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Abstract 

Epidemiology strongly parallels the study of ecology, primarily being concerned 

with the incidence, distribution, reproduction and persistence of species. The 

spread of disease, or its transmission, is arguably the most important incident 

studied in epidemiology, underpinning a pathogen’s ability to reproduce and 

persist within a host population. However, observations of individual 

transmission events are often impossible to observe directly, making variation in 

this process difficult to study. This has resulted in a great deal of 

epidemiological theory being based on homogenous transmission of disease 

through host populations. Understanding disease transmission as a 

heterogeneous process requires an appreciation of the ecological dynamics 

determining a pathogens ability to transmit. In this thesis a cross-disciplinary 

approach is taken to examine the ecological dynamics that may affect disease 

transmission at different ecological scales. 

In Chapter 2 I review empirical evidence in support of density dependent 

transmission. Transmission rates of density dependent transmitted diseases are 

often assumed to scale linearly with host population density. This assumption is 

pertinent to the calculation of the basic reproductive number R0. As R0 is 

important in determining optimal vaccination strategies, population thresholds 

and epidemic sizes, incorrect assumptions used in its calculation have the 

potential to misinform disease control strategies. Alarmingly, there is very little 

evidence to suggest that the prior assumption of a linear relationship between 

disease transmission rates and host population density exists. Where evidence of 

density dependent transmission has been found this has been best explained by 

non-linear relationships. Furthermore, density may have much stronger effects 

on disease transmission at small, local, scales (for example within one social 

grouping of hosts). Disease transmission between groups of hosts, at global 

scales, is more likely to follow frequency dependent dynamics. Disease 

transmission rates should thus be thought of as variable across populations that 

are not homogenously distributed in space, or across social structures. 

In Chapter 3 a community of pathogens infecting a population of rural red foxes, 

Vulpes vulpes, is described. Foxes cadavers were collected from a private estate 
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in Canterbury, Kent and a combination of direct and indirect testing for disease 

is used to maximise the scope of disease considered as part of this community. 

Specifically, I examine if any of the diseases included in this study occur 

together, or apart, more frequently than expected by chance alone. Within the 

samples collected it is found that the intracellular protozoan Toxoplasma gondii 

co-occurs with the virus canine adenovirus type-I (CAV-I) more frequently than 

expected by chance. Foxes concomitantly infected with these pathogens have 

lower condition scores than foxes who were not positive for both pathogens. 

From the data collected it is not clear whether hosts of lower condition are 

more susceptible to co-infection or if the co-infection is more harmful to hosts 

than being singly infected. T. gondii is not transmitted by foxes, but if infection 

with this parasite increases susceptibility to CAV-I then this virus may benefit 

from the presence of T. gondii within its host population. If it is the case that 

foxes of lower condition are simply more prone to co-infection then it should be 

expected that individual differences between hosts would cause heterogeneity 

in disease transmission. The need for cross-disciplinary approaches when 

studying pathogen communities is well demonstrated by this study, as is the 

need for more consideration to be paid to the community ecology of pathogens 

in epidemiological studies. 

In Chapter 4 a model is formulated to explore the effects of an interaction 

between a micro and a macro parasite. This is performed in the context of the 

increased prevalence and geographical range of the highly zoonotic small fox 

tapeworm Echinococcus multilocularis following successful rabies elimination in 

Western Europe. I explore the hypothesis that foxes with extremely high burdens 

may be at a higher risk of contracting rabies than foxes with low worm burdens, 

and thus rabies may have a regulatory effect on E. multilocularis populations by 

preferentially removing “super spreading” hosts. It is demonstrated that rabies 

limits E. multilocularis populations by limiting the density of available hosts. An 

interaction between rabies transmission rate and worm burden only caused a 

weak additional suppression on E. multilocularis populations, regardless of 

whether this relationship was linear or exponential. The elimination of rabies 

across Western Europe is certainly to be applauded. However, it should be noted 

from this work that surveillance of pathogen communities following successful 

eradication of one pathogen is of the upmost importance. 
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Finally, in Chapter 5 I examine how parasites adapt their investment in 

transmission in response to environmental changes experienced within a host. 

This is done by fitting models to data collected from mice infected with the 

malaria parasite Plasmodium chabaudi during the acute stage of inaction. 

Parasites are predicted to alter their behaviour in response to host stress, 

immunity and the availability of resources. However, theoretical and 

experimental studies reach conflicting conclusions regarding the “optimal 

response” to degradation of their habitat. Models were fitted to time series data 

from infection with one of six distinct genotypes. It is found that proportional 

allocation of resources into transmission, rather than replication, is highly 

sensitive to red blood cell (RBC) densities, with investment in transmission 

increasing as RBC resources become scarce. Investment in transmission also 

increases, albeit more weakly, in response to low parasite densities. These 

analyses highlight the fact that the complexity of interactions between parasites 

and their host hinder the identification of causal relationships, but supports 

recent work that questions the role of terminal investment in transmission in 

response to changes in the within-host environment. 

The broad scope of work presented here investigates a wide range of ecological 

factors (including community dynamics, habitat variability and reproductive 

success) at different ecological scales, responsible for heterogeneity in disease 

transmission. Transmission is a dynamic, and heterogeneous process. To better 

understand the ecology of disease it is logical to investigate the mechanisms 

behind this variation. 
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1 General Introduction 

Epidemiology has, at its heart, much of the same underlying philosophy as 

ecology. The parallels between the two fields are clear, with both being 

concerned with the incidence, distribution, spread and persistence of species. 

The spread of a disease, or its transmission, is arguably the most important 

process studied in epidemiology, underpinning the ability of a pathogen to 

persist in a host population and determining the dynamics of epidemics. 

However, the transmission between individual hosts often cannot be observed 

directly, making variation in this process difficult to study. This has resulted in 

traditional mathematical models treating transmission as a homogeneous 

phenomenon, which a great deal of modern epidemiological theory has been 

based on. To understand transmission as a heterogeneous phenomenon requires 

consideration of the habitats pathogens invade, their hosts, and the interactions 

that both host and pathogen are involved with in their environment. 

Heterogeneous disease transmission was recognised as early as 1907 when an 

Irish cook, Mary Mallon, was implicated as being responsible for 51 cases of 

typhoid in a seven year period in New York – despite never showing symptoms of 

disease herself (Stein 2011). The infamously coined “Typhoid Mary” was 

recognised as an asymptomatic carrier of typhoid and confined by New York 

health officials between 1907 and 1910. Upon release however she went on to 

become a cook at two hospitals, where a total of more than 200 patients were 

affected before she was again discovered, and isolated for the remainder of her 

life (Nester et al. 1973).  

Despite such an infamous case of variable transmission in history, modern 

epidemiological thinking has been driven to a large extent by the seminal works 

of Anderson and May throughout the 1970s and 80s (Anderson & May 1979; 

Anderson & May 1982; Anderson & May 1985; May & Anderson 1979). The 

epidemic models proposed by Anderson and May have undeniably proven 

invaluable in predicting and curtailing epidemics; explaining why some diseases 

are endemic or cyclic; and furthering our understanding of host population 

factors that may facilitate or hinder transmission (Anderson & May 1991b). 
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However, in their simplest and most widely read and understood form these 

traditional epidemiological models assume homogenously distributed, 

homogenously infectious and susceptible individuals with overall transmission 

dynamics governed by a single parameter, β. It seems unlikely this was Anderson 

and May’s intention, as they have formulated several models capable of 

exploring heterogeneity in transmission between individuals (Agur et al. 1993; 

Anderson & May 1988; Anderson & May 1991b; May & Anderson 1984). However, 

the appeal of their simple transmission models has been great and lead to them 

being used, largely, without question. Rather than being fixed, transmission 

should be considered as a dynamic trait of pathogens; a trait that will be 

dependent on pathogen fitness, genetic variability, and forces acting both within 

and between hosts (Antolin 2008; Real & Biek 2007). 

1.1 The importance of understanding the ecological 
drivers behind variable disease transmission  

Human populations currently face an unprecedented rate of emerging and re-

emerging disease (Cleaveland et al. 2007; Woolhouse 2002). Anthropogenic 

induced changes in natural environments and climate change have been 

proposed as underlying causes of this phenomenon. Resulting in increased 

disease incidence, changes in geographic range of vectors and invasion of new 

host species (Schrag & Wiener 1995; Woolhouse 2011; Yacoub et al. 2011). 

Historic disease emergence events have also been linked to anthropogenic 

processes, primarily the domestication of wild plants and animals (Diamond 

2002; Pearce-Duvet 2006). Zoonoses account for 60% of human infectious disease 

burden, and about 70% of emerging disease pathogen “species” (Taylor et al. 

2001), implicating transmission between humans, wildlife and livestock as an 

important component in disease emergence. To better understand the factors 

responsible for disease emergence and pathogen transmission across species 

barriers requires an understanding of how pathogen transmission is mediated by 

changes in the environment that pathogens inhabit. This will be essential in 

predicting the impact of future environmental change and habitat degradation 

on threats posed by disease. 

Emerging diseases are not exclusively of human concern. We are currently in the 

midst of a mass extinction event (Dunn et al. 2009; Wake & Vredenburg 2008), 
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with many wildlife populations only persisting in small, fragmented populations. 

Historically, disease has been an uncommon cause of extinction, with habitat 

loss, climate change, over-exploitation and the introduction of alien species 

having a more profound impact on the long-term viability of endangered 

populations (Pimm et al. 1995; Purvis et al. 2000; Wilcove et al. 1998). However, 

the short-term persistence of some endangered populations is at immediate risk 

in the face of emerging diseases (Haydon et al. 2006; Pedersen et al. 2007; 

Prager et al. 2011; Smith et al. 2006; Vial et al. 2006; Wake & Vredenburg 2008). 

It should be noted that mass extinction itself has been proposed as a driver of 

disease emergence through loss of biodiversity reducing the “dilution effect” 

where the presence of incompetent hosts can help reduce transmission 

opportunities to competent hosts (Schmidt & Ostfeld 2001) or by removing 

genetic variation present in host populations leading to less variation in host 

immune systems (Maillard & Gonzalez 2006).  

Small populations do not generally act as reservoirs for disease, and pathogens 

may fail to successfully invade host populations when they are smaller than the 

critical community size (CCS) (Lloyd-Smith et al. 2005). This is predicted to 

make small populations robust to limited disease introductions, as epidemics 

must “burnout” when populations become too small (or too sparse) to maintain 

an epidemic (Lloyd-Smith et al. 2005; McCallum et al. 2001; Smith et al. 2006). 

However, as humans encroach further upon wildlife habitats there is increased 

potential for multiple disease introduction events into endangered populations 

from domestic animals (Cleaveland et al. 2001), and forcing wild populations 

into closer contact may allow multiple smaller populations to act as a single 

multi-species reservoir (Haydon et al. 2002). Where a population is too small to 

propagate an epidemic, it is the frequency of transmissions into this population 

that determines the severity of disease induced population declines (de Castro & 

Bolker 2005). The synchronicity of these introductions may also affect the 

impact a disease has on an endangered population; it may be easier for a small 

population to survive against a low, but constant rate of disease introduction 

rather than a high frequency of introductions across shorter time scales; unless 

disease is directly responsible for constraining the population to below CCS, in 

which case breaks in disease introduction would allow the host population size 

to increase leading to bigger epidemics. The ability of a pathogen to transmit 
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between host species and in small or sparse populations is fundamental to the 

conservation threat a disease poses. Understanding the ecology that hinders or 

facilitates these processes is necessary for the design of effective disease 

control strategies, and monitoring their success.  

Heterogeneity in disease transmission can have profound effects on the 

epidemiology of a disease and the effectiveness of control or eradication efforts. 

Many disease systems would appear to conform to the 20/80 rule: whereby 80% 

of the transmission potential of disease is held by only 20% of infected hosts 

(Woolhouse et al. 1997). This transmission heterogeneity is often caused by 

aggregation of pathogens, where the majority of infected hosts are only lightly 

infected, but a minority of hosts carries very heavy burdens of infectious 

material (Guislain et al. 2008; Woolhouse et al. 1997). However the underlying 

cause of this phenomenon is unclear, and in reality is likely to differ dependent 

on the host pathogen system in question. Proposed reasons include increased 

strain virulence (Matthews et al. 2009), a higher propensity of the host to shed 

(Stein 2011), and co-infection with other pathogens (Bassetti et al. 2005a; 

Bassetti et al. 2005b). These proposals can all be considered ecological in 

nature, whether due to different genotypes’ abilities to exploit their 

environment, or through community interactions with other species. The 

presence of super-spreaders has obvious implications for disease control 

strategies: strategies that can target this core 20% of super-spreading hosts will 

be highly efficient, and effective and conversely those that fail to treat this 20% 

will be costly and ineffective (Matthews et al. 2006; Woolhouse et al. 1997). 

Heterogeneity in transmission also increases the basic reproductive number, R0, 

of a pathogen (Woolhouse et al. 1997). This would be predicted to lead to faster 

disease spread through a host population and larger epidemic sizes than 

predicted (Tildesley & Keeling 2009).Treating transmission as homogenous could 

thus lead to under-estimating the threat posed by a novel pathogen introduced 

to a susceptible population. 

1.2 The ecology affecting transmission acts at different 
scales 

Pathogens co-exist in complex and dynamic environments, where their survival 

and investment in transmission is affected by changes in their immediate 
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habitat, within the host. Future transmission and persistence are affected by 

changes in the ecology and population structure of their hosts (Anderson & May 

1991b; Bull 1994; McCallum et al. 2001; Pedersen & Fenton 2007). Clearly, the 

ecology affecting disease transmission is dependent on the scale at which it is 

considered. Bush and Holmes (1986) define three scales at which pathogen 

communities may be examined: the infra community consists of the pathogens 

infecting a single host simultaneously; the component community is made up of 

the pathogens infecting a population of hosts at any time; finally compound 

communities consist of the pathogens present in a community of hosts. These 

scales of community are also useful when considering other aspects of disease 

ecology. At each of these three scales the ecological pressures faced by 

pathogens have the potential to affect transmission dynamics. 

At the scale of the infra community, changes in a pathogen’s immediate habitat, 

within the host, have an effect on transmission from one host to the next. This 

can be with respect to the host’s immune system (Graham 2002; Graham et al. 

2007), the community with which it shares it’s host (Cox 2001; Graham 2008; 

Hawley & Altizer 2011; Jolles et al. 2008), and changes in availability of 

resources (Pedersen & Fenton 2007). These within-host factors are not mutually 

exclusive, and interplays between them may prove important in determining a 

pathogens ability, and disposition to invest in transmission (Haydon et al. 2003). 

For example the immune system may play an important role in the competitive 

dynamics between pathogens within a host (Cox 2001; Graham 2002). T-cell 

polarisation is a process of the adaptive immune response of mammals with two 

mutually exclusive outcomes; either a Th1 or Th2 response is elicited based on 

the cytokine profile stimulated by infection. Generally the Th1 polarisation 

occurs in the presence of micro-parasites and Th2 polarisation in response to 

macro-parasites. T-cells are a limited resource, and when one “arm” of this 

response is up-regulated, the other must be down-regulated (Cox 2001). This 

dynamic trade-off has been demonstrated to influence the competitive, or 

synergistic response and pathogenesis of some parasites (Petney & Andrews 

1998), and it may also be the case that differences in immune response between 

single and concomitant infections lead parasites to adjust their investment into 

transmission. 



Chapter 1  20 
 
Within an infra community it may also be expected that the influence of 

resource utilisation on virulence would affect the transmission strategy 

employed by pathogens (Bull 1994). Pathogens that rapidly consume resources 

do so at the cost of causing virulence to the host. In extreme cases this ends the 

infectious period by killing the host. Pathogens exhibiting this extreme strategy 

must have very efficient transmission to maximise their probability of successful 

transmission over a limited period of time. Pathogens may also utilise their host 

more sustainably, causing minimal virulence over much longer periods of time. 

This strategy usually results in a lower probability of transmission over longer 

periods of time (Alizon & van Baalen 2008). These strategies should be 

considered as opposite ends of a continuum, both of which aim to maximise R0. 

The position along which a pathogen lies will depend on host immunity, resource 

availability and interactions with other members of the infra community. 

At the scale of a component community, the individual differences between 

pathogen ecology at the level of infra communities manifest as heterogeneity in 

transmission rates (Pedersen & Fenton 2007; Stein 2011; Woolhouse et al. 1997) 

with unpredictable outcomes: Super-spreader individuals can proliferate 

epidemics (Fujie & Odagaki 2007), but heterogeneity in infectiousness and 

susceptibility can also make the initial emergence of disease less certain (Yates 

et al. 2006). If disease is endemic however, targetting super-spreading 

individuals could make disease control more effective (Matthews et al. 2009).  

Ecological factors at the component community scale will affect the 

transmission dynamics throughout the host population and thus the persistence 

of disease. The ecology of disease transmission at this scale is subject to 

variation caused by host behaviour, demography, seasonality, and spatial 

structure of populations. Pathogens may be subject to density or frequency 

dependent transmission, or an intermediate between these two extremes. 

Increases in host density could be the result of reduced top-down effects or 

increased bottom-up effects on the population; it may also be sensitive to 

anthropogenic interference of host habitat. The behaviour of hosts can lead to 

more frequent contacts between individuals, leading to an increased potential 

for disease transmission; for example through a high number of sexual contacts 

(Ji et al. 2005) or fighting for a position in a social hierarchy (Beisner & Isbell 

2011). Seasonal forces can also strongly affect the transmission dynamics of 
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disease. A host’s behaviour in response to seasonal changes may affect disease 

dynamics, for example if contact rates are higher during breeding seasons 

(Tersago et al. 2011) or seasonal migrations may provide opportunities for 

disease introductions to naïve populations (Lawson et al. 2012; Morgan et al. 

2006).  

The ecological factors affecting pathogens in a component community also 

affect those at the compound community level. However, there are additional 

ecological factors to consider at this level, especially for diseases that are not 

directly transmitted. For instance, predator-prey relationships may influence the 

transmission dynamics of trophically transmitted pathogens: parasites that 

utilise the predator-prey relationship between definitive and intermediate hosts 

for transmission. Parasites themselves may also have their transmission potential 

lowered by predation if ingested by a non-competent predator, halting the 

spread of infection (Johnson et al. 2010). Transmission dynamics of trophically 

transmitted pathogens may be further affected by changes in the behaviour of 

intermediate hosts (Parker et al. 2009). For example Toxoplasma gondii causes 

reduced neophobia (Webster et al. 1994) and sexual arousal by cat urine odours 

(House et al. 2011) in infected rodents. In this example a population of mice 

with heavy T. gondii infection may suffer a greater predation from cats, but this 

would also have a direct effect on other pathogens in the mouse population 

whose hosts may now suffer increased predation by a potentially non-competent 

host. The increased infectious load of T. gondii may affect pathogens in the cat 

population too if it interacts with concomitant pathogens at the infra community 

level. Predator prey relationships may also affect pathogen communities when 

predators show preference for the sickest, or healthiest prey (Hall et al. 2005). 

Predator prey dynamics can be complex and are important in the maintenance 

of “healthy herds” (Packer et al. 2003), whereby predation may reduce disease 

prevalence in their prey and also facilitate prey population growth. At this scale 

disease may also facilitate the invasion by alien species, even if they are poorer 

competitors than native species, so long as they are less negatively affected by 

native pathogens (Bell et al. 2009). If the alien species manages to out-compete 

the native host population this may also have knock-on effects for the native 

pathogens that facilitated the invasion. 
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The ecological dynamics acting at each of these scales have the potential to be 

extremely complex, and should not be expected to act independently from one 

another either within or across the scales outlined here. However, classifying 

disease ecology by the scale at which pathogens interact with the environment 

provides a natural and intuitive way to divide the “big picture” into manageable 

pieces. 

1.3 Studying disease transmission demands a cross-
disciplinary approach 

There are clearly several approaches and disciplines required to consider the 

ecological forces experienced by pathogens both within and between the scales 

described above. To effectively study the interactions between pathogen, host 

and environment disease ecologists must integrate ecology across a variety of 

fields including: immunology, microbiology, parasitology, physiology, population 

biology, genetics and community ecology all within an epidemiological 

framework (Archie et al. 2009; Hawley & Altizer 2011; Pedersen & Fenton 2007; 

Petney & Andrews 1998).  

Realistically, an entirely holistic approach encompassing aspects from such a 

broad spectrum of disciplines is likely beyond the abilities of any single ecologist 

or epidemiologist. Again, by breaking up the ecological drivers affecting disease 

transmission by the scale on which they act provides an intuitive and 

manageable way to class research questions by. The necessary tools for disease 

ecologists working at different scales shall also come from different disciplines.  

Cross-disciplinary studies into disease ecology have already proven important for 

disentangling complex disease dynamics that traditional epidemiological 

processes have struggled to explain, for example: By combining molecular, 

behavioural and epidemiological methods the reservoir dynamics, persistence 

and importance of inter-species transmission of multi-host pathogens have been 

explored in the Serengeti eco-system (Craft et al. 2008; Craft et al. 2009; Lembo 

et al. 2008); By considering the host immune system as a “top-down pressure” 

and the variation and limitations of the immune responses to different, and 

multiple pathogens a better understanding of the facultative and competitive 

dynamics of pathogens in co-infection has been achieved (Cox 2001; Graham 
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2002; Graham 2008; Hawley & Altizer 2011; Jolles et al. 2008); The application 

of evolutionary and life history trade-off theories examining parasite investment 

in growth and reproduction is beginning to shed light on the ability of parasites 

to adaptively alter their infection dynamics in response to competition, resource 

availability, and inbreeding avoidance (Mideo & Day 2008; Mideo & Reece 2012; 

Pollitt et al. 2011a; Pollitt et al. 2011b; Reece et al. 2010; Reece et al. 2008; 

Reece et al. 2003; Reece et al. 2009). These examples demonstrate the value in 

cross-disciplinary approaches to studying disease ecology. To understand the 

ecological dynamics affecting disease transmission at different scales such cross-

disciplinary techniques will be vital. 

1.4 Thesis structure 

The recognition that disease transmission is not a homogenous process lies at the 

heart of this thesis. A broad spectrum of topics is covered bearing this in mind. 

The ultimate goal of this body of work is to gain a better understanding of how 

host and pathogen ecology at different scales relates to heterogeneous disease 

transmission and their epidemiological consequences. My research strategy has 

included: 

1. Demonstrating the importance of analytical approaches integrating both 

empirical and theoretical methodologies. 

2. Evaluating the relationship between host density and disease 

transmission. 

3. Examining the composition of component communities, the frequency of 

co-infection and its relation to host health. 

4. Theoretically exploring how pathogens with differing transmission 

strategies may compete for hosts and the epidemiological consequences 

arising from this. 

5. Understanding how the transmission strategy employed by a parasite may 

vary with respect to changes occurring in the environment experienced 

within a host. 
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Traditional epidemiological research has focused on single host, single pathogen 

systems with homogenous disease transmission assumed. This research 

demonstrates the importance of treating transmission as a dynamic and 

heterogeneous process as well as demonstrating the need to consider the 

potential interactions between pathogens in a community when studying their 

epidemiology. 

In Chapter 2, a review of literature that provides empirical evidence for density 

dependent transmission is made. Specifically, I look for evidence of pathogens 

whose basic reproductive number, R0, increases at higher host densities. The 

review then goes on to discuss the relevance of global host density to R0, or if 

local density should be expected to have a bigger impact. 

The composition of a component community of pathogens infecting a rural red 

fox population is examined in Chapter 3. By making use of direct and indirect 

testing it was possible to consider a wide range of pathogens (including 

protozoa, viruses and bacteria) that may be present in this host population. I 

examine combinations of disease occurrence in this population and look for 

disease pairings that occur together or apart more than expected by chance 

alone, as this could be indicative of facilitative co-infection, or competitive 

exclusion relationships.  

A theoretical exploration of a competitive interaction between a micro and a 

macro-parasite is made in Chapter 4. Specifically, I investigate the potential for 

rabies virus to regulate the cestode Echinococcus multilocularis in red fox 

populations. I consider the effect of an interaction where foxes “super-infected” 

with E. multilocularis are more likely to contract rabies, and the implications 

this would have for total E. multilocularis burdens following large-scale rabies 

eradication programmes in Western Europe. 

In Chapter 5 models are developed to describe how parasites alter their 

investment in transmission as a function of changes experienced in the within-

host environment. Time-series data collected from mice during the acute phase 

of infection with the malaria parasite, Plasmodium chabaudi, are analysed to 

determine if six genetically distinct clones alter their investment in producing 

gametocytes necessary for transmission. The models used quantify the 
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importance of resource availability and density dependence to the trade-off 

experienced between asexual growth (replication) and sexual reproduction 

(transmission). 

The importance of studying disease transmission in an ecological context, as a 

dynamic and variable process, is discussed in Chapter 6. Understanding the 

mechanisms responsible for heterogeneity in disease transmission is vital given 

the severity of threats posed by emerging disease to humans, their livestock and 

endangered wildlife. Advancing knowledge of these mechanisms will be 

important for designing effective disease control strategies and also evaluating 

their impact on disease communities. Ultimately, understanding the ecology 

behind variation in transmission may also prove important in determining why, 

and when pathogens cross species barriers – particularly when they become 

zoonotic.
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2 A review of empirical data on density dependent 
transmission and its implications for the basic 
reproductive number 

2.1 Introduction 

There has been much controversy over the past 10-20 years on “how best to 

model pathogen transmission” (Begon et al. 2002; De Jong et al. 1995; Lloyd-

Smith et al. 2005; McCallum et al. 2001). This has largely stemmed from 

arguments concerning the formulation of the basic reproductive number, R0, and 

how this depends on the density of available hosts. Yet the effects of population 

density, rather than population size, are arguably still poorly understood. 

Measures of population size do not encompass any measure of the spatial 

distribution of hosts and do not vary as a function of the area a population 

inhabits. Measures of population density are defined as the number of individuals 

per unit of space, and are thus concerned with the spatial organisation of a 

population. This will vary as a function of the area a population occupies. 

Measures of density will also differ dependent on the scale at which it is 

considered: The density of individuals at a local scale, for example within a 

single social unit (a family, or a pack) may be much higher than the global 

population density as individuals within this unit spend large proportions of their 

time in close contact with one another. This may be thought of as heterogeneity 

in density throughout the area a population occupies. Traditionally, host density 

is considered homogenous in epidemiological models (Anderson & May 1982; 

Anderson & May 1991b; Begon et al. 2002), and the effect of heterogeneous host 

density on disease transmission dynamics is poorly understood. 

Confusion over the separate roles of population size and density, can largely be 

attributed to the introduction of the term “pseudo mass action” by de Jong et al 

(1995), which is used to describe pathogen transmission in relation to the 

product of the numbers of susceptible and infectious hosts in a population. True 

mass action, in comparison, describes transmission in relation to the product of 

densities of susceptible and infectious hosts. These two modes of transmission 

form opposite ends of a continuum, and are better described by the terms 
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frequency and density dependent transmission. The point along this continuum 

at which a pathogen occurs will depend on its mode of transmission, the species 

that it infects and the population structure of its host. 

Whilst there are substantial bodies of theory concerning the differences between 

frequency and density dependent transmission (Anderson & May 1982; Begon et 

al. 2002; De Jong et al. 1995; May & Anderson 1984; Ryder et al. 2007; Turner et 

al. 2003), there has been little done to confront theory concerning the effects of 

population density on disease transmission with empirical data.  

Through a review of previous experimental and observational studies the role 

host density plays in influencing disease transmission is here explored. Literature 

searches were performed in ISI Web of Science, with combinations of the search 

term “density” with one or more of the following: “transmission, mass action, 

contact rate, R-0, R0, basic reproductive number, epidemic, network theory, 

contact network and transmission network”. Considering papers from 1970 to 

present By primarily considering the empirical studies turned up by these 

searches we examine the effects of host density on contact rates between 

individuals, the influence of this on the spread of disease and the impact of this 

on assumptions made in calculating R0. 

2.2 The basic reproductive number 

The basic reproductive number (R0) is defined as the expected number of 

secondary infections occurring on average upon introduction of a single infected 

individual in an otherwise entirely susceptible population (Anderson & May 

1991b). This concept is core to modern epidemiology, being used to predict the 

impact of epidemics on a host population and in designing the necessary 

interventions to limit them, as well as population thresholds for disease invasion 

and persistence (Lloyd-Smith et al. 2005; Swinton et al. 1998).  

R0 is dependent on the contact rate between hosts, the probability that a 

contact will be with an infected individual, and the probability that such a 

contact results in successful transmission (De Jong et al. 1995). Classic 

theoretical studies predict the contact rate between individuals to increase with 

population density due to random movement and homogenous mixing (McCallum 
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et al. 2001). These are clearly very strong assumptions, and the movements and 

distribution of real populations should certainly not be expected to follow them. 

However the question is not one of how strictly do populations follow the 

patterns laid out by these assumptions, but rather are these assumptions 

importantly wrong in describing the spread of disease. 

R0 is difficult to measure directly (but see Hampson et al. 2009), and is generally 

calculated mathematically by analysing epidemiological data (Breban et al. 

2007; Heesterbeek 2002). When pathogens exhibit density dependent 

transmission dynamics this should be evident by an increased R0 in populations 

with higher densities. 

2.3 Density vs. frequency dependent transmission 

Density dependent transmission predicts that transmission dynamics are 

governed by the product of the densities of susceptible and infective individuals 

within a well mixed, homogenously distributed population, as formalised by 

equation 2.1. 

dI
dt
= βSI −γ I          Equation 2.1 

Where the rate of change of infective individuals, I, changes linearly as a 

function of the transmission coefficient, β, and the densities of infective and 

susceptible individuals, S. Infected individuals recover at a rate of γ. Where 

disease is spread by contact events that scale positively with population density 

these transmission dynamics are expected. 

Frequency dependent transmission predicts that transmission dynamics are 

independent of the densities of susceptible and infected hosts. The rate of 

change of infected individuals is thus governed by equation 2.2. 

dI
dt
= β

SI
N
−γ I          Equation 2.2 

The difference compared with equation 2.1 is the densities of susceptible and 

infected individuals are over total population density. This eliminates the effect 
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of density upon transmission, which now scales with the proportion of infected 

individuals within the population. Generally frequency dependent transmission is 

used to describe disease that is spread by contact events independent of 

density, for example sexually transmitted infections.  
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Figure 2.1 Schematic of the assumptions behind formalising the basic reproductive number 
based on density dependent transmission. Disease spread between individuals of a 
homogenously distributed, randomly moving population (a) can be described by matrix (b). 
Assuming transmission rates are equal between all individuals R0 is described by equation 
(c). 

By parameterising equations 2.1 and 2.2 with I = 1 and S = N we can represent 

the scenario where a single infective individual is introduced into an entirely 

susceptible population. Solving for the number of secondary infections caused by 

the primary infected individual leads to formulations for R0. Equations 2.3 and 

2.4 are the formulae for R0 in density dependent and frequency dependent 

systems respectively (assuming a closed population with no reproduction or 

natural mortality). 

R0 =
βN
γ

         Equation 2.3 

R0 =
β
γ

         Equation 2.4 
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From these equations it can be seen that, in theory, R0 is predicted to scale 

linearly with host population density if transmission is governed by density 

dependent dynamics. Figure 2.1 demonstrates some important underlying 

assumptions of this formulation: Transmission rates between all hosts are equal; 

hosts are homogenously distributed and move randomly; and R0 increases 

linearly with the global population density. 

2.4  The relationship between density and contact rate 

In its simplest terms, density is the measure of individuals per unit of area. This 

may be measured locally within a colony or social group, or globally over the 

entire range of a population. For disease transmission local densities will 

undoubtedly be most important, while densities measured on larger scales may 

have implications for disease persistence. In mathematical models of disease 

spread a major assumption is often that the host population is homogenously 

distributed in space. In practice this is seldom the case making density 

inherently difficult to quantify. The simplest starting point to this problem is to 

consider sessile organisms. Plants are hosts for which densities can be easily 

measured, and in the case of many agricultural species, may even conform to 

the assumption of being homogenously distributed in space. Burdon and Chilvers 

(1982) consider the measurement of crop density in their review of plant disease 

ecology, and discuss calculations of separation distance (a variant of local 

density). Assuming a homogenous distribution of hosts within a square plot leads 

to a separation distance given by the inverse of the square root of host density 

(equation 2.5).  

L = 1
D

         Equation 2.5 

For sessile hosts this may be considered as a “pseudo-contact rate” as density, 

D, increases the separation distance, L, decreases exponentially. Shorter 

separation distances are paralleled by the increased contact rate expected to 

occur in well-mixed mobile populations with increases in density. The 

importance of heterogeneity in separation distances is also noted when plants 

are “clumped”, which could be taken as analogous to heterogeneity in contact 

rates. Subsequent studies have demonstrated that incidence of tomato spotted 
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wilt virus and pea root rot disease declines exponentially as distance from 

infected plants increases in crop species (Coutts et al. 2004; Willocquet et al. 

2007). Similar relationships have been found for plant moulds of the genus 

Phytophthora (Ristaino & Gumpertz 2000) which are transmitted by a range of 

mechanisms including insect vectors, soil-borne transmission and through water 

splashes.  If disease transmission between sessile hosts in homogenously 

distributed populations does not change linearly with separation distance, There 

is no reason to expect transmission rates in mobile, heterogeneous populations 

to vary as a linear function of density. In fact, conflicting factors such as 

behaviour and sociality will likely complicate this relationship even further as 

contact rates between hosts will be variable. Thus the a priori assumption of a 

linear relationship between population density and R0 is likely to prove 

inadequate.  

Density estimates of mobile hosts vary greatly depending on the scale of which 

density is being measured. A single density estimate based on the entire range of 

a population cannot be expected to account for patches of high and low density 

throughout this range. For immediate disease transmission between individuals 

local densities should prove more important, and metapopulation dynamics of 

disease spread may best describe epidemics (Beyer et al. 2011). A variety of 

methods have been developed to calculate densities of mobile animals in their 

natural habitats, but most can be classed broadly as capture-recapture, distance 

sampling or as indirect methods (Krebs et al. 2011; Moore & Barlow 2011). Most 

incorporate some measure of “detection probability”, which will attempt to 

account for individuals that were present and yet not detected. Both types of 

method suffer from difficulties in calculating the size of area being sampled: 

traps inevitably sample animals from beyond the area they physically occupy, 

and distance sampling methods will unlikely sample all directions evenly due to 

variability in landscape – so even if the area being observed was accurately 

measured, the area observed is near impossible to quantify. 

Whilst estimating absolute densities of wild populations is undoubtedly difficult, 

temporal changes in densities can certainly be measured. Ji et al (2005) 

monitored brushtail possum, Trichosurus vulpecula, population densities in New 

Zealand from 1999 until 2001 using capture-recapture techniques. By fitting 

data-loggers to caught individuals contact rates between tagged individuals were 
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also monitored. Contact rates varied most strongly with season, being highest in 

the breeding season. No linear relationship between population densities and 

contact rates was found, and contact rates only significantly increased in 

response to a large influx (when population of reproductively active males 

doubled in 2001) of new individuals at one study site. This increase was 

attributed to a perturbation of the population away from its stable equilibrium 

size, causing changes in host contact rates through territorial and mating 

behaviours. In this instance, there was certainly no linear relationship between 

the contact rates and densities at different study sites. It may be the case that a 

non-linear relationship could explain the increase in contact rates in response to 

large perturbations in population density. 

Density of mobile hosts can be controlled when kept in enclosures. Caperos et 

al. (2011) compared contacts of cotton-top tamarins, Saguinus oedipus, in large 

and small groups, kept in crowded and non-crowded conditions. Individuals in 

large groups kept in crowded conditions spent more time involved in aggressive 

encounters than those housed in less crowded groups. Whilst contact behaviour 

of the breeding pair within groups was not affected by density, the percentage 

of time that offspring (all other members of the groups) spent in contact with 

other individuals was higher when groups were kept in crowded enclosures. A 

study on Rhesus macaques further demonstrates the complexities of how 

population densities affect contact rates in primates. Beisner and Isbell (2011) 

modified group size in identically sized enclosures and found that displacement 

encounters were more frequent in higher density groups, but acts of moderate 

and extreme aggression were unaffected. Whilst displacement acts were the 

most common behaviour recorded, social complexities may result in nonlinear 

relationships between contact rate and density. Therefore not all types of 

contact between animals were equally affected by density, and not all 

individuals were equally affected. This demonstrates that even at local scales, 

density should not be assumed to linearly affect contact rates. 

Despite not explicitly demonstrating a relationship between density and disease 

transmission the above examples highlight findings relevant to the relationship 

between density and contact rates of mobile hosts: While higher density 

populations may exhibit higher contact rates, this increase is not merely 

attributed to random mixing of populations. It will be dependent on the 
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behaviour of individuals and the social groupings and hierarchies present in a 

population. Consequently, contact rates (and therefore R0) should not 

necessarily be expected to vary as a simple linear function of host population 

density. 

2.5 The effect of experimental manipulations of host 
density on disease transmission 

Contact rate forms only one component of the force of infection. Demonstrating 

true density dependent transmission requires establishing that the increases in 

contact rate actually result in more infections following introduction of an 

infected individual into a population. Experimental manipulation of host density 

should allow the impact on disease transmission to be quantified. 

Livestock, in theory, provide an excellent experimental model: they can be 

confined in pens where the area can be easily measured, and the number of 

animals within a pen (and thus density of animals) can easily be controlled. A 

study examining pseudorabies virus (PRV) in pigs failed to show that transmission 

varies in populations of different sizes held at constant density (Bouma et al. 

1995). This study aimed to find evidence of R0 being dependent on absolute 

population size. While population size is important in determining epidemic 

dynamics, it is insufficient to describe transmission rates from one individual to 

the next. The size of a population is important in determining the invasibility of 

a host population and its ability to support endemic disease (see Lloyd-Smith et 

al. 2005for review). The critical community size (CCS) of a population will 

depend upon R0, but this does not mean that population sizes above this 

threshold should be expected to affect R0. While conclusively demonstrating that 

transmission of PRV was independent of population size, this study does not 

address whether transmission was density dependent.  

Studies manipulating livestock densities rather than numbers are more relevant 

to studying the influence of contact rates on disease transmission. Funk et al 

(2007) manipulate the stocking densities of pigs and examine the effect on 

shedding of Salmonella enterica. Experimental groups were classed as either 

high stock density of 31 pigs/pen (6.5 ft2/pig or 0.154 pigs/ ft2) or a low stock 

density of 25 pigs/pen (8.0 ft2/pig or 0.125 pigs/ ft2). It was found that pigs 
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stocked in higher density pens were not more likely to shed S. enterica. The high 

stock density was only 18% higher than the low. So although no evidence of 

density dependence was found, it is possible that the experimental manipulation 

on density was not severe enough to detect a significant change. 

The example above highlights a potential problem with studies manipulating 

densities of livestock: livestock hosts are typically large, and implementing 

strong manipulations of host density with sufficient replicates to ensure 

statistical power may be unfeasible due to space, time or monetary constraints. 

Smaller animals may be housed at a wider range of densities within the strict 

controls of a laboratory setting. 

Studies on laboratory populations of the Indian meal moth, Plodia 

interpunctella, have demonstrated one mechanism by which R0 may be 

influenced by population density. Knell et al. (1996) show for infection by the 

bacterium Bacillus thuringiensis the transmission co-efficient, β, was best 

described by a linear function of host density, such that β = β’+aN. Where β’ is 

an intercept and a is the gradient of β along host density N. Individuals infected 

with B. thuringiensis are infective upon death and transmission is by cannibalism 

of infectious cadavers. Further study of infection on the similarly transmitted 

Plodia interpunctella granulosis virus (PiGV) (Knell et al. 1998a; Knell et al. 

1998b) found transmission to be explained by the same formulation of β. This 

has important implications for the effect of density on disease transmission. 

Previous density dependent models assume β is constant and the rate at which 

new infections occur to vary linearly as a function of the densities of infective 

and susceptible individuals and β (equation 2.1). By demonstrating β may be 

dynamic and not constant Knell et al. have shown that the force of infection, 

and thus R0 does not necessarily vary linearly with host density. Formulation for 

R0 of these systems therefore does not follow the standard density or frequency 

dependent formulations outlined in equations 2.3 and 2.4, rather it is given by: 

R0 =
β '+ aN( )N
µ + dN

        Equation 2.6 
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Where µ is the rate of decay of infectious cadavers and d is the rate of 

cannibalism (removal) by susceptible hosts. This relationship between R0 and 

host density may be exponential when rates of cannibalism are low (as for B. 

thuringiensis) and asymptotic when they are high (as for PiGV). These studies 

certainly showed evidence of a type of density dependent transmission, although 

not in the “random mixing” sense used in traditional epidemiological models. 

They also demonstrate that R0 may not vary linearly with host density. However 

transmission is through fomite rather than directly from an introduced infective 

individual. Dead hosts are simply an infectious object, and a food source. 

Increased density of infectious objects may simply represent an increase in this 

food source, which becomes less limited as more individuals succumb to 

infection. 

Further support for non-linear dependencies between disease transmission and 

host density in laboratory populations is provided by Greer et al. (2008). In a 

study of transmission dynamics of Ambystoma tigrinum virus (ATV) infecting 

larval tiger salamander, Ambystoma tigrinum nebulosum, populations it is found 

that transmission was best modelled by a power, or negative binomial function. 

Traditional density dependent and frequency dependent models (equations 2.1 

and 2.2) provided extremely poor fits to data. In striking similarity to PiGV 

transmission dynamics (Knell et al. 1998b) discussed above, it is found that 

transmission of ATV saturates at high population densities. Unlike PiGV 

dynamics, the transmission of ATV is through direct contact, not through 

cannibalism of infectious cadavers. ATV is therefore a directly transmitted 

disease and not fomite transmitted, as is the case for PiGV. Greer et al. 

demonstrated transmission can scale non-linearly with host density for a directly 

transmitted disease. 

In experimental studies population density can be strictly controlled, and with 

some species the assumptions of spatial homogeneity and random mixing are 

more likely to be upheld on smaller laboratory scales in animals that are limited 

in their social behaviour. But even when these assumptions seem reasonable, the 

relationship between R0 and population density cannot be expected to follow a 

linear function, which questions the adequacy of traditional density dependent 

modelling. 



Chapter 2  36 
 

2.6 Evidence of density dependent transmission from 
naturally occurring epidemics 

Tracking the spread of a disease in a wild population is a much less precise 

process than using a contained study population. Wild populations produce 

offspring, and so there is an (often unknown) influx of susceptible individuals. 

They may exhibit behaviours that affect disease transmission either positively or 

negatively such as territoriality, sociality, or group living. These behaviours may 

change seasonally. Seasonal changes may also indirectly affect disease 

transmission, for example increased animal densities may occur around water 

holes in dry seasons. In such incidences host populations may be structured more 

similarly to that shown in Figure 2.2 than Figure 2.1; where transmission at local 

scales between individuals within clustered groups is more important than 

transmission throughout the entire range of a population. This would implicate 

local density as being responsible for driving density dependent transmission 

rates, and not global density.  
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Figure 2.2 Schematic of the effects of heterogeneous population structure on the basic 
reproductive number. The global density of the host population (a) is equal to that of Figure 
2.1(a). Groupings of individuals (represented by different colours), may vary in their local 
densities. If transmission only occurs within groups, and transmission between individuals 
within a group is equal, matrix (b) describes the within group transmission rates which may 
vary as a function of that groups density.  
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By examining epidemics in humans many of the aforementioned difficulties can 

be negated. Studies in human epidemiology were the original source of the 

“cities and villages paradigm” (Anderson & May 1991b; May & Anderson 1984), 

which predicts the average force of infection will be concentrated in heavily 

populated urban dwellings. This hypothesis has been explored widely through 

examination of measles epidemics. Despite this exploration the propensity of 

density and frequency dependence is still blurred. In a study into the use of 

vaccination to control infectious disease, Anderson and May (1982) note 

variation in measles’ R0 between cities and villages (range between 14 - 18), and 

predict that the necessary vaccination coverage to eliminate the disease should 

be lower in rural than urban environments. The implications of this observation 

are dependent on whether rural settlements have lower densities, or just lower 

numbers of susceptible hosts. However, this theory assumes complete separation 

between urban and rural settlements, akin to the dynamics illustrated in Figure 

2.2, when in reality individuals occupying these environments are inherently 

linked. There is movement, and thus contact, between these populations. 

Grenfell and Bolker (1998) examine the metapopulation dynamics of measles 

epidemics, and identify a “hierarchy of infection” whereby large epidemics 

originate in large urban populations and diffuse to smaller rural populations. 

These epidemics begin regularly and predictably in larger urban habitats, but 

the spread to smaller rural habitats is dependent on stochastic processes, 

making transmission to rural habitats harder to predict (Finkenstadt et al. 1998). 

Whilst this work supports the “cities and villages paradigm”, it again fails to 

address the key issue of local density in human settlements: measles is 

predominantly a childhood infection, and cyclical outbreaks coincide with the 

school year (Bjørnstad et al. 2002). This implies that schools could be taken as 

the local unit on which density should be measured. Rather than comparing 

urban and rural dwellings, it would be more useful to examine if schools with 

different densities of children varied in their measles dynamics. On this basis 

these studies cannot inform of the relationship between host density and 

measles transmission.  

In contrast to Anderson and May (1982) Bjørnstad et al. (2002) found no evidence 

of R0 varying between cities and villages when analysing pre-vaccination era data 

on measles in England and Wales (mean R0=29.9, S.E.= 0.9). The value of R0 
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estimated is higher than those estimated by Anderson and May (1982), and this is 

attributed to the inclusion of seasonal forcing in Bjørnstad et al’s. (2002) 

modelling of the data. Bjørnstad et al also demonstrate that the seasonality in 

measles epidemics coincided with school terms, with higher rates of transmission 

during term time than during school holidays. Thus the seasonality of measles 

epidemics could be explained by periods when there were high-density patches 

of children. Despite reaching the conclusion that measles demonstrates 

frequency dependent transmission, Bjørnstad et al. (2002) acknowledge that 

local density may be important in explaining the transmission dynamics of 

measles; and that this may conceivably be the same between city and village 

schools. This would suggest a combination of density and frequency dependent 

transmission may best describe measles outbreaks with density dependent 

dynamics within schools and frequency dependent dynamics between schools 

akin to the dynamics described by Figure 2.3. 
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Figure 2.3 Schematic of the effects of heterogeneous host density and allowing contacts 
between groups on the basic reproductive number. The global density of the host 
population (a) is equal to that of Figure 2.1(a). Groupings of individuals (represented by 
different colours), may vary in their local densities. If transmission is density dependent 
within groups, and transmission between individuals within a group is equal, and 
transmission between groups is frequency dependent then transmission can be described 
by matrix (b). µ  terms describe the frequency dependent transmission rates between 
groups. Each row of this matrix may have its own local density, Ni attributed.  
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The examples discussed above only cover a fraction of the work on measles that 

has influenced modern epidemiological theory concerning density and frequency 

dependent transmission. In retrospect, a pathogen that exhibits such marked 

seasonality, and age preference for hosts makes quantifying R0 and the effective 

densities of hosts extremely difficult. Measles has undoubtedly been used as a 

“model pathogen” for studying transmission dynamics as incidence has been 

recorded over many years, so data is plentiful. However the analysis of these 

data, although informing many aspects of theoretical and practical 

epidemiology, does not provide convincing evidence of being exclusively density 

or frequency dependently transmitted. It does however highlight the complex 

relationship between host behaviour and ecology with transmission, and supports 

the notion that density and frequency dependence are two ends of a continuum 

(McCallum et al. 2001), and measles may lie somewhere between the two. 

One of the single biggest challenges in studying epidemics is tracing infection 

throughout a population. In a study examining the feasibility of rabies 

eradication, Hampson et al. (2009) traced the history of infectious contacts to 

study the biting behaviour of rabid dogs. Through quantifying biting behaviour 

and the probability of infection given a successful bite (P(rabies |bite)) R0 could be 

calculated. Comparison of two dog populations with different densities 

(Serengeti, 9.38 dogs/km2; Ngorongoro, 1.36 dogs/km2) showed no significant 

differences in R0. Furthermore, when values of R0 obtained were compared with 

estimates from previous epidemics occurring worldwide no conspicuous 

differences were observed. The transmission dynamics of rabies were insensitive 

to the density of available hosts, but are affected by demographic turn-over 

(Hampson et al. 2009; Lembo et al. 2010). This study questions the previous 

assumptions of density dependence on which control measures have been based 

on (Coleman & Dye 1996; Sterner & Smith 2006). This further illustrates the need 

for empirical evidence on transmission dynamics, as assumptions based on the 

theories of density and frequency dependence may be too simplistic to reflect 

reality. 

Rabies is transmitted during an uncommon and memorable event that can be 

retrospectively recorded. The transmission events of most diseases are less 

easily identified. This results in a situation where all that can be measured is the 

prevalence of a disease in a population at one or more points in time. This can 
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present problems in observing rates of infection. Brown and Brown (2004) 

examined the prevalence of the parasitic bug, Oeciacus vicarious, in colonies of 

the cliff swallow, Petrochelidon pyrrhonota, by fumigating nest sites weekly and 

collecting dead bugs from nests. This allows rate of infection to be quantified as 

bugs/nest/week. It was found that nests in larger colonies of cliff swallow 

acquire parasitic bugs at faster rates. As only colony size was measured, and not 

density this alone cannot be considered as indicative of density dependent 

transmission unless we assume colony size and colony density are positively 

correlated. However, in a previous study by the authors (Brown & Brown 1996) it 

was found that the spatial organization of nests influenced the dispersal of bugs: 

rate of inter-nest movement of bugs is negatively correlated with distance to the 

nearest neighbouring nest. Nests are stationary fomites, and this phenomenon 

parallels what is observed with separation distances in plant hosts. This would 

be suggestive of a form of density dependent transmission as separation distance 

is inversely related to density (equation 2.5). However, Brown and Brown (2004) 

claim similar densities of nests at all sites although no formal measurement or 

methodology is provided. Instead higher rates of nest colonisation by bugs is 

explained by large colonies having more transient individuals that travel 

between colonies, picking up and spreading the infection. If so, metapopulation 

dynamics may be influenced by density of colonies (rather than density within 

colonies), which may prove important for disease transmission. However, if 

movement between colonies is based on neighbour quality rather than neighbour 

proximity (suggested by Brown & Rannala 1995) then transmission on this scale 

would be better characterised by frequency dependence, as demonstrated in 

Figure 2.3. In reality, the body of work on this system is lacking the necessary 

information on within and between colony densities necessary for reaching a 

firm conclusion about transmission dynamics. It would appear, preliminarily, 

that transmission between nests (within-colony transmission) might be a density 

dependent process; while transmission between colonies tends towards the 

frequency dependent end of the spectrum.  

Transmission rates of disease in natural populations are governed by more than 

simply host density. Not all individuals contribute equally to the spread of 

disease, and the above examples demonstrate that population demography, 

sociality and dispersal may regulate disease transmission more strongly than 
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densities of available hosts. To better understand the impact of density on rates 

of disease transmission it will be necessary to examine density at smaller scales, 

and consider the impacts of heterogeneity in population density at larger scales. 

By applying models which accounted for population age-structure and 

heterogeneous population mixing to data from a phocine distemper virus (PDV), 

outbreak Klepac et al. (2009) demonstrate the importance of heterogeneous 

density dependent dynamics in a host colony. When the entire colony was 

modelled as experiencing equal transmission rates, density dependent 

transmission best explained the observed epidemic progression. However, 

models incorporating the age and social structure of the colony showed that less 

social juveniles and adults exhibited frequency dependent transmission, and only 

the highly sociable, and aggregated sub-adults showed strong evidence of 

density dependent dynamics. Transmission between colonies is frequency 

dependent (Swinton et al. 1998), which is again indicative that metapopulation 

dynamics would be useful in explaining the spread of disease at larger scales. 

Figure 2.3 thus broadly explains these dynamics. However the values of β in the 

transmission matrix (Figure 2.3(b)) may be an over-simplification, and would be 

better represented as an age structured transmission matrix. This example 

illustrates that host variation may cause heterogeneous disease dynamics at 

local scales, with only some cohorts exhibiting transmission rates affected by 

density. Again, density dependence is of most importance at local scales within 

a colony and specifically within a single age class. 

The impact of host density on transmission rates in naturally occurring epidemics 

is certainly more complex than in experimental set-ups. Outwith the controlled 

conditions of a laboratory host ecology, behaviour and demography may affect 

transmission rates more strongly than, or in conjunction with population density. 

The assumption that transmission rates increase with density due to random 

assortment of hosts in space is too simplistic; and its real world applicability is 

questionable. More work is required to understand how variation in population 

densities in nature reflects changes in population and disease dynamics. 

2.7 Insights from transmission networks 

Network models provide the most powerful insights into heterogeneity in disease 

transmission, being able to demonstrate the impacts of differing contact 
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probabilities between individuals in a population, or between groups in a 

metapopulation. This differs greatly from compartmental models as the as there 

no need to make the assumption that every individual in the host population is 

“connected” to every other individual in the population, and the strengths of 

connections between individuals may vary. Network theory predicts that 

increasing heterogeneity in the potential number of infectious contacts between 

individuals will lead to an increased R0, such that even when mean transmission 

rates are low, high levels of heterogeneity can lead to large disease outbreaks 

(Kiss et al. 2006; Porphyre et al. 2008). One potential cause of this 

heterogeneity could be heterogeneity in the density of a host population. This 

would be the case if the probability of infectious contacts between network 

nodes (which may defined as individual hosts, or groups of hosts) were 

proportional to the physical distance between them – as distance between nodes 

would decrease as density of nodes increased (Equation 2.5). In the case of 

“small-world networks”, where most nodes are connected by relatively few 

steps through intermediate nodes, the effect of spatial clustering is predicted to 

increase the spread of disease (Aparicio & Pascual 2007; Dobson 2004). 

Calculating R0 from transmission networks is more complicated than the 

traditional S-I-R models proposed by Anderson and May (1982). Arguably the 

simplest form of network model is the “who acquires infection from whom 

matrix” (WAIFM), where R0 can be calculated as the dominant eigenvalue of this 

matrix (Anderson & May 1991b). This matrix takes the form: 

W =

τ1,1 τ 2,1  τ n,1
τ1,2 τ 2,2  τ n,2
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       Equation 2.7 

Where the elements in this matrix specify the rate of infection between all 

possible combinations of individuals considered by the model. This matrix need 

not be symmetrical: meaning that some individuals may be more infectious, or 

more susceptible than others. Should the average rate of infection in this matrix 

increase with host density, so too will the dominant eigenvalue, and thus R0. 

In practice, tracing all contacts between individuals in wild populations is 

problematic. The degree of “connectedness” between individuals may however 
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be inferred from standard ecological field techniques such as radio-tracking and 

capture-mark-recapture methods. Perkins et al (2009) utilise exactly these two 

approaches to derive social networks for rodent populations and then build 

transmission networks for hypothetical parasites. They find that when these two 

methods were undertaken simultaneously that radio-tracking produced more 

informative networks when rodent density was low and capture-mark-recapture 

produced more informative networks when rodent density was low. Both contact 

networks were well described by negative binomial distributions implying that 

regardless of density a small proportion of individuals were responsible for a 

disproportionately high number of contacts with the rest of the population. This 

is a similar result to that found by Hampson et al (2009), where a small 

proportion of domestic dog populations were responsible for a large number of 

infective contacts spreading rabies. However, unlike the study of rabies in 

domestic dogs by Hampson et al (2009), Perkins et al (2009) find that mean 

contact rates were higher when population density was high. However, they also 

note increased levels of super-spreading individuals (those with 

disproportionately high contact rates) when population density was low. This is 

likely attributable to animal behaviour, where in low density populations animals 

may have more freedom to forage more widely, or move further to utilise 

unoccupied habitats. 

As a single summary statistic, R0 poorly distinguished between these two 

increased modes of transmission. Instead, measures of closeness and 

betweenness were more applicable to describing changes in the contact 

structure of the population: where Closeness provides an index of the extent to 

which an individual is in the middle of a given network, where at its maximum a 

single individual is connected to all others in the population, acting as a central 

“hub” of connections, and at its minimum all individuals are equally well 

connected (homogenous distribution); in comparison, betweenness is a measure 

of the number of paths that pass through a single individual along the shortest 

path between all other individuals and is, conceptually, a measure of the flow of 

a pathogen through a network. It is found that betweenness is positively 

correlated with rodent density, suggesting faster spread of infection in high 

density populations even if R0 does not differ significantly in high and low 

density populations. It is therefore clear that host density has the potential to 
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influence epidemic dynamics, and similar R0 values between populations of 

differing densities may not be indicative of a lack of density dependent 

transmission as this may be masked by heterogeneity in population contact 

structures. 

2.8 Conclusions 

The relationship between host population density and disease transmission is 

complex and likely variable dependent on the host-pathogen system in question. 

The mechanism behind any relationship between population density and contact 

rate is variable between species due to differing ecologies, and individuals due 

to behavioural and social differences. Contact between individuals does not 

increase due to “random mixing” of populations. Types of contact, such as those 

resulting from sexual, aggressive or grooming behaviour will be affected 

differently by increases in density. There is no a priori reason to assume a linear 

increase in contact rate with density due to random mixing of populations. In 

reality, this may not be a useful way to think of this relationship: It will not aid 

in identifying causes of increased disease spread, or reasons for heterogeneity in 

contact rate which may be important in determining heterogeneity in the 

spreading of disease. Heterogeneity in disease spread may even mask the effects 

of host population density on disease transmission when examined under these 

assumptions. 

Controlled experiments manipulating host density further re-iterate this 

conclusion and demonstrate that host density may relate non-linearly to R0, and 

different pathogen-host systems may have different formulations of a density 

dependent R0. The simple, but commonly used, formulation of R0 shown by 

equations 2.3 demonstrates an expected linear dependency of R0 on host 

density, N. Again, there is no reason to assume this is the case. Density 

dependent transmission can be demonstrated under experimental conditions, 

but is better explained when the static parameter β is replaced by a dynamic 

function or when exponential functions are used to relate density to contact 

rates. This leads to R0 values that vary non-linearly with the density of the host 

population. From such studies it is shown that R0 may have an asymptotic 

relationship with host density, suggesting saturation in transmission rates at high 

densities may be expected. 
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In naturally occurring epidemics density dependence is harder to demonstrate. 

The mechanisms behind which increased density operates to increase contact 

rates are complex, and dependent on ecology, behaviour, sociality, seasonality 

and demography. Given this, the simplistic theories of density and frequency 

dependent transmission will likely prove inadequate for studying host-pathogen 

interactions responsible for variability in transmission. As stated previously, 

these two types of transmission should be thought of as two ends of a 

continuum. Where a pathogen lies on this continuum will not only be dependent 

on the pathogen and the host population. It also depends on the scale at which 

the system is examined. The density of groups within a meta-population can 

influence disease spread through different mechanisms than the local density 

within a single group. While density on larger scales ultimately affects 

transmission dynamics and disease persistence, it would be sensible to consider 

local density dependence in calculations of R0.  

Empirical studies reveal the complexity and variability of the interaction 

between host density and R0 highlighting the inadequacies of the commonly 

assumed linear relationship between host density and pathogen transmission. It 

is often considered within the theorist’s remit to provide models with “general 

applicability”. It is accepted that these general models are always, to some 

extent, wrong. There is a balance to formulating models to maximise generality 

while ensuring they are not “importantly wrong” and therefore useful. The 

formulation of R0 for density dependently transmitted pathogens is derived from 

an extremely general model with some unrealistic prior assumptions. There is no 

doubt that traditional epidemiological models have been useful, but when 

confronted with data from the real world these models appear inadequate. The 

assumptions of homogeneous mixing, random movement and a linear relationship 

between density and transmission rate prove “importantly wrong” when it comes 

to explaining transmission in specific host-pathogen systems. Where density 

dependent transmission is exhibited, formulations of R0 that relax the 

assumptions of homogenous hosts and linear dependencies on density have 

proven successful and have the potential to improve disease management 

strategies and better our understanding of disease ecology, and when contacts 

between individuals are explicitly modelled in networks it can be seen that 

changes in population density may impact on  
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3 Exploring a disease community in a British 
population of rural red foxes 

3.1 Introduction 

3.1.1 The concept of pathogen community 

Individual animals are subject to infection by a plethora of pathogens, including 

– but not limited to – viruses, bacteria, protozoa and helminthes. Infection by 

these agents may occur sequentially and/or concurrently (Petney & Andrews 

1998). Pathogens exist in communities. These communities can be considered as 

the assemblage of pathogen species infecting a single host, commonly defined as 

the infracommunity; the number of pathogen species present in a population of 

hosts, defined as the component community; or the community of pathogens 

infecting a community of hosts – the compound community (Bush & Holmes 

1986). 

The concept of interactions between pathogens was recognised by Petney and 

Andrews (1998). They noted in their review the need to combine aspects of 

parasitology and microbiology in an epidemiological framework in order to 

determine the effects of interactions between pathogens on host populations. 

There is much debate in the literature as to how important these interactions 

are likely to be (Cox 2001; Graham et al. 2007; Harbison et al. 2008; Pedersen & 

Fenton 2007). It is important to note that just because two infectious agents 

concurrently occupy a host, it does not mean they are necessarily competing, or 

interacting in any other way. Interactions between different pathogens may be 

subtle, and infrequent. It is not the case that we should expect all concomitant 

infections, or infracommunities of pathogens to have effects significantly 

different from single infections within a host population. There is however little 

doubt that specific combinations of pathogens do interact with each other 

(Balestrieri et al. 2006; Cox 2001; Dobson & Barnes 1995; Pedersen & Fenton 

2007). These interactions may be competitive in nature – limiting the size of 

populations (the pathogen burden of individual hosts) within an infracommunity 

(Heins et al. 2002; Holmes 1961; Read 1951); they may be facilitative, affecting 
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the susceptibility and infectiousness of the host (Graham et al. 2007), which 

would be expected to affect the component and compound communities. The 

first step towards detecting such interactions is to look for pathogens that occur 

together more or less frequently than expected by random occurrence in a 

population. 

3.1.2 The red fox as a host population 

We look for evidence of interactions in a pathogen community infecting a 

population of red foxes, Vulpes vulpes. This small to medium sized canid has 

proven highly adaptable, and has established large urban populations across 

Europe, most notably in the UK, where the “urban fox phenomenon” has been 

observed and reported since the 1930s (Harris & Rayner 1986). Like most 

canines, foxes have a varied diet. Unspecialised scavenging and predation are 

however the two primary foraging techniques utilised by this opportunistic 

omnivore (MacDonald & Reynolds 2004). Wide ranging diet and scavenging put 

foxes at risk for infection with large numbers of helminth and protozoan 

parasites, many of which are zoonotic or of threat to livestock and companion 

animals (Simpson 2002). Foxes are territorial and form plastic social groups 

(White & Harris 1994). Territory size is variable, with a high degree of overlap, 

often leading to aggressive encounters on territory borders (White & Harris 

1994), which may increase seasonally with, for example, breeding season or 

following outbreaks of disease (Baker et al. 2000; Doncaster & Macdonald 1991). 

This behaviour and plastic sociality may favour the spread of directly 

transmitted disease. 

The hosts studied here are from a red fox population in rural Kent, UK. British 

red foxes exist at higher densities than elsewhere in Europe (Webbon et al. 

2004). This may be attributed to a long period of freedom from terrestrial rabies 

(Macdonald et al. 1981) and the comparatively low levels of population control 

employed in the UK. This allows foxes in the UK to maintain larger population 

sizes than elsewhere in Europe with total numbers of around 258 000 (Webbon et 

al. 2004) Diseases infecting fox populations in the UK, specifically England are 

well documented (see Simpson 2002; Smith et al. 2003), with many infections 

being the subject of economic or public health concern, affecting humans, 

companion animals and livestock.  
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3.1.3 Pathogens of interest 

We consider protozoa, viruses, bacteria, helminthes and mites as some of the 

constituents in the pathogen community of foxes. Specifically: 

The obligate intracellular parasite Toxoplasma gondii is capable of infecting 

almost all warm-blooded animals, but the definitive hosts are cats (Murphy et al. 

2008). Intermediate and incidental hosts (including humans, livestock and foxes) 

are infected through one of three routes: horizontally through ingestion of 

contaminated food or water with infectious oocysts excreted by an infected cat; 

consumption of undercooked meat containing tissue cysts; or vertically from 

mother to foetus across the placenta. Although foxes are essentially a dead end 

host for this disease (incapable of shedding the parasite into the environment, 

and are not preyed upon by any feline species) they provide an excellent 

indicator for levels of T.gondii in a given ecosystem, thus acting as a sentinel 

species (Murphy et al. 2007). This parasite also has the potential to interact with 

other pathogens within a host. Its chronic persistence elicits and maintains a Th1 

immune response, limiting the ability of the host to mount a Th2 response 

against subsequent infections (Graham 2002). 

Canine adenovirus-1 (CAV-I) and canine adenovirus-2 (CAV-II) respectively cause 

infectious canine hepatitis (ICH) and infectious canine laryngo-tracheitis in wild 

and domestic canines (Chaturvedi et al. 2008). This disease has been shown as a 

cause of mortality in other red fox populations (Woods 2001) and has been found 

to have high prevalence in carnivore species worldwide including the endangered 

island fox, Urocyon littoralis, and giant panda, Ailuropoda melanoleuca (Clifford 

et al. 2006; Qin et al. 2007).  CAV-I is shed by infected animals through their 

urine and faeces. CAV-II is spread as an aerosol and is quickly inactivated in the 

environment, whereas CAV-I has the potential to survive outwith a host for 

several months. These viruses can potentially have impacts on the demography 

of red fox populations, causing increased mortality rates; primarily of juveniles 

(Clifford et al. 2006; Woods 2001). 

Canine distemper virus (CDV) is a highly infectious directly transmitted viral 

disease, capable of infecting a wide range of wild and domestic carnivores 

(Appel 1987). While known to be endemic in mainland Europe (Gortazar et al. 
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2007) there is surprisingly little reported on the prevalence of this disease in the 

UK. A previous effort to detect the disease in wild badger, Meles meles, 

populations in England found a complete absence of the disease (Delahay & 

Frolich 2000).  

Angiostrongylus vasorum is a metastrongyloid nematode that parasitises canids 

as the definitive host. Infection is via an intermediate (gastropod) or paratenic 

(for example amphibian) host (Traversa et al. 2008).  The adult stage parasite 

resides in the right ventricle and pulmonary arteries of the definitive host, 

causing severe respiratory and circulatory distress, usually resulting in death 

(Morgan et al. 2008). A. vasorum was previously thought to be restricted to the 

South-West of Britain, but anecdotal evidence since the late 1990s suggests a 

northward spread of the disease (Morgan et al. 2008), with cases now reported 

as far north as Scotland (Helm et al. 2009). 

Sarcoptic mange is caused by the parasite Sarcoptes scabei. The parasite is 

highly nonspecific and highly pathogenic transferring readily between sympatric 

species (Newman et al. 2002) either through direct contact, or indirectly from 

the environment. All stages of the parasite life cycle are capable of moving to 

the surface of the host’s skin, and all are infectious (Soulsbury et al. 2007). The 

first major mange epizootic in Britain to be recorded was in spring, 1994 in 

Bristol (Baker et al. 2000), leading to a 90% decline in the fox population. In this 

case the disease almost certainly did not originate in Bristol, mange has been 

enzootic in Britain since at least the 1940s (Soulsbury et al. 2007), and the 

reasons as to why this particular epidemic was so severe remain unclear.  

Leptospirosis is a worldwide zoonosis, caused by bacteria within the genus 

Leptospira interrogans, which consists of over 250 pathogenic serovars. Infection 

is acquired orally, either from the environment or through consumption of 

infected prey items, and shed back into the environment through the urine of 

the infected individual (Diesch et al. 1976). Leptospirosis in the UK is grossly 

understudied. Serovars L. canicola and L. icterohaemorrhagiae are routinely 

vaccinated against in domestic dogs, as pre 1960 these serovars were the most 

commonly observed causes of canine leptospirosis (Geisen et al. 2007). The main 

reservoir for each of these serovars is considered to be wild rodents, and both 

have been shown to infect foxes in Croatia (Milas et al. 2006). There have been 
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no wildlife vaccination programs against these serovars in the UK. As such it may 

be assumed that rodents still act as a reservoir for this disease. Although it 

should not be assumed that the most common serovars present in the UK have 

remained the same since the 1970s. Under these assumptions it is expected that 

rural foxes will be exposed to this disease, as rodents form an important 

component of their diets. 

The work presented here utilises direct testing for the presence of pathogens as 

well as an examination of pathologies present at the animals time of death 

which may be indicative of disease which was not directly tested for. Although 

the pathological diagnoses provide a less conclusive diagnosis of the infectious 

agent responsible, it allows us to consider a wide range of pathogens that may 

be present within the host population. We aim to present the prevalence of 

disease found in the animals collected and examine patterns of co-infection in 

the host population studied. We shall then examine if the condition of individual 

hosts is correlated to the likelihood of infection with a range of diseases. 

3.2 Methods  

3.2.1 Sourcing of fox cadavers 

Foxes were provided by a private estate in Canterbury, Kent, UK (51°13'20.68"N, 

0°59'11.24"E). The site is host to ground nesting birds such as lapwings, Vanellus 

vanellus, and oystercatchers, Haematopus ostralegus. Foxes are considered by 

estate managers to pose considerable threat to ground-nesting birds such as 

these, and so populations are controlled. The foxes used here were shot 

between May 2009 and September 2010 and stored at -30°C before transport 

back to the Glasgow School of Veterinary Medicine for post-mortem. Foxes were 

aged based on incisor wear (Harris 1978) and classed as pups (<1 year), yearlings 

(>1 year, <2 years) or adults (>2 years).  

3.2.2 Sample collection and analysis 

Post-mortems were carried out at the University of Glasgow School of Veterinary 

Medicine pathology laboratories. Cadavers were weighed, sexed, aged and 

scored on the standard canine body condition scale from 1 -5 (table 3.1). Post-

mortem examination began with an external examination of the skin; specifically 
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examining the carcass for visible skin pruritus consistent with ecto-parasite 

infection. Foxes were neither collected nor stored in isolation from each other 

making cross-contamination between cadavers likely. As such skin scrapings 

were not taken from cadavers, as we could not guarantee an increased incidence 

of false positive results. Cadavers are thus reported as being positive or negative 

for general skin disease based on these criteria. 

Score Criteria 

1 Ribs, spine and pelvis easily visible. Loss of muscle mass. Very obvious 

waist. 

2 Ribs, spine and pelvis visible. Waist is obvious. 

3 Ribs, spine and pelvis easily palpable, but not visible.  Waist is obvious. 

4 Ribs, spine and pelvis are not visible and hardly palpable. Waist is 

absent and there are heavy abdominal fat deposits. 

5 Ribs, spine and pelvis not visible and not palpable. Waist is absent. 

Massive fat deposits on the chest, spine and abdomen. Abdomen is 

distended. 

Table 3.1 Criteria used to determine the condition score of fox cadavers. 
 

Samples collected from the cadaver required opening the body cavity. This was 

accomplished with a longitudinal cut on the ventral surface of the abdomen. 

Serum samples were obtained from the heart ventricles where possible, with one 

sample stored in a plain collection tube and another in an EDTA collection tube 

(BD Vacutainer® blood collection tubes). Following this the lungs were examined 

and sampled. The lungs were first examined for scarring and signs of 

inflammation that may have been indicative of parasitic infection. If present, 

tissue samples were taken from these areas, with one sample stored frozen and 

another stored in formalin. Finally a whole kidney was removed from each 
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cadaver and stored in formalin. The usage of each of these samples is given in 

table 3.2. 

Sample Storage Sample tested for: Method 

Serum Plain tube CAV-I, CAV-II, CDV PCR 

Serum EDTA tube Toxoplasma gondii Latex agglutination 

test 

Lung  Formalin Bacterial and parasitic 

aetiologies 

Histo-pathology 

Kidney Formalin Bacterial aetiologies Histo-pathology 

Table 3.2 Summary of the collection and usage of samples collected during post-mortem 
examination of foxes. 
 

Samples were submitted to the University of Glasgow veterinary diagnostic 

service for testing. PCR analysis for CAV-I, CAV-II and CDV returns simply a 

positive or negative result for each sample. The latex agglutination test used for 

T. gondii returns an antibody titre. We take a titre of ≥1:32 to be indicative of a 

positive infection, as used for studies on stray dogs (Ali et al. 2003; Tsai et al. 

2008). Lung and Kidney samples were submitted to the University of Glasgow 

veterinary diagnostic service for histo-pathology. These samples were examined 

for aetiologies characteristic of parasitic and bacterial infections. Histo-

pathological methods cannot be expected to diagnose the exact pathological 

agent responsible for the observed disease in an animal, but allows us to 

consider a wider range of pathogens that may be responsible for a presented 

pathology. For data analysis we thus consider animals testing either positive or 

negative for general kidney and or lung disease. 

3.2.3 Data analysis 

As cadavers were collected from a population where total size was not 

monitored calculating prevalence thresholds for the detection of disease cannot 
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be calculated exactly. A conservative approach will thus be taken to calculate 

these thresholds. The most recent population estimate (1999-2000) of foxes in 

this S.W. England was 34,399, at a mean density of 0.79 foxes km-2 [95% CI: 0.46 

-1.12] (Webbon et al. 2004). As foxes are not restricted to the area where 

shooting took place, the area sampled is difficult to quantify. An approximation 

of the population sampled must therefore be made. Assuming all foxes were shot 

at approximately the same location, the area foxes were sampled from is given 

by a circle where the radius is the maximum distance a fox is likely to travel. We 

take the maximum distance a British rural fox is likely to travel as 52 Km 

(Trewhella et al. 1988). This approximation assumes that all foxes will travel this 

maximum distance and that foxes have an equal probability of being sampled 

regardless of how far away they are from the centre of the circle. These 

assumptions are clearly un-realistic, and will likely lead to an over-estimation of 

the population size from which samples were obtained. This is predicted to give 

an extremely conservative estimate of detection levels. The probability of 

detecting a disease present in a population (PDetection) depends on the population 

size (N), the number of infected individuals (M) and the sample size (n). PDetection 

is defined as one minus the cumulative probability that a sampled individual is 

uninfected with a disease and is calculated with equation 3.1. 

ΡDetection =1−
N −M − i

N
#

$
%

&

'
(

i=0

n−1
∏       Equation 3.1 

Statistical analyses were performed in R v2.14.0 (The R foundation for statistical 

computing; http://www.R-project.org). To analyse co-infection relationships we 

test whether any of the diseases here occur together more frequently than 

expected by chance alone using contingency tables. Fisher’s exact test was used 

to help account for the small numbers of positives within these data. The same 

approach was taken to test if any of the diseases tested for occurred in 

combination less frequently than expected by chance alone. Odds ratios and 

associated 95% CI were calculated manually, and sample size calculations were 

performed using apriori tests in G*Power v3.1.3. 

Each disease was used as a binary response variable in generalised linear models 

(GLMs) with binomial error structures to establish if the probability of an 
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individual testing positive for an infection could be explained by the age or 

gender of that individual, with an interaction term included. 

The effect that multiple infections have on host condition was also examined. As 

all individuals fell within one of two condition scores it was modelled using GLMs 

with binomial error structures. Each disease, host age and gender were included 

as explanatory variables with all possible interaction terms.  

General linear models were used to test if disease accounted for variation in the 

observed weights of the cadavers. Each disease was included as an explanatory 

variable with all interaction terms included. Age and gender were also included 

as explanatory variables, with their interaction terms, in this model to control 

for natural variation between these categories.  

All models described above are the full models used. Stepwise removal of non-

significant variables was employed and optimum models were chosen based on 

AIC values. 

3.3 Results 

3.3.1 Disease Prevalence 

Not all of the diseases tested for were present in this population sample. None 

of the foxes sampled tested positive for CDV or CAV-II. The minimum prevalence 

a disease can exist at allowing 95% probability of detection is 7% with a sample 

size of 42, as shown by Figure 3.1. These pathogens are therefore assumed to 

exist at prevalences of <7% and ≥0%. CDV and CAV-II were subsequently excluded 

from all analyses. Table 3.3 shows the prevalence for all pathogens and 

pathologies tested for. Sample size is variable as the samples obtained from 

some cadavers were too badly lysed for analysis. Figure 3.1 shows that the 

disease prevalence at which the 95% detection probability threshold occurs 

differs marginally between lowest and highest sample sizes obtained. With the 

95% threshold for detection probability occurring at a prevalence 0.5% higher in 

the lowest sample size (n=39) than compared to the highest (n=42). 
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Figure 3.1 Detection probabilities of disease across a range of prevalences. Black lines 
represent detection probabilities for the highest and lowest sample sizes obtained (solid, 
n=42; broken n=39). Dotted red line illustrates the 95% probability detection threshold. 
 

Of the specific pathogens tested for, T. gondii and CAV-I were present in the 

animals sampled at prevalences of 12.82% and 16.67% respectively. A much 

higher percentage of the population showed general pathologies that could be 

attributed to a range of pathogens.  

Probability of detecting infection with T. gondii or CAV-I were not correlated 

with host age (p=0.713 and p=0.264 respectively), suggesting the likelihood of a 

fox acquiring infection does not increase with the length of time it has survived. 

There was also no significant difference in the probabilities of detecting 

infection with T. gondii or CAV-I between genders (p=0.086 and p=0.918 

respectively).  

Age had no significant effect on the probability of observing pathologies of the 

skin and kidneys (p=0.165 and p=0.843) but did have an effect on the probability 

of observing pathologies of the lung, with yearlings having the highest 
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probability of exhibiting lung pathologies (p=0.008). The probability of observing 

skin, kidney or lung pathologies was not dependent on gender of the fox being 

examined (p=0.462, p=0.315, and p=0.299 respectively). 

Disease Prevalence 

(%) 

Sample Size  

Toxoplasma gondii 12.82 39 

CAV-I 16.67 42 

CAV-II 0.00 42 

CDV 0.00 42 

Skin pruritus 9.52 42 

Lung pathology  

 (parasitic aetiology) 

 (parasitic and/or 
 bacterial aetiology) 

25.00 

(10.00) 

(15.00) 

40 

Kidney pathology 

 (Chronic bacterial 
 aetiology) 

45.00 

(45.00) 

40 

Table 3.3 Disease prevalence in host population. 
 

3.3.2 Co-infections 

Despite 38% of foxes testing positive for more than one pathogen or pathological 

symptom only one combination occurs more frequently than expected by chance 

(Figure 3.2); this was the combination of the intra-cellular parasite T. gondii and 

the virus CAV-I (p=0.019). 
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 T.gondii CAV.I Skin Kidney Lung 

T.gondii  p= 0.02 
OR= 7.5 
up= 134.6 
low= 0.4 
nmin= 78 

p= 1 
OR= 0 
up= NaN 
low= 0 
nmin= 374  

p= 0.156 
OR= 4.4 
up= 74.7 
low= 0.3 
nmin= 147 

p= 1 
OR= 1 
up= 12.3 
low= 0.08 

nmin>10000  
CAV.I ü  p= 1 

OR= 0 
up= NaN 
low= 0 
nmin= 227  

p= 0.22 
OR= 2.8 
up= 26.7 
low= 0.3 
nmin= 179  

p= 0.41 
OR= 2 
up= 17.2 
low= 0.2 
nmin= 450  

Skin û û  p= 0.61 
OR= 0.4 
up= 7.9 
low= 0.01 
nmin=456  

p= 0.63 
OR= 0.5 
up= 4.9 
low= 0.04 
nmin= 970  

Kidney û û û  p=1 
OR= 1.2 
up= 4.4 
low= 0.3 
nmin= 6701  

Lung û û û û  

Figure 3.2 Co-infection matrix. Ticks indicate a disease pair that occurs together more 
frequently than expected by chance and crosses indicate those that did not. Associated p-
values are from Fisher’s exact test. Odds ratios (OR) with upper and lower 95%CI (up and 
low respectively) are also given. The minimum sample size (nmin) required is calculated for 
with 95% probabilities of avoiding type I and type II errors. 
 

From figure 3.2 it is also clear that the statistical power achieved with these 

tests was inadequate, with no disease combination giving a power of >0.8. As the 

probability of a type II error is so high, the disease combinations that did not 

prove significant cannot be considered indicative of an absence of a co-infection 

relationship. There are some disease combinations that either do not appear in 

our samples, or occur together at the same frequency alone as in combination. 

These are the combinations where p=1. Skin disease was never observed in an 

individual that tested positive for CAV-I or T. gondii. T. gondii and lung disease 

occurred as frequently together as they did independently. This was also true for 

the occurrence of lung and kidney disease. 
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 T.gondii 

positive 

CAV.I 

positive 

Skin 

positive 

Kidney 

positive 

Lung 

positive 

T.gondii 

negative 

 p= 0.266 
OR= 6.8 
up= 112 
low= 0.4 
nmin= 203  

p= 1 
OR= 0 
up= NaN 
low= 0 
nmin= 32  

p= 1 
OR= 2.3 
up= 58.2 
low= 0.9 
nmin= 31  

p=1 
OR= 1 
up= 7.9 
low= 0.1 
nmin= 79 

CAV.I 

negative 

p= 0.5234 
OR= 7.5 
up= 134.6 
low= 0.4 
nmin= 320 

 p= 1 
OR= 0 
up= NaN 
low= 0 
nmin= 33  

p= 0.438 
OR= 1.9 
up= 9.2 
low= 0.4 
nmin= 33  

p= 0.688 
OR= 1.7 
up= 9.2 
low= 0.3 
nmin= 174  

Skin 

negative 

p= 1 
OR= 0 
up= NaN 
low= 0 
nmin= 28 

p= 1 
OR= 0 
up= NaN 
low= 0 
nmin= 28 

 p= 1 
OR= 0.6 
up= 6.9 
low= 0.05 
nmin= 17  

p= 1 
OR= 0.6 
up= 8.5 
low= 0.04 
nmin= 54  

Kidney 

negative 

p= 0.524 
OR= 4.4 
up= 74.7 
low= 0.3 
nmin= 3070 

p= 0.592 
OR= 2.8 
up= 26.7 
low= 0.3 
nmin= 1235  

p= 1 
OR= 0.4 
up= 7.9 
low= 0.02 
nmin= 74 

 p= 1 
OR= 1.1 
up= 4.5 
low= 0.2 
nmin>10000  

Lung 

negative 

p= 1 
OR= 1 
up= 12.4 
low= 0.09 
nmin= 117  

p= 1 
OR= 2 
up= 17.2 
low= 0.2 
nmin= 281 

p= 1 
OR= 0.5 
up= 10.6 
low= 0.02 
nmin= 77  

p= 1 
OR= 1.2 
up= 4.4 
low= 0.3 
nmin= 58  

 

 Figure 3.3 Coinfection matrix of disease parings occurring together less frequently than 
expected by chance. The p-values shown are from Fishers exact test. Odds ratios (OR) with 
upper and lower 95%CI (up and low respectively) are also given. The minimum sample size 
(nmin) required is calculated for with 95% probabilities of avoiding type I and type II errors.  
 

There is no evidence to suggest that the diseases tested for here competitively 

exclude one another from hosts, as no disease occurs more frequently than 

expected in the absence of another (Figure 3.3). The achieved power of these 

tests is generally higher than when looking for co-infection relationships; but is 

still frequently inadequate. Where reported power is <0.8 the null hypothesis 

cannot be accepted even when obtained p-values are high. 
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3.3.3 The relationship between disease and host condition 

Figure 3.4 shows the variation in body condition between foxes that were 

positive and negative for each disease tested. The interaction between gender, 

age and weight was significant (p=0.002), suggesting that the effect of age on 

condition depends on weight and gender.  
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Figure 3.4 Comparing condition scores of foxes that tested positive and negative for each 
disease. Dark grey bars are positive infection and light grey are negative. Toxo*CAV-I 
represents individuals with a Toxoplasma and CAV-I co-infection. Error bars show 95% CI. 
 

Foxes exhibiting symptoms consistent with skin infections had lower condition 

scores than those that did not (p=0.021). The interaction between toxoplasma 

and CAV-I infection was significant (p=0.0005) showing that foxes suffering from 

this co-infection were of lower condition than those who were not. Note that all 

foxes testing positive for both T. gondii and CAV-I (n=3) as well as skin 

pathologies (n=4) had a condition score of 2, hence the lack of confidence 

intervals around these sample groups (Figure 3.4). 
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Figure 3.5. Comparing weights of foxes that tested positive and negative for each disease. 
Dark grey bars are positive infection and light grey are negative. Toxo*CAV-I represents 
individuals with a Toxoplasma and CAV-I co-infection. Error bars show 95% CI. 
 

Figure 3.5 shows the variation in weight between foxes that were positive and 

negative for each disease tested. Weight varied significantly with gender and 

age (p<0.00004 and p<0.000003 respectively). After controlling for these 

differences there was no significant relationship between any disease and the 

weight of individual foxes. 

3.4 Discussion 

The spatial and behavioural ecology of red foxes in the UK has been remarkably 

well studied, however the community ecology of the pathogens they play host to 

has received less attention. Here a multi-disciplinary approach is taken to 

describe a community of pathogens in a naturally occurring fox population. 
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Specifically we examined co-infection relationships and the potential impact 

they have on their environment – the host.  

Of the diseases we tested directly for the presence of a pathogen only two were 

found in our samples. T. gondii is present in mammal species across the UK and 

is well reported. Hamilton et al (2005) reported a toxoplasma prevalence of 20% 

(n=549) from foxes collected throughout the UK. The prevalence reported here is 

slightly lower by comparison at 12.82% (n=39). Foxes obtained for Hamilton et 

al.’s study were from a variety of urban and rural populations. The foxes used in 

this study were exclusively rural, and thus could be expected to have 

substantially different dietary habits than their urban counterparts. As T. gondii 

is transmitted via infected prey, and ingestion of under-cooked meat the 

infection risk of urban and rural populations may differ, which could be partly 

responsible for the lower prevalence reported here. Thompson et al. (2010) 

reported the first case of CAV-I infection in free-ranging foxes in the UK, with a 

prevalence of 19% (n=58) from foxes in Scotland and England. In the population 

tested here we find a similar prevalence of 16.67% (n=41) using a similar sample 

size from a more localised area, which supports Thomson et al.’s work and 

further demonstrates the importance of considering the red fox as a reservoir of 

this disease which is easily spread to companion animals. 

In the population sampled we were unable to find evidence of CDV or CAV-II. 

Due to the relatively small sample size collected over a period of 17 months it 

would be unwise to conclude that these diseases absent from the population 

based on this work alone. However, based on a conservative detection 

probability it is shown that if either disease is present in the study population it 

is expected to exist at a prevalence of less than 7%. There is little information in 

recent scientific literature concerning these two viruses in British populations. 

Discussing whether we may have expected to find evidence of these infections 

would be purely speculative. Because of the lack of surveillance for these two 

pathogens in the UK this negative result is nevertheless important. The survey 

here adds to a small body of work that suggests that CDV and CAV-II are unlikely 

to be present at high levels in UK wildlife populations, which is useful in 

assessing the threat, or lack thereof, these viruses may pose. 
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Skin, kidney and lung pathologies were examined in this study, as they may be 

indicative of sarcoptic mange, leptospirosis, or A. vasorum infection 

respectively. The skin pruritus observed on our fox cadavers was certainly 

consistent with lesions caused by an ecto-parasite, but this does not allow a 

definitive diagnosis of sarcoptic mange; other skin parasites must be considered 

as a potential cause. Demodex spp. and Cheyletiella spp. are mites common in 

domestic dogs, Canis familiaris, in the UK and cause lesions similar to early S. 

scabei infections in appearance. Dermatophytes fungal species (ringworm) also 

cause similar lesions in domestic dogs. Sarcoptic mange infection is well 

documented in British red foxes, whilst the others aforementioned are not. 

However, they may not be documented simply because they have not been 

looked for previously, so we do not rule these other skin infections out and will 

class these infections simply as skin infections. Evidence of skin disease was 

observed in 9.52% of the individuals examined and these individuals were of 

significantly lower condition than individuals not suffering from skin disease. 

This study cannot discern if individuals of poorer condition are more susceptible 

to skin infections, or if skin infection causes a poorer condition. However, had it 

been possible to determine the severity of infection and compare this with host 

condition a stronger conclusion regarding the cause-effect relationship of this 

correlation may have been drawn. If these infections were indeed sarcoptic 

mange, then it is likely that the disease caused a worsening in host condition as 

this mite is highly contagious and highly pathogenic (Pence & Ueckermann 2002). 

Whereas Ringworm is primarily an infection of young animals, and elicits a strong 

and long-lasting immunity upon recovery (Grappel et al. 1974), which would 

suggest older animals suffering from this infection may have  been immune-

compromised pre-infection. As we were unable to confirm the pathological 

agents present on our cadavers as part of this study we are unable to establish 

the direction of the relationship between skin disease and host condition in this 

fox population. 

The Lung pathology results showed inflammatory aetiologies consistent with a 

parasite infection (10% prevalence) or an infection by a parasite and/or 

bacterium (15% prevalence). This would indeed be consistent with our parasite 

of interest, A. vasorum, but further work would need to be carried out to 

confirm this result. Other potential infections must therefore be considered. The 
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lung worms Crenosoma vulpis, and Eucoleus aerophilus have also previously been 

discovered in the lungs of British foxes (Morgan et al. 2008). These infections 

would present similar pathologies at post-mortem and so cannot be discounted. 

Although not much work has been carried out on bacterial respiratory infections 

of foxes, Mycobacterium bovis has been isolated from British foxes previously 

(Delahay et al. 2001; Delahay et al. 2007). Further testing would be necessary to 

establish if this was the causative agent of the observed pathologies. It is also 

possible that lung samples with aetiologies that could not be classed as parasitic 

or bacterial are indicative of co-infection. Disease of the lung was the only 

condition studied here where age had an impact on the probability of infection, 

with yearlings experiencing the highest infection burden. Potential reasons for 

this may be attributed to: fox denning behaviour, whereby keeping cubs in a den 

may help limit their exposure to airborne pathogens from hetero- and con-

specifics; or waning maternal antibodies leaving foxes of a certain age more 

susceptible to certain types of infection. A. vasorum infections in wild animals 

are fatal when untreated (Morgan et al. 2008), and so it may be that a combined 

higher mortality and increased likelihood of infection in young foxes is 

responsible for this result. It should also be noted that due to the necessary age 

classing of foxes in this study (pup, yearling, adult) may be masking part of this 

process – as the “adult” class includes a wider range of fox ages than the other 

two classes. Foxes may be aged more accurately if a cross section of the canine 

teeth is taken and rings of enamel counted under a microscope (Harris 1978). 

This was not done as part of this study, but would certainly be worthwhile in a 

study with a larger sample size to ensure that statistically significant results 

were not masked by the method of age classification. 

The pathologies observed in the kidneys of the foxes examined were bacterial in 

aetiology. Whilst this would be in agreement with Leptospira infections, other 

bacterial infections cannot be ruled out. Borrelia burgdorferi is known to be 

present in humans and wildlife in England (Lovett et al. 2008), and although not 

described in a fox kidney, is known to cause chronic infections in domestic dog 

kidneys (Grauer et al. 1988) and thus may be considered a candidate pathogen 

for explaining the pathologies observed. In all likelihood we have observed the 

results of different bacterial infections in several foxes.  
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The general pathological symptoms observed here were not found to be involved 

in co-infection relationships of any kind with any of the pathogens directly 

tested for. We do however find evidence for a co-infection relationship between 

T. gondii and CAV-I. These two micro-parasites occur together more than 

expected by chance. Co-infection relationships involving T. gondii are known to 

exist with pathogens that elicit a Th2 immune response (Graham 2002; Jones et 

al. 2008; Miller et al. 2009) – which are typically macro-parasites. T. gondii 

infection has the potential to cause a long-term Th1 immune response, which is 

mutually exclusive from the Th2 response needed to combat macro-parasites. 

This creates a trade-off in immune resources when combatting concomitant 

infections. Here, the co-infection relationship between two micro-parasites must 

be utilising a different mechanism. Our results suggest that foxes infected with 

this combination are of lower quality than foxes carrying one, or neither of these 

pathogens. Thus one explanation for this co-infection is simply that hosts of 

lower condition are more prone to infection by multiple micro-parasites. 

However only this one disease combination remained significant in the GLM 

employed for this analysis, with all other interaction terms being removed as 

non-significant. It is equally likely that the poorer condition of these hosts was 

caused by the co-infection. A further conclusion that may be arrived at is that 

due to small sample sizes this study is inherently prone to type I error. Indeed, 

only three individuals tested positive for both CAV-I and T. gondii. Although this 

was enough to detect significance, it would be unwise to extrapolate this result 

beyond that of the animals tested here based on such a small sample size. The 

95% confidence surrounding the odds ratio of this relationship encompasses the 

value 1: this suggests that if the experiment were repeated we could not be 95% 

confident of an odds ratio being consistently greater than one. This should be 

interpreted as an encouraging result that suggests T. gondii and CAV-I may 

naturally co-infect hosts, but further studies should be carried out to provide 

more confidence in this finding. 

The apriori minimum sample size calculations applied to the co-infection data 

(Figures 3.2 and 3.3) illustrate that future studies should aim for much larger 

sample sizes in order to be representative of the population from which they 

were taken. The wide range in sample size calculations and odds ratios is 

indicative that the strength of co-infection relationships are likely to be highly 
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variable dependent on the pathogens examined. However, the odds ratios 

reported here are useful in informing future studies of the expected strengths of 

these co-infection relationships. The one significant result of this part of the 

study showing a positive relationship between CAV-I and T. gondii infections 

must be treated cautiously, as the sample size obtained here falls well below 

that predicted necessary to detect significance, and the 95% confidence 

intervals surrounding this odds ratio includes one. Therefore this can not be 

discounted as a chance result. 

In this study we have demonstrated methods for use on poorly studied pathogen 

communities. By utilising both direct and in-direct testing for pathogens we 

broaden the range of diseases that may be examined as part of a community. 

Direct testing will allow the identification of specific relationships between 

pathogens, but relies upon choosing the correct pathogens to test for. Indirect 

testing has the potential to offer a broader starting point to test for co-

occurrence of diseases within a host population, but lacks specificity. By making 

use of both types of approach we aimed to minimise these limitations. An 

alternative approach would be to use metagenomics methods. This approach has 

been highly successful in characterising bacterial diversity from ecosystems 

(Eisen 2007; Hugenholtz et al. 1998) and has been successfully applied to surveys 

of human gut bacteria (Backhed et al. 2005). Metagenomics would allow a broad 

spectrum of disease to be characterised in a population without suffering a lack 

of specificity, as microbes can be identified molecularly. This method would be 

less limited by the caveat of only being able to detect what researchers choose 

to look for. 

The pathogen community described here should not be considered definitive. 

Despite efforts to broaden the scope of the pathogen community examined, 

ultimately only a small proportion of the pathogens that may be present were 

considered. Co-infection relationships between gastro-intestinal parasites and 

mange infections have been shown previously in foxes (Balestrieri et al. 2006). It 

may be possible that if gastro-intestinal parasites were examined as part of this 

study more co-infection relationships would have been found. However, 

considering every pathogen that may be present in a wild host population is a 

massive, and potentially unfeasible, undertaking. This subset of a disease 

community examined is supportive of co-infection relationships occurring in 



Chapter 3  66 
 
natural populations. More work is needed to establish the impact co-infecting 

pathogens have on their hosts and the transmission dynamics between hosts. 

Here it cannot be stated whether co-infecting pathogens are utilising poor 

quality hosts or are having a more detrimental effect on their host than in a 

single infection. This study raises questions about the impact co-infection may 

have on transmission, rather than providing definitive answers. In the example 

here the host does not transmit T. gondii, but it is unknown if this changes the 

transmission dynamics of CAV-I either by increasing the susceptibility to, or 

infectiousness of a co-infected host. Despite small sample sizes and only a small 

subsection of a potential pathogen community being considered, this work gives 

a useful and interesting insight to the community ecology of pathogens and how 

pathogen interactions may affect their hosts as well as demonstrating the need 

for a multi-disciplinary approach to study these communities. Further work 

exploring pathogen communities will rely on larger sample sizes than presented 

here, which will involve more intensive cadaver, or sample collection, or a 

change to a model species which is more abundant and more easily sampled. 

Future studies utilising modern methods of detection such as metagenomics will 

undoubtedly prove useful in building upon this work. 
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4 A model for micro-macro parasite interactions: 
Could rabies regulate Echinococcus 
multilocularis populations in red foxes? 

4.1 Introduction 

Disease has long been recognised as a regulatory force of natural populations 

(Anderson & May 1978; Reddiex et al. 2002; Sait et al. 1994). This usually arises 

by the pathogen limiting the abundance of the host population. However, in 

wildlife populations it is the rule rather than the exception that a single 

population plays host to several pathogens at any point in time. This in effect 

creates a community of pathogens, which may interact with each other. 

Examples include: intestinal helminthes competing directly for space (Read 

1951), or indirectly through host immune system effects (Cox 2001), or effects 

caused by differing pathologies and/or transmission strategies employed by 

different pathogens, for example HIV in humans facilitating infection with other 

pathogens due to reduced immunocompetence of the host (Bicartsee et al. 

1995). Pathogen communities can be thought of broadly on three scales (Bush & 

Holmes 1986): infra communities consist of different pathogens infecting a single 

host at any given point in time; component communities are made up of those 

pathogens found within a population of hosts, and finally compound communities 

comprise the pathogens infecting a community of host organisms. Currently the 

importance of community interactions at these three levels is largely unknown, 

with empirical and theoretical work on the subject still very much in its infancy 

(but see Bush & Holmes 1986; Fellous & Koella 2010; Graham 2002; Graham et 

al. 2007; Haukisalmi & Henttonen 1993a; Haukisalmi & Henttonen 1993b; 

Lanfranchi et al. 2009; Pedersen & Fenton 2007; Read 1951). Looking for 

empirical evidence of pathogen interactions at the component and compound 

community levels has thus far relied on correlational studies of co-infection 

(Balestrieri et al. 2006; Lanfranchi et al. 2009). Whilst important, and 

undoubtedly useful in proving the existence of such relationships, these studies 

cannot answer questions regarding the stability and integrity of pathogen 

communities, or identify if one pathogen is inhibiting or facilitating co-infection. 

As wildlife disease control becomes more important for conservation and public 
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health a broader perspective will undoubtedly become imperative to our 

understanding of the dynamics of disease elimination. Here a simple component 

community is explored theoretically, using a model based on rabies virus and the 

cestode Echinococcus multilocularis infecting a wild red fox, Vulpes vulpes, 

population. 

The host, the red fox, is considered the most widespread terrestrial wild 

carnivore on the planet (McDonald & Reynolds 2004).This small to medium sized 

canid has proven highly adaptable, and has established large urban populations 

across Europe, most notably in the UK – where the “urban fox phenomenon” has 

been observed and reported since the 1930s (Harris & Rayner 1986). Disease is 

often considered a major demographic pressure on fox populations, with rabies 

in particular having the potential to decimate natural populations (Pastoret & 

Brochier 1999). Foxes, like most canines, have a varied diet. Scavenging and 

predation are however the two primary foraging techniques utilised by this 

opportunistic omnivore (McDonald & Reynolds 2004). This pre-disposes the fox to 

many diseases that utilise predator-prey relationships for transmission, 

including, but not limited to, Toxocara canis, Angiostrongylus vasorum, 

Toxoplasma gondii, and the parasite of interest E. multilocularis. Foxes are 

territorial and may form loose social groups. Encounters on territory borders 

together with plastic sociality favours direct transmission of certain diseases 

such as Canine Distemper Virus (CDV), Canine Adenovirus and Rabies.  

Rabies is a zoonotic disease of worldwide importance (Knobel et al. 2005). In the 

absence of treatment, it is 100% fatal in all carnivora. This disease provides a 

significant public health and conservation threat worldwide. Across Europe the 

red fox, Vulpes vulpes, has been implicated as the main reservoir for wildlife 

rabies since at least 1939, when the current epizootic began in Poland (Holmala 

& Kauhala 2006). Various culling strategies have been used to control fox 

populations, but were consistently found to be ineffective. The first trials of 

orally vaccinating foxes against rabies in Europe began in Switzerland in 1978 

(Vitasek 2004), and has been used to great effect ever since. Although rabies is 

still endemic across much of Eastern Europe several countries across Western 

and Central Europe have successfully eliminated the disease using oral 

vaccination (See Vitasek 2004 for a full review). The successful eradication of 

rabies has had a major impact on the red fox population, causing a large scale 
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increase in density in both urban and rural settings (Deplazes et al. 2004). This 

increase in fox population is almost certainly an unwanted side effect, the 

implications of which still remain unclear. 

The small fox tapeworm, E. multilocularis, is a parasitic metacestode of canines 

with a complex life cycle utilising predator-prey relationships between definitive 

and intermediate hosts for transmission. In Europe the reservoir definitive host 

for E. multilocularis is the red fox, which is infected by the adult stage of the 

parasite and sheds eggs into the environment via faeces. Arvicolid rodents are 

the main intermediate hosts, and ingest eggs from the environment. It is at this 

stage of the life-cycle where incidental hosts, including humans, may be 

infected. The definitive canine host is infected upon predation of an infected 

prey animal. There is no mortality associated with this parasite in the definitive 

host, and infection is regarded as asymptomatic. This parasite is highly non-

specific during the larval stage of its life cycle; infecting a variety of mammalian 

species, including humans, as incidental hosts. The pathology of this parasite in 

incidental hosts is severe, causing a condition known in humans as alveolar 

echinococcosis (AE), considered to be the most pathogenic zoonosis in 

temperate and arctic regions of the Northern hemisphere (Vuitton et al. 2003). 

Clinical signs of AE can take between five and twenty years to manifest, unless 

diagnosed and treated with chemotherapy the prognosis is bleak. An 

undiscovered infection will usually result in fatality (Torgerson et al. 2010).  

These two pathogens employ different strategies to maximise their transmission 

potential, or R0. Rabies virus achieves this by reproducing quickly within its host. 

As rabies is transmitted through the bite of an infected animal this high viral 

load ensures that a sufficiently high viral load is available to be transmitted to 

the next host, thus ensuring efficient transmission. This strategy of high 

virulence works to the extreme detriment of the host. In the case of rabies virus 

the result is death. This is in contrast to the strategy employed by E. 

multilocularis, which requires an intermediate host. When eggs are shed into 

the environment the parasite has little control over intermediate host predation 

of individual eggs. So rather than work to a strategy of efficient transmission, E. 

multilocularis, like so many macro-parasites, relies on shedding many eggs over 

time. The longer it can sustain infection within its definitive host the more eggs 

it can shed for potential ingestion by intermediate hosts. 
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From an ecological perspective, these two pathogens are competing with 

opposing interests, essentially exhibiting different life history strategies and 

maximizing R0 in different ways. Infection with rabies, and rapid and inevitable 

host death will obviously impact negatively on shedding of E. multilocularis eggs 

into the environment. This clearly gives rabies the potential to exert a limiting 

effect on E. multilocularis populations through host removal. Following 

successful rabies control measures in Europe, there has been an increase both in 

prevalence of E. multilocularis and its geographical range – although the 

absence of surveys pre-rabies eradication leaves much room for interpretation 

(Romig 2009). The main driving force behind this would seem to be an increase 

in available definitive hosts (Deplazes et al. 2004), but due to the lack of 

surveillance pre- rabies control it is difficult to say with confidence that the 

increasing fox population alone is wholly responsible for the observed increase in 

E. multilocularis prevalence. 

Like so many macroparasites, E. multilocularis is highly aggregated in fox 

populations (Guislan et al. (2008) reported 8% of infected individuals in a fox 

population in the French Ardennes being responsible for carrying 72% of the total 

worm biomass).  Here we explore the consequences of an interaction between E. 

multilocularis infection and rabies epidemiology as might arise if infection with 

the macroparasite leads to increased transmission rates of rabies.  Specifically, 

we examine the consequences of a reduction in rabies prevalence as a result of 

widespread fox-rabies vaccination programs, and their potential impacts on E. 

multilocularis infection loads.  This idea is theoretically explored here using a 

novel model that encompasses the epidemiological dynamics of both a micro and 

a macro parasite within a dynamic host population. It will be shown that rabies 

control measures certainly have the potential to lead to an increased population 

of E. multilocularis within the host population. Additionally, we shall examine 

this limiting effect under the assumptions that it is caused by i) host availability 

alone or ii) an interaction between worm burden and rabies susceptibility. By 

varying the transmission coefficient of rabies as a function of worm burden we 

further investigate the effect of different forms of interaction between the 

worm burden and rabies susceptibility; examining the effects that rabies may 

have on aggregation of E. multilocularis. 



Chapter 4  71 
 

4.2 Methods 

We used a deterministic compartmental model that integrated elements from 

the classic Anderson and May macro-parasite model (Anderson & May 1978; May 

& Anderson 1978) within a standard Susceptible-Infected-Removed (S-I-R) 

framework (Anderson & May 1991a).  Hosts that were not infected with rabies 

were assigned to one of n discrete classes based on their E. multilocularis 

burden of infection.  Rabies susceptible individuals were denoted Wj (j=0 … n-1, 

where W0 class was uninfected by E. multilocularis, and the jth class contains Pj 

worms).  Host per capita fecundity, a, was assumed to be density dependent, 

conditional on a host carrying capacity constant, K, while per capita background 

mortality rate, b, was assumed to be density independent. Parameters a, b, and 

K were assumed to be independent of the E. multilocularis burden of infection 

Intermediate hosts of E. multilocularis are not explicitly modelled and 

transmission is modelled to be environmental - the (in)efficiency of  transmission 

governed by the parameter H0  (Anderson & May 1978).  A fraction of Hosts, fj, 

have the potential to enter each class Wj upon infection with E. multilocularis, 

with worms establishing more easily in hosts that “super-spread” the disease, 

controlled by parameter ej. The exact mechanism behind the over-dispersion of 

E. multilocularis is unknown; host age, immune function, prey choice and 

intermediate host susceptibility may all play a part (Guislain et al. 2008; Hofer 

et al. 2000; Torgerson 2006). It is unknown if, in reality, the worm burden of a 

fox is determined by burdens in ingested intermediate hosts (so determined at 

the first infection event) or if subsequent infections allow a build-up of worms in 

some foxes. In the interest of keeping our model formulation simple, foxes enter 

a burden category upon infection, in which total worm burden is modelled 

dynamically. Worms die within their host at rate α, thus also governing the rate 

of host recovery. parameters were chosen to give a similar aggregation of worms 

across the j categories, as reported by Guislan et al (2008) in the absence of 

rabies. 

The rabies S-I-R model is integrated across this macroparasite model in a 

straightforward way except that we allow for the possibility that the rabies 

transmission coefficient βj is dependent on the burden of E. multilocularis 

infection. Rabid hosts die at rate at b+γ. The dynamics are thus governed by the 
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following equations, where WTotal equals the sum of all W; WEM are only those 

foxes infected with E. multilocularis and is  thus the sum of all W excluding W0; 

and P is the total parasite biomass and is the sum of all Wjij: 

dW0

dt
= a WTotal + I( ). K − (WTotal + I )
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dW2

dt
=σ1W1 − bW2 −σ 2W2 −β2W2I       Equation 4.1.3 

dWn

dt
=σ (n−1)W(n−1) − bWn −σ nWn −βnWnI      Equation 4.1.4 

dI
dt
= β jWjI − bI −γ I

j=0

n

∑        Equation 4.1.5 

dR
dt

= γ I          Equation 4.1.6 

To model an interaction between worm burden and rabies susceptibility βj was 

modelled as a function of worm burden, i, whilst constrained to give an R0 of 

1.4. Given that rabies’ R0 for the system as a whole is explained by equation 4.2, 

transmission heterogeneity can be achieved with the following equations: 

R0 =
β jWj

b+γj
∑          Equation 4.2 

β j = x 1+
f (ij )
z

!

"
#

$

%
&         Equation 4.3 

The constant z is inversely proportional to the enhanced rabies transmission 

caused by each worm in maximally burdened foxes. It is manipulated as: 

z = imax
strength

        Equation 4.4 
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Varying “strength” allows a tangible manipulation of βj in response to 

heterogeneity in E. multilocularis burdens. The term “strength” represents how 

many more times greater βj is in the highest worm category compared to in W0. 

Substituting equation 4.3 into equation 4.2 leads to an expression that can be 

solved for x, which can then be used to calculate βj for each class, Wj, of rabies-

susceptible foxes. When equation 4.4 is substituted into equation 4.3, the term 

“strength” informs how many times higher the transmission of rabies to foxes 

with the maximum worm burden is compared to foxes without worms. 
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Figure 4.1 Variation of the rabies transmission co-efficient β  as (a) linear and (b) exponential 
functions of worm burden. Broken line illustrates the null hypothesis (interaction strength 
=1) and shaded areas represent the areas of parameter space where manipulations were 
performed (interaction strength = 1.5 to 20). 

Two simple functions of worm burden were tested, representing two different 

versions of our alternate hypothesis: βj increasing linearly as a function of worm 

burden, i: 

f (i) = ij          Equation 4.5 

and βj increasing exponentially as a function of worm burden: 

f (i) = exp[cij ]         Equation 4.6 
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The former assumes that each worm has an equal effect on its host, whilst the 

latter assumes that heavily infected foxes are disproportionally more likely to 

acquire rabies compared to those with a low to average worm burdens, which 

suffer a much lesser additional susceptibility. The parameter c in equation 4.6 is 

a scaling constant held fixed to 1x10-4 across all manipulations which was 

necessary to avoid computational errors which arose from dealing with the 

exponents of extremely large numbers associated with heavy worm burdens. 

As well as examining different forms of potential relationship between rabies 

and worm burden, differing modes of rabies transmission were also examined: 

the model outlined in equations 4.1.1-4.1.5 uses a density dependent 

transmission term to simulate rabies dynamics. To model this system with 

frequency dependent dynamics the rabies transmission term “βWjI” was 

substituted for “(βjWjI) / (Wj+I)”. The R0 formulation in equation 4.7 was used in 

calculating the transmission co-efficient for these simulations: 

R0 =
β j

b+γj
∑          Equation 4.7 

The model was explored numerically by simulating from initial conditions to 

equilibrium for the scenarios demonstrated in figure 4.1. Figure 4.1(a) 

demonstrates the response of increasing interaction strength when βj is linearly 

dependent on worm burden (equation 4.5). As interaction strength increases the 

difference between the intercept and maximum value of βj becomes greater, so 

more heterogeneity in rabies transmission is introduced. Figure 4.1(b) 

demonstrates a similar pattern, showing that increasing interaction strength 

increases heterogeneity in transmission. This scenario differs from the previous 

in that varying interaction strength has a smaller effect on foxes with low worm 

burdens. The intercept for the exponential function is higher than when a linear 

interaction is used with the same interaction strength. All other model 

parameters are listed in table 1 with their assigned values. 
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symbol parameter unit value basis 

a fox birth rate foxes day-1 4.53x10-3 (Harris & Smith 
1987) 
 

b fox mortality rate foxes day-1 2x10-3 (Takumi & Van 
der Giessen 
2005) 
 

K carrying capacity 
constant 
 

constant 12 Estimated so 
equilibrium 
density in the 
absence of 
rabies is 
6.6903km-2 

 

β rabies transmission 
coefficient 

new infections 
infective-1 susceptible 
-1day-1 

 

variable Based on R0 of 
1.4 

γ rabies associated 
mortality rate 
 

foxes day-1 0.14 Based on a 7 day 
infectious period 
 

λ worm birth rate eggs day-1worm-1 42.00 (Takumi & Van 
der Giessen 
2005) 
 

H0 transmission 
inefficiency 
 

fox 3259.89 Calculated as in 
(Anderson & May 
1978) 
 

ij worm burden in class 
Wj 

worms fox-1 [0; 20; 427; 
3221; 32309] 

Calculated from 
(Guislain et al. 
2008) 
 

σ1 rate of progression 
from W1 à W2 

 

foxes day-1 2.79 x 10-3 At equilibrium 
RF state 24.0% 
of infected foxes 
are in class W2 

(Guislain et al. 
2008) 
 

σ2 rate of progression 
from W2 à W3 

 

foxes day-1 2.84 x 10-3 At equilibrium 
RF state 26.6% 
of infected foxes 
are in class W3 

(Guislain et al. 
2008) 
 

σ3 rate of progression 
from W3 à W4 

 

foxes day-1 5.71 x 10-4 At equilibrium 
RF state 7.6% of 
infected foxes 
are in class W4 

(Guislain et al. 
2008) 
 

Table 4.1 Definitions of parameters and assigned values. RF refers to 'rabies free' state. 
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4.3 Results 

4.3.1 Does rabies virus regulate E. multilocularis populations 
through limiting host availability? 

In the absence of rabies both fox and worm populations reach their maximum 

values at equilibrium. In Table 4.2 these equilibrium values are compared to the 

equilibrium values in the presence of rabies, in the absence of an interaction 

between rabies and E. multilocularis infection. Equilibrium values of both worm 

and fox populations are appreciably lower in the presence of rabies.  

 rabies free 
state 

rabies present 
under null 
hypothesis  

difference 
(%) 

fox density (km-2) 
 

6.69 5.004 28.58 

worm biomass 
(km-2) 
 

22888.09 
 

10748.05 53.04 

mean worm 
burden 
 

3421.09 2249.30 34.25 

Table 4.2 Equilibrium populations of foxes and E. multilocularis under rabies free and null 
hypothesis conditions.  

In rabies endemic areas the fox density is predicted to be 28.6% lower than if 

rabies is absent. However the reduction in equilibrium worm biomass  (worms 

km-2) in the presence of rabies is lower by 53.0%. The reason for this is when 

rabies is present in our model fewer foxes survive long enough to acquire higher 

worm burdens. This is illustrated by the fact that average worm burden of 

individual foxes is about 34.3% lower in the presence of rabies.  It can therefore 

be seen that both the total environmental E. multilocularis burden and its 

aggregation amongst hosts are limited by the demographic pressures rabies 

exerts on red fox populations. 

4.3.2 Does a linear interaction between worm burden and rabies 
susceptibility further limit E. multilocularis populations? 
And could it effect the over-dispersion of worms amongst 
hosts? 

By representing the rabies transmission coefficient in our model as a function of 

worm burden we explore an interaction between the two pathogens. This 
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interaction is modelled at varying strengths representing an increasing effect of 

worm burden on rabies transmission. The stronger this interaction the more 

heterogeneity in rabies transmission experienced by the population, with a 

larger deviance either side of the mean value of βj. The linear distribution 

assumes a relationship between worm burden and rabies susceptibility where 

each individual worm has an equally increases the probability of rabies infection 

of its host. 
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Figure 4.2 Equilibrium population densities at varying interaction strengths when β j is 
modelled as a linear function of worm burden under density dependent transmission. (a) 
changes in both fox density and worm biomass; (b) Changes in mean worm burden 

It can be seen from Figure 4.2(a) that weaker interactions have the most severe 

effect on worm biomass. Suppression is strongest at an interaction strength of 

2.5, at which point the per capita rabies transmission to foxes with the 

maximum worm burden is 2.5 times higher than to foxes without worms. This 

results in an equilibrium E. multilocularis biomass that is 4.5% less than in the 

absence of an interaction, and 55.1% less than in the absence of rabies. Further 

increases in interaction strength caused equilibrium worm biomass to increase. 

At an interaction strength of 5.5, at which point per capita rabies transmission 

to foxes with the maximum worm burden is 5.5 times higher than to foxes 

without worms, equilibrium worm biomass was higher than that under the 

conditions of the null hypothesis. The increased heterogeneity in rabies 

transmission at higher interaction strengths benefits E. multilocularis 

populations, resulting in higher equilibrium biomass of worms. Figure 4.2(b) 
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shows the minimum mean worm burden experienced by foxes occurs at a higher 

interaction strength than the minimum total biomass. This was at an interaction 

strength of 5 with a mean worm burden 11.6% lower than in the absence of an 

interaction. In contrast to total worm biomass, when βj is modelled as a linear 

function of worm burden, equilibrium mean worm burden never becomes higher 

than in the absence of an interaction. This difference is indicative of rabies 

affecting both E. multilocularis abundance through host limitation and 

aggregation by preferentially infecting foxes with higher worm burdens. 
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Figure 4.3 Equilibrium population densities at varying interaction strengths when β j is 
modelled as a linear function of worm burden under frequency dependent transmission. (a) 
Changes in both fox density and worm biomass; (b) Changes in mean worm burden. 
 

When rabies is modelled with frequency dependent transmission and a linear 

dependency on worm burden, increases in interaction strength cause rabies to 

become less suppressive on both worm and fox populations, as demonstrated by 

Figure 4.3. However, when comparing Figures 4.2 and 4.3 it becomes clear that 

when modelled with frequency dependent transmission, rabies is more 

suppressive on worm populations than when modelled with density dependent 

transmission, and marginally less suppressive of fox populations. At the 

maximum interaction strength of 20 when rabies is modelled with frequency 

dependent transmission total worm biomass Km-2 is 47% lower than when the 

same strength is used to model rabies with density dependent transmission, 

while fox density is marginally higher by 0.4%. Qualitatively, the two 
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transmission modes yield similar results for fox density, but worm biomass is 

more sensitive to changes in transmission mode under this linear relationship 

between rabies transmission and E. multilocularis burden. 
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Figure 4.4 Equilibrium aggregation of worms at different interaction strengths when β j is 
modelled as a linear function of worm burden under density dependent rabies transmission. 
(a) The proportion of worms in each infected W class; (b) The proportion of foxes in each 
infected W class. “RF” denotes the rabies free equilibrium values and an interaction 
strength of 1 is equal to the null hypothesis conditions in the presence of rabies. 

It can be seen in Figure 4.4(a) the proportion of worms in each class (W1 àW4) 

changes in response to changes in interaction strength. In the absence of rabies 

72% of worm biomass is in W4. Introduction of rabies causes this to fall to 64%, 

and a minimum of 56% at an interaction strength of 7. The proportion of worms 

in W4 increases thereafter, but does not reach the levels obtained in the absence 

of an interaction. In the absence of rabies 7.5% of foxes are in W4. Introduction 

of rabies causes this to fall to 4.5%, and a minimum of 3.5% is reached at an 

interaction strength of 5.5. The proportion of foxes in W4 increases thereafter, 

but does not reach the levels obtained in the absence of an interaction, as 

illustrated by Figure 4.4(b). 

When Figure 4.4 is compared with Figure 4.5 it can be seen that when rabies is 

modelled with frequency dependent transmission that the proportion of worms 

in class W4 is greatly diminished, as too is the proportion of foxes. At an 

interaction strength of two only 22% of worms are contained in W4 (compared to 

72% in the rabies free state), and by an interaction strength of 20 only 9% of 

worms are contained in this class. At an interaction strength of 0 (homogenous 
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transmission across all classes), only 21% of worms are in contained in W4. This 

suggests that if rabies is frequency dependently transmitted then it has the 

potential to switch E. multilocularis from an over-dispersed population structure 

to being under-dispersed. 
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Figure 4.5 Equilibrium aggregation of worms at different interaction strengths when beta is 
modelled as a linear function of worm burden with frequency dependent rabies 
transmission. (a) The proportion of worms in each infected W class; (b) The proportion of 
foxes in each infected W class. “RF” denotes the rabies free equilibrium values. 
 

Low strength linear interactions between worm burden and rabies susceptibility 

have the potential to regulate both the total population of E. multilocularis as 

well as the over-dispersion of worms amongst hosts than under the conditions of 

the null hypothesis. When rabies is modelled with density dependent 

transmission, at medium to high interaction strengths, a linear interaction 

between rabies susceptibility and worm burden also has the potential to reduce 

the regulatory impact of rabies on E. multilocularis. Whereas if rabies is 

modelled with frequency dependent transmission E. multilocularis is heavily 

supressed and although increases in interaction strength cause a slight increase 

in total E. multilocularis biomass, the over-dispersion of worms remains greatly 

supressed. 
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4.3.3 Do different forms of interaction between worm burden and 
rabies susceptibility differently affect E. multilocularis 
population size and over-dispersion amongst hosts? 

We considered that the form of interaction between worm burden and rabies 

susceptibility might have further effects on the regulation of E. multilocularis. 

Replacing βj  in our model with an exponential function results in those foxes 

with low to average worm burdens being mildly less susceptible to rabies than 

average, and the minority of foxes with extremely high worm burdens much 

more susceptible. 
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Figure 4.6 Equilibrium population densities at varying interaction strengths when β j is 
modelled as an exponential function of worm burden. (a) Changes in both fox density and 
worm biomass; (b) Changes in mean worm burden. 

Both Fox and E. multilocularis populations behave similarly as when exposed to a 

linear function of worm burden on βj. This is apparent when comparing figures 

4.3 and 4.6, which are remarkably alike. It can be seen in Figure 4.6(a) that the 

minimum biomass of worms occurs at an interaction strength of 2.5, with a 

reduction of 4.5% in biomass compared to that predicted under the conditions of 

the null hypothesis and 55.1% than in the absence of rabies. At an interaction 

strength of 5.5 the equilibrium biomass of worms becomes higher than in the 

absence of an interaction. In Figure 4.6(b) it can be seen that the minimum 

mean worm burden occurs at an interaction strength of 5 and is 11.6% lower 

than in the absence of an interaction. As was seen when βj was modelled as a 

linear function of worm burden, equilibrium mean worm burden continues to rise 
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after this minimum, but does not surpass the levels observed in the absence of 

an interaction.  
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Figure 4.7 Equilibrium population densities at varying interaction strengths when β j is 
modelled as an exponential function of worm burden with frequency dependent rabies 
transmission. (a) Changes in both fox density and worm biomass. (b) Changes in mean 
worm burden. 

When rabies is modelled with frequency dependent transmission and βj is an 

exponential function of worm burden increasing interaction strength causes 

rabies to be marginally more suppressive on worm and fox populations, as shown 

by Figure 4.7, noting the small ranges on all y axes. Both Worm and Fox 

populations show a linear decrease in size at equilibrium as interaction strength 

is increased. 

Figure 4.8 demonstrates that the aggregation of worms amongst foxes when βj is 
modelled exponentially is remarkably similar as to when modelled linearly. 

Figure 4.8(a) illustrates how the proportion of worms is each class (W1 àW4). 

Equilibrium aggregation in the absence of rabies and in the presence of rabies 

with no transmission heterogeneity is the same as Figure 4.4. The minimum 

proportion of worms in class W4 occurs at an interaction strength of 8, where 

55.2% of worms are found in this class. This is only slightly lower than the 

minimum of 56% obtained by modelling βj linearly, and occurs at a higher 

interaction strength. 
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Figure 4.8 Equilibrium aggregation of worms at different interaction strengths when β j is 
modelled as an exponential function of worm burden. (a) The proportion of worms in each 
infected W class; (b) The proportion of foxes in each infected W class. “RF” denotes the 
rabies free equilibrium values.  

The equilibrium proportion of worms in W4 remains marginally lower for the 

exponential function than the linear for all interaction strengths above this 

minimum. Equilibrium fox densities in each class (W1	
  àW4) are shown in Figure 

4.8(b). The minimum density of foxes in W4 is 3.4% occurs at an interaction 

strength of 6. This is again marginally lower than the minimum obtained when βj 

was modelled as a linear function, and occurs at a higher interaction strength. 

Equilibrium density of foxes in W4 remains marginally lower than when a linear 

function of βj is modelled for interaction strengths above this minimum.  
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Figure 4.9 Equilibrium aggregation of worms at different interaction strengths when β j is 
modelled as an exponential function of worm burden with frequency dependent rabies 
transmission. (a) The proportion of worms in each infected W class; (b) The proportion of 
foxes in each infected W class. “RF” denotes the rabies free equilibrium values. 
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When βj is modelled with as an exponential function of worm burden under 

frequency dependent rabies transmission dynamics E. multilocularis aggregation 

is very strongly affected. It is shown in Figure 4.9(a) that introducing this form 

of heterogeneity in rabies transmission when modelled with frequency 

dependent dynamics instantly causes the proportion of worms contained in class 

W4 to approach 0, while 85% of the worm population are contained in class W3. 

This result changes very little (<0.001%) across the interaction strengths ranging 

from one to twenty. Whilst the E. multilocularis population can still be 

considered over-dispersed, as class W4 is functionally extinct, and the bulk of 

worms now existing in class W4, the majority of the most heavily infected foxes 

now have a reduction in worm burden of about ten orders of magnitude. 

0 5 10 15 20

0.
00
0

0.
01
0

0.
02
0

0.
03
0

Interaction strength

E
qu

ili
br

iu
m

 ra
bi

d 
fo

xe
s 

 ! !
K
m
−2
! !

(a)

Linear
Exponential

0 5 10 15 20

0.
00
0

0.
01
0

0.
02
0

0.
03
0

Interaction strength

E
qu

ili
br

iu
m

 ra
bi

d 
fo

xe
s 

 ! !
K
m
−2
! !

(b)

Linear
Exponential

 

Figure 4.10 Equilibrium densities of rabid foxes across a range of interaction strengths for 
both linear and exponential functions of rabies transmission. (a) Density dependent rabies 
transmission; (b) Frequency dependent rabies transmission. 

Figure 4.10 shows the difference in densities of rabid individuals between the 

exponential and linear functions at equilibrium increases as interaction strength 

increases. Increasing interaction strength when a linear function of worm burden 

is used to describe rabies transmission leads to a lower density of rabid foxes for 

both the density dependent and frequency dependent transmission scenarios. 

Whereas when an exponential function of worm burden is used to describe rabies 

transmission introducing there is an increase in the equilibrium density of rabid 

foxes that remains constant across the interaction strengths tested. At an 
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interaction strength of zero (the null hypothesis conditions) all scenarios yield 

the same equilibrium density of rabid foxes. 

4.3.4 Relaxing the assumption of a constant R0 
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Figure 4.11 Contour plots showing the sensitivity of fox density and E. multilocularis 
biomass to changes in interaction strength and Rabies R0  when rabies is modelled with 
frequency dependent transmission. Contour lines show: (a) Fox density (km-2) when β j is 
modelled as a linear function of worm burden; (b) E. multilocularis biomass (worm-1km-2) 
when β j is modelled as a linear function of worm burden; (c) Fox density (km-2) when β j is 
modelled as an exponential function of worm burden; (d) E. multilocularis biomass (worm-

1km-2) when β j is modelled as an exponential function of worm burden. 

Figure 4.11 illustrates the effects of relaxing the assumption of increasing 

interaction strengths across a variety of R0 values when rabies is modelled with 

density dependent transmission. The linear (Figure 4.7(a.b)) and exponential 

(Figure 4.7(c,d)) manipulations of β again show very similar effects on fox 

density (Figure 4.7(a,c)) and E. multilocularis biomass. As R0 is increased, the 
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effect of increasing interaction strength becomes more beneficial to fox density, 

but overall systems where R0 of rabies is higher fox density is lower.E. 

multilocularis biomass (Figure 4.7(b,d)) is fairly insensitive to interaction 

strengths, with low interaction strengths only having a slightly more suppressive 

effect across all values of R0. In comparison E. multilocularis is very sensitive to 

changes in the R0 of rabies. Absolute values of a competing pathogens R0 are 

thus more important for suppressing E .multilocularis populations. 
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Figure 4.12 Contour plots showing the sensitivity of fox density and E. multilocularis 
biomass to changes in interaction strength and rabies R0 when rabies is modelled with 
frequency dependent transmission. Contour lines show: (a) Fox density (km-2) when β j is 
modelled as a linear function of worm burden; (b) E. multilocularis biomass (worm-1km-2) 
when β j is modelled as a linear function of worm burden; (c) Fox density (km-2) when β j is 
modelled as an exponential function of worm burden; (d) E. multilocularis biomass (worm-

1km-2) when β j is modelled as an exponential function of worm burden. 

Figure 4.12 illustrates the effects of relaxing the assumption of increasing 

interaction strengths across a variety of R0 values when rabies is modelled with 

frequency dependent transmission. Figures 4.12 (a,c) show that the reaction of 

equilibrium fox densities to these manipulations differ depending on whether a 

linear or exponential function of worm burden is used to describe rabies 
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transmission. Increasing R0 may lead to an increase or decrease in fox population 

density dependent on interaction strength. Whereas when the exponential 

function is used, increasing R0 always leads to a decrease in fox density, which is 

relatively robust to changes in interaction strength. Figures 4.12(b,d) 

demonstrate that when rabies is modelled with frequency dependent 

transmission worm biomass always decreases with an increasing rabies R0. 

4.4 Discussion 

This work gives a new perspective to the current emergence of E. multilocularis 

occurring in Europe by demonstrating that rabies virus has the potential to 

regulate total E. multilocularis biomass and aggregation through host 

availability. Rabies virus may have a further, small, regulatory effect on E. 

multilocularis biomass and aggregation if the worm burden of hosts causes low 

levels of heterogeneity in rabies transmission, and also dependent on the 

transmission dynamics rabies exhibits: differing between frequency and density 

dependent dynamics. Mechanisms behind an interaction behind rabies virus and 

E. multilocularis are difficult to demonstrate empirically due to a lack of 

surveillance data, so whilst mechanisms may be tested theoretically, the exact 

causes of such a relationship are speculative. One explanation could be a direct 

effect on the immune system of the host: A high infection load of macro 

parasites would cause a maintained Th2 humeral response, making the host less 

able to elicit the Th1 response needed to combat a rabies infection (Cox 2001; 

Graham et al. 2007). However, as there is no convincing evidence to suggest 

foxes ever having immunity to rabies, this mechanism seems unlikely. A second 

potential mechanism could stem from the physiological state of individual foxes. 

As previously stated, E. multilocularis is considered asymptomatic. However, it 

does not seem unreasonable to suppose that those foxes carrying the majority of 

the parasite population would at the very least begin to suffer effects of 

malnutrition and anaemia generally associated with gastro-intestinal parasite 

infections. In order to counter this effect, heavily infected foxes could be 

assumed to be increasing their foraging effort, which would likely involve 

travelling a further distance to locate additional prey, and an increased 

probability of making extra-territorial excursions. If this was the case, it would 

certainly increase the individuals contact rate with other foxes, and this would 

in turn increase the chance that this heavily infected individual will encounter a 
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rabid conspecific. Given what is already known about fox ecology, this seems 

more likely than a direct immunological effect. 

Under the null hypothesis there is no interaction between worm burden and 

rabies susceptibility. These conditions assume the only limitation placed on E. 

multilocularis populations is the availability of definitive hosts. The proportion 

of foxes infected with E. multilocularis remains unchanged between the null 

hypothesis and rabies free state when rabies is modelled with density dependent 

transmission. This is because the force of infection for E. multilocularis is 

linearly related to the density of hosts; so while the density of hosts infected 

with E. multilocularis changes, the proportion of the host population infected is 

constant. This limits the total biomass of E. multilocularis through host 

availability. However if rabies is modelled with frequency dependent 

transmission this relationship is lost, and rabies does limit the over-dispersion of 

E. multilocularis, even in the absence of an interaction. Recent work tracking 

rabies transmission in domestic dogs (Hampson et al. 2009) suggests rabies is 

transmitted with frequency dependent dynamics. Whilst it should not be 

assumed to follow the same dynamics in wild populations of foxes, it is sensible 

to postulate that transmission dynamics may be closer to frequency dependence 

than density dependence. In light of this it seems likely that rabies has the 

potential to supress both prevalence, and aggregation of E. multilocularis in its 

natural host populations of foxes. 

The lower fox density found in the presence of rabies hosts a lower total biomass 

of E. multilocularis. This clearly illustrates that definitive host availability is an 

important limitation on E. multilocularis populations. Further to this, in the 

absence of rabies the average worm burden found in the population is much 

higher. The ecological reasoning behind this is increasing host longevity allowing 

more foxes to progress to higher worm burden categories. E. multilocularis is 

thus regulated by host availability and longevity, thus is indirectly regulated by 

rabies which directly suppresses host populations. This has broad implications for 

epidemiological models with multiple pathogens, as it is here demonstrated that 

the mode of transmission chosen for pathogens can have profound effects on 

how two pathogens are predicted to interact. 
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Given the physiological stress expected to be placed upon heavily parasitized 

individuals we further hypothesised that the most heavily parasitized individuals 

could experience a higher contact rate with other individuals due to a greater 

need to forage more widely; putting them at greater risk of contracting directly 

transmitted infections. We tested this by manipulating the rabies transmission 

coefficient, βj, as functions of worm burden. Assuming that every worm works 

effects its host equally leads to a linear function of βj. When this type of 

interaction is included in the model we observe a maximum 4.5% increase in the 

ability of rabies to suppress E. multilocularis populations when transmitted 

density dependently, and a minimum increase in E. multilocularis populations of 

13% when transmitted frequency dependently. Suggesting that if a linear 

interaction exists and rabies is transmitted with frequency dependent dynamics 

that the interaction would actually benefit E. multilocularis populations and if 

transmission is density dependent there is only a small potential additional 

regulatory effect. Limitation of E. multilocularis biomass through host limitation 

by rabies virus has a much stronger, and thus more important, regulatory impact 

than heterogeneity in rabies transmission in both instances. The range of 

interaction strengths tested here range towards interactions so strong that they 

seem biologically unrealistic. As there are no data available to guide parameter 

choice, we extended the parameters to an extreme range in order to better 

understand our model behaviour. Weak interactions between rabies 

susceptibility and worm burden have the potential to be the most suppressive on 

E. multilocularis biomass and aggregation when rabies is modelled with density 

dependent transmission, and less suppressive on biomass as interaction strength 

increases when rabies is modelled with frequency dependent transmission. At 

high strength interactions, suppression of E. multilocularis biomass was weaker 

than in the absence of an interaction in all scenarios except for when rabies was 

transmitted with frequency dependent dynamics as an exponential function of 

worm burden, in which case increases in interaction strength caused mildly 

increased suppression. This is most likely due to the manner of the manipulation 

performed here: in order to make foxes with high worm burdens more 

susceptible to rabies, foxes with lower worm burdens have to be given a reduced 

susceptibility to rabies to hold R0 constant. As only a very small minority of foxes 

are responsible for carrying the majority of worm biomass, at higher interaction 

strengths the majority of foxes have a much-reduced susceptibility to rabies, 
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which compensates for the minority of foxes with a very much-increased 

susceptibility to rabies. To test the implications of this assumption a sensitivity 

analysis between R0 and interaction strength was performed. It is demonstrated 

that across a range of R0 values for rabies that E. multilocularis is only weakly 

regulated by heterogeneity in rabies transmission. As increases in the R0 of 

rabies have a strongly suppressive impact on fox density, this result is again 

indicative of E. multilocularis being most strongly supressed buy host availability 

and not heterogeneity in rabies transmission caused by over-dispersion of 

worms. 

 When βj is modelled as function of worm burden, the minimum mean worm 

burden is up to 11.6% lower than when no interaction is included when rabies is 

modelled with density dependent transmission (both linear and exponential 

transmission functions) and a maximum of 23% lower than when no interaction is 

included under frequency dependent transmission (with an exponential 

transmission function). This suppression of mean worm burden is much greater 

than that seen in the total biomass of the population indicating that the most 

aggregated E. multilocularis infections are heavily supressed. This is an 

important result, as it shows that post-rabies eradication the worm burden of 

foxes may be predicted to increase, leading to E. multilocularis eggs being shed 

at higher rates per fox.  

Due to the assumptions made here, quantitative predictions need to be 

interpreted with caution. Qualitatively however the results are important. The 

mechanism presented behind the hypothesis presented here is biologically 

sensible. An extremely heavily parasitized fox being more likely to contract 

rabies than a healthy fox is plausible given that we base this on an increased 

contact rate between individuals in a rabies endemic area. Realistically, the 

actual strength of this interaction is likely to depend on the carrying capacity 

and current density of the fox population in question: In an area of high fox 

density with small territory sizes a fox making extra-territorial excursions for 

food would likely contact several other foxes; conversely in a low density area 

with large territory sizes a fox making extra-territorial excursions would have a 

less increased contact rate. Here a wide range of interaction strengths are 

tested, and the outcomes from these differing strengths shown. Although the 
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model presented here cannot definitively quantify such an interaction without 

being confronted with epidemiological and ecological data, it certainly suggests 

this hypothesis is biologically plausible, and implicates the presence of endemic 

rabies as a suppressing force on E. multilocularis biomass. 

As well as manipulating the strength of the interaction, two different forms of 

interaction were also tested. By distributing βj exponentially we encompassed an 

interaction which affected foxes with extremely high worm burdens strongly 

while less strongly affecting those with low to moderate worm burdens. As 

infection with E. multilocularis is usually reported as being asymptomatic in the 

definitive host it is worthwhile testing the plausibility of an interaction in which 

the majority of infected foxes are relatively unaffected, and also to test the 

behaviour of the model in comparison to the linear interaction already used. 

There was little difference in the equilibrium biomass of E. multilocularis, 

densities of foxes or mean worm burdens obtained with these two functions of 

βj, with very similar minimum values being reached at the same interaction 

strengths when rabies was modelled with density dependent transmission. Closer 

examination of E. multilocularis aggregation shows that an exponential 

relationship between βj and worm burden has the potential to exert slightly 

stronger regulation on the distribution of worms amongst hosts in this scenario. 

Although the model, being theoretical in nature, is unable to prove the correct 

form of an interaction between these two pathogens in nature (if one indeed 

exists), it does serve to illustrate that competition for hosts between these two 

pathogens is more important in the regulation of E. multilocularis biomass and 

aggregation than an interaction between these two pathogens eliciting 

heterogeneity in rabies transmission. The two forms of interaction tested here 

differ only subtly when rabies is modelled with density dependent transmission. 

Importantly both forms of interaction demonstrate that a weak interaction 

between rabies and E. multilocularis (which in practice may be very difficult to 

detect) only has the potential to have a small additional regulatory effect on E. 

multilocularis populations. The elimination of rabies is thus predicted to 

facilitate population growth of this parasite by reducing the mortality rates of its 

definitive host. When this form of interaction was tested with rabies being 

transmitted frequency dependently there were again only small effects on total 

fox density and worm biomass, however the aggregation of worms amongst hosts 
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was more strongly affected under these conditions than any other tested, as 

worms and foxes in class W4 tended towards zero, even at very low interaction 

strengths. As stated previously, recent work suggests that rabies may be more 

characteristic of a frequency dependent pathogen than a density dependent 

one, although where it lies on the scale between these two extremes in natural 

fox populations is currently not known. If however it is found to display 

frequency dependent transmission dynamics it may be the case that rabies is 

preventing extremely high E. multilocularis burdens from occurring in foxes. 

Thus the elimination of rabies may have potential to allow some individual foxes 

to acquire extremely high worm burdens, becoming “super-spreaders” of this 

zoonotic macro-parasite. 

The model proposed here tests a variety of interaction strengths under both 

density and frequency dependent rabies transmission. This serves to show the 

flexibility this model may provide in being applied to other micro/macro-

parasite systems, but also highlights the need for such a model to be confronted 

with real data. The worm burdens used in this model were based on worm 

aggregation reported in the presence of rabies. To better justify this model it 

should be confronted with data from populations where rabies has been 

eliminated to examine if the equilibrium population of E. multilocularis has 

indeed changed as the model predicts. 

Whilst the success of rabies control strategies in Western Europe is certainly to 

be applauded, it would be foolish not to monitor the effects on other dangerous 

zoonoses post rabies elimination. Risks posed by rabies, both to human and 

wildlife health, are of global concern. Given this, every effort should be made to 

learn from current success stories, better equipping us to cope with the 

challenges faced. .
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5 Plasticity in transmission strategies of the 
malaria parasite, Plasmodium chabaudi: 
environmental and genetic effects 

5.1 Introduction 

 

Parasites, like all sexually reproducing organisms, must optimize their resource 

allocation with respect to growth, survival and reproduction (Mideo & Reece 

2012; Pollitt et al. 2011a). In the context of parasites, growth and survival 

within the host are synonymous with replication and reproduction synonymous 

with transmission to subsequent hosts (Koella & Antia 1995; Reece et al. 2009). 

The reproductive strategies of parasites are generally quantified in terms of R0, 

the expected number of secondary infections arising from a single infected 

individual in a fully susceptible population (Anderson & May 1991a). However 

this singular epidemiological statistic does not capture heterogeneity in 

transmission, or document how parasites maximise their transmission potential 

with respect to the dynamic environment experienced during infections. 

The allocation of resources to in-host survival and between-host transmission is a 

key fitness component for parasites and underpins the virulence and 

infectiousness of disease (Mideo & Reece 2012). For example, in Plasmodium 

spp., the parasites responsible for causing malaria, survival in the host is 

maintained by cycles of asexual replication within red blood cells (RBC). A small 

proportion of the parasites produced every cell cycle differentiate into male and 

female sexual stages, termed gametocytes, which do not replicate in the host, 

but are required for transmission. We refer to this as the proportional 

investment in transmission. When taken up in a blood meal, gametocytes 

differentiate into gametes and fertilisation occurs. The requirement of different 

stages for within-host survival and between-host transmission makes Plasmodium 

spp. a powerful model to study the trade-off between survival and reproduction, 

an ecological and evolutionary concept traditionally studied in multicellular taxa 

(Roff 1992; Stearns 1992). Parasites investing heavily in gametocytes early in 

infections risk curtailing the duration for transmission due to insufficient asexual 
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replication to maintain the infection. Conversely, excessive investment in 

asexual replication reduces the rate of transmission and will also curtail duration 

if infections are so virulent the host dies. Broadly, however, Plasmodium invests 

remarkably little in transmission during infection of the mammalian host, with 

only a small proportion of merozoites undergoing gametocytogenesis with each 

round of asexual replication (Babiker et al. 2008; Dixon et al. 2008; Taylor & 

Read 1997). Several explanations have been proposed for this general restraint 

in its reproductive strategy. It may (i) reduce the virulence experienced by 

vectors by ensuring only a small number of gametocytes are taken up with any 

one blood meal (Cohuet et al. 2010); (ii) prevent hosts from developing 

gametocyte specific immunity, which would limit transmission (Buckling & Read 

2001); or (iii) be an optimal strategy in the context of competition between co-

infecting genotypes (Mideo & Day 2008), where most resources are invested in 

outcompeting conspecifics via asexual replication to ensure future transmission.  

Plasmodium’s search for an optimal transmission strategy is complicated by its 

dynamic host environment.  During the acute phase of infection the host 

becomes progressively more anaemic as the parasite utilizes RBC to establish 

itself within the host. The subsequent infection dynamics are the result of the 

complex interplay between (i) the parasite’s continued consumption of host 

resources, with potentially preferential tropism for certain ages of RBC and/or 

competition from co-infecting genotypes; (ii) the influx of immature 

reticulocytes as the result of the host’s compensatory increase in erythropoiesis; 

(iii) innate immune responses, which may be associated with retention of RBC in 

the spleen and excessive inflammation resulting in the destruction of both 

infected and healthy RBC; and (iv)  adaptive immune responses, likely directed 

against both shared and distinct antigens expressed by the asexual and sexual 

stages, and dynamically shifting focus in response to antigenic variation by the 

parasite (Day 2003; Koella & Antia 1995; Mideo et al. 2008; Paul et al. 2003).  

Phenotypic plasticity is a ubiquitous evolutionary solution to the challenges of 

life in such a changing environment because it gives individual genotypes the 

ability to express the ‘best’ phenotype in response to its current environmental 

circumstances. Plasmodium indeed appears to exhibit such plasticity; 

investment in gametocytes varies with resource availability, drug treatment, the 

presence of other parasite genotypes, and host genotype (Buckling et al. 1999a; 
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Buckling et al. 1999b; Buckling et al. 1997; Hall et al. 2005; Pollitt et al. 2011b; 

Reece et al. 2010; Reece et al. 2005; Trager & Gill 1992; Trager et al. 1999).  

The sex ratio of gametocytes also varies during infections; erythropoiesis, 

anaemia (Paul et al. 2000), co-infection with conspecifics (Reece et al. 2008), 

low gametocyte density and transmission blocking immunity (Reece et al. 2008)  

increase investment in male relative to female gametocytes. 

Is this observed plasticity truly adaptive? To address this question we first need 

to identify the environmental variables that influence the parasite's propensity 

to invest in transmission, and to what degrees. Understanding how parasites 

read cues from the host will then inform experimental tests of whether parasite 

transmission investment strategies are indeed optimal. However, theoretical and 

experimental studies have yielded conflicting conclusions in this area, 

particularly regarding the direction of changes in the proportional investment 

into gametocytes in response to changes in the in-host environment (Buckling et 

al. 1999a; Buckling et al. 1999b; Buckling et al. 1997; Pollitt et al. 2011a; Reece 

et al. 2010; Trager & Gill 1992; Wargo et al. 2007). 

To better understand the extent to which environmental factors and parasite 

density shape transmission strategies, we use statistical models to explore how 

P. chabaudi invests in gametocytes as a function of parasite density and RBC 

availability in single infections of mice. 

5.2 Methods 

We quantify the influence of the host environment and parasite abundance on 

reproductive investment by the malaria parasite Plasmodium chabaudi. P. 

chabaudi exhibits a life cycle typical of all Plasmodium spp. (Figure 5.1):  

Merozoites are created when a single adult merozoite infects a host RBC where 

it develops through ring and trophozoite stages before asexually replicating into 

a schizont, which erupts 24 hours post-cell-invasion from the RBC releasing many 

more merozoites. Or alternatively, gametocytes are produced if a merozoite 

undergoes a longer 48 hour development in a RBC, where the ring stage develops 

straight into a mature gametocyte over this period.  
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Figure 5.1 Schematic of asexual replication and gametocytogenesis in P. chabaudi. 
(Provided courtesy of Sarah Reece) 
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A uniquely large, previously published dataset (Pollitt et al. 2011b; Reece et al. 

2008), from experimental infections of mice with six genetically distinct clones 

(hereafter referred to as genotypes) of the parasite is re-visited. Merozoites, the 

asexual life stage of the parasite, require 24 hours to mature in RBCs and 

gametocytes, the sexual life stage of the parasite, require 48 hours. Schizgony 

(eruption of infected RBCs) is synchronized and takes place every 24 hours post-

infection (Buckling et al. 1999a; O'Donnell et al. 2011). This synchrony motivated 

the experimental sampling protocol and invites the use of discrete-time methods 

such as those used to model the dynamics of total parasite densities (Reece et 

al. 2008). For Plasmodium, the proportion of merozoites that differentiate into 

gametocytes, and the sex ratio of the gametocytes, are natural dynamic 

indicators of its allocation strategy. We predict gametocyte densities as 

functions of host or parasite factors at earlier time-points, accounting for the 

developmental delay between commitment to gametocytogenesis and 

observation of mature gametocytes.  Using a minimum of modelling assumptions, 

we test whether the per-merozoite probability of differentiation at each 

replicative cycle, and the proportional investment in male gametocytes depend 

on the densities of parasites, mature and immature RBCs. 

5.2.1 Experimental design 

All experiments were carried out at the University of Edinburgh, UK. P. chabaudi 

genotypes from the WHO Registry of Standard Malaria Parasites were used. 

Infections described here were originally set up to examine sex ratios in single 

and mixed infections as described by Reece et al. (2008).  Here we consider six 

single genotype infection groups (genotypes AJ, AS, ER, CR, CW, and DK) for 

analysis. In each treatment group five mice were inoculated with 1 x 106 

parasites. Data are shown in Figure 5.2. 

Mice used were 6-8 week-old MF1 males (in-house supplier, University of 

Edinburgh). All mice had blood sampled daily during the acute phase of 

infection; from day 5 post-infection (PI) until day 16 PI.  Sampling took place in 

the morning to ensure circulating parasites were in ring or early trophozoite 

stages (and thus had not erupted from their host RBCs) and to ensure DNA 

replication for the production of daughter progeny had not yet occurred, as this 

would have confounded measurements taken by qPCR as additional genetic  
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Figure 5.2 Time courses of RBC and parasite densities. Data from day 5-16 PI with six 
genotypes of P. chabaudi (AJ, AS, CR, CW, DK, ER). Longitudinal data, five mice per 
genotype (see Methods). 

material from the next days generation would be present. Two mice from these 

treatment groups died before the end of this experimental period: Mouse 17 

died at 10 days PI; Mouse 18 died at 12 days PI. Both mice were infected with 

genotype CR.  

Polymerase chain reaction assays (Drew & Reece 2007) were used to distinguish 

and quantify asexual stages and gametocytes produced by each clone throughout 
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infection. Total RBC densities were estimated using flow cytometry (Coulter 

Counter, Beckman Coulter,(see Ferguson et al. 2003) and densities of immature 

RBCs (reticulocytes) were estimated from thin blood smears. All procedures 

were conducted in accordance with the United Kingdom Animals (Scientific 

Procedures) Act 1986. 

5.2.2 Models and analysis 

We modelled gametocyte density (G) (parasites/ml of blood) and the proportion 

of circulating gametocytes that were male (P) as time-delayed functions of 

asexual density (M) and different ages of RBC. The delay is the interval between 

commitment to gametocytogenesis and the appearance of mature gametes in 

the circulation.  

5.2.2.1 Modelling gametocytogenesis 

We modelled gametocyte density G at day t in mouse i as a function of asexual 

density (M) j days previously (equation 5.1) or a combination of M and another 

host factor (equation 5.2); 

Gi,t =αiMi,t− j
βi + ei,t         Equation 5.1 

or 

Gi,t =αiMi,t− j
βi ⋅Xi,t− j

γi + ei,t        Equation 5.2 

where X was total red blood cells (RBC) (T) , reticulocytes (R), mature red blood 

cells (normocytes, N), or the proportion of  gametocytes that were male (P).  To 

normalize residuals, we log transformed the observables; 

log(Gi,t ) = log(αi )+βi log(Mi,t− j )+εi,t       Equation 5.3 

log(Gi,t ) = log(αi )+βi log(Mi,t− j )+γ i log(Xi,t− j )+εi,t     Equation 5.4 

The residuals, εI,t, are assumed independent and drawn from Ν(0,σ2), and 

initially the parameters α, β and γ were modelled to include mouse (i) as a 

normally distributed random effect.  
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Density dependence is modelled with the exponent β. If Gi,t =αMt− j
β , the per 

capita rate of conversion (the proportional investment in gametocytogenesis, or 

probability per merozoite of switching to the sexual stage) at day t-j is 

proportional to αMt− j
β−1  . Thus β=1 in equation 5.1 implies that a constant 

proportion of merozoites convert to gametocytes during each replicative cycle 

with no adjustment in response to total parasite density. β>1 implies a positive 

correlation between the probability of switching and total parasite density, and 

β<1 a negative correlation. In the two-factor models, the quantity X γ  influences 

the conversion rate (the probability per parasite of differentiation into a 

gametocyte at each round of replication; synonymous with proportional 

investment) multiplicatively. When X=R, T or N, the exponent γ denotes the 

effect of resource availability; a value γ<0 means the parasite increases its 

proportional investment in gametocytes when resources decline. The constant of 

proportionality α  includes the mortality of gametocytes between the initiation 

of their development and their observation. 

5.2.2.2 Modelling allocation of transmission stages into male/female 
gametes 

We assumed that the proportion of gametocytes that were male at day t in 

mouse i, Pi,t, was a function of a factor X,  j days previously: 

Pi,t =αiXi,t− j
βi + ei,t         Equation 5.5 

or equivalently 

log(Pi,t ) = log(αi )+βi log(Xi,t− j )+εit       Equation 5.6 

where X is one of asexual density (M), gametocytes (G), total red blood cells 

(RBC) (T) , reticulocytes (R),  or normocytes (N), and again the εI,t are assumed 

independent and normally distributed with zero mean and equal variance. 

5.2.2.3 Parameter estimation 

Parameters were estimated using a linear mixed effects approach. The above 

models were fit to data for each genotype individually so as to avoid any 
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assumption that genotypes should be responding to their environment similarly. 

Zero values were assumed to be 0.5 of the smallest observed value of that 

covariate in the entire dataset. Model selection (using the Bayesian Information 

Criterion (BIC), with differences of 3 or greater considered significant) were 

robust to changes in this definition of the limit of detection. For 

gametocytogenesis, more complex models including additive contributions to G 

from multiple days were fitted using a nonlinear mixed effects approach and in 

all cases showed no significant improvement in fit over the simpler models 

(Equations 5.1 and 5.2).  For the sex allocation model (5), multiplicative 

combinations of host factors analogous to (2) did not yield significantly better 

fits. For both models, analysis of different error structures indicated that only 

the intercept log(α) was required as a random effect. Time-lags of 2 or 3 days 

provided the best description of the data, with lags of 1 or 4 days yielding 

consistently poorer fits. Data were available from day 5 to 16 PI and so to allow 

comparison of models with different time-lags, all estimates were obtained using 

the gametocyte densities between days 8 and 16 PI. Analyses were performed in 

R version 2.14.0, using the lmer package (The R foundation for statistical 

computing; http://www.R-project.org) 
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5.3 Results 

5.3.1 Proportional investment in gametocytes in influenced by 
both parasite and red blood cell density 

Models of gametocytogenesis (equations 5.1 and 5.2) were fitted to each 

genotype separately as it has been demonstrated previously that they differ in 

their patterns of gametocytogenesis (Pollitt et al. 2011b). For all strains the 

best-fitting models were of the form of equation 5.2, with the multiplicative 

covariate X being either total red blood cells or reticulocytes, and with time-lags 

of 48 or 72 hours. (Table 5.1 and Figure 5.3). 

 

Strain Resource 

Sensitivity 

Time Lag Exponent β 

(Influence of 

parasite density) 

Exponent γ 

(Influence of 

resource) 

AJ Total RBC 48h 0.61 (0.08) -3.14 (0.58) 

AS Total RBC 72h 0.94 (0.14) -3.40 (0.53) 

CR Reticulocytes 48h 0.76 (0.20) 1.70 (0.23) 

CW Reticulocytes 48h 0.49 (0.17) 1.60 (0.22) 

DK Total RBC 72h 0.92 (0.17) -2.30 (0.50) 

ER Total RBC 72h 0.50 (0.13) -4.50 (0.43) 

Table 5.1 Summary of models of gametocytogenesis. The best-fitting models for all strains 
were of the form of equation 5.2, where X was total RBC or reticulocytes. 
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Figure 5.3 Best fits to gametocyte density for each mouse, by strain. Y axes show the 
logarithm to base 10 of gametocyte densities per ml of blood. 
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5.3.1.1 Dependence of conversion rates on parasite density  

AS and DK had fitted exponents β close to unity (Table 1), suggesting no direct 

effect of parasite density on gametocyte investment in these genotypes. All 

other genotypes had 0.5 < β < 1, showing that conversion rates were inversely 

but weakly related to parasite density; when RBC numbers are controlled for, we 

find no evidence for increased investment in transmission when parasites are 

abundant, and find that in most genotypes reproductive restraint is exercised 

when parasites are abundant. 

5.3.1.2 Dependence on red blood cell counts 

Four genotypes (AJ, AS, ER, DK) exhibited a strong negative correlation of 

conversion probabilities with total RBC numbers, delayed by 72h (AS, DK, ER) or 

48h (AJ). Thus as the host becomes more anaemic, the more the parasite invests 

in transmission. In contrast, CR and CW showed a positive dependence on 

reticulocyte densities 48h previously. 

5.3.1.3 Correlations between covariates 

We found negative correlations between the logarithms of asexual parasite 

density (M) and total RBC in AJ, AS, CW and ER (p<0.01) and between asexuals 

and reticulocytes in all genotypes (p<0.001). To investigate the robustness of the 

dependencies established in Table 1, first we confirmed that for all genotypes, 

when comparing the estimate of the parameter β in the simpler model of 

equation 5.1 to that in equation 5.2 for each value of the time-lag j, the 

direction of the density-dependence was unchanged. That is, the 95% confidence 

intervals for β included unity for AS and DK, indicating no density-dependent 

conversion; and lay entirely below unity for AJ, CR, CW, ER.  Similarly, we 

estimated the parameter γ in models of the form Gt =αMt + Xt− j
γ  - that is, forcing 

β=1 and modelling conversion as a function of X alone. Again, the density 

dependence remained, with strong negative correlation with total RBC at both 

48h and 72h time-lags for AJ, AS,DK, ER (γ<0 for all strains,  p<0.001) and a 

significant positive correlation with reticulocytes 48h previously for CR and CW 

(γ<0  p<0.001 for both strains). 
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5.3.1.4 Model validation and robustness; Testing the assumption of a 

constant probability of loss between commitment to 
gametocytogenesis and maturation 

We used a single model and parameter set to describe gametocytogenesis over 

days 5-16 of infection, and assumed that a constant proportion of the parasites 

that commit to gametocytogenesis at day t-j survive to be observed at day t. 

This mortality rate is contained in the parameter α (equations 5.1 and 5.2). This 

analysis may be confounded by changes in the per-capita rate of loss of 

circulating gametocytes during the infection confound our analysis. For example, 

specific antibody responses develop slowly during the first two weeks of 

infection and may drive a progressive increase in the per capita rate of removal 

of gametocytes. We wanted to validate the assumption that, whatever changes 

in mortality may occur during infection, the same dependence of 

gametocytogenesis on the environmental parameters holds. To do this, for each 

strain we fitted models to five-day windows of data, first modelling gametocyte 

density on days 8-12 as functions of covariates on days 5-9, then on days 9-13 as 

functions of the covariates on days 6-10, and so on up to days 12-16 inclusive. 

The analysis showed that (i) AJ and ER were consistently best described by their 

globally best-fitting models, with strongly negative dependence of conversion 

rates on total RBC; (ii) For windows up to days 10-14, CR and CW were described 

equivalently well by a positive dependence on reticulocytes lagged by 48h or a 

negative dependence on total RBC lagged by 72h, and by their global best fitting 

model (positive dependence on reticulocytes lagged by 48h) thereafter; (iii) until 

the last window of days 12-16, AS and DK were both described best by a 48h 

lagged RBC count with β <1, rather than the global best-fitting model of 72h-

lagged total RBC count with β =1; and (iv) the parameter α  declined with time 

for all strains except CR  (approximate fractional decrease in α between 

intervals d8-d12 and d12-d16;  AJ, 25%; AS, 20%; CW, 10%;  DK, 8%; ER, 10%). 

This decline in α suggests that gametocyte mortality does increase during 

infection, most likely due to developing specific immune responses. 

We can draw four conclusions here. First, irrespective of the time delay, for four 

strains we make the robust conclusion that throughout the observed course of 

infections, proportional investment in reproduction declines with RBC resources. 

Second, the variability in the time-lag (48h or 72h) suggests one or more of the 
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following are at play; variation in maturation time, gametocytes may survive in 

the circulation for longer than 24h, the possibility that merozoites pre-commit 

their progeny to gametocytogenesis or the assays employed detect gametocytes 

at slightly different maturation stages in different genotypes. Expression and 

morphology data demonstrate that transcription of assayed genes has occurred 

before gametocytes reach maturity, but the precise timing, and whether there is 

genetic variation for timing, are yet to be determined. Third, the variability in 

the exponent β suggests that dependence of reproductive investment on parasite 

densities is weak or may be confounded by other factors such as immune 

responses. Finally, over the course of infections with the two strains CR and CW, 

predictors of gametocytes moved between either a positive dependence on 

reticulocytes lagged 48h or negative dependence on total RBC lagged 72h. 

Consistent with these results, for these two strains only there were weak but 

significant negative correlations between reticulocytes and total RBC one day 

earlier (data not shown). Further, restricting the CR and CW analyses to days 5-

13 yielded an overall negative dependence on total RBC, as for the other strains 

(delay of 72h; γ =-2.0 (CR) and γ = -4.1 (CW)). 

5.3.2 Relative investment in male gametocytes over females is 
influenced weakly but positively by resource availability 
near the peak of acute infection 

A negative correlation between investment in males and RBC availability was 

described for some genotypes previously (Reece et al. 2008). Indeed by 

inspection the proportion of male gametocytes increases between days 6 and 8 

for most infections (Figure 5.2), suggesting that the worsening anaemia and 

increasing host stress up to day 5 or 6 post infection triggers increased 

investment in males, in line with theoretical predictions (Gardner et al. 2003; 

Ramiro et al. 2011). However, the present analysis models sex allocation in 

response to the host environment between days 5-13, with the response variable 

being the proportion of gametocytes that were male on days 7-15 (for a 48h 

correlation) or 8-16 (for 72h). We found that over days 8-16 PI, the proportion of 

gametocytes that were male was positively but weakly correlated with RBC 

numbers two or three days previously (Table 5.2). Further analysis showed that 

the correlation was apparent as the infection approached its peak, modelling P 

on days 8-12 as a function of covariates on days 5-9.  
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Figure 5.4 Best fits to male proportion for each mouse, by strain. 
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(Visually, this is apparent; proportional investment in males declines almost 

universally between days 9-12 and stays low thereafter. RBC also decline 

between days 6-9). From day 10 onwards, the degree of investment in males 

showed no correlation with any of the host factors we observed; that is, P on 

days 13-16 was independent of all covariates on days 10-13. Further, we saw no 

influence of parasite density, either asexuals or gametocytes, on the 

male:female ratio at any stage of infection with any genotype. 

 

Strain 

Best fit model 

indicates sensitivity 

to resource:	
  

 

Time lag 

 

Exponent β 

(standard error) 

AJ Normocytes 48h 0.19 (0.02) 

AS Normocytes 

Total RBC 

	
  

72h 

72h 

0.17 (0.02) 

0.24 (0.04) 

CR Normocytes 48h 0.11 (0.02) 

CW Normocytes 

Total RBC 

	
  

72h 

72h 

0.11 (0.02) 

0.15 (0.03) 

DK Total RBC 

Total RBC 

Normocytes 

Normocytes 

	
  

72h 

48h 

48h 

72h 

0.21 (0.04) 

0.25 (0.06) 

0.16 (0.04) 

0.13 (0.03) 

ER Total RBC 

Normocytes 

	
  

72h 

72h 

0.29 (0.02) 

0.19 (0.02) 

Table 5.2 Modelling sex allocation across the entire infection. For some genotyopes, 
multiple models lay within range of 2 units of BIC and so were considered to have 
equivalent support. 
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5.4 Discussion 

Our analyses of infections of rodents with six genotypes of P. chabaudi suggest 

that both RBC availability and asexual density influence the parasite’s allocation 

of resources into reproduction. We find that investment in transmission 

increases rapidly as RBC numbers decline, and increases, albeit more weakly, at 

low parasite densities. We also find that the relative investment in males over 

females shows a shifting dependence on RBC availability. Finally, we validated 

the models by showing that the model that best described the whole time course 

of infection was also best fitting model within shorter temporal windows across 

days 5-16 post infection, and found evidence for increasing gametocyte 

mortality during this time frame. 

In a previously published analysis of the same dataset (for which the main 

purpose was to look at the impact of competition on investment in gametocytes) 

conversion rates were found to correlate positively with the availability of total 

RBCs and the proportion that are reticulocytes for five of the six genotypes when 

in single infections (Pollitt et al. 2011b). The discrepancy between that study 

and this one may arise in part from the use of the formalism described in 

Buckling et al. (1999a) to relate asexual parasite densities and host factors to 

gametocyte densities at later times. In addition, we allow for possible 

nonlinearities in the dependence of proportional investment in gametocytes on 

parasite density and host factors, via the exponents β and γ (equations 5.1-5.4). 

There is no reason to assume that conversion rates are linearly related to RBC 

numbers, and indeed we identified strong nonlinear dependencies. 

5.4.1 Mechanisms of sensing the environment 

The mechanistic basis of this modulation of investment in reproduction is 

unclear. The probability of differentiation and relative investment in males is 

likely influenced by the host microenvironment; for example, soluble 

inflammatory mediators, or correlates of anaemia such as erythropoetin. 

Another non-exclusive possibility is that the parasite senses physical cues such as 

multiple infection of RBC; this could be a surrogate of high parasite densities 

and/or limited resources and thus means of quorum sensing. 
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5.4.2 Interpretation of parasite strategies 

Since plasticity in gametocyte conversion rates was discovered (Carter & Miller 

1979) the default evolutionary explanation has been an adaptation in which 

parasites demonstrate terminal investment in response to an emergency 

situation that threatens its survival within the host. At first sight our results 

seem to support this hypothesis – investment in transmission (terminal 

investment) increases as resources decline and when parasite numbers fall, both 

possible signifiers of a decrease in habitat quality.  However, other 

interpretations of these relationships are possible. For example, (i) the 

development of host anaemia may correlate with the appearance of 

transmission-blocking immune factors in the blood. Increased investment in 

transmission may then compensate for the increased rate of death or damage to 

gametocytes, to maintain the probability of successful infection of the mosquito 

vector (Ramiro et al. 2011); or (ii) the development of host anaemia correlates 

to the presence or imminent appearance of reticulocytes. If the parasite can 

utilize this type of RBC, and in particular if reticulocytes support gametocyte 

development better than normocytes, rates of gametocytogenesis may increase 

with RBC loss. This may explain the positive correlation between conversion 

rates and reticulocytes for CR and CW. 

Other observations question the emergency-transmission interpretation. We 

found that asexual density was either a weak negative influence on gametocyte 

investment (strains AJ, CR, CW, ER) or had no significant effect (AS, DK).  Given 

that most malaria infections are not lethal, selection for terminal investment 

would seem more likely to be triggered by the threat of imminent clearance 

from the host, rather than anaemia, and so in contrast to our findings one might 

expect conversion to show a stronger dependence on asexual densities than on 

environmental variables. Also, under stressful, competitive (co-infection) 

conditions, parasites appear to prioritise their in-host survival over short-term 

transmission (Pollitt et al. 2011a; Pollitt et al. 2011b; Reece et al. 2010). Thus in 

light of our results and these recent studies the evidence supporting the 

terminal investment hypothesis is underwhelming.  

 



Chapter 5  111 
 

5.4.3 Correlates of virulence 

The six genetically distinct genotypes used here vary in their level of virulence. 

Given the trade-off parasites experience between transmission and virulence 

(Alizon & van Baalen 2008; Bull 1994; Day 2003) it may be expected that 

genotypes exhibiting similar levels of virulence might modify their investment in 

transmission in response to the same environmental cues. Indeed we found the 

strength of the dependence of the rate of gametocytogenesis on parasite density 

does correlate with virulence. The two avirulent strains (AS and DK) show the 

lowest sensitivity of reproduction to asexual density (β closest to unity), and the 

most virulent genotypes (AJ, CW, ER) show the highest (β furthest from unity). 

In contrast, sensitivity to RBC availability did not correlate with virulence. DK, 

AJ, AS and ER showed increasingly strong dependence on total RBC densities. 

These genotypes exhibit a wide range of virulence, from weakly (AS, DK) to 

moderately (AJ) to highly virulent (ER) (Bell et al. 2006; Mackinnon et al. 2005; 

Mackinnon & Read 2003). Similarly the two strains most sensitive to changes in 

reticulocyte densities exhibit different levels of virulence, with CW being more 

virulent than CR (Bell et al. 2006; Taylor & Read 1997; Taylor et al. 1997).  

The harm these strains do to their hosts is positively correlated with their 

competitive ability in mixed infections (Bell et al. 2006). Thus competitive 

fitness may be related to the ability to more strongly modulate investment in 

transmission in response to parasite densities, and to commit most strongly to 

asexual growth when parasites are at low densities, outcompeting co-infecting 

strains. Indeed a pathogen’s immunogenicity and the virulence deriving from the 

associated immunopathology may be related more strongly to rates of change in 

pathogen density than the pathogen burden itself (Hatta et al. 2010). The 

genetic variation for these reaction norms suggests that genotypes may 

divergently evolve and have the potential to respond to selection pressures. 

5.4.4 Top down vs. bottom up control 

Pressures on parasites within hosts are often partitioned conceptually into top-

down (immune-mediated) or bottom-up (resource limitation) forces (Graham 

2008; Haydon et al. 2003). Without readouts of immune responses or 

inflammatory markers, we cannot discount the possibility that the RBC 



Chapter 5  112 
 
covariates in our models are also correlates of immune responses; it is possible 

that rather than responding to resource availability the parasite is altering its 

strategy in response to immunity. The distinction between the immune-and 

resource-mediated pressures may also be a blurry one, given that excessive 

immune responses, particular relatively indiscriminate responses by splenic 

macrophages, may give rise to extensive lysis of uninfected RBC and loss of 

parasite resources (Evans et al. 2006; Schofield & Grau 2005). Thus bystander 

damage and extensive parasite replication mean that early in the infection, RBC 

loss and immune responses may be positively correlated. Indeed destruction of 

bystander target cells has been proposed to be an adaptive host strategy, 

creating a fire-break that limits pathogen growth (Handel et al. 2009). As 

anaemia worsens within the host the parasite may also have to invest more in 

overcoming transmission blocking immune factors, and both innate and adaptive 

immune responses to the parasite will limit transmission (Carter et al. 1979).  

5.4.5 The timing of developmental cues 

We found comparable support for models that explained gametocyte densities as 

functions of the asexual densities and host environment 48 and 72h previously. 

Current understanding of the P. chabaudi life cycle is gametocytes take 48h to 

develop following infection of a red blood cell. However, the period during 

which Plasmodium commits to the sexual stage, or how this decision can be 

influenced, is unclear. All P. falciparum parasites within one infected cell result 

from a single developmental choice, suggesting that initiation of differentiation 

happens before replication within a red blood cell (Silvestrini et al. 2000; Smith 

et al. 2000). Further, it has been suggested that merozoites may be 

developmentally pre-committed to differentiation, imprinted with cues received 

by the parental parasites (Dixon et al. 2008), allowing for the possibility of a 72h 

delay between triggering of differentiation and the appearance of mature 

gametocytes. Alternatively, if mature gametocytes remain in circulation 

sufficiently long, circulating gametocyte densities may be superpositions of two 

cohorts that committed 2 and 3 days previously. However we found no 

significant improvement in fit using models that modelled gametocytes as a 

weighted sum of contributions from two cohorts separated by 24h. 
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5.4.6 Altering sex allocation in response to RBC availability 

The sex ratio of gametocytes circulating in the host bloodstream changes over 

the course of infection. Male gametocytes are thought to suffer more than 

females from agglutination by antibodies, as this inhibits the motility of their 

gametes necessary for fertilization (reviewed in West et al. 2001). Plasmodium 

spp. appear to adaptively adjust sex ratio in response to the inbreeding rate, 

which is determined by the genetic composition of infections. This involves 

producing female biased sex ratios in clonal infections to minimize competition 

for mates between related male gametocytes, and increasing investment in 

males in mixed infections to better compete for fertilizations (Hamilton 1967; 

West et al. 2001). Parasites are also predicted to increase the production of 

male gametocytes to compensate for both scarcity of gametocytes and increased 

male-biased predation by the host immune system (Gardner et al. 2003; Reece 

et al. 2008). By inspection of the data, early in infection investment in males 

does increase as RBC numbers decline, triggered perhaps in response to 

circulating levels of erythropoetin (Paul et al. 2000). However we find that this 

relation reverses as anaemia worsens and identify a positive correlation between 

sex ratio and RBC numbers over d5-13 post-infection; subsequent to d13, sex 

allocation shows no correlation with any host or parasite factors. It seems likely 

that any facultative adjustment of sex ratio in response to bottom-up control 

becomes masked at later time-points by response to top-down immune factors 

and potentially also differential survival of male and female gametocytes in the 

face of increasingly intense, specific immune responses (Reece et al. 2003). 

Explaining plasticity in transmission by parasites as terminal investment in 

response to a threatening environment is certainly appealing in its simplicity. 

Remarkably, there has been little work carried out to quantify “emergency 

situations” posed by a parasite’s changing environment or to verify that terminal 

investment sufficiently increases short-term transmission potential to warrant 

this strategy. Given that the presence of a superior competitor is not enough to 

induce emergency transmission (Pollitt et al. 2011b) it would be difficult to 

justify that clones in a single infection, as is the case here, are facing an 

emergency. By applying a novel method of assessing the environmental cues 

used by P. chabaudi for determining investment in transmission we find support 

for recent studies that question terminal investment. We propose hypotheses to 
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explain our result that investment in transmission in clonal infections is modified 

in response to changes in resource availability and, to a lesser extent, parasite 

density. Ultimately, additional experiments are required to fully disentangle the 

complex mechanisms behind, and fitness consequences of plastic transmission 

strategies of P. chabaudi. Future work should focus on the effects of parasite 

age preference for RBC and the role of host immunity in determining 

transmission effort. Experiments chemically manipulating RBC densities (for 

example with EPO or phenylhydrazine), and manipulations of host immunity 

(through vaccination, drugs and infective doses) will undoubtedly prove 

important next steps in furthering our understanding of the ecological and 

evolutionary processes underlying parasite transmission strategies.
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6 General discussion 

Epidemiology has its foundations built upon assumptions of homogeneity: hosts 

homogenously distributed in space, homogenous in their infectiousness and 

susceptibility and homogenous in their rate of contacting other individuals. The 

work presented in this thesis covers a broad spectrum of topics, and 

demonstrates the wide range of ecological factors that can elicit heterogeneity 

in disease transmission. Studying disease transmission in an ecological context 

will be necessary to better understand the role of transmission heterogeneity in 

disease emergence, epidemic dynamics, and to better evaluate the impact 

disease eradication has on pathogen communities. Exploring epidemiology in the 

context of the ecology faced by pathogens has become a very active area of 

research over the past decade, with consideration being given to the dynamic 

environment pathogens experience within their hosts (Haydon et al. 2003; 

Pedersen & Fenton 2007; Reece et al. 2010); the community dynamics of 

pathogens (Cox 2001; Graham 2008; Pedersen & Fenton 2007); the role of host 

community demography, social interactions and spatial structure play in disease 

spread and persistence (Beyer et al. 2011; Craft et al. 2008; Haydon et al. 2002; 

Lloyd-Smith et al. 2005). The effect ecology has on the epidemiological 

dynamics of pathogens is well recognised for its potential significance, but in 

reality, the field of disease ecology is still very much in its infancy. Taking a 

cross-disciplinary approach, it is shown that transmission may vary in response to 

ecological changes occurring at different environmental scales. 

Empirical evidence for density dependent disease transmission is examined in 

Chapter 2. Despite debate on how host population density should be 

incorporated into epidemiological models (De Jong et al. 1995; McCallum et al. 

2001), there is remarkably little evidence for a simple relationship between host 

density and transmission rate. Experimentally, density dependent transmission 

can be demonstrated, but is not well explained by the traditional Anderson and 

May formulations (described in Anderson & May 1991b). Experimental 

populations can be controlled to reasonably resemble the assumptions made by 

theoretical models; specifically density can be held as close to homogenous with 

carefully chosen host species and experimental set-up. 
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In naturally occurring host populations density is not homogenous, and the risk 

faced by an individual to contract a density dependently transmitted disease will 

be affected by the local population density, and not necessarily the global 

density. The local density experienced by an individual will vary due to the 

species in question, its behaviour and social structure/interactions. It may be 

the case that pathogen transmission is best described by density dependent 

functions at local scales (within a social group, such as a pack), and frequency 

dependent on a global scale (between social groups). This could be responsible 

for the complex dynamics observed in measles epidemics; whereby high 

densities of children in schools lead to local epidemics, but infectious contacts 

between schools result in dynamics better explained by frequency dependence. 

If this is the case, then metapopulation models incorporating aspects of both 

density and frequency dependent transmission should better describe epidemics 

in large populations than models that ignore heterogeneity in density and 

transmission. Transmission functions used in traditional epidemiological models, 

although intuitively sensible, are an over-simplification of a dynamic and 

variable process. The development of more sophisticated epidemiological 

models will be reliant on developing new data driven approaches, which allow 

for breaks in assumptions of homogeneity. 

A component community was described in Chapter 3, with an aim to examine co-

infection relationships. Studies of disease community at this scale have typically 

included only two pathogen species, or two types of pathogen — for example 

skin parasite, or intestinal parasite (Balestrieri et al. 2006; Hamilton et al. 2005; 

Harbison et al. 2008; Jones et al. 2008). We utilised a variety of techniques to 

test for a wide scope of diseases. This allowed for a more comprehensive 

examination of a naturally occurring component community than has been done 

previously.  

There was evidence for one pair of pathogens occurring together more often 

than expected by chance alone, and no evidence of pathogens occurring 

together less frequently than expected by chance, which would have been 

indicative of competitive exclusion. Interestingly, the two pathogens involved in 

a co-infection relationship were both micro-parasites: the intracellular 

apicomplexan Toxoplasma gondii, and the virus, canine adenovirus type-I (CAV-

I). This makes the trade-off between Th1 and Th2 immune responses 
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experienced by the host an unlikely mechanism behind this relationship, but still 

possible if hosts were also infected with a macro-parasite that was not tested for 

here. Hosts suffering from this co-infection were however of significantly lower 

condition than other hosts sampled. It could be that differences in the quality of 

hosts lead to some hosts being more prone to co-infection if they have fewer 

resources to devote to their immune system, but equally it may be that this 

specific combination of pathogens is detrimental to the health of the host. The 

data collected here do not allow for testing the direction of this relationship, 

but this does provide an avenue for future experimental work. If it is the case 

that co-infections were more common in poorer quality hosts, it may be 

expected that ecological changes that lower host quality (for example habitat 

degradation, introduction of alien competitors) could facilitate the spread of 

disease and interfere with component community dynamics.  

Care should be taken in interpreting the results from this fox study. Whilst 

providing a more comprehensive description of a component community than 

many previous studies, it does suffer from small sample size issues, making it 

difficult to extrapolate these results beyond those individuals sampled. Studies 

with larger sample sizes are needed to confront the results presented here. 

There is a general lack of statistical power for detecting co-infection 

relationships, so it is also possible that relationships between the diseases tested 

for were simply too weak to be detected. However, this research is suggestive 

that co-infection relationships should be expected to occur in natural host 

populations and that individual differences in the quality of hosts may be related 

to co-infection. Importantly, this study also provides a framework for utilising 

cross-disciplinary methods for studying disease communities. 

The regulatory impact of a micro-parasite on a macro-parasite is explored 

theoretically in Chapter 4. These are both zoonotic diseases of public health 

concern. This is done in the context of rabies eradication in Western Europe and 

the subsequent spread of the small fox tapeworm Echinococcus multilocularis. 

These two pathogens utilise different transmission strategies that may be 

considered at opposite ends of a continuum: Rabies is highly pathogenic with 

extremely efficient transmission over a short infectious period before killing the 

host, while E. multilocularis is asymptomatic, and is transmitted rather 

inefficiently over a sustained period of time without killing its host. Rabies thus 
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has the potential to limit E. multilocularis populations through limiting available 

hosts, and removing any co-infecting E. multilocularis. 

A model was developed to compare the total environmental load, and 

aggregation of E. multilocularis in the presence and absence of rabies. It was 

found that in the absence of rabies the total E. multilocularis burden of the host 

population is higher, and more aggregated. This has implications for the efficacy 

of disease eradication programmes: In this instance, eradication of one 

dangerous zoonosis has resulted in an increase of another, and an increase in the 

proportion of hosts that can act as “super spreaders”. We also tested if rabies 

could further supress E. multilocularis populations if the aggregation of worms 

caused heterogeneity in rabies transmission — such that those hosts with the 

highest worm burdens were most at risk from rabies infection. Low levels of 

heterogeneity in rabies transmission caused a small additional suppression of E. 

multilocularis populations, with higher levels of heterogeneity reducing the 

suppressive effect of rabies. Although somewhat counter-intuitive, this result 

highlights that interactions between pathogens may act with variable and 

unexpected outcomes that are, in practice, impossible to predict. Disease 

eradication programmes are likely to become more common, given the current 

threats posed by emerging and re-emerging disease. As for any natural 

community, human induced extinction can have undesirable effects; it may even 

be expected that some pathogens will be analogous to “keystone species” in 

traditional community ecology, and removal of these pathogens will have the 

most profound effects on pathogen community stability. Disease surveillance 

needs to become an integral part of disease eradication programmes; ideally 

prior to, during and post-disease control efforts. 

The effect of changes in the within-host environment on the transmission 

strategies of parasites was examined in Chapter 5. Six genetically distinct clones 

of the rodent malaria parasite Plasmodium chabaudi are shown to exhibit 

plasticity in how much they invest in transmission in response to changes in their 

immediate environment during the acute phase of infection. We find evidence 

that P. chabaudi increases its investment in transmission in response to 

decreasing resource availability, and a weaker effect of increase in parasite 

density causing a decrease in transmission investment which correlates with 

virulence of the genotypes. 
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This study shows heterogeneity in transmission may arise from two sources: 1) 

environmental conditions experienced within the host and 2) genetic variability 

between parasites. Precisely identifying the causal mechanisms behind this 

heterogeneity is not possible with this dataset, and ultimately additional 

experimental work manipulating resource availability and host immunity will be 

needed to fully disentangle the processes at play. Nevertheless, the results 

represent an important step in identifying the adaptive nature of transmission 

strategies employed by this parasite. Previous work has suggested that parasites 

should utilise terminal investment strategies when environmental factors 

threaten the persistence of infection. Our results add to a growing body of 

literature that suggests that optimal parasite transmission strategies are not as 

simplistic as this. 

The plasticity in transmission strategies identified in Chapter 5 again has 

implications concerning heterogeneity in disease transmission. Using P. chabaudi 

as a model pathogen, we demonstrate that pathogens may work to maximise a 

trade-off between maintaining infection and maximising transmission in response 

to a changing environment. In nature, host quality will be much more variable 

than in the laboratory set-up utilised here, which has the potential to lead to 

extremely variable transmission rates between individual hosts. Variation in 

within host habitats will be further contributed to by concomitant infections 

(Cox 2001; Pollitt et al. 2011b), previous exposure and immunity (Buckling & 

Read 2001) and drug treatment regimes (Buckling et al. 1999a; Buckling et al. 

1999b). Understanding how, and why parasites adapt their transmission 

strategies in response to their environment is necessary to consider bigger issues 

in disease ecology and evolution: how parasites may be evolving to change their 

virulence, transmission rates, drug resistance, and even how they evolve the 

ability to transmit to new species. Only by understanding the evolutionary trade-

offs faced by pathogens can we begin to tease apart the mechanisms responsible 

for the changing threats posed by emerging disease. 

Through the course of this thesis I have strived to use cross-disciplinary methods 

to study a range of ecological aspects affecting disease transmission. These 

studies provide a useful insight into some of the ecological dynamics that affect 

transmission, and demonstrate the importance of considering factors that may 

affect transmission at different ecological scales. It is shown that there is a 
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general need to relax the assumptions of homogeneity, which are commonplace 

in epidemiological studies. Information on heterogeneity in pathogen – host 

systems is frequently sparse, but by building upon current epidemiological 

models, there is no reason that the expected impacts of heterogeneity in 

transmission should not be further explored. It is shown here that more 

information is needed on the effects of disease eradication on pathogen 

communities. Future work should focus on monitoring disease in populations 

following the successful control of the pathogen of interest. Future empirical 

studies should also take measures of individual host differences that may be 

important in predicting the likelihood of animals becoming “super-spreaders” for 

disease. There is a great need to better understand how the immune status of 

hosts affects the ability of a pathogen to transmit, and the strategy it employs 

to maximise transmission potential. Understanding heterogeneity in transmission 

will benefit the design of successful disease control programmes, and be 

important in monitoring their success. In todays globally changing environment 

understanding the ecology affecting the spread of disease is of the upmost 

importance, and necessary to understanding the transmission dynamics 

responsible for disease emergence, and effectively evaluating the threats 

disease posed to endangered wildlife. Perhaps most importantly, this thesis 

documents the different scales on which transmission is influenced by ecology, 

and highlights the need to consider these different scales if we are to improve 

our abilities to control disease, predict epidemics and perhaps even predict 

disease emergence. Future work will hinge on collaborative efforts between 

researchers working in mathematics, ecology, microbiology, immunology and 

molecular biology (at the very least) to make maximum progress on this work.  
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7 Appendices 

7.1 R code for Chapter 4 

Page 1 of 6/Users/guscameron85/Documents/R/rabwormappend.r
Saved: 24/10/2012 23:29:27 Printed For: Gus Cameron

###########################################################################1
## Rabworm contains all functions of beta ##2
###########################################################################3
# 30/05/20124
contour.data=data.frame(NULL)5
# Load libraries6

7
library(deSolve)8
library(odesolve)9

10
# Define models11

12
#=========================================================================================13
nullfunc = function(t,y,params){14
	 with(as.list(params),{15
	16
	 dW0.dt= ((a*sum(y))*((K-sum(y))/K)) - (b*y[1]) - 17
	 	 	 ((lambda*((y[2]*i1)+(y[3]*i2)+(y[4]*i3)+(y[5]*i4))*18
	 	 	 (sum(y)-y[1]-y[6]))/(Ho+(sum(y)-y[1]-y[6])))*(y[1]/(sum(y)-y[6])) -19
	 	 	 (beta*y[1]*y[6])20
	21
	 dW1.dt=((lambda*((y[2]*i1)+(y[3]*i2)+(y[4]*i3)+(y[5]*i4))*22
	 	 	 (sum(y)-y[1]-y[6]))/(Ho+(sum(y)-y[1]-y[6])))*(y[1]/(sum(y)-y[6])) - 23
	 	 	 (b*y[2]) - (sigma1*y[2]) - (beta*y[2]*y[6])24
	 	 	25
	 dW2.dt=(sigma1*y[2]) - (b*y[3]) - (sigma2*y[3]) - (beta*y[3]*y[6])26
	27
	 dW3.dt=(sigma2*y[3]) - (b*y[4]) - (sigma3*y[4]) - (beta*y[4]*y[6])28
	29
	 dW4.dt=(sigma3*y[4]) - (b*y[5]) - (beta*y[5]*y[6])30
	31
	 dI.dt=(beta*y[1]*y[6]) + (beta*y[2]*y[6]) + 32
	 	 	 (beta*y[3]*y[6]) + (beta*y[4]*y[6]) +33
	 	 	 (beta*y[5]*y[6]) - (b*y[6]) - (gamma*y[6])34
	35
	36
	 return(list(c(dW0.dt, dW1.dt, dW2.dt, dW3.dt, dW4.dt, dI.dt)))37
	 })38
}39
#=========================================================================================40

41
#=========================================================================================42
denslinear = function(t,y,params){43
	 with(as.list(params),{44
	45
	 dW0.dt= ((a*sum(y))*((K-sum(y))/K)) - (b*y[1]) - 46
	 	 	 ((lambda*((y[2]*i1)+(y[3]*i2)+(y[4]*i3)+(y[5]*i4))*47
	 	 	 (sum(y)-y[1]-y[6]))/(Ho+(sum(y)-y[1]-y[6])))*(y[1]/(sum(y)-y[6])) -48
	 	 	 ((x*(1+(i0/z)))*y[1]*y[6])49
	50
	 dW1.dt=((lambda*((y[2]*i1)+(y[3]*i2)+(y[4]*i3)+(y[5]*i4))*51
	 	 	 (sum(y)-y[1]-y[6]))/(Ho+(sum(y)-y[1]-y[6])))*(y[1]/(sum(y)-y[6])) - 52
	 	 	 (b*y[2]) - (sigma1*y[2]) - ((x*(1+(i1/z)))*y[2]*y[6])53
	 	 	54
	 dW2.dt=(sigma1*y[2]) - (b*y[3]) - (sigma2*y[3]) - ((x*(1+(i2/z)))*y[3]*y[6])55
	56
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Page 2 of 6/Users/guscameron85/Documents/R/rabwormappend.r
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	 dW3.dt=(sigma2*y[3]) - (b*y[4]) - (sigma3*y[4]) - ((x*(1+(i3/z)))*y[4]*y[6])57
	58
	 dW4.dt=(sigma3*y[4]) - (b*y[5]) - ((x*(1+(i4/z)))*y[5]*y[6])59
	60
	 dI.dt=((x*(1+(i0/z)))*y[1]*y[6]) + ((x*(1+(i1/z)))*y[2]*y[6]) + 61
	 	 	 ((x*(1+(i2/z)))*y[3]*y[6]) + ((x*(1+(i3/z)))*y[4]*y[6]) +62
	 	 	 ((x*(1+(i4/z)))*y[5]*y[6]) - (b*y[6]) - (gamma*y[6])63
	64
	65
	 return(list(c(dW0.dt, dW1.dt, dW2.dt, dW3.dt, dW4.dt, dI.dt)))66

67
	 })68
}69
#=========================================================================================70

71
densexponential = function(t,y,params){72
	 with(as.list(params),{73
	74
	 dW0.dt= ((a*sum(y))*((K-sum(y))/K)) - (b*y[1]) - 75
	 	 	 ((lambda*((y[2]*i1)+(y[3]*i2)+(y[4]*i3)+(y[5]*i4))*76
	 	 	 (sum(y)-y[1]-y[6]))/(Ho+(sum(y)-y[1]-y[6])))*(y[1]/(sum(y)-y[6])) -77
	 	 	 ((x*(1+(exp(0)/z)))*y[1]*y[6])78
	79
	 dW1.dt=((lambda*((y[2]*i1)+(y[3]*i2)+(y[4]*i3)+(y[5]*i4))*80
	 	 	 (sum(y)-y[1]-y[6]))/(Ho+(sum(y)-y[1]-y[6])))*(y[1]/(sum(y)-y[6])) - 81
	 	 	 (b*y[2]) - (sigma1*y[2]) - ((x*(1+(exp(i1*c)/z)))*y[2]*y[6])82
	 	 	83
	 dW2.dt=(sigma1*y[2]) - (b*y[3]) - (sigma2*y[3]) - ((x*(1+(exp(i2*c)/z)))*y[3]*y[6])84
	85
	 dW3.dt=(sigma2*y[3]) - (b*y[4]) - (sigma3*y[4]) - ((x*(1+(exp(i3*c)/z)))*y[4]*y[6])86
	87
	 dW4.dt=(sigma3*y[4]) - (b*y[5]) - ((x*(1+(exp(i4*c)/z)))*y[5]*y[6])88
	89
	 dI.dt=((x*(1+(exp(0)/z)))*y[1]*y[6]) + ((x*(1+(exp(i1*c)/z)))*y[2]*y[6]) + 90
	 	 	 ((x*(1+(exp(i2*c)/z)))*y[3]*y[6]) + ((x*(1+(exp(i3*c)/z)))*y[4]*y[6]) +91
	 	 	 ((x*(1+(exp(i4*c)/z)))*y[5]*y[6]) - (b*y[6]) - (gamma*y[6])92
	93
	94
	 return(list(c(dW0.dt, dW1.dt, dW2.dt, dW3.dt, dW4.dt, dI.dt)))95
	 })96
}97
#=========================================================================================98

99
freqlinear = function(t,y,params){100
	 with(as.list(params),{101
	102
	 dW0.dt= ((a*sum(y))*((K-sum(y))/K)) - (b*y[1]) - 103
	 	 	 ((lambda*((y[2]*i1)+(y[3]*i2)+(y[4]*i3)+(y[5]*i4))*104
	 	 	 (sum(y)-y[1]-y[6]))/(Ho+(sum(y)-y[1]-y[6])))*(y[1]/(sum(y)-y[6])) - 105
	 	 	 (((x*(1+(i0/z)))*y[1]*y[6])/(y[1]+y[6]))106
	107
	 dW1.dt=((lambda*((y[2]*i1)+(y[3]*i2)+(y[4]*i3)+(y[5]*i4))*108
	 	 	 (sum(y)-y[1]-y[6]))/(Ho+(sum(y)-y[1]-y[6])))*(y[1]/(sum(y)-y[6])) - 109
	 	 	 (b*y[2]) - (sigma1*y[2]) - (((x*(1+(i1/z)))*y[2]*y[6])/(y[2]+y[6]))110
	 	 	111
	 dW2.dt=(sigma1*y[2]) - (b*y[3]) - (sigma2*y[3]) - 112

 



123 
 

Page 3 of 6/Users/guscameron85/Documents/R/rabwormappend.r
Saved: 24/10/2012 23:29:27 Printed For: Gus Cameron

	 	 	 (((x*(1+(i2/z)))*y[3]*y[6])/(y[3]+y[6]))113
	114
	 dW3.dt=(sigma2*y[3]) - (b*y[4]) - (sigma3*y[4]) - 115
	 	 	 (((x*(1+(i3/z)))*y[4]*y[6])/(y[4]+y[6]))116
	117
	 dW4.dt=(sigma3*y[4]) - (b*y[5]) - (((x*(1+(i4/z)))*y[5]*y[6])/(y[5]+y[6]))118
	119
	 dI.dt=(((x*(1+(i0/z)))*y[1]*y[6])/(y[1]+y[6])) + 120
	 	 	 (((x*(1+(i1/z)))*y[2]*y[6])/(y[2]+y[6])) + 121
	 	 	 (((x*(1+(i2/z)))*y[3]*y[6])/(y[3]+y[6])) + 122
	 	 	 (((x*(1+(i3/z)))*y[4]*y[6])/(y[4]+y[6])) +123
	 	 	 (((x*(1+(i4/z)))*y[5]*y[6])/(y[5]+y[6])) - (b*y[6]) - (gamma*y[6])124
	125
	126
	 return(list(c(dW0.dt, dW1.dt, dW2.dt, dW3.dt, dW4.dt, dI.dt)))127

128
	 })129
}130
#=========================================================================================131

132
freqexponential = function(t,y,params){133
	 with(as.list(params),{134
	 	135
	 dW0.dt= ((a*sum(y))*((K-sum(y))/K)) - (b*y[1]) - 136
	 	 	 ((lambda*((y[2]*i1)+(y[3]*i2)+(y[4]*i3)+(y[5]*i4))*137
	 	 	 (sum(y)-y[1]-y[6]))/(Ho+(sum(y)-y[1]-y[6])))*(y[1]/(sum(y)-y[6])) -138
	 	 	 (((x*(1+(exp(0)/z)))*y[1]*y[6])/(y[1]+y[6]))139
	140
	 dW1.dt=((lambda*((y[2]*i1)+(y[3]*i2)+(y[4]*i3)+(y[5]*i4))*141
	 	 	 (sum(y)-y[1]-y[6]))/(Ho+(sum(y)-y[1]-y[6])))*(y[1]/(sum(y)-y[6])) - 142
	 	 	 (b*y[2]) - (sigma1*y[2]) - (((x*(1+(exp(i1*c)/z)))*y[2]*y[6])/(y[2]+y[6]))143
	 	 	144
	 dW2.dt=(sigma1*y[2]) - (b*y[3]) - (sigma2*y[3]) - 145
	 	 	 (((x*(1+(exp(i2*c)/z)))*y[3]*y[6])/(y[3]+y[6]))146
	147
	 dW3.dt=(sigma2*y[3]) - (b*y[4]) - (sigma3*y[4]) - 148
	 	 	 (((x*(1+(exp(i3*c)/z)))*y[4]*y[6])/(y[4]+y[6]))149
	150
	 dW4.dt=(sigma3*y[4]) - (b*y[5]) - (((x*(1+(exp(i4*c)/z)))*y[5]*y[6])/(y[5]+y[6]))151
	152
	 dI.dt=(((x*(1+(exp(0)/z)))*y[1]*y[6])/(y[1]+y[6])) + 153
	 	 	 (((x*(1+(exp(i1*c)/z)))*y[2]*y[6])/(y[2]+y[6])) + 154
	 	 	 (((x*(1+(exp(i2*c)/z)))*y[3]*y[6])/(y[3]+y[6])) + 155
	 	 	 (((x*(1+(exp(i3*c)/z)))*y[4]*y[6])/(y[4]+y[6])) +156
	 	 	 (((x*(1+(exp(i4*c)/z)))*y[5]*y[6])/(y[5]+y[6])) - (b*y[6]) - (gamma*y[6])157
	158
	159
	 return(list(c(dW0.dt, dW1.dt, dW2.dt, dW3.dt, dW4.dt, dI.dt)))160
	 })161
}162
#=========================================================================================163

164
165

#Data frames for storing outputs166
worm.data = data.frame(NULL)167
fox.data = data.frame(NULL)168
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total.data= data.frame(NULL)169
170

#for (R0 in seq(from=1, to=1.75, by=0.25)){171
for (strength in 0:20){172
#for(R0 in seq(from=1, to=2.75, by=0.25)){173
# Worm burdens and fox densities at equilibrium in the absence of rabies:174
i0=0175
i1=20176
i2=427177
i3=3221178
i4=32309179
W0 = 0.1307111180
W1 = 2.8711044181
W2 = 1.7485746182
W3 = 1.4584499183
W4 = 0.4814256184
c=1e-3185

186
# Manipulation of Beta187

188
strength = strength189
R0 = 1.4190
b = 0.002191
Gamma = 0.14192
z = i4/(strength)193

194
#===== Manipulations of beta heterogeneity =====#195
# Comment out as appropriate:196

197
#denslinear:198
x = (R0*(b+Gamma))/(W0+(W1*(1+(i1/z)))+(W2*(1+(i2/z)))+(W3*(1+(i3/z)))199
	  + (W4*(1+(i4/z)))) #linear200
betar = c( x*(1+(i0/z)),x*(1+(i1/z)),x*(1+(i2/z)),x*(1+(i3/z)),x*(1+(i4/z)) ) # Linear201
R0check =( (betar[1]*W0) + (betar[2]*W1) + (betar[3]*W2) + (betar[4]*W3) + 202
	 	 (betar[5]*W4) ) / (b+Gamma) # Linear203
print(R0check)204

205
# densexponential:206
#x = (R0*(b+Gamma))/(W0*(1+(exp(0*c)/z))+(W1*(1+(exp(i1*c)/z)))+(W2*(1+(exp(i2*c)/z)))+207
#	 (W3*(1+(exp(i3*c)/z))) + (W4*(1+(exp(i4*c)/z)))) # exponential208
#betar = c( x*(1+(exp(i0*c)/z)),x*(1+(exp(i1*c)/z)),x*(1+(exp(i2*c)/z)),209
#	 	 x*(1+(exp(i3*c)/z)),x*(1+(exp(i4*c)/z)) )210
#R0check =( (betar[1]*W0) + (betar[2]*W1) + (betar[3]*W2) + (betar[4]*W3) + 211
#	 	 	 (betar[5]*W4) ) / (b+Gamma)212
#print(R0check)213

214
# freqlinear:215
#x = (R0*(b+Gamma)) / ((1+((i0)/z)) + (1+((i1)/z)) + (1+((i2)/z)) + 216
#	 (1+((i3)/z)) + (1+((i4)/z)))217
#betar= c( x*(1+((i0)/z)), x*(1+((i1)/z)), x*(1+((i2)/z)), x*(1+((i3)/z)), x*(1+((i4)/z)))218
#R0check =( (betar[1]) + (betar[2]) + (betar[3]) + (betar[4]) + (betar[5]) ) / (b+Gamma)219
#print(R0check)220

221
# freqexponential:222
#x = (R0*(b+Gamma)) / ((1+(exp(0*c)/z)) + (1+(exp(i1*c)/z)) + (1+(exp(i2*c)/z))223
#	  + (1+(exp(i3*c)/z)) + (1+(exp(i4*c)/z)))224

 



125 
 

Page 5 of 6/Users/guscameron85/Documents/R/rabwormappend.r
Saved: 24/10/2012 23:29:27 Printed For: Gus Cameron

#betar = c( x*(1+(exp(0*c)/z)), x*(1+(exp(i1*c)/z)), x*(1+(exp(i2*c)/z)), 225
#	 	 x*(1+(exp(i3*c)/z)), x*(1+(exp(i4*c)/z)) )226
#R0check =( (betar[1]) + (betar[2]) + (betar[3]) + (betar[4]) + (betar[5]) ) / (b+Gamma)227
#print(R0check)228

229
230

# Model Parameters231
232

params = (list(a = 0.00452,233
	 	 	 b = 0.002,234
	 	 	 K = 12,235
	 	 	 lambda = 42,236
	 	 	 Ho = 3259.89,237
	 	 	 gamma = 0.14,238
	 	 	 i0=0,239
	 	 	 i1=20,240
	 	 	 i2=427,241
	 	 	 i3=3221,242
	 	 	 i4=32309,243
	 	 	 sigma1=2.7879e-3,244
	 	 	 sigma2=2.8421e-3,245
	 	 	 sigma3=5.7143e-4,246
	 	 	 beta=0.02971,247
	 	 	 c=1e-3248
	 	 ))249

250
251

# Initial conditions252
253

y0 = c(W0=5, W1=1, W2= 0, W3=0, W4=0, I=1)254
t = 1:10000255

256
# Solve; return data.frame, "out"257
func = denslinear # declare model to solve258
out = ode(y0,t,func,params) #daspk259

260
# Organise and save model outputs:261

262
out = data.frame(out)263
out$H = out$W0+out$W1+out$W2+out$W3+out$W4 +out$I264
out$P = (out$W1*i1)+(out$W2*i2)+(out$W3*i3)+(out$W4*i4)265

266
total.run = data.frame(	strength=strength,267
	 	 	 	 Fox = out$H[out$time==max(out$time)],268
	 	 	 	 Worm = out$P[out$time==max(out$time)],269
	 	 	 	 Burden = out$P[out$time==max(out$time)]/out$H[out$time==max(out$time)],270
	 	 	 	 Rabies = out$I[out$time==max(out$time)])271

272
273

fox.run = data.frame(	 Strength=strength, W0=out$W0[out$time==max(out$time)]/total.run$Fox,274
	 	 	 	 W1=out$W1[out$time==max(out$time)]/total.run$Fox,275
	 	 	 	 W2=out$W2[out$time==max(out$time)]/total.run$Fox,276
	 	 	 	 W3=out$W3[out$time==max(out$time)]/total.run$Fox,277
	 	 	 	 W4=out$W4[out$time==max(out$time)]/total.run$Fox)278
	 	 	 	279
worm.run = data.frame(	 Strength=strength, P0 = 0,280
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	 	 	 	 P1=((out$W1[out$time==max(out$time)]*i1)/total.run$Worm),281
	 	 	 	 P2=((out$W2[out$time==max(out$time)]*i2)/total.run$Worm),282
	 	 	 	 P3=((out$W3[out$time==max(out$time)]*i3)/total.run$Worm),283
	 	 	 	 P4=((out$W4[out$time==max(out$time)])*i4)/total.run$Worm)284
	 	 	 	285
contour.run = data.frame(R0=R0, Strength=strength, Worm=total.run$Worm, Fox=total.run$Fox)286
contour.data=rbind(contour.data, contour.run)287

288
289

fox.data=rbind(fox.data,fox.run)290
worm.data=rbind(worm.data, worm.run)291
total.data=rbind(total.data, total.run)292

293
# change file names as appropriate:294

295
write.csv(total.data, "densexponentialtotal.csv", row.names=FALSE)296
#write.csv(fox.data, "denslinearfox.csv", row.names=FALSE)297
#write.csv(worm.data, "denslinearworm.csv", row.names=FALSE)298
#write.csv(contour.data, "freqexponentialcontour.csv", row.names=FALSE)299

300
} # end for loop301
#} # end R0 loop302

303
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###############################################1
## Anaysis with new data transformations     ##2
###############################################3

4
#LOAD LIBRARIES5
library(FME)6
library(nlme)7
library(deSolve)8
library(splines)9
library(ggplot2)10
library(lattice)11

12
#LOAD AND ARRANGE OBSERVED DATA13
gus=T14

15
if(gus) setwd("~/Documents/R") 16
else setwd("~/Documents/Projects/Collaborations/SarahReece/Autumn2010/")17

18
data=read.csv("malaria_1b.csv", header=T)19
data=subset(data, !is.na(RBC_count)) 20
source("Malaria-Function-defs6b.R") # New Function defs which us M^221

22
###################################23
# BASE FUNCTIONS24
###################################25

26
# X shall need defined for each nlsList.27

28
f1= function(beta, X) beta*X29
f2= function(beta1, beta2, X.1, X.2) beta1*X.1 + beta2*X.230
f3= function(beta1, beta2, beta3, X.1, X.2, X.3) beta1*X.1 + beta2*X.2 + beta3*X.331

32
33

###############################34
###############################35
#_________ANALYSIS_________36
###############################37
###############################38

39
g="AJ" # Enter genotype name here40

41
# Arrange neccessary data:42
d=process.data(data, genotype=g)43
d=groupedData(Gam~ Day|Mouse, data=d)44

45
#________________f1________________46
fit1=nlsList(Gam~f1(beta, X=X1) | Mouse,47
	 	 	 	 data=d, start=list(beta=2))48
s1=nlme(fit1)49

50
fit2=nlsList(Gam~f1(beta, X=X2) | Mouse,51
	 	 	 	 data=d, start=list(beta=8))52
s2=nlme(fit2)53

54
fit3=nlsList(Gam~f1(beta, X=X3) | Mouse,55
	 	 	 	 data=d, start=list(beta=3))56
s3=nlme(fit3)57
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58
fit4=nlsList(Gam~f1(beta, X=X4) | Mouse,59
	 	 	 	 data=d, start=list(beta=1))60
s4=nlme(fit4)61

62
fit5=nlsList(Gam~f1(beta, X=X5) | Mouse,63
	 	 	 	 data=d, start=list(beta=0.5))64
s5=nlme(fit5)65

66
fit6=nlsList(Gam~f1(beta, X=X6) | Mouse,67
	 	 	 	 data=d, start=list(beta=1))68
s6=nlme(fit6)69

70
fit7=nlsList(Gam~f1(beta, X=X7) | Mouse,71
	 	 	 	 data=d, start=list(beta=1))72
s7=nlme(fit7)73

74
fit8=nlsList(Gam~f1(beta, X=X8) | Mouse,75
	 	 	 	 data=d, start=list(beta=0.2))76
s8=nlme(fit8)77

78
fit9=nlsList(Gam~f1(beta, X=X9) | Mouse,79
	 	 	 	 data=d, start=list(beta=0.44))80
s9=nlme(fit9)81

82
fit10=nlsList(Gam~f1(beta, X=X10) | Mouse,83
	 	 	 	 data=d, start=list(beta=0.45))84
s10=nlme(fit10)85

86
fit11=nlsList(Gam~f1(beta, X=X11) | Mouse,87
	 	 	 	 data=d, start=list(beta=1))88
s11=nlme(fit11)89

90
fit12=nlsList(Gam~f1(beta, X=X12) | Mouse,91
	 	 	 	 data=d, start=list(beta=0.3))92
s12=nlme(fit12)93

94
fit13=nlsList(Gam~f1(beta, X=X13) | Mouse,95
	 	 	 	 data=d, start=list(beta=18))96
s13=nlme(fit13)97

98
fit14=nlsList(Gam~f1(beta, X=X14) | Mouse,99
	 	 	 	 data=d, start=list(beta=34))100
s14=nlme(fit14)101

102
fit15=nlsList(Gam~f1(beta, X=X15) | Mouse,103
	 	 	 	 data=d, start=list(beta=16))104
s15=nlme(fit15)105

106
fit16=nlsList(Gam~f1(beta, X=X16) | Mouse,107
	 	 	 	 data=d, start=list(beta=0.5))108
s16=nlme(fit16)109

110
fit17=nlsList(Gam~f1(beta, X=X17) | Mouse,111
	 	 	 	 data=d, start=list(beta=0.612))112
s17=nlme(fit17)113

114
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fit18=nlsList(Gam~f1(beta, X=X18) | Mouse,115
	 	 	 	 data=d, start=list(beta=0.33))116
s18=nlme(fit18)117

118
fit19=nlsList(Gam~f1(beta, X=X19) | Mouse,119
	 	 	 	 data=d, start=list(beta=1))120
s19=nlme(fit19)121

122
fit20=nlsList(Gam~f1(beta, X=X20) | Mouse,123
	 	 	 	 data=d, start=list(beta=0.3))124
s20=nlme(fit20)125

126
fit21=nlsList(Gam~f1(beta, X=X21) | Mouse,127
	 	 	 	 data=d, start=list(beta=0.5))128
s21=nlme(fit21)129

130
fit22=nlsList(Gam~f1(beta, X=X22) | Mouse,131
	 	 	 	 data=d, start=list(beta=0.46))132
s22=nlme(fit22)133

134
fit23=nlsList(Gam~f1(beta, X=X23) | Mouse,135
	 	 	 	 data=d, start=list(beta=0.3))136
s23=nlme(fit23)137

138
fit24=nlsList(Gam~f1(beta, X=X24) | Mouse,139
	 	 	 	 data=d, start=list(beta=0.46))140
s24=nlme(fit24)141
#__________________________________142

143
#________________f2________________144
fit25=nlsList(Gam~f2(beta1, beta2, X.1=X1, X.2=X2) | Mouse,145
	 	 	 	 data=d, start=list(beta1=0.3, beta2=3))146
s25=nlme(fit25)147

148
fit26=nlsList(Gam~f2(beta1, beta2, X.1=X4, X.2=X5) | Mouse,149
	 	 	 	 data=d, start=list(beta1=1, beta2=1))150
s26=nlme(fit26) 151

152
fit27=nlsList(Gam~f2(beta1, beta2, X.1=X7, X.2=X8) | Mouse,153
	 	 	 	 data=d, start=list(beta1=1, beta2=1))154
s27=nlme(fit26) # Dummy Fit !!!155

156
fit28=nlsList(Gam~f2(beta1, beta2, X.1=X10, X.2=X11) | Mouse,157
	 	 	 	 data=d, start=list(beta1=1, beta2=1))158
s28=nlme(fit26) # Dummy Fit !!!159

160
fit29=nlsList(Gam~f2(beta1, beta2, X.1=X13, X.2=X14) | Mouse,161
	 	 	 	 data=d, start=list(beta1=0.4, beta2=12.4))162
s29=nlme(fit29)163

164
fit30=nlsList(Gam~f2(beta1, beta2, X.1=X16, X.2=X17) | Mouse,165
	 	 	 	 data=d, start=list(beta1=1, beta2=1))166
s30=nlme(fit30)167

168
fit31=nlsList(Gam~f2(beta1, beta2, X.1=X19, X.2=X20) | Mouse,169
	 	 	 	 data=d, start=list(beta1=1, beta2=1))170
s31=nlme(fit31)171
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