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Abstract

Lumbar back pain has considerable socio-economical impacts, motivating
a recently increasing interest from the research community. Yet, mecha-
nisms triggering pain are not fully understood and this considerably hin-
ders the development of efficient treatments and therapies. The objective
of this thesis is to participate to the general understanding of the biome-
chanics of the spine through the development of computational strategies
for the intervertebral disc.

The intervertebral disc is a complex structure mainly comprised of the
nucleus pulposus and the annulus fibrosus. The nucleus pulposus is the
gelatinous core of the disc, which consists of a charged and hydrated
extra-cellular matrix and an ionised interstitial fluid. It is enclosed in the
annulus fibrosus which is formed by concentric layers of aligned collagen
fibre sheets, oriented in an alternating fashion.

A biphasic swelling model has been derived using mixture theory for soft,
hydrated and charged tissues in order to capture the salient character-
istics of the disc’s behaviour. The model fully couples the solid matrix
under finite deformations with the ionised interstitial fluid. The nucleus
is assumed to behave isotropically while the effects of the collagen fibres
in the annulus fibrosus are accounted for with a transversely isotropic
model. The fixed negative charges of the proteoglycans, which induce an
osmotic pressure responsible for the swelling capabilities of the disc, are
constitutively modelled under the simplifying Lanir hypothesis.

A Newton-Raphson solver was specifically built to solve the resulting non-
linear system of equations, together with a verification procedure to en-
sure successful implementation of the code. This was first reduced to
the one dimensional case in order to demonstrate the appropriateness of
the biphasic swelling model. The three dimensional model exhibited nu-
merical instabilities, manifesting in the form of non-physical oscillations in
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the pressure field near boundaries, when loads and free-draining boundary
conditions are simultaneously applied. As an alternative to considerable
mesh refinement, these spurious instabilities have been addressed using
a Galerkin Least-Square formulation, which has been extended for finite
deformations. The performance and limitations of the GLS framework,
which drastically reduces the pressure discrepancies and prevents the os-
cillations from propagating through the continuum, are demonstrated on
numerical examples. Finally, the current state of the model’s development
is assessed, and recommendations for further improvements are proposed.
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Chapter I

Introduction

The primary objective of this thesis is the formulation of a computational framework
for the modelling of the intervertebral disc. It is written in a modular fashion, which
in part reflects the chronology of the enterprise, with the intention of producing
chapters that can, to some extent, be read independently from one another. To this
end, each of them is equipped with clear motivations and objectives, as well as a
literature review. The thesis is organised as follows:

- Chapter II describes, from an engineering perspective, the biomechanics of the
intervertebral disc. It has the twofold objective of characterising the structure
and the physiological behaviour of the disc to facilitate the modelling process,
and to identify areas where computational modelling can make an impact, in-
trinsically motivating the purpose of the thesis.

- Chapter III focusses on the establishment of a modelling strategy for the
intervertebral disc. Existing soft tissue models are reviewed and the general
philosophy of the current model is defined. The theoretical framework of the
biphasic swelling model is derived.

- Chapter IV proposes a framework for the numerical treatment of the biphasic
swelling model. This includes the linearisation of the weak form of the problem
for the implementation of a Newton-Raphson solver. A specific termination
criterion for the iterative loop is also proposed.

- Chapter V reduces the model to the one dimensional case. This step was
crucial to evaluate the appropriateness of the biphasic swelling model when
applied to a relatively simple problem, but also to facilitate familiarity with the
mechanics of porous and charged tissues. The 1D model is validated against
experimental confined compression tests.
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Chapter I: Introduction

- Chapter VI is concerned with the implementation of the three dimensional
problem. This involves the selection of constitutive models for each phase and
the description of the computational implementation, in particular the design
of a methodology to verify this implementation.

- Chapter VII reveals the existence of numerical instabilities manifesting in the
pressure field at the early stage of simulations where free-flow and loads are
simultaneously applied at the boundary. A Galerkin least-square stabilisation
technique is proposed to address this shortcoming and tested against confined
and unconfined tests.

- Chapter VIII appraises the current state of the development of the current
framework. A number of the model’s features are presented and compared to
literature data. Areas requiring further attention are also highlighted.

2



Chapter II

The biomechanics of the
intervertebral disc

The objective of this chapter is to establish an understanding of the bio-
logical composition of the intervertebral disc, its behaviour and main load
transfer mechanisms. This will allow us to define a modeling strategy in
the following chapters. To this end, a general description of the interver-
tebral disc from an engineering perspective is proposed. A short review
of the most common disc disruptions, pathologies and potential sources
of back pain is provided, introducing areas where the development of nu-
merical models could prove useful.

II.1 Anatomy, biology and physiology

The human spine is comprised of 24 vertebrae and an additional 5 that are fused
to form the sacrum. Flexible spacers known as intervertebral discs (which will in-
terchangeably be referred to as the IVD or simply the disc) are found interspersed
between vertebrae: 6 are located in the cervical region, 12 in the thoracic region and
5 in the lumbar region (often called the lower back). As Fig. II.1a suggests, the size
of the discs (thickness and surface area) is greater in the lower back: approximately
10mm in height, 65mm laterally and 45mm along the anterior-posterior axis; they
also account for approximately 25% of the spine’s height. Intervertebral discs are
essentially made up of three parts (see Fig. II.1b-II.1c): the nucleus pulposus (NP or
simply the nucleus) is located at the centre of the IVD, it is radially encapsulated by
the multi-lamellar annulus fibrosus (AF or annulus), and axially sandwiched between
the cartilaginous endplates (sometimes referred to as CEP or endplates).

3



Chapter II: The biomechanics of the intervertebral disc

(a)

Intervertebral
disc

Vertebrae

Cervical
curve

Thoracic
curve

Lumbar
curve

Sacral
curve
Coccyx

(b)

(c)

Cartilaginous endplate

Nucleus
pulposus

Lamellae of
annulus fibrosus

Figure II.1: (a) Spine curvatures, A and P denote the anterior and posterior sides
(adapted from www.martianpictures.com) (b) A motion segment: section through a
disc and its superior vertebra. The IVD, comprised of the nucleus pulposus (NP), the
annulus fibrosus (AF) and the cartilaginous endplates (CEP) is located between the
vertebral bodies (VB). The spinal chord (SC) and a nerve route (NR) are also visible
(Urban and Roberts, 2003) (c) Structure of the IVD (adapted from Raj (2008))

The nucleus pulposus is the gelatinous core of the IVD. It is mainly comprised
of an interstitial fluid, accounting for 75-90% of its wet weight, and a solid matrix
composed of flexible type II collagen fibres and elastin fibrils. These are randomly
and radially oriented (Urban and Roberts, 2003) respectively. This extra-cellular
matrix, which represents about 15% of the wet weight, embeds the hydrophilic pro-
teoglycan molecules (approximately 5% of the wet weight). The high proteoglycan
content is dominated by aggrecan molecules, containing glycoaminoglycans (GAG’s),
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Chapter II: The biomechanics of the intervertebral disc

which comprise a high density of negative charges. As demonstrated in the following
section, concentration gradients of GAG’s give rise to an osmotic pressure that is
responsible for the highly hydrated nature of the IVD. It is important, from a mod-
elling perspective, to mention that proteoglycans are fairly large molecules that are
trapped in the solid matrix, and as such have been found not to leach out of the
tissue upon loading (Heneghan and Riches, 2008a).

The annulus fibrosus is composed of 15 to 25 concentric layers of collagen sheets
called lamellae, frequently compared in the literature to the structure of an onion or a
tyre. In contrast to the nucleus pulposus, the annulus is slightly less hydrated (60-75%
of the total weight), contains a similar amount of proteoglycans and considerably more
collagen fibres (about 15% wet weight). Conversely, the distribution of the collagen
fibres in the annulus is highly organised (see Fig. II.1c and II.4c): collagen fibres run
parallel within the plane of the lamella and they are inclined at an angle between
40◦-70◦ (Holzapfel et al., 2005) from the spinal axis. The orientation of the fibres
alternates to the left and the right of the spinal axis between adjacent lamellae, while
the magnitude of the incline varies with the location within the annulus (anterior
versus posterior, inner versus outer annulus). The photographs on Fig. II.2 illustrate
the absence of a clear demarcation between the nucleus and the annulus. The region
where AF and NP seem to blend is called the transition zone (TZ) and can span up
to 30mm (Shankar et al., 2009).

The stiffness of the AF gradually increases from the inner lamellae (composed of
the flexible type II collagen) that are anchored to the CEP, to the fibre-dense outer
lamellae (mainly made up of the stiff type I collagen, similar to ligaments) that are
directly attached to the vertebral body. The outer lamellae of the annulus fibrosus
also comprise ramifications of the spinal chord, which can be responsible for pain
perception (see following section for discussion on pain). Additionally, radial inter-

(a) Mid-sagittal section (Vernon-
Roberts et al., 1997)

(b) Transverse section through an intervertebral disc
and its adjacent vertebrae (Adams et al., 2006)

Figure II.2: Sections through healthy intervertebral discs revealing the nucleus pul-
posus and the annulus fibrosus
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Chapter II: The biomechanics of the intervertebral disc

lamellar connection is secured by a complex and irregular trans-lamellar bridging of
elastin fibres (Pezowicz et al. (2006); Schollum et al. (2008); Veres et al. (2008)). It is
also worth noting that collagen fibres have a crimped structure (e.g. Baer et al. (1991)
and Pezowicz (2010)): this offers folding capabilities to the fibres under compression,
but also explains the flat toe-region reported in tensile stretching of the annulus
fibrosus (e.g. Nerurkar et al. (2008)).

The nucleus and annulus are axially enclosed by cartilaginous endplates (CEP)
operating as an approximately 0.8mm-thick interface to the adjacent vertebral bod-
ies. The endplates, which are composed of hyaline cartilage, nearly span across the
entire interface between the discs and the vertebral bodies, only leaving a narrow rim
uncovered (the epiphyseal ring). In this region, sometimes referred to as the ligamen-
tous portion of the annulus, the collagen fibres of the AF are directly anchored to
the bone. The CEP are semi-permeable membranes that play a very important role
in the nutrition of the IVD. Intervertebral discs are the largest avascular components
of the human body, and as such have a limited supply of metabolites. Endplates
enable nutrient-rich fluid to flow through the marrow contact channels of the ver-
tebral bodies. As it will be emphasised in the next section, fluid flow is the result
of two mechanisms that are independently induced, which is likely a physiological
consequence of their serving different purposes in the nutritional process of the IVD
(e.g. Kraemer et al. (1985), Ferguson et al. (2004) and Urban et al. (2004)):

• the convective fluid-flow results from deformation of the extracellular matrix
upon loading and unloading: this is the main source of transport of large
metabolites (e.g. enzymes and hormones)

• the diffusive fluid-flow process is initiated by the osmotic pressure: this is the
main source of transport of small metabolites (e.g. oxygen and glucose)

Endplates are the dominant metabolite supply channel of the IVD ((Ayotte et al.,
1999), Riches and McNally (2005)). However, fluid flow through the outer annulus
fibrosus offers an additional, but limited, nutritional pathway due the presence of
minor blood supply. As IVDs have a rather low cell content compared to other
regions of the body, a sustained transport of metabolites is essential for the synthesis
of collagen and proteoglycans.

Although IVDs can vary considerably in size and shape in order to match the size
of the vertebrae to which they are attached, as well as the spine’s curvature, their
composition is uniform throughout the spine (Shankar et al., 2009).

6



Chapter II: The biomechanics of the intervertebral disc

II.2 The mechanical response of the intervertebral
disc

Intervertebral discs play remarkable roles in the spine. Due to their malleable struc-
ture and the fact that they are interspersed with vertebrae, they act as flexible joints
to the otherwise rigid vertebral column. They also participate in the stable transfer
to the lower extremities of compressive, bending and twisting loads arising from up-
per body weight and muscle activity. Additionally, they act as shock absorbers for
the upper body.

(a) Illustration of the load sharing
between anterior and posterior spine
(adapted from Strandring (2008))

(b) The stress distribution in the transverse
plane of an healthy IVD subjected to 1kN com-
pression shows a near to hydrostatic state across
the whole disc (Adams et al. (1996b))

Figure II.3: The load transfer through the spine - Posteriorly (P) and anteriorly (A)

Due the complex network of muscles and ligaments holding the discs and vertebrae
together, the spine experiences compressive loads in significant excess to the weight of
the upper body. It was for example estimated in Schultz et al. (1982), based on exper-
iments performed on patients with a mean weight of 63kg (i.e. equivalent to 617N),
that the third lumbar vertebra is subjected to 440N at relaxed standing posture.
This number would rise by 20N simply by extending the arms forward. Additionally,
the compressive loads increased to 650N when the subject held an 8kg weight close
to the chest, and to 1170N when this same weight was lifted forward. Even if, as

7



Chapter II: The biomechanics of the intervertebral disc

illustrated on Fig. II.3a, the neural arch offloads a fraction of the compressive forces
from the IVD (estimated about 5-10% in Haher et al. (1994) and Pollintine et al.
(2004)), intervertebral discs are subjected to high stress levels. Common sense tells
us that obtaining in-vivo estimations of the intra-discal stress state is a difficult task.
However, in at least three studies (Nachemson and Morris, 1964; Wilke et al., 1999,
2001), healthy volunteers accepted to have a needle transducer the size of a match im-
planted in a lumbar IVD, so that stress levels within the disc could be recorded while
they performed various activities. In Schultz et al. (1982), the intra-discal pressure
was estimated indirectly by converting measures of electrical activity in neighbouring
muscles into IVD stress. While data reported in these publications are contrasting
(e.g. ranging from 0.1MPa to 0.5MPa in relaxed erect posture), it is generally admit-
ted that the pressure within the IVD under daily activities ranges between 0.1MPa
and 2.5MPa. Similar magnitudes were measured on in-vitro experiments (e.g. Adams
et al. (1994)).

The load transfer through the IVD is only made possible by a tight cooperation
between the nucleus and the annulus, resulting in optimal utilisation of the supe-
rior tensile properties of the collagen fibres within the annulus. The mechanism is
schematically explained on Fig. II.4. When the disc is subjected to axial compres-
sion, the highly hydrated nucleus pulposus experiences a near to hydrostatic state
(see even pressure distribution across the disc on Fig. II.3b) and expands radially,
forcing the annulus fibrosus to bulge. This outward pressure, which is resisted by a
strong superior and inferior anchoring of the fibres to the VB and the CEP, prevents
the annulus from buckling (see left AF on Fig. II.4b). This results in a complex biax-
ial tensile state within the lamellae, essentially stretching the fibres in tension (Baer
et al., 1991). Under bending, a similar mechanism takes place on the compressive

Figure II.4: Idealised disc response to bending: transverse section through the un-
loaded (a) and loaded (b) IVD, and mid-sagittal section (c)

8



Chapter II: The biomechanics of the intervertebral disc

side of the disc, while the fibres are directly loaded in tension on the tensile side (see
right AF on Fig. II.4b). Torsion is resisted by fibres oriented in the direction of the
rotation.

The mechanism described above illustrates the disc’s response to fast loading (e.g.
timescale to lift a weight, lacing a shoe . . . ). However, intervertebral discs exhibit
creep under the prolonged compressive loading imposed over the course of a day,
resulting from a slow fluid outflow through the endplates and the annulus; this is
called the diurnal cycle. As the fluid is squeezed out, the hydrostatic pressure slowly
reduces and the applied loads are gradually transfered to the solid matrix (Martinez
et al., 1997), while the osmotic pressure increases. The daily amount of fluid expelled
from a disc can represent 10-20% of its volume (McMillan et al., 1996), which can
result in a reduction in stature of 15-25mm (Tyrell et al. (1985), Adams et al. (2006)).
Hydration of the disc, which is a necessity of a healthy disc, is restored upon unloading
(i.e. typically overnight), owing to osmotic pressure.

Osmotic pressure is a diffusive fluid flux induced by an ionic imbalance in the in-
terstitial fluid, that stems from the presence of proteoglycans: the interstitial fluid
(a saline solution), present inside and outside of the intervertebral disc, can be seen
as an infinite supply of sodium (Na+) and chloride (Cl−) ions. In order to satisfy
the electro-neutrality condition, an excess of sodium ions exists within the tissue to
balance the negative charge of the proteoglycans, which are intertwined in the extra-
cellular matrix. This imbalance of sodium ions induces fluid to flow from regions
with lower solute concentrations (e.g. the outside of the IVD) to regions with higher
solute concentrations, resulting in tissue dilation and allowing fluid to re-imbibe the
tissues. The flow stops once the osmotic pressure and stresses in the solid matrix
and collagen fibres are balanced. In practice, as the tissue deforms under complex
loading, concentrations of proteoglycans evolve locally, in turn affecting local con-
centrations of sodium ions. This, together with a naturally non-uniform distribution
of proteoglycans, results in a complex distribution of osmotic pressure in the disc.
The osmotic pressure, which ranges between 0.1 and 0.3 MPa (Urban and McMullin
(1988), Glover et al. (1991), Johannessen and Elliott (2005)), also participates in the
intrinsic stiffness of the intervertebral disc.

II.3 Pathology and pain

Lumbar back pain has significant socio-economic impacts: prevalence rates have been
reported to range between 12% and 35% at any one time (Raj, 2008), and 70% to
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Chapter II: The biomechanics of the intervertebral disc

85% of the population in western countries experience back pain at least once in their
life time (Andersson, 1999). It impairs people’s well being and has dramatic costs
on the society. In the UK alone, costs related to patients’ treatment and care, as
well as the engendered loss of productivity was estimated at £10.6 billion in 1998
(Maniadakis and Gray, 2000).

The health of the intervertebral disc relies on the fragile integrity of its various con-
stituents. This requires an harmonious execution of the previously described mech-
anisms (e.g. diffusion, diurnal cycles). In this section, the most common manifes-
tations of disc deterioration, whether histologic or structural, are presented together
with their consequence in terms of pain. It will be shown that two or more of these
phenomena are often linked, triggering what is referred to as cascade or snowball
effects.

II.3.1 Structural failure

Failure mechanisms are difficult to predict as they highly depend on rate and posture
(Veres et al., 2010), even if they generally result from abnormal loading. Herniation
is a common internal disruption of the intervertebral disc, involving radial tearing
extending from the nucleus pulposus to the annulus fibrosus and where nuclear matter
is squeezed through the AF. It is a multi-stage process that can be initiated both at
slow and fast rates (see Fig. II.5b). When the pressure is gradually increased, the
fluid is given sufficient time to flow out of the disc, and local stretching of the AF takes
place until failure occurs. Upon rapid loading, the nuclear matter is displaced over the
full height of the disc resulting in tearing of the upper CEP. This first stage of internal
disc disruption is called protrusion and only affects the inner AF without causing any
noticeable outward bulging. In the next stage called extrusion, the nucleus is pushed
to the outer boundary of the AF (see Fig. II.5a). The most severe case of herniation
is called sequestration, which happens when the NP is fragmented outside of the IVD.
However, in most cases, herniation remains contained as NP matter can break the
weak inter-lamellar connection (Veres et al., 2008).
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(a) MRI showing a herniated disc - Note that the
patient was not experiencing pain (adapted from
Van Goethem et al. (1996))

(b) Comparison of failure mech-
anisms for the IVD subjected to
slow (top) and fast (bottom) hy-
drostatic loading (Veres et al.,
2010)

Figure II.5: Disruption of the intervertebral disc

Another example of disc failure concerns the cartilaginous endplates, which are often
thought of as the weakest link of the intervertebral disc. Sudden disc pressurisation
can lead to fracture of the endplate (see Fig. II.6) resulting in nucleus material
to breach into the vertebral body. This is known to cause progressive structural
damages in the intervertebral disc (Adams et al., 2000) due to a variety of mechanisms.
Indeed, CEP fracture hinders the diffusive fluid flow (Rajasekaran et al., 2004) and
consequently the transport of metabolites. It also alters the load transfer: it was
reported in Przybyla et al. (2006) that CEP failure can result in a 37% reduction in
NP pressurisation and a 97% increase in AF local stress.
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Figure II.6: CEP failure: NP material leaching into the upper vertebra (adapted
from Adams et al. (2006))

II.3.2 Ageing

The endplates are one of the first constituents of the IVD to experience ageing. As
early as the end of the second decade of life, the vascular content rooting from the
vertebral bodies (and consequently a potential source of nutrients) reduces (Shankar
et al., 2009). The CEP have also been reported to become thinner, to fissure and
see their hyaline content increase Coventry (1969). Additionally, due to increased
calcification the permeability of the endplate drops (this is called scoliosis), hindering
the fluid flow and therefore the delivery of nutrients (Roberts et al., 1996).

Figure II.7: Stress distribution in transverse plane of a 82 year old IVD subjected
to 1kN compression (Adams et al., 1996b) , highlighting the emergence of stress
concentrations on the posterior side

Ageing discs see their aggrecan content to become degraded, resulting in smaller
fragments being more readily able to leach outside of the tissue (Urban and Roberts,
2003). Consequently, osmotic pressure decreases, together with the ability for the
tissue to re-hydrate, resulting in a dryer nucleus that lost its ability to pressurise
under loading and therefore evenly transfer loads. As Fig. II.7 shows, the region
of NP and inner AF exhibiting hydrostatic pressure is reduced by 50% in diameter
(Adams et al., 1996b), leading to higher compressive loads and peak stresses in the
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annulus fibrosus.

The fibre content of the ageing NP also becomes denser and stiffer, with the type
II collagen being replaced by type I (Shankar et al., 2009). Additionally, fissures
commonly appear in the drier nucleus pulposus (Raj, 2008).

II.3.3 Degeneration

There is no unanimous definition of the term disc degeneration, which can probably be
attributed to the lack of understanding of the phenomenon and its aetiology (Battie
and Videman, 2006). Degeneration is an irreversible process, which compromises the
structural integrity of the intervertebral disc. It proliferates as the balance between
matrix synthesis and breakdown is impaired. Degeneration has been widely visually
assessed using a 4-level grading system, which can be described quoting Adams et al.
(1996b):

- Grade 1: the disc was white, and usually showed no signs of structural
disruption to the annulus or vertebral body endplates. The distinction be-
tween the annulus and nucleus was obvious only on thin sagittal sections;
in these the nucleus appeared to be gelatinous or even translucent.

- Grade 2: the disc was cream-coloured and usually showed no signs of
structural disruption. The nucleus appeared to be fibrous and rather
yellow, but was still soft. The concentric lamellae of the annulus were
distinct and intact.

- Grade 3: There were signs of disruption of the annulus or adjacent end-
plates. The nucleus was fibrous, dry and often discoloured. The annulus
usually contained fissures or splits, and small marginal osteophytes were
often present around the rim of the vertebral body. The vertebral end-
plates were usually concave on the disc side.

- Grade 4: Severe disruption made it difficult to distinguish between annu-
lus and nucleus. The disc was usually narrowed. The nucleus was often
brown and fibrous and the annulus contained gross radial or circumferen-
tial fissures. The endplate was often damaged or depressed in the centre
and marginal osteophytes were usually present.
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The above description, together with the photographs of Fig. II.8a, highlight dehy-
dration as one of the most prominent characteristic of degeneration. In fact, diurnal
variations (i.e. fluid inflow at night, outflow during the day) are no longer observed
in degenerated discs (Shankar et al., 2009), probably due to the fact that degener-
ated discs present reduced diffusion (Rajasekaran et al., 2004). This has recently
allowed the use of non-invasive techniques to assess the level of degeneration of the
disc: T2 relaxation time is a time measure that can be evaluated from MRI scans. It
is sensitive to water content and the arrangement of the collagen network structure
(Watanabe et al., 2007) and can therefore be used (Jim et al. (2005), Cheung et al.
(2010)) to assess the level of degeneration of the disc (see Fig. II.8b).

(a) Mid-sagittal section of four interver-
tebral discs (adapted from Adams et al.
(2006))

(b) Superior view of four intervertebral disc using axial
T2 mapping (adapted from Watanabe et al. (2007))

Figure II.8: The four stages of disc degeneration: grade I (A), grade II (B), grade III
(C) and grade IV (D)

Intervertebral discs never markedly stop evolving. For example (Coventry, 1969), the
epiphyseal ring only reaches a full mature bond about the age of 20; the shape of the
disc constantly adapts to the loading with for example the emergence of pronounced
anterior and posterior bulges; the boundary between NP and AF becomes more
distinct. Contrary to intuition, disc degeneration can start at early ages compared
to that of other musculoskeletal tissues. It is reported in Miller et al. (1988), a
publication gathering data from 16 studies -600 intervertebral discs- that about 15%
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of people in their teens already have discs exhibiting signs of degeneration (grade II).
This rate gradually increases to reach 93% for patients in their sixth decade (mostly
grade II and III) and in nearly everyone aged 70 or above (more than 40% of which
exhibit grade IV degeneration).

Degeneration has been linked with a number of factors. It was previously thought
that degeneration could generally be explained by pathological factors such as trauma
(i.e. one of the structural failure mechanisms described above, potentially disrupting
the nutrient supply), body weight, occupational activities (e.g. daily exposure to
heavy lifting or vibrations) or diet. Ageing has also been put forward to explain the
origin of degeneration. However, in more recent publications, degeneration was found
to be related to genetic predisposition more than 70% of the time (see Battie and
Videman (2006) and references therein).

It is generally thought that degeneration is originally initiated by one of the aforemen-
tioned events (i.e. genetics, trauma, ageing), which locally compromises the integrity
of the tissue and progresses to eventually affect the whole disc through a chain of
events (often referred to as a cascade or snowball effect). For example, genetic factors
or simply ageing, may cause a reduction in aggrecan content in the tissue (Urban and
Roberts, 2003). Consequently, the disc is not able to maintain its hydration under
loads due to a reduction in the osmotic pressure. This directly affects the load bear-
ing mechanisms of the disc by reducing its ability to pressurise (Adams et al. (1996b)
and Fig. II.7), altering fluid flow and nutrient exchange, reducing disc height and
excessively increasing annulus bulging (Battie and Videman, 2006). The weakened
disc then becomes more prone to further damages (Raj, 2008), in turn perpetuating
the progression of the degenerative process.

II.3.4 Pain

The origins of back pain are still disputed (e.g. Raj (2008); Sitthipornvorakul et al.
(2011) and references therein). Although the disc is avascular and aneural, branches
of the spinal chord are wrapped around the outer AF. In a healthy disc, these sensory
nerves are also found in the outer 3-4mm portion of the annulus (Shankar et al.,
2009). However, it has been reported that depressurisation of the disc as well as the
presence of radial annular tears allow for the ingrowth of nociceptive nerve endings
(i.e. responsible for the feeling of pain) in the inner third of the AF and even the NP,
presumably at the origin of pain-sensitisation (Freemont et al., 1997; Adams et al.,
2010).

Naturally, the presence of nerves in the (degenerated) disc has been put forward as
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to explain pain felt by symptomatic patients. However, it has been demonstrated
that this cannot be the only cause of pain. A study undertaken by Boos et al. (1995)
compared two groups of 46 patients, one symptomatic and the other a risk factor-
matched asymptomatic group. The asymptomatic group comprises patients that are
not experiencing any form of pain or discomfort. It was found that more than 70%
of the asymptomatic patients exhibited some form of disc herniation.

Back pain is almost inevitably related to structural disruption; stress concentration
exhibited in the pressure profiles (Adams et al. (2006) and references therein) have
been related to pain (McNally et al., 1996). In the case of severe herniation, NP
matter can stimulate nociceptive nerve endings and cause inflammation to the root
nerve or even cause sciatica (sometimes called “pinched nerve”). Structural changes
associated with degeneration adversely affect the behaviour of spinal structures adja-
cent to the disc (Raj, 2008) and predispose them to pain in the long term: narrowing
of the spinal canal called spinal stenosis (a major cause of pain in the elderly Urban
and Roberts (2003)), abnormal loading of the neural arch leading to osteoarthritis,
muscle and ligament remodelling.

II.4 Conclusion

This chapter has presented a very general description of the intervertebral disc, from
an engineering perspective, detailing the structure of the IVD as well as its internal
mechanisms. These were presented together with the main pathologies and potential
disruptions.

The degenerative process and its relation to pain are not fully understood. The
objective of this thesis is to participate in the understanding of the disc’s behaviour,
both at short- and long-term time scales, by offering biologists and surgeons a different
viewpoint on the tissue and potentially new data. This could have impacts in the
following areas:

• In the case of a severely disrupted disc, implants are often considered. This
can involve the replacement of the nucleus pulposus (e.g. Fig. II.9a) or the
replacement of the whole intervertebral disc (e.g. Fig. II.9b-II.9c). It is crucial
to understand the behaviour of the real disc, which includes stability, ranges of
motion and load transfer, in order to design a replacement device that will be
able to mimic the original structure.
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(a) (b) (c)

Figure II.9: (a) Nuclear replacement (Goins et al., 2005) (b) A design of IVD full disc
replacement (adapted from Geisler et al. (2004)) (c) Radiography of the implanted
disc under flexion (adapted from Geisler et al. (2004))

• Another surgical intervention to treat back problem is segment fusion (e.g. Fig.
II.10). This involves the insertion of screws in two or more adjacent vertebrae,
that are rigidly connected and relies on the surgeon’s experience to choose the
position of the screws and the number of segments to fuse. A complete patient
specific spinal model could help the surgeon optimise its decision process. Nu-
merical models could also help understand why fusion is often associated with
stenosis and degeneration of adjacent discs (Lee, 1988).

Figure II.10: Lumbar fusion: pedicle screws are positioned in vertebrae surrounding
the symptomatic region and fused together with a metallic rod (Kreichati et al., 2006)

• Although it seems that exercise impacts the movements of nutrients (see Raj
(2008) and references therein) and their concentrations in the tissue, the benefits
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of physical activity on back pain are still under conflict (see results of 13 studies
compared in Sitthipornvorakul et al. (2011)). Computational models could
participate in the understanding of the fluid flow mechanisms and nutritional
pathway, and potentially design patient specific exercise to help slow down
degeneration.

• Mechano-biologists are trying to understand how stresses affect the biology of
the tissue (e.g. matrix synthesis). Computational models represent a non-
invasive alternative to estimate local stress levels within the tissue, as valuable
information is hard to obtain in-vivo.

The observations made in this chapter are an essential prerequisite, which will enable
the definition of a modelling framework in the following chapter.
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Chapter III

The biphasic swelling model

In this chapter, historical highlights of the theory of porous media are
presented, followed by a literature review on the trends in soft tissue
modelling. The proposed modelling strategy is discussed in the context of
the intervertebral disc, with particular attention to the osmotic effects, the
strain-dependent permeability and rate-dependent phenomena. Finally,
the theory of porous media is derived for a biphasic medium, enriched
with swelling capabilities.

III.1 Motivations for a biphasic swelling model

In the following, the preference for a biphasic swelling model as a framework to study
the mechanical behaviour of the intervertebral disc is motivated. First, developments
regarding the modeling of porous media and more specifically soft tissues are re-
viewed. Second, in light of the previous chapter, key features that the formulation
must exhibit in order to meet the objectives are identified.

III.1.1 Modelling of porous media: a few milestones

Although it is not the intention here to recount the historical developments of mul-
tiphasic theories (other authors have written excellent contributions on the topic,
e.g. Atkin and Craine (1976), de Boer (1996, 1998, 2000, 2005), de Boer and Ehlers
(1988), Ehlers (2002), Karajan (2009)), a selection of milestones that are particularly
relevant to this work is presented.

The first publications to treat porous medium as mixtures of several constituents can
be traced back to the mid-nineteenth century with, for example Fick (1855) studying
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diffusion of mixtures through porous membranes and Darcy (1856) who was interested
in fluid flow through porous solids. The first fundamental postulate of mixture theory
was established in another publication on diffusion Stefan (1871) (see de Boer (1996)
for a translation from German):

“If the true processes in a mixture should be calculated, it is not sufficient
anymore, to consider the mixture as a uniform body as common mechanics
does; equations must be set up which contain the condition of equilibrium
and the laws of motion for every individual constituent in the mixture”

This is a significant concept in mixture theory, which allows one to consider that
at any time, each particle of the multi-phase continuum can be thought of as the
superposition of all its constituents.

Diffusion models were augmented by the addition of a solid phase during the twen-
tieth century with a main focus on soil mechanics. Terzaghi with contributions on
saturated deformable medium and the introduction of the effective stress (Terzaghi
(1925, 1923)), and Biot with the development of poro-elasticity, e.g. Biot (1941, 1956,
1972), were two major contributors. Other considerable milestones in the develop-
ment of mixture theories are attributed to Truesdell: in Truesdell and Toupin (1960),
it was stipulated that the governing equations of the mixture should take the same
form as the ones of its constituents. He also authored the metaphysical principles in
Truesdell (1984) 1.

It is also generally admitted, cf. de Boer (1996) and Ehlers et al. (2006), that the
theory of porous media (TPM) is based on the theory of mixtures enriched with the
concept of volume fractions as described in Morland (1972), which allows us to define
the mixture as a smeared average of its constituents.

Another key contributor in the developments of TPM is Bowen, in particular for
introducing restrictions on the entropy inequality (Bowen, 1967) (refining Truesdell
(1957) where the local balance equations of mass, momentum and energy were ini-
tially introduced) and also his work on compressible and incompressible mixtures, cf.
Bowen (1982, 1980).

Bowen’s work on mixture theory and Biot’s development of poro-elasticity repre-
sent the theoretical basis for most of the modern models of soft tissues (cartilage,

1“Truesdell’s metaphysical principles”: 1) All properties of the mixture must be mathematical
consequences of properties of the constituents; 2) So as to describe the motion of a constituent,
we may in imagination isolate it from the rest of the mixture, provided we allow properly for the
actions of the other constituents upon it; 3) The motion of the mixture is governed by the same
equations as is a single body.
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intervertebral disc, brain, eye . . . ).

III.1.2 A short review of soft tissue models

It has long been recognised that the intervertebral disc - and soft tissues in general -
cannot simply be modelled as linear elastic solids: more advanced models are required
to capture the salient features and internal mechanisms of the disc.

In early full-disc models, the nucleus pulposus was considered to behave either like a
viscous solid in order to replicate the fluid viscous drag as it flows through the solid
matrix (e.g. Wang et al. (1997)) or like a fluid and as such modelled by an hydrostatic
contribution, therefore neglecting tissue deformations. Non-porous models of the
nucleus were initially linear elastic, e.g. Natarajan et al. (1994), and evolved to
more complex models including finite deformations and the anisotropy of the annulus
fibrosus. The contribution of fibres was initially represented by non-linear spring
elements, e.g. Shirazi-Adl et al. (1986b,a) Shirazi-Adl (1994) and later refined with
continuum models, e.g. Elliott and Setton (2000) (small strain) and Eberlein et al.
(2001, 2004) (hyperelastic).

In the meantime, other researchers focused on developing understanding of the fluid-
solid interaction and the electro-mechanical coupling (proteoglycans, anion, cations,
etc.). In Mow et al. (1980), a biphasic model based on mixture theory was derived
for articular cartilage for the small deformation regime, and is often seen as the
precursor of all multi-phase models. It was later extended to take into account the
strain-dependency of the permeability (Lai et al. (1981); Holmes (1985)) and finite
deformations (Kwan et al. (1990); Suh et al. (1991)). The biphasic model was then
enhanced to include charge-induced phenomena. The first model of the kind is the tri-
phasic model of Lai et al. (1991) derived for infinitesimal strains. It describes both
the ion diffusion and convection: an ionic phase (including anions and cations) is
added to the negatively charged solid and the neutral fluid by means of ionic balance
of concentrations. Note that the swelling due to chemical expansion, a load induced
by charge-charge repulsion was also included. The models comprise three primary
fields: displacements, chemical potentials of both the neutral salt and the interstitial
fluid. In order to take electrical fluxes into account, the triphasic model was later
extended by Snijders et al. (1995), Huyghe and Janssen (1997), Frijns (2000) and
more recently by Chen et al. (2006) to a quadri-phasic finite deformation model.
This time anions and cations are accounted for as separate phases. This model was
implemented in 1D by Frijns et al. (1997) (and tested against uni-axial experiments).

Although van Loon et al. (2003) made use of the quadri-phasic model in 3D, most
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publications have been restricted to 1D or 2D isotropic simulations, probably due
to a prohibitive model size and the impossibility to solve for accurate 3D meshes
(the quadri-phasic has 15 governing equations in 3D, resulting from the mass and
momentum balances for each constituent, as well as the neutrality and saturation
conditions).

Following this race to include the highest number of phases in the governing equations,
a more recent trend has been, on the contrary, to reduce the number of independent
phases, yet without compromising on a given model’s capabilities. The “swelling
models”, based on the so-called Lanir hypothesis (Lanir, 1987) that will be described
in details in Sec. III.4, neglect the diffusive effects of the almost volume-free proteo-
glycans and constitutively model the osmotic effects. This approach was compared
with the tri-phasic one in Wilson et al. (2005a) with promising results and used by
other contributors, e.g. Schroeder et al. (2006, 2007) and Ehlers et al. (2006, 2008).
Note that the following chapters are based on this approach.

Poro-elasticity, a phenomenological approach to the modeling of porous media, is the
other major framework that has been used to analyse soft tissues (see Sec. III.1.1).
Although it has received criticism because it is not derived from thermodynamical
principles (e.g. de Boer (1996, 2005), Ehlers et al. (2008, 2009)), it shares some
similarities with the theory of mixture. For example Bowen (1982) shows that poro-
elasticity can be retrieved from linearisation of the biphasic model of Mow et al.
(1980). A similar comparison is also drawn in Simon (1992), where the model is also
extended to finite deformations, based on Biot (1972). In Simon et al. (1996), a poro-
elastic framework that includes diffusive and swelling effects is presented and com-
pared with the tri-phasic model of Lai et al. (1991). Cowin (1999) advocates that the
difference between poro-elasticity and mixture theories merely lies in the homogeni-
sation process. Although the present work will be focusing on mixture theory, it is
worth mentioning some of the first full lumbar models based on poro-elasticity. Simon
actively published on the topic with an axi-symmetric linear poro-elastic model Simon
et al. (1985), extended to include swelling in Simon et al. (1996). Laible et al. (1993)
proposed a 3D swelling linear elastic model, Argoubi and Shirazi-Adl (1996) proposed
a strain-dependent linear elastic motion segment model where the detailed geometry
includes facet joints. Li et al. (1999, 2003) proposed an axi-symmetric poro-elastic
model for finite deformation, including strain-dependent permeability but leaving os-
motic effects aside, while anisotropy was modelled with springs. Other studies have
used poro-elastic models to model the IVD, including Lanir-type swelling, e.g. Hsieh
et al. (2005) with linear axi-symmetric rebar elements for annulus, Natarajan et al.
(2007) for a nonlinear model of a motion segment. Models such as Iatridis et al.
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(2003) and Olsen et al. (2004) also include concentration gradients.

III.1.3 Objectives and modelling strategy

One of the most crucial steps in computational modeling effectively takes place before
the modeling itself: the selection of a framework that can reasonably be trusted to
produce the sought results. This step, which cannot be done arbitrarily, requires
a clear definition of the objectives one wants to achieve. In the special case of the
intervertebral disc and in view of observations made in Chapter II, the modelling
strategy is defined by finding the best compromise between the following points:

- The physics. All physical phenomena taking place in the intervertebral disc
cannot realistically be accounted for. In order to identify the salient mechanisms
that predominantly affect the mechanical behaviour of the intervertebral disc,
modelling scales (both in time and space) need to be defined.

- The material parameters. Experimental work on soft tissues is particularly dif-
ficult. This is due on the one hand to the fact that only a limited number
of experiments can be carried out in-vivo, and on the other hand to the fact
that the properties of soft tissues evolve once they are taken from the natural
environment. It is therefore essential to not only limit the number of mate-
rial parameters, but also choose constitutive models that reflect the nature of
the media. This indeed ensures that a physical interpretation of the material
parameters is possible and eases the design of universal experimental protocols.

- The size of the mathematical problem. The IVD has a very intricate geometry
that needs to be modelled accurately, requiring fine three dimensional meshes.
It is important to keep the system of equations at a reasonable size. This point,
which is highly related to the first one, plays an essential role in the choosing of
the governing equations (and variables) that are essential to describe the disc’s
behaviour.

In the present work, the aim is to perform a quasi-static macro-scale analysis of
the disc. Our interest lies in the understanding of the biomechanical behaviour of
the IVD, e.g. the deformations and load transfer mechanisms within the disc under
physiological loading. This implies that small-scale mechanisms such as nutrients
or molecular flow will not be investigated. The description in Chapter II about
the nature of the intervertebral disc (i.e. loading mechanisms and the biological
constituents) enables the disc to be considered from a modelling perspective: in a
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simplified manner, the IVD can be seen as a mixture of interacting constituents, com-
prised of an extra-cellular matrix of collagen fibres saturated by a charged interstitial
fluid, with proteoglycans playing the essential role of offering swelling capabilities to
the disc by regulating its fluid content.

As far as the solid part is concerned, the disc undergoes large strains and exhibits
strong anisotropy in the annulus fibrosus. Although strains can physiologically reach
up to 10%, soft tissue can sometimes exhibit a linear elastic behaviour up to 20%
(small) strain under equilibrium conditions (Holmes et al., 1985); the necessity to
use finite deformation theory is justified by the fact that high deformations during
moderate to fast loading may occur locally (Holmes (1986), Wang et al. (2009)). This
is usually due to the coupling with the nonlinear fluid flow (see Sec. III.5 and V.5).

In light of the previous points, a biphasic swelling model is chosen for the inter-
vertebral disc. It offers an acceptable balance between simplicity (limited number
of degrees of freedom, few material parameters) without neglecting the most salient
features of the IVD: coupling between the solid and the fluid, osmotic effects, strain
dependent phenomenon, etc. Furthermore, the theory of porous media offers a very
modular framework (Ehlers et al., 2008). As the mixture is defined as the superpo-
sition of its constituents, it makes it straightforward to enhance the physics of the
model (e.g. mass exchange, chemical reactions, viscosity or electrochemical phenom-
ena), or material laws (e.g. anisotropy or viscosity) when needed.

III.2 The TPM framework

The theory of porous media (TPM) is a homogenized macroscopic representation
of the porous medium. Although it will only be used to model the intervertebral
disc in the following chapters, it has been successfully used for other applications
(e.g. brain, cartilage, soil). It is a continuum-based approach, which fully couples
the fluid and solid phases. It overcomes the difficulty of modelling the complex
internal geometry of the microstructure by using the concept of volume fractions
to “smear” the constituent properties over a control space to obtain an effective
homogeneous representation of the overall mixture: the averaging is done at the
micro level whereas the mechanical and thermo-dynamical equations are written at
the macro level (de Boer, 1996). In this section, the general definitions and concepts
of the theory of porous media are presented. The special case of a two-constituent
mixture (i.e. biphasic) comprised of a fluid F and a solid S is derived. The model is
based on Almeida and Spilker (1998), de Boer (1998) and Ehlers (2002). It is worth
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mentioning at this stage that in the context of the IVD, the solid phase is comprised
of the matrix of collagen fibres and the proteoglycans.

Firstly, the following simplifying assumptions are made in the current model:

- the constituents are immiscible, i.e. they are not forming an homogeneous
mixture when mixed together

- no density supply is allowed to the closed system, i.e. neither growth nor
resorption of the tissue is taking place

- the constituents are not reacting chemically

- the medium is fully saturated, i.e. the whole space is occupied by either of the
constituents

- quasi-static loading conditions: inertial terms are ignored given the small size
of the disc

- isothermal conditions and adiabatic behaviour

- both constituents are intrinsically incompressible (see for example Bachrach
et al. (1998) and Miller (2001) and references within)

The most fundamental concept of mixture theory - established as early as Stefan
(1871)- asserts that at any time t and at each spatial point x of the continuum, parti-
cles of both constituents α coexist (see Fig. III.1). Therefore any elementary volume
dv is simultaneously occupied by both phases and is split into partial elementary
volumes dvα. The volume fractions can then be defined as:

nα (x, t) = dvα

dv
(x, t) α = {S, F} (III.2.1)

Figure III.1: The TPM representation with volume fraction averaging (right) of the
microstructure (left): at each material point, fluid and solid coexist. Displacement
and pressure fields are coupled.
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Assuming that there is no gas in the mixture (which is relevant for the IVD), the
saturation condition, sometimes referred to as the equipresence principle, is:

nS + nF = 1 (III.2.2)

The useful relationship between the apparent density ρα and true density ραT of each
constituent is:

ρα = dmα

dv
= dmα

dvα
dvα

dv
= ραTn

α (III.2.3)

From a kinematic point of view, Stefan’s concept together with “Truesdell’s meta-
physical principles” (see Footnote 1 on page 20) imply that each constituent α of the
mixture can be described by its own and independent motion χα. The motion can
be thought of as the trajectory in time of a given particle. Eq. III.2.4 shows that at
any given time t, the motion is a function relating the position Xα of that particle
in the reference configuration, to the position of the same particle in the current
configuration xα.

xα = χα (Xα, t) (III.2.4)

Figure III.2: Kinematics of the biphasic model

The reference configuration, often chosen as the undeformed state of the continuum,
is an arbitrary initial configuration at time t0. At time t, the deformed body is
referred to as the current configuration. The position x in the current configuration
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represents a mixture’s elementary volume made of fluid particles (in proportion nF )
that were occupying the position XF in the reference configuration, and solid particles
(in proportion nS) that were occupying the position XS in the reference configuration.
The particle’s position history is illustrated on Fig. III.2.

The definition of the position field enables us to define displacements and velocities,
two fields that will turn useful in the following derivations. In finite deformation
theory, each quantity can be expressed either in the reference configuration or in the
current configuration. In the Eulerian description (or sometimes called the spatial
description), a field is characterised with respect to the current coordinates system
xα. For example, the Eulerian description of the displacements is:

uα (xα, t) = xα −X(xα, t) (III.2.5)

The above definition describes the displacements that are taking place at the specific
position xα in the current configuration. It can be interpreted as follows: at the
position xα in the current configuration lies a particle that was located at X(xα, t)
in the reference configuration and displaced by uα (xα, t).

For the Lagrangian description (or sometimes called the material description), a field
is described with respect to the reference coordinates Xα. Similarly, the Lagrangian
description of the displacements, tracking the displacements of the particle Xα, is:

Uα (Xα, t) = xα(X, t)−Xα (III.2.6)

Subsequently, the velocity field vα is defined for each constituent:

vα = ∂χα

∂t
(III.2.7)

It is also useful to define the material time derivative with respect to the motion α,
which measures the time rate of change of a quantity (•). When this quantity is
expressed in the current configuration, it takes the form:

Dα

Dt
(•) = ∂

∂t
(•) + ∂

∂x
(•) · vα (III.2.8)

In the above equation, the first term corresponds to the rate of change of the quantity
(•) experienced by the particle when its spatial position is fixed while the second term
accounts for the convective change of that quantity resulting from the motion of the
same particle.
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The gradient of deformation FS of the solid is a crucial measure in finite deformation
analysis, as it relates the infinitesimal line dXS in the reference configuration to
its deformed state dxS in the current configuration. It is defined as the material
gradient of the position xS (see Eq. III.2.9), i.e. the gradient with respect to the
coordinates system in the reference configuration X. It should also be noted that FS

also controls the deformation of the proteoglycans, which are considered attached to
the solid skeleton.

FS = GradxS = ∂x
∂XS

(III.2.9)

In the above, the material gradient is denoted Grad with upper case G. In the
following, the spatial gradient (i.e. derivative with respect to the coordinate system
of the current configuration x) is denoted grad with a lower case g. Similar notations
will be used for the divergence operator, Div and div.

Let us now define an elementary volume of mixture delimited by the porous solid
in the reference configuration (cf interpretation on Fig. III.3). This volume can be
thought of as delimited by infinitesimal segments of solid constituent and can be
calculated as: dV = (dXS

1 × dXS
2 ) · dXS

3 . Note here that, although the elementary
volume dV is delimited by the solid phase, dV 6= dV S as dV also encompasses some
fluid.

Figure III.3: 2D illustration of the volume change of the porous solid between the ref-
erence configuration (time t0) and the current configuration (time t). The compaction
point is represented at time tc

In the current configuration, the volume dV is mapped to dv = (dxS1×dxS2 )·dxS3 . If the
elementary segments can be chosen, without loss of generality, to be aligned with the
orthogonal reference system (e1,e2,e3), it is possible to show using the transformation
dxSi = FSdXS

i that:
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dv = JdV where J = det FS (III.2.10)

This means that the determinant of the gradient of deformation of the solid J can be
used to map elementary volumes of mixture between the current and the reference
configurations. It is important to realise that intrinsic incompressibility of each con-
stituent does not imply incompressibility of the mixture as fluid is allowed to leave
the elementary volume. This also establishes the existence of a compaction point,
illustrated by FS

c in Fig. III.3 when all the fluid has left the mixture, that is reached
when J is equal to the solid volume fraction in the reference configuration dvS/dV .

Finally, it proves convenient to describe the fluid velocity as a velocity relative to the
solid constituent, leading to the introduction of the seepage velocity w (as illustrated
on Fig. III.4):

w = nF
(
vF − vS

)
(III.2.11)

Figure III.4: Seepage illustration

It is interesting to realise that as a result of the “smearing” introduced by the mixture
theory, the seepage velocity w represents a macro-level average of the fluid velocity
with respect to the solid phase rather than an actual fluid velocity at the scale of the
tissue pores (Cowin, 1999).

III.3 Balance relationships

Stemming from concepts found in Truesdell and Toupin (1960), TPM is built on the
assumption that the mixture can be seen as the superposition of its constituents.
Furthermore, the governing equations of the mixture as a whole must take the same
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form as those of each constituent. To this end, the relative contribution of each
constituent of the mixture is accounted for, weighed by its corresponding volume
fraction. In the following sections, the governing equations of each constituents are
derived and combined together using the concept of volume fractions in order to
obtain the governing equation of the total mixture.

III.3.1 Balance of linear momentum

The balance of linear momentum, first expressed for each constituent independently,
is derived in the current configuration. The rate at which momentum is locally trans-
mitted by one constituent to the other is accounted for with the vector of momentum
supply pα. The stress Tα is called apparent stress, because it has the unit of a
force per unit mixture area (i.e. not unit area of constituent α). g is the gravity
acceleration.

div (Tα) + pα + ραg = ρα
Dαvα

Dt
α = {S, F} (III.3.1)

As we are focusing on quasi-static problems, and ignoring wave propagation through
the tissue, the inertial terms are neglected. The balance of linear momentum of
the whole mixture is obtained by summation of Eq. III.3.1 over both constituents,
yielding:

div
(
TF + TS

)
+ pF + pS +

(
ρFT n

F + ρSTn
S
)

g = 0 (III.3.2)

As previously mentioned, Truesdell’s third metaphysical principle implies that the
sum over all constituents of the partial balance relations should take the same form
as the balance of the single-phase material, that is for the balance of momentum:

divT + ρg = 0 (III.3.3)

As a direct consequence, it can be identified from Eq. III.3.2 and Eq. III.3.3 that:

pF = −pS (III.3.4)

In an attempt to further simplify the problem, the body forces are neglected in com-
parison to other forces. This offers the advantage of cancelling the volume fractions
from the system of equations and consequently the need to input an initial porosity
in the problem. Finally, the balance of linear momentum is:
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div
(
TF + TS

)
= 0 (III.3.5)

III.3.2 Balance of mass

In a similar fashion to the balance of momentum, the balance of mass is first expressed
for constituent α:

∂ρα

∂t
+ div (ραvα) = 0 α = {S, F} (III.3.6)

The balances of mass of both constituents are then superimposed. Using Eq. III.2.3
and the assumption of intrinsic incompressibility (i.e. the true density ραT is constant),
the balance mass of the whole mixture can be written as:

∂
(
nS + nF

)
∂t

+ div
(
nSvS + nFvF

)
= 0 (III.3.7)

The saturation condition (Eq. III.2.2) together with the definition of the seepage
velocity (Eq. III.2.11) mean that the balance of mass of the mixture can be simplified:

div
(
vS + w

)
= 0 (III.3.8)

In the context of the constituents’ intrinsic incompressibility, as solid matter can
neither enter nor leave the mixture elementary volume defined on the solid matrix
(see discussion at the end of Sec. III.2), Eq. III.3.8 shows that fluid is squeezed out
when the elementary volume is compressed and flows back in when it expands. This
implies that the volume change of the mixture is directly related to the flux of fluid
relative to the solid, but also that J measures the amount of fluid flowing from and
into the mixture.

III.3.3 Thermodynamical and constitutive considerations

This section derives the entropy and energy balances of the mixture and presents how
previous assumptions affect the model’s constitutive relationships. The derivation,
largely based on principles established in Truesdell et al. (1965) and Bowen (1980),
is, for example, presented in de Boer (1996), Ehlers (2002) and Karajan (2009) and
references therein.
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The first law of thermodynamics imposes the rate of internal energy E to be equal
to the sum of the rates of mechanical and thermal work. In the context of mixture
theory, the first law is written in the local form for each constituent α in Eq. III.3.9.
The rate of mechanical energy is expressed as a function of the apparent stress Tα

and the spatial velocity gradient lα = gradvα, while the rate of thermal work depends
on the heat flux qα and the rate of external heat supply rα. The extra terms pα · vα

and eα are specific to inter-phase energy exchanges; they respectively account for
the rate of momentum and energy supply transmitted by constituent α to the other
constituent.

ρα
DαEα

Dt
= Tα : lα − divqα + ραrα − pα · vα + eα (III.3.9)

The second law of thermodynamics postulates that the total production of entropy
of a closed system cannot be negative. The production of entropy η̂α is defined as
the difference between the rate of change of entropy ηα and the rate of entropy input
Qα (θα is temperature of the constituent α), which is written for the mixture:

η̂ =
∑
α

η̂α =
∑
α

(
ρα
Dαηα

Dt
−Qα

)
≥ 0 (III.3.10)

with Qα = div
(−1
θα

qα
)

+ 1
θα
ραrα

Introducing the Helmhotz free-energy ψα as a function of the internal energy and the
entropy:

ψα = Eα − θαηα (III.3.11)

allows to perform the Legendre transformation. Using Eq. III.3.9 and Eq. III.3.11
while making the assumption of an isothermal (θα = constant) process allows to
rewrite the Clausius-Plank inequality Eq. III.3.10 as:

∑
α

(
Tα : lα − pα · vα − ραD

αψα

Dt

)
≥ 0 (III.3.12)

Note that in the same manner as in previous sections, the principle of mixture stating
that the governing equations of the mixture should take the same form as those of a
single constituent has been used to impose that ∑

α
eα = 0, (see for example de Boer

(2005)).

The introduction of the volume fractions has the consequence of introducing one extra
variable for each phase of the mixture, which implies that the “closure problem” is not
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fulfilled (de Boer, 1998), i.e. a greater number of unknowns than equations available.
In order to overcome this problem, the saturation condition (Eq. III.2.2) is imposed as
a kinematic constraint onto the entropy inequality, introducing a Lagrange multiplier
p:

p
DS

Dt

(
nS + nF

)
= 0 (III.3.13)

Using the definition of the material time derivative (Eq. III.2.8), and the identity
div (ϕu) = ϕ divu + u · gradϕ as well as the saturation condition, Eq. III.3.13 yield:

− p
(
nS divvS + nF divvF + gradnF ·w

)
= 0 (III.3.14)

Since divvα = lα : I, adding Eq. III.3.14 to Eq. III.3.12 and remembering that
pS = −pF leads to:

(
TS + nS p I

)
︸ ︷︷ ︸

TS
E

: lS +
(
TF + nF p I

)
︸ ︷︷ ︸

TF
E

: lF −
(
pF − p grad nF

)
︸ ︷︷ ︸

pFE

·w−
∑
α

ρα
Dαψα

Dt
≥ 0

(III.3.15)

The final expression of the Clausius-Plank inequality (Eq. III.3.15) allows to intro-
duce the concept of effective stress:

Tα = Tα
E − nαpI (III.3.16a)

pF = pFE + p grad nF (III.3.16b)

Each partial stress Tα is a function of the constituent’s effective stress Tα
E, which must

be determined constitutively and the kinematic constraint p enforcing the saturation
condition, which can be identified as the fluid hydraulic pressure. It is common
(see for example discussion in Ehlers et al. (2008)) to consider the fluid as ideal and
also to neglect the dissipative stress TF

E (i.e. the fluid viscosity) in comparison to
the drag generated by fluid-solid interactions pFE, which is accounted for in Darcy’s
law, which is generally high for biological tissues because of their very small pores.
Consequently, summing the partial stresses over constituents, the mixture stress T is
defined in terms of the mixture effective stress TE:

T = TS + TF = TS
E − pI (III.3.17)
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With the assumption of a purely (hyper)elastic solid, an incompressible inviscid fluid
and an isothermal process, we have:

ψS = ψS(CS) and ψF = ψF (−) (III.3.18)

where the right Cauchy-Green tensor is defined as:

CS = FT
SFS (III.3.19)

Eq. III.3.18 implies that:

∑
α

ρα
Dαψα

Dt
= ρS

∂ψS

∂CS

: D
SCS

Dt
(III.3.20)

The time rate of change of the right Cauchy-Green tensor can be derived:

DSCS

Dt
=
DS

(
FT
SFS

)
Dt

= 2 FT
S lSFS (III.3.21)

Taking into account the above and the assumption TF
E ≈ 0, Eq. III.3.15 can be

written in the alternative form:

(
TS
E − 2ρSFS

∂ψS

∂CS

FT
S

)
: lS − pFE ·w ≥ 0 (III.3.22)

The above inequality must hold for any arbitrary motion and in particular in the
absence of fluid motion relative to the solid, i.e. when vS = vF and therefore w = 0.
In this case, the dissipative term pFE ·w disappears and the inequality must hold for
the purely elastic process. This can be achieved by enforcing the bracketed term in
Eq. III.3.22 to zero, which allows, together with the definition of the strain energy
defined per unit reference volume W S = ρS0ψ

S, to express the Cauchy stress as a
function of the strain energy:

TS
E = 2 ρS FS

∂ψS

∂CS

FT
S = 2 J−1 FS

∂W S

∂CS

FT
S (III.3.23)

Finally, a possible way to ensure dissipative energy (i.e. −pFE · w ≥ 0) is positive
at all time, is to postulate that the momentum supply pFE is proportional to the
seepage velocity w. In Ehlers (2002), a relation stemming from Lai and Mow (1980)
is proposed:

pFE = −n
F

k
w (III.3.24)

34



Chapter III: The biphasic swelling model

In the case of isotropic permeability, the hydraulic permeability k (which has units of
mm4 N−1 s−1) is reduced to a scalar form and is defined as the ratio of the intrinsic
permeability of the porous medium to the fluid’s viscosity. Combining this relation-
ship with Eq. III.3.16b, inserting the result in the balance of momentum of the fluid
(Eq. III.3.1 for α = F ) and taking advantage of the neglected fluid dissipative stress
(TF

E ≈ 0) leads to:

w = −k grad p (III.3.25)

It is interesting to notice that it was possible to retrieve the generalised Darcy’s law
for the mixture from thermodynamical considerations.

III.4 The osmotic contribution

The class of “swelling models” is based on the so-called Lanir hypothesis, which stems
from the following statement Lanir (1987):

“The magnitude of the concentration forces depends on the density of the
negative group of the GAG - the fixed charge density. Hence, for any
given specimen, these forces will depend on nF (or nS). The effect of time
can be ignored here since the chemical potential responds to changes in
local ionic environment with a time constant which is orders of magnitude
shorter than the diffusional or mechanical time constants.”

Lanir makes the assumption that, from a mechanical perspective, since anions and
cations flow instantly to fulfil local electronic equilibrium across the continuum at
all time, the ionic diffusive process can be neglected. As a result of this timescale
separation, the swelling effects are assumed to solely depend on the imbalance in
concentration of Na+ ions between the inside and the outside of the tissue, and not
the transient (at the electro-chemical timescale) ionic diffusive process (see Chapter
II for details on the mechanisms of osmosis). Remembering that the concentration of
sodium ions is directly related to the concentration of proteoglycans, and that these
large molecules are trapped in the matrix of collagen fibre (Heneghan and Riches,
2008a), enables the osmotic effects to be evaluated, based on the fixed charge density,
which is in turn related to the deformations of the mixture.

In terms of modelling, the Lanir hypothesis implies that the proteoglycan-driven
swelling can be constitutively computed from volume changes in the mixture, thus
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disregarding any ionic kinematics. This greatly reduces the complexity of the model
by decreasing the number of governing equations, but equally importantly the number
of material parameters. This hypothesis has been compared to triphasic models in
1D and 2D simulations in Wilson et al. (2005a), generally showing good agreement.
Although results are not as good for rapid change in boundary concentrations, this
is not considered an issue, as this situation does not manifest itself for soft tissues,
(Karajan, 2009).

It is interesting to note that the osmotic effects have sometimes been modelled as
a contribution to the solid (e.g. Ehlers et al. (2008)) and in other publications as
a contribution to the overall pore pressure (e.g. Ehlers et al. (2009) or Schroeder
et al. (2006)). In the first approach, the osmotic pressure is acting as a volumetric
solid stress on the mixture (the proteoglycans only have little shear resistance). The
resulting volume change of the mixture induces fluid flow, as can be seen in the
balance of mass Eq. III.3.8. The latter approach considers the osmotic pressure as
a contribution to the overall fluid pressure, driving fluid from and into the mixture
through pressure gradients (i.e. Darcy’s flux).

In the present work, we choose the first approach based on Ehlers et al. (2008).
Following Lanir’s hypothesis, the osmotic contribution is exclusively modelled as a
solid contribution and swelling effects are induced by volume change of the mixture
only. This implies that, in Darcy’s law as defined in Eq. III.3.25, the pressure term is
not enhanced with an osmotic term. This is reflected in Eq. III.4.1, where the solid
effective stress is now split between a mechanical contribution σe (described by Eq.
III.3.23) and an osmotic contribution ∆π, which will subsequently be constitutively
defined.

TS
E = TS

E,MECH + TS
E,OSMO

= σe −∆πI (III.4.1)

III.5 Permeability

Fluid flow plays a paramount role in the behaviour of soft tissues (Mow and Man-
sour (1977); Lai and Mow (1980); Mow et al. (1980)). As seen in previous sections,
the fluid’s ability to flow through the porous solid is described by Darcy’s law (Eq.
III.3.25), and in particular controlled by the permeability of the tissue k. From a
biological perspective, movement of fluid is responsible for the nutrition of the avas-
cular disc. From a mechanical perspective, the low permeability of soft tissues (e.g.

36



Chapter III: The biphasic swelling model

magnitude of 10-3 mm4 N−1 s−1for the intervertebral disc permeability) has the func-
tion to protect the extra-cellular matrix under rapid loading by fluid pressurization.
Moreover, as the tissue undergoes compressive strains, the geometry of the intersti-
tial spaces evolves (compaction) and the intrinsic value of the permeability tends to
decrease rapidly in order to further protect the solid skeleton (Olsen et al., 2004).

The relationship between permeability and tissue deformation is a crucial aspect of
soft tissue modeling, as it is considered as one of the main source of nonlinearities
(Holmes et al., 1985). The inhomogeneous compaction of the tissue, due to the
frictional drag of the fluid on the solid, cannot be captured properly if the permeability
is treated as a constant that represents the average of local permeabilities throughout
the tissue. More recently, Hussain et al. (2011) proposed a comparative diurnal
numerical analysis of a disc under compression in order to highlight the importance
of the permeability strain dependency. It is argued that in some cases (e.g. change
of disc height), strain dependency of the permeability plays a more significant role
than the strain dependency of the osmotic pressure.

Models that exponentially relate the permeability to volumetric changes (e.g. Lai and
Mow (1980); Holmes and Mow (1990); Argoubi and Shirazi-Adl (1996); Riches et al.
(2002)) have shown better performance than linear models (Eisenfeld et al., 1978)
in capturing the stiffening properties of the tissue (e.g. see Lai et al. (1981) for dis-
cussion on the behaviour under confined compression). Therefore, strain-dependent
permeability will be considered in the current work, using exponential laws that will
be defined in subsequent chapters. However, the anisotropy exhibited by the per-
meability (e.g. Gu et al. (1999); Ateshian and Weiss (2010)) will not be considered
therein as it would appear inconsistent with the level of refinement of the current
model.

III.6 A note on rate effects

There is no doubt that the intervertebral disc exhibits a rate-dependent behaviour.
This results on the one hand from fluid flowing from and into the disc, and on the
other hand because of the viscoelasticity of the collagen fibres. However, it is difficult
to apportion the rate-dependent deformations between viscoelasticity and fluid flow.

Broberg (1993) argues that fibres’ viscoelasticity plays an important part in the
mechanical behaviour of the IVD under rapid loading (i.e. time constants of the
order of two minutes), whereas fluid flow has a more significant role when the IVD is
subjected to much slower loading (several hours). However, it is also admitted that
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these observations were made under compression only and that it might not be valid
under more complex loading, as fluid flow has been reported to be more dominant
during flexure in Adams and Hutton (1983). It was also reported that 25% of diurnal
creep deformations could be attributed to viscoelasticity within the annulus. This
last point has been contested in Adams et al. (2006), where it is argued that the
deformations “may simply be a structural effect arising from the annulus bulging
more when the volume and the pressure of the disc is reduced”, and therefore not
arising from viscoelastic effects.

In Iatridis et al. (1997) and Iatridis et al. (1996), samples of nucleus pulposus were
subjected to shearing in an attempt to demonstrate that the creep response of the
solid arise from visco-elastic behaviour (i.e. without inducing volumetric changes
to the tissue). While it is conceivable that, although 10% compressive strain were
applied, the loading conditions are close to pure-shear, one can question whether a
linear viscoelastic model is able to capture the local deformations arising during the
dynamic loading under finite deformation and the impact of these deformations on
on fluid flow.

In Holzapfel et al. (2005), small viscoelastic effects are observed in the annulus: tensile
stiffnesses measured on single lamellae are found to reduce by less than 30% when
the loading rate increases from 0.1 to 10 mm.s−1.

Generally, it is very complicated to apportion the creep effects between fluid flow and
viscosity. The consistent philosophy of the present model is to limit the number of
model parameters to a strict minimum, and in particular to parameters that can be
easily obtained experimentally. It therefore appears inappropriate to add complexity
(i.e. constitutive relations and associated material parameters) in order to account for
phenomena that are difficult to measure. Therefore, viscous effects are neglected and
all time-dependent phenomena are considered to be resulting from fluid flow through
the porous solid skeleton. This simplification implies that stiffnesses that should be
attributed to viscous effects will be artificially “hidden” in the intrinsic permeability
and shear modulus, which might be respectively under- and over-estimated. Given
the high variability in the properties of biological tissues, one can argue that the
impact will not be noticeable (see conclusions in Sec. V.6).

III.7 Conclusions

In this chapter, a theoretical framework for the modelling of the intervertebral disc
was set out. The strategic decision to derive a biphasic swelling model based on
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the theory of porous media was motivated from the disc’s description provided in
Chapter II, as well as a review of existing soft tissue models. Particular attention
was given to the treatment of osmotic and rate-dependent effects, but also to define
a consistent level of complexity for the model. The numerical procedure to solve
the derived governing equations of the biphasic swelling model is provided in the
following chapter.
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Finite Element Formulation

This chapter is concerned with the numerical treatment of the biphasic
swelling model. The preliminary stage towards the construction of a finite
element framework is the derivation of the variational problem, together
with the clear definition of boundary conditions for each phase of the
mixture. The resulting set of equations is linearised, to allow the nonlinear
set of coupled equations to be solved with a Newton-Raphson procedure.
Special care was taken in designing the termination criteria of the iterative
scheme.

IV.1 Weak formulation

The governing equations of the biphasic swelling model were derived in Chapter III.
The balances of momentum and mass, recalled in Eq. IV.1.1, represent the strong
form of the problem.

div
(

σe − (∆π + p) I
)

= 0 (IV.1.1a)

div
(
vS + w

)
= 0 (IV.1.1b)

To be complete, the strong form requires a set of boundary conditions to be clearly
established. Preliminarily to this step, it is necessary to select the primary variables.
It could appear tempting to introduce a new variable that combines both the osmotic
pressure and the hydraulic fluid pressure to obtain an overall pressure: p = ∆π + p.
However, as the osmotic pressure only exists within the mixture, the field p could
potentially be discontinuous at the pressure boundary (i.e. the essential boundary for
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pressure as defined in the following), while it is required (even in the weak form) to
be strongly fulfilled to avoid numerically unstable solutions (e.g. Ehlers and Acarturk
(2009) and Ateshian et al. (2011)). Therefore, the set of primary variables is chosen as
the couple {uS,p}, where uS is the vector of solid displacements and p the hydraulic
fluid pressure.

The domain’s boundary ∂Ω, defined together with its outward normal n, is split
between essential and natural boundaries, which are independently defined for both
variables. On the one hand, displacements ūs are prescribed on the essential boundary
ΓuS and tractions t̄ are prescribed on the natural boundary Γt. On the other hand,
pressures p̄ are prescribed on the essential boundary Γp and the fluid flux q̄ is defined
on the natural boundary Γq. This is summarised in Eq. IV.1.2, where traction and
flux are also defined.

uS = ūS onΓuS (IV.1.2a)

p = p̄ onΓp (IV.1.2b)(
σe − (p+ ∆π) I

)
n = t̄ onΓt (IV.1.2c)

w · n = q̄ onΓq (IV.1.2d)

Figure IV.1: The domain’s boundary ∂Ω is split between essential and natural bound-
ary conditions relative to the fluid (left) and the solid (right)

Natural and essential boundary conditions cannot be simultaneously prescribed at
a given point to the same degree of freedom, but either of them must always be
prescribed. This is mathematically summarised as follows:
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∂Ω = ΓuS ∪ Γt and ΓuS ∩ Γt = ∅

∂Ω = Γp ∪ Γq and Γp ∩ Γq = ∅ (IV.1.3)

However, essential and natural boundaries of the solid and the fluid are not required
to coincide. This is illustrated on Fig. IV.1, showing that ΓuS 6= Γp and Γt 6= Γq.

The boundary value problem is now fully defined by the governing equations Eq.
IV.1.1 and the boundary conditions Eq. IV.1.2 and will be solved using a finite
element formulation. In order to subsequently allow for discretisation, the weak
form of the problem is derived using a standard Galerkin procedure. The governing
equations Eq. IV.1.1a and Eq. IV.1.1b are respectively weighed by a vector of trial
functions f and a scalar trial function g, and integrated over the domain Ω. Expressed
in the current configuration, this results in the system:

∫
Ω

f · div
(
σe − (∆π + p) I

)
dv = 0 (IV.1.4a)∫

Ω
g div

(
vS + w

)
dv = 0 (IV.1.4b)

Using the identities:

f · div (σe) = div (σef)− σe : grad f

g div (w) = div (gw)−w · grad g (IV.1.5)

together with the Gauss-Theorem (
∫
a u ·n da =

∫
v div (u) dv) allows the derivation of

the weak form of the biphasic swelling model expressed in the current configuration:

∫
Ω

(grad f) :
(
σe − (∆π + p) I

)
dv −

∫
Γt

f · t̄ da = 0 (IV.1.6a)∫
Ω

(
g div (v)− k grad p · grad g

)
dv −

∫
Γq
g q̄ da = 0 (IV.1.6b)

In solid mechanics, the weak form is often referred to as the principle of virtual work.
This stems from the fact that the trial functions f and g are arbitrary functions, only
required to vanish at the essential boundaries, which can be physically interpreted as
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virtual displacements and pressure. This implies that Eq. IV.1.6 can be physically
interpreted as residuals Ru and Rp, where trial displacements uS and pressures p are
sought to balance internal and external work. This can be rewritten as:

Ru(uS, p) = W int
u −W ext

u = 0 (IV.1.7)

Rp(uS, p) = W int
p −W ext

p = 0 (IV.1.8)

Note that, although the strong and weak forms are equivalent for sufficiently smooth
trial functions (see for example Belytschko et al. (2000) for demonstration), continuity
requirements on the trial functions uS are lower in the weak form (i.e. C0) than in
the strong form (i.e. C1).

IV.2 Linearisation

The previously derived weak form is a set of highly nonlinear equations. The source
of nonlinearities are multiple:

• Material nonlinearities. The constitutive properties of the solid phase, the
osmotic pressure and the permeability are all nonlinear functions of strains

• Geometric nonlinearities. In the finite deformation regime, the strains are non-
linear functions of displacements

• Phase coupling. Displacement and pressure fields are fully coupled

In the following, a Newton-Raphson scheme is formulated in order to solve the non-
linear problem. This consists in solving the problem in a sequence of linearised (i.e.
approximated) problems. Linearisation, which allows the derivation of the tangent
operator K, relies on the first order (truncated) Taylor expansion of the residuals in
the direction of the vector of incremental degrees of freedom δq =

{
δuS, δp

}
about

the previously known state q =
{
uS, p

}
. The directional derivative operator on the

functional R, in the direction of δq and about q, DR(q) [δq], is introduced (see for
example de Souza Neto et al. (2008) and Bonet and Wood (2008) for more details on
the directional derivative):

R(q + δq) ≈ R(q) +DR(q) [δq] (IV.2.1)

≈ R(q) + Kδq = 0 (IV.2.2)

43



Chapter IV: Finite Element Formulation

Generally, q represents the solution obtained at the end of the previous increment
and δq is the correction estimated at the current iteration as:

δq = −K−1q (IV.2.3)

The Newton-Raphson algorithm, and in particular the criteria for stopping the it-
erative loop, will be investigated in greater details in the following section, as the
linearisation process (i.e. the determination of the tangent operator K) is herein
considered.

In Sec. III.3, it was discussed that all quantities can be either expressed in the current
configuration (i.e. the Eulerian description, expressed in terms of the current coordi-
nates x) or in the reference configuration (i.e. the Lagrangian description, expressed
in terms of the reference coordinates X). This equally applies to the governing equa-
tion, which have so far been expressed in the current configuration, but also to the
linearisation process. Although the outcome is equivalent, the linearisation can be
performed either using the Lagrangian description or the Eulerian description.

In the following, although the Eulerian description is sought, the linearisation will be
performed on the Lagrangian description as it induces simpler derivations. This is
mainly due to the fact that in the Lagrangian description, the domain’s boundary is
fixed (i.e. dV is constant), which is not the case for the Eulerian description. This is
done in a three-step process:

1. pull-back: all quantities in Eq. IV.1.6 expressed in the current configuration are
transformed to their Lagrangian counterpart in order to obtain the Lagrangian
description of the weak form

2. linearisation: the directional derivative of the weak form is performed in the
reference configuration

3. push-forward: all quantities in the resulting system of equations are transformed
to their Eulerian counterpart in order to obtain Eulerian formulation

The first step requires to transform all used quantities from the current configuration
to the reference configuration. The volume is simply transformed using the jacobian
defined in Sec. III.3 and recalled in Eq. IV.2.4a. With Nanson’s formula (Eq.
IV.2.4b), the infinitesimal surface element da and its normal n are mapped back to
the material frame. Finally, the Cauchy stress is pulled back in Eq. IV.2.4c, which
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allows the introduction of the second Piola-Kirchhoff stress tensor Se, which is a
symmetrical Lagrangian measure of stress:

dv = JdV (IV.2.4a)

n da = JF−TS NdA (IV.2.4b)

σe = J−1FSSeFT
S (IV.2.4c)

Notations introduced in Sec. III.2 are used to describe the divergence and gradients
operators in the reference configuration:

grad(•) = Grad(•)F−1
S (IV.2.5)

div(•) = Div(•) · F−1
S

Inserting the identities Eq. IV.2.4 and Eq. IV.2.6a enables us to perform the pull-
back operation on (Eq. IV.1.6) and obtain the Lagrangian description of the weak
form:

∫
Ω

(Grad f ) :
(
SeFT

S − (∆π + p) JF−1
S

)
dV0 =

∫
Γt

f t̄0 dA0 (IV.2.6a)∫
Ω
J
(
gDiv (v) F−1

S + kGrad pF−1
S Grad gF−1

S

)
dV0 =

∫
Γq
g q̄0 dA0 (IV.2.6b)

where:

t̄0 =
(
FSSe − J (p+ ∆π) F−TS

)
N

q̄0 = JkGrad pF−1
S F−TS N = Jw0F−1

S F−TS N
(IV.2.7)

The second step is the linearisation process. It consists in assuming that the solution
of the displacement and pressure fields at time step t + ∆t can be expressed as an
estimate at time t plus a perturbation term (Eq. IV.2.8):

uS(t+ ∆t) = uS(t) + δuS = ûS + δuS

p(t+ ∆t) = p(t) + δp = p̂+ δp
(IV.2.8)

More generally, Eq. IV.2.8 allows to linearise each quantity (•), which can be ex-
pressed using the same notations, i.e. (•) = ˆ(•) + δ (•). (e.g. de Borst et al. (2006)):
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
FS = F̂S + δFS J = Ĵ + δJ

Se = Ŝe + δSe v = v̂ + δv

k = k̂ + δk ∆π = ∆̂π + δ (∆π)

(IV.2.9)

In order to account for the material nonlinearities, it is necessary to introduce the
Green-Lagrange strain tensor:

E = 1
2
(
FT
SFS − I

)
(IV.2.10)

The Green-Lagrange tensor, a Lagrangian strain measure, is the work conjugate of
the second Piola-Kirchhoff Se, which allows to define the Lagrangian elasticity tensor
C = ∂Se

∂E that relates incremental stress changes of the solid phase to incremental
displacement. This leads to the perturbation terms:

δFS = Grad δuS δJ = det
(
F̂S

)
F̂−1
S : δFS

δv = δu̇ δSe = ∂Se
∂E :

(
F̂T
S δFS

)
= C :

(
F̂T
S δFS

) (IV.2.11)

It is common to estimate the linearised inverse of the deformation gradient (see for
example derivation in Henderson and Searle (1981)) by taking only the first order
terms into account:

F−1
S ≈ F̂−1

S + δF−1
S

δF−1
S = −F̂−1

S δFSF̂−1
S

(IV.2.12)

The linearised problem is finally obtained by inserting the linearised quantities from
Eq. IV.2.9 to IV.2.12 into the weak form (Eq. IV.2.6):

∫
Ω

(Grad f ) :
[(

Ŝe + δSe
) (

F̂S + δFS

)T
−
(
p̂+ δp+ ∆̂π + δ (∆π)

)
(
Ĵ + δJ

) (
F̂−1
S + δF−1

S

)]
dV0 =

∫
Γt

f t̄0 dA0 (IV.2.13a)∫
Ω

(
Ĵ + δJ

) [(
gDiv (v̂ + δv)

(
F̂−1
S + δF−1

S

)
+
(
k̂ + δk

)
Grad (p̂+ δp)(

F̂−1
S + δF−1

S

)
Grad g

(
F̂−1
S + δF−1

S

)]
dV0 =

∫
Γq
g q̄0 dA0 (IV.2.13b)

The linearisation is performed to the first order, therefore neglecting multiplicative
inter-perturbation terms. In addition, following Vankan et al. (1997), the perturba-
tions δJ and δF−1

S , corresponding to variations of internal energy due to volume and
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geometry changes are neglected. Moving the internal and external force terms to the
right hand-side leads to the linearised weak form in the reference configuration:

∫
Ω

(Grad f ) :
[
ŜeδFT

S +
(
∂Se

∂E
:
(
F̂T
S δFS

))
F̂T
S − Ĵ (δp+ δ (∆π)) F̂−1

S

]
dV0 =∫

Γt
f t̄0 dA0 −

∫
Ω

(Grad f ) :
[
ŜF̂T

S − Ĵ
(
p̂+ ∆̂π

)
F̂−1
S

]
dV0

(IV.2.14a)∫
Ω
Ĵ
[(
gDiv (δv) F̂−1

S +
(
k̂Grad δp+ δkGrad p̂

)
F̂−1
S Grad g F̂−1

S

]
dV0

=
∫

Γq
g q̄0 dA0 −

∫
Ω
Ĵ
(
gDiv (v̂) F̂−1

S + k̂Grad p̂ F̂−1
S Grad g F̂−1

S

)
dV0

(IV.2.14b)

In a third step, the Eulerian formulation is recovered by a push-forward operation
on Eq. IV.2.14, and using the inverse of identities Eq. IV.2.4 and Eq. IV.2.6a. For
more details about the term regarding the material nonlinearity of the solid phase in
Eq. IV.2.15a, the reader is referred to the derivation in Bonet and Wood (2008).

∫
Ω

1
2
(
grad f + grad f T

)
: c :

(
grad δu + (grad δu)T

)
+

(grad f ) :
(
σ̂e (grad δu)T

)
− (grad f ) :

(
(δp+ δ (∆π)) I

)
dv =∫

Γt
f t̄ da−

∫
Ω

(grad f ) :
(
σe −

(
p̂+ ∆̂π

))
dv (IV.2.15a)∫

Ω

[
g div (δv) +

(
k̂ grad δp+ δk grad p̂

)
grad g

]
dv

=
∫

Γq
g q̄ da−

∫
Ω

(
g div (v̂) + k̂ grad p̂ grad g

)
dv (IV.2.15b)

The right hand sides of the above equations are measuring imbalances between ex-
ternal forces applied on the essential (i.e. traction and flux) boundary conditions:


∫

Γt
f t̄ da∫

Γq
g q̄ da

(IV.2.16)

and the internal forces:


∫
Ω g div (v̂) + grad ŵ grad g dv∫
Ω (grad f ) :

(
σe −

(
p̂+ ∆̂π

)
I
)
dv

(IV.2.17)
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that are arising from the loading of the mixture (external load, flux or osmosis) and
the transient deformations related to fluid flow or volume changes. The left hand-
side defines the tangent operator that will operate on the residual to estimate the
perturbations δq =

{
δuS, δp

}
, which will restore the balance between internal and

external forces. In Eq.IV.2.15a, the first two terms are respectively measuring the
geometric and material nonlinearities, while the third one evaluates the nonlinear
coupling between both phases and the last one accounts for the osmotic contribution.
In Eq. IV.2.15b, the first term is the counter part of the coupling term in Eq.IV.2.15a
while the last two account for the nonlinearities in the fluid flow.

IV.3 Discretisation

In this section, the linearised equilibrium equations previously derived are discretised.
This involves the introduction of a numerical time integration scheme, splitting the
time-continuum into time increments and the introduction of a finite element dis-
cretisation of the domain, where spatial interpolation functions are defined on sub-
divisions of the domain’s continuum.

IV.3.1 Time discretisation

An integration scheme needs to be defined in order to express the solid velocity vS

as a function of the solid displacements uS. The unconditionally stable backward
finite difference scheme is chosen (see for example Hughes (1987)). It is implicit in
the sense that the derivative of the primary variable uS at time t+ dt is expressed as
a function of its derivative at t+ dt rather than t:

vSt+∆t = u̇St+∆t = uSt+∆t − uSt
∆t (IV.3.1)

where ∆t is the time increment. As a consequence,:

δvS = δuS

∆t (IV.3.2)

IV.3.2 Spatial discretisation

Finally, the standard Galerkin formulation is obtained by discretising the linearised
weak form in space. In order to fulfil the inf-sup condition (see Brezzi and Fortin
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(1991) and Chapelle and Bathe (1993)), Taylor-Hood elements are employed (named
after Taylor and Hood (1973)). Quadratic shape functions are used to approximate
the solid displacements and linear shape functions for the pressure. The weighting
functions are discretised using the same shape functions as those used for displace-
ment and pressure. In Eq. IV.3.3, the discretised quantities are expressed in matrix
form using the vectors of shape functions Nu and Np, for displacements and pressure
respectively. (•)e denotes the vector of nodal unknowns for the field (•).


uS = Nuue

vS = Nuve

p = Nppe

f = Nufe

g = Npge
(IV.3.3)

Inserting the discretisation (Eq. IV.3.3) into linearised weak form (Eq. IV.2.15)
allows to express the linearized weak form in vector format.

 0 0
Kpu̇ 0

 δu̇
δṗ

+
 Kuu Kup

0 Kpp

 δu
δp

 =

 Fext
u

Fext
p

−
 Fint

u

Fint
p

 (IV.3.4)

Substituting Eq. IV.3.2 into the above yields:

Kpu̇δu + ∆tKppδp = ∆t
(
Fext
p − Fint

p

)
(IV.3.5)

Eq. IV.3.4 is then rewritten in the more convenient form, introducing Kpu = Kpu̇:

 Kuu Kup

Kpu ∆tKpp

 δu
δp

 =

 Fext
u

∆tFext
p

−
 Fint

u

∆tFint
p

 (IV.3.6)

Although the constitutive models for the strain-dependent permeability and the
osmotic pressure will be selected in subsequent sections, the following notations
are introduced without any loss of generality, using the fact that k = k(u) and
∆π = ∆π(u):

δk = k̃δu

δ(∆π) = ∆̃πδu (IV.3.7)

This allows to collect their linearised terms into the appropriate block of Eq. IV.3.6
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to explicitly specify the elemental stiffness tensor and force vectors. Note the intro-
duction of the notation ∇ (•) = grad (•) for clarity:

Kuu =
∫
v
{∇Nu}T D∇Nu + {∇Nu}T σe∇Nu + {∇Nu}T ∆̃π dv (IV.3.8a)

Kup =
∫
v
∇Nu {Np}T dv (IV.3.8b)

Kpu =
∫
v
Np {∇Nu}T +∇Npp̂ek̃∇Np dv (IV.3.8c)

Kpp =
∫
v
{∇Np}T k∇Np dv (IV.3.8d)

Fint
u =

∫
v
{∇Nu}T σ̂e − {∇Nu}T

(
Npp̂e + Nu∆̂π

e)
dv (IV.3.8e)

Fint
p =

∫
v
{∇Np}T k∇Npp̂e + Np∇Nuv̂e dv (IV.3.8f)

Fext
u =

∫
a
{Nu}T t̄ da (IV.3.8g)

Fext
p =

∫
a
{Np}T q̄ da (IV.3.8h)

where D is the matrix representation of the fourth-order elasticity tensor.

Kuu is the sum of the geometric, material and osmotic contributions respectively. The
tangent matrix is not symmetrical due to the strain dependent permeability. When
the permeability k is constant, Kup = KT

pu and the tangent matrix is symmetrical.

Eq. IV.3.6-IV.3.8 can be directly used for an Eulerian formulation. These rela-
tionships can easily be pulled back to the reference configuration for a Lagrangian
formulation using the relationships Eq. IV.2.4.

IV.4 Termination criterion for the Newton-Raphson
algorithm

All requirements for the implementation of the Newton-Raphson procedure have now
been derived. However, the algorithm, which is summarised in Fig. IV.2, requires the
definition of a termination criterion for the iterative Newton loop. The objective is to
define a criterion that ensures the procedure only stops once an acceptable balance
between the external and internal forces is found. For example, a criterion minimising
the energy flow to the system from the residual, was initially envisaged:

e ≤ εmax
(
W ext,W int

)
(IV.4.1)
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e, W ext and W ext are defined as follows, where ∑
dof

indicates the sum over the degrees

of freedom of the relevant vector:

e =
√∑
dof

δq2
j ·R2

j (IV.4.2)

W ext =
√∑
dof

(∆qj)2 · (F ext)2 (IV.4.3)

W int =
√∑
dof

(∆qj)2 · (F int)2 (IV.4.4)

This ensures that the iterative process will only stop when the incremental work
done during the i-th increment is large enough (i.e. constrained by ε) compared to
the iterative work done by the out of balance force during the j-th iteration.

This criterion usually performs well in the particular case of single phase problems.
However, the biphasic problem is defined by a set of two equations, each of which
describes a very specific physical process. The magnitude of residuals and associated
degrees of freedom emerging from these equations can span several orders depending
on the material parameters and the type of loading. This is, for example, the case
for a highly permeable mixture experiencing slow loading: residuals associated with
the continuity equation may be considerably smaller than those associated to the
momentum balance, even during the first increment. It may in turn result in condition
IV.4.1 being met even if the residuals associated with the solid phase are still large. In
addition, the rate of convergence of the system can be different for the two equations.

It is therefore crucial to treat the residuals Ru
j and Rp

j , respectively derived from
of the balance of momentum and the balance of mass, separately. This leads to the
following system:


eu ≤ εmax

(
W ext

u ,W int
u

)
ep ≤ εmax

(
W ext
p ,W int

p

) (IV.4.5)

where:
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eu =
√∑
dof

(δqu
j )2 · (Ru

j )2 ep =
√∑
dof

(δqpj )2 · (Rp
j )2 (IV.4.6)

W ext
u =

√∑
dof

(∆qu
j )2 · (F ext

u )2 W ext
p =

√∑
dof

(∆qpj )2 · (F ext
p )2 (IV.4.7)

W int
u =

√∑
dof

(∆qu
j )2 · (F int

u )2 W int
p =

√∑
dof

(∆qpj )2 · (F int
p )2 (IV.4.8)

This scheme proves to work well under most circumstances, with the exception of
ramp-hold types of loading. In this case, energy flows eu and ep as well as the
incremental work done (W ext

u and W ext
p ) may be small during the relaxation phase,

leading to termination criteria that may never be met. This issue is circumvented
by defining the termination criteria as a set decrease of the energy flow, either in a
relative or absolute capacity:

max(eu, ep) ≤ εrmax(e0
u, e

0
p) (IV.4.9)

max(eu, ep) ≤ εa (IV.4.10)

The drawback of this criteria is that the choice of εr and εa is problem specific and
requires special care.
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For Increment i do
Initialise

- The vector of degrees of freedom: qi = qi−1 + q̄i;
- The incremental vector of degrees of freedom: ∆qi = 0;
- The incremental force vector: Fext = Fext(i);
- The iterative counter j=0;

Evaluate
- The internal force vector using Eq. IV.3.8e-f: Fint = Fint(qi);
- The residual: R0 = Fext − Fint;
- The problem specific norm of the residual: ||R‖ = F (R0);

Do Iterative Newton loop j while ||R‖ < ε

Evaluate
- The global stiffness matrix using Eq. IV.3.8a-d: K = K(qi);
- The iterative correction: δqj = -KR;

Update

- The incremental vector of degrees of freedom: ∆qi =
j∑

k=1
δqk ;

- The vector of degrees of freedom: qi = qi−1 + q̄i + ∆qi;
- The internal force vector: Fint = Fint(qi);
- The residual: Rj = Fext − Fint;
- The norm of the residual: ||R‖ = F (Rj);
- j = j + 1;

end
end

Figure IV.2: The Newton-Raphson algorithm for a single increment i
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IV.5 Conclusion

In this chapter, the numerical procedure to solve the previously derived set of govern-
ing equations was developed. This involved the definition of boundary conditions for
both the solid and the fluid, the transformation of the strong form to the weak form,
which was ultimately linearised in order to derive the tangent operator, and discre-
tised in both time and space. This procedure enabled us to use a Newton-Raphson
iterative scheme to solve the nonlinear problem. Additionally, a specific termination
criterion was defined for the iterative solver. In the following sections, this scheme
will be first tested for the one dimensional isotropic problem, before embarking on
the three dimensional fibre reinforced problem.
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Chapter V

The 1D model: confined
compression test

The biphasic swelling model is initially reduced to the one-dimensional
case in order to investigate the behaviour of the nucleus pulposus sub-
jected to confined compression. The derived equations are coded in Mat-
lab, together with carefully chosen constitutive relationships in order to
test the model’s performance against experimental data. Finally, results
of the 1D model are used to study and gain understanding of the coupled
mechanisms within the disc, to provide a foundation for the work that
follows in Chapter VI.

V.1 Confined compression: the reduced model

This chapter aims on the one hand to evaluate the appropriateness of the biphasic
swelling model when applied to a relatively simple problem and on the other hand
to facilitate familiarity with the mechanics of porous and charged tissues. Reducing
the preceding derivation to one dimension enables the modelling of an idealisation of
the confined compression test. In the whole of this chapter, our interest will focus
on the experiment described in Fig. V.1: a cylindrical sample of nucleus pulposus
(the isotropic part of the IVD) is placed in a confining chamber and subjected to
axial displacements. The impermeable and rigid lateral membrane prohibits any
lateral expansion and fluid flow, while the above and below porous platens enforce
uni-axial displacements and fluid flow. To some extent, this can be viewed as a crude
approximation of an intervertebral disc subjected to compression, with an infinitely
stiff annulus pulposus.
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Figure V.1: Confined compression apparatus with associated mesh taking advantage
of the symmetry

In order to take advantage of the symmetry of this problem and therefore only model
the upper half of the sample, fluid flow and displacements at the centre of the sample
are constrained and only half of the prescribed displacements are applied to the top
node. Following Sec. IV.3.2, 2-node linear elements are used for the pressure field
and 3-node quadratic elements for the displacement field (see Fig. V.1). The shape
functions expressed in the local iso-parametric coordinate system ξ ∈ [−1; 1] are:


Nu

1 (ξ) = − ξ
2 (1− ξ)

Nu
2 (ξ) = (1− ξ) (1 + ξ)

Nu
3 (ξ) = ξ

2 (1 + ξ)

N
p
1 (ξ) = 1

2 (1− ξ)

Np
2 (ξ) = 1

2 (1 + ξ)
(V.1.1)

In 1D, the mathematical problem simplifies drastically due to the fact that all vec-
torial and tensorial quantities reduce to scalars. This is for example the case for the
position vector:

X = X(X1, X2, X3) 1D−→ X1 = X (V.1.2)

For clarity, three dimensional quantities that are usually referred to with bold char-
acters will be reduced to scalar in 1D by discarding the boldface (e.g. σe 1D−→ σe).
Conveniently in 1D, the gradient of deformation reduces to the stretch, which is a
strain measure that evaluates the elongation at a given material point:

F 1D−→ F (X, t) = ∂x(X, t)
∂X

= 1 + ∂u(X, t)
∂X

= λ(X, t) (V.1.3)

As Eq. V.1.3 shows, the stretch is a Lagrangian strain measure (i.e. expressed in
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terms of the Lagrangian position X). This makes is particularly practical to derive
the 1D model using a total-Lagrangian formulation as all quantities are naturally
expressed in terms of the stretch.

In the special case of confined compression, the axial stretch λ = λ1 directly measures
the level of compression, while lateral stretches remain constant since the section of
the sample cannot expand (i.e. λ2 = λ3 = 1). This yields the following simplifications:



J = λ1λ3λ3 = λ

dv = JdV = λAdX

da = dA

Se = 1
λ
σe

(V.1.4)

V.2 Constitutive relations

Up to this point, the modelling framework remained very general and could be equally
used to model a number of problems such as brain tissues or articular cartilage. In
this section, constitutive models for each phase and the osmotic pressure are selected
for the particular case of nucleus pulposus tissues.

V.2.1 Strain dependent permeability

The well established exponential model proposed by Lai and Mow (1980) is used to
describe the dependence on the permeability to the volume change:

k = k0 e
M(λ−1) (V.2.1)

It is consistent with remarks made in Sec. III.5 as it implies that compression rapidly
hinders fluid flow with the intrinsic permeability k decreasing from its value k0 in the
undeformed state. The positive and dimensionless material parameterM controls the
curvature of the nonlinear change in the permeability when the mixture experiences
volume change. The interested reader can refer to Lai et al. (1981) for a study
investigating the sensitivity of the biphasic model to various permeability parameters.
For illustration purposes, Fig. V.2 shows how the permeability varies for various
values of M .
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Figure V.2: Sensitivity of the strain dependent permeability on the parameter M
(k0 = 1)

The strain-dependent permeability is linearised in order to evaluate the tangent stiff-
ness matrix:

δk = k̂M∇0δu (V.2.2)

V.2.2 Swelling pressure and reference state

Whether in-vitro or in-vivo, defining a physiological reference state for the strain of
the tissue is a recurring issue (see for example discussion in Karajan (2009) or later
in Sec. VI.1.1). The nucleus is predominantly governed by the fluid flow through
the solid matrix and its water content, which makes the state of the tissue highly
dependent on the loading history. Additionally, the tissue is always under pre-stressed
conditions in order to accommodate:

- the confining loads of the adjacent vertebrae and annulus fibrosus

- the swelling effects of the osmotic pressure

- the fluid pressure (except in the virtually impossible case, due to low perme-
ability, of time-dependent equilibrium)

In order to preserve a close to physiological state, experiments are conducted in-vitro
on samples harvested from spines that have been frozen soon after death. These
are typically bovine tissues. Then, a possible way to define a reference state is to
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choose this “preserved” state as the initial strain-free condition (which is obviously
not accurate due to the physiological pre-straining, which is impossible to measure).
The associated pre-stress can be taken into account by defining a swelling pressure
σ0, which represents the sum of the osmotic pressure and the elastic stress on the
solid at equilibrium (Yao et al., 2002):

σ0 = π0 + σe0 (V.2.3)

Experimentally, σ0 represents the load that needs to be applied onto the thawed
sample to maintain it at the physiological strain state (i.e. the frozen state). It is
estimated in Heneghan and Riches (2007) that at any level of compression, the initial
ionic osmotic pressure π0 represents about 70% of the swelling pressure. Therefore,
the initial solid stress σe0 (which also includes the non-ionic osmotic pressure) accounts
for the remaining 30% and we have:

σ
e
0 = 0.3σ0

π0 = 0.7σ0

(V.2.4)

This assumption allows the number of material parameters of the model to be reduced.

V.2.3 Osmotic pressure

Most publications using biphasic swelling models (e.g. Schroeder et al. (2006), Wilson
et al. (2005b), Ehlers et al. (2008)) derive the osmotic contribution from the Donnan
equation, the electro-neutrality condition and Van’t Hoff osmotic law, to obtain:

∆π =


√√√√c̄2

m +
(

cfc0Sn
F
0S

2 (λ− nS0S)

)2

− c̄m

 (V.2.5)

This model requires the following material parameters: the initial porosity nF0S (or
solidity nS0S), the initial molar concentration cfc0S and the molar concentration of the
external monovalent solution surrounding the tissue c̄m .

However, in the present formulation, we propose the use of a simpler power law
derived from confined compression tests in Heneghan and Riches (2008a):

∆π = π0

λm
(V.2.6)
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where π0 represents the ionic osmotic pressure in the initial state, which is determined
according to Eq. V.2.4. The dimensionless parameter m controls the non-linearity.
This law is phenomenologically motivated by the fact that osmotic effects arise from
changes of concentration of proteoglycans (see Chapter II). The biphasic swelling
model relies on the assumptions that these are attached to the solid matrix (this is the
Lanir hypothesis described in Sec. III.4) and as such, the volume changes measured
by λ in 1D are representative of changes in concentrations of proteoglycans.

In Heneghan and Riches (2008a), it appears that using m=2 is an acceptable approx-
imation. This implies that the osmotic contribution can be determined with only one
parameter (π0), which is derived from σe0 measured at equilibrium.

The corresponding linearised term is:

δ (∆π) = −m∆̂π
λ
∇0δu (V.2.7)

V.2.4 Solid phase

The solid phase is modelled using the well established strain energy function proposed
in Holmes and Mow (1990). In 1D, the Cauchy stress takes the form:

σe(λ) = 1
2Hm

(
λ2 − 1
λ2β+1

)
eβ(λ2−1) + σe0 (V.2.8)

Note that the initial solid stress σe(λ = 1) = σe0 is accounted for. β is a dimensionless
parameter that controls the degree of nonlinearity and Hm is the stiffness modulus
of the solid phase at zero strain (i.e. the shear modulus in the small strain regime):

Following the arguments made in the previous section, obtaining a set of material
parameters (Hm,β) for the solid phase in a consistent manner represents a significant
challenge since the state λ = 1 is itself, to some extent, unknown.

Hm = ∂σe

∂λ |λ=1
(V.2.9)
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Figure V.3: Sensitivity of the Cauchy stress to the parameter β (Hm = 1)

Finally, the elasticity tensor is derived to account for the material nonlinearities.
In the context of a total-Lagrangian formulation, the Lagrangian elasticity tensor is
defined as:

C = 2∂Se(C)
∂C

1D−→ C = 2∂S
e(C)
∂λ2 (V.2.10)

In Eq. V.2.10, the right Cauchy-Green strain tensor was reduced for the 1D problem
as follows:

C = FTF 1D−→ C = λ2 (V.2.11)

Eq. V.2.10 also requires the derivation of the second Piola-Kirchhoff stress, which is
simply obtained from Eq. V.2.8 using Eq. V.1.4:

Se = 1
2Hm

(
λ2 − 1
λ2β+2

)
eβ(λ2−1) + σe0

λ
(V.2.12)

Finally, the Lagrangian elasticity tensor takes the form:

C = β (λ2 + λ−2 − 2) + λ2

λ2β+2 Hne
β(λ2−1) − σe0

λ3 (V.2.13)

V.3 The 1D updated-Lagrangian formulation

Finally, the full set of equations required for the Newton-Raphson implementation of
the biphasic swelling problem in 1D is presented. The system of equation is the same
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as presented in Chapter IV and recalled here:

 Kuu Kup

Kpu ∆tKpp

 δu
δp

 =

 Fext
u

∆tFext
p

−
 Fint

u

∆tFint
p

 (V.3.1)

Subsequently, the elemental stiffness matrix and elemental force vectors are obtained
by a pull-back operation (i.e. the inverse transformation of Eq. IV.2.4) on Eq.
IV.3.8, and the relationships derived in the current chapter. Remembering that dis-
placements and pressure are respectively approximated by quadratic 3-node elements
and linear 2-node elements, these can be expressed in index notation as:

eKuu(i, j) =
∫
L

dNu
i

dX

(
Ŝe + Cλ2 − mπ0

λm+1

) dNu
j

dX
AdX i, j ∈ {1, 2, 3} (V.3.2a)

eKup(i, j) =
∫
L

dNu
i

dX
Np
jAdX i ∈ {1, 2, 3} j ∈ {1, 2} (V.3.2b)

eKpu(i, j) =
∫
L

(
Np
i + 1

λ3
dNp

i

dX

dp̂e

dX

)
dNu

j

dX
AdX i ∈ {1, 2} j ∈ {1, 2, 3} (V.3.2c)

eKpp(i, j) =
∫
L

1
λ

dNp
i

dX
k̂
dNp

j

dX
AdX i, j ∈ {1, 2} (V.3.2d)

eF int
u (i) =

∫
L

dNu
i

dX

(
Ŝeλ− (p̂e + ∆̂π

e
)
)
AdX i ∈ {1, 2, 3} (V.3.2e)

eF int
p (i) =

∫
L

(
Np
i

dv̂e

dX
+ k

dp̂e

dX

dNp
i

dX

1
λ

)
AdX i ∈ {1, 2} (V.3.2f)

eF ext
u (i) =

∫
A
Nu
i t̄0dA i ∈ {1, 2, 3} (V.3.2g)

eF ext
p (i) =

∫
A
Np
i ḡ0dA i ∈ {1, 2} (V.3.2h)

For completeness, it should be mentioned that numerical integrations are performed
using a 3-point Gaussian quadrature.

V.4 Correlation with experimental data

The aim of this section is to show that, with carefully chosen parameters, the 1D
biphasic swelling model can replicate experimental confined compression tests. The
performances are assessed by fitting the numerical model to experimental data, cour-
tesy of Dr Riches (from data published in Riches (2010) and Riches (2012)). Bovine
tail intervertebral discs (non-degenerated) were harvested within hours of slaughter
and frozen with the intention of preserving a close to physiological state. Samples
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of diameter 10mm and approximate thickness 1mm were punched from the nucleus
pulposus and placed in the apparatus described in Fig. V.1, where the bathing so-
lution is an isotonic saline solution (0.15 mol/L NaCl). During the thawing process,
the force applied onto the top platen to maintain the sample thickness was recorded
and represents the swelling force σ0A in the reference configuration. The samples are
then subjected to a 10% ramp-hold compression test at a rate of ∼1 µm.s−1(see Fig.
V.4a).
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Figure V.4: Experimental reaction force for 3 typical bovine tail samples subjected
to 10% compression followed by hold events

Fig. V.4b plots, for a selection of three samples, the force that was applied to the
top platen in order to obtain the linear strain ramp loading. The nonlinearity of the
response, typical of soft tissues under compression (e.g. Holmes et al. (1985), Iatridis
et al. (1998)), will be further analysed in the following section. The large discrepancies
(see Fig. V.4b) in swelling force (13-24N), peak force (102-185N) and equilibrium
force (23-37N) are not unusual in the experimental analysis of soft tissues and can
be explained in numerous ways (see for example Perie et al. (2005) and Recuerda
et al. (2011)). These include the difficulty to obtain samples of even thickness (1014-
1267 µm in the present case), the repeatability of the experiment, the impact of the
sample’s preparation but also the intrinsic properties of the sample (e.g. water and
GAG content, age . . . ).

In order to tune the model to fit the experimental data, the set of material parameters
is determined as follows: π0 is derived from the initial swelling force, and then Hm is
chosen to accommodate the equilibrium force (i.e. at steady state), that is when the
pressure has dropped to zero and the fluid flow (and therefore the permeability) is not
impacting on the mixture’s total stress. Ideally, the solid properties (Hm,β) would
be determined together using a plot of force vs strain at equilibrium; fortunately,
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in the range of 10%, the solid nonlinearities are limited, minimising the role of β,
which was then chosen from the literature. Finally, the parameters k0 and M are
chosen to fit both the peak load and the curvatures, with the help of the sensitivity
study undertaken by Lai et al. (1981) to understand the relative influence of β and k0

on the curvature and peak load. Note that a mesh convergence study revealed that
20 elements were sufficient in order to accurately capture smooth pressure gradients
across the sample.
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Figure V.6: Correlation between experimental and numerical reaction for Sample 2

The set of chosen parameters falls into the range found in the literature (see for exam-
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ple Heneghan and Riches (2008b) and references therein). However, it is important
to bear in mind that the proposed set of parameters represents only one solution
among a larger space of possible sets. Riches (2012) warns that in this type of in-
verse analysis, contrasting combinations of parameters, including parameter without
physiological ground, can produce comparable results.

V.5 Internal mechanisms in confined compression

This section aims to illustrate how simple computational models can complement
experimental work to understand the internal processes of the intervertebral disc
and provide valuable information, for example, in mechano-biology. In particular,
emphasis is placed on the understanding of the prevalence of the fluid flow on the
overall behaviour of the mixture, as suggested throughout Chapter III. To do so, the
“Sample 1” described previously (Fig. V.5) is analysed in more details.

A possible approach to understanding what makes the response of the tissue nonlinear
and why the peak force can be three times larger than the equilibrium force, is
to start by relating the volume change of the mixture to the imposed loading. In
confined compression, the prescribed displacement indirectly measures the volume
change of the whole sample (as J = λ) which, in the context of constituent intrinsic
incompressibility, also accounts for the volume of fluid expelled from the sample (see
Sec. III.3.2). This is illustrated in Fig. V.7, where the flux of fluid at the free-flow
boundary (top of the sample) is equal to the rate of loading, i.e. is constant.
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Figure V.7: Flux vs time in sample 1

The low (in relation to the loading rate and the sample’s length) permeability hinders
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the ability of the fluid to flow from the centre to the top, resulting in different levels
of hydration throughout the depth of the sample. This defines two distinct regions
associated with the load transfer mechanism. The first region, located near the free-
flow boundary at the top, is dominated by high local solid deformation (Fig. V.8):
the fluid does not have the ability to pressurize as it is squeezed out of the cylinder.
At the end of the loading ramp, the top 30% of the sample experience stretches that
are larger than the overall 10% applied, reaching a maximum of 55% at the top.
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Figure V.8: Stretches in sample 1

The second region, situated at the centre of the cylinder, is predominantly subjected
to fluid pressurisation due to the fact that the low permeability is confining the fluid
at the centre of the cylinder. Note that this results in relatively high gradients of
pressure near the boundary (Fig. V.9a), requiring sufficiently dense meshes to capture
this behaviour.

Due to this behaviour, material nonlinearities related to strains are locally triggered
at the top of the sample, which experiences an increase of osmotic pressure and
a decrease of permeability. Physiologically, these two mechanisms aim at protecting
the tissue from experiencing excessive strain levels: the swelling increase locally offers
extra stiffness to the mixture, while a decreased permeability induces higher levels of
fluid pressurisation.
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Figure V.9: Hydrostatic pressure distribution in sample 1

During the relaxation phase (t ≥ 63s), the fluid flows internally from the highly
hydrated and pressurised centre of the specimen toward the boundary, and slowly the
fluid and strain distributions adjust across the sample, until equilibrium is reached
(p = 0, q = 0, λ = 0.9 throughout). At every time t and for each cross-section of the
sample, the total stress (i.e. the reaction force divided by the cross section area) is
apportioned between the fluid pressure, the osmotic pressure and solid stress:

σ(x, t) = σe(x, t)− p(x, t)−∆π(x, t) (V.5.1)

In order to analyse the load carrying mechanisms across the sample, the solid stress,
fluid pressure and osmotic pressure are normalised by the total stress σ (see Fig.
V.10b and V.10c) during the ramp and creep events. Although the magnitude of these
results must be taken with care, as they highly depend on the choice of constitutive
equations and parameters (see Fig. V.10a), they highlight observations made in
previous sections: under dynamic loading, the response of the highly hydrated IVD is
dominated by fluid pressurisation, which protect the solid matrix under rapid/shock
loading. The low permeability delays the time at which steady state is reached,
which occurs when equilibrium is achieved between external forces, solid stress and
osmotic pressure. The high compressive strains at the top induce compaction of the
solid phase, which is equivalent to increasing the concentration of proteoglycans and
therefore increasing the osmotic pressure.
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Figure V.10: Cauchy stress and osmotic pressure vs time (a), evolution of the stress
distribution over time at the centre of the sample (b) and near the top surface (c)

V.6 Conclusions

The biphasic swelling model derived in previous sections was formulated for the one
dimensional case. This allowed validation of the proposed model and demonstration
of its capabilities to replicate experimental confined compression tests, as well as
understand some of the internal mechanisms of the disc. It also highlighted the diffi-
culty in obtaining material parameters (7 in the 1D case) and supports the modelling
choice of the biphasic swelling model, but also neglecting visco-elastic phenomena.
This paved the way for the more complex three dimensional implementation of the
model, and in particular for the introduction of anisotropy.
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Chapter VI

The 3D Biphasic Swelling Model

The focus of this section is the development of the three dimensional
biphasic swelling model. Constitutive relationships for each constituent
are presented, with particular emphasis on the transversely isotropic annu-
lus fibrosus. Following a brief description of the C/C++ code specifically
written for the current application, a methodology to verify the correct
implementation of the biphasic swelling model is designed. Finally, con-
vergence of the Newton-Raphson iterative solver is illustrated on simple
benchmark tests.

VI.1 Constitutive relations

In a similar fashion to the 1D model, the biphasic swelling model is specialised in this
section to the particular case of the intervertebral disc, by selecting a set of consti-
tutive relationships characterising the solid phase, the strain dependent permeability
and the osmotic pressure. The solid phase, which comprises the isotropic ground
matrix and the collagen fibres of the annulus fibrosus, is described by an additive
decomposition of its strain energy functions (Spencer, 1984):

W S = W S
matrix +W S

fibre +W S
interactions (VI.1.1)

The term W S
interactions accounts for the energy generated by potential interactions

between the solid matrix and the fibres. This automatically implies (see Eq. III.3.23)
a similar split for for the stress tensor:

σe = σe
matrix + σe

fibre + σe
interactions (VI.1.2)
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VI.1.1 The isotropic part

(a) The solid matrix

In this work, the nucleus pulposus, the ground substance embedding the fibres of
the annulus and the endplates are assumed to be perfectly isotropic, i.e. W S

fibre =
W S

interactions = 0. The solid phase is simply described by a Neo-Hookean model (see
Bonet and Wood (2008)):

W S
matrix = µ

2 (I1 − 3)− µ ln J + λ

2 (ln J)2 (VI.1.3)

where I1 = tr(CS) is the first invariant of the Cauchy-Green tensor CS = FT
SFS. This

expression is usually used for compressible single phase materials. However, here J
measures the volume change of the mixture and the last two terms are interpreted
as the response of the solid matrix to volumetric changes of the mixture (i.e. the
hydrated porous solid).

Following the derivation in Eq. III.3.23, the associated Cauchy stress tensor is eval-
uated as follows (with b = FSFT

S ):

σe
matrix = 2J−1FS

∂W S
matrix

∂CS

FT
S = µ

J
(b− I) + λ

J
(ln J) I (VI.1.4)

(b) The permeability

As suggested in Sec. III.3.3 and further motivated in Sec. III.3.3, the permeability
is described by a strain-dependant isotropic tensor K = kI, and the chosen model:

k = k0 e
M(J−1) (VI.1.5)

is a simple extension of the one dimensional relationship derived in Lai and Mow
(1980). The axial stretch is generalised in 3D by the volume change of the mixture J .
This can be physically interpreted as a permeability that is exponentially decreasing
as the level of compaction increases.

The linearised permeability term that is required in Eq. IV.3.8c, is derived:

δk = k0 expM(J−1) δJ

= MkJ
[
F−1
S : (grad δu) FS

]
(VI.1.6)

where use was made of the linearised jacobian δJ derived in Eq. IV.2.11.
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(c) The osmotic contribution

Stemming from two physical observations made in Chapter II, namely that:

1. the osmotic pressure is directly related to gradients of concentration of proteo-
glycans

2. proteoglycans are large molecules that are trapped in the matrix of collagen
fibres and cannot leach out of the intervertebral disc

and further motivated in Sec. III.4, the biphasic swelling model is built on the
assumption that the osmotic pressure can be constitutively derived, and expressed
as a function of solid deformations (Sec. III.4). We therefore propose to relate the
osmotic pressure to the volume change of the mixture J = det FS, thus extending
the 1D model derived in Heneghan and Riches (2008a) in a similar manner to the
permeability:

∆π = π0

Jm
(VI.1.7)

Analogously, the linearised osmotic pressure term required in Eq. IV.3.8a is derived:

δ∆π = −mπ0

Jm+1 δJ

= −∆π
[
F−1
S : (grad δu) FS

]
(VI.1.8)

Remembering the derivation of Chapter III.3, together with σe = σe
matrix + σe

fibre, the
total stress writes:

T = σe −∆πI− pI (VI.1.9)

Eq. VI.1.9 clearly shows that the proposed osmotic law gives rise to an initial total
stress in the reference state (i.e. when uS = 0 and p=0):

T|uS=0,p=0 = π0I (VI.1.10)

The definition of an initial state for the tissue that is physiologically meaningful
is a recurring issue in the modelling of soft tissues and of the intervertebral disc in
particular (see discussions in Chapters V and VIII). At this stage, there are essentially
two strategies to tackle this problem, which are discussed in more depth in Karajan
(2009). It is possible to:
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1. Consider that the initial geometry (e.g. mesh obtained from in-vivo medical
imagery) is in a stress- and deformation-free configuration. This is artificially
enforced by subtracting the initial osmotic pressure from the total stress. This
can, for example, be interpreted as a volumetric prestress of the solid:

T = (σe − π0I)−∆πI− pI → T|uS=0,p=0 = 0 (VI.1.11)

2. Assume that the initial geometry, is a virtual temporary configuration that
is stress-, deformation- but also osmotic pressure-free. In this case, prior to
any mechanical loading, the model is first solved for an incremental increase of
osmotic pressure, up to the required level, allowing to find a set of solid stresses
balancing the osmotic distribution.

Unfortunately, tissues within the intervertebral disc always are (and have been) sub-
jected to a certain level of loading. This is due to a combination of the compressive
loads imposed by adjacent vertebral bodies, the distribution of fluid pressure resulting
from low permeability of the tissue, the osmotic pressure distribution and the com-
plex interaction between the annulus fibrosus and the nucleus pulposus. Therefore,
defining a stress- and deformation-free configuration is physiologically not possible;
it would require the separation of each sub-constituent of the IVD followed by relax-
ation and swelling until some non-physiological equilibrium is reached. This means
that neither of the above approaches is fundamentally fully acceptable.

The main disadvantage of the first strategy is the lack of information about the
stress state in the reference configuration; labelling this configuration as the strain-
free configuration results in a shift of the origin of solid constitutive laws (matrix,
fibres, osmotic pressure). However, it offers the advantage of conserving the initial
in-vivo geometry.

The second approach is based on letting the tissues swell until a certain equilibrium
is reached, obviously implying that the initial geometry is not preserved. Although it
probably offers a more realistic initial stress-state within the disc (one can for example
think of the state of the fibres confining the swelling isotropic nucleus, which are not
stressed in the first approach as reported in Michalek et al. (2012)), one can also
argue that the nonlinear swelling process is path dependant and can lead to a variety
of equilibrium states. Furthermore, this approach is computationally more expensive.

Although imperfect, the first approach is implemented in this work, on the ground
that it is physiologically more relevant than the second option, and simpler to im-
plement. In practice, it implies the definition of an initial configuration for each
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problem; all strain measures are then defined with respect to this reference configu-
ration, which makes the concept of absolute strain not applicable. As a consequence,
material parameters must be calibrated with respect to this configuration.

Note that the approach used in the 1D model was a variation of the first option, in the
sense that the initial total stress is also imposed, but instead of to zero, to a pre-stress
that is measurable in the laboratory. Indeed, in the case of confined compression (see
Eq. V.2.3-Eq. V.2.8), the initial osmotic pressure could be physically interpreted as
a swelling pressure and conveniently be converted to an axial compressive load at the
boundaries, allowing a more refined initial state to be defined.

VI.1.2 The anisotropic annulus fibrosus

Chapter II shed light on the paramount role played by the annulus fibrosus in the
overall behaviour of the intervertebral disc. The ability of the annulus fibrosus to
sustain high pressurisation of the nucleus pulposus stems both from the arrangement
of collagen fibres and their superior tensile properties. The annulus fibrosus was not
accounted for in Chapter V but it is crucial to include a faithful representation of
AF’s fibres in a 3D model.

Further to early models that assigned stiffer properties to elements comprising the
annulus fibrosus in an iso- or ortho-tropic manner (e.g. Martinez et al. (1997), Polikeit
et al. (2004)), a vast amount of full disc models use reinforced composite elements
made of discrete fibres modelled as springs that are superimposed on an isotropic
matrix (e.g. Shirazi-Adl (1994), Noailly et al. (2005), Schmidt et al. (2010), Tang and
Rebholz (2011)). Mesh dependency for the fibre representation and fibre discontinuity
between elements are the two main limitations of these models, stemming from the
fact that the stiffness of the springs is usually defined between two adjacent nodes.

In the context of the intervertebral disc, the mesh dependency associated with the
fibres was bypassed in Schroeder et al. (2006, 2008), by using a model originally
developed for articular cartilage in Wilson et al. (2005b,c): in the so-called fibril-
reinforced model, the linear visco-elastic stress contribution of the fibres is evaluated
at the continuum level and also takes into account the change of fibre orientation.

In an attempt to simplify the very general 9-parameter model of Klisch and Lotz
(1999) based on 11 invariants, the first constitutive models were derived using ex-
perimental work performed on single lamellae of annulus fibrosus. This allows the
strain energy to be only expressed as a function of the fourth invariant of the right
Cauchy-Green tensor, defined as:

73



Chapter VI: The 3D Biphasic Swelling Model

I4 = a0 ·CSa0 = λ2
a (VI.1.12)

where a0 is the unit vector characterising the direction of a single family of fibres in
the reference configuration (see Fig. VI.1). I4 can be physically interpreted as the
square of the fibre stretch. A notable example is the exponential function proposed
in Eberlein et al. (2001) and initially used with constant material properties on a FE
motion segment but later refined in Eberlein et al. (2004) and Holzapfel et al. (2005)
with further experimental work. One can also cite the polynomial law developed by
Markert et al. (2005) and validated against the experimental work of Holzapfel et al.
(2005), later used for two families of fibres in Ehlers et al. (2008).

Naturally, the models previously described have recently been enhanced to include
several levels of refinement, such as the fibre-matrix interaction or potential failure
mechanisms as described in Chapter II. For example, the fibril-reinforced model used
in Schroeder et al. (2006) was enhanced in Schroeder et al. (2010) to account for the
inter-lamellar connection through a secondary network of collagen fibrils as described
in Pezowicz et al. (2006) and Schollum et al. (2008). As opposed to the model
developed in Eberlein et al. (2001), where the strain-energy function was built from
experiments on a single lamella of annulus fibrosus, the model presented in Wagner
and Lotz (2004) was established based on experiments performed on cuts of annulus in
all possible directions. This results in additional terms in the strain energy function to
capture the aforementioned interactions. The interaction terms were further refined
to specifically represent the shearing interaction between the matrix and the fibres
(e.g. deBotton et al. (2006), Guo et al. (2007)) or both the inter-lamellar and fibre
shearing phenomenon (Guerin and Elliott (2007), Hollingsworth and Wagner (2011)).

Based on arguments similar to Sec. III.6 for the visco-elasticity, the fibre-matrix
and lamellae-lamellae shearing are neglected in a first approach, therefore implying
W S

interactions = 0 and σe
interactions = 0 in the present formulation. The most recent

models inevitably require additional parameters, which goes against the general phi-
losophy of the present study. The model developed in Eberlein et al. (2001) is chosen,
not for any particular physical reason as it is not the most advanced model, but rather
because it has been successfully used in many studies (e.g. Nerurkar et al. (2008), Ay-
turk et al. (2010)), and served as a basis for more complex formulations (e.g. Guerin
and Elliott (2007), Hollingsworth and Wagner (2011)). It also offers consistency with
experimental data in Holzapfel et al. (2005) that is also being used to extract material
parameters (see Chapter VIII).

As described in Chapter II and illustrated in Fig. VI.1a, the annulus is made up of
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multiple lamellae, which comprise fibres organised in an alternating fashion (a0, b0,
a0 . . . ). The selected model describes the behaviour of two consecutive lamellae as
illustrated on Fig. VI.1b) with the following strain energy function:

W S
fibre(I4, I6) =

∑
α=4,6

k1α
2k2α

(
exp

[
2k2α (Iα − 1)2

]
− 1

)
(VI.1.13)

In the above, I6 is the sixth invariant of the right Cauchy-Green tensor and, similarly
to I4, measures the square of the fibre stretch of the second family of fibres:

I6 = b0 ·CSb0 = λ2
b (VI.1.14)

NP

a) b)

Figure VI.1: Two successive lamellae (a) and representation of two families of fibres
(b)

It is reasonable to consider that two consecutive lamellae have similar properties:
we therefore assume that a0 and b0 are symmetrical with respect to the axis of
the disc and that their constitutive parameters are identical (k14 = k16 = k1 and
k24 = k26 = k2). This assumption allows Eq. VI.1.13 to be reduced to:

W S
fibre(I4, I6) = k1

2k2

(
ek2(I4−1)2

+ ek2(I6−1)2
− 2

)
(VI.1.15)

Additionally, the collagen fibres are slender and crimped (see Chapter II) and, as
such, are prone to buckling (e.g. Eberlein et al. (2001)). It is therefore appropriate
to neglect their contribution under compressive strain; it is therefore additionally
required that:
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W S
fibre = 0 if Ii ≤ 1, i ∈ {4, 6}

≥ 0 if Ii > 1, i ∈ {4, 6} (VI.1.16)

The fibre strain energy function defined in Eq. VI.1.15 allows the Cauchy stress
tensor of the fibres to be derived using Eq. III.3.23:

σe
fibre =2J−1F

∂W S
fibre

∂CS

FT

=J−1 ∑
α=4,6

2k1
(
exp

[
k2 (Iα − 1)2

]
(Iα − 1) Faα ⊗ aαFT

)
(VI.1.17)

It is interesting to note in VI.1.17 that the Cauchy stress, which is a measure of the
fibre stress in the current configuration, takes into account the rotation of the fibres
as the mixture deforms with the term Faα ⊗ aαFT.

VI.2 Implementation

A C/C++ code was specifically written for the implementation of the biphasic
swelling model. The use of a few computational libraries alleviated this process:

The popular packages CBLAS and LAPACK are particularly efficient to manage
small scale linear algebra. This involves all operations at the element level, starting
from transformations to the iso-parametric space (e.g. handling of the shape functions
and their derivatives, the evaluation of the jacobian matrix, its determinant and
inverse), to the evaluation of quantities at the gauss-points (e.g. deformation and
stress tensors) and the assembly of the elemental tangent stiffness matrices and force
vectors.

The mesh oriented database MOAB (Tautges et al., 2004) is a very efficient and
robust interface, optimised to handle metadata associated to meshes. Once provided
with a mesh file, MOAB automatically generates a database containing nodes and
their coordinates, as well as element connectivities. One of MOAB’s main feature is
the possibility to define any number of tags that can be attributed to chosen entities,
whether it is a node, an element face or an element. This, for example, proves
very useful to assign boundary conditions to a set of nodes or material properties
to elements. MOAB is a very valuable tool for the evaluation of elemental tangent
stiffness matrices and force vectors; it is typically used to iterate over all elements of
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the mesh and for each of them, retrieve the nodal connectivities, nodal coordinates
and any tag associated with this particular element. This data can then be passed
on to other sub-routines and eventually determine K and Fint.

Additionally, PETSc libraries (Balay et al., 2011a,b, 1997) are used to handle large
scale computations, i.e. to solve the global (assembled) system of equations. PETSc
includes an iterative solver that can be tuned (e.g. GMRES, LU) for our specific
problem. It simply requires the definition of the tangent operator and the residual
function as defined in Sec. IV.3 and a termination criterion as defined in Sec. IV.4.

Finally, a substantial number of post-processing routines were written, both in the
main C/C++ code by defining tags with MOAB (e.g. matrix and fibre stress, prin-
cipal stretches, Darcy’s flux) and in python, in order to visualise and analyse the
results.

VI.3 Verification procedure

The implementation of a full three-dimensional finite element code is a long and
complex, tedious at times, task. It is likely that even the most conscientious devel-
oper will make mistakes during this process. Therefore, the design of a verification
methodology is of crucial importance in order to track and isolate these inevitable
implementation errors. The aim of this section is to formulate a strategic series of
tests that are recommended to be followed to ensure a correct implementation of the
biphasic swelling model. Interestingly, this process also offers a unique opportunity
to gain understanding of the coupling mechanisms.

 Kuu Kup

Kpu ∆tKpp

 δu
δp

 =

 Fext
u − Fint

u

∆t
(
Fext
p − Fint

p

)
 (VI.3.1)

The discretised and linearised model is recalled in its most compact form in Eq.
VI.3.1. In simple words, the tangent stiffness matrix operates on the right hand side
until a set {u,p}, that sufficiently minimises the residuals to meet the termination
criteria defined in Sec. IV.4, is found. Unfortunately, achieving convergence only
means that internal forces balance external forces, but it cannot guarantee a correct
implementation of the problem. It is indeed possible to meet the termination criteria
with an ill-defined Fint, in which case the “converged solution” does not satisfy the
governing equations. Fint is undoubtedly the most critical term to implement as it
governs the quality of the solution, and as such will receive the main focus in this
section. The tangent operator, is only responsible for the rate of convergence and
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will be deemed correctly implemented upon acceptable rate of convergence.

The validation work is performed on a unit length cube (1mm) comprised of 261
tetrahedral elements (Fig. VI.2), with 508 nodes to describe the displacements and
88 nodes for the pressure (resp. quadratic and linear elements). The solid matrix
is modelled with µ = 0.5 MPa and λ = 0.2, the fibres with k1 = 1MPa and k2 =
40MPa. Tests are presented here in one direction, but have been performed in all
three directions.

(a) Discretised cube (b) Orthogonal fibre distribution

Figure VI.2: Unit cube used for the verification procedure: a) discretisation with
quadratic tetrahedrons - b) reinforced with two families of fibres: a0 in the X-
direction, b0 in the Y-direction

Note that the preliminary tests performed on a single element (e.g. shape func-
tion implementation, jacobians, volume, surface area, etc.), although essential prior
embarking on further verifications, are not presented here.

VI.3.1 The “right hand side”

The objective of this section is the verification of the implementation of the residuals,
and in particular of the internal force vector. This is achieved by constraining the
full state of the mixture, i.e. by imposing the primary variables u and p at every
node, rather than at the essential boundaries only. As all degrees of freedom are
prescribed, iterative calculations are not required, which effectively “turns off” the
Newton-Raphson solver.

Let us first decompose the internal force vector into five contributions which can be
interpreted as follows:

• Fint
u,solid =

∫
v {∇Nu}T σ̂e dv : solid contribution to the linear momentum balance
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resulting from elastic deformations of the porous solid matrix.

• Fint
u,fluid =

∫
v−{∇Nu}T (Npp̂e) dv : fluid contribution to the momentum balance

accounting for the fluid pressurisation (coupling term).

• Fint
u,osmo =

∫
v {∇Nu}T

(
Nu∆̂π

e)
dv : osmotic contribution to the momentum

balance.

• Fint
p,fluid =

∫
v−{∇Np}T k∇p̂e dv : force resulting from the fluid flow, driven by

pressure gradients, through the solid matrix.

• Fint
p,solid =

∫
v Np∇· v̂e dv : force resulting from the fluid flow, induced by volume

changes in the mixture, through the solid matrix (coupling term).

The key idea of the verification methodology is to strategically choose sets {u,p}
that will decouple the above contributions and allow independent validation of each
of them. Four mixture states are defined in the following sub-sections.

(a) Rigid body motion

In this preliminary test, the pressure is set to a non-zero constant (e.g. p = 1 at all
pressure nodes) and the displacement degrees of freedom are chosen to describe an
arbitrary rigid body motion:

Figure VI.3: Unit cube subjected to a rigid body motion - Contour plot: norm of the
stress tensor σe

This test verifies that, when ∆π0 = 0:
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- rotations and translations are not inducing any straining, therefore the defor-
mation for the mixture are equal to the identity FS = CS = b = I, as well as
the stretch of both families of fibres λa = λb = 1.

- the strain-free configuration is also stress-free: σe = σe
matrix = σe

fibre = 0

- without any deformation or fluid flow, the internal force vectors are zero: Fint
u =

Fint
p = 0

(b) Shearing

In this test, the cube is subjected to shearing with the intention to investigate the
properties of an isochoric motion on the biphasic swelling model. At each node
with coordinate (X, Y, Z), the pressure degrees of freedom are set to a constant and
each material point is subjected to the motion defined in Eq. VI.3.2. This motion
corresponds to simple shear in the XY-plane, γ defining the shearing angle.

x = χ (X) =


X

Y

Z

+


Y tanγ

0
0

 (VI.3.2)

The deformed geometry is illustrated on Fig. VI.4.

Figure VI.4: Sheared cube in XY-plane

Firstly, this test verifies that at every gauss point of every element:
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- Fint
p,solid = 0 as the isochoric motion does not induce any fluid flow resulting from

solid deformation

- Fint
p,fluid = 0 as no Darcy flow is induced in the absence of pressure gradients

- in the special case where the constant pressure is set to zero, solid and fluid
phases are not interacting and Fint

u,fluid = 0

In the particular case tanγ = 0.2, we verify that at any point X of the cube, the
gradient of deformation takes the form:

FS(X) = I + ∂x
∂X

=


1 tanγ 0
0 1 0
0 0 1

 =


1 0.2 0
0 1 0
0 0 1

 (VI.3.3)

After verifying that the volume is preserved at any gauss point (J = det FS = 1), the
Cauchy stress tensor of the matrix is evaluated using Eq. VI.1.4:

σe
matrix(X) = µ

J

(
FSFT

S − I
)

+ λ

J
(ln J) I =


0.02 0.1 0
0.1 0 0
0 0 0

 (VI.3.4)

As illustrated on Fig. VI.4, fibres oriented in the X-direction experience a body
motion and are therefore neither stretched (λa =

√
I4 = 1) nor stressed (σe

fibre,a = 0).
However, the fibres initially oriented in the Y-direction are stretched by a factor:

λb =
√
I6 =

√
b0 ·CSb0 = 1.04 (VI.3.5)

The fibre Cauchy stress tensor is evaluated owing to Eq. VI.1.17:

σe
fibre,b = 2k1J

−1 exp
[
k2 (I6 − 1)2

]
(I6 − 1)

(
Fb⊗ bFT

)
(VI.3.6)

=


0.0034 0.0171 0
0.0171 0.0853 0

0 0 0

 (VI.3.7)

The above result can finally be projected in the fibres’ direction in the current con-
figuration as follows:

σb = 1
||FSb0‖2 FSb0 · σe

fibre,b (FSb0) = 0.0887MPa (VI.3.8)
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Additionally, the resultant force can be analytically evaluated on each face by inte-
grating the traction (see Eq. IV.1.2c) over the face area. The resultant force is a
function of the face outward normal n and the face section a, both evaluated in the
current configuration:

R =
∫
a
t̄ da = (σe · n) a (VI.3.9)

This resultant force is then compared to its numerical counterpart, which is deter-
mined by summing the internal forces over all nodes of the face of concern:

R =
∑

nodes on face
Fint
u,solid (VI.3.10)

For example, the normal to the face X=-0.5mm is nX = {−cosγ, sinγ, 0}. This face
section area, expressed in the current configuration is aX = 1/cosγ. With σe =
σe

matrix + σe
fibre,b, it is found that the reaction force is:

RX = (σe · nX) aX =


0.0234 0.1171 0
0.1171 0.0853 0

0 0 0



−cosγ
sinγ

0


1

cosγ =


0
−0.1

0

 (VI.3.11)

and we therefore verify that:

∑
nodes (0.5,Y,Z)

Fint
u,solid =


0
−0.1

0

 (VI.3.12)

Similarly, the normal for the faces Y=0.5mm and Z=0.5mm are respectively nY =
{0, 1, 0} and nZ = {0, 0, 1}, and the respective face areas in the current configuration
are aY = aZ = 1 mm2. We verify that:

∑
nodes (X,0.5,Z)

Fint
u,solid = (σe · nY ) aY =


0.1171
0.0853

0

 (VI.3.13a)

∑
nodes (X,Y,0.5)

Fint
u,solid = (σe · nZ) aZ =


0
0
0

 (VI.3.13b)
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The above test was performed without any osmotic contribution (i.e. setting π0 = 0).
We can also verify, for example with π0 = 0.5 MPa, that:

- the solid prestress defined in Eq. VI.1.11 is correctly added onto the solid stress,
so that the total stress becomes:

σe = σe
|π0=0 + ∆π =


0.5234 0.1171 0
0.1171 0.5853 0

0 0 0.5

 (VI.3.14)

- ∆π = 0.5 I as the volume of the mixture remains constant.

(c) Dilatation with constant pressure distribution

In order to verify the proper behaviour under volumetric deformations, the cube is
dilated by increasing the length of all its edges by 20% (see Fig.VI.5) while imposing
a constant pressure distribution. The applied motion is:

x = χ (X) =


1.2X
1.2Y
1.2Z

 (VI.3.15)

Figure VI.5: Dilated cube

In this case, the volume change of the mixture is solely driven by the prescribed
volume change of the solid skeleton (div vS 6= 0) as Darcy flow cannot take place
without any pressure gradient. We then confirm that at each gauss point of each
element:
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- Fint
p,fluid = 0 since the seepage velocity is zero (see Eq. III.3.25)

- Fint
u,fluid = 0 when the constant pressure is set to zero

- Fint
p,solid 6= 0 (see discussion below)

As both the solid and the fluid are incompressible, it appears natural to compare the
volume change of the cube to the fluid influx. When subjected to 20% dilatation, the
change of volume of the cube is:

∆V = v − V = 1.23 − 13 = 0.728mm3 (VI.3.16)

However, the fluid flux resulting from volume changes of the mixture is calculated as
follows:

∑
nodes on 6 faces

∆tFint
p,solid = −0.864 6= −∆V (VI.3.17)

This is due to the fact that, unlike previous tests where fluid and solid were fully
decoupled, the term Fint

p,solid arises from linearisation of the mass balance in the direc-
tion of δu. The nonlinearities arising from this coupling are therefore not captured
properly for such large deformation (cubic function of the stretch of the edge). This
is clearly illustrated in Fig. VI.6 where the equality ∆V = ∑

nodes on face
Fint
p,solid holds for

small deformations.
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Figure VI.6: Comparison of the exact volume change to the linearised fluid influx
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We also verify that the volumetric strain results in a volumetric stress-state. Similarly
to the shear test, the Cauchy stress of the isotropic solid is evaluated using Eq. VI.1.4:

σe
matrix =


0.19 0 0

0 0.19 0
0 0 0.19

 (VI.3.18)

and the Cauchy stress of the fibres using VI.1.17:

σe
fibre,a =


1692 0 0

0 0 0
0 0 0

 σe
fibre,b =


0 0 0
0 1692 0
0 0 0

 (VI.3.19)

The fibre stress tensors indicate, as expected, that neither family of fibres is rotated.
As anticipated, it is found that the fibres stretch is identical to the stretch of the
cube edges: λa =

√
I4 = 1.2 and λb =

√
I6 = 1.2.

In the same manner as in the shearing example, we verify that the numerical and
analytical tractions on each face (in the case p = 0 at all nodes) are equal:

∑
nodes (0.5,Y,Z)

Fint
u,solid = σe · nX = 1692.19× 1.22 nX = 2436.75 nX (VI.3.20)

∑
nodes (X,0.5,Z)

Fint
u,solid = σe · nY = 1692.19× 1.22 nY = 2436.75 nY (VI.3.21)

∑
nodes (X,Y,0.5)

Fint
u,solid = σe · nZ = 0.191× 1.22 nZ = 0.275 nZ (VI.3.22)

Finally, we make sure that if π0 = 0.5 MPa and m = 2:

- the total solid stress accounts for the prestress defined in Eq. VI.1.11 so that:

σe
a =


1692.69 0 0

0 1692.69 0
0 0 0.69

 (VI.3.23)

- the osmotic pressure is properly evaluated:

∆π = π0

Jm
I = 0.5

(1.23)2 I = 0.168I (VI.3.24)
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(d) Linear gradient of pressure and undeformed solid

Percolation of the fluid is imposed through the solid matrix, by imposing a linear
pressure gradient along the X-axis (see Fig. VI.7) ranging from 0 to 1.5 MPa. All
displacement degrees of freedom are fixed so that the solid remains undeformed. The
constant permeability is set to k = 5.10−3 mm4 N−1 s−1. This test enables to validate
Fint
p,fluid.

Figure VI.7: Linear pressure gradient along the X-axis, arrows representing the Darcy
flow

We verify that:

- the undeformed solid is strain free (FS = CS = b = I) and, in the absence of
osmotic pressure, stress free (σe = 0)

- Darcy flux is qx = k grad p = k ∂p
∂x
≈ k ∆p

∆x = 0.0075 mm3/s

- as the fluid enters the cube through the bottom face and is expelled at the top:
∑

nodes (-0.5,Y,Z)
Fint
p,fluid = −qx

∑
nodes (0.5,Y,Z)

Fint
p,fluid = qx (VI.3.25)

- Fint
u,solid = 0 as the solid is not stressed

- Fint
p,solid = 0 as the solid is not experiencing any volumetric change

- adding the osmotic contribution has the same effects as in the shear example:
solid prestress equal to the initial osmotic pressure and the osmotic pressure
remains constant
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VI.3.2 The Newton-Raphson solver

In the previous section, all degrees of freedom were prescribed in order to verify the
correct implementation of the residuals and associated sub-routines. In this section,
displacements and pressures are only imposed at the essential boundaries and the
solution of the problem is determined iteratively with the Newton-Raphson solver.
The same cube with fibres in the XY plane as in the previous section is used (Fig.
VI.2). First, the interaction between the matrix and the fibres is investigated on
two unconfined compression tests, with a loading rate of 0.01mm/s and a constant
time step ∆t=1s. In both cases, the permeability is set to 1×1030mm4 N−1 s−1and
free-flow boundary conditions are applied at the boundary of the cube in order to
minimise the rate dependent effects. Second, the rate of convergence is examined for
a third test with a low strain-dependent permeability.

In a first test, the cube is compressed in the Z-direction. The contribution of both
families of fibres in resisting lateral expansion is highlighted in Fig. VI.8. Due to
the symmetry of the problem, both families of fibres are equally stressed and lateral
displacements are identical in X- and Y-directions. As a consequence of the fibre
stress, the solid matrix experiences lateral compression.
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Figure VI.8: Unconfined compression along Z-axis (fibres in X and Y directions)

In a second test (see Fig. VI.9), the cube is compressed in the X-direction. The
compressive loads are solely resisted by the solid matrix along the loading direction,
as the fibres are assumed to buckle under compressive strains (see condition Eq.
VI.1.16). Similarly to the first test, lateral expansion induces stretches in the Y-
fibres and in turn compressive stresses to the solid matrix.
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Figure VI.9: Unconfined compression along X-axis (fibres in X and Y directions)

For illustration purposes, the rate of convergence is examined on another simple
example. The same cube, with fibres in the XY-plane, is subjected to unconfined
compression in the Z-direction, in a single increment of 0.02mm (i.e. 2% compres-
sion). The strain dependent permeability is defined by k0=5×10−3mm4 N−1 s−1and
M=2, and the osmotic pressure with π0 = 0.2MPa and m=2. The error criteria,
defined in Eq. IV.4.8 for both phases, are plotted on Fig. VI.10. In this simple
example, the Newton-Raphson scheme exhibits good convergence for both phases,
to 10−11 for the solid phase and 10−16 for the fluid phase, giving confidence in the
implementation of the tangent operators. Note that the convergence is not quadratic
as could be expected; this is a likely consequence of the fact that the tangent operator
was not obtained through consistent linearisation since two terms were omitted (see
Sec. IV.2).

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

 1  2  3  4  5  6  7  8  9  10

R
el

at
iv

e 
er

ro
r 

(-
)

Iteration (-)

solid phase
fluid phase

Figure VI.10: Illustration of the convergence rate
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VI.4 Conclusion

In this chapter, the biphasic swelling model was specialised to the specific case of the
intervertebral disc by selecting appropriate constitutive models for all constituents.
It was also highlighted that the definition of the initial state of the tissue, which was
already delicate in 1D, is a major challenge in the three-dimensional case. Addition-
ally, the computing framework was described and a few high-performance computing
libraries (all open source) were presented. Finally, the crucial point of the implemen-
tation of the code was tackled and a clear verification methodology proposed.
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Chapter VII

The Galerkin Least-Square
Stabilisation

Numerical instabilities are observed in the pressure field in regions where
loads and free-draining boundary conditions are simultaneously applied.
As an alternative to considerable mesh refinement, a Galerkin least-square
stabilisation framework is developed in order to stabilise the solution. Re-
sults on unconfined compression tests show that this technique drastically
reduces the pressure discrepancies and increases the rate of convergence.
Results from confined compression tests reveal that the stabilisation, un-
der specific circumstances, requires further refinement.

VII.1 Instabilities

Taylor-Hood tetrahedral elements (quadratic shape functions for the solid displace-
ment, linear shape functions for the pressure) are used, aiming to fulfil the inf-sup
condition (see Chapelle and Bathe (1993) and Brezzi and Fortin (1991)). However,
numerical instabilities still manifest in the form of non-physical oscillations in the
pressure field. This is illustrated on Fig. VII.1, where a laterally sealed cube is sub-
jected to unconfined compression. The pressure is expected to monotonically increase
from the top and bottom surfaces, where it is set to zero, to the highly pressurised
center. Instead, spurious pressure peaks are observed near the free-flow surfaces.
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(a) Pressure contour plot - Arrows symbolise
Darcy’s flow

 0

 0.002

 0.004

 0.006

-0.5 -0.25  0  0.25  0.5

P
re

ss
u
re

 (
M

P
a
)

Ordinate (mm)

(b) Pressure along the cube’s edge

Figure VII.1: Illustration of the instabilities: unconfined compression of a laterally
sealed unit-length cube generate spurious pressure oscillations

This shortcoming already has been reported in the past (see for example Stokes et al.
(2010) for a recent review of biological applications). Vermeer and Verruijt (1981)
explain that these instabilities occur because loads applied to free-flow boundaries
may lead to singularities in the derivatives of the pressure field. They also derive a
lower bound critical time-step for one-dimensional problems, suggesting the require-
ment for large time-steps to overcome this issue, often incompatible with fast loading
rates.

Several stabilisation techniques have been proposed in the context of Biot’s con-
solidation problems for small deformations (e.g. Korsawe and Starke (2005) using
least-squares mixed finite element methods, and Aguilar et al. (2008) by perturba-
tion of the flow equation) often requiring the introduction of extra degrees of freedom
and/or parameters.

The current work proposes to stabilize the pressure oscillations in the context of TPM
for finite deformation problems, using a Galerkin Least-Square (GLS) formulation.
It belongs to a class of stabilisation techniques developed in the 1980s (e.g. Franca
and Hughes (1988); Hughes et al. (1989)), and has been used for a wide variety of
problems, including Stokes flow and geotechnical problems. In this work, we follow
the contribution of Truty (2001), originally formulated for consolidation analysis of
fully and partially saturated soils for small strains. The derivation presented here is
extended for finite deformations.
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VII.2 The GLS framework

The objective of the Galerkin Least-Square formulation is to enhance the stability of
the standard Galerkin scheme by adding a stabilisation term to the residual R that
was derived in Chapter IV and is recalled here:

R = Ru −∆tRp = 0 (VII.2.1)

where Ru and Rp are respectively the residuals of the balance of linear momentum and
of the balance of mass. The above variational form is then enriched by a stabilisation
term RGLS as follows:

R = Ru −∆tRp +RGLS = 0 (VII.2.2)

The stabilisation term is physically motivated, as it is derived from the strong form
of the fluid flow continuity equation (Eq. III.3.8). It takes the form:

RGLS =
∫
v

[
div

(
ḟ + k∇g

)]T
τ ∗
[
div

(
vS + k∇p

)]
dv (VII.2.3)

The presence of a stabilisation factor τ ∗, which will subsequently be defined, is nec-
essary to ensure unit consistency and is expressed in N.s2.m−2. Eq. VII.2.3 is then
discretised using notations defined in Chapter IV and taking into account the fact
that linear pressure elements are used (i.e. div(∇Np) = 0):

RGLS =
∫
v

{
∇Nuḟ e −∇k∇Npge

}T
τ ∗ {∇Nuu̇e −∇k∇Nppe} dv (VII.2.4)

Introducing the time integration scheme (u̇e = ∆ue/∆t, where ∆ue is the incremental
displacement) and defining τGLS = τ ∗/ (∆t)2, leads to:

RGLS =
∫
v
{∇Nuf e −∆t∇k∇Npge}T τGLS {∇Nuue −∆t∇k∇Nppe} dv (VII.2.5)

Using the same notations and assumptions as in Chapter IV, the above RGLS is
linearised, which results in the following system in the matrix form:

 Kuu + KGLS
uu Kup + KGLS

up

KT
up + KGLS

pu ∆tKpp + KGLS
pp

 δu
δp

 =

 Fext
u

∆tFext
p

−
 Fint

u + Fint
u,GLS

∆tFint
p + Fint

p,GLS


(VII.2.6)
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where:

KGLS
uu =

∫
v
{∇Nu}T τGLS∇Nu dv (VII.2.7a)

KGLS
up =

∫
v
{∇Nu}T τGLS

(
−∆t∇k̂∇Np

)
dv (VII.2.7b)

KGLS
pu =

(
KGLS
up

)T
(VII.2.7c)

KGLS
pp =

∫
v

{
∆t∇k̂∇Np

}T
τGLS

(
∆t∇k̂∇Np

)
dv (VII.2.7d)

Fint
u,GLS =

∫
v
{∇Nu}T τGLS

(
∇Nu∆ûe −∆t∇k̂∇Npp̂e

)
dv (VII.2.7e)

Fint
p,GLS =

∫
v

{
∆t∇Np∇k̂

}T
τGLS

(
∇Nu∆ûe −∆t∇k̂∇Npp̂e

)
dv (VII.2.7f)

In Truty (2002), it is observed that the most influential terms of the stabilisation
are KGLS

uu and its counterpart Fint
u,GLS. As an initial simplification, these two terms

only are implemented in the present formulation in order to test their performance.
This is achieved by considering that, for the GLS terms only, the permeability is not
strain dependent. This dependence has only slight effects at the early stage of the
consolidation problem, when the instabilities arise. Eq. VII.2.6 then reduces to:

 Kuu + KGLS
uu Kup

KT
up ∆tKpp

 δu
δp

 =

 Fext
u

∆tFext
p

−
 Fint

u + Fint
u,GLS

∆tFint
p

 (VII.2.8)

Finally, the stabilisation factor is defined based on Truty (2001):

τGLS = h2

4k0∆t (VII.2.9)

In Truty (2001), the parameter h is a length characterizing the element’s size in the
direction of the fluid flow. In the current application, it was simply taken as the
radius of the element’s circumsphere. As illustrated in the following section, this
definition of τGLS stems from the fact that the solution needs greater stabilisation
as the mesh gets coarser and as either or both the permeability and the size of the
time-step decrease. In this work, due to the soft nature of the solid phase, it was
not necessary to include a measure of material stiffness in the definition of τGLS,
although this may be necessary for stiffer materials (e.g. Truty (2001) and Aguilar
et al. (2008)).

It can be noted that the numerical integration is performed using a 4-point Gauss
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quadrature. The accuracy was verified with tests using up to 27 points. Reduced
integration was also considered for the GLS terms, with no beneficial outcome.

VII.3 Numerical examples

Two numerical examples are considered in order to test the performances of the
stabilisation scheme. First, the robustness of the Galerkin Least-Square framework
is investigated under unconfined conditions. The influence of the loading rate, mesh
size, permeability and strain level are examined. Second, limitations of this technique
are presented on the extreme case of confined compression, where it will be seen that
the benefits of the stabilisation vanish. Note that in this section, conversely to the
previous chapter, the term convergence is to be interpreted as the convergence to the
“continuum solution” that would result from an infinitely fine mesh. In the confined
compression case, results from the 1D model solved with 50 elements are used to
represent this idealised solution.

VII.3.1 Unconfined compression of an isotropic cylinder

The performance of the GLS stabilisation technique is first assessed on a bipha-
sic isotropic cylinder subjected to unconfined compression. With a 18mm radius, a
thickness of 8mm and a solid phase defined with λ = 0.2 MPa and µ = 0.5 MPa, the
cylinder can be thought of as an idealised human nucleus pulposus of the interverte-
bral disc when the permeability is set to k = 1×10−3mm4N−1s−1.

Figure VII.2: Loading and boundary conditions

The fluid flux q̄ at the boundary is prescribed to zero on the vertical faces offering
a lateral seal to the cylinder. The pressure p̄ is set to zero on the top and bottom
surfaces (see Fig. VII.2). These boundary conditions define the top and bottom
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surfaces as the only free-flow boundaries. This results in a near to uni-axial fluid flow
through the depth of the cylinder.

In what is herein referred to as the “reference loading”, the top surface is displaced
downwards at a rate of 2.5µm.s−1 with time increments ∆t = 6.4s, until the height
of the cylinder reduces by 1%. Such loading rates, together with permeabilities lower
than 1 mm4 N−1 s−1, guarantee that the steady state is not reached instantly. In
order to reduce the size of the problem, symmetry boundary conditions are applied
onto a quarter cylinder. Analyses are undertaken on different meshes, the main
characteristics of which are shown in Fig. VII.3.

All results are plotted against nodal values gathered on the “reference line” defined
in Fig. VII.2 and VII.3.

Nodes Elements Elements on ref line
mesh 1 8083 5261 5
mesh 2 16507 11087 7
mesh 3 38424 26622 9
mesh 4 78033 55190 12

Figure VII.3: Meshes characteristics (left) and mesh 2 (right)

The low permeability hinders the fluid’s ability to flow, defining two distinct regions
associated with the load transfer mechanism. The first region, located near the free-
flow boundaries, is dominated by solid deformation: the fluid does not have the
ability to pressurize as it is squeezed out of the cylinder. This results in a lower fluid
content in this region, explaining the peak strains observed near the top and bottom
surfaces (see Fig. VII.4a). The second region, situated at the centre of the cylinder,
is predominantly subjected to fluid pressurization (see Fig. VII.4b) due to the fact
that the low permeability is confining the fluid at the centre of the cylinder.
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Figure VII.4: Mesh 2: deformation mechanisms for k = 0.1 mm4N−1s−1 (left and
centre) and influence of permeability (right)

As the permeability decreases, the boundary between solid- and pressure-dominated
regions shifts towards the top and bottom surfaces (see Fig. VII.4c) and the level of
pressurization rises. For a given mesh, when the permeability falls under a certain
value (k < 1×10−1 mm4N−1s−1 for mesh 2 in this example), the pressure profile starts
to exhibit spurious oscillations near the free-flow boundaries (over 10% discrepancies
for mesh 1 and mesh 2 when k = 5×10−2 mm4N−1s−1, and over 8% for all meshes
when k = 1×10−2 mm4N−1s−1). Furthermore, the quality of the solution can be
affected through the entire mesh as the near boundary oscillation propagates toward
the centre for coarse meshes (e.g. mesh 1 in Fig. VII.5c). Finally, it was verified (in
line with Vermeer and Verruijt (1981)) that decreasing the time-step exaggerates the
pressure oscillations, although not presented here.

Mesh refinement is the most natural and straightforward choice to overcome this issue,
in particular when interested in accurately capturing the steep pressure gradients. As
Fig. VII.5a and VII.5b illustrate, the non-physical pressure peaks can be removed
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by using meshes denser than that characterised by mesh 2. However, this is only a
valid solution in some cases. Fig. VII.5c illustrates that, for low permeability, the
spurious oscillations cannot always be reduced by reasonably-sized denser meshes,
but also that the rate of convergence can be affected (see mesh 1).
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Figure VII.5: Effects of mesh refinement on standard Galerkin method

The GLS stabilisation offers substantial improvements to the solution. Fig. VII.6
shows the benefits for four different meshes when k = 5×10−3 mm4N−1s−1 and k

= 1×10−3 mm4N−1s−1. The primary enhancement is that all spurious oscillations
observed in Fig. VII.5 have been stabilised, with the exception of mesh 2 where,
when k = 1×10−3 mm4N−1s−1, the discrepancies decreased from 27% to 6%. Addi-
tionally, when accurate resolution of the near-boundary pressure gradient, defined as
the transition between the deformation- and pressure-driven regions, is not sought,
the GLS formulation allows for coarser meshes to be used, since it also prevents the
oscillations from propagating towards the centre. For example, when k = 1×10−3

mm4N−1s−1, mesh 1 (8000 nodes) with GLS offers similar performances to mesh 3
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(38000) without the stabilisation (compare Fig. VII.5c and VII.6b). Finally, it is
important to notice that the GLS stabilisation is only having a damping effect on the
spurious oscillations, while leaving stable solutions unaffected (compare Fig. VII.5b
and VII.6a at the centre).
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Figure VII.6: Effects of mesh refinement on GLS stabilisation

A few observations can be made to support the choice of the stabilisation factor
τGLS in (Eq. VII.2.9). First, Fig. VII.6 highlights the fact that the stabilisation
performs equally well irrespective of the change of mesh and permeability, giving
confidence in the way the element’s characteristic size and permeability are accounted
for. The impact of the time-step on the stabilisation was also investigated: it was
verified that if τGLS is not inversely proportional to ∆t, stabilisation is not possible.
Also, in simulations not presented here, it was confirmed that the size of the time-
step (∆t = {0.64s, 3.2s, 6.4s, 8s, 32s}) does not affect the quality of the stabilised
solution. Finally, it was also verified (again not shown here) that changing the loading
rate (1.25µm.s−1, 2.5µm.s−1, 6.25µm.s−1) did not affect the degree of peak pressure
oscillations for the stabilised results.

Performance of the GLS stabilisation was initially assessed for greater levels of de-
formation. As Fig. VII.7 shows, discrepancies in pressure reduce as the compressive
strain increases, which is in line with the findings in Truty (2001) and Aguilar et al.
(2008), where oscillations are reported to occur at the “early stage” of the consoli-
dation problem. Although the GLS stabilisation also performs well at higher strains
(see Fig. VII.7b), this observation motivated the choice to present results at 1%
compression throughout this numerical example.
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Figure VII.7: Effects of higher strain on stability for mesh 2

A sensitivity study was performed to characterise the parameter h in (Eq. VII.2.9).
Several combinations of the radius of the circumsphere, the shortest and longest edges
of the tetrahedron were tested without noticeable and consistent improvement to the
overall solution.

VII.3.2 Limitations on a confined compression test

Although derived from physical considerations (i.e. the continuity equation), the
introduction of a non-physical parameter τGLS is required in order to combine the
GLS framework with the current formulation in a consistent manner (i.e to comply,
from a unit perspective, with other quantities). It is precisely from this lack of
physical justification that difficulties to derive a universal stabilisation factor arise.
Although τGLS contains information about the mesh size, the permeability and the
size of the time-step, it is not equipped to adapt to, for example, various boundary
conditions or stiffnesses of the solid phase. The potential outcome of this shortcoming
will be therein illustrated on the more extreme case of confined compression with
strain-dependent permeability.

A 2mm thick sample of diameter 6mm is numerically tested, using the apparatus
presented for the 1D model in Sec. V.4 and described in Fig. VII.8. Symmetries are
accounted for by only modeling an eighth of the sample (i.e. a quarter of the section
and half of the thickness). This way, all elements through the depth are mobilised to
capture the pressure gradient near the top surface (as opposed to both surfaces in the
previous section). Free-flow boundary conditions are applied to the top surface only,
which is displaced vertically at a rate of 1µm.s−1, until 5% compression is achieved.
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This ramp phase is followed by a hold phase where the sample is held in position
until steady state is reached. Confinement is modelled by lateral constraints.

Figure VII.8: Loading and boundary conditions for the confined compression test

The material parameters of the solid phase are λ=0.5MPa and µ=0.1MPa. The initial
permeability is set to k0=1×10−3 mm4 N−1 s−1, while the parameter M controlling
the strain dependency is equal to 1. Due to compression levels in excess of the applied
5% anticipated in the region below the top surface, the permeability is expected to
substantially decrease:
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Figure VII.9: Permeability as a function of the volume change

For comparison purposes, simulations with identical parameters are performed with
the 1D model. Naturally, the Neo-Hookean model defined in Sec. VI.1.1 was im-
plemented in 1D as well. The convergence study is performed using the five meshes
depicted in Fig. VII.10. Additional mesh characteristics are presented in Table VII.1.
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(a) (b) (c)

(d) (e)

Figure VII.10: The 5 meshes used for the confined compression test

Nodes Elements Size (mm) Elements on ref line
Mesh0 6333 4050 0.25 4
Mesh1 11982 7851 0.20 5
Mesh2 25112 17233 0.15 7
Mesh3 47494 32663 0.12 8
Mesh4 78544 54624 0.10 10

Table VII.1: Mesh characteristics - Size is an average of the elements’ edge length

Fig. VII.11a and VII.11b show that the evolution of the reaction force, with and
without stabilisation, is generally in good agreement with the 1D model. However,
a closer look at the first few increments reveals a kink in the stabilised response (see
Fig. VII.11c). Similarly, at the beginning of the hold phase the stabilised solution
exhibits a sudden drop (see Fig. VII.11d). Although the rate of convergence of the
stabilised solution is faster than the non-stabilised one, the latter shows superior
quality when equivalent meshes are compared.
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Figure VII.11: Reaction force - Arrows indicate mesh refinement

In order to understand the origin of these discontinuities, which are not physically
motivated, pressure and stress states are investigated at the end of the first increment
(i.e. t=1s) and at the end of the first increment of the hold phase (i.e. t=51s).

The non-stabilised solution exhibits a behaviour similar to the one reported in the
previous section. Oscillations are observed in the pressure and stress responses at
the early stage of the analysis (see Fig. VII.12a and VII.13a). These, although it is
not shown here, completely disappear after a few increments (e.g. t≈15s for mesh0).
Upon mesh refinement, the pressure at the centre of the sample (ordinate z=-0.5 on
Fig. VII.12a) and the stress near the top surface (z=0.5 on Fig. VII.13a) converge
to the solution of the 1D model, while oscillations are damped.
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Figure VII.12: Pressure distribution across the sample at the end of the first incre-
ment (a) and (b) and at the end of the ramp (c) and (d)

However, the benefits resulting from the GLS stabilisation on the unconfined com-
pression test are not reproduced in the unconfined compression case. The damping
of the spurious oscillations clearly comes at the expense of the quality of the solution.
Fig. VII.12(a) and (b) for pressure, and Fig. VII.13a and b for Cauchy stress show
that the difference with the 1D model is 1.5 to 3 times higher with GLS than with
the standard Galerkin formulation. The fact that the pressure field is highly overes-
timated at the centre of the sample is not sufficiently compensated by a considerably
faster rate of convergence (this is better observed on Fig. VII.14). Furthermore, the
GLS formulation introduces discrepancies at the beginning of the hold phase (see Fig.
VII.12d and Fig. VII.13d), whereas the coarse mesh gives accurate results without
stabilisation.
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Figure VII.13: Cauchy stress distribution across the sample

It is important to note that conversely to the pressure field which is a primary variable
evaluated at the nodes, the Cauchy stress is post-processed by extrapolation of stress
from the Gauss points. This probably contributes to the disparities observed near the
top surface on Fig. VII.13(a) and (b), where gradients are not accurately captured.

Fig. VII.14 summarises the above findings in a compact manner. The deterioration
of the quality of the solution, both at the beginning of the ramp and the hold phase,
is highlighted, together with a faster convergence rate when GLS is considered.
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Figure VII.14: Comparison of the 3D results with the 1D for various meshes

Briefly, in order to demonstrate that the permeability strain-dependency is not the
sole reason accounting for the aforementioned shortcomings, the same test is repeated
considering constant permeability (i.e. keeping k0=1×10−3 mm4 N−1 s−1and setting
M=1). Fig. VII.15 shows that the jump in the reaction force at the early stage of
the simulation and the highly overestimated pressure are deficiencies still manifesting
without the strain-dependency of the permeability.
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Figure VII.15: Results with constant permeability - The arrows indicate mesh refine-
ment

The observations made in this section, together with the results of the previous sec-
tion, suggest that the GLS framework has the potential to stabilise the spurious
oscillations manifesting in the pressure field, but that the currently defined stabilisa-
tion factor τGLS = h2/4k0∆t is not adequate under all circumstances. An inspection
of the internal force vector relative to the displacement degrees of freedom
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Fint
u =

∫
v
{∇Nu}T

(
σ̂e −Npp̂e + τGLS∇Nu∆ûe

)
dv (VII.3.1)

suggests that an overestimated stabilisation factor may result in overly-compensated
pressure and/or Cauchy stresses. In order to support this idea, simulations are run
once again with reduced stabilisation factors: τGLS, 0.75 τGLS, 0.5 τGLS and 0.25
τGLS.
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Figure VII.16: The reaction force at the early stage of the simulation for various
stabilisation factors
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Figure VII.17: The pressure distribution across the sample at t=1s for various sta-
bilisation factors

Results, presented on Fig. VII.16 and VII.17, indicate that, as the stabilisation factor
is decreased, the stabilised solution converges toward the un-stabilised one. It is, for
example, interesting to notice that for 0.25 τGLS, the pressure quickly converges to
the same solution as the 1D model (see Fig. VII.17d). Since both solutions offer
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an upper and lower bond estimate to both the pressure and the reaction force, this
suggests the existence of a stabilisation factor optimised for this analysis.

Undoubtedly, the definition of a better suited stabilisation factor cannot simply result
from reducing the currently defined one, as it would under-stabilise the solution of
the unconfined test. As suggested in Truty (2002), improvements could stem from the
derivation of the mesh size parameter h that contains information about the direction
of the fluid flow or the addition of a term that reflects the stiffness of the solid phase.
At this stage, it is recommended to locally refine meshes in regions where Fint

u,GLS is
predominant (Fig. VII.18).

Figure VII.18: Contour plot of the norm of Fint
u,GLS at t=1s

VII.4 Conclusion

It was observed that an hyperelastic biphasic model, implemented in a finite element
framework with Taylor-Hood tetrahedral elements, exhibits non-physical pressure
oscillations for low permeabilities. A Galerkin least-square formulation was derived
for finite deformations in order to stabilise these oscillations.

In the context of near to uni-axial fluid flow, the current formulation shows good
results. It eliminates the spurious oscillations for most meshes (and damp the oscilla-
tions for others meshes) and also prevents these oscillations from propagating towards
the centre of the medium as reported for very coarse meshes. The solution scheme
proved to be robust when tested against various mesh densities, permeabilities, load-
ing rates, compressive strains and time steps. It is also worth mentioning that the
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benefits of this formulation come at minimal computational cost, as no additional
degrees of freedom are required.

However, benefits observed for unconfined compression tests could not be replicated
under confinement. In this case, it was demonstrated that the stabilisation factor is
overestimated, which in turn results in an overestimation of the pressure distribution.
Simulations with lower stabilisation factor indicated the existence of an optimised
stabilisation factor for this particular confined compression analysis. This suggest the
necessity to further develop this framework so that the stabilisation factor can adapt
to various boundary conditions, and as suggested in Truty (2001), the directionality
of the fluid flow and solid stiffness.
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Chapter VIII

Preliminary tests on an idealised
intervertebral disc

The objective of this chapter is to assess the current state of development
of the implemented biphasic swelling model. A methodology is presented
to assign properties to the fibres of the annulus fibrosus on the created
idealised geometry. The model’s behaviour, tested on an idealised diurnal
cycle, demonstrates a number of the features of the model. It also shows
relatively large deformations compared to published data. It is believed
that this is due to the fact that induced deformations under compressive
loading fail to engage the fibres. This is followed by a discussion proposing
areas requiring further attention to potentially solve this shortcoming.

VIII.1 Geometry and mesh

An idealised disc geometry was created using an image of the mid-sagittal section of
the lumbar disc already presented in Chapter II on Fig. II.2a. The points on the disc’s
outer boundary, as well as the interface between the nucleus and the annulus, were
digitised (see illustration on Fig. VIII.1a). The main dimensions are approximately
40mm in the x-direction and 30mm in the y-direction. Subsequently, this set of
data points was imported into the mesh generation toolkit Cubit (developed by the
Sandia National Laboratories), and duplicated twice in order to obtain a top, mid
and bottom section of the IVD. This is shown on Fig. VIII.1b, where points are
connected by splines. Note that the mid-section was slightly expanded radially to
create a radial bulge. Both the top and the bottom surfaces are perfectly flat and
parallel, resulting in a 10mm thick disc.
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(a) Digitised contours points of the nucleus pul-
posus and annulus fibrosus

(b) Contour splines of the idealised IVD

Figure VIII.1: Steps toward the generation of the idealised model

The final geometry is presented on Fig. VIII.2a. It reveals the separate volumes of
the nucleus pulposus and the annulus fibrosus, which are used to identify different
material properties (e.g. stiffness, permeability, anisotropy).

(a) AF and NP boundaries (b) Mesh IVD3

Figure VIII.2: The disc’s discretised geometry

Further to observations made in Chapter VII, it will be of great interest to investigate
the convergence of the model and assess the performance of the stabilisation frame-
work on a full disc. To this end, 5 meshes are created (IVD1, IVD2, IVD3, IVD4 and
IVD5), the characteristics of which can be found in Table VIII.1. The mesh IVD3 is
presented on Fig. VIII.2b.
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Nodes Elements Size (mm) Elements across thickness
IVD1 6514 4186 3.0 4
IVD2 11002 7242 2.5 5
IVD3 20381 13725 2.0 6
IVD4 44793 30912 1.5 8
IVD5 66809 46548 1.3 9

Table VIII.1: Mesh characteristics - Size is an average of the elements’ edge length

VIII.2 Fibres orientation and material parame-
ters

The annulus fibrosus is a multi-lamellar structure of highly organised collagen fibres
(see description in Sec. II.1 and Sec. VI.1.2). The orientation of the fibres alternates
between adjacent lamellae, in directions referred to as a0 and b0. Fibre material
parameters are evaluated using experimental results from Holzapfel et al. (2005), re-
produced with markers on Fig. VIII.3a. The published data, resulting from uni-axial
extension tests performed on single lamellae of human annulus fibrosus, characterise
the evolution of the engineering stress as the stretch increases. In 3D, engineer-
ing stresses correspond to the first Piola-Kirchhoff stress tensor Pfibre, which can be
evaluated in 1D for a single family of fibres as:

Pfibre = FSSfibre = λSfibre = 2k1λ
(
λ2 − 1

)
exp

[
k2
(
λ2 − 1

)2
]

(VIII.2.1)

A least square fit with an iterative solver is then built in the space k = (k1, k2) to
fit the material parameters. Each of the four data sets has N data points. We first
define a local residual at each of the data points (λi, Pi):

ri = Pi − Pfibre(λi, k1, k2) i ∈ {1, N} (VIII.2.2)

The global error measure is defined as the square of the local residuals:

R =
N∑
i

r2
i (VIII.2.3)

In order to minimise the global residual, we seek:
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e = gradR =


∂R
∂k1
∂R
∂k2

 = 0 (VIII.2.4)

The first order Taylor series expansion of e about ki = ki−1 + δk:

ei = ei−1 + ∂e
∂k

δk (VIII.2.5)

The jacobian:

∂e
∂k

=
 ∂2R

∂k2
1

∂2R
∂k1∂k2

1
∂2R

∂k2∂k1
∂2R
∂k2

2

 (VIII.2.6)

can be inverted and Eq. VIII.2.5 iteratively solved for ei = 0:

δk =
(
∂e
∂k

)−1
ei−1

ki = ki−1 + δk
(VIII.2.7)

The iterative solver was then used to fit the experimental data of Holzapfel et al.
(2005). The resulting sets of parameters k1 and k2 are presented in Table (VIII.2)
and the corresponding stress-stretch plotted on Fig. (VIII.3a).
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Figure VIII.3: a) Comparison of the 1st Piola-Kirchhoff in a uni-axial test from
Holzapfel experiments Holzapfel et al. (2005) (markers) and best fit using the model
derived in Eberlein et al. (2001) (lines) - b) Gauge location

It is interesting to see that the properties of the fibres considerably depend on their
position in the annulus. Although all fibres experience stiffening, those located near
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the outer annulus (Vle and De) are substantially stiffer than fibres located closer to
the nucleus, which exhibit a longer toe-region.

Vle De Vli Di
k1 (MPa) 5.49 1.38 0.70 0.15

k2 326.26 67.87 45.60 10.66

Table VIII.2: Material parameters k1 and k2 for positions Vle, De, Vli and Di shown
on Fig. VIII.3b

Finally, the fibre orientation is implemented as follows (see illustration in Fig. VIII.4).
Starting with a cross section of the IVD in the mid-sagittal plane and its centre of
gravity O. For each point A of the annulus fibrosus:

• the polar angle θ = (y1,
−→
OA) is determined

• the fibre angle ϕ is evaluated using the linear regression proposed in Holzapfel
et al. (2005): |ϕ| = 23.2 + 0.13× θ

• the point T, defined as the closest point to A on the outer boundary, is sought

• the secondary coordinate system (x2,y2, z1) is defined so that we have: x2 =
−→
AT

||−→AT‖ , x2 · y2 = 0 and x2 × y2 = z1

• both fibre angles families are finally positioned in the plane (Ay2z1) so that:

a0 =


cosϕ

0
sinϕ

 b0 =


− cosϕ

0
sinϕ

 (VIII.2.8)

Figure VIII.4: Methodology to build the fibre orientation - Left: IVD section in
transverse plane defining point A in the annulus - Right: corresponding fibre plane
(Ay2z1)
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A representation of the evolution of the orientation of the fibres with the polar angle
can be seen on Fig. VIII.5:

(a) Family 1 (b) Family 2

Figure VIII.5: A representation of the fibres orientation within the annulus

VIII.3 Qualitative numerical results

The performance of the implemented biphasic swelling model is qualitatively inves-
tigated in a series of simple tests involving compressive loading and creep events.
The disc’s response is compared to data found in the literature and the mechanisms
governing the behaviour of the IVD are inspected. Additionally, this test allows the
convergence of the model to be verified and to assess the benefits of the GLS sta-
bilisation. This is followed by a discussion assessing the current development and
associated limitations.

VIII.3.1 Response to a diurnal cycle

Long-term loading is herein considered by investigating the response of the disc to
an idealised daily loading. A total compressive load of 440N is applied to the disc in
6min 20s, which is representative of the load transfered through the spine in relaxed
erect posture as mentioned in Chapter II. Since the superior surface is approximately
1000mm2, this is equivalent to applying a 0.4MPa traction at a rate of 1kPa.s−1. Sub-
sequently, the disc is left to relax under this load for a further 16 hours, representing
the span of a day. At this point the load is removed at the same rate it was applied.
The loading pattern is shown on Fig. VIII.6
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Figure VIII.6: Idealised daily loading

The material parameters were taken from Eberlein et al. (2001), Gu et al. (1999) and
Karajan (2009) (from the latter, using elastic parameters from the model without
viscosity). The initial permeability is set to 1×10−3mm4 N−1 s−1 throughout the
entire disc. Regarding the solid matrix, the shear modulus is µ=0.5 MPa for the
nucleus and µ=1 MPa for the annulus, while λ = 0.5MPa everywhere.

As the endplates and vertebral bodies are not explicitly modelled, idealised boundary
conditions are applied to the upper and lower surfaces of the disc:

- It is assumed that the whole of the disc’s boundary experiences free-flow. Aside
from the lateral boundary where fluid flow is not hindered, this assumption is
motivated by the fact that the thin cartilage endplates, located at the superior
and inferior surfaces, exhibit permeability of similar magnitude as the disc’s
(approximately 7.5×10−3mm4 N−1 s−1 as reported in Ferguson et al. (2004)
from literature review). The endplates are connected to bony structures, which
have a very high permeability of 2×105mm4 N−1 s−1 (from the same study).
Therefore, this assumption is equivalent to underestimating the endplate’s per-
meability and assuming that free-flow is permitted through the bone. This
naturally overestimates the ability of the fluid to flow axially in the IVD.

- The upper and lower surfaces of the disc are fully bonded to the endplates and
the vertebrae. As it is reported in Ferguson et al. (2004) that the cancellous
and cortical bone respectively have elastic moduli of 100MPa and 10000MPa,
it will be assumed that these surfaces cannot expand radially.

Before discussing the response of the disc, the performance of the GLS stabilisation
is briefly investigated. To this end, and in a similar fashion to that in Sec. VII.3.2,
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the convergence upon mesh refinement of the displacements at the top of the disc
and the pressure at the centre are scrutinised (see Fig. VIII.7).
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Figure VIII.7: Convergence for pressure and displacement, for both standard Galerkin
and GLS formulations - Arrows on (c) indicate mesh refinement

Although finer meshes would be required to demonstrate the actual convergence, the
stabilised and non-stabilised solutions in displacement exhibit similar rates of con-
vergence (Fig. VIII.7c). Fig. VIII.7d shows, similarly to the unconfined compression
test presented in Sec. VII.3.1, that pressure levels at the centre of the sample remain
unaffected by either mesh refinement or stabilisation. This comes with the excep-
tion of the mesh IVD1 in the un-stabilised case, due to the fact that the standard
Galerkin solution exhibits strong instabilities, which can be observed as deep as the
centre of the disc for the mesh IVD1 (see Fig. VIII.8a). Generally, Fig. VIII.7 reveals
that, under these conditions, the adverse effects of the GLS stabilisations presented
in Sec. VII.3.2 are not materialising. The spurious jumps previously observed at the
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early stages of the simulation for the reaction vs time response are not reproduced
in the displacements vs time response (see Fig. VIII.7c). Note that all examples
were displacement controlled in Chapter VII and are force controlled in the present
chapter.

(a) IVD1 - Standard Galerkin (b) IVD4 - Standard Galerkin

(c) IVD1 - GLS (d) IVD4 - GLS
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Figure VIII.8: Pressure at the centre of the disc with and without stabilisation at
t=20s - The arrow on (a) indicates a location where spurious oscillations propagated
to the centre

At the end of the loading ramp, the centre of the superior face displaced vertically
by 0.65mm (see Fig. VIII.7c for mesh IVD5), which represents a 6.5% decrease of
the disc’s height. Steady state is reached after approximately 6 hours, at which point
the disc’s height decreased by 23% at the centre of the disc. This is accompanied by
a maximum radial bulge of 1.02mm in the x-direction, 1.1mm anteriorly and 1.2mm
posteriorly (i.e. the positive and negative y-direction respectively). Upon unloading,
the steady state, which corresponds to the initial configuration, is reached within 6
hours.

However, Fig. VIII.9 reveals that during the loading phase, the top surface experi-
ences greater displacements in the region of the annulus fibrosus.
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Figure VIII.9: Vertical displacements on the deformed geometry at the end of the
ramp

This is the result of a mechanism combining high fluid pressurisation in the volume
enclosed by the nucleus pulposus on the one hand and radial bulging of the annulus
fibrosus on the other hand. Axially, near the centre, the disc behaves in a similar
manner as samples subjected to confined compression, as described in Chapter V.
This is materialised by circles in Fig. VIII.10, where the nucleus experiences little
radial expansion and constant pressure. This pattern is repeated for each z-ordinate.
First, this pressurisation prevents the centre from large downward displacements.
Second, it forces the annulus to bulge outwards. Near the outer boundary, as Fig.
VIII.10b shows, the axial compressive loads are not resisted by pressurisation as free
flow is permitted. This, combined with the absence of radial constrains, explain the
displacement pattern observed in Fig. VIII.9.

(a) Radial displacements (b) Pressure
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# 
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# 

Figure VIII.10: At the end of the loading ramp, radial displacements (a) and pressure
(b) contour plots in the mid-sagittal section

This analogy with the 1D model is further motivated by the osmotic pressure dis-
tribution depicted on Fig. VIII.11. Due to the nature of the constitutive model
(Eq. VI.1.7), the osmotic pressure is an inverse law of the mixture’s volume change.
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Regions where the osmotic pressure exceeds the initial osmotic pressure of 0.1MPa
experience compaction, as observed near the top and bottom surfaces. The core of
the IVD remains largely unaffected by volume changes, while the regions of high
bulging experienced a mild volume increase.

Figure VIII.11: At the end of the loading ramp, contour plot of the osmotic pressure
distribution across the thickness of the disc

VIII.3.2 Discussion

Comparing the numerical results to experimental data is a challenging task. It is
partly due to the fact that the primary focus of present work was limited to the de-
velopment of a computational framework for the modeling of the disc, but also due to
the difficulty in identifying published experimental setups suited for a truly equivalent
comparison: species (e.g. human, porcine, rat, bovine), disc’s geometry, boundary
conditions, loading conditions (e.g. type of loading, rate), method of determining
height reduction (i.e. centre, side or average) and predominantly the physiological
conditions of the tissue (i.e. age/degeneration, water content, strain/stress state at
the start of the experiment).

Experimental work focussing on geometrical changes of the intervertebral disc essen-
tially falls into three categories:

• in-vivo experiments usually focus on changes in stature (i.e body, rather than
individual disc, height change) when a patient performs pre-determined activ-
ities (e.g. sitting, standing, lifting a weight). This is for example the case in
Tyrell et al. (1985) and Broberg (1993), where daily body height changes under
normal activity are estimated to 20mm. This loss of stature, which represents
the cumulative compression of each of the 23 discs, cannot be apportioned to
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each disc as they all vary in shape and size (i.e. thicker and wider in the lum-
bar region), but also experience different levels of loading. Another considerable
difference with the above simulation is the complex interaction with surround-
ing muscles, ligament and vertebra’s facet joints and neural arch, resulting in
intricate loading of the disc.

• in-vitro experiments using so called motion segments, which are functional units
vertebrae-disc-vertebrae, where external soft tissues and bony parts are kept
intact.

– Adams et al. (1996a) reported approximately 0.6mm displacement under
1500N axial load applied fast (rate not specified)

– Campana et al. (2011) measured a displacement of 1.3mm when 400N are
applied in 30s (i.e rate of 13N.s−1), and a total of 1.45mm after 5 minutes
of creep

• in-vitro experiments on motion segments, after removal of posterior bony struc-
tures, muscles and ligaments:

– Heuer et al. (2007) reported 1.14mm after immediate application of 500N
and 1.3mm after 15 minutes

– in another experimental setup, O’Connell et al. (2011) measured 2.08mm
when 2000N are applied at 1N.s−1 (i.e. after 33 minutes)

– another loading case in O’Connell et al. (2011), 0.75mm were measured
after rapid application of 400N, with a total of 2.85mm after 8h.

In an attempt to explain these large discrepancies, O’Connell et al. (2011) argued
that, in addition to the issues mentioned at the beginning of this section, the mech-
anisms within the disc are highly dependent on the rate and duration of loading.
Additionally, it is also argued that creep-recovery tests are different from diurnal
tests, mainly because of the initial state of the disc.

However, it seems that preliminary results from the current model consistently over-
estimate axial displacements. This seems to also apply to lateral bulging, which was
reported in Heuer et al. (2007, 2008) under 400N compressive load to be 0.6mm in
the x-direction, 0.8mm anteriorly and 1mm posteriorly (resp. 1.02, 1.1 and 1.2 in our
analysis). At this juncture, it is worth noting potential issues over the fibres’ response
and the mechanisms that engage them. As Fig. VIII.12 shows, only the outer fibres
of the annulus are participating to the stiffening of the disc, with a maximum fibre
strain of 3%, compared to the 6.7% reported in Heuer et al. (2008) for similar levels
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of compression (albeit more rapidly applied). This is not the anticipated behaviour
of the annulus.

(a) Stress in fibres (b) Stretch in fibres

Figure VIII.12: At the end of the loading ramp, mid-sagittal section: stress (a) and
stretch (b) distributions in the fibres

Investigation of the principal stretches within the annulus fibrosus reveals that the
largest principal stretch is compressive in the height of the lamella near the mid-
sagittal plane of the disc (i.e. compression in the plane of the fibres, normal to the
hoop direction) and compression perpendicularly to the plane of the fibres near the
top and bottom surfaces. This is illustrated in Fig. VIII.13a. The second largest
principal stretch is tension in the hoop direction (VIII.13b). Although tension in
the hoop direction seems intuitive, the other principal stretch was anticipated to be
tensile along the height of the lamella, following rotation of the tissue due to bulging.

(a) Direction of the principal stretch 1 in the upper
left side of the AF

(b) Direction of the principal stretch 2 in the mid-
sagittal plane

Figure VIII.13: The direction of the two largest principal stretches within the annulus
fibrosus

This bi-axial compression-tension state suggests that the inactivation of the fibres is
not caused by errors in the implementation of the fibre model (e.g. orientation, stress
and stress derivation), but rather by more complex phenomena. Before investigating
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what these might be, two further tests are performed in order to gain confidence on
the fibres’ implementation.

First, the ramp of the diurnal test is revisited, with the fibres positioned along the
hoop direction, i.e. in the sagittal plane following the curvature of the annulus. This
is to verify that the fibres are engaged as expected when oriented in a direction that
is known to experience tension (see Fig. VIII.13b). This resulted in fibre stretching
across the whole width of the annulus, and a decrease in the displacement of 16%
vertically and 22% radially.

In a second test, bending about the X-axis is applied to the top surface of the disc.
Fig. VIII.14a shows the external nodal forces; note that the magnitude of the nodal
force vectors is not fully linear along the Y-axis because it is proportional to the
surface area of the element it is connected to. Over 200s, a total compressive force
of 130N is applied, together with a bending moment of 650N.mm.

(a) External nodal forces (b) Control points

Figure VIII.14: External nodal forces applied for bending about X-axis (a) and loca-
tion of the control points

Four different configurations are compared. Fibres are not considered in the reference
case, making case 1 fully isotropic. Case 2 includes fibres as described in Sec. VIII.2.
Case 3 is similar to case 2, but with stiffness parameters increased by 10%. Case 4 is
also a variation of case 2, but fibres are initially pre-stretched by 5%. As essential and
natural boundary conditions cannot be applied simultaneously, case 4 necessitated
an equilibrium phase prior to loading, effectively cancelling the pre-stretch. A similar
test was run, where the bending was applied in displacement control (i.e. without
equilibrium phase), showing similar results to case 4.
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case 2 case 3 case 4
uy,A -1.07 -1.25 -1.58
ux,B -1.13 -1.26 -3.44
uz,C 0.22 0.24 -0.56
uz,D -35.66 -44.62 -35.61

Table VIII.3: Difference (%) in displacements at control points between case 1 and
case 2-4

Table VIII.3 clearly indicates that the fibres only marginally contribute toward the
disc’s stiffness. The only impact takes place on the tension side (point D), where
the loading direction is close to the fibres’ direction and therefore directly activating
them.

The last two tests further demonstrate that fibres respond as expected when the
continuum experiences tension in the fibres’ direction. This suggests a shortcoming
in the overall behaviour of the isotropic biphasic medium. Although more tests are
clearly necessary to draw strong conclusions, a few potential reasons are proposed to
explain this behaviour:

- The initial conditions. The state of the tissue is experimentally far more com-
plex than in the idealised model. The solid matrix, as well as the fibres, physio-
logically present an intricate stress state across the disc, which is not accounted
for in the simulations. Moreover, the annulus exhibits residual stresses even
for the unloaded disc Michalek et al. (2012). Additionally, the idealised model
should take into consideration the conditioning of the tissue performed in the
experiments, which includes initial compression and swelling. Finally, the be-
haviour of the tissue is highly related to the osmotic pressure distribution and
the level of hydration, which have not been accounted for accurately. These
considerations naturally impact the initial stiffness of the tissue.

- The influence of the loading rate. As demonstrated in O’Connell et al. (2011),
the disc’s behaviour is highly dependent of the rate at which it is loaded. Un-
fortunately, it was not possible to achieve faster rates of loading in the present
study to verify the importance of the phenomenon.

- The material parameters. Few numerical studies considered the investigation
of the model’s sensitivity on material parameters. In Karajan (2009), it was
found that the impact of the parameters describing the solid phase play a non-
negligible role in the way the disc pressurises and deforms. As literature is
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abundant in material parameters, sometimes spanning several order of magni-
tude, it would be of great interest to explore this area, and in particular the λ
which controls the ability of the mixture to undergo volumetric changes. It is
also reasonable to question whether the chosen Neo-Hookean model is adequate
to properly describe the behaviour of the disc.

- The fibre model. A possible shortcoming of the current formulation is that
in reality, fibres are discrete entities, spanning between superior and inferior
vertebral bodies. This implies that the behaviour of the annulus fibrosus, say
at the bottom of the disc, is not completely independent from deformations
occurring at the top of the disc. This is not accounted for in the continuum
model, where there is no information at the point level about the stress state
at the other end of the fibres.

- Boundary conditions. Constraints at the top and bottom surfaces have been
so far crudely modelled. Although it is not expected to drastically modify the
current global behaviour, finer stiffness and permeability should be defined at
these location by specifically modelling the endplates and the vertebral bodies.

VIII.4 Conclusion

This chapter was concerned with the application of the 3D biphasic swelling model to
the particular case of the intervertebral disc. A methodology was presented to create
a simple geometry, and assign properties to the annulus fibrosus. The idealised disc’s
response to a ramp-creep loading showed excessive axial and lateral displacements
compared to published experimental data, as the deformation mechanism within
the tissue fails to trigger stretching of the fibres, as would be expected. Further
tests are required to solve this shortcoming. Of particular interest, the influence
of the loading rates and the refinement of the initial state of the tissue should be
investigated. Although preliminary simulations show encouraging result regarding
the GLS stabilisation, the performance has yet to be tested once fibres are properly
activated and offer more confinement to the nucleus pulposus.
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Chapter IX

Overview

The computational modelling of the intervertebral disc is a truly inter-disciplinary
process. The first task was to build understanding of the intervertebral disc as a
structure, and more specifically, to identify the salient features the model needed to
exhibit in order to accurately describe the disc’s behaviour. This was complemented
by a review of existing soft tissue models, and in particular those related to articular
cartilage. The difficulty was to find a balance between essential features and what
could reasonably be implemented within the scope of this project. This was achieved
by defining a modelling philosophy and the establishment of a consistent level of
complexity for the model.

Subsequently, the theoretical framework could be derived. It involved building pro-
ficiency in mixture and finite deformation theories, and enhancements to include the
osmotic pressure and strain dependent permeability. Computational aspects started
at this stage only, with the derivation of an iterative solver. The implementation of
the three dimensional, nonlinear finite element code was in itself a substantial task.
It turned particularly rewarding to design the verification methodology, not only be-
cause this stepwise procedure ensured a steady progression of the implementation,
but also because it provided a deeper understanding of the nature of the governing
equations and of the model in general.

Numerical instabilities materialised as an unforeseen challenge, which, although ex-
citing, hindered the progression toward a more mature model of the disc. Other
techniques were envisaged to tackle this issue, for example F̄, without success. Al-
though it was beyond the scope of the thesis, it would have been interesting to further
investigate the origin of these instabilities, and in particular the reason why it has
not been more widely reported in other publications. Potential directions could have
been the implementation of a viscous model, brick elements, or linear approximations
of the displacement field, all of which seem to have been extensively used in other
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studies.

The results obtained both in 1D and 3D, showed the potential of the proposed frame-
work even if the 3D model requires further consideration to offer a faithful represen-
tation of the intervertebral disc. This involves a number of aspects, the most crucial
of which is thought to be the determination of finer initial conditions for the simu-
lations. The significance of the initial state of the tissue on its behaviour have been
discussed in a number of sections, and needs to be addressed in the model in a more
physiologically representative manner. It was also reported that the biphasic swelling
model is markedly sensitive to material parameters. It would therefore be of great
interest to quantify this sensitivity, but also the sensitivity to loading rates. Finally,
the derivation of a specific constitutive model for intervertebral disc tissue could be
beneficial.

To conclude, the main achievements of this thesis are concisely reiterated:

- Theoretical framework: a model based on mixture theory under finite defor-
mations was formulated, with particular attention to the treatment of osmotic
and rate-dependent effects.

- Numerical treatment: the weak form of the resulting set of governing equa-
tions was derived and linearised, enabling the use of a Newton-Raphson scheme.
A specific termination criteria was derived for the iterative solver.

- 1D implementation: the biphasic swelling model was restricted to the one
dimensional case and implemented in Matlab. Validation against experimental
data demonstrated the capabilities of the model and facilitated familiarity with
the mechanics of porous and soft tissues.

- 3D implementation: a methodology was specifically designed for the verifi-
cation of the implementation of the biphasic swelling model in a C/C++ code.

- Stabilisation: a Galerkin least-square stabilisation framework was formulated
to address the encountered numerical instabilities. Performances and limita-
tions of this technique were clearly demonstrated.

- Full IVD tests: preliminary tests were performed on an idealised interverte-
bral disc, which demonstrated a number of the features of the model. Areas
requiring further developments were identified.
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