the scatterplot matrix involving all the dependent variables,
in particular look for evidence of non-linearity in the plots of these variables
against each other and note any potential outliers.

• If there is evidence on non-linearity in some scatterplots, consider applica-
tion of transformations to the data to produce more linear results which are
easier to fit.

• If distributions are skewed, again consider transforms to establish a more
symmetrical distribution.

The first step was an examination of the distributions of the variables. Since
the dependent variable values were selected (as shown in Table 7.1), it was nec-
essary to only examine the distribution of the dependent variable. This is shown
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Figure 7.1: Distribution of Shoulder Surfing Median Number of Attacks

in Figure 7.1 from which it can be seen that the distribution was skewed to the
right. DeVeaux states that such skewed data can benefit from square root and
logarithm transformations [18, Page 56]. These transforms were applied to the
data to see if it made it less skewed (and hence better for modelling). Applying
the log2 function to the data the resulting distribution is shown in Figure 7.2
which is noticeably less skewed than the original data. The square root of the
median data was then examined and is shown in Figure 7.3. This transform of the
distribution is still largely skewed to the right. Thus, the best result which was
achieved by the log2 transform and so log2 of the median number of attacks was
used in the modelling process as the dependent variable instead of the median
number of attacks.

The next step was to examine the scatterplot matrix which shows scatterplots
of each pair of variables in the data set. Further details on scatterplot matrices
are provided in Appendix B. This is shown in Figure 7.4. To examine the
plot comparing two variables, first find the row with the x-axis variable on the
diagonal, then move to the right or left till the y-axis variable is above or below
the diagonal. This plot then shows the scatterplot comparing the x-variable to
the y-variable selected. For example, to examine the number of screens plotted
against the median number of attacks then the plot in the second row from
the top and the 4th column would be appropriate. It can be seen from the
pairwise scatterplot that the relationship between the median number of attacks
and the log2 of the median and the relationships between the dependent variables
(since the values were chosen in a specific way) are as expected. The plots under
specific consideration are: each dependent variable against the median, and each
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Figure 7.2: Distribution of Shoulder Surfing log2 of Median Number of Attacks

Figure 7.3: Distribution of Shoulder Surfing Square Root of Median Number of
Attacks
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Figure 7.4: Shoulder Surfing Data Scatterplot Matrix

dependent variable against the log2 of the median.
First the recall against the median was examined. A power shaped plot can be

seen from the scatterplot in the fourth row and third column of Figure 7.4. When
examining the recall against the log2 of the median, a more linear correlation
is achieved, which is preferable for modelling. Next, examining the number of
screens against the median, a slight curve is noticeable, this again is reduced to a
more linear relationship when examining the log2 of the median. When comparing
the number of passimages, both against the median and the log2 of the median,
approximately linear relationships are achieved. Models were fitted using the log2
of the median number of attacks as the dependent variable due to the improved
linearity in relation to the independent variables. The number of screens, number
of passimages and percentage of recall were the independent variables. For ease of
notation, these variables were denoted as s, p and r respectively. The dependent
variable was denoted by log2m

Model 1

The first model examined (model 1, or M1) was as shown in Equation 7.1 which
represents the model in terms of the dependent variable (log2m) being a function
of the independent variables. The co-efficient values established by the regression
are not shown at this point to keep the model clearer. Instead i, j, and k represent
the co-efficients and s represents the number of screens, r represents the recall
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Figure 7.5: Shoulder Surfing Model 1 Diagnostic Plot

value and p represents the number of passimages.

log2m = is+ jr + kp (7.1)

The residual values (the observed values less the fitted values) provide an
indication as to the fit of a model. In particular, the adjusted R2 value for
this model was calculated as 0.8458 which means that 84.58% of the variation in
log2m was accounted for by Model 1. The residual standard error also provides an
indication of how well the model fits the data by providing a measure of the error
in prediction. A smaller residual error means the model fits the data better than
a larger value [31, Page 121]. The standard error for Model 1 was approximately
0.48 of an attack.

Diagnostic plots were constructed for this model and the results are shown in
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Figure 7.5 where four plots are presented. These plots can be used to establish
whether the data violates the underlying assumptions of multiple regression using
the least squares method, which was employed here. The assumptions of least-
squares regression are:

• linear relationship between the independent and dependent variables

• errors are independent

• errors have constant variation

• errors are normally distributed

[18, inside of the very back page]. If the assumptions are violated, robust regres-
sion which is robust to violations of the assumptions for least-squares regression
should be used [32].

Starting with the top left hand corner plot, the residual values are plotted
against the fitted values. This was examined for any pattern as this would indicate
a violation of the assumptions of least squares regression that errors have constant
variance [31, Page 29]. There appears to be a slight pattern in particular to the
left of the plot, applying a polynomial model and possibly robust modelling may
result in an improved fit.

To the right of the residuals vs. fitted plot is the Normal Q-Q plot, where if
the residuals are normally distributed, the points should lie approximately on the
line. Whilst this is the case for the majority of points, in particular to the right
of the graph, the points stray from the line. Again, this indicates violation of the
normally distributed errors assumption of the least squares method [31, Page 29].

The next plot (the Scale-Location plot) is produced to examine consistency
of the variance between the residual and fitted values. It takes the square root of
the absolute residuals and plots these against the fitted values. The greater the
spread on the vertical axis, the less constant the variance which indicates violation
of the assumption of constant variance. This particular plot suggests that the
variance is not constant, so a better model and potentially robust regression may
need to be applied.

The final plot (bottom right-hand corner) shows the residual values plotted
against the leverage. An observation with an extreme value on a dependent vari-
able is a point with high leverage. Such points can have a large effect on the
estimate of the regression co-efficients. Also shown on this plot is a line repre-
senting Cook’s distance, a measure which combines the information of leverage
and residual of each observation. It shows residuals which have a large influence
in determining the form of the regression line. In particular, points with Cook’s
distances that are greater than one may require further examination [54, Page
149]. In this plot a large number of points are above one, this indicates that a
robust regression method may be more appropriate for establishing a model.

Model 2

As a result of examining the diagnostic plots for Model 1, the next model used
robust modelling methods. The MASS package for robust regression in R was
used, in particular the rlm (robust linear modelling) method was applied.
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First, to establish a better model to use, the non-robust model was applied
to establish the R2 value for the second order polynomial log2m = is + jr +
kp + ls2 + mr2 + np2 where i, j, l,m, n represent the co-efficients. This aimed
to establish whether the polynomial may provide a better fit. The results gave
an R2 adjusted value of 0.9142, improved from model 1 by 0.0684. A standard
error of 0.36 was achieved, 0.12 less than model 1. Adding in cubic terms to give
log2m = is+ jr+ kp+ ls2 +mr2 +np2 + os3 + r3 + qp3 (i, j, k, l,m, n, q represent
the co-efficients) again provided a better result, but only marginally (with an R2

adjusted value of 0.9383, a difference of 0.0241) and so to keep the model simpler,
the model was kept at the level of a second order polynomial.

The model now being clear, the robust regression was applied. Model 2 is
shown in Equation 7.2 where i, j, k, l,m, and n are the co-efficients and s is the
number of screens, r is the recall percentage, and p is the number of passimages.
Since robust modeling was employed here, it is was not necessary to examine the
diagnostic plots to establish whether the underlying assumptions of non-robust
regression modelling were violated. The error for Model 2 was 0.37, just more
than one third of an attack as the possible error and an improvement of 0.11
when compared to Model 1.

log2m = is+ jr + kp+ ls2 +mr2 + np2 (7.2)

7.1.3 Final Model

Models 1 and 2 had assumed an intersection point in the model. Since there is no
situation in which zero attacks would be possible (an attacker will always need
to perform at least one attack), the final model accounts for this. Model 3 is the
same as Model 2, but has no intersection in the model. When using non-robust
modelling methods, Model 3 resulted in an improved R2 value of 0.93. However
the residual error was 0.70 and s2 was identified as having an insignificant affect
on the fitted values. The co-efficient of s2 was calculated at -0.001749 and had a p
value of 0.632, larger than the desired significance level of 0.05. Significance was
automatically calculated for the models by R, and all other independent variables
had significant impact (i.e. had p values less than 0.05) on the models till this
point. The robust version of Model 3 provided a standard error of 0.52, a better
result than the non-robust equivalent of 0.70. However, in the non-robust Model
3 the results showed that the impact of s2 was not significant. Thus the final
model, Model 4 was as shown (with co-efficients) in Equation 7.3, the standard
error was marginally less at 0.51, and the equation was simpler.

log2m = 1.3852p− 0.0824p2 − 0.2143s− 0.0472r + 0.0002r2 (7.3)

Some examples of the predicted and actual values are shown in Table 7.2
(rounded to two decimal points) where it can be seen that some differences were
very small, and others were larger. Overall of the 1100 configurations examined
approximately 2.55% (28) of the estimated medians were at least twice as large
as the observed medians and all were less than 2.5 times as large as the observed
medians.
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Number
of Passim-
ages

Number of
Screens

Recall Per-
centage

Observed
Median

Predicted
Median

Difference

4 4 60 2 2.38 0.38
4 4 10 10 7.53 2.47
8 4 80 4 5.48 -1.48
9 9 100 1 2.21 -1.21
8 8 50 2 4.70 -2.70

Table 7.2: Shoulder Surfing Model Example Estimates and Observed Values

7.2 Modeling Frequency Attacks

This section reports attempts to establish a mathematical model which allows an
estimation of the number of attacks before success for frequency attacks. The
approach taken was to run the simulations already established in Chapter 6 for
various configurations (discussed shortly) 100 times. The resulting data was used
to fit the model. This was less than the number of observations simulated for
shoulder surfing attacks as these simulations took longer to complete, but still
met the requirements for minimising a Type I error as noted by Wilcox in [104,
Page 154]. From the simulations, the median value was recorded and used in
multiple regression to fit a model to the data. This section discusses the results
of the modelling process. The approach taken was the same as for the shoulder
surfing model, as discussed in Section 7.1.

7.2.1 Variables

The independent variables identified were as follows (with abbreviations for use
in the model in brackets):

• number of passimages (p)

• number of challenge screens (s)

• number of distractors (d)

• number of distractor images kept constant per passimage (c)

The configurations used were all combinations (subject to the constraint that
p >= s) of the values shown in Table 7.3. The number of constant distractors (c)
used values from 1 through to the number of distractors divided by two (rounded
to the nearest integer). This was to reduce the time taken to run the simulations
which ran for weeks when using larger values of constant distractors. The config-
urations using 9 passimages, 15 distractors and more than three screens with a
varied number of distractors kept constant were not run. These were attempted,
but simulations ran for days (per iteration). With no way of predicting how long
they would take to finish it was decided that sufficient data points had been gath-
ered at this point. For each configuration (p − s − d − c), this process was run
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Variable Values
Number of Pas-
simages (p)

3,4,5,6,7,8,9

Number of Chal-
lenge Screens (s)

1,2,3,4,5,6

Number of Dis-
tractors (d)

8,9,10,12,14,15

Number of Con-
stant Distractors
(c)

1,2,...,d
2

Table 7.3: Frequency Attack Simulation Configurations

one hundred times. The overall median for a given configuration was then used
for curve fitting, which is discussed in the following section.

7.2.2 Initial Models

Since there were a number of independent variables (p, s, d, and c), the data
was multivariate. As for shoulder surfing, the approach taken to establish an
appropriate model followed that proposed by Maindonald and Braun [54, Page
190] .

The distribution of the independent variable (the median number of attacks)
can be seen in Figure 7.6 where the data is heavily skewed to the right. To make
this more symmetrical, a transform to the data can be applied. Since the log
function often works for distributions skewed to the right as noted by DeVeaux
[18, Page 57], the log2 function was applied to the median number of attacks.
The result is shown in Figure 7.7. This shows a more symmetrical distribution
and so log2 of the median was used as the dependent variable in the regression
instead of the median number of attacks.

Next, the relationships between the different dependent variables were exam-
ined. This was achieved through plotting a pairwise scatterplot matrix (shown in
Figure 7.8). This combines all the pairwise scatterplots of the variables. Notice
the patterns in the relationships between the dependent variables, this is due to
the selected values for each configuration. Thus the patterns exhibited were ex-
pected and no action was required to reduce apparent relationships between the
independent variables.

When examining the scatterplots which plot the dependent variables against
the median number of attacks it can be seen that in some cases (for example
the number of constant distractors) the relationship is non-linear. This suggests
transformation of the data may be required. However, if the scatterplot of the
log2 of the median values against the number of constant distractors shown in
Figure 7.10 is examined, an approximately linear pattern is apparent. Note that
the scatterplots display all the data. For clarification, an example where the
number of constant distractors are changed, but the remaining variables are kept
constant is shown in Figure 7.9 which can be compared with the log2 transform
applied as shown in 7.10. As shown in Figure 7.9, the shape follows a power thus
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Figure 7.6: Frequency Attacks- Median Attacks Histogram

Figure 7.7: Frequency Attacks log2 Median Attacks Histogram
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taking the log provides a more linear result. Due to the increased linearity when
using log2 of the median, no further transformations were applied to the data.

To establish the frequency attacks model, the R programming language and
statistical software was used to apply regression modeling to the data by using the
“lm” function, which applies least squares regression 1. Later the R programming
language and statistical software was used to apply robust linear modelling using
the “rlm” function.

Model 1

The first model, Model 1, is shown in Equation 7.4 (where i, j, k, l represent
the co-efficients), which indicates in R to model a relationship between the de-
pendent variable on the left and the independent variables on the right . The
R2 value calculates how much variation in the dependent variable is explained by
the independent variables. For this fit the R2 values was 0.81 and the residual
standard error was 1.59. The value of 0.81 for R2 shows approximately 81% of
the variation in log2median is accounted for by the dependent variables. The
residual standard error also provides an indication of how well the model fits the
data. It does so by providing a measure of the error in prediction, thus a smaller
residual error means the model fits the data better than a larger value as noted
by Fox [31, Page 121]. The standard error is for this model was approximately
1.59 attacks, which appeared high given the context.

log2median = ip+ js+ kc+ ld (7.4)

In Figure 7.11 four diagnostic plots for Model 1 are shown. The plots shown
in Figure 7.11 are examined to establish whether the underlying assumptions
of least-squares regression are violated. If the assumptions are violated, robust
regression should be used as noted by Fox [32]. Starting at the top left hand
corner, the residual values are plotted against the fitted values. Any pattern
in this plot indicates a violation of the least squares regression assumption that
errors have constant variance, as noted by Fox [31, Page 29]. In Figure 7.11
the normality and constant variance assumptions are violated as shown by the
variation in clustering of the points in the residuals vs fitted which then fans out.
This indicates non-constant variation and the normality of the residuals is violated
as shown in the Q-Q plot where the points stray from the line representing the
errors’ distribution if they were normal.

Model 2

In an attempt to reduce the violations of constant variation and normality ev-
idenced by plots for Model 1 in Figure 7.11, a model which included quadratic
terms was examined. Model 2 is shown in Equation 7.5 and resulted in a
marginally improved R2 value of 0.81 and a marginally reduced residual standard
error of 1.57. Looking at the diagnostic plots for Model 2 as shown in Figure

1http://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html accessed
30/03/2012
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Figure 7.8: Frequency Attacks Data Scatterplot Matrix
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Figure 7.9: Frequency Attacks- Median Attacks vs Number of Constant Distrac-
tors Plot

Figure 7.10: Frequency Attacks- log2 Median Attacks vs Number of Constant
Distractors Plot
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Figure 7.11: Frequency Attacks Model 1 Diagnostic Plot
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7.12 (where i, j, k, l, m, n, q, and t represent the co-efficients) there was little
improvement in terms of normality and constant variation. Thus robust methods
appeared to be a better approach. In addition to this, the models used thus far
had assumed an intersection point for the model, however this was removed as at
no point will the number of attacks required reach zero.

Model 3

Model 3 removed the intersection requirement from Model 2 by 3 including “-1”
on the right side of the independent variable. This indicated to the R program
that there was no intersection in the model. This is shown in Model 3, represented
by Equation 7.6 (where i, j, k, l, m, n, q, and t represent the co-efficients). Model
3 was applied with the least squares method to establish an improvement on the
fit of the model using the R2 value. This resulted in an R2 value of 0.95, a
large improvement on the previous models due to the removal of the intersection
requirement. This meant that 95% of the variation in the log2 median number of
attacks was accounted for by Model 3. However the standard error increased to
1.76 at this point. Thus robust modelling was applied to reduce this and account
for the violations in the underlying assumptions of least squares modelling. This
results in the final model, presented in Section 7.2.3.

log2median = ip+ js+ kc+ ld+mp2 + ns2 + qc2 + td2 (7.5)

log2median = −1 + ip+ js+ kc+ ld+mp2 + ns2 + qc2 + td2 (7.6)

7.2.3 Final Frequency Attack Model

The final model resulted from robust regression using the “rlm” function from the
MASS package for R. The relationships to be used for the model were as shown in
Equation 7.6, but applying robust regression provided the lowest standard error
of 1.3 . The final equation (including co-efficients) for the model was as shown
in Equation 7.7, with the log2 of the median value denoted by log2m.

log2m = 0.0156p+1.6655s+0.9497c−0.5575d+0.018p2+0.0132s2−0.0344c2+0.0309d2

(7.7)

Some examples of the predicted and actual values are shown in Table 7.2.3
(rounded to two decimal points) where a variation in the difference between pre-
dicted and observed values can be seen. Whilst this may appear large, the model
established provides an estimation of the number of attacks which need not be
100% accurate for prediction. It should be consistent and reasonable (evidenced
by the examination of R2 and standard error) such that one configuration is
comparable to another. For example, it is possible to compare a scheme with a
configuration of 4− 4− 8 with one constant distractor to the same configuration,
but using two constant distractors per passimage. In this comparison, the pre-
dicted number of attacks rises from 50.47 to 90.75, an increase of approximately
40 attacks. This would allow selection of an appropriate level of resistance. Of
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Figure 7.12: Frequency Attacks Model 2 Diagnostic Plot
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Number
of Passim-
ages

Number
of
Screens

Number of
Distractors

Constant
Distrac-
tors

Observed
Median

Predicted
Median

Difference

4 4 8 1 15.5 50.47 -34.97
4 4 8 2 84.5 90.75 -6.25
4 4 9 1 15 49.35 -34.35
6 4 9 3 177 199.65 -22.65

Table 7.4: Frequency Model Example Estimates and Observed Values

the 1916 configurations 59 of the expected values (approximately 3.08%) were at
least 10 times as large as the observed median values. This is much larger than
the shoulder surfing model, however there were more variables to model in this
instance which could increase the difficulty of fitting the model.

7.3 Conclusion and Limitations

This chapter reported the results of modelling shoulder surfing and frequency
attacks. The result was two models which can be used to estimate the number of
attacks required for a given RBGP configuration. There are a number of potential
limitations of this work which should be considered.

Firstly, as noted by DeVeaux [18, Page 198], it is necessary to be careful not to
use the models for prediction, i.e. applying configuration values outside the values
used in the simulations. This is because the model was based on the configurations
used in the simulations, and values outside this could deviate substantially from
the models. The models could be used outside the ranges, but care must be taken
in interpretation of the prediction. Note that a prediction arises from the metric
where configurations outside those upon which the models are based are used.
An estimation is provided where configurations used were incorporated into the
model. To minimise the need to apply values outside the configurations used,
the simulations used configurations from literature to date and values either side.
For example, 4 challenge screens are common, and simulations were run with 1
through to 10 screens.

Another potential issue is with the interpretation of the values resulting from
these models. One must not consider the values reported as a concrete value
of the number of attacks required in any given case. The values reported are
estimates based on simulations, in reality other factors such as a combination of
shoulder surfing, frequency and guessing attacks could be used which cannot be
represented by these models. However, the purpose of this work was not 100%
accuracy, but to provide an estimate which could be used to achieve a comparison
of the security of different RBGP configurations.

The remaining step in construction of the metric was to combine the guessing
and observability models into a complete model, and evaluate the result against
the requirements set in Chapter 3. This is reported in Chapter 8.
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Chapter 8

Security Metric and Evaluation

The approach to the final metric was to combine the estimate number of attacks
required for each of the identified attacks. The attacks included in the final metric
were as follows:

• Random guessing attacks

• Semantic ordered guessing attacks

• Shoulder surfing attacks

• Frequency attacks

Chapter 4 reported models for random guessing and semantic ordered guess-
ing attacks. Chapter 7 reported the models for shoulder surfing and frequency
attacks. This chapter considers the short comings of the initial metric, presents
the final metric and evaluates it against the criteria set in Chapter 3 Section 3.4.

8.1 Comparison to Initial Metric

As detailed in Chapter 5, the previous approach to quantifying the security of a
RBGP scheme was to establish a scoring system based on the resistance to the
identified attacks. These attacks were shoulder surfing attacks, semantic ordered
guessing attacks, and frequency attacks. The scoring system was presented in
flowcharts. There were a number of issues with this approach, these are detailed
as follows:

• The flowchart approach introduced ambiguity and affected reproducability.

• Random guessing attacks were not incorporated into the metric.

• The values assigned to the level of resistance were based upon the efficacy
of countermeasures and had little relation to the security beyond this. Ef-
fectiveness of the countermeasures was primarily based on the literature
review, with the exception of the SOGA values which were based on the
attack simulations.
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• The metric didn’t incorporate the impact of different RBGP configurations,
e.g. number of challenge screens, passimages and distractors, on the security
levels .

As a result of these identified issues, the adjustments to the final metric were
as follows:

• The flowchart approach was removed completely.

• Guessing attacks were separated into two distinct areas for measurement,
SOGAs and random guessing attacks.

• Further investigation into the efficacy of various countermeasures was es-
tablished by simulations.

• The security metric was altered to reflect the resistance to attacks by esti-
mating of the number of attacks required on a user account before success.

With these adjustments in mind, the final metric is presented in the next
section.

8.2 The Complete Finalised Metric

The final metric is a 4-tuple consisting of four estimated values of the number of
attacks required before successful authentication. There is one estimate for each
of the attacks; random guessing, semantic ordered guessing, shoulder surfing and
frequency attacks. The metric is denoted as shown in Equation 8.1 where RG
denotes the random guessing value, SOGA denotes the semantic ordered guessing
attack value, SS denotes shoulder surfing value and FREQ denotes frequency
attacks value. If for any of the attacks a countermeasure is implemented which
means the attack is not possible, then a * is used to denote this. The calculation
of each of the component parts is summarised in the following four subsections.

(RG,SOGA, SS, FREQ) (8.1)

8.2.1 Random Guessing Value

The estimate of the number of random guessing attacks required before success
is obtained from the calculation of the probability of success. This is commonly
reported as 1

xs where x is the number of images shown on a challenge screen (the
number of distractors plus one passimage, d+1) and s is the number of challenge
screens. The denominator of this calculation is used to provide an estimate of the
number of random guessing attacks required before success, thus the RG value is
calculated as shown in Equation 8.2

RG = (d+ 1)s (8.2)
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8.2.2 Semantic Ordered Guessing Value

The calculation of the number of semantic ordered guessing attacks required
before success relies on an estimate of the number of attacks which are successful
for a given potential passimage set. This is calculated by performing simulations
of the SOGA based on the category distribution of real user choices. For the
purposes of this work, evaluation of the success rates of SOGAs was carried out
for four configurations as detailed in Chapter 4. The following percentages of
success were achieved:

21% of passimage screens were successfully attacked where distractors were
selected randomly (ignoring the semantic categories). 23% of passimage screens
were successfully attacked where distractors were selected from distinct passimage
categories (excluding the passimage category). 20% of screens were successfully
attacked where distractors were selected from passimage categories (excluding
the passimage category). These success rates can be used as estimates for user
selected passimage schemes where the images can be split into semantic categories.

Once the percentage of success has been estimated, one can calculate the
estimated number of attacks as shown in Equation 8.3 where s denotes the number
of challenge screens. If the passimages are assigned to the user, then this attack
is not applicable and this is denoted by *.

(
100

successPercentage
)s (8.3)

8.2.3 Shoulder Surfing Value

As for the semantic ordered guessing value, one must estimate the percentage of
recall rate or success rate of an attacker given a specific shoulder surfing coun-
termeasure. This can be done by performing an experiment to establish how
successful shoulder surfing attacks are for the countermeasure implemented. Al-
ternatively an estimated value of successful recall between 1 and 100% can be
selected. Once the recall value has been established, the shoulder surfing value
can be calculated as shown in Equation 8.4 where p denotes the number of pas-
simages in a user’s passimage set, s is the number of challenge screens in a session,
and r is the percentage of recall. The modelling was based on log2 of the median
number of attacks and so the final equation includes a power of 2.

SS = 21.3852p−0.0824p2−0.2143s−0.0472r+0.0002r2 (8.4)

8.2.4 Frequency Value

Unlike the previous two calculations, the frequency value relies primarily on the
configuration of the RBGP scheme. This includes the number of distractors kept
constant per passimage (denoted by c) in addition to the number of screens (s),
the number of distractors per screen (d), and the passimage set size (p). The
frequency value can be calculated as shown in Equation 8.5. The modelling was
based on log2 of the median number of attacks and so the final equation includes
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a power of 2.

FREQ = 20.0156p+1.6655s+0.9497c−0.5575d+0.018p2+0.0132s2−0.0344c2+0.0309d2 (8.5)

This equation should only be used if the number of distractors kept constant
per passimage is less than the number of distractors per challenge screen. If
the challenge screens are constant then a frequency attack will be reduced to a
random guessing attack. In this case, * denotes the attack is not applicable.

8.3 Evaluation of Final Metric Against Require-

ments

Each of the component parts of the 4-tuple metric have now been discussed. To
determine if the thesis statement has been achieved, each of the requirements of
the metric is discussed to establish whether they have been fulfilled.

8.3.1 Repeatability

The requirement for repeatability was such that if the metric was calculated for
the same scheme repeatedly, the same result would be achieved. The metric is
based upon calculations, and should result in the same values each time within
the following potential limitations:

• There could be issues with rounding, in particular for the SOGA, SS, and
FREQ values. To avoid this, the number of significant places is defined as
0 (to ensure a whole number, as less than one attack doesn’t make literal
sense). Rounding is defined as follows. One should round up where the
remainder is 0.5 or above, and round down to the nearest integer where the
remainder upon division by 1 is less than 0.5.

• Part of the SOGA value depends on a percentage estimated from simu-
lations of the attack against user choices for a given passimage set, or is
selected from a number of “suggested” percentages. If different percentages
are used, different results will be obtained. However, if the same percentage
is used the same values will be achieved.

• Similar to the SOGA calculation, the shoulder surfing value depends on
estimation of the percentage of recall of the attacker. If different values are
used here, then different results will be achieved. However the results will
be repeatable assuming the same values are used.

Thus, whilst there are potential limitations due to rounding and establishing
success rates for SOGA and SS, repeatability is achieved if the same estimations
for percentage of success/recall are used and rounding is applied as described.
To ensure repeatability, a program to establish the values could be written which
would read in sample user choices, the categories and images and the number of
successful shoulder surfing attacks. An empirical user study should be conducted
to establish the success rates used in the program.
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8.3.2 Reproducibility

The requirement of reproducibility was such that if different assessors were to
carry out the evaluation, the result would be the same each time. This has the
same limitations as repeatability-one must ensure the same rounding is applied
and that the same percentages are used for SOGA and SS. Outside these caveats,
the metric values are calculations from models and so reproducibility is achieved.

8.3.3 Extensibility

The requirement for extensibility was to ensure that the metric would be suitable
for extension to include new attacks if more data were to become available. To
add a new attack the approach taken can be one of two (or a combination of both).
The first approach is to perform a simulation, the second approach involves an
empirical study. Both are discussed below:

Simulation Approach

1. Implement a simulation of the RBGP scheme (challenge screen, distractor
selection, images).

2. Implement an algorithm which simulates the attack.

3. Perform the simulation at least 100 times ([104, Page 154]) for multiple
configurations and note the number of attacks before success.

4. Use the data produced from the simulations and perform statistical analysis
to identify the significant dependent variables.

5. Perform multiple regression to establish an equation to estimate the number
of attacks before success.

Empirical Study Approach

1. Implement the RBGP scheme with the configuration as required.

2. In your study, conduct the attacks against a challenge screen for user se-
lected images (random images if the user choice doesn’t influence the attack
success).

3. Calculate the percentage of attacks which were successful.

4. Then calculate the metric value as ( 100
percentageOfSuccess

)s.

The simulation approach can be taken where there is no human element to
the attack. For example frequency attacks have no reliance on user choice or an
element which varies depending on countermeasures which cannot be modeled by
a simulation. Empirical approaches are required where there is a human element
which cannot be simulated. Alternatively, a combination of the two approaches
can be taken, as was the case with the SOGA evaluations in Chapter 4.
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8.3.4 Objective

The requirement of objectivity was to ensure that the metric would not depend
on a subjective measurement. Since the metric is based on calculations which
depend on the configurations of RBGP schemes, this requirement is achieved.

8.3.5 Quantitative

The quantitative requirement was to ensure that the metric was not a heuristic
evaluation (e.g. “high security” or “low security”) but a value which could be
related to the strength of resistance to the attacks identified. Since the metric is
based upon calculations and results in an estimate of the number of each attack
required, this requirement has been achieved.

8.4 Using the Metric

This section aims to consider the use of the metric by providing details on how
to apply it to a RBGP scheme and the use of the metric in decision making.

8.4.1 Calculating the Values for the Tuple

To calculate the component values for the tuple the following approach is taken:

1. Examine the RBGP scheme to establish values for the configuration. This
includes the following: number of passimages in a user’s passimage set (p),
number of challenge screens in a session (s), number of distractors shown
per challenge screen (d), percentage of recall of the attacker for shoulder
surfing (r), the number of distractors kept constant for each passimage
(c), and the estimated success rate (as a percentage) of a semantic ordered
guessing attack (successPercentage).

2. Establish if any of the attacks are not feasible for the scheme being exam-
ined. For example if images are assigned then a SOGA is not applicable.
Alternatively, if challenge screens do not change distractors between ses-
sions then a frequency attack is not possible. For any such attack, use a
* in the appropriate place in the metric tuple to denote the attack is not
applicable to the scheme.

3. For each of the attack types remaining use the appropriate configuration
values (identified in step one) in the appropriate mathematical model (i.e.
the equation) described in section 8.2.

4. Round each of the model values to the nearest whole integer.

5. Combine the values in the order (RG, SOGA, SS, FREQ) to obtain the
final metric as applied to the scheme under consideration.

The metric as applied to the scheme under consideration can now be examined
in terms of the security. This process is detailed in the following section.
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8.4.2 Using the Metric to Examine a RBGP Scheme

Once the metric has been applied to a scheme, the result is an estimate of the
number of attacks required for each of the following attacks: random guessing
(RG), semantic ordered guessing (SOGA), shoulder surfing (SS), and frequency
(FREQ). Using the metric one can determine the ease with which each individual
attack could be successful, where a smaller value indicates an easier attack and
a larger value indicates a harder attack.

The first two values in the metric provide estimates of the guessability of the
scheme, if these numbers are small then the scheme could be vulnerable to these
types of guessing attacks. The last two value in the metric provide estimates of
the observability of the scheme. If these numbers are small then the scheme could
be vulnerable to these types of observability attacks.

A typical RG value is 94 = 6561, which is comparable with a PIN which
provides a slightly higher guessability of 104 = 10000. A number smaller than
this indicates a lower level of security than that achieved by a PIN system. If the
system allows a user to perform incorrect authentication attempts many times
without locking the user out, then a random guessing value less than that of a
PIN may be too low. If one were to assume an attempt rate of one authentication
session per minute and no policy to lock the user out, then this would equate to
approximately 4.6 days or 109 hours and 21 minutes. This could be longer or
shorter depending on the time taken to attack, which could vary based on the
number of machines used, and the speed of the attacker. If this number were
to be deemed too small then it could be increased by adding extra distractors
per challenge screen, or use of additional challenge screens. However, this could
impact on the usability of the scheme by making it harder for the genuine user to
authenticate due to an increased time to carry out the process. This could mean
a trade-off between security and usability.

If a SOGA is feasible for the scheme under consideration, then such an attack
will provide a lower estimated number of attacks than the same scheme’s RG
value. This is because a SOGA is at least as successful as a RG attack. A SOGA
value for a PIN comparable system which uses nine images per challenge screen
and (e.g. Faces [15]) gives a SOGA value of 514. If we assume again a rate
of one attack per minute and no lock policy, this would result in 8.57 hours of
attacking to successfully attack the system. This could be an important concern
and would indicate use of either a lock out policy or a countermeasure for this
type of attack. For example assigning distractor images from the same category
as the passimage. However, this could also impact on the usability of the scheme
by making it more difficult for the user to recall their passimage if all images are
from the same scheme (intra-category error, as noted by DeAngeli et al. [17]).
Once more, this could mean a trade-off between security and usability.

A shoulder surfing attack success rate can be estimated by the SS model. The
difference with this model, compared to the others in the tuple, is that a user
recall rate (r) is incorporated into the model. This is to reflect the large variety
of counter measures possible for shoulder surfing. The model incorporates the
impact of the recall rate and the other configuration variables (e.g. number of
challenge screens, number of passimages, etc.) on the number of attacks before
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success. If the scheme being examined employs no countermeasures for shoulder
surfing which results in approximately 60% recall rate of the attacker (as shown in
Tari et al.’s PassFaces implementation with mouse selection [87]) then a value of
8 is achieved. This means the attacker would in theory observe 8 authentication
attempts before successfully attacking the system. If one were to use a counter-
measure to mitigate the attack, a higher number of attacks would be required.
However, this could impact the usability of the scheme. By making it harder for
the shoulder surfer to establish which image is selected, the genuine user could
also find it more difficult to ensure the correct image is selected. Once more this
indicates a trade-off between security and usability.

A frequency attack success rate can be estimated by the FREQ model. If the
challenge screens are kept constant for each challenge session, then a frequency
attack is not feasible, providing optimal security against this type of attack.
However, as noted by Deffenbacher et al. [19] this impacts on the memorability
of the passimages, and users may select distractor images as they become more
familiar with them. This would result in false negative authentication. If no
counter measure was used for a PIN comparable scheme with 4 challenge screens,
8 distractors per screen, and 4 passimages, then a frequency attack value of 27 is
estimated. This would mean approximately 27 authentication sessions would need
to be observed, noting the images presented and their frequencies. Subsequently
the passimage set would be attacked using the established frequencies. If we
were to assume an increased time to note the frequencies, increasing the time per
attack to 5 minutes (an arbitrary value selected merely to demonstrate a point,
this could be changed) would equate to a total attack time of 135 minutes, or 2
hours and 15 minutes.

Overall one should consider the context in which the scheme is deployed.
Whilst shoulder surfing may appear to be the largest vulnerability, if one were
authenticating in a secure environment where no observation was possible then
this may not be a concern. Thus, the metric allows the security of the scheme
in question to be considered in terms of guessability and observability. Decisions
on whether the levels reported are acceptable would be linked to context and
consideration of the trade off between security and usability.

8.4.3 Using the Metric to Compare RBGP Schemes

In the previous section the use of the metric to examine the security of an indi-
vidual scheme was discussed, this section aims to address how the metric could
be used to compare the security of multiple schemes. For simplicity, this section
considers the comparison between two schemes as an example. This could be
easily extrapolated to examine more than two schemes.

To compare two schemes, scheme 1 and scheme 2, one should consider the
values for each of the models within the tuple. Let us call the constituent tuple
values of each scheme RG1, SOGA1, SS1, and FREQ1 for scheme 1 and RG2,
SOGA2, SS2, FREQ2 for scheme 2. It is then possible to compare the values for
each of the attacks e.g. RG1 can be compared to RG2 and so forth. Thus, if
for example RG1 is larger than RG2 then we can deduce that scheme 1 is more
resistant to random guessing attacks. Similarly for the remaining attacks.
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In using this for decision making, for example to select an appropriate scheme,
one should consider the context in which the scheme will be deployed. For ex-
ample if observability is a key concern, but guessability less so then particular
attention should be paid to the observability values. This may result in a situation
where one scheme has a higher resistance for one attack and a lower resistance
for the other whilst the scheme it is being compared to has the opposite resis-
tance. For example, assume we are considering the observability as important
and scheme 1 has a higher FREQ value and a lower SS value, whilst scheme 2 has
a higher SS value and a lower FREQ value. In this case it may be more difficult
to make a decision as to which scheme would be most appropriate. It is suggested
that in such circumstances an examination of context to a finer granularity be
made. In this example this would mean examining whether shoulder surfing or
frequency attacks are more of a concern. If shoulder surfing is a higher concern
in the context, then scheme 2 should be selected. Scheme 1 should be selected
if frequency attacks are more of a concern. With guessability, as a SOGA is an
adapted form of a random guessing attack it is suggested that if this attack is
applicable, the scheme with a higher SOGA value should always be selected.

8.4.4 Use of Decision Making

The previous sections on evaluating the metric for a single scheme and using the
metric as a basis for comparison suggest approaches which could reasonably be
described as qualitative. The decision to be made when considering schemes is
a benefit-risk trade-off and thus it could be appropriate to apply decision theory
to establish which schemes are appropriate. The decision theory approach aims
to provide a framework to allow rational choice between alternatives where the
outcome of the choice is not completely known [59]. As detailed by North [59], a
decision theory approach can proceed as follows. The approach involves assigning
numerical values to the possible outcomes using a utility theory approach to es-
tablish preferences of outcomes. This can then be used to evaluate the outcomes
by use of a utility function which mathematically assigns a number to each out-
come. The next stage is to use probability theory to assign the likelihood of the
possible outcomes. The utility of each of the decisions can be calculated using
the values and probabilities assigned to the outcomes, this allows the decision
maker to select the decision with the highest utility value as the best decision.

However, this approach could be difficult to apply in a real world situation.
As shown by Fischhoff et al. [29] people perceived that current levels of risk
of 30 activities and technologies (such as electric power, motorcycles, x-rays,
and pesticides) were unacceptably high. The implications of this could be that
those applying the metric might perceive the risk to be too high and thus assign
more weight to any given aspect of the metric. From this, it could be suggested
that using the metric to decide an acceptable level of risk could be inherently
challenging due to the disparate nature of the theory of decision making and the
observed behaviour as noted by Fischhoff et al. [29].

This topic is something which could be evaluated further, but is noted briefly
here to provide a parallel between the suggested approach and decision theory.

Continuing in the previous approach, the following section aims to provide
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some examples of the application to two individual schemes and then provides a
comparison of these schemes.

8.5 Examples

This section aims to provide some example applications of the metric.

8.5.1 Application of Metric to PassFaces

In Chapter 5 the first metric proposed was applied to the PassFaces scheme. The
application of the final metric to the PassFaces scheme is presented here. From
reviewing the white paper 1 the following information on the configuration of the
scheme was extracted:

• In general, four passfaces are assigned to a user and to authenticate users
must identify their passfaces from four challenge screens each showing a
passface and eight distractors.

• No challenge screen contains faces from the other screens in the session i.e.
no distractors are repeated within a challenge session.

• The same distractors are used each time for a given passface.

• The option is provided to use keyboard selection of the passface from a
challenge screen.

• A “mask” is applied to the faces after selection. However in the online demo
images are highlighted upon selection.

Thus the configurations in applying the metric were as follows s = p = 4,
d = 8, c = 8. Images are assigned and so a SOGA is not applicable, represented
by *. Images appear highlighted upon selection potentially making shoulder
surfing more successful as shown by Tari et al. [87] where approximately 60% of
attacks were successful, thus this value is used for the recall rate of PassFaces.
The resulting metric for PassFaces is then calculated as shown in Equation 8.6
where * represents that a frequency attack will be no better than random guessing
since the number of distractors kept constant is equal to the number of distractors
per screen.

(6561, ∗, 2, ∗) (8.6)

From this result the weakest aspect of the security is shoulder surfing. If one were
authenticating where the process could be viewed, then this could be an issue.
The number of attacks required could be increased by doubling the number of
passimages to 8, which results in a SS value of 7. It could be further increased
by allowing keyboard entry, which results in a success rate of approximately 11%
(again, shown by Tari et al. [87] ) which results in a shoulder surfing value of 22.

1available at http://www.realuser.com/published/TheScienceBehindPassfaces.pdf

143



8.5.2 Application to Adapted VIP

Whilst the VIP scheme proposed by DeAngeli et al. has only one screen, it is
adapted here to multiple challenge screens. This allows the metric to be applied
to the scheme and provides an additional example. The metric is now applied to
the adapted VIP1 scheme, reported in [16]. Since there are four passimages in a
session s = 4 is used. From the defining paper, the configurations were as follows;
with four passimages in a challenge session, p = 10, d = 9, c = 0. The shoulder
surfing recall was estimated at 60% (as assumed for the PassFaces scheme) since
there were no details on highlighting the images upon selection, but the images
were selected on a touchscreen. A SOGA was not applicable to the adapted VIP1
since the images were randomly assigned to the users. There was no mention of
maintaining constant distractors for passimages and so this was assumed to be
0. It should be noted that the random guessability value may underestimate the
resistance as the calculations do not account for sequence, which is incorporated
into the adapted VIP1 scheme. Also, location was maintained and thus there is
potential for the shoulder surfing value to be overestimated as could be arguably
easier to shoulder surf a passimage which stays in one position. The resulting
metric is shown in Equation 8.7.

(10000, ∗, 6, 80) (8.7)

8.5.3 Comparison

The purpose of this metric is to allow consistent comparison of the security of
RBGP schemes. Using the metric to demonstrate this it is now possible to com-
pare the security of the PassFaces scheme with the security of the adapted VIP1
scheme. It can be seen from the metrics reported in Equations 8.6 and 8.7 that the
PassFaces scheme is more secure in terms of frequency attacks, but the adapted
VIP1 scheme is more secure against random guessing and marginally more secure
against shoulder surfing attacks due to the increased passimage set size. Both
schemes are equally secure against SOGAs since passimages are assigned to users.
In selecting an appropriate scheme, one would need to consider the context under
which the mechanism would be used. For example, if shoulder surfing is not a
concern then the PassFaces scheme may be a better fit.

8.5.4 Application to RBGP Schemes

In Table 2.1 on page 36 a list of the configurations of the RBGPs covered in
literature to date were provided. Here this list is reduced to include only schemes
which have one passimage per challenge screen which also excludes five of the six
ordered schemes. Also excluding the PassImages scheme by Charrau et al. [12]
(since the scheme uses multiple passimages over multiple screens) leaves a set of
seven RBGP schemes which the metric can be directly applied to. Where there
was no mention of constant distractors, a value of 0 is assumed. It is assumed that
a percentage of success for SOGAs as 21% for all schemes to provide consistency
and a shoulder surfing recall rate of 60% which was reported by Tari et al. in [87]
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RBGP
Scheme

Passimages Screens Distractors Constant
Distractors

Metric Value

PassFaces
[1]

4 4 8 8 (6561,*,8,*)

Faces [15] 4 4 8 8 (6561,514,8,*)
Doodles
[63]

4 4 15 0 (65536,514,7,56)

Awase-e
[85]

9 4 8 0 (6561,514,24,51)

Pering [61] 10 10 3 0 (1048576,5995247,10,380253)
Everitt et
al. [28]

5 5 8 8 (59049,2449,11,*)

Mikons
[70]

4 4 15 15 (65536,514,7,*)

Table 8.1: RBGP Configurations Summary

as the success rate where images were highlighted. For Pering [61], there was no
number of passimages specified. Since the number of passimages needs to be at
least 10 (as there are 10 challenge screens) a value of p = 10 is used to apply the
metric. In Table 8.1 the configurations and metric values are reported. It can
be seen from this table in the row for Pering that the metric appears to fail for
the SOGA value as it provides a much higher value than random guessing. This
is because a SOGA success rate of 21% was assumed, which provides a higher
revised number of images per screen than the actual number of images per screen.
This provides evidence that further simulations for SOGAs would be required to
improve accuracy.

8.6 Discussion - Context and Limitations of the

Metric

As has been highlighted in conclusion and discussion sections in the component
parts of the final metric, there are a number of limitations of the metric. These
are summarised as follows:

• The final metric models are based primarily on simulations, and so the
reality of attacks may be different. However, a large-scale user study was
attempted and was unsuccessful in gathering sufficient data. Thus, this
approach provided a reasonable alternative.

• The simulations performed do not consider the possibility of combining a
number of attacks for optimal success, e.g. a shoulder surfing attack could
be combined with a frequency attack, which could result in a larger success
rate.

• The work primarily considers RBGP schemes with a predetermined set of
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images (which was constant for the duration of the work) and does not
consider user provided images.

• There are limitations of the SOGA work in that to get a practical estimate
of the SOGA value one needs to conduct a user study to collect user choices
passimages for their own potential passimages set. Estimates can be used
from the percentages achieved for the schemes examined in Chapter 4, but
this could be very different from an alternate potential passimage set and
different users.

• Similar to the SOGA issue, the shoulder surfing value requires an estimate
of the recall rate (or success rate) of a RBGP scheme in addition to the
configuration. This is to account for the variability in countermeasures
which cannot be simulated and require user studies to establish the efficacy
of a given countermeasure.

• The metric is focused on a specific model of RBGP schemes. This could be
extended to include the other possible models. This is discussed further in
Chapter 9.

The next chapter concludes this thesis with a discussion of the contributions
of this work, the research outcomes and future work considerations.
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Chapter 9

Conclusions and Future Work

This chapter concludes the thesis by presenting a summary of the contributions,
detailing how the thesis statement has been answered, and considering possible
future work.

9.1 Contributions to Research

This thesis reported the construction of a model for the security of recognition-
based graphical passwords. The overall model consisted of four smaller models
which allow an estimation of the number of attacks required for the following
attack types; random guessing, semantic ordered guessing, shoulder surfing, and
frequency attacks. This provides a consistent, repeatable, reproducible, objective
and quantitative method for comparing the security of recognition-based graphi-
cal password schemes. As indicated in Section 2.5, the RBGP scheme must meet
a number of requirements before application of the metric, these are as follows:

• At most one passimage can be shown per challenge screen.

• The order of input of the graphical password should be irrelevant.

The contributions to research are as follows:

• Threat model for RBGP schemes - an in-depth examination of the security
aspects of RBGPs in literature to date resulted in the extension of the
guessability, observability and recordability categorisation (established by
De Angeli et al. in [17]) to create a threat model.

• Construction and analysis of a new guessing attack - for RBGP schemes
which permit user selection of passimages which can be categorised accord-
ing to their content. A semantic ordered guessing attack (SOGA) prioritises
guesses using images from more popular categories. The attack demon-
strates a higher probability of success compared to random guessing.

• Mathematical model estimating the number of attacks required before suc-
cess for a SOGA.
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• Simulations of shoulder surfing attacks - These simulations demonstrated
the efficacy of having a passimage set size which exceeds the number of
challenge screens as a countermeasure for shoulder surfing. They also pro-
vided evidence that increasing the number of challenge screens decreases
the number of attacks required before successful shoulder surfing.

• Simulations of frequency attacks - These simulations demonstrated the ef-
ficacy of countermeasures. This included evidence showing that dummy
screens do not have a significant impact on the number of attacks before
success when compared with no countermeasures. Also, increasing the num-
ber of challenge screens was shown to decrease the chance of success until
the number of challenge screens approached the number of passimages. At
this point the chance of success increased.

• Mathematical model to estimate the number of attacks required for a shoul-
der surfing attack to be successful -This incorporated a percentage of recall
variable. The recall variable can be estimated or calculated from a user
study which implements a countermeasure unrelated to the configuration
of a RBGP (i.e. the number of screens, passimages in a user’s passimage
set etc.) e.g. obscuring the image selection. The shoulder surfing value
can then be calculated which incorporates the RBGP configuration. This
allows selection of an appropriate level of resistance as the variables can be
altered until a required level of resistance is achieved.

• Mathematical model to estimate the number of attacks required for a fre-
quency attack to be successful - This was based wholly upon the config-
uration of the RBGP scheme, including the number of distractors kept
constant, the number of challenge screens, the number of distractors and
the number of passimages in a user’s passimage set. This means an estimate
for the number attacks for a given configuration can be easily calculated.

• A security metric - this allows comparison of the security of RBGP schemes
in a way which is repeatable, reproducible, quantitative, objective and ex-
tensible.

Some of these contributions have resulted in publications in peer-reviewed
conference proceedings, namely [25], [24], and [26].

9.2 Achievement of Thesis Hypothesis Objec-

tives

The thesis statement was as follows:

The security of a recognition-based graphical password scheme can be quantifi-
ably measured in terms of resistance to observation and guessing attacks.

The thesis statement was further refined into five objectives as follows, each of
which was addressed separately in this thesis.
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Objective 1

Identify potential attacks (where the aim of the attacker is to impersonate a user
and to achieve a false positive authentication) and examine current recognition-
based schemes in terms of resistance to these attacks.

Objective 2

Identify a list of requirements from current security metric literature against
which the metric will be assessed.

Objective 3

Establish measurements of the guessability (how easily a user’s passimage set
can be guessed) of a RBGP scheme by means of a mathematical model which
estimates the attacks required before success for each identified guessing attack.

Objective 4

Establish measurements of the observability (how easily a user’s passimage set
can be observed) of a RBGP scheme by means of a mathematical model which
estimates the attacks required before success for each identified observation at-
tack.

Objective 5

Combine the measurements established into a comprehensive metric which meets
the requirements identified by Objective 2.

9.2.1 Review

Objective 1 was addressed in Chapter 2 by examining relevant literature and
condensing the information to form a threat model. The model extended the areas
of concern identified by DeAngeli et al. (in [17]) to incorporate vulnerabilities
and attacks related to these areas.

Objective 2 was addressed in Chapter 3 where literature regarding security
metrics was reviewed and a number of key attributes were highlighted as impor-
tant.

Objective 3 was addressed in Chapter 4 where the probability of randomly
guessing the correct images was adjusted and a new guessing attack was con-
structed and analysed. As a result, a model based upon the random guessing
value was reported.

Objective 4 was addressed in Chapters 6 and 7. Chapter 6 reported the
construction of simulations which allowed the identification of dependent variables
which affected the number of attacks before success for shoulder surfing and
frequency attacks. This was extended in Chapter 7 which used the data generated
from the simulations to fit a model using robust mathematical modelling methods.

149



Finally, objective 5 was addressed in Chapter 8 which combined the models
established in previous chapters and evaluated the resulting metric against the
criteria established by objective 2. Since these objectives have been met, it is
concluded that this thesis has proved its research hypothesis.

9.3 Extension of Scope and Context

As detailed in Section 2.5, the scope and context of the metric was limited primar-
ily to allow the work to be completed within the time allocated. It is recognised
that this limits the direct applications of the work. This section discusses how
the work could be adapted and the scope extended to provide a more encom-
passing metric. Specifically, the use of multiple passimages per challenge screen
and order specific passimage sets is considered. This would allow the metric to
be applied to all the schemes in Table 2.1 on page 36. Extending the context of
authentication to include remote authentication (e.g. web-based authentication)
is also discussed. This would allow an attacker to view communication between
the client and server.

9.3.1 Incorporating Multiple Passimages per Challenge
Screen

Each of the aspects of the metric are considered in turn:

Random Guessability

If there is the same number of passimages per challenge screen then the random
guessability can be calculated as shown in Equation 9.1. In this equation x
denotes the number of images in a challenge screen, ps denotes the number of
passimages per challenge screen and s denotes the number of challenge screens.(

x

ps

)s

(9.1)

If there is a different number of passimages per challenge screen then the
random guessability can be calculated as shown in Equation 9.2. In this equation
pi denotes the number of passimages for challenge screen i where i = 1, .., s. The
only scheme found which uses this approach is the PassImages scheme by Charrau
et al. [12]. (

x

p1

)
×
(
x

p2

)
× ...×

(
x

ps

)
(9.2)

SOGA

A SOGA could be adapted where multiple passimages are shown per screen by
adjusting the algorithm to select all images in the most popular category. Sub-
sequently the second most popular category and so forth until the number of
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passimages on the screen is reached. The revised number of images per screen
can then be calculated as previously shown in Chapter 4 and used in the appro-
priate random guessability equation (Equation 9.1 or 9.2) discussed above.

Frequency Attacks

A frequency attack can be adapted to multiple passimages per challenge screen by
selecting the most frequently viewed image on the screen. Subsequently the next
most frequently viewed and so forth until the number of passimages per screen has
been reached. To model this, the simulations would need to be performed again to
incorporate the number of passimages per screen as an independent variable. The
same modelling approach (detailed in Chapter 7) could then be applied to obtain
an equation for the number of attacks which incorporates multiple passimages
per screen. This approach would assume the same number of passimages per
challenge screen. If one considered the approach taken in the PassImages scheme
by Charrau et al. [12], this would be potentially harder to model. The number of
passimages per screen would need to be varied within a session and incorporated
into the model.

Shoulder Surfing Attacks

The basic algorithm for shoulder surfing would not change if there were multiple
passimages on a screen. However, the impact on the number of attacks required
would need to be examined. In particular, the first hypothesis examined was that
increasing the size of the passimage set increased the number of sessions before an
attack was successful. This may not be the case if a larger number of passimages
are shown on a challenge screen. The simulations would have to be performed
again to incorporate multiple passimages per challenge screen. The results would
then be modelled in a similar approach as described in Chapter 7.

9.3.2 Incorporating Order of Passimages

The schemes from the Table 2.1 on page 36 which use ordered passimage sets
are Story [15], ImagePass [56], Moncur [58], Komanduri [50], VIP1 [17] and Pas-
simages [12]. All but the Passimages scheme used only one challenge set. As for
multiple passimages per challenge screen, each of the aspects of the metric are
considered in turn:

Random Guessability

The random guessability for a passimage set where the order is important can be
thought of as the number of permutations of size p from the challenge set. Where
only one challenge set is used (as for 5 of the 6 schemes which required ordered
selection) this can be calculated as shown in Equation 9.3. In this equation
x denotes the number of images on the screen and p denotes the number of
passimages to be selected.
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x!

(x− p)!
(9.3)

Where multiple screens are used, the random guessability can be calculated
as the number of permutations for each screen multiplied. This is because the
probability is calculated as the probability of correctly guessing one screen, fol-
lowed by the next and so forth. This is shown in Equation 9.4 where pi denotes
the number of passimages for challenge screen i where i = 1, .., s.

x!

(x− p1)!
× x!

(x− p2)!
× ...× x!

(x− ps)!
(9.4)

SOGA

The algorithm for a semantic ordered guessing attack could remain as for multiple
passimages per challenge screen with a minor adaption. The simulations would
need to be updated to incorporate order by calculating all the orders possible
for the images in the top p categories, where p is the number of passimages on
screen. The first order attempted would be the most to least likely categories, then
permutations of the order. The revised x value could then be used in the relevant
random guessing equation (Equation 9.3 if the same number of passimages are
used on each screen or Equation 9.4 otherwise).

Frequency Attacks

Frequency attacks can be carried out in the same manner as described for mul-
tiple passimages per challenge screen with a minor adaption. If the number of
passimages on the screen is equal to the total number of passimages in the user’s
passimage set then all passimages would appear the same number of times. If
any distractors appear an equal number of times then the frequency attack should
randomly select a subset of the correct size from these images. The simulations
would need to be updated to incorporate order by selecting the most frequently
observed image and so forth until the number of passimages on screen is reached.
Permutations of this subset can then be attempted until success. After performing
the simulations to incorporate the order, the data can be modelled as previously
described in Chapter 7.

Shoulder Surfing Attacks

If it is assumed the attacker recalls the images and not the order, then the shoulder
surfing simulation can be updated. Once the attacker recalls all the images, they
must then attempt all permutations of order until success. This simulation could
be run to gather the data and apply modelling as previously described in Chapter
7. Since Davis [15] provided evidence that users often remember the images, but
not the order, this appears a reasonable assumption. If it is assumed the attacker
can recall the order then the simulation and modelling can proceed as for multiple
passimages per challenge screen.

152



9.3.3 Incorporating Web-based Authentication

Extending the metric to incorporate attacks which exploit remote authentication
could be complex. If the attacker can view communications between the client
and server and extrapolate the passimages from this communication, then a replay
attack will be successful. For a phishing attack, assuming the attacker already has
the username, then they can gather genuine authentication screens by attempting
authentication. If the victim falls for the phishing attack then the attack will be
successful. If this approach was taken the probability that a user will fall for a
phishing attack would have to be modelled. This could be difficult and may not
specific to RBGPs.

One possible approach would be to assume that if the attacker can perform a
phishing attack then it will be successful. However this would depend on the same
passimages being presented twice to the attacker. If the number of passimages
is equal to the number of screens then the challenge sessions will have the same
passimages. If the number of passimages exceeds the number of screens, then
there is a probability that a different set of passimages will be presented to the
attacker.

The number of subsets of passimages can be calculated as the number of
combinations of s (the number of screens) passimages from the user’s set of p
passimages. This can be used to calculate the probability of getting two challenge
sessions which use the same subset of passimages as shown in Equation 9.5

1(
p
s

)2 (9.5)

As a result, the value for phishing could be seen as 1 if the number of passimages
in the user’s passimage set is equal to the number of challenge screens. Otherwise

it could be calculated as a maximum number of attempts before success as
(
p
s

)2
.

This could be less as the attacker could be presented with a subset of the collected
images and correctly guess the remaining authentication images.

Taking a similar approach to a replay attack the assumption can be made
that if a replay attack is possible, the attack will be successful in a maximum of(
p
s

)2
attempts.

9.4 Metric Maintenance

This section aims to consider how the metric proposed in this work could be
maintained and expanded in future. The metric could be extended to incorpo-
rate further attacks by first identifying potential threats. This process could be
approached in a number of ways and is discussed in the following section.The sub-
sequent section aims to present the remaining stages in identifying and adding a
new model into the overall tuple metric. The final part of this section provides
an overview of applying this process to a different authentication mechanism.
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9.4.1 Threat Analysis

The threats established in this work were based on current research. This was
achieved by identifying attacks already proposed in literature and the addition of
a new type of attack, the SOGA. The SOGA was designed to reflect a dictionary
attack on alphanumeric passwords. In the future, threats may also be identified
by this process as new literature emerges on the topic. In addition NIST suggest
the identification of vulnerabilities (which could be exploited by threats) based
on the stage in the software in the software development life cycle the software is
at. In summary, these were identified in [83] as follows:

• Not Yet Designed - At this stage the NIST recommend focusing on the
planned security processes and procedures, requirements definitions and
any existing security product analyses. For RBGPs the latter could include
academic papers and this thesis.

• Implementation in Progress - At this stage, NIST recommend the analysis
be more specific. For example, security design documents could be analysed.

• System is Operational - At this stage the NIST recommend analysis of the
system security features and controls to identify vulnerabilities which could
be exploited.

Another possible approach to identify vulnerabilities and threats could be to
perform penetration testing on a RBGP system which has been deployed. This
could help to assess the ability to withstand intentional attempts to by-pass
the security mechanism [83]. Using these approaches to identify vulnerabilities
the next stage would establish threats which could exploit the vulnerabilities by
identifying potential attacks. Recall that the aim of the attack is to obtain the
passimage set to perform successful authentication. Identification of attack types
for a mechanism which is primarily academic at this stage could be difficult. This
work has identified a number of possible attacks but others could potentially be
identified by thought experiments or implementing the scheme and asking users
to attack it. Once the attacks are established, models can be generated and added
to the overall tuple metric. This process is discussed in the following section.

9.4.2 Extension of the Metric

The overall metric can be extended by addition of models for different attack
types. The next step in this process would be to gather data to be used to
generate a model for the attack. This was discussed briefly in Section 8.3.3 and
will be discussed further here. The approach to establish a model varies slightly
depending on whether the attack exploits user bias in image selection or not.
Each approach is discussed separately as follows.

Modelling Attacks which Exploit User Bias

The first step in establishing a model for an identified attack is to gather data.
If the attack aims to exploit a user bias in selection of passimages, this step will

154



involve gathering user selected passimages. This could be done in one of two
ways: the users could be asked to provide their own images or the images could
be gathered from different sources (e.g. http://www.freeimages.co.uk/) and
combined into a collection from which users can select images as their passimage
set. The end result will be a collection of user chosen passimage sets. At this
point it is suggested that the data is split into two data sets, one to establish
the suspected bias and the other to test the attack which exploits the bias. For
example Davis et al. [15] split their data into 80% for establishing the bias and
20% to attempt the attack against. The attack against the data can then be
performed by simulation.

To perform an attack simulation a RBGP scheme should be implemented.
Details of implementing simulations are provided in Appendix D.1.5. The key
responsibilities to be modelled in a RBGP simulation are generating challenge
sessions, challenge screens and selecting passimage sets. Note that if the passim-
age set exceeds the number of challenge screens a subset of these images (equal to
the number of challenge screens in a session) needs to be selected for a challenge
session. If the passimage set size is equal to the number of challenge screens in a
session then the whole set is used each time and a subset need not be selected.

Once the basics of a RBGP scheme have been implemented the next stage
is to load the user selected passimage sets to be attacked and then implement
an algorithm which simulates the attack. Recall that the attack should exploit
the bias established by the remainder of the data set. The bias established from
the portion of the user data will need to be incorporated into the algorithm.
For details on the algorithms used for observability attacks, see Appendix D.
The simulation should note the success rate in some way, be it writing out to
the console or to a file. The final step is to incorporate the success rate into a
model. This can be achieved by incorporating the success rate into the equation
( 100
percentageOfSuccess

)s. Incorporating the percentage of success and the number of
screens in a session provides an estimated number of attacks before success.

Attacks Independent of User Bias

If the attack is not based on user bias and can be modelled purely by simulation
the following approach can be taken. As for the prior approach, a RBGP scheme
and an algorithm to simulate the attack need to be implemented. Since the attack
is not based on user bias, the simulation can randomly select a passimage set. The
next step is to establish which variables of the RBGP configuration impact the
number of attacks before success. This can be examined in an approach similar
to that detailed for shoulder surfing and frequency attacks in Chapter 6.

The simulation should be run using multiple configurations to generate data.
Data for a single configuration can then be compared to data for a different config-
uration where one independent variable has been altered. The aim is to establish
if there is a significant difference between the two distributions, indicating that
the variable altered has a significant impact on the number of attacks before suc-
cess (the dependent variable). The significance can be established using statistics
such as the Yuen Welch test or a t-test.

Once the variables which have a significant impact on the number of attacks
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have been established, the next step is to generate the data to be used for mod-
elling. This can be done by simulating attacks on a minimum of 100 passimage
sets for a variety of RBGP configurations. The resulting number of attacks for a
given configuration can then be averaged or the median taken (average should be
used only if the data is normally distributed, otherwise median is appropriate).
The values for all the configurations tested can then be combined into a data
set which can be mathematically modelled using linear regression. The approach
taken in this work to fit a model to the data follows that proposed by Maindonald
and Braun [54, Page 190] which is as follows:

• Examine the distribution of the dependent variables and the independent
variable.

• Examine the scatterplot matrix involving all the dependent variables, in
particular look for evidence of non-linearity in the plots of these variables
against each other and note any potential outliers.

• If there is evidence on non-linearity in some scatterplots, consider applica-
tion of transformations to the data to produce more linear results which are
easier to fit.

• If distributions are skewed, again consider transformations to establish a
more symmetrical distribution.

Details of applying this approach for shoulder surfing and frequency attacks are
provided in Chapter 7.

Incorporating the Model into the Metric

Once models have been established, either by the first or second approach, they
can be incorporated into the overall metric by adding an extra column to the
tuple. For example, suppose a known guessing model was established. The ab-
breviation for this could be KG and it could be added to the metric as follows:
(RG,SOGA,SS,FREQ,KG). The order of the models within the tuple has no
significance, but it could also be beneficial for usability to group together guess-
ability attacks and observation attacks. In this example, this would result in the
tuple (RG,SOGA,KG,SS,FREQ). The use of the metric could then proceed as
presented in Chapter 8.

9.4.3 Adaption to Different Authentication Mechanisms

The approach detailed in this work could also be applied to different authentica-
tion mechanism. This section aims to provide a brief discussion as to how this
may proceed. It is suggested that areas of concern identified by DeAngeli et al.
of observability, guessability and recordability apply to all user authentication
mechanisms [17]. Thus, the first stage would be to identify vulnerabilities and
related threats and attacks as detailed in Section 9.4.1. Once the threats are iden-
tified the next stage would be to construct models relating to each attack type
and combine them into a tuple, this would be a similar process to that described
in Section 9.4.2.
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9.5 Future Work

There is potential for future work in this area, this section aims to discuss some
of these possible avenues. Whilst there are more directions which could be ex-
plored, this section discusses the three which are deemed the most important in
more detail. This excludes the extension of the scope and incorporation of web
authentication already discussed. After the important aspects, also presented is
a list of other aspects.

9.5.1 Known User Guessing

The most important aspect which could benefit from further examination is the
area of educated guessing, or known user guessing. This is where the attacker
has knowledge of the user’s interests and preferences which could potentially be
used to successfully guess their passimage set with higher success than random
guessing. This could be examined by means of a user study. In such a study a
group of participants would be asked to select a passimage set from a collection of
presented images. The participants would then be asked to nominate a least one
friend to attack their graphical password. The nominated friend would then be
presented with a challenge session for the participant’s passimage set and asked to
select the images they believe the participant has chosen. The success rate would
be recorded. Each friend would then be asked to attack a randomly assigned
stranger’s passimage set and again the success rate would be recorded.

It would then be possible to examine if there was a statistically significant
difference in the success rates of the stranger attacks and the known user attacks.
The success rate could be incorporated into a guessability measure in a similar
approach to the SOGA value. Post experiment questionnaires could determine
why the users selected the images they did (i.e. if they reflect hobbies/interests
of the participant/victim). Other variables which could be considered would
be the content of the images (already examined briefly by Hayashi et al. [40]
who examined the impact of obscuring the passimages), and different levels of
knowledge of the user (e.g. colleague, acquaintance, friend, close friend).

9.5.2 SOGA Adjustments

There are a number of adjustments which would be beneficial if applied to the
SOGA work. First, the evaluation of variables with respect to the success of
SOGAs was limited. In particular the impact of the number of distractors on
a challenge screen and the use of more passimages than challenge screens were
not examined. The number of distractors could be increased and the simulations
performed again to achieve percentages of success. Use of a larger number of
potential passimages (the size of the set of images from which users could select
their passimages) would require further user passimage selections to be collected.
Subsets of the images could then be used in simulations to establish success rates
for each value of potential passimage set sizes. Statistical analysis could then be
applied to determine if there is any significant effect on the success rate when
different potential passimage set sizes are used.
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Secondly, due to the human element of user selection inherent in this attack,
it would also be beneficial to repeat the experiment in its entirety with a different
image set to confirm the results. The data should be split into two sets, one to
establish the biases and one to test the attacks.

Finally, it could also be beneficial to perform the attacks against a complete
passimage set, rather than one challenge screen or passimage. This could provide
a more realistic estimate of the success rates rather than incorporating the number
of screens by raising the adjusted number of images per screen to the power of
the number of screens.

9.5.3 Incorporation of Potential Passimage Set Size and
Distractor Selection

One variable which was not accounted for in the simulations and modelling of
the shoulder surfing and frequency attacks was the potential passimages set size.
This could be included in the simulations by generating a dummy image set
of a given size and using this for the simulations. The effect could then be
examined in a similar approach to those for the observability simulations reported
in Chapter 6. The number of images could be varied while keeping the remaining
variables constant and measuring the number of attacks required before success.
The success rates could then be analysed to examine if the number of attacks
required significantly increased or decreased when the potential passimage set
size was increased.

Also, the distractor selection algorithm was not considered for frequency at-
tacks and could potentially have an impact on the number of attacks required
before success. If a distractor selection algorithm exhibits a preference to particu-
lar images (e.g. images from a specific category) then it is feasible that this could
increase the number of attacks required if a given image is selected with higher
frequency. This could be accounted for in a similar approach as for the observ-
ability simulations reported in Chapter 6 using the distractor selection algorithm
as the independent variable of interest.

9.5.4 Other Potential Areas

For completeness, this section is concluded by a list of other possible avenues for
further research:

• Authentication Context Recommendations- It could be beneficial to con-
struct a framework of recommendations for selecting an appropriate RBGP
mechanism. Renaud [69] has presented such a framework for web authenti-
cation, this could be adapted to RBGP schemes specifically to establish an
appropriate configuration for a given context.

• Research could also be furthered by looking at the aspects of RBGP secu-
rity which were deemed outside the scope of this work, i.e. recordability,
resistability and analysability.
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• There has been some research on the use of multiple graphical passwords,
and that which has been reported (e.g. Everitt et al. [28] and Moncur and
Leplatre [58]) has focused on the usability. It could be beneficial to examine
the potential impact on the security. For example if a user supplies their
own images, they could use the same images to authenticate for multiple
services. This would have similar implications for security as re-use of
passwords.

• Shoulder surfing could also benefit from further research. Currently, graph-
ical password shoulder surfing papers often propose a new shoulder surfing
countermeasure and examine the usability, but don’t often examine the ef-
fectiveness of the countermeasure on shoulder surfing attacks success. This
could be rectified by performing user studies asking participants to shoulder
surf a user authenticating using different shoulder surfing countermeasures.
The effect of image type could also be considered. For example, would it
be easier to shoulder surf photographic images or faces?

• Interaction between attack types- This model reflects distinct attack algo-
rithms, though it is possible an attacker may combine a shoulder surfing
attack with a guessing or frequency attack. This could benefit from further
examination, however modelling the impact of this could be difficult.

• Constant challenge screens impact on usability- The implementation of con-
stant challenge screens stops frequency/intersection attacks. However, as
evidenced by Deffenbacher et al. [19], there is an interference impact in
recognition of target images when distractor images are also presented to
the user. This could benefit from further examination, in particular an
experiment specifically in the context of RBGP authentication should be
carried out to confirm the results of Deffenbacher [19]. Also Deffenbacher
et al. indicated varying levels of impact for different image types [19] ,
this could be incorporated into further research to determine an image type
with the minimal interference which would allow optimal security against
frequency attacks.

9.6 Discussion

As a result of this work a number of opinions with regards to lack of adoption
of graphical passwords have been formed. These are discussed here. There are
a number of issues which may be preventing adoption of graphical passwords.
First, it is sometimes proposed that graphical passwords should replace the pass-
word as the authentication mechanism of choice. For example Suo et al. claim
“graphical passwords have become a viable alternative to the traditional text-
based passwords due to their superior ease of recall and potential large password
space” [84]. It is my belief that we shouldn’t be looking for a replacement, but
a complement to passwords. In particular, due to the memorability of graphical
passwords they may be more suitable to circumstances in which authentication is
less frequent, as we often forget passwords which are used infrequently [3]. This
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opinion is supported by Sasse et al. [76], and Wiedenbeck et al. [99]. Also the
increase in time taken to authenticate using RBGPs may not be an issue for infre-
quently used systems, where it can be for frequently used systems (e.g. Brostoff
and Sasse [9] where users took longer, and so authenticated less frequently).

Another issue with graphical passwords which could be influencing adoption is
the amount of effort involved in implementation. There is much more to consider
when employing a graphical authentication mechanism when compared to a pass-
word which ordinarily involves little more than a database entry. For RBGPs,
one must consider (amongst other aspects) the configuration of the scheme, which
images to use and how they will be gathered, the presentation of the images to
the user, whether countermeasures for different forms of attack will be employed,
whether the images will be assigned to the users or not, and how the distractor
images will be selected. This takes more effort than required for a password.

Another issue which has become apparent from reviewing research, is that
there is no standard approach to reporting RBGP schemes. Having a standard-
ised way of reporting a RBGP scheme would allow easier more realistic com-
parison of configurations and potentially assist adoption. A good example of
reporting a scheme is shown by Mihajlov et al. [56] where the image types, size
of the passimage set and distractor set, how the information is sent from client to
server and some of the details of how the database was structured are reported.
Consistency allows a better more complete comparison of schemes and an easier
application of the metric presented in this work.

The reason for lack of adoption could be due to a combination of the above
issues, and could include others. Whatever method used, one must consider con-
text when authenticating. For example, if the system is to be designed to be
used in a space where no one would be able to view the session apart from the
user wishing to authenticate, then perhaps shoulder surfing is not a concern. It
is recommended that to select an appropriate scheme one should consider the
context, and establish which threats will be an issue and what the requirements
of the authentication mechanism are e.g. how memorable it needs to be, how
often it is used, the media used to display the challenges. Another consideration
with respect to context is that there are different passwords for different pur-
poses as shown by Notoatmodjo et al. [60], where the authors demonstrate that
users selected unique passwords for accounts which were perceived to be of “high
importance”. Implementing a highly secure mechanism for an account which is
perceived by users as low priority may not be usable.

In spite of the potential issues highlighted, there exists a number of commer-
cial authentication mechanisms using graphical elements. Notably, Android and
Windows 8. Android pattern lock allows the user to lock their phone by draw-
ing a pattern connecting dots on a grid, this is discussed by Shabtai et al. [78].
Windows 8 is reported to combine gestures and images for authentication 1. It
is due to this, in addition to the password problem and the lack of consistency
in reporting the security of RBGP schemes that this work was identified. It has
provided a consistent method of comparing the security of RBGP schemes which

1http://blogs.msdn.com/b/b8/archive/2011/12/16/signing-in-with-a-picture-password.

aspx
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could potentially be used if RBGP mechanisms are more widely adopted. The
work is original because a metric which was objective and provided an estimate of
the number of attacks required before success for multiple attacks had not been
presented in research till this point.

To conclude I would like to add my own personal opinion on the future of
graphical passwords, specifically RBGPs. I believe they will not become main
stream. The main reason for this belief is the effort required to implement such a
scheme. Implementing a password authentication mechanism is relatively straight
forward and requires comparatively little resources. When employing RBGPs
there is much more to consider in terms of configuring the mechanism. It would
be much more effort to implement and also to maintain. The potential pas-
simages would need to be gathered and stored. When compared to the storage
space requirement for an alphanumeric password, the requirement of storing im-
ages could be considerably more. Another reason RBGPs may not become main
stream is that users can be unaware of the impact of their coping mechanisms on
the security of their passwords. This is not to suggest that passwords or people
are “broken”, but merely that the way people behave with passwords does not
provide an optimal solution for either security or usability. If one were to consider
the use of RBGPs in a system, I suggest that the appropriate context would be a
system for which the user does not often authenticate due to the potential mem-
orability benefits of RBGPs. I also believe RBGPs are best suited to a system
for which a high security level is not required or at least that observability is not
an issue. This is because shoulder surfing provided the lowest number of attacks
in this work.
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Appendix A

Passimages Examples

Images were obtained from http://www.freedigitalphotos.net/ and http:

//www.freeimages.co.uk/. An example for cartoon characters is not shown
due to copyright, however this category contained images such as Mickey Mouse,
Wylie Coyote and Homer Simpson.

Figure A.1: Food Category Passimage Example
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Figure A.2: Transport Category Passimage Example

Figure A.3: Sport Category Passimage Example

Figure A.4: Trees, plants and flowers Category Passimage Example

Figure A.5: Faces and body parts Category Passimage Example

Figure A.6: Buildings Category Passimage Example
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Figure A.7: Clothing Category Passimage Example

Figure A.8: Scenery Category Passimage Example

Figure A.9: Animals Category Passimage Example

Figure A.10: People Category Passimage Example

Figure A.11: Skyscape Category Passimage Example
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Appendix B

Research Methods

B.1 Research Methods - Data Gathering

Data for this research was gathered in two ways; user studies and simulations.
The design of user studies are reported where appropriate throughout the thesis.
For the simulations, Law and Kelton [52] established a number of steps required
to establish a comprehensive simulation study. These steps were applied to this
research and are summarised as follows:

1. Formulate the problem and plan the study.

2. Construct a computer program and verify that it is correct - this was com-
pleted by JUnit testing.

3. Perform pilot runs.

4. Check the programmed model is valid - this was achieved by examination
of the data resulting from pilot runs to ensure the program was running as
expected. This was also confirmed with JUnit testing.

5. Design the experiments.

6. Run the simulations.

7. Analyse the output data.

8. Document, present and use the results.

The simulation process is documented in the appropriate sections throughout the
thesis.

B.2 Research Methods - Data Analysis

B.2.1 Probabilities

At a number of points in the thesis basic probabilities are applied. This section
briefly summarises the relevant probability rules (as detailed in [72, Chapter 2]).
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• Given a sample space of possible outcomes of size n if each outcome is
equally likely, the probability of event A occurring P (A) = 1

n
.

• Given the same sample space as above, the probability of event A not
occurring is 1− P (A).

• The probability multiplication rule states that the probability of two events
occurring is the product of the probability of those two events occurring
independently, i.e. P (A ∩B) = P (A)P (B).

B.2.2 Combinations

Simple combinatorics were also used in this thesis. Given a set of size n, the
number of ways of choosing a subset of size k is as shown in Equation B.1.
Combinations were used instead of permutations as order was unimportant.(

n

k

)
=

n!

k!(n− k)!
(B.1)

B.2.3 Statistics

A number of statistical approaches were used to analyse data in this research.
The selection of the appropriate statistic was obtained by reference to [45, Page
10] and other statistical references noted throughout the thesis. There were two
types of data in this thesis, categorical and numerical. Categorical data is data
which has at least one variable which has a fixed number of possible values, e.g.
person’s month of birth is one of twelve possibilities. Numerical data is data
which has a range of numerical values, e.g. a person’s height. Each data type
required different statistical approaches. The approaches taken are summarised
here.

Categorical Data Analysis

• Confidence Intervals for Proportions: to establish confidence intervals for
proportions, the approach taken was as detailed in [71, Page 207]. The

confidence interval formula for a proportion is p̂±Z
√

p̂(1−p̂)
n

where p̂ is the

sample proportion, n is the sample size and Z is the appropriate value for
the desired confidence level (1.96 for a confidence level of 95% as used in this
thesis). The sample proportion can be calculated as the number of people
in the sample having the desired characteristic divided by the sample size.
To use this calculation the following conditions must hold true: np̂ ≥ 10
and n(1− p̂) ≥ 10. This condition is called the “Success/Failure condition”
and is used to ensure that the distribution used can be approximated by the
normal distribution (thus allowing the calculations of confidence intervals
as previously described). Further details of the calculation of the value of
10 can be seen in [18, Page 386].
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• Chi-square Test for goodness of fit: This test examines the distribution of
categorical counted data and compares it with a “null model”, e.g. where
the counts are equally distributed between each category to establish if
they are significantly different. The chi-square test statistic is calculated as
shown in Equation B.2 where O denotes the observed values and E denotes
the expected values. The number of degrees of freedom is calculated as one
less than the number of categories. The degrees of freedom value is then
used to look up the critical value for the test statistic from a table of chi-
square values. In this research, the chi-square table presented in [45, Page
697] was used. If the calculated chi-square value exceeded the critical value
obtained from the table, then the observed distribution was significantly
different from the expected (null) distribution.

χ2 = Σ
(O − E)2

E
(B.2)

A significance value of p=0.05 is used throughout the thesis, this indicates
with at least a 95% probability that the results are different from that
expected by chance thus the results are significant.

• Chi-square Contingency Table: When there are two or more categorical
variables under consideration, a chi-square contingency table can be applied
to establish if one variable is contingent on another. A contingency table
shows the distribution of one variable at each level of the other variable
[45, Page 145]. The expected frequencies in the table represent the values
expected if the two variables are independent and are calculated as follows.
If Eij is the expected frequency of the cell in row i, column j and row i
has a total Ri, column j has a total of Cj and N is the total number of
observations, then the expected frequency Eij can be calculated as: Eij =
RiCj

N
. From this point, the chi-square values are calculated as before, but

summed over all cells in the contingency table. The chi-square test can then
be applied as detailed above. Again a significance value of p=0.05 is used
to provide a 95% confidence level.

Numerical Data Analysis

• Median - the median of data a measure of the half-way point, the value
which separates the higher half of the data (ordered numerically) from the
lower half of the data. It is an alternative measure of location, for normally
distributed data the location measure often used is the arithmetic mean.

• Quartiles - Quartiles divide the top half of the data and the bottom of the
data into halves again to obtain four quartiles. A quarter of the data is in
the lower quartile, a quarter is in the upper quartile and the middle provides
the remaining half of the data. The interquartile range provides a measure
of the spread of the middle half of the data. This is calculated as upper
quartile minus the lower quartile.
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Figure B.1: Example Boxplot

Figure B.2: Example Histogram

• Boxplots - A boxplot provides a graphical description of numerical data by
using the maximum, upper quartile, median, lower quartile and minimum
values. It allows groups of data to be easily compared [18, Page 77]. An
example boxplot is shown in Figure B.1, where the top of the box represents
the upper quartile, the lower edge of the box represents the lower quartile
value, the horizontal line through the box represents the median value.
The line above the top of the box represents the largest value from the
upper quartile to 1.5 times the interquartile range. The line under the
bottom of the box represents the smallest value from quartile 1 less 1.5
times the interquartile range. Any data values outside these “whiskers” are
represented by circles.

• Histograms- a histogram plots counts of data which fall into “bins” of differ-
ent values. The count of the data in each bin is represented by a rectangle
of a height representing the count [18, Page 47]. An example histogram is
shown in Figure B.2.

• Scatterplots - scatterplots plot two quantitative variables against each other
and are useful for examining patterns, trends and relationships [18, Page
140]. An example scatterplot is shown in Figure B.3. A pattern which runs
from the upper left to the lower right on a scatterplot is said to be negative,
a pattern running in the other direction is positive. If the pattern runs
in a (generally) straight form, the relationship between the two variables
is said to be linear. The tighter the dots are clustered, the stronger the
relationship between the two variables is said to be. In the example shown
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Figure B.3: Example Scatterplot

in Figure B.3, the relationship between the two variables can be said to
be strong, generally negative and appears to show an inverse relationship
between the variables.

• Yuen-Welch test- The Yuen-Welch test for equality of trimmed means com-
pares two groups of data (normally a control group and a treatment group
[102, Chapter 5]) and is used to establish if the distributions are the same.
If the distributions of the two groups are the same, there’s no significant
difference between them and the treated group is therefore not significantly
different to the control group. If the data was normal a similar test would
be a t-test, however this is a robust alternative suitable for use with non-
normal data.

• Linear and robust linear modelling - A linear model is an equation of a
straight line through data on a scatterplot [18, Page 167]. Where more
than one independent variable affects the dependent variable, multiple re-
gression, which models the impact of multiple variables on the independent
variable compared to linear regression which models only one dependent
variable, is required. This models the impact of all the independent vari-
ables on the dependent variable. Linear modelling applied in this work
used the least squares approach (implemented by the statistical program
and language “R”) which essentially calculates the line for which the sum
of the squared residual values (the observed minus the calculated values) is
smallest and reports this as the best line of fit. However, there are underly-
ing assumptions of this type of modelling, and if these are violated it is best
to use a robust equivalent. In this thesis, the robust equivalent provided in
R was used.

178



Appendix C

Attack Questionnaire

• How well do you know the person you have just attacked?

– Close friend/relative

– Friend

– Acquaintance

– Stranger

• How did you collect the username?

– By observing multiple logins

– By capturing their record of the username

– By guessing the username through knowledge of the user

– By guessing the username using variations of their name or similar

– By using a username shown on the forum posts

– Other - please provide details

• How did you collect the passimages?

– By observing multiple logins and noting the images selected

– By observing multiple logins and noting the images common between
sessions

– By capturing their record of the images selected

– By guessing the pictures through knowledge of the users likes/dislikes

– By guessing the images based on assumptions of what people in general
might select

– By randomly guessing/repeated attempts

– Other - please provide details

• Any other comments?
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Appendix D

Simulation Design

D.1 Requirements Gathering

D.1.1 Purpose

The purpose of the simulation software is to represent a RBGP scheme with a
given configuration, construct a user’s passimage set and allow frequency and
shoulder surfing attacks to be emulated against that set. The RBGP scheme can
have a varied number of distractor images d per challenge screen, a number of
constant distractor images c, a number of challenge screens in a session s. A user
of the scheme can have a number of passimages p. The combinations of these
attributes represent the configuration of a RBGP scheme. If a frequency attack
is being simulated dummy screens can also be used. This means upon incorrect
selection of a distractor in an attempted attack the remaining challenge screens
are set to contain only distractors, “dummy screens”. If a shoulder surfing attack
is being simulated an attacker has a percentage of recall, which reflects their
ability to recall the passimages observed.

D.1.2 Scope

The system does not need to deal with user input. Configurations for a specific
run of the simulation can be hard coded into the program. This is because the
system was intended to generate data which will then later be used to fit a model
and so only one user was considered. The system needs to be able to write out
the results of the attacks for data analysis.

D.1.3 Assumptions

A number of assumptions were made in the design of the simulation software,
these are summarised briefly here:

• The attacks will be made against complete sets of passimages to reflect the
probability of successfully attacking a target user.

• For frequency attacks, use of constant distractors and dummy screens in a
configuration were mutually exclusive.
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• Each attack for a given configuration is run multiple times. The number of
times run can be altered and the values for each attack or the median of all
the runs for that configuration can be written to the results file.

• As with the rest of the thesis, one passimage per challenge screen is assumed.

• The frequency attack in particular assumes that if more than one image has
the highest observed frequency then a random image from the set of images
which have the same frequency is selected in the attack.

• The system created a set of 144 potential passimages and this value could
not be changed.

• Distractors are selected randomly from the set of all potential passimages,
less any constant distractors for the session and all the passimages in the
user’s passimage set.

• The number of constant distractors is always less than the number of dis-
tractors per challenge screen otherwise the attack would be reduced to a
random guessing attack.

• If an attack works first time, then it is not based on a collection of frequen-
cies and instead is due to randomly guessing the correct images. For this
reason, the first attack is assumed never to be successful in an attempt to
minimise the impact of randomly guessing the correct images.

D.1.4 Algorithms

Frequency Attack

In a frequency attack the attacker attacks a session by noting the images viewed
and incrementing a count of the times it has been seen. To attack a screen, the
attacker selects the image on the screen which he has seen most frequently. If the
image selected is the passimage then the screen is passed. This is repeated for
each screen in the challenge session. If all screens are passed, then the attack is
successful. If not then the process is repeated until the attack is successful.

In the frequency attack simulations there was the possibility of two counter
measures in addition to using a passimage set larger than the number of challenge
screens in a session. The first countermeasure was the use of dummy screens. In
this case, if the attacker selected a distractor for any screen in the challenge
session, the remaining challenge screens consisted only of distractor images. The
second countermeasure was the use of constant distractors. In this case, for
each passimage in the user’s passimage set there were a specified number of
constant distractors. This meant that whenever a passimage was selected as part
of a challenge screen the constant distractors associated with the passimage also
appear as part of the challenge screen. The algorithm was as follows:

1. Select a subset of s passimages from the users passimage set.
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2. Generate a challenge session for the passimages selected (i.e. generate s
challenge screens with one of the passimages for each screen, and random
and/or constant distractors).

3. While there is another challenge screen in the session:

(a) For each image in the challenge screen increment the number of times
it has been viewed or add to the list of viewed images if it hasn’t been
seen before.

(b) Get the image which has been viewed the most times.

(c) Check to see if the most viewed image in the screen is the passimage

i. If the most viewed image is the passimage then increment the
number of screens passed.

ii. If the most viewed image isn’t the passimage and dummy screens
are being used, set the remaining challenge screens to dummy
screens.

4. Once there are no more challenge screens, if all screens were passed then
end the simulation. Otherwise return to step 2.

This process is represented by an activity diagram in Figure D.1.

Shoulder Surfing Attack

The shoulder surfing attacks consist of two stages; viewing and attacking. The
view and attack stages are performed in succession until the attacker has viewed
all the passimages required to authenticate in an attack. If the number of pas-
simages in the user’s passimage set is equal to the number of challenge screens
in a challenge session then the number of attacks required can be calculated as
the number of screens per session divided by the number of screens multiplied by
the probability of recall (percentage of recall divided by 100). If the number of
passimages exceeds the number of challenge screens a different approach is taken.
If the percentage of recall of the attacker is 100% then only one challenge session
will need to be viewed to successfully attack. If the percentage of recall is less
than 100% then the following calculation is used to calculate the number of ses-
sions which need to be viewed. First we calculate the probability of recalling an
image as the percentage of recall divided by 100. The number of images recalled
per session can then be calculated as the number of screens multiplied by the
probability of recall.

If the number of images recalled per session is greater than 1, the number of
sessions required can then be calculated as the number of passimages divided by
the number per session. This value is rounded up if it is not an integer since a
fraction of a session does not make literal sense. The list of viewed images can
then be reduced to this size by randomly removing excess passimages.

If the value of the number of images recalled per session is less than one then
the number of views required per image needs to be calculated. We do not round
to 1 each time as this could overestimate the recall of the attacker. For example
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Figure D.1: Frequency Attack Activity Diagram
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say the attacker has 2 images in his viewed list and he only recalls 40% of viewed
images. This gives the number of images recalled as 0.8, rounding in this case
would over estimate the recall. In other cases where we round down e.g. 2 images
at 20% recall giving a value of 0.4 images recalled rounded down would mean no
images would ever be recalled which we suggest is unrealistic. The number of
viewed required per passimage is calculated as 100 divided by the percentage of
recall. The viewed images list can then be reduced by removing images which
have not been viewed enough times to recall.

The attack session is then performed. A challenge session for the target pas-
simage set is constructed. If all the passimages selected are in the attacker’s list
of recalled passimages then the attack is successful and the simulation can be ter-
minated. If not all passimages are in the attackers recalled list then the process
starts once more. This algorithm can be represented as follows:

1. Generate a new challenge session for the target passimage set.

2. Add all the passimages in the challenge session to the attacker’s viewed
images list and increment the number of times each passimage has been
seen.

3. Calculate the number of passimages recalled per session by taking the num-
ber of images in the attacker’s viewed images list and multiplying it by the
probability of recall (the percentage of recall divided by 100).

(a) If this value is >=1 then round the number down if the remainder
is less than 0.5 and up otherwise. The list of recalled images is then
reduced to this size.

(b) If this value is < 1 then calculate the number of times an image needs
to be viewed until it is is recalled. This is calculated as 100 divided
by the percentage of recall.

i. The list of images viewed can then be reduced by removing images
which haven’t been seen frequently enough to be recalled.

4. Generate a new challenge session for the target passimage set.

5. If all the passimages presented in the challenge session are in the attacker’s
list of recalled images the attack is successful.

6. If the attack is not successful, return to step 1.

This process is represented by an activity diagram in Figure D.2.

D.1.5 Elements to Model

To model the RBGP scheme itself the following objects need to be modelled:

• User Passimage Set- a subset of p images from the potential images set

• Potential Images Set (all possible images to be used in the scheme)
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Figure D.2: Shoulder Surfing Activity Diagram
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• Image - to model individual images (distractors or passimages, i.e. all im-
ages in the potential images set)

• Challenge Session

• Challenge Screen

In addition the following processes need to be modelled:

• Distractor Selection

• Dummy screens

To model the attacks themselves the following processes need to be modelled:

• Construction of a passimage set

• The attack algorithms

• A function to get the image in a challenge screen which is the most fre-
quently seen

• A function to check if the most frequently seen image on a challenge screen
is the passimage on a screen (i.e. check two images are equal)

• A function to perform the calculation of the median value of a collection of
results for a specific configuration. If the number of runs in the collection
was even then the result would be the average of the two middle values. If
the number of runs in the collection was odd then the result is the ((n +
1)/2)th item, where n is the number of runs.

• A function to write out the results data to a file

D.1.6 Class Diagrams

The class diagrams for the frequency attacks simulation and shoulder surfing
attacks simulation are shown in Figures D.3 and D.4 respectively.
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Figure D.3: Shoulder Surfing Simulation Class Diagram
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Figure D.4: Frequency Attacks Simulation Class Diagram
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