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Abstract 

The tumour suppressor p53 is extensively regulated by posttranslational 

modification, including modification by the small Ubiquitin-related modifier SUMO. 
The data presented here show that MDM2, previously described to promote 
Ubiquitin, Nedd8 and SUMO-1 modification of p53, can also enhance conjugation of 
endogenous SUMO-2/3 to p53. SUMOylation activity requires p53-MDM2 binding 

but does not depend on an intact RING finger. Both p14ARF and L11 can promote 
SUMO-2/3 conjugation of p53. However, unlike the previously described SUMO-1 

conjugation of p53 by an MDM2-p14ARF complex, this activity does not depend on 
the ability of MDM2 to relocalise to the nucleolus. Strikingly, the SUMO consensus is 
not conserved in mouse p53, which is therefore not modified by SUMO-2/3. 

Ultimately, conjugation of SUMO-2/3 to p53 correlates with a reduction of both 

activation and repression of a subset of p53 target genes and guides the p53 
response towards apoptosis rather than cell cycle arrest.  

Roughly 30% of all cancers express a p53 protein containing a single amino acid 
exchange within the DNA binding domain. These mutant p53 proteins not only lose 
wild-type p53 function, but also gain new oncogenic properties that partially reflect 
the ability of mutant p53 to interact with and repress the p53-family transcription 
factors p63 and p73. Like wild-type p53, mutant p53 is also SUMOylated by MDM2, 
but SUMO-2/3 modification does not affect mutant p53’s ability to interact with p63 
and p73. p63 and p73 bind to the DNA binding domain of mutant p53, although 

these interactions do not require an aggregation domain that has been identified 
around isoleucine 254 within this region of p53. While the DNA binding domain of 
p73 is necessary for binding to mutant p53, the core domain of p63 is dispensable 

for the interaction with mutant p53. The p53-binding protein MDM2 binds TAp73α 

and ∆Np73α, but does not interact with TAp63α or ∆Np63α. Strikingly, addition of 
MDM2 to mutant p53-p73 complexes leads to the formation of a trimeric complex 
with MDM2, while addition of MDM2 to mutant p53-p63 complexes releases p63 

from the inhibitory mutant p53 interaction.  

Altogether, this study reveals ubiquitination-independent mechanisms, by which 
MDM2 influences both wild-type and mutant p53 activity. 
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PIG3 p53-inducible gene 3 
PIR2 p73-induced RING2 protein 
Pirh2 p53-induced RING H2 protein 
Plk Polo-like kinase 
PKCζ Protein kinase 
PML Promyelocytic leukaemia protein 
PP Pentosephosphate 
PRKRA  Protein kinase, interferon-inducible double stranded RNA 

dependent activator 
PRMT5 Protein arginine methyltransferase 
PUMA p53 upregulated modulator of apoptosis 
Ras Rat sarcoma protein 
Rb Retinoblastoma protein 
RING Really interesting new gene 
RLU Relative Luciferase units 
RNA Ribonucleic acid 
RNF4 RING finger protein 4 
ROS Reactive oxygen species 
RPLP0 Ribosomal protein, large, P0 
SAM Sterile α motif 
SCO2 Synthesis of Cytochrome c oxidase 
SDS Sodium dodecyl sulfate 
SENP Sentrin-specific protease 
SIM SUMO interaction motif 
Sip1 Smad-interacting protein 1 
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SREBP Sterol regulatory Element binding protein 
SUMO Small ubiquitin-related modifier 
SV Simian virus  
TAD Transcription activation domain 
TBS Tris-buffered saline 
TBS-T TBS-Tween 
TCA Tricarboxylic acid 
TEAB Triethyl ammonium bicarbonate buffer 
TEMED Tetramethylethylenediamine 
TET Tetramerisation domain 
TID Transcription inhibitory domain 
TIGAR Tp53 induced glycolysis and apoptosis regulator 
TNF Tumour necrosis factor 
TopBP1 Topoisomerase βII binding protein 
Tris Tris(hydroxymethyl)aminomethane 
UHFR2 Ubiquitin-like with PhD and RING finger 
Ubc9 Ubiquitin-conjugating enzyme 9 
UBL Ubiquitin-like modifier 
USP Ubiquitin-specific protease 
VHL von Hippel-Lindau 
wt wild-type 
WWP1 WW-domain containing protein  
YFP Yellow fluorescent protein 
Zeb1 Zinc finger E-box binding homeobox 1 



 

 

 

 

 

 

1 Introduction 
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1.1  Cancer: when cells grow out of control. 

In a healthy individual, most cells are spatially confined to specific tissues and cell 

proliferation is strictly controlled. The term cancer describes a group of illnesses, 

where cells have begun to grow uncontrolled and invade tissue boundaries to form 
malignant tumours1.  

The degree of abnormal cellular behaviour can be classified into different severity 
grades. Hyperplasia describes the accumulation of excessively growing cells forming 
a histologically normal tissue organisation, which is considered a benign tumour. 
Dysplastic cells not only over-proliferate, but also adopt abnormal shape and tissue 

organisation, yet respect tissue boundaries. Neoplasms show a chaotic histology 
and penetrate surrounding tissue. Such malignant tumours, which can metastasise 
to distant organs, are commonly referred to as cancer. 

Healthy cells can start to proliferate unconstrained and form tumours when 
incorporation of errors into the DNA leads to the alteration of genes that normally 
control important cell autonomous mechanisms such as DNA repair, cell division and 
cell movement. In order for a normal cell to be transformed to a tumour cell, 
mitogenic genes become activated or oncogenes are introduced via viral infections 
while surveillance and repair mechanisms are silenced. 

Altogether, the cell physiology of tumour cells differs from that of normal cells in eight 
key aspects, the so-called hallmarks of cancer2,3:   

First, normal cells only proliferate if stimulated by pro-growth factors, but tumour cells 

have acquired independence of external mitogenic signals. Many tumour cells display 
a different array of surface receptors, produce their own growth-factors or stimulate 

surrounding fibroblasts to secrete them4. Furthermore, signals from external growth 
factor receptors can be uncoupled if mitogenic pathways become constantly 

activated as in the case of Ras mutants constitutively driving signalling through the 
MAP-kinase pathway5. 
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Figure 1-1: Eight Hal lmarks of Cancer 
Normal cells acquire self-sufficiency in pro-growth signalling, insensitivity to anti-growth and cell death 
signals, capabilities to replicate without limit, induce angiogenesis and invasion, reprogramme their 
metabolism and evade immune surveillance along the route of malignant transformation. 
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Second, tumour cells are insensitive to anti-growth signals that prevent cell cycle 
progression at the S-phase entry. Many exogenous anti-growth signals control the 

phosphorylation status of the Retinoblastoma protein (Rb) that blocks S-phase entry 
in its hypo-phosphorylated stage. It is therefore not surprising that tumour cells 
frequently harbour mutations in either Rb itself or in its phosphorylation pathway6.  

Normal cells are subject to multiple mechanisms of cell death including the intrinsic 

and extrinsic apoptosis pathways, necrosis and autophagy. The intrinsic apoptosis 
pathway can be triggered once internal faults such as DNA damage have been 

observed. Apoptosis thereby provides an effective barrier to cancer development. 
However, tumour cells have evaded this control mechanism enforced by tumour 
suppressors. For example, in order to avoid activation of intrinsic apoptosis, which is 

controlled by a balance or pro- and anti-apoptotic Bcl-2 family proteins, many 

cancers show increased levels of the anti-apoptotic Bcl-27. 

Tumours can exceed the limited number of replications constraining healthy cell 
proliferation. Normal cells can divide about 70 times8, but cancer cells divide much 
more often. As part of ageing, the telomere ends of chromosomes become shorter 
with every DNA replication, however many transformed cells activate the enzyme 
telomerase to actively rebuild the telomere ends9.  

Tumour cells, just like untransformed cells, need to be supplied with oxygen and 
nutrients by blood vessels. Usually, cells in a tissue are within a 100 µm diameter of a 
blood vessel. In order to stimulate formation of new blood vessels, tumour cells 

express high levels of pro-angiogenic factors, for example the vascular endothelial 
growth factor VEGF10. A local inflammatory response can furthermore promote 
angiogenesis11. 

Most cancer deaths are not caused by the primary tumour, but by metastasis to 

other organs12. During embryonic development, embryonic cells move around in 
order to form tissue layers and organs, but in an adult organism most non-
hematopoietic cells are static in tissues and loss of cell-matrix interaction leads to a 

programmed form of cell death called anoikis13. However, tumour cells survive losing 
cell-cell and cell-matrix junctions without undergoing anoikis14. By altering the display 
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of cadherins and integrins on their cell surface, tumour cells convert to a 
mesenchymal morphology and become more motile15. Tumours do not only contain 

neoplastic cells and blood vessels, but also connective tissue. The stromal cells can 
be stimulated to express matrix-degrading enzymes that loosen up the surrounding 
fibres, facilitating metastasis of the neoplastic cells16. 

Furthermore, transformation coincides with reprogramming of the cell metabolism. 

Tumour cells produce most energy via glycolysis rather than mitochondrial oxidative 
phosphorylation, a phenomenon that was termed the “Warburg effect”17. Switching 

to glycolysis as major supply of ATP is possibly advantageous for tumour cells since 
many glycolysis intermediates can be used for anabolic pathways, for example 
synthesis of nucleotides and amino acids, which are required to build up a new cell18. 

Metabolic reprogramming also affects the level of reactive oxygen species19, 

moderately high levels of which can drive cancer development20. The increased 
glucose uptake of tumour cells can be a useful tool for imaging tumours by positron 
emission tomography (PET) using radiolabelled glucose analogues21. 

Finally, tumour cells have escaped the surveillance of the immune system that should 
attack abnormal cells. Immuno-compromised mice develop more carcinogen-
induced tumours than immuno-competent mice22, suggesting that the immune 
system poses another barrier to tumour development in healthy organisms. 
Furthermore, the tumours formed in immuno-compromised mice fail to establish 
tumours when injected into immuno-competent animals22.  

Most of these cellular alterations are due to changes in the genetic information. DNA 
errors occur frequently during DNA replication and cell division, but tight control 
systems normally either trigger repair mechanisms or eliminate damaged cells in 

order to prevent faulty cells from multiplying. However, some mutations can escape 

the control system and if both proto-oncogenes are activated and tumour 
suppressor genes silenced, tumours can develop. Many tumours show not only 
single amino acid exchanges but also amplifications and deletions of entire 

chromosome pieces due to genomic instability after control checkpoints have been 
inactivated. Mutagens such as ultraviolet light, ionising radiation and tobacco smoke 
increase the rate of DNA errors and thereby raise the statistical chance of cell 
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transformation. Furthermore, the chromatin and the histones, which serve as scaffold 
structure, are subject to many modifications such as acetylation and methylation, 

specific patterns of which influence the accessibility of promoters and the rate at 
which genes are transcribed. Changes in these epigenetic marks are also frequently 
found in tumours and contribute to the genetic reprogramming23. 

1.2  The tumour suppressor p53 

The p53 tumour suppressor is a key player in the cellular control system. If cells 
contain overactive oncogenes or DNA damage, p53 becomes activated and 
contributes to the repair of DNA damage and survival under low levels of stress and 

eliminates or terminally arrests damaged cells through the induction of programmes 
such as apoptosis and senescence under acute stress24. Through this genome-
guarding function, p53 prevents the accumulation of malignant cells - demonstrated 
by the development of spontaneous sarcomas and lymphomas in p53-knockout 
mice25. Almost all tumour cells have escaped the control by p53 in some way, either 
by disruption upstream and downstream of p53, or by mutating p53 itself (in roughly 
half of all tumours)26.  

1.2.1  p53: guarding the genome 

p53 is a member of the p53-family of transcription factors together with p63 and 

p73, which are discussed later (see section 1.5). p53 regulates the expression of 
many genes27, however transcription-independent roles of p53 have also become 
apparent28. In a simplified model, transient or mild stress predominantly leads to 

activation of cell cycle arrest via activation of p53-target genes like the Cyclin-
dependent kinase inhibitor p21 (also called CIP1 and WAF1)29,30, whereas sustained 
or severe stress leads to apoptosis through the induction of p53-target-genes such 

as the BH3-domain proteins Bax31 and PUMA32. A number of other roles for p53 are 
emerging, including regulation of angiogenesis and metabolism, contributing to a 

complex network of tumour-prevention. Strikingly, a p53 mutant, deficient in 
regulating both apoptosis and cell cycle arrest but maintaining the metabolic 
activities was recently shown to be sufficient to suppress tumour development33. 



   

 23 

 
Figure 1-2: p53 responses depend on stress levels. 
p53 counteracts tumour development with a range of preventative measures under stress-free 
circumstances (green), DNA repair and cell cycle arrest under low to medium stress levels (yellow) and 
induction of apoptosis or senescence under high stress levels (red). 
 

1.2.2  p53 induces cell cycle arrest and DNA repair under 
low levels of stress. 

If problems in the cells are at a resolvable level, p53 will not eliminate the cell but 
rather allow for repair of the damage. The transcription factor can induce and repress 
an array of genes leading to temporary arrests at the G1 or G2 cell cycle checkpoints 
in case nucleotide levels are low34, the DNA template replicate contains errors or 
chromosomes are damaged. These temporary arrests allow for replenishment of 
nucleotide pools or completion of DNA repair and prevent multiplication of damaged 
cells. 

The most prominent p53-target gene involved in the G1-arrest is the Cyclin-
dependent kinase (Cdk) inhibitor p2129,30 that inhibits G1/S specific kinases Cdk2, 3, 4 
and 635, thereby preventing Retinoblastoma protein (Rb) hyper-phosphorylation and 

cell cycle progression into S-phase. 

Furthermore, p53 induces two Cdk-inhibitors, which preferentially target the G2/M-

specific Cdk1/Cyclin B complex, leading to an arrest in G2. While the 14-3-3σ protein 

sequesters the Cyclin-Cdk complex in the cytoplasm36,37, Gadd45 is thought to 
dissociate Cdk1 (also called Cdc2) from its binding partner Cyclin B1

38, with both 

mechanisms preventing progression into mitosis. In addition to transcriptionally 
activating Cdk-inhibitors, p53 transcriptionally represses Cyclin B1

39, Cyclin B2
40, 
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Cyclin A2
41 and Cdk142, also contributing to the G2-arrest. Moreover, p53 represses 

Topoisomerase II, which is not part of the Cyclin-Cdk complexes, but is crucial for 

chromosome segregation, and progression into mitosis43. 

 
Figure 1-3: p53 act ivates cel l  cycle arrest. 
p53’s activities as transcriptional activator and repressor contribute to cell cycle arrest at G1 and G2 by 
preventing S-phase entry via the Cdk-inhibitor p21 and preventing G2 exit via 14-3-3σ , Gadd45 
Cdk1, Cyclin A and Cyclin B. Rb is unphosphorylated (green arrows) during G1 and hyper-
phosphorylated (red arrows) during S, G2 and M-phase.  
 
 
The p53 target Gadd45 not only dissociates the Cdk1-Cyclin B1 complex but 

simultaneously activates DNA excision repair by binding to the Proliferating cellular 
antigen (PCNA)44. PCNA is a co-factor for DNA-polymerase δ, which is important for 
the re-synthesis of excised damaged DNA. Another p53 target gene also links cell 

cycle arrest to DNA repair: the Ribonucleotide reductase p53R2 is activated by p53 
and produces nucleotides required for DNA repair45. p53 furthermore induces post-

replicative mismatch repair by inducing the mismatch repair genes PMS2 and 
MLH146, which together form the endonuclease MutLα complex, introducing DNA 
strand breaks next to mismatched DNA in order to provide access for exonucleases 
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to remove the errors. Strikingly, even p53 itself was found to possess some 3’ to 5’ 
exonuclease activity47. 

 

 
Figure 1-4: p53 act ivates DNA repair. 
p53 induces DNA excision repair via PCNA and DNA Polymerase ∂ and 
contributes to nucleotide synthesis via p53R2. The p53 targets PMS2 and 
MLH1 form an endonuclease complex introducing DNA strand breaks at 
mismatch sites. p53 itself possesses some 3’ to 5’ exonuclease activity. 

 

 

1.2.3  p53 induces apoptosis or pre-mature senescence 
under high levels of stress 

p53 is a key regulator for eliminating cells on their road to transformation in response 
to oncogene activation and DNA damage, initiating cell death programmes, most 

famously apoptosis. Two pathways can initiate the apoptotic response: the extrinsic 
pathway, initiated by death factors binding to surface receptors such as Fas and the 
intrinsic pathway triggered by DNA damage or oncogene activation. Both apoptosis 
pathways converge in the activation of effector Caspases 3, 6 and 7, which cleave 
key cellular components such as lamins and actin, leading to the distinct apoptotic 
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phenotype of a condensed nucleus and blebbed membrane and finally to the 
formation of apoptotic bodies48. 

The extrinsic apoptosis pathway is initiated by death factors binding to death 
receptors on the cell surface, leading to activation of the initiator capsases 8 and 10, 
which then initatie the effector caspases. p53 can influence the extrinsic apoptosis 
pathway by up-regulating the expression of the Tumour necrosis factor (TNF) 

receptors Fas49 and Killer/DR550. 

The intrinsic apoptotic pathway is initiated by p53 when the state of a cell is beyond 

repair. p53 induces transcription of the pro-apoptotic Bcl-2 family member Bax31, 
which locates to the outer mitochondrial membrane. Here Bax counteracts the anti-
apoptotic Bcl-2 family members and triggers the collapse of the mitochondrial 

membrane potential and release of Cytochrome c into the cytoplasm. Then, 
Cytochrome c forms the Apoptosome together with Apaf1, inducing the initiator 
caspase 9, which cleaves and activates the effector caspases.  

p53 not only induces the Bcl-2 family member Bax, but also the related BH3-only 
proteins PUMA32 and Noxa51, which contribute to the Cytochrome c release by 
binding anti-apoptotic Bcl-2 and activating Bax and Bak52-54. Moreover, p53 prevents 
the transcriptional activation of the anti-apoptotic Bcl-2 by inhibiting its transcription 
factor Brn3a55. 

Many more of p53’s transcriptional targets, which do not contain any BH3 domain, 
contribute to triggering the apoptotic response. The p53-induced protein with death 

domain (PIDD)56 plays a role in activating Caspases 2, 3 and 757. Induction of the p53 
target PERP stimulates apoptosis58, while the role it plays in its location at the 
plasma-membrane remains unknown. A recently identified p53 target gene is the 

calcium-binding protein PDCD6 (also called ALG2), which promotes Cytochrome c 

release and accumulates in the nucleus during apoptosis59. Interestingly, this protein 
had previously been described to have a role in the cytoplasm during Fas-induced 
apoptosis60. 
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Figure 1-5: p53 act ivates the extr insic and the intr insic apoptot ic pathways. 
p53 induces the extrinsic (left side) and intrinsic (right side) apoptosis pathways, converging in the 
activation of effector caspases 3, 6 and 7, which cleave many cellular proteins, for example lamins, 
that provide the structure for the nucleus. Many p53 target genes furthermore contribute to apoptosis 
by producing reactive oxygen species (ROS). 
 
 
Many reports suggest that reactive oxygen species play a vital role in the p53-

induced apoptosis pathway61,62. In line with this observation, it was found that the 
p53 inducible gene 3 (PIG3) encodes an NADPH-dependent reductase63, which 
generates reactive oxygen species, critical for the oxidation of the mitochondrial 

components as part of the disassembly of the apoptotic cell64. The p53-inducible 
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protein 6 (PIG6) encodes a proline oxidase, which also generates pro-apoptotic 
reactive oxygen species65. Finally, as part of the apoptotic response, p53 represses 

Nrf2-induced anti-oxidant genes such as the x-CT subunit of the Cysteine/Glutamate 
transporter, the Glutathione-S-transferase (GST-α1) and the NADPH Quinone 
oxidoreductase (NQO1), which is responsible for 2-electron reduction of Quinones66. 

Moreover, p53 contributes to the intrinsic apoptosis pathway directly at the 

mitochondria and in the cytoplasm independent of its transcriptional activity28. It was 
reported that p53 itself can translocate to the outer mitochondrial membrane and 

counteract the anti-apoptotic Bcl-2 family members Bcl-xL and Bcl-2 there67. 
Furthermore, p53 can bind and activate the pro-apoptotic proteins Bak in the 
mitochondria68 and Bax in the cytoplasm69. 

More recently, another form of cell death, called autophagy (self-eating) was also 
linked to the activity of p53. The transcription factor induces a lysosomal protein 
termed damage-regulated autophagy modulator (DRAM) that induces macro-
autophagy70. While DRAM-induced autophagy was reported to contribute to p53’s 
apoptotic response71, autophagy can also promote cellular survival, for example by 
recycling non-essential cell components under conditions of starvation. Strikingly, 
p53-induced autophagy can also contribute to survival, as shown in Myc-driven 
lymphomas, where blocking p53-induced autophagy led to tumour regression72,73. 
Complicating the picture even further, p53 was shown to inhibit autophagy under 
non-stressed conditions74, possibly via a cytoplasmic p53 protein pool75. 

Furthermore, p53 was reported to trigger cell death by necrosis when activated by 
oxidative stress. p53 was found associated with the Cyclophilin D complex, leading 
to opening of the mitochondrial transition pore and ultimately causing cell swelling 

and rupture76. 

Adding another layer of complexity, p53 not only transcriptionally regulates genes 
that are then translated into proteins, but also induces a number of micro-RNAs, 
such as microRNA34α, which regulates the expression of many anti-apoptotic genes 

by initiating degradation of their mRNA transcripts and contributes to the initiation of 
apoptosis77. One of the miR-34α regulated genes is the anti-apoptotic Bcl-278, which 
p53 also counteracts via multiple other transcription-dependent and independent 
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ways, either directly or via its target genes. The importance of miR-34α was recently 
demonstrated in a lung cancer model, where miR-34α treatment prevented tumour 

progression79. 

As well as physically eliminating damaged cells by initiating cell death, p53 can also 
trigger premature senescence, an irreversible cell cycle arrest that prevents damaged 
cells from multiplying. Two pathways converge to induce the permanent G1 arrest 

after DNA damage, oncogene activation or telomere erosion: p16INK4A and the p53-
target p21 inhibit Cyclin-dependent kinases to prevent hyper-phosphorylation of Rb, 

thereby inactivating the E2F transcription factors and cell cycle progression80. In 
contrast to transiently arrested cells, senescent cells undergo morphological 
changes, adopting a flattened cell shape and altering their chromatin with the 

appearance of senescence-associated heterochromatin foci81. 

1.2.4  p53 prevents angiogenesis, metastasis and Warburg 
metabolism. 

p53’s multiple mechanisms to prevent transformation of healthy cells do not end 

here. p53 is involved in preventing the acquisition of almost every single hallmark of 
cancer, posing a great risk for any cell with inactivated p53 and explaining why all 
cancer cells have lost p53 activity in some way. 

Tumours need to be supplied with nutrients and oxygen via blood vessels, like 
normal cells and p53 contributes to suppressing the formation of new blood vessels 

by inducing anti-angiogenic factors. p53 promotes the expression of the matrix 
glycoprotein Thrombospondin 182 and a related brain-specific protein with 
Thrombospondin repeats, the angiogenesis inhibitor BAI-183, both of which inhibit 
neovascularisation84. Additionally, p53 induces a Collagen-4 prolyl hydroxylase, 

which cleaves Collagen and leads to the release of anti-angiogenic Collagen 4 and 
18 fragments, inhibiting endothelial cell growth85. Moreover, p53 disrupts the 

signalling from areas of hypoxia to induce pro-angiogenic factors by suppressing 
expression of Hypoxia-inducible factor (HIF-1β) via induction of microRNA miR-10786. 
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Figure 1-6: p53 inhibits the invasive phenotype. 
p53 prevents epithelial-mesenchymal transition by repressing the ZEB-1/2 transcription factors, 
represses filopodia formation and cell polarisation (orientation of Golgi) via Cdc42 and prevents 
loosening of the extracellular matrix and collagen by repressing Plasmin and MMP-1. 
Furthermore the inhibitory cytokine MIC-1 prevents cell movement. 
 

 

 
Overgrowing cells become neoplastic when they start to invade the surrounding 
tissue boundaries. p53 represses this invasive phenotype by a number of 
mechanisms: First, p53 prevents cells from moving by increasing the expression of 
KAI, a cell surface glycoprotein which contributes to cell-cell interaction and 

interaction of cells with the extracellular matrix87. Secondly, p53 inhibits the formation 

of filopodia induced by Cdc42 GTPase88, which are a critical part of the invasive cell 
morphology. Cdc42 is also required for cell polarity89 and p53’s inhibitory effect 
prevents Golgi orientation in direction of movement, thereby perturbing directed cell 

migration. 

Thirdly, p53 induces expression of the secreted TGFβ-family member Macrophage 
inhibitory cytokine MIC-1 (also known as growth differentiation factor GDF-15), which 
was shown to inhibit cell movement through transwell assays90. Furthermore, p53 
reduces the expression of ZEB-1 (also known as δEF1) and ZEB-2 (also known as 
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Sip1) via up-regulation of the microRNAs miR-192 and miR-20091,92. The ZEB 
transcription factors have a crucial role in epithelial to mesenchymal transition, by 

suppressing E-Cadherin transcription93,94. Finally, p53 imposes a barrier to matrix 
remodelling by inducing the expression of plasminogen activator inhibitor PAI-1, 
which inhibits the activation of plasminogen and thereby prevents the proteolytic 
degradation of the extra-cellular matrix by Plasmin95. Additionally, p53 represses the 

expression of Matrix metalloproteinase 1 (MMP-1) that catalyses the break-down 
Collagen I, II and III96, loosening the tissue and creating space for invading cells. 

One of the recent additions to the hallmarks of cancer is the observation that tumour 
cells alter their metabolism to mainly rely on glycolysis and less on oxidative 
phosphorylation. It has become apparent that p53 antagonises these metabolic 

changes, the so-called Warburg-effect, via two mechanisms: On the one hand it 

stimulates mitochondrial respiration by activating expression of the Synthesis of 
Cytochrome C oxidase 2 (SCO2)97. This is a key regulator of the Cytochrome c 
oxidase complex, the last enzyme in the mitochondrial electron transfer chain, 
catalysing the oxygen-consuming step of the mitochondrial respiration. On the other 
hand it decreases glucose uptake by repressing the expression of glucose 
transporters GLUT1 and GLUT498 and down-regulating the GLUT3 glucose 
transporter via IKKα and NF-κB99. 

p53-induced ubiquitination and degradation of Phosphoglycerate mutase (PGM), 
which catalyses the eighth step of glycolysis, poses another barrier to completing 

glycolysis100. Moreover, p53 slows down the glycolytic flux by up-regulating the 
Fructose-2,6-bisphosphatase Tp53 induced glycolysis and apoptosis regulator 
(TIGAR)101, lowering the levels of the fructose-2,6-bisphosphate that drives 

progression through glycolysis by activating the rate-limiting Phosphofructokinase. 

Blocking progression through glycolysis drives diversion of the early intermediates 
through the pentose phosphate pathway. The NADPH produced in this enzymatic 
cascade is required to regenerate the reduced state of glutathione, once it has 

become oxidised by scavenging reactive oxygen species. Thereby, TIGAR not only 
suppresses the metabolic flow through glycolysis, but also increases the synthesis of 
antioxidant Glutathione, keeping intracellular reactive oxygen species low101.  
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Figure 1-7: p53 inhibits glycolysis and promotes oxidat ive phosphorylat ion. 
PP-pathway: Pentose phosphate pathway, TCA cycle: Tricarboxylic acid cycle 
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This is a critical measure in order to prevent genomic errors to be incorporated into 
the DNA in the first place. In line with preventing oxidative stress, p53 also induces 

the Glutaminase GLS2 that catalyses the conversion from glutamine to glutamate, 
which is required for the synthesis of Glutathione together with cysteine and 
glycine102. Furthermore, p53 induces expression of the antioxidant enzyme 
Glutathione peroxidase (GPX1), which scavenges hydrogen peroxide and organic 

hyperoxides103 and of the mitochondrial matrix protein Aldehyde dehydrogenase 
(ALDH4), which also decreases the levels reactive oxygen species104. Moreover, a 

p53-induced family of cysteine sulfinyl reductases called Sestrins regenerate 
Peroxiredoxins, which are necessary for scavenging hydrogen peroxide105. 

Altogether, p53 can counteract transformation via a plethora of transcriptional target 

genes and mechanisms. On top of the repair or elimination of already damaged cells 

and its anti-angiogenic and anti-metastatic activity, p53 pre-empts genetic changes 
by keeping levels of intracellular reactive oxygen species low under physiological 
levels of stress. 

Strikingly, it was recently reported, that p53 blocks the first rate-limiting first step of 
the pentose-phosphate pathway by inhibiting Glucose-6-phosphate dehydrogenase  
(G6PDH)106. This role is in opposition to the pentose-phosphate pathway-driving role 
of TIGAR101. However, since many intermediates of this pathway are required for 
anabolic processes, for example nucleotide synthesis18, inhibiting this route 
counteracts biosynthesis and could suppress uncontrolled growth in line with p53’s 

many other anti-oncogenic roles. 

p53’s bivalent role in metabolism, driving the pentose phosphate pathway through 
TIGAR while inhibiting it through suppression of G6PDH, is only one of the many 

apparent paradoxes in p53’s many functions. p53 can induce and inhibit autophagy, 

it can keep ROS levels low and increase ROS levels, overall, p53’s responses can 
range from promoting death to promoting survival. But these contradictory activities 
are never activated at the same time and the output depends on cellular 

circumstances and stress levels. Hence, p53’s activity must be tightly controlled in 
order to activate an appropriate response in each case and there must be a network 
of signals that determines which panel of targets p53 will modulate. For example, the 
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activation of antioxidant genes under conditions of normal physiological stress levels, 
but the inactivation of antioxidant genes during the apoptotic response clearly require 

input about the intrinsic cellular situation being translated into p53’s activity. 

1.3  Regulation of p53 activity 

p53 activity is mainly regulated at protein level by the Ubiquitin E3 ligase MDM2107,108. 

MDM2 itself is a p53 target gene, forming a negative feedback loop109,110. p53’s 
transcriptional activity is furthermore fine-tuned by an array of posttranscriptional and 
posttranslational modifications as well as a vast number of interacting proteins.  

1.3.1  Structure of p53. 

The transcription factor p53 harbours two distinct N-terminal transactivation domains 
(TAD) TAD I: amino acids 1-40 and TAD II: amino acids 43-63111, which interact with 
the basal transcription machinery, and an adjacent proline-rich domain (amino acids 
63-91), required for the transactivation of some, but not all target genes112.  

Alignment of the p53 amino acid sequence across species reveals 5 areas of very 
high conservation, termed the conserved boxes. The conserved box I is located 
between amino acids 15 and 29 and required for interaction with the Ubiquitin ligase 
MDM2113. Interaction with MDM2 shields the transactivation domain and inhibits 
p53's transcriptional activity114,115.  

 
Figure 1-8: Structure of the p53 protein. 
The domains of the p53 protein. Transactivation domains, Proline-rich domain, DNA binding domain, 
nuclear localisation signal (NLS), tetramerisation domain (TET), C-terminal regulatory domain. I-V 
indicates conserved boxes. 
 
 
All other conserved boxes are located in the central DNA binding domain from amino 
acids 102 to 300. Structurally, the DNA binding domain forms an anti-parallel 
sandwich of β-sheets (Figure 1-9 A), while the DNA-binding surface is built up of a 
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loop-sheet-helix motif and two large loops interacting with the minor and major 
grooves of the DNA (Figure 1-9 B). The residues K120, S241, R248, R273, A276, 

C277, R280 and R283 are involved in contacting the DNA116. The DNA binding 
domain confers sequence-specific binding activity to promoters of p53 target genes 
harbouring a p53 response element containing 2 copies of the p53 consensus 
binding site 5’-PuPuPuC(A/T)(A/T)GPyPyPy - 3’ separated by a spacer of up to 13 

base pairs117.  

A 

 

B

 
Figure 1-9: Structure of the DNA binding domain. 
(A) The structure of the DNA binding domain consists of an anti-parallel sandwich of β-sheets (blue) 
with loops L2 (green), L3 (yellow) and helix H2 (red). 
(B) The amino acids 120, 241, 248, 273, 276, 277, 280 and 283 (red) contact the DNA (blue). 
Protein database (PDB) accession number 1TUP116. 
 
 
p53 contains nuclear localisation and nuclear export signals, which allow the protein 
to shuttle in and out of the nucleus. Three nuclear localisation signals for p53 have 
been described, the major bipartite NLS with two basic motifs between amino acid 

305 and 322 and two less active sequences between amino acids 366 to 372 and 

377 to 381118. p53 forms a tetrameric complex out of two homodimers via its 
oligomerisation domain in order to be an active transcription factor119. A nuclear 
export signal (amino acids 340 to 351) lies within the oligomerisation domain (amino 

acids 325 to 356) and it is thought that in its active state as tetramer, p53’s nuclear 
export signal is masked120.  

p53’s C-terminus adopts a flexible conformation and contains a regulatory domain 
(amino acids 363-393), which is subject to extensive posttranslational modification. 
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1.3.2  p53 isoforms 

The p53 gene is located at chromosome 17p13.1 and spans 19200 base pairs 
across 11 exons. While the vast majority of research has focused on the full-length 

protein, 11 other p53 isoforms have been described more recently. 

 
Figure 1-10: p53 Isoforms 
Isoforms β and γ lack exons 10 and 11 after alternative splicing of intron 9. ∆40 p53 is initiated at an 
alternative ATG in exon 4. ∆133p53 and ∆160p53 are translated from an internal promoter in intron 4. 
Translation of ∆160p53 is initiated at a second ATG in exon 5. 
TAD: transactivation domain, PR: proline rich domain, NLS: nuclear localisation signal, TET: 
Tetramerisation domain.  
 
 
A second promoter is located in intron 4 of p53, and initiation of transcription here 

gives rise to an N-terminally deleted ∆133p53, which lacks the first 133 amino acids, 

including both transactivation domains and part of the DNA binding domain. As 
expected, this isoform cannot induce p53 target genes, by contrast it was described 
to inhibit wild-type p53 in a dominant negative fashion, in particular inhibiting p53-

induced apoptosis121. Full-length p53 was reported to induce expression of the 
∆133p53 isoform in response to stress by binding to its own internal promoter122,123. 
Recently, the ∆133p53 isoform was shown to promote angiogenesis and tumour 
progression and can therefore be classed as an oncogene rather than a tumour 
suppressor124. 
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The ∆133p53 mRNA transcript also gives rise to another isoform. If translation is 
initiated at an alternative ATG at codon 160, an even shorter ∆160p53 protein, 

lacking the first 160 amino acids is produced125. Although its expression was 
observed in multiple cancer-derived cell lines, the function of this isoform has not yet 
been studied. 

If p53 translation is initiated at an alternative ATG at codon 40 from the full-length 

transcript, the resulting protein lacks the first transactivation domain, but retains 
TADII126. ∆40p53 is also produced if intron 2 is alternatively spliced, which gives rise 

to a longer mRNA, containing multiple stop codons in the intron 2 sequence. 
Therefore a shorter protein starting at the later ATG 40 is produced127. The second 
transactivation domain seems to be sufficient to induce some p53 target genes128, 

however it lacks the MDM2-binding N-terminus and is consequently not degraded by 

MDM2127. 

Intron 9 can be spliced by two alternative methods, giving rise to p53β and p53γ, 
which have prematurely terminated C-termini (with ten or fifteen additional amino 
acids, respectively) lacking the regulatory and the tetramerisation domains, but 
retaining the nuclear localisation signal121. While p53α has higher affinity towards the 
p21 and MDM2 promoters, p53β preferentially bind the p21 and Bax promoters121.  

Finally, these 3 C-terminal alternative splice events can occur at the same time as the 
4 N-terminal deletions, giving rise to a total number of 12 isoforms, or possibly more, 
since three more C-terminal splice variants were reported recently129. 

Furthermore, the p53 gene contains a common single nucleotide polymorphism 
(SNP) in the proline-rich domain at codon 72, which can be a CCC, encoding a 
proline or a CGC, encoding an arginine residue. The ancestral form of p53 was found 

to be the proline variant130. While both variants are very common, the distribution 

changes according to ethnicity and the 72P variant was found to be more prevalent 
nearer the equator, suggesting that it might confer better UV light protection131. The 
SNP influences p53’s transcriptional output: the prolyl-isomerase PIN1 binds to the 

proline rich domain and preferentially binds the R72 variant132. Furthermore, the P72 
variant binds the anti-apoptotic iASPP better than R72133, leading to R72 p53 being a 
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more potent inducer of apoptosis. Interestingly, p53 cancer mutants with the 72R 
variant bind p73 better than 72P, leading to a more sustained suppression of p73’s 

apoptotic activity134. 

1.3.3  MDM2 keeps p53 levels in check 

It is crucial to quickly accumulate and activate p53 in the event of stress, it is 

however equally critical to control p53’s ability to inhibit proliferation and survival 
when cells are perfectly healthy. Therefore, under unstressed conditions, regulation 
of p53 protein turnover is controlled by a number of factors, one of the most 
important of which is the Ubiquitin-E3-ligase MDM2, which constantly ubiquitinates 
newly synthesised p53 protein, leading to its degradation107,135,136. The significance of 
this control is demonstrated by the MDM2-knockout mouse, which is embryonic 

lethal due to overactive p53, leading to widespread apoptosis. Importantly, the 
lethality can be rescued by simultaneous knockout of p53137,138. 

1.3.3.1  MDM2 ubiquit inates p53. 

Multiple lysine residues in p53’s C-terminus139, DNA-binding140, nuclear localisation 
and oligomerisation domains141 are targeted for modification with the small (76 amino 
acids) protein Ubiquitin via a 3-enzyme cascade of a Ubiquitin-activating enzyme E1, 
a Ubiquitin-activating enzyme E2 and an E3 Ubiquitin-ligase. Despite the 
identification of multiple E3 ligases for p53, MDM2 is still the most prominent one. 

The Ubiquitin-activating E1 enzyme catalyses the formation of an Ubiquitin-adenylate 

intermediate with Ubiquitin and ATP and consecutively transfers the activated 

Ubiquitin to a thiol-group of its own cysteine residue to form an E1-Ubiquitin 
thioester. While only one mammalian Ubiquitin E1 enzyme, UBE1, was known for a 
long time142, more recently a second E1 UBE1L2 was identified143. The E2 enzyme 

accepts the activated Ubiquitin from the E1, also forming a thioester with one of its 
cysteine residues, resulting in a Ubiquitin-E2 complex. There are more than ten 
different Ubiquitin conjugating enzymes in mammals144, however the predominantly 
used E2 in conjunction with MDM2 is Ubch5 B/C145. Finally, MDM2 serves as E3-
enzyme, facilitating the formation of an isopeptide bond between the ε-group of the 

target lysine and the C-terminal glycine residue of Ubiquitin. 
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RING finger Ubiquitin ligases generally function as a dimer and the most efficient 
Ubiquitin-ligase for p53 is a heterodimer of MDM2 its closely related protein 

MDMX146-148. Although MDMX itself does not contain any catalytic activity, an MDMX 
protein containing a mutation, which prevents it from interacting with MDM2, is 
embryonic lethal due to overactive p53149. 

 
Figure 1-11: MDM2 negatively regulates p53. 
The MDM2/MDMX heterodimer is a Ubiquitin-ligase for p53, inducing p53’s proteasomal degradation. 
Furthermore, MDM2 shields the p53 transactivation domain, while p53 induces MDM2, forming a 
negative feedback loop. 
 
 
All C-terminal lysine residues in p53 are targeted for ubiquitination and mutation of all 
six lysine residues to arginine (6KR) was reported to block degradation by MDM2139, 
although the 6KR p53 protein could still be ubiquitinated by MDM2 in vitro. Knock-in 

mice with 6KR or 7KR p53 (the mouse sequence has an additional lysine in the C-
terminus) did not display a more stable p53 protein150,151, suggesting that 
ubiquitination of p53 is not limited to these C-terminal lysine residues. Indeed, a 

number of lysine residues in the DNA binding domain were also found to be 

ubiquitinated by MDM2140 and Ubiquitin conjugation was mapped by mass 
spectrometry to lysines 101, 292, 305 and 319-321 in the DNA binding domain and 
lysine 357 in the tetramerisation domain141. 

Poly-Ubiquitin chains are built up by connecting Ubiquitin-molecules with a lysine 

residue of an already target-bound Ubiquitin by an isopeptide bond152. While mono-
ubiquitination of p53 was linked to nuclear export153, poly-ubiquitination by 
conjugation of four or more Ubiquitin-molecules linked via lysine 48 in Ubiquitin serve 

as a signal for degradation by the proteasome154. 
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1.3.3.2  Structure of MDM2. 

The E3 Ubiquitin ligase MDM2 (also called HDM2) belongs to the family of RING 
finger ligases, with the RING domain being crucial for its catalytic activity, directly 

contacting the Ubiquitin-conjugating E2 enzyme155. MDM2’s atypical C2H2C4 RING 
finger domain is located in the C-terminus between the amino acids 440 and 497, 

with cysteines 438, 441, 461, 464, 475 and 477 and histidines 452 and 457 binding 

the zinc ion156. In line with this, mutation of the zinc-coordinating cysteine 464 
perturbs the RING structure and completely abrogates MDM2’s ability to ubiquitinate 
p53157. Consistent with the importance of an intact RING domain, the single amino 

acid substitution C462A MDM2 (equivalent to human C464A) knock-in mouse is 
embryonic lethal due to overactive p53158. The embryonic lethality can be rescued by 

simultaneous p53 knockout, just like the MDM2-knockout mouse137,138. 

 
Figure 1-12: Structure of MDM2. 
The MDM2 protein contains an N-terminal p53-Binding domain, a nuclear localisation signal (NLS) and 
nuclear export signal (NES), an acidic domain, a zinc finger (ZF) and a C-terminal RING finger. 
 
 
MDM2 also contains a C4 zinc-finger further towards the N-terminus between amino 

acids 296 and 335 with cysteine residues 305, 308, 319 and 322 coordinating the 
zinc-ion159. Some cancer-associated MDM2 mutants harbour single amino acid 

exchanges of these zinc-coordinating cysteine residues160,161. Interestingly, the zinc 
finger mutant C305F MDM2 was shown to be able to ubiquitinate, but not degrade 
p53162. 

MDM2’s N-terminus forms a deep hydrophobic binding pocket, which binds the α-

helix formed by the conserved box I (amino acids 15-29) in the N-terminus of p53163. 
An MDM2 protein deleted for amino acids 58-89 is unable to bind p53164. 

Importantly, MDM2 not only regulates p53 by promoting its degradation, but also 
shields the transactivation domain thereby inhibiting the transactivation of p53’s 
target genes114,115. 
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MDM2 shuttles between nucleus and cytoplasm and contains a nuclear localisation 
signal (NLS) between amino acids 181 and 185165 and a nuclear export signal (NES) 

between amino acids 197 and 205166. p53 also shuttles between nucleus and 
cytoplasm and MDM2 can promote the nuclear export of p53, which requires the 
export signal of p53, but not the NES of MDM2167. 

The central domain of MDM2 consists of an acidic domain between amino acids 212 

and 296. Although not directly involved in the catalytic ubiquitination activity, this 
domain was shown to be crucial for efficient degradation of p53168,169. More recently, 

it has become apparent that the acidic domain serves as a second contact point 
with the core domain of p53170-172. The acidic domain is furthermore a platform for 
binding of multiple MDM2-interacting proteins, many of them inhibiting MDM2’s 

Ubiquitin ligase activity, for example p14ARF and L11. MDM2’s acidic domain was 

also found to bind to the tumour suppressor Retinoblastoma protein (Rb), resulting in 
Rb inactivation173. 

A short stretch of nine amino acids in the extreme C-terminus after the RING domain 
was recently reported to be essential for MDM2 dimerisation174-176. MDM2 is only a 
functional poly-Ubiquitin ligase, when present as a homodimer with itself or a 
heterodimer with its related protein MDMX (also called HDMX or MDM4) through their 
RING domains146. Although MDMX contains a very similar p53-binding domain to 
MDM2 and a RING finger, it harbours no Ubiquitin ligase activity. Nevertheless, 
MDMX knockout mice were found to be embryonic lethal and lethality could be 

rescued by simultaneous p53 knockout177,178, just like the MDM2 knockout mouse. It 
then emerged, that MDMX negatively regulated p53 by promoting MDM2’s Ubiquitin 
ligase activity147,148,179. The MDM2-MDMX heterodimer was found to show higher 

Ubiquitin ligase activity towards p53 and to be more stable than the MDM2 

homodimer180. MDM2 is furthermore not only a Ubiquitin-ligase for p53, but also for 
itself181 and MDMX182,183. 

1.3.3.3  Stress signals release p53 from MDM2’s 
control.  

Activation of p53 in response to stress is accompanied by a rapid stabilisation of the 

p53 protein, reflecting a block to MDM2’s negative control. Various binding partners 



   

 42 

and posttranslational modifications of both p53 and MDM2 were shown to regulate 
their interaction and the ability of MDM2 to target p53 for degradation.  

 
Figure 1-13: DNA damage, oncogene act ivat ion and r ibosomal stress act ivate p53. 
Without stress, p53 is kept at low levels by its Ubiquitin ligase MDM2/MDMX. Ionising radiation and 
UV exposure cause DNA damage, which activate a number of kinases, phosphorylating both p53 and 
MDM2 and disrupting their inhibitory complex, leading to p53 stabilisation and activation. Oncogene 
activation and ribosomal stress inhibit MDM2’s Ubiquitin E3 ligase activity without affecting p53-
MDM2 binding. 
 
 
MDM2 itself is a transcriptional target of p53109,110, providing a positive feedback loop 
and MDM2 accumulation simultaneous with p53 stabilisation, resulting in quick 
restoration of low p53 levels once the p53-MDM2 interaction block is lifted. 

Three major pathways activate p53 by releasing it from MDM2’s negative control: 

DNA damage activates stress-induced kinases, which phosphorylate p53’s N-
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terminus184 at residues critical for interaction with MDM2, resulting in a weakened 
interaction185. Oncogene activation results in expression of p14ARF, which inhibits 

MDM2’s ubiquitination activity186 while not affecting p53-MDM2 binding187. Similarly, 
ribosomal stress releases ribosomal proteins such as L11 inhibiting MDM2’s E3 
ligase activity without impairing binding to p53188.  

A number of kinases are activated by DNA damage and target serine residues in 

p53’s N-terminus for phosphorylation. The Ataxia telangiectasia mutated kinase 
(ATM) is activated in response to chromatin alterations, which are a consequence of 

DNA strand breaks induced by ionising radiation189, and phosphorylates serine 15 
and 37 in p53’s N-terminus190. DNA strand breaks also stimulate the DNA-activated 
Protein Kinase (DNA-PK) targeting the same serine residues191, later found to impair 

p53 binding to MDM2185. Serine 15 and 37 are also phosphorylated by the Ataxia 

telangiectasia and Rad3 related kinase (ATR)192, which is induced by replication 
blockage and stalled replication forks induced by UV-irradiation.  

Both ATM and ATR can activate further kinases involved in p53-phosphorylation: 
ATM activates Chk2 by phosphorylating it at threonine 68193 and Chk2 then 
phosphorylates serine 20 of p53194,195. ATR activates the Chk1 kinase by 
phosphorylating it at serine 317 and serine 345196,197, also leading to serine 20 
phosphorylation of p53198, contributing to p53’s dissociation from MDM2. In addition, 
Chk1 phosphorylates threonine 18 of p53, if serine 15 has already been 
phosphorylated199. 

Interestingly, γ-irradiation not only stabilises the p53 protein, but was also found to 
increase ribosomal protein L26-mediated translation of p53 mRNA levels200.  

Along with p53, MDM2 is also subject to phosphorylation after DNA damage. 

However, MDM2 phosphorylation does not take place at the N-terminus, and does 

not affect its interaction with p53. Instead, ATR-mediated phosphorylation at serine 
407201 and ATM-mediated phosphorylation of serine 395202,203 prevent MDM2-
mediated nuclear export of p53. MDM2 phosphorylated at serine 395 was 

furthermore reported to bind to the p53 mRNA, promoting p53 protein synthesis in 
another mechanism to achieve accumulation of the p53 protein204. Two further serine 
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residues in MDM2’s C-terminus serine 429 and 386 are also targeted by ATM and 
phosphorylation of these residues was proposed to disrupt dimerisation of the 

MDM2 RING domains, thereby contributing to p53 stabilisation by inhibiting MDM2-
mediated poly-ubiquitination205. In response to ionising radiation, ATM furthermore 
activates the kinase c-Abl206,207, which in turn phosphorylates MDM2’s tyrosine 394, 
disrupting the p53-MDM2 complex208. 

But not only DNA damage poses a threat to healthy cells, activation of proto-
oncogenes, an important step on the way to cancer development, also triggers p53 

activation. The alternative reading frame of the INK4A locus gives rise to p14ARF 209, 
which was soon discovered to bind to the acidic domain of MDM2210 and serve as 
inhibitor of its Ubiquitin ligase activity186,211-213. Binding of p14ARF exposes a cryptic 

nucleolar localisation signal in MDM2, leading to its nucleolar sequestration214,215. 

p14ARF expression is stimulated by many hyper-proliferative signals, including E1A216, 
Myc217 and Ras218. Lacking this crucial p53-activating mechanism, p14ARF-knockout 
mice were found to be prone to spontaneous tumour development219.  

A similar mechanism activates p53 in response to ribosomal stress that can be 
induced by treatment with RNA polymerase II inhibitor Actinomycin D. By now, many 
small ribosomal proteins were reported to bind MDM2’s acidic domain and inhibit its 
ubiquitination of p53: Namely, the ribosomal proteins involved in inhibiting MDM2 are 
the ribosomal large subunit proteins L11188,220, L23 221,222, L5223,224 and the small 
subunit protein S7225,226. Activation of p53 by aberrant ribosome biogenesis was 

recently shown to be an important independent tumour suppressing mechanism: 
Tumours in a Myc-driven lymphoma mouse model formed more rapidly when MDM2 
was substituted with an MDM2 mutant (MDM2 C305F), which could not bind to L11 

or L5, but retained binding to p14ARF 227. 

In line with p53’s metabolic responsibilities, glucose starvation was found to activate 
p53 via the glucose-dependent Adenosine mono phosphate dependent kinase 
(AMPK)228. Under conditions of low glucose, the cell cycle should not proceed with 

cell division, but be halted until conditions have improved. Upon glucose starvation, 
AMPK induces phosphorylation of serine 15, once again contributing to the release 
of p53 from MDM2’s negative control and activating the G1/S checkpoint229. 
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Similarly, cells stop dividing when oxygen is scarce. p53 protein levels were reported 
to accumulate under hypoxic conditions, possibly by down-regulation of MDM2230. 

Serine 15 of p53 was also found to be phosphorylated in response to hypoxia231, 
which is probably mediated by ATR232. 

Clearly, p53 is activated by many different routes, often resulting in accumulation of 
p53 protein. However, importantly, the levels of p53 in unstressed cells are sufficient 

to induce the genes required for p53’s functions in unstressed circumstances. 
Broadly speaking, protein levels can affect the selection of target genes activated by 

p53. In a simplified model low levels of p53 preferentially occupy high-affinity 
promoters, which are mostly genes involved in cell-cycle arrest, while high levels of 
p53 bind to lower affinity promoters, including the genes of the apoptotic 

response233. But while not directly affecting p53 protein levels, many other interacting 

proteins and posttranslational modifications modulate p53’s transcriptional activity 
and determine the ultimate response activated by the transcription factor. 

1.3.4  p53 co- factors 

As a transcription factor, p53 interacts with many transcriptional cofactors to induce 
or repress its target genes. Particular p53-binding proteins can influence which of the 
many p53-regulated promoters is activated and thereby stimulate a selective p53 
response.  

Transcription factors influence the regulation of their target genes via recruiting 

transcriptional cofactors, which allow or prevent transcription of the target genes by 
facilitating or hindering the transcription machinery to gain access to the chromatin. 
One mechanism of chromatin remodelling is posttranslational modification of the 

Histones, around which the DNA is organised. Acetylation of lysine residues in 

Histones leads to the removal of the positive charge of the unmodified amino-group. 
Thus acetylated Histones are less positively charged. This reduces their affinity to the 
negatively charged DNA, which is organised around them, thereby allowing access 

for the transcription machinery234. p300 was the first Histone acetyltransferase 
discovered to be recruited to the p21 promoter and was found to acetylate p53-
bound nucleosomes235. p53 also transactivates some of its genes in conjunction with 

a multi-subunit transcriptional activator complex called STAGA, containing the 
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Histone acetyltransferase GCN5, crucial for promoter activation. The STAGA 
complex interacts with p53 at its transactivation domains and is required for the 

activation of p21, Gadd45 and PUMA236. 

On the other hand, transcriptional repression by p53 can be mediated by binding of 
the co-repressor mSin3A, which recruits the Histone deacetylase HDAC1237. By 
removing the acetylation of Histones, a closed chromatin structure is achieved, which 

cannot be accessed by the transcription machinery. The pro-proliferation gene c-
Myc and the anti-apoptotic gene Survivin are examples of p53-repressed genes by 

this mechanism238,239. p53 also represses target genes without directly binding to 
their promoter, but by forming a complex with other transcription factors. Many of 
the cell cycle genes repressed by p53 contain a CCAAT box, which is recognised by 

the transcription factor NF-Y. NF-Y interacts with p53 in the C-terminus and the 

complex of NF-Y and p53 is required for the recruitment of Histone deacetylases to 
the promoters of the G2/M genes Cyclin B1, Cyclin B2, Cdk1 and Topoisomerase II240.  

Many other proteins can influence p53’s transcriptional output: The ASPP family 
(Apoptosis stimulating proteins of p53) bind to p53’s proline-rich domain and the 
core DNA binding domain. The ASPP1 and ASPP2 proteins were found to promote 
transactivation of Bax and PIG3, while not affecting expression of p21 and MDM2, 
promoting p53’s apoptotic response241. Strikingly, another ASPP family member 
called iASPP binds to the same region in p53, but with the opposite outcome: In 
contrast to ASPP1 and ASPP2, iASPP inhibits rather than stimulates apoptosis242. 

 
Figure 1-14: p53 act ivates and represses target genes. 
p53 recruits Histone acetyltransferases (GCN5, p300) in order to activate target genes such as p21 
and recruits Histone deacetylases (HDAC) to inhibit target genes such as Cdk1. 
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Moreover, the Haemapoietic zinc finger protein HZF interacts with p53’s DNA 
binding domain and promotes the induction of cell cycle arrest243. p53 bound to HZF 

was found to preferentially activate expression of p21 and 14-3-3σ, while not 
inducing the promoters of Bax and Noxa.  

An intriguing set of p53-binding transcription factors are the POU family members 
Brn3a and Brn3b. Interaction of Brn3a with p53 leads to activation of p21, but not 

Bax and Noxa244, while interaction of Brn3b results in the opposite effect: activating 
Bax, but not p21245. 

Recruited by N-terminal serine and threonine phosphorylation of p53, the Prolyl-
isomerase 1 (Pin1) induces conformational changes of the proline rich domain in 
p53246, resulting in a change in its interaction partners: Pin1 generally stimulates 

transactivation by inducing p300-mediated acetylation of p53, which in turn is 
required for the transcription factor’s sequence-specific DNA binding (see section 
1.3.5.1). If p53 is phosphorylated at serine 46 in the transactivation domain, Pin1 
furthermore leads to the dissociation of the inhibitory iASPP protein, promoting the 
induction of apoptosis132. This is by no means a complete of p53-interacting proteins 
and their effects, furthermore many indirect effects of p53-binding proteins are 
complicating the p53-signalling networks247. 

1.3.5  Posttranslational modifications modulate the p53 
transcriptional response. 

While p53-binding partners can modulate the outcome of the transcriptional 
response induced by p53, its activities are also modulated by a vast number of 
posttranslational modifications such as phosphorylation, acetylation, methylation, 
ubiquitination, neddylation and SUMOylation. 

1.3.5.1  Phosphorylat ion 

One of the first identified modifications on p53 was phosphorylation248, which takes 
place on serine and threonine residues in all regions of the protein. Phosphate 
groups are conjugated to the hydroxyl-groups of polar amino acid residues by 
kinases in a condensation reaction. As phosphate groups are two to three times 
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negatively charged (depending on the pH), phosphorylation is often associated with 
conformational changes of its target proteins. Phosphatases remove phosphate 

groups in a hydrolysation reaction, allowing reversible and highly dynamic 
phosphorylation and dephosphorylation. Phosphorylation is often used to amplify 
minor effects via multistep kinase activation pathways and is thus involved in many 
cellular signalling cascades. 

 
Figure 1-15: p53 is phosphorylated in the N-terminus, DNA binding domain and C-
terminus. 
Many different kinases target p53 for phosphorylation, including ATM, ATR, Chk1, Chk2, DYRK2, 
HIPK2, AMPK, CSN, Cdk1, Cdk2 and Casein Kinase 2 (CK2) affecting binding to MDM2, protein 
localisation, modulation of the transcriptional response and influencing modification of neighbouring 
residues. NLS: nuclear localisation domain. 
 
 
In response to DNA damage and UV, phosphorylation takes place on p53’s N-
terminus on serine 15, threonine 18, serine 20 and serine 37, induced by the ATM, 

ATR, Chk1, Chk2 and DNA-PK kinases. These modifications result in decreased 
MDM2 binding and p53 stabilisation (see section 1.3.3.3). Other residues in p53 are 
also phosphorylated with consequences other than disrupting the p53-MDM2 
interaction. Serine 46 in the second transactivation domain is phosphorylated by a 
number of different kinases and the serine 46-phosphorylated protein was reported 

to induce an apoptotic response, via the target gene p53AIP1249. The kinases 
involved in this modification are the Homeodomain protein kinase 2 (HIPK2)250, which 
is controlled in a feedback loop via MDM2-mediated degradation251, the dual-specific 

tyrosine phosphorylation-regulated kinase 2 (DYRK2), which translocates to the 
nucleus upon genotoxic stress252 and AMP kinase (AMPK), phosphorylating p53 
upon glucose deprivation253. 
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Serine residue 315, which is phosphorylated by the Cyclin-dependent kinases 
Cdk1248 and Cdk2254, is located in the nuclear localisation signal of p53255. Indeed, 

serine 315 phosphorylation was reported to affect nuclear localisation of p53120. 

Serine 392 in the C-terminal regulatory domain of p53 is phosphorylated by Casein 
Kinase 2 (CK2) after treatment UV-light, but not γ-irradiation256. As part of the DNA-
damage response this modification enhances p53 transcriptional activity, which is 

consistent with the observation that serine 392 phosphorylation stabilises the p53 
tetramer in vitro257. 

The DNA-damage induced kinases Chk1 and Chk2 do not only phosphorylate p53’s 
N-terminus, but also a number of serine and threonine residues the C-terminus. 
These modifications are thought to activate p53’s transcriptional activity by inducing 

acetylation of nearby lysine residues258. 

Some serine and threonine residues in the DNA-binding domain (serine 149, 
threonine 150, threonine 155) are targeted for phosphorylation by the COP9 
signalosome (CSN). These phosphorylation events occur under unstressed 
conditions and promote p53 degradation259. 

1.3.5.2  Acetylat ion 

Acetyl-groups can be conjugated to either N-terminal amino groups or ε-amino 

groups on lysine residues throughout the protein.  

A major role of acetylation is the regulation of Histone modification. The enzymes 
catalysing acetyl conjugation and deconjugation reactions are therefore called 

Histone acetyltransferases (HATs) and Histone deacetylases (HDACs), although they 
also target non-Histone proteins. The amino group of lysine residues carries a 
positive charge, which is removed by acetylation. This can alter protein 

conformations and influence DNA binding. 
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Figure 1-16: p53 is acetylated in the DNA binding domain and the C-terminus. 
Different acetyltransferases contribute to p53’s acetylation at multiple lysine residues in the DNA 
binding, nuclear localisation and C-terminal domains. 
 
 
Acetylation of p53 predominantly takes place at lysine residues in the C-terminus and 

is generally associated with enhancing sequence-specific DNA-binding, which is 
probably due to a conformational change following the acetylation260. Moreover, 
acetylation has been reported to enhance p53 protein stability by blocking MDM2-
mediated ubiquitination261.  

p53’s main Histone acetyltransferase CBP/p300 was first identified as transcriptional 
co-activator262 binding to p53’s N-terminus263 and phosphorylation of p53’s serine 15 
promoted this interaction264. CBP/p300 was later found to acetylate lysine residues 
370, 372, 373, 381 and 382 in p53’s C-terminus260. Acetylation of lysines 373 and 
382 is induced upon DNA damage265. Acetylation of the C-terminal lysine residues 
induces overall sequence specific DNA binding of p53 and thereby transactivation of 
all its target genes. Although initially described as non-acetylated260, mass-
spectrometry analysis later found the sixth lysine residue in the C-terminus, lysine 

386, to also be acetylated in COS cells266. 

The p300 and CBP associated factor (PCAF) acetylates p53 at lysine 320 in the 

nuclear localisation signal in response to DNA damage, when serine 33 and 37 are 
phosphorylated267. Lysine 320 acetylation also enhances sequence specific DNA 

binding of p53 and promotes activation of p21268.  

Interestingly, acetylation and ubiquitination target the same C-terminal lysine residues 
in p53 and it was reported that acetylation inhibits MDM2-mediated ubiquitination of 
p53261. On the other hand, the Ubiquitin-E3 ligase MDM2 reduces acetylation of p53 

NLSDNA binding Regulation

K

120

K

164

K

320

K

370

K

372

K

373

K

381

K

382

K

386

C
B

P
/p

3
0

0

C
B

P
/p

3
0

0

C
B

P
/p

3
0

0

C
B

P
/p

3
0

0

C
B

P
/p

3
0

0

?

T
IP

6
0
, 

h
M

O
F

C
B

P
/p

3
0

0

P
C

A
F

AcAc Ac Ac Ac Ac Ac AcAc



   

 51 

by displacing p300 bound to p53265,269, degrading PCAF270 and recruiting the 
deacetylating enzyme HDAC1271. 

p53’s DNA binding domain is also subject to acetylation: Lysine 164 is targeted by 
CBP/p300, contributing to p21 activation272 and lysine 120 is acetylated by the 
MYST family of Histone acetyltransferases, specifically Tip60273 and hMOF274, 
channelling p53’s response towards the panel of apoptotic target genes such as 

PUMA and Bax. 

While knock-in-studies with p53 proteins lacking the C-terminal lysine residues, did 

not reveal a major impact on p53 transactivation150,151, a human protein lacking all 6 
C-terminal lysines plus lysine 120 and 164 in the DNA binding domain failed to 
induce p21, PUMA, PIG3 and Bax, while still being able to transactivate MDM2272. 

Indeed, a knock-in mouse mutated at just the K120 and K164 acetylation sites in the 
DNA-binding domain (K117 and K161/162 in mouse), cannot induce cell cycle 
arrest, apoptosis or senescence, but retains ability to induce p53’s metabolic target 
genes33. However, it is difficult to assess whether this ablation of p53’s ability to 
transactivate most of its target genes is really due to the posttranslational 
modifications of the lysine residues mutated in this protein, since lysine 120 is known 
to interact with the major groove of the DNA and mutation of this single lysine residue 
already affects DNA binding275. 

1.3.5.3  Methylat ion 

Methylation refers to the displacement of a hydrogen atom with a methyl (CH3-) 

group. In proteins, the guanidinium group of arginine residues can be mono- or di-
methylated by protein arginine methyltransferases and the ε-amino group of lysine 
residues can be mono-, di- or tri-methylated by lysine methyl transferases.  
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Figure 1-17: p53 is methylated at the C-terminus. 
p53 is mono-and di-methylated in the tetramerisation domain (TET) and the C-terminus. 
 
 
Three lysine residues in p53’s C-terminus are not only acetylated, but also 
methylated: Lysine 370 is targeted for mono-methylation by the SET and MYND 

domain containing 2 (Smyd2), resulting in repression of p53-mediated 
transactivation276. Methylation of lysine 370 is inhibited by acetylation of the 
neighbouring lysine 372.   

Lysine 372 is methylated by the SET domain methyltransferase Set9, leading to 
increased transactivation of p21277. This methylation is induced by DNA damage and 
occurs together with acetylation of lysine 382. 

Lysine 382 itself is mono-methylated by SET domain methyltransferase Set8, leading 
to repression of p53’s strongly induced target genes (p21 and PUMA), while the 
transactivation of weaker target genes (Bax and Noxa) are not affected278. 

Three arginine residues in p53’s tetramerisation domain are methylated by the 

Protein arginine methyltransferase 5 (PRMT5) in response to DNA damage. This 
modification contributes to transactivation of a number of target genes, since p53 

bound less to the p21, Gadd45 and PUMA promoters after ablation of PRMT5279. 

1.3.5.4  Ubiquit in- l ike modif icat ions 

Ubiquitin-like modifications are posttranslational modifications of proteins by the 

conjugation of small proteins of the Ubiquitin family to form isopeptide bonds with ε-
amino groups of lysine residues in the target protein. 
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Ubiquitin was the first identified and founding member of the family of Ubiquitin-like 
proteins. A chain of four or more Ubiquitin moieties is recognised and degraded by a 

large protein complex called the 26S proteasome154. The proteasome is a ubiquitous 
670 kD complex that serves to degrade proteins in the cytoplasm, nucleus and 
endoplasmatic reticulum. The large structure can be subdivided into three parts: Two 
regulatory 19S particles serve as gatekeepers at either end, and the 20S 

proteasome, a central core domain of four stacked rings, forms a barrel-like 
structure280. The regulatory 19S particles recognise and bind Ubiquitin chains. The 

Ubiquitin molecules are removed from the target protein by 19S-associated 
deubiquitinating enzymes and the substrate is unfolded with the help of ATPases. 
The linearised protein is then passed into the core, where it is cleaved by 20S-
associated proteases281. 

Ubiquitin can form a number of different chains. The 76 amino acid residue Ubiquitin 
protein contains seven lysine residues: K6, K11, K27, K29, K33, K48 and K63 and 
every single one of these lysines can be used for conjugation of a further Ubiquitin 
molecule282. Indeed, analysis of auto-ubiquitinated MDM2 in combination with the E2 
conjugation enzyme Ubch5 identified all possible Ubiquitin chain-linkages and even 
forked chains as result of the conjugation of 2 Ubiquitin molecules to two different 
lysines in one Ubiquitin282. However, certain chain linkages prevailed and K11, K48 
and K63 linked chains were predominantly found282. The specific chain-linkage is 
influenced by the E3 ligases: In a different study, MDM2 was found to predominantly 

produce K48 linked chains while MDM2 in complex with MDMX conjugated K6, K11 
and K48 linked chains283. 

The K48-linked chain is classically associated with proteasomal degradation. 

However, K63-linked chains are recognised by the 26S proteasome equally well as 

K48-linked chains, but deubiquitinating enzymes dissemble K63 chains six times 
faster than K48 linkages, possible explaining why proteins with K63 chains are less 
efficiently degraded284. While pure K11-linked chains can serve as degradation signal 

for mitochondrial proteins285, K11 and K63 mixed chains can serve as a signal for 
internalisation of cell membrane proteins286. Also linear Ubiquitin chains, where the N-
terminal amino group is used for conjugation instead of the ε-amino group of a lysine 
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residue, have been reported287. The NF-κB essential modulator (NEMO) was found to 
possess a binding motif that specifically recognises such linear Ubiquitin chains288. 

MDM2 ubiquitinates p53 on lysine residues in the DNA-binding domain, nuclear 
localisation domain, tetramerisation domain141 and C-terminus139. In addition to 
promoting p53 ubiquitination (described in 1.3.2.1), MDM2 was shown to bind to the 
19S proteasome, delivering p53 for degradation289.  

 
Figure 1-18: The central and C-terminal regions of p53 are ubiquit inated, neddylated 
and SUMOylated. 
Many different E3-ligases target p53 for ubiquitination, only some of which are indicated here. Distinct 
lysine residues in the C-terminus and nuclear localisation domain are neddylated by MDM2 and 
FBXO11 respectively. Only lysine K386 has been reported to be SUMOylated. A number of different 
proteins have been shown to promote this modification of p53 (see chapter 1.4.3). 
 
 
Additionally, roles for other Ubiquitin E3 ligases for p53 are emerging. The oldest 
known Ubiquitin ligase for p53 is the human papillomavirus protein E6-AP. While all 

types of HPVs encode an E6 protein that can bind to p53, only the E6 proteins of 
HPV 16 and 18 can also target p53 for degradation. Strikingly, these HPV types 
induce the formation of malignant lesions, while the other HPV types only trigger the 

formation of benign lesions290,291. The E6 protein itself does not harbour any catalytic 
activity, but associates with the host protein E6-AP (E6-associated protein), which is 
the founding member of the HECT-domain (homologous to E6-AP C-terminus) 
Ubiquitin ligases292. A p53-protein without the C-terminal lysine residues is resistant 

to E6-AP-mediated degradation, suggesting that the C-terminal lysine residues are 
the target of E6-AP mediated ubiquitination139. The adenoviral E1B 55K protein 
together with E4orf6 also promotes the degradation of p53293,294. By contrast, the 
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simian virus 40 (SV40) large T antigen does bind p53, but rather stabilises the protein 
and inhibits its transactivation295-297. Indeed, p53 was first discovered in a screen for 

SV40 binding proteins298,299. 

Non-viral proteins other than MDM2 target p53 for ubiquitination as well. The RING 
domain E3s Pirh2300 and COP1301 target p53’s C-terminal lysine residues for poly-
ubiquitination and subsequent proteasomal degradation, while themselves being 

upregulated by p53, forming a negative feedback loop with p53, just like in the case 
of MDM2. Pirh2 furthermore targets some lysine residues in the DNA binding domain 

for ubiquitination, most of them overlapping with MDM2, apart from Lys 164, which 
is exclusively modified by Pirh2141. Another RING finger ligase called Topors was also 
reported to induce ubiquitination and degradation of p53302. The HECT Ubiquitin 

ligase ARF-BP1 shows Ubiquitin E3-ligase activity towards p53303. Moreover, the 

Caspase associated RING proteins (CARPs) target unmodified p53, as well as p53 
phosphorylated at serine 15 and serine 20, which cannot be ubiquitinated by MDM2, 
for degradation304. UHRF2 is the most recent addition to the p53-E3-ligases. It 
contains Ubiquitin-like PHD and RING domains and has been shown to poly-
ubiquitinate p53, possibly contributing to its degradation305. 

Strikingly, a Ubiquitin-independent degradation mechanism for p53 has also been 
described, as unmodified p53 is constantly degraded by the 20S proteasome. 
However, upon treatment with ionising radiation, p53 interacts with the 20S 
proteasome-associated NQO1306, thereby preventing p53 degradation and 

contributing to the stabilisation of p53 upon stress307. 

Four other Ubiquitin ligases modulate p53, but do not contribute to p53 degradation: 
Cullin 7 in complex with the small RING finger protein ROC1 mono- and di-

ubiquitinates p53, thereby repressing the transactivation of its target genes308. The 

HECT domain E3 ligase WW-domain containing protein WWP1 does not degrade, 
but rather stabilises p53 by sequestering it in the cytoplasm309. The atypical Ubiquitin 
ligase E4F1 does not target the C-terminal lysine residues, but ubiquitinates lysine 

320, not affecting protein stability, but inducing cell cycle arrest by promoting 
activation of the p53 target genes p21 and Gadd45310. Finally, the cytoplasmic E3-
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ligase Hades interacts with p53 at the mitochondria, poly-ubiquitinating lysine 24 and 
inhibiting p53 interaction with anti-apoptotic Bcl-2311. 

Protein ubiquitination is a reversible reaction and deubiquitinating enzymes (DUBs) 
play a role in controlling p53 stability by counter-acting the work of Ubiquitin ligases. 
The deubiquitinating enzyme HAUSP was first reported as p53-stabilising enzyme, 
since it could remove Ubiquitin chains from p53312. However, it was subsequently 

found that HAUSP also deubiquitinated and stabilised MDM2, and that disruption of 
HAUSP ultimately lead to stabilised p53313,314. By contrast, the deubiquitinating 

enzyme USP42 targets p53 but not MDM2, contributing to p53-stabilisation during 
the early phase of a stress-response315. 

 

 
Figure 1-19: The Ubiquit in- l ike modif iers share a β-barrel structure. 
Nedd8 is structurally homologous to Ubiquitin. Protein database accession numbers: 
Ubiquitin 1UBQ316, Nedd8 1NDD317. 
 

 

 
Two Ubiquitin-like modifications are known to be conjugated to p53’s C-terminal 
lysines as well: Nedd8 and the small Ubiquitin-related modifier SUMO (also called 

Sentrin). While SUMO only displays 18% sequence homology to Ubiquitin, Nedd8,  
with 58% sequence homology, is much more closely related to Ubiquitin. Although 

also conjugated via an E1, E2 and E3 cascade, conjugation of Nedd8 requires a 
different set of enzymes than ubiquitination with APPBP1-Uba3 serving as E1 
enzyme and Ubc12 as E2 enzyme. The Ubiquitin-ligase MDM2 also shows Nedd8-
E3 activity towards p53 and promotes neddylation of lysine residues 370, 372 and 
373, leading to inhibition of p53-mediated transcriptional activation318. Another 

Ubiquitin Nedd8
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protein, the F-Box protein family member FBXO11, was later shown to induce 
neddylation of the C-terminal lysines and two other residues (lysine 320 and 321), 

also inhibiting the transactivation of p53’s target genes319. The Nedd8-protease 
NEDP1 was furthermore shown to specifically remove Nedd8, but not Ubiquitin from 
p53320.  

1.4  Small Ubiquitin-related modifiers 

Although not apparent at amino acid level (18% homology), SUMO is indeed very 
similar to Ubiquitin in its three-dimensional conformation323. Major differences are the 
presence of an N-terminal tail in SUMO and a different surface charge distribution, 

suggesting distinct binding partners for SUMO and Ubiquitin324. 

 

 
Figure 1-20: SUMO-1 and SUMO-2 r ibbon models. 
SUMO-1 and SUMO-2 have 50% identical amino acids and share the characteristic 
Ubiquitin-like fold of a barrel of β-sheets with one helix. 
Protein database accession numbers: SUMO-1 1A5R321, SUMO-2 1WM2322 
 

 

 

SUMO-1 SUMO-2
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In 1995, the first SUMO protein (SMT3) was discovered in baker’s yeast as a 
suppressor of the centromeric protein Mif2 and was functionally linked to mitosis325. 

In the following year, a human homologue was found326. SUMO is a ubiquitously 
expressed protein of about 100 amino acid length and 10 kD weight in mammals.  

 
Figure 1-21: SUMO is conjugated to p53 with the help of the SUMO-E1 SAE1/SAE2 
and SUMO E2 Ubc9.  
The Sentrin-specific proteases (SENP) cleave the SUMO precursor, exposing the C-terminal diglycine 
motif, which is used to conjugate the SUMO protein to amino-groups of lysines in the target proteins. 
 
 
SUMO, like all Ubiquitin-like modifiers, is synthesised as inactive precursor and needs 
to be cleaved by proteases in order to be activated. The cleavage by Sentrin specific 
proteases (SENPs) results in the exposure of a diglycine motif, which is then used for 

the conjugation reaction to the ε-amino-group of a lysine residue in the target 
protein. All SUMO family members are conjugated to their target proteins via the 

same E1 - a dimer of SUMO-activating enzymes SAE1 and SAE2, which activates 
the cleaved SUMO by forming a thioester-bond between the C-terminal glycine of 
SUMO and its own active cysteine residue in an ATP-consuming step327. From here, 

SUMO is transferred to the conjugating E2-enzyme Ubc9, which forms the 
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isopeptide bond between the C-terminal glycine residue of SUMO and ε-amino-
group of a lysine residue in the target protein with the help of an E3-ligase328. 

Mammals have four SUMO-family members; the best studied being SUMO-1, which 
is about 50% homologous to the almost identical SUMO-2 and 3. SUMO-4 is 
structurally more closely related to SUMO-2/3 than SUMO-1. SUMO 1, 2 and 3 have 
a broad tissue distribution and the expression of SUMO-4 is limited to certain organ 

types, being predominantly expressed in the kidney329. It is yet unclear, whether 
SUMO-4 can be conjugated to any target proteins because the SUMO-4 precursor 

contains a proline residue in close proximity to the diglycine motif, which may prevent 
activation via protease cleavage330.  

SUMOylation predominantly takes place on lysine residues in a specific consensus 

motif, consisting of the four amino acid sequence ΨKxE, Ψ being a hydrophobic 
residue, x being any amino acid331. However, not all of these amino acid sequences 
are modified and most SUMOylated lysines reside in unfolded areas or extended 
loops, allowing access for the conjugating enzymes. 

In contrast to Ubiquitin E3 ligases, SUMO E3 ligases are less essential for SUMO 
conjugation, as E1 and E2 are enough to promote SUMOylation in vitro332. Other 
than the Ubiquitin E2s, the SUMO-E2 Ubc9 contains a substrate recognition site that 
directly interacts with the SUMO consensus motif with the target lysine residue fitting 
into a hydrophobic groove in Ubc9. Nevertheless, several SUMO E3 ligases have 
been identified, including RanBP2, the PIAS family proteins and Pc2333. While the 

PIAS proteins contain a RING finger similar to the Ubiquitin E3-ligases, RanBP2 
contains neither a RING nor a HECT domain334. It is possible that E3 ligases have a 
role in determining the substrate specificity, as not all lysine residues in SUMO 

consensus motifs are actually SUMOylated. Furthermore, the E3-ligases might 

influence which SUMO isoform is conjugated to which substrate, as SUMO-1 and 
SUMO-2/3 proteins have distinct and overlapping target proteins. Exclusive 
modification with either SUMO-1 or SUMO-2/3 cannot be explained without the 

activity of an E3 ligase, as the SUMO-E2 ligase Ubc9, which can directly bind to the 
SUMO consensus335, does not discriminate between the SUMO isoforms. Ubc9’s 
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target discrimination might be influenced by SUMOylation of its own lysine 14 
residue336. 

SENPs, which activate the inactive precursor proteins, also cleave the conjugated 
SUMO proteins off the target protein, resulting in a highly dynamic turnover of SUMO 
on and off its target proteins337. Humans have six different SENPs with different 
subcellular distribution and a varying degree of isoform specificity337. SENP1 is 

located throughout the nucleus and SENP2 localises to the nuclear pore338. SENP1 
and SENP2 are the only SENPs that can process and deconjugate all SUMO 

isoforms from their targets. Both proteins can process the precursor forms of all 
isoforms, but SENP1 more efficiently catalyses the processing of SUMO-1339, while 
SENP2 preferentially cleaves SUMO-2340. All other SENPs exclusively use SUMO-2/3 

as their substrate. SENP3 and SENP5 locate to both nucleus and nucleolus and 

hydrolyse both the SUMO-2/3 C-terminal peptide and the SUMO-diglycine - target-
lysine isopeptide bond341,342. SENP6 and SENP7 are located in the nucleoplasm and 
do not process unconjugated SUMO, but edit poly-SUMO-2/3 chains343-345. SENP6 
was found to also cleave a SUMO-1 cap off a SUMO-2/3 chain, although less 
efficiently than editing pure SUMO-2/3 chains346. Recently, a new kind of SUMO 
protease called DeSI-1 was described, which seems to target a distinct set of 
SUMOylated proteins in the cytoplasm347. 

Although SUMO-1 and SUMO-2/3 are conjugated via the same set of enzymes, they 
can preferentially target specific proteins, for example RanGAP1 is only SUMO-1 

conjugated348. These isoforms are all nuclear, but show different distribution: SUMO-
1 accumulates at the nuclear envelope and in nucleoli, while SUMO-2/3 does not349. 
Furthermore, SUMO-2/3 is more abundant in a large free pool than SUMO-1 and is 

also much more rapidly conjugated and removed348, consistent with a potential role 

for SUMO-2/3 in stress responses350. It is becoming apparent that the modification of 
proteins with SUMO-2/3 may have different consequences to the modification with 
SUMO-1351. Strikingly, only SUMO-2/3 contains an internal SUMO consensus motif 

around lysine 11 and can therefore be conjugated in chains, whereas SUMO-1 
cannot form chains and might act as chain-terminator on SUMO-2/3 chains352. 
SUMO chain formation was observed in vitro and in vivo353 and distinct roles for 
SUMO-chains are beginning to emerge353.   
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Much of SUMO’s function is most likely mediated through creation of a new 
interaction surface on the SUMOylated protein and recruitment of binding partners, 

which would not bind the unmodified protein. This model became an exciting new 
area of research with the discovery of SUMO interaction motifs. 

1.4.1  SUMO interaction motifs 

Analysis of SUMO-interacting proteins revealed that a stretch of amino acids with 
non-linear aliphatic side chains could interact non-covalently with all SUMO 
isoforms354. The SUMO interaction motif (SIM) was then defined as V/I-X-V/I-V/I or 
V/I-V/I-X-V/I, which forms a β-sheet that interacts with the β2-sheet of SUMO, in 
parallel or antiparallel direction355. A hydrophobic pocket on the SUMO surface 
formed by amino acids valine 30, phenylalanine 32 and isoleucine 34 in SUMO-3 

interacts with the hydrophobic side chains of the SUMO interacting motif356,357. Many 
SIMs are located in close vicinity to a stretch of acidic amino acids, which were 
thought to assist the SUMO recognition. However, it later emerged that this stretch 
incurred some isoform specificity, since SIMs with an acidic stretch preferentially bind 
to SUMO-1, while SUMO-2/3 is predominantly recognised by SIMs without acidic 
stretch. Possibly, the amino group of SUMO-1’s lysine 78, which is not present in 
SUMO-2/3, forms a salt bridge with the carboxyl group of the acidic amino acids 
next to the SIM358. Interestingly, some SUMO interacting motifs contain a stretch of 
serine residues instead of acidic amino acids, which can also introduce the negative 

charge when they are phosphorylated359. 

Many SUMO-conjugating enzymes contain SIMs, among them the SUMO-activating 
E1 enzyme that contains two SIMs, although the functional consequences on its E1- 

activity remain unclear360. In contrast, the SUMO-1 specific E3 ligase RanBP2, which 

harbours neither a RING nor a HECT domain, contains a SUMO interaction motif that 
is strictly required for its SUMO-E3 activity361. The PIAS E3 ligases, also require their 
SIM domain for the SUMO-promoting activity, while their SP-RING domain can be 

dispensable362. Moreover, SUMO interacting motifs are found in SUMO-targets and 

provide a plausible explanation for SUMOylation of non-consensus sites363. 
Analogous to the SUMO system, presence of Ubiquitin-binding domains can also 

target proteins for ubiquitination without the need for a Ubiquitin-E3364. 
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The presence of SUMO interacting motifs allows a vast array of proteins, which are 
not directly involved in the SUMO conjugation process to be recruited to 

SUMOylated proteins. An example for a SUMO-recruited protein is the Ubiquitin-
ligase RNF4, which harbours a row of SUMO interaction motifs and is therefore 
recruited by poly-SUMO chains. The recruited Ubiquitin ligase then mediates the 
ubiquitination and degradation of the poly-SUMOylated target proteins, and is for 

example involved in the degradation of SUMOylated PML365,366. Furthermore, SUMO-
dependent recruitment of RNF4 to the mediator of DNA damage checkpoint MDC1, 

was recently shown to play a central role in homologous recombination after DNA 
damage367,368. The hypoxia inducible factor HIF-2α was also reported to be poly-
SUMOylated and subsequently degraded by RNF4 and von Hippel-Lindau VHL369. 
However, no SUMO-interacting motif could be found in VHL, making it an unlikely 

SUMO-targeted Ubiquitin ligase370.  

1.4.2  SUMO function 

SUMO clearly plays a significant role in development, since knockout mice of the 
SUMO-E2 Ubc9 are embryonic lethal371 and some SUMO-1 heterozygous mice are 
born with a cleft lip372. But the SUMO system is also emerging as a critical modulator 
in tumourigenesis and cancer treatment. Tumours engineered to overexpress a 
dominant-negative SUMO-E2 Ubc9 (with a point mutations at the critical cysteine 
residue 93) show increased drug sensitivity373, reduced tumour growth and increased 

apoptosis374. Importantly, expression of Ubc9 and polymorphisms of the SUMO 
systems have also been associated with risk375 and treatment prognosis376 of certain 
types of cancers. 

In line with its role in cancer, SUMOylation influences many crucial cellular functions 

such as the mitosis377, DNA repair378 and the induction of senescence379. Many of the 
SUMO target proteins are transcription factors, whose activity is generally thought to 
be repressed by SUMOylation380. However, SUMOylation can also induce 

transcriptional activity of some transcription factors381. Strikingly, SUMO-1 

modification of chromatin was recently observed upstream of the transcriptional start 
of actively transcribed housekeeping genes382, suggesting that SUMO might also 

play a role in the epigenetic regulation of gene transcription. 
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Particularly the highly dynamic conjugation of SUMO-2/3 is thought to play an 
important role in response to stress. Global SUMOylation is sensitive to even 

physiological levels of reactive oxygen species, which trigger a reversible disulfide 
bond between the E1 and E2 enzyme to be formed, completely blocking any SUMO-
conjugation383. Furthermore, presence of SUMO-2 and SUMO-3 was found to be 
essential for survival of heat shock, which resulted in a global increase in 

SUMOylation384. A possible mechanism for this increased global SUMOylation is the 
finding that deSUMOylating enzymes are inactivated under heat shock385. It was 

furthermore described that misfolded proteins were generally marked by SUMO-2 
modification386. The transfer of SUMO from the E1 to the E2 enzyme was recently 
found to be regulated by SUMOylation of lysines in close proximity to the catalytic 
cysteine residue 173 in the SUMO-activating enzyme SAE2387. Upon heat shock, the 

SUMO-E1 was deSUMOylated, leading to more efficient SUMOylation of its 
substrates387. 

While poly-ubiquitination is frequently associated with proteasomal degradation, such 
a defined role for SUMOylation does not exist. However, as mentioned earlier 
SUMOylation can also influence other posttranslational modifications, for example 
when recruiting SUMO-targeted Ubiquitin ligases. But SUMOylation is part of a 
complex crosstalk not just with ubiquitination, but also phosphorylation and 
acetylation. 

The discovery of SUMO-targeted Ubiquitin ligases like RNF4365, which were first 

identified in yeast388, brought the Ubiquitin- and SUMO pathways closer together. In 
addition, many players of the Ubiquitin-system are regulated by SUMOylation: The 
Ubiquitin E2 E2-25K is SUMO-1 modified on lysine 14, resulting in inhibition of its 

Ubiquitin chain formation activity389. By contrast, the Ubiquitin-E3-ligase activity of 

BRCA1 is enhanced after SUMOylation by PIAS1 and PIAS4 in response to DNA 
damage390,391. Some deubiquitinating enzymes are also regulated by SUMOylation: 
The USP25 is modified by SUMO-2/3 within its ubiquitination interaction motif, which 

impairs its catalytic activity of hydrolysing Ubiquitin chains392. Another way, by which 
SUMOylation influences ubiquitination is by occupying the same lysine residue, which 
would usually be targeted for ubiquitination. Through this mechanism SUMOylation 
stabilises IκBα, an inhibitor of NF-κB393. 
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Phosphorylation of serine and threonine residues within a phospho-dependent 
SUMO interaction motif can regulate the discrimination of the SUMO isoforms358. 

Moreover, phosphorylation of serine residues close to the SUMO consensus motif 
was observed to regulate the conjugation of SUMO to its targets. The 
phosphorylation-dependent SUMO motif consists of an extended classical 
consensus ΨKxExxSP, in which the serine residue is a target of proline-directed 

kinases394. It was proposed that phosphorylation introduced a negative charge 
interacting with a basic patch on the surface involving lysines 65, 74 and 76 of the 

SUMO-E2 Ubc9395. Via this mechanism, phosphorylation increases the SUMO-
conjugation to lysines within phosphorylation-dependent SUMO motifs, as observed 
for example for the SUMOylation of heat shock factor HSF1396 and PIAS1359. 
Phosphorylation outwith the extended consensus motif can also influence the rate of 

SUMOylation. In the case of p53 it was reported that phosphorylation at serine 20 
impairs its association with Ubc9397. The notion of phosphorylation-dependent 
SUMOylation opens up new possibilities SUMO conjugation in stress response and 
signal transduction.  

Like ubiquitination, acetylation also takes place on many of the SUMO-modified 
lysine residues. Interestingly, the SUMO conjugation system targets important 
players of the acetyltransferase system. For example SENP1 deSUMOylates the 
deacetylase HDAC1, which results in repression of its deacetylase activity towards 
the androgen receptor398, while SENP3 deSUMOylates the acetyltransferase p300 

and contributes to its activation399. Regulation of p300-mediated repression was 
furthermore found to be dependent on SUMO-1 modification, which initiates 
recruitment of deacetylase HDAC6400. In the case of p53, which is SUMOylated at 

lysine 386 in close proximity to lysine residues acetylated by p300, SUMO-1 

modification was shown to block p300-mediated acetylation of its lysine residues 
373 and 382, while acetylated p53 could still be SUMOylated401. Furthermore, it was 
reported that the N-terminus of SUMO-1 contains a domain similar to the acetylated 

region in p53’s C-terminus and SUMO-1 itself was found to be acetylated at lysine 
residues 37, 38, 39, 45, 46 and 48. The conjugation of acetylated SUMO-1 to p53 
had different consequences on p53’s transcriptional activity than conjugation of non-
acetylated SUMO-1402. Indeed, further studies revealed that acetylation of lysine 
residues K37, K39 and K46 in SUMO-1 and K33, K35, K42 in SUMO-2 alters the 
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basic surface of the SUMO protein, preventing its recognition by the negatively 
charged stretches in proximity of SUMO interacting motifs403. 

1.4.3  SUMO and p53 

Most studies on p53-SUMOylation have so far focused on SUMO-1, which was 
shown to modify a single lysine (K386) residue residing within a SUMO consensus 

motif in the p53’s C-terminus. However, despite 13 years of research consequences 
of SUMO-1 modification of p53-activity are still a matter for debate404. The first 
publications reported that SUMO-1 modification of p53 led to augmented 
transcriptional activity, showing increased activation of PG13 Luciferase when p53 
was over-expressed together with SUMO-1405,406. Although the overall conclusion 
from both initial reports was that SUMOylation activated p53 transcriptional activity, it 

was noted in one report that the SUMO-site mutant p53 K386R activated the PG13 
Luciferase reporter more strongly than wild-type p53405, suggesting that disruption of 
the SUMO site could also increase transcriptional activity of p53. However, it needs 
to be taken into account that other modifications such as ubiquitination, neddylation 
and acetylation also take place on this particular lysine residue, with the K386R 
mutation affecting all of them. Surprisingly, the second study showed equal activation 
of a p21 Luciferase construct with wild-type and p53 K386R406. These discoveries 
sparked several contradicting reports on the functional implications of p53 
SUMOylation such as showing no SUMO-dependent change of p53’s activity in a 

CAT assay407 and reduced induction of apoptosis by p53 K386R408.  

PIAS1 was the first protein identified as promoting the SUMO-1 conjugation of p53. It 
was furthermore observed that PIAS1 required its RING domain for this activity, 

however the functional implications of p53-SUMOylation were not investigated409. 

Another report, which identified PIAS1 and PIAS2 (also known as PIASx) as SUMO-
E3 ligases for p53, found that overexpression of SUMO-1 and PIAS1/2 repressed 
p53’s ability to activate a pRGC Luciferase reporter. Strikingly, the same down-

regulation was observed when the SUMO-site mutant p53 K386R was used instead 

of wild-type p53, indicating that this repression of transcriptional activity was not due 
to SUMO-1 modification of lysine 386410. Interestingly, PIAS4 (also known as PIASy) 

had just been reported to prevent p53 from binding to DNA411 and it is possible that 
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a similar mechanism led to the observed repression in p53-mediated transactivation 
in the presence of PIAS1 and PIAS2. Later, the expression of PIAS4 was shown to 

induce p53 modification with both SUMO-1 and SUMO-2. Co-expression of PIAS4 
enhanced p53’s activation of a p21 Luciferase reporter and SUMOylation of both 
p53 and Rb was linked to the induction of senescence412. Mono-ubiquitination of p53 
by MDM2 was demonstrated to enhance SUMO-1 conjugation by PIAS4, leading to 

nuclear export of p53413. These observations were consistent with subsequent 
studies of a p53-SUMO-1 fusion protein, which showed partial cytoplasmic 

localisation414. 

Proteins outside the PIAS family were also reported to induce SUMO-1 modification 
of p53: Overexpression of the Ubiquitin-E3 ligase MDM2 together with its negative 

inhibitor p14ARF was shown to increase SUMO-1 conjugation of p53 in vivo, but not in 

vitro415. It was concluded, that the p14ARF-MDM2 complex was relocating p53 to the 
nucleolus, where it would be SUMO-1 modified, however the cryptic nucleolar 
localisation signal in MDM2214 was never mutated in order to fully test this hypothesis. 
A different RING-domain ligase called Topors, which also possesses Ubiquitin-E3 
ligase activity towards p53302, was shown to promote SUMO-1 conjugation of p53 in 
vivo and in vitro416. While ubiquitination was dependent on its RING finger, mutants 
without RING domain could still promote SUMOylation of p53416. Although co-
expression of high levels of Topors induced p53’s activation of the PG13 Luciferase 
reporter system, it was concluded that this was not due to p53 SUMOylation, since 

the p53-SUMO-1 level had already reached its maximum at lower Topors 
concentration which did not induce p53’s transcriptional activity416. Furthermore, an 
adenovirus E1B 55-Kilodalton protein was also reported to confer SUMO-1 

conjugation to p53, leading to its nuclear export and repression of its transcriptional 

activities417,418. New insights into other proteins not previously involved in the field of 
Ubiquitin like modifications came from a study on the protein kinase, interferon-
inducible double stranded RNA dependent activator PRKRA (also known as 

RAX/PACT), which was found to efficiently induce SUMO-1 modification of p53. 
PRKRA co-expression enhanced p53’s activation of a BP100 Luciferase reporter 
construct, while K386R mutation of p53 prevented double stranded RNA activated 
protein kinase PKR mediated phosphorylation at serine 392. The group therefore 
proposed a model, in which PRKRA-induced SUMO-1 conjugation of p53 stimulated 
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PKR-mediated phosphorylation of serine 392, leading to stabilisation and activation 
of p53 and ultimately cell cycle arrest in G1

419. 

Further advances on delineating the functional impact of p53-SUMOylation were 
made recently: An intricate study on SUMO-1 modification of p53 and its crosstalk 
with acetylation revealed that, while acetylated p53 can be SUMOylated, SUMO-1 
conjugation blocks p300-mediated acetylation of the C-terminus401. Furthermore, 

SUMO-1 modified p53 could not bind DNA, while p53 that was both acetylated and 
SUMOylated did bind DNA. In line with these findings, the investigators found that 

p53 K386R induced a p21- Luciferase construct more strongly than wild-type p53 
and was more present at the endogenous p21 promoter in a CHIP experiment401, 
linking SUMOylation to repression of p53 activity. Complicating the SUMO-

acetylation crosstalk even further, another group reported that SUMO-1 itself could 

be acetylated at its N-terminus and could thereby mimic C-terminal acetylation of 
p53. These investigators found that conjugation of non-acetylated SUMO-1 to p53 
led to the activation of p53’s cell cycle arrest target genes, while conjugation of 
acetylated SUMO-1 increased the apoptotic target genes402. Recently, Tip60-
mediated acetylation of lysine 120 in p53 in combination with SUMO-1-modification 
of K386 was shown to act as a signal for cytoplasmic accumulation of p53 and lead 
to induction of autophagy420. 

In contrast to the plentiful studies on SUMO-1, relatively few studies have addressed 
SUMO-2/3 modification of p53. Overexpression of SUMO-2/3 was shown to induce 

senescence in a p53 and Rb-dependent manner421. Both proteins were found to be 
SUMO-2/3 conjugated and SUMO-2/3 modification of p53 on lysine 386 was 
reported to be induced by H2O2 treatment of cells421. In line with these findings, 

overexpression of PIAS4 also induced senescence via p53 and Rb412. But while 

PIAS4 was shown to modify p53 with both SUMO-1 and SUMO-2412, the viral protein 
K-bZIP from Kaposi’s sarcoma associated herpes virus showed specificity towards 
SUMO-2/3 conjugation of p53422. Co-expression of K-bZIP enhanced p53’s 

induction of the 4xBS2WT Luciferase reporter, dependent on the presence of its 
SUMO-2/3 specific SIM422. A recent report demonstrated a transcription-
independent role for SUMO-3 conjugation of p53 in disturbed-flow induced 
apoptosis of endothelia cells: the protein kinase PKCζ was induced by peroxynitrite 
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and subsequently promoted SUMO-3 conjugation of p53. The SUMO-3 conjugated 
p53 was then exported into the cytoplasm where it bound pro-apoptotic Bcl-2, 

leading to the induction of apoptosis423. 

Clearly, SUMO-2/3 conjugation of p53 is a poorly understood area with opportunities 
for exciting discoveries. Furthermore, the p53 regulators MDM2 and p14ARF also play 
a significant role in the SUMO system.  

1.4.4  MDM2, p14ARF and SUMO 

The investigation of MDM2-SUMOylation was unfortunately misled by a report 
published by Buschmann et al in 2000 claiming that MDM2 was SUMO-1 modified at 
lysine 446, leading to MDM2’s stabilisation and increased ubiquitination of p53. The 
results subsequently turned out to be non-reproducible and the paper was 

retracted424. Although some attempts were made since, the site of SUMO-
conjugation has still not been definitively identified.  

One study, reporting that p14ARF induces SUMO-1 conjugation of MDM2 limited the 
SUMO-site to an area in the N-terminus between amino acids 134 and 212425. Other 
investigators used PIAS1, PIAS2 and RanBP2 to enhance SUMO-1 modification of 
MDM2 and found that mutation of lysine 182 to arginine stopped SUMOylation in 
vivo, but not in vitro. However, this effect was probably due to the K182R mutant 
protein’s cytoplasmic localisation, since this lysine residue is located in the nuclear 
localisation motif426. 

It was later observed that MDMX could inhibit p14ARF-mediated MDM2-

SUMOylation427 and around the same time a group discovered that p14ARF was 
involved not only in the SUMOylation of MDM2, but stimulated the SUMOylation of 

many of its binding proteins including E2F1 and HIF-1α by directly interacting with 

the SUMO-E2 Ubc9428. The role of p14ARF in the SUMO system was further 
strengthened by the notion that it could induce the degradation of the 
deSUMOylating enzyme SENP3, resulting in global changes of SUMOylation429. 

A different deSUMOylating enzyme, SUSP4, a mouse homologue of SENP2, was 

found to remove SUMO-1 from MDM2 upon UV treatment. The deSUMOylation 
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induced MDM2 auto-ubiquitination and stabilisation of p53430. Other proteins found 
to enhance MDM2-SUMOylation were the TRIM family members, in particular 

TRIM27431, and the proto-oncogene SKI432. Consistent with the destabilisation of 
MDM2 upon deSUMOylation, both reports observed an enhanced MDM2 stability 
when SUMOylated and a subsequent decrease in p53. 

In contrast to p53, where the SUMO site was identified straight away, but the 

functional consequences are still a matter of debate, multiple studies agree that 
SUMOylation of MDM2 affects its stability, yet the site of SUMO modification is still 

unclear. Surprisingly, no reports of SUMO-2/3 modification of MDM2 exist to this 
date. 

1.5  The p53 family 

Two p53-related genes called p63433 and p73434 were identified 20 years after the 
discovery of p53 and classed as a family of transcription factors based on their 
homology with p53. p63 and p73 can induce some p53 target genes, but also have 
other roles for example in the embryonic development.  

All p53 family members, are active as tetramers435,436. Strikingly, the structure of the 
p63 and p73 tetramerisation domains contains an additional α-helix, which is not 
present in the p53 protein. This allows p63 and p73 to form heterotetramers 
(heterodimers of two homodimers), while p53 cannot oligomerise with either of 
them437. However, cancer-associated mutants of p53 do bind and inhibit p63 and 
p73 and this is a potential mechanism, by which tumours can silence all three 

transcription factors at once by only mutating one gene. 
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1.5.1  p63  

 
Figure 1-22: p63 isoforms.  
Isoform β results from skipping of exon 13, resulting in alternative reading of exon 14, which presents 
a stop codon after 5 codons. Isoform γ lacks exons 11, 12, 13 and 14, ending on a 38 amino acid 
sequence from intron 10. ∆Np63 is transcribed from an alternative promoter in intron 3 and the 
resulting protein lacks the first 69 amino acids of TAp63, but starts with 26 different amino acids, 
harbouring an alternative transactivation domain (*). 
TAD: transactivation domain, PR: proline rich domain, NLS: nuclear localisation signal, TET: 
tetramerisation domain, SAM: sterile α motif, TID: transcription inhibitory domain. 
 
 
The p63 gene is located at chromosome 3q27-26 and contains 265822 nucleotides 
spanning 14 exons433,438-440. The gene gives rise to a transcription factor with a 
domain structure similar to p53: an N-terminal transactivation domain, a central DNA 
binding domain and a tetramerisation domain. Particularly the DNA binding domain is 
highly homologous to p53 with 58% identical amino acids. The active transcription 
factor forms a dimer of dimers, just like p53435. The full-length p63 protein is 

considerably longer than p53 (641 amino acids) and contains a sterile α motif (SAM) 
at its C-terminus, which is not present in p53. The SAM domain forms a bundle of 
five helices that serve as platform for protein interactions441. Interestingly, SAM-like 
domains are often found in proteins involved in development442. 

Many different isoforms can be derived from the p63 gene due to an internal 
promoter and alternative splicing of the C-terminus. An internal promoter is located in 

intron 3 and gives rise to ∆Np63 isoforms, which lack the transactivation domain 
present in the full-length TAp63 isoforms, but contain an alternative stretch of 26 
amino acids not present in the TAp63 isoforms433. Two different coding sequences 
for the TAp63 isoform are available in the nucleotide sequence collection database, 
differing in the ATGs used for translation. The shorter protein, starting at the second 

TAD 1 TAD 2 TIDDNA binding SAM

TAp63њ
PR NLS TET

68 12
7

31
9

13
8

33
6

35
5

35
9

56
8

57
1

64
1

51
6

44
4

58
6

23

50
4

39
0

47
3

TAp63ћ

TAp63ќ

¬5W��њ
*

1 2 3 3’ 4 5 6 7 9 10’ 11 12 13

P2!�¬5W��P1: TAp63 ћќ

њ

148 10



   

 71 

ATG, resulting in a 39 amino acid shorter N-terminus (accession number AF075430 
for TAp63α) is considered to be the expressed full-length TAp63 in this study, since it 

results in a protein with a transactivation domain homologous to p53 and p73. The 
TAp63 isoforms can bind the p53 response element and induce p53 target genes 
such as p21440. However, the preferred TAp63 response element differs slightly from 
the p53 response element: While p53 preferentially binds to RRRCATGYYY, TAp63 

preferentially binds to RRRCGTGYYY443 and consequently p63 target genes were 
identified, which could be induced by TAp63, but not p53, for example Bullous 

pemphigoid antigen (BPAG1)444. At first, the ∆Np63 isoforms were handled as purely 
negative regulators of the TAp63 isoforms, since they lacked a transactivation 
domain433 and could not bind the p53 response element. However, specific ∆Np63-
inducible target genes were discovered445,446 and consistently, two alternative 

transactivation domains were identified, one in the first 26 amino acids of the ∆Np63 
isoforms445 and another one between amino acids 410 and 512 in the C-terminus447. 

Alternative splicing in the C-terminus gives rise to 3 different isoforms called α, β and 
γ with α being the longest isoform448. p63β lacks exon 13, which encodes for the 
SAM domain and ends after the second transactivation domain, since the alternative 
reading of exon 14 presents a stop, resulting in a protein roughly 100 amino acids 
shorter than p63α. p63γ lacks exons 11, 12, 13 and 14, ending after the 
tetramerisation domain. TAp63γ is the isoform most similar to p53. Two more 
isoforms have been predicted, but not yet been confirmed: p63δ as a product from 

skipping exons 12 and 13 and p63ε resulting from termination of transcription after 
exon 10, where intron 10 presents a stop codon448. All C-terminal splice variants can 
occur in the TA or ∆N version, resulting in 10 different p63 isoforms. Only the p63α 

isoforms contain the SAM domain and a following inhibitory sequence, which was 

shown to fold back to interact with the N-terminal transactivation domain, rendering 
TAp63α a much less potent transcription factor than TAp63β and TAp63γ449. The 
inhibitory core element in TAp63α has been narrowed down to an amino acid stretch 

RFTLRQTISF between amino acids 604 and 613450. Strikingly, this inhibitory domain 
can be cleaved off by Caspases in response to stress451. 

While p63 can induce cell cycle arrest and apoptosis by up-regulating p53-target 
genes, it clearly has a critical role distinct from p53 in regulating epithelial 



   

 72 

development. p53 null mice are predominantly born without major developmental 
malformations other than a neural tube closure defect in about 20% of female 

embryos452, and survive until they develop tumours, whereas p63 null mice are born 
with limb truncation, craniofacial malformation and no epidermis and only survive a 
few days after birth453,454. The importance of p63’s role in limb development is 
mirrored by a number of human diseases caused by mutations in the p63 gene. 

Heterozygous germ-line missense mutations in the p63 DNA binding domain can 
lead to the EEC syndrome with ectrodactyly (hand/feet malformation), ectodermal 

dysplasia and facial clefts455, while amino acid substitutions in the SAM domain lead 
to the AEC syndrome with ankyloblepharon-ectodermal dysplasia and clefting456. The 
scale of developmental abnormalities caused by this mutation is remarkable, since 
mutations in the SAM domain only affect the p63α isoforms.  

Consistent with the role of p63 in skin development, p63 expression was initially 
found to be restricted to the nuclei of the basal cells in epithelia433. Furthermore, 
∆Np63 was shown to be required to maintain the proliferative potential of 
keratinocytes457 and stem cells of stratified epithelia458. Most tissues express higher 
levels of the ∆Np63 isoforms, however more recently TAp63 has been found to be 
highly expressed in oocytes and shown to have a role in protecting the female germ-
line by inducing apoptosis in oocytes upon DNA damage459,460. 

Studies using isoform-specific mouse models have allowed to delineate the roles of 
TAp63 and ∆Np63 in further detail. A conditional TAp63 knockout mouse (Exon 2) in 

the epidermis showed no abnormality, however a germ-line knockout of TAp63 led 
to premature aging of the skin with formation of blisters and abnormal hair 
morphogenesis. The TA-specific knockout did not result in any limb developmental 

defect and survived into adulthood, although premature ageing resulted in a 

decreased life span compared to wild-type littermates461. Inducibly deleted ∆Np63 
mice (by induction of ∆Np63-specific siRNA) were also viable, but showed skin 
fragility due to an abnormal basement membrane462. An isoform-specific 

reconstitution study revealed that expression of ∆Np63 could restore epidermis 
formation of p63 null mice, while TAp63 expression could not463. 
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In contrast to p53, p63 is rarely mutated in cancer464, although it is frequently found 
to be deregulated. A large fraction of squamous cell carcinomas of the head and 

neck express high levels of ∆Np63465. Despite the high expression levels in tumours, 
∆Np63 amplification was correlated with good treatment response466. TAp63 levels 
are not detectable in many neoplasias, but lymphomas form an exception expressing 
only TAp63 and no ∆Np63467. While p63 null mice do not live long enough to develop 

cancers, p63 heterozygous mice were shown to develop some spontaneous 
tumours, mostly squamous cell carcinomas and histiocytic sarcomas468. Importantly, 

most of the tumours had lost the wild-type p63 allele, suggesting that p63 poses a 
barrier to tumour development. This is consistent with recent work that loss of p63 is 
associated with an invasive phenotype469. Indeed, 50% of tumours arising in p53+/-

;p63+/- mice were metastatic while only 5% of tumours arising in p53+/- mice had 

metastasised468. 

1.5.2  p73  

The p73 gene is located on chromosome 1p36.3 and includes 80728 nucleotides 
spanning 14 exons. Like p63, the p73 gene also gives rise to a transcription factor 
highly homologous to p53 with 62% identical amino acids in the DNA binding 
domain, 18% in the N-terminal transactivation domain and 22% in the tetramerisation 
domain470.  

A number of different isoforms are transcribed from the p73 gene. The full-length 

protein TAp73 can induce p53-responsive genes such as p21, MDM2 and PIG3, just 
like the other p53-family members471-473. Overexpression of p73 was shown to induce 
apoptosis with some isoforms being even more efficient than p53471,474. Surprisingly, 

the ∆Np73 isoforms, which are product of an internal promoter at intron 3 and lack 

the N-terminal transactivation domain, were only described five years after the 
identification of the p73 gene475. Just as in the case of ∆Np63, the ∆Np73 isoforms 
were initially shown to inhibit the transcriptional activity of TAp73, and specific 

∆Np73-responsive genes were identified later476. In line with this finding, two domains 

required for ∆Np73’s transactivation capability were identified: one comprising the 
unique first 13 amino acids, which are not present in TAp73476 and another one in the 

C-terminus between amino acids 381 and 399477. Interestingly, while the N-terminal 
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transactivation domain of TAp73 was found to be crucial for the induction of 
apoptotic target genes, the C-terminal transactivation domain was sufficient to 

induce cell cycle arrest477. Two further N-terminally truncated splice variants of p73 
were described, which are the result of alternative splicing skipping exon 2 or exons 
2 and 3 resulting in proteins lacking the first 48 and 71 amino acids, respectively478. 

 
Figure 1-23: p73 isoforms 
Isoform β results from skipping of exon 13, resulting in alternative reading of exon 14, which presents 
a stop codon. Isoform γ lacks exons 11, reading exons 12, 13, and 14 in an alternative reading frame. 
Isoform δ lacks exons 12, 13 and 14. Isoform ε lacks isoform 11, resulting in alternative translation of 
exons 12, additional splicing of exon 13 reverts the frame-shift. Isoform ζ lacks exon 12. ∆Np73 is 
transcribed from an alternative promoter in intron 3 and the resulting protein lacks the first 62 amino 
acids of TAp73, but starts with 13 different amino acids, harbouring an alternative transactivation 
domain (*). 
TAD: transactivation domain, PR: proline rich domain, NLS: nuclear localisation signal, TET: 
tetramerisation domain, SAM: sterile α motif, TID: transcription inhibitory domain.  
 
 
Like the entire p53-family, p73’s C-terminus is subject to alternative splice events 

giving rise to the full-length α-variant and five other shorter isoforms named β (lacking 
exon 13)434, γ (lacking exon 11), δ (lacking exons 11, 12 and 13)479, ε (lacking exons 

11 and 13) and ζ (lacking exons 11 and 12). Combined with the four N-terminal 

variations at least 24 different proteins can be translated from the p73 gene. Deletion 
of exon 11 causes a frame-shift, due to which p73γ expresses a different 75 amino 
acid C-terminal tail. A frame-shift, which results in an alternative exon 12 reading is 
reverted by deletion of exon 13 in p73ε. p73ζ has an internal deletion of amino acids 
400 to 496, but retains the α-tail, while isoforms β, γ and δ terminate on a short 
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alternative translation of exon 14480. Like p63, full-length p73 also contains a sterile α 
motif. Exon 13 encodes the SAM domain and consequently only the α and ζ 

isoforms contain this motif. Similar to the TAp63α isoform, TAp73α is less 
transcriptionally active than TAp73β. In contrast to TAp63α, whose C-terminal 
inhibitory domain was shown to interact directly with the N-terminal transactivation 
domain, both the SAM domain and a following inhibitory domain are required for 

repressing the activity of TAp73α. Surprisingly, the inhibitory core sequence identified 
in p63α’s C-terminus450 is not present in the p73α tail and the C-terminus of p73α 

does not seem to contact the N-terminus481. Indeed, TAp73α is still much more 
potent in activating its target genes than TAp63α, possibly representing this 
difference in their C-terminal inhibitory domains. 

Similarly to p53, the p73 protein is stabilised by proteasome inhibitors, suggesting 

that it is constantly degraded. While MDM2 can interact with p73 (see 1.5.4), it is not 
ubiquitinated by this E3 ligase482,483. Instead, the p73 protein is targeted for 
degradation via ubiquitination by the E3-ligases Itch484, which also targets p63485, and 
Pirh2486,487, which also ubiquitinates p53300. p53 induces expression of Pirh2, thereby 
negatively controlling expression levels of p73, while p73 induces MDM2, leading to 
degradation of p53488. However, ∆Np73 protein levels decrease in response to DNA 
damage, suggesting a separate regulation from TAp73489. Indeed, Pirh2 only affects 
TAp73, but not ∆Np73 protein levels486,487. In contrast, the Ubiquitin-ligase p73-
induced RING2 protein PIR2, only targets ∆Np73 for degradation490. TAp73 not only 

induces degradation of ∆Np73, but also transcriptionally activates its own internal 
promoter, inducing expression of ∆Np73491.  

p73’s activity is induced by oncogenes like Myc, E1A and E2F1492 and in response to 

DNA damage, thereby supplementing p53 function. E2F1 directly initiates 

transcription of p73493, while in response to γ-irradiation, p73’s tyrosine 99 is 
phosphorylated by ATM-induced kinase c-Abl, promoting p73-dependent 
apoptosis494,495. Additionally, p73 activity is regulated by the cell cycle due to p73’s 

Cyclin-binding motif. In the G2/M phase threonine 86 of p53 is phosphorylated by 
Cdk1 and Cdk2496, inhibiting p73’s transcriptional activity and preventing a p73-
induced cell cycle arrest while the DNA is being replicated and therefore vulnerable. 



   

 76 

However, p73 also fulfils functions distinct from p53, particularly in the neuronal 
development. This role is demonstrated by p73-null mice that showed hippocampal 

dysgenesis with a selective loss of bipolar Cajal-Retzius neurons497. The animals 
furthermore suffered form cerebrospinal fluid hyper-secretion and abnormal 
reproductive and social behaviour, reflecting dysfunction in the pheromone sensory 
pathway due to a defect in the vomeronasal organ, which expresses high levels of 

∆Np73497. High levels of ∆Np73 were also found in the mouse brain and it was 
suggested that this inhibitory p73-isoform protected neurons from undergoing p53-

induced apoptosis498. Consistently, ∆Np73 null neurons were found to be 
hypersensitive to DNA damage, while ∆Np73 was proposed to directly localise to 
sites of DNA damage, where it prevented ATM-induced p53-activation499. 
Interestingly, an isoform-specific TAp73-knockout mouse still developed some 

hippocampal defects, albeit not as severe as the p73 null mouse, suggesting that 
TAp73 contributes to the neuronal development500. Strikingly these mice also 
showed infertility, genomic instability and development of spontaneous tumours500. 
Although the initial p73 null mouse was reported not to be tumour-prone497, some 
p73 heterozygous mice were found to develop benign and malignant lesions, most 
commonly lung adenocarcinomas, haemangiosarcomas and thymic lymphomas468. 
Strikingly, 45% of tumours arising in p53+/-;p73+/- were metastatic as compared to 
5% metastatic tumours in p53+/- mice, suggesting that p73 just like p63 has a role in 
protecting from metastasis468. 

Despite the p73 gene being identified in a chromosomal region frequently lost in 
neuroblastoma434, the second p73 allele is rarely in lost cancers. No tumour-
associated p73-mutations could be identified and on the contrary many ovarian 

cancers were found to overexpress p73501,502. In contrast to normal tissue, which 

predominantly expresses p73α and p73β, neoplastic lesions frequently express 
shorter C-terminal splice variants503 or ∆Np73504. Strikingly, ∆Np63 amplification in 
head and neck squamous carcinoma was shown to silence TAp73 activity505 and it 

was found that N-terminally truncated isoforms of p63 and p73 can each inhibit both 
TAp63 and TAp73. In some cases, particularly in lymphomas and leukaemias, the 
p73 promoter is hyper-methylated and p73 transcription ablated without loss or 
mutation of the gene506,507. 
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p73 activity can furthermore be counteracted by a panel of interacting proteins, such 
as iASPP, which inhibits activation of p53- and p73 induced apoptosis508, mTOR509, 

certain p53 mutants (see 1.6.2) and MDM2, which inhibits p73’s transcriptional 
activity482,483,510. 

1.5.3  MDM2 and p63/p73 

MDM2’s N-terminus interacts with the p53 N-terminus, thereby shielding p53’s 
transcriptional domain and promoting ubiquitination of the p53 protein107,108,114,135. 
Despite relatively low homology (around 30%) of the transactivation domain across 
the p53 family proteins, the three amino acid residues phenylalanine 19, tryptophan 
23 and leucine 26, which were identified to be crucial for p53’s interaction with 
MDM2163,511, are also present in the N-termini of the TAp63 and TAp73 proteins. 

Consequently, several studies were conducted, analysing the ability of p63 and p73 
to interact with MDM2.  

The majority of reports suggest that MDM2 can interact with both TAp73α and 
TAp73β via their N-termini homologous to p53 and that this interaction silences 
TAp73’s transcriptional activity, but does not result in TAp73 degradation482,483,510. 
While it is conceivable that TAp73’s transactivation domain is simply shielded just as 
in the case of p53114, another model suggests that MDM2 prevents the co-activator 
p300 from binding to TAp73’s C-terminus and thereby impairs transactivation483,512. A 
recent study revealed that MDM2 could promote neddylation of TAp73β, which 

resulted in its nuclear export, possibly contributing to the silencing of p73’s 
transcriptional activity513. Curiously, MDM2 overexpression was not previously shown 
to induce p73 export, although it is well known to induce export of p53153,167. In 

contrast, MDM2 co-expression with TAp73 triggered accumulation of both proteins 

in nuclear speckles distinct from PML bodies514,515. While some publications suggest 
that p73 protein levels are not affected by MDM2482,510, other studies found MDM2 
co-expression to increase TAp73 levels483,516 with one study consequently reporting 

MDM2-mediated induction of TAp73α and TAp73β activity516. By contrast, a different 

recent study found MDM2 to promote association of p73 with the E3-Ubiquitin ligase 
Itch to promote TAp73α degradation517. However, the MDM2-Itch complex and 
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subsequent p73 degradation was only observed in HeLa cells, but not in H1299 
cells, suggesting, that this might be a cell-type specific effect517. 

In contrast to TAp73, TAp63-MDM2 interaction was only observed in a few 
studies518,519, while most reports agree, that MDM2 does not form a complex with 
TAp63 in cells520-523. The most compelling evidence comes from an intricate 
biochemical analysis of the p53, p63 and p73 transactivation domain peptides 

binding to MDM2. A number of different in vitro assays revealed that the p63 peptide 
bound MDM2 with at least one order of magnitude weaker affinity than p73 and p53, 

making it unlikely for the interaction to occur under endogenous circumstances523. 
This finding is striking, since the p63 transactivation domain contains the same 
conserved amino acids as p73 and p53, which were found to be critical for 

interaction with MDM2. 

1.6  Mutant p53: an oncogene? 

p53 poses a major barrier against cellular transformation and all cancers have 
escaped p53’s control by some mechanism. In the majority of tumours, p53 is 
inactivated by mutations in the coding sequence. This accounts for 50% of all cases, 
although the prevalence of p53 mutations are dependent on the tumour type, from 
only 10% of leukaemia to 60% of ovarian cancers and colorectal cancers harbouring 
p53 mutations524. Other mechanisms of p53 inactivation were also observed: Around 
7% of tumours contain MDM2 gene amplifications525 and the prevalence depends on 
the tumour type: up to 30% of soft tissue sarcomas were shown to harbour MDM2 
amplifications526. Another tumour strategy to avoid induction of p53, is losing the 
MDM2-inhibitor p14ARF, which is involved in sensing oncogene activation. p14ARF is 

expressed as alternative reading frame the INK4A locus, which is mutated in roughly 
50% of all tumours527, leading to loss of expression of both p16INK4A in the Rb 

pathway and the MDM2-inhibitor p14ARF. The p14ARF promoter is furthermore 
frequently found to be epigenetically silenced by hyper-methylation528. 

While most cancer patients harbour somatic p53 mutations in their lesions, very few 
individuals express a mutant p53 allele in all their tissues since they carry a 
heterozygotic germline p53 mutation. Germline p53 mutations are associated with 

the Li-Fraumeni-syndrome529, which is defined by development of sarcomas under 
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the age of 45, with first and second degree relatives also suffering from early-onset 
cancers530. The most common tumours observed in Li-Fraumeni families are 

sarcomas, brain and breast cancers and leukaemia531. Strikingly, somatic p53 
mutations occur with a different prevalence spectrum than germline p53 mutations, 
codon R337 in p53’s tetramerisation domain is frequently mutated532, while the most 
frequently somatic mutations all occur in the DNA binding domain.  

The vast majority of p53 mutations (74%) are missense mutations leading to the 
expression of a full-length p53 protein with a single amino acid exchange524. Indeed, 

expression of these mutant p53 proteins is so common that the initially identified p53 
was thought to be an oncogene298,299, since it harboured a mutation in the DNA 
binding domain533. In the case of somatic mutations, most amino acid exchanges 

occur within exons 5 to 8 encoding for the DNA binding domain. Although every 

single amino acid of the DNA binding domain was observed to be mutated, 30% of 
these mutations are very rare534. However, the mutation frequency in the p53 
database is biased towards the DNA binding domain, since frequently only the area 
of the DNA binding domain was sequenced when mutational status was assessed, 
missing out on the roughly 14% of mutations which occur outside exons 5 to 8535. 

 
Figure 1-24: Prevalence of somatic p53 mutat ions. 
Most p53 mutations cluster to codons of the DNA binding domain. Particularly frequently mutated 
codons, the so-called “hotspots” are annotated with their respective codon numbers. 
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Only 6 amino acids in the DNA binding loops L2 and L3 account for a third of all 
somatic p53 mutations observed. These “hotspot” codons are arginine 175, glycine 

245, arginine 248, arginine 249, arginine 273 and arginine 282 (Figure 1-24). 

Mutants can be separated into 2 categories: amino acids, which are directly 
contacting the DNA, such as arginine 273 and arginine 248, and amino acids which 
are structurally critical with their mutation resulting in changes of local or overall 

conformation such as glycine 175, arginine 245 and arginine 282116. These mutations 
have in common that they disrupt p53’s sequence-specific DNA binding and 

therefore lose wild-type p53’s ability to transcriptionally regulate its target genes. 

 

 
Figure 1-25: Ribbon model of p53 DNA 
binding domain in complex with DNA. 
DNA contacting amino acids R248 and R273 in pink 
and structurally important amino acids 175, 245 and 
282 in green. Protein database accession number 
1TUP116. 

 

 
The p53 mutant proteins are often expressed to very high levels in tumours536, 
leading to the assumption that the mutant p53, in contrast to wild-type p53 is a 
stable protein. Since wild-type p53 induces MDM2, but mutant p53 has lost this 
ability, it seems plausible that mutant p53 could accumulate to higher levels, since it 

has lost this feedback regulatory mechanism. Indeed, high p53 staining as assessed 
by immunohistochemistry (IHC) is often judged as an indication for p53 mutations537. 
However, a study comparing staining by IHC to sequencing of the gene found that 
p53 protein levels only correctly indicated p53 mutations in 70% of all cases538. In line 
with this analysis, mutant p53 was found not to be intrinsically stable in normal tissue 

of Li-Fraumeni patients539 and knock-in mouse models540,541. Actually, mutant p53 
could still be degraded by MDM2107,542-544 and knockout of MDM2 stabilised mutant 
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p53 in the R172H (mouse equivalent of R175H) p53 knock-in mouse545. The 
mechanism, by which transformed cells stabilise the mutant p53 protein is not clear 

yet, it was hypothesised that similarly to wild-type p53, mutant p53 can be stabilised 
by stress, which prevails in tumour cells540. 

1.6.1  Loss of function 

Consistent with the observation that cancer-associated p53 mutations abrogate the 
transcription factor’s sequence-specific binding, hotspot mutant p53 proteins could 
not induce p53 target genes, while other mutants of the DNA binding domain 
retained the activity to induce some promoters546. It was observed that mutant p53 
could also inhibit the induction of p53-target genes in the presence of wild-type 
p53547-549. This suggested that mutant p53 acted in a dominant negative fashion, not 

only losing its own function, but also suppressing the wild-type p53 activity. 
Mechanistically this could be due to mixed wild-type - mutant p53 tetramers. Indeed, 
studying complexes of wild-type and the temperature sensitive A135V mutant p53, it 
was revealed that wild-type p53 adopted an unfolded conformation in a complex 
with mutant p53550. Conformation of the p53 DNA binding domain can be assessed 
by two conformation-specific antibodies (Figure 1-26): pAb 1620 recognises an 
epitope on the protein surface of the natively folded DNA binding domain created by 
arginine 156, leucine 206, arginine 209 and asparagine 210551 and pAb 240 
recognises an epitope on the S7 β-strand, which is buried in the wild-type 

conformation, but exposed upon unfolding of the DNA binding domain552. 

By contrast, a study expressing equal levels of wild-type and mutant p53 from a 
bicistronic plasmid revealed that mutant p53 (mutations at codons 143, 245 or 258) 

could not suppress wild-type p53 activity553. Consistently, it was later reported that 

three mutant proteins harbouring the R273H or R249S mutations were needed to 
inactivate a tetramer, while one p53 lacking the N-terminal domain was enough to 
inactivate a tetramer554. This suggests that mutant p53 is only dominant negative 

when expressed at high levels that are frequently found in neoplastic lesions. The 

suppressive activity of p53 mutants might not just be dependent on the type of 
mutation, but also on the target gene promoter, since a study using equal wild-type 

and mutant p53 expression found, that some p53 mutants (mutations at codons 
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245, 248 or 273) could only act dominantly negatively on the Bax promoter, but not 
on the p21 promoter555. 

 

 
Figure 1-26: Conformational epitopes on p53’s 
DNA binding domain. 
pAb1620 detects an epitope present only on natively folded 
p53 (blue), while pAb 240 detects an epitope only exposed 
in the unfolded conformation (pink). Protein database 
accession number 1TUP116 
 

 

 
The notion that mutant p53 is not as dominant as initially assumed is supported by 

the observation that the wild-type p53 allele is often lost in tumours expressing 
mutant p53556. Indeed, survival of heterozygous knock-in mice expressing one wild-
type p53 allele and one R172H mutant p53 allele540,541 resembled the heterozygous 

knockout mice with 15 months median survival rather than p53 null mice with 4 
months median survival25,557, suggesting that one mutant p53 allele was not enough 
to silence the wild-type p53 activity. Furthermore, MDM2-null mice can be rescued 
by knockout of both copies for p53, but not by knock-in of one R172H mutant p53 
allele540.  

Despite the same survival of the heterozygous knock-in and the p53+/- mice, a 
different tumour spectrum was observed. Animals with a p53 R172H allele 

(equivalent to the human p53 R175H) developed osteosarcomas and those 

expressing p53 R270H (equivalent of human p53 R273H) developed 
adenocarcinomas541. These tumours were rarely seen in p53 knockout mice, which 
develop predominantly lymphomas and sarcomas25,557. Furthermore, 25% of tumours 
were found to metastasise, particularly in animals harbouring the p53 R172H 
allele540,541, while tumours of p53+/- mice did not metastasise25,557. This observation 
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raises the possibility of the mutant p53 protein acquiring new oncogenic potential 
rather than simply losing and suppressing wild-type p53 function.  

1.6.2  Gain of function 

It had already been noted a decade earlier that introducing mutant p53 into p53 null 
cells increased their transformation potential, which was described as gain of 

function558. The notion that a single amino acid exchange can turn a tumour 
suppressor into an oncogene is striking and raises questions as to how mutant p53 
molecules acquire new functions such as increased tumourigenicity558, 
proliferation559, interference with cell differentiation560, genomic instability561, 
resistance to drug treatment562 and increased aggressiveness and metastasis540,541. 
Several mechanisms seem to contribute to mutant p53’s oncogenic activity and a 

number of mutant-p53 specific binding proteins and target genes have been 
identified.  

Supporting the model of mutant-p53 induced transcription of genes was the 
observation that the mutant p53 protein required its N-terminal transactivation 
domain to exert its gain of function effect. Deleting two glycine residues (glycines 22 
and 23), which were shown to interact with the transcription machinery563, 
suppressed the increased tumourigenicity conferred by the mutant p53 protein562. It 
is a striking thought that a protein with an unfolded DNA binding domain (or which 
lost DNA-contacting amino acids) could be able to act as a transcription factor in the 

traditional sense. A mutant p53 response element could not be identified due to lack 
of similar regions in the promoters of activated genes and this struggle is consistent 
with the view that mutations in the DNA binding domain eradicate the sequence-

specific binding of p53. However, mutant p53 activated genes commonly contain 

AT-rich unfolded matrix attachment regions564 or G/C rich G-quadruplex structures565 
and it is now thought, that mutant p53 recognises secondary DNA structures rather 
than binding to specific sequence-determined response elements566. 

Mutant p53 was found to upregulated the Multi-drug transporter MDR1567, which can 
confer chemoresistance by pumping drug molecules out of cells. Activation of MDR1 
by mutant p53 depended on an intact transactivation domain, as a p53 D281G 

mutant with additional glycine 22/23 mutation could not induce MDR1568 anymore. 
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The activation of MDR1 also required mutant p53 to interact with the ETS-1 
transcription factor569. Thus, binding other transcription factors could be another 

mechanism for mutant p53 to circumvent its deficiency in sequence-specific DNA 
binding. A striking example of the complete inversion of regulation comparing wild-
type and mutant p53 is the regulation of G2/M cell cycle genes via the NF-Y 
transcription factor. While wild-type p53 binds NF-Y and recruits the Histone 

deacetylase HDAC1 to repress genes such as Cdk1, Cyclin A2 and Cyclin B1, 
contributing to a G2-arrest240, the mutant p53 protein also binds NF-Y, but recruits 

p300 instead of HDAC1, thereby initiating the target genes and driving 
proliferation570.  

Interestingly, many oncogenic functions acquired by mutant p53 require the 

presence of its C-terminus571. A number of protein interactions were mapped to this 

region, leading to gain of function via the transcription factor ETS-2572 and Plk2 
kinase573. Induction of c-Myc by mutant p53 also required p53’s C-terminal 
domain574.  

Two other transcription factors interacting with mutant p53 are its family members 
p63 and p73. While wild-type p53 cannot bind either of these proteins, multiple 
studies have shown that mutant p53 proteins can interact with both TAp63575-577 and 
TAp73134,575,577-581. Importantly, binding of mutant p53 suppresses activation of p53 
target genes induced by both TAp63 and TAp73575,576,578,579. Since both p63 and p73 
also have roles in inducing apoptosis582, mutant p53 not only abrogates wild-type 

p53 function, but also inhibits its “back-up” partners p63 and p73583, thereby leading 
to a worse outcome than loss of p53 alone. One study suggested that the 
polymorphism at codon 72 could affect the mutant-p53 interaction134 and it was 

consequently found that mutant p53 R72, which bound more strongly to p73, 

resulted in a worse response to chemotherapy584. However, other studies could not 
find a link between the polymorphism and p73 binding580 or therapy response585. 

Several reports agree, that the core domain of p53575,576,579,581 interacts with the DNA 

binding domains of p63576 and p73579, however the extent to which p53’s DNA 
binding conformation influences this interaction has been controversial. While some 
groups reported that both conformational and DNA contact mutants (R273 and 
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R248) interacted with p63 and p73576,578, other groups found a correlation of the DNA 
binding domain unfolding (measured by reactivity with the pAb240 antibody) with the 

extent of interaction with p63 and p73 and reported DNA contact mutants to bind 
less efficiently134,575. Even wild-type p53, which was experimentally unfolded was 
shown to bind p73 and the conformation of the DNA binding domain was postulated 
as only determinant of the interaction581. Although the interaction is taking place at 

the core domain, the C-terminus of mutant p53 was required for promoting invasion 
towards EGF via TAp63586. The repression of TAp63α-activated Luciferase was also 

affected by deletion of mutant p53’s C-terminus586, suggesting that other proteins 
binding here or posttranslational modifications taking place in this region could play a 
role in the repression of TAp63α. 

More recently, it was reported that the structural mutations in the DNA binding 

domain (such as R175H and R282) exposed an aggregation motif located at amino 
acids 251 to 257 in the DNA binding domain. This motif, which is located on the S7 
β-strand, is buried in the wild-type conformation and its exposure led to aggregation 
of p53 and also p63 and p73, which contain the same motif within their DNA binding 
domains. Deletion of the aggregation motif and a single point mutation at isoleucine 
254 within the motif prevented this aggregation and alleviated mutant p53 induced 
repression of p63 and p73577. Aggregation of the thermodynamically relatively 
unstable wild-type p53 DNA binding domain had previously been observed in vitro587. 
The kinetics of p53 aggregation in vitro was determined to follow two-step sequential 

first order lag kinetics. The first rate-limiting step was found to be the formation of an 
aggregation competent state, followed by a rapid second polymerisation step588. 
Mutant p53 could also co-aggregate wild-type p53, however the kinetic analysis 

suggested that aggregates of mutant p53 could not serve to nucleate wild-type p53 

aggregation589. While it is possible that aggregation is involved in the dominant 
negative and gain of function mechanism of mutant p53590, it is important to consider 
that most aggregation studies were carried out in vitro and p53 aggregates are only 

rarely observed in cells. 

Patients who carry tumours harbouring p53 mutations, commonly face worse clinical 
prognosis due to therapy resistance and more invasive tumour behaviour591-593. Since 
p63 and p73 heterozygous deletions in the p53+/- mouse led to a dramatic increase 
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in metastasis468, it is possible that suppression of p63 and p73 by mutant p53 is 
responsible for the increase of metastasis observed in the mutant p53 knock-in 

mice540,541. Indeed, p63 and p73 were found to be bound to R172H p53 and silenced 
in tumour cells derived from the R172H knock-in mice540. It is however not clear, 
whether the extent of mutant p53 binding fully correlates with the extent by which 
p63/p73 function is repressed as observed in one study575. After all, conformational 

and DNA contact mutants both show a gain of function for example in mouse 
models, although the p53R172H/+ knock-in mouse showed more metastasis than the 

p53 R270H/+ knock-in541.  

More evidence on how mutant p53 could induce invasion and metastasis through 
inhibition of p63 was collected recently: Mutant p53 relieved the TAp63-mediated 

suppression of α5β1 integrin and EGFR recycling, stimulating invasion towards 

EGF586. A similar effect of mutant p53 on Met recycling and invasion towards HGF 
was observed later, although this was not strictly TAp63 dependent594. Moreover, 
induced by TGFβ, SMAD bridges a complex of mutant p53 and p63, which results in 
repression of SHARP1 and Cyclin G2, associated with higher metastasis595. 
Furthermore, mutant p53 represses p63-induced expression of miR-205, which 
controls the ZEB-1 transcription factor, regulating epithelial to mesenchymal 
transition596.  

However, expression of mutant p53 does not simply reflect loss of p63 and p73, 
exemplified by the tumour spectra of the double heterozygous p53+/-;p63+/- and 

p53+/-;p73+/-mice, which are very different from the p53+/R172H mouse which did not 
develop any  squamous cell carcinoma or hepatocellular carcinoma468. But mutant 
p53 also binds to other proteins than p63 and p73. Mutant p53 was recently 

reported to disrupt the structure of mammary epithelial cells by upregulating the 

mevalonate pathway via the SREBP transcription factors597. Some functions of 
mutant p53 were also transcription factor independent: It was for example shown 
recently that mutant p53 interacts with Nardilysin NRD1 to promote invasion towards 

HB-EGF598. Analysing the mechanisms, by which mutant p53 induces the 
aggressiveness of cancers is crucial in light of cancer therapy. Despite the mouse 
survival curves of p53 null and mutant p53 mice being similar, the induced 
metastasis and possibly also chemoresistance would certainly lead to a poorer 
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treatment prognosis in patients with mutant p53-containing tumours and it would 
therefore be beneficial to be able to silence mutant p53 activity. 

1.7  Targeting p53 for cancer treatment. 

Considering p53’s multiple role in eliminating faulty cells via apoptosis or 
senescence, it is clear that it would be beneficial for cancer patients to activate p53 

in their tumour cells in order to trigger their destruction. Classic chemo- or 
radiotherapy relies on p53-induced apoptosis599: While radiation induces DNA strand 
breaks, drugs such as the pyrimidine analogues 5-Fluorouracil (thymidine) and 
Gemcitabine (cytidine) or the DNA intercalating Doxorubicin and DNA-crosslinking 

agent Cisplatin interfere with DNA synthesis and mitosis, all of which leads to p53 
activation. Since tumour cells are derived from normal cells, it has been challenging 
to develop therapy strategies, which discriminate between tumour and healthy cell 
and only target the tumour cells. During systemic delivery of cytotoxic drugs, p53 
also induces apoptosis in healthy dividing tissues such as the intestinal epithelium, 
the pluripotent cells in the bone marrow and hair follicles, leading to nausea, 
neutropenia and hair loss. It is therefore a priority to develop more targeted therapies 
with less severe side effects. The fact that every tumour cell has altered its p53 
pathway in some way can be used to discriminate tumour cells from normal cells and 
makes p53 an ideal drug target. 

Initially, it was not clear whether restoration of p53 without any further activating DNA 
damage would lead to regression of tumours. Mouse models demonstrated that p53 
restoration even in advanced in tumours could lead to an impressive tumour 
regression. A switchable p53-knockin triggered apoptosis of tumour cells in the Eµ-

Myc lymphoma model600 and even brief reactivation of p53 expression (via 
conditional RNA interference) in a liver carcinoma model led to senescence and 

clearance of tumour cells by macrophages601. Restoring p53 in p53 null animals, 
which had developed spontaneous sarcomas and lymphomas also led to tumour 

regression and triggered apoptosis in lymphomas and senescence in sarcomas602. 
Thus, although the specific response to p53 restoration seems to depend on the 
tissue of origin, in all cases, tumours responded and regressed, suggesting that 

restoration of p53 is a strategy worth pursuing. 
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1.7.1  Tumours expressing wild-type p53 

Tumours that retain wild-type p53 suppress the transcription factor’s activity by other 
means, for example preventing p53’s accumulation by MDM2 overexpression. The 

p53-MDM2 interaction is well defined163,511 and inhibiting MDM2, which is amplified in 
7% of all cancers525 would alleviate the constant p53 degradation. Indeed, blocking 

the p53 binding site in MDM2 was shown to be sufficient for activation of p53603. A 
small molecule MDM2 inhibitor called Nutlin-3a, displacing p53 at MDM2’s 
hydrophobic pocket was developed by Roche and shown to reduce tumourigenicity 
in xenografts604 and is currently in Phase I clinical trials. Efforts have been made by a 

number of groups to develop other compounds, also targeting the p53-MDM2 
interaction. While computational design led to the development of compound 

YH265605, another group successfully developed spirooxindole derivatives, which 
showed promising activity in mouse models and are scheduled to enter clinical trials 
later this year606. 

A reciprocal inhibitor, binding to the MDM2-binding domain in p53, called RITA has 
also shown anti-tumour activity in xenografts607. However, the specificity of this 
compound is still under debate, since it was also found to activate a DNA-damage 
pathway exclusively in wild-type p53 cells608. 

Systemic treatment with an MDM2-inhibitor would inhibit MDM2 and thus possibly 
activate p53 in all tissues. Thus, concerns over toxicity of this strategy were voiced, 

particularly after modelling this scenario in the mouse: An MDM2 null mouse with 
switchable p53 showed extensive damage to bone marrow, thymus, spleen and 
intestinal epithelium after switching p53 on609, suggesting that MDM2-inhibitors could 

induce severe side effects similar to chemotherapy. However, a further mouse model 

with a hypomorphic MDM2 allele demonstrated that reduction of MDM2 up to 50% 
was tolerated610. Importantly, the extent of MDM2 reduction was sufficient to convey 
resistance to intestinal adenoma formation in the APCmin/+ mouse610. Hence, side 

effects seem to depend on the extent of MDM2 inactivation and a level of inhibition, 

which is tolerated, could still exhibit anti-tumour activity. In line with these preclinical 
models, updates from the phase I clinical trials with the Nutlin-3a-derived compound 

RG7112 in haematological malignancies and solid tumours suggest that toxicity is 



   

 89 

limited. It remains to be determined, whether long-term treatment with MDM2-
inhibitors could incur other unpleasant side-effects, since a mice with slightly 

hyperactive p53 showed premature aging611. 

Instead of targeting the MDM2-p53 interaction, a screen for inhibitors of MDM2’s 
Ubiquitin E3 ligase activity identified a number of compounds called HLI89612, which 
inhibit MDM2 by binding to its RING domain and proved to be a successful 

alternative approach for stabilising p53613. 

 

 
Figure 1-27: Treatment strategies for stabi l is ing wi ld-type p53. 
Different strategies can be implemented to stabilise wild-type p53, either 
disrupting p53-MDM2 interaction or inhibiting MDM2’s ubiquitination 
activity. 
 

 

 
Another way to release MDM2’s negative regulation of p53 is via ribosomal stress, 
since ribosomal proteins are known to interact with MDM2’s acidic domain and 

inhibit its ubiquitination activity. Inhibition of RNA Polymerase I, which leads to 
nucleolar disruption, was recently shown to activate p53 and selectively kill B-cell 
lymphoma cells614. Furthermore, the RNA polymerase II inhibitor Actinomycin D was 

reported to induce a specific p53 response at low doses without triggering DNA 

damage615. Promisingly, treatment of tumour cells resulted in p53-dependent 
apoptosis, while normal fibroblasts only underwent a temporary G1 arrest615. Many 

systemic therapies seem to induce a different response in normal tissue than in 
tumour tissue. Nutlin-3a treatment was shown to induce a reversible a cell cycle 
arrest in normal tissue616, while induction of apoptosis could be observed in 
tumours617. Tumour cells can be considered on the brink of death due to 
accumulation of genomic alterations, and the high level of stress signalling in this 
environment might lead to a different activation of p53 than in unstressed normal 
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tissues. Thus, treatment might activate p53 to induce apoptosis only in cancerous 
cells but not normal tissue618. 

In line with the drug mechanism, the major determinant for response to MDM2-
inhbitors is the p53 status619. In fact, since mutant p53 can also be degraded by 
MDM2, treatment of mutant p53 lesions could potentially lead to an increase in 
mutant p53 levels544. Moreover, even patients with wild-type p53 tumours could 

harbour p53 mutations in sun-exposed skin620 or premalignant skin lesions such as 
moles621, and the dormant mutant p53 could potentially be activated by MDM2 

inhibitors.  

Alongside mutation of p53622, overexpression of MDM2’s binding partner MDMX also 
conveys resistance to treatment with MDM2-inhibitors623. Surprisingly, although the 

N-termini of MDM2 and MDMX are very similar, Nutlin-3a does not interact with 
MDMX and it would therefore be useful to develop an inhibitor targeting both MDM2 
and MDMX624. MDMX is frequently amplified in retinoblastoma and two different 
MDMX inhibitors were developed, which were able to activate p53 and induce 
apoptosis625,626. Furthermore, 65% of melanomas overexpress MDMX and a 
stabilised α-helical peptide, derived from the p53 N-terminus627, was recently shown 
to efficiently inhibit MDMX, reactivate p53 and sensitise melanomas to cytotoxic 
therapy628. 

1.7.2  Tumours expressing no p53 

Not all cells harbouring a mutation in their p53 gene actually express a full-length p53 
protein. While 74% of mutations recorded in the p53 database are missense 
mutations, 8% are nonsense mutations and 9% of mutations lead to a frameshift524. 

Even if truncated proteins might be expressed, these fragments are generally thought 

not to carry any p53 activity and it can therefore be assumed that around 8.5% of all 
cancers (if 50% of cancers harbour a p53 mutation, of which 17% contain a 
frameshift or nonsense mutant) are functionally deficient for p53. 

An obvious strategy to treat p53-null tumours is to reintroduce wild-type p53 by gene 
transfer. The first attempt was made in 1996, when a p53 gene in a retroviral vector 
was locally injected into non small lung cancer629. While no adverse effects were 



   

 91 

observed, gene integration efficacy was poor. The idea was further developed and a 
Phase I clinical trial launched to treat gliomas by injecting p53 in an adenoviral 

vector630. Delivery to every tumour cell transpired to be difficult to achieve and no 
effect on survival could be noted. However, treatment in head and neck squamous 
carcinoma was more successful, particularly in combination with radiotherapy631 and 
the p53 adenovirus was approved for drug administration in China and launched 

under the name of Gendicine632.  

A different approach was developed at the same time, also involving viruses, but this 

time making use of the fact that only the tumour cells lack p53 expression, while the 
normal tissue contains wild-type p53. The investigators engineered an adenovirus to 
lack the E1B-55K gene, which is required to target p53 for degradation. Usually viral 

gene transfer will activate p53 and the cell cycle will stop, preventing virus replication. 

Therefore the adenovirus needs to inactivate the p53 gene in the infected cell, which 
it does by inducing degradation of the p53 protein via the Ubiquitin-ligase complex of 
E1B-55K and E4orf6294. Thus, a virus lacking the p53-silencing mechanism will not 
be able to replicate in wild-type p53-containing cells. However, it will be able to 
replicate in cells lacking p53, i.e. tumour cells, and lead to their lysis633. Indeed, the 
engineered virus named Onyx 015 showed promising tumour-restricted destruction 
in Phase II clinical trials in head and neck cancers634 and was found to be synergistic 
with Cisplatin and 5-FU635. However, it was noted that Onyx 015 activity did not 
entirely correlate with p53 status636, yet the virus still specifically targeted tumour 

cells, possibly due to differences in their ability to export viral RNA compared to 
normal cells637. The main problem with Onyx 015, which did not live up to its 
expectations in Phase III trials, was the limited life cycle due to deletion of the E1B 

55K protein638. Nevertheless, the concept was further developed and a similar 

oncolytic virus called H101 was approved in China639.  

Strikingly, the MDM2 inhibitor Nutlin-3a also showed some efficacy in p53 null cells. 
Since the p53-family member p73 can bind to MDM2 as well and it was proposed 

that Nutlin-3a treatment releases and induces p73640-643. MDM2 inhibition might 
therefore not be restricted to wild-type p53 tumours. Nutlin-3a could also improve 
response to chemotherapy via p73 in cells expressing mutant p53644,645 despite the 
concerns of stabilising mutant p53 by the MDM2-inhibitor. Indeed, Nutlin-3a was 
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shown to promote apoptosis independent of p53 in combination with Gemcitabine in 
cholangiocarcinoma cells644 and Doxorubicin in hepatocellular carcinoma cells645. 

1.7.3  Tumours expressing mutant p53 

The majority of p53 mutations in cancers (74%) are missense mutations and result in 
expression of a full-length protein with a single amino acid exchange524. In most 

cases, this mutant p53 protein will be present in the tumour, mostly to very high 
levels, but not in any other tissues, rendering it an ideal target for therapy 
discriminating between normal and neoplastic tissue. Furthermore, since the mutant 
p53 protein confers more advantage to the tumour than just a pure p53 loss, 
abrogation of mutant p53 already leads to reduced tumour malignancy646. 

With mutant p53 accumulating to high levels in tumour cells, p53-vaccination was 

attempted as cancer therapy. Since p53-specific T-lymphocytes were observed in 
the blood of cancer patients, p53 expressed to high levels seemed to be 
immunogenic, despite its presence at low levels in normal tissue. Mouse models 
showed remarkable tumour regression induced by p53-specific cytotoxic T-
lymphocytes and T-helper cells647,648. p53 peptides were successfully used to 
stimulate a specific response against p53 in colorectal cancer patients649, however 
the tumour response was disappointing. Instead, immunising with multiple epitopes, 
for example p53 in combination with Survivin and Telomerase at once seems to be 
more promising650. A challenge for this therapy approach is that combination with 

chemo- or radiotherapy is limited by the factor that cytotoxic therapy tends to be 
immunosuppressant. 

A fascinating observation about mutant p53 folding was made by structural chemists 

in that a second mutation could refold the DNA binding domain of certain structural 

mutants to adopt a wild-type like conformation651. Based on these observations, a 
small molecule called PhiKan083 was developed, which stabilises the conformation 
of the p53 Y220C mutant652. Although this codon is not a “hot-spot” mutant, the 

Y220C mutation accounts for 1.8% of all somatic mutations reported in the p53 
database524. Residue 220 lies outside the DNA-binding surface, peripheral to the β-
sandwich with the mutation resulting in the formation of a large destabilising cleft, 

which is an ideal target for the development of small binding molecules653. 
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However, ideally, mutant p53 restoring drugs could be applied to more than one 
specific mutation. The low molecular weight molecule PRIMA-1 was identified in 

functional screen as suppressing growth of mutant p53 cells654. Strikingly, this 
compound reactivates a range of mutants, of both contact and conformational kind. 
The initial screen was performed using a p53-null cell line stably expressing the p53 
R273H mutant. While restoration of DNA binding domain folding by a binding 

molecule is understandable, it is surprising, that this molecule also activates the 
transcriptional activity of DNA contact mutants such as p53 R273H. One explanation 

might be, that PRIMA induces cell death independent of transcriptional activation by 
promoting Bax translocation to the mitochondria655. Furthermore, PRIMA-1 was 
shown to induce transcription of apoptotic genes such as caspase-2, Bax and Noxa 
in mutant p53 cells656-658. Decomposition products of the PRIMA-1 drug were found 

to alkylate cysteine residues in the p53 DNA-binding domain, providing a mechanism 
for stabilisation of conformational mutants659. A PRIMA-1 analogue, PRIMA-1MET, in 
combination with Cisplatin showed convincing tumour regression of xenografts 
harbouring both p53 R175H and p53 R273H660 and the drug is currently in Phase I/II 
trials in haematological malignancies.  

Thiosemicarbazone compounds were recently shown to inhibit tumour growth in 
xenografts in a mutant p53 dependent mechanism. p53 R175H was reactivated, 
possibly by chelating the zinc ion, which is required to maintain the structure of p53’s 
DNA binding domain and is lost as a result of the R175H mutation661. 

A different screen in A431 cells, which express p53 R273H, identified the small 
molecule RETRA, which was found to stimulate induction p21 and PUMA. This drug 
seems to delay tumour formation by releasing p73 from its repression by mutant 

p53662.  

A different approach to treating mutant p53 (or p53 null) tumours is by taking 
advantage of their inability to induce p53 in a setting termed cyclotherapy. Treatment 
with MDM2-inhibitors such as Nutlin-3a or low dose Actinomycin D results in a 

reversible G1 arrest in normal tissue, however the tumour cells lacking wild-type p53 
continue to proliferate. Therapy targeting dividing cells, such as the spindle poison 
paclitaxel now only affects tumour cells, while eliminating the adverse effects on the 
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intestinal epithelium and bone marrow, since these cells are temporarily arrested. 
Consistent with this model, Nutlin-3a pre-treatment protected mice from PLK1-

inhibitor induced neutropenia663 and importantly did not compromise the response of 
tumour cells to Paclitaxel664. Pre-clinical results are looking promising and further 
studies are under way to determine the best combination of p53-activator as tissue 
protector and mitotic poison as tumour killer665,666. 

1.8  Objectives 

p53 plays a central role in both tumour formation and cancer therapy. Furthermore, 
p53 activity in the wrong moment (such as induction of apoptosis of healthy cells) as 

well as inactivity, when its actions are needed (such as letting cells with genomic 
alterations multiply) can have serious consequences. p53 can take up some 
transcription-independent functions, however most of its actions are controlled via 
activating and repressing a plethora of different target genes. Much of p53’s activity 
is regulated by complex sets of posttranslational modifications. While 
phosphorylation, acetylation and ubiquitination of p53 have been extensively studied, 
the consequences of p53 SUMOylation are still a matter of debate. Particularly, the 
modification with SUMO-2/3, which is more dynamically conjugated and 
deconjugated and available in a larger free pool than its close relative SUMO-1, is not 
well understood. Therefore, this study is aimed at determining how SUMO-2/3 
conjugation of p53 could be promoted, particularly what role the Ubiquitin- and 
Nedd8 E3 ligase MDM2 plays in this pathway, and what the consequences of 
SUMO-2/3 modification are on p53’s activity. 

Half of all tumour cells do not retain wild-type p53 and expression of mutant p53 is 

often associated with a poor prognosis. Several studies have suggested that 
phosphorylation of mutant p53 can modify its oncogenic activity573,667,668, but the 

impact of other modifications such as SUMOylation on mutant p53 activity have not 
been explored. In order to block the detrimental gain of function conferred by mutant 

p53, it is criticial to understand the mechanisms of function of mutant p53 in more 
depth, including its interaction with the family members p63 and p73. While multiple 
studies have shown mutant p53 in complex with p63 and p73, it is not clear where 

this interaction takes place, how binding of the mutant p53 proteins translate into 
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repression of p63 and p73 or whether this interaction can be regulated. Furthermore, 
most studies have focused on the interaction with the TA isoforms, however most 

tumours express the ∆N isoforms of p63 and p73 at much higher levels. Although 
initially treated as pure inhibitors of the TA isoforms, identification of additional 
transactivation domains have raised the complexity of roles that the ∆N isoforms can 
play. 

MDM2 inhibitors such as Nutlin-3a not only lead to accumulation of p53, but 
concomitantly to an increase in MDM2 levels. In the light of MDM2-inhibitors moving 

into the clinic, the role of MDM2 binding to p63 and p73 and its impact on their 
activity is important to bear in mind. Again, while TA isoforms were investigated 
previously, no study to date has addressed the interaction of MDM2 with the ∆N 

isoforms of p63 and p73. Furthermore, the impact of MDM2 on the mutant p53/p63 

or mutant p53/p73 complexes is entirely unknown. 

In brief, the main goals of this work were to 
• Analyse the mechanism of SUMO-2/3 modification of p53 (Chapter 3). 
• Assess the consequences of SUMO-2/3 conjugation on p53 activity (Chapter 4). 
• Determine the interplay between mutant p53, p63/p73 and MDM2 (Chapter 5). 



 

 
 

 

 

 

 

 

 

2 Materials and Methods 
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2.1  Materials 

2.1.1  General Reagents 

 
Reagent Source 
Acetonitrile Sigma-Aldrich 
Acrylamide 29:1 (40%w/v) National diagnostics 
Agar  Sigma-Aldrich 
Agarose Sigma-Aldrich 
Ampicillin Sigma-Aldrich 
APS (Ammonium persulfate) Sigma-Aldrich 
Bacto Tryptone BD Biosciences 
Benzonase Sigma-Aldrich 
Blasticidin Sigma-Aldrich 
Blasticidin S Hydrochloride Sigma-Aldrich 
BSA (bovine serum albumin) Sigma-Aldrich 
Calcein Life Technologies 
Complete Protease inhibitor cocktail Roche 
Cycloheximide  Sigma-Aldrich 
DAPI (4',6-diamidino-2-phenylindole) Sigma-Aldrich 
DMEM (Dulbecco’s modified eagle medium) Life Technologies 
DMSO (dimethyl sulfoxide)  Sigma-Aldrich 
DTT (dithiothreitol) Sigma-Aldrich 
EDTA Sigma-Aldrich 
Effectene Qiagen 
Ethanol Thermo Fisher Scientific 
Fetal Calf Serum GE Healthcare 
Fibronectin Sigma-Aldrich 
Formaldehyde 16% w/v TAAB labs 
Formic Acid Sigma-Aldrich 
GeneJuice Novagen, Merck 
Glutamine Life Technologies 
HLI 373 A Weissman 
Iodacetamide  Sigma-Aldrich 
IPEGAL CA-630 (NP-40 equivalent)  Sigma-Aldrich 
Kanamycin  Sigma-Aldrich 
KCl  Thermo Fisher Scientific 
KH2PO4  Thermo Fisher Scientific 
Leptomycin B  Sigma-Aldrich 
Methanol  Thermo Fisher Scientific 
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MG132 Sigma-Aldrich 
MgCl2 Sigma-Aldrich 
Na2HPO4 Thermo Fisher Scientific 
NaCl Thermo Fisher Scientific 
Nutlin-3a Sigma-Aldrich 
Opti-MEM Life Technologies 
Orange G Sigma-Aldrich 
Penicillin-Streptomyicin Life technologies 
PI (Propidium Iodide) Sigma-Aldrich 
Pierce ECL (enhanced chemiluminescence) reagent  Thermo Fisher Scientific 
Polybrene Sigma-Aldrich 
SDS (sodium dodecyl sulphate)  Thermo Fisher Scientific 
TEMED (Tetramethylethylenediamine) Sigma Sigma-Aldrich 
Trichloroacetic acid Sigma-Aldrich 
Triethyl Ammonium Bicarbonate buffer (TEAB) Sigma-Aldrich 
Tris-HCl Sigma-Aldrich 
Triton X-100 Sigma Sigma-Aldrich 
Trypsin 2.5% Life Technologies 
Tween-20 Sigma Sigma-Aldrich 
Urea Sigma-Aldrich 
Vectashield Hard Set Vector Laboratories 
Whatman Nitrocellulose membrane Protran 0.2µm VWR 
Yeast Extract Sigma-Aldrich 
β-Mercaptoethanol  Sigma-Aldrich 

Table 2-1: General Reagents 
 

2.1.2  Solutions and Buffers 

Lysogeny Broth (LB) 
 1% Bacto-Tryptone 
 86 mM NaCl 
 0.5% Yeast Extract 

 
LB Agar 

 1% Bacto-Tryptone 
 86 mM NaCl 
 0.5% Yeast Extract 
 1.5% Agar 
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Phosphate Buffered Saline (PBS) 
 170 mM NaCl 
 3.3 mM KCl 
 1.8 mM Na2HPO4 
 10.6 mM KH2PO4 
 pH 7.4 

 
Tris Buffered Saline (TBS) 

 25 mM Tris-HCl pH 7.4 
 147 mM NaCl 
 5 mM KCl 

 
TBS-Tween 

 25 mM Tris-HCl pH 7.4 
 147 mM NaCl 
 5 mM KCl 
 0.1% Tween 20 

 
Tris-EDTA (TE) 

 10mM Tris-HCl pH 8.0 
 1mM EDTA 

 
3x SDS Sample Buffer 

 15% β-Mercaptoethanol 
 30% Glycerol 
 9% SDS 
 188 mM Tris pH 6.8 
 0.1% Orange G 

 
SDS-PAGE Running Buffer 

 0.1% SDS 
 192 mM Glycine 
 25 mM Tris-HCl pH 8.3 
 

Electroblotting Buffer 
 192 mM Glycine 
 25 mM Tris-HCl pH 8.3 
 20% Methanol 

 
NP-40 Buffer 

 150 mM NaCl 
 50 mM Tris pH 8.0 
 1% IPEGAL (NP-40 equivalent) 

 
HUNT Buffer  

 20 mM Tris pH 8 
 120 mM NaCl 
 1 mM EDTA 
 0.5% IPEGAL 
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SUMO assay lysis buffer 1 

 1% SDS 
 25 mM Tris-HCl pH 7.4 
 147 mM NaCl 
 5 mM KCl 

 
SUMO assay lysis buffer 2 

 1.5% Triton X-100 
 25 mM Tris-HCl pH 7.4 
 147 mM NaCl 
 5 mM KCl 
 

Resolving Gel 
 8-12% acrylamide 
 375 mM Tris-HCl pH 8.8 
 0.1% SDS 
 0.1% APS 
 50 mM TEMED 

 
Stacking Gel 

 5% acrylamide 
 0.4% SDS 
 500 mM Tris pH 6.8 

 

2.2  Methods 

2.2.1  Cells 

H1299 cells (p53-null human non-small-cell lung adenocarcinoma cells), HCT116 
cells with and without wild-type p53 (human colorectal carcinoma cells), A2780 cells 

(wild type p53 expressing ovarian cancer cells), U2OS cells (wild type p53 expressing 
human osteosarcoma cells), Hek293T cells (human embryonic kidney cells, 
transformed with SV40 large T antigen) and Phoenix cells expressing the ecotropic 

receptor were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 
supplemented with 10% foetal calf serum, 2 mM glutamine and antibiotics.  

2.2.2  DNA preparation 

Competent E. coli DH5α bacteria (Molecular Services, Beatson Institute) were 
transformed with plasmid DNA by mixing 0.5 µg DNA with 50 µl competent bacteria. 

After incubation on ice for 30 min, the bacteria-DNA mix was heat-shocked at 42ºC 
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for 45 seconds. 200 µl LB was added and incubated shaking at 37ºC for an hour. 
The bacteria suspension was spread on LB agar plates containing 100 µg/ml 

Ampicillin or 50 µg/ml Kanamycin upside down over night at 37ºC to grow colonies.  

Single colonies were picked and left shaking over night at 37ºC in LB with 100 µg/ml 
Ampicillin or 50 µg/ml Kanamycin using 5 ml for small scale DNA preparation (mini 
prep) and 200 ml for large scale DNA preparation (maxi prep).  

Small-scale preparation of DNA was performed by the Beatson Molecular 
Technology Services with the QIAgen BioRobot 9600 according to the QIAprep 96 

Plus Miniprep protocol. Large-scale DNA preparations were carried out by the 
Beatson Molecular Technology services using the Invitrogen Purelink plasmid filter 
purification kit according to the manual. 

2.2.3  Plasmids 

The following plasmids were used in this study: 

Plasmid Source 
pcDNA3 empty Life Technologies 
pcB6+ empty from L Lamis 
pcDNA3 p53 (72R) published413 
pcDNA3 p53 (72P) site-directed mutagenesis 
pcDNA3.1 mouse p53 from K Ryan 
pcDNA3 p53 K386R published413 
pcDNA3 p53 E388A published413 
pWZLneo p53 from K Ryan 
pWZL neo p53 K386R site-directed mutagenesis 
pWZL neo p53 E388A site-directed mutagenesis 
pWZL blast p53 from A Vigneron 
pWZL blast p53 R175H site-directed mutagenesis 
pWZL blast p53 R273H site-directed mutagenesis 
pWZL p53 R248W site-directed mutagenesis 
pWZL p53 I254R site-directed mutagenesis 
pcB6+ flag p53 (72R) published544 
pcB6+ flag p53 (72P) published669 
pcB6+ p53 ∆I published669 
pcB6+ p53 ∆II published669 
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pcB6+ p53 ∆NLS (L305A, R306A, L319-321A) published413 
pcB6+ p53 ∆NES (L348A, L350A) published413 
pcB6+ flag p53 R175H published544 
pcB6+ p53 R273H published544 
pcB6+ flag p53 I254R site-directed mutagenesis 
pcB6+ flag p53 C277Y site-directed mutagenesis 
pcB6+ flag p53 R248W site-directed mutagenesis 
pcB6+ flag p53 R175H I254R site-directed mutagenesis 
pcB6+ p53 R273H I254R site-directed mutagenesis 
pcB6+ flag p53 ∆96-312 site-directed mutagenesis 
pcB6+ flag p53 R175H ∆95-150 site-directed mutagenesis 
pcB6+ flag p53 I254R ∆150-200 site-directed mutagenesis 
pcB6+ flag p53 R175H ∆201-250 site-directed mutagenesis 
pcB6+ flag p53 R175H ∆251-312 site-directed mutagenesis 
pcB6+ flag p53 R175H ∆251-257 site-directed mutagenesis 
pcB6+ p53 ∆TET  = pcB6+ p53 ∆NES 
pcB6+ p53 R175H ∆TET site-directed mutagenesis 
pcB6+ p53 R273H ∆TET site-directed mutagenesis 
pcB6+ flag p53 R175H ∆347 published586 
pcB6+ flag p53 R175H ∆363 mutated by L. Jobeili 
pcB6+ flag p53 R175H ∆370 published586 
pcB6+ flag p53 R175H ∆380 mutated by L. Jobeili 
pcB6+ p53 R273H ∆347 published586 
pcB6+ p53 R273H ∆363 mutated by L. Jobeili 
pcB6+ p53 R273H ∆370 published586 
pcB6+ p53 R273H ∆380 mutated by L.Jobeili 
 
pCHDM1A MDM2 published113 
pCHDM1A MDM2 ∆58-89  published113 
pCHDM1A MDM2 ∆AD (∆222-437) published670 
pCHDM1A MDM2 ∆RING (1-440) published670 
pCHDM1A MDM2 C464A published136 
pCHDM1A MDM2 NoLS (466-473 Ala) published213 
pCHDM1A MDM2 ∆AD NoLS site-directed mutagenesis 
pCHDM1A MDM2 C305F site-directed mutagenesis 
pCHDM1A MDM2 C319R site-directed mutagenesis 
pCHDM1A MDM2 ∆AD K185R site-directed mutagenesis 
pCHDM1A MDM2 ∆AD ∆NLS (181T 183L) site-directed mutagenesis 
pCHDM1A MDM2 ∆9 (483 stop) published174 
pCHDM1A MDM2 ∆AD SIM1 (L107S V110D) site-directed mutagenesis 
pCHDM1A MDM2 ∆AD SIM2 (L199R I202R) site-directed mutagenesis 
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pCHDM1A MDM2 ∆AD SIM1+2  
(L107S V110D L199R I202R) 

site-directed mutagenesis 

pCHDM1A MDM2 ∆AD ∆9 (483 stop) site-directed mutagenesis 
pCHDM1A MDM2 ∆58-89 C464A site-directed mutagenesis 
pcDNA3 flag MDM2 ∆AD site-directed mutagenesis 
peGFP MDM2 cloned by R. Ludwig 
peGFP MDM2 ∆AD (∆222-437) site-directed mutagenesis 
peGFP MDM2 C464A site-directed mutagenesis 
peGFP MDM2 ∆9 site-directed mutagenesis 
peGFP MDM2 ∆AD ∆9 site-directed mutagenesis 
pWZL Blast MDM2 from K Ryan 
pWZL Blast MDM2 ∆AD site-directed mutagenesis 
pcDNA3 myc MDMX published671 
 
pcDNA3 p14ARF published672 
flag-L11 published188 
pMT123 HA-Ubiquitin from R Hay544 
pcDNA3 HA-SUMO-3 from R Hay673 
pcDNA3 HA-SUMO-1 from R Hay393 
pcDNA3 HA-SUMO-3 QFI (Q30A F31A I33A) site-directed mutagenesis 
pcDNA3 HA-SUMO-3 K11R site-directed mutagenesis 
p53-SUMO-3 from S Carter 
p53-SUMO-3 QFI (Q30A F31A I33A) site-directed mutagenesis 
pcDNA3 SV5-Ubc9 from R Hay 
pCMX PML1 published674 
pBOS YFP-RNF4 from R Hay675 
pCMV CD20 published676 
 
pcDNA3 TAp63α from C de Fromentel677 
pcDNA3 HA-TAp63α from G Melino678 
pcDNA3 HA-∆Np63α from G Melino679 
pcDNA3 HA-TAp63α ∆70-161 site-directed mutagenesis 
pcDNA3 HA-TAp63α ∆161-261 site-directed mutagenesis 
pcDNA3 HA-TAp63α ∆263-361 site-directed mutagenesis 
pcDNA3 HA-TAp63α ∆362-461 site-directed mutagenesis 
pcDNA3 HA-TAp63α ∆462-561 site-directed mutagenesis 
pcDNA3 HA-TAp63α ∆QQ (∆398-411) site-directed mutagenesis 
pcDNA3 HA-TAp63α ∆DBD (∆138-319) site-directed mutagenesis 
pcDNA3 HA-∆Np63α ∆DBD (∆84-265) site-directed mutagenesis 
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pcDNA3 HA-TAp73α from G Melino479 
pcDNA3 HA-TAp73α Simian published482 
pcDNA3 HA-∆Np73α from G Melino 
pcDNA3 HA-TAp73α ∆47-130 site-directed mutagenesis 
pcDNA3 HA-TAp73α ∆DBD (∆131-307) site-directed mutagenesis 
pcDNA3 HA-TAp73α ∆308-386 site-directed mutagenesis 
pcDNA3 HA-TAp73α ∆387-500 site-directed mutagenesis 
pcDNA3 HA-TAp73α ∆131-223 site-directed mutagenesis 
pcDNA3 HA-TAp73α ∆224-307 site-directed mutagenesis 
pcDNA3 HA-∆Np73α ∆DBD (∆82-258) site-directed mutagenesis 
 
Bax Luciferase published482 
PG13 Luciferase published30 
BPAG1 Luciferase from G Melino680 
K14 Luciferase from G Melino679 
TK Renilla published586 

Table 2-2: Plasmids 
 

2.2.4  Site-directed Mutagenesis 

Site-directed mutagenesis was performed using the KOD Hot Start Master Mix 
(MERCK Biosciences). 60 ng of plasmid DNA was mixed with 10 µM forward and 
reverse mutagenesis primer and 25 µl KOD Master Mix (containing reaction buffer 
with MgSO4, deoxynucleotides and KOD Hot Start Polymerase) in a 50 µl reaction. 

PCR-cycles were run according to the following programme: 2 min 95º hot start and 
20 cycles of 20 sec denaturation at 95º, annealing at 55º and 4 min elongation at 
70º. Mutagenesis primers were synthesised and purified by Eurofins MWG Operon. 

p53 K386R fw aaa ctc atg ttc agg aca gaa ggg cct gac 
p53 K386R re gtc agg ccc ttc tgt cct gaa cat gag ttt 
p53 E388A fw ctc atg ttc aag aca gca ggg cct gac tca gac 
p53 E388A re gtc tga gtc agg ccc tgc tgt ctt gaa cat gag 
p53 72P fw gag gct gct ccc ccc gtg gcc cct gc 
p53 72P re gca ggg gcc acg ggg gga gca gcc tc 
p53 R175H fw acg gag gtt gtg agg cac tgc ccc cac cat gag cgc tgc t 
p53 R175H re agc agc gct cat ggt ggg ggc agt gcc tca caa cct ccg t 
p53 R273H fw act ggg acg gaa cag ctt tga ggt gca tgt ttg tgc ctg tcc tgg g 
p53 R273H re ccc agg aca ggc aca aac atg cac ctc aaa gct gtt ccg tcc cagt 
p53 I254R fw gaa ccg gag gcc cat cct cac ccg cat cac act gga aga ctc c 
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p53 I254R re gga gtc ttc cag tgt gat gcg ggt gag gat ggg cct ccg gtt c 
p53 C277Y fw gag gtg cgt gtt tgt gcc tat cct ggg aga gac cgg cgc ac 
p53 C277Y re gtg cgc cgg tct ctc cca gga tag gca caa aca cgc acc tc 
p53 R248W fw ctg cat ggg cgg cat gaa ctg gag gcc cat cct cac cat cat c 
p53 R248W re gat gat ggt gag gat ggg cct cca gtt cat gcc gcc cat gca g 
p53 ∆96-312 fw ccc tcc tgg ccc ctg tca tct agc tcc tct ccc cag cca aag 
p53 ∆96-312 re ctt tgg ctg ggg aga gga gct aga tga cag ggg cca gga ggg 
p53 ∆95-150 fw ccc cct cct ggc ccc tgt cac ccc gcc cgg cac ccg cgt ccg 
p53 ∆95-150 re cgg acg cgg gtg ccg ggc ggg gtg aca ggg gcc agg agg ggg 
p53 ∆151-200 fw cag ctg tgg gtt gat tcc aca ttg cgt gtg gag tat ttg g 
p53 ∆151-200 re cca aat act cca cac gca atg tgg aat caa ccc aca gct g 
p53 ∆201-250 fw ctt atc cga gtg gaa gga aat atc ctc acc atc atc aca ctg 
p53 ∆201-250 re cag tgt gat gat ggt gag gat att tcc ttc cac tcg gat aag 
p53 ∆251-312 fw cgg cat gaa ccg gag gcc cag ctc ctc tcc cca gcc aaa ga 
p53 ∆251-312 re tct ttg gct ggg gag agg agc tgg gcc tcc ggt tca tgc cg 
p53 ∆251-257 fw ggc ggc atg aac cgg agg ccc gaa gac tcc agt ggt aat cta c 
p53 ∆251-257 re gta gat tac cac tgg agt ctt cgg gcc tcc ggt tca tgc cgc c 

Table 2-3: p53 pr imers 
 

MDM2 ∆222-437 fw cta cag gga cgc cat cga att gtg tga ttt gtc aag gtc g 
MDM2 ∆222-437 re cga cct tga caa atc aca caa ttc gat ggc gtc cct gta g 
MDM2 C464A fw cag gac atc tta tgg cct gct tta cag ctg caa aga agc taa 
MDM2 C464A re tta gct tct ttg cag ctg taa agc agg cca taa gat gtc ctg 
MDM2 ∆9 fw gta gac aac caa ttt aaa tga ttg tgc taa c 
MDM2 ∆9 re gtt agc aca atc att taa att ggt tgt cta c 
MDM2 ∆58-89 fw gaa aga ggt tct ttt tta tct tag ctt ctc tgt gaa aga gca c 
MDM2 ∆58-89 re gtg ctc ttt cac aga gaa gct aag ata aaa aag aac ctc ttt c 
MDM2 ∆NLS fw  ctg gtg aac gac aaa caa aac tcc aca aat ctg ata g 
MDM2 ∆NLS re cta tca gat ttg tgg agt ttt gtt tgt cgt tca cca g 
MDM2 K185R fw gaa aac gcc aca gat ctg ata gta 
MDM2 K185R re tac tat cag atc tgt ggc gtt ttc 
MDM2 C305F fw cta ttg gaa att cac ttc atg caa tg 
MDM2 C305F re cat tgc atg aag tga att tcc aat ag 
MDM2 C319 fw ctt cca tca cat cgc aac aga tgt tg 
MDM2 C319 re caa cat ctg ttg cga tgt gat gga ag 
MDM2 SIM1 fw cat gat cta cag gaa ctc ggt agt aga caa tca gca gga atc 
MDM2 SIM1 re gat tcc tgc tga ttg tct act acc gag ttc ctg tag atc atg 
MDM2 SIM2 fw gat gaa agc ctg gct cgg tgt gta aga agg gag ata tgt tg 
MDM2 SIM2 re caa cat atc tcc ctt ctt aca cac cga gcc agg ctt tca tc 

Table 2-4: MDM2 primers 
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SUMO-3 K11R fw caa gga ggg tgt gag gac aga gaa tga c 
SUMO-3 K11R re gtc att ctc tgt cct cac acc ctc ctt g 
SUMO-3 QFI fw ggc tcc gtg gtg gcg gcc aag gcc aag agg cac a 
SUMO-3 QFI re tgt gcc tct tgg cct tgg ccg cca cca cgg agc c 

Table 2-5: SUMO primers 
 

TAp63α ∆70-161 fw gac tgt atc cgc atg cag gac ctc tac tgc caa att gca aag 
TAp63α ∆70-161 re ctt tgc aat ttg gca gta gag gtc ctg cat gcg gat aca gtc 
TAp63α ∆162-261 fw gta ttc cac tga act gaa gaa aac agt ctt gta caa ttt cat g 
TAp63α ∆162-261 re cat gaa att gta caa gac tgt ttt ctt cag ttc agt gga ata c 
TAp63α ∆263-361 fw tgg cac tga att cac gac att ata ctt acc agt gag ggg c 
TAp63α ∆263-361 re gcc cct cac tgg taa gta taa tgt cgt gaa ttc agt gcc a 
TAp63α ∆362-461 fw gat ccc cag atg atg aac tgg cca aca ttc cca tga tgg g 
TAp63α ∆362-461 re ccc atc atg gga atg ttg gcc agt tca tca tct ggg gat c 
TAp63α ∆462-561 fw cca ttc ctg gca tgg gaa tcc tgg acc acc ggc agc tc 
TAp63α ∆462-561 re gag ctg ccg gtg gtc cag gat tcc cat gcc atc agg aat gg 
TAp63α ∆QQ (∆398-
411) fw 

cac aca att gaa acg tac agg acc tca ata cag tct cca tc 

TAp63α ∆QQ (∆398-
411) re 

gat gga gac tgt att gag gtc ctg tac gtt tca att gtg tg 

TAp63α ∆138-319 fw ccc agg ccc gca cag ttt cat cag aaa gca gca agt ttc g 
TAp63α ∆138-319 re cga aac ttg ctg ctt tct gat gaa act gtg cgg gcc tgg g 

Table 2-6: p63 pr imers 
 

TAp73α ∆47-130 fw ggt ggt ggg cgg aac gga ttt cca gca gtc cag cac ggc c 
TAp73α ∆47-130 re ggc cgt gct gga ctg ctg gaa atc cagt tcc gcc cac cac c 
TAp73α ∆131-307 fw ccc acc act ttg agg tca ctc act acc ggg agc agc agg c 
TAp73α ∆131-307 re gcc tgc tgc tcc cgg tag tga gtg acc tca aag tgg tgg g 
TAp73α ∆308-386 fw ccg aaa agc tga tga gga cga ctc cta tcg gca gca gca g 
TAp73α ∆308-386 re ctg ctg ctg ccg ata gga gtc gtc ctc atc agc ttt tcg g 
TAp73α ∆387-500 fw ggt gcc gca gcc act ggt ggg gtg tcc aaa ctg cat cga g 
TAp73α ∆387-500 re ctc gat gca gtt tgg aca ccc cac cag tgg ctg cgg cac c 
TAp73α ∆131-223 fw cca cca ctt tga ggt cac tca gta tgt gga tga ccc tgt c 
TAp73α ∆131-223 re gac agg gtc atc cac ata ctg agt gac ctc aaa gtg gtg g 
TAp73α ∆224-307 fw gga agg caa taa tct ctc gca cta ccg gga gca gca ggc c 
TAp73α ∆224-307 re ggc ctg ctg ctc ccg gta gtg cga gag att att gcc ttc c 

Table 2-7: p73 pr imers 
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2.2.5  DNA Sequencing 

Correct site-directed mutagenesis products were confirmed by DNA sequencing. 
DNA was sequenced by the Beatson Molecular Technology Services on an Applied 

Biosystems 3130xl genetic analyser. The results were analysed using the ApE 
plasmid editor v1.17. 

The following sequencing primers were used (synthesised and purified by Eurofins 
MWG Operon): 

Primer name Sequence 
CMV fw cgc aaa tgg gcg gta ggc gtg 
p53 fw ggt tca ctg aag acc cag gtc c 
p53 121 tct gtg act tgc acg tac 
p53 221 gag ccg cct gag gtt ggc 
MDM2 3 fw gtg caa tac caa cat g 
MDM2 317 ctt ggt agt agt caa tca gca 
MDM2 430 re cct gaa gct ctt gta caa ggt 
MDM2 628 gca gta gca gtg aat cta cag g 
MDM2 663 re atc cgg att cga tgg cgt c 
MDM2 946 cat cac att gca aca gat gt 
MDM2 1248 gaa gaa acc caa gac aaa g 
MDM2 1476 re cta ggg gaa ata agt tag cac aat c  
p63A fw ccc tcg ccc tac gca cag ccc agc tcc 
p63A re gga gct ggg ctg tgc gta ggg cga ggg 
p63 B fw cag tct tgt aca att tca tgt gta aca gc 
p63 B re gct gtt aca cat gaa att gta caa gac tg 
p63 C fw cct caa tac agt ctc cat ctt cat atg g 
p63 C re cca tat gaa gat gga gac tgt att gag g 
p63 D fw cct gag caa ttt cga cat gcg gtc tgg aag 
p63 D re ctt cca gac cgc atg tcg aaa ttg ctc agg 
TAp73 103 fw agc cgg ggg aat aat gag gt 
TAp73 403 fw agc acg gcc aag tca gcc ac 
TAp73 717 fw cta tga gcc acc aca ggt gg 
TAp73 1079 fw gag gcc ggg aga act ttg ag 
TAp73 1418 fw agt cca tgg tct cgg ggt cc 

Table 2-8: Sequencing pr imers 
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2.2.6  Transfections 

Cells were transfected with Effectene (QIAgen) or GeneJuice (MERCK Biosciences). 
For SUMOylation studies p53 and MDM2 plasmids were transfected in a ratio of 3:1. 

For co-immunoprecipitation studies plasmids encoding the interaction partners were 
transfected in a 1:1 ratio. 

For Effectene transfections 7.5 x 105 cells per 10 cm plate were seeded in 10 ml 
medium and grown for 24 hours. 2 µg plasmid DNA was diluted in DNA-
condensation buffer EC to a total volume of 300 µl. 16 µl Enhancer was added, 
mixed by vortexing and incubated 5 minutes at room temperature. 60 µl Effectene 
reagent was added, mixed by vortexing and incubated for 10 minutes at room 
temperature to allow formation of the transfection-complexes. Medium on the cell 

dishes was replaced by 4 ml fresh medium. The Effectene transfection mix was 
diluted in 1 ml medium and added drop-wise to the cell dishes. Cells were harvested 
24 hours later. 

For GeneJuice transfection 7.5 x 105 cells were seeded per 10 cm plate in 6 ml 
medium. 24 hours later, cells were transfected with 5-6 µg DNA. 15 to 18 µl 
GeneJuice was incubated in 300 µl OptiMem (Life Technology) and incubated for 5 
minutes. DNA was added, mixed by pipetting up and down and incubated for 10 
minutes. The transfection mix was added to the plates drop-wise and cells were 
harvest 20-24 hours later. Smaller dishes were transfected with the same medium-

DNA-GeneJuice ratio, amounts were scaled down according to plate surface area. 

For retroviral infections 10 cm plates of Phoenix cells were transfected with 
GeneJuice. The virus-containing supernatant was collected 36, 48 and 60 hours 

later, 4 µg/ml Polybrene was added and transferred to 10 cm plates growing H1299 

cells at 50% confluency for retroviral infection.  

2.2.7  SDS-PAGE and Western Blotting 

SDS-Polyacrylamide gel electrophoresis was performed as previously described681. 
Samples were boiled in sample buffer for 5 min at 99ºC and loaded on SDS-
polyacrylamide gels with 8-12% acrylamide content depending on the protein size. 
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Electrophoresis was performed in SDS-PAGE buffer at 90-120 V on Hoefer Mighty 
Small vertical units SE250 (Amersham). Protein was transferred to nitrocellulose 

membrane in Blotting buffer by Western blotting as previously described682,683 using 
the Hoefer TE22 Mini transfer tank (Amersham) at 200 mA for 2 hours. Membranes 
were blocked in 5% milk powder in TBS-T for one hour and incubated with primary 
antibodies over night at 4ºC. The following antibodies were used for blotting (1:1000 

dilution) and immunoprecipitation (5 µl):  

target antibody name and supplier 
human p53 DO-1 (aa 20-25) (Beatson Molecular Services)684 
human p53 1801 (aa 46-55) (Beatson Molecular Services)685 
wild-type p53 1620 (Calbiochem)686 
unfolded p53 240 (Calbiochem)687 
murine p53 1C12 (Cell Signaling Technology) 
MDM2 Ab-1 (Calbiochem, Merck) 
p21 C19 (Santa Cruz, Insight Biotechnology) 
p14ARF 4037, raised in rabbit672 
flag-tag Flag-M2-HRP (Sigma-Aldrich) 
HA-tag 16B12 (Covance, Cambridge Bioscience) 
SV5-tag SV5-PK1 (AbD Serotec) 
SUMO-1 PW8330 (Enzo Life Sciences) 
SUMO-2/3 PW9465 (Enzo Life Sciences) 
MDMX A300-287A (Bethyl Laboratories, Cambridge Bioscience) 
GCN5 H-75 (Santa Cruz, Insight Biotechnology) 
LDHB 2H6 (Sigma-Aldrich) 
PML H-238 (Santa Cruz, Insight Biotechnology 
p63 BC4A4 (Santa Cruz, Insight Biotechnology) 
Actin C4 (Chemicon, Merck) 
GFP 7.1/13.1 (Roche) 

Table 2-9: Pr imary ant ibodies 
 

Rat anti mouse IgK Light Chain HRP BD Biosciences 
Rabbit anti goat IgG HRP-linked Amersham, GE Healthcare 
Donkey anti rabbit HRP-linked Amersham, GE Healthcare 
Sheep anti mouse IgG HRP-linked Amersham, GE Healthcare 

Table 2-10: Secondary ant ibodies 
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After three washes in TBS-T, membranes were incubated with horseradish-
peroxidase (HRP) conjugated secondary antibodies at 1:10 000 dilution for 2 hours. 

Proteins were visualised by Pierce ECL reagent, using Fuji Medical X-Ray Film Super 
RX 18x24 on an AGFA classic E.O.S film processor. 

2.2.8  SUMOylation and Ubiquitination of p53 in cells 

Cells were seeded in 10 cm plates to reach 70% confluency 24 hours prior to 
transfection with Effectene (QIAgen) or GeneJuice (MERCK Biosciences) reagent. 24 
hours later cells were scraped off the plate, washed with PBS and lysed in 200 µl 
SUMO assay lysis buffer 1. The lysate was boiled for 10 minutes with intermediate 
vortexing and diluted with 400 µl SUMO assay lysis buffer 2. Lysates were pre-
cleared with 25 µl Protein G Sepharose FastFlow (Sigma) for 1 hour and p53 was 

immunoprecipitated with 5 µl DO-1 antibody and 30 µl Protein G beads over night. 
Beads were washed 3 times with HUNT buffer and taken up in 3x sample buffer. 

2.2.9  Immunoprecipitation under native conditions 

Cells were transfected at 70% confluency in 10 cm plates with 2-3 µg DNA for each 

protein (5-6 µg total DNA per plate) using GeneJuice. 24 hours later, cells were 
scraped off the plates, washed in PBS and lysed in NP-40 buffer with proteasome 
inhibitor cocktail. The suspension was frozen and thawed three times and debris 

spun down. Immunoprecipitation was carried out with 5 µl antibody and 30 µl Protein 
G Dynabeads (Invitrogen) over night, rotating at 4°C. Beads were washed three 

times with NP-40 buffer and resuspended in 3x sample buffer. 

2.2.10  Immunofluorescence staining 

Cells were grown on coverslips in 12-well plates and transfected when cells were 30-
40% confluent. 24 hours after transfection coverslips were rinsed with PBS. Cells 
were fixed in 4% w/v formaldehyde in PBS for 15 min at 4ºC. Coverslips were 

washed 3 times with PBS and cells permeabilised with 0.2% Triton X-100 in PBS for 
5 min. Coverslips were washed 3 times with PBS and incubate in 5% BSA in PBS for 
30 min to block unspecific binding. Proteins were stained with 150 µl primary 

antibody solution (p53: 1:200 DO-1, MDM2: 1:100 Ab1 and Ab2, PML: 1:100 PML 
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H-238) in 5% BSA/PBS over night. Coverslips were washed three times with PBS 
and incubated with 150 µl secondary antibody in 5% BSA (1:150 Alexa Fluor 594 

(red), Alexa Fluor 488 (green) and DAPI 1:1000 for 60 min. After further 3 PBS 
washes, coverslips were mounted on slides with Vectashield hard set. Confocal 
images were taken at an Olympus FV100 microscope.  

2.2.11  Cellular fractionation 

Fractionation into cytoplasmic and nuclear fraction was carried out with Epigentek’s 
Nuclear Extraction Kit. Cells were seeded to 70% confluency in 10 cm dishes the 
day before transfection. Transfection was performed with GeneJuice. 24 hours later, 
cells were trypsinated off the plate and spun down (5 min, 1000rpm). The outer 
membrane was lysed in 200 µl NE1 buffer supplemented with protease inhibitor 

cocktail and 10 µM iodacetamid to prevent deSUMOylation and incubated on ice for 
20 min. Organelles and debris were spun down at 800g for 5 minutes and 
supernatant collected as cytoplasmic fraction. The pellet was washed twice in 200 µl 
NE1 buffer and resuspended in 200 µl NE2 buffer containing proteinase inhibitor, 
benzonase and 10 µM iodacetamid. During 15 minutes of incubation on ice the mix 
was vortexed every 3 minutes, then cell debris was spun down at full speed for 10 
minutes and supernatant collected as nuclear fraction. Successful fractionation was 
confirmed using LDHB as cytoplasmic and GCN5 as nuclear marker.  For 
subsequent SUMO-analysis both cytoplasmic and nuclear fractions were then boiled 

in 1% SDS and subject to an in vivo SUMO assay.  

2.2.12  Analysis of half- life by Cycloheximide treatment 

Cells were transfected with p53, SUMO and MDM2 using GeneJuice. 24 hours later, 
medium was removed and replaced with medium containing 200 µg/ml 

Cycloheximide to block protein translation. In order to assess protein stability, dishes 
were harvested at 0, 1.5, 3 and 4.5 hours time points after translation block. 

Samples were subjected to SDS-PAGE and Western Blotting and primary antibody 
incubation as usual. Membranes were then incubated with the infrared fluorescently 
labelled IRDye 800CW Goat anti-mouse secondary antibody (Licor) and infrared 
fluorescence intensity was quantitated with the Licor Odyssey imaging system. 
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2.2.13  Oligomerisation Assay 

HCT116 p53-\- cells were transfected with MDM2 ∆AD and either wild-type or SUMO 
consensus mutant p53 (E388A, K386R). Cells were lysed in 1 ml NP40 buffer 

supplemented with 10 µM Iodacetamide to block deSUMOylation. Half of the lysate 
was cross-linked with 0.01% Glutaraldehyde for 20 minutes on ice. Cross-linking 

was stopped by addition of 3x SDS sample buffer. Samples of lysates with and 
without cross-linking reagent were run on a 6% polyacrylamide gel. 

2.2.14  Luciferase assays 

Cells were seeded to 70% confluency into 24-wells for transfection using GeneJuice 
(Fig 4-9: 10 or 100 ng p53, 30 ng MDM2 ∆AD, 20 ng TK Renilla Luciferase and 100 
ng PG13 or Bax Luciferase; Fig: 5-6 and 5-7: 25 or 100 ng MDM2 C464A, 75 ng 
p53, p63 or p73, 25 ng TK Renilla and 75 ng BPAG1 Luciferase; Fig 5-25: 25 or 100 

ng p53 constructs, 50 ng TAp63α, 25 ng Renilla, 100 ng K14 Luciferase). 24 hours 
after transfection, cells were lysed in 100 µl lysis buffer provided by the Promega 
Renilla Luciferase Kit for 30 minutes at 4°C. 20 µl lysate were transferred to 

luminometer plates and readings with both Renilla and Luciferase substrate 
(Promega Dual Luciferase Kit) were carried out at the Veritas Microplate luminometer 
(Turner Biosystems) using the Glomax Software. Relative Luciferase units were 
determined by dividing the Luciferase readings by the values obtained for Renilla 

Luciferase to correct for cell number and transfection efficiency. Data was plotted as 
fold change to p53-null control readings. Error bars represent the standard error of 
the mean for 3 independent experiments. 

2.2.15  RNA extraction and Realtime-PCR 

H1299 cells were retrovirally infected with pWZL blast MDM2 ∆AD and selected for 5 
days in 5 µg/ml Blasticidin. RNA was extracted using the RNeasy kit from QIAgen, 

following the manufacturer’s instructions. cDNA was synthesised from 1 µg RNA 
using Oligo d(T) primers and the DyNAmo SYBR Green two-step kit (Finnzymes) 

according to the manufacturer’s instructions. The Realtime PCR reaction was 
performed on 5 µl cDNA, diluted 1:20 using the DyNAmo SYBR Green two-step kit 
(Finnzymes).  
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The amount of fluorescent PCR product accumulating during the PCR programme 
(15 min 95°C hot start, 40 cycles of 20 sec denaturing at 94°C, 30 sec annealing at 

60°C and 30 sec elongation 72°C; final elongation 10 min 72°C) was detected by the 

Chromo4 Reader (Bio-Rad) and analysed using the Opticon Monitor 3 software. 
Gene expression was quantified relative to the housekeeping genes β2-microglobulin 
and ribosomal protein, large, P0 (RPLP0) according to the comparative ∆∆Ct-
method. Results are presented relative to target gene induction by wild-type p53. 

Error bars represent the standard error of the mean of three independent 
experiments.  

The following primers were used (all primers only amplified one product):  

RPLP0 fw gca atg ttg cca gtg tct g 
RPLP0 re gcc ttg acc ttt tca gca a 
B2M fw gtg ctc gcg cta ctc tct c 
B2M re gtc aac ttc aat gtc gga t 
p21 fw ctg gag act ctc agg gtc gaa a 
p21 re gat tag ggc ttc ctc ttg gag aa 
MIC-1 fw gtt gca ctc cga aga ctc ca 
MIC-1 re gag aga tac gca ggt gca gg 
Bax fw ggg ttg tcg ccc ttt tct act t 
Bax re cagc cca tga tgg ttc tga tca g 
Cdk1 fw ctt gcc aga gct ttt gga ata c 
Cdk1 re ttc tga atc ccc atg gaa aa 
Cyclin A2 fw cct gca aac tgc aaa gtt ga 
Cyclin A2 re tgc tgt ggt gct ttg agg ta 
Cyclin B2 fw ttg cag tcc ata aac cca ca 
Cyclin B2 re gaa gcc aag agc aga gca gt 

Table 2-11: Quantitat ive Realt ime PCR primers 
 

2.2.16  MIC-1 ELISA 

The MIC-1 ELISA was performed using the human GDF-15 Quantikine ELISA Kit 

(R&D Systems). Medium of H1299 cells retrovirally infected with empty vector, wild-
type p53, p53 K386R or p53 E388A and MDM2 ∆AD was collected. 50 µl medium 
from each condition (in triplicate) or standards were mixed with 100 µl assay diluent 

RD1-9 and incubated on the microplate for 2 hours at room temperature. Wells were 
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washed four times with 400 µl wash buffer and plate dried upside down on paper 
towels. 200 µl MIC-1 conjugate was added to each well and incubated for one hour. 

Wells were washed four times with wash buffer. 100 µl Substrate solution A and 100 
µl Substrate solution B were added to each well and incubated in the dark for 30 
minutes. 50 µl of stop solution was added to each well and optical density at 450 nm 
determined on a microplate reader. Measurements were corrected for plate 

imperfections by subtracting readings at 540 nm. A standard curve was generated 
using MIC-1 concentrations in a range of 23.4 pg/ml to 1500 pg/ml.  

2.2.17  Flow Cytometry 

Cells were transfected with empty vector or p53 constructs and MDM2 ∆AD, SUMO-
3 and CD20 using GeneJuice 24 hours prior to harvesting. Media was collected from 

each plate and plates were washed with 2 ml PBS containing 2.6 mM EDTA 
(PBS/EDTA). PBS was collected and combined with previously collected media. 
Cells were incubated with 2 ml PBS/EDTA at 37ºC until cells were lifting from the 
plate. Cells were collected and added to previously collected media.  

Cells were spun down for 5 min at 2000 rpm, the supernatant aspirated and the 
pellet washed with 2 ml cold PBS. Cells were spun down again and the supernatant 
was aspirated. The pellet was resuspended in 20 µl anti FITC-conjugated CD20 
antibody (BD Biosciences) and incubated on ice for 30 min. Antibody incubation was 
stopped by addition of 2 ml cold PBS containing 1% serum. Cells were spun down 

and resuspended in 500 µl PBS. 5 ml cold methanol was added while vortexing and 
the mix was incubated over night at 4ºC to fix the cells.  

Cells were rehydrated in 500 µl PBS/1%FCS for an hour at room temperature. After 

another spin and removal of supernatant pellets were resuspended in 400 µl PBS 

containing 125 µg/ml RNase and 50 µg/ml Propidium Iodine. Cells were analysed by 
flow cytometry after 30 minutes incubation in the dark. CD20 status was assessed in 
the FL1 channel and CD20-positive cells (representing the transfected fraction) were 

gated for PI analysis. DNA content was analysed in the FL3 channel determined by 
PI intensity. The FL3 chromatogram of the CD20 positive cell population was 
analysed with FlowJo software in order to determine the percentage of cells in each 

cell cycle phase according to DNA content. 
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2.2.18  Flag-Elution and Mass-Spectrometry of MDM2 
interacting proteins 

Hek293T cells were transfected with 5 µg flag MDM2 or flag MDM2 ∆AD using 
GeneJuice and lysed in 600 µl NP40 buffer 24 hours after transfection. MDM2 was 
immunoprecipitated using 30 µl flag-beads (Sigma-Aldrich) over night, rotating at 
4ºC. Beads were washed three times using 150 mM Tris pH 7.5. Flag-tagged protein 

was eluted using 100 µl 150 mM Tris pH7.5 containing 100 µg/ml flag peptide. 
Supernatant was collected after 30 min incubation rotating at 4ºC. All remaining 

protein was eluted with 1% SDS and collected separately as elution efficacy control. 
20 µl of input, flag-elution and SDS-elution were run on a polyacrylamide gel to 
confirm protein expression and immunoprecipitation. 

The flag-peptide eluate was analysed by mass spectrometry by the Beatson 

Advanced Technologies Unit. 30 µl of the sample were dried down and re-dissolved 
in 30 µl 1% SDS, 50 mM Triethyl Ammonium Bicarbonate buffer (TEAB) and 10 mM 
DTT. The solution was boiled and incubated at room temperature with 15 µl 0.2M 

ioadacetamide for 30 min to alkylate free cysteine residues in order to prevent 
formation of disulfide bonds. Protein was precipitated with 0.5 ml 20% trichloric acid 
on ice for 15 min and pelleted by spinning at 13000 rpm for 10 min. The pellet was 

washed with 0.5 ml 10% trichloric acid and pelleted at 13 000 rpm, followed by 
further three washes with 1 ml H2O. 

The pellet was dissolved in 10 µl 8 M urea and diluted with 70 µl 50 mM TEAB. 
Trypsin was added to 5 µg/ml and protein digested over night at 30ºC. The digested 
protein mix was diluted with 20 µl 2.5% formic acid/water. 10 µl out of the 100 µl 
sample were analysed on an LTQ Orbitrap Velos ion trap mass spectrometer 

(Thermo Scientific) using the 60 min Top10 method: 

The tryptic digests were analysed by LC-MS-MS using a Proxeon Easy-LC 

connected to an LTQ Orbitrap Velos system via a Proxeon nanospray source fitted 
with a New Objective FS360-20-20 uncoated emitter. 10 µl of the tryptic digest was 
injected onto 20 x 0.1mm C18 guard column equilibrated in buffer A (2% acetonitrile/ 
0.1% formic acid in water) at 7 µl/min. After washing the injector loop with 30µl buffer 

A, the guard column was switched in line with a 150 x 0.075 mm PepMap C18 
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column (Dionex) equilibrated in buffer A at 300 nl/min. The column was developed 
with a 60 min discontinuous gradient of buffer B (80% acetonitrile/0.1% formic acid 

in water).  

Nanoelectrospray was performed by applying a voltage of 1.6 kV to the emitter and 
the Orbitrap was set to perform a survey scan of m/z 350-1800 at a resolution of 
60000 and the top 10 multiply charged ions (minimum intensity 10000 cps) were 

selected for collision induced dissociation in the LTQ and then excluded for 30 sec 
after 2 occurrences. The raw data was converted to a Mascot Generic File (mgf) 

using Raw2msm program (a gift from M Mann) and searched using Mascot 2.3 run 
on a local server. The data was searched using the following criteria: 

Database = SwissProt 
Species= Human 
Enzyme= Trypsin (1 missed cleavage permitted) 
Fixed modification = Carboxyamidomethylation of cysteine 
Variable Modification = Oxidation of Methionine 
Precursor mass tolerance = 10ppm, MSMS mass tolerance = 0.8 Da.  

Significant peptide assignments were based on a minimum peptide score of above 
20 and proteins were identified on the basis of at least 2 peptides meeting these 
minimum criteria. 

2.2.19  Inverted Transwell Invasion Assays 

H1299 cells were retrovirally infected with empty vector, or p53 mutants and 

selected with 7.5 µg/ml Blasticidin for 3-4 days.  

Transwells (Corning Life Sciences) were filled with 60 µl Matrigel batch A6520 (BD 

Bioscience) diluted 1:1 in PBS, containing 25 ng/ml Fibronectin and incubated 45 
min at 37ºC to allow polymerisation. Transwells were inverted and 100 µl of a 2.5 x 

105 cells/ml cell suspension were pipetted onto the filter. Cells were allowed to settle 
onto the filter for 5 hours at 37ºC. Transwells were washed in serum-free medium 
and transferred (upright) to a 24-well plate containing 1ml serum-free medium. 100 µl 
of medium containing serum and 10 ng/ml HGF were pipetted into the centre of the 
transwell on top of the set matrigel to attract cells from underneath the matrigel plug. 
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Cells were allowed to migrate for 3 days and stained in medium containing 4 nM 
Calcein for one hour.  

Migration was visualised on a Leica TCS SP2 laser scanning confocal microcope, 
taking images in serial sections every 15 µm starting at the membrane and moving 
up into the matrigel plug until no more cells could be detected. The number of pixels 
with intensity of 100 or above was quantified in each binary confocal image using 

ImageJ. The percentage of invading cells was calculated by dividing the sum of 
pixels at or beyond 45 µm by the sum of pixels in all images. 



 

 
 

 

 

 

 

 

3 MDM2 promotes SUMO-2/3 modification of p53. 
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3.1  SUMO-2/3 conjugation by MDM2. 

MDM2 is a well-known E3-Ubiquitin ligase for p53, promoting its mono153- and poly-

ubiquitination107,108 . More recently, MDM2 was also reported to promote conjugation 

of the ubiquitin-family members Nedd8318 and SUMO-1 (in complex with p14ARF)415 to 
p53. 

Most studies on p53-SUMOylation have so far focused on SUMO-1, which has been 
shown to modify a single lysine (K386) residue residing within a SUMO consensus 
motif in the p53’s C-terminus. However, in contrast to SUMO-1 the SUMO-2/3 
isoforms are more abundant in a large dynamic pool in the cell348, suggesting an 

interesting and distinct role for modification with SUMO-2/3. 

In this part of the study, how the Ubiquitin- and Nedd8 ligase MDM2 promotes 
SUMO-2/3 modification of p53 was investigated. The requirements of functional 
domains in p53, MDM2 and SUMO for successful SUMOylation were analysed in 
more detail. 

3.1.1  MDM2, but not MDMX promotes SUMO-3 
conjugation of p53.  

Since MDM2 can induce ubiquitination, neddylation and conjugation of SUMO-1 (in 

complex with p14ARF), its ability to promote conjugation of SUMO-2/3 to p53 was 
tested. Overexpression of p53, MDM2 and SUMO-3 induced modification of p53 
with SUMO-3 in HCT116 cells (Figure 3-1 A) and H1299 cells (Figure 3-1 B). MDM2 

can form a heterodimer with MDMX, a protein of the MDM2-family with a very similar 

p53-binding domain to MDM2688. The MDM2/MDMX heterodimer was found to be 
more stable146 and a more efficient ubiquitin-E3-ligase than the MDM2-homodimer147. 
However, MDMX overexpression had no effect on p53-SUMOylation, either alone 

(Figure 3-1 A and B) or together with MDM2 (Figure 3-1 B).  
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Figure 3-1: MDM2 promotes SUMOylat ion of p53, whi le MDMX does not.  
HCT116 cells (A) and H1299 cells (B) were transfected with indicated plasmids. Cells were lysed 
under denaturing conditions and p53 was immunoprecipitated (IP) with the DO-1 antibody. 
 
 
These data suggest that MDM2 on its own efficiently promotes SUMO-3 modification 
of p53, but presence of MDMX does not further stimulate MDM2-mediated SUMO-3 
conjugation. Since MDMX had been reported to promote MDM2’s ability to 
conjugate Ubiquitin to p53147, but this was not the case for SUMO-3 modification, 
the importance of functional domains of MDM2, which are known to be required for 
ubiquitination, in promoting SUMOylation of p53 were also analysed. 

3.1.2  MDM2-p53 interaction is required for efficient 
SUMOylation. 

Both p53 and MDM2 consist of clearly structured functional domains (Figure 3-2). 

 
Figure 3-2: Representat ion of p53 and MDM2 interact ing domains. 
Regions deleted in the mutants MDM2 ∆58-89 and p53 ∆I (conserved box I: amino acids 13-18) are 
indicated in red. 
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The interaction of MDM2 and p53 was mapped to their N-termini, where a 
hydrophobic pocket of MDM2 contacts an α-helix in p53’s N-terminus163,511. 

Interaction of the N-terminal domains was shown to be critical for efficient 
ubiquitination of p53136. Therefore, the role of p53-MDM2 binding on SUMO-3 
modification of p53 was examined. An MDM2 protein that does not contain the N-
terminal p53-binding domain (MDM2 ∆58-89) could not induce SUMOylation of p53 

(Figure 3-3, lane 3). Similarly full-length MDM2 (wt) could not enhance SUMOylation 
of a p53 protein (p53 ∆I) lacking the MDM2-binding domain (Figure 3-3, lane 4).  

 

 
Figure 3-3: MDM2 binding to p53 is necessary for i ts 
SUMO-3 modif icat ion. 
U2OS cells were transfected with the constructs indicated, lysed 
under denaturing conditions and p53 was immunoprecipitated 
with the DO-1 antibody (IP p53). 
 

 

 
These observations indicate that direct interaction of MDM2 and p53 via their N-
terminal binding regions has to take place in order for MDM2 to efficiently promote 
SUMO-3 conjugation onto p53. This is a prerequisite similar to p53 modification with 

other Ubiquitin-like proteins by MDM2318.  

As well as the N-terminus, the central and C-terminal domains of MDM2 also play a 
critical role in promoting p53 ubiquitination. Hence, the role of these functional 

domains in SUMOylating p53 was analysed next. 
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3.1.3  Promoting SUMOylation and ubiquitination are two 
distinct activities of MDM2. 

Although the RING domain of MDM2 on its own can show Ubiquitin ligase activity 
and can function in auto-ubiquitination assays175, both the N-terminal p53-binding 
domain157 and the central acidic domain with adjacent zinc finger168,169 are also 
necessary for MDM2’s Ubiquitin ligase activity towards p53 (Figure 3-4).  

 
Figure 3-4: Representat ion of domains contr ibut ing to MDM2’s ubiquit inat ion act iv i ty. 
Regions lacking in the deletion mutants MDM2 ∆AD (amino acids 222-437) and MDM2 ∆RING (amino 
acids 441-491) are illustrated in red. Point mutation of cysteine 464 is also indicated. 
 
 
In order to compare the role of the different functional domains in SUMOylation and 

ubiquitination of p53, ubiquitination and SUMOylation assays were performed in 
parallel with the same MDM2 constructs, deleted for particular functional domains. In 
line with previous observations, MDM2 mutants deleted of the RING domain (MDM2 

∆RING) or harbouring mutation of a structurally critical cysteine residue within the 
RING (MDM2 464A) both lost the ability to ubiquitinate p53 (Figure 3-5 A). Similarly, 
deletion of the central part of MDM2 (MDM2 ∆AD) strongly reduced, although did not 

completely abrogate, the ability of MDM2 to drive ubiquitination of p53 (Figure 3-5 A). 

By contrast, when repeating the assay with SUMO-3 instead of Ubiquitin, the RING 
deletion and point mutants (MDM2 ∆RING and C464A) did not impede the SUMO-3 
modification of p53 by MDM2, suggesting that the ability to promote SUMOylation is 

distinct from the Ubiquitin ligase activity (Figure 3-5 B). Deletion of the acidic domain 
of MDM2 (MDM2 ∆AD) also did not prevent SUMOylation of p53, consistent with 

previous work showing that this region is not necessary for SUMO-1 modification of 
p53 by MDM2415.  

The finding that the integrity of the RING domain of MDM2 was not required for 
promoting SUMO-3 conjugation was very surprising, since this domain is strictly 
required for promoting both Ubiquitin157,181 and Nedd8318 conjugation to p53. 
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Interestingly, the RING domain was also found to be dispensible for SUMO-1 
conjugation to p53 mediated by an MDM2-p14ARF complex415. 

 

 
Figure 3-5: MDM2-domains required for ubiquit inat ion (A) 
and SUMOylat ion (B) of p53. 
HCT116 p53-/- cells were transfected with p53, MDM2 mutants and 
either HA-Ubiquitin (A) or HA-SUMO-3 (B) as indicated. Cells were lysed 
under denaturing conditions and p53 immunoprecipitated with the DO-1 
antibody (IP p53). 
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3.1.4  SUMOylation can be observed with endogenous 
protein. 

Most previous studies of SUMO-1 modification of p53 by MDM2 have utilised 
ectopic expression of tagged SUMO, as in these experiments so far. However, 
overexpression of MDM2 could also promote conjugation of endogenous SUMO-2/3 
to p53 (Figure 3-6 A). Using the MDM2 mutants deleted for functional domains, even 

stronger endogenous SUMO-2/3 conjugation on p53 with MDM2 ∆AD and the RING 
domain point mutant of MDM2 mutants (MDM2 464A) was observed. The MDM2 

∆RING protein showed a modest activity, while an MDM2 protein lacking the N-
terminal p53-binding pocket (MDM2 ∆58-89) was once again unable to drive p53 
SUMOylation (Figure 3-6 B).  

 
Figure 3-6: Endogenous SUMO-2/3 is conjugated to p53 by MDM2. 
U2OS cells were transfected with p53 and either wild-type MDM2 (A) or MDM2 mutants (B). Cells 
were lysed under denaturing conditions and p53 was immunoprecipitated using the DO-1 antibody (IP 
p53).  
 
 
The effect of MDM2 on the SUMO-2/3 modification of endogenous p53 was also 

tested. Efficient conjugation of endogenous SUMO-2/3 by MDM2 ∆AD and MDM2 
464A, the latter of which was expressed at lower levels in this experiment, were 

observed (Figure 3-7). No clear SUMOylation activity of wild-type MDM2 was 
detected here, although this is likely to reflect the confounding effect of the 
ubiquitination and degradation of p53 by this protein, resulting in low p53 levels 
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(Figure 3-7). MDM2 ∆AD was therefore used to enhance SUMO-2/3 modification of 
p53 for further experiments, since this MDM2 mutant promotes the highest level of 

p53 SUMOylation. 

Having analysed the SUMO-promoting ability of overexpressed MDM2, the activity of 
endogenous wild type MDM2 was also investigated. In order to study the function of 
endogenous MDM2, small molecule inhibitors of MDM2-mediated ubiquitination of 

p53 were used. Treatment of cells with either Nutlin-3a (which inhibits the N-terminal 
MDM2/p53 interaction)604 or HLI373 (which directly inhibits MDM2’s Ubiquitin ligase 

activity)641 stabilised MDM2, as previously shown (Figure 3-8). p53 levels remained 
equal despite MDM2-inhibitor treatment, since p53 was overexpressed in this 
experiment.  

 
Figure 3-7: Endogenous SUMO-2/3 is 
conjugated to p53 by MDM2. 
U2OS cells were transfected with p53 and either 
wild-type MDM2 or MDM2 mutants. Cells were lysed 
under denaturing conditions and p53 was 
immunoprecipitated using the DO-1 antibody (IP 
p53).  

 
F igure 3-8: Nutl in-3a disrupts 
SUMOylat ion, but HLI373 does not. 
A2780 cells were transfected with p53 and 
treated with 20 µM Nutlin-3a or 7.5 µM 
HLI373 over night. Cells were lysed under 
denaturing conditions and p53 was 
immunoprecipitated with the DO-1 antibody 
(IP p53).  
 

 
Nutlin-3a treatment completely abolished p53-SUMOylation, confirming the 

requirement of endogenous MDM2 to interact with p53 for efficient p53 
SUMOylation. By contrast, HLI373 treatment did not affect the SUMOylating activity 

of endogenous MDM2 (Figure 3-8). These data confirm that the p53-MDM2 

MDM2: wt

Input

IP p53

MDM2

464A ¬(+

p53

SUMO-2/3

¬AD MDM2

72

95

95

72

52

43

34 MDM2

p53

Input

IP p53

p53

SUMO-2/3

- Nutlin HLI373

72

95



   

 126 

interaction is absolutely required for SUMOylation. Furthermore, endogenous MDM2 
could still drive the SUMO-2/3 modification of p53 when the Ubiquitin ligase activity 

was inhibited, which is consistent with the finding that the RING domain of MDM2 is 
dispensable for SUMOylation. 

3.2  A single SUMO-2/3 is conjugated to lysine 386 in 
human p53. 

In contrast to ubiquitination, SUMOylation is often restricted to certain lysine 
residues, which are surrounded by a SUMO consensus motif, mediating the direct 
binding to SUMO-E2 ligase Ubc9335. p53 contains one classical SUMO consensus 
motif in its C-terminus, around lysine 386. This SUMO consensus was analysed and 
the effect of p53 localisation on MDM2-mediated SUMOylation was also studied. 

Furthermore, it was investigated, whether p53 is poly-SUMOylated.  

3.2.1  The SUMO consensus around lysine 386 is essential. 

In most cases SUMOylation is restricted to lysine residues in the environment of a 
SUMO motif ΨKxE405,406.  

 
Figure 3-9: p53 requires an intact SUMO moti f  to be SUMOylated. 
(A) Alignment of p53 C-termini across species. The SUMO-accepting lysine (red) is conserved in all 
species, however the glutamic acid residue 2 codons down-stream (bold) is not present in the mouse 
sequence. Ψ: hydrophobic amino acid, X: any amino acid. SwissProt accession numbers: human 
p53: P04637; mouse p53: P02340; zebrafish p53: P79734. 
(B) H1299 cells were transfected with the wild-type or SUMO site mutant p53 and MDM2 ∆AD and 
lysed under denaturing conditions. p53 was immunoprecipitated with the DO-1 antibody (IP p53). 
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SUMO motif (Figure 3-9 A). In line with these previous studies, p53 K386R, which 
lacks the SUMO-accepting lysine residue, could not be SUMOylated (Figure 3-9 B). 

Furthermore, mutation of the glutamic acid residue 388 in p53’s SUMO consensus 
motif also abrogated SUMOylation of p53 by MDM2 ∆AD (Figure 3-9 B). Since lysine 
386 is not only SUMOylated, but also ubiquitinated and acetylated, the E388A 
mutation served as a useful tool, since it specifically abrogates SUMOylation of K386 

while sparing lysine 386 for other modifications.  

Surprisingly, alignment of the p53 C-termini across different vertebrate species 

revealed that despite the conservation of the SUMO-accepting lysine residue in mice, 
the required glutamic acid two residues downstream is not present in the murine p53 
protein (Figure 3-9 A). Hence, it was investigated, whether mouse p53 could still be 

SUMOylated. 

 

 
Figure 3-10: Mouse p53 is not SUMOylated. 
HCT116 p53-/-cells were transfected were transfected with MDM2 ∆AD and either human or 
mouse p53. Cells were lysed (A) under denaturing conditions to assess SUMOylation or (B) 
under mild conditions to assess p53-MDM2 interaction. p53 was immunoprecipitated with the 
DO-1 antibody (IP p53 (A) and co-IP p53 (B)). 
 

 

 
Consistent with the observation that mutation of glutamic acid residue 388 in the 
human protein disrupts SUMOylation, human MDM2 did not modify mouse p53 with 

SUMO-2/3 (Figure 3-10 A). In order to confirm that this lack of SUMOylation was not 
due to a deficiency in binding of the human MDM2 protein to murine p53, a co-
immunoprecipitation assay of mouse p53 and human MDM2 ∆AD was performed 
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(Figure 3-10 B). Human MDM2 could bind mouse p53 equally well as human p53, 
therefore the absence of SUMOylation of mouse p53 is unlikely to be due to a lack of 

interaction and can be ascribed to the missing canonical SUMO consensus site in 
the mouse p53 protein.  

3.2.2  Both genetic variants of p53 are SUMOylated. 

The p53 gene contains a common polymorphism at codon 72 in the proline-rich 
domain, which can encode for either an arginine or proline residue689. The 
polymorphism has biochemical implications for the p53 activity690 and differences in 
regulation of apoptosis691 and cell cycle progression692 were reported. To avoid 
potential polymorphism effects affecting the results, so far only the 72R variant of 
p53 has been used in this study.  

 

 
Figure 3-11: p53 72P is SUMOylated sl ight ly less than 
p53 72R. 
HCT116 p53-/-cells were transfected with both variants of p53 and 
either wild-type MDM2 and HA-SUMO-3 or MDM2 ∆AD. Cells were 
lysed under denaturing conditions and p53 immunoprecipitated with 
the DO-1 antibody (IP p53). 
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SUMOylation. Both variants were therefore tested in an in vivo SUMO assay (Figure 
3-11). 

The p53 72P variant not only migrated more slowly in the gel, which had also been 
observed by others693, but was also SUMOylated slightly less well by both full-length 
MDM2 (wt) and MDM2 ∆AD compared to the p53 72R variant (Figure 3-11). 
Although the proline-rich domain of p53, where this polymorphism is located, is not 

directly involved in interacting with MDM2, p53 72R was shown to bind more 
strongly to MDM2 in previous studies, resulting in more efficient ubiquitination691. 

Hence, it is likely that the moderate difference observed between the two isoforms is 
a reflection of their extent of MDM2 binding. Since the p53 72R variant was 
SUMOylated more efficiently, it was used for all further experiments. 

3.2.3  p53’s nuclear localisation signal is dispensable, but 
the nuclear export signal is required for SUMOylation. 

p53 shuttles in and out of the nucleus, using its nuclear localisation (NLS) and 
nuclear export signals (NES), which are located between the DNA-binding and the C-

terminal regulatory domain120. Most SUMOylated proteins are localised in the nucleus 
and a nuclear localisation signal was described as prerequisite for efficient SUMO-
conjugation331. In order to disrupt the nuclear localisation signal in p53, lysine 

residues 305, 319, 320 and 321 and arginine 306 were mutated to alanine, creating 
p53 ∆NLS, which is defective in entering the nucleus. Similarly, leucines 348 and 350 

in the nuclear export signal were replaced with alanine residues resulting in p53 
∆NES, which is defective for export (Figure 3-12 A). The p53 ∆NLS and p53 ∆NES 
mutants had been shown by others to be defective for import and export, 
respectively, resulting in exclusive cytoplasmic or nuclear immunofluorescence 

staining413.  

The impact of p53 localisation on its SUMOylation was analysed using p53 mutants, 

which could not enter (p53 ∆NLS) or could not leave the nucleus (p53 ∆NES), with 
the p53 K386R mutant serving as negative control. Strikingly, mutation of the nuclear 
export signal in p53 ∆NES abrogated SUMOylation completely (Figure 3-12 B). While 
the observed effect could be a result of the lack of nuclear export, it could also reflect 
the requirement of p53 to oligomerise in order to be SUMOylated, because the 
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nuclear export signal is located within the oligomerisation domain and this p53 ∆NES 
mutant was previously reported to disrupt tetramerisation of p53694. Since the nuclear 

export signal is an integral part of the oligomerisation domain, it is difficult to 
discriminate between the two activities. However, it would be possible to block 
nuclear export with compounds such as the CRM1-inhibitor Leptomycin B695. If 
pharmacological inhibition of nuclear export did not affect p53 SUMOylation, the 

observed effect of the ∆NES mutation would most likely be due to lack of 
oligomerisation. Interestingly, loss of p53 oligomerisation was found to abrogate C-

terminal acetylation694. Furthermore, MDM2 could not ubiquitinate p53, if it was not 
tetrameric696, however poorly ubiquitinated monomeric p53 could still be degraded 
by MDM2697.  

 
Figure 3-12: Mutat ion of the NES abrogates SUMOylat ion. 
(A) Representation of the p53 amino acid sequence of the nuclear localisation (NLS) and nuclear 
export signals (NES) with mutations indicated in bold. SwissProt accession number: p53 P04637. 
(B) H1299 cells were transfected with MDM2 ∆AD and the p53 plasmids indicated. Cells were lysed 
under denaturing conditions and p53 was immunoprecipitated using the DO-1 antibody (IP p53). 
 
  
Surprisingly, mutation of the nuclear localisation signal of p53 did not stop 
SUMOylation of the protein, but altered the band pattern from three to two bands 

(Figure 3-12 B, lane 3). While the ladder of bands could represent different states of 
mono- and poly-SUMOylation, it could also be an indication for SUMOylation and 

ubiquitination on the same p53 molecule, since both modifications result in a shift of 
the modified product of 11-20 kD. Four of the mutated residues in p53 ∆NLS are 
lysine residues, which could be subject to modification with UBLs themselves. The 

lysine cluster K319, K320 and K321, which is mutated in p53 ∆NLS, was shown to 
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be targeted for ubiquitination by E4F1310 and more recently also by MDM2141. Since 
MDM2 ∆AD can still mono-ubiquitinate p53, albeit less strongly than wild-type p53, a 

missing ubiquitination on the K319-321 lysine cluster could be the cause for the 
altered band pattern (Figure 1-12 B). However, it is still unclear how p53 can be 
SUMOylated without being localised to the nucleus, unless p53 ∆NLS still enters the 
nucleus by another mechanism. It has previously been observed that MDM2 can 

import p53 ∆NLS into the nucleus698. In order to prevent p53 from entering the 
nucleus in a complex with MDM2, the NLS in MDM2 ∆AD was also disrupted by 

mutating arginine residues 181 and 183 to threonine and leucine, respectively699, 
resulting in the MDM2 ∆AD ∆NLS protein (Figure 3-13 A).  

 
Figure 3-13: p53 ∆NLS is st i l l  SUMOylated by MDM2 ∆AD ∆NLS. 
(A) Representation of the nuclear localisation signal (NLS) in MDM2 (red). Amino acids mutated in the 
MDM2 ∆NLS protein are indicated in bold. 
(B) HCT116 p53-/- cells were transfected with the plasmids indicated. Cells were lysed under 
denaturing conditions and p53 was immunoprecipitated with the DO-1 antibody (IP p53). 
 
 
Strikingly, p53 ∆NLS could still be SUMOylated by an MDM2 protein, lacking the 
NLS (MDM2 ∆AD ∆NLS) (Figure 3-13 B). It is possible that the nuclear localisation is 
not necessary for p53 SUMOylation, analogous to ubiquitination, which can still be 

promoted by MDM2 on p53 ∆NLS in the cytoplasm696. Nevertheless, to determine 
whether these NLS mutations really prevented nuclear import, their subcellular 

distribution was assessed by cellular fractionation (Figure 3-14). 
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Figure 3-14: p53 ∆NLS and MDM2 ∆AD ∆NLS can 
enter the nucleus. 
HCT116 p53-/- were transfected with the plasmids indicated. 
Cells were fractionated into cytoplasmic (Cy) and nuclear (Nu) 
fractions. Efficient fractionation was confirmed using GCN5 as 
nuclear and LDHB as cytoplasmic marker.  
 

 

 
Fractionation revealed that both p53 ∆NLS and MDM2 ∆AD ∆NLS could still enter 
the nucleus and were evenly distributed between cytoplasm and nucleus in contrast 
to the mainly nuclear and partially cytoplasmic wild-type proteins (Figure 3-14). 
Although the nuclear fraction of p53 was largely reduced compared to the wild-type 
protein, no reduction in SUMOylation of p53 ∆NLS had been observed (Figure 3-13 
B). However, since no complete nuclear exclusion was achieved, no firm conclusion 
can be drawn as to whether nuclear localisation is required for SUMOylation. It is 
possible that the NLS mutations are not sufficient to disrupt the import signal 

completely. Two further nuclear localisation signals have been described around 
amino acids 370 and 380 of p53118. Since these regions were left intact in the p53 

∆NLS protein, partial nuclear import could be allowed via these alternative nuclear 
localisation signals. In order to determine whether exclusively cytoplasmic p53 could 
be SUMOylated, a p53 protein mutated for all nuclear localisation-associated 

sequences should be tested. 

Since a change in the band pattern of SUMOylated p53 ∆NLS was observed, it was 
investigated whether the ladder of bands represented poly-SUMOylation of p53. 
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3.2.4  SUMO-3 does not form a chain on p53. 

In contrast to SUMO-2/3, which contains a SUMO consensus motif around lysine 11 
and can form chains353, SUMO-1 does not contain the necessary hydrophobic amino 

acid (Ψ) next to the lysine residue and cannot form chains (Figure 3-15 A). Poly-
SUMOylation has functionally distinct consequences to mono-SUMOylation700, for 

example in the recruitment of SUMO-interacting proteins. When blotting for 
SUMOylated p53, a ladder of three bands in about 20 kD intervals, which would be 
consistent with a chain of up to three SUMO molecules, was frequently observed. 
The transfected HA-SUMO-3 in the SUMO assay was therefore replaced by a 

mutant HA-SUMO-3 K11R, in which the chain-accepting lysine 11 is substituted for 
an arginine residue (Figure 3-15 B).  

 
Figure 3-15: p53 is not poly-SUMOylated. 
(A) Alignment of human SUMO-1, 2 and 3 around lysine 11 in SUMO-2/3. SwissProt accession 
numbers: SUMO-1: P63165; SUMO-2: P61956; SUMO-3: P55854 
(B) U2OS cells were transfected with p53, MDM2 ∆AD and either SUMO-3 or SUMO-3 K11R. Cells 
were lysed under denaturing conditions and p53 was immunoprecipitated with the DO-1 antibody (IP 
p53). 
 
 
The band-pattern of immunoprecipitated p53 blotted with the HA-specific antibody 
consistently did not change in ten repeat experiments, whether or not SUMO-3 had 
an intact SUMO motif (Figure 3-15 B). This suggests that the upper bands represent 
a combination of different modifications, possibly SUMO and ubiquitin on multiple 
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lysine residues in one p53 molecule, rather than a SUMO chain. This finding is 
consistent with the observation that mutation of multiple lysine residues (305, 319, 

320 and 321) as in p53 ∆NLS resulted in an altered band pattern of SUMOylated 
p53 (see Figure 3-12). 

3.2.5  SUMO-2 and 3 are preferentially conjugated to p53. 

p53 was first identified as a SUMO-1 target405,406 and MDM2 in complex with p14ARF 
was reported to promote SUMO-1 conjugation to p53415. Clearly, MDM2 can also 
promote SUMO-2/3 conjugation of p53. However, it is unclear, whether MDM2 
preferentially conjugates one of the SUMO isoforms. Despite the same set of E1-and 
E2 enzymes conjugating the three different SUMO-isoforms, certain targets have 
been shown to be preferentially modified by particular isoforms348. 

 
Figure 3-16: MDM2 preferent ia l ly SUMOylates p53 using SUMO-2/3. 
HCT116 cells were transfected with either (A) p53, MDM2 and SUMO-1 (SU-1) or SUMO-3 (SU-3) or 
(B) p53 and MDM2 constructs. Cells were lysed under denaturing conditions and p53 was 
immunoprecipitated using the DO-1 antibody (IP p53). SUMOylation was assessed with either (A) HA-
antibody in case of overexpressed SUMO or (B) SUMO-1 and SUMO-3 specific antibodies in the case 
of endogenous SUMO. *indicates smaller MDM2 isoform. 
 
 
HA-tagged SUMO-1 and SUMO-3 were overexpressed in the presence of p53 and 
MDM2. Wild-type MDM2 only conjugated HA-SUMO-3, but not HA-SUMO-1 to p53 
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(Figure 3-16 A, lanes 1 and 2), while MDM2 ∆AD modified a considerable amount of 
p53 with SUMO-1. However, MDM2 ∆AD still conjugated substantially more SUMO-

2/3 to p53 (Figure 3-16 A, lanes 3 and 4). Although it remains to be verified that both 
SUMO-1 and SUMO-3 isoforms were expressed to the same level, this data 
suggests that MDM2 mainly drives p53 modification with SUMO-2/3 and only to a 
limited extent modification with SUMO-1. 

Since SUMO-2/3 is naturally much more abundant as free pool in a cell than SUMO-
1, overexpression of either isoform, but particularly the more restricted SUMO-1, can 

shift the natural balance and skew results due to a non-physiological isoform 
representation701. Demonstrating the importance of using the endogenous pool of 
UBLs, a recent study showed that Nedd8 was being used by the conjugation system 

instead of Ubiquitin if overexpressed to unphysiological levels702. Thus, MDM2-

induced SUMOylation of p53 with endogenous SUMO isoforms was assessed with 
isoform-specific antibodies. Conjugation of SUMO-2/3, but not SUMO-1 to p53 was 
observed with wild-type MDM2. However, overexpression of the stronger 
SUMOylator MDM2 ∆AD led to more SUMO-2/3-conjugated p53 and also some 
SUMO-1-conjugated p53 (Figure 3-16 B). This result suggests that while MDM2 
does not completely discriminate against SUMO-1, it still preferentially drives SUMO-
2/3 conjugation to p53.  

Having studied the functional domains in p53 required for efficient SUMOylation, the 
role of MDM2 in the SUMOylation process was also addressed in more detail. 

3.3  Regulation of MDM2’s SUMOylation activity. 

The data presented here suggest that the ubiquitination and SUMOylation activity are 

distinct features in the MDM2 protein. Thus, the effect of known ubiquitination 
regulators such as the MDM2-inhibitors p14ARF 672 and L11188 on the SUMOylation 

activity of MDM2 was analysed. Furthermore, it was investigated why certain MDM2 
mutants, particularly the protein deleted for the central domain including acidic 

domain and zinc finger (MDM2 ∆AD), were able to promote SUMOylation of p53 
more efficiently than the wild-type MDM2 protein. 
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3.3.1  The MDM2- inhibiting proteins p14ARF and L11 
stimulate SUMOylation. 

The interaction of MDM2 with p14ARF leads to the inhibition of ubiquitination of p53672, 
but was shown to promote p53’s SUMO-1 modification415. A similar result was 
observed for endogenous SUMO-2/3 conjugation to p53, which was enhanced by 
addition of p14ARF, both under endogenous and overexpressed MDM2 levels (Figure 

3-17 A, lane 5 and 6). However, p14ARF was also shown to associate with the 
SUMO-E2 Ubc9, promoting SUMOylation of p14ARF-interaction partners428, and to 

inhibit deSUMOylation of proteins by increasing the turnover of the sentrin-specific 
protease SENP3429. It is therefore difficult to discriminate between specific p53-
related and global SUMOylation effects of p14ARF.  

 

 
Figure 3-17: MDM2 strongly SUMOylates p53 in complex with p14ARF 
and L11. 
U2OS cells were transfected with the plasmids indicated. Cells were then lysed 
under denaturing conditions and p53 immunoprecipitated with the DO-1 
antibody (IP p53). 
 

 

 
The ribosomal protein L11 functions similarly to p14ARF by binding to the acidic 
domain of MDM2 and inhibiting its ubiquitination activity188, but has not yet been 

linked to any SUMOylating or deSUMOylating activity. Hence, the effect of L11 co-
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expression with MDM2 was investigated. Similar to p14ARF co-expression of L11 also 
strongly induced the SUMOylation of p53 (Figure 3-17 A, lane 3 and 4). 

Previous studies suggested that the ability of MDM2 and p14ARF to drive SUMO-1 
modification of p53 was depending on nucleolar relocalisation of MDM2415. A cryptic 
nucleolar localisation (NoLS) signal between amino acids 466 and 473 in MDM2, 
which is exposed upon p14ARF binding, was identified and characterised earlier214. 

The ribosomal protein L11 was also reported to recruit MDM2 to nucleoli188. Deletion 
of the central domain of MDM2 also exposed this nucleolar localisation signal, 

resulting in nucleolar accumulation of MDM2 ∆AD214. In order to assess whether the 
strong SUMOylation promoted by MDM2 ∆AD was due to its relocalisation to the 
nucleoli, a mutation disrupting the nucleolar localisation signal (Figure 3-8 A), was 

introduced into MDM2 ∆AD (MDM2 ∆AD ∆NoLS). Mutation of lysine residues 466, 

467, 469, 470, 471 and 473 was previously shown to prevent p14ARF-induced 
nucleolar relocalisation of MDM2214.  

 

 
Figure 3-18: MDM2 SUMOylates p53 independently of nucleolar local isat ion. 
(A) Representation of the nucleolar localisation in MDM2 (in red). Amino acids replaced with 
uncharged residues in the MDM2 ∆NoLS protein are indicated in bold. 
(B) H1299 cells were transfected with p53 and wither MDM2 ∆AD or MDM2 ∆AD ∆NoLS. Cells 
were then lysed under denaturing conditions and p53 immunoprecipitated with the DO-1 
antibody (IP p53).  
 

 

 
However, mutation of the NoLS did not affect the ability of MDM2 ∆AD to promote 
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440 and therefore lacks the nucleolar localisation signal214, can still efficiently 
SUMOylate MDM2 (Figure 3-5 B). 

Analysing cancer-associated missense MDM2 mutation in liposarcomas703, 
lymphomas and hepatocellular carcinomas161 revealed that many point mutations 
affect the structurally critical cysteine residues of the zinc finger in MDM2’s central 
domain (C305, C308 and C319). One of these mutations (C305F) was subsequently 

reported to abrogate L11 binding to MDM2, while not affecting binding of p14ARF 162. 
Interestingly, the MDM2 C305F mutant was deficient in degrading p53, however 

retained its ability to promote p53 ubiquitination162.  

 

 
Figure 3-19: Cancer-associated zinc-f inger MDM2 mutants 
SUMOylate p53. 
U2OS cells were transfected with the plasmids indicated. Cells were 
then lysed under denaturing conditions and p53 was 
immunoprecipitated with the DO-1 antibody (IP p53)  
 

 

 
Since L11 had a profound impact on MDM2’s SUMOylation activity, the ability of two 
cancer-associated zinc-finger mutants C305F and C319R MDM2 to SUMOylate p53 
was studied. Both cancer-associated MDM2 mutants could SUMOylate p53 well, 

even slightly better than wild-type MDM2 (Figure 3-19). The data suggests that, 

although presence of L11 enhanced MDM2-mediated SUMO-2/3 modification of 
p53, binding of endogenous L11 to MDM2 is not a prerequisite for SUMOylation of 
p53. Interestingly, mutation of zinc-coordinating cysteine residues leads to slightly 

stronger SUMOylation of p53.  
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3.3.2  MDM2 does not require SUMO interaction motifs to 
SUMOylate p53. 

One important mechanism, by which conjugation of SUMO can modify the 
interactome of the target protein, is by providing a new binding surface for SUMO-
interacting motifs (SIMs). The SIM motif has been described to consist of a cluster of 
hydrophobic amino acids V/I-X-V/I-V/I354 or V/I-V/I-X-V/I/L355 with a following stretch 

of negatively charged amino acids, which later turned out to be more crucial for 
SUMO-1 and are thought to be dispensable for SUMO-2/3 recognition358. 

 
Figure 3-20: MDM2 proteins without putat ive SIM domains SUMOylate p53. 
(A) Representation of the putative SIMs identified in MDM2, indicated in red. Numbers represent the 
amino acids replaced by hydrophilic amino acids (in bold) in the SIM mutant proteins. SwissProt 
accession number: MDM2 Q00987. 
(B) HCT116 p53-/- cells were transfected with p53 and MDM2 ∆AD with two, one or no SIM motifs. 
Cells were lysed under denaturing conditions and p53 immunoprecipitated with the DO-1 antibody (IP 
p53) 
 
 
Many proteins involved in the SUMO pathway, for example the SUMO E3 ligase 
RanBP2361, rely on SUMO interacting motifs as means to associate with SUMO. 

Indeed MDM2 interaction with SUMO-2/3 could be observed (data not shown) and it 

was therefore investigated whether the SUMO binding motif also played a role in the 
process of SUMO-2/3 modification of p53 via MDM2. Analysis of the MDM2 protein 
sequence revealed four hydrophobic amino acid clusters, two of which lie outside the 

acidic domain and could potentially act as SUMO interaction motif in the MDM2 ∆AD 
protein. Although none of the sequences were perfect matches to the published SIM 
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consensus, since the first amino acid was a leucine rather than the proposed valine 
or isoleucine residue, the potential SUMO interaction motifs were mutated. In order 

to disrupt the motifs, two of the amino acids hydrophobic amino acids within each 
proposed SIM was replaced with non-hydrophobic residues resulting in the mutant 
proteins MDM2 ∆AD SIM1, MDM2 ∆AD SIM2 and MDM2 ∆AD SIM1+2 (Figure 3-20 
A). 

All SIM mutant MDM2 proteins still SUMOylated p53 to a comparable extent (p53 is 
expressed slightly less in the third lane), suggesting that the mutated domains are 

either not serving as SUMO-interaction motifs or that the non-covalent SUMO-SIM 
interaction is not required for p53 SUMOylation by MDM2 (Figure 3-20 B). 

3.3.3  MDM2 does not need to dimerise in order to 
SUMOylate. 

Previously, it was observed that MDM2 mutants, which were impaired for 
ubiquitination, were able to SUMOylate p53 more efficiently. The ability of MDM2 to 
dimerise was shown to be important for conjugation of Ubiquitin mediated by 

MDM2176. The RING domain of the MDM2 protein can form dimers with another 
MDM2 RING156 or the RING domain of the related MDMX protein146. Interestingly, 
mutations affecting the MDM2-dimerisation not only affect its ability to promote 

ubiquitination, but also neddylation of p53704.  

 
Figure 3-21: Representat ion of MDM2 mutants tested in the dimerisat ion assay. 
The region deleted or mutated in the MDM2 mutants are indicated in red. 
  
 
In contrast to ubiquitination of p53, co-expression of MDMX did not induce MDM2’s 

ability to promote SUMO-3 modification of p53 (Figure 3-1). Furthermore, the data 
presented here suggest that MDM2 mutants that cannot ubiquitinate tend to 

SUMOylate p53 more strongly (e.g. C464A MDM2 and MDM2 ∆AD). Not only the 
RING domain, but also the acidic domain was reported to influence MDM2’s 
dimerisation705. Thus, it is possible, that all MDM2 mutants shown to strongly 
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SUMOylate p53 fail to dimerise, leading to a model of dimeric MDM2 driving 
ubiquitination of p53 and monomeric MDM2 promoting SUMOylation of p53.  

In order to investigate whether the dimerisation of MDM2 mutants correlates with 
their ability to SUMOylate p53, the dimerisation capability of a number of MDM2 
mutants was assessed. An MDM2 protein deleted for the acidic domain and lacking 
the last 9 amino acids (MDM2 ∆AD ∆9) in the C-terminal tail behind the RING domain 

(Figure 3-21) was included as a control. This MDM2 mutant was previously reported 
to neither dimerise nor ubiquitinate p53174. 

 

 
Figure 3-22: MDM2 C464A and MDM2 ∆AD dimerise. 
HCT116 cells were transfected with untagged wild-type or mutant MDM2 
constructs and their matching GFP-tagged counterparts. Cells were lysed under 
mild conditions and the tagged MDM2 was immunoprecipitated using a GFP 
antibody (IP GFP). MDM2 dimerisation was assessed via co-immunoprecipitation 
of the untagged MDM2.  
 

 

 
In this dimerisation assay, untagged and GFP-tagged versions of the MDM2 
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Having immunoprecipitated tagged MDM2 with a GFP antibody under native lysis 
conditions, the amount of un-tagged MDM2 co-immunoprecipitated with the tagged 

MDM2 was analysed as indication of their ability to dimerise. 

Consistent with previous reports that this MDM2 mutant fails to dimerise, the MDM2 
protein deleted for the acidic domain and the C-terminal tail (GFP MDM2 ∆AD ∆9) 
co-immunoprecipitated significantly less untagged protein (Figure 3-22, lane 5) 

compared with the GFP MDM2 ∆AD protein (Figure 3-22, lane 4). However, all other 
MDM2 mutants tested, including the RING domain mutant MDM2 C464A still co-

immunoprecipitated untagged MDM2 proteins to an extent similar to wild-type 
MDM2. This observation was surprising, since the RING structure is clearly distorted 
by the C464A mutation. It is possible that a second interaction via the acidic domain 

is responsible for the dimerisation observed in this experiment. The MDM2 ∆AD 

mutant was the strongest promoter of p53 SUMOylation, but dimerised well in this 
assay. This data suggests that the extent of dimerisation and strength of 
SUMOylating activity do not correlate.  

 

 
Figure 3-23: MDM2 dimerisat ion is not 
required for SUMOylat ion of p53. 
HCT116 cells were transfected with the 
plasmids indicated and lysed under denaturing 
conditions. p53 was immunoprecipitated using 
the DO-1 antibody (IP p53).   
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MDM2 could promote SUMO-2/3 modification of p53, the monomeric MDM2 ∆AD 
∆9 was tested in a SUMO assay (Figure 3-23). This mutant has previously been 

reported to fail to induce ubiquitination of p53174, however it can still efficiently 
promote SUMO-2/3 conjugation (Figure 3-23). Dimerisation of MDM2 is thus not 
necessary for its SUMOylation activity. 

In order to investigate in more detail, why some MDM2 are such efficient promoters 

of p53 SUMOylation, the interaction of MDM2 with the SUMO-E2 Ubc9 was studied 
next. 

3.3.4  MDM2 interacts with SUMO-E2 Ubc9. 

 

 
Figure 3-24: MDM2 ∆AD interacts strongly with the 
SUMO-E2 Ubc9. 
HCT116 cells were transfected with the MDM2 constructs 
indicated and either SV5-tagged Ubc9 or an empty vector. Cells 
were lysed under mild conditions and Ubc9 immunoprecipitated 
with an SV5 antibody (IP SV5). The ability of MDM2 to interact with 
Ubc9 was assessed via the amount of co-precipitated MDM2 
protein. * indicates the IgG heavy chain. 
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SUMO is conjugated to target proteins via a 3-step enzyme cascade similar to 
conjugation of Ubiquitin. In contrast to the multiple ubiquitin-E2 enzymes described, 

the only SUMO-conjugating enzyme reported so far is Ubc9328. Since MDM2 can 
promote p53-SUMOylation, the interaction of MDM2 with the SUMO-E2 Ubc9 was 
analysed.  

While hardly any wild-type MDM2 was immunoprecipitated with Ubc9, a weak 

interaction with MDM2 C464A and a much more pronounced interaction with MDM2 
∆AD were observed (Figure 3-24). It is a striking finding that deletion of the central 

part of the MDM2 protein leads to such dramatic changes in interaction with the 
SUMO-E2 Ubc9. This interaction with Ubc9 could explain why the MDM2 ∆AD 
mutant promotes SUMOylation of p53 particularly efficiently. 

3.3.5  MDM2 and MDM2 ∆AD interacting proteins. 

Encouraged by the observation that MDM2 ∆AD bound more strongly to Ubc9 than 
wild-type MDM2, it was investigated whether any other proteins, which could 
potentially be linked to SUMOylation, also bound differentially to the two proteins. On 
the one hand it is possible that MDM2 ∆AD not only interacts better with the SUMO-
E2 Ubc9, but also cooperates with other SUMO-E3 ligases or factors that promote 
SUMOylation. On the other hand, the acidic domain of MDM2 could serve as binding 
platform for deSUMOylating enzymes, which could counteract the SUMO-
conjugating activity of the full-length MDM2 protein, but would not be recruited to the 

MDM2 ∆AD protein. The deSUMOylating enzyme SENP3 was recently reported to 
bind MDM2 between amino acids 222-274706, which are missing in the MDM2 ∆AD 
protein. MDM2 was furthermore shown to interact with SUSP4, the mouse 

homologue of SENP2707, although it is not known where this interaction takes place.  

Proteins interacting with MDM2 and MDM2 ∆AD were identified using mass 
spectrometry on eluates from an MDM2 immunoprecipitation experiment. In brief, 
MDM2 and its interacting proteins were immunoprecipitated with flag-antibody-

coupled beads and eluted with triple-flag peptide using lysates from cells 
overexpressing either flag-tagged full-length MDM2 or flag-tagged MDM2 ∆AD. Flag-
peptide elution was used to circumvent elution of proteins binding to the beads or 
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the tubes, which would be present in the sample if MDM2 had been eluted in SDS 
instead.  

First, the eluted proteins were denatured and trypsin-digested, then the resulting 
peptides were separated by liquid chromatography. This involved capturing peptides 
from the digest on a C18 column and eluting them according to their polarity with a 
water/acetonitrile gradient. The peptides eluted from the reversed phase liquid 

chromatography column were automatically sprayed into an LTQ Orbitrap Velos MS-
MS system. In this system, ionised peptides first pass through an orbitrap mass 

spectrometer in a survey scan, certain peptides are then selected for collision in a 
linear trap quadropole (LTQ) and their fragment spectra recorded in another Orbitrap. 

 

 
Figure 3-25: MDM2 is eff ic ient ly e luted from the f lag beads. 
Hek293T cells were transfected with flag MDM2 or flag MDM2 ∆AD (untagged MDM2 
was included as control, but not used for analysis by mass-spectrometry). Cells were 
lysed under native conditions and MDM2 immunoprecipitated using flag beads. Elution 
from the beads with the flag-peptide was achieved efficiently (IP flag). 
 

 

 
In an Orbitrap mass spectrometer, ions are injected perpendicular to an electric field 
between a central inner electrode and a barrel-shaped outer electrode. The ions 

begin to rotate around the central electrode (orbital trapping) and the path of 
oscillation is dependent on the mass to charge ratio (m/z) of the peptide. Thus, the 
m/z peaks, which are used to identify the peptides in the sample, can be calculated 

from the oscillation path of the ions in the Orbitrap708. Recording a spectrum of the 
peptide fragments after collision in a second round of mass spectrometry helps to 
identify the peptides corresponding to the m/z peak corresponding to the 
unfragmented peptide recorded in the first round of mass spectrometry. In this 
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system, the linear trap quadrupole (LTQ) was used to select the ions giving rise to the 
ten most intense peaks for collision. 

The mass spectra were used to find matches for the trypsin-cleaved peptides in the 
human SwissProt database. Although this experiment was not a quantitative assay, if 
a number of peptides of the same protein are exclusively identified in one sample, 
this could be an indication that the protein predominantly interacts with either wild-

type MDM2 or MDM2 ∆AD. Hits, which had 5 or more unique peptides identified in 
one sample and none or only one in the other sample were therefore treated as 

proteins preferentially binding to either full-length MDM2 or MDM2 ∆AD. 

Identi f ied proteins Accession 
Number 

Unique peptides 
MDM2 ∆AD wt MDM2 

E3 Ubiquitin-protein ligase MDM2 Q00987 9 19 
Cellular tumour antigen p53 P04637 13 16 
60S ribosomal protein L5 P46777 10 15 
40S ribosomal protein S3 P23396 8 12 
60S ribosomal protein L11 P62913 3 8 
60S ribosomal protein L23 P62829 3 7 
Nucleophosmin P06748 6 7 
Nucleolin P10338 10 5 

Table 3-1: Wel l-establ ished MDM2-binding proteins ident i f ied in both samples. 
Proteins well established to interact with MDM2 identified in both samples by detection of at least 5 
unique peptides in one and at least 3 in the other sample. Numbers represent unique peptides 
identified. 
 

Serving as positive control for a successful assay setup, MDM2 itself and its binding 

partner p53 were identified in both samples. Since MDM2 ∆AD is considerably 

shorter than full-length MDM2, it is not surprising that less unique peptides were 
identified in the cells expressing MDM2 ∆AD. A number of ribosomal proteins are 
well established binding partners for p53, such as L5223, L11188, L23222 and more 

recently also S3709. Interaction of MDM2 with the ribosomal protein S3709 and the 
proteins Nucleolin710 and Nucleophosmin711 were found to take place outside the 
acidic domain, consistent with the identification of peptides in both samples (Table 3-
1). However, although L5, L11 and L23 were described to bind to the MDM2 acidic 
domain220-222, interaction with MDM2 ∆AD was also observed in this proteomics 

analysis (Table 3-1). It is possible that MDM2 ∆AD could have dimerised with 
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endogenous full-length MDM2 and co-immunoprecipitated these ribosomal proteins 
via the acidic domain of the endogenous protein. However, since overexpression 

levels were very high, the likelihood for exogenous/endogenous MDM2 dimers to 
occur is very low. Furthermore, the acidic domain binding protein p14ARF was 
exclusively identified in cells expressing full-length MDM2, but not MDM2 ∆AD (not 
included in list since only 4 peptides were identified), suggesting that differences in 

binding can be picked up with this experimental setup.  

Identi f ied proteins Accession 
Number 

Unique peptides 
MDM2 ∆AD wt MDM2 

PHD finger protein 6 Q8IWS0 0 16 
40S ribosomal protein S4 P62701 1 10 
DNA ligase 3 P49916 0 10 
Splicing factor 3B subunit 2 Q13435 0 8 
Proliferation-associated protein 2G4 Q9UQ80 1 7 
Ubiquitin carboxyl-terminal hydrolase 7 Q93009 1 6 
60S ribosomal protein L10 P27635 0 6 
40S ribosomal protein S3a P61247 0 6 
40S ribosomal protein S2 P15880 1 5 
60S ribosomal protein L26-like 1 Q9UNX3 0 5 
40S ribosomal protein S11 P62280 0 5 
Developmentally-regulated GTP-binding 
protein 1 

Q9Y295 0 5 

40S ribosomal protein S25 P62851 1 4 
E3 Ubiquitin-protein ligase HUWE1 Q7Z6Z7 14 0 
Protein phosphatase 1G O15355 9 1 
Sodium/potassium-transporting ATPase 
subunit alpha 

P05023 9 1 

Heterogeneous nuclear 
ribonucleoproteins A2/B1 

P22626 5 1 

Table 3-2: Proteins binding select ively to either fu l l- length MDM2 or MDM2 ∆AD. 
Proteins identified in one sample by detection of at least 5 peptides in the mass-spectrometer, with no 
more than one peptide identified in the other sample were selected for this list. Numbers represent 
unique peptides identified. 
 

A number of other ribosomal proteins S2, S3a, S4, S11, S25, L10 and L26L1 
exclusively interacted with full-length, but not MDM2 ∆AD (Table 3-2). While many of 
these proteins have never previously been described to interact with MDM2, S25712 

and L26713 were recently reported to bind to MDM2. Since many other ribosomal 
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proteins, such as S7226, S14714, S20715 and S27a716 have only recently been 
discovered to bind to MDM2, it is possible that the interaction with other ribosomal 

proteins, such as the ones identified here, had not yet been described. Since 
ribosomal proteins are part of large protein complexes, it is furthermore conceivable 
that some of these proteins do not directly interact with MDM2, but are pulled down 
in a complex with other ribosomal proteins. 

Several non-ribosomal proteins were identified that bind exclusively to full-length 
MDM2, such as PHD finger protein 6, DNA ligase 3, Splicing factor 3B subunit 2, 

Proliferation-associated protein 2G4, Ubiquitin carboxyl-terminal hydrolase 7 and 
Developmentally regulated GTP-binding protein 1. While none of these proteins are 
involved in the SUMO-pathway, the Ubiquitin carboxyl-terminal hydrolase 7, also 

known as USP7 or HAUSP, is known to deubiquitinate both p53 and MDM2313,314. In 

contrast to one study mapping the HAUSP interaction to MDM2’s amino acids 147 
and 159717, a preferred interaction with the full-length MDM2 protein was observed 
here, suggesting that the acidic domain of MDM2 might be supporting the interaction 
with HAUSP. Consistent with these results, a different structural study mapped the 
HAUSP interaction region to amino acids 222-232, which are deleted in our the 
MDM2 ∆AD protein718. However, HAUSP seems to be specific for the removal of 
Ubiquitin and no SUMO-related activities have been reported to date. It is possible 
though, that posttranslational modifications such as ubiquitination of MDM2 regulate 
its activity to SUMOylate p53 or Ubiquitin-modification of p53 could regulate its 

availability for subsequent SUMOylation and it would therefore be interesting to 
investigate whether HAUSP could modulated MDM2’s ability to promote SUMO-2/3 
modification of p53.  

Another notable hit was the PHD finger protein 6 (PHF6) that exclusively bound to 

full-length MDM2, but not MDM2 ∆AD. PHD domains contain zinc-coordinating 
structures similar to RING fingers719. The PHD domain of the Kip1 protein has 
recently been demonstrated to confer intramolecular SUMO-E3 ligase activity720 and 

it is possible that the PHD finger 6 protein also plays a role in SUMOylation. 

The Proliferation-associated protein 2G4, also known as ErbB3 binding protein 
EBP1, is a part of a large ribonucleotide protein complex and was previously 
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observed to bind MDM2, promoting its interaction with p53721. Since MDM2-
mediated p53 ubiquitination was also induced by EBP1, it was described as 

ubiquitination cofactor721. It could be informative to investigate whether this binding 
factor exclusively promotes ubiquitination, or also drives SUMOylation, since the 
p53-MDM2 interaction was promoted by EBP1. No association with MDM2 or the 
UBL pathway are known for DNA ligase 3, Splicing factor 3B subunit 2 or 

developmentally-regulated GTP-binding protein. 

By contrast, peptides of a number of proteins (E3 Ubiquitin ligase HUWE1, Protein 

phosphatase 1G, Sodium/potassium-transporting ATPase subunit alpha (ATP1B1) 
and heterogeneous nuclear ribonucleoproteins A2/B1) were exclusively identified in 
the sample overexpressing MDM2 ∆AD. No associations of ATP1B1 with MDM2 or 

SUMOylation could be found. While no direct interaction of Protein phosphatase 1G 

(PPM1G) and MDM2 has been described, the phosphatase was recently found to 
dephosphorylate HAUSP, leading to downregulation of its deubiquitinating activity 
towards MDM2722. MDM2’s SUMOylation activity could potentially be regulated by 
modification with ubiquitination, and it is furthermore possible that MDM2 is a 
PPM1G target and that MDM2’s E3 functions are regulated by phosphorylation. 
Strikingly, the HECT-domain containing E3 Ubiquitin ligase HUWE1 bound 
exclusively to MDM2 ∆AD, but not to wild-type MDM2. To date, no HECT-domain 
ligases have been described to promote SUMOylation, however it would still be 
informative to test whether HUWE1 could aid p53-SUMOylation. 

While the proteomics analysis did not reveal any obvious explanation as to why 
MDM2 ∆AD promotes SUMOylation so efficiently, a number of hits, most of which 
are associated with ubiquitination, were identified and could form the basis for future 

studies. 

Having studied the SUMO-2/3 conjugation to p53, the potential of MDM2 to be 
modified by SUMO-2/3 itself was investigated. 
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3.4  SUMO-2/3 modification of MDM2. 

SUMO-1 conjugation to MDM2 was previously reported425,426,431,432 , yet no definite 

SUMO-site has been identified to date. Since MDM2 is a Ubiquitin-ligase not only for 

p53, but also for itself157,181 it was investigated, whether MDM2 could also be SUMO-
2/3 modified itself. 

Unlike ubiquitination, SUMOylation is in most cases restricted to lysine residues in the 
environment of a SUMO motif ΨKxE331. However, not every SUMO motif is 
SUMOylated and sometimes also lysine residues outwith the canonical consensus 
sequence are modified by SUMO. Analysis of the MDM2 amino acid sequence with 

the SUMO site prediction tool SUMOsp 2.0723 revealed one classical SUMO 
consensus motif (ΨKxE) around lysine 346 and two non-canonical SUMO sites at 
lysine 185 and 422 (Figure 3-26). A study from David Lane’s lab had previously 
narrowed the SUMO-1 conjugation site down to an area between amino acids 134 
and 212425. 

 
Figure 3-26: Potent ia l  SUMO sites on MDM2. 
Representation of the MDM2 protein with SUMO sites predicted by SUMOsp2.0 prediction tool and 
previous studies (in red). The area deleted in the MDM2 ∆AD protein is indicated in black. 
 
 
All studies on MDM2-SUMOylation have so far been conducted with SUMO-1, and it 
was therefore assessed whether any SUMO-2/3 conjugated MDM2 could be 

detected after overexpressing SUMO-3 with an MDM2 mutant, which had been 
found to drive strong SUMOylation of p53 in previous experiments. Indeed, MDM2 
∆AD showed a higher band doublet in the SUMO assay, which was shifted up by 
roughly 20 kD and could represent conjugation of a single SUMO-3 moiety (Figure 3-
27 A). 

MDM2:

p53 Binding Acidic Domain RING Finger

¬(+

proposed area of SUMOylation (between amino acids 134 and 212)

SUMO consensus motif (lysine 346)

non-canonical SUMO motif (lysine 185 and lysine 422)
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Figure 3-27: MDM2 ∆AD MDM2 is SUMO-2/3 modif ied. 
HCT116 cells were transfected with the indicated MDM2 mutants and SUMO-3. Cells were lysed 
under denaturing conditions and MDM2 was immunoprecipitated using the Ab-1 antibody (IP MDM2). 
* indicates an Actin band. Size marker is included as guidance, numbers indicate protein size in kD.  
 
 
Since MDM2 ∆AD is efficiently SUMOylated, both the canonical SUMO consensus 

site at lysine 346 and the non-canonical site at lysine 422 were excluded as 
potentially SUMOylated residues, because all amino acids between 222 and 437 are 
deleted in this protein. The only remaining proposed SUMO site lies at lysine 185, 
which also fulfils the previously set requirement of SUMOylation taking place between 
amino acids 134 and 212425. MDM2’s lysine 185 was thus mutated to arginine and 
its ability to be SUMOylated analysed. The resulting MDM2 ∆AD K185R protein was 
still SUMOylated equally well as MDM2 ∆AD (Figure 3-27 B), suggesting that SUMO-
2/3 is conjugated to a different lysine residue in MDM2 ∆AD.  

Taken together, these data show that MDM2 is not only SUMO-1 modified, but also 
SUMO-2/3 conjugated. At least one SUMO site is located outside the region deleted 

in the MDM2 ∆AD mutant, however the predicted SUMO site around lysine 185 is 
not the SUMOylated residue. Three other lysine residues (K136, K146 and K182) are 

located in the region proposed to be SUMOylated by Xirodimas et al425 and it could 

be of interest to determine whether mutation of any of these lysines could abrogate 
SUMO-2/3 modification. 
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3.5  Summary and Discussion 

Taken together, these data show that, in addition to promoting Ubiquitin conjugation 

to p53, MDM2 can also enhance modification by SUMO-2/3 and that the 

requirements are different to those previously reported for SUMO-1. 

MDM2-mediated conjugation of SUMO-2/3 to p53 depends on the p53-MDM2 

interaction (Figure 3-3), but is independent of the integrity of the RING domain (Figure 
3-5), which is essential for p53 ubiquitination181. Although the Ubiquitin-E3 ligase 
activity is not required for SUMOylation of p53, MDMX, which binds p53 in a manner 
similar to MDM2, cannot promote p53 SUMOylation (Figure 3-1). Furthermore, a 

monomeric MDM2 is sufficient to drive SUMOylation (Figure 3-23), while a 
homodimer of MDM2 or heterodimer of MDM2 and MDMX is required for efficient 
ubiquitination174. Interestingly, the SUMO-E2 can directly bind to the SUMO 
consensus in the target protein335 in contrast to Ubiquitin E2 enzymes that do not 
tightly associate with the target protein. In light of this different role of the conjugating 
enzyme in the SUMOylation cascade, it is conceivable that a potential SUMO-E3 
ligase would also require different activities than a Ubiquitin-E3 ligase. The PIAS 
family SUMO-E3 ligases contain SP-RING domains related to Ubiquitin-E3 RINGs, 
and it was suggested that they act similarly to the Ubiquitin-E3 RINGs by binding to 
the E2-UBL thioester and activating the thioester-bond for transfer to the target724. 
However, even though RING fingers (or similar structures like PHD fingers) or HECT 
domains seem to be strictly required for the activity of Ubiquitin E3 ligases, SUMO-
E3s do not always rely on this functional domain to promote SUMOylation of their 
targets. Indeed, the first identified SUMO-E3 ligase RanBP2 contains neither RING- 

nor HECT-domain like structures333, but harbours its catalytic activity in two internal 
repeat domains361. While PIAS4 requires an intact RING domain to promote 

SUMOylation of p53412, it can promote SUMOylation of Yin Yang1 independently of 
the SP RING725. PIAS4-mediated SUMO-modification of GATA-2 also does not rely 

on the RING domain, but requires to bind to GATA-2726, similar to the requirement of 
MDM2 to interact with p53 in order to promote SUMO-2/3 modification of p53 
(Figure 3-3).  
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Generally, MDM2 mutants that were unable to ubiquitinate were better in promoting 
SUMOylation of p53 (Figure 3-6). This finding points towards distinct SUMO- and 

ubiquitination activities in the same enzyme and possibly a competition of both 
activities. The degree of SUMO conjugation activity however does not correlate with 
the loss of ubiquitination activity. For example, the MDM2 ∆AD mutant retains some 
residual ubiquitination activity, but promotes SUMOylation of p53 most efficiently 

(Figure 3-6). This MDM2 mutant had previously been shown to promote SUMO-1 
conjugation to p53, which was linked to its relocalisation to the nucleolus415. 

However, relocalisation of MDM2 to the nucleolus is not a prerequisite for SUMO-2/3 
modification of p53, since MDM2 mutants that have lost the nucleolar relocalisation 
signal, for example ∆RING (Figure 3-5) and MDM2 ∆AD ∆NoLS (Figure 3-18), or are 
not activated for nucleolar localisation, for example 464A MDM2 (Figure 3-6), show 

efficient SUMO-2/3 conjugating activity. Interestingly, only SUMO-1, but not SUMO-
2/3 localises to the nucleolus349, which might explain the differences observed 
between the requirements for MDM2-mediated SUMO-1 and SUMO-2/3 
modification. Nevertheless, similar to previous observations for SUMO-1 conjugation 
of p53, co-expression of p14ARF, which induces nucleolar relocalisation of MDM2 and 
inhibits its ubiquitination activity, markedly induced MDM2's ability to promote 
SUMO-2/3 conjugation of p53 (Figure 3-17). Importantly, p14ARF has been linked to 
other MDM2-independent mechanisms of promoting SUMOylation, since it binds 
and recruits the SUMO-E2 Ubc9428 and induces turnover of the deSUMOylating 

enzyme SENP3429. Co-expression of the ribosomal protein L11, which also inhibits 
MDM2-mediated ubiquitination, but has not been linked to any further involvement in 
the SUMOylation pathway, also promoted SUMO-2/3 modification of p53 by MDM2 

(Figure 3-17). 

Rather than relying on MDM2 relocalisation to the nucleolus, I propose that the 
strong SUMO-2/3 conjugating activity of MDM2 ∆AD depends on MDM2-interacting 
proteins, as this mutant interacted particularly well with the SUMO-E2 Ubc9 (Fig 3-

24). Other proteins binding to this region could have additional effects, for example it 
has recently been published that the Sentrin-specific protease Senp3 interacts with 
MDM2 between amino acids 222-274706, which are missing in the MDM2 ∆AD 
protein. Although no SUMO-specific proteases known to interact with MDM2706,727 
were identified as MDM2-interacting proteins in the mass-spectrometry experiment 
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(Table 3-2), a number of proteins were identified to bind exclusively to either protein. 
In particular, the HECT-E3-ligase HUWE1, which only interacted with MDM2 ∆AD 

and the PHD finger protein 6, which only interacted with full-length MDM2 could form 
the basis for further investigations. Although these proteins have not yet been linked 
to SUMOylation, it would still be conceivable that they might have an effect on p53-
SUMOylation since both Ubiquitin ligases, albeit to date no HECT-domain ligases, 

and PHD-domain containing proteins720 have previously been found to confer 
SUMOylation activity. 

The observation that mouse p53 cannot be SUMOylated (Figure 3-10) is crucial for 
the choice of an animal model. The knock-in mouse created by Krummel et al. where 
all C-terminal lysine residues (7 in the mouse, 6 in the human protein) were mutated 

to arginine151, which strikingly did not result in any major change in p53 regulation, 

was thought to affect all C-terminal Ubiquitin-like modifications. But since wild-type 
murine p53 cannot be SUMOylated, no conclusions about the effects of 
SUMOylation on p53-activity can be drawn from this study. Histological co-staining 
of p53 and SUMO-1 in mouse tumours402 will therefore most likely not represent 
SUMOylated p53 either. Strikingly, SUMOylation of p53 was recently also studied in 
rat brain neurons728, however similar to mouse p53, the SUMO motif is not 
conserved in the rat p53 sequence and it remains to be determined, where this 
SUMOylation of the rat p53 took place. SUMOylation of p53 has also been studied in 
drosophila, but limited conclusions can be drawn form these experiments, since 

drosophila p53 has two SUMO motives, one in the N-terminus and the central part of 
the protein, but the C-terminal SUMO consensus found in the human protein is not 
conserved729. Interestingly, a lethal SUMO knockout model in zebrafish could be 

rescued by deletion of p53, raising the possibility that p53-SUMOylation could play a 

crucial role here730. Since zebrafish p53 does contain a C-terminal SUMO-site 
homologous to the human site, it would be informative to create a lysine 366 or 
glutamate 368 mutant knock-in zebrafish (analogous to the human K386R and 

E388R p53) to study functional consequences of p53 SUMOylation in vivo. 

Although the same SUMO-E2 enzyme (Ubc9) is responsible for conjugating all 
SUMO-isoforms, some target genes are preferentially conjugated with SUMO-1 and 
others show much higher SUMOylation with SUMO-2/3348,731. While MDM2 
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predominantly modified p53 with SUMO-3 (Figure 3-16), it remains challenging to 
compare SUMO-1 and SUMO-2/3 conjugated levels. Although overexpression of 

tagged SUMO-isoforms might be able to eliminate possibly different isoform-specific 
antibody quality issues, immunoprecipitation of SUMOylated targets can only capture 
a snapshot picture, which might be highly flawed due to the different dynamics of 
SUMO-1 and SUMO-2/3348. Overexpression, especially of SUMO-1, which is 

normally mostly conjugated to proteins rather than available free in the cell, can 
furthermore shift the natural balance of a high free SUMO-2/3 pool and identify 

SUMO-1 targets which would naturally preferentially be conjugated to SUMO-2/3349. 
Despite these technical difficulties, functionally distinct consequences of SUMO-1 
versus SUMO-2/3 conjugation are emerging. Isoform-specific SUMO-interacting 
motifs for the recruitment of interacting proteins358 and SUMO-chain-specific 

functions731 - chain formation is limited to SUMO-2/3673 - have been described. 

Despite the observation of a ladder of SUMOylated p53 bands, p53 did not seem to 
be poly-SUMOylated since mutation of lysine residue 11 in SUMO-3, which is 
required for chain formation, did not alter the band pattern (Figure 3-15). Thus, the 
ladder of bands probably reflects a combination of SUMO- and Ubiquitin- or Nedd8-
conjugation to different lysine residues in p53. This hypothesis is consistent with the 
observation that mutation of multiple lysine residues in p53 ∆NLS, some of which are 
known to be targeted for ubiquitination141,310 and neddylation319, altered the band 
pattern of SUMOylated p53 from three main bands to two main bands (Figure 3-12). 

However, in light of a recent report that SUMO-3 can also form chains via lysine 
41732, the question of a SUMO chain on p53 could be re-adressed by also mutating 
lysine 41. Furthermore, the cells overexpressing the arginine mutant SUMO isoforms, 

still contain endogenous SUMO, which could still be used for conjugation of another 

SUMO molecule. In order to eliminate these technical limitations, it would be useful to 
analyse SUMOylated p53 with mass-spectrometry, where identification of branched 
SUMO-peptides would give a clear indication of the presence of SUMO-chains733.  

Specific SUMO-paralogues can be selected for conjugation to certain targets, 
mediated by SUMO-interacting motifs showing higher affinity towards particular 
isoforms. A stretch of hydrophobic residues is important for recognition of all SUMO-
isoforms, whereas a cluster of negatively charged amino acids in close proximity was 
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identified to preferentially interact with SUMO-1, potentially due to interaction with a 
lysine residue at position 78 in SUMO-1, which is not present in SUMO-2/3358. 

Analysis of the MDM2 amino acid sequence revealed two potential SUMO interaction 
motifs outside the central acidic domain region. One of the hydrophobic clusters 
identified in MDM2 (SIM1) is followed by a number of negatively charged amino acids 
and serine residues (QQESSDS), which have also frequently been observed in vicinity 

to SIMs, and could be negatively charged after phosphorylation of the hydroxyl 
group. This suggests that SIM1 would possibly prefer binding to SUMO-1, which 

might explain why no difference in SUMO-2/3 conjugation of p53 was observed here 
(Figure 3-20).  

Since the second hydrophobic stretch (SIM2) lacks negatively charged amino acids it 

would probably preferentially interact with SUMO-2/3. Indeed, SIM2 is an inverted 

version of the SUMO-2/3 specific SIM identified in the deubiquitinating enzyme 
USP25392. However, no reduction of SUMOylation activity was observed with the 
MDM2 SIM2 mutant. Many SUMO-E3 ligases, including RanBP2734, PIAS proteins354 
and Pc2735 contain SIMs and these motifs can contribute to their SUMO-ligase 
activity. Possibly, since MDM2 can directly interact with Ubc9, which would bring 
along the activated SUMO and p53, no non-covalent interaction with SUMO is 
required for MDM2-mediated SUMOylation of p53. 

SUMO targets can also contain SIMs, through which they can interact with Ubc9 
charged with SUMO. This provides a mechanism for SUMOylating lysine residues 

outwith a classical SUMO consensus, which Ubc9 would bind directly335. Such a 
SIM, which is crucial for its SUMOylation, has been identified in the BLM DNA 
helicase357. p53 also contains a hydrophobic stretch of amino acids, starting from 

amino acid 252 (ILTII) in proximity of negatively charged amino acids (EDSS). It would 

be interesting to assess, whether mutation of this potential SIM could affect 
SUMOylation of p53.  

Furthermore, the potential SIMs identified in MDM2 could also play a role in 

SUMOylation of itself425,427. MDM2 SUMOylation has been subject to many 
controversies, especially after the retraction of a paper, which proposed the SUMO 
site to be lysine 446 (reviewed in323). To date the definitive SUMO site on MDM2 has 
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not been identified. Mutation of K185, which was a software-predicted non-canonical 
SUMO site723 matching previous observations that the site of SUMOylation lies within 

amino acids 134 and 212425 did not prevent SUMOylation (Figure 3-27). This finding 
recapitulates earlier experiments, where K185R MDM2 was also SUMO-1 modified 
to a similar extent as wild-type MDM2426. The search for the SUMO site is further 
complicated by the presence of the nuclear localisation signal in this region (between 

amino acids 181 and 185)699. Lysine 182 had also been suggested as SUMO site, 
since K182R could not be SUMOylated by PIAS1 in cells426. However, it needs to be 

considered that lysine 182 is part of the MDM2’s nuclear localisation signal and the 
MDM2 K182R mutant protein was mostly found in the cytoplasm. Indeed, MDM2 
K182R was still SUMOylated in vitro, suggesting that the change in localisation could 
indeed have been the factor abolishing SUMOylation of the MDM2 K182R protein in 

cells426. It is therefore difficult to determine whether lysine 182 is a SUMO accepting 
lysine residue. There are two more lysine residues (K136 and K146) in the region 
predicted to be SUMOylated between amino acids 134 and 212425. It would be 
informative to mutate these to lysine residues as well and to investigate, whether a 
reduction in SUMOylation could be observed. MDM2’s SUMO site has still not been 
determined and it is possible that the identification has been hindered by the 
presence of multiple sites, which could explain why a single lysine replacement has 
not yielded any success so far. 

Taken together, the data presented in this chapter suggest that rather than 

catalytically enhancing the SUMOylation reaction by activating the Ubc9-SUMO 
thioester through contact of the RING, MDM2 promotes the SUMOylation of p53 by 
bringing the E2, SUMO and the target into close proximity. It is therefore crucial for 

MDM2 to interact with both p53 and Ubc9, interactions with both of which were 

shown here. I therefore suggest that MDM2 does not act as a classic E3 ligase, but 
rather as a co-activator and scaffold to the SUMOylation reaction. Promotion of 
SUMOylation independent of the RING domain was often shown to require SUMO 

interaction motifs, as in the case of the PIAS proteins736. However, the potential SIMs 
in MDM2 were not required to promote SUMO-2/3 modification of p53. Since an 
interaction between MDM2 and Ubc9 was observed, it is possible that MDM2 does 
not directly interact with SUMO, but rather brings the SUMO-charged Ubc9 into 
proximity of p53. 
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This model is in accordance with the observation that the MDM2 RING domain and 
dimerisation were not required for the SUMOylation of p53. However, it is still unclear 

how the multiple activities of MDM2 are regulated. It was observed here, that 
conditions which inhibited the Ubiquitin-ligase function generally stimulated 
SUMOylation. It is possible that MDM2 is by default in ubiquitination mode and that a 
switch to SUMOylation mode is triggered by MDM2-binding proteins. For example 

co-expression of p14ARF and L11, which inhibit MDM2’s Ubiquitin E3-ligase activity, 
enhanced its ability to SUMOylate. It is furthermore possible, that posttranslational 

modifications play a role in regulating the multiple functions of MDM2. It was shown 
that the Ubiquitin- and SUMO-E3 ligase Topors switches from ubiquitination to 
SUMOylation of p53 after Topors has become phosphorylated by PLK1737. A similar 
scenario could be proposed for MDM2 and it would be useful to test the impact of 

serine 386 and serine 429 phosphorylation, which were reported to disrupt MDM2 
dimerisation205, on MDM2’s ability to promote SUMOylation of p53. Also, acetylation 
of lysine residues K466 and K467 in MDM2's RING domain was reported to inhibit 
p53 ubiquitination by MDM2738 and it would be informative to test the impact of these 
modifications on MDM2-mediated SUMOylation of p53. 

It is still unclear, when p53 would become SUMOylated in a cell. Both p53 and 
SUMO-2/3 are involved in stress response pathways and it is possible that 
SUMOylation has a role in modulating p53’s transcriptional output in response to 
certain stresses. DNA damage is unlikely to induce p53 SUMOylation, since many 

phosphorylation events modify the N-terminus of p53, thereby disrupting its 
interaction with MDM2, which is clearly required for efficient SUMO-2/3 modification. 
Indeed, phosphorylation of p53 has previously been reported to impair its 

SUMOylation408. However, since L11 and p14ARF were found to stimulate p53 

SUMOylation, SUMO-2/3 modification of p53 could be induced as part of the 
responses to oncogenic and ribosomal stress.  

Clearly, many posttranslational modifications have important roles in modulating 

p53’s activity. Therefore the functional implication of p53 SUMOylation was studied 
in the following chapter. 



 

 
 

 

 

 

 

4 Modulation of p53 activity by SUMO-2/3 
modification. 
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Posttranslational modifications are often involved in regulating the activity of 
transcription factors. It was therefore investigated whether SUMO-2/3 modification 

on p53 affected its activity as a transcription factor. Although more studied than 
SUMO-2/3, consequences of SUMO-1 modification on p53 activity are still a matter 
for debate404 (the early p53-SUMO results are reviewed in739). There have been 
reports that SUMO-1 modification of p53 results in increased405,406, decreased410 and 

unchanged transcriptional activity407. A more recent study has shown that SUMO-1 
modification of p53 plays a role in inhibiting C-terminal acetylation, thereby 

repressing DNA binding and transcriptional activity401. Other investigators reported 
that conjugation of acetylated SUMO-1 to p53 can modulate the transcriptional 
activity of p53 differently than conjugation of unmodified SUMO-1402. The few 
studies, which have addressed SUMO-2/3 conjugation of p53, linked H2O2

421 or K-

bZIP induced422 SUMO-2/3 modification to increased p53 transcriptional activity. 
However, SUMOylation has generally more often been associated with transcriptional 
repression380. In order to study the consequences of SUMOylation, the SUMO 
isoforms were often overexpressed together with p53. This approach harbours 
caveats, because SUMO-overexpression would affect SUMOylation of many other 
proteins as well, making it difficult to link observed differences back to p53. Others 
used a p53 protein mutated for the SUMO-accepting lysine residue, p53 K386R. 
While this approach will certainly yield more p53-specific results, it is difficult to 
determine the impact of SUMO-modification of this lysine residue, since lysine 386 is 

also acetylated and ubiquitinated. SUMOylation is in most cases dependent on the 
presence of a SUMO motif, particularly a glutamic residue in proximity to the 
SUMOylated lysine, mutation of which abrogates SUMOylation at the lysine (Figure 3-

9), but most probably does not impair other modifications of the lysine residue. Thus, 

if p53 K386R and p53 E388A show the same phenotype, the effect can most likely 
be attributed to disruption of SUMOylation of p53. Surprisingly, none of the above 
mentioned studies used the p53 E388A mutation to specifically inhibit SUMOylation 

of p53, while sparing lysine 386 for other modifications.  

In order to determine the effect of MDM2-induced SUMO-2/3 conjugation on p53 
localisation, protein stability, tetramerisation and transcriptional activity, the assays 
performed here used both p53 K386R and p53 E388A as non-SUMOylatable p53. 
While mutating the SUMO-site cannot distinguish between the effects of the different 
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SUMO-isoforms, most of these experiments were carried out in the presence of 
MDM2 ∆AD, which predominantly promotes SUMO-2/3 modification of p53. 

4.1  SUMOylation does not affect p53 localisation. 

p53 activity can be regulated by its localisation, since it cannot act as a transcription 
factor on the promoters of its target genes, if it is excluded from the nucleus. 

 

 
Figure 4-1: p53 proteins with and without SUMO site local ise to the nuclei.  
H1299 cells were transfected with wild-type or SUMO-consensus mutant (K386R and E388A) 
p53. p53 was stained with DO-1 primary and Alexa Fluor 488 secondary antibody. Nuclei were 
stained with DAPI.  

 

  
Mono-ubiquitination of p53 is thought to promote the protein’s nuclear export740 and 
previous studies of p53-SUMO-1 fusion proteins also suggested a role for SUMO-1 
in promoting p53 nuclear export413. It was therefore investigated whether the two 
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SUMO-consensus mutants of p53 (K386R and E388A) would show a different 
cellular distribution than wild-type p53 when overexpressed in H1299 cells. 

All p53 proteins, with and without SUMO consensus, localised exclusively to the 
nuclei (Figure 4-1). It is possible that the fraction of SUMOylated p53 was too small 
to observe any differences of total p53 protein localisation in this setup. Localisation 
of the p53 proteins was therefore assessed under co-expression of MDM2 ∆AD in 

order to enhance SUMO-2/3 modification of p53. Localisation of the p53 proteins 
was assessed by subcellular fractionation.  

 

 
Figure 4-2: SUMO-2/3 modif ied p53 is exclusively nuclear. 
HCT116 p53-/- cells were transfected with MDM2 ∆AD and wild-type or SUMO-
consensus mutant p53 (E388A and K386R). Cells were fractionated into 
cytoplasmic (Cy) and nuclear (Nu) fractions in the presence of 10 µM Iodacetamid to 
prevent deSUMOylation. p53 was immunoprecipitated using the DO-1 antibody 
under denaturing conditions (IP p53). GCN5 served as nuclear and LDHB as 
cytoplasmic marker.  

 

 
In the presence of MDM2 ∆AD, localisation of p53 was mainly nuclear and the 
distribution pattern was identical for wild-type p53, p53 K386R and p53 E388A 
(Figure 4-2, input).  

Since SUMOylation is a highly dynamic process, analysing total p53 levels might 

conceal a change of localisation of only the modified fraction of p53. In order to study 
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the localisation of the SUMOylated fraction, p53 was immunoprecipitated from the 
fractionated lysates under denaturing conditions. Notably, SUMO-2/3 modified p53 

was exclusively found in the nuclear fraction (Figure 4-2, IP). Thus, SUMO-2/3 
conjugated p53 is not exported out of the nucleus. It is however possible that 
SUMOylation affects the sub-nuclear distribution of p53. 

	  
Figure 4-3: SUMOylat ion does not a lter intranuclear local isat ion of p53. 
U2OS cells were transfected with PML and wild-type p53, p53 E388A or p53 K386R. p53 was 
stained with DO-1 and Alexa Fluor 488 secondary antibodies (p53), PML was stained with PML rabbit 
(Santa Cruz) and Alexa Fluor 594 secondary antibodies (PML). Nuclei were stained with DAPI.  
 
 
The p53 protein can localise to PML bodies741 and PML bodies have been suggested 
to serve as a hub for SUMOylated proteins742. In order to investigate whether SUMO-
2/3-modification influences p53 localisation at the PML bodies, PML was over-
expressed together with p53 proteins with and without SUMO motif and localisation 

was assessed by confocal microscopy of immunofluorescently stained cells 
overexpressing p53 and PML.  

PML formed characteristic punctae representing PML bodies in the nucleus and 

these PML bodies were excluded from DAPI staining, since they are free of DNA 
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(Figure 4-3). Bright p53 punctae co-localising with the PML bodies would indicate 
accumulation of p53 at the PML bodies, while appearance of dark dots in the p53 

staining overlapping with the PML bodies (similar to the DAPI staining) would indicate 
that p53 was excluded from the PML bodies. However, wild-type p53, p53 K386R 
and p53 E388A all showed equal nuclear distribution with some darker spots, which 
did not overlap with the PML bodies (Figure 4-3). It can therefore be concluded that 

all p53 proteins tested (with and without SUMO motif) are neither enriched at nor 
excluded from the PML bodies. These data suggest that modification with SUMO-

2/3 does not affect sub-nuclear localisation of p53. This is in line with previous 
reports suggesting that p53 is recruited to PML via its core domain without 
involvement of the C-terminus743 and that lysine 386 is not required for p53 localising 
to PML bodies in the context of SUMO-1407. It would be informative to repeat this 

experiment in the presence of MDM2 ∆AD in order to stimulate SUMO-2/3 
modification of wild-type p53. 

Taken together, SUMO-2/3 modification of p53 does not appear to alter localisation 
of the p53 protein. However, it is still possible that the fraction of SUMOylated p53 
was too small to observe an effect on total p53. Indeed, the p53-SUMO-1 fusion 
proteins were used as models for SUMOylated p53 in the past. The p53-SUMO-1 
protein was observed to promote cytoplasmic p53 localisation414 and therefore the 
localisation of a p53-SUMO-3 fusion protein was also analysed. The fusion protein is 
expressed from a vector containing the SUMO-3 sequence cloned in frame after the 

p53 sequence, resulting in a C-terminal fusion to the p53 protein. SUMO is usually 
conjugated to its substrates via a C-terminal diglycine motif, which is free in the 
fusion protein. Previous studies have shown that the presence of the diglycine motif 

can affect the localisation of a p53-SUMO-1 fusion protein: p53-SUMO-1 with the 

diglycine motif was localised to distinct sub-nuclear structures partially overlapping 
with PML bodies, while p53-SUMO-1 without the diglycine motif was present at the 
nuclear envelope and in some cells also to the cytoplasm414. It was concluded that 

the p53-SUMO-1 fusion protein was conjugated to other proteins instead of free 
SUMO-1 and the fusion protein without diglycine was proposed to be a more 
accurate model of SUMO-1-modified of p53414. Hence, SUMO-3’s diglycine motif in 
the p53-SUMO-3 fusion protein was removed so that it could not be conjugated to 
any target proteins instead of free SUMO-3.  
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Figure 4-4: p53-SUMO-3 fusion proteins locate to the cytoplasm in some cel ls.  
H1299 cells were transfected with wild-type p53, p53-SUMO-3 or p53-SUMO-3 QFI fusion. p53 was 
stained with the DO-1 primary and Alexa Fluor 488 secondary antibodies. Nuclei were stained with 
DAPI.  
 
 
While wild-type p53 was exclusively nuclear, the p53-SUMO-3 fusion protein 
localised to both the nucleus and the cytoplasm in some cells, but was 
predominantly nuclear in most cells (Figure 4-4). This is similar to the localisation of 

p53-SUMO-1, which is cytoplasmic in 40% of cells414. Although the number of cells 
with cytoplasmic staining was not quantified here, the impression from confocal 
microscopy analysis was that significantly less than half of all cells showed 

cytoplasmic p53-SUMO-3, probably more in the range of 20%.  

Many functions of SUMOylation are mediated by recruitment of proteins that contain 
SUMO-interaction motifs. It is possible that interaction of SUMO-2/3 conjugated p53 

with a SUMO-binding protein is necessary for the export of the fusion protein. For a 
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SIM to recognise and non-covalently bind SUMO, the surface provided by the β2-
strand (amino acids 31-39 of SUMO-3) is required356. The surface recognition can be 

abolished by mutating Q30, F31 an I33 in SUMO-3357, resulting in the SUMO-3 QFI 
protein (Figure 4-5 A).  

Surprisingly, the p53-SUMO-3 QFI protein showed cytoplasmic staining in almost all 
transfected cells (Figure 4-4). In order to confirm these results with another assay, 

cells overexpressing either wild-type p53, the p53-SUMO-3 or the p53-SUMO-3 QFI 
fusion protein were fractionated and nuclear and cytoplasmic fractions assessed by 

western blotting. 

 
Figure 4-5: Fusion of SUMO-3 QFI increases the cytoplasmic fract ion of p53. 
(A) Representation of the amino acids in the β2 strand of SUMO-3 (in red). Amino acids replaced to 
make the QFI mutations are indicated in bold. SwissProt accession number: P55854. 
(B) HCT116 p53-/- cells were transfected with either p53 or p53-SUMO fusion proteins. Cells were 
fractionated into cytoplasmic (Cy) and nuclear (Nu) fraction. GCN5 served as nuclear and LDHB as 
cytoplasmic marker.  
 
 
Although all p53 constructs led to expression of a mainly nuclear protein, a fraction of 
the p53-SUMO-3 QFI fusion protein was cytoplasmic (Figure 4-5), which is 
consistent with the immunofluorescence staining of these two proteins (Figure 4-4). 

However, the p53-SUMO-3 fusion with intact β2-strand was hardly present in the 
cytoplasmic fraction (Figure 4-5), although some cells with cytoplasmic p53-SUMO-3 

had been observed in the immunofluorescence staining (Figure 4-4). 

Taken together, these data suggest, that the export of the p53-SUMO-3 fusion 
protein does not require SUMO’s β2-strand surface. Since a SUMO protein without 
the SUMO-interaction surface (p53-SUMO-3 QFI) was more prominently located in 

the cytoplasm than the p53-SUMO-3 fusion, it is possible that non-covalent 
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interaction of a SUMO-binding protein counteracts the export of the p53-SUMO-3 
protein. Since SIMs can be SUMO-isoform specific, this could also explain, why a 

larger fraction of the p53-SUMO-1 fusion than of the p53-SUMO-3 fusion was 
exported, suggesting that a protein with a SUMO-2/3 specific SIM retains SUMO-2/3 
modified p53 in the nucleus. 

The finding that SUMO-2/3 modified p53 was only present in the nuclear fraction 

(Figure 4-2), but the SUMO-3 fusion-protein was also observed in the cytoplasm 
(Figure 4-4), albeit less evident in the fractionation experiment (Figure 4-5), seem 

contradictory and raise questions as to whether the fusion protein is an appropriate 
model for SUMOylated p53. Clearly, the structure of the fusion protein is different 
than the SUMOylated protein, since it is conjugated in a linear fashion to the C-

terminus of p53, rather than conjugated to the ε-amino group of lysine 386. 

However, the observed effect is not likely to be purely an artefact of adding a small 
protein to the C-terminus of p53, since previous studies of p53-UBL fusion proteins 
deonstrated that only p53-Ubiquitin and p53-SUMO-1 fusions were exported, while 
p53-Nedd8 fusions showed no change in localisation414. It is possible that SUMO-3 
promotes export of p53 and that the SUMO modification is removed on its journey 
into the cytoplasm (SUMO-2/3 modified p53 was only observed in the nucleus) and 
that no change in overall p53 localisation was evident, because the SUMOylated 
fraction was too small. However, since the majority of p53-SUMO-3 expressing cells 
also showed nuclear staining and only p53-SUMO-3 QFI was cytoplasmic in the 

majority of cells, it can be concluded that SUMO-3 modification of p53 does not 
evidently affect protein localisation as long as the β2-interaction surface of SUMO-3 is 
present. 
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4.2  SUMOylation does not alter p53 protein stability. 

p53 is a very short-lived protein and much of its activity is regulated by protein 

degradation. The most important regulator of p53 stability is MDM2, which poly-

ubiquitinates p53135,136 thereby labelling it for subsequent proteasomal 
degradation107,108.  

While no direct induction of proteasomal degradation by SUMOylation has been 
reported, it has become evident that the SUMO-pathway crosstalks with the 
Ubiquitin-system in a number of ways. For example SUMOylation of IκBα at lysine 
residue K21, which is also targeted for ubiquitination, prevents the protein’s 

proteasomal degradation393. It has also recently become apparent that SUMOylation 
can recruit Ubiquitin-ligases such as RNF4 via their SUMO-interaction motif in order 
to promote the degradation of the SUMO-target365,388,744-746. 

Hence, the stability of wild-type p53 was compared to the stability of p53 proteins 
harbouring mutations in the SUMO consensus (K386R and E388A p53). p53 was 
co-expressed with wild-type MDM2 and SUMO-3, in order to enhance SUMOylation, 
yet still allow degradation of p53. Protein synthesis was blocked with Cycloheximide 
and cells were harvested 0, 90, 180 and 270 minutes later to follow the decreasing 
levels of p53 protein. Band intensity on the western blot was quantified using the 
Odyssey Licor infrared fluorescent system. 

The stability of all p53 proteins tested was very similar, no matter whether they could 
be SUMOylated (wild-type p53) or not (K386R and E388A p53) (Figure 4-6). 

Although these data suggest that SUMO-2/3 modification does not affect p53 
protein stability, it is possible that the small fraction of SUMOylated protein was not 

sufficient to allow observation of an effect on total protein level. In order to avoid the 
problem of only a small SUMOylated protein fraction, the stability of the p53-SUMO-

3 protein could be assessed.  
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Figure 4-6: SUMOylat ion does not affect p53 protein stabi l i ty. 
HCT116 p53-/- cells were transfected with MDM2, SUMO-3 and either wild-type p53, p53 E388A or 
p53 K386R. Cells were treated with 200 µg/ml Cycloheximide for indicated times (in minutes). Wild-
type p53 lysates were loaded onto 2 gels in order to run a control on each gel. Band intensities were 
quantified with the Licor Odyssey Imager and are plotted relative to the band intensity at 0 min.  
 
 
Particularly, since MDM2 promotes SUMOylation more efficiently when it cannot 
ubiquitinate p53, it is difficult to assess the MDM2-mediated degradation of SUMO-
modified p53. In order to address the degradation of SUMOylated p53 by another 

E3-ligase, levels of p53 SUMO-2/3-modified by wild-type MDM2 or MDM2 ∆AD, 

were analysed in the presence of the SUMO-2/3-targeted Ubiquitin ligase 
RNF4365,388. 
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Figure 4-7: RNF4 does not degrade SUMOylated p53. 
HCT116 p53-/- cells were transfected with p53 and MDM2 or 
MDM2 ∆AD and either empty vector or YFP-tagged RNF4. Cells 
were lysed under denaturing conditions and p53 was 
immunoprecipitated with the DO-1 antibody. Expression of RNF4 
was detected with a GFP antibody.  
 

 

  
Overexpression of RNF4 did not affect levels of SUMOylated p53, induced by full-
length MDM2 or MDM2 ∆AD (Figure 4-7), suggesting that RNF4 does not induce 
degradation of SUMO-2/3 modified p53. RNF4 contains multiple SIMs in a row and 
was reported to be specifically recruited by SUMO-2/3 chains365. No poly-SUMO-

chains on p53 were observed (Figure 3-25), hence RNF4 is probably not recruited to 

SUMOylated p53.  

4.3  SUMOylation does not prevent p53 tetramerisation. 

The transcription factor p53 is predominantly present as a tetramer747. Importantly, 
tetramerisation not only forms a prerequisite for sequence-specific DNA binding748, 
but also for interaction with MDM2749. p53 contains a nuclear export signal within the 
oligomerisation domain. The export signal is masked in tetramers120, whereby 
tetramerisation can influence p53 localisation.  
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Tetramerisation can be influenced by posttranslational modifications of the C-
terminus, for example phosphorylation of serine 392 was reported to stabilise p53 

tetramers257, while acetylation of lysines 370 to 382 was shown to prevent 
tetramerisation750. Since SUMOylation occurs in the same region of the p53 protein, 
the effect of SUMO-2/3 modification on p53 oligomerisation was studied.  

 

 
Figure 4-8: SUMOylat ion does not hinder p53 tetramerisat ion. 
HCT116 p53-/- cells were transfected with MDM2 ∆AD and either wild-type 
or SUMO consensus mutant p53 (E388A, K386R). Cells were lysed under 
mild conditions with 10 µM Iodacetamide to block deSUMOylation. Half of 
the lysate was crosslinked with 0.01% Glutaraldehyde (GA) for 20 minutes. 
Samples of lysates with (+) and without (-) crosslinking reagent were run on 
a 6% polyacrylamide gel.  
 

 

 
p53 proteins with or without the SUMO site were expressed together with MDM2 
∆AD in order to promote SUMOylation of wild-type p53. After cross-linking with 
Glutaraldehyde, monomers, dimers and tetramers of p53 were observed in all three 

samples (Figure 4-8). Although slightly under-loaded, oligomers of p53 E388A could 
be detected and these were much more clearly seen for the second SUMO-site 
mutant p53 K386R. These studies show clearly that SUMOylation does not hinder 

p53 tetramerisation, similar to reports that SUMO-1 modified p53 exists in 
tetramers401. It could also be investigated whether SUMO-2/3-modified tetramers 

have the same affinity for DNA as unmodified tetramers, since SUMO-1-modified p53 
was found to bind less well to DNA in in vitro experiments401. 
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4.4  SUMOylation modulates p53’s transcriptional activity. 

p53 plays a major role as stress-induced transcription factor and its activity has been 

shown to be influenced by many posttranslational modifications in the C-terminal 

domain, such as phosphorylation256, acetylation260, methylation277,278 and 
neddylation318. The effect of SUMO-1 modification on p53 transcriptional has been 

studied before, yet the outcome remains controversial405-407,410. Here, the effect of 
SUMO-2/3 conjugation on p53’s transcriptional activity was studied.  

In order to assess the influence of SUMOylation on the activation of classic p53 
target genes, Luciferase assays with two p53-responsive reporter gene constructs 

were performed. The PG13 Luciferase construct is regulated by a series of 13 p53 
binding sites30 and the Bax-Luciferase construct is under the control of a naturally 
occurring p53 binding site in the Bax-promoter482. Induction of the PG13 Luciferase 
can be a surrogate for induction of the p21 promoter. The PG13 Luciferase was 
used instead of a p21 Luciferase, since PG13 Luciferase has lower background 
Luciferase activity. The PG13 and Bax Luciferase constructs were chosen since they 
represent subsets of differentially activated target genes. p53 rarely induces 
apoptosis and cell cycle arrest at the same time and many binding proteins or 
posttranslational modifications of p53 have been shown to induce one of the two, 
but not the other751. Interestingly, several p53 mutants activate the p21, but not the 
Bax promoter752 and wild-type p53 was also shown to have a higher affinity for the 
p21 than for the Bax promoter753. 

Wild type p53 and both mutants of the SUMO consensus, p53 K386R and p53 
E388A, were titrated in the presence of MDM2 ∆AD for maximal SUMOylation. The 

Luciferase assays (plotted as RLU: (firefly Luciferase units relative to constitutively 
active TK Renilla as correction for cell number) fold change relative to cells not 

expressing any p53) revealed that both SUMO-site mutants of p53 induced the 
PG13 promoter significantly more efficiently than wild-type p53 (Figure 4-9 A).  
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Figure 4-9: SUMOylat ion modulates p53’s act ivat ion of Luciferase reporters. 
HCT116 p53-/- cells were transfected with either PG13 Luciferase (A) or Bax Luciferase (B), MDM2 
∆AD and 10 or 100 ng of the p53 constructs indicated. Activation of the promoters was assayed 
using the Promega Luciferase system. Data was plotted as Relative Luciferase Units (RLU) (Firefly 
Luciferase readings divided by Renilla Luciferase readings) fold change relative to p53-null control. The 
diagrams represent the mean of three independent sets of triplicates with error bars as standard error 
of the mean. * indicates a p-value < 0.02 as results of an unpaired two-tailed Student t-test compared 
to readings from cells expressing wild-type p53. Equal transfection was confirmed by western blot (C). 
 
 
The opposite effect was observed on Bax-Luciferase, which was more strongly 
induced by wild type p53 than the SUMO-site mutants p53 E388A and p53 K386R 
(Figure 4-9 B), suggesting that SUMOylation can both positively and negatively 
modulate p53 transcriptional activity depending on the target promoter. Equal p53 

protein level in the Luciferase assays were confirmed by western blotting (Figure 4-9 
C).  

It was investigated next, whether linear conjugation of SUMO-3 as in the p53-SUMO-
3 fusion protein, could also modulate p53's transcriptional activity. 
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Figure 4-10: p53-SUMO-3 fusion proteins are impaired in inducing Luciferase 
reporters. 
HCT116 p53-/- cells were transfected with either PG13 Luciferase (A) or Bax Luciferase (B) and 10 or 
100 ng of the p53 constructs indicated. Activation of the promoters was assayed using the Promega 
Luciferase system. Data is plotted as Relative Luciferase Units (RLU) (Firefly Luciferase readings 
divided by Renilla Luciferase readings) fold change relative to p53-null control. The diagrams represent 
the mean of two independent sets of triplicates with error bars as standard error of the mean. * 
indicates a p-value < 0.02 as results of an unpaired two-tailed Student t-test, compared to readings 
from cells expressing wild-type p53. Equal transfection was confirmed by western blot (C).  
 
 
As expected, a p53 protein without the SUMO consensus site (p53 E388A) induced 
PG13-Luciferase significantly more strongly than wild-type p53. Consistent with the 
conclusion that SUMOylation dampens p53-induced PG13 Luciferase activation, the 
p53-SUMO-3 fusion protein could not induce PG13 Luciferase at all (Figure 4-10 A). 

Surprisingly, induction of Bax-Luciferase, which would have been expected to be 
strongly induced by SUMOylated p53, was also significantly impaired by the SUMO-
3 fusion (Figure 4-10 B). However, in contrast to the PG13 Luciferase reporter, which 
could not be induced, even by high levels of p53-SUMO-3 (Figure 4-10 A), a small 
induction of Bax Luciferase activity was observed with higher levels of the p53-

SUMO-3 fusion protein (Figure 4-10 B). This finding is consistent with the hypothesis 
that SUMOylated p53 is more likely to activate Bax than p21 and might indicate a 
role for SUMOylation of p53 in guiding the selective activation of a subset of p53 

target genes. Since the p53-SUMO-3 fusion localised to the cytoplasm in some cells 
in previous experiments, while wild-type p53 was predominantly nuclear (Figure 4-4), 

it is possible that the lower induction of Bax-Luciferase compared to wild-type p53 is 
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a consequence of reduced amount of protein available for transcriptional activation of 
the reporter in the nucleus.  

In order to investigate the impact of SUMOylation on p53-induced transcription of 
endogenous promoters, mRNA of p53 target genes was extracted from p53-null 
H1299 cells retrovirally infected with empty vector, wild-type, p53 E388A or p53 
K386R in the presence of MDM2 ∆AD, transcribed into cDNA and quantified by 

Real-time PCR. Retroviral infection was chosen in order to achieve relatively equal 
expression of the p53 constructs in the maximum number of cells to allow for 

detection of subtle changes in the regulation of p53 targets. 

 
Figure 4-11: SUMOylat ion modulates mRNA levels of p53-act ivated and -repressed 
target genes. 
H1299 cells were retrovirally infected with MDM2 ∆AD and either empty vector, wild-type (wt) or 
SUMO-site mutant p53 (E388A and K386R). Half the cells were used for RNA extraction and reverse 
transcription PCR into cDNA. Quantitative Real-time PCR was performed with a SYBR Green 
Mastermix for p53-activated (left panel) and -repressed (right panel) genes. Gene expression was 
quantified relative to the housekeeping genes B2M and RPLP0 according to the comparative ∆∆Ct 
method. Results are displayed as mean of 2-∆∆Ct values obtained from three independent experiments. 
Error bars represent the standard error of the mean. * indicates a p-value ≤0.02 as calculated by an 
unpaired, two-tailed Student t-test compared to cells expressing wild-type p53.  
 
 
Quantitative Real-time PCR showed small, yet significant differences between p21 

mRNA-levels depending on p53 SUMO status with both p53 E388A and p53 K386R 
inducing the p21 mRNA significantly more strongly than wild-type p53 (Figure 4-11, 

left), following the same trend as observed with PG13 Luciferase (Figure 4-9 A). 
Expression of the TGFβ-family member Macrophage inhibitory cytokine-1 MIC-1 
(also known as growth/differentiation factor-15 GDF-15), which is strongly induced 
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by p53 expression754, was also dampened by p53 SUMOylation indicated by the 
SUMO-negative mutants p53 E388A and p53 K386R inducing MIC-1 to significantly 

higher levels than wild-type p53 (Figure 4-10, left). However, the decreased activation 
of Bax expression by the SUMO site mutants p53 E388A and p53 K386R observed 
using the Bax Luciferase reporter could not be reproduced with endogenous mRNA 
levels. Bax was slightly induced by p53-expression and SUMOylation status of p53 

had no significant effect on its induction (Figure 4-11, left). Since the induction of the 
Bax mRNA by p53 was much less pronounced than induction of p21 and MIC-1, it is 

possible that subtle modulation of this activation by SUMOylation could not be 
observed in this setting. 

p53 is not only a transcriptional activator, but also has an important role in repressing 

a range of target genes27. Thus, the effect of p53 SUMOylation on some established 

p53-repressed cell cycle genes was also studied. p53 is known to repress both 
Cyclin-dependent Kinase 1 (Cdk1)42 and Cyclin B2

40 that form a complex, required for 
progression through the G2/M checkpoint. Cyclin A2, which is necessary for the 
S/G2-transition together with Cdk1, was also found to be repressed by p5341. 

Both non-SUMOylatable mutants p53 E388A and p53 K386R repressed the S- and 
G2-phase genes Cdk1 and Cyclin A2 significantly more strongly than wild type p53, 
suggesting that SUMO-2/3 modification of p53 can alleviate p53-mediated 
repression (Figure 4-11, right). Strikingly, a similar p53-repressed gene Cyclin B2 did 
not show significant differences in repression levels depending on p53-SUMOylation 

status (Figure 4-11, right), suggesting that the SUMO-induced alleviation of p53-
mediated repression is confined to a subset of p53-respressed target genes. Equal 
p53 protein expression was confirmed by western blotting (Figure 4-12, A).  

Taken together, these results suggest that SUMO-2/3 conjugation can dampen both 

activation and repression of p53 targets and that modulation of p53 activity by 
SUMO-2/3 modification is limited to a subset of p53 target genes. 
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Since SUMO-dependent differences in induction of the secreted p53 target MIC-1 
were observed at mRNA level, media, in which the cells used for mRNA-extraction 

had grown, were collected and MIC-1 protein concentration was determined using 
an ELISA-Kit. 

 
Figure 4-12: SUMO-status of p53 determines levels of secreted MIC-1 protein. 
H1299 cells were retrovirally infected with MDM2 ∆AD and p53 constructs indicated. 
(A) Cells were lysed in sample buffer and p53-expression levels were analysed via SDS-PAGE. 
(B) Medium from the infected cells was collected and levels of secreted MIC-1 assessed using an 
ELISA-Kit. Protein concentration was determined with a standard curve. Diagram represents the 
mean of triplicate measurements of MIC-1 protein concentration in the medium. Error bars represent 
standard error of the mean. * indicates a p-value <0.02 as calculated by an unpaired, two-tailed 
Student t-test compared to cells expressing wild-type p53. 
 
 
In accordance with the levels of MIC-1 mRNA as assessed by Real-time PCR, 
concentration of secreted MIC-1 protein was significantly higher in medium collected 
from cells expressing p53 K386R than in medium collected from cells with wild-type 

p53 (Figure 4-12 B). Cells expressing the SUMO consensus mutant p53 E388A 
showed the same trend as those expressing p53 K386R, although the MIC-1 

concentration was not found to be significantly different to wild-type p53 (Figure 4-12 
B).  

Following on from the finding that modulation of p53’s transcriptional activity by 
SUMOylation can also be detected on protein level in the case of MIC-1, the effect of 

p53-SUMOylation on the expression of p21 at the protein level was also investigated. 
Using MDM2 ∆AD to promote SUMOylation of p53, increasing amounts of both wild-

type and SUMO-consensus mutant p53 E388A were titrated and endogenous p21 
protein levels were analysed by western blot. 
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Figure 4-13: SUMOylat ion of p53 represses act ivat ion of p21 at 
protein level.  
H1299 cells were transfected with MDM2 ∆AD and either 0.2, 0.5 or 1.0 µg of 
wild-type p53 (wt) or p53 E388A. Cells were lysed under denaturing conditions 
and p53 immunoprecipitated using the DO-1 antibody (IP p53). 

 

 
Analysis of the protein levels revealed that SUMOylated wild-type p53 was impaired 
in driving the expression of p21 protein compared to p53 E388A, which is not 
SUMOylated (Figure 4-13), just like wild-type also induced PG-13 Luciferase and p21 
mRNA-levels less well than the SUMO-consensus mutant p53 E388A. It can be 
concluded that the modulation of p53’s transcriptional activation by SUMO-2/3 
modification results in altered expression of p53’s targets at protein level.  

4.5  Consequences of p53 SUMOylation on the cell cycle. 

The transcription factor p53 regulates the cell cycle via multiple mechanisms. 
Induction of its target gene p21, which efficiently inhibits the G1/S-specific Cdk/Cyclin 

complexes29,755, prevents Rb hyper-phosphorylation by the Cdk2/Cyclin E complex 

leading to a cell cycle arrest in G1. Furthermore, p53 represses the S/G2-specific 
Cdk1 and Cyclins A and B, contributing to a G2-arrest756. Since SUMOylation of p53 

impairs its ability to activate p21 fully (see Figure 4-13) and alleviates repression on 
the cell-cycle genes Cdk1 and Cyclin A2 (see Figure 4-11), the implication of SUMO-
2/3 modification of p53 on the cell cycle was studied. 
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Cells were transfected with either empty vector, wild-type p53 or SUMO-consensus 
mutants p53 E388A and p53 K386R in the presence of MDM2 ∆AD and SUMO-3 to 

maximise SUMOylation. CD20 was included as a marker to select for transfected 
cells. Flow cytometry of PI-stained cells with subsequent FlowJo cell cycle analysis 
revealed induction of apoptosis (sub-G1), a moderate, albeit not significant G1-arrest 
and reduction of cells in S-phase after p53 overexpression compared to p53-null 

cells. No accumulation in G2 could be observed (Figure 4-14).  

 

 
Figure 4-14: SUMO-status of p53 has a smal l impact on the cel l  cycle. 
HCT116 p53-/-cells were transfected with either empty vector, wild-type (wt) or SUMO-
consensus mutant p53 (E388A and K386R) together with MDM2 ∆AD, SUMO-3 and 
CD20. Cells were fixed and stained with a FITC-conjugated CD20-specific antibody. PI 
was used to assess DNA content. Cells were analysed by flow cytometry and cell cycle 
distribution of CD20-positiv cells (as transfection control) according to FlowJo analysis of 
FACS chromatogram was plotted as mean of three independent experiments with error 
bars representing the standard error of the mean. * indicates a p-value <0.05 as calculated 
by an unpaired, two-tailed Student t-test compared to cells expressing wild-type p53.  
* indicates a p-value <0.05 compared to p53 null cells. 
 

 

 
Expression of p53 harbouring mutation of the SUMO-accepting lysine (K386R) or the 
SUMO consensus (E388A) resulted in a cell cycle distribution not significantly 

different from wild-type p53, although the sub-G1 population appeared to be 
reduced. Due to the observation that p53 K386R and p53 E388A induced p21 more 
strongly, a stronger induction of a G1-arrest had been expected in this scenario. 

However, the G1-arrest induced by p53 expression was not very pronounced (35% 
cells in p53 E388A cells in G1 compared to 25% of p53-null cells in G1), it is possible 

that no subtle differences between the p53 proteins could be observed here. For 
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technical reasons resolution of S- and G1 phases might not have been sufficiently 
reached with PI-staining alone and it would be informative to repeat the cell cycle 

analysis with BrdU and PI double staining. BrdU was not used in this experiment 
because the FL1 channel on the FACS was already occupied with CD20-staining to 
select for transfected cells. However, using retroviral infection with subsequent 
selection of infected cells could circumvent the need for CD20 staining and BrdU 

staining could be used together with PI staining in such an experiment.  

Importantly, the SUMOylated wild-type p53 induced a significant apoptotic response 

and only a moderate (non-significant) induction of G1. This observation is in line with 
our previous observations that SUMOylated p53 might be more inclined to activate 
Bax than p21 (Figure 4-10). Furthermore, p53 E388A induced a significant increase 

of the G1, but not the sub-G1 population, suggesting that unSUMOylated p53 

induces G1 arrest rather than apoptosis. Cells expressing p53 K386R showed a 
trend similar to those expressing p53 E388A, however, the errors were higher in this 
sample and the cell cycle profile was not significantly different from the p53-null cells 
(Figure 4-14). 

Taken together the data presented in this chapter reveals a role for SUMO-2/3 
modification of p53 in modulating transcriptional activation of a subset of p53-
activated and -repressed genes, and SUMO-2/3 modification might have a role in 
channelling the p53 response towards induction of apoptosis over cell-cycle arrest.  
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4.6  Summary and Discussion. 

Analysis of localisation, oligomerisation and transcriptional activity of p53 revealed 

interesting roles for SUMO-2/3 modification in modulating p53 activity. Importantly, 

mutations of the SUMO consensus as in p53 K386R and p53 E388A disrupt both 
SUMO-1 and SUMO-2/3 conjugation of p53, but most of the experiments presented 

here were performed under conditions where SUMO-2/3 conjugation was 
predominant. The similar behaviour of both p53 K386R and p53 E388A rules out 
effects of other modifications on lysine 386. 

SUMOylation is frequently associated with changes in subcellular localisation. Indeed, 

the SUMO-E2 Ubc9 localises to the nuclear pore complex, suggesting the proteins 
being imported or exported from the nucleus are modified as they pass through757. 
For example, SUMOylation induces nuclear export of the transcription factor 
Smad3758 and PIASy-mediated conjugation of SUMO-3 to p53 was also recently 
reported to contribute to its nuclear export in endothelial cells423. However, in the 
experiments described here, p53 cellular distribution was mainly nuclear in 
immunofluorescence (Figure 4-1) and subcellular fractionation experiments (Figure 4-
2), whether or not p53 could be SUMOylated. It needs to be taken into consideration 
that the immunofluorescence experiment was performed without co-expression of 
MDM2 ∆AD and therefore not a large fraction of p53 might have been SUMO-2/3 
modified (Figure 4-1). However, p53 distribution of cells clearly harbouring SUMO-
2/3-modified p53 as assessed by subcellular fraction, also did not change according 
to its SUMO status (Figure 4-2). Furthermore, SUMOylated p53 was exclusively 
detected in the nucleus (Figure 4-2), suggesting that SUMO-2/3-conjugated p53 is 

not exported.  

It had previously been reported that a SUMO-1-fusion to p53 leads to nuclear export 

of p53414 and a similar, albeit less pronounced, induction of cytoplasmic staining was 
observed with a p53-SUMO-3 fusion protein. This observation was not consistent 

with the data obtained with posttranslationally SUMO-2/3 modified p53, but could 
represent a model, according to which SUMOylation induces nuclear export of p53, 
with the posttranslational SUMO-modification being removed during or shortly after 

the export. Since only a minority of p53-SUMO-3 fusion expressing cells showed 
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cytoplasmic staining, other factors most likely influence whether export of p53 is 
triggered. A p53-SUMO-3 fusion protein with disrupted SUMO-interaction surface 

(p53-SUMO-3 QFI) showed cytoplasmic staining in a much larger fraction of cells 
(Figure 4-4). Thus, nuclear export of the p53-SUMO-3 fusion protein could be 
restricted by proteins non-covalently interacting with SUMO-2/3. Posttranslational 
modifications of the p53-fusion proteins might also take place, further influencing its 

localisation. Mono-ubiquitination of p53 promotes nuclear export740 and this 
modification could be enhanced by the SUMO-3 fusion, similar to previous reports 

that mono-ubiquitination of p53 contributes to the export of a p53-Ubiquitin fusion 
protein413. Lysine residues in SUMO-3 proximal to the amino acids replaced in the 
QFI mutation were recently shown to be acetylated403 and it is thus also possible that 
posttranslational modification of the SUMO-2/3 protein influences the export of 

SUMO-2/3 modified p53. 

The emerging field of Ubiquitin-SUMO crosstalk with reports of mixed SUMO-
Ubiquitin chains and identification of SUMO-targeted Ubiquitin ligases370 raised the 
possibility that SUMOylation of p53 modulates the protein stability. However, no 
differences between protein stability of wild-type p53 and SUMO-consensus mutant 
p53 could be noted (Figure 4-6), suggesting that p53 protein stability is not regulated 
via SUMO-2/3 modification. It is possible that the fraction of SUMOylated p53 
induced by MDM2 was not large enough to reveal differences in overall protein 
stability. In order to assess p53 stability in the presence of a larger fraction of SUMO-

2/3 conjugated p53, it might be more informative to express p53 in the presence of 
both MDM2 ∆AD to promote p53 SUMOylation and full-length MDM2 to promote 
p53 ubiquitination and degradation. Furthermore, the influence of p53-SUMO-2/3 

modification on degradation mediated by other known Ubiquitin-ligases for p53 such 

as the viral protein E6AP292 or non-viral E3 ligases such as Pirh2300 and COP1301 
could be tested in combination with MDM2 ∆AD. Stability of the SUMOylated p53 
fraction could be tested by conducting a Cycloheximide assay with subsequent 

immunoprecipitation under denaturing conditions to visualise the SUMO-2/3 
modified p53.  

Co-expression of the SUMO-targeted Ubiquitin-ligase RNF4 did not affect the levels 
of SUMO-2/3 modified p53, neither did it alter the band pattern of SUMOylated p53, 
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which could have indicated modification with Ubiquitin without subsequent 
degradation (Figure 4-7). However, RNF4 contains four SUMO interaction motifs in a 

row and was shown to only be recruited to poly-SUMOylated target proteins. Indeed, 
the SIMs of RNF4 were successfully used as a tool to enrich for poly-SUMOylated 
proteins759. Consistent with the conclusion that p53 was not poly-SUMOylated 
(Figure 3-15) RNF4 co-expression did not modify p53-SUMOylation (Figure 4-7 and it 

can be concluded that SUMO-2/3 modified p53 is not a target for RNF4-mediated 
ubiquitination. 

SUMO-3 modification of p53 did not hinder tetramerisation of the protein (Figure 4-
8). This is in contrast to p53-Nedd8 fusions, which were observed to form more 
high-molecular weight aggregates414,760. It could be informative to test the p53-

SUMO-3 fusion in an oligomerisation assay, although the fusion might not be able to 

recapitulate the structure of posttranslational SUMO-3 conjugation. Interestingly, a 
recent in vitro study showed that SUMO-1 modified p53, which blocked its 
subsequent acetylation, had a lower affinity towards DNA than non-SUMOylated 
p53401. Therefore, despite not affecting the oligomerisation of p53, SUMO-3 
modification might influence p53’s ability to bind DNA.  

Many posttranslational modifications such as phosphorylation, acetylation and 
methylation, ubiquitination and neddylation influence transactivation by p53 and 
specific modifications of particular amino acid residues have been shown to be 
involved in steering p53 towards the activation of certain panels of target genes. 

Many transcription factors are modified by SUMOylation and SUMO-modification has 
often been associated with transcriptional repression of their target genes356,380,761. 
The data presented here show that SUMO-2/3 modification of p53 reduces 

activation of both p21 and MIC-1 at mRNA- and protein level, since p53-proteins 

with a disrupted SUMO consensus were inducing these target genes more strongly 
than wild-type p53 (Figures 4-11, 4-12 B and 4-13). Although never shown for p53 
E388A before, enhanced activation of p21 after p53 K386R expression had 

previously been observed on Luciferase-reporters401,405 and is consistent with a 
report stating that the SUMO-site mutant p53 K386R is more present at the p21 
promoter in a chromatin immunoprecipitation experiment401. Importantly, other 
studies have also shown the opposite effect of SUMOylation on p53’s induction of 
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p21405,406,412 and while it is possible that SUMO-2/3 modification of p53 has a 
different impact on its transcriptional activity than SUMO-1 modification, the p53 

response is known to be divergent in different tissue types and results might 
therefore also be influenced by the choice of cell line studied. 

The effect of SUMO-2/3 modification of p53 on the induction of Bax was less 
straightforward. Mutation of the p53 SUMO consensus significantly enhanced 

activation of a Bax-Luciferase reporter (Figure 4-9 B), however no significant 
difference could be observed at Bax mRNA-level (Figure 4-11). Furthermore, 

expression of a p53-SUMO-3 fusion protein induced activation of the Bax-reporter 
construct significantly less than p53 (Figure 4-10 B), which is contrary to what would 
have been expected, if SUMO-3 modification of p53 promoted its activation of Bax. 

However, induction of the Luciferase activity by high levels of p53-SUMO-3 was 

observed only on the Bax-reporter and not at all on the PG13 promoter (Figure 4-10). 
It is thus possible, that the fusion protein is generally less active than wild-type p53 
(possibly since it can be exported from the nucleus or the artificial fusion makes it 
more prone to misfolding than wild-type p53), but selectively induces the Bax, but 
not the p21 reporter. This would be consistent with the observation that the SUMO-
site mutants p53 K386R and p53 E388A induced PG13 Luciferase more strongly 
than wild-type p53, while inducing Bax-Luciferase less efficiently (Figure 4-9). I 
therefore suggest a model of SUMO-2/3 modification of p53 preventing p21-
activation and favouring activation of Bax.  

Nevertheless, it is still unclear, why wild-type p53, p53 K386R and p53 E388A 
induced similar levels of Bax mRNA (Figure 4-11). Since expression of all p53 
proteins only resulted in a very small induction of Bax mRNA (less than two-fold), the 

impact of a small SUMOylated fraction of p53 on its induction might have been 

missed in this experiment. Other members of the lab had also observed that Bax 
mRNA was not strongly induced purely by p53 overexpression and found that further 
stresses (e.g. Adriamycin treatment), probably inducing posttranslational 

modifications such as phosphorylation and acetylation of p53, were required to 
achieve substantial Bax mRNA induction. p53 has a lower affinity towards the Bax 
promoter than towards the p21 promoter753 and it is conceivable that either higher 
levels of p53 or DNA-binding-enhancing posttranslational modifications of p53 would 
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have been required to induce Bax more efficiently. The Realtime PCR experiment 
was performed with retroviral infection, which leads to a more uniform and generally 

lower p53 expression in the infected cells. By contrast, the Luciferase assay was 
performed with transient transfection, which can lead to very high p53 expression in 
some cells (only the transfected cells are measured in this assay, since only these 
cells contain the reporter construct and therefore equal expression in all cells is not 

required). Furthermore, Luciferase reporters can be much more sensitive than 
endogenous promoters. Therefore, the observed differences between Bax-activation 

in Luciferase assays and Realtime PCR experiments could be explained by technical 
differences. Furthermore, only a small selection of p53-induced genes was tested 
and while the effect on the Bax promoter might not have been very pronounced, the 
data indicate that SUMOylation of p53 does not dampen the activation of all p53 

target genes, but only of some genes such as p21 and MIC-1 and it is possible that 
other target genes are more strongly induced by SUMOylation of p53, similar to the 
effects observed on the Bax Luciferase. This study could be expanded to test more 
p53 target genes, for example conducting a ChIP-sequencing experiment with wild-
type p53, p53 K386R and p53 E388A could lead to the identification of target genes, 
which are regulated by SUMOylation of p53.  

Since SUMOylation has often been reported to contribute to the assembly of 
repressor complexes356,380, but its effect on p53-mediated repression had not yet 
been investigated, the impact of SUMO-2/3 conjugation on p53-repressed target 

genes was also studied. In contrast to the transcription factor Ikaros, which is 
dependent on SUMOylation in order to repress its target genes762, the SUMO-site 
deficient p53 mutants (p53 K386R, p53 E388A) repressed some targets (Cdk1 and 

Cyclin A2) even more efficiently than wild-type p53, while having no effect on another 

(Cyclin B2) (Figure 4-11). Cdk1, Cyclin A2 and Cyclin B2 have previously been shown 
to be repressed by p5340-42, yet the proposed mechanism of repression remains 
controversial (reviewed in763). It has been proposed that p53 binds to the CCAAT 

binding factor NF-Y to recruit chromatin remodeling Histone deacetylases42,240, but it 
is also possible that the repression might be mediated more indirectly via the p53-
target gene Cyclin-dependent kinase-inhibitor p21, which prevents hyper-
phosphorylation of retinoblastoma-protein Rb by the Cdk2/Cyclin E complex, thereby 
enhancing Rb-mediated repression of E2F target genes764. E2F1 was found to bind 
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the Cyclin A and Cdk1 promoters765,766, but not the Cyclin B2 promoter, which is 
bound by E2F4 instead767. Since differences in p21-expression according to the 

SUMO-status of p53 were observed, the stronger repression of the Cyclin and Cdk 
genes could also be an indirect consequence of E2F1 repression by Rb via p21. The 
quantitative Real-time PCR experiment was therefore repeated under treatment with 
the ribonucleotide reductase inhibitor Hydroxyurea768. Under these conditions cells 

arrest in S-phase since DNA replication is stalled, but at this point in the cell cycle Rb 
has already been hyper-phosphorylated and can therefore not inhibit the E2F 

transcription factors. Exactly the same repression pattern (data not shown) was 
observed when cells were treated with Hydroxyurea and the possibility that 
differences in repression of p53-target genes dependent on SUMO-status are 
indirect effects via p21/Rb/E2F-mediated repression can thus be excluded.  

Instead, I propose a model in which SUMOylation affects interaction with the 
transcription factor NF-Y, which has been shown to interact with C-terminal part of 
p53240. Indeed, C-terminal acetylation of p53 was shown to be required for p53-
mediated repression via NF-Y240. Acetylation of p53 could be affected by the SUMO 
status of p53, since SUMO-1 modification was reported to inhibit p300-mediated 
acetylation of p53401. However, it is still unclear why repression of Cyclin B2 that also 
contains CCAAT boxes, which are recognised by the NF-Y transcription factor, was 
not affected by p53 SUMOylation. It would be interesting to also study the effect of 
SUMO-3-modification on repression of p53 target genes that are repressed 

independent of NF-Y, such as PLK-1769. 

Contrary to the common assumption that SUMOylation of transcription factors is 
associated with repression of their transcriptional activity, these data show that 

SUMO-3 modification dampens the activation of some p53-activated genes, while 

possibly inducing others and furthermore alleviating the repression of a number of 
p53-repressed target genes. A microarray study with a p53-SUMO-1 fusion protein 
found that while p53 repressed 634 target genes, the p53-SUMO-1 fusion protein 

only repressed 168 target genes and concluded that SUMO-modification alleviated 
p53-mediated repression402. This study also found that the p53-SUMO-1 fusion 
protein induced Noxa more strongly than wild-type p53, which would be consistent 
with a model of SUMOylation targeting p53 towards its apoptotic target genes. 
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Cell cycle analysis of cells expressing no p53, wild-type p53, p53 K386R or p53 
E388A showed no significant differences in cell cycle distribution between cells 

expressing wild-type p53 or the SUMO-site mutants p53 K386R and p53 E388A. 
However, a slightly smaller, albeit not significant, fraction of cells expressing the 
SUMO-consensus mutants p53 K386R and p53 E388A had sub-G1 DNA content, 
which would be consistent with SUMOylation of p53 promoting a stronger apoptotic 

response. Importantly, others had also observed that p53 K386R had a reduced 
apoptotic potential compared to wild-type p53408. Furthermore, expression of wild-

type p53 in the p53-null cells did not induce a significant G1-arrest, but did result in a 
significant increase in apoptosis (Figure 4-14), while expression of p53 E388A 
resulted in a significant G1-arrest, but no significant induction of apoptosis. Thus, 
under the conditions used to promote p53-SUMOylation (MDM2 ∆AD expression), 

induction of apoptosis seems to be favoured over induction of cell cycle arrest, 
suggesting a role for SUMO-2/3 modification modulating the p53 stress response. 

50% of tumours do not express any wild-type p53, the majority of which expresses a 
mutant p53 protein harbouring a missense mutation. These mutant p53 proteins 
acquire novel oncogenic activities, such as repressing the transcription factors p63 
and p73. Our lab has previously published that mutant p53 can drive invasion and 
that this activity is dependent on the C-terminal amino acids586, including the SUMO-
site. The activity of mutant p53 was therefore studied in the next chapter. 



 

 
 

 

 

 

 

 

 

5 Mutant p53 interacts with p63 and p73. 
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Approximately half of all tumours express a mutant p53 protein, which has lost wild-
type p53 activity. A significant fraction of somatic p53 mutations observed in cancer 

patients result in expression of point-mutated p53 proteins, which additionally gain 
new oncogenic functions. This gain of function is partially mediated by mutant p53 
binding to and repressing the p53 family transcription factors p63 and p73134,575-581. 

Both p63 and p73 can induce some p53 target genes and have been found to be 

required to support p53 in initiating apoptosis582. The transcription factors also 
induce sets of target genes distinct from those of p53. As well as its important role in 

embryonic development, p63 also represses epithelial-to mesenchymal transition596, 
migration770 and invasion. Thus, loss of p63 is often associated with more aggressive 
and invasive tumours771,772. A number of studies have recently addressed the 

mechanism as to how mutant p53 induces invasion via p63 in crosstalk with EGFR, 

Met and TGFβ signalling586,594,595. While p73’s role in migration is less well established 
than p63, loss of p73 has also been associated with more invasive tumours in some 
studies773. Loss of p63 or p73 in p53 heterozygous mice leads to a significant 
increase in invasive tumours from 5% to 50% in p53+/-;p63+/- and 45% in p53+/-;p73+/- 
mice468, suggesting that p73 also plays a role in inhibiting metastasis. It is possible 
that rather than affecting epithelial to mesenchymal transition and motility directly, 
p73 suppresses metastasis by inducing anoikis and thereby posing a barrier to 
anchorage-independent growth760. 

5.1  The mutant p53 C-terminus is dispensable for 
interaction with p63. 

Having studied the SUMO-2/3 modification of wild-type p53 and its consequences 

on p53 function, it was investigated whether mutant p53 could also be SUMOylated. 

Since other members of the lab recently found that mutant p53 required its C-
terminus to promote invasion via p63586, the consequences of SUMOylation on 
mutant p53 activity and in particular its binding to p63 were studied. 
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5.1.1  Mutant p53 is SUMOylated. 

It has previously been shown that mutant p53 and wild-type p53 interact differently 
with MDM2, although mutant p53 was found to still be ubiquitinated by MDM2544. 

Since MDM2 needs to physically interact with p53 via the N-terminus for successful 
SUMOylation to occur, it was investigated whether conformational p53 mutants 

could also be SUMOylated. 

 
Figure 5-1: p53 hot-spot mutants are SUMOylated. 
HCT116 p53-/-cells were transfected with p53 mutants an either MDM2 ∆AD (A) or HA-SUMO-3 (B). 
Cells were lysed under denaturing conditions and p53 immunoprecipitated with the DO-1 antibody (IP 
p53).  
 
 
Both cancer-derived p53 mutants tested, which are impaired for DNA-binding (273H) 
or overall conformation of the DNA-binding domain (175H), retain the ability to be 

SUMOylated (Figure 5-1 A).  

While earlier studies found that MDM2 can ubiquitinate mutant p53, the level of 
MDM2-independent ubiquitination was much higher for mutant p53 compared to 

wild-type p53544. In order to test whether mutant p53 is also SUMOylated without 
MDM2 overexpression, the level of SUMOylated protein after expression of HA-
SUMO-3 was assessed. It is important to note that endogenous MDM2 was still 
present in these cells. Both hot-spot mutants p53 R175H and p53 R273H as well as 

deletion of the conserved box II (∆II), which adopts a mutant conformation, showed a 
similar degree of residual SUMOylation compared to wild-type p53 (Figure 3-18 B). It 
can therefore be concluded that SUMOylation of p53 is neither affected by p53’s 

DNA-binding capability nor the conformation of its DNA-binding domain. 
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5.1.2  The SUMO site is not required for interaction with 
p63.  

An important property of mutant p53 is its ability to interact with the transcription 
factors TAp63575-577 and TAp73134,575,577-581, preventing induction of their target genes. 
Since SUMOylation modulated wild-type p53 activity, its effect on mutant p53 activity 
was also analysed. Thus, the interaction of the p53-hotspot mutants p53 R175H and 

p53 R273H with TAp63α was assessed. The role of the C-terminal SUMO site in this 
interaction was studied by expressing mutant p53 proteins deleted for the last 14 

(p53 ∆380), 24 (p53 ∆370), 31 (p53 ∆363) or 47 (p53 ∆347) amino acids (Fig 5-2 B). 
The latter three proteins lack the SUMO site at lysine 386. 

 

 
Figure 5-2: Interact ion of C-terminal ly deleted p53 mutants with 
TAp63α .  
(A) HCT116 p53-/- cells were transfected with wild-type or mutant p53 
constructs and TAp63α and lysed under native conditions. p53 was 
immunoprecipitated with the DO-1 antibody (IP p53) and interaction was 
assessed as level of TAp63α protein co-immunoprecipitated with p53.  
(B) Domain structure of TAp63α with indication of deletion mutants. TET: 
tetramerisation domain. 
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While hardly any binding between wild-type p53 and TAp63α was observed, the 
conformational p53 R175H mutant strongly interacted with TAp63α in the co-

immunoprecipitation experiment (Fig 5-2 A). None of the C-terminal deletions 
influenced the degree of TAp63α binding. All C-terminal deletion mutants lack the 
SUMO-site at lysine 386. Therefore, the SUMO site of mutant p53 does not seem to 
be required for interaction with TAp63α. The p53 R175H ∆347 mutant lacks a part of 

the tetramerisation domain (Fig 5-2 B), deletion of which also did not affect TAp63α 
binding (Fig 5-2 A). In contrast to p53 R175H, the DNA contact mutant p53 R273H 

interacted only very weakly with TAp63α. Again, the C-terminal deletions did not 
influence the binding to a large extent, although the p53 R273H ∆347 mutant 
showed slightly enhanced interaction in this particular experiment, possibly since the 
TAp63α levels were slightly higher in this lane. While the presence of the SUMO site 

did not affect the ability of mutant p53 to interact with TAp63α, strong differences 
were observed depending on the kind of p53 mutant used. 

5.2  p53 in unfolded conformation interacts with p63 and 
p73. 

Other studies have also shown different degrees of p63 and p73 binding, depending 
on the particular p53 mutation. One study suggested that only p53 mutations that 
lead to a disruption of the wild-type p53 conformation gain the ability to efficiently 
interact with p63 and p73575. 

5.2.1  Different p53 mutants show different binding 
behaviour. 

p53 hot-spot mutants are classically sub-divided into conformational and DNA 

contact mutants. The frequently detected R175H mutation globally alters the 
conformation of p53’s DNA structure, disrupting binding of the critical zinc ion 
required for stabilising the L2 and L3 loops774. By contrast, mutation of the DNA-
contacting residue R273 leaves the conformation of the DNA binding domain largely 

intact, while directly impairing binding of p53 to the DNA651. While the DNA binding 
domain structure of p53 R273H and wild-type p53 are virtually identical651 and the 
mutation has little impact on the thermodynamic stability of the protein775, mutation of 

other DNA-contacting side chains, for example arginine 248, was found to have 
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some impact on the local conformation and thermodynamic destabilisation775, albeit 
much smaller than the R175H mutation. Consequently, p53 mutants were re-

classified into three groups: Mutants that are highly destabilising (3 kcal/mol or 
above) and result in global unfolding (e.g. p53 R175H), mutants that destabilise by 
less than 2 kcal/mol and result in local conformational changes (e.g. p53 R248Q) and 
mutants that only affect DNA contacting, but do not clearly destabilise the 

conformation (e.g. p53 R273H). 

Unfolding of the DNA binding domain can be monitored by immunoprecipitation with 

the conformation-specific antibodies pAb1620 and pAb240, which recognise 
epitopes accessible in the folded or unfolded conformation, respectively (see Figure 
1-26 in the introduction).  

 
 

 
F igure 5-3: Conformation of p53 mutants. 
HCT116 p53-/- cells were transfected with wild-type or mutant p53 
constructs, lysed under native conditions and p53 was 
immunoprecipitated with the conformation-specific antibodies pAb 
1620 and pAb 240 (IP).  
 

 

 
Consistent with the published structural evidence774, both wild-type p53 and the DNA 
contact mutant p53 R273H were predominantly immunoprecipitated with the 

pAb1620 antibody, recognising native folding, while a large fraction of p53 R175H 
was pulled down with the pAb240 antibody (Fig 5-3), which detects an epitope 
exposed only in the unfolded protein. Mutation of isoleucine 254, which is located in 
the S7 β-strand within the β-sandwich structure, occurs in 0.2% of mutant p53 

tumours524. The I254R mutation has a very strong effect on the conformation of the 
p53 DNA binding domain, resulting in the p53 I254R protein being almost exclusively 
immunoprecipitated by the pAb240 antibody, thus destabilising the DNA binding 
domain even stronger than the R175H mutation (Fig 5-3). 
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The unfolding of the DNA binding domain and the reactivity with the pAb240 
antibody were reported to correlate with p63 binding575. Indeed, one study on the 

temperature-sensitive xenopus p53 protein showed that wild-type p53 started to 
interact with p73, once the DNA binding domain was unfolded as a result of 
increased temperature581. Thus, the p63-binding capability of a range of p53 mutants 
including the highly unfolded p53 I254R and p53 R175H, and the DNA contact 

mutants R273H and R248W was addressed. 

 

 
Figure 5-4: Interact ion of p53 mutants with TAp63α .  
HCT116 p53-/- cells were transfected with empty vector, wild-type 
or mutant p53 constructs and TAp63α and lysed under native 
conditions. p53 was immunoprecipitated with the DO-1 antibody 
(IP p53). 
 

 

 
Strong interactions of the conformational hotspot mutant p53 R175H and the highly 
unfolded p53 I254R mutant with TAp63α were observed, while the DNA contact 

mutants p53 R273H and p53 R248W showed only marginal interaction, comparable 
to the level of background-interaction observed between wild-type p53 with TAp63α 
(Fig 5-4). This observation supports the notion that the conformation of the DNA 

binding domain determines the level of p63 binding. It is therefore likely that p63 
binds to an epitope on p53 that is hidden in the native folding of the DNA-binding 

domain and becomes exposed upon unfolding. 

Most previous investigations have focussed on the interaction of mutant p53 with the 
TA-isoforms of p63 and p73. Initially thought to act purely as a negative regulator of 

the full-length isoforms, the ∆N-isoforms are now also well established as activators 
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of distinct sets of target genes445,446,476 through second transactivation domains in 
their C-termini447,477. Since many cancers express high levels of the shorter ∆Np63 

and ∆Np73 isoforms, the interaction of mutant p53 with these shorter isoforms was 
also studied. 

 

 
Figure 5-5: Mutant p53 interacts with the TA- and 
∆N-isoforms of p63 and p73. 
HCT116 p53-\- cells were transfected with either p53 R175H or 
p52 R273H and HA-tagged TAp63α, ∆Np63α, TAp73α or 
∆Np73α. Cells were lysed under native conditions and p53 
immunoprecipitated using the DO-1 antibody (IP p53). 
 

 

 
The conformational mutant p53 R175H strongly interacted with the TA- and ∆N-

isoforms of both p63 and p73 to a similar extent (Fig 5-5). The DNA contact mutant 
p53 R273H showed much weaker interaction with all isoforms and bound to the TA- 
and ∆N variants to a similar degree. Thus, mutant p53 does not seem to display any 
preference as to which isoform it interacts with. Since ∆N- and TA isoforms of p63 

and p73 can play opposite roles on some target gene promoters, this broad 
interaction would complicate predictions of the overall outcome of mutant p53 

repression in cells expressing both TA- and ∆N isoforms. 
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5.2.2  Mutant p53 binds p63 and p73 via the DNA-binding 
domain. 

While p63 and p73 can form mixed tetramers via their tetramerisation domains, 
p53’s oligomerisation domain is slightly different, missing an additional α-helix, and 
does not allow formation of heterotetramers with the other family members437. By 
contrast, interaction of mutant p53 with p63 and p73 is thought to take place via 

their core domains576,579. 

 

 
Figure 5-6: The DNA binding domain of p53 R175H is required for 
interact ion with TAp63α  and ∆Np63α .  
(A) HCT116 p53-/- cells were transfected with p53 R175H and either full-length 
TAp63α or the deletion mutants indicated. Cells were lysed under native 
conditions and p53 immunoprecipitated with the DO-1 antibody (IP p53). All 
samples were part of the same experiment and were run on the same gel, 
irrelevant samples were excised as indicated to produce this figure. 
(B) Domain structure of TAp63α with indication of deletion mutants. TET: 
tetramerisation domain. 
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In order to investigate the contribution of the DNA binding domain to the interaction 
between p53 R175H and TAp63α or ∆Np63α, a deletion mutant, lacking the entire 

DNA binding domain (p53 ∆96-312), was co-expressed with p63 (Fig 5-6 B).  

While no interaction between wild-type p53 and either TAp63α or ∆Np63α could be 
observed, p53 R175H bound to both p63 isoforms, although ∆Np63 was expressed 
at much lower levels here. Deletion of the DNA binding domain completely abrogated 

any interaction between p53 and TAp63α or ∆Np63α (Fig 5-6 A). These observations 
are in line with previous reports that the p53 R175H core domain is sufficient to 

interact with TAp63α576. In order to narrow down the region of interaction with 
TAp63α, a series of mutants with smaller deletions of around 50 amino acids within 
the DNA binding domain was tested (Fig 5-7 B). 

 

 
Figure 5-7: Delet ion of amino acids 251-312 impairs p53 binding to TAp63α .  
(A) HCT116 p53-/- cells were transfected with TAp63α and either wild-type or p53 R175H or 
the deletion mutants indicated. Cells were lysed under native conditions and p53 
immunoprecipitated with the DO-1 antibody (IP p53).  
(B) Domain structure of TAp63α with indication of deletion mutants. TET: tetramerisation 
domain 
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As expected, wild-type p53 did not interact with TAp63α, while p53 R175H co-
immunoprecipitated TAp63α (Fig 5-7 A). The construct deleted for the first 55 amino 

acids of the DNA binding domain in mutant p53 (p53 R175H ∆95-150) failed to 
express any protein. The other three deletion mutants expressed to comparable 
levels. Since deletion of amino acids 150 to 200 removes the R175H point mutation, 
a different unfolding point mutation (I254R) was introduced into this construct (p53 

I254R ∆151-200). Both p53 I254R ∆151-200 and p53 R175H ∆201-250 interacted 
with TAp63α to a similar degree as full-length p53 R175H, however p53 R175H 

∆251-312, lacking the DNA-binding region adjacent to the C-terminal part of the 
protein, co-immunoprecipitated less TAp63α, suggesting that this region contributes 
to the interaction with TAp63α (Fig 5-7 A). 

5.2.3  Mutant p53 interacts with p63 and p73 independent 
of aggregation. 

The C-terminal part of the DNA binding domain of p53 contributes to TAp63α 
binding (Figure 5-7 A). This region harbours an amino acid stretch between 251 and 

257 that was recently described to serve as an aggregation-nucleating segment577. 
This region is located on the S7 β-strand and is usually buried in the hydrophobic 
core of the protein. According to the aggregation model, this amino acid sequence 

becomes exposed upon unfolding of the DNA binding domain and induces 
aggregation of mutant p53 protein with other mutant p53 or wild-type p53 

molecules. Since this amino acid stretch is located in conserved box IV, p63 and p73 
also contain a similar amino acid sequence (Fig 5-8 A) and it has been proposed that 
mutant p53 achieves gain of function by co-aggregating with p63 and p73577. 

Deletion of amino acids 251-257 or point mutation of the central isoleucine residue 

I254 were reported to abrogate aggregation of unfolded p53 mutants577. While 
deletion of the last 63 amino acids of the DNA binding domain (p53 R175H ∆251-

312) severely impaired binding to TAp63α consistent with earlier experiments (Fig 5-
7), deletion of only the aggregation region (p53 R175H ∆251-257) surprisingly did not 
have any impact on the co-immunoprecipitation of TAp63α (Fig 5-8 B). Similarly, 
point mutation of the I254 residue (p53 R175H I254R) did not reduce interaction with 
TAp63α (Fig 5-8 B). It must therefore be concluded that the interaction between p53 
R175H and TAp63α does not depend on p53 aggregation. 
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Figure 5-8: p53 interacts with TAp63α  independent of an aggregat ion domain. 
(A) Alignment of the aggregation domain in box IV across the p53-family. Amino acids identical with 
the aggregation domain in p53 are highlighted in bold. The central isoleucine residue is marked in red. 
Accession numbers: p53: P04637, TAp63α: AAF43487, TAp73α: O15350. 
(B) HCT116 p53-/- cells were transfected with TAp63α and either wild-type or p53 R175H or the 
deletion mutants indicated. Cells were lysed under native conditions and p53 immunoprecipitated with 
the DO-1 antibody (IP Do-1) 
 
 
Mutation of isoleucine 254 resulted in a large pool of unfolded p53 protein in a 
previous experiment (see Fig 5-3) and the p53 I254R protein interacted strongly with 
TAp63α (Fig 5-4). Due to the recent reports that this point mutation stopped co-
aggregation of unfolded p53 with p63 and p73, the effect of the I254R mutation in 

the background of p53 R175H and p53 R273H were also tested in the presence of 

∆Np63α (Fig 5-9).  

Similar to the interaction with TAp63α, the p53 I254R mutant bound strongly to 
∆Np63α. Furthermore, mutation of I254R in p53 R175H did not weaken the binding 

of ∆Np63α (Fig 5-9), similar to the results obtained with TAp63α (Fig 5-8). In line with 
the finding that mutant p53 interacts with p63 via its DNA binding domain, disruption 
of the tetramerisation domain of p53 (p53 R175H ∆TET) did not affect the interaction 

with ∆Np63α either (Fig 5-9). 
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Figure 5-9: p53 R175H I254R binds strongly to ∆Np63α .  
HCT116 p53-/- cells were transfected with ∆Np63α and either empty 
vector, wild-type p53 or the p53 mutants indicated. Cells were lysed 
under native conditions and p53 immunoprecipitated with the DO-1 
antibody (IP p53). p53 ∆TET contains the following mutations in order 
to disrupt tetramerisation: L348A, L350A 
 

 

 
While p53 R273H did not co-immunoprecipitate much ∆Np63α, the p53 R273H 
I254R double mutant strongly bound to ∆Np63α (Fig 5-9), probably due to the 
unfolding effect of the I254R mutation (Fig 5-3). An intact aggregation domain is 
therefore not required for p53 R175H to interact with TAp63α or ∆Np63α.  

The impact of the I254R mutation on p53 R175H on binding to TAp73α was 
assessed next. While the first lane was under-loaded in this experiment, expression 
levels of p53 R175H and p53 R175H I254R p53 were comparable. As seen before, 
p53 R175H interacted strongly with TAp73α. The p53 R175H I254R double mutant 

interacted with TAp73α to similar strength as p53 R175H (Fig 5-10 A). Thus, the 
aggregation domain is not required for mutant p53 to interact with TAp73α. 

Although not dependent on the aggregation domain located between amino acids 
251-257, the last 63 amino acids of the DNA binding domain were important for the 
interaction of p53 R175H with TAp63α (Fig 5-7 A). Next, the DNA binding domain’s 

role in p53 R175H binding to TAp73 was examined in more detail (see Fig 5-7 B for 
an overview of deletion mutants used in Fig 5-10 B). 
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Figure 5-10: p53 R175H I254R st i l l  interacts with TAp73α .  
(A) and (B) HCT116 p53-/- cells were transfected with TAp73α and either wild-type or p53 R175H or 
the deletion mutants indicated. Cells were lysed under native conditions and p53 immunoprecipitated 
with the DO-1 antibody (IP p53). 
 
 
Both unfolded mutants p53 R175H and p53 I254R strongly bound TAp73α and wild-
type p53 only interacted with TAp73α very weakly (Fig 5-10 B). The p53 I254R 
∆151-200 construct was expressed at much lower levels in the input and levels were 
also lower after immunoprecipitation, consequently the decreased amount of 
TAp73α pulled down in this lane is difficult to interpret (Fig 5-10 B). However, p53 
R175H ∆201-250 and p53 R175H ∆251-312 were expressed to similar levels and 
the latter co-immunoprecipitated lower levels of TAp73α (Fig 5-10 B). 

Although the reduction of TAp73α binding to p53 R175H deleted for amino acids 
251-312 (Fig 5-10 B) was not as prominent as the effect of the deletion on TAp63α 
binding (Fig 5-7 A), the same region in mutant p53 was identified to be important for 
interacting with both p63 and p73. Thus, the DNA binding domain of p53, in 

particular the region towards the C-terminus, is critical for the formation of the 
mutant p53-p63 and mutant p53-p73 complexes, while the aggregation domain, 

also located in this region, is dispensable for either complex formation. 
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5.3  p63 and p73 interact differentially with mutant p53. 

The interaction of mutant p53 with p63 and p73 is thought to involve the DNA 

binding domain of p53 and to take place via the core domains of p63 and p73 as 

well576,579. While mutant p53 interacted with TAp63α, ∆Np63α, TAp73α and ∆Np73α 
to the same extent (Fig 5-5), deletion of only the last 62 amino acids of the DNA 

binding domain (p53 R175H ∆251-312) had a more disruptive effect on the mutant 
p53-p63 complex (Fig 5-7 A) than on the mutant p53-p73 complex (Fig 5-10 B). It is 
therefore possible, that p63 and p73 interact with mutant p53 in slightly different 
ways. Hence, the contribution of the functional domains of p73 and p63 in 

contacting mutant p53’s core domain was studied. 

5.3.1  p73 interacts with mutant p53 via the DNA binding 
domain 

In order to identify the domain responsible for interaction of TAp73α with mutant 
p53, a series of p73 deletion mutants was created, deleting the proline-rich domain 
(∆47-130), the DNA binding domain (∆131-307), the central nuclear localisation 
signal, tetramerisation domain and second transactivation domain (∆308-386) and a 
C-terminal region up to the SAM domain (∆387-500) (Fig 5-11).  

 
Figure 5-11: Representat ion of TAp73α  delet ion mutants. 
Domain structure of TAp73α with indication of deletion mutants. TAD: transactivation domain, NLS: 
nuclear localisation, TET: tetramerisation, SAM: sterile α motif, TID: transcription inhibitory domain. 
 
 
A mutant deleted for the extreme C-terminus (1-500) failed to express (not shown) 

and the effect of deleting the SAM domain and transcriptional inhibitory domain could 
therefore not be studied. 
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While most p73 deletion mutants bound p53 R175H, deletion of the DNA binding 
domain in TAp73α ∆131-307 reduced the interaction markedly (Fig 5-12 A). This 

finding is consistent with a previous report showing that a p73 protein containing 
only the DNA binding domain and oligomerisation domain bind mutant p53579. Since 
this deletion mutant lacks almost 200 amino acids, attempts were made to narrow 
the interacting region down further and two TAp73α mutants with smaller deletions 

of either the N-terminal half (∆131-223) or the C-terminal half (∆224-307) of the DNA 
binding domain were created (Fig 5-11). 

 
Figure 5-12: TAp73α  interacts with p53 R175H via the DNA binding domain. 
(A) and (B) HCT116 p53-/- cells were transfected with p53 R175H and either empty vector, full-length 
TAp73α or the deletion mutants indicated. Cells were lysed under native conditions and p53 was 
immunoprecipitated with the DO-1 antibody (IP p53). * indicates the IgG heavy chain. 
 
 
Surprisingly, while TAp73α deleted for the whole DNA binding domain (∆131-307) 
hardly bound any p53 R175H as observed before (although p53 is expressed at a 

lower level in this lane), both smaller deletion mutants TAp73α ∆131-223 and 

TAp73α ∆224-307 bound p53 R175H very strongly. It can be concluded that these 
deletion mutants both contain regions interacting with mutant p53, suggesting that at 

least two areas of the DNA-binding domain are involved in the binding, with either of 
them being sufficient for complex formation. 
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5.3.2  p63 does not require the DNA binding domain to bind 
mutant p53. 

Since TAp73’s DNA-binding domain was crucial for the interaction with mutant p53, 
the experiment was repeated with a ∆Np73 mutant lacking the DNA binding domain. 
It was furthermore studied whether the DNA-binding domains of TAp63 and ∆Np63 
were also important for their interaction with mutant p53. 

 

 
Figure 5-13: p63’s DNA binding domain is dispensable for binding to 
p53 R175H.  
HCT116 p53-/- cells were transfected with p53 R175H and either full-length 
TAp63α, ∆Np63α, TAp73α, ∆Np73α or deletions of the DNA binding domain 
(DBD): TAp63α ∆138-319, ∆Np63α ∆84-265, TAp73α ∆131-307, ∆Np73α ∆82-
258. Cells were lysed under native conditions and p53 immunoprecipitated with 
the DO-1 antibody. * indicates the IgG heavy chain. 
 

 

 
Deletion of the DNA-binding domain of TAp73α once again largely reduced 
interaction with p53 R175H and interaction of ∆Np73α with p53 R175H was equally 
compromised by deletion of the DNA-binding domain (Fig 5-13). By contrast, 

deletion of the DNA binding domain did not affect the interaction of TAp63α or 
∆Np63α with p53 R175H (Fig 5-13). This finding is in contrast to a study that found 
the DNA-binding domain of p63 sufficient to bind to mutant p53576. It is possible that 

the core domain of TAp63 contacts mutant p53, while another part TAp63 outside 
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this region provides a secondary interaction, which is sufficient for co-
immunoprecipitation. 

In order to determine which region outside TAp63's DNA binding domain serves as 
contact point for mutant p53, differences in the amino acid sequence between 
TAp63 and TAp73 were analysed. In light of the recent report linking aggregation of 
mutant p53 to interaction with TAp63 and TAp73577, the poly-glutamine region in the 

C-terminal region of TAp63 was considered a possible point of interaction. Poly-
glutamine stretches of up to hundreds of glutamines tend to aggregate and 

multiplication of glutamine stretches have been linked to neurodegenerative 
diseases776. TAp63’s sequence contains six glutamines in a row with 3 further 
glutamine residues in close proximity, but TAp73’s sequence harbours only four 

sequential glutamines and one proximal glutamine (Fig 5-14 A). 

 
Figure 5-14: Delet ion of a glutamine stretch does not affect TAp63α ’s binding to p53 
R175H. 
(A) Alignment of TAp63α and TAp73α sequences with indication of ∆QQ deletion. Accession 
numbers: TAp63α: AAF43487, TAp73α: O15350. 
(B) HCT116 p53-/- cells were transfected with either wild-type p53 or p53 and either wild-type or ∆QQ 
TAp63α. Cells were lysed under native conditions and p53 immunoprecipitated with the DO-1 
antibody (IP p53). 
 
 
Neither full-length TAp63α nor TAp63α deleted for the glutamine-rich region (TAp63α 

∆QQ) bound to wild-type p53, however both full-length and deletion mutant bound 
strongly to p53 R175H (Fig 5-14 B). Therefore this glutamine-rich region does not 

appear to be crucial for the TAp63α-mutant p53 interaction. However, in case two 
interactions - one within the DNA binding domain and outside the DNA binding 
domain - are responsible for the TAp63α-mutant p53 binding, it would be informative 
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to repeat this experiment with a double deletion mutant, lacking both DNA-binding 
domain and poly-glutamine stretch in order to rule out that the glutamine stretch 

does not contribute to the binding. 

 
Figure 5-15: Representat ion of TAp63α  delet ion mutants. 
Domain structure of TAp63α with indication of deletion mutants. TAD: transactivation domain, NLS: 
nuclear localisation, TET: tetramerisation, SAM: sterile α motif, TID: transcription inhibitory domain. 
 
 
In order to identify the region important for the mutant p53-TAp63α interaction, a 
series of deletion mutants, lacking 100 amino acids each (Fig 5-15), was created.  

 

 
Figure 5-16: Delet ion of amino acids 462-561 abrogates 
TAp63’s interact ion with p53 R175H. 
HCT116 p53-/- cells were transfected with p53 R175H and either 
full-length TAp63α or the deletion mutants indicated. Cells were 
lysed under native conditions and p53 immunoprecipitated with 
the DO-1 antibody (IP p53).   
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The deletion mutants expressed to slightly different levels. The TAp63α ∆462-561 
mutant, which showed the strongest expression out of all mutants, failed to interact 

with p53 R175H, while full-length TAp63α and all other deletion mutants readily co-
immunoprecipitated with p53 R175H (Fig 5-16). The ∆462-561 deletion comprises 
the entire SAM domain. Interestingly, the α-helices of the sterile α motif (SAM) are 
generally thought to act as platform for protein-protein interactions441. Since deletion 

of this C-terminal region completely abrogated the complex formation with mutant 
p53, it is unlikely that the DNA binding domain of TAp63α plays a major role in 

binding to mutant p53. 

 
Figure 5-17: Amino acids 462 to 561 are not present in TAp63γ .  
Domain structure of TAp63α, TAp63β and TAp63γ with indication of the region deleted in the TAp63α 
∆462-561 mutant. TAD: transactivation domain, NLS: nuclear localisation, TET: tetramerisation, SAM: 
sterile α motif, TID: transcription inhibitory domain. 
 
 
Strikingly, only the α-isoforms of p63 contain the full SAM domain, while the p63β 
proteins retain a small part of it and the p63γ proteins lack it entirely (Fig 5-17). 
Testing the TAp63β protein and its interaction with mutant p53 could give further 

information as to which part of the region deleted in the TAp63α ∆462-561 protein is 

responsible for contacting mutant p53. Following from the observations that the 
TAp63α ∆462-561 protein does not interact with p53 R175H, the TAp63γ protein 
would be expected not to bind to mutant p53 less well than TAp63α. This hypothesis 

could be investigated with further co-immunoprecipitation experiments. 

In summary, these experiments clearly show that mutant p53 interacts with the DNA 

binding domains of TAp73α and ∆Np73α, while the core domains of TAp63α and 
∆Np63α are dispensable for mutant p53 binding. This is a striking observation since 
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are responsible for the interaction and to analyse whether these regions are not 
present in the p63 protein. 

5.4  MDM2 interplay with p63, p73 and mutant p53.  

One of p53’s strongest interacting proteins is its negative regulator MDM2. In 
addition to ubiquitinating and targeting p53 for degradation107,108, MDM2 also shields 

the N-terminal transactivation domain of p53114,115 and modulates its transcriptional 
activity by SUMOylation777. TAp63 and TAp73 show 26% and 30% homology to the 
p53 N-terminus, respectively470. It was therefore investigated whether MDM2 could 
interact with and SUMOylate the p53-family transcription factors. 

5.4.1  p63 and p73 are SUMOylated 

A SUMO-site homologous to that of p53 is not present in the p63 or p73 sequences. 
However, a SUMO consensus can be found in the extreme C-termini of p63α and 
p73α (Fig 5-18 A). Consistent with this observation, only the α isoforms of p63 and 
p73 were reported to be SUMOylated450,734,778-781. The lysine residue K627 within the 
SUMO consensus in TAp73’s transcription inhibitory domain is to date the only lysine 
residue in p73 shown to be modified by SUMO-1734,781. By contrast, lysine residue 
K549, residing in a non-classical SUMO motif, was described as a second SUMO 
site in TAp63α778, although the majority of studies only reports SUMOylation of lysine 

637 within the classical SUMO consensus450,778-780. This second non-classical motif is 
also present in p73α and was predicted as potential SUMO site by the SUMOsp2.0 
SUMO consensus analysis software for both p63α and p73α (Fig 5-18 B). Since 

some SUMO-1 modification of TAp73α K627R, disrupted for the classical SUMO 
site, could still be observed734, it is possible that a lysine 532 in TAp73α is also 
SUMOylated. Since MDM2 ∆AD strongly induced SUMO-2/3 modification of p53, 

SUMO-2/3 modification of p63α and p73α in the presence of MDM2 ∆AD were 
tested. 
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Figure 5-18: p63α  and p73α  are SUMO-2/3 modif ied. 
(A) Alignment of the extreme C-termini of TAp63α and TAp73α. The SUMO consensus motif is 
highlighted in bold with SUMO-accepting lysine in red. Accession numbers: TAp63α: AAF43487, 
TAp73α: O15350. 
(B) Alignment of non-classical SUMO motif in SAM domains of TAp63α and TAp73α. amino acids 
matching the classical consensus highlighted in bold, SUMO-accepting lysine in red. 
(C) U2OS cells were transfected with p53, TAp63α, TAp73α or ∆Np73α and MDM2 ∆AD. Cells were 
lysed under denaturing conditions. p53 was immunoprecipitated with the DO-1 antibody (IP DO-1) 
and TAp63α, TAp73α and ∆Np73α were immunoprecipitated with the HA antibody (IP HA). Samples 
were part of one experiment and were run on the same gel, a sample in the middle has been removed 
as indicated for this figure. 
 
 
SUMOylation of p53 was strongly induced by MDM2 ∆AD as previously observed 

(see chapter 3) and served as a positive control. TAp63α showed a faint ladder of 
bands with the lowest band running at the height corresponding of TAp63α plus one 
SUMO molecule (+20kD). Both TAp73α and ∆Np73α showed stronger bands 

corresponding to SUMO-modified p73, with TAp73α being most strongly SUMO-2/3 

modified. This is the first time that SUMO-2/3 modification of TAp63α, TAp73α and 
∆Np73α has been observed, since previous studies had only investigated SUMO-1 

modification of TAp73α734,781 and TAp63α450,778,779. Since no samples without co-
expression of MDM2 ∆AD were included in this experiment, it cannot formally be 
excluded that the SUMOylation of p63 and p73 is promoted independent of MDM2 
∆AD. MDM2 needs to bind p53’s N-terminus in order to promote SUMOylation, thus 
MDM2’s ability to interact with p63 and p73 was investigated next. 
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5.4.2  MDM2 interacts with p73, but not p63. 

MDM2 binds p53 at its N-terminal transactivation domain163. The amino acid 
sequence of the p53 family of transcription factors is well conserved, particularly in 

the DNA binding domain, where p63 and p73 share about 60% of amino acids with 
p53. The N-termini are less well conserved with TAp73’s sequencing containing 18% 

amino acids and TAp63 containing 6% amino acids identical with p53. Regardless of 
this relatively low homology, the three amino acids in p53's N-terminus (F19, W23 
and L26), which are contacted by MDM2 for the p53-MDM2 interaction163, are 
present in both TAp63 and TAp73 (Fig 5-19). A number of reports suggest that 

MDM2 interacts only with TAp73520-522, however some studies also found MDM2 
binding to TAp63518,519.  

 

Figure 5-19: Al ignment of the N-termini of p53 family members. 
Both TAp63 and TAp73 contain the amino acids, which have been shown to be crucial for 
p53 binding to MDM2 (highlighted in red). ∆Np63 and ∆Np73 lack this N-terminal region 
entirely. Accession numbers: p53: P04637, TAp63α: AAF43487, TAp73α: O15350. 
 

 

 
In order to study the interaction of MDM2 with p63 and p73, cells were transfected 

with the MDM2 C464A mutant, which is incapable of ubiquitinating, so that no 
protein degradation could take place. As expected, MDM2 C464A strongly 
interacted with p53 (Fig 5-20). A very subtle interaction with TAp63α and ∆Np63α 

was observed and MDM2 C464A bound much more strongly to both TAp73α and 
∆Np73α (Fig 5-19). 

The binding of ∆Np73 to MDM2 had not been assessed previously, but several 
reports suggested that MDM2 and TAp73 interact in a manner homologous to p53, 

with the p53-binding pocket of MDM2 contacting the N-terminus of TAp73482,483,510. 
While the amino acids crucial for p53’s interaction with MDM2 (F19, W23 and L26)163 
are present in TAp73’s N-terminus, they are deleted in the ∆Np73 isoform (Fig 5-19).  
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Figure 5-20: MDM2 strongly interacts with p73, but not with p63. 
HCT116 p53-/- cells were transfected with MDM2 C464A and either p53 or 
HA-tagged TAp63α, ∆Np63α, TAp73α (Simian) or ∆Np73α constructs. Cells 
were lysed under native conditions and MDM2 immunoprecipitated with the 
Ab-1 antibody (IP MDM2). 
 

 

 
Strikingly, the interaction between MDM2 and ∆Np73α was as strong as the 
interaction with TAp73α (Fig 5-20), suggesting that a domain other than the amino 
acids homologous to p53’s MDM2-binding domain is also involved in the interaction 
with MDM2. Hence, it was investigated whether interaction of p73 and MDM2 
exclusively required the p53-binding domain in MDM2. 

In order to study the role of the N-terminal interaction in the MDM2-p73 complex 
formation, an MDM2 mutant deleted for the p53-binding domain (∆58-89) was co-
expressed with p73. Consistent with the previous experiment, MDM2 C464A 

interacted strongly with p53, TAp73α and ∆Np73α, but only weakly with TAp63α or 
∆Np63α (bands visible after longer exposure). An MDM2 mutant lacking the p53-

binding domain, MDM2 ∆58-89 C464A, interacted strongly with p73, particularly with 

∆Np73α, suggesting that this interaction takes place via a domain outside the p53-
binding region in MDM2 (Fig 5-21). 
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Figure 5-21: MDM2’s p53-binding domain is dispensable for binding p73. 
HCT116 p53-/- cells were transfected with either MDM2 C464A or MDM2 ∆58-89 C464A 
MDM2 and empty vector, p53, ∆Np63α, TAp63α, ∆Np73α or TAp73α. Cells were lysed 
under native conditions and MDM2 immunoprecipitated wtih the Ab-1 antibody (IP MDM2). 
 

 

 
The interaction of MDM2 ∆58-89 C464A with TAp73α was slightly reduced 
compared to the binding of MDM2 C464A, raising the possibility that the p53-
binding region of MDM2 contacts the N-terminal amino acids in TAp73, as previously 
suggested by others482,483,510, although a second interaction appears to take place 
outside the p53-binding domain. Surprisingly, deletion of the p53-binding region in 

MDM2 reduced the co-immunoprecipitation of p53, but did not completely abrogate 
the interaction (Fig 5-21). While the N-terminal p53-MDM2 interaction serves as the 
primary docking site, a secondary binding mechanism with the central acidic domain 

of MDM2 contacting a region around box V in p53’s DNA binding domain was 

reported171,172,782,783. Since the MDM2 ∆58-89 C464A mutant contains a functional 
acidic domain, this secondary interaction between box V in p53 and the acidic 
domain in MDM2 could explain the residual interaction observed here.  

Taken together, the data suggests that MDM2 only poorly interacts with p63, but 
binds well to both TAp73α and ∆Np73α and that this binding takes place outside the 
N-termini of p73 and MDM2. 
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Unlike p53, TAp73 was found not to be targeted for ubiquitination by MDM2482,483,510. 
By contrast, some studies reported an increase in TAp73 levels in the presence of 

MDM2483,516. However, without affecting TAp73 levels, co-expression of MDM2 with 
TAp73 was found to dampen its transcriptional activity in most studies482,483,510, while 
one group reported an increase in transcriptional activity516.  

 

 
Figure 5-22: p53-induced PG13 Luciferase is repressed by MDM2 C464A. 
HCT116 p53-/- cells were transfected with PG13 Luciferase, TK Renilla and either empty 
vector or p53 together with increasing amounts of MDM2 C464A (25 and 100ng). (A) 
Activation of the promoters was assayed using the Promega Luciferase system. Data is 
plotted as Relative Luciferase Units (RLU) (Firefly Luciferase readings divided by Renilla 
Luciferase readings) fold change relative to p53-null control. The diagram represents the 
mean of triplicates with error bars as standard error of the mean. (B) Equal transfection 
was confirmed by western blot.  
 

 

 
In the case of p53, MDM2 binds to p53’s transactivation domain and interaction 

alone affects the transcriptional activity of p53114,115. Consequently, co-expression of 
the RING finger mutant MDM2 C464A, which is incapable of ubiquitinating p53, 

prevented p53-induced activation of PG13 Luciferase (Fig 5-22 A). 

In contrast to previous studies that had addressed the MDM2-p73 interaction as 
homologous to the MDM2-p53 interaction and proposed a model in which MDM2 
shields the TAp73 transactivation domain482,483,510, a strong MDM2-p73 interaction 
outside the N-terminus was observed here. Therefore the ability of MDM2 C464A to 
interfere with p63 and p73 transcriptional activity was assessed. 
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Induction of BPAG1-Luciferase by TAp73α was strongly reduced by addition of 
MDM2 C464A, supporting the theory that MDM2 interacts with the p73’s 

transactivation domain homologous to p53 (Figure 5-23 A). Since BPAG1-Luciferase 
was not induced by ∆Np73α no conclusions could be drawn about the repression of 
∆Np73α’s transcriptional activity. 

 
Figure 5-23: TAp73α  induced BPAG1 Luciferase is repressed by MDM2 C464A. 
HCT116 p53-/- cells were transfected with BPAG1-Luciferase, TK Renilla and either empty vector, 
TAp63α, ∆Np63α, TAp73α or ∆Np73α plus increasing amounts of MDM2 C464A (0, 25 or 100ng) (A) 
Activation of the promoters was assayed using the Promega Luciferase system. Data is plotted as 
Relative Luciferase Units (RLU) (Firefly Luciferase readings divided by Renilla Luciferase readings) fold 
change relative to empty vector control. The diagram represents the mean of two independent sets of 
triplicates with error bars as standard error of the mean. * indicates a p-value < 0.02 as results of an 
unpaired two-tailed Student t-test compared to readings from cells not transfected with MDM2 
C464A. (B) Transfection efficacy was determined by western blot. 
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expression of MDM2 C464A (Fig 5-23 A). Surprisingly, addition of small amounts of 
MDM2 C464A significantly increased induction of BPAG1 Luciferase by both TAp63α 

and ∆Np63α (Fig 5-23 A). Indeed, it had previously been reported that MDM2 
induced the transcriptional activity of p63518. However, in this experiment, the 
samples co-expressing low MDM2 levels express higher levels of TAp63α or 
∆Np63α as compared to the samples not co-transfected with MDM2 C464A, which 

could be the reason for the higher Luciferase activity observed here (Fig 5-23 B). 

It is a striking observation that MDM2 binds to p53 and p73, but not to p63. In order 

to investigate, whether these differences in MDM2 binding would translate into 
effects on mutant p53-p63 or mutant p53-p73 complexes, MDM2 was co-
expressed with mutant p53 and p63 or p73 and complex formation was studied by 

co-immunoprecipitation. 

5.4.3  MDM2 affects mutant p53 binding to p63 and p73. 

While the interaction of MDM2 and mutant p53, and the interaction of MDM2 and 
p63 and p73 were studied previously, the consequence of MDM2 addition to the 
mutant p53-p63 or mutant p53-p73 complexes had not been investigated before.  

TAp63α did not interact strongly with wild-type p53 or the DNA contact mutants p53 
R273H and p53 C277Y, as observed earlier, and addition of MDM2 C464A did not 
alter the p53-p63 interaction (Fig 5-24). By contrast, the unfolded p53 mutants p53 
R175H and p53 I254R interacted strongly with TAp63α and strikingly, addition of 

MDM2 C464A markedly reduced the amount of TAp63α co-precipitated with p53 
(Fig 5-24). Those two mutants also co-immunoprecipitated a considerable amount of 
MDM2 C464A and it is possible that MDM2 competes with TAp63α for its interaction 

with mutant p53. Since MDM2 bound much more strongly to TAp73 than to TAp63, 

the effect of MDM2 C464A co-expression on the mutant p53-p73 interaction was 
also analysed. 
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Figure 5-24: MDM2 C464A disrupts the mutant p53 - TAp63α  complex. 
HCT116 p53-/- cells were transfected with TAp63α, the p53 constructs indicated and 
either empty vector or C464A MDM2. Cells were lysed under native conditions and 
p53 immunoprecipitated with the DO-1 antibody (IP p53). 

 

 
 
 

 
Figure 5-25: MDM2 C464A induces the interact ion of fo lded p53 
with TAp73α .  
HCT116 p53-/- cells were transfected with TAp73α, the p53 constructs 
indicated and either empty vector or C464A MDM2. Cells were lysed under 
native conditions and p53 immunoprecipitated with the DO-1 antibody (IP 
p53). 
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As seen before, wild-type p53 and the contact mutant p53 R273H hardly interacted 
with TAp73α. Remarkably, upon co-expression of MDM2 C464A, TAp73α was co-

immunoprecipitated with p53 in both cases (Fig 5-25). In contrast to the reduction of 
interaction observed when MDM2 C464A was added to the mutant p53-p63 
complex, MDM2 did not have any effect on the interaction of the conformational 
mutants p53 R175H and p53 I254R with TAp73α (Fig 5-25). 

These observations suggest the following model of complex formation: 
Conformational mutants of p53, such as p53 R175H bind strongly to both TAp63α 

and TAp73α (Fig 5-26 A and C). Addition of MDM2 displaces p63 and p73 in the 
complex, possibly due to higher affinity for a similar region in p53 (Fig 5-26 B and D). 
However, since MDM2 binds p73 but not p63, this results in different complexes: In 

the case of TAp63α, MDM2 forms a dimeric complex with mutant p53, releasing 

TAp63α, while in the case of TAp73α, a trimeric complex of mutant p53, MDM2 and 
TAp73α is formed. 

 

 
Figure 5-26: Model of the MDM2/mutantp53/p63/p73 complexes. 
While MDM2 replaces TAp63 in the dimeric complex with mutant p53, TAp73 
forms a trimeric complex with MDM2 and p53. 
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with mutant p53, albeit now via MDM2. However, due to this sandwich-structure 
with MDM2 contacting p73, p53 in native conformation, which does not interact with 

TAp73 directly, but does bind to MDM2, starts to co-immunoprecipitate p73 via 
MDM2 as well.  

∆Np73α potentially interacts with MDM2 in a manner distinct from TAp73α, since 
there is no N-terminal component contributing to the binding. Therefore, the effect of 

MDM2 on the p53-∆Np73 complex formation was also analysed. 

The same pattern as previously observed for TAp73α, could be reproduced with 

∆Np73α. Co-expression of MDM2 C464A induced co-immunoprecipitation of 
∆Np73α with both wild-type p53 and DNA contact mutant p53 R273H, while the 
interaction of conformational mutants p53 R175H and p53 I254R with ∆Np73α was 

not affected (Fig 5-27). 

 

 
Figure 5-27: p53 ∆ I  does not interact with ∆Np73α  v ia MDM2. 
HCT116 p53-/- cells were transfected with TAp73α, the p53 constructs indicated and either 
empty vector or C464A MDM2. Cells were lysed under native conditions and p53 
immunoprecipitated with the 1801 antibody (IP p53). 
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In order to test the proposed model that the induced interaction of wild-type p53 and 
∆Np73 is mediated by trimeric complex formation via MDM2, p53 ∆I, which lacks the 

amino acids critical for interaction with MDM2, was co-expressed with ∆Np73α with 
and without MDM2 C464A. Immunoprecipitation of ∆I p53 did not pull down any TA-
p73α and due to the lack of MDM2-binding domain, no MDM2 was co-
immunoprecipitated either. Co-expression of MDM2 C464A did not induce co-

immunoprecipitation of ∆Np73α with ∆I p53 (Fig 5-27), supporting the model of a 
trimeric p53-MDM2-p73 complex. MDM2 has strikingly contrasting effects on the 

mutant p53-p73 and mutant p53-p63 complexes and it would be important to 
determine whether releasing TAp63 from its complex with mutant p53 by MDM2 also 
has functional consequences for TAp63’s activity as a transcription factor.  

Mutant p53’s interaction with p63 and p73 was shown to repress the ability to 

induce their transcriptional targets in many studies134,575-581. However, big differences 
in mutant p53 binding to p63 and p73, depending on the type of mutation, were 
observed here. The repression of TAp63α was shown to be crucial for stimulating an 
invasive phenotype by stimulating integrin- EGF-receptor recycling and Met- 
signalling586,594. Hence, the correlation between mutant p53-TAp63α binding, 
repression of TAp63α transcriptional activity and translation into an invasive 
phenotype was investigated. 

5.5  The extent of mutant p53 and p63 interaction does 
not reflect the gain of invasive phenotype. 

Since mutant p53 exerts some of its gain of function activity via the repression of p63 
and p73, the interaction between the proteins was investigated in more detail. Only 

conformational mutants p53 R175H and p53 I254R were found to interact strongly 

with both p63 and p73, while DNA contact mutants such as p53 R273H and p53 
C277Y bound rather weakly, comparable to residual levels sometimes observed after 
overexpression of wild-type p53 (Fig 5-4). According to the distribution spectrum of 

somatic mutations in tumours (see Fig 1-24), contact mutants do not seem to pose a 

disadvantage for tumours compared to conformational mutants. Remarkably, the 
mutations of the 273 codon is even more frequent than mutations of the 175 

codon524. A previous report suggested that the degree of mutant p53 interaction with 
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TAp63 or TAp73 translated into the extent of repression of p63 or p73 target 
genes575 and therefore the panel of p53 mutants used in this study were analysed for 

their ability to repress TAp63α -induced K14-Luciferase.  

 

 
Figure 5-28: Al l  p53 mutants reduce TAp63α- induced K14 Luciferase. 
HCT116 p53-/- cells were transfected with K14 Luciferase, TK Renilla and either empty vector or 
TAp63α together with increasing amount (25 and 100ng) of the p53 mutants indicated. (A) 
Activation of the promoters was assayed using the Promega Luciferase system. Data is plotted 
as Relative Luciferase Units (RLU) (Firefly Luciferase readings divided by Renilla Luciferase 
readings) fold change relative to p53-null control. The diagram represents the mean of triplicates 
with error bars as standard error of the mean. (B) Transfection efficacy was determined by 
western blot. 
 

 

 
Expression of TAp63α induced K14 Luciferase activity and co-expression of 
increasing amounts of mutant p53 inhibited Luciferase activation in all cases (Fig 5-
28 A). If the strength of interaction were a predictor for strength of repression, the 
conformational mutants p53 R175H and p53 I254R would have been expected to be 

stronger repressors. However, the DNA contact mutants p53 R273H and R248W 
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repressed TAp63α at least as well, if not even better (Fig 5-28 A). In particular p53 
R248W, which is expressed at lower levels in this experiment (Fig 5-28 B), still 

markedly inhibited the Luciferase activity (Fig 5-28 A). It would be informative to 
repeat this experiment on ∆Np63α and TAp73α induced Luciferase in order to 
investigate whether this mechanism is specific to TAp63α. 

Our lab has previously shown that an important gain of function activity of mutant 

p53 is its stimulation of invasion towards EGF and HGF via the repression of 
TAp63586,594. Therefore, the ability of the conformational and contact mutants to drive 

invasion in an inverted transwell invasion assay towards the hepatocyte growth factor 
(HGF) was investigated.  

 
Figure 5-29: Al l  p53 mutants induce invasion of H1299 cel ls towards HGF. 
(A) Representation of an inverted transwell invasion assay setup. Cells are seeded on the membrane 
of the transwell insert, invading upwards into a matrigel-fibronectin (FN) plug towards HGF.  
(B)+(C) H1299 were retrovirally infected with an empty vector or the p53 mutants (in a pWZL Blast 
vector). Blasticidin-resistant cells were selected and their invasion towards HGF over 72 hours 
measured in inverted transwell invasion assays. (B) Bars represent the mean of invasion beyond 45µm 
in 4 sets of triplicates. Error bars as standard error of the mean. * indicates a p-value <0.02 compared 
to the empty vector expressing cells. (C) Equal expression was confirmed by western blot. 
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In line with the observation that both contact and conformational mutants were able 
to inhibit TAp63-induced Luciferase, all p53 mutants tested significantly induced 

invasion of H1299 cells towards HGF (Fig 5-29). This finding raises the question, how 
the contact mutants inhibit p63 and drive the gain of function. While it is possible that 
a very weak interaction of mutant p53 with p63 and p73 is sufficient to achieve the 
gain of function effect, mechanisms other than protein-protein interaction with p63 

and p73 are likely to also play a part. It could be informative to test the mutant p53 
deletion mutants, which were identified to bind less well to p63 and p73 mutational 

analysis (p53 R175H ∆251-312), in order to investigate whether the reduced binding 
translates into a less effective repression of p63 and p73 and reduced invasion. 
However, in order to determine whether the mutant p53 interaction with p63 and 
p73 is required for mutant p53 to repress p63 and p73 and exert its gain of function, 

a p53 mutant without residual weak binding to p63 and p73 would be required. 
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5.6  Summary and Discussion 

Taken together the results presented here show that, despite their high level of 

homology, p63 and p73 interact differently with mutant p53 and MDM2. Three 

critical amino acids phenylalanine 19, tryptophan 23 and leucine 26 in p53 were 
shown to interact with MDM2 (Fig 5-19)163,563. Since both TAp63α and TAp73α 

contain the same three amino acids, it is surprising that MDM2 only interacts with 
p63 but not with p73 (Fig 5-20). Three further amino acids, leucine 14, aspartate 21 
and leucine 22, in p53 were shown to play a minor role in interacting with MDM2’s 
N-terminus163,563. Aspartate 21, mutation of which to alanine has been thought to 

break the helical structure163, is present in neither p63 nor p73. However, leucine 14 
is conserved only in p63, but not p73 and leucine 22 only in p73, but not in p63 (see 

Fig 5-20). Although all three crucial amino acid residues are present in the N-termini 
of both TAp63 and TAp73, in vitro studies with N-terminal peptides of TAp63 and 
TAp73 suggest that MDM2 has a much lower affinity towards the transactivation 
domain of TAp63 compared to the transactivation domain of TAp73523. Furthermore, 
there clearly are differences between TAp63α and TAp73α from a structural point of 
view: The TAp63α protein was reported to adopt a closed inactive dimeric structure 
with a stretch of amino acids located within the transcriptional domain (amino acids 
604 to 613) contacting the N-terminal transactivation domain450. This intra-molecular 
binding involves the conserved N-terminal three amino acids, which serve as contact 
points for MDM2 in p53784. Therefore, despite their presence in TAp63α, these critical 
amino acids might be shielded in this closed conformation, preventing MDM2 from 
interacting with TAp63α. Since the TAp63β and TAp63γ isoforms do not contain this 

inhibitory C-terminal domain, it would be very interesting to assess their binding to 
MDM2 as well. However, one study showed that TAp63γ could also not interact with 

MDM2521, similar to TAp63α, making it unlikely that this closed folded structure is the 
reason why MDM2 cannot interact with TAp63α. 

Furthermore, MDM2 also binds to ∆Np73α, which lacks the region homologous to 
the MDM2-binding domain in p53. Since an MDM2 mutant lacking the p53-binding 
domain can still interact with both TAp73 and ∆Np73 (Fig 5-20), another interaction 
outside the N-terminal regions of MDM2 and TAp73 must take place. The conserved 
box V in p53 can contact the acidic domain of MDM2 in a secondary 
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interaction171,172,782,783. This region of p53 is highly conserved in p63 and p73 and it is 
possible that MDM2 contacts p73 in a box V homologous domain. 

 

 
Figure 5-30: Al ignment of box V in p53, TAp63 and TAp73. 
Amino acids in red are crucial for the interaction with MDM2, while 
amino acids in bold are thought to have a subtle influence. Accession 
numbers: p53: P04637, TAp63α: AAF43487, TAp73α: O15350. 
 

 

 
Alignment of the box V regions of p53, TAp63 and TAp73 reveals that two amino 
acids that are crucial for interaction with p53 (serine 269 and phenylalanine 270)172 

are conserved in TAp73, while only one is present in TAp63 (Fig 5-30). Two of the 
four amino acids, which have been found to only weakly contribute to the interaction, 
are present in both TAp63 and TAp73, while the other two are not present in either 
protein (Fig 5-30). The lack of the crucial serine residue in TAp63 could serve as an 
explanation for the much weaker affinity of MDM2 to TAp63. It would therefore be 
informative to test the interaction of TAp73 lacking the box V or TAp63-TAp73 
chimeras with swapped box V domains to study the influence of this region on 
MDM2 binding. 

Importantly, the MDM2 inhibitor Nutlin-3a, which binds to MDM2’s N-terminal p53 

binding pocket, was shown to also induce cell cycle arrest and apoptosis in settings 
without wild-type p53. The suggested mechanism of action was that Nutlin-3a 
released TAp73 from MDM2’s inhibition642-645. It could be informative to repeat the 

MDM2-TAp73 co-immunoprecipitation experiments in the presence of Nutlin-3a. 
However, since an MDM2 mutant lacking the N-terminal p53-binding domain ∆58-89 

still bound TAp73 (Fig 5-21), Nutlin-3a would not be expected to disrupt the binding 
of MDM2 and TAp73 under the conditions used in this study. Since Nutlin-3a also 

disrupts the binding of MDM2 to E2F1, which is a transcriptional activator for 
TAp73493, it is also possible that the observed TAp73 activation is at least partially 
due to E2F1-induced TAp73640. 
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Strikingly, the much lower affinity of MDM2 towards TAp63 resulted in a very different 
effect on the mutant p53-p63 and mutant p53-p73 complexes. MDM2 separated the 

complex of conformational p53 mutants and TAp63 but induced formation of a 
trimeric complex of wild-type p53 or DNA contact mutant p53 with TAp73α or 
∆Np73α (Fig 5-26). It would be important to assess the consequence of MDM2 
binding mutant p53 and releasing TAp63α. Presumably, the free TAp63α would be 

transcriptionally active and thereby high levels of MDM2 in the presence of mutant 
p53-p63 complexes could rescue TAp63α activity. This hypothesis could be 

examined further experimentally, for example by determining TAp63α’s 
transcriptional activity in presence of mutant p53 alone and mutant p53 with 
additional MDM2 in a Luciferase assay.  

Understanding the mechanism through which MDM2 regulates p63 and p73 could 

prove very important in respect to tumour therapy, since both TAp63 and TAp73 can 
activate a number of p53’s cell cycle arrest and apoptotic target genes785 and 
contribute to the activation of apoptosis582. Furthermore, loss of p63 activity in 
particular has been associated with an enhanced invasive phenotype469,586,595,596, 
leading to metastasis and poor prognosis for cancer patients771,772. While high 
expression of MDM2 is more common in tumours expressing wild-type p53 (since 
mutant p53 cannot induce the MDM2 target gene), treatment with an MDM2 E3-
inhibitor would lead to accumulation of MDM2 protein, because MDM2 is also a 
Ubiquitin-ligase for itself. The MDM2 protein would then displace TAp63α bound to 

mutant p53 and release TAp63α from its inhibition. Reactivation of TAp63α could be 
beneficial to constrain tumour growth and metastasis. TAp73 would not be 
reactivated by this mechanism, since MDM2 forms a trimeric complex with mutant 

p53 and p73. 

With the long-term therapeutic goal of interrupting the repressing interaction of 
mutant p53 with p63 and p73, it is important to understand how these proteins bind 
each other. TAp73α interacted with mutant p53 via its core domain, while TAp63α’s 

interaction with mutant p53 still occured even without the DNA binding domain (Fig 
5-13). The region identified to contribute to TAp63α’s binding to p53 R175H 
comprises the sterile α motif in the C-terminus (Fig 5-16), which is only entirely 
present in the p63α isoforms (Fig 5-17). Despite its presence in only one of the 
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isoforms, the SAM domain is crucial to TAp63α’s function: Multiple germ-line 
mutations associated with severe developmental effects cluster in this region, for 

example point-mutations at L518, G532, T537 and Q540 were identified in patients 
with AEC syndrome456. It would be of interest to test the other C-terminal splice-
variants and assess their ability to interact with mutant p53. Based on the result that 
∆462-561 TAp63α did not bind p53 R175H, TAp63γ would not be predicted to 

interact with p53 R175H, however one study showed a weak interaction of TAp63γ 
with p53 R175H576. This study identified the DNA binding domain as point of 

interaction, raising the possibility that two points of contact contribute to the mutant 
p53-p63 complex formation. TAp73α also seems to contact mutant p53 via two 
regions: While deletion of the entire DNA binding domain severely impaired the 
interaction, TAp73α deleted of either the N-terminal or the C-terminal half of the DNA 

binding domain strongly interacted with mutant p53 (Fig 5-12). 

Since the level of mutant p53 interaction with p63 and p73 does not appear to 
correlate with their ability to repress p63 and p73 activity, a mutant p53, which was 
completely negative for interaction with p63 and p73 would be a very useful tool to 
determine whether interaction of the proteins is required for the inhibitory function. 
While deletion of the entire DNA binding domain abrogated all interaction (Fig 5-6), 
the remaining protein lacks more than half of all amino acids (216 out of the 393 
amino acids). A shorter deletion or point mutation, resulting in a protein more closely 
resembling the full-length p53 protein, would be suited better to study its functional 

impact on p63 and p73 activity and gain of function, such as invasion.  

The C-terminal region of the DNA binding domain (amino acids 251-312) was 
identified to be required for the interaction of mutant p53 with TAp63α (Fig 5-20) and 

it would be interesting to study whether the observed reduction in binding translates 

into an effect on p53 R175H’s ability to repress TAp63α and drive invasion. The 
recently published aggregation region around isoleucine 254 falls into this region. 
Mutation of isoleucine 254 to arginine was reported to inhibit co-immunoprecipitation 

of p63 and p73 with p53 R175H by preventing their coaggregation577. Surprisingly, in 
my hands, introduction of the I254R mutation failed to stop interaction of p53 R175H 
with TAp63, ∆Np63 or TAp73 (Fig 5-8, 5-9, 5-10). Following discussion with the 
authors of the original paper, the experiments performed here were repeated with 
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exactly the same plasmids, buffers and cells as in the original study and the 
discrepancies are therefore unexplainable. Importantly, mutation of isoleucine 254 in 

the wild-type p53 background completely unfolded the p53 DNA binding domain (Fig 
5-3). Somatic mutation of codon 254 is documented in the p53 database at a rate of 
0.2% compared to 6.1% for the very frequent mutation of codon 175524, suggesting 
that mutation of the I254 codon in the p53 protein occurs in tumours and thus 

possibly confers some oncogenic activity. This would be consistent with the 
classification of the p53 I254R mutant as an unfolded mutant (Fig 5-3), which inhibits 

TAp63α 's transcriptional activity (Fig 5-28) and promotes invasion (Fig 5-29). 

Despite the fact that the level of co-immunoprecipitation of p63 and p73 with mutant 
p53 does not directly correlate with repression of p63 and p73 (Fig 5-28, 5-29), 

targeting the mutant p53-p73 interaction with small molecule inhibitors may be a 

useful strategy to reduce tumour growth. A study with small interfering peptides of 
the p73 DNA binding domain (between amino acids 190 and 210) rendered mutant 
p53 cells more susceptible to Adriamycin and Cisplatin treatment in SK-BR-3 cells 
expressing p53 R175H786. However, no such effect could be observed in MDA-MB-
468 cells which express the p53 R273H mutant786, suggesting that in this cell-line the 
contact mutant p53 exhibited its oncogenic gain of function by a mechanism distinct 
from p73 binding. 

By contrast, the small molecule RETRA has recently been shown to reduce the 
number and size of tumours in a xenograft model of the p53 R273H-expressing cell 

line A431662. Although the p53 R273H DNA contact mutant does not bind strongly to 
p73, treatment of RETRA was shown to reduce the interaction by two to three-fold 
while inducing the p73 levels662. The release of mutant p53-mediated inhibition was 

measured by the activation of p53 target genes and only treatment with p73-specific 

shRNA, but not p63-specific shRNA prevented the induction of p53 target genes662. 
The conclusion drawn from this finding was that RETRA functioned exclusively by 
releasing p73 from its complex with mutant p53. Considering the different interaction 

mechanisms of p63 and p73 with mutant p53, it is conceivable that RETRA targets 
only the mutant p53-p73 interaction. However, it is important to note that the A431 
cell line expresses extremely high amounts of ∆Np63α and hardly any TAp63. Since 
the TA-isoforms of p63 are thought to be the stronger inducers of the classic p53 
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target genes445, it is not surprising that the observed induction of p53 target genes in 
this cell line was predominantly mediated by p73. It would therefore be interesting to 

investigate in a different cell line, whether RETRA also reactivates TAp63. 
Furthermore, it would be important to study whether the observed effect can be 
reproduced or even augmented in cell lines expressing a conformational mutant of 
p53. 



 

 
 

 

 

 

 

 

6 Final Summary and Discussion 
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In brief, the following main conclusions can be drawn from the data presented here: 
MDM2 drives conjugation of the tumour suppressor p53 with SUMO-2/3 at lysine 

386, independently of its ability to promote ubiquitination. SUMO-2/3 modification 
modulates both transcriptional activation and repression by p53. While mutant p53 
can also be SUMOylated, this does not affect its interaction with p63 and p73. 
MDM2 on the other hand alters mutant p53’s interaction with p63 and p73, 

displacing p63 in the complex with mutant p53 and forming a trimeric complex with 
mutant p53 and p73. 

Although MDM2’s activity in ubiquitinating p53 is undoubtedly crucial to control 
p53’s activity, many more ubiquitination-independent roles for MDM2 in controlling 
the p53-family have been uncovered in this study.  

Interestingly, conditions that inhibit ubiquitination, such as deletion of the RING 
domain and the central acidic domain (Figure 3-6), but also expression of the 
ubiquitination-inhibitory proteins p14ARF and L11, did not dampen but rather 
enhanced MDM2’s ability to SUMOylate p53 (Figure 3-7). This suggests that 
ubiquitination and SUMOylation may be two competing activities of MDM2. However, 
the levels of SUMOylation- and ubiquitination activity do not match a perfect inverse 
correlation, since the MDM2 ∆AD protein retained some residual ubiquitination 
activity, but promoted SUMOylation more strongly than the MDM2 RING mutants, 
which had lost all ubiquitination activity (Figure 3-7). Nevertheless, overall conditions 
that block the ubiquitination activity induced MDM2’s SUMOylation activity and the 

particularly efficient SUMOylation induced by the MDM2 ∆AD mutant could be due to 
its strong interaction with the SUMO-E2 Ubc9 (Figure 3-24). 

Although the particular MDM2 deletion mutants used in this study were intended 

purely as molecular tools, MDM2 isoforms deleted for the N-terminal, central and C-

terminal domains also occur in cells. The full-length MDM2 transcript encodes for a 
90 kD protein, but shorter isoforms of around 75 kD and 60 kD were also 
observed787. The 60 kD MDM2 isoform does not arise from alternative splicing or 

translation initiation and was shown by a number of groups to be the product of 
cleavage by caspase-3 related proteases788-791 or caspase-2 in complex with the p53 
target PIDD792. The p60 MDM2 protein lacks the entire RING domain, since cleavage 
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takes place after aspartate 361 within the Caspase cleavage motif DVPD. Therefore, 
this protein does not ubiquitinate p53 and was found to stabilise p53 by preventing 

its interaction with full-length MDM2792. However, MDM2 deletion mutants lacking the 
RING domain were able to promote SUMOylation of p53 efficiently and thus p60 
MDM2 could influence p53’s transcriptional activity by SUMO-2/3 modification. While 
MDM2 cleavage is induced during apoptosis as Caspases become activated, the 

p60 product is also present without apoptosis791 and has been observed in breast793 
and lung tumours794. Notably, the HCT116 colon carcinoma cell line used throughout 

this study expresses multiple MDM2 isoforms, with a band at 60 kD being the most 
prominent band on western blots, suggesting that this cell line might express the 
cleaved MDM2 isoform. The 75 kD MDM2 isoforms arises from alternative translation 
initiates at internal ATG codons 61 or 101795. The resulting proteins lack the N-termini 

and are unable to bind p53 and would neither ubiquitinate nor SUMOylate p53.  

Many more MDM2 splice variants have been reported, some of which were 
exclusively found in tumour cells. Strikingly, the majority of variants retain the N-
terminal p53-binding site, but show large deletions in the central region of the 
protein, including the acidic domain and zinc finger796,797, similar to the strongly 
SUMOylating MDM2 ∆AD deletion mutant, which lacks amino acids 222 to 437. It 
would be very interesting to investigate the SUMOylation potential of these natural 
MDM2 splice variants. While most of them will have lost their ubiquitination activity, 
the isoforms that retain the p53-binding motif will probably be able to promote 

SUMOylation of p53, possibly to higher levels than full-length MDM2. 

SUMO-2/3 modification of p53 modulates its transcriptional activity and can activate, 
repress or alleviate repression depending on the particular target gene analysed (Fig 

4-11). p53 mutants that could not be SUMOylated were more efficient inducers of a 

PG13-Luciferase, but weaker inducers of a Bax-Luciferase construct compared to 
wild-type p53 (Fig 4-9). While the p53-target gene p21 was also induced to higher 
levels on mRNA (Fig 4-11) and protein level (Fig 4-13) by the SUMO consensus 

mutants p53 K386R and p53 E388A, no significant differences of Bax mRNA 
regulation could be observed (Fig 4-11). However, cell cycle profiling of cells by 
FACS suggested that cells expressing p53 E388A and K386R underwent less 
apoptosis, since the sub-G1 population was slightly reduced in these cells (Fig 4-14). 
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Furthermore, cell cycle genes repressed by p53, were repressed to an even greater 
extent by p53, which could not be SUMOylated (Fig 4-11). Overall, the data suggest 

that SUMO-2/3 modification channels p53 activity towards apoptosis rather than G1 
or G2 arrest. 

In light of the attractive therapeutic option to inhibit p53-ubiquitination by MDM2, 
effects of MDM2 inhibitors on SUMOylation need to be taken into consideration. For 

example, the MDM2-inhibitor Nutlin-3a disrupts the binding of MDM2 and p53604 and 
thereby inhibits not only ubiquitination, but also SUMOylation of p53. By contrast, 

E3-ligase inhibitors such as HLI373 only affect ubiquitination of p53641, but do not 
disrupt SUMOylation of p53 (Figure 3-8). It is still unclear, whether p53 SUMOylation 
would pose a general advantage or disadvantage to tumour growth. The data 

presented here suggest that disruption of p53 SUMOylation could induce cell cycle 

arrest at G1 via induction of p21 or G2 via stronger repression of G2/M genes. Despite 
no significant difference of G1 phase population in the FACS analysis of cells 
expressing SUMO-site mutant p53 compared to wild-type p53, it is possible that a 
slight alteration of p21 levels could translate into a cell cycle arrest in vivo, where 
tumour cells are subject to many other stresses simultaneously. Furthermore, since a 
slight reduction of sub-G1 population for cells expressing the SUMO-site mutant p53 
K386R or E388A was observed, disrupting SUMOylation could also be detrimental to 
therapy outcome by lowering the apoptotic potential. The functional consequences 
of SUMO-modification might depend on other posttranslational modifications 

present. It was recently suggested that the SUMO-E3 PIAS4 induces SUMO-
modification of p53 and Tip60 simultaneously, thereby activating Tip60, which in turn 
acetylates p53 at lysine 120. This particular combination of posttranslational 

modifications, K120 acetylation and K386 SUMOylation served as a binary death 

signal, inducing cytoplasmic accumulation of p53 and triggering autophagy420. It 
could be very informative to study the role of p53 SUMOylation in tumourigenesis 
and cancer treatment in vivo and it would be important to consider the lack of SUMO 

consensus in the mouse p53 protein when choosing an animal model. Even a knock-
in mouse with human p53 with the K386R mutation would potentially not recapitulate 
the situation in human cells, since mouse cells obviously do not require their p53 
protein to be SUMOylated.  
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Interestingly, the SUMO pathway is often deregulated in cancer and many tumours 
express high levels of Ubc9. Consequently, p53 might also be highly SUMOylated in 

tumours with overexpression of the SUMO conjugating enzyme. Overall, high levels 
of SUMOylation confer an advantage to tumours. Indeed, in the majority of studies 
high expression of the SUMO-E2 Ubc9 was correlated with poor prognosis374,798-800. 
Ubc9 promotes cell growth and prevents apoptosis in breast cancer cells, possibly 

by regulating Bcl-2 since MCF7 cells expressing a dominant negative Ubc9 showed 
reduced mRNA levels of the anti-apoptotic Bcl-2 mRNA374. Furthermore, Ubc9 

overexpression confers chemoresistance in breast cancer376. Although targeting the 
SUMO-conjugating function of Ubc9 has been suggested as a promising strategy for 
cancer therapy801, some functions of the E2 conjugating enzyme seem to be 
independent of SUMOylation such as its promotion of breast cancer cell invasion, 

which is also induced by the dominant negative Ubc9 C93A, possibly via down-
regulating miR-224802.  

Other members of the SUMO-pathway are also involved in tumourigenesis: It has 
recently been reported that Myc-driven tumourigenesis depends on the presence of 
SUMO-E1 SAE1/2803 and Myc itself has been shown to be a transcriptional activator 
of SAE1804. Contrasting to the situation in breast cancer, melanoma, multiple 
myeloma and colon cancer, where high levels of SUMOylation were observed, 
deSUMOylation (indicated by high SENP1 expression) correlates with tumour 
aggressiveness and recurrence in prostate cancer805. Indeed, mouse models showed 

that SENP1 overexpression in the prostate induced development of neoplasias806. In 
cervical cancer the human papillomavirus E6 protein was reported to target the 
SUMO-E2 Ubc9 for degradation, leading to a global drop in SUMO levels as part of 

the malignant transformation807. These data raise the possibility that the status of p53 

SUMOylation could also be different depending on tumour type and it would be 
informative to study SUMO-2/3 modification of p53 on tissue microarray. This would 
be greatly aided by the development of a SUMOylated p53-specific antibody raised 

against a p53-SUMO branched peptide, similarly to an antibody successfully raised 
against ubiquitinated Histone H2B808. 

Despite high levels of SUMOylation conferring resistance to cytotoxic therapy, 
SUMOylation of certain proteins was shown to be crucial for the response of some 
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drugs. For example, treatment of acute promyeloytic leukaemia patients with arsenic 
relies on the PML-RARα fusion protein to become SUMOylated and form nuclear 

bodies in order to then recruit the SUMO-targeted Ubiquitin ligase RNF4, which 
targets the PML protein for degradation366,675. SUMO-1 modification of 
Topoisomerase I was found to be key to the success of Irinotecan treatment in non-
small lung cancer patients, where therapy response was associated with SUMO-1 

and Ubc9 expression809. It would be very interesting to investigate whether the 
SUMO status influenced therapy response, particularly since SUMO-2/3 modified 

p53 seemed to activate apoptosis more readily than cell cycle arrest. 

The C-terminus of mutant p53, which contains the C-terminal SUMO site, had been 
shown to be important for invasion via suppression of p63586, hence SUMOylation of 

mutant p53 was also studied. While mutant p53 was readily SUMOylated 

independent of conformation (Fig 5-1), deletion of the area comprising the SUMO site 
did not impair mutant p53 interaction with TAp63α and mutation of the SUMO site in 
p53 R273H also did not affect its ability to promote invasion (experiment performed 
by P. Muller, data not shown). Thus, SUMOylation does not obviously influence 
mutant p53 gain of function via p63. Strikingly, SUMO-2/3 modified TAp63α, 
TAp73α and ∆Np73α could be observed in the presence of MDM2 ∆AD (Fig 5-18). 
While TAp73α, ∆Np73α and TAp63α had not previously been shown to be modified 
with SUMO-2/3, a recent study identified p14ARF as inducer of SUMO-2-modification 
of ∆Np63α, resulting in degradation of ∆Np63α780. SUMO-1 modification of TAp63α 

and TAp73α similarly destabilised these proteins450,780,781, suggesting that 
SUMOylation of p63 and p73 could lead to the recruitment of SUMO-targeted 
Ubiquitin ligases. Further experiments could be conducted to assess whether the 

SUMO-2/3 modification of p63 and p73 is indeed induced by MDM2 and whether 

protein interaction with MDM2 is required for this activity. Importantly, a larger 
fraction of TAp73α and ∆Np73α was SUMO-2/3 modified compared to TAp63α 
(although it was expressed to slightly lower levels) and this could be due to MDM2 

interacting much better with p73 than p63 (Fig 5-19). 

Since MDM2 interacts differently with p73 and p63, MDM2 also influences the 
mutant p53-p63 differently than the mutant p53-p73 complex. While MDM2 induced 
interaction of wild-type p53 and DNA contact mutant p53 with TAp73α (Fig 5-25), 
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possibly by formation of a trimeric complex, it disrupted the interaction of 
conformational p53 with TAp63α (Fig 5-24). This observation is intriguing, since 

MDM2 is thought to bind the N-terminus of p53, while TAp63 interacts with the core 
domain of mutant p53. However, our lab recently published evidence that MDM2 
interacts differently with mutant p53 than with wild-type p53, since p53 R175H 
lacking the MDM2-binding region (p53 R175H ∆I) can still bind MDM2, probably via 

its RING domain544. It is unclear which region in mutant p53 serves as point of 
contact for the RING domain and it is possible that a region of the mutant p53 core 

domain that is required for binding to p63, binds to MDM2 with higher affinity, 
leading to the displacement of p63 in the presence of MDM2. It would be important 
to follow up these findings and investigate whether the release of TAp63α from the 
complex coincides with a release of functional inhibition by mutant p53, which could 

have implications on the treatment of tumours expressing mutant p53. 

Similar to the differences of p63 and p73 in binding to MDM2, the interactions of the 
p53-family transcription factors with mutant p53 were also not homologous. While 
TAp73α bound mutant p53 via at least two regions in the DNA binding domain (Fig 
5-12), the core domains of TAp63α and ∆Np63α were dispensable for mutant p53 
binding (Fig 5-13). Instead, deletion of a C-terminal region of TAp63α (∆462-561), 
which contains the SAM domain, severely impaired the interaction with mutant p53 
(Fig 5-14). Many protein interactions take place in this region and an extended PPxY 
motif located between amino acids 501 and 510 in the SAM domain was recently 

shown to be required for recognition of p63α by its E3-ligase Itch810. This motif is 
conserved in p73, which is also recognised by Itch484, possibly via the same region. 
The SAM domains of p63 and p73 are fairly similar with 53% identical amino acids 

and it is intriguing that only p63’s SAM domain was identified to be important for 

interaction with mutant p53 (Figure 5-14). However, the influence of deletion of the 
SAM domain in p73 was not assessed, because a TAp73α mutant containing a stop 
codon at codon 500 did not express. Since TAp73α ∆131-307, which lacks the DNA 

binding domain, showed some residual interaction with mutant p53, it is possible 
that another interaction takes place at the TAp73α SAM domain, similar to TAp63α. 
However, in contrast to p73, deletion of the DNA binding domain in p63 did not 
weaken the interaction with mutant p53, clearly demonstrating that the p63 core 
domain is not required for mutant p53-p63 complex formation.  
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Strikingly, while both p63α and p73α contain a C-terminal transactivation inhibitory 
domain, they seem to function by different mechanisms. Only the p63 inhibitory 

domain folds back to bind and shield the N-terminal transactivation domain449, while 
the p73α inhibitory domain does not contact its N-terminus481. It is possible that due 
to this closed conformation of TAp63α, the DNA-binding domain is not accessible to 
bind to mutant p53 and the interaction therefore has to take part via a different 

region, exposed in the structure. However, since ∆Np63α, which cannot form this 
closed conformation, also does not require the DNA-binding domain for binding 

mutant p53, the unusual conformation of TAp63α is unlikely to be the reason that the 
core domain of p63 does not to bind mutant p53. Strikingly, p63 and p73 contain 
86% identical amino acids in their DNA binding domain and no areas of clear 
differences between the two sequences could be identified in the sequence 

alignment. The DNA binding domains of p63 and p73 are also highly homologous to 
p53, with roughly 60% identical amino acids, but both p63 and p73 contain a 
divergent L2 loop, the result of an insertion of two extra amino acids, lacking in 
p53811. As a consequence of this slightly different structural arrangement, p63 and 
p73 are more thermodynamically stable than p53812 and are resistant to inhibition by 
SV40 large T811. While p63 and p73 retain their ability to bind ASPP and iASPP, one 
report suggests that the iASPP and ASPP2 C-terminal domains, which bind to the 
p63 and p73 core domains, bind three-fold more strongly to p63 over p73813. Thus, 
preferences of proteins to either interact with the p63 or p73 DNA binding domain 

clearly exist and it is conceivable that mutant p53 to the p73 core domain with higher 
affinity than to the p63 core domain. 

Regardless of the exact interaction mechanism, mutant p53 was reported by many 

groups to inhibit the transcriptional activity of both p63 and p73134,575,576,579. 

Surprisingly, the DNA contact p53 mutants, which only bound weakly to both p63 
and p73, were able to suppress TAp63α -induced K14 Luciferase at least as well as 
the strongly interacting conformational p53 mutants (Fig 5-28). It would be interesting 

to repeat this experiment on TAp73-induced Luciferase in order to determine 
whether the same effect can be observed with the inhibition of p73-activated target 
genes, since one previous report demonstrated that p53 R273H did not inhibit 
TAp73-mediated activation of a Luciferase-reporter134.  
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The finding that strength of interaction does not correlate with the extent of 
repression of p63 raises questions about the exact mechanism transcriptional 

repression by mutant p53. Clearly, DNA contact mutants are among the most 
frequently observed p53 mutations and many studies have shown evidence for gain 
of oncogenic function by mutants such as p53 R273H. It is possible that the weak 
interaction observed with the DNA contact mutants and p63 is sufficient to disrupt 

p63’s transcriptional function. Mutations of many DNA-contacting residues such as 
R248 or R280 can indeed marginally impair the folding of the DNA binding domain774. 

Strikingly, even the DNA binding domain of the wild-type p53 protein is 
thermodynamically unstable and the wild-type protein can adopt an unfolded 
conformation, for example under hypoxic conditions814. While unfolded wild-type p53 
has been demonstrated to bind and inhibit p73 in vitro581, in endogenous settings, 

wild-type p53 levels are probably too low to impact on p63 and p73 activity under 
unstressed conditions. By contrast, mutant p53 often accumulates to high levels in 
neoplastic lesions and thus even if only a small percentage of the contact mutants 
were to be unfolded, this fraction could be sufficient to bind and repress p63 and 
p73. It is possible that the interaction with the DNA stabilises the conformation of the 
wild-type p53 DNA binding domain, but since the DNA contact mutants have lost 
this ability, even the DNA binding domain of p53 R273H, which was not found to be 
thermodynamically destabilised in vitro653, could be less stable in a cellular context.  
Furthermore, the ratio of unfolded to folded p53 protein is affected by many factors: 

The conformation of the DNA binding domain can be stabilised by posttranslational 
modifications and binding partners such as heat shock proteins815,816. Other proteins 
destabilise p53 conformation and binding to MDM2 was reported to induce unfolding 

of p53817,818. 

Three recent reports suggest that additional proteins might be involved in stabilising 
the mutant p53-p63 complex: Upon TGFβ signalling Smads were shown to act as a 
scaffold for mutant p53-p63 interaction595. Furthermore, the scaffold protein 

Topoisomerase βII binding protein (TopBP1) was shown to facilitate complex 
formation of mutant p53 with p63 and p73 and in the absence of TopBP1, p53 
R273C was unable to form a complex with p63819. Similarly, the Prolyl-isomerase 
Pin1 alters the conformation of proline residues in p53 and thereby promotes binding 
of p53 R280 and p63668. It might be informative to test, whether more p63 would be 
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co-immunoprecipitated with p53 R273H in the presence of Pin1, TopBP1 or Smad2 
under the conditions used in this study and whether strengthening of the interaction 

would translate into stronger p63 repression.  

Mutant p53 expression is often associated with more aggressive and invasive 
tumours. The p53 mutants used throughout this study were found to induce invasion 
in an inverted transwell invasion assay and this effect was independent of the class of 

p53 mutation (Fig 5-29). A number of different mechanisms were reported to 
contribute to mutant p53’s gain of oncogenic function, some of them limited to 

certain types of p53 mutation: Both p53 R175H and p53 R273H were shown to 
enhance Rab-coupling protein-mediated recycling of the EGF-receptor and integrin 
α5β1, inducing invasion towards EGF and this effect was mediated by repression of 

p63586. Similarly, different kinds of mutant p53 (p53 R175H, p53 R273H, p53 R280K) 

induced invasion upon TGFβ signalling via repression of p63, mediated by Smads595. 
Recently, p53 R248Q and p53 R282W were shown to alleviate repression of p63’s 
induction of miR-155 expression, driving invasion and metastasis of breast 
tumours820. p53 R175H also prevented induction of miR-205 by p63 in prostate 
cancer596. miR-155 and miR-205 both target ZEB-1, which regulates epithelial-to-
mesenchymal transition. Furthermore, p53 R175H and p53 R273H were shown to 
induce scattering and invasion in response to HGF-signalling, mediated by Met 
recycling594. While this effect was p63-dependent in cell lines expressing TAp63, it 
was p63-independent in other cell lines594 and it would be interesting to investigate, 

whether the mechanism could be instead mediated by p73 repression. Repression of 
p63-target genes had been proposed to be a consequence of mutant p53 
preventing p63 to bind to the promoters of its target genes819, nonetheless mutant 

p53 was recently shown to recruit p63 to promoters of genes usually not regulated 

by p63821. Strikingly, an expression microarray comparing the transcriptional changes 
induced by 5 different hotspot mutants including p53 R175H, p53 R273H and p53 
R248W demonstrated that all mutants, no matter whether conformational or contact, 

induced a very similar change in target mRNA levels, regulating the same 59 
genes822. Induction of these genes was mediated by a mutant p53-p63 complex with 
p63 binding to promoters, which are not induced by p63 alone822. These studies 
suggest that the low binding of p53 R273H is sufficient to recruit p63 to new 
promoters. 
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A number of p53 mutants, including p53 R273H were recently shown to disrupt the 
structured tissue organisation of breast epithelial cells by upregulating the 

mevalonate pathway597 and to induce CXCL5 and CXCL8, leading to migration823. 
Induction of the mevalonate pathway required the SREBP transcription factors597 and 
expression of the chemokines was dependent on NF-κB2823. Analysis of the role of 
p63 in these pathways would be very informative. Additional mechanisms, which 

were shown to be independent of p63, also contribute to mutant p53-induced 
invasion: Mutant p53 was reported to induce epithelial to mesenchymal transition by 

inhibiting transcription of miR-130b, which is a negative regulator of ZEB-1824. 
Strikingly, although p63 had been shown to activate miR-130b770, the authors found 
that the repression of miR-130b by mutant p53 was independent of p63 and both 
p53 R175H and p53 R273H bound directly to the miR-130b promoter824. 

Furthermore, mutant p53 could induce the expression of proteins such as Twist1, 
promoting epithelial-mesenchymal transformation, and this was not mediated by 
p63825. While p53 mutants can retain some DNA-binding activity, their sequence-
specific selectivity is largely lost and even the residual binding of p53 R273H was 
shown to be too weak to activate p53 target genes826. Instead of binding in a 
sequence-dependent manner, mutant p53 was reported to bind DNA depending on 
structural elements, showing a preference for G-rich regions, which form G-
quadruplex structures565 and AT-rich regions, which lead to regional unwinding of 
DNA564. Mutant p53 also interacts with other transcription factors (such as p63 as 

described above), which take over the role of contacting the DNA. Interestingly, a 
recent study found that different mutant p53 proteins induced a cancer-related gene 
signature by distinct mechanisms: While conformational mutants such as p53 R175H 

were shown to induce H-Ras signalling, DNA contact mutants such as R273H and 

R248Q did not affect Ras signalling, but cooperated with NF-κB instead827. Some of 
the gain of function, however is mediated completely independent of transcription 
factors and instead involves complex formation with other proteins: The p53 R273H 

mutant, but not p53 R280K, was shown to interact with Nardisylin and thereby 
induce invasion towards hepatocyte growth factor, independent of p63598, 
suggesting that particular p53 mutants can utilise separate mechanisms - potentially 

completely independent of transcriptional regulation - to complement their gain of 
function. 
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While many different mechanisms contribute to mutant p53’s ability to promote 
invasion and metastasis, a large fraction of studies found that the invasive phenotype 

was mediated by p63. On the one hand, weak mutant p53-p63 binding seems to be 
sufficient for mutant p53 to repress p63-induced target genes and also to recruit p63 
to new target genes, on the other hand, reduction of mutant p53-p63 complex 
formation was recently shown to revert invasive behaviour induced by mutant p53: 

The Ankyrin repeat domain protein 11 (ANKRD11) was found to restore DNA-binding 
of p53 R273H828 and furthermore to refold conformational p53 mutants, leading to 

50% reduction of p53 R175H complex formation with p63 and p73, which was 
sufficient to revert the mesenchymal phenotype induced by mutant p53829.  

Taken together, mutant p53 can drive an aggressive and metastatic phenotype by  

different mechanisms, many of which involve repression of the p53-family 

transcription factor p63. p73 is less studied in this context, however, the finding that 
similarly to p53+/-;p63+/- mice, half of all p53+/-;p73+/- mice developed metastatic 
tumours468, while hardly any of the p53+/- mice did, suggests an important role for 
p73 in counteracting invasion and metastasis as well. Importantly, p73 has been 
linked to repressing anchorage independent growth by inducing anoikis760, which 
could pose an effective barrier to the development of metastasis. 

The findings presented here suggest that mutant p53 interacts differently with p63 
and p73. Clearly, understanding the inhibitory interaction with p63 and p73 better, 
will aid the development of therapies targeting mutant p53’s gain of function via p63 

and p73. While conformation of p53 mutants interacted much more strongly, DNA 
contact mutants were still able to repress p63 and p73. Our data together with 
results from studies conducted by other groups suggest that the weak interaction of 

the DNA contact mutants is sufficient to repress p63 and promote an invasive 

phenotype. Importantly, it was identified here that MDM2 releases p63 from its 
interaction with mutant p53, which could serve as a mechanism to reactivate p63. 
Exemplified by the small molecule RETRA, which disrupts the mutant p53-p73 

complex and is thereby able to suppress tumour growth662, targeting mutant p53’s 
interaction with p63 and p73 seems to be a promising therapy strategy for treating 
the 50% of all tumours that contain mutant p53. 
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