
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Sevegnani, Michele (2012) Bigraphs with sharing and applications in
wireless networks. PhD thesis

http://theses.gla.ac.uk/3742/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given.

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/3742/

BIGRAPHS WITH SHARING AND
APPLICATIONS IN WIRELESS NETWORKS

MICHELE SEVEGNANI

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

First submission: 22ND MAY 2012
Final submission: 29TH SEPTEMBER 2012

c© MICHELE SEVEGNANI

Abstract

Bigraphs are a fully graphical process algebraic formalism, capable of representing both the
position in space of agents and their inter-connections. However, they assume a topology
based on sets of trees and thus cannot represent spatial locations that are shared among
several entities in a simple or intuitive way. This is a problem, because shared locations
are often a requirement, for example, when modelling scenarios in the physical world or in
modern complex computer systems such as wireless networks and spatial-aware applications
in ubiquitous computing.

We propose bigraphs with sharing, a generalisation of the original definition of bigraphs,
to allow for overlapping topologies. The new locality model is based on directed acyclic
graphs.

We demonstrate the new formalism can be defined in the general framework of bigraph-
ical theories and wide reactive systems, as originally devised by Robin Milner. We do so by
defining a categorical interpretation of bigraphs with sharing, an axiomatisation derived from
the equations of a bialgebra over finite ordinals, and a normal form to express bigraphical
terms. We illustrate how sharing is essential for modelling overlapping localities by present-
ing two example case studies in the field of wireless networking. We show that bigraphs with
sharing can be used realistically in a production environment by describing the implement-
ation of an efficient matching algorithm and a software tool for the definition, simulation,
visualisation and analysis of bigraphical reactive systems.

Acknowledgements

I am deeply grateful to my supervisor, Muffy Calder, for being extremely helpful and sup-
portive throughout the years of my PhD and for providing me with valuable insight and en-
lightening suggestions whenever I encountered difficulties. Muffy’s constant encouragement
and sincere enthusiasm were a driving force in my research.

I also owe much to the late Robin Milner for his guidance early in my studies. His ideas
have been a great inspiration for this thesis and helped establish my research directions.

I also thank all those I worked with in the Homework project, especially: Alexandros
Koliousis, Joseph Sventek, Tom Rodden, Dimosthenis Pediaditakis, Naranker Dulay, Morris
Sloman.

More personally, I thank my family for their unconditional love and support and all the
good friends I have made during my stay in Glasgow: Andrea, Sedgil, Oberdan, Robin,
Chris, Roberta, Raffaele, Erica, Maurizio, Irene, Luis, Gowri, Mirko, Nuno.

* * *

This is a revised version of my thesis; I have benefited a lot from the detailed criticism of my
examiners Peter Sewell and Simon Gay.

to My Family: Gianluca, Adriana and Erica

Declaration

This thesis is submitted in accordance with the rules for the degree of Doctor of Philosophy
at the University of Glasgow in the College of Science and Engineering. None of the material
contained herein has been submitted for any other degree. The material contained herein is
the work of myself except if stated otherwise.

v

Contents

1 Introduction 1

1.1 Motivation: space . 1

1.2 Related work . 2

1.3 Thesis statement . 5

1.4 Overview of the thesis . 5

1.5 Contribution . 7

1.6 Publications . 8

I Bigraphs with sharing 9

2 Background: bigraphs 10

2.1 Introduction . 10

2.2 Constituents of bigraphs . 13

2.3 Operations on bigraphs . 16

2.4 Algebraic form . 20

2.4.1 Axioms and elementary Bigraphs 21

2.4.2 Normal form . 23

2.4.3 Algebraic operators . 24

2.5 Sorting . 26

2.6 Bigraphical reactive systems . 27

2.7 BiLog . 30

2.8 Categorical semantics for bigraphs . 31

2.9 Stochastic bigraphs . 33

vi

2.10 Other extensions and applications . 34

2.10.1 Implementation . 35

2.11 Summary . 35

3 Bigraphs with sharing 37

3.1 Motivation . 37

3.2 Formal definition . 39

3.2.1 Concrete place graphs with sharing 40

3.2.2 Operations for place graphs with sharing 40

3.2.3 Bigraphs with sharing . 46

3.3 Graphical notation . 46

3.4 Categories of bigraphs with sharing . 48

3.5 Algebraic form . 55

3.5.1 Axioms for bigraphical equality 60

3.6 Discussion . 62

3.7 Summary . 65

4 Matching of bigraphs with sharing 66

4.1 Introduction . 66

4.2 Algorithm . 70

4.2.1 Definition . 72

4.2.2 Examples . 76

4.2.3 Soundness and completeness . 80

4.3 Summary . 86

II Applications 87

5 BigraphER: Bigraph Evaluator & Rewriting 88

5.1 Overview . 88

5.2 Implementation . 91

5.2.1 Bigraphical structures . 91

vii

5.2.2 Matching engine . 96

5.2.3 Rewriting engine . 99

5.2.4 Visualisation . 100

5.3 Checking predicates . 101

5.4 Summary . 103

6 Model of the 802.11 CSMA/CA RTS/CTS protocol 105

6.1 Introduction . 106

6.2 The protocol: 802.11 RTS/CTS handshake 107

6.3 Bigraphical model of wireless network topology 108

6.4 Stochastic reaction rules modelling the protocol 113

6.5 Execution of an example network . 123

6.6 CTMC analysis . 126

6.6.1 Analysis of quantitative properties 129

6.7 Summary . 132

7 Real-time verification for home network management 134

7.1 Overview . 135

7.2 Bigraphical model . 136

7.2.1 Network topology . 136

7.2.2 Network events . 137

7.2.3 Status predicates . 143

7.3 Generation of models in real-time . 143

7.4 Bigraphical models of policies . 145

7.5 Generating models of policy events in real-time 147

7.5.1 Encoding forbid policy events . 148

7.5.2 Encoding allow policy events . 149

7.5.3 Interplay between network and policy events 150

7.6 Model analysis . 151

7.7 Implementation . 154

7.8 Summary . 155

viii

8 Conclusion and future work 156

8.1 Thesis summary . 156

8.2 Conclusion . 159

8.2.1 Discussion . 160

8.3 Future work . 161

Appendices 163

A Category theory 163

B Continuous Time Markov Chains and the logic CSL 169

C Algebraic form of reaction rules 171

D Interplay between network events and policy events 175

References 184

Index 190

1

Chapter 1

Introduction

1.1 Motivation: space

Ubiquitous computing is a vision of future computer systems conceived about two decades
ago by Weiser [65] at the Electronics and Imaging Laboratory of the Xerox Palo Alto Re-
search Center. His model of human computer interaction foresees a huge variety of interact-
ing smart devices that will pervade our lives. These include sensors, situated displays, mobile
devices, etc that will be seamlessly integrated into everyday objects and activities. Techno-
logy advancements will enable us to build increasingly complex systems in which devices
are hidden from its users and are capable of autonomously managing the environment with
little or no user input. Example studies in this area are the analysis of social interactions in
future domestic environments [23], the development of innovative systems for the monitor-
ing and control of private vehicles on the public highway [24], and the application to future
health monitoring systems given in [44].

This vision involves scenarios that often exhibit a complexity that is almost intractable,
given current software engineering practice. This can be explained by the fact that ubi-
quitous systems are less structured than traditional distributed systems and spatial locations

assume a paramount rôle by influencing the behaviour of context-aware devices. Moreover,
applications may present critical requirements from the point of view of functional correct-
ness, reliability, availability, security, and safety. Therefore, a strong need is emerging for
a formal modelling framework capable of representing the movement of agents, their inter-
communications and their locations. This is essential in order to guide the specification
and programming of these systems, understand their behaviour and facilitate repair when a
malfunction occurs or when a component fails.

Spatial models are formalisms for the representation of the containment relationship
between physical/virtual objects, computing devices, human users and places. The authors

1.2. Related work 2

R
a
n
g
e
 o

f
B

’s
 r

a
d
io

B

R
ange of A

’s radio

A

R
an

ge
 o

f C
’s

 r
ad

io

C

(a) WLAN of three stations

A’s Signal

�� ""

B’s Signal

��|| ""

C’s Signal

��||
A B C

(b) DAG topology

Figure 1.1: A network diagram of a WLAN of three stations (a) and a DAG representing its topo-
logy (b).

of [7] argue that location hierarchies based on directed acyclic graphs (DAGs) are more
suitable than traditional models based on trees for the description of the spatial features of
ubiquitous systems, especially when space is shared among several entities or the spatial
topology is not neatly bounded. This is the case, for instance, when modelling devices inter-
acting wirelessly as in the system drawn in Figure 1.1a. The expressive power of this spatial
model becomes evident in the corresponding topology in Figure 1.1b. Unlike trees, the un-
derlying DAG can natively represent the fact that machine A is currently occupying a space
location covered by both A’s signal and B’s signal, but not by C’s signal. Besides wireless
communications, other scenarios requiring this kind of location concept have been studied.
Two examples are a system of presence detectors situated in the rooms of a house [50] and a
model of overlapping attention spaces [8].

In this thesis we will develop a process algebra formalism for representing systems whose
behaviours are affected by spatial location. The formalism is based on Milner’s bigraphical

reactive systems but crucially, our underlying representation of spatial location is DAGs
(instead of trees).

1.2 Related work

The quest for new conceptual models of computation has characterised informatics since
its early days. Traditionally, basic formalisms such as automata, Turing machines [62] and
the λ-calculus [18] are recognised as the precursors in this field. In this section, we give a
brief historical background to the work in this thesis by recalling some related theoretical
frameworks.

1.2. Related work 3

Process calculi

One of the first theories of concurrent processes was Petri nets [54] in 1962. This formalism
is of particular relevance because it is perhaps the earliest example in which a rigorous math-
ematical treatment is used to describe discrete events. Research on the algebraic structure
of processes began in the following decade. Alongside, the framework of Structural Oper-

ational Semantics (SOS), as pioneered by Plotkin [55], emerged as the preferred approach
to define formally the behaviour of processes. This opened the way to the introduction of
numerous process calculi (or process algebrae) such as Milner’s Calculus of Communic-
ating Systems (CCS) [46] in 1982. A popular paradigm among process calculi consisted
of providing syntactical constructs to specify interactions, communications and synchron-
isations among independent processes and semantics interpretation by means of labelled

transition systems (LTS). In this context, the behaviour of processes began to be studied with
the introduction of bisimulation relations [52]. CCS served as the basis of the π-calculus of
Milner, Parrow and Walker [48] in the early 1990’s. This involved the definition of primit-
ives to support mobility, i.e. the capability of changing the topology of the interconnections
among processes during computation. Note that this does not include a notion of locality of
processes. Another notable innovation was the reaction semantics of the Chemical Abstract
Machine proposed by Berry and Boudol [9], in which SOS inference rules were replaced by
rewrite rules on structurally congruent processes. An early model for the spatial aspects of
computation was an enrichment of the π-calculus with locations [58] in which operations
can be indexed by the location where they are executed. Another example in this direction
was Cardelli and Gordon’s calculus of mobile ambients [16]. In both cases, the location
hierarchy is organised into a tree structure.

Term rewriting

Term rewriting is the branch of theoretical computer science concerned with the transform-
ation of algebraic terms by means of rewrite rules application. Terms are built up from
variables and constants using function symbols or operations. Two of the most important
properties of term rewriting systems are termination and confluence. The former is satisfied
when every term in the system has at least one normal form, i.e. an expression to which
no more rules apply. The latter holds if the terms can be rewritten in more than one way,
to yield the same result. This formalism has been proven to be particularly suited for tasks
like symbolic computation, program analysis and program transformation. A comprehensive
introduction to the field is given in [3]. A generalisation of term rewriting is the theory of
graph rewriting [28] in which terms are represented as finite DAGs labelled over a signature
and rewriting is implemented by graph transformation. It has been successfully applied to
various problems in software engineering and for the implementation of functional languages

1.2. Related work 4

and database systems [29]. Categorical characterisations of term and graph rewriting were
given in [60, 22].

Bigraphs

Bigraphs are a mathematical model for systems of interacting agents (real or virtual) intro-
duced by Milner [47]. A bigraph consists of two independent structures: a set of nodes that
can be nested one inside another, and a set of hyper-edges linking the nodes. The inten-
ded interpretation is that nodes represent locality, i.e. the spatial placement of agents, while
links encode connectivity, i.e. their communication capabilities. The definition of bigraphs
was partly inspired by the formalisms described above. In particular, the link structure re-
calls channels in the π-calculus, and the tree structure induced by the nesting of nodes is
reminiscent of the location hierarchy of mobile ambients and the concrete syntax tree of
terms. Another similarity with term rewriting is a formulation of the formalism within the
framework of category theory. Bigraphs admit both an algebraic and an equivalent graphical
representation. Their behaviour is specified by a set of reaction rules. In this case, the ana-
logy is with rewrite rules in term rewriting and in process calculi equipped with reduction
semantics. The two principal motivations that led to the development of bigraphs are:

• to model directly ubiquitous systems by focusing on mobile connectivity and mobile
locality;

• to provide a unification of existing theories by developing a general theory in which
many existing calculi for concurrency and mobility may be represented, with a uniform
behavioural theory.

From trees to graphs

Historically, the idea of using graphs instead of trees has emerged in several fields of com-
puter science. An example is the adoption of ordered binary decision trees (OBDDs) [14] for
the representation of boolean formulae in the context of model checking. In this approach,
the DAG data structure implementing an OBDD is obtained by merging the isomorphic sub-
trees occurring in the equivalent tree encoding of a given boolean formula. Another example
is the representation of terms by means of DAGs in graph term rewriting. Here, nodes with
more than one parent are used to encode shared sub-terms explicitly. In both cases, the mo-
tivation for moving away from trees was to reduce the size of the data structure storing in
order to speed up the verification and rewrite process, respectively. To the best of our know-
ledge, we are not aware of any applications of graphs for the direct modelling of space as
demanded by the case studies analysed in Section 1.1.

1.3. Thesis statement 5

1.3 Thesis statement

Bigraphs are a fully graphical process algebraic formalism, capable of representing both the
position in space of agents and their inter-connections. However, they assume a topology
based on sets of trees and thus cannot represent spatial locations that are shared among
several entities in a simple or intuitive way. This is a problem, because shared locations
are often a requirement, for example, when modelling scenarios in the physical world or in
modern complex computer systems such as wireless networks and spatial-aware applications
in ubiquitous computing.

We propose bigraphs with sharing, a generalisation of the original definition of bigraphs,
to allow for overlapping topologies. The new locality model is based on directed acyclic
graphs.

We demonstrate the new formalism can be defined in the general framework of bigraph-
ical theories and wide reactive systems, as originally devised by Milner. We do so by defin-
ing a categorical interpretation of bigraphs with sharing, an axiomatisation derived from the
equations of a bialgebra over finite ordinals, and a normal form to express bigraphical terms.
We illustrate how sharing is essential for modelling overlapping localities by presenting two
example case studies in the field of wireless networking. We show that bigraphs with sharing
can be used realistically in a production environment by describing the implementation of an
efficient matching algorithm and a software tool for the definition, simulation, visualisation
and analysis of bigraphical reactive systems.

1.4 Overview of the thesis

This thesis is arranged into two distinct parts: Part I presents the theory of bigraphs with
sharing; Part II investigates their adoption as a practical modelling tool. The subsequent
chapters are organised in the following way.

In Part I, Chapter 2 introduces Milner’s definition of bigraphs, together with the op-
erations that build them, i.e. composition and tensor product. First, it defines a graphical
notation for bigraphs and an algebra for bigraphical terms. Second, it presents the dynamics
of bigraphs based on the notion of Bigraphical Reactive System (BRS). Third, it introduces
the various kinds of category used to develop the theory of bigraphs. Finally, it discusses
the spatial logic for bigraphs, BiLog, and other extensions of the basic formalism such as
stochastic bigraphs.

Chapter 3 formally defines bigraphs with sharing. First, it analyses the motivations be-
hind the development of a new locality concept in which space is represented by directed
acyclic graphs. Second, it introduces an unambiguous graphical notation for bigraphs with

1.4. Overview of the thesis 6

sharing, an algebraic axiomatisation and a normal form. Finally, it shows how bigraphs with
sharing fit in to the general categorical interpretation of Milner’s bigraphs.

Chapter 4 concludes the first part of the thesis. It defines an efficient matching algorithm
for bigraphs with sharing based on a reduction to the sub-graph isomorphism problem. It
also contains proofs of soundness and completeness of the matching algorithm.

In Part II, Chapter 5 describes BigraphER, an implementation of BRS that natively sup-
ports place graphs with sharing. In particular, it analyses the manipulation and visualisation
routines, the matching engine based on a SAT encoding of the matching algorithm defined
in Chapter 4, and the rewriting engine for the computation of a reaction relation in a BRS. It
also introduces a method based on matching for the verification of a decidable fragment of
BiLog.

Chapter 6 tests the adequacy of bigraphs with sharing by presenting a model of a non-
trivial communication protocol for wireless networks that supports arbitrary topologies. The
idea of the model is to represent overlapping wireless signals as shared nodes and the various
phases of the protocol with stochastic reaction rules organised into priority classes. Quantit-
ative analysis is carried out by using a probabilistic model checker Prism.

Chapter 7 reports on an application of bigraphs with sharing for real-time verification
of domestic wireless network management. First, it describes how network topologies are
modelled as sorted bigraphs and how network events such as moving in and out of the router’s
range, and granting and revoking of DHCP leases are encoded as reaction rules. Second, it
defines reaction rules to represent enforce/drop policy events. Finally, it discusses the rôle of
BiLog predicates in the analysis of network configurations and compliance with policies.

Chapter 8 concludes the thesis. It contains a summary of the previous chapters and
suggests some directions for future development of bigraphs with sharing, both in practice
and theory.

Appendix A serves as a reference on category theory. All the categorical concepts utilised
in the rest of the thesis (mainly in chapters 2 and 3) are summarised and defined here.

Appendix B formally defines Continuous Time Markov Chains (CTMCs) and the syntax
and semantics of the logic CSL (Continuous Stochastic Logic).

Appendix C contains algebraic definitions of all the bigraphs and bigraphical rules used
in the model of the communication protocol described in Chapter 6.

Appendix D shows an example of event-driven generation of bigraphical models of the
current configuration of a domestic wireless network, as specified in Chapter 7. The chapter
contains both graphical and algebraic definitions of the reaction rules.

1.5. Contribution 7

1.5 Contribution

This thesis makes the following main contributions:

• The definition of bigraphs with sharing, a novel generalisation of Milner’s bigraphs in
which locality is modelled by directed acyclic graphs instead of forests. This includes
a formal definition of place graphs with sharing and their operations (i.e. composition
and tensor product), an unambiguous graphical notation that allows for an explicit
representation of shared nodes, and an axiomatisation equipped with a normal form to
express algebraically bigraphical terms. It is also shown how the new formalism fits the
general categorical interpretation of bigraphs based on symmetric (partial) monoidal
categories.

• The definition of a graph theoretic matching algorithm for bigraphs with sharing that
is based on a reduction to the sub-graph isomorphism problem. The new algorithm is
proven sound and complete.

• A prototype implementation of BRS with sharing. This consists of an OCaml library
and a command-line tool that provide a matching engine based on an efficient SAT
encoding of the matching algorithm, a rewriting engine for the computation of the
reaction relation and the state space of a BRS, and a visualisation component for the
automatic generation of the graphical representation of a bigraph. The software also
supports rule priorities and stochastic reaction rules.

• A reasoning technique for a class of BiLog predicates based on bigraph matching.

• Two example applications of bigraphs with sharing in real-world scenarios that high-
light how the new formalism facilitates the specification of complex yet compact mod-
els. Three different strategies are employed to obtain fruitful and efficient models.
First, rule priorities and instantaneous rules are used to discard intermediate interleav-
ings that are confluent, thus considerably reducing the state space of a BRS. Second,
sequences of rule application to tag/untag entities offer an elegant way to overcome
the limitation of matching. They also allow us to control the number of times a rule
is applied and to verify predicates involving universal quantifiers or negated existen-
tial quantifiers. A further benefit includes avoiding the introduction of duplicates, i.e.
nodes of the same control. This permits us to effectively consider unique controls as
node identifiers and track nodes through reaction. Third, the use of non parameterised
reaction rules leads to instances of matching that are solvable in polynomial time.

1.6. Publications 8

1.6 Publications

Some of the material in this thesis has been previously reported in the following papers:

• Many of the definitions and proofs in Chaper 3 appear in [56].

• A preliminary version of the matching algorithm described in Chapter 4 and the im-
plementation discussed in Chapter 5 appear in [57].

• The application of real-time verification of domestic wireless network management
given in Chapter 7 and Appendix D appears in [15].

9

Part I

Bigraphs with sharing

10

Chapter 2

Background: bigraphs

This chapter summarises the state of the art in bigraphs. The main reference is Milner’s
text [47].

In Section 2.1, we give an informal introduction to the formalism, we introduce the graph-
ical notation for the representation of bigraphs and we set some conventions and terminology.
In Section 2.2 bigraphs and their constituents, namely place and link graphs, are formally
defined. Section 2.3 is devoted to the definition of the fundamental operations on bigraphs,
i.e. composition and tensor product. Section 2.4 introduces an algebra for bigraphical terms,
while a typing discipline on bigraphs, called sorting, is presented in Section 2.5. The part of
the theory dealing with the dynamic evolution of bigraphs is in Section 2.6, where Bigraph-
ical Reactive Systems are defined. An overview of the spatial logic for bigraphs, BiLog,
is given in Section 2.7. Section 2.8 briefly summarises how bigraphs can be defined in the
general setting of category theory. Stochastic bigraphs are presented in Section 2.9. Other
extensions of the basic formalism and known software tools for the manipulation of bigraphs
and Bigraphical Reactive Systems are discussed in Section 2.10. Finally, some concluding
remarks are given in Section 2.11.

2.1 Introduction

Bigraphs are a recent formalism conceived for modelling agents, their spatial arrangement
and their inter-connections. A bigraph has a graphical form and an equivalent algebraic
form. For now, we focus on the former, since it allows for a more intuitive description of the
formalism.

Let us begin by considering example bigraph B shown Figure 2.1. In the graphical
form, agents, or entities (real or virtual) are encoded by nodes, represented as ovals and
circles. Their spatial placement is described by node nesting. Nodes are assigned a type,

2.1. Introduction 11

x

B A

y

C

Figure 2.1: Example bigraph B.

called control, denoted here by the labels A, B and C. The set of controls of a bigraphs is
called the signature. A node is said to be atomic if it does not contain any sites or nodes.
Interactions between agents are represented by links like, for instance, the edge connecting
the A-node and the C-node. Each node can have zero, one or many ports, indicated by bullets.
They can be thought of as sockets into which links can be plugged. Observe that nodes of
the same control have also the same number of ports. Dashed rectangles denote regions

(sometimes called roots). The rôle of a region is to describe adjacent parts of the system.
Grey squares are called sites. They encode parts of the model that have been abstracted
away. Regions and sites are indexed by natural numbers (starting from 0) form left to right.
These are crucial in the definition of composition for bigraphs, as we will see in greater
detail in Section 2.3. Nodes, sites and roots are the places of a bigraph. Note that there is
no significance in where a link crosses the boundary of a place in a bigraph. A bigraph can
have inner names and outer names. In our example, y is an outer name while x is an inner
name. By convention in the graphical form, inner names and outer names are drawn below
and above the bigraph, respectively. They encode links (or potential links) to other bigraphs
representing the external environment or context. Inner names and ports are the points of a
bigraph. A link is said to be idle when it has no points. Similarly, a place is idle when it does
not contain any nodes or sites. Two places with the same parent, or two points with the same
link, are called siblings.

The capabilities of a bigraph to interact with the external environment are recorded in its
interface. For example, we write B : 〈1, {x}〉 → 〈2, {y}〉 to indicate that B has one site,
two regions and its inner and outer names are sets of names {x} and {y}, respectively. Pair
〈1, {x}〉 is called the inner face of B, while 〈2, {y}〉 is its outer face. We will see in greater
detail in Section 2.3 how interfaces allow bigraphs to be composed and how they allow one
bigraph to be considered as a component of another bigraph.

Elements forming a bigraphs, namely nodes and edges, can be assigned unique identi-
fiers, collectively called the support of a bigraph. A bigraph with identifiers is said to be
concrete. An example concrete bigraph, B̃, is drawn in Figure 2.2a. Observe that B̃ corres-

2.1. Introduction 12

x

B A

y

C
v0

v1
v2

0

0 1

e0

e1

(a) B̃ : 〈1, {x}〉 → 〈2, {y}〉

0

��
1

��
v0

}} ��
v2

v1 0

(b) B̃P : 1→ 2

y

x
v2

v0 v1

e1
e0

(c) B̃L : {x} → {y}

Figure 2.2: Concrete bigraph B̃ and its constituents: concrete place graph B̃P and concrete link graph
B̃L.

ponds to bigraph B given in Figure 2.1 with the addition of identifiers. Nodes are indicated
with v0, v1 and v2, while edges are e0 and e1.

Summarising, locality is represented by node placement while connectivity is encoded
by the links of the bigraph. This characteristic can be made explicit by defining bigraphs in
terms of the constituent notions of place graph and link graph. A place graph is a structure
defined over the places of a bigraph able to capture their nesting. More precisely, the structure
is a forest whose roots are the regions of the corresponding bigraph and leaves are its sites
and atomic nodes. A link graph is a structure describing the linkage of a bigraph. It consists
of a hyper-graph whose vertices are the names and nodes of the corresponding bigraph and
hyper-edges are its links. The place graph B̃P and link graph B̃L for concrete bigraph B̃
are shown in Figure 2.21. The two structures are independent and they only share the set
of nodes. This allows to define distinct interfaces for place graphs and link graphs. In the
example, B̃P : 1→ 2 and B̃L : {x} → {y}.

Notation and conventions

We frequently interpret a natural number as a finite ordinal, namely m = {0, 1, . . . ,m− 1}.
We write S] T to indicate the union of sets known or assumed to be disjoint. If a function
f has domain S and S ′ ⊆ S, then f � S ′ denotes the restriction of f to S ′. For two functions

1Controls are omitted.

2.2. Constituents of bigraphs 13

f and g with disjoint domains S and T we write f] g for the function with domain S] T
such that (f] g) � S = f and (f] g) � T = g. We write IdS for the identity function on the
set S.

In defining bigraphs we assume that names, node-identifiers and edge-identifiers are
drawn from three infinite sets, respectively X , V and E , disjoint from each other. We de-
note identifiers by lower-case letter: x, y, z for names, v, u for nodes, and e0, e1, . . . for
edges. Upper-case letters A,B, . . . are used to denote bigraphs and their constituents. Con-
crete bigraphs are usually indicated with Ã, B̃, We call the trivial interface ε def

= 〈0, ∅〉
the origin.

2.2 Constituents of bigraphs

As mentioned previously, every bigraph consists of two orthogonal structures: a place graph
specifying the spatial relation among its entities and a link graph defining their connectivity.
We begin by defining signatures.

Definition 2.2.1 (signature). A signature takes the form (K, ar). It has a set K whose
elements are controls, and map ar : K → N assigning an arity to each control. A bigraph
over K assigns to each node a control, whose arity indexes the ports of a node.

A signature suitable for the examples in Figures 2.1 and 2.2a isK = {A : 2,B : 2,C : 1}.
Now, we are ready to define formally place graphs and link graphs.

Definition 2.2.2 (concrete place graph). A concrete place graph

F = (VF , ctrlF , prntF) : m→ n

is a triple having an inner face m and an outer face n. These index respectively the sites and
roots of the place graph. F has a finite set VF ⊂ V of nodes, a control map ctrlF : VF → K,
and a parent map

prntF : m] VF → VF] n

which is acyclic, i.e. if prntiF (v) = v for some v ∈ VF then i = 0.

The defining triple for example place graph B̃P drawn in Figure 2.2b is given by

(V, ctrl, prnt) = ({v0, v1, v2}, {v0 : B, v1 : A, v2 : C}, {(0, v0), (v1, v0), (v0, 0), (v2, 1)}) .

Definition 2.2.3 (concrete link graph). A concrete link graph

F = (VF , EF , ctrlF , linkF) : X → Y

2.2. Constituents of bigraphs 14

is a quadruple having an inner face X and an outer face Y , both finite subsets of X , called
respectively the inner and outer names of the link graph. F has finite sets VF ⊂ V of nodes

and EF ⊂ E of edges, a control map ctrlF : VF → K and a link map

linkF : X] PF → EF] Y

where PF
def
= {(v, i)|i ∈ ar(ctrlF (v))} is the set of ports of F . Thus (v, i) is the ith port of

node v. We shall call X] PF the points of F , and EF] Y its links.

The edges and link map for example link graph B̃L in Figure 2.2c are E = {e0, e1} and

link = {(x, e0), ((v0, 0), e0)), ((v1, 0), e1), ((v2, 0), e1), ((v0, 1), y), ((v1, 1), y)} .

A concrete bigraph simply consists of a concrete place graph and a concrete link graph.

Definition 2.2.4 (concrete bigraph). A concrete bigraph

F = (VF , EF , ctrlF , prntF , linkF) : 〈k,X〉 → 〈m,Y 〉

consists of a concrete place graph F P = (VF , ctrlF , prntF) : k → m and a concrete link
graph F L = (VF , EF , ctrlF , linkF) : X → Y . We write the concrete bigraph as F =

〈F P, F L〉.

Diagrams for example bigraph B̃ : 〈1, {x}〉 → 〈2, {y}〉 and its constituents B̃P : 1 → 2

and B̃L{x} → {y} are given in Figure 2.2.

The structures introduced above are called concrete because their nodes and edges are
uniquely identified by members of V and E . Formally, given a concrete bigraph F , its support
is |F | = VF] EF . The identifiers of nodes and edges can be varied in a disciplined way by
means of a support translation.

Definition 2.2.5 (support translation). Given two bigraphs F,G : 〈k,X〉 → 〈m,Y 〉, a
support translation ρ : |F | → |G| from F to G consists of a pair of bijections ρV : VF → VG

and ρE : EF → EG that respect structure in the following sense:

1. ρ preserves controls, i.e. ctrlG ◦ ρV = ctrlF . It follows that ρ induces a bijection
ρP : PF → PG on ports, defined by ρP ((v, i))

def
= (ρV (v), i).

2. ρ commutes with the structural maps as follows:

prntG ◦ (Idm] ρV) = (Idn] ρV) ◦ prntF
linkG ◦ (IdX] ρP) = (IdY] ρE) ◦ linkF .

2.2. Constituents of bigraphs 15

0

��
1

��
v0 : B

xx ""

v2 : C

v1 : A 0

(a) F : 1→ 2

0

��
1

��
u0 : B

xx ""

u2 : C

u1 : A 0

(b) G : 1→ 2

Figure 2.3: Support equivalent place graphs.

Given F and the bijection ρ, these conditions uniquely determine G. We therefore denote G
by ρ�F , and call it the support translation of F by ρ. We call F and G support equivalent,
and we write F l G, if such a translation exists. Support translation is defined similarly for
place graphs and link graphs.

An example of support equivalent place graphs is given in Figure 2.3. The support trans-
lation can be made explicit by writing G = ρ�F , where ρ(vi) = ui with i ∈ {0, 1, 2}.

Support is essential for the formal definition of bigraphs and their operations, as will
become clear in Section 2.3. However, in most applications, support is irrelevant and thus it
is often dropped. This is because one wishes to abstract and not to regard support-equivalent
bigraphs as different. Formally, abstract bigraphs, i.e. without identifiers, can be interpreted
as equivalence classes of support equivalent bigraphs. An example abstract bigraph, B, is
shown in Figure 2.1. It represents the class of concrete bigraphs obtainable by applying
any valid support translation to concrete bigraph B̃ drawn in Figure 2.2a. One technicality
arises when bigraphs have idle edges. Therefore, we need to quotient by a slighter larger
equivalence, as follows:

Definition 2.2.6 (leanness). A bigraph is lean if it has no idle edges. Two bigraphs F and G
are lean-support equivalent, written F m G, if they are support-equivalent after discarding
any idle edges.

Definition 2.2.7 (abstract bigraph, abstraction). An abstract bigraph B : 〈k,X〉 → 〈m,Y 〉
consists of am-equivalence class of concrete bigraphs: B = [F̃]m with F̃ : 〈k,X〉 → 〈m,Y 〉
a concrete bigraph. Bigraph B is also called the abstraction of F̃ .

Sometimes it is also useful to move in the opposite direction, namely from abstract bi-
graphs to concrete ones:

Definition 2.2.8 (Concretion). If G is an abstract bigraph, then a concrete bigraph G̃, called
a concretion of G, is obtained by assigning to each node a unique identifier v ∈ V and to
each edge a unique identifier e ∈ E .

Observe that any two concretions Ã, B̃ of the same bigraph are always support equival-
ent.

2.3. Operations on bigraphs 16

D

y

y
(a) G : 〈2, {y}〉 → 〈1, {y}〉

x

B A

y

C

(b) B : 〈1, {x}〉 → 〈2, {y}〉

D

x

B A

y

C

(c) A : 〈1, {x}〉 → 〈1, {y}〉

Figure 2.4: Composition for bigraphs: A = G ◦B.

2.3 Operations on bigraphs

We can now describe how to make larger bigraphs from smaller ones. An example of com-
position is shown in Figure 2.4c: bigraph A is the result of the composition of bigraphs G
and B, given in Figures 2.4a and 2.4b, respectively.

Algorithmically, we can think of composition as placing one bigraph, e.g. B, in the
context represented by another, e.g. G. For this we require the outer face of B to equal the
inner face of G. We write G ◦ B to indicate composition, i.e. that bigraph B is inserted
into bigraph G. In more detail, when a bigraph is inserted into another, its outer names are
merged with the corresponding inner names of the host bigraph, and its roots are merged
with the corresponding sites of the host bigraph. In the example, the root in B containing
the C-node is merged with the site inside the D-node in G. Moreover, the D-node is linked

2.3. Operations on bigraphs 17

0

�� $$
0 v3 : D

��
0

(a) GP : 2→ 1

0

ww ''
v0 : B

|| &&
v3 : D
��

0 v1 : A v2 : C

(b) AP : 1→ 1

Figure 2.5: Composition for place graphs: AP = GP ◦ B̃P.

over common name y to nodes of control A and B. Sometimes G is called the context or the
environment for B.

We now define separately composition for concrete place graphs and link graphs.

Definition 2.3.1 (composition for concrete place graphs). If F : k → m and G : m→ n are
two concrete place graphs with disjoint supports, their composite

G ◦ F = (V, ctrl, prnt) : k → n

has nodes V = VF]VG and control map ctrl = ctrlF]ctrlG. Its parent map prnt is defined
as follows: If w ∈ k] V is a site or a node in G ◦ F then

prnt(w)
def
=


prntF (w) if w ∈ k] VF and prntF (w) ∈ VF ,

prntG(j) if w ∈ k] VF and prntF (w) = j ∈ m,

prntG(w) if w ∈ VG .

An example of composition for place graphs is given in Figure 2.5. Note that place graph
B̃P is drawn in Figure 2.2b.

Definition 2.3.2 (composition for concrete link graphs). If F : X → Y and G : Y → Z are
two concrete link graphs with disjoint support, their composite

G ◦ F = (V,E, ctrl, link) : X → Z

has V = VF] VG, E = EF] EG, ctrl = ctrlF] ctrlG. Its link map link is defined as
follows: If q ∈ X] PF] PG is a point of G ◦ F then

link(q)
def
=


linkF (q) if q ∈ X] PF and linkF (q) ∈ EF ,

linkG(y) if q ∈ X] PF and linkF (q) = y ∈ Y ,

linkG(q) if q ∈ PG .

An example of composition for link graphs is in Figure 2.6. Link graph B̃L is depicted
in Figure 2.2c.

2.3. Operations on bigraphs 18

y

y

v3

(a) GL : {y} → {y}

y

x
v2

v0 v1

e1
e0

v3

(b) AL : {x} → {y}

Figure 2.6: Composition for concrete link graphs: AL = GL ◦ B̃L.

By combination of the previous two definitions, it is possible to define composition for
concrete bigraphs.

Definition 2.3.3 (composition for concrete bigraphs). If F : 〈k,X〉 → 〈m,Y 〉 and G :

〈m,Y 〉 → 〈n, Z〉 are two concrete bigraphs with disjoint supports, their composite is

G ◦ F def
= 〈GP ◦ F P, GL ◦ F L〉 : 〈k,X〉 → 〈n, Z〉 .

Identities are node-free elementary bigraphs which are neutral for the composition oper-
ation:

Definition 2.3.4 (identities). Identities at ordinal m, set of names X and interface 〈m,X〉
are given by

idm = (∅, ∅, Idm) : m→ m ,

idX = (∅, ∅, ∅, IdX) : X → X ,

id〈m,X〉 = 〈idm, idX〉 : 〈m,X〉 → 〈m,X〉 ,

respectively.

The other fundamental operation on bigraphs is tensor product, denoted by ⊗. It is
only defined over bigraphs with disjoint interfaces and disjoint supports and it consists of
putting two bigraphs side-by-side. More precisely, we say that two bigraphs Fi : 〈mi, Xi〉 →
〈ni, Yi〉, with (i = 0, 1), have disjoint interfaces if X0 ∩ X1 = ∅ and Y0 ∩ Y1 = ∅. Tensor
product over interfaces I = 〈m,X〉 and J = 〈n, Y 〉 is defined as I ⊗ J = 〈m+ n,X] Y 〉.
As for composition, we first define tensor product independently for concrete place and link
graphs.

Definition 2.3.5 (tensor for concrete place graphs). If Fi = (Vi, ctrli, prnti) : mi → ni are
disjoint place graphs (i = 0, 1) their tensor product F0⊗F1 : m0 + m1 → n0 + n1 is given
by

F0⊗F1
def
= (V0] V1, ctrl0] ctrl1, prnt0] prnt′1) ,

where prnt′1(m0 + i) = n0 + j whenever prnt1(i) = j.

2.3. Operations on bigraphs 19

Definition 2.3.6 (tensor for concrete link graphs). If Fi = (Vi, Ei, ctrli, linki) : Xi → Yi

are disjoint link graphs (i = 0, 1) their tensor product

F0⊗F1 : X0]X1 → Y0] Y1

is given by

F0⊗F1
def
= (V0] V1, E0] E1, ctrl0] ctrl1, link0] link1) .

Again, by combining the previous two definitions, we obtain tensor product for concrete
bigraphs:

Definition 2.3.7 (tensor for concrete bigraphs). If Fi : 〈mi, Xi〉 → 〈ni, Yi〉 are disjoint
bigraphs (i = 0, 1) their tensor product

F0⊗F1 : 〈m0 +m1, X0]X1〉 → 〈n0 + n1, Y0] Y1〉

is defined as
F0⊗F1

def
= 〈F0

P⊗F1
P, F0

L⊗F1
L〉 .

Identity idε is neutral for tensor product.

Operations on abstract bigraphs are defined over congruence classes as follows:

Definition 2.3.8 (operations for abstract bigraphs). Operations on abstract bigraphs are defined
as operations on the corresponding concretions to which is applied the m-equivalence after-
wards:

• If [F]m : 〈k,X〉 → 〈m,Y 〉 and [G]m : 〈m,Y 〉 → 〈n, Z〉 are two abstract bigraphs,
their composite is

[G]m ◦ [F]m
def
= [G ◦ F]m : 〈k,X〉 → 〈n, Z〉 .

• If [Fi]m : 〈mi, Xi〉 → 〈ni, Yi〉 are two abstract bigraphs (i = 0, 1) with disjoint inter-
faces, their tensor product is

[F0]m⊗[F1]m
def
= [F0⊗F1]m : 〈m0 +m1, X0]X1〉 → 〈n0 + n1, Y0] Y1〉 .

Finally, sub-components of a bigraph are specified as follows:

Definition 2.3.9 (occurrence, matching). A bigraph F occurs in a bigraph G if the equation
G = C1 ◦ (F ⊗ idI) ◦ C0 holds for some interface I and bigraphs C0 and C1. The computa-
tional problem of determining whether a given graph occurs in another bigraph is called the

2.4. Algebraic form 20

G =

C1

F ⊗ idI

C0

Figure 2.7: Match G = C1 ◦ (F ⊗ idI) ◦ C0.

matching problem (for bigraphs). We say that F matches G or F is a match in G when F
occurs in G.

The decomposition of a bigraph G induced by match F is described graphically in Fig-
ure 2.7. Observe that identity idI is necessary to allow nodes in C1 to have children also in
C0, and to allow C1 and C0 to share links that do not involve F . When considering concrete
bigraphs, the supports of G and F have to be compatible in order to find a valid occurrence.

Definition 2.3.10 (concrete occurrence). Let F and G be two concrete bigraphs. We say
there is a concrete occurrence of F in G if the equation G = C1 ◦ (F ′⊗ idI) ◦ C0 holds
for some interface I , and concrete bigraphs F ′, C0 and C1, where F ′ m F . Two concrete
occurrences are equal if they differ only by a permutation or a bijective renaming on the
inner interface of C1 and the outer interface of C0.

An important property is that it is possible to determine an (abstract) occurrence starting
from a concrete one. In other words, a bigraph F occurs in G only if an arbitrary concretion
of F occurs in an arbitrary concretion of G. In both the abstract and concrete case, a match
F may induce more than one decomposition of G. Since composition and tensor product are
defined independently over the constituents of a bigraphs, the previous two definitions can
be reformulated by using place graphs and link graphs only, i.e. F occurs in G only if F P

occurs in GP and F L occurs in GL.

2.4 Algebraic form

All bigraphs can be expressed in terms of elementary bigraphs by means of composition and
tensor product. This allows us to represent bigraphical terms structurally as in process al-
gebra. The algebraic structure we will introduce in the following specifies abstract bigraphs.

A bigraph is called discrete if it has no closed links, i.e. edges, and its link map is biject-
ive. A bigraph is prime if it has no inner names and an outer face in the form 〈1, X〉. These
two kinds of bigraph are important for the algebraic structure of bigraphs and will be used
in Section 2.4.2 to define a normal form. We denote the interfaces of bigraphs by I, J,K.
When there is no ambiguity, we shall often write a name set {x, y, z, . . . } as {xyz · · · } or

2.4. Algebraic form 21

0

��

1

��
0 1

(a) γ1,1 : 2→ 2

0

(b) 1 : 0→ 1

0

�� ��
0 1

(c) join : 2→ 1

Figure 2.8: Elementary placings. Symmetry γ1,1 in (a) swaps the order of two sites, bigraph 1 in (b)
is an idle root and bigraph join in (c) is a root with two sites.

even abbreviate {x} to x. We write n to indicate interface 〈n, ∅〉 and Y for 〈0, Y 〉. We write⊗
i<n Fi for the iterated tensor product F0⊗ · · ·⊗Fn−1. This is idε when n = 0. We some-

times write F0F1 for composition, letting it bind tighter than tensor product. All operations
are assumed to be defined.

2.4.1 Axioms and elementary Bigraphs

Basic axioms for a theory of bigraphical terms are induced from the definitions of composi-
tion and tensor product:

A ◦ idX = A = idY ◦ A A : X → Y

A ◦ (B ◦ C) = (A ◦B) ◦ C

A⊗ idε = A = idε⊗A

idI ⊗ idJ = idI ⊗ J

A⊗(B⊗C) = (A⊗B)⊗C

(A0⊗B0) ◦ (A1⊗B1) = (A0 ◦ A1)⊗(B0 ◦B1)

(2.1)

They formalise the rôle of identities and associativity of ◦ and ⊗, and the interplay between
the two operators.

Elementary place graphs are identities idn : n→ n, symmetries γm,n : m+ n→ n+m,
1 : 0→ 1 and join : 2→ 1. The corresponding diagrams are given in Figure 2.8. Node-free
bigraphs with no links are called placings. They can all be built from the elementary place
graphs. A placing that is bijective from sites to roots is a permutation. We shall use φ and
π to denote placings and permutations, respectively. It is useful to indicate a placing with
one root and n sites by mergen. Note that merge0 = 1, merge1 = id1 and merge2 = join.
Axioms for placing are:

join ◦ (1⊗ id1) = id1

join ◦ (join⊗ id1) = join ◦ (id1⊗ join)

join ◦ γ1,1 = join

(2.2)

2.4. Algebraic form 22

y

x1 xn x

y/X : X → y /x : x→ ∅

. . .

Figure 2.9: Elementary link graphs.

K

x1 . . . xn

Figure 2.10: Ion K~x.

They say that (1 = {0}, join : 2→ 1, 1 : 0→ 1) is a symmetric monoid2 in which placings
join and 1 are the multiplication and the unit, respectively.

Elementary link graphs are substitutions y/X : X → y and closures/x : x→ ∅ as shown
in Figure 2.9. A node-free bigraph with no places is a linking. Linkings are generated by
composition, tensor product and identities from substitutions and closures. A bijective sub-
stitution is called a renaming. We use λ, σ, α to denote linkings, substitutions and renamings,
respectively. We also indicate the empty substitution from ∅ to x by x : ∅ → x. Axioms for
linkings are:

x/x = idx

/x ◦ x = id0

/y ◦ y/x =/x

z/Y] y ◦ (idY ⊗ y/X) = z/Y]X .

(2.3)

Nodes are introduced by only one kind of elementary bigraph called ions. An example
ion of control K is drawn in Figure 2.10. For each control K : n, a ion consists of a single
K-node containing a site with ports linked bijectively to n distinct names ~x. Notation K~x :

〈1, ∅〉 → 〈1, {~x}〉 expresses this bigraph. There is one node axiom stating that ports can be
named arbitrarily:

(id1 ⊗ α) ◦ K~x = Kα(~x) (2.4)

2See Definition A.18 in Appendix A

2.4. Algebraic form 23

Finally, symmetries can be generalised as follows:

γ〈m,X〉,〈n,Y 〉
def
= γm,n⊗ idX]Y . (2.5)

Therefore, if we apply a symmetry to a bigraph, then γ ◦G reorders the roots of G but leaves
its names unchanged. Similarly, if a bigraph is applied to a symmetry, thenG◦γ reorders the
sites of G. Also in this case, names are unaffected. A set of axioms specifying the properties
of symmetries for bigraph is:

γI,ε = idI

γJ,I ◦ γI,J = idI ⊗ J

γI,K ◦ (A⊗B) = (B⊗A) ◦ γH,J (A : H → I, B : J → K)

γX ⊗Y,Z = (γX,Z ⊗ idY) ◦ (idX ⊗ γY,Z) .

(2.6)

The set of Axioms (2.1) – (2.6) is complete for equations between bigraphical expressions.

2.4.2 Normal form

Bigraphical terms can be decomposed uniquely into sub-terms with some standard proper-
ties. This way of expressing bigraphs is a kind of normal form called discrete normal form

(DNF). We begin by presenting a factorisation for prime and discrete bigraphs.

Proposition 2.4.1. Every prime and discrete bigraph P can be expressed uniquely, up to

permutations, as

P = (mergem+n⊗ idY) ◦ (idm⊗
⊗
i<n

Mi) ◦ π

M = (K~x⊗ idY) ◦ P

where π is a permutation.

Observe that idle root 1 occurs as a special case of P when m = n = 0. Similarly, id1

occurs when m = 1 and n = 0. The DNF for arbitrary bigraphs is as follows:

Proposition 2.4.2 (discrete normal form). Every bigraph G : 〈m,X〉 → 〈n, Z〉 can be

expressed uniquely, up to renaming on Y , as

G = (idn⊗λ) ◦D

where λ : Y → Z is a linking and D : 〈m,X〉 → 〈n, Y 〉 is discrete. Further, every discrete

2.4. Algebraic form 24

G =

idn⊗λ

α ⊗
⊗

i<n Pi

π

Figure 2.11: DNF for bigraph G.

D may be factored uniquely, up to permutation of the sites of each factor, as

D = α⊗((
⊗
i<n

Pi) ◦ π)

with α a renaming, each Pi prime and discrete, and π a permutation of all the sites.

We describe DNF graphically in Figure 2.11.

We now show how bigraph A : 〈1, x〉 → 〈1, y〉, depicted in Figure 2.4c, can be written
in DNF:

A = (id⊗λ) ◦D

λ = y/Y ⊗/Z⊗/x Y = {y0, y1, y2} Z = {z0, z1}

D = idx⊗((P0⊗P1) ◦ id)

P0 = (By0x⊗ idy1,z0) ◦ (merge ◦ (id⊗Ay1,z0 ◦ 1))

P1 = (Dy2 ⊗ idz1) ◦ Cz1 ◦ 1

(2.7)

2.4.3 Algebraic operators

Starting from composition and tensor product, it is possible to derive additional operators
closely resembling the traditional operators found in process algebra, such as parallel com-
position in CCS. We will see that this allows for a more natural and succinct specification of
bigraphs.

The first derived operator is parallel product, indicated by ‖. Intuitively, it consists of
a special kind of tensor product in which names are allowed to be shared between the two
terms being composed.

Definition 2.4.1 (parallel product). We begin by defining parallel product for place and link
graphs. Then, the operation is defined for concrete and abstract bigraphs.

• Let Fi = (Vi, ctrli, prnti) : mi → ni be two concrete place graphs (i = 0, 1) with
disjoint supports. Then their parallel product F0 ‖ F1 : m0 + m1 → n0 + n1 is given
by

F0 ‖ F1
def
= F0⊗F1 .

2.4. Algebraic form 25

• If Fi = (Vi, Ei, ctrli, linki) : Xi → Yi are link graphs (i = 0, 1) with disjoint support
and link0 ∪ link1 is a function, their parallel product F0 ‖ F1 : X0 ∪X1 → Y0 ∪ Y1 is
given by

F0 ‖ F1
def
= (V0] V1, E0] E1, ctrl0] ctrl1, link0 ∪ link1) .

• Let Gi : Ii → Ji be two concrete bigraphs (i = 0, 1) with disjoint supports. Then their
parallel product G0 ‖ G1 : 〈m0 +m1, X0 ∪X1〉 → 〈n0 + n1, Y0 ∪ Y1〉 is

G0 ‖ G1
def
= 〈G0

P ‖ G1
P, G0

L ‖ G1
L〉 .

• If [Fi]m : 〈mi, Xi〉 → 〈ni, Yi〉 are two abstract bigraphs (i = 0, 1), and F0 ‖ F1 is
defined, their parallel product is

[F0]m ‖ [F1]m
def
= [F0 ‖ F1]m : 〈m0 +m1, X0 ∪X1〉 → 〈n0 + n1, Y0 ∪ Y1〉 .

Note that the condition of link0 ∪ link1 being a function is required because it avoids
a shared inner name to be mapped to more than one outer name. For example expression
idx ‖ y/x is not allowed because link(x) = {x, y}. However, idx ‖ x/y is valid since the
requirement is satisfied, i.e. link(x) = x and link(y) = x.

Another derived operator is merge product, written |. It is a form of parallel product that
produces bigraphs with only one root.

Definition 2.4.2 (merge product). Let Gi : 〈mi, Xi〉 → 〈ni, Yi〉 be two bigraphs (i = 0, 1),
and assume further that G0 ‖ G1 is defined. Their merge product is given by:

G0 | G1
def
= (mergen0+n1 ⊗ idY0∪Y1) ◦ (G0 ‖ G1)

with G0 | G1 : 〈m0 +m1, X0 ∪X1〉 → 〈1, Y0 ∪ Y1〉.

Finally, nodes can be organised spatially by means of nesting. Additionally, their names
are allowed to be shared.

Definition 2.4.3 (nesting). Let F : I → 〈m,X〉 and G : m → 〈n, Y 〉 be bigraphs. Define
the nesting G.F : I → 〈n,X ∪ Y 〉 by:

G.F
def
= (G ‖ idX) ◦ F .

Derived operators allow further convenient abbreviations. For example, if G has outer
face 〈n,X] Z〉, we write y/X ◦ G to mean (y/X ‖ idI) ◦ G, where I = 〈n, Z〉. We usually
write id for id1 and we omit the subscript n for merge.

2.5. Sorting 26

Arbitrary bigraphs have also been shown to be expressible by using the algebraic oper-
ators. This alternative normal form is called connected normal form (CNF). An example
bigraphical expression in CNF for A : 〈1, x〉 → 〈1, y〉 in Figure 2.4c is

A =/x/z ((Bxy.(Ayz.1 | id) | Dy.Cz.1) ‖ idx) .

A quick comparison between this expression and the equivalent DNF given in Equation (2.7)
shows how derived operators yield algebraic expressions that are more compact, intuitive and
closer to the form of expression found in process calculi. The higher complexity of DNF is
due to the fact that this normal form was introduced by Milner mainly to prove the complete-
ness theorem for bigraphical expressions and not to provide a friendly notation for bigraph-
ical terms. For this reason, we will always adopt algebraic operators in the expressions for
the bigraphs used in the applications described in Part II.

2.5 Sorting

In most applications of bigraphs, it is useful to restrict the set of admissible bigraphs. This
is achieved by classifying controls by means of sorts. Take for instance a simple scenario
in which bigraphs are used to model hospitals. We have nodes of control B to represent
buildings, F-nodes to model floors, R-nodes to model recovery rooms, O-nodes to encode
operating rooms, etc. An example bigraph would then be

H = B.(F.(R.1 | O.1) | F | F.(id | R.1)) . (2.8)

Note that the intended semantics of the model forbids R-nodes from containing B-nodes, i.e.
rooms cannot contain buildings. Hence, a bigraph like Hwrong = R.(F.1 | B) should be
regarded as not admissible. In the following, we will describe formally how to specify this
kind of restriction.

Let us first establish some notational conventions. Sorts are ranged over by a, b,
Disjunctive sorts are written as âb, meaning that a node can either be of sort a or sort b. A
bigraph satisfying a sorting Σ is called Σ-sorted.

Let us begin with the classification of places.

Definition 2.5.1 (place sorting). A place sorting Σ = (Θ,K,Φ) has a non-empty set Φ of
sorts and a signatureK place-sorted over Θ, i.e. assigning a sort to each control. Component
Φ is the formation rule of Σ. It is a property of Σ-sorted bigraphs that is satisfied by the
identities and symmetries, and preserved by composition and tensor product.

2.6. Bigraphical reactive systems 27

When applying sorting Σ to interface n, we write ~θ, where ~θ = θ1 · · · θn lists the sorts θi
assigned to each i ∈ n.

We now formalise the hospital modelling scenario presented above by specifying a place-
sorting as follows:

Θ = {b, f, r}, K = {B : b,F : f,R : r,O : r},

and Φ requires:

an r-node is atomic;
all children of a b-node or f-root have sort f;
all children of an f-node or r-root have sort r;
all children of a θ-root have sort θ, where θ ∈ Θ.

Observe that bigraph Hwrong is indeed not admissible because the r-node is not atomic. The
interface of the model given in Equation (2.8) is H : 〈rr, ∅〉 → 〈b, ∅〉. It can be composed
with sorted bigraph R : ε → 〈rr, ∅〉 given by R = (R.1 | R.1) ‖ O.1. The composite H ◦ R
is also sorted.

Links can be sorted in a similar fashion.

Definition 2.5.2 (link sorting). A link sorting is a triple Σ = (Θ,K,Φ) where Θ is a non-
empty set of sorts, and K is a link-sorted signature, i.e. assigning a sort to each port of each
control. Component Φ is the formation rule of Σ. It is a property of Σ-sorted bigraphs that is
satisfied by the identities and symmetries, and preserved by composition and tensor product.

When applying sorting Σ to interface {~x}, we write {x1 : θ1, . . . , xn : θn}, where each
θi ∈ Θ. An example formation rule Φ is given by:

a link has sort l if it has an l-point;
no link has more than 2 j-points.

In some applications of bigraphs, place and link sorting are often combined. It is interest-
ing to note that several extensions of bigraphs can be expressed by an appropriate combined
place-link sorting (see [13]).

2.6 Bigraphical reactive systems

So far we have discussed only the static structure of bigraphical systems. However, they
admit a dynamical theory too, involving ways in which bigraphs may reconfigure their own

2.6. Bigraphical reactive systems 28

BA

y

C

BA

y

C
B

C

Figure 2.12: Reaction S0 BS1.

I
C

C

x

C
x

Figure 2.13: Reaction rule R IR′.

placing and linking. Such reconfigurations are defined in terms of rewrite rules, called reac-

tion rules, which induce a reaction relation on bigraphs. An example of reaction is drawn
in Figure 2.12. The diagram shows how bigraph S0 on the left-hand side evolves to become
bigraph S1 on the right-hand side. The sub-parts of the two bigraphs being affected by the
reaction are shaded in red. A reaction rule R IR′ consists of pairs of bigraphs that can
be inserted into the same host bigraph. Left-hand side R specifies the pattern to be changed,
while right-hand side R′ specifies the changed pattern. An example reaction rule is given in
Figure 2.13. Observe that the two bigraphs R and R′ correspond to the shaded parts in S0

and S1, respectively. In fact, reaction S0 BS1 is derived by checking if R matches S0 and
by substituting it with R′ to obtain the new system S1.

Before presenting the formal definitions, we set some terminology. Given a set of reac-
tion rules, we refer to the configurations that a system may adopt as states. Hence, in the
example above, S0 and S1 are states. A site is guarding if its parent is a node. A bigraph
with inner face ε is called ground. We shall call ground bigraphs agents, since we ascribe dy-
namic behaviour to them. They are ranged over by lower case letters g, r, d, In order to
uniquely identify an occurrence of a redex, we introduce the following property of bigraphs:

Definition 2.6.1 (solid bigraph). A bigraph is solid if these conditions hold:

1. no roots or outer names are idle;

2. no two sites or inner names are siblings;

3. every site is guarding;

4. no outer name is linked to an inner name.

2.6. Bigraphical reactive systems 29

At this point, we have all the notions required to formally define reaction rules. Note that
we adopt the simplified definition introduced in [39]3. All the bigraphs are assumed abstract.

Definition 2.6.2 (reaction rule). A reaction rule4 is a pair

R = (R : m→ J,R′ : m→ J) ,

sometimes written as R IR′, where R is the redex and R′ the reactum, and R is solid.
The rule generates all the ground reaction rules (r, r′), where r = (R⊗ idY) ◦ d and r′ =

(R′⊗ idY) ◦ d for some discrete ground parameter d : ε → 〈m,Y 〉. The reaction relation

B
R

over ground bigraphs is defined by

g B
R
g′ iff g = Dr and g′ = Dr′

for some bigraph D and some ground reaction rule (r, r′) generated from R.

Observe that condition 4 in Definition 2.6.1 holds because R has no inner names. We
also remark that the constraints on d and R do not limit the rules that can be expressed. For
example, whenever d is non-discrete, it can be replaced by a discrete parameter by adjusting
the context D. Finally, note that d can only have nodes that are descendants of places in R.
This is because idY in the definition of r.

We are now ready for the main definition:

Definition 2.6.3 (bigraphical reactive system (BRS)). A bigraphical reactive system consists
of a pair (B,R) where B is a set of agents and R is a set or reaction rules defined over B. It
has a reaction relation

B
R

def
=
⋃
R∈R

B
R

which will be written B when R is understood. We write (B(Σ),R) when the elements
of B are Σ-sorted.

In [37], the authors introduce a different transition relation giving rise to minimal labelled
transition systems. This theory is a refinement of BRS in which labelled transitions describe
the reactions an agent may perform, possibly with assistance from its environment. Given a
reaction rule R, a labelled transition a L

B
R
a′ defines the minimal context L such that

L ◦ a = D ◦ r a′ = D ◦ r′

3In this version, left-hand sides are constrained to be solid and only linear reaction rules are allowed, i.e.
sub-terms of parameter d cannot be reordered, discarded or duplicated. This corresponds to having instantiation
map η = Id in Milner’s original definition.

4Note that R is overloaded. It was also used to indicate the control of nodes modelling recovery rooms in
the previous section.

2.7. BiLog 30

for some rule (r, r′) generated from R and some context D. Informally, label L describes
how the environment of an agent a can assist it in triggering reaction R. Observe that there
is an underlying reaction L ◦ a B

R
a′ for every transition a L

B
R
a′. Conversely, every

reaction a B
R
a′ can be interpreted as transition a idJ B

R
a′, where J is the outer interface

of a. This confirms the intuition that there is a reaction only when an agent provides enough
context to trigger it, i.e. the redex matches the agent. Labels turn out to be important to define
bismilarity over agents. We will not use this theory in this thesis.

2.7 BiLog

Bigraphs can be described by BiLog, a spatial logic whose modal operators are capable
of expressing the placing and linking structure of bigraphical terms, in a fashion common to
logics for process calculi, e.g. mobile ambients and the π-calculus. In BiLog, we can express
formulae like A ◦ϕ to describe a node of control A acting as context for a bigraph satisfying
ϕ and (Aa ◦ >)⊗(Bb ◦ >) to describe two places next to each other, with anything inside
and with different names.

The logic was introduced by Conforti, Macedonio and Sassone in [21]. We give a brief
overview in the following. We indicate the set of elementary bigraphs with Ω(K). We often
omit K when an arbitrary signature is presumed. Recall that equality over bigraphical terms
is defined by Axioms (2.1) – (2.6). Formulae in BiLog are given by

Ω ::= idI

∣∣∣ K~x

∣∣∣ join
∣∣∣ 1

∣∣∣ γm,n

∣∣∣ y/X
∣∣∣ /x

ϕ, ψ ::= ⊥
∣∣∣ ϕ⇒ ψ

∣∣∣ id
∣∣∣ Ω

∣∣∣ ϕ ◦ ψ
∣∣∣ ϕ⊗ψ

for each interface I and for each K~x, γm,n, y/X,/x ∈ Ω. The |= relation is defined inductively
as follows:

G |= ⊥ ⇔ never
G |= ϕ⇒ ψ ⇔ G |= ϕ implies G |= ψ

G |= Ω ⇔ G = E and E ∈ Ω

G |= id ⇔ exists I such that G = idI

G |= ϕ ◦ ψ ⇔ exists G0, G1 such that G = G0 ◦G1, with G0 |= ϕ and
G1 |= ψ

G |= ϕ⊗ψ ⇔ exists G0, G1 such that G = G0⊗G1, with G0 |= ϕ

and G1 |= ψ

where all operations on bigraphs are assumed defined. Classical operators >,∧,∨,¬ can be

2.8. Categorical semantics for bigraphs 31

derived as well as the following modalities:

ϕI
def
= ϕ ◦ idI ϕ→J

def
= idJ ◦ ϕ

ϕI→J
def
= (ϕI)→J ϕ ◦I ψ

def
= ϕ ◦ idI ◦ ψ

More advanced operators called adjuncts can also be defined. For example, the left
adjunct ϕ ◦ ψ expresses the property of a term satisfying ψ whenever inserted in a context
satisfying ϕ. The decidability of BiLog is an open question.

2.8 Categorical semantics for bigraphs

Bigraphical structures and their operations can also be expressed in the general framework of
category theory. A short introduction to elementary category theory and its basic notions is
given in Appendix A. In this section we will only present the results needed to cast bigraphs
and their constituents, place and link graphs, as categories.

Let us first recall some notational conventions. We write C,D for categories and C̃, D̃

for precategories. We often denote objects by I, J,K and arrows by f, g, h. If an arrow f

has a domain I and a codomain F , both objects, we write f : I → J . We use C(I → J) to
indicate the homset of I and J , i.e. the set of arrows in C in the form f : I → J . Functors

between categories are written as F : C→ D.

We also recall the definition of s-category, a non-standard kind of category introduced
by Milner to define concrete bigraphical structures and their support within a categorical
semantics. The distinctive feature of an s-category is that composition is a partial operation
and arrows and objects are equipped with symmetries and a tensor product.

Definition 2.1 (s-category). An s-category C̃ is a precategory in which each arrow f is
assigned a finite support |f | ⊂ S. Further, C̃ possesses a partial tensor product, unit and
symmetries, as in an spm category. The identities idI and symmetries γI,J are assigned
empty support. In addition:

• For f : I → J and g : J ′ → K, the composition g ◦ f is defined iff J = J ′ and
|f | ∩ |g| = ∅; then |g ◦ f | = |f |] |f |.

• For f : I0 → I1 and g : J0 → J1, the tensor product f ⊗ g is defined iff Ii⊗ Ji is
defined (i = 0, 1) and |f | ∩ |g| = ∅; then |f ⊗ g| = |f |] |g|.

We begin by defining concrete place graphs, concrete link graphs and concrete bigraphs
as s-categories.

2.8. Categorical semantics for bigraphs 32

Definition 2.8.1 (bigraphical s-categories). Given a signatureK, bigraphical s-categories are
defined as follows:

• Natural numbers and concrete place graphs as given in Definition 2.2.2 are the objects
and the arrows of s-category P̃g(K), respectively. The finite support of each arrow
F is VF . Composition and tensor product are set out in definitions 2.3.1 and 2.3.5,
respectively. The identities are idm and the symmetries are γm,n.

• The s-category L̃g(K) has finite name-sets as objects and concrete link graphs defined
in Definition 2.2.3 as arrows. The finite support of each arrow F is VF] EF . Com-
position and tensor product are given in definitions 2.3.2 and 2.3.6, respectively. The
identities are idX and the symmetries are γX,Y

def
= idX]Y .

• Interfaces 〈m,X〉 and concrete bigraphs as defined in Definition 2.2.4 are the objects
and the arrows of s-category B̃g(K), respectively. The finite support of each arrow F

is VF] EF . Composition and tensor product are given in definitions 2.3.3 and 2.3.7,
respectively. The identities are id〈m,X〉 and the symmetries are γ〈m,X〉,〈n,Y 〉.

The relationships between bigraphical categories can be made formal by means of func-
tors. For instance it is possible to define a forgetful functor FP : B̃g(K) → P̃g(K) that
drops the names from every interface and the link graph from every bigraph in B̃g(K). The
result is s-category P̃g(K). Forgetful functor FL : B̃g(K) → L̃g(K) is defined in a similar
fashion. An important functor is width : B̃g(K)→ Finord, which transforms bigraphs into
functions between finite ordinals. In more detail, for each interface I = 〈m,X〉, it defines
width(I) = m, and for every bigraph F and any site i of F , it defines width(F)(i) to be the
unique root that is an ancestor of i in F .

Another functor based on m-equivalence is used to pass from concrete bigraphs to ab-
stract bigraphs.

Definition 2.8.2 (abstract bigraphs). The m-equivalent quotient Bg(K) = B̃g(K)/m is an
spm category whose objects are those in B̃g(K) and whose arrows Bg(K)(I → J) are
m-equivalence classes of the homset B̃g(K)(I → J). Its construction defines a functor
[·] : B̃g(K)→ Bg(K) called the lean-support quotient functor.

Similar functors for concrete place graphs and concrete link graphs can be defined. Ob-
serve that the properties defining spm categories are captured by Axioms (2.1) and Ax-
ioms (2.6).

When a sorting Σ is considered, we write Bg(Σ) to denote the spm category of abstract
Σ-sorted bigraphs. It is shown in [13] that sortings can be interpreted as functors.

2.9. Stochastic bigraphs 33

The isomorphisms (isos) in Bg(K) are pairs 〈π, α〉 with π a permutation and α a renam-
ing. The epimorphisms (epis) are the bigraphs in which no root and no outer name is idle.
Monomorphisms (monos) are the bigraphs in which no two sites and no two inner names are
siblings.

The theory of BRSs can be interpreted categorically as a special case of wide reactive

systems. See Leifer’s PhD Thesis [42] for a complete account. Moreover, labelled trans-

ition systems over s-categories can also be applied to B̃g(K). This allows for an elegant
definition of a bisimulation that is a congruence. In order to prove this possible, bigraphical
precategories are shown to have relative push-outs (RPOs) and Idem push-outs (IPOs). See
Appendix A for more details.

2.9 Stochastic bigraphs

A stochastic extension of BRSs is introduced in [39] by attaching a stochastic rate to reaction
rules. In this manner, the state space generated by a stochastic BRS (SBRS) can be natur-
ally transformed into a Continuous Time Markov Chain (CTMC), and quantitative reasoning
carried out with tools available for CTMC analysis, e.g. stochastic model checker Prism.
Refer to Appendix B for a formal definition of CTMC. Let us give a more precise idea of the
approach, omitting a few details.

Definition 2.9.1 (stochastic reaction rule). A stochastic reaction rule R is a triple (R,R′, ρ),
sometimes written R ρ

IR′ where (R,R′) is a reaction rule and ρ > 0 is a stochastic rate.

The next step is to associate a rate with each reaction in a given BRS. Since a reaction
may occur with different underlying reaction rules, the contribution of each rule has to be
taken into account. The reaction rate for a rule is obtained as the product of the rate and
the number of distinct occurrences of the rule. This corresponds to the number of distinct
concrete occurrences (see Definition 2.3.10) of a concretion of the rule’s redex in a concretion
of the agent. For a given stochastic reaction rule R = (R,R′, ρ), we define µR[g, g′] to be the
number of distinct occurrences of R̃ in g̃ such that g B

R
g′. Note that it is always possible

to count the occurrences in g because R is solid, and therefore epi and mono. This forces
context D and parameter d to be unique (up to isomorphisms on the mediating interfaces) in
the decomposition g = D ◦ (R⊗ idI) ◦ d.

Definition 2.9.2 (stochastic reaction). Given agents g, g′ and a family of stochastic reaction
rulesR, the rate of a reaction g BR g

′ is given by

rateR[g, g′]
def
=
∑
R∈R

rateR[g, g′] ,

2.10. Other extensions and applications 34

where the reaction rate of g B
R
g′ is defined formally by

rateR[g, g′]
def
= ρ µR[g, g′] .

We often write g ρ
BRg

′ when rateR[g, g′] = ρ.

2.10 Other extensions and applications

Other extensions and refinements to Milner’s definition of bigraphs have been proposed since
their first introduction. We briefly describe two of them in the remainder of this section.

In the first one, the full independence of placing and linking is relaxed by assigning
a locality to some links in a bigraph. Therefore, in this new setting, it matters whether
a link crosses the boundaries of a place. For example, an edge bound to a certain node
can only link ports that lie within that node. The structures defined by this extension are
called binding bigraphs and were formalised in [25]. Their characteristics have been proven
adequate to encode calculi with name binding (e.g. π-calculus) and to model protocols with
security features that enforce communications to take place only within certain boundaries
(e.g. private channels). To uniformly define binding of links, names are also allowed to be
located at roots and sites. Hence, interfaces in binding bigraphs take the form 〈m, ~X,X〉
where m is an ordinal, X a set of names (both local and global) and ~X is a vector indicating
the locations of each local name. For instance, ~X = [{}, {x, y}] occurring in an outer
interface says that local names x, y are located at the second root of the bigraph. Global
names are those that are not assigned to any root or site. They behave like in standard
bigraphs. Composition, tensor product and a normal form were defined for binding bigraphs.

The second extension is presented in [34] and it is called directed bigraphs. It consists
of a new definition of link graphs in which edges are regarded as resources and names are
interpreted as requests of resources. The main novelty is to assign a direction to edges in
order to capture the “resource request flow” which starts from ports, goes through names and
terminates in edges. Consider for instance the composition A ◦ F ◦ B. An inward link in F
from an outer name x to an edge e means that e is a resource offered through x to the context
A. Conversely, an outward link in F form a port p to an inner name y encodes the request of
p through y of a resource in B. Note that other combinations are possible. Directed bigraph
have been used to encode the fusion calculus [35].

2.11. Summary 35

2.10.1 Implementation

One of the primary goals of the development of bigraphs was to model directly phenomena
in ubiquitous computing and biology. However, even prototypical applications tend to be
extremely complex for manual manipulation and analysis. Therefore, software tools are
essential to investigate whether bigraphical models are suitable for use in real deployments.
Milner [47] proposed that such tools should aid modellers and users in three different ways:

• in programming and specifying the model for a system,

• in analysing the behaviour of a system by means of model checking and stochastic
simulations,

• in visualising the components of a system at various levels of abstraction.

The first work in this direction is the the design and implementation of BPL Tool [32],
a prototype implementation of bigraphical reactive systems. It can be used for experiment-
ing with bigraphical models specified in a generic programming language that closely re-
sembles the algebraic form of bigraphical terms. Computation is carried out by a matching
engine [12], based on inference rules, capable of detecting the occurrences of a redex in a
given agent and rewriting it. The BPL tool consists of parser, matching engine, and includes
web and command line user interfaces. The tool has been written in Standard ML. It has
been used to simulate a model of a mobile phone system in a bigraphical representation of
the polyadic π-calculus. Note that binding bigraphs are also supported. A recent extension is
BigMC [53], an explicit-state model checking tool for bigraphical reactive systems based on
the BPL matching engine. A significant limitation of these tools is given by the performance
of the matching engine as well as the lack of support for stochastic bigraphs and automatic
generation of graphical representation of bigraphs. We will explain how we propose to over-
come these issues in Chapter 4 where we introduce an efficient matching engine based on
a SAT encoding and in Chapter 5 where we describe BigraphER, our implementation of
bigraphical reactive systems.

Another tool supporting textual representation, graphical visualization of bigraphs, and
the calculation of redex matchings is DBtk [4], a Tool-Kit for directed bigraphs.

2.11 Summary

In this chapter, we gave an overview of the fundamentals of the theory of bigraphs. We
presented the graphical notation for the representation of bigraphs through several examples
in Section 2.1. Sections 2.2 and 2.3 rigorously defined place graphs, link graphs, bigraphs

2.11. Summary 36

and their operations. A complete axiomatisation for an algebra of bigraphical terms was
given in Section 2.4, where DNF was introduced. Sorting was defined in Section 2.5. Re-
action rules and BRSs were discussed in Section 2.6, while BiLog was introduced in Sec-
tion 2.7. Categories for bigraphical structure were explained in Section 2.8. A stochastic
extension of bigraphs was described in Section 2.9. Other extensions and various imple-
mentations were discussed in Section 2.10.

In the next chapter we will introduce a novel generalisation of place graphs in which
parent map prnt is not restricted to be a function but can also be an acyclic binary rela-
tion. Hence, the underlying spatial model is a DAG instead of a forest. This allows for the
representation of shared localities and overlapping space.

37

Chapter 3

Bigraphs with sharing

In this chapter we introduce bigraphs with sharing, a novel generalisation of Milner’s bi-
graphs in which places may have several parents. This leads to a formulation of place graphs
based on acyclic binary relations instead of the acyclic functions in the original definition. A
preliminary version of this work was presented in [56].

In Section 3.1, we analyse some of the motivations behind the development of bigraphs
with sharing. A comparison with other possible approaches is also provided. Section 3.2
formally presents bigraphs with sharing. We first introduce concrete place graphs with shar-
ing and their operations. Then, we show how to build bigraphs with sharing by using the
new definition of place graphs. Section 3.3 is devoted to the definition of an unambiguous
graphical notation for bigraphs with sharing called stratified notation. Section 3.4 shows
how bigraphs with sharing fit in the general categorical interpretation of bigraphs presented
in Chapter 2. In Section 3.5 we give an axiomatisation and a normal form for bigraphs with
sharing. We also introduce a new algebraic form to express shared places. We discuss how
the introduction of a new formulation of locality affects the other aspects of the theory of
bigraphs in Section 3.6. Some concluding remarks are in Section 3.7.

3.1 Motivation

In this section, we justify the introduction of sharing in three ways. First, we show that a
locality model based on DAGs is often more natural when modelling the physical world.
Second, we observe that roots and sites are treated asymmetrically in the standard definition
of bigraphs. Third, we expose the disadvantages of two possible encodings of sharing that
do not require a full extension of the formalism.

Scenarios in which space is shared among several entities are often encountered in the
literature and even more frequently in the deployments of real applications. For instance,

3.1. Motivation 38

Becker and Dürr in [7] argue that DAGs are a more appropriate spatial model for ubiquitous
systems by presenting an example in which the location hierarchy of a building cannot be
easily expressed by a forest. In particular, their model has entities modelling rooms that
belong both to a floor and to a wing i.e. rooms are shared. Other examples are overlapping
wireless signals, attention space of different individuals and biological processes. We will
show in detail some models using sharing in Part II.

The asymmetry in standard place graphs becomes evident by observing that a node can
have zero or more children, while it can only have one parent. From a more abstract point of
view, this limitation implies that category Pg(K) is not self-dual. Namely, if we take a place
graph F : m → n, we swap the roots with the sites, and we take the inverse of the parent
relation, we obtain a structure that is not a valid place graph. This asymmetry also arises in
the definition of epi and mono place graphs.

We now explain in detail why we choose to extend the original definition of bigraphs,
rather than encode sharing within the standard formalism. There are two possible encodings.

The first is to introduce dummy controls to represent intersections of nodes. For instance,
if nodes A and B share a region, their intersection is represented as a separate node of control
A ∩ B. A graphical representation is given in Figure 3.1b. The immediate consequence
of this approach is that place graphs are still representable by forests. However, a major
disadvantage is that the number of dummy nodes to be added grows exponentially with the
number of intersecting nodes. Moreover, this encoding is not complete because it cannot
represent sharing when no nodes are involved. To prove this, consider the example of a C-
node shared by two regions. It is possible to create a dummy region containing C, however
we cannot assign a control to it. Hence, we lose track of who was sharing the node. This can
be a limiting factor especially in the definition of reaction rules. Another shortcoming is that
a node shared between A and B is placed inside the dummy node A ∩ B, thus both A and B

appear as if they do not have a child. This is not desirable especially when formation rules in
place sortings or BiLog predicates specify properties on the absence or presence of parents
or children.

The second encoding consists of keeping a copy of a shared node inside each of its
parents and connecting the copies with a special link. For example, when a node C is shared
between A and B, both A and B contain a node of control C and the two Cs are linked
together. This is drawn in Figure 3.1c. Note that control C is defined exactly as C but
with an extra port to handle the special link. However, this approach does not allow one
to express sharing without nodes, e.g. two nodes sharing a site, and nodes or sites with no
parents. Another disadvantage of this approach is that links are used to represent locality
instead of connectivity, going against the spirit of bigraphs, in which the two notions are
kept distinct. Finally, a problem arises when occurrences have to be counted, for example

3.2. Formal definition 39

A

C

B
(a)

A

C

BA ∩ B

(b)

A

C

B

C

(c)

Figure 3.1: An example of a bigraph with sharing (a) and two possible encodings (b) and (c)

for the computation of a reaction rate in a stochastic BRS. In stochastic BRS, a shared node
is copied (thus counted) n times, where n is the number of sharing nodes. Therefore, a new
definition of reaction rate would be required.

Our extension yields several advantages. First, its completeness allows for the represent-
ation of arbitrary place graphs with sharing. Second, the modelling phase is more natural
and immediate, because no additional links, copies of nodes and controls have to be intro-
duced. Third, the structure of place graphs with sharing appears to have many similarities
with standard categorical notions as we will show in the next sections. In particular, it makes
places graphs self-dual.

3.2 Formal definition

In the previous section we justified why the locality concept of standard bigraphs should be
updated by allowing sharing of places. In this section we present formally our extension.

We start off by introducing some notational conventions. Given a binary relation rel ⊆
A×B, we denote the domain restriction of rel over S ⊆ A by S C rel. Similarly, we write
rel B S for the range restriction of rel over S ⊆ B. Finally, it is worthwhile to recall the
definition of composition between two binary relations rel0 ⊆ B × C and rel1 ⊆ A×B:

rel0 ◦ rel1
def
= {(a, c) ∈ A× C | ∃b.((a, b) ∈ rel1 ∧ (b, c) ∈ rel0)} .

3.2. Formal definition 40

3.2.1 Concrete place graphs with sharing

The first step towards a formal definition of bigraphs with sharing is the introduction of a
generalised version of concrete place graphs in which a place may have several parents. This
is defined as follows:

Definition 3.2.1 (concrete place graph with sharing). A concrete place graph with sharing

F = (VF , ctrlF , prntF) : m→ n

is a triple having an inner face m and an outer face n. These index respectively the sites and
roots of the place graph. F has a finite set VF ⊂ V of nodes, a control map ctrlF : VF → K,
and a parent relation

prntF ⊆ (m] VF)× (VF] n)

which is acyclic i.e. if (v, v) ∈ prntiF for some v ∈ VF then i = 0.

Note that the only difference with Definition 2.2.2 is that prntF is now a binary relation
instead of a function. This modification is sufficient to allow for places to have zero or more
parents. Namely, it is possible to have a place v ∈ m] VF such that a 6= v for every
(a, b) ∈ prntF . It is also allowed to have (v, a), (v, b) ∈ prntF with a 6= b for some places
a, b ∈ VF] n. Any place having more than one parent is said to be shared. A place with
no parents is called an orphan. Two places with a common parent and two places with a
common child, are called siblings and partners, respectively. We define the ancestor relation
prnt+F to be the transitive closure of prntF .

Consider example place graph with sharing BP : 2 → 3 drawn in Figure 3.2. The
graphical representation highlights the fact that the underlying spatial model is a DAG. The
node set is VG = {v0, v1, v2} and the parent relation is

prnt = {(0, v0), (0, v2), (1, v2), (v2, v0), (v2, v1), (v2, 0), (v0, 0), (v0, 2)} .

Nodes v0, v1 are partners because they share node v2. Node v1 is an orphan. Observe that
prnt is not necessarily transitive since the parent of a place v may not be the parent of
v’s children. In the example, for instance, a parent of site 0 is v0 and root 0 is a parent
of v0. However, root 0 is not a parent of site 0. On the other hand, we also have that
(v2, v0), (v0, 0) ∈ prnt and also (v2, 0) ∈ prnt.

3.2.2 Operations for place graphs with sharing

The second step is to define composition and tensor product for place graphs with sharing.
We also have to prove that these operations have the same properties enjoyed by their coun-

3.2. Formal definition 41

0

��

��

1 2

xx
v0

��

��

v1

��
v2

����
0 1

Figure 3.2: Example concrete place graph with sharing BP : 2→ 3.

terparts in the standard definition of bigraphs, i.e. composition and tensor product are asso-
ciative and identities are their neutral elements. Composition for place graphs with sharing
is based on composition for binary relations.

Definition 3.2.2 (composition for place graphs with sharing). If F : k → m and G : m→ n

are two concrete place graphs with sharing with VF ∩ VG = ∅, their composite

G ◦ F = (V, ctrl, prnt) : k → n

has nodes V = VF] VG and control map ctrl = ctrlF] ctrlG. Its parent relation prnt ⊆
(k] V)× (V] n) is given by:

prnt
def
= prntCG] prnt◦] prntBF

where

prntBF = prntF B VF prntCG = VG C prntG

prnt◦ = (mC prntG) ◦ (prntF Bm) .

We describe in words the three components of prnt. Relation prntBF is the set of edges
in F from a place to a node. Since no roots are present in these edges, the relation is left
unchanged by the composition. Similarly, prntCG is the set of edges in G from a node to a
place. In this case, there are no edges from a site in m, thus the relation is unaffected by the
composition. Finally, relation prnt◦ is the composition in which the edges of F terminating
inm and the edges ofG originating inm are fused together. Consider the following example
of composition.

Example 3.2.1. Let place graphs G : 2 → 1, F : 2 → 2 and their composition G ◦ F as in
Figure 3.3. The parent relations for place graphs G and F are

prntG = {(0, v0), (1, v1), (v2, v0), (v0, 0), (v1, 0)} ,

prntF = {(0, 0), (0, w0), (1, w2), (w0, 0), (w0, 1), (w2, 0), (w2, w1), (w1, 1)} .

3.2. Formal definition 42

0

~~
v0

��

��

v1

��

v2

0 1

(a) G : 2→ 1

0

��

��

��

1

��xx
w0

��

w1

��
w2

��
0 1

(b) F : 2→ 2

0

~~
v0

��

��

%%

v1

��tt

v2

w0

��

w1

��
w2

��
0 1

(c) G ◦ F : 2→ 1

Figure 3.3: Example of composition for concrete place graphs with sharing.

To construct the parent relation for the composed place graph G ◦ F we first define the
following relations:

prntCG ⊆ VG × (VG] 1) = {(v2, v0), (v0, 0), (v1, 0)} ,

prntBF ⊆ (2] VF)× VF = {(0, w0), (1, w2), (w2, w1)} ,

prnt◦ ⊆ (2] VF)× (VG] 1) = {(0, v0), (w0, v0), (w0, v1), (w2, v0), (w1, v1)} .

Their union gives rise to the parent relation

prnt = prntCG] prnt◦] prntBF . �

We now prove that composition for place graphs with sharing enjoys the same properties
of composition for standard place graphs. These results will be used in Section 3.4. We
begin by proving associativity.

Proposition 3.2.1 (associativity of composition). If A : m→ n, B : k → m, C : h→ k are

three concrete place graphs with sharing with disjoint node sets, then

A ◦ (B ◦ C) = (A ◦B) ◦ C .

Proof. Let us define A ◦ (B ◦ C) = G0 and (A ◦ B) ◦ C = G1. Since the node sets
VA, VB, VC are all disjoint and the domains are all compatible, then by Definition 3.2.2 all
the composition are defined. We have to prove that G0 = G1. Again by Definition 3.2.2,
G0, G1 : h→ n,

VG0 = VG1 = VA] VB] VC
ctrlG0 = ctrlG1 = ctrlA] ctrlB] ctrlC .

3.2. Formal definition 43

It remains to prove that prntG0 = prntG1 . Since both relations are sub-sets of (h] VG0) ×
(VG0] n), we have to show that (v, w) ∈ prntG0 if and only if (v, w) ∈ prntG1 for every
element (v, w). The parent relations are defined as

prntG0 = prntCA] prnt◦] prntBB◦C (3.1)

prntG1 = prntCA◦B] prnt′◦] prntBC . (3.2)

To analyse the single components we also compute the parent relations for the compositions
B ◦ C and A ◦B:

prntB◦C = prntCB] prntBC◦] prntBC
prntA◦B = prntCA] prntAB◦] prntBB .

Therefore,

prntBB◦C = prntB◦C B (VB] VC)

= (prntCB] prntBC◦] prntBC)B (VB] VC)

= (prntCB B (VB] VC))] (prntBC◦ B (VB] VC))

] (prntBC B (VB] VC))

= (VB C prntB B VB)] (prntBC◦ B VB)] prntBC

and similarly

prntCA◦B = prntCA] (VB C prnt
AB
◦)] (VB C prntB B VB) .

Then (3.1) and (3.2) can be rewritten as

prntG0 = prntCA] prnt◦] (VB C prntB B VB)] (prntBC◦ B VB)] prntBC
prntG1 = prntCA] (VB C prnt

AB
◦)] (VB C prntB B VB)] prnt′◦] prntBC .

Hence, to prove that prntG0 = prntG1 we have to show that

prnt◦] (prntBC◦ B VB) = (VB C prnt
AB
◦)] prnt′◦

holds. We start by proving⇒. We have the following cases:

1. If (v, w) ∈ prnt◦ then there exists aw′ ∈ m such that (v, w′) ∈ prntB◦C and (w′, w) ∈
prntA, where v ∈ h] VC] VB and w ∈ VA] n. There are two sub-cases:

(a) If v ∈ VB then (v, w′) ∈ prntB. Therefore, (v, w) ∈ (VB C prntAB◦).

3.2. Formal definition 44

(b) If v ∈ h]VC then there exists aw′′ ∈ k such that (v, w′′) ∈ prntC and (w′′, w′) ∈
prntB. But then (w′′, w) ∈ prntA◦B. It follows that (v, w) ∈ prnt′◦.

2. If (v, w) ∈ (prntBC◦ B VB) then there exists a w′ ∈ k such that (v, w′) ∈ prntC and
(w′, w) ∈ prntB, where v ∈ h] VC and w ∈ VB. But we also have that (w′, w) ∈
prntA◦B. Hence, (v, w) ∈ prnt′◦.

The proof for⇐ is symmetric. This concludes the proof.

Identities are given in Definition 2.3.4. In the presence of sharing, the parent relation Idm

is interpreted as a binary relation. We now prove that identities are the neutral elements for
composition of concrete place graphs with sharing.

Proposition 3.2.2 (neutral elements for composition). For any concrete place graph with

sharing G : m→ n the following holds

G ◦ idm = G = idn ◦G .

Proof. All the compositions are defined and Vidm = Vidn = ∅. The composite G ◦ idm =

(V, ctrl, prnt) is defined according to 3.2.2. In particular, we have V = VG]∅, ctrl = ctrlG

and
prnt = prntCG] prnt◦] (Idm B ∅) .

But, Idm B ∅ = ∅ and

prnt◦ = (mC prntG) ◦ (IdBm) = mC prntG .

It follows that prnt = prntG and thenG◦ idm = G. The proof for idn◦G = G is similar.

Also the formal definition of tensor product for concrete place graphs with sharing has
to be slightly changed.

Definition 3.2.3 (tensor product for place graphs). If G0 : m0 → n0 and G1 : m1 → n1 are
two concrete place graphs with sharing with disjoint supports, their tensor product

G0⊗G1 = (V, ctrl, prnt) : m0 +m1 → n0 + n1

has nodes V = VG0] VG1 and control map ctrl
def
= ctrlG0] ctrlG1 . Its parent relation

prnt ⊆ ((m0 +m1)] V)× (V] (n0 + n1)) is defined as follows:

prntG0] prnt
(m0,n0)
G1

3.2. Formal definition 45

where,

prnt
(m0,n0)
G1

= {(v, w) | (v, w) ∈ prntG1 and v, w ∈ VG1}

] {(m0 + i, w) | (i, w) ∈ prntG1 , w ∈ VG1 and i ∈ m1}

] {(v, n0 + i) | (v, i) ∈ prntG1 , v ∈ VG1 and i ∈ n1}

] {(m0 + i, n0 + j) | (i, j) ∈ prntG1 , i ∈ m1 and j ∈ n1} .

In words, it states that the parent relation of the place graph on the right-hand side (i.e.
G1) is shifted to the right by adding m0 to every site and n0 to every root. Therefore, tensor
product is not commutative. As for composition, we prove that tensor product enjoys asso-
ciative property and has neutral elements.

Proposition 3.2.3 (associativity of tensor product). If A : m0 → n0, B : m1 → n1, C :

m2 → n2 are three concrete place graphs with sharing with disjoint node sets, then

A⊗ (B ⊗ C) = (A⊗B)⊗ C .

Proof. Let us define A⊗ (B⊗C) = G0 and (A⊗B)⊗C = G1. Since the node sets are all
disjoint, by Definition 3.2.3, all the products are defined. We have to prove that G0 = G1.
Associativity of] and + assures that

VG0 = VG1 = VA] VB] VC
ctrlG0 = ctrlG1 = ctrlA] ctrlB] ctrlC
m = m0 + (m1 +m2) = (m0 +m1) +m2

n = n0 + (n1 + n2) = (n0 + n1) + n2 .

It remains to prove that prntG0 = prntG1 . By construction the following equalities hold:

prntG0 = prntA] prnt(m0,n0)
B⊗C prntG1 = prntA⊗B] prnt(m0+m1,n0+n1)

C

with

prntB⊗C = prntB] prnt(m1,n1)
C prntA⊗B = prntA] prnt(m0,n0)

B .

Hence, we have

prntG0 = prntA] prnt(m0,n0)
B] prnt(m0+m1,n0+n1)

C = prntG1 .

Proposition 3.2.4 (neutral element for tensor product). For any concrete place graph with

3.3. Graphical notation 46

sharing G : m→ n the following holds

G⊗ id0 = G = id0 ⊗G .

Proof. Immediate from prntid0 = ∅.

Summarising, we proved that composition for concrete place graphs with sharing is as-
sociative with identities as neutral elements. Moreover, tensor product for concrete place
graphs with sharing is also associative with id0 as neutral element.

3.2.3 Bigraphs with sharing

At this point we have all the elements to define formally bigraphs with sharing. Observe that
links and names are unaffected by the introduction of overlapping places. Therefore, link
graphs in bigraphs with sharing are defined in the standard way. A concrete bigraph with
sharing G : 〈m,X〉 → 〈n, Y 〉 is a pair 〈GP, GL〉 with GP a place graph with sharing and GL

a link graph. Operations on bigraphs with sharing are given by the corresponding operations
on their constituents. Also the definition of support for bigraphs with sharing is analogous
to the one presented in the previous chapter. We can then define abstract bigraphs with
sharing as m-equivalence classes of concrete bigraphs with sharing. Finally, symmetries for
bigraphs with sharing are defined as for standard bigraphs (see (2.5)) but parent map prnt is
interpreted as a binary relation.

3.3 Graphical notation

Bigraphs with sharing can be represented by using a modified version of the nesting diagrams
for standard bigraphs introduced in Chapter 2 in which intersecting nodes and roots are
allowed.

An example nesting diagram of bigraph B : ε → 〈1, y〉 is drawn in Figure 3.4a. The
linkage between ports and names is represented by green edges as in the standard graphical
notation. The node of control D is shared by the B and C-nodes. This is shown graphically
by placing D within the intersection of B and C. Analogously, the E-node is shared by the
A, B and C-nodes, so it is in the corresponding intersection. The F-node is not shared thus it
is placed within the boundaries of its only parent C but outside the intersections with B and
A. Finally, the G-node is an orphan and it is placed outside the bigraph. Hence, it has no
parents.

3.3. Graphical notation 47

A

B C

G

E

D
F

y

(a)

A B C

D E F G

y

(b)

Figure 3.4: Graphical forms for bigraph B : ε → 〈1, y〉: nesting diagram (a) and stratified diagram
(b).

AB

=

AB

(a)

0

��

��
A
��
0

(b)

Figure 3.5: Disadvantages of Venn diagram style notation.

This notation recalls Venn diagrams and it is adequate to quickly specify simple models.
However, it can be difficult to draw all the possible intersections when there are several (more
than three) intersecting nodes. Moreover, there are other two major drawbacks:

• Empty intersections are meaningless (see 3.5a). These arise especially when there are
more than two nodes overlapping. For instance, the intersection between the A and
C-nodes in the previous example.

• It is impossible to represent a node sharing a place with one of its ancestors (see 3.5b).

To overcome these limitations, a new graphical form, called stratified notation, is in-
troduced. In this notation, we make explicit how places are shared. An example stratified
representation of bigraph B : ε → 〈1, y〉 is given in Figure 3.4b. Nodes are organised in
two different layers. The bottom one contains the children (nodes and sites), while the top
one contains their parents (nodes and roots). In the example, nodes D, E, F, G and A, B, C,
respectively. Each node in the bottom layer is placed into a different region. This allows the
nodes to be shared by different combinations of parents. Each parent node in the top layer
contains a site. The nesting of the nodes is specified by the dashed edges connecting the two
layers. In the example, the first region containing the D-node is connected to the sites in the
B and C-nodes. This models the fact that D is shared by B and C. The orphan node G has a
place closure, hence there are no edges connecting its region to the top layer. The represent-
ation of links is not changed. Note that with this notation meaningless intersections are not

3.4. Categories of bigraphs with sharing 48

represented. In particular they do not arise because empty regions are not allowed to occur
in the bottom layer. When a bigraph has a more complex nesting structure, it is possible to
use more than two layers. This allows, for instance, for the representation of bigraphs with
place graphs similar the one in Figure 3.5b.

The stratified notation is also important because it is related to the normal form for bi-
graphs with sharing we will introduce in Section 3.5. Moreover, automated drawing tools for
bigraphs with sharing are based on this notation (refer to Chapter 5). In the following, we
will use nesting diagrams for the representation of bigraphs with sharing. We assume that
empty intersections mean nothing and that nodes cannot share a place with their ancestors.
We will use the stratified notation only when particularly complex bigraphs arise or when
these assumptions have to be dropped.

3.4 Categories of bigraphs with sharing

As for standard bigraphs, it is possible to define bigraphs with sharing in the general frame-
work of category theory. We begin by proving that concrete place graphs with sharing form
an s-category. To do so, we first have to prove that they can be interpreted as a precategory.

Definition 3.4.1 (precategory of concrete place graphs with sharing). Given a signature K,
S̃Pg(K) is the precategory whose arrows are concrete place graphs with sharing as given in
Definition 3.2.1 and objects are finite ordinals. Identities are place graphs idm : m→ m and
composition is set out in Definition 3.2.2.

Proof. By Definition 3.2.2, composition is a partial operation. Moreover, given G : m→ n

and F : k → m′, when G ◦ F is defined then m = m′. Additionally, Propositions 3.2.1
and 3.2.2 prove that composition is associative and identities are its neutral elements, re-
spectively.

Before presenting the main result, we prove bifunctoriality of tensor product for concrete
place graphs with sharing. We have two propositions. The first is the following:

Proposition 3.4.1 (bifunctoriality 1). If A0 : n0 → n1, A1 : n1 → n2, B0 : m0 → m1 and

B1 : m1 → m2 are four concrete place graphs with sharing with disjoint node sets, then

(A1 ⊗B1) ◦ (A0 ⊗B0) = (A1 ◦ A0)⊗ (B1 ◦B0) .

Proof. Define (A1 ⊗ B1) ◦ (A0 ⊗ B0) = G0 and (A1 ◦ A0) ⊗ (B1 ◦ B0) = G1. By Defini-

3.4. Categories of bigraphs with sharing 49

tions 3.2.2 and 3.2.3, we have

VG0 = VG1 = VA0] VA1] VB0] VB1

ctrlG0 = ctrlG1 = ctrlA0] ctrlA1] ctrlB0] ctrlB1 .

It remains to prove that prntG0 = prntG1 . By construction we have

prntG0 = prntCA1⊗B1
] prnt◦] prntBA0⊗B0

(3.3)

where the sub-sets are given by

prntCA1⊗B1
= prntCA1

] prnt(,n2)C
B1

prntBA0⊗B0
= prntBA0

] prnt(n0,)B
B0

and
prntG1 = prntA1◦A0] prnt

(n0,n2)
B1◦B0

(3.4)

with

prntA1◦A0 = prntCA1
] prntl◦] prntBA0

prnt
(n0,n2)
B1◦B0

= prnt
(,n2)C
B1

] prnt(n0,n2)r
◦] prnt(n0,)B

B0
.

We write prnt(,n2)C
B1

and prnt(n0,)B
B0

to highlight the fact that these sets do not contain pairs
with sites and roots to be shifted to the right. By equating the left-hand sides of (3.3) and
(3.4), we obtain

prnt◦ = prntl◦] prnt(n0,n2)r
◦ (3.5)

By expanding the left-hand side, the equation can be rewritten as follows

prnt◦ = ((n1 +m1)C prntA1⊗B1) ◦ (prntA0⊗B0 B (n1 +m1))

= ((n1 +m1)C (prntA1] prnt
(n1,n2)
B1

))

◦ ((prntA0] prnt
(n0,n1)
B0

)B (n1 +m1))

= ((n1 C prntA1)] ((n1 +m1)C prnt(n1,n2)
B1

))

◦ ((prntA0 B n1)] (prnt
(n0,n1)
B0

B (n1 +m1)))

= ((n1 C prntA1) ◦ (prntA0 B n1))

] (((n1 +m1)C prnt(n1,n2)
B1

) ◦ (prnt
(n0,n1)
B0

B (n1 +m1)))

= prntl◦] prnt(n0,n2)r
◦ .

This concludes the proof.

The second proposition is as follows:

3.4. Categories of bigraphs with sharing 50

B̃g(K)

I′

��

[·] //

F′P

%%

Bg(K)

I
��

FP

%%
P̃g(K)

[·] //

I′

��

Pg(K) width //

I

��

Finord

I

��

S̃Bg(K)
[·] //

F′P %%

SBg(K)

FP %%
S̃Pg(K)

[·]
// SPg(K)

width

BB

W
//Rel

Figure 3.6: Bigraphical categories.

Proposition 3.4.2 (bifunctoriality 2). If idm and idn are two place graphs with sharing then

idm ⊗ idn = idm⊗n .

Proof. The parent relations are Idm+n and Idm⊗n. Sincem⊗n = m+nwe have equality.

We now can cast concrete place graphs with sharing to s-categories:

Proposition 3.4.3. Given a signature K, precategory S̃Pg(K) equipped with a finite sup-

port VF for every arrow F : m → n, a partial tensor product like in Definition 3.2.3 and

symmetries γm,n, is an s-category.

Proof. Immediate. We already proved bifunctoriality of tensor product. Since symmetries
are defined like in P̃g(K), it is routine to prove that the same properties hold.

We proved that concrete place graphs with sharing belong to the same kind of category of
P̃g(K). Therefore, S̃Pg(K) together with L̃g(K) can be used to form s-category S̃Bg(K)

of concrete bigraphs with sharing. The spm category of abstract bigraphs with sharing is
then obtained by applying a lean-support quotient functor [·] : S̃Bg(K)→ SBg(K) defined
like in standard bigraphs. Usual forgetful functors like FP : SBg(K) → SPg(K) and
FL : SBg(K)→ Lg(K) can also be defined. Since functions are binary relations, Pg(K) is
a sub-category of SPg(K). This relationship between the two categories is made explicit by
inclusion functor I : Pg(K) → SPg(K). Following the same argument, P̃g(K) is a sub-
category of S̃Pg(K) with I′ acting as inclusion functor. The relationships between SPg(K)

and other categories are summarised in Figure 3.6. By an abuse of notation, we write I, I′ to
indicate inclusion functors, FP,F′P for functors projecting into place graphs, and [·] to denote
m-quotient functors.

In the previous chapter, we discussed the close relationship between categories Bg(K)

and Finord. In particular, we defined a functor width which allows to interpret any bigraph

3.4. Categories of bigraphs with sharing 51

as a function between ordinals. When considering SBg(K), we can build a similar functor
to move from bigraphs with sharing to the category of binary relations between ordinals Rel.
Formally, we define a functor W : SPg(K) → Rel that acts as the identity on objects and
is defined on every arrow GP : m→ n as follows:

W(G) = {(i, j) | i ∈ m ∧ j ∈ n ∧ (i, j) ∈ prnt+G} .

Note that Rel corresponds to the class of node-free place graphs with sharing. This fact will
be exploited in the following section when we will define an axiomatisation for bigraphs with
sharing. It is also possible to move directly to Finord by mapping every site of a bigraph
with sharing to the set of its root ancestors. Formally, for every arrow GP : m → n and for
every site i ∈ m we define

width(G)(i) = j such that j ∈ 2n and ∀x ∈ j.(i, x) ∈ prnt+G .

Consider for instance the place graph with sharing given below

F : 2→ 2

0

��
1

��

zz
K
��
0 1

By applying width we obtain

width(F)(0) = {0, 1} width(F)(1) = {1} .

Since ordinal 22 = {∅, {0}, {1}, {0, 1}} = {0, 1, 2, 3}, the previous result can be rewritten
as a function between ordinals:

width(F)(0) = 3 width(F)(1) = 2 .

Therefore, the existence of width and FP : SBg(K) → SPg(K) proves that SBg(K) is a
wide category.

An important property of SPg(K) is self-duality. This can be proved by showing that
the inverse of any arrow is still a place graph with sharing. In more detail, for every arrow
G : m → n we can construct its inverse arrow Gop : n → m in which sites and roots
are swapped, prntGop = prnt−1

G , and Gop is itself an arrow of SPg(K). Note that place
graphs without sharing are not self-dual. If we try for instance to construct the inverse of
join : 2 → 1, we obtain prnt−1(0) = 0 and prnt−1(0) = 1 which is not a function.
Therefore joinop is not an arrow of Pg(K).

3.4. Categories of bigraphs with sharing 52

We can now characterise epis and monos in SPg(K). There are two considerations that
help understanding their definitions. The first one is that epis are the inverse arrows of monos,
and vice versa, due to self-duality of place graphs with sharing. The second consideration is
that epis (monos) in place graphs with sharing are also epis (monos) in standard place graphs,
since Pg(K) is a sub-category of SPg(K). Also recall that epis in Rel are surjective partial
functions.

Proposition 3.4.4 (epis for place graphs with sharing). A concrete place graph with sharing

is epi iff no root is idle and no two roots are partners.

Proof. Recall that B : m → n is epi if B0 ◦ B = B1 ◦ B implies B0 = B1 for any
B0, B1 : n→ h.

We start by proving ⇒. Assume B is epi; we prove that it has no idle roots (i) and no
two roots are partners (ii).

(i) Suppose there is an idle root. Without loss of generality we set root 0 ∈ n idle. Pick
B0, B1 : n→ n− 1 as below

B0

0

����
···

n−1

��
0 1 n

B1

0

��
···

n−1

��
0 1 n

Then B0 6= B1 but B0 ◦B = B1 ◦B, contradicting B is epi.

(ii) Suppose roots 0, 1 ∈ n are partners. Pick B0, B1 as in the previous case. Then B0 6=
B1 but B0 ◦B = B1 ◦B, contradicting B is epi.

Now we prove⇐. Assume B has no idle roots and no two roots are partners; we prove
it to be epi. Let B0 ◦B = B1 ◦B. Then B0 and B1 have the same nodes and control map; so
to prove B0 = B1 we have to show that prntB0 = prntB1 . By definition of composition for
place graphs with sharing, equality prntB0◦B = prntB1◦B leads to

prntCB0
] prnt◦ = prntCB1

] prnt′◦ . (3.6)

Assume prntCB0
6= prntCB1

. Then we have two cases:

1. There exists an element (v, w) ∈ prntCB0
(i.e. with v ∈ VB0) such that (v, w) 6∈ prntCB1

.
Then by (3.6), (v, w) ∈ prnt′◦. But by construction of prnt′◦, v ∈ VB] m. Hence,
v 6∈ VB0 . This is a contradiction.

2. There is an element (v, w) ∈ prntCB1
such that (v, w) 6∈ prntCB0

. By contradiction as
in the previous case.

3.4. Categories of bigraphs with sharing 53

This proves prntCB0
= prntCB1

. Together with (3.6), it implies prnt◦ = prnt′◦. By expanding
the two terms, we can write

(nC prntB0) ◦ (prntB B n) = (nC prntB1) ◦ (prntB B n) .

By hypothesis, B has no idle roots and no two roots are partners. Therefore prntB B n is a
surjective partial function. Thus, it is epi in Rel. It follows that (nCprntB0) = (nCprntB1).
Since

(nC prntBi)] prntCBi = prntBi i = 0, 1 ,

we proved prntB0 = prntB1 . This concludes the proof.

Proposition 3.4.5 (monos for place graphs with sharing). A concrete place graph with shar-

ing is mono iff no two sites are siblings and no site is an orphan.

Proof. Immediate by invoking self-duality of SPg(K). Observe that orphan sites and sib-
lings correspond to idle roots and partners, respectively.

Epis and monos in SBg(K) are the arrows in which both the place graph and the link
graph are epi and mono, respectively.

We conclude this section by showing, with an example, that it is not always possible to
build RPOs in concrete place graphs with sharing. Before presenting this result, we recall
some notation and terminology. We use ~F to denote a pair F0 : m0 → n0, F1 : m1 → n1 of
concrete place graphs with sharing. If m0 = m1 = m the pair is a span, if n0 = n1 = n it
is a cospan. This is indicated by writing ~F : m → ~n and ~F : ~m → n, respectively. We call
cospan ~G a bound for span ~F if G0 ◦ F0 = G1 ◦ F1. Refer to Appendix A for the definition
of RPOs.

Example 3.4.1. Consider span ~A : 1 → ~n bounded by cospan ~D : ~n → 1 as given in Fig-
ure 3.7. Interfaces n0 and n1 are 3 and 2, respectively. By applying a construction procedure
similar to the one defined by Milner for standard concrete place graphs, it is possible to build
a candidate RPO (~H,H) for ~A relative to ~D as given in Figure 3.8. Informally,H is obtained
by “cutting” D0 and D1 as low as possible so that the two bigraphs above the cut line are the
same. Hence, place graph H is the biggest common part of D0 and D1:

D0 = H ◦H0 D1 = H ◦H1 .

Now pick relative bound (~K,K) shown in Figure 3.9. By construction, we have that

D0 = K ◦K0 D1 = K ◦K1 .

3.4. Categories of bigraphs with sharing 54

D0 0

�� !!
v3

��

v4

}} ��
0 1 2

D1 0

�� !!
v3

��

v4

}}

��

v1

��
0 1

A0 0

��

1

��

2

v1

��

!!
v2

0

A1 0

��

!!

1

��
v2

0

~D ◦ ~A

0

�� !!
v3

��

v4

��

}}
v1

��

!!
v2

0

Figure 3.7: Span ~A, bound ~D and their composite D0 ◦A0 = D1 ◦A1.

H0 0

��

1

�� ��
0 1 2

H1 0

��

1

��

v1

��
0 1

H 0

�� !!
v3

��

v4

}} ��
0 1

Figure 3.8: Candidate RPO (~H,H) from ~A to ~D.

K0 0

��

1

��

2

v3

��

v4

}} ��
0 1 2

K1 0

��

1

��

2

~~
v3

��

v4

}}

��

v1

��
0 1

K 0

�� ��
0 1 2

Figure 3.9: Relative bound (~K,K) from ~A to ~D.

3.5. Algebraic form 55

0

��

1

��

2

v3

��

v4

}} ��
0 1

(a)

0

��

1

��

2

~~
v3

��

v4

}} ��
0 1

(b)

Figure 3.10: Tentative bigraphs for K̂.

In order for (~H,H) to be an RPO, there must be a unique place graph K̂ such that

K0 = K̂ ◦H0 K1 = K̂ ◦H1 H = K ◦ K̂ .

But such K̂ cannot exist. If we chose to pick the bigraph in Figure 3.10a, then K1 6= K̂ ◦H1.
On the other hand, if the bigraph given in Figure 3.10b is chosen instead, then K0 6= K̂ ◦H0.
This is because the pair (v4, 2) has to be in prntK̂ in order to be compatible with K1, while it
must be absent in order to have K0’s idle root 2. Therefore, (~H,H) is not an RPO. Observe
that even by choosing a different candidate, it is always possible to build a bound such that
the construction of K̂ is impossible. Thus, we can conclude that ~A does not have RPOs
relative to ~D. �

Proposition 3.4.6 (concrete place graphs with sharing lack RPOs). In S̃Pg(K) there is a

span ~A of concrete place graphs with sharing, and a bound ~D for it, such that no RPO exists

from ~A to ~D.

Proof. Immediate by taking ~A and ~D as in the previous example.

It follows that RPOs do not exist in general for S̃Bg(K). This may appear as a severe
disadvantage of bigraphs with sharing since RPOs are essential to derive labels in labelled
transition systems and to handling behavioural equivalence in bigraphs. Note, however, that
this is not the case because RPOs do always exist in the sub-precategory of epimorphic place
graphs with sharing, S̃Pg

e
(K). This and the fact that the redex in a reaction rule must be

epimorphic allows for the derivation of labelled transition systems also in the presence of
sharing.

3.5 Algebraic form

In this section we show that bigraphs with sharing can be expressed by means of composition
and tensor product starting from a minimal set of elementary building blocks. This results in
an algebraic form similar to the one introduced for standard bigraphs in the previous chapter.

3.5. Algebraic form 56

id1 :
0

��
0

join :
0

�� ��
0 1

split :
0

��

1

��
0

1 :
0

0 :

0

γ1,1 :
0

��

1

��
0 1

K :

0

��
K

��
0

Figure 3.11: Elementary place graphs.

Two new elementary place graphs are required: 0 : 1 → 0 and split : 1 → 2. They are the
dual bigraphs of 1 : 0 → 1 and join : 2 → 1, respectively. They are essential to represent
orphans and shared places. The entire set of elementary place graphs is summarised in
Figure 3.11. Node-free place graphs with sharing, again called placings, are ranged over by
φ, ψ, We indicate a placing with one site and n roots by splitn. Note that split0 = 0,
split1 = id1 and split2 = split.

In the following, B,G, ω, ψ, etc are treated as expressions for bigraphs, but equality ‘=’
is semantical, i.e. B = B′ means that B and B′ denote the same bigraph and not that they
are identical expressions. Formally, this is a shorthand for the more verbose |= B = B′.

Proposition 3.5.1. Every place graph with sharing can be expressed as an expression con-

taining only the elementary place graphs given in Figure 3.11 as constants and composition

and tensor product as operators.

Proof. We prove the proposition by induction on the number of nodes of the place graph
with sharing. For the base case we show that node-free place graphs, i.e. placings, satisfy the
proposition. A placing ψ : m→ n may be expressed as

ψ = (mergen0 ⊗ · · ·⊗mergenn−1) π (splitm0 ⊗ · · ·⊗ splitmm−1)

where
∑

imi = m,
∑

i ni = n′ and π : n′ → n′ is a permutation. Since a permutation may
be generated by composition and tensor product of symmetries γm,n, the proposition holds.

Now, let B : m → n be a place graph with sharing with k + 1 nodes. Then, it has a
concretion B̃ : m → n with support V . Let v ∈ V be a node in which none of its children
are nodes (we call it a leaf). Such a node must exist by acyclicity of prntB. Note that v
can still have m′ ≤ m sites as children. Formally, (u, v) ∈ prntB if and only if u ∈ m′.
Without loss of generality we assume ctrl(v) = K. Let B̃1 : m + 1 → n be the place
graph obtained from B̃ by removing node v and substituting it with a site. Furthermore, let

3.5. Algebraic form 57

B̃0 : m → m + 1 be the place graph containing the sites in B̃ and v. Then we have that
B̃ = B̃1 ◦ B̃0. By dropping the supports we can write B = B1 ◦ B0. But B0 can be defined
in terms of elementary place graphs as follows:

B0 = ψ ◦ (idm ⊗ K) ◦ φ with ψ : m+ 1→ m+ 1 φ : m→ m+ 1 .

Therefore, the statement follows by inductive hypothesis on B1 since it has k nodes.

The construction presented in the proof above can be adopted to define a normal form
for place graphs with sharing. Intuitively, a place graph with sharing B can be expressed by
iteratively applying the procedure for the construction ofB0, until all its nodes are consumed.
The only difference is that all the leafs are removed in one go instead of removing only a
single leaf at each step. We make this precise by introducing the notion of normalised levels.

Definition 3.5.1 (level). A level L : m → n is a place graph with sharing that can be
expressed uniquely, up to permutations, as

L = (
⊗
i<n−l

Ki ⊗ idl) ◦ φ ,

with placing φ : m→ n.

Definition 3.5.2 (normalised levels). Take two levels L1 : m1 → m2 and L0 : m0 → m1

given by

L1 = (K1 ⊗ K′ ⊗ idl1) ◦ φ1 L0 = (K0 ⊗ idl0) ◦ φ0

K1 =
⊗

i<m2−l1−1

Ki K0 =
⊗

i<m1−l0

Ki

with φ0 : m0 → m1 and φ1 : m1 → m2 placings. We say that L1 and L0 are normalised if

((K1 ⊗ idl1+1) ◦ φ′1) ◦ ((K0 ⊗ K′ ⊗ idl0) ◦ φ′0) 6= L1 ◦ L0 ,

for any K′ and any placings

φ′0 : m0 → m1 + 1 φ′1 : m1 + 1→ m2 .

Put in words, this means that K′ is not a leaf. Thus, it cannot be pushed down a level and
L0 is already a maximal set of leafs in L1 ◦L0. When considering several levels Ln ◦ · · ·◦L0,
we say that the levels are normalised if every pair of adjacent levels Li ◦ Li−1 is normalised.
We can now define a stratified normal form (SNF) for place graphs with sharing.

3.5. Algebraic form 58

B =



ψ

K⊗ · · ·⊗K ⊗ idll−1

φl−1

Ll−1

...

K⊗ · · · ⊗ K ⊗ idl1

φ1

}
L1

K⊗ · · · ⊗ K ⊗ idl0

φ0

}
L0

Figure 3.12: Graphical representation of SNF for place graph with sharing B. Levels L0 and L1 are
drawn in blue and red, respectively.

Proposition 3.5.2 (SNF for place graphs with sharing). Every place graph with sharing

B : m→ n can be expressed uniquely as

B = ψ ◦ Ll−1 ◦ · · · ◦ L0

where ψ is a placing and each Li is a normalised level.

A graphical explanation of the definition is shown in Figure 3.12. We now use SNF to
express an example bigraph with sharing.

Example 3.5.1. Take B : 2→ 2 given by

0

�� ��

1

��

��

A

��

C

��

D

��
E

��

F B

��
0 1

It is expressed in SNF as B = ψ ◦ L1 ◦ L0 with

ψ = (join⊗ join)

L1 = (A⊗C⊗D⊗ id) ◦ (id⊗ split⊗ id)

L0 = (E⊗F⊗B) ◦ (id⊗ 1⊗ id) .

3.5. Algebraic form 59

Note that the two levels are normalised. Now consider expression B = ψ′ ◦L2 ◦L′1 ◦L′0 with

ψ′ = (join⊗ join) ◦ (id⊗ γ1,1⊗ id)

L2 = (A⊗B⊗ id2) ◦ γ2,2

L′1 = (C⊗D⊗ id2) ◦ (split⊗ id2)

L′0 = (F⊗E⊗ id) ◦ (1⊗ id2) .

This is not in SNF because the levels are not normalised. Namely, A and B can be pushed
down to levels L′1 and L′0, respectively. By doing so, we obtain a valid SNF expression equal,
up to permutations, to the previous one. �

This normal form can also be extended to represent bigraphs with sharing. Since nodes
are the only structure in common between link graphs and place graphs, it suffices to replace
the node generator described above with the ion K~x : 1 → 〈1, {~x}〉 defined for standard
bigraphs. Hence, extended levels L : m→ 〈n,X〉 are defined as follows:

L = (
⊗
i<n−l

K{~xi} ⊗ idl) ◦ φ ,

where X =
⊎
i {~xi}. Since normalisation is defined over place graphs, the definition of

normalised levels is not affected by the introduction of ions.

Proposition 3.5.3 (SNF for bigraphs with sharing). Every bigraph with sharingG : 〈m,X〉 →
〈n, Y 〉 may be expressed, up to permutations and renaming, as

G = (ψ ⊗ ω) ◦ Sl−1 ◦ · · · ◦ S0

Si = Li ⊗ idXi

where ψ is a placing with outer interface n, ω is a linking with outer interface Y , and each

Li is a normalised extended level. Also the inner face of L0 is m and X0 = X .

SNF extends the notion of stratified diagrams for bigraphs with sharing presented in
Section 3.3. A summary of the features in common between the two representations is the
following:

• linking ω corresponds to the links on the top of the diagram,

• identities idXi are drawn as links crossing through the layers,

• levels are encoded by layers and the dashed lines connecting them.

3.5. Algebraic form 60

Observe that in the SNF of a non-sharing bigraph all the placings ψ, φi are functions instead
of relations.

The algebraic operators defined for standard bigraphs (e.g. merge product, parallel product
and nesting) can also be used to express bigraphs with sharing. However, an additional op-
erator capable of expressing sharing is required. We define share expressions as

share F by φ in G def
= G ◦ (φ⊗ idX) ◦ F

where all the operations are assumed defined. An example for bigraph B : ε→ 〈1, w〉 drawn
in Figure 3.4 is

B = share F by φ in G

F = D.1 ‖ Ey.1 ‖ F.1 ‖ Gy.1

φ = (id ‖ join ‖ merge3) ◦ (γ1,1 ‖ γ1,1 ‖ id2)

◦ (id ‖ γ1,1 ‖ id3) ◦ (split ‖ split3 ‖ id ‖ 0)

G = Ay | B | C

Expressions F and G correspond to the bottom and top layers in the stratified diagram,
respectively. Placing φ : 4 → 3 is encoded by the dashed edges connecting the roots and
sites of the two layers. It can more conveniently be written as a vector of subsets of ordinal
3:

φ = [{1, 2}, {0, 1, 2}, {2}, ∅]

3.5.1 Axioms for bigraphical equality

We now introduce a set of axioms that allow to prove every valid equation between bigraph-
ical expressions. We write ` B = B′ to indicate equality inferred from the axioms. In
the previous section, we proved by defining functor W : SPg(K) → Rel that any placing
φ : m → n is also a relation between finite ordinals m and n. Thus, φ can also be viewed
as an arrow in category Rel. In [49, Theorem 7], Mimram proves that a complete axio-
matisation of Rel is given by the equational theory of qualitative bicommutative bialgebrae.
This allows us to define a complete axiomatisation for placings with sharing as a superset of
the axioms for Pg(K) specified in Chapter 2, namely Axioms (2.1) and (2.6) for symmet-
rical monoidal categories, and Axioms (2.2) for commutative monoid ({0}, join, 1). The

3.5. Algebraic form 61

additional axioms that are required to obtain completeness over placings with sharing are

(split⊗ id1) ◦ split = (id1 ⊗ split) ◦ split

(0⊗ id1) ◦ split = id1 = (id1 ⊗ 0) ◦ split

γ1,1 ◦ split = split

(3.7)

specifying the co-monoid ({0}, split, 0), and

split ◦ join = (join⊗ join) ◦ (id1 ⊗ γ1,1 ⊗ id1) ◦ (split⊗ split)

0 ◦ join = 0⊗ 0

split ◦ 1 = 1⊗ 1

0 ◦ 1 = id0

join ◦ split = id1

(3.8)

for qualitative bialgebra ({0}, join, 1, split, 0, γ1,1). We remind the reader that detailed de-
scriptions of monoids and bialgebrae appear in the Appendix A. In order to achieve com-
pleteness over SPg(K) we also need to include the ion axiom:

(id1 ⊗ α) ◦ K~x = Kα(~x) .

We claim without proving that this set of axioms is complete for expressions denoting
place graphs with sharing. Formally, B = B′ implies ` B = B′ for all expressions B,B′.

A sketch of the proof is as follows. First, we show that ` B = E and ` B′ = E ′, where
E and E ′ are SNF expressions. Observe that Proposition 3.5.2 assures that such expressions
exist for any place graph with sharing. Second, we show that the two normal forms can be
proven equal, i.e. ` E = E ′. This amounts to showing that the two expressions only differ
by permutations of the ions in the levels:

`
E︷ ︸︸ ︷

ψ ◦ Ll−1 ◦ · · · ◦ L0 =

E′︷ ︸︸ ︷
ψ′ ◦ L′l−1 ◦ · · · ◦ L′0

ψ ◦

Ll−1︷ ︸︸ ︷
(
⊗
i

Ki ⊗ idl) ◦ φ ◦ · · · ◦ L0 = ψ′ ◦

L′l−1︷ ︸︸ ︷
(
⊗
i

Kπ(i) ⊗ idl) ◦ φ′ ◦ · · · ◦ L′0

E =

ψ︷ ︸︸ ︷
ψ′ ◦ (π⊗ idl) ◦(

⊗
i

Ki ⊗ idl) ◦ (π⊗ idl) ◦ φ′ ◦ · · · ◦ L′0

...

The conjecture can be extended to SBg(K) by including the complete axiomatisation for

3.6. Discussion 62

expressions over linkings given in the previous chapter.

We remark that this axiomatisation will not be used in the rest of the thesis as our im-
plementation of bigraph equality is based on a reduction to the graph isomorphism problem.
We will describe this appraoch in great detail in chapters 4 and 5.

3.6 Discussion

We have seen that bigraphs with sharing are an elegant mathematical theory enjoying familiar
properties: they form a wide1 spm category and possess a normal form. It still remains to
analyse the impact of sharing on the other aspects of Milner’s bigraphical theory such as the
dynamical theory of BRSs, the definition of sorting, and the description on bigraphical terms
with the spatial logic BiLog.

We begin by considering reactive systems of bigraphs with sharing. In the definition
of reaction rules given in Chapter 2, the redex and the reactum are solid. If we inspect
Definition 2.6.1, this means that they are epi and mono. Since epis and monos are defined
differently in bigraphs with sharing, we need a new definition of solid bigraphs.

Definition 3.6.1 (solid bigraphs with sharing). A bigraph with sharing is solid if these con-
ditions2 hold:

1. it is epi, i.e. no root or outer name is idle and no two roots are partners;

2. it is mono, i.e. no two sites or inner names are siblings and no site is an orphan;

3. every site is guarding;

4. no outer name is linked to an inner name.

The reaction relation over bigraphs with sharing is computed as in the standard setting
by matching a redex and replacing its occurrences with the corresponding reactum. Observe
that the introduction of sharing does not entail changes to the standard definition of matching.
However, we now have to allow discrete parameter d to have nodes shared also by nodes or
roots in context D. In more detail, the occurrence of a redex R : m → J in an agent g is
given by g = D ◦ (R⊗ id〈m′,Y 〉) ◦ d with d : ε→ 〈m+m′, Y 〉. Note that this corresponds to
Definition 2.6.2 when m′ = 0. The matching algorithm identifying such occurrences needs
be modified in order to support the new DAG structure of place graphs. We will describe a
matching algorithm for bigraphs with sharing in the next chapter. Given the similarity with

1A category equipped with a functor to Finord.
2The new conditions introduced for bigraphs with sharing are written in italics.

3.6. Discussion 63

the standard definition, we use the acronym BRS also to indicate reactive systems of bigraphs
with sharing.

Sorting disciplines can be used for bigraphs with sharing in a straightforward way. We
only need extend formation rules for place sortings so that properties involving sharing can
be expressed. An example is given by:

an âb-node is an orphan;
all partners of an âb-node have sort âb;
all parents of a c-node have sort âb.

Link sortings are as defined in standard bigraphs.

A similar extension is required to express sharing (i.e. elementary placings 0 : 1 → 0

and split : 1 → 2) within the BiLog framework. The set of atomic formulae is redefined as
follows:

Ωs ::= Ω
∣∣∣ 0

∣∣∣ split

We call this extended logic BiLogs. For ease of notation, we often drop the superscript when
there is no ambiguity.

Finally, we analyse the compatibility of sharing with the other extensions of bigraphs
presented in the literature. We begin with bigraphs with sharing.

Observe that stochastic rates can safely be attached to reaction rules as in standard
SBRSs. However, the number of distinct concrete occurrences of a redex in an agent can
no longer be used to compute the rate of a reaction. This is a direct consequence of the new
definition of parameter d introduced above for BRS with sharing. To illustrate why this is
the case, consider the following example.

Example 3.6.1. Take a reaction rule R, with redex R = B and an agent g : ε→ 1 defined by

g = join ◦ ((A ◦ (join ◦ (B⊗ id) ◦ (split ◦ (C ◦ 1))))⊗(K ◦ 1))

Intuitively, R can be applied only once because g contains only a B-node that can be matched
by R. However, according to Definition 2.3.9, it is possible to identify two distinct occur-
rences:

g = (D ◦ (id2⊗ δ)) ◦ (R⊗ id) ◦ d

g = D ◦ (R⊗ id2) ◦ (d⊗ δ)

with D = join ◦ ((A ◦ join)⊗ id), δ = K◦1 and d = split(C ◦ 1). The corresponding
diagrams are given in Figure 3.13. �

3.6. Discussion 64

0

�� ��
A

��

��

K

B

��
C

0

|| ""
A
�� ""

K

0 1

0

��
1

��

B
��
0 1

0

""

1

��
C

0

||

��

A
�� ""
0 1 2

0

��
1

��

2

��

B
��
0 1 2

0

""

1

��
2

��
C K

Figure 3.13: Agent g (on the left) and two distinct occurrences of R in g.

As the example above shows, it does not matter whether δ is in the context or in the
parameter. This because δ contains places that do not have ancestors in R. Therefore, dis-
tinct occurrences differing only in this way need be counted only once when computing the
reaction rate. We make this formal for concrete bigraphs as follows:

Definition 3.6.2 (δ-equivalent occurrences). Consider concrete bigraphs G, F and two con-
crete occurrences G = C1 ◦ (F ′ ⊗ idI) ◦ C0 and G = C ′1 ◦ (F ′ ⊗ idI′) ◦ C ′0, with F m F ′.
They are δ-equivalent if one of the following conditions holds

• they differ only by a permutation or a bijective renaming on the mediating interfaces
(as in Definition 2.3.10);

• there exists a non node-free bigraph δ and an interface J such that C1 ◦ (idJ ⊗ δ) = C ′1

and C0 = C ′0⊗ δ.

They are δ-distinct otherwise.

Given a reaction rule R = (R,R′, ρ), we write µR[g, g′] to indicate the number of δ-
distinct occurrences of R̃ in g̃ such that g B

R
g′. By overloading this operator, reaction

rates can be defined as in the previous chapter. Also in this case a new matching algorithm
is needed to identify and count the occurrences of a reaction.

The introduction of sharing in directed bigraphs is easier because the two extensions do
not interfere with each other. This is assured by orthogonality of place graphs with sharing
and directed link graphs. The impact of allowing sharing places on the theory of binding
bigraphs has not been analysed yet. In particular, it remains to establish whether a link
bound to a place r can cross the boundaries of any r’s partners. In other words, we need

3.7. Summary 65

to answer the question: is is possible to share a bound link? Therefore, further research in
this direction is needed to decide which approach is more tractable theoretically and more
suitable for practical applications.

3.7 Summary

In this chapter we presented bigraphs with sharing, a novel generalisation of bigraphs in
which locality is modelled by DAGs. In Section 3.1, we discussed the reasons that led to
the introduction of sharing. We gave a list of scenarios demanding sharing for their models
to be expressive and, at the same time, straightforward to produce. We also explained why
we decided to extend the formalism instead of encoding it within the original definition of
bigraphs. A formal introduction to bigraphs with sharing was given in Section 3.2. Stratified
and nesting diagrams for sharing bigraphs were described in Section 3.3. We proved that
SBg(K) is a wide spm category in Section 3.4. We introduced an axiomatisation and normal
form SNF in Section 3.5. In Section 3.6, we analysed the impact of sharing on other aspects
of bigraphs, such as reactive systems and BiLog.

In the next chapter we will formalise a new matching algorithm that supports bigraphs
with sharing. The algorithm is based on a reduction of the matching problem to the sub-graph
isomorphism problem.

66

Chapter 4

Matching of bigraphs with sharing

This chapter introduces a matching algorithm for bigraphs with sharing. In Section 4.1, we
give an overview of the matching problem and briefly describe the matching algorithm for
non-sharing bigraphs introduced by Birkedal et al. in [12]. We also discuss the relationship
with other well-known computational problems, e.g. the sub-graph isomorphism problem,
and motivate the need for the definition of a new matching algorithm that supports sharing.
Section 4.2 is based on our previous work on matching [57]. We first present the formal
definition of a graph theoretic algorithm for the bigraph matching problem. Then, we analyse
the algorithm in detail through some examples. Proofs of soundness and completeness are
also provided. Finally, some concluding remarks are given in Section 4.3.

4.1 Introduction

The bigraph matching problem is a computational task in which a bigraph P , called pattern,
and a bigraph T , called target, are given as input, and one must determine whether P occurs
in T . A formal definition was given in Chapter 2. We recall it here with an example instance.

Example 4.1.1. Take a target T : ε → 〈1, {x}〉 and a pattern P : 〈1, ∅〉 → 〈2, {x, y}〉 as in
Figure 4.1. The matching instance consists of identifying the occurrences of P in T , i.e. the
decompositions of the target defined as follows:

T = C1 ◦ (P ⊗ idI) ◦ C0

for some interface I and bigraphs C0 and C1. We call C1 the context and C0 the parameter.
When the leftmost region in the pattern matches the atomic B-node, a possible decomposition
is described by the diagram in Figure 4.2b. On the other hand, if the same region matches
the B-node containing the C-node, the decomposition shown in Figure 4.2a can be obtained.

4.1. Introduction 67

x

A AB B B

C

(a) T : ε→ 〈1, {x}〉

y

AB B

x

(b) P : 〈1, ∅〉 → 〈2, {x, y}〉

Figure 4.1: Example target T and pattern P .

x

A
B

C

y

A
B B

x z

z

(a) T = C ◦ (P ⊗ idz) ◦D

x

A

y

A
B B

x

B

C

(b) T = C′ ◦ (P ⊗ idε) ◦ 1

Figure 4.2: Example occurrences of pattern P in target T .

Considering the pattern can only match one of the two siblings of control B in the target,
all the other decompositions can be constructed by modifying the ones in Figure 4.2. For
instance, C ′ can be replaced by C ′ ◦ (id2⊗ x/y⊗ y/x) in a different decomposition in which
an isomorphism is applied to the mediating interface. �

The matching problem plays a fundamental rôle in the definition of BRS: as we have seen
in the previous chapters that an instance of the problem arises every time the occurrences
of a redex in an agent are computed. In a stochastic setting, it is also important to take
into account the number of distinct (and δ-distinct in SBRS with sharing) occurrences when
computing the rate of a stochastic reaction. In order to distinguish between occurrences, the
supports of the target and pattern need be used. This means that the bigraphs in the resulting
matching instances are concrete. This was formalised in the definition of operator µR[g, g′]

and in Definition 2.9.2. We explain why abstract bigraphs are not suitable for occurrence
counting with the following example.

4.1. Introduction 68

Example 4.1.2. Take a concrete agent g̃ and a concrete redex R̃ given by

g̃ = 0

yy %%
v0 : A v1 : A

R̃ = 0

��
u : A

There are two distinct occurrences of R̃ in g̃: in one u matches v0 and in the other one u
matches v1. The corresponding decompositions are

0

yy %%
0 v1 : A

0

��
v0 : A

0

yy %%
v0 : A 0

0

��
v1 : A

Note that when sharing is allowed, it is possible to construct two further decompositions by
placing the node not matched by the pattern in the parameter. However, these occurrences are
δ-equivalent to the ones shown. Therefore, they do not contribute to the occurrence count.
Now consider the corresponding abstractions g and R. If we count the number of distinct
occurrences of R in g we can construct only one decomposition. This can be seen by drop-
ping the supports in the diagrams above and observing that the two abstract decompositions
are indistinguishable. �

The earliest formalisation of a matching algorithm for standard bigraphs was introduced
in [12]. In this paper, Birkedal et al. provide a characterisation of the occurrences of a
pattern in a target by structural induction on their algebraic representation. Valid matches
are derived by using an inference system composed of ten rules. The algorithm is proven
sound and complete and also supports binding bigraphs. An example (simplified) rule for
deriving a match for the tensor product of two place graphs is given by

PAR
a,R ↪→ C, d b, S ↪→ D, e

a⊗ b, R⊗S ↪→ C ⊗D, d⊗ e

where R has no inner names (i.e. it is a redex). The notation g,R ↪→ D, d indicates a
matching sentence. It is valid if and only if g = D ◦ R ◦ d. Therefore, the premises in
the rule above are two valid matching sentences. In the bottom-up traversal of an inference
tree, target g is decomposed while constructing context D. Since bigraphs may be denoted
by several bigraphical terms, the inference system contains a rule STRUCT which allows to
rewrite terms by using the axioms for the algebraic form of abstract bigraphs described in
Chapter 2. This is also necessary in order to define a complete algorithm, as shown in the
example below.

4.1. Introduction 69

Example 4.1.3. Consider a target g = (K⊗ L) and a pattern R = K. A valid matching
sentence is g,R ↪→ (id1⊗ L), id1. However, it cannot be derived without using STRUCT

because PAR is not applicable. This is due to the fact that the pattern is not represented as a
tensor product. By applying axiom

A⊗ idε = A = idε⊗A

the pattern can be rewritten as K⊗ id0 and the matching sentence is derived. �

The matching problem for standard bigraphs is closely related to the sub-graph isomorph-
ism problem. In more detail, the matching of place graphs can be reduced to the sub-forest
isomorphism problem. A full match can then be computed by introducing extra constraints
expressing the matching of link graphs. Both the sub-graph and sub-forest isomorphism
problems1 are proven to be NP-hard [59]. Therefore, algorithms that compute their solutions
in polynomial time are not known. Traditionally, these problems are solved by using some
type of backtracking search, as shown for instance in [64]. Observe that when the input bi-
graphs have only one root, the matching instance can be reduced to an instance of the sub-tree
isomorphism which can be solved in polynomial time. The matching problem for bigraphs
with sharing can also be reduced to the sub-graph isomorphism problem. More precisely, it
is reducible to the sub-DAG isomorphism problem, which is also NP-complete [66]. Note
that the introduction of sharing does not involve an increase in complexity.

We have chosen to follow the sub-DAG isomorphism approach, and not to extend the
algorithm based on inference rules described above for several reasons. The first one is that
the new DAG structure of the place graphs increases the amount of unnecessary blind search
during the inference process, which negatively affects the performance of the algorithm. In-
tuitively, this is due to the fact that there are even more ways to decompose the pattern and
the target at every application of an inference rule. Further, a reduction to a standard problem
tends to produce faster algorithms because it fully exploits established solvers which are very
efficient due to the use of advanced heuristics. A typical example of this approach is the en-
coding of hard problems into instances of the boolean satisfiability problem (SAT) [38, 19].
Finally, we want our algorithm to support concrete bigraphs and arbitrary patterns. Support
for concrete bigraphs is required to allow the enumeration of all occurrences of the pattern
in the target (see Example 4.1.2). This is necessary for any complete implementation of
stochastic BRS. Furthermore, only concrete bigraphs can be used in a future implementation
of labelled transition systems based on RPO construction. Support for arbitrary patterns (i.e.
bigraphs in which inner names are allowed), is necessary because we will use the match-
ing algorithm not only to match a redex in an agent during the computation of the reaction
relation in a BRS, but also to encode an algorithm for the verification of BiLog formulae.

1When expressed as decision problems.

4.2. Algorithm 70

v : K

x y z

Figure 4.3: Bigraph B : ε→ 〈1, {x, y, z}〉.

Observe that the very nature of the algorithm described above does not allow for a straight-
forward extension that supports these two new features. This because the inference tree is
built upon algebraic terms for abstract bigraphs expressed in DNF.

4.2 Algorithm

In this section we present a graph-theoretic matching algorithm for concrete bigraphs with
sharing. Note that our algorithm natively supports standard bigraphs as we will prove in
Proposition 4.2.6 at the end of the chapter. First, we introduce some useful definitions that
will allow for a more concise specification of the algorithm. The sets of points and the set of
ports of a link l are defined as follows:

pointsF (l)
def
= {p | linkF (p) = l} portsF (l)

def
= pointsF (l) \X .

We then define an equivalence relation among links with “similar” sets of ports. Intuitively,
when comparing the sets of ports of two links, only the number of ports belonging to the
same node is taken into account, while the port identifiers are ignored. Before giving the
formal definition, we illustrate the idea with an example.

Example 4.2.1. Take concrete bigraph B : ε→ 〈1, {x, y, z}〉 defined in Figure 4.3. Links x
and z are equivalent because they both have two ports belonging to node v. The sets of ports
of links x, y and z are

portsB(x) = {(v, 0), (v, 1)} portsB(y) = {(v, 2)} portsB(z) = {(v, 3), (v, 4)} .

If all port identifiers are dropped, these sets can be transformed into multisets. The multisets
for x and z are the same. �

Definition 4.2.1. Take two links l, k in a bigraph F : 〈m,X〉 → 〈n, Y 〉. Equivalence relation
.
= is defined as follows

l
.
= k iff count(l) = count(k) and τ(l) = τ(k)

4.2. Algorithm 71

where

τ(l) =


name if l ∈ Y

edge if l ∈ EF and points(l) ⊆ PF

open-edge otherwise

and count(l) def
= {{v | (v, i) ∈ ports(l)}} is a multiset.

Returning to Example 4.2.1, we can write count(x) = count(z) = {{v, v}} and therefore
x

.
= z. We will use .

=-equivalence classes of links in the algorithm when constructing
mappings between the links of the pattern and the links of the target. Finally, we introduce
an explicit transformation from concrete place graphs to DAGs:

Definition 4.2.2 (underlying graph). Let F = (VF , ctrlF , prntF) : m → n be a concrete
place graph. Directed graph GF = (V,E) is called the underlying graph of F . The set of
nodes is V = VF and the set of edges is E = VF C prntF B VF .

The transformation consists of dropping all the roots and sites from bigraph F . An im-
portant property is that any control-preserving graph isomorphism ι between two underlying
graphs is a support translation ρV between the corresponding place graphs when sites and
roots are ignored. Formally, ι : GF → GG is a bijection such that ctrlF (u) = ctrlG(ι(u)),
ctrlF (v) = ctrlG(ι(v)) and

(u, v) ∈ prntF iff (ι(u), ι(v)) ∈ prntG .

Note that this is equivalent to writing

(VG C prntG B VG) ◦ ι = ι ◦ (VF C prntF B VF) .

Hence, ι satisfies Definition 2.2.5 when roots and sites are ignored. This correspondence
between ι and ρV motivates the reduction of the matching problem to the sub-graph iso-
morphism problem.

Notation and conventions

We write prnt(v) to indicate set {u | (v, u) ∈ prnt} and prnt−1 for the inverse of prnt.
Graph isomorphisms and maps between links are indicated by ι and η, respectively. We
write ĜT to denote the sub-graph of GT that is isomorphic via ι to GP . Therefore, V̂T ⊆ VT

is the range of ι. A multiset A is included in a multiset B, written A ⊆ B, iff every element
of A occurs at least the same number of times in B. In the following, we assume the pattern

4.2. Algorithm 72

and the target are P : 〈m,X〉 → 〈n, Y 〉 and T : 〈m′, X ′〉 → 〈n′, Y ′〉, respectively. Finally,
the set of idle links of concrete bigraph P is defined by

P L
idle

def
= {l ∈ EP] Y | pointsP (l) = ∅} .

4.2.1 Definition

We are now ready to introduce our matching algorithm. We begin with an informal outline.
The inputs of the algorithm are two concrete place graphs: the first being the target while
the second being the pattern. The output is a set of pairs specifying all the occurrences of
the pattern in the target. Each pair consists of a graph isomorphism and a mapping between
links. The first phase of the algorithm consists of invoking a procedure that solves the sub-
graph isomorphism problem. The underlying graphs of the pattern and the target are used as
inputs. The output is a set of graph isomorphisms. In the next phase, the algorithm checks
that every isomorphism obtained in the previous phase satisfies the following compatibility

conditions:

• Node controls are preserved.

• The pattern has sites and roots allowing for the construction of a context and a para-
meter by decomposing the target.

• No node in the context has an ancestor in the pattern.

All the isomorphisms failing to pass any of the checks above are discarded. Finally, output
pairs are computed by associating every compatible isomorphism with a mapping from the
pattern links to the target links. Each mapping ensures that the link graph of the pattern
can be composed with the link graph of a context and the link graph of a parameter, both
obtained by decomposing the target. If the procedure fails to build such a mapping, then the
corresponding isomorphism is discarded.

The algorithm is formally defined by the pseudocode given in Figure 4.4. It takes the
form of a function MATCH(,) in which the two arguments are concrete bigraphs. Since
node-free patterns are a match for any target, we assume the second argument has a non-
empty node set, i.e. VP 6= ∅. Note that the pattern’s port set can still be empty if all nodes in
VP have 0-arity controls.

We now describe in detail the operations described in the pseudocode. In line 2, the
reduction to an instance of the the sub-graph isomorphism problem is performed by invoking
sub-routine SUB ISO(GT ,GP). We use it in a black-box fashion. Therefore, we assume an
implementation is provided. The results are stored in set I . Every isomorphism ι ∈ I takes
the form ι : VP → V̂P .

4.2. Algorithm 73

1 function MATCH(T, P)

2 I := SUB ISO(GT ,GP);
3 I ′ := ∅;
4 M := ∅;
5 forall ι ∈ I do
6 V̂P := ι(VP);
7 if CTRL(ι, ctrlT , ctrlP) ∧ SITES(ι, T , P) ∧ ROOTS(ι, T , P) ∧ TRANS(T , V̂P) then
8 I ′ := {ι} ∪ I ′;
9 end if;

10 forall ι ∈ I ′ do
11 η := BUILD LINK MAP(∅, (EP] Y) \ P L

idle, ι, T, P);
12 if η 6= ∅ then
13 M := {(ι, η)} ∪M ;
14 else if PP = ∅ then
15 M := {(ι, ∅)} ∪M ;
16 end if;
17 return M ;
18 end function

Figure 4.4: Pseudocode for the matching algorithm.

The loop in lines 5-9 filters set I by checking that every element satisfies the compat-
ibility conditions listed above. Each condition is checked in line 7 by invoking a different
sub-routine. The isomorphisms passing all the tests are stored in I ′. Pseudocode for function
CTRL(, ,) is given in Figure 4.5. The inputs are an isomorphism and the control maps of
the target and the pattern, in that order. In line 2, there is a check that the input isomorphism
preserves controls. Sites and roots are checked by invoking SITES(, ,) and ROOTS(, ,),
respectively. The pseudocode for SITES(, ,) is in Figure 4.6. It takes as inputs an iso-
morphism, the target and the pattern, in that order. The loop in lines 2-5 checks that P ’s sites
allow the composition (P ⊗ idI) ◦D. More precisely, it checks that for every node or site c
in D having parents in V̂P , there exists a set of sites S in P whose parent set is isomorphic

1 function CTRL(ι, ctrlT , ctrlP)

2 if exists (v, u) ∈ ι such that ctrlP (v) 6= ctrlT (u) then
3 return false;
4 else
5 return true;
6 end if;
7 end function

Figure 4.5: Pseudocode for sub-routine CTRL(, ,).

4.2. Algorithm 74

1 function SITES(ι, T , P)

2 forall c ∈ {v ∈ (m′] VT) \ V̂P | prntT (v) ∩ V̂P 6= ∅} do
3 if not exists S ⊆ m such that ι(

⋃
s∈S(prntP B VP)(s)) = (prntT B V̂P)(c) then

4 return false;
5 end if;
6 return true;
7 end function

Figure 4.6: Pseudocode for sub-routine SITES(, ,).

1 function ROOTS(ι, T , P)

2 forall p ∈ {v ∈ (VT] n′) \ V̂P | prnt−1
T (v) ∩ V̂P 6= ∅} do

3 if not exists R ⊆ n such that ι(
⋃
r∈R(prnt−1

P B V̂P)(r)) = (prnt−1
T B V̂P)(p) then

4 return false;
5 end if;
6 return true;
7 end function

Figure 4.7: Pseudocode for sub-routine ROOTS(, ,).

to c’s parent set. The pseudocode for ROOTS(, ,) is shown in Figure 4.7. Again the inputs
are an isomorphism, the target and the pattern. The procedure is the dual of the previous one.
It checks that P ’s roots allow the composition C ◦ (P ⊗ idI). Namely, the loop in lines 2-5
checks that for every node or root p in C having children in V̂P , there exists a set of roots
R in P whose set of children is isomorphic to p’s set of children. The final condition on
the isomorphisms is checked by invoking TRANS(T, V̂P), pseudocode for this sub-routine is
given in Figure 4.8. In line 2, there is a check that a node in V̂P does not have a parent in
the context that has an ancestor in V̂P . Observe that each ι ∈ I ′ satisfies all the compatibility
conditions. Hence, it is a support translation for P with range V̂P .

The second loop in MATCH(,) (lines 10-16 in Figure 4.4) builds a mapping between
P ’s and T ’s links. The solutions are stored in set M . If no mapping is returned and there
are no ports in the pattern, then only the isomorphisms are returned (lines 14-16). A map-
ping for every ι found in the previous phases of the algorithm is obtained by invocation
BUILD LINK MAP(∅, (EP] Y) \ P L

idle, ι, T, P) in line 12. Since idle links can always occur
in any pattern, only non-idle links of P are considered as shown by the second argument.
Pseudocode for the sub-routine is given in Figure 4.9.

The first argument η is a partial mapping. It is used by the procedure to recursively
construct a full mapping. The second argument L is a subset of T ’s link. Its elements are

4.2. Algorithm 75

1 function TRANS(T , V̂P)

2 if exists u ∈ VT \ V̂P and v, v′ ∈ V̂P such that u ∈ prntT (v) and v′ ∈ prnt+T (u) then
3 return false;
4 else
5 return true;
6 end if;
7 end function

Figure 4.8: Pseudocode for sub-routine TRANS(,).

the links not in the range of η. The other three arguments are an isomorphism, the target and
the pattern, in this order. When argument L is empty, this means that η contains a mapping
for every non-idle links in the pattern. Therefore, η is accepted as a valid result in line 20.
On the other hand, when L is not empty, a link l is selected in line 3. Then, the operations in
lines 5-12 construct a set K whose elements are all the links in the target that can be mapped
to l. There are three cases:

• If l is an outer name (i.e. τ(l) = name), then l can be mapped to any link k ∈ K such
that l’s ports are an isomorphic subset of k’s ports. This corresponds to the conditional
statement in lines 5-6.

• If l is an edge and all its points are ports (i.e. τ(l) = edge), then l can be mapped to
any edge k ∈ K such that l’s ports are isomorphic to k’s ports. This corresponds to
the instructions in lines 7-8.

• If l is an edge having an inner name x ∈ X as a point (i.e. τ(l) = open-edge), then l
can be mapped to any edge k ∈ K such that l’s ports are an isomorphic subset of k’s
ports and the other k’s ports belong to nodes who are not ancestors of any node in V̂P .
In other words, they must belong to nodes in the parameter. This is described by the
pseudocode in lines 9-11.

Observe that port identifiers are ignored because all comparisons are performed on multisets
of nodes generated by function count(). The loop in lines 13-17 builds res, the output of
the sub-routine. This is the result of one of the recursive invocations BUILD LINK MAPS(η∪
{(l, k)}, L\{l}, ι,REM PORTS(T, k, S), P). By analysing the arguments of the sub-routine,
we see that pair (l, k) is added to partial solution η and l is removed from L, the set of links
yet to be checked. Moreover, target T is replaced by a bigraph T ′ resulting from invocation
REM PORTS(T, k, S), with multiset S defined in line 4. Intuitively, T ′ is defined exactly
as T but each port corresponding to a node in S is removed from the set of ports of link
k. In this way, we ensure that the k’s ports used to match a link in the pattern are not

4.2. Algorithm 76

1 function BUILD LINK MAP(η, L, ι, T, P)

2 if L 6= ∅ then
3 choose l ∈ L;
4 S := ι(countP (l));
5 if τ(l) = name then
6 K := {k | S ⊆ countT (k)};
7 else if τ(l) = edge then
8 K := {k ∈ ET | S = countT (k)};
9 else

10 K := {k ∈ ET | S ⊆ countT (k) ∧
11 (not exists v ∈ V̂P , u ∈ (countT (k) \ S) s.t. (v, u) ∈ prnt+T)};
12 end if;
13 forall k ∈ K do
14 res := BUILD LINK MAP(η ∪ {(l, k)}, L \ {l}, ι,REM PORTS(T, k, S), P);
15 if res 6= ∅ then
16 return res;
17 end if;
18 return ∅;
19 else
20 return η;
21 end if;
22 end function

Figure 4.9: Pseudocode for sub-routine BUILD LINK MAP(, , , ,)

used again to match a different link in a successive recursive invocation. If no mapping can
be constructed, either because all recursive invocations return ∅ or because K = ∅, then
BUILD LINK MAP(, , , ,) returns an empty mapping in line 18 and the partial solution η
is discarded. This because only total mappings can be valid solutions.

Pseudocode defining sub-routine REM PORTS(, ,) is given in Figure 4.10. The loop
in lines 3-5 iterates over multiset S which contains all the nodes v having ports already been
used in a match, thus to be removed. In line 4, a fresh port corresponding to v is chosen and
it is added to res in line 5. In line 6, the link map of T is updated by removing all the ports
in res from the set of ports of k. Bigraph T ′ is returned in line 7.

The computational complexity of the algorithm is dominated by the running time of sub-
routine SUB ISO(, ,), which is O(|VT ||VP |).

4.2.2 Examples

We illustrate the various phases of algorithm MATCH(,) through some examples.

Example 4.2.2. Consider concrete bigraphs T and P0, with link graphs assumed to be id∅.

4.2. Algorithm 77

1 function REM PORTS(T, k, S)

2 res := ∅;
3 forall v ∈ S do
4 choose i such that (v, i) ∈ portsT (k) and (v, i) 6∈ res;
5 res := res ∪ {(v, i)};
6 link′T := linkT \ {(p, k) | p ∈ res};
7 return 〈TP, (VT , ET , ctrlT , link

′
T)〉;

8 end function

Figure 4.10: Pseudocode for sub-routine REM PORTS(, ,).

The corresponding place graphs are drawn in Figure 4.11. The matching instance is given
by MATCH(T, P0). The first operation performed by the algorithm is the computation of the
underlying graphs GP0 and GT and the invocation of SUB ISO(GT ,GP0). The result is the
set of all the isomorphisms preserving edge (v0, v1) in GP0 . The ones that also preserve the
controls are:

ι0 = {(v0, u0), (v1, u1)} ι1 = {(v0, u0), (v1, u2)} ι2 = {(v0, u3), (v1, u6)}

ι3 = {(v0, u4), (v1, u7)} ι4 = {(v0, u5), (v1, u7)} .

They are the isomorphisms satisfying the condition in CTRL(ιi, ctrlT , ctrlP0). To check
whether a solution has sites allowing for a valid match, sub-routine SITES(ιi, T, P0) is in-
voked. When ι0 is the input, the loop iterates over {u4, u2, u3}. Since there are no sites in
P0 having a parent set isomorphic to prntT (u2) = prntT (u3) = {u0}, ι0 is discarded. Same
for ι1. Similarly, ROOTS(ιi, T, P0) is invoked to check the roots of P0. When ι3 is the input,
the loop iterates over {u1, u5}. In this case, there are no roots in P0 having a set of children
isomorphic to prnt−1

T (u5) = {u7}. Therefore, ι3 is discarded. The same for ι4. Hence, the
only control preserving isomorphism with compatible sites and roots is ι2. The last check to
be performed is TRANS(T, V̂P0), with V̂P0 being the range of ι2. Since node u0 (i.e. the only
parent of ι2(v0) = u3) has no ancestors in V̂P0 , the final output of MATCH(T, P0) is {(ι2, ∅)}.
No mapping η is created because there are no ports (check on line 14 in Figure 4.4). �

Example 4.2.3. Take concrete bigraphs T and P1 with empty link graphs. Their diagrams
are given in Figure 4.12. When sub-routine MATCH(T, P1) is invoked the following steps
can be described. The isomorphisms constructed by SUB ISO(GT ,GP1) that also satisfy the
condition in CTRL(ιi, ctrlT , ctrlP1) are

ι0 = {(v0, u0), (v1, u1), (v2, u4)} ι1 = {(v0, u0), (v1, u2), (v2, u5)} .

When SITES(ι0, T, P1) is invoked, the loop iterates over set {u2, u3, u7}. Isomorphism ι0

4.2. Algorithm 78

T 0

��
u0 : A

xx �� &&
u1 : B
��

u2 : B
��

u3 : A
��

u4 : A
&&

u5 : A
��

u6 : B

��

u7 : B
��
0 1

P0 0

��
v0 : A
��

v1 : B
��
0

Figure 4.11: Bigraphs T : 2 → 1 and P0 : 1 → 1. The only compatible isomorphism is
{(v0, u3), (v1, u6)}.

T 0

��
u0 : A

xx �� &&
u1 : B
��

u2 : B
��

u3 : A
��

u4 : A
&&

u5 : A
��

u6 : B

��

u7 : B
��
0 1

P1 0

��
v0 : A
��

��

v1 : B
��

v2 : A
��

0 1

Figure 4.12: Bigraphs T : 2 → 1 and P1 : 2 → 1. The compatible isomorphisms are
{(v0, u0), (v1, u1), (v2, u4)} and {(v0, u0), (v1, u2), (v2, u5)}.

is accepted because there are compatible sites, namely prntP1(0) = {v0} and prntP1(1) =

{v2}. When the input is ι1, the set of children used for the iteration is {u1, u7, u3}. Also in
this case compatible sites exist. Hence, ι1 is accepted. Since the parent sets to iterate over
are empty, ROOTS(ιi, T, P1) returns true. The same for TRANS(T, V̂P). No mapping η need
be constructed. Therefore, the final output of MATCH(T, P1) is {(ι0, ∅), (ι1, ∅)}. �

Example 4.2.4. Take concrete bigraphs T and P2 as in Figure 4.13. Both the link graphs are
id∅. The results of the invocation of sub-routine SUB ISO(GT ,GP2) are

ι0 = {(v0, u0), (v1, u1), (v2, u4), (v3, u7)} ι1 = {(v0, u0), (v1, u2), (v2, u5), (v3, u7)} .

Both isomorphisms satisfy the condition in CTRL(ιi, ctrlT , ctrlP2). Sites are checked by
the iterations over sets of children {u2, u3} and {u1, u3} for ι0 and ι1, respectively. In both
cases, the existence of site 0 in P2 causes the invocations of SITES(ιi, T, P2) to return true.
The invocations of ROOTS(ιi, T, P2) iterate over {u5} and {u4} for ι0 and ι1, respectively.

4.2. Algorithm 79

T 0

��
u0 : A

xx �� &&
u1 : B
��

u2 : B
��

u3 : A
��

u4 : A
&&

u5 : A
��

u6 : B

��

u7 : B
��
0 1

P2 0

��
1

��

v0 : A
��

��

v1 : B
��

v2 : A
��

v3 : B
��

0 1

Figure 4.13: Bigraphs T : 2→ 1 and P2 : 2→ 2. No matches are possible.

T1 0

��
u0 : A

xx &&
u1 : B

�� &&

u2 : B

��xx
u3 : A u4 : A u5 : B

P3 0

��
v0 : A

xx &&
v1 : B

''

v2 : B

ww
0

Figure 4.14: Bigraphs T1 : 0→ 1 and P3 : 1→ 1. No matches are possible.

Root 1 in P2 is compatible for both isomorphisms. Finally the transitive closure is checked.
When TRANS(T, V̂P0) is invoked for ι0, node u5 forces the sub-routine to return false. This
because u0 ∈ prnt+T (u5). Analogously, ι1 is discarded because u0 ∈ prnt+T (u4). Therefore,
MATCH(T, P2) = ∅, i.e. P2 does not occur in T . �

Example 4.2.5. Consider instance MATCH(T1, P3) in which target T1 and pattern P3 are
given in Figure 4.14. Sub-routine SUB ISO(GT1 ,GP2) produces three isomorphisms. The
only one that is accepted by CTRL(ι, ctrlT1 , ctrlP3) is ι = {(v0, u0), (v1, u1), (v2, u2)}. The
loop in SITES(ι, T1, P3) iterates over set {u3, u4, u5}. The sub-routine returns false because
P3 does not have a set of sites capable of providing a parent set to node u3. More formally,
there is no site s such that ι(prntP3(s)) = prntT1(u3) = u1. Note that it is also impossible
to find a set of sites for u5. Therefore, P3 is not a match in T1 and the result of the algorithm
is MATCH(T1, P3) = ∅. �

Example 4.2.6. Take concrete bigraphs T2 and P4 specified by the diagrams in Figure 4.15.
Invocation MATCH(T2, P4) executes the first loop of the algorithm which returns I ′ = {ι}
with ι = {(v0, u0), (v1, u1)}. In the second loop, one of the following mappings between
links can be constructed, depending on the order of the recursive invocations of sub-routine

4.2. Algorithm 80

u1 : A

u0 : A

T2

x0

v1 : A

v0 : A

P4

x1 x2 y1y0

e0

e1

Figure 4.15: Bigraphs T2 and P4.

BUILD LINK MAP(, , , ,) in line 14 (see Figure 4.9):

η0 = {(x0, e1), (x1, e0), (x2, e0), (y0, e1), (y1, e0)}

η1 = {(x0, e0), (x1, e0), (x2, e1), (y0, e1), (y1, e0)}

η2 = {(x0, e0), (x1, e1), (x2, e0), (y0, e1), (y1, e0)} .

The topmost invocation in MATCH(,) is always BUILD LINK MAP(∅, X, ι, T2, P4), with
X = {x0, x1, x2, y0, y1}. Let us analyse the instructions performed by the sub-routine in
more detail. If x0 is chosen in line 3, we have S = ι({{v0}}) = {{u0}} and K = {e1, e0}.
This set is obtained on lines 5-6 because S ⊆ countT2(ei) with

countT2(e1) = {{u0, u1, u1}} countT2(e0) = {{u0, u0, u1}} .

Assuming e1 is the first element of K to be picked by the loop in lines 13-17, the next
invocation is BUILD LINK MAP({(x0, e1)}, X \ {x0}, ι, T ′2, P4) where T ′2 is the result of
REM PORTS(T2, e1, {{u0}}). The only difference with T2 is that we now have countT ′2(e1) =

{{u1, u1}}. This is the result of removing pair ((u0, i), e1) from linkT2 for some port identifier
i. The final output of the algorithm when executing the sequence of invocations in the order
described above is M = {(ι, η0)}. Observe that x0

.
= x1

.
= x1 and that any ηi can be

obtained by swapping equivalent names in another mapping. For instance, η2 is the result of
swapping x1 and x2 in η1. As a result, the decompositions induced by the three mappings
differ only by renamings on the inner names of the context. Therefore, all the mappings
describe the same occurrence and the sequence of invocations chosen during the execution
of the algorithm is irrelevant. �

4.2.3 Soundness and completeness

We now prove that the algorithm is sound and complete. Informally, soundness is proven
by showing that any solution obtained as output of MATCH(T, P) identifies an occurrence
of P in T . This means that a context and a parameter can be obtained by decomposing T

4.2. Algorithm 81

as specified by Definition 2.3.10. Dually, completeness is proven by showing that when P
occurs in T , then the algorithm produces a solution that identifies the decompositions of
T induced by match P . Before starting, we present some useful properties characterising
composition of concrete place graphs. We will use these results in the following proofs.

Proposition 4.2.1. Take two place graphs G : m→ n and F : k → m such that

B : k → n = G ◦ F .

For any node v ∈ VF , if (v′, v) ∈ prnt+B, then v′ ∈ (k] VF).

Informally, the proposition above states that all the descendants of a node in F are also
in F . We prove it as follows:

Proof. Assume the hypothesis holds but v′ 6∈ (k] VF). Then v′ ∈ VG. Since v ∈ VF and
(v′, v) ∈ prnt+B, we have

(v′, v0), . . . , (vi,mi) ∈ prntG (mi, vi+1), . . . , (vi+j, v) ∈ prntF

for some mi ∈ m. However, by Definition 3.2.1, prntG ⊆ (m] VG)× (VG] n). Therefore,
(vi,mi) 6∈ prntG because mi 6∈ (VG] n). Similarly, (mi, vi+1) 6∈ prntF because mi 6∈
(k] VF). This contradicts the hypothesis. Hence, v′ ∈ (k] VF).

Another property specifies that in a composition G ◦ F , when v, a site or node in VF ,
has some parents which are roots or nodes in VG, then a set of sites in G has exactly the
same parents. Moreover, this set corresponds to the roots in F belonging to the parent set
of v. This allows for v’s parent set to be constructed in the composition. We formalise the
property as follows:

Proposition 4.2.2. Take two place graphs G : m→ n and F : k → m such that

B : k → n = G ◦ F .

For any node or site v ∈ (k] VF) such that (prntB B (VG] n))(v) = P , with P 6= ∅, there

exists a set S ⊆ m such that

(prntF Bm)(v) = S
⋃
s′∈S

prntG(s′) = P

Proof. Immediate by Definition 3.2.2. Assume S does not exist. Then, it means that
prntF (v) ⊆ VF . But (prntB B (VG] n))(v) = ∅, so we have a contradiction.

The dual property on the children set of a node or root in G also holds:

4.2. Algorithm 82

Proposition 4.2.3. Take two place graphs G : m→ n and F : k → m such that

B : k → n = G ◦ F .

For any node or root v ∈ (VG]n) such that (prnt−1
B B (k]VF))(v) = C, with C 6= ∅, there

exists a set R ⊆ m such that

(prnt−1
G Bm)(v) = R

⋃
r′∈R

prnt−1
F (r′) = C

Proposition 4.2.4 (soundness). Let T and P be two concrete bigraphs, with VP 6= ∅. If

MATCH(T, P) returns a solution (ι, η), then (ι, η) identifies an occurrence of P in T .

Proof. Recall that a decomposition takes the form T = C ◦ (P ′⊗ id〈j,J〉)◦D with P ′ = ρ�P .
We begin by proving the decomposition over place graphs.

By construction ι = ρV and V̂P = VP ′ . Set VC is defined to contain all the nodes in VT
having a descendant in VP ′ . It follows that VD = VT \ (VC] VP ′). The interfaces of the
context and the parameter are C : n+ j → n′ and D : m′ → m+ j, respectively. Parameter
j is the number of nodes or sites in D having a parent in C. By definition of composition,
the parent relations are

prntD B VD = prntT B VD VC C prntC = VC C prntT .

Relations prntDBj and jCprntC contain the pairs (u, ji) and (ji, v), respectively, for every
(u, v) ∈ prntT , with u ∈ (m′] VD) and v ∈ (VC] n′). Finally, prntD Bm is the relation
containing pairs (c, s) identified by procedure SITES(ι, T, P). Note that c ∈ (m′] VD)

and s ∈ m. In a similar fashion, relation n C prntC is formed by pairs (r, p) detected by
ROOTS(ι, T, P), with r ∈ n and p ∈ (VC] n′).

We now construct a decomposition for link graphs. By construction EP C η = ρE and
EP ′ = ρE(EP). Set ED contains all the edges in ET that have a port set entirely over nodes
in VD. The edges of the context are EC = ET \ (EP ′]ED). The interfaces in the link graphs
of the decomposition are C : Y] J → Y ′ and D : X ′ → X] J . Set J contains a name
for each point in D being mapped to a link in C. Therefore, identity idJ is obtained with a
construction similar to the one described for idj: pairs (p, w), (w, l), with w ∈ J , are added
to linkD B J and J C linkC , respectively, for every (p, l) ∈ linkT . Therefore, the complete
link map for C is given by

linkC = (J C linkC)] (Y C η)] (PC C linkT) .

Relation linkD B X contains the pairs (p, x), with p ∈ (X ′] PD) and x ∈ X , for every

4.2. Algorithm 83

T P
0

��
u0 : A

xx �� &&
u1 : B
��

u2 : B
��

u3 : A
��

u4 : A
&&

u5 : A
��

u6 : B

��

u7 : B
��
0 1

P P
0

��
v0 : A
��

��

v1 : B
��

v2 : A
��

0 1

T L x

u0 : A u3 : A u4 : A u5 : A

u1 : B u7 : B u2 : B u6 : B

e0
e1 e2

P L x

v0 : A v2 : A v1 : B

y

z

e′0

Figure 4.16: Link graphs and place graphs for target T : 2 → 〈1, {x}〉 and pattern P : 〈2, {z}〉 →
〈1, {x, y}〉.

(p, e) ∈ linkT and (x, e) ∈ linkP ′ . Finally, the complete link map for D is

linkD = (linkD B J)] (linkD BX)] (linkT B ED) .

This concludes the proof.

The constructive proof described above can be used as a procedure for the decomposition
of a target given a pattern and a pair (ι, η). This is explained by the following example.

Example 4.2.7. Consider bigraphs T and P given in Figure 4.16. Note that the place graphs
correspond to the bigraphs used in Example 4.2.3. The output of MATCH(T, P) is

(ι0, η0) = ({(v0, u0), (v1, u1), (v2, u4)}, {(x, x), (y, x), (e′0, e0)})

(ι1, η1) = ({(v0, u0), (v1, u2), (v2, u5)}, {(x, x), (y, x), (e′0, e1)}) .

We now construct a decomposition T = C ◦ (P ′⊗ idI) ◦ D by using solution (ι0, η0). The
first step consists in defining VP ′ as the range of ι0 and EP ′ as the range of EP C η0:

VP ′ = {u0, u1, u4} EP ′ = {e0} .

The second step is to define context C. Since there are no nodes in T that are a parent of
a node in VP ′ , we set VC = ∅. Sub-routine ROOTS(ι0, T, P) can only identify (0, 0). This

4.2. Algorithm 84

CP
0

��
0

CL x

x y w t

Figure 4.17: Place and link graphs for context C : 〈1, {x, y, w, t}〉 → 〈1, {x}〉.

DP
1

��

0

�� ''
u2 : B
��

u3 : A
��

u5 : A
��

u6 : B

��

u7 : B
��
0 1

DL

u2 : B u6 : B

u7 : B

z

u5 : A

t

u3 : A

w

e1 e2

Figure 4.18: Place and link graphs for parameter D : 2→ 〈2, {z, w, t}〉.

is also the only pair in prntC . The edge set of the context is EC = ∅ because all the edges
in T have port sets entirely over VD. Finally, two fresh names w, t need be introduced in
order to break pairs ((u3, 0), x), ((u5, 0), x) in linkT . The full definition of context C :

〈1, {x, y, w, t}〉 → 〈1, {x}〉 is given in Figure 4.17. The final step is to define parameter D.
The node and edge sets are

VD = {u2, u3, u5, u6, u7} ED = {e1, e2} .

Sub-routine SITES(ι0, T, P) detects pairs (u7, 1), (u2, 0) and (u3, 0). The other pairs in
prntD are taken from prntT B VD. The link map is constructed by adding the following
three pairs to the pairs in linkT B ED:

((u3, 0), w) ((u5, 0), t) ((u7, 0), z) .

Diagrams for the place and the link graphs ofD : 2→ 〈2, {z, w, t}〉 are drawn in Figure 4.18.
�

Proposition 4.2.5 (completeness). Let T and P be two concrete bigraphs, with VP 6= ∅. If

P is a match in T , then MATCH(T, P) returns a solution (ι, η) for every occurrence of P in

T .

Proof. By Definition 2.3.10, the hypothesis is there existsC,D such that T = C◦(P ′⊗ idI)◦
D with P ′ = ρ�P . By Definition 2.2.5 and Definition 4.2.1, ρV is a control-preserving

4.2. Algorithm 85

isomorphism from GP to GP ′ . Since VP ′ ⊆ VT , ρV is an output of SUB ISO(GT ,GP)

and CTRL(ρV , ctrlT , ctrlP) returns true. By Proposition 4.2.2 and by hypothesis (P ′ ⊗
idI) ◦ D, SITES(ρV , T, P) returns true. Similarly, by Proposition 4.2.3 and by hypothesis
C ◦ (P ′ ⊗ idI), ROOTS(ρV , T, P) returns true. The hypothesis and Proposition 4.2.1 also
ensure that TRANS(T, V̂P) returns true. We now show that the algorithm returns a valid
link mapping η. By Definition 2.3.2, we know that when τP ′(e) = edge holds for an
edge e ∈ EP ′ , then τT (e) = edge also holds. Therefore, ρE ⊂ η because of lines 7-8 in
BUILD LINK MAP(, , , ,). The other pairs in η are found by checks on lines 5-6 and 10-
11. The existence of these pairs follows from the hypothesis and by Definition 2.2.3. This
proves that (ι, η), with ι = ρV , is a solution returned by MATCH(T, P) when the hypothesis
holds. This concludes the proof.

We conclude the chapter by proving the following proposition:

Proposition 4.2.6. Algorithm MATCH(,) natively supports non-sharing concrete bigraphs.

Proof. We need to prove that whenever T and P are non-sharing, then context C and para-
meterD in any decomposition constructed by MATCH(T, P) are also non-sharing. We begin
by proving that D is non-sharing.

Assume D is a sharing bigraph. Then by Definition 3.2.1 its place graph can contain
i) orphans and ii) shared places. We prove the two cases separately.

i) Let c be an orphan in D. Since c is also a place in T , then by Proposition 4.2.4

prntD(c) = prntT (c) = ∅ .

But T is non-sharing, therefore |prntT (c)| = 1. This is a contradiction.

ii) Without loss of generality, let prntD(c) = {p, p′} with {p, p′} ⊆ (VD] j). There are
six cases:

1) If {p, p′} ⊆ VD, then by Proposition 4.2.4 prntD B VD = prntT B VD. There-
fore, prntT (c) = {p, p′}. But this is a contradiction because T is non-sharing by
hypothesis.

2) If p ∈ VD and p′ ∈ m, then by Proposition 4.2.4 and by the fact that P is non-sharing,
there exists one p′′ ∈ VP ′ such that (c, p′′) ∈ prntT . However, Proposition 4.2.4 also
implies that (c, p) ∈ prntT , which contradicts the hypothesis.

3) If p ∈ VD and p′ ∈ j, then by Proposition 4.2.4 there exists one p′′ ∈ VC such that
(c, p′′) ∈ prntT . As in the previous case, this contradicts the hypothesis.

4.3. Summary 86

4) If {p, p′} ⊆ m then by Proposition 4.2.4 and by the fact that P is non-sharing, we
have that |prntT (c)| = 2. But this is a contradiction because T is non-sharing by
hypothesis.2

5) If {p, p′} ⊆ j then c has a parent in C. The construction of idj described in Pro-
position 4.2.4 ensures the minimality of j. Therefore, there is only one site in idj

connecting c with its parent in C. This implies that (c, p′) 6∈ prntD. Contradiction.

6) If p ∈ m and p′ ∈ j, then by Proposition 4.2.4 and by the fact that P does not have
any orphan sites, we have that {(c, v), (c, p′′}) ∈ prntT , with v ∈ VP ′ and p′′ in C.
This is a contradiction because T is non-sharing by hypothesis.

The proof for C is similar and thus omitted.

4.3 Summary

In this chapter we defined a graph theoretic matching algorithm for bigraphs with sharing.
In Section 4.1, we gave an overview of the problem with an example instance. We also
briefly described an algorithm for non-sharing bigraphs based on inference rules. Further-
more, we discussed the relationship of matching with related computational problems. The
formal definition of the algorithm was introduced in Section 4.2. We showed that it con-
sists of a reduction to the sub-graph isomorphism problem and we proved its soundness and
completeness.

This chapter concludes the first part of this thesis that was devoted to the theory of bi-
graphs with sharing. In the next part the focus will shift to applications of bigraphs. We will
describe BigraphER, a software tool based on a SAT3 encoding of our matching algorithm
that allows manipulation and visualisation of bigraphs and efficient computation of BRS and
SBRS. Then we will model a communication protocol for wireless networks and describe
real-time verification in a home-network environment.

2Observe that by definition of procedure SITES(, ,), it is impossible to have {(p, v), (p′, v)} ⊆ prntP if
prntD(c) = {p, p′}.

3Boolean satisfiability problem.

87

Part II

Applications

88

Chapter 5

BigraphER: Bigraph Evaluator &
Rewriting

In this chapter we describe BigraphER, an implementation of BRS and SBRS that natively
supports place graphs with sharing. It is based on the graph theoretic algorithm presented in
Chapter 4.

Section 5.1 gives a brief overview of the architecture of the system. In Section 5.2, data
types for the representation of bigraphs with sharing and their constituents are defined and
then, the details of our approach are explained by analysing the manipulation and visualisa-
tion routines, the matching engine based on a SAT encoding of matching and the rewriting
engine for the computation of a reaction relation in a BRS. Section 5.3 introduces a method
based on matching to check a class of BiLog predicates. Finally, a summary of the chapter
is provided in Section 5.4.

5.1 Overview

The BigraphER system consists of an OCaml library and a command-line tool that provides
efficient manipulation and visualisation of bigraphs and simulation of BRS and stochastic
BRS. A prototype implementation can be downloaded from the website http://dcs.gla.
ac.uk/˜michele/bigrapher.html.

We start off by describing the architecture of the command-line tool. The technical details
of the implementation are given in Section 5.2. The tool is composed of three distinct mod-
ules: the compiler, the matching engine and the rewriting engine. Their interconnections are
shown in Figure 5.1. The tool’s input is a source file containing the model specification. The
language used, called BigraphER specification language, closely resembles the algebraic
form of bigraphs introduced in Chapter 3. This similarity can be observed in the example in

http://dcs.gla.ac.uk/~michele/bigrapher.html
http://dcs.gla.ac.uk/~michele/bigrapher.html

5.1. Overview 89

Model
specification

Input // Compiler
Output //

((

Graphical
visualisation

Matching
engine

// Rewriting
engine

Output 66

Output // Transition
system

Figure 5.1: Architecture of the command-line tool. The modules are represented by the boxes within
the dotted box. Unlabelled arrows show the dependency relation between the modules.

Figure 5.2, where a comparison between the two representations is shown. The BigraphER
specification language allows one to define the signature of the model, a set of bigraphs and
a set of reaction rules. An overview of the main features of the language are as follows.

A signature is specified by a sequence of control declarations of the following form:

ctrl ctrl name = int;

where ctrl name is a string identifier. Each declaration introduces a new control and assigns
an arity, i.e. integer int, to it. Variables representing bigraphs are declared in a similar
fashion:

big [init] name = big exp;

where identifier name is a string. The optional argument init allows one to specify a
bigraph as the initial state of the model. Examples of big exp expressions are the right-hand
sides of the big declarations in Figure 5.2a. The operators on big exp expressions are

* + || | . share by in

They correspond to their algebraic counterparts: composition, tensor product, parallel product,
merge product, nesting and share expressions, respectively. Recursive declarations are not
allowed. Declarations of reaction rules have the form:

react name = big exp -> big exp;

Finally, stochastic reaction rules are declared as follows:

sreact name = big exp -> big exp @ float ;

where float indicates the reaction rate.

The compiler is the component that translates an input source file into a run-time repres-

5.1. Overview 90

ctrl A = 1; ctrl E = 1; ctrl G = 1;
ctrl B = 0; ctrl C = 0; ctrl D = 0; ctrl F = 0;
big b = share f by phi in g;
big f = D.1 || E({y}).1 || F.1 || G({y}).1;
big phi = ([{1,2},{0,1,2},{2},{}], 3);
big g = A({y}) | B | C;

(a)

B = share F by φ in G
F = D.1 ‖ Ey.1 ‖ F.1 ‖ Gy.1
φ = [{1, 2}, {0, 1, 2}, {2}, ∅]
G = Ay | B | C

(b)

A

B C

G

E

D
F

y

(c)

Figure 5.2: Comparision between a representation in the BigraphER specification language (a) and
the algebric form (b) of bigraph B : ε→ 〈1, y〉 (c).

entation of the model. In more detail, each declaration specifies the binding of an identifier
to a data type representing either a control, a bigraph, a reaction rule or a stochastic reaction
rule. Controls and reaction rules are stored as OCaml integers and records, respectively. The
encoding of a bigraph is somewhat more complex and requires two specialised data struc-
tures, one for the place graph and one for the link graph. They are described extensively in
Section 5.2. Observe that the source file specifies abstract bigraphs. However, a concretion
of a given bigraph is actually stored in memory. The compiler is used by the rewriting engine
to retrieve the data structures corresponding to the initial state and to the reaction rules of the
model. The compiler can also return a graphical representation of every bigraph specified in
the input file. This is generated by the automatic graph-layout generator Graphviz [33].

The matching engine implements the matching algorithm for bigraphs with sharing in-
troduced in Chapter 4. It is used by the rewriting engine to apply reaction rules to a state and
to check equality of states. The implementation is based on a SAT encoding of the matching
algorithm. Solutions are obtained by passing the SAT instance resulting from the encoding
to the MiniSat solver [27].

The rewriting engine builds a graph representing the transition system (CTMC) corres-
ponding to a BRS (SBRS). It is constructed by iteratively applying the reaction rules to each
state and then storing the resulting states, until a fixed point is reached. This happens when
all the bigraphs obtained by the application of the reaction rules are already present in the
graph. Note that the model is assumed to have a finite state space. Therefore, no controls are
performed to assure that the loop terminates. In order to avoid an abrupt termination when

5.2. Implementation 91

the program runs out of memory, a switch specifying the number of iterations can be used
when the tool is launched. The rewriting engine can return either a textual or a graphical
representation of the graph. It can also output a graphical representation of each state.

The BigraphER OCaml library provides programming interfaces for the data structures
used internally by the command-line tool. For instance, it is equipped with functions to
compute the composition of two bigraphs and the result of a reaction application. A binding
to the matching engine is also implemented. More details are given in the following.

5.2 Implementation

In this section, we describe our implementation of the main components of the BigraphER
system. Namely, we discuss how bigraphs and functions for their manipulation are expressed
in OCaml, we analyse and justify our SAT encoding of MATCH(,) in the matching engine,
and we explain our approach to the implementation of the rewriting engine and the visual-
isation functions for bigraphs. Some of these topics are covered in our previous work [57].

5.2.1 Bigraphical structures

As we previously mentioned, a concrete bigraph is represented in memory as two distinct
data structures corresponding to its place and link graph. Functions implementing composi-
tion and tensor product are also implemented independently on the two structures. Observe
that this mirrors the formal definition of bigraphs given in Chapter 3.

We begin by presenting the implementation of concrete place graphs. Our approach
consists of representing DAGs with adjacency matrices. These are OCaml values of bool
array array type. We chose this representation as it allows the implementation of fast in-
place modification algorithms. Operations on place graphs are encoded by matrix operations.
Formally, given a concrete place graph F : s→ r, with |VF | = n, the corresponding (s+n)-
by-(n+ r) boolean matrix is

F(s+n)×(n+r) =

[
Ss×n Ns×r

Vn×n Rn×r

]

Integers are used as node identifiers, i.e. VF = {0, . . . , n − 1}. Therefore, they can be
interpreted as row or column indexes. A zero-based indexing of matrices is used. The four
sub-matrices encode different subsets of prntF . Matrix Ss×n corresponds to (s C prntF B

VF). It stores the parents of the sites that are nodes. Matrix Ns×r represents (sCprntF B r),
i.e. the parents of the sites that are roots. Similarly, the other two matrices record the parents

5.2. Implementation 92

of the nodes of the place graph. Matrices Vn×n and Rn×r encode relations (VFCprntFBVF)

and (VF C prntF B r), respectively. Their elements are defined as follows:

mi,j
def
=

true if (i, j) ∈ R

false otherwise

wheremi,j andR range over the elements of Ss×n, Ns×r, Vn×n, Rn×r and the corresponding
parent sub-relations, respectively.

Composition of concrete place graphs follows Definition 3.2.2. It is based on boolean
matrix multiplication, i.e. row-by-column multiplication in which summation and product
are ∨ and ∧, respectively. Take two concrete bigraphs F : s→ r, G : r → r′, with |VF | = n

and |VG| = n′. Their run-time representation is given below:

F(s+n)×(n+r) =

[
Ss×n Ns×r

Vn×n Rn×r

]
G(r+n′)×(n′+r′) =

[
S′r×n′ N′r×r′

V′n′×n′ R′n′×r′

]

The result of the function implementing composition is place graph G ◦ F : s → r′, with
|VG◦F | = n+ n′ = m. It is encoded by the following matrix:

[G ◦ F](s+m)×(m+r′) =

[
D(s+n)×n C(s+n)×(n′+r′)

0n′×n D′n′×(n′+r′)

]

Sub-matrix C(s+n)×(n′+r′) is the result of the following multiplication:

C(s+n)×(n′+r′) =

[
Ns×r

Rn×r

] [
S′r×n′ Nr×r′

]
The other sub-matrices are

D(s+n)×n =

[
Ss×n

Vn×n

]
D′n′×(n′+r′) =

[
V′n′×n′ R′n′×r′

]
Matrix 0n′×n is an n′ × n matrix with all elements set to false. It encodes the fact that,
by construction, no node in G can have a parent in F . The four sub-matrices encode dif-
ferent subsets of prntG◦F . Matrix D(s+n)×n represents prntBVF , i.e. the places in F that are
unaffected by the composition. Analogously, the places in G that do not change are encoded
by D′n′×(n′+r′). It corresponds to relation prntCVG . Matrix C(s+n)×(n′+r′) encodes the edges
merged during composition. These are the pairs in relation prnt◦. Finally, 0n′×n encodes
∅. Note that the procedure assures the supports are disjoint. This is because G’s nodes are
always below and to the right of F ’s nodes in the matrix representation. This corresponds
to adding offset n to all the nodes in G. We illustrate the implementation of composition by

5.2. Implementation 93

0

|| ""
v0

��

!!

v1

��
v2

0 1

(a) G : 2→ 1

0

��

��

��

1

��ww
w0

��

w1

��
w2

��
0 1

(b) F : 2→ 2

0

|| ""
v0

��

""

��

''

v1

��rr

v2

w0

��

w1

��
w2

��
0 1

(c) G ◦ F : 2→ 1

Figure 5.3: Example of composition for concrete place graphs with sharing.

showing how it works on the place graphs introduced in Example 3.2.1.

Example 5.2.1. Let concrete place graphs G : 2 → 1, F : 2 → 2 and their composition
G ◦ F : 2→ 1 as in Figure 5.3. Their OCaml representation is

F(2+3)×(3+2) =

w0 w1 w2 0 1


0 1 0 0 1 0

1 0 0 1 0 0

w0 0 0 0 1 1

w1 0 0 0 0 1

w2 0 1 0 1 0

G(2+3)×(3+1) =

v0 v1 v2 0


0 1 0 0 0

1 0 1 0 0

v0 0 0 0 1

v1 0 0 0 1

v2 1 0 0 0

where 1 and 0 are short-hands for values true and false. Row indexes are sites and
nodes, while column indexes are nodes and roots. Horizontal and vertical delimiters in
the representation help to highlight blocks S, N, R and V (clockwise from top left). The
representation of composite place graph G ◦ F : 2→ 1 is

[G ◦ F](2+3+3)×(3+3+1) =

w0 w1 w2 v0 v1 v2 0



0 1 0 0 1 0 0 0

1 0 0 1 0 0 0 0

w0 0 0 0 1 1 0 0

w1 0 0 0 0 1 0 0

w2 0 1 0 1 0 0 0

v0 0 0 0 0 0 0 1

v1 0 0 0 0 0 0 1

v2 0 0 0 1 0 0 0

In this case, delimiters are introduced to show sub-matrices D, C, D′ and 0 (clockwise from
top left). The red and blue boxes aid the visualisation of the structure of blocks D and D′,

5.2. Implementation 94

respectively. Their building blocks in F and G are highlighted with the same colour. �

The tensor product of concrete place graphs is computed by interleaving the matrices of
the two factors as follows:

[F⊗G](s+s′+m)×(m+r+r′) =


Ss×n 0s×n′ Ns×r 0s×r′

0s′×n S′s′×n′ 0s′×r N′s′×r′

Vn×n 0n×n′ Rn×r 0n×r′

0n′×n V′n′×n′ 0n′×r R′n′×r′


This is described in the following example:

Example 5.2.2. Take concrete place graphs G : 2→ 1 and F : 2→ 2 defined in Figure 5.3a
and Figure 5.3b, respectively. Their run-time representations are given in Example 5.2.1.
The representation of G⊗F : 4→ 3 is

[G⊗F](2+2+3+3)×(3+3+1+2) =

v0 v1 v2 w0 w1 w2 0 0 1



0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 0 1 0 0 0

v0 0 0 0 0 0 0 1 0 0

v1 0 0 0 0 0 0 1 0 0

v2 1 0 0 0 0 0 0 0 0

w0 0 0 0 0 0 0 0 1 1

w1 0 0 0 0 0 0 0 0 1

w2 0 0 0 0 1 0 0 1 0

Blue boxes indicate the sub-matrices taken from G, while red boxes show the blocks taken
from matrix F. �

Support translations are encoded by row and column swapping. For instance, assume
(i, j) ∈ ρV , with i 6= j and that G : s → r. When computing ρV �G, columns i and j and
rows (s+ i) and (s+ j) are swapped.

We now present the OCaml implementation of concrete link graphs. Our representation
of the hyper-graph structure characterising the link map consists of a set of pairs (type Lg.t)
in which the first element is a link identifier and the second is the set of its points (type
Points.t). Module Set provided by the OCaml standard library is used to implement all
the set structures. Link identifiers have variant type

type link = Edg of int | O nam of string .

5.2. Implementation 95

y

y

v0

(a) G : {y} → {y}

y

x
v2

v0 v1

e1
e0

(b) F : {x} → {y}

y

x
v2

v0 v1

e1
e0

v3

(c) G ◦ F : {x} → {y}

Figure 5.4: Example of composition for concrete link graphs.

This reflects the fact that a link can either be an edge or an outer name. Similarly, points can
be ports or inner names. They have type

type point = Port of (int * int) | I nam of string .

The first element in Port is a node index. Note that by Definition 2.2.3 all the point-sets are
disjoint.

The tensor product of two concrete link graphs is the union of the two sets of pairs,
provided their inner and outer names are disjoint. In order to have disjoint supports, offsets
are added to the ports and the edges of the right operand before the union is performed. This
is implemented by invoking the library function fold twice. The first time it is used to add
the number of edges of the left operand (e offset) to every edge index in the set of pairs
representing the right operand. The implementation is given by the following code

(Edg i, p) -> (Edg (i + e offset), p) .

It is executed when iterating over a set of type Lg.t. The second invocation of fold adds
the number of nodes of the left operand (v offset) to every port in the point-set of each
link. The code executed when iterating over a set of type Points.t is the following:

Port(i, j) -> Port(i + v offset), j) .

Composition of concrete link graphs is implemented according to Definition 2.3.2. The
operation can be carried out only when the mediating faces of the two operands in the com-
position are equal. This equality check is performed by comparing the strings in the O nam

and I nam elements. The first step consists of adding offsets to the left operand in order to
have disjoint supports. This operation was described above in the implementation for tensor
product. In the next step, each I nam in the point-sets of the right operand is substituted
by the point-set associated to the corresponding O nam in the left operand. Finally, all the
pairs in the right operand having an Edg as first element are added to the pair set of the left
operand. The implementation is explained in the following example.

5.2. Implementation 96

Example 5.2.3. Consider concrete link graphs G : {y} → {y}, F : {x} → {y} and their
composition G ◦ F : {x} → {y} as in Figure 5.4. The two operands are represented in
OCaml as two sets of type Lg.t1. The set for link graph G contains only one pair:

[(O nam("y"), [I nam("y"); Port(0,0)])] .

Since |VF | = 3, the set after the application of the offset becomes

[(O nam("y"), [I nam("y") ; Port(3,0)])] .

The set for link graph F is

[(O nam("y"), [Port(0,0); Port(1,0)]);

(Edg(0), [I nam("x"); Port(0,1)]);

(Edg(1), [Port(1,1); Port(2,0)])]]

Composition G ◦ F is the result of adding the edges of F to G and of replacing inner name
y with the point-set of outer name y in F . This substitution is highlighted by the coloured
boxes in the representations above. The OCaml value of G ◦ F is given by

[(O nam("y"), [[Port(0,0); Port(1,0); Port(3,0)]);

(Edg(0), [I nam("x"); Port(0,1)]);

(Edg(1), [Port(1,1); Port(2,0)])]] �

Support translations are implemented as substitutions of ports and edge-identifiers. An
example support translation is the application of an offset we described above.

5.2.2 Matching engine

We now describe the details of the implementation of the matching engine of BigraphER.
It is based on a SAT encoding of MATCH(,) and the MiniSat solver. In the following, we
give insight into our approach by showing the encodings of sub-routines SUB ISO(,) and
CTRL(, ,). The complete encoding was implemented by Chris Unsworth and is illustrated
in [57]. The main reason behind our choice of using a SAT encoding is to easily implement
an efficient matching engine. SAT solvers are highly specialised software tools capable of
checking satisfiability of propositional formulae. If a formula ϕ is satisfied, a truth assign-
ment that makes ϕ evaluate to true is returned. The satisfiability problem is NP-complete.

1To ease the presentation, the sets in the example are displayed as lists. This transformation is the result of
applying function elements to values of type Lg.t and Points.t.

5.2. Implementation 97

A wide range of decision and optimization problems can be encoded into instances of SAT.
This is appealing because it is often faster to solve the SAT encoding of a problem with a
SAT solver rather than using a specialised algorithm to solve the original problem. This can
be particularly true in the presence of NP-complete problems. Examples of this approach
are presented in [11, 67].

Our SAT encoding is defined by a set of boolean formulae, called constraints, express-
ing an instance of the matching problem. Given a target T and a pattern P , invocation
SUB ISO(GT ,GP) is encoded by a matrix X of boolean variables and by four constraints on
its structure. Each element xi,j of X represents a possible pair (i, j) ∈ ι, with ι an isomorph-
ism from P to a subset of T . Therefore, X has n rows and m columns, with |VP | = n and
|VT | = m. The constraints on X are formulae in conjunctive normal form (i.e. a conjunction
of clauses). By definition of isomorphism, ι is total. Hence, every node of the pattern has to
be mapped to at least node in the target. This corresponds to having at least one variable on
every row of X that is assigned true. Formally, the constraint is defined as follows

C1 =
∧

0≤i<n

∨
0≤j<m

xi,j

It contains n clauses. The second constraint specifies that each node in P is mapped to at
most one node in T . This corresponds to having at most one variable on every row of the
matrix that is assigned true. Therefore, the encoding needs to check every pair (xi,j, xi,k),
with j < k in every row i of X. The definition is given by

C2 =
∧

0≤i<n

∧
0≤j<m−1

∧
j<k<m

(¬xi,j ∨ ¬xi,k)

The number of clauses is n
(
m
2

)
= nm(m−1)

2
= O(nm2). Since ι is a bijection, each node in

T is mapped by at most one node in P . The corresponding constraint is defined similarly to
the previous one but the pairs are taken from the columns of X. The definition is as follows:

C3 =
∧

0≤j<m

∧
0≤i<n−1

∧
i<l<n

(¬xi,j ∨ ¬xl,j)

It contains m
(
n
2

)
= O(mn2) clauses. Finally, the edges of GP have to correspond to the

edges of GT and vice versa. This is expressed by the following constraint:

C4 =
∧

(i,l,j,k)∈C

¬xi,j ∨ ¬xl,k with C = {(i, l, j, k) | (i, l) ∈ prntP 6= (j, k) ∈ prntT}

In the worst case, the constraint has n2m2 clauses. The formula encoding SUB ISO(GT ,GP)

is the conjunction of the four constraints. If an isomorphism ι : GP → GT exists, then

5.2. Implementation 98

MiniSat returns a truth assignment A such that

A |= C1 ∧ C2 ∧ C3 ∧ C4 and (i, j) ∈ ι⇐⇒ A(xi,j) = true .

It is possible to encode CTRL(ι, ctrlT , ctrlP) with a similar constraint on X:

C5 =
∧

(i,j)∈C′
¬xi,j with C ′ = {(i, j) | ctrlP (i) 6= ctrlT (j)}

It has nm clauses in the worst case. Note that
∧

0<i<6Ci can be used to directly obtain a
control-preserving isomorphism. In this way, isomorphisms that are not solutions can be
detected and discarded earlier in the computation. This is more efficient that computing all
the possible isomorphism with SUB ISO(,) and filtering them afterwards with CTRL(, ,)

as was specified in the definition of MATCH(,). The total number of clauses required by
the encoding is O(n2m2).

In order to find other isomorphisms, a new SAT instance is generated. A clause cor-
responding to the negation of a solution A already found by MiniSat is added to the set of
constraints as follows:

A′ |= (
∧

0<i<6

Ci) ∧ (
∨
x∈C′′
¬x) with C ′′ = {x | A(x) = true}

where A′ corresponds to a different isomorphism. This operation is iterated until the SAT
instance we obtain is unsatisfiable. This assures that all the isomorphisms from P to a subset
of T are found.

The other phases of the algorithm are expressed as constraints in a similar fashion. The
conjunction of all constraints is the SAT instance encoding the matching algorithm. Note
that a different matrix is needed for link matching.

The implementation of the matching engine consists of an encoder written in C++ and
an OCaml module providing bindings to the other modules of the BigraphER system. The
encoder receives as input a textual representation of a target and a pattern, computes the SAT
constraints and sends them to MiniSat. The result is a textual representations of the solutions
(ι, η). The encoder can also be used as a stand-alone command-line tool. The implement-
ation has been tested with all the examples in Chapter 4. All the correct solutions were
returned in less than a millisecond. We also tested the system with large randomly generated
bigraphs. It was found that instances with 500 nodes in the target graph and between 10 and
100 nodes in the pattern graph could be solved in less that 20 seconds. Finally, the matching
engine was successfully tested on instances arising from the bigraphical models of real ap-
plications on wireless network protocols and domestic networks. The results are reported in
chapters 6 and 7.

5.2. Implementation 99

Sn+1 · · ·

S1

& /6

�)/ · · ·
· · ·

S0
� ,2

3 5>

�)

S2

n−1

% /5

�)/ · · ·
· · ·

Sn

% /5

�)/ · · ·

Figure 5.5: Construction of the state space.

5.2.3 Rewriting engine

The rewriting engine is the component of the BigraphER system that computes the dynamic
evolution of bigraphs. This is implemented by building the state space of the model specified
in the input file. We represent the state space in OCaml as a graph in which the vertices are
the states and the edges are their adjacency lists stored in a hash table. Recall that bigraph S0

is adjacent to bigraph S1 iff S0 BS1. Data structures are provided by the standard library
in modules Set and Hashtbl, respectively. Each state is a pair formed by an integer index
and an OCaml representation of a concrete bigraph. Each entry in the hash table binds a
state index to a set of state indexes. Informally, the rewriting engine incrementally builds
the state space in a breadth-first search (BFS) fashion starting from the initial state of the
model. The adjacent states of a state are computed on-the-fly by applying the reaction rules
to it. This is represented by the diagram in Figure 5.5. Below we describe more precisely
our implementation approach.

The rewriting engine is initialised after the input model is successfully parsed by the
compiler. Initially, the hash table is empty and the set of vertices contains only state (0,b),
where b is a concretion of the bigraph declared init in the source file. Then, the BFS
loop on the graph representing the state space is started. Our implementation is based on the
classical algorithm using a queue. At each iteration, the first element, (i,s), is removed
from the queue and all its possible reconfigurations are computed. If the states obtained are
not already present in the graph, they are added both to the queue and to the set of vertices.
Moreover, (i,s)’s adjacency list in the hash table is updated by adding the indexes of the
reconfigurations. The loop is repeated until the queue is empty. Note that when a new state
is added to the graph, its index is the current cardinality of the set of vertices. This assures
that states have distinct indexes.

5.2. Implementation 100

The reconfigurations of (i,s) are computed by checking if the redex of each reaction
rule in the model occurs in s. The representation of each reaction rule is fetched from the
compiler, while the occurrences are computed by the matching engine. If redex r is a match,
state s is decomposed by the algorithm defined in the constructive proof of Proposition 4.2.4.
The result is a tuple of bigraphs (c, id, d), where c is the context, id is the identity and
d is the parameter. Observe that the decomposition is unique because r is a solid bigraph
(see Section 2.9). The reconfiguration resulting from the application of the reaction rule is
obtained by composing the reactum with c, id and d.

Equality checking is also implemented as an instance of matching. Recall a bigraph
f is m-equivalent to g if it occurs in g, the context and parameter in the corresponding
decomposition are identities and id is the empty bigraph. We note that, the computed state
space can be correctly interpreted as an abstract BRS, despite the implementation being
based on concrete bigraphs.

When the input model specifies a SBRS, rates are added to every edge in the graph
in order to correctly represent a CTMC. This is implemented by a different definition of
adjacency list in which each element is a pair formed by a state index and a rate. The BFS
loop is also modified to compute the total rate of every reaction by summing the contributions
of each stochastic reaction rule.

The efficiency of the rewriting engine heavily relies on the performances of the matching
algorithm. As we described above, we have an instance of matching for every reaction rule
application and for every equality check. Observe that all the states in the transition system
are tested for equality at every iteration of the BFS loop. Therefore, it is essential for the user
of the BigraphER system to specify carefully the input models in order to reduce the size of
the redexes and to avoid the creation of meaningless states. To this end, we can also support
priorities on reaction rules. We will describe this feature in the next chapter.

5.2.4 Visualisation

A graphical representation of bigraphs can be generated automatically by BigraphER. An
example output is shown in Figure 5.6. As can be seen, the result closely resembles the
stratified diagrams for sharing bigraphs introduced in Chapter 3. Our implementation of the
visualisation function uses Graphviz, an open source graph visualization software. In more
detail, the compiler computes a textual description of a bigraph and then sends it to the dot
tool which automatically generates the layout of the graph for the graphical representation.
Different styles are used to denote the components of a bigraph. For example, sites and roots
are displayed as dashed boxes and links are drawn as solid green lights. Rank constraints on
the roots and outer names force them to appear on the top of the diagram. Similarly, sites

5.3. Checking predicates 101

0

E

1

A

B

C D D

ab

A

dx y

CAB

Figure 5.6: Example of automatically-generated visualisation.

and inner names are forced to the bottom. Each hyper-edge in the link graph is encoded by
an invisible dummy node to which ports and names are linked.

5.3 Checking predicates

Recall that the structure of bigraphs can be described by BiLog as we showed in Chapter 2.
Some example formulae expressing properties of an arbitrary bigraph B are:

ϕ1: B contains a node of control C, written B |= > ◦ (C⊗>) ◦ >.

ϕ2: B |= ψ1 ◦ > ◦ ψ2, i.e. B can be decomposed in two bigraphs satisfying formulae ψ1

and ψ2, respectively.

ϕ3: B contains two A-nodes that are not linked (but may be nested), B |= ((>⊗ idx,y) ◦
(Ax⊗>⊗ idy) ◦ (idy⊗>) ◦ (Ay⊗>) ◦ >.

Formula > it the tautology. It is satisfied by any bigraph.

In the following, we present informally how a class of predicates can be checked by
reduction to bigraph matching. A similar approach was also adopted in [53].

The BiLog fragment we consider contains the formulae solely formed by operators ◦
and ⊗ and elements of Ω ∪ >. We write ϕ to indicate a formula in the fragment. Note that
boolean operators and logical adjuncts are not allowed. Intuitively, any formula in this form
contains one or more sub-formulae that can be used as a pattern in an instance of bigraph
matching.

Take for instance predicate ϕ1 specified above. It is possible to check B |= ϕ1 by in-
voking MATCH(B̃, P̃ϕ1), where the pattern, corresponding to sub-formula C, is a single ion,

5.3. Checking predicates 102

i.e. Pϕ1 = C. Note that two concretions have to be used as input of the matching algorithm.
If the procedure returns a match, then the predicate is satisfied. Observe that the invocation
of the matching algorithm is not necessary when C is substituted by any node-free formula
because the predicate always holds.

Checking B |= ϕ2 is more complex and requires two instances of matching. To simplify
the presentation, sub-formulae ψ1 and ψ2 are assumed to contain some node constant and
> does not occur in them. This allows for a straightforward construction of patterns Pψ1

and Pψ1 . The first step is to invoke MATCH(B̃, P̃ψ1). If the algorithm is unable to identify a
match, then predicate ϕ2 is not satisfied. On the other hand, when a solution is returned, it is
possible to build a decomposition

B = C ◦ (Pψ1 ⊗ idI) ◦D .

Recall that by definition, context C contains all the ancestors of the pattern, while parameter
D contains all its descendants. Hence, predicate ϕ2 can be satisfied only if I = ε and context
C is an identity. The second step consists of checking these constraints on the decomposition.
If they are satisfied, the third step is performed. It this phase, the second instance of matching
arises. The pattern is specified by ψ2, while the target is parameterD obtained in the previous
steps. If an occurrence is identified, it is possible to build another decomposition:

D = C ′ ◦ (Pψ2 ⊗ idI′) ◦D′ .

This time, ϕ2 can be satisfied only if I ′ = ε and parameter D′ is an identity. Finally, B |= ϕ2

if the constraints on the new decomposition are satisfied. Note that context C ′ is the part of
B being “matched by” >.

Predicate ϕ3 is checked by following a similar procedure. We briefly describe the steps
required. The first instance of match checks whether an A-node is present in B. This is ne-
cessary to verify sub-formula (>⊗ idx,y)◦(Ax⊗>⊗ idy). The invocation is MATCH(B̃, P̃)

where the pattern is ion Ax. The resulting decomposition is

B = C ◦ (P ⊗ idI) ◦D .

Predicate ϕ3 can be satisfied only if the context contains idx,y and y ∈ I . If these constraints
are satisfied the procedure continues. In the second step, the existence of the second A-node
in D is verified by invoking MATCH(D̃, P̃ ′) where the pattern is ion Ay. This checks sub-
formula (idy⊗>) ◦ (Ay⊗>) ◦ >. Similarly to the previous step, ϕ3 is satisfied only when
it is possible to build a decomposition

D = C ′ ◦ (P ′⊗ idI′) ◦D′

5.4. Summary 103

such that context C ′ contains identity idy.

The previous examples explain how to define inductively an algorithm to check a class
of BiLog formulae. Summarising, matching instances correspond to the formulae generated
by the following grammar:

ψ1, ψ2 ::= Ω
∣∣∣ ψ1 ◦ ψ2

∣∣∣ ψ1⊗ψ2 .

Formulae generated by

ζ ::= > ◦ ϕ
∣∣∣ ϕ ◦ >

∣∣∣ >⊗ϕ ∣∣∣ ϕ⊗>

ϕ ::= >
∣∣∣ ψ

∣∣∣ ζ

are checked by imposing constraints on the decompositions resulting from the matching
instances on ψ sub-formulae. This approach allows to minimise the number of matching
instances if compared to an algorithm defined inductively on formulae generated by a gram-
mar with only one non-terminal. Therefore, efficiency is improved. Finally, we remark that
boolean operators ∨ and ∧ can be supported by modifying procedure CTRL(, ,) and by
iterated invocations of the matching algorithm.

We implemented the approach described above in BigraphER. Predicates in the BiLog
fragment of interest are specified in the input model by the same syntactical constructs used
for big declarations. Only an additional terminal to encode > need be introduced. Predic-
ates are checked in the BFS loop in the rewriting engine. Every time a state is added to the
graph, all the predicates in the model are checked against it. A labelling function is imple-
mented by a hash table binding a state index to a set whose elements are the identifiers of the
predicates that are satisfied by the state. Therefore, the graph together with the hash table
can be interpreted as a Kripke structure or a labelled CTMC and temporal properties of the
model can be checked.

5.4 Summary

In this chapter we described the implementation of the BigraphER system: a command-line
tool and an OCaml library for the manipulation, simulation and visualisation of bigraphs with
sharing. In Section 5.1, we discussed the architecture of the system and described the rôle of
its components. Section 5.2 was devoted to the analysis of the implementation details. We
introduced an OCaml representation of concrete bigraphs, a SAT encoding of the matching
algorithm and a rewriting engine capable of computing the dynamics of BRS and SBRS.
Finally, a method to check a class of BiLog predicate was introduced in Section 5.3.

5.4. Summary 104

In the next chapter we will present our first case study: a bigraphical model of the 802.11
CSMA/CA protocol. The command-line tool in the BigraphER system will be used to
generate automatically the CTMC capturing the behaviour of an example networks of three
machines.

105

Chapter 6

A bigraphical model of the 802.11
CSMA/CA RTS/CTS protocol

This chapter illustrates the applicability of stochastic bigraphs with sharing in the context of
communication protocols for wireless networks. Namely, we present a bigraphical model
of the IEEE 802.11 CSMA/CA with RTS/CTS protocol with support for arbitrary network
topologies. The model enables for the automatic generation of the CTMC capturing the
behaviour of any wireless network governed by this protocol. This in turn allows for the
analysis of quantitative properties such as the probability of collision and the average number
of transmissions before a data packet is successfully sent.

In Section 6.1 we discuss the suitability of a bigraphical representation for the protocol
and we compare with related work on CSMA modelling and analysis. Section 6.2 contains
an informal description of the protocol. In particular, we concentrate on the RTS/CTS ex-
change mechanism. In Section 6.3, the structure of the bigraphs used in the model is defined.
We introduce controls and a sorting discipline allowing for a precise representation of wire-
less networks with arbitrary topology. To facilitate the presentation, different colours and
node shapes are used in the graphical notation to indicate nodes with different controls. In
Section 6.4 the SBRS model of the protocol is given and we discuss some general problems
of specifying behaviour with rewrite rules and our solution using priorities. We present only
the graphical form of the stochastic reaction rules. The corresponding algebraic forms are
given in Appendix C. Two sample executions (paths) of an example network of three sta-
tions are given in Section 6.5. Section 6.6 describes the underlying CTMC resulting from
the example, its computation using BigraphER, and some quantitative analysis results. A
summary of the chapter is given in Section 6.7.

6.1. Introduction 106

6.1 Introduction

Wireless local area networks (WLANs) have become hugely popular in recent years and
play an increasingly important part in our everyday lives. The international standard IEEE
802.11 [36] was developed to enable the use of heterogeneous communication devices from
different vendors within the same network. It specifies the physical layer (PHY) and a MAC
(Media Access Control) layer based on CSMA/CA (Carrier Sense Multiple Access with Col-
lision Avoidance). This differs from MAC layers for wired networks in which Collision De-
tection (CSMA/CD) can be employed to prevent simultaneous transmission on the channel.
The reason is that stations of a wireless network cannot listen to their own transmission(s)
and are therefore unable to detect collisions. The standard also defines an optional mechan-
ism to reduce collisions called RTS/CTS (Request to Send / Clear to Send). We describe it
in the next section.

WLANs exhibit behaviours that depend both on time and space. Hence, the double
structure characterising bigraphs and their static-dynamic nature appear to be ideally suited
to this domain. Moreover, bigraphs with sharing allow one to naturally model a crucial
aspect of wireless networks: signal interference. This phenomenon occurs when a device is
in the range of more than one signal. In other words, wireless networks are overlapping.

Some aspects of the CSMA protocol have been modelled previously: for example col-
lision detection on Ethernet is modelled by a MDP (Markov Decision Process) in [26]. A
similar approach was taken in [41] where probabilistic timed automata are used to model the
basic two-way handshake mechanism1 of the 802.11 protocol. The authors assume a fixed
network topology consisting of two senders and two receivers. Furthermore, in their model
there is exactly one shared signal, and thus each station can sense any other station. Proper-
ties of the system are specified in CSL (Continuous Stochastic Logic) [2] and automatically
verified using probabilistic model checker Prism [40]. The model we present here differs in
the following significant ways: support for arbitrary network topologies, and explicit repres-
entation of potentially overlapping wireless signals for all the stations in the network. These
features are essential to represent networks in which two or more stations transmit to the
same receiver and they cannot sense each other, thus causing a transmission collision. This
is generally known in the literature as the hidden node problem. The topology of an example
network suffering from the problem is drawn in Figure 6.3a, where the senders are A and C
and the receiver is B.

1Note that this protocol is different from RTS/CTS.

6.2. The protocol: 802.11 RTS/CTS handshake 107

A

C

D

B

Data

ACK

NAV

SIFS SIFS SIFS

DIFS

NAV

CTS

RTS
CW

Figure 6.1: The use of virtual channel sensing using CSMA/CA.

6.2 The protocol: 802.11 RTS/CTS handshake

We now describe informally the functioning of the protocol. Carrier Sense Multiple Ac-
cess with Collision Avoidance (CSMA/CA) is the basic access mechanism in the 802.11
protocol [36]. CSMA/CA adopts a slotted binary exponential backoff scheme to reduce
collisions due to stations transmitting simultaneously. It defines two access mechanisms:
the default, two-way handshaking technique called basic access and the optional four-way
handshaking RTS/CTS reservation scheme. We focus on the latter here. Observe that this
mechanism is more complicated because an extra handshake is introduced to reduce the col-
lisions caused by the hidden node problem.

To illustrate the protocol, assume stations A, B, C, D where B and C are in the range of A,
and B is in the range of D. In CSMA/CA a transaction is defined to be an exchange of packets
between two stations that terminates with the transmission of an acknowledgement ACK. A is
willing to transmit a packet to B and so transmits a request-to-send RTS, which includes the
source, destination, and the duration of the following transaction (i.e. transmission of a clear-

to-send CTS followed by a the data packet and the corresponding ACK). B responds (if the
medium is free) with a CTS. Upon successful receipt of the CTS, A is allowed to transmit the
actual data packet. Station B checks whether the received packet is corrupted by performing
a cyclic redundancy check (CRC) and sends back an ACK. Receipt of the acknowledgement
indicates that no collision occurred. Note that CTS, ACK and the data packet are sent only
if the medium is idle for a short inter-frame space (SIFS) period. If A does not receive the
CTS or the ACK packets, then it will retransmit until it gets acknowledged or reaches a given
number of transmissions. All other stations receiving either the RTS and/or the CTS, e.g. C
and D, set their virtual carrier sense timer (called NAV) with the duration value contained
in those packets, and so will not attempt transmission until the NAV reaches 0. Figure 6.1
illustrates the scenario of A transmitting to B.

The exponential backoff scheme is executed each time the medium is sensed as busy or
when a retransmission occurs. The station defers its transmission and the scheme initialises
its random backoff timer. This value is obtained by uniformly choosing a real number in
the interval [0, t], where tmin ≤ t ≤ tmax is the current contention window (CW) size, and
multiplying it for the duration of a slot time denoted by τ . At each timer initialisation, the

6.3. Bigraphical model of wireless network topology 108

Parameter Symbol Typical value

DIFS λD 50 µs
SIFS λS 10 µs
Time slot τ 20 µs
Time-out λT 30 µs
Min CW tmin 15
Max CW tmax 1023
RTS λR 160 µs
CTS λC 112 µs
ACK λA 112 µs

Table 6.1: Parameters of the CSMA/CA protocol.

interval is updated as follows: [0, t′], with t′ = 2t + 1. Upon successful transmission t is
reset to tmin. The parameters of the protocol specified by the standard are summarised in
Table 6.1. The values used correspond to the times defined for a physical layer (PHY) with a
data-rate of 1 Mbps. For example, λC is the time taken to transmit a CTS packet (with length
14 bytes = 112 bits) at 1 Mbps.

6.3 Bigraphical model of wireless network topology

In this section we define the class of bigraphs are used to represent WLANs in our model.
Informally, nodes represent the main entities present in the network, namely stations, wire-
less signals and packets. Their relationships are expressed by links between them and by
node sharing. Overlapping signals are modelled by a node representing a station in the inter-
section of two or more nodes representing the signals. This modelling strategy is explained
in greater detail later on.

The graphical form of an example bigraph encoding a station is shown in Figure 6.2a.
Node of control M encodes a (mobile) station, while packets to be sent are indicated by
triangle-shaped nodes, namely nodes of control Pl and Wl′ . Each triangle is linked to an
outer name (i.e. d, d′′) encoding the destination field of a packet. A second link is used
to connect a triangle to the node of control Q in the preceding triangle in the transmission

queue. Observe that the first packet in the queue is always linked with an edge to the parent
node of control M. Different colours indicate different controls. They are used to track the
status of the sending station during a transmission hand-shake. In this example, triangle
Pl encodes the fact that the station has successfully transmitted a data packet and it is now
waiting for the ACK packet from the receiver, while Wl′ indicates that the station is waiting
to transmit a packet. Note that the status of the station is given only by the status of the first
packet in the transmission queue. Therefore, all the triangles in the transmission queue but

6.3. Bigraphical model of wireless network topology 109

a d

Wl′Pl

d′

M

Q Q

A

(a) Standard graphical form

a d

Wl′Pl

d′

M
(b) Compact representation

Figure 6.2: Bigraphical representation of a station M with two packets Pl and Wl′ . Station M has sent
a data packet Pl and another packet Wl′ is stored in its queue (a). Simplified representation in which
nodes of control A and Q are encoded by special diamond-shaped ports (b).

R
a
n
g
e
 o

f
B

’s
 r

a
d
io

B

R
ange of A

’s radio

A

R
an

ge
 o

f C
’s

 r
ad

io

C

(a) WLAN of three stations

StC

StB
StA

M

M

M

aA aBaC

l

k

(b) Bigraphical representation N0

Figure 6.3: Modelling of network topologies. A network diagram of a WLAN of three stations (a)
and the corresponding bigraphical encoding N0 : ε → 〈s, {aA, aB, aC, }〉 (b). Stations A and C are
both willing to send to station B.

the first one are always blue (i.e. of control Wl). Each station has a unique MAC address,
which is encoded by the link between node of control A and outer name a. In the rest of the
chapter, we will adopt a more compact graphical notation in which nodes of control A and
Q are replaced by special diamond ports. The compact representation for the bigraph shown
in Figure 6.2a is given in Figure 6.2b. Another example is given in Figure 6.3b where the
graphical form for the encoding of three stations with overlapping wireless signals is drawn.
In the encoding, each node of control M is linked to both its signal and its address. Moreover,
the destination field of the packets is also an address. This is shown by the link on outer name
aB. Before proceeding with a formal description of the bigraphical model, we observe that
the oval shape used for nodes representing signals does not correspond to the actual shape of
an area covered by a signal in a real WLAN. This is because the nesting of nodes represents
a topological space and not an Euclidean space. Therefore, distances between places and
their shapes are not expressible in place graphs.

6.3. Bigraphical model of wireless network topology 110

Description Control Arity Sort Notation

Signal idle St 1 s –
Signal locked StL 1 s –
Signal clear StC 1 s –
Signal error StE 1 s –
Station idle M 2 m –
Station locked ML 2 m –
Station deferred MD 2 m –
Station potential MP 2 m –
Station backoff MB 2 m –
Address A 1 a –
Queue Q 1 q –
Packet waiting Wl 2 p
RTS packet RTSl 2 p
CTS packet CTSl 2 p
Data packet Pl 2 p

Table 6.2: Node controls for the bigraphical model. The parameters are tmin ≤ t ≤ tmax and
272µs ≤ l ≤ 18768µs.

The fifteen controls listed in Table 6.2 are used to encode the entities forming a WLAN.
These are organised into sorts as follows. Controls describing wireless signals are grouped
together into sort s = {St, StL, StC, StE}. Parameter t records the contention window size of
the station associated to the signal. Its values are drawn from set

{tmin = 15, 31, 63, 127, 255, 511, 1023 = tmax} ,

when parameters are defined as in Table 6.1. This corresponds to allowing seven trans-
mission attempts for every data packet as specified in the protocol’s standard. Sort m =

{M,ML,MD,MP,MB} is used to represent nodes encoding stations, whilst a packet is in-
dicated with a node of sort p = {Wl,RTSl,CTSl,Pl}. Here, parameter l is used to store
the time employed to transmit a packet. Observe that the various controls in each sort are
required to represent faithfully the WLAN throughout the different stages of the protocol.
For instance, a node of control ML indicates a locked station while a MB-node expresses a
station in backoff state. The meaning of each control is explained in Section 6.4, where the
reaction rules of the SBRS modelling the protocol are introduced. Two additional sorts are
defined: a = {A} and q = {Q}. They represent the address of a node and a queue of packets
respectively: virtual entities introduced only to simplify the modelling process. Specifically,
they allow one to distinguish their links from the links of m and s-nodes. The set of sorts is
written as Θ = {s,m, p, a, q}. The signature is given by K =

⋃
s∈Θ s.

The sorting discipline ensures that only bigraphs with a meaningful structure are con-

6.3. Bigraphical model of wireless network topology 111

Φ1 all q̂a-nodes are atomic
Φ2 all children of a θ-root have sort θ, where θ ∈ {s,m}
Φ3 all children of an s-node have sort m
Φ4 all children of an m-node have sort p̂a
Φ5 an m-node has one a-child
Φ6 a p-node has one q-child
Φ7 an a-node is always linked to one grandparent of sort s and a name
Φ8 in an m-node, one port may be linked to one m-node

and the other may be linked to one p-node
Φ9 in a p-node, one port may be linked to an a-node

and the other is always linked to one m̂q-node (see Figure 6.2a)
Φ10 an a-node may be linked to many p-nodes

Table 6.3: Conditions of formation rule Φ.

structed. For example, it forces packets to be always located inside a machine and a machine
to be always surrounded by its signal. This is formalised in formation rule Φ with conditions
Φi, 1 ≤ i ≤ 10, given in Table 6.3. We briefly comment on each condition. Condition Φ1

states that dummy nodes of control Q and A are atomic (i.e. they contain nothing). Condi-
tions Φ2–Φ4 specify a hierarchic structure in the placing of the nodes. In particular, s-nodes
are the outermost nodes in the model. They contain m-nodes, which in turn contain p̂a-nodes.
Conditions Φ5,Φ6 specify the placing described in the example in Figure 6.2a. Condition Φ7

ensures that an address A is always connected to a unique name and to one ancestor signal
node. This allows the discrimination of signals according to the machine, and thus the ad-
dress they belong to. Conditions Φ8,Φ9 describe the queue-like structure formed by packets
which sit within a station as in Figure 6.2a. Condition Φ10 states that an address may be
linked to several packets. This models the destination field in each packet. Finally, we refer
the sorting used in the model as Σ802.11 = (K,Θ,Φ).

Our approach to modelling network topologies is explained through an example. Con-
sider for instance the WLAN of three stations shown in Figure 6.3a. Assume that both
stations A and C are willing to transmit to station B. The bigraphical model needs to record
that the system is composed of three stations, each one with its own wireless signal. Then, it
also has to satisfy the following requirements:

Req1: A and C sense B,

Req2: B senses A and C,

Req3: A does not sense C and C does not sense A.

This wireless network is faithfully modelled by agent N0 : ε → 〈s, {aA, aB, aC, }〉 given
in Figure 6.3b. Recall that for clarity we adopt a simplified graphical notation in which âq-
nodes are drawn as diamond ports as shown in Figure 6.2b. Stations A, B, and C are encoded
by the three M-nodes linked to names aA, aB and aC, respectively. Their signals are indicated

6.3. Bigraphical model of wireless network topology 112

by nodes StA , StB , StC , respectively, and they are linked to the corresponding name. Observe
that each station sits within its own signal node. Req1 is satisfied by station B being in the
intersection of the two signals StA and StC . Req2 is satisfied because the two m-nodes for
stations A and C are contained by node StB . Finally, Req3 holds because station A is outside
StC and vice versa. An equivalent algebraic form of N0 is

N0 = share (mA ‖ mB ‖ mC) by ψ in (idaAaBaC | StAaA
| StBaB

| StCaC
) ,

where terms

mA = (id1,aAaB ‖ /x ‖ /r ‖ /q)(Mrx.(wA | AaA .1))

mB = (id1,aB ‖ /x ‖ /r)(Mrx.AaB .1)

mC = (id1,aCaB ‖ /x ‖ /r ‖ /q)(Mrx.(wC | AaC .1)) ,

indicate stations A, B and C, respectively, and terms

wA = Wl
xaB
.Qq.1 wC = Wk

xaB
.Qq.1

encode A’s and C’s packets (i.e. the blue triangles in Figure 6.3b), respectively. The network
topology is specified by placing

ψ = [{0, 1}, {0, 1, 2}, {1, 2}] .

This simple example shows how our modelling strategy can provide adequate expressive
power for the representation of arbitrary network topologies. Moreover, bigraphs with shar-
ing allow us to express succinctly complex network topologies.

We now list our modelling assumptions:

• All signals have equal power. This implies that if a station A is within the range of
another station B, then B is within the range of A.

• The range of broadcast packets is the same of unicast packets.

• The range of small packets is the same of large packets.

• No packet is lost during transmission, i.e. ideal channel conditions.

• Static topology.

We remark that these assumptions derive from those made in the specification of the 802.11
protocol [36].

6.4. Stochastic reaction rules modelling the protocol 113

6.4 Stochastic reaction rules modelling the protocol

Before presenting the bigraphical reactive system, we introduce some notation and conven-
tions. The stochastic reaction rules in our the model have form RL(π) = R

ρ
IR′, where

subscript L is a label describing the rule semantics and π is a list of parameters. All the rules
respect the sorting Σ802.11. We call the interface of the rule the interface of bigraphs R and
R′. Reaction rates are indicated by ρi(π) with i = 1, 2, Names used as addresses range
over a, a′, aA, aB, Destination addresses are denoted by d, d′, When defining reac-
tion rules, name x is used to denote a link between two m-nodes while name q represents a
link between a p-node and a node of control Q. We write I instead of ∞

I to indicate
instantaneous reaction rules (i.e. rules with rate∞).

Additionally, we introduce rule priorities, i.e. a partial ordering on the rules of the re-
active system. A Priority BRS (PBRS) is a BRS with rule priorities in the style of [5]. The
procedural meaning of such an ordering is that a reaction rule of lower priority can be applied
only if no rule of higher priority is applicable. We write R < R′ to indicate that reaction rule
R′ has higher priority than reaction rule R. A priority class P is a set of reaction rules with
the same priority. By an abuse of notation, we write P < P′ when, for any two rules R ∈ P

and R′ ∈ P′, we have R < R′. We also say that class P has lower priority than class P′.
Similarly, a Priority SBRS (PSBRS) consists of an SBRS augmented with rule priorities. We
require all the rules in a priority class to be instantaneous, if it contains an instantaneous rule.
This extension allows the specification of concise reaction rules for arbitrary topologies. We
discuss the merits of this approach in more detail at the end of this section.

The 802.11 CSMA/CA RTS/CTS protocol is modelled as a PSBRS in which WLAN’s
configurations are encoded by Σ802.11 sorted bigraphs and system updates are expressed by
reaction rules. These are described in the remainder of this section. In order to obtain a gen-
eral model of the protocol, each reaction rule is indexed by parameters such as the values of
timers (indicated with t and t′) and packet sizes (denoted by l). In the following a graphical
description of each reaction rule is presented. Equivalent algebraic definitions are reported in
Appendix C. A summary of the rules is in Table 6.4 using the following convention: each de-
scription takes the form 〈description of bigraph on lhs〉 → 〈description of bigraph on rhs〉.

The first rule RRTS(t, l) models the initial phase of the CSMA/CA protocol: whenever
a sender senses the channel free, it is allowed to initiate a communication. A graphical
representation of the reaction is given in Figure 6.4. The station willing to transmit is encoded
on the left-hand side by a node of control M containing a triangle of control Wl. On the right-
hand side, a communication is instantiated. This is shown by the RTSl triangle, the ML and
the StL nodes. The reaction rate is defined as follows:

ρ1(t) =
(
λD + τ t

2
+ λR

)−1
.

6.4. Stochastic reaction rules modelling the protocol 114

Reaction rule Rate Description Graphical form

1 RRTS(t, l) ρ1(t) machine is idle and willing to send
→ machine is locked and an RTS
sent.

Figure 6.4

2 RCTS(t, t′, l) ρ2 sender has sent an RTS→ sender and
receiver locked and linked, CTS sent.

Figure 6.5

3 RDATA(l) ρ3(l) sender has sent a CTS→ sender has
sent its data packet.

Figure 6.6

4 RACK(t, t′, l) ρ4 data packet sent → ACK sent and
locks released.

Figure 6.7

5 RBACK1(t, t
′, l) ρ5 sender (not the most recent) has to

back off and receiver has detected a
collision → locks are released and
the sender is timed out.

Figure 6.9

6 RBACK2(t, t
′, l) ρ5 most recent sender has to back off

and receiver has detected a collision
→ locks are released and the sender
is timed out.

Figure 6.10

7 RD(t) ∞ station receives an RTS or a CTS→
station defers.

Figure 6.11

8 RP(t, t′) ∞ station receives an RTS from more
than one station→ station defers and
detects conflict.

Figure 6.12

9 RB(l) ∞ sender cannot receive a CTS from
the receiver → sender has to back
off.

Figure 6.13

10 RUD(t) ∞ the NAV of a deferred station expires
→ lock released.

Figure 6.14

11 RUP(t) ∞ the NAV of a station in a conflict
state expires→ lock released.

Figure 6.15

12 RUC(t) ∞ sender or receiver terminated a trans-
mission→ lock released.

Figure 6.16

Table 6.4: Reaction rules.

6.4. Stochastic reaction rules modelling the protocol 115

a d q

St
Wl

M

a d q

StL

RTSl

ML

ρ1(t)
I

Figure 6.4: RRTS(t, l): machine is idle and willing to send→ machine is locked and an RTS sent.

Note that it depends on t, i.e. the contention window size of the sending station. Term τ t
2

is
a constant indicating the average time the sender waits idle before its contention window of
size t is fully consumed. In algebraic terms, this reaction rule is defined as

RRTS(t, l) = share (id ‖ mw) by ψ1 in (id1,adq ‖ Sta)
ρ1(t)

I

share (id ‖ ml) by ψ1 in (id1,adq ‖ StLa)

where

mw = (id1,aqd ‖ /x ‖ /r)(Mrx.(id | Wl
xd.Qq.1 | Aa.1))

ml = (id1,aqd ‖ /x ‖ /r)(MLrx.(id | RTSlxd.Qq.1 | Aa.1))

ψ1 = [{1}, {0, 1}] .

The interface of the reaction rule is given by: RRTS(t, l) : mp̂a→ 〈sm, {a, d, q}〉.

The second rule RCTS(t, t′, l) describes the transmission of a CTS packet from the sender
to the receiver. Its graphical representation is given in Figure 6.5. The reaction can be
triggered only when the sender and the receiver sense each other and the receiver is available
for a transmission. These two preconditions are encoded in the left-hand side by two nodes
of control ML and MD being in the same intersection of signals and by the node of control St′

containing the receiver, respectively. Moreover, MD can be identified as the receiver because
it is linked to the sender’s RTSl triangle. Note also that both the receiver and the sender
can be in the range of other stations. On the right-hand side the receiver is locked (nodes of
control St′L and ML) and a link between the two machines is established. The reaction rate is
ρ2 = (λS + λC)−1.

The third rule RDATA(l) models the transmission of a data packet from the receiver to
the sender. Its graphical form is depicted in Figure 6.6. On the left-hand side, the sender’s

6.4. Stochastic reaction rules modelling the protocol 116

aqd

St
′

x

StL

ML

MD

aqd x

StL

ML

St
′

L

MLρ2 I

Figure 6.5: RCTS(t, t′, l): sender has sent an RTS→ sender and receiver locked and linked, CTS sent.

aqd x

MLML

ρ3(l)
I

aqd x

MLML

Figure 6.6: RDATA(l): sender has sent a CTS→ sender has sent its data packet.

triangle is of control CTSl, while on the right-hand side it is of control Pl. The rule can only
be applied when a communication between two stations has already been initiated. This
is encoded by the edge connecting the nodes of control ML. Observe that the sender and
the receiver can sense two different sets of stations because the ML nodes are placed in two
different regions. The reaction rate depends on the size of the data packet to be transmitted:
ρ3(l) = (λS + l)−1.

The fourth rule RACK(t, t′, l) specifies the last phase of the protocol: upon successfully
transmitting a data packet, the receiver sends back to the sender an ACK control packet and
stops transmitting. A graphical representation of the rule is given in Figure 6.7. On the
left-hand side the two stations are engaged in a communication. This is encoded by the
intersecting nodes of control SL and by the link connecting the two MLs. The triangle of the
sender is of control Pl, meaning that a data packet has been transmitted. On the right-hand
side locks on both the stations are released and the sender’s backoff timer is reset to tmin. This
is expressed by the nodes of control M, StminC and St

′

C. Moreover, the link between the two
machines is removed. Also the triangle is removed. The reaction rate is ρ4 = (λS + λA)−1.

A pictorial representation of how the previous four stochastic reaction rules: RRTS(t, l),
RCTS(t, t′, l), RDATA(l), and RACK(t, t′, l), are used to encode the packet exchange between
two stations as specified by the protocol is given in Figure 6.8. From this figure, it is possible
to infer the contribution of the relevant constants to the associated rates (summarised in
Table 6.4). For example, rate ρ1(t), the rate for RRTS(t, l) rule, includes the sum of λD, the
constant for DIFS, λR, the constant indicating the transmission time of an RTS packet and
τ t

2
, the constant denoting the average duration of the sender’s contention window of size t.

6.4. Stochastic reaction rules modelling the protocol 117

aqd x

StL

ML

St
′

L

ML
ρ4 I

aqd x

StminC

M

St
′

C

M

Figure 6.7: RACK(t, t′, l): data packet sent→ ACK sent and locks released.

RRTS RCTS RDATA RACK

Figure 6.8: Packet exchange between two stations and corresponding reaction rules.

The fifth rule RBACK1(t, t
′, l) models collisions when two stations simultaneously try to

transmit an RTS packet. It is expressed graphically in Figure 6.9. On the left-hand side,
triangle of control RTS is placed within a node of control MB. This represents the fact
that the sender has to back off. The receiver is in a potential collision state, indicated by
control MP. On the right-hand side locks are released and the sender’s contention window is
increased. This is encoded by the node of control S2t+1

C , the triangle of control Wl and nodes
of control M. The modification of parameter t models the exponential back-off procedure.
The reaction rate is ρ5 = λ−1

T , i.e. the sender’s time-out expires before a CTS packet is
received.

The sixth rule RBACK2(t, t
′, l) is very similar to the previous one. It is applied when the

receiver has control MD instead of MP. This happens when all the other conflicting stations

aqd

St
′

x

StL

MB

MP

aqd x

S2t+1
C

M

St
′

Mρ5 I

Figure 6.9: RBACK1(t, t
′, l): sender (not the most recent) has to back off and receiver has detected a

collision→ locks are released and the sender is timed out.

6.4. Stochastic reaction rules modelling the protocol 118

aqd

St
′

x

StL

MB

MD

aqd x

S2t+1
C

M

St
′

Mρ5 I

Figure 6.10: RBACK2(t, t
′, l): most recent sender has to back off and receiver has detected a collision

→ locks are released and the sender is timed out.

a x

StL

M

a′

I

a x

StL

MD

a′

Figure 6.11: RD(t): station receives an RTS or a CTS→ station defers.

have already backed off. A graphical representation of the rule is given in Figure 6.10. In
both the previous two rules, nodes of control S2t+1

C are replaced by SE when t ≥ tmax. This
models the protocol when the maximum number of transmission attempts is reached. Rates
associated to each of the previous reaction rules are summarised in Table 6.4.

The six stochastic reaction rules described so far encode behaviours of stations as spe-
cified by the CSMA/CA RTS/CTS protocol. In the remainder of this section, a set of six
instantaneous reaction rules is introduced. These rules are used to enforce conditions on
the system that assure the rules presented above can only be fired in a meaningful order.
More formally, they force some invariants to be satisfied before one of the stochastic rule is
triggered. For example, any station receiving more than one RTS has to be marked as MP.
This allows the correct choice of whether rule RCTS(t, t′, l) or rule RBACK1(t, t

′, l) has to be
applied. We explain the interplay between stochastic and instantaneous rules in more detail
when rule priorities are assigned (at the end of this section).

An overview of the instantaneous rules is the following. The first three rules deal with
the detection and marking of stations involved in a communication. Rule RD(t) detects and
marks stations that have to defer. This is depicted in Figure 6.11. On the left-hand side, an
idle station has received an RTS from some other station. This is modelled by a node of
control M placed within a node of control StL. Moreover, links indicating addresses are not

6.4. Stochastic reaction rules modelling the protocol 119

a a′′

StL

MD

a′

I

x

St
′

L

a a′′

StL

MP

a′ x

St
′

L

Figure 6.12: RP(t, t′): station receives an RTS from more than one station → station defers and
detects conflict.

aqd x

MPML

I

aqd x

MPMB

Figure 6.13: RB(l): sender cannot receive a CTS from the receiver→ sender has to back off.

joined together i.e. there are two distinct links to names a and a′. On the right-hand side, the
station is marked by assigning control MD to it.

Rule RP(t, t′) detects and marks stations that are in a potential conflict state. The graph-
ical representation is given in Figure 6.12. In the left-hand side, a station receives an RTS
from more than one station. This is shown by the node of control MD placed within the
intersection of two nodes of control StL. Observe that the station can be in the range of other
machines. This is modelled by the extra region surrounding MD. On the right-hand side, the
station detecting the conflict is marked by assigning control MP to it.

Rule RB(l) detects and marks stations that have to backoff when a conflict occurs. This
is drawn in Figure 6.13. On the left-hand side, the sender is trying to communicate with
a receiver in a conflict state. This is shown by nodes of control ML, RTSl and MP. Note
that the triangle and the receiver are linked together on name d. On the right-hand side, the
sender is marked by assigning control MB to it.

The last three instantaneous reactions are used to release the locks when a communication
is terminated. Rule RUD(t) releases the lock of a deferred station when its NAV reaches 0.
This is modelled by the node of control MD enclosed by a node of control StC on the left-hand
side. On the right-hand side, the lock is released by assigning control M to the station. A
graphical representation of the reaction rule is given in Figure 6.14.

6.4. Stochastic reaction rules modelling the protocol 120

a x

StC

MD

a′

I

a x

StC

M

a′

Figure 6.14: RUD(t): the NAV of a deferred station expires→ lock released.

a x

StC

MP

a′

I

a x

StC

M

a′

Figure 6.15: RUP(t): the NAV of a station in a conflict state expires→ lock released.

Similar to the previous rule RUP(t) is used to release the lock of a station in a potential
conflict state. This is encoded by the node of control MP on the left-hand side. The rule is
depicted in Figure 6.15.

Finally, rule RUC(t) models the release of the lock at the end of a transmission. The
graphical representation is in Figure 6.15. On the left-hand side, the station is idle and ready
to release the lock. This is encoded by the node of control StC linked to its child node of
control M. On the right-hand side, the final stage of the protocol is performed by substituting
StC with St. Note that this rule is not in conflict with rules RUD(t) and RUP(t) because it can
only be applied to a sender or a receiver.

a q

StC

M I

a q

St

M

Figure 6.16: RUC(t): sender or receiver terminated a transmission→ lock released.

6.4. Stochastic reaction rules modelling the protocol 121

P5 = {RUD(t),RUP(t)} P4 = {RUC(t)} P3 = {RD(t)} P2 = {RP(t, t′)}
P1 = {RB(l)} P0 = {RRTS(t, l),RCTS(t, t′, l),RDATA(l),RACK(t, t′, l),

RBACK1(t, t
′, l),RBACK2(t, t

′, l)}

Table 6.5: Priority classes. Pi < Pj when i < j.

Reaction rules are organised into priority classes as summarised in Table 6.5. All stochastic
rules belong to P0, i.e. the class with lowest priority. Therefore, any stochastic rule can be
applied only when no instantaneous rule can be applied. A brief description of the priority
classes is the following.

P5 is the class with highest priority. Rules assigned to this class mark with control M an
idle station in a clear signal (i.e. of control StC). Class P4 has one rule that marks with control
M a sender or receiver inside its clear signal, the signal is marked as St. Since P4 < P5, all
idle stations must be marked as M before the clear signal containing them is marked as St.
Similarly, rules in priority classes P3,P2,P1 mark a station inside a locked signal (StL) as
deferred (MD), in a potential conflict state (MP) and backing off (MB), respectively. This is
necessary because rules with higher priorities may have marked a station as M even if it is
contained in a locked signal. Finally, stochastic rules in P0 can be applied safely since all
the preconditions are enforced by the prior application of the rules with higher priorities.

Discussion

A difficulty with rewriting rules in general, and therefore a problem for us here, is how to deal
with situations where we want to rewrite because a condition does not apply. For instance,
we want to apply rule RRTS(t, l) only when the sender is not in a locked signal. In our
approach, this issue has been solved by introducing priorities on reaction rules as described
above. However, there are two modelling choices other than using PSBRSs.

One option is to parameterise the reactions on the topology of the network. For instance,
the first rule (RTS packet transmission) can be modified so all the idle signals sensed by
the sender are explicitly listed. Since only idle signals are included and no other signals are
allowed via shared regions, then the rule can only be applied when the sender is not within
a locked signal. An additional parameter n indicating the number of signals in the sender’s
range is required, i.e. RRTS(t, l, n). A major drawback of this approach is that a different rule
has to be instantiated for every network topology. Moreover, the specification of the rule
becomes cumbersome and difficult to read. An advantage is that less controls are required
for the modelling of the protocol’s phases and no instantaneous reaction rule is introduced.

The other option involves extending the notion of reaction rule to include what may be
called conditional reaction rules, having the form (ϕ,R,R′, ρ), where ϕ is a BiLog predicate

6.4. Stochastic reaction rules modelling the protocol 122

expressing a condition imposed upon the context in which redex R is matched. The inten-
ded semantics is that a reaction can be applied to a state S only if C |= ϕ (or alternatively
D |= ϕ), where C (or D) is computed by the usual decomposition induced by matching:
S = C ◦(R⊗ idI)◦D. Also with this option, less controls are required and instantaneous re-
action rules can be avoided. A disadvantage is that it is often necessary to specify predicates
expressing universal quantifiers or the absence of a pattern. For example, a predicate for rule
RRTS(t, l) needs to express that all the signals in the context are idle. In general, this kind
of predicate cannot be reduced to matching of bigraphs in a straightforward way. A possible
work-around consists of iteratively applying an appropriate reaction rule to tag the parts of a
bigraph that do satisfy the predicate and then checking for the existence of untagged patterns.
If one is found, then the predicate is not satisfied. A more detailed description is given in
Chapter 7 where we will use this approach extensively to model network policies. Finally,
note that the applications of tagging reaction rules introduced by predicates is equivalent to
the explicit application of instantaneous reaction rules in our PSBRS.

Our approach allows the specification of concise rules that can be applied to any network
topology. This conciseness is important not only because it allows for a clearer description
of the model, as we showed in this section, but also because it leads to matching instances
that are quicker to solve. The motivation lies in the fact that the computational complexity
of the matching problem is O(sr) in the general case, where s and r are the number of
nodes of a state (used as the target) and a redex (used as the pattern), respectively. However,
by avoiding parameterised rules, a redex in our model can have at most 8 nodes (see for
example reaction rule RCTS(t, t′, l)). Therefore, the complexity of these instances is always
O(s8). This means they can easily be solved in polynomial time [31]. On the other hand, the
size of a parameterised redex grows with the number of nodes in the system and can be r ∝ s

in the worst case. This happens, for instance, when in the modified first rule all s signals are
idle and in the range of the sending station.

A common issue with instantaneous rules is the generation of intermediate states that may
not represent meaningful network configurations. This can be computationally expensive
because every time a state is computed, it has to be checked for equality against all the
states already visited as we explained for the implementation of the BigraphER rewriting
engine in Chapter 5. Therefore, it is crucial to minimise the number of states stored during
the execution of the model. This is possible by treating instantaneous rules like rewriting
within an equivalence class, and only storing a canonical form, after applying all possible
instantaneous rules. We explain this procedure in Section 6.6.

A further benefit of our modelling strategy is that the priority hierarchy helps understand-
ing the details of the protocol.

We note that we have defined exponential rates from time constants, i.e. if we have a

6.5. Execution of an example network 123

constant k waiting (or transmission, or sum of constants) time, then we use as CTMC rate
k−1. Inverse averages are used as rates for random intervals.

Finally, we remark that although the protocol assumes a static topology, we could easily
define rules for station movement in and out of a signal range, i.e. protocol behaviour in a
dynamic topology.

6.5 Execution of an example network

In this section we describe two example executions of our model starting from initial state
N0, the bigraph encoding of an example WLAN with three stations given in Figure 6.3.

The first execution encodes the successful transmission of a packet from station A to
station B, with no collisions occurring. It is the result of the application of reaction rules
RRTS(tA, l), RD(tB), RCTS(tA, tB, l), RD(tC), RDATA(l), RACK(tA, tB, l), RUD(tC), RUC(tA) and
RUC(tB), in that order. The dynamic evolution of the network is represented pictorially in
Figure 6.17. Observe that in state N6 (second diagram in the third row), the sender’s conten-
tion windows size is reset: t′A = tmin. An alternative execution can be obtained by changing
the order in which the locks are released, i.e. by applying RUC(tB) before RUC(tA). The res-
ulting state is again N9. Execution N0

ρ1(tA)
B

RTS
· · · B

UC
N9 can further proceed in an

analogous way by transmitting the remaining packet from C to B. The symmetrical evolution
in which station C sends its packet to B can be obtained from initial state N0 by applying re-
action rules RRTS(tC, k), RD(tB), RCTS(tC, tB, l), RD(tA), RDATA(k), RACK(tC, tB, k), RUD(tA),
RUC(tC) and RUC(tB), in that order.

The second execution encodes a transmission in which a collision occurs. It is shown
in Figure 6.18. The initial state is bigraph N2 obtained in the trace described above. As
can be seen, in this evolution station C sends its RTS before B transmits its CTS. Therefore,
stations C and A have to defer and the backoff scheme is executed. This is encoded by the
application of rules RBACK1(tA, tB, l) and RBACK2(tC, tB, k). Station C can try to retransmit
(by applying rule RRTS(t′C, k)) only after its timeout has expired. The contention windows
of senders A and C are exponentially increased in states N ′4 and N ′7, respectively. Therefore,
t′i = 2ti + 1 with i ∈ {A,C}. An alternative execution can be computed by inverting the
order of application of rules RB(l) and RB(k). This leads to state N ′3. Another interleaving
is obtained when RBACK1(tC, tB, k) is applied before RBACK2(tA, tB, l). Also in this case, the
final state is still N ′8.

The two evolutions above show how instantaneous rules must be applied before stochastic
rules as required by the priority hierarchy of our model. For instance, in the second trace,
rules RP(tA, tC), RB(l) and RB(k) are applied before rule RBACK1(tA, tB, l).

6.5. Execution of an example network 124

StC

StB
StA

M

M

M

aA aBaC

l

k

ρ1(tA)
B

RTS

StC

StB
StAL

M

M

ML

aA aBaC

l

k
B

D

StC

StB
StAL

M

MD

ML

aA aBaC

l

k

ρ2 B
CTS

StC

StBL

StAL

M

ML

ML

aA aBaC

l

k

B
D

StC

StBL

StAL

MD

ML

ML

aA aBaC

l

k

ρ3(l)
B

DATA

StC

StBL

StAL

MD

ML

ML

aA aBaC

l

k

ρ4 B
ACK

StC

StBC

S
t′A
C

MD

M

M

aA aBaC

k

B
UD

StC

StBC

S
t′A
C

M

M

M

aA aBaC

k

B
UC

StC

StBC

St
′
A

M

M

M

aA aBaC

k

B
UC

StC

StB
St
′
A

M

M

M

aA aBaC

k

Figure 6.17: Evolution N0
ρ1(tA)

B
RTS
· · · B

UC
N9 showing the successful transmission of a

packet from sender A to destination B. Sender’s contention window size is reset after the applica-
tion of rule RACK(tA, tB, l) (i.e. t′A = tmin).

6.5. Execution of an example network 125

StC

StB
StAL

M

MD

ML

aA aBaC

l

k

ρ1(tC)
B

RTS

StCL

StB
StAL

ML

MD

ML

aA aBaC

l

k
B

P

StCL

StB
StAL

ML

MP

ML

aA aBaC

l

k

B
B

StCL

StB
StAL

ML

MP

MB

aA aBaC

l

k
B

B

StCL

StB
StAL

MB

MP

MB

aA aBaC

l

k

ρ5 B
BACK1

StCL

StB
S
t′A
C

MB

M

M

aA aBaC

l

k

B
UC

StCL

StB
St
′
A

MB

M

M

aA aBaC

l

k
B

D

StCL

StB
St
′
A

MB

MD

M

aA aBaC

l

k

ρ5 B
BACK2

S
t′C
C

StB
St
′
A

M

M

M

aA aBaC

l

k
B

UC

St
′
C

StB
St
′
A

M

M

M

aA aBaC

l

k

Figure 6.18: Evolution N2
ρ1(tC)

B
RTS

N ′0 · · · B
UC
N ′8 showing the collision occurring when

senders A and C try to transmit to the same destination B. The contention windows of the senders are
exponentially increased: t′i = 2ti + 1 with i ∈ {A,C}.

6.6. CTMC analysis 126

Pi−1

//

Pi−2 · · · · · · P0

Pi

Figure 6.19: Structure of the priority queue. Class Pi has the highest priority.

6.6 CTMC analysis

We now explain how the BigraphER rewriting engine computes the CTMC capturing the
semantics of a stochastic model with instantaneous reaction rules and priorities. In particular,
we describe rewriting with priorities and a method to minimise the number of states stored
in memory during execution.

Intuitively, in the BFS loop the rewriting engine applies the reaction rules of the SBRS as
described in Chapter 5. However, it now stores only the resulting states that cannot be further
rewritten by applications of instantaneous rules. Moreover, priorities are implemented by
selecting at every step only the reaction rules belonging to the class currently having the
highest priority. This is done by introducing a second queue2 that stores classes of reaction
rules.

First, we give details of the implementation of priorities. At each iteration of the BFS
loop, the first elements, S and Pi, are removed from the state queue and the priority queue,
respectively. Note that priority classes are stored in the queue in decreasing order of priority
as shown in Figure 6.19. Hence, Pi is the class having the highest priority. If some reactions
can be applied, all the possible reconfigurations are computed and the new states are stored
both in the hash table and in the state queue. Then, the priority queue is reset to its original
state and the next iteration of the BFS loop is executed. On the other hand, if no reaction
rule in Pi can be applied, the next priority in the queue, Pi−1, is selected and the possible
reconfigurations are computed using its reaction rules. This iteration on the priority queue
is repeated either until a reaction rule is applied or no applicable reaction in P0 is found.
Observe that this implementation assures that reaction rules of higher priority are always
applied before rules of lower priority. Moreover, the implementation can also be used when
no rule priorities are specified in the model by introducing a single priority class containing
all the reaction rules.

Second, we now describe our approach to reduce the number of intermediate states gen-
erated by the application of instantaneous reaction rules. Again, it consists of a modification
of the BFS loop in the rewriting engine. More precisely, whenever the loop finds a reconfig-
uration S ′ of a state S (i.e. S ρ

BS ′), the unique fixed point S∗ is computed by iteratively

2The first queue is used by the BFS loop to store states.

6.6. CTMC analysis 127

applying to S ′ all the instantaneous rules. Then, state S∗ is stored in memory in place of S ′

as a reconfiguration of S (i.e. S ρ
BS∗) and the BFS loop continues with the next element

in the state queue. A formal representation of the procedure is given by

S
ρ

BS ′
Pi︷ ︸︸ ︷
B
∗
S ′′

Pi−1︷ ︸︸ ︷
B
∗
S ′′′ · · ·

Pj︷ ︸︸ ︷
B
∗
S∗

with j < i− 1. We write B∗ to indicate zero or more instantaneous reactions. All the pri-
ority classes, Pi < · · · < Pj , contain only instantaneous reaction rules. Note that all the rule
applications respect the priority hierarchy and that all the intermediate states S ′, S ′′, S ′′′, . . .
obtained during the computation of S∗ are discarded. Furthermore, by definition of fixed
point, no instantaneous rule can be applied to Sf . This always forces the first reaction to
have rate ρ 6=∞. This approach can only be used if each priority class whose instantaneous
reactions are ignored has a unique fixed point (as is the case in our model).

The procedures described above can be explained by showing how the rewriting engine
computes the CTMC starting from bigraph N0, the example WLAN of three stations used
in the example in the previous section. The parameters of the model are packet transmis-
sion times l = 8464µs and k = 4368µs.3 Contention windows for stations A, B and C
are tA, tB, tC = 15. In the PSBRS, iterated applications of instantaneous reaction rules be-
longing to the same priority class always yield a fixed point. Hence, intermediate states
generated by P5, . . . ,P1 can be ignored. Consider for instance class P1 and bigraph N ′1, in
the evolution illustrated in Figure 6.184. There are two reaction rules we can apply, leading
to different intermediate terms: RB(l) marks station A as MB while RB(k) does the same for
station C. They generate reactions N ′1 B

B
N ′2 and N ′1 B

B
N ′2, respectively. The second

rule we apply in both cases leads to the same result, i.e. the fixed point. More in detail, re-
actions N ′2 B

B
N ′3 and N ′2 B

B
N ′3 are obtained when rules RB(k) and RB(l) are applied,

respectively. This can be shown with a classical confluence diagram thus

N ′2

B
� �%

N ′1

B

= 9D

B
� �%

N ′3

N ′2

B

> 9D

Another property of our model is that any reaction S ρ
BS ′ can only be obtained by a single

application of a stochastic reaction rule R. Therefore, µR[S, S ′] = 1 and rate[S, S ′] = ρ.

3Parameters l and k correspond to the transmission times of data-packets with payloads of 512 bytes and
1024 bytes, respectively. The values are obtained by adding to the payload lengths 30 bytes for the MAC header
and 4 bytes for the frame check sequence (FCS).

4Third diagram in the first row.

6.6. CTMC analysis 128

This may not hold with more complex topologies.

The resulting CTMC (indicated byM) is given in Figure 6.20. Reactions corresponding
to actions on station C are indicated with left facing arrows and those on station A by right
facing arrows. The diagram is organised into seven diamond sub-parts each one representing
a different transmission attempt after a collision. Each diamond is indicated by Mi with
1 ≤ i ≤ 7. Note that only the first two diamonds are shown in Figure 6.20. The central node
of a diamond (indicated with ◦) is the top vertex of the successive one as for instance state
N ′8 in M1 and M2. The bottom node of M1 (indicated with �) is shared between all the
seven diamonds. It represents the state in which both packets are successfully transmitted
to B. It is shared because the contention windows of stations A and C are reset to tmin =

15 in every diamond after every transmission of the ACK control packet. The reactions
going to the centre of the diamond encode transmission collisions. A side of a diamond is
formed from four reactions, encoding the successful transmission of a packet. For instance,
side N0 B∗N9 encodes transmission of A’s packet before C’s packet at the first attempt.
Dashed arrows correspond to the encoding of the two executions described in Section 6.5.
The CTMC has two deadlock states. One is node ◦ in M7 representing stations A and C
when the maximum number of transmission attempts is reached, i.e. both signals are SE.
The other is node � described above.

As can be seen in the diagram, the CTMC does not contain the intermediate states gener-
ated by the application of instantaneous rules. Take for instance reaction N0

ρ1(tA)
BN2 in

M1. By inspecting the execution in Figure 6.17, we see that it corresponds to reactions

N0

ρ1(tA)

B
RTS

N1 B
D
N2 .

In this case, intermediate bigraph N1 is not used as a CTMC state. Also note that no in-
stantaneous reaction rule can be applied to N1. Analogously, reaction N2

ρ1(tC)
BN ′3 inM1

corresponds to

N2

ρ1(tC)

B
RTS

N ′0 B
P

N ′2

B
� �%

N ′1

B

= 9D

B
� �%

N ′3

N ′2

B

> 9D

as shown in Figure 6.18. Here, intermediate bigraphsN ′0,N ′1,N ′2 andN ′2 are discarded. Note
that only one betweenN ′2 andN ′2 is computed by the rewriting engine, because only one path
is needed to compute fix point N ′3. In both the reactions considered, the stochastic rate is the
rate of the stochastic reaction rule applied at the beginning of the corresponding sequence.

Finally, we note that the CTMCs generated from our model, for any finite topology, will
be finite because there are a finite number of transmissions, a finite number of packets, and a

6.6. CTMC analysis 129

↘ N0•
ρ1(tA)

x�!

ρ1(tC)

F}�

N ′8
ρ1(t′A)

x�!

ρ1(t′C)

F}�

· · ·

•
ρ1(tA) x�!

ρ2

F}�

N2•
ρ2

x�!ρ1(tC)F}�

•
ρ1(t′A)

x�!

ρ2

F}�

•
ρ1(t′C)

F}�

ρ2

x�!•
ρ3(k)

F}�

N ′3•
ρ5

x�!

ρ5

F}�

N4•
ρ3(l)

x�!

•
ρ3(k)

F}�

•
ρ5

x�!

ρ5

F}�

•
ρ3(l)

x�!•
ρ4

F}�

•
ρ5 x�!

N ′6•
ρ5F}�

N5
?

ρ4
x�!

•
ρ4

F}�

•
ρ5

x�!

•
ρ5

F}�

?
ρ4

x�!•
ρ1(tA)

x�!

N ′8◦
N9•

ρ1(tC)
F}�

•
ρ1(t′A)

x�!

◦ •
ρ1(t′C)

F}�

· · ·

•
ρ2

x�!

•
ρ2

F}�

•
ρ2

x�!

•
ρ2

F}�•
ρ3(l)

x�!

•
ρ3(k)

F}�

•
ρ3(l)

x�!

•
ρ3(k)

F}�
?

ρ4
x�!

•
ρ4

F}�

?
ρ4

$nu

•
ρ4

#nt

· · ·

�

transmission attempt 1 transmission attempt 2

Figure 6.20: Structure of CTMCM derived from the PSBRS on initial state N0 (see Figure 6.3b).
Dashed arrows correspond to the two executions described in Figure 6.17 and Figure 6.18.

finite number of stations.

6.6.1 Analysis of quantitative properties

It is possible to express quantitative properties about the behaviour of our model by com-
bining BiLog and CSL (Continuous Stochastic Logic)5. We use the fragment of BiLog
described in Chapter 5 to express predicates that are used as atomic propositions in CSL.
Recall that this kind of predicate can be reduced to one or more instances of matching of
bigraphs. For example, we define pattern Pϕerror = SE to encode predicate ϕerror, which
is true whenever a station reaches the maximum number of transmission attempts, namely
there is a signal node in error state. This predicate can then be used in any CSL formula such
as ψ1 = P<0.001(Fϕerror), i.e. eventually a station is in error state with probability less than
0.001. Note that the only state satisfying ϕerror is node ◦ inM7.

Quantitative properties can be evaluated with standard tools for CTMC model checking.
Here we use the probabilistic model checker Prism [40] on some simple CSL formulae
expressing properties onM. In particular, we take advantage of the explicit model import

feature in Prism which allows the importation of a CTMC’s rate matrix and its labelling
function. These are the textual outputs of the BigraphER rewriting engine. It is also possible
to specify properties that evaluate to a numerical value. Let us analyse some examples.

5See Appendix B for syntax and semantics.

6.6. CTMC analysis 130

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7

P
ro

ba
bi

lit
y

Transmission attempts

Figure 6.21: Cumulative probability of sending A’s packet against the number of transmission at-
tempts.

Example 6.6.1. The probability of a station being in an error state is given by formula
P=?(Fϕerror) = 6.08 × 10−7, which implies thatM |= ψ1. Such a low value is explained
by the fact that only two stations compete for transmission in our example topology. �

Example 6.6.2. The probability that a collision occurs is expressed by P=?(Fϕcollision) =

0.36. Predicate ϕcollision is encoded by the matching of pattern Pϕcollision = MBxy ‖ MBzw. It
corresponds to state N ′3 inM1 and the states in the same position inMi with 1 < i ≤ 7. �

Example 6.6.3. The probability of station A successfully transmitting its packet in 1 ≤
n ≤ 7 transmission attempts is expressed by P=?(ϕ

n
A). The cumulative plot is given in

Figure 6.21. Predicate ϕnA corresponds to pattern

share (id ‖ /xMLrx.(id | Plxd | AaA .1) by [{0}, {0, 1}] in (StLaA
‖ id1,draA)

with t = 2n+3− 1. Therefore, the labelling function marks the nodes indicated with ? inM.
Observe that the predicate cannot be defined to simply match state � because information
about the number of transmission attempts is lost after every application of reaction rule
ρ4 I

ACK
when the contention window is reset. �

Discussion

Previous studies of the IEEE 802.11 standard have focussed mainly on the quantitative ana-
lysis of the basic access mechanism. Two example works that consider the RTS/CTS hand-
shake are [10] and [17]. The results reported by those authors are used to evaluate the
performance of the protocol, e.g. system throughput and congestion rate, and are obtained
by means of simulation. In both cases, the network topology is not encoded directly. In more
detail, a probability of collision p is assigned to each station. Hence, higher values of p allow
one to encode “denser” topologies. Another example of analysis is the analytic approach

6.6. CTMC analysis 131

StC

StB
StA

M

M

M

aA aBaC

l

k

Figure 6.22: Example topology not meeting the assumptions of the protocol: B is in the range of C
but C is not in the range of B.

presented in [1], but it is difficult to compare with our analysis, since also in this case the
network topology is modelled implicitly by a collision probability.

In general, the model checking approach has some benefits over simulation [20]. Prob-
ably, the most relevant advantage in the context of wireless networks modelling is that all
possible states are discovered. In particular, model checking can discover those states having
a reachability probability that is too small to be discoverable by simulation. This is funda-
mental to obtain precise and trustworthy results especially when analysing safety-critical sys-
tems and border-line or unusual system’s behaviours. Consider for instance Example 6.6.1 in
which the probability to reach an error state is computed, i.e. P=?(Fϕerror) = 6.08× 10−7.
In this case, simulation based approaches could erroneously conclude that the system can
never be in an an error state (thus giving a wrong answer) because the probability to discover
such states is too low to be found in a reasonable number of simulation runs. We remark that
our bigraphical model can also be used by BigraphER to simulate a system when there are
memory constraints or when only an average-case analysis is required.

The quantitative properties we presented earlier in this section serve mainly to show how
SBRS can effectively be analysed and to highlight the expressive power of both bigraphs and
BiLog. Following these examples, more advanced analysis can be carried out by researchers
in wireless networking and practitioners in the field of performance evaluation. For instance,
network throughput can be studied by varying the parameters of the protocol and the ex-
ponential increase of the contention window size can be compared with different backoff
schemes. Another interesting investigation is to analyse the effects of the RTS/CTS mechan-
ism on different network topologies (e.g. sparse or dense) to find out when the mechanism
improves network throughput and when it introduces overhead.

Our bigraphical model can easily be extended to analyse more realistic systems, i.e.
systems in which the assumptions made in the 802.11 protocol are not met. For example,
formation rule Φ of sorting Σ802.11 given in Table 6.3 allows for the specification of networks
in which signals do not have equal power as it is the case in the WLAN encoded by the

6.7. Summary 132

a d q

StL

RTSl

ML

a d q

S2t+1
C

Wl

M

ρ5 I

Figure 6.23: RT(t, l): machine is locked and an RTS sent→ lock is released and the machine is timed
out.

bigraph in Figure 6.22. The diagram shows that receiver B is within the signal range of
station C but C is not in the range of B. Therefore, station C cannot receive a CTS packet
from B and reaction rule RCTS(t, t′, l) can never be applied. In order to model this kind of
system, stochastic reaction rule RT(t, l) given in Figure 6.23 need be introduced. It encodes
the behaviour of a sender timing out before a CTS packet is received. It can be thought as
the opposite of RRTS(t, l) described in Section 6.4 where the size of the contention window
is increased in the reactum as in reaction rules RBACK1(t, t

′, l) and RBACK2(t, t
′, l). Also in

this case, node of control S2t+1
C is replaced by SE when t ≥ tmax. With the addition of this

new reaction rule, the system can evolve to a state in which C’s signal has control SE after
seven transmission attempts.

The model can be further refined by adding reaction rules encoding the movement of
stations in and out of signals. They encode both the spatial movement of mobile stations
and the variation of signal coverage due to frequency interference. These reaction rules are
usually slower than the other stochastic reaction rules.

6.7 Summary

In this chapter, we presented a model of the 802.11 CSMA/CA RTS/CTS based on stochastic
bigraphs with sharing. Section 6.1 gave an overview of the application domain and a brief
survey of related works on modelling and analysis of wireless protocols. An informal de-
scription of the protocol was provided in Section 6.2. In Section 6.3 and Section 6.4, the
PSBRS modelling the protocol was formally defined. The use of priorities allows us to spe-
cify reaction rules with fixed size regardless of topology. This leads to matching instances
that are solvable in polynomial time. Two sample executions of an example network of three
stations were described in Section 6.5. Finally, Section 6.6 introduced the CTMC resulting
form the previous example and some quantitative analysis results obtained using Prism.

6.7. Summary 133

In the next chapter we will use bigraphs to carry out real-time verification in a home-
network environment. Briefly, the key aspect of this approach is to establish a one-to-one
correspondence between bigraphical reaction rules and events in the network, e.g. a new
machine joins the network. The current configuration of a network is captured by a bigraph
which is updated by the application of a reaction rule whenever an event in the network
occurs. The OCaml library provided by BigraphER will be used to implement the system.

134

Chapter 7

Real-time verification for home
network management

This chapter reports on an application of bigraphs for real-time verification of domestic wire-
less network management. The contents are based on the presentation given in [15].

Section 7.1 contains an overview of the Homework network management system [61]
that permits user-initiated access control policies and an informal description of our addition
to the Homework system in which bigraphical models of the network are generated and ana-
lysed in real-time. In Section 7.2 we describe in detail how network topologies are modelled
as sorted bigraphs and how network events such as moving in and out of the router’s range,
and granting and revoking of DHCP leases are encoded as reaction rules. We also define
BiLog predicates to represent the current status of a machine in the network. In the follow-
ing section, these reaction rules and predicates are used to generate sequences of bigraphical
models in real-time. In Section 7.4, we introduce new sorts to represent policies that forbid
and allow access behaviour. They are used to specify the reaction rules that encode policy
events such as enforce and drop a policy. Section 7.5 formally defines a general procedure
for the generation in real-time of sequences of models when policy events occur in the actual
home network. In Section 7.6, we discuss the rôle of BiLog predicates in the analysis of
network configurations and compliance with policies. In the following section, Section 7.7,
we give an overview of the implementation and present the results of two trials of the system
running on the Homework router with synthetic and captured data. Some final comments
and a summary of the chapter are given in Section 7.8.

7.1. Overview 135

Network
raw network

traffic
''

Stream
database

event // Bigraph
encoder

reaction
rules // Bigraph

analysis

��

feedback
nn

feedback
nnUser

policy
enforce/drop

77

Logfiles

HWBig

Figure 7.1: Real-time model generation, analysis and feedback. Homework management system is
on the left, our extension is on the right.

7.1 Overview

Typical home networks are characterised by a router providing access to the Internet and
inter-communication capabilities to all the devices wirelessly connected to it. The Home-
work network management system [61] has been designed to provide user-oriented support
in home wireless network environments. The Homework user interface includes drag and
drop, comic-strip style interaction for users; the information plane provides an integrated
network monitoring facility consisting of a stream database running on the router capable of
storing both raw and derived events. Raw events record information about individual pack-
ets being transmitted over the network. Derived events are constructed by analysing sets
of sequential raw events. They provide high-level representation of the current configura-
tion of the network and the status of the traffic between any two machines. Derived events
include network behaviours such detecting that a new machine has joined the network and
user-initiated behaviours such as enforcing or dropping a policy. Policies forbid or allow
access control; for example, a policy might block UDP and TCP traffic from a given remote
host. From now on, by “event” we mean derived event.

We extended the Homework system with a set of bespoke software components for the
generation and analysis in real-time of bigraphical models of the current configuration of the
network. We call the set of components the HWBig system. The motivation is to aid users
in their understanding of the state of their network, and when and why it is “broken”. The
architecture of the system is given by the diagram in Figure 7.1. The Bigraph encoder com-
ponent encodes new events as bigraphical reaction rules. The Bigraph analysis component
has two rôles. First, it generates the bigraphical representation of the current configuration
of the network according to sequences of reaction rules received from the bigraph encoder.
Second, it analyses the current configuration by checking predicates. Example predicates
are “Machine with MAC address 01:23:45:67:89:ab is in the range of the router” and “TCP

7.2. Bigraphical model 136

Control Meaning Sort Graphical notation

R Router r Circle
S Wireless signal s Oval
M Wi-Fi enabled machine m Circle
Internet Outside world j Box
Properties, . . . Configuration settings b Box
W WLAN w Circle
I Input i Small rectangle
O Output o Small arrowhead
MAC, . . . MAC address p Rounded box
Hostname, . . . Hostname p Rounded box
IP, . . . IP address p Rounded box

Table 7.1: Controls and sorts for WLAN.

traffic is blocked for machine with IP address 192.168.0.3”. The results are logged and fed
back to the system, or to the user, using a graphical notation of bigraphs as explanation, when
a verification fails. All this is carried out in real-time.

7.2 Bigraphical model

In this section we outline how a given network topology is represented by a bigraph, and then
how network events, such as moving in/out the router’s range and granting/revoking leases,
are represented by parameterised reaction rules. We give both the graphical and equivalent
algebraic forms for the rules. Finally, we define two useful predicates that indicate the state
of the network.

7.2.1 Network topology

We use a node to represent each entity present in the network, which can be physical e.g.
router, wireless signal, machines, or virtual e.g. configuration properties, the Internet, com-
munication channels. Links connect related entities. For instance, a machine is linked to its
signal and to its properties. The sorting discipline ensures that only bigraphs with a mean-
ingful structure are constructed. For example, it enforces that a node representing a machine
lies within a node representing its signal. In the graphical notation, different shapes denote
nodes of different sorts.

The controls and sorts used to represent the network are listed in Table 7.1. An explana-
tion is as follows. Sort p is assigned to controls indicating MAC addresses, such as control
01:23:45:67:89:ab. We use a special control MAC, to indicate a generic MAC address, con-

7.2. Bigraphical model 137

Φ1 all m̂wiop-nodes are atomic
Φ2 all children of a θ-root have sort θ, where θ ∈ {ŝjb, ŝj, ŝb, r, s,m,w, b, j, îo}
Φ3 all children of an s-node have sort r̂m
Φ4 an r-node has a w-child
Φ5 all p-nodes are children of a b-node
Φ6 all îo-nodes are children of a b̂j-node
Φ7 all s-nodes are always linked to a r̂m-child
Φ8 a b-node is always linked to a m-node
Φ9 a w-node may only be linked to m-nodes
Φ10 an i-node may only be linked to a o-node
Φ11 an o-node may only be linked to a i-node

Table 7.2: Conditions of formation rule Φ.

trols Hostname and IP, to indicate a generic host-name and IP address, respectively. The set
of sorts is written as

Θ = {r, s,m, j, b,w, i, o, p, } .

The signature is given by K =
⋃
s∈Θ s. Formation rule Φ is given in Table 7.2. Condi-

tions Φ3–Φ7 state that each machine is placed inside a signal and is connected to it. Recall
that similar conditions were also defined in the formation rule for sorting Σ802.11 used in
Chapter 6. Conditions Φ4,Φ7 specify that the router lies within its signal and is linked to it.
Conditions Φ5,Φ8 ensure that machines are also connected to a property box that contains
various configuration details. Condition Φ9 forces machines that are part of the WLAN to
share a link with the w-node inside the router. Condition Φ6 states that property boxes (and
the Internet) are linked to each other via a pair of communication channels. These are rep-
resented by an i-node linked to an o-node as specified by conditions Φ10,Φ11. Finally, we
write the sorting used in the model as ΣHW = (K,Θ,Φ).

The initial configuration of a WLAN is given by bigraph S0 : ε → ŝjb in Figure 7.2.
It models the scenario in which only the router and the external world are present. The
algebraic form is

S0 = /x /y (Sx.Rx.Wy.1) | Internet.1

7.2.2 Network events

Now we turn our attention to the reaction rules that represent the network events, which
include moving in and out of the router’s range, and the granting and revoking of DHCP
leases. We discuss each one of the four events in turn, and we describe them by means of a
graphical representation. A summary of all the reaction rules including their algebraic forms

7.2. Bigraphical model 138

R
W Internet

S

Figure 7.2: Initial configuration S0 : ε→ ŝjb.

y

Properties

S

M

R
W

S

MAC

y

R
W

S

Figure 7.3: Reaction rule RA(MAC): a new machine appears in the router’s signal range.

is given in Table 7.3. We note that all the reaction rules respect sorting ΣHW.

The first event occurs when machine MAC appears in the signal range of the router. It is
encoded by reaction rule RA(MAC) : m̂r → 〈ŝbr, {y}〉 given in Figure 7.3. On the left-hand
side, the router is in the range of its signal and possibly other signals. This is expressed by
the region surrounding the r-node. On the right-hand side, a new machine is in the range of
the router’s signal. The router senses the new machine’s signal and possibly other signals.
This is expressed by nodes R and M being in the intersection of the two s-nodes and the
region surrounding R. A property box (i.e. a b-node) is also linked to M. Note that the only
configuration setting specified at this stage is the MAC address of the new machine M. This
is witnessed by the p-node placed inside Properties. Observe that this reaction rule forces
all m-nodes to be shared by only two s-nodes. This means our model does not capture any
interference between the signals of the machines in the system: our model is based solely
on information provided by the router. It other words, we can only model what the router
senses.

The second event occurs when machine MAC is no longer in the router’s signal range.
This happens because either a machine switches off its network interface or it moves into a
location not reachable by router’s signal. It is encoded by the reaction rule RR(MAC) given in
Figure 7.4. On the left-hand side, a m-node is linked to a b-node and placed within an s-node.
These correspond to a machine, its configuration properties and its signal range, respectively.
The extra region enclosing M and the site are necessary to allow the machine modelled in
the left-hand side to be in the range of the router and possibly other machines. On the right-

7.2. Bigraphical model 139

Properties

S

M

MAC

Figure 7.4: Reaction rule RR(MAC): a machine is no longer in the router’s signal range.

Properties

M

W

y x

Properties'

M

W

y x

Figure 7.5: Reaction rule RJ1. A new machine joins the WLAN (1): all stations already in the WLAN
are tagged.

hand side, all the nodes have disappeared. This models the absence of the machine from the
system. We note that without sharing, the orphan site does not exist. But in our case, we
need it because on the left-hand side, there could be another entity matched by the site (e.g.
the router), which would persist even after we remove the parent node S. The interface of
the reaction rule is given by: RR(MAC) : m̂r→ 〈ŝbm, ∅〉.

The third event occurs when a machine joins the WLAN and a DHCP lease is granted.
We use three reaction rules to describe how the system changes. This requires distinguishing
between the new machine and those already in the network. We do so by tagging the latter.
The first rule, RJ1, implements the tagging, the second rule, RJ2(MAC, IP,Hostname), es-
tablishes the network aspects of the untagged machine (i.e. IP address etc.), and the third
rule, RJ3(MAC), establishes the communication channels between the new machine and
the tagged machines and then it revokes the tags. Reaction RJ1 : p̂io → 〈mwb, {x, y}〉,
in Figure 7.5, is used to tag all the machines in the system that are already part of the
WLAN. On the left-hand side we have an m-node linked to the w-node. The actual tag-
ging is implemented in the right-hand side, where a node of control Properties′ takes the
place of the corresponding node of control Properties in the left-hand side. Reaction rule
RJ2(MAC, IP,Hostname) models the DHCP server granting a lease to the machine, as depic-
ted in Figure 7.6. On the left-hand side, a machine is not part of the network and the only
configuration property already specified is the MAC address. This is shown by the absence
of a link between the m-node and the w node and the absence of a site inside the node of
control Properties. On the right-hand side, the machines joins the WLAN, IP address and

7.2. Bigraphical model 140

Properties

M

W

y x

Internet

MAC IP Hostname

Properties

M

W

y x

Internet

MAC

Figure 7.6: Reaction rule RJ2(MAC, IP,Hostname). A new machine joins the WLAN (2): Hostname
and IP address are set and communication channels with the Internet are established.

Properties

Properties'

Properties

Properties

y xy x

MAC MAC

Figure 7.7: Reaction rule RJ3(MAC). A new machine joins the WLAN (3): Communication channels
are created between the station and all the machines already present in the WLAN.

hostname are set, and two communication channels with the external world are established.
The interface is given by:

RJ2(MAC, IP,Hostname) : îo→ 〈mwbj, {x, y}〉 .

Note that the channels are uni-directional and so we have to define a pair (one for incoming
traffic, one for outgoing traffic). In reaction rule RJ3(MAC) a pair of communication channels
is established between the new machine and the machines already part of the WLAN, see Fig-
ure 7.7. On the left-hand side, a node of control Properties and a node of control Properties′

specify the configurations of the new machine and a machine already in the WLAN, respect-
ively. On the right-hand side, a pair of communication channels is established and a node
of control Properties replaces the corresponding node of control Properties′ in the left-hand
side. The interface of the reaction is RJ3(MAC) : p̂iop̂io → 〈bb, {x, y}〉. We note that this
event is encoded by a sequence of application of the three reaction rules described above.
Initially, all machines that have already joined the WLAN are tagged, using reaction RJ1.
This means the reaction is applied n times, where n is the number of machines in the net-
work. The resulting interleaving of applications is confluent, therefore, only one sequence

7.2. Bigraphical model 141

Properties Properties

y

MAC

y

MAC

Figure 7.8: Reaction rule RL1(MAC). A machine leaves the WLAN (1): Pairs of communication
channels are removed.

Figure 7.9: Reaction rule RL2(MAC, IP,Hostname). A machine leaves the WLAN (2): DHCP leases
are revoked.

need be considered. Then, reaction RJ2(MAC, IP,Hostname) is applied once. Finally, re-
action RJ3(MAC) is applied n times. Again, due to confluence, only one sequence need
be considered. We will describe in more detail how sequences of applications are used to
generate models of the network in real-time in Section 7.3.

The last event takes place when a machine leaves the WLAN and the lease is revoked.
This is represented by two rules. Note, this does not automatically imply that the machine
is also leaving the router’s signal range. Reaction rule RL1(MAC) : p̂io → 〈bîo, {x, y}〉 is
given in Figure 7.8. The left-hand side specifies a property box for the machine and a pair of
channels. The site also allows the reaction to be applied when other nodes are inside the node
of control Properties. On the right-hand side the two communication channels are removed.
Reaction rule RL2(MAC, IP,Hostname) revokes the machine’s DHCP lease. This is encoded
by the removal of nodes of control Hostname and IP and the breaking of link between M and
W, as depicted in Figure 7.9. The interface of the reaction rule is given by

RL2(MAC, IP,Hostname) : ε→ 〈mwb, {x, y}〉 .

Note that reaction RL1(MAC) is applied first, until no other channels can be removed. Again,
the order in which the channels are removed is not important and only one sequence of reac-
tions need be considered. Second, reaction rule RL2(MAC, IP,Hostname) is applied once.

The algebraic forms for all the seven reaction rules of the model are given in Table 7.3.

7.2. Bigraphical model 142

RA(MAC) = R1 IR′1
R1 = /x

(
share (Rx.Wy.1 ‖ id) by [{1, 2}, {0}] in (Sx.(id | id) ‖ id1,yx)

)
R′1 = /x /z /p

(
share (Rx.Wy.1 ‖ /yMyzp.1 ‖ id) by [{1, 2, , 3}, {1, 2}, {0}]
in ((Sx.(id | id) | Sz | Propertiesp.MAC.1) ‖ id1,yxzp)

)
RR(MAC) = R2 I 1 ‖ 1 ‖ 0

R2 = /x /p
(
share (/yMxyp.1 ‖ id) by [{1, 2}, {0}]
in ((Sx.(id | id) | Propertiesp.MAC.1) ‖ id1,xp)

)
RJ1 = /p (Myxp.1 ‖ Wy.1 ‖ Propertiesp) I /p (Myxp.1 ‖ Wy.1 ‖ Properties′p)

RJ2(MAC, IP,Hostname) = R3b IR′3b
R3b = /p (/yMxyp.1 ‖ Wy.1 ‖ Propertiesp.MAC.1 ‖ Internet)
R′3b = /p /l /h

(
Mxyp.1 ‖ Wy.1

‖ Propertiesp.(MAC.1 | Hostname.1 | IP.1 | Ih.1 | Ol.1)

‖ Internet.(id | Il.1 | Oh.1)
)

RJ3(MAC) = R3c IR′3c
R3c = Propertiesx.(id | MAC.1) ‖ Properties′y
R′3c = /l /h

(
Propertiesx.(id | MAC.1 | Il.1 | Oh.1)

‖ Propertiesy.(id | Ih.1 | Ol.1)
)

RL1(MAC) = R4a IR′4a
R4a = /l /h (Propertiesy.(id | MAC.1 | Il.1 | Oh.1) ‖ (Ih.1 | Ol.1))

R′4a = Propertiesy.(id | MAC.1) ‖ 1

RL2(MAC, IP,Hostname) = R4b IR′4b
R4b = /p (Myxp.1 ‖ Wy.1 ‖ Propertiesp.(MAC.1 | Hostname.1 | IP.1))

R′4b = /p (/yMyxp.1 ‖ Wy.1 ‖ Propertiesp.MAC.1)

Table 7.3: Reaction rules for network events.

7.3. Generation of models in real-time 143

Properties

M

W

y x

Properties

p

MAC
MAC

Figure 7.10: Bigraphs BϕMAC
(left) and BψMAC

(right).

7.2.3 Status predicates

In addition to the reaction rules, we define two predicates, parameterised by a machine MAC
address, to represent the current status of a machine in the system:

• ϕMAC is true iff the machine MAC is present in the system,

• ψMAC is true iff the machine MAC is part of the WLAN.

The predicates are encoded by bigraphs BϕMAC
and BψMAC

, which are depicted in Figure 7.10.
The corresponding algebraic forms are

BϕMAC
= Propertiesp.(id | MAC.1)

BψMAC
= /p (Myxp.1 ‖ Wy.1 ‖ Propertiesp.(id | MAC.1))

We define S |= ϕMAC iff BϕMAC
is a match in bigraph S and S |= ψMAC iff BψMAC

is a match
in bigraph S. All the other predicates defined in the following sections are encoded similarly
in terms of bigraphical matching.

7.3 Generation of models in real-time

We now describe how the reaction rules and predicates defined in the previous section are
used to generate sequences of models of the current network configuration in real-time. For
a given current model St, we generate a successor model St+1, such that St B∗ St+1. The
new model St+1 represents the network after an event takes place. Strictly, any model S such
that St B∗ S is a successor model, however, often we store only the model obtained after
several rewriting steps, for example when tagging and untagging is required. The model of
the current network configuration is stored in the bigraph analysis component of the HWBig
system. Note, we generate and store the algebraic form, whereas we use the graphical form
for feedback. An example illustrates the generation process.

7.3. Generation of models in real-time 144

Event Encoding Short form

Add machine B
A

—
Machine joins B∗

J1
B

J2
B∗

J3
B∗

J

Machine leaves B∗
L1

B
L2

B∗
L

Remove machine B
R

—

Table 7.4: Encodings for network events.

Example 7.3.1. Assume at time t the stream database generates a network event specifying
that machine MAC is present in the system and a DHCP lease has been granted. The current
model is denoted by St, and the generated event has been sent to the bigraph encoder com-
ponent. The sequence of reaction rules to be applied to St is determined by whether or not
machine MAC is already present in the system and if it has joined the WLAN. Therefore,
the bigraph analysis component is queried to check if St |= ϕMAC and St |= ψMAC. The
results are sent back to the bigraph encoder component. We then have three cases of model
generation, summarised as follows:

• If St |= ϕMAC and St |= ψMAC, then the system remains unchanged and no reaction
rule is applied.

• If St |= ϕMAC but St 6|= ψMAC, then machine MAC has to join the WLAN. The gener-
ated sequence of reactions is: RJ1, RJ1(MAC, IP,Hostname), RJ1(MAC), which is sent
to the bigraph analysis component to update the model:

St B
∗

J1
B

J2
B
∗

J3
St+1 .

For brevity, we denote this sequence of applications as St B∗
J
St+1. Observe that IP

and Hostname are part of the event obtained from the stream database.

• If St 6|= ϕMAC, then machine MAC has to appear in the range of the router and then to
join the WLAN. The generated sequence is: RA(MAC), RJ1, RJ1(MAC, IP,Hostname),
RJ1(MAC), which is sent to the bigraph analysis component to update the model:

St B
A
B
∗

J
St+1 . �

Encodings for the four network events are summarised in Table 7.4. Predicates ϕMAC and
ψMAC are used as in Example 7.3.1 to select the appropriate sequence of reaction rules that
should be applied.

7.4. Bigraphical models of policies 145

Control Meaning Sort Graphical notation

Port, . . . Port number p Bold rounded box
WWW, . . . External host p Bold rounded box
P, . . . Protocol p Bold rounded box
BLOCKED All traffic forbidden p Bold rounded box

Table 7.5: New controls and sorts for modelling policies.

7.4 Bigraphical models of policies

Now we turn our attention to the representation of access control policies by reaction rules.
Access control policies constrain behaviours, for example they can constrain traffic between
machines, or types of traffic. New entities are therefore required. For example, new controls
are needed to express the ban of a given port or a communication protocol. The additional
controls are listed in Table 7.5, which we call constraints. Formation rule Φ defined in
Table 7.2 is also modified by allowing îo-nodes to be linked to p-nodes.

Policies are categorised as forbid policies or allow policies. The latter are relatively
simple to represent because matching can detect the existence of a constraint that requires to
be removed. However, the representation of forbid policies is a little more complex.

The key idea of representing a forbid policy is to link chains of p-nodes to communication
channels. A chain of constraints represents a conjunction of constraints, and several chains
linked to a channel represent a disjunction of constraints. Some policies can be represented
by a single reaction rule, whereas others require several when a form of tagging is needed
in the representation. We illustrate the possible forms of representation with three example
forbid policies. A summary of the algebraic forms of the reaction rules for these policies is
given in Table 7.6.

Example 7.4.1 (policy P1). Consider a policy, denoted by P1, that forbids the machine
named Laptop from receiving incoming traffic from remote host WWW, defined by reaction
rule RP1 in Figure 7.11. The left-hand side can match only Laptop’s Properties box, its
out-going channel to the external world and Internet box. In the right-hand side, constraint
WWW is attached to the channel’s link. Note that constraints like WWW are always placed
within the sender’s b̂j-box1.

The inverse reaction rule2 models the policy being dropped. While this policy (P1) is rep-
resented by a single reaction rule, we note that we must apply it carefully, to avoid multiple
or inconsistent applications. An example illustrates the problem. Consider a network mod-
elled by bigraph S in which machine Laptop is already forbidden from receiving traffic from

1This is an arbitrary choice that simplifies the specification of policy predicates. The symmetric encoding
where the constraints are always placed within the receiver’s b̂j-box is also possible.

2The reaction rule in which the left-hand side and the right hand side are swapped.

7.4. Bigraphical models of policies 146

Properties

Internet

Properties

Internet

y c y c

Laptop

WWW

Laptop

Figure 7.11: Reaction rule RP1. All incoming traffic from WWW to Laptop is blocked.

WWW, i.e. a WWW-node is already linked to the channel from Laptop to Internet. Reaction
rule RP1 could be applied to this bigraph, and as a result of the rule application, we would
obtain a bigraph in which two copies of the same constraint are linked to the channel. To
avoid this, we must check, before any rule applications for the policy, whether traffic from
WWW to Laptop is forbidden. Specifically, the bigraph analysis component is queried to
check whether S |= ϕP1, where predicate ϕP1 corresponds to the right-hand side of reaction
rule RP1. The reaction rule for the policy is applied only if the predicate is false. Since the
predicate holds for model S, reaction rule RP1(Laptop,WWW) would not be applied in this
case. �

Example 7.4.2 (policy P2). A more complex model arises when TCP connections with any
host using destination ports 8080 or 6881 and source port 6882 are forbidden. We call this
policy P2. First, rule RP2T is applied once to all the channels in the system. This results in a
bigraph in which all îo-nodes are tagged, which is necessary in order to ensure that rule RP2E

is applied only once. The algebraic form is

RP2T = Oc.1 ‖ Ic.1 I O′c.1 ‖ I′c.1

Second, rule RP2E is applied to all the tagged channels, this is depicted in Figure 7.12. The
left-hand side matches any tagged channel. On the right-hand side, the constraints are placed
by linking them to the channels and îo-nodes are untagged. Constraints on source ports are
placed inside the box containing node O (i.e. sender’s Properties box), while constraints
on destination ports are inside the box containing node I (i.e. receiver’s Properties box).
The order in which channels are tagged and untagged is irrelevant because reaction rule
RP2E is applied only when all the channels are tagged. Thus, only one interleaving need be
considered. As in the previous example, the bigraph analysis component is queried prior to
the application of the application of the reaction rules modelling this policy, in order to avoid
double entries and inconsistent constraints. �

Example 7.4.3 (policy P3). Finally, consider a policy that forbids traffic from the machine

7.5. Generating models of policy events in real-time 147

Properties

Properties

Properties

Properties

y cx y cx

TCP 6882

TCP 8080

TCP 6882

I'

O'

Figure 7.12: Policy reaction rule RP2E . TCP connections with any host using destination ports 8080
and 6881 and source port 6882 are blocked.

Properties

Properties

Properties

Properties

192.168.0.9 192.168.0.9

192.168.0.84192.168.0.84

BLOCKED

y cx y cx

Figure 7.13: Policy reaction rule RP3. Traffic form 192.168.0.9to 192.168.0.84 is forbidden.

whose IP address is 192.168.0.9 to the machine whose IP address is 192.168.0.84. The policy
is encoded as reaction rule RP3 given in Figure 7.13. The left-hand side matches the channel
blocked by the policy. On the right-hand side, special constraint BLOCKED is linked to the
channel. �

7.5 Generating models of policy events in real-time

In Section 7.3 we described how the current model St of a network is updated in real-time
upon an occurrence of a network event. We now specify a similar procedure to update the
model when policy events take place. Reaction rules encoding the policy events generated
by the stream database are used by the bigraph analysis component to generate sequences
in the form St B∗ St+1. There are three possible policy events: enforce, drop and check

policy compliance for both forbid and allow policies. Forbid policy events are more difficult
to encode than allow policy events, and so we consider these first.

7.5. Generating models of policy events in real-time 148

RP1 = P1 IP ′1
P1 = Propertiesy.(id | Laptop.1 | Ic.1) ‖ Internet.(id | Oc.1)

P ′1 = Propertiesy.(id | Laptop.1 | Ic.1) ‖ Internet.(id | /hWWWch.1 | Oc.1)

RP2a = Oc.1 ‖ Ic.1 I O′c.1 ‖ I′c.1

RP2b = P2 IP ′2
P2 = Propertiesy.(id | O′c.1) ‖ Propertiesx.(id | I′c.1)

P ′2 = Propertiesy.(id | O′c.1 | /q (6882cq.1 | /r TCPqr.1))

‖ Propertiesx.
(
id | I′c.1 | /q1 (8080cq1 .1 | /r TCPq1r.1)

| /q2 (6881cq2 .1 | /r TCPq2r.1)
)

RP3 = P3 IP ′3
P3 = Propertiesy.(id | 192.168.0.9.1 | Oc.1)

‖ Propertiesx.(id | 192.168.0.84.1 | Ic.1)

P ′3 = Propertiesy.(id | 192.168.0.9.1 | /e BLOCKEDce.1 | Oc.1)

‖ Propertiesx.(id | 192.168.0.84.1 | Ic.1)

Table 7.6: Reaction rules for example policies.

7.5.1 Encoding forbid policy events

A forbid policy is represented by linking constraints (p-nodes) to channels. Again, we em-
ploy tagging to indicate when rules may or may not be applicable. In the case of enforce, we
employ tagging to ensure that constraints are only added once. In the case of checking policy
compliance, the use of tagging is more subtle. The problem we need to overcome is how to
check for the non-existence of a pattern in a bigraph, namely, we require to check that we
cannot match the left hand-side of a policy enforcement reaction rule. So, we tag channels
that comply with the policy. If all the channels are tagged, then a match is not possible, and
we can conclude the entire model complies with the policy. Thus, for a policy P, we denote
by ϕP the predicate for compliance with policy P and BϕP

the corresponding bigraph for
matching.

Recall that when an event occurs, it is captured by the stream database and encoded into
a sequence of reaction rules by the bigraph encoding component of HWBig. The sequence is
then applied to S (i.e. the bigraph modelling the current configuration of the network) by the
bigraph analysis component. An explanation of the sequence of reaction rules that encode
each of the three events for a forbid policy is given below. The corresponding reaction rules
are summarised in Table 7.7. The rules are grouped according to the three functions: tag,
enforce, untag.

7.5. Generating models of policy events in real-time 149

Event Encoding Short form

Enforce policy P

tag

B
∗

enforce

B
∗

untag

B
∗

B∗
P

Drop policy P

remove

B
∗

B∗
�P

Check policy P

S

tag

B
∗
T

BϕP
is a match in T =⇒ S 6|= ϕP

BϕP
is not a match in T =⇒ S |= ϕP

T

untag

B
∗
S

—

Table 7.7: Encodings for policy events (forbid).

Enforce a forbid policy

1. (tag) a sequence of rules that tag channels in the model that comply with the policy,

2. (enforce) a sequence of rules that link the constraint specified by the policy to the
untagged channels, and then tag these channels so they are not considered again,

3. (untag) a sequence of rules that removes the tags applied in steps 1 and 2.

Drop a forbid policy

1. (remove) a sequence of rules that removes the policy constraints from channels.

Check a forbid policy

1. (tag) a sequence of rules that tag channels in the model that comply with the policy,

2. (check) check whether the predicate ϕP holds for the tagged model (from step 1), by
attempting to match BϕP

. If a match is possible, then conclude S 6|= ϕP, otherwise
conclude S |= ϕP,

3. (untag) a sequence of rules that removes the tags applied in step 1.

7.5.2 Encoding allow policy events

Allow policies are much easier to encode because constraints are removed, instead of being
added to the model. Thus, we can take advantage of the fact that bigraph matching is a test for

7.5. Generating models of policy events in real-time 150

Event Encoding Short form

Enforce policy P

enforce

B
∗

B∗
P

Check policy P
BϕP

is a match in S =⇒ S 6|= ϕP

BϕP
is not a match in S =⇒ S |= ϕP

—

Table 7.8: Encodings for policy events (allow).

the existence of a pattern. An overview of allow policy enforce/check is the following, which
is also summarised in Table 7.8. We note that it is not possible to drop an allow policy. If the
user wishes to stop allowing some behaviour, that behaviour has to be specified explicitly
as a forbid policy. Again, assume the current configuration of the network is modelled by
bigraph S.

Enforce an allow policy

1. (enforce) a sequence of rules that removes the policy constraints from channels. There
is no need for a tagging step.

Check an allow policy

1. (check) attempt to matchBϕP
. If a match is possible, then conclude S 6|= ϕP, otherwise

conclude S |= ϕP.

7.5.3 Interplay between network and policy events

When a network event occurs, the bigraph analysis component applies a sequence of reac-
tion rules as described in Section 7.3. However, this may lead to a system in which some
policies are not enforced. For example, assume a current model, St, of a WLAN where every
machine is forbidden to receive data from remote host WWW. Further, assume a new ma-
chine joins the WLAN. As a result, the bigraph analysis component updates St to St+1 thus:
St B

A
B∗

J
St+1. But in model St+1 the new machine is not forbidden from receiving

data from WWW, thus the policy has to be re-enforced.

In general, after every join network event, the bigraph analysis component applies the
sequence of reactions for an enforce policy event. The sequence for a drop policy event is
applied before a leave network event, which is in turn followed by the sequence of applica-
tions for an enforce policy event.

We illustrate the process, in detail, with the example given in Appendix D.

7.6. Model analysis 151

Properties

Laptop

p

Internet

Figure 7.14: Bigraph Bς4 encoding predicate “Host Laptop has unrestricted Internet connection”.

7.6 Model analysis

So far we have described how to model home networks with bigraphs and how to update
a model in real-time to represent network and policy events. In this section we present an
approach that allows us to carry out formal reasoning on the generated models within the
HWBig system.

At any point in the model generation process, the bigraph analysis component can check
whether the bigraphical representation of the current system satisfies compliance with a
policy, or an invariant, or indeed any given property. Some example properties of interest for
a WLAN are:

ς1: “Machine 01:23:45:67:89:ab can receive from host Laptop”,

ς2: “TCP traffic is blocked for machine with IP address 192.168.0.3”,

ς3: “Machine 01:23:45:67:89:ab is in the range of the router’s signal and a DHCP lease
has been granted”,

ς4: “Host Laptop has unrestricted access to the Internet”.

The verification of St |= ςi is an instance of model checking, where St is the bigraph rep-
resenting the current state of the WLAN. Note that all the predicates ςi above express spatial
(i.e. static) properties of the system. Hence, they can be regarded as atomic propositions in a
temporal logic and expressed in a straightforward way as a single instance of matching. For
example, bigraph Bς4 encoding property ς4 is represented as shown in Figure 7.14.

We can check any invariants by model checking whether they hold after every update of
the system, logging any violations and reporting them, as required, to the system and/or user.
Note that conflicting policies can also be detected this way, whenever the application of a
new policy invalidates an existing one. The idea is to consider the predicates for compliance
with a given policy P (i.e. ϕP), as invariants. Therefore, a new policy is conflicting with one
of the old ones whenever its application invalidates an invariant. An implementation of the
system, can either signal this to the user, deny the enforcement of the second policy or just
keep track of conflicts in a logfile.

7.6. Model analysis 152

It is also possible to reason about the dynamical evolution of the system expressed as
temporal properties. Some examples are:

τ1: “Machine 01:23:45:67:89:ab eventually has to be connected to Laptop”,

τ2: “TCP traffic is always blocked for machine with IP address 192.168.0.3”,

τ3: “A lease is granted to machine 01:23:45:67:89:ab until it is not in the range of the
router’s signal”.

These properties can be expressed in a temporal logic like LTL [51], with temporal modalit-
ies such as until (U), next (X), finally (F) and globally (G). The set of atomic proposi-
tions is given by the formulae in the fragment of BiLog that can be reduced to matching. As
discussed above, these are the predicates in the form of ςi. Observe that a similar approach
was adopted in Chapter 6 to express in CSL properties of a bigraphical reactive system. The
interesting question here is what is the underlying transitions system? We propose that it is
the one that can be generated by modelling all the possible sequences of actions, from the
current model of the system. In order to generate a finite structure, a fixed set of machines
and policies has to be specified by the user. Then, the corresponding reaction rules, as de-
scribed in sections 7.3 and 7.5 are applied to generate the transition system. For example,
a set of rules modelling a station joining the WLAN is generated for every specified MAC
address. Figure 7.15 illustrates the generation of the transition system from current model
St, where St is generated from initial state S0, according to the sequence of real-time events.
All states in the generated transition system are reachable from St. We note that in general,
from any state St, we can return to S0, if we do not constrain the allowable events. Therefore,
this approach is only useful if we make some assumptions about what events cannot occur.
For example, we might wish to reason about future behaviour, based on the assumption that
no machines leave the network, or no new policies are enforced. From a theoretical point of
view, the generation process described above is equivalent to the computation of the reaction
relation of a PBRS in which the initial state is St and the interleavings resulting from the
application of reaction rules with lower priorities are discarded. For example, consider the
generation of a successor state St+1 obtained by the following sequence of applications

St B
∗

L1
B

L2
St+1 .

All possible intermediate states resulting from an application of reaction rule RL1(MAC) are
discarded by specifying that RL1(MAC) < RL2(MAC, IP,Hostname). Note that this approach
was also adopted in Chapter 6 for the generation of the underlying CTMC.

In some situations it may be useful to reason about the past behaviour of the network.
A common example is when one wishes to “debug” the network, i.e. identify the events that

7.6. Model analysis 153

S0 BS1 BS2 B · · · B

· · ·

St

A:E

}�$

� ,2 · · · Transition system

· · ·

Figure 7.15: Generating all the possible evolutions from current model St.

led to a problem in the current configuration of the network. Some temporal properties of
this form are:

τ4: “Machine 01:23:45:67:89:ab has never joined the network”,

τ5: “TCP traffic has always been blocked for machine with IP address 192.168.0.3 since

policy P was enforced”,

τ6: “Laptop was connected to the Internet”.

These properties can be expressed, for instance, in PtLTL (Past time LTL) [30, 43], a tem-
poral logic equipped with past-time modalities such as since (S), previous (X−1), at some

point in the past (F−1) and globally in the past (G−1). As for the temporal properties about
the future we described above, the set of atomic propositions is given by the BiLog formu-
lae that are reducible to bigraph matching. In this case, the underlying transition system is
simply S0 BS1 B · · · BSt.

Checking a temporal property involves bigraph matching for atomic propositions and
standard model checking techniques for the temporal modalities. We note that the latter is
computationally expensive and may not be tractable in real-time, depending on the number
of machines and policies and on the temporal modalities of the logic. However, we have as
yet found no need for temporal modalities: atomic propositions are currently sufficient for
all verification needs expressed by the Homework system users.

Technical details: tracking

Temporal properties (both in the past and in the future) about specific entities of a bigraph
can be verified only if they can be tracked through a reaction [47, p. 123]. This is in general
not possible in abstract BRS because nodes and edges lack identifiers. Consider, for instance,
reaction rule

A | A I A

that matches two nodes of control A and discards one. When it is applied to a state S BS ′,
it is impossible to identify (i.e. track) which one of the two matched A-nodes is still present

7.7. Implementation 154

in S ′. Observe that our bigraphical model suffers from this problem. In particular, M-nodes
cannot be tracked. Our workaround consists of allowing only one node with a given MAC

control in the model. This is enforced by checking predicates ϕMAC and ψMAC given in
Section 7.2 before any topology update. Therefore, unique controls for MAC addresses can
be interpreted as node identifiers and employed for node tracking.

7.7 Implementation

A prototype of the HWBig system is fully implemented on the Homework router, which is
hosted on a variety of small form-factor PCs. The bigraph encoder and bigraph analysis
components are implemented in OCaml by using the library provided by BigraphER. The
software runs on a standard Linux Ubuntu distribution. Access control is enforced via NOX
(which implements the custom DHCP server) and Open vSwitch, as dictated by the Ponder2
policy engine [63], based on events recorded in the homework stream database.

We trialled the system with both synthetic and experimental data using a router hosted
on an Asus Eee PC laptop with the following specification: 1.2GHz Intel Atom CPU, 2 GB
RAM, 200 GB SATA HDD, 802.11b/g, 1 Gbps Ethernet, and a USB-to-Ethernet adapter.

For the synthetic data, we added 30 stations to the initial configuration, applying reaction
rule RA(MACi) 30 times starting from bigraph S0. The final state is a bigraph with 123
nodes. The update times we recorded also include the delays introduced by the verification
of predicates ϕMACi and ψMACi prior to each reaction rule application. The update times
increase with the number of nodes, as indicated in the plot of update times averaged over
100 runs, in Figure 7.16. The non-monotonicity of the plot is due to the random choices
in the heuristic of the SAT solver used for matching of bigraphs. Note the slowest update
requires just under 0.10 s.

Experimental data was taken from actual network trials. For example, the router sensed
the signals of 6 stations, then 4 new devices joined the WLAN and were connected to the
Internet. The final state was a bigraph with 71 nodes. The update times were similar to
those described above. Evidence from network trials suggests there are rarely more than 20
signals present in a home network and the rate of topology change is much slower than the
times used in our (synthetic) experiment.Moreover, our times include a system overhead to
generate and store on disk a graphical representation of each bigraph (involving an external
invocation of the graph layout generator dot). While we expect that considerable speed
ups and optimisations are possible to the verification system, we conclude the prototypical
system can update and analyse the bigraphical representation of actual home networks in
real-time.

7.8. Summary 155

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

302520151051

A
ve

ra
ge

 u
pd

at
e

tim
e

(s
)

Machines

Figure 7.16: Average time to perform Sn BSn+1, where n is the number of machines in the
network (x axis). Each update was performed 100 times and the average time is reported on the y
axis.

7.8 Summary

In this chapter we described HWBig, an addition to the Homework information plane that
generates and analyses in real-time bigraphical models of the current configuration of the
network. The generation process is event-driven: we apply in real-time the reaction rules
according to events captured in the stream database. Analysis consists of verification of
system properties, including detecting configurations that violate user-invoked access control
policies.

In Section 7.1 we gave an overview of the Homework information plane together with
the HWBig system. Section 7.2 defined the bigraphs and the reaction rules used to encode
network topologies and network events. The sequences of reaction rule applications required
to generate the bigraphical models at each network event were described in Section 7.3. An-
other set of reaction rules was introduced in Section 7.4 to represent policy events. The
corresponding generation process was given in Section 7.5. Our bigraphical model defined
a general method to check for the non-existence of patterns in reaction rules by tagging and
untagging entities. It also introduced a procedure that allows tracking of machines through
reaction by using some controls as node identifiers. In Section 7.6, we proposed three ap-
proaches to reason on the generated bigraphs. The first was to use BiLog predicates to verify
static properties of the current model by reduction to bigraph matching. The second consisted
of “unfolding” the reaction relation starting from the current model to generate all possible
evolutions of the network, which can then be analysed with a temporal logic. The third used
predicates expressed in a past-time temporal logic to debug the network. We discussed the
implementation details of HWBig in Section 7.7.

156

Chapter 8

Conclusion and future work

In this thesis, we have introduced bigraphs with sharing, a novel generalisation of Milner’s
bigraphs specifically conceived to enable a direct representation of spatial locations shared
among several entities. The main idea of our formalism is to adopt a definition of place
graphs based on DAGs instead of forests. This in turn requires a substantial extension and
adaptation of the previous theory of BRS and the development of a new matching algorithm
and supporting tools. We showed how sharing facilitates the specification process by model-
ling two real-world scenarios involving overlapping wireless signals.

In this concluding chapter we summarise the main contributions of this thesis, in Sec-
tion 8.1, present a critical reflection on what has been achieved and on the experience of
using bigraphs for the modelling of wireless networks, in Section 8.2, and outline directions
for future research, in Section 8.3.

8.1 Thesis summary

We organised this thesis in two parts: Part I is devoted to the theoretical treatment of bigraphs
with sharing; Part II focusses on their applications.

In Part I, Chapter 2 gives a thorough introduction to the standard definition of bigraphs.
Our main reference was Milner’s book [47]. In more detail, the chapter begins by recall-
ing the fundamental definitions of the constituents of bigraphs (place and link graphs) and
their operations (composition and tensor product). It also describes two different ways of
expressing bigraphs. The first is an elegant graphical notation in which the nesting of nodes
and the edges between them encode locality and connectivity, respectively. The second is
an algebraic form that allows us to represent bigraphical terms structurally as in process
algebra. The chapter continues with the definition of sorting, a typing discipline that is re-
quired in most applications in order to restrict the set of admissible bigraphs. Furthermore, it

8.1. Thesis summary 157

presents bigraphical reactive systems (BRS), a dynamical theory of bigraphs based on reac-
tion rules specifying how bigraphs may reconfigure their own placings and linkings. Finally,
the categorical interpretation of bigraphs, the spatial logic BiLog and several extensions (e.g.
stochastic bigraphs) are considered.

In Chapter 3, bigraphs with sharing are defined formally. We justified the need for an
extension of the basic formalism enabling a representation of space shared among several
entities by exposing the disadvantages of two possible encodings of sharing within the stand-
ard definition of bigraphs. The core of the chapter consists of the definition of a new locality
model for place graphs with sharing in terms of DAGs instead of forests. We implemented
this by replacing the parent map in the standard definition with a binary relation between
places. Operations on bigraphs with sharing were also modified in order to support the new
formulation. The second part of the chapter describes a stratified graphical notation that
overcomes the shortcomings of the Venn diagram style notation by explicitly representing
the relation between places. The new formalism is shown to be coherent with Milner’s cat-
egorical interpretation of bigraphs by introducing SPg(K) and SBg(K), the categories of
abstract place graphs with sharing and abstract bigraphs with sharing, respectively. Functors
to relate them to standard bigraphical categories are also defined. In particular, we con-
structed functor width : SPg(K) → Finord. Additionally, we proved self-duality of place
graphs with sharing and introduced a characterisation of epimorphisms and monomorphisms.
We also showed with an example that precategory S̃Pg(K) of concrete place graphs with
sharing lacks RPOs in the general case. The chapter concludes by presenting an axiomatisa-
tion of expressions for bigraphical terms derived from the equational theory of a bialgebra
on finite ordinals. This includes the definition of a stratified normal form.

Chapter 4 introduces a graph theoretic algorithm to solve the bigraph matching problem.
We discussed two key features of the algorithm: native support for both standard bigraphs
and bigraphs with sharing; capability to enumerate all the distinct occurrences of a pattern
in a target. The latter is essential in a stochastic setting for the computation of reaction rates.
The algorithm is defined as a reduction to the sub-graph isomorphism problem. In more
detail, the first phase of the algorithm finds the isomorphisms between the pattern’s under-
lying DAG and sub-graphs of the target’s underlying DAG. In the next phase, the algorithm
discards the isomorphisms obtained in the previous phase that do not satisfy the following
compatibility conditions: node controls are preserved, pattern’s sites and roots allow for a
valid decomposition of the target, and no node in the context has an ancestor in the pattern.
In the final phase, a mapping between the pattern’s and target’s link graphs is constructed for
every compatible isomorphism. Proofs of soundness and completeness are also provided.
This chapter concludes the first part of the thesis on the theory of bigraphs with sharing.

In Part II, Chapter 5 describes the BigraphER system: an OCaml library and a command-
line tool for the manipulation, simulation and visualisation of bigraphs with sharing. The

8.1. Thesis summary 158

architecture of the command-line tool consists of three interacting components: a compiler,
a matching engine, and a rewriting engine. The compiler translates the input specification
into a run-time representation of the bigraphical model. We implemented the matching en-
gine by encoding in SAT the matching algorithm defined in Chapter 4. The solutions are
then obtained by passing the resulting SAT instance to the MiniSat solver. The rewriting en-
gine builds the reaction relation of the input BRS by iteratively applying the reaction rules to
each state. The occurrences of a reaction rule are computed by invoking the matching engine.
The visualisation function produces a graphical representation of a bigraph. We based its im-
plementation on the automatic graph layout generation software Graphviz. The BigraphER
OCaml library provides programming interfaces for the data structures used internally by the
components of the command-line tool. The chapter also introduces a reasoning technique
for a class of BiLog predicates based on bigraph matching.

In Chapter 6, we presented the first application of bigraphs with sharing to a real-world
scenario: a model of 802.11 RTS/CTS that supports overlapping signals and arbitrary net-
work topologies. The model consists of a sorting that specifies the kinds of bigraphs used
to encode wireless networks and a set of stochastic reaction rules describing how a net-
work evolves during the execution of the protocol at transmission time. A distinguishing
characteristic of this approach is that the network topology is expressed explicitly by rep-
resenting overlapping wireless signals with sharing nodes. Therefore, locality determines
collision probability. In order to avoid the definition of parameterised reaction rules, we or-
ganised the reaction rules of our model into priority classes. This not only leads to a more
compact and readable specification of the model but also allows BigraphER to build more
quickly the reaction relation because only instances of matching that are solvable in polyno-
mial time are generated in the process. In the chapter, we also described a general method
to reduce significantly the size of the state space by employing instantaneous reaction rules
and discarding the intermediate interleavings obtained by their applications (if confluent).
Quantitative analysis is carried out by using the probabilistic model checker Prism and CSL
predicates expressing properties of a network.

Chapter 7 contains a detailed description of the second application of bigraphs with shar-
ing we considered in this thesis: real-time generation and analysis of bigraphical models
of domestic wireless networks. The approach we adopted in this scenario is to define a
sorting similar to the one used in Chapter 6 that specifies the structure of the admissible bi-
graphs used to represent wireless networks and a set of reaction rules to encode network and
policy events. However, the fundamental difference here is that the model generation pro-
cess is event-driven, i.e. instead of computing the whole state space of the BRS, sequences
of reaction rules are applied in real-time to update only the current model of the network
according to the events captured by the Homework router. The analysis process consists
of verification of system properties expressed as BiLog predicates. These include detecting

8.2. Conclusion 159

configurations that violate user-invoked access control policies. We implemented the system
on the Homework router by using the OCaml library provided by BigraphER. The chapter
also introduces a method based on tagging/untagging reaction rules that allows us to verify
predicates involving universal quantifiers or negated existential quantifiers by reduction to
bigraph matching. Additionally, this method permits to track nodes through a reaction by
using a class of controls as unique node identifiers.

8.2 Conclusion

In this thesis, we demonstrated bigraphs with sharing can be formally defined within the
general framework of Milner’s bigraphical theories, and sharing allows for a native repres-
entation of overlapping localities. This feature of our extended formalism is particularly
important because it greatly facilitates the modelling of complex wireless networks with
non-centralised structure such as sensor networks, wireless ad-hoc networks and ubiquitous
systems in general, as proven by the two example applications given in Part II. Furthermore,
our research showed that our implementation of BRS (i.e. the BigraphER system) allows
bigraphs with sharing to be fruitfully adopted to model and reason about complex applica-
tions at industrial level. In particular, the efficiency of our implementation of the matching
algorithm was found to be adequate for run-time verification despite being only at an early
developing stage.

We now briefly comment on our personal experience of using bigraphs to model wireless
networks and spatial-aware systems. When we first encountered bigraphs, our first impres-
sion was that the formalism was rather difficult to learn and that it involved too many the-
oretical notions about process calculi, term rewriting, stochastic modelling and categories.
This overwhelming amount of complex mathematical machinery led us to think the learning
curve was pretty steep and modelling was going to be a hard task. Not surprisingly, we still
face similar reactions when we present the research described in this thesis to the academic
community. However, when we began to model the first systems, we soon found out that this
complexity could be greatly alleviated by using only the graphical form for the specification
of our BRSs. This allowed us to gradually get to know the details of the formalism and to
further study its theoretical aspects when they were necessary for a correct understanding of
the model. The graphical form proved to be extremely valuable also when our bigraphical
models had to be understood and manipulated by non-expert users and by researches without
a profound knowledge of concurrency theory and formal modelling.

Other strengths of bigraphs are the ability to easily specify systems with a hierarchical
structure and reaction rules that produce complex state modifications when applied. This
contrasts with the need to define non-trivial protocols to encode this kind of state modi-

8.2. Conclusion 160

fication we often meet when using process calculi. Despite all the benefits introduced by
the adoption of bigraphs, we believe the modelling of realistic systems frequently presents
some intrinsic complexity. Therefore, expertise in formal methods is still a modeller’s re-
quirement. Two features of BigraphER that speed up and simplify the specification process
are parameterised reaction rules, (including parameterised stochastic reaction rates) and rule
priorities. In particular, the latter one allowed us to overcome the difficulty in specifying
bigraphical reaction rules that can be applied when a condition does not hold as discussed at
the end of Section 6.4. Additionally, the automatic generation of a graphical representation
of bigraphs was extremely helpful during the model debugging phase. On the other hand,
the lack of a visual editor for bigraphs and for reaction rules does not allow us to take full
advantage of the graphical form.

8.2.1 Discussion

We now briefly explain the decisions we made in this thesis. Our efforts were driven by
the goal of developing a formalism to express in a natural way overlapping topologies. We
adopted a problem-oriented approach in which the emphasis was on practical use of bigraphs
with sharing for the effective modelling and analysis of real-world scenarios. Therefore, an
essential part of our work was to test with examples the adequacy of a locality concept based
on DAGs. This is witnessed by the two applications presented in chapters 6 and 7.

The theoretical results presented in Part I are instrumental to the goal of the thesis. For
example, we decided to focus on the definition of a normal form for bigraphical expressions
in order to derive a specification language that could act as input for a software tool imple-
menting BRSs. Similarly, all the aspects required for the definition of a stochastic semantics
and a matching algorithm were investigated in depth. Since our applications did not de-
mand the use of labelled transition systems, the study of label construction through IPOs and
bisimulation was left to future research.

A principle we tried to follow throughout this thesis was to concentrate on novel aspects
of our research and integrate them with existing theories and tools whenever it was possible.
Hence, the following topics were not covered:

• Development of static analysis techniques for reaction rules to prove confluence and
termination (refer to the theory of term rewriting [3]).

• Implementation of a model checker for temporal and stochastic predicates. We reduced
the verification of BiLog predicates to the bigraph matching problem and then used
Prism.

8.3. Future work 161

• Implementation of a specialised sub-graph isomorphism algorithm. We encoded the
problem in SAT and then used MiniSat,

• Implementation of a graph layout generator. We used Graphviz.

8.3 Future work

The work of this thesis suggests some directions for future development of bigraphs with
sharing. Some theoretical aspects for further investigation are the following:

• Extension of the definition of the place graph to represent Euclidean space. This may
involve the introduction of distances between nodes and node shapes.

• Definition of different BRS semantics. Examples would include BRS based on discrete
time Markov Chains, Markov decision processes, timed automata, etc.

• Extension of the definition of the link graph to allow name aliasing, i.e. points may
have more than one outer name. This generalisation makes link graphs self-dual. It is
likely that a complete axiomatisation could be derived from the equational theory of a
Frobenius algebra.

• Definition of a procedure for the construction of labelled transition systems for BRS
with sharing. This includes the definition of an IPO construction procedure and the
study of bisimulation.

• Investigation of whether it is possible to have binding in bigraphs with sharing.

Some possible future developments regarding practical aspects of bigraphs are the following:

• Improvement of the matching algorithm efficiency by reducing the size of the under-
lying SAT instances (i.e. number and length of clauses).

• Definition of a partial-matching algorithm. This may be suitable as a basis for an RPO
construction algorithm and a more efficient verification of BiLog predicates.

• Implementation of an automatic procedure to check whether a bigraph respects a given
sorting. This simply amounts to interpreting the conditions in a formation rule Φ as
BiLog predicates.

• Modelling of new phenomena and evaluation of bigraphs with sharing in real deploy-
ments – especially in the field of ubiquitous computing and wireless sensor networks.

162

Appendices

163

Appendix A

Category theory

This chapter summarises the main ideas of category theory used in this thesis. Our references
are the classic work by Mac Lane [45] for general category theory, and Milner’s book [47]
for RPO and IPO results.

Definition A.1 (category). A category C is given by a collection of objects I, J,K, . . . and
a collection of arrows (or morphisms) f, g, h, . . . which have the following structure.

1. Each arrow f has a domain and codomain, both objects. If these are X and Y then we
write f : X → Y . We also write C(X → Y), for the homset of X and Y , i.e. the set
of arrows in C in the form f : X → Y .

2. Given two arrows f : X → Y and g : Y → Z, the composition of f and g is the arrow
g ◦ f : X → Z. This operation may be pictured by the diagram

X

f
��

g◦f

Y g

// Z

Composition is associative, that is: given f : X → Y , g : Y → Z and h : Z → W ,
h ◦ (g ◦ f) = (h ◦ g) ◦ f . This equation is represented pictorially by the statement that
the following diagram commutes1

X

f

��

g◦f

''

h◦(g◦f)=(h◦g)◦f //W

Y g
//

h◦g
77

Z

h

OO

1A diagram commutes if every path with common start and end is equal.

164

3. For every object X there is a unique identity arrow idX : X → X , satisfying the unit

laws: idX ◦ g = g for every g : Y → X and f ◦ idX = f for every f : X → Z.

Y
g //

g

X

idX
��

f

X

f
// Z

Definition A.2 (functor). A functor F : C→ D between two categories is a function taking
objects to objects and arrows to arrows, such that the following properties hold:

1. F(f) : F(X)→ F(Y) for each f : X → Y ,

2. F(idX) = idF(X) for each object X ,

3. F(g ◦ f) = F(g) ◦ F(f) for all arrows f : X → Y and g : Y → Z.

A functor F : C → D is said to be faithful if it is injective when restricted to each homset,
and it is full if it is surjective on each homset. F preserves a property p that an arrow may
have if F(f) has property p whenever f has. It reflects property p if f has the property
whenever F(f) has.

Definition A.3 (precategory). A precategory C̃ is like a category except that the composition
g ◦ f of f : X → Y with g : Y → Z may not always be defined. A functor between
precategories is exactly as a functor between categories.

Definition A.4 (subcategory). A subcategory S of a category C is a collection of some of
the objects and some of the arrows of C, which includes with each arrow f : X → Y both
the domain X and the codomain Y , with each object Z its identity arrow idZ and with each
pair of composable arrows f : X → Y , g : Y → Z their composite g ◦ f : X → Z.

Definition A.5 (quotient category). Given a category C, a congruence relation on C spe-
cifies, for each pair of objects X, Y , an equivalence relation ∼X,Y on the class of arrows
C(X, Y) which have domain X and codomain Y , such that

1. for f, g : X → Y and h : Y → Z, if f ∼X,Y g then h ◦ f ∼X,Z h ◦ g;

2. for f : X → Y and g, h : Y → Z, if g ∼Y,Z h then g ◦ f ∼X,Z h ◦ f .

Given such a congruence relation ∼ on C, one can form the quotient category C/∼ which
has the same objects as C, and arrows X → Y are ∼X,Y -equivalence classes of arrows
X → Y in C.

165

Definition A.6 (opposite category). The opposite category (or dual category) Cop of a given
category C has for objects the objects of C, and its arrows are f op : Y → X , for each arrow
f : X → Y in C. A category C is self-dual if C = Cop.

Definition A.7 (isomorphism). An arrow f : X → Y is an isomorphism (iso) if there is
f−1 : Y → X such that f ◦ f−1 = idY and f−1 ◦ f = idX . We call f−1 the inverse of f .

Definition A.8 (monomorphism). An arrow f : X → Y is a monomorphism (mono) if
f ◦ g0 = f ◦ g1 implies g0 = g1.

Definition A.9 (epimorphism). An arrow f : X → Y is an epimorphism (epi) if g0 ◦ f =

g1 ◦ f implies g0 = g1.

Definition A.10 (span, cospan). A span is a pair of arrows ~f = (f0, f1) with the same
domain. A cospan is a pair of arrows ~g = (g0, g1) with the same codomain.

Definition A.11 (bound, consistent). If ~f is a span and ~g a cospan such that g0 ◦f0 = g1 ◦f1,
then we call ~g a bound for ~f . If ~f has a bound it is said to be consistent.

Definition A.12 (pushout). A pushout for a span ~f is a bound ~h for ~f such that, for any
bound ~g, there is a unique arrow h such that h ◦ h0 = g0 and h ◦ h1 = g1.

f1

��

f0 //

h0

�� g0

��

h1
//

g1 --
h

��

Definition A.13 (relative pushout). Let ~g be a bound for ~f . A bound for ~f relative to ~g is a
triple (~h, h) of arrows such that ~h is a bound for ~f and h◦h0 = g0 and h◦h1 = g1. A relative

pushout (RPO) for ~f relative to ~g is a relative bound (~h, h) such that for any relative bound
(~k, k) (sometimes called candidate triple) there is a unique arrow j for which j ◦ h0 = k0,
j ◦h1 = k1 and k ◦ j = h. We say that a category has RPOs if, whenever a span has a bound,
it also has an RPO relative to that bound.

f1

��

f0 //

h0

��

k0

��

g0

��

g1

<<

h1 //

k1

??

h ''

j //
k

��

Definition A.14 (idem pushout). If ~f : X → ~Y is a span, then a cospan ~g : ~Y → Z is an
idem pushout (IPO) for ~f if (~g, idZ) is an RPO for ~f to ~g.

166

Definition A.15 (partial monoidal category). A category is partial monoidal when it has a
partial tensor product ⊗ both on objects and on arrows satisfying the following conditions.

On objects, X⊗Y and Y ⊗X are either both defined or both undefined. The same holds
for X ⊗ (Y ⊗ Z) and (X ⊗ Y)⊗ Z; moreover, they are equal when defined. There is a unit

object ε, for which ε⊗X = X ⊗ ε is always defined.

On arrows, the tensor product of f : X0 → Y0 and g : X1 → Y1 is defined if and only if
X0⊗X1 and Y0⊗Y1 are both defined. The following must hold when both sides are defined:

1. f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h

2. idε ⊗ f = f ⊗ idε = f

3. (f0 ⊗ g0) ◦ (f1 ⊗ g1) = (f0 ◦ f1)⊗ (g0 ◦ g1)

A functor of partial monoidal categories preserves unit and tensor product.

Definition A.16 (spm category). A partial monoidal category is symmetric (spm) if, whenever
X ⊗ Y is defined, there is an arrow γX,Y : X ⊗ Y → Y ⊗X called a symmetry, satisfying
the following equations when the compositions and products are defined:

1. γX,ε = idX

2. γY,X ◦ γX,Y = idX⊗Y

3. γX1,Y1 ◦ (f ⊗ g) = (g ⊗ f) ◦ γX0,Y0 for f : X0 → X1 and g : Y0 → Y1

4. γX⊗Y,Z = (γX,Z ⊗ idY) ◦ (idX ⊗ γY,Z)

A functor between spm categories preserves unit, product and symmetries.

Definition A.17 (s-category). An s-category C̃ is a precategory in which each arrow f is
assigned a finite support |f | ⊂ S. Further, C̃ possesses a partial tensor product, unit and
symmetries, as in an spm category. The identities idI and symmetries γI,J are assigned
empty support. In addition:

• For f : I → J and g : J ′ → K, the composition g ◦ f is defined iff J = J ′ and
|f | ∩ |g| = ∅; then |g ◦ f | = |f |] |f |.

• For f : I0 → I1 and g : J0 → J1, the tensor product f ⊗ g is defined iff Ii⊗ Ji is
defined (i = 0, 1) and |f | ∩ |g| = ∅; then |f ⊗ g| = |f |] |g|.

The four kinds of category defined above can be arranged in a hierarchy as shown in
Figure A.1.

167

Partial composition Total composition

Symmetric monoidal s-category spm category
— precategory category

Figure A.1: Hierarchy of categories used in this thesis.

Definition A.18 (monoid). A monoid (or monoid object) (A, µ, η) in a monoidal category
C is an object A equipped with arrows µ : A ⊗ A → A, called the multiplication, and
η : ε→ A, called the unit, such that the following diagrams

A⊗ (A⊗ A) = (A⊗ A)⊗ A

id⊗µ
��

µ⊗id // A⊗ A

µ

��
A⊗ A µ // A

A⊗ A

µ

��
ε⊗ A =

η⊗id
::

A = A⊗ ε

id⊗η
dd

are commutative. When C is symmetric and µ ◦ γ = µ, we say A is commutative.

Definition A.19 (co-monoid). A co-monoid (A,∆, %) in a monoidal category C is an object
A equipped with morphisms ∆ : A → A ⊗ A, called the co-multiplication, and % : A → ε,
called the co-unit, satisfying

A
∆ //

∆

��

A⊗ A

∆⊗id
��

A⊗ A
id⊗∆

// A⊗ (A⊗ A) = (A⊗ A)⊗ A

A⊗ A
id⊗ε

zz

ε⊗id

$$
A⊗ ε = A

∆

OO

= ε⊗ A

When C is symmetric and γ ◦∆ = ∆, we say A is co-commutative.

Definition A.20 (bialgebra). A bialgebra in a symmetric monoidal category C is given by a
tupleA = (A, µ, η,∆, %, γ) whereA is an object of C, γ is a symmetry, (A, µ, η) is a monoid

168

and (A,∆, %) is a co-monoid, satisfying

A⊗ A

∆⊗∆

��

µ // A

∆

��
A⊗ A⊗ A⊗ A

id⊗γ⊗id
// A⊗ A⊗ A⊗ A

µ⊗µ
// A⊗ A

A⊗ A µ //

%⊗%
""

A

%
��

ε⊗ ε = ε

ε⊗ ε = ε
η

��

η⊗η

""
A

∆
// A⊗ A

ε
id //

η
��

ε

A

%

FF

We sayA is commutative (resp. co-commutative) when it is commutative (resp. co-commutative)
as a monoid. It is bicommutative when it is both commutative and co-commutative. A bial-
gebra is qualitative when the following equality holds:

µ ◦∆ = id .

169

Appendix B

Continuous Time Markov Chains and
the logic CSL

In this chapter we briefly recall the basic concepts of CTMCs and the logic CSL (Continuous
Stochastic Logic). We follow the presentation given in [6].

Let AP be a fixed, finite set of atomic propositions.

Definition B.1 (labelled CTMC). A (labelled) CTMC is a tupleM = (S,Q, L) where S is
a finite set of states, Q : S × S → R≥0 is the rate matrix, and L : S → 2AP is a labelling

function which assigns to each state s ∈ S the set L(s) of atomic propositions a ∈ AP that
are valid in s.

Intuitively, each qs,s′ in Q specifies that the probability of moving from state s to s′ within
t time units (for positive t) is 1 − e−qs,s′ t, an exponential distribution with rate qs,s′ . Hence,
the average speed of going from s to s′ is qs,s′−1. If qs,s′ > 0 for more than one state s′, a
competition between the transitions is assumed to exist, known as the race condition. For any
state s ∈ S, the probability of leaving state s within t time units is given by 1− et E(s) where
E(s) =

∑
s′∈S qs,s′ . A path through a CTMC is an alternating sequence σ = s0t0s1t1s2 . . .

such that qsi,si+1
> 0 and ti ∈ R≥0 for all i ≥ 0. The time stamps ti denote the amount

of time spent in state si. Let PathsM(s) denote the set of paths ofM that start in state s;
σ[i] = si, the i-th state of σ; σ@t denote the state of σ occupied at time t; and Prs denote
the unique probability measure on sets of paths that start in s. We now recall the logic CSL.

Definition B.2 (syntax of CSL). For a ∈ AP , p ∈ [0, 1], t ∈ R≥0 and ./∈ {≤, <,≥, >},
the state formulae of CSL are defined by the grammar

Φ ::= >
∣∣∣ a

∣∣∣ Φ ∧ Φ
∣∣∣ ¬Φ

∣∣∣ S./p(Φ)
∣∣∣ P./p(ϕ)

170

where path formulae are defined by

ϕ ::= XΦ
∣∣∣ ΦUΦ

∣∣∣ ΦU≤tΦ .

Definition B.3 (semantics of CSL). The state formulae are interpreted over the states of a
CTMC. LetM = (S,R, L) with proposition labels in AP . the definition of the satisfaction
relation is as follows.

s |= > ⇔ for all s ∈ S
s |= a ⇔ a ∈ L(s)

s |= ¬Φ ⇔ s 6|= Φ

s |= Φ1 ∧ Φ2 ⇔ s |= Φ1 and s |= Φ2

s |= S./p(Φ) ⇔ limt→∞ Prs{σ ∈ PathsM(s) | σ@t |= Φ} ./ p
s |= P./p(ϕ) ⇔ Prs{σ ∈ Paths(s) | σ |= ϕ} ./ p .

Semantics of path formulae is defined by:

σ |= XΦ ⇔ σ[1] is defined and σ[1] |= Φ

σ |= Φ1UΦ2 ⇔ ∃k ≥ 0.(σ[k] |= Φ2 ∧ ∀0 ≤ i ≤ k.σ[i] |= Φ1)

σ |= Φ1U
≤tΦ2 ⇔ ∃x ≤ t.(σ@x |= Φ2 ∧ ∀y < x.σ@y |= Φ1) .

171

Appendix C

Reaction rules for the 802.11
CSMA/CA RTS/CTS protocol

We now define an algebraic form for the bigraphs used in Chapter 6 to model the 802.11
CSMA/CA RTS/CTS protocol. Bigraph N0 : ε → 〈s, {aA, aB, aC}〉 represents a wireless
network of three stations. It is drawn in Figure 6.3b. Its algebraic definition is given by

N0 = share (mA ‖ mB ‖ mC) by ψ in (idaAaBaC | StAaA
| StBaB

| StCaC
)

ψ = [{0, 1}, {0, 1, 2}, {1, 2}] ,

where terms

mA = (id1,aAaB ‖ /x ‖ /r ‖ /q)(Mrx.(wA | AaA .1))

mB = (id1,aB ‖ /x ‖ /r)(Mrx.AaB .1)

mC = (id1,aCaB ‖ /x ‖ /r ‖ /q)(Mrx.(wC | AaC .1)) ,

indicate stations A, B and C, respectively, and terms

wA = Wl
xaB
.Qq.1 wC = Wk

xaB
.Qq.1

encode A’s and C’s packets, respectively. Graphical representations of placing ψ : 3 → 3

and the other placing we will use in the model are reported in Table C.1.

The following algebraic terms are used to concisely indicate packets:

w = Wl
xd.Qq.1 w′ = Wl′

xd.Qq.1 rts = RTSlxd.Qq.1

rts′ = RTSl
′

xd.Qq.1 cts = CTSlxd.Qq.1 p = Plxd.Qq.1 .

172

ψ =
0

!!��

1

��}} !!

2

��}}
0 1 2

ψ1 =
0

!!

1

��}}
0 1

ψ2 =
0

��

1

��

2

��vv }}

3

��vvtt
0 1 2 3

ψ3 =
0

((

1

!!}}

2

��}}
0 1 2

Table C.1: Placings.

Bigraphs indicating machine nodes at various stages of the protocol are given by:

mw = (id1,aqd ‖ /x ‖ /r)(Mrx.(id | w | Aa.1))

ml = (id1,aqd ‖ /x ‖ /r)(MLrx.(id | rts | Aa.1))

mb = (id1,aqd ‖ /x ‖ /r)(MBrx.(id | rts | Aa.1)) .

We begin with the algebraic description of the stochastic reaction rules. Reaction rule
RRTS(t, l) : mp̂a→ 〈sm, {a, d, q}〉 is defined as

RRTS(t, l) = share (id ‖ mw) by ψ1 in (id1,adq ‖ Sta)
ρ1(t)

I

share (id ‖ ml) by ψ1 in (id1,adq ‖ StLa)

ψ1 = [{1}, {0, 1}] .

Reaction rule RCTS(t, t′, l) : p̂ap̂amm→ 〈ssmm, {x, a, d, q}〉 is given by

RCTS(t, t′, l) = share (ml ‖ MDrx.(id | Ad.1) ‖ id2) by ψ2 in (id2,xadq ‖ (StLa | St
′

d) ‖ /r)
ρ2
I

share (send ‖ rec ‖ id2) by ψ2 in (id2,xadq ‖ (StLa | St
′

Ld) ‖ /r) ,

with

send = (id1,aqdr ‖ /x)(MLrx.(id | cts | Aa.1)) rec = MLrx.(id | Ad.1)

ψ2 = [{0, 2, 3}, {1, 2, 3}, {2}, {3}] .

An algebraic definition of reaction rule RDATA(l) : p̂ap̂a→ 〈mm, {x, a, d, q}〉 is

RDATA(l) = (id2,xdaq ‖ /r)(send ‖ rec)
ρ3(l)

I (id2,xdaq ‖ /r)(send′ ‖ rec)

send′ = (id1,aqdr ‖ /x)(MLrx.(id | p | Aa.1)) .

173

Reaction rule RACK(t, t′, l) : p̂ap̂amm→ 〈ssmm, {x, a, d, q}〉 can be defined as follows

RACK(t, t′, l) = share (send′ ‖ rec ‖ id2) by ψ2 in (id2,xaqd ‖ (StLa | St
′

Ld) ‖ /r)
ρ4
I

share (send′′ ‖ rec′ ‖ id2) by ψ2 in (id2,xaqd ‖ (StminCa | S
t′

Cd)) ,

with

send′′ = (id1,aq ‖ /r)(Mrq.(id | Aa.1)) rec′ = (id1,dx ‖ /r)(Mrx.(id | Ad.1)) .

Reaction rule RBACK1 : p̂ap̂amm→ 〈ssmm, {x, a, d, q}〉 is given by

RBACK1(t, t
′, l) = lhs1

ρ5
I rhs1 ,

with

lhs1 = share (mb ‖ MPrx.(id | Ad.1) ‖ id2) by ψ2 in (id2,xaqd ‖ (StLa | St
′

d) ‖ /r)

rhs1 = share (mw ‖ Mrx.(id | Ad.1) ‖ id2) by ψ2 in (id2,xaqd ‖ (S2t+1
Ca | St′d) ‖ /r) .

Similarly, reaction rule RBACK2(t, t
′, l) : p̂ap̂amm→ 〈ssmm, {x, a, d, q}〉 is

RBACK2(t, t
′, l) = lhs2

ρ5
I rhs2 ,

where

lhs2 = share (mb ‖ MDrx.(id | Ad.1) ‖ id2) by ψ2 in (id2,xaqd ‖ (StLa | St
′

d) ‖ /r)

rhs2 = rhs1 .

Finally, we define instantaneous reaction rules. Rule RD(t) : mp̂a→ 〈ms, {a′, a, x}〉 is given
by

RD(t) = share (id ‖ Mrx.(id | Aa.1)) by ψ1 in (id1,ax ‖ StLa′ ‖ /r)

I

share (id ‖ MDrx.(id | Aa.1)) by ψ1 in (id1,ax ‖ StLa′ ‖ /r) .

Reaction rule RP(t, t′) : mmp̂a→ 〈ms, {a′, a′′, a, x}〉 is defined as

RP(t, t′) = lhs3 I rhs3 ,

174

where terms lhs3, rhs3 and placing ψ3 are given by

lhs3 = share (id2 ‖ MDrx.(id | Aa.1)) by ψ3 in (id1,ax ‖ (StLa′ | St
′

La′′) ‖ /r)

rhs3 = share (id2 ‖ MPrx.(id | Aa.1)) by ψ3 in (id1,ax ‖ (StLa′ | St
′

La′′) ‖ /r)

ψ3 = [{1}, {2}, {0, 1, 2}] .

Reaction rule RB(l) : p̂ap̂a→ 〈mm, {xaqd}〉 is

RB(l) = ml ‖ (id1,xd ‖ /r)(MPrx.(id | Ad.1)) I mb ‖ (id1,xd ‖ /r)(MPrx.(id | Ad.1)) .

An algebraic expression for reaction rule RUD(t) : mp̂a→ 〈ms, {a′, a, x}〉 is

RUD(t) = lhs4 I rhs4 ,

with

lhs4 = share (id ‖ MDrx.(id | Aa.1)) by ψ1 in (id1,ax ‖ StCa′ ‖ /r)

rhs4 = share (id ‖ Mrx.(id | Aa.1)) by ψ1 in (id1,ax ‖ StCa′ ‖ /r) .

Reaction rule RUP(t) : mp̂a→ 〈ms, {a′, a, x}〉 is defined as

RUP(t) = lhs5 I rhs5 ,

where

lhs5 = share (id ‖ MPrx.(id | Aa.1)) by ψ1 in (id1,ax ‖ StCa′ ‖ /r)

rhs5 = share (id ‖ Mrx.(id | Aa.1)) by ψ1 in (id1,ax ‖ StCa′ ‖ /r) .

Reaction rule RUC(t) : mp̂a→ 〈ms, {a′, a, x}〉 is given by

RUC(t) = lhs6 I rhs6 ,

with

lhs6 = share (id ‖ Mrx.(id | Aa.1)) by ψ1 in (id1,ax ‖ StCa ‖ /r)

rhs6 = share (id ‖ Mrx.(id | Aa.1)) by ψ1 in (id1,ax ‖ Sta ‖ /r) .

175

Appendix D

Interplay between network events
and policy events

In this chapter we show step-by-step how the bigraphical model of the current network con-
figuration is updated in real-time, according to different kind of events from the stream data-
base component. We indicate models by S0, S1, When a sequence of reaction rules
is applied, due to confluence only one interleaving is considered. Refer to Chapter 7 for
a complete description of the HWBig system and the formal definition of the bigraphical
representation of WLANs.

Initially, no stations are present in the network, as given by bigraph S0 in Figure 7.2.
Now we consider the following scenario consisting of eight events. A summary of the policy
events of the example, and their encodings, is given in Table D.1, and a summary of the
sequence of reactions is given in Tables D.2 and D.3.

1. The user specifies and enforces a new policy that all out-going TCP traffic for any

machine is forbidden.

This user-action corresponds to a policy event in the stream database, which triggers
the generation (by the bigraph encoder component) of the reaction rules for a forbid
policy. We denote the policy by P1 and give the corresponding reaction rules in Fig-
ure D.1. Tagging reaction rule RP1T matches any out-going channel of any machine
that is part of the WLAN1 and complies with P1. On the right hand-side, the matched
channel is tagged. Enforcing reaction rule RP1E matches any untagged channel. On the
right hand-side, a TCP-node (i.e. the policy constraint) is linked to the matched chan-
nel. Moreover, the channel is tagged to avoid the introduction of duplicate constraints.
Untagging reaction rule RP1U removes the tags placed by the applications of the pre-
vious reaction rules. Finally, the bigraph encoder component generates bigraph BϕP1

,

1An îo-channel is present thus a DHCP lease has already been granted.

176

Event Encoding Short form

Enforce P1

tag

B
∗

P1T

enforce

B
∗

P1E

untag

B
∗

P1U

B∗
P1

Enforce P2

tag

B
∗

P2T1

B
∗

P2T2

B
∗

P2T3

enforce

B
∗

P2E1

B
∗

P2E2

B
∗

P2E3

untag

B
∗

P2U

B∗
P2

Enforce P3

enforce

B
∗

P3
B∗

P3

Drop P1

remove

B
∗

P1D

B∗
��P1

Drop P2

remove

B
∗

P2D1

B
∗

P2D2

B∗
��P2

Table D.1: Summary of the policy event encodings used in the example.

as given in Figure D.1e. It matches any untagged out-going channel. As described in
Section 7.5, P1 is violated when BϕP1

is a match in the temporary model in which all
blocked out-going channels are tagged. At this point, the bigraph analysis component
enforces P1 on S0. Formally, S0 B∗

P1
S0, i.e. no reaction rule is applicable because

no machines are present in S0. Policy P1 is also checked. Since BϕP1
is not a match,

then P1 is holds.

2. Machine MAC1 enters a location covered by the router’s signal.

Since S0 6|= ϕMAC1, the bigraph encoder component generates rule RA(MAC1) and the
bigraph analysis component updates the system: S0 B

A
S1. The updated model is

shown in Figure D.2. After this step, the bigraph analysis component checks whether
P1 is violated. In this case, reaction rule RP1T is not applicable and BϕP1

is not a match
in S1. Therefore, the policy is not violated.

3. A DHCP lease is granted to machine MAC1.

In the current state, we have S1 |= ϕMAC1 and S1 6|= ψMAC1 Therefore, the bigraph
analysis component updates the system by applying rules RJ1, RJ2(MAC1, IP1,N1),
and RJ3(MAC1): S1 B∗

J
S2. The resulting state is shown in Figure D.3. After the

topology update, the bigraph analysis component enforces P1 in S2. The following
updates are performed: S2 B∗

P1T
B∗

P1E
B∗

P1U
S3

2. In the following, we indicate
this sequence of applications as B∗

P1
. The graphical form of bigraph S3 is given in

Figure D.4.

4. Machine MAC2 enters the router’s signal range.

Since S3 6|= ϕMAC2, the bigraph analysis component performs the steps described
above for machine MAC1. Initially, the topology is updated with S3 B

A
S4. Then,

2In this case B∗ is B because only one machine is part of the network in S2.

177

Properties

y c

TCP
O'

Properties

y c

TCP

(a) RP1T

c

O'

c

(b) RP1U

Properties

y c

Properties

y c

TCP
O'

(c) RP1E

Properties

y c

Properties

y c

TCP

(d) RP1D

Properties

y c

(e) BϕP1

Figure D.1: Policy P1: forbid all out-going TCP traffic for any machine. Tag sequence is B∗
P1T

,
enforce sequence is B∗

P1E
, untag sequence is B∗

P1U
, and drop sequence is B∗

P1D
.

Properties

S

M

R
W

Internet

S

MAC1

Figure D.2: State S1: machine MAC1 enters the router’s signal range.

Properties

S

M

R
W

Internet

S

MAC1 IP1 N1

Figure D.3: State S2: a DHCP lease is granted to machine MAC1.

178

Properties

S

M

R
W

Internet

S

MAC1 IP1 N1

TCP

Figure D.4: State S3: MAC1 is part of the network and P1 is enforced.

Properties

SS

M

R
W

Internet

S

M

Properties

MAC2

MAC1 IP1 N1

TCP

Figure D.5: State S4: MAC2 enters the router’s signal range, MAC1 is part of the WLAN and P1 is
enforced.

P1 is enforced with the usual tagging, matching, untagging sequence: S4 B∗
P1
S4.

Observe that no update is performed because reaction rule RP1E is not applicable. This
is because there are no out-going channels requiring to be blocked in machine MAC2.
Finally ϕP1 is checked. Since BϕP1

is not a match in T4 (i.e. the bigraph obtained by
tagging S4), then P1 is not violated. The bigraph for updated model S4 is given in
Figure D.5.

5. Machine MAC2 joins the WLAN.

The status of the current configuration is S4 |= ϕMAC2 and S4 6|= ψMAC2. Hence, the
bigraph encoder components generates the reaction rule encoding a join event. Those
are then applied by the bigraph analysis component to update the model: S4 B∗

J
S ′4.

Afterwards, policy P1 is enforced with S ′4 B∗
P1
S5. Finally, the bigraph analysis

component checks whether ϕP1 holds. Since BϕP1
does not occur in temporary model

T5, we have S5 |= ϕP1. Updated model S5 is given in Figure D.6.

The sequence of events and the corresponding model updates described so far are sum-
marised in Table D.2, and we continue with further events as follows.

6. The user specifies and enforces a new policy that blocks TCP and UDP traffic for ma-

chine MAC2.

179

Properties

SS

M

R
W

Internet

S

M

Properties

MAC2 IP2 N2

MAC1 IP1 N1

TCP

TCP

TCP

TCP

Figure D.6: State S5: MAC1 and MAC2 joined the WLAN and P1 is enforced.

Event Actions WLAN model Status

Initial state — S0 —

1. P1 enforced

S0 B∗
P1
S0

S0 B∗
P1T

T0

BϕP1
����match T0

T0 B∗
P1U

S0

 check P1
S0 S0 |= ϕP1

2. MAC1
appears

S0 6|= ϕMAC1

S0 B
A
S1 B∗

P1
S1

S1 B∗
P1T

T1

BϕP1
����match T1

T1 B∗
P1U

S1

 check P1
S1 S1 |= ϕP1

3. MAC1 joins
the WLAN

S1 |= ϕMAC1 and S1 6|= ψMAC1

S1 B∗
J
S2 B∗

P1
S3

S3 B∗
P1T

T3

BϕP1
����match T3

T3 B∗
P1U

S3

 check P1
S3 S3 |= ϕP1

4. MAC2
appears

S3 6|= ϕMAC2

S3 B
A
B∗

P1
S4

S4 B∗
P1T

T4

BϕP1
����match T4

T4 B∗
P1U

S4

 check P1
S4 S4 |= ϕP1

5. MAC2 joins
the WLAN

S4 |= ϕMAC2 and S4 6|= ψMAC2

S4 B∗
J
B∗

P1
S5

S5 B∗
P1T

T5

BϕP1
����match T5

T5 B∗
P1U

S5

 check P1
S5 S5 |= ϕP1

Table D.2: Generation of models S0 B · · · BS5.

180

To model this forbid policy, which we denote by P2, the bigraph encoder component
generates the reaction rules and bigraphs given in Figure D.7. Reaction rules RP2T1 ,
RP2T2 , and RP2T3 are used to tag MAC2’s out-going channels already linked to a con-
straint. In particular, the first rule tags channels linked to a TCP-node and an UDP-
node, the second tags channels linked only to a TCP-node, and the third tags channels
linked only to an UDP-node. Reaction rules RP2E1 , RP2E2 , and RP2E3 are used enforce
the policy. They link the appropriate policy constraint to a tagged channel. Reaction
rule RP2U removes the tag from a channel, while reaction rules RP2D1

and RP2D2
are

applied when P2 is dropped. Bigraph BϕP2
encodes policy predicate ϕP2. After the

generation phase, the bigraph analysis component enforces P2 on model S5. The se-
quence of applications is S5 B∗

P2
S6. The updated model is given in Figure D.8.

Then, P1 and P2 are checked. Observe that both BϕP1
and BϕP2

do not match T6,
because all channels in the model can be tagged. Therefore, we conclude compliance
with both policies in state S6.

7. The user specifies and enforces a new policy that allows out-going TCP traffic for

machine MAC2.

We denote the new allow policy by P3. Again two steps are performed in the update
process. The first consists of the generation by the bigraph encoder component of
reaction rule RP3 and bigraph BϕP3

(see Figure D.9). The left hand-side matches any
out-going channel in machine MAC2 that is linked to a TCP-node. On the right hand-
side, the constraint is removed. Bigraph BϕP3

is used to encode predicate ϕP3. It
is defined as the left hand-side of enforcing reaction rule RP3. The second step is
enforcing of policy P3 on the system by the bigraph analysis component: S6 B∗

P3
S7.

The updated model is shown in Figure D.10. Observe there is compliance with P3, but
not with P1 and P2.

8. MAC2’s signal disappears.

This is recorded on the stream database ad a network event. Since S7 |= ϕMAC2

and S7 |= ψMAC2, the machine needs to be removed from the model. First, the bi-
graph analysis component drops all the policies. Second, sequences for a machine
leaving the router’s signal range (RR(MAC2)) and removing a machine (RL1(MAC2),
RL2(MAC2, IP2,N2)) are applied. Formally, S7 B∗

��P2
B∗
��P1

B∗
L
B

R
S ′7. Fi-

nally, the policies are enforced again on model S ′7: S ′7 B∗
P1

B∗
P2

B∗
P3
S8. Ob-

serve that S8 = S3, which is given in Figure D.4. There is compliance with policy P1

because all the out-going channels, namely MAC1’s channels, are blocked, and with
policies P2 and P3 because there are no MAC2-nodes in S8. Hence, no matches are
possible with BϕP2

and BϕP3
.

A summary of the model generation sequence S5 B · · · BS8 is given in Table D.3.

181

O'

Properties

y c

TCP

UDP

MAC2

Properties

y c

TCP

UDP

MAC2

(a) RP2T1

O''

Properties

y c

TCP

MAC2

Properties

y c

TCP

MAC2

(b) RP2T2

O'''

Properties

y c

UDP

MAC2

Properties

y c

UDP

MAC2

(c) RP2T3

O'

Properties

y c

MAC2

Properties

y c

TCP

UDP

MAC2

(d) RP2E1

c

O''

c

UDP

O'

(e) RP2E2

c

O'''

c

TCP

O'

(f) RP2E3

c

O'

c

(g) RP2U

Properties

y c

UDP

MAC2

Properties

y c

MAC2

(h) RP2D1

Properties

y c

TCP

MAC2

Properties

y c

MAC2

(i) RP2D2

Properties

y c

MAC2

(j) BϕP2

Figure D.7: Policy P2: forbid out-going TCP and UDP traffic for machine MAC2. Tag sequence
is B∗

P2T1
B∗

P2T2
B∗

P2T3
, enforce sequence is B∗

P2E1
B∗

P2E2
B∗

P2E3
, untag sequence is

B∗
P2U

, and drop sequence is B∗
P2D1

B∗
P2D2

.

Properties

SS

M

R
W

Internet

S

M

Properties

MAC2 IP2 N2

MAC1 IP1 N1

TCP

TCP

UDP

UDPTCP

TCP

Figure D.8: State S6: P2 is enforced.

182

Properties

y c

TCP

MAC2

Properties

y c

MAC2

(a) RP3

Properties

y c

TCP

MAC2

(b) BϕP3

Figure D.9: P3: Allow out-going TCP traffic for machine MAC2. Enforce sequence is B∗
P3

.

Event Actions WLAN model Status

6. P2 enforced

S5 B∗
P2
S6

S6 B∗
P1T

T6

BϕP1
����match T6

T6 B∗
P1U

S6

 check P1

S6 B∗
P2T1

T6

BϕP2
����match T6

T6 B∗
P2U

S6

 check P2

S6
S6 |= ϕP1

S6 |= ϕP2

7. P3 enforced

S6 B∗
P3
S7

S7 B∗
P1T

T7

BϕP1
match T7

T7 B∗
P1U

S7

 check P1

S7 B∗
P2T1

T7

BϕP2
match T7

T7 B∗
P2U

S7

 check P2

BϕP3
����match S7 check P3

S7

S7 6|= ϕP1

S7 6|= ϕP2

S7 |= ϕP3

8. MAC2
disappears

S7 |= ϕMAC2 and S7 |= ψMAC2

S7 B∗
��P2

B∗
��P1

B∗
L
B

R
S ′7

S ′7 B∗
P1

B∗
P2

B∗
P3
S8

S8 B∗
P1T

T8

BϕP1
����match T8

T8 B∗
P1U

S8

 check P1

S8 B∗
P2T1

T8

BϕP2
����match T8

T8 B∗
P2U

S8

 check P2

BϕP3
����match S8 check P3

S8

S8 |= ϕP1

S8 |= ϕP2

S8 |= ϕP3

Table D.3: Generation of models S5 B · · · BS8.

183

Properties

SS

M

R
W

Internet

S

M

Properties

MAC2 IP2 N2

MAC1 IP1 N1

TCP

TCP

UDP

UDP

Figure D.10: State S7: P3 is enforced.

184

References

[1] A. Alshanyour and A. Agarwal. Performance of IEEE 802.11 RTS/CTS with finite
buffer and load in imperfect channels: Modeling and analysis. In GLOBECOM, pages
1–6, 2010.

[2] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov
chains. In R. Alur and T. Henzinger, editors, Computer Aided Verification, volume 1102
of Lecture Notes in Computer Science, pages 269–276. Springer Berlin / Heidelberg,
1996.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1999.

[4] G. Bacci, D. Grohmann, and M. Miculan. DBtk: a toolkit for directed bigraphs. In
Proceedings of the 3rd international conference on Algebra and coalgebra in computer

science, CALCO’09, pages 413–422, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] J.C.M. Baeten, J.A. Bergstra, J.W. Klop, and W.P. Weijland. Term-rewriting systems
with rule priorities. Theoretical Computer Science, 67:283–301, October 1989.

[6] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of
continuous-time Markov chains. In Proceedings of the 10th International Conference

on Concurrency Theory, CONCUR ’99, pages 146–161, London, UK, 1999. Springer-
Verlag.

[7] C. Becker and F. Dürr. On location models for ubiquitous computing. Personal Ubi-

quitous Computing, 9:20–31, January 2005.

[8] D. Benyon. The new HCI? navigation of information space. Knowledge-Based Systems,
14(8):425–430, 2001.

[9] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer Sci-

ence, 96(1):217–248, 1992.

References 185

[10] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function.
IEEE Journal on Selected Areas in Communications, 18(3):535–547, 2000.

[11] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proceedings of the 5th International Conference on Tools and Algorithms

for Construction and Analysis of Systems, TACAS ’99, pages 193–207, London, UK,
1999. Springer-Verlag.

[12] L. Birkedal, T.C. Damgaard, A.J. Glenstrup, and R. Milner. Matching of bigraphs.
Electronic Notes in Theoretical Computer Science, 175:3–19, July 2007.

[13] L. Birkedal, S. Debois, and T. Hildebrandt. On the construction of sorted reactive sys-
tems. In F. van Breugel and M. Chechik, editors, Proceedings of the 19th International

Conference on Concurrency Theory 2008, volume 5201 of Lecture Notes in Computer

Science, pages 218–232. Springer-Verlag, August 2008.

[14] R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys (CSUR), 24(3):293–318, 1992.

[15] M. Calder and M. Sevegnani. Process algebra for event-driven runtime verification: a
case study of wireless network management. Proceedings of IFM2012, Lecture Notes

in Computer Science, pages 21–23, 2012.

[16] L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, Foundations of Soft-

ware Science and Computation Structures, volume 1378 of Lecture Notes in Computer

Science, pages 140–155. Springer Berlin / Heidelberg, 1998. 10.1007/BFb0053547.

[17] H.S. Chhaya and S. Gupta. Performance modeling of asynchronous data transfer meth-
ods of IEEE 802.11 MAC protocol. Wireless Networks, 3(3):217–234, August 1997.

[18] A. Church. A set of postulates for the foundation of logic. The Annals of Mathematics,
33(2):346–366, 1932.

[19] K. Claessen, N. Een, M. Sheeran, and N. Sorensson. Sat-solving in practice. In 9th In-

ternational Workshop on Discrete Event Systems (WODES), 2008., pages 61–67. IEEE,
2008.

[20] E. Clarke. The birth of model checking. In O. Grumberg and H. Veith, editors, 25 Years

of Model Checking, volume 5000 of Lecture Notes in Computer Science, pages 1–26.
Springer Berlin / Heidelberg, 2008.

[21] G. Conforti, D. Macedonio, and V. Sassone. Spatial logics for bigraphs. In L. Caires,
G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, Proceedings

References 186

of the 32th International Colloquium on Automata, Languages and Programming

(ICALP’05), volume 3580 of Lecture Notes in Computer Science, pages 766–778.
Springer-Verlag, 2005.

[22] A. Corradini and F. Gadducci. An algebraic presentation of term graphs, via GS-
monoidal categories. Applied Categorical Structures, 7:7–299, 1999.

[23] A. Crabtree, T. Rodden, T. Hemmings, and S. Benford. Finding a place for ubicomp in
the home. In Proceedings of Ubicomp, pages 208–226. Springer, 2003.

[24] J Crowcroft. The privacy and safety impact of technology choices for command, com-
munications and control of the public highway. SIGCOMM Comput. Commun. Rev.,
36(1):53–58, January 2006.

[25] T.C. Damgaard and L. Birkedal. Axiomatizing binding bigraphs. Nordic Journal of

Computing, 13(1–2):58–77, 2006.

[26] M. Duflot, L. Fribourg, T. Herault, R. Lassaigne, F. Magniette, S. Messika, S. Peyron-
net, and C. Picaronny. Probabilistic model checking of the CSMA/CD protocol using
prism and APMC. Electronic Notes in Theoretical Computer Science, 128(6):195–214,
2005.

[27] N. Eén and N. Sörensson. MiniSat: A minimalistic and high-performance SAT solver.
http://minisat.se/, 2012.

[28] H. Ehrig. Introduction to the algebraic theory of graph grammars (a survey). In Pro-

ceedings of the International Workshop on Graph-Grammars and Their Application to

Computer Science and Biology, pages 1–69, London, UK, 1979. Springer-Verlag.

[29] H. Ehrig and H.-J. Kreowski. Applications of graph grammar theory to consistency,
synchronization and scheduling in data base systems. Information Systems, 5(3):225 –
238, 1980.

[30] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, Volume B: Formal Models and Sematics, pages 995–
1072. MIT Press, Cambridge, MA, USA, 1990.

[31] D. Eppstein. Subgraph isomorphism in planar graphs and related problems. In Pro-

ceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms, SODA
’95, pages 632–640, Philadelphia, PA, USA, 1995. Society for Industrial and Applied
Mathematics.

[32] A.J. Glenstrup, T.C. Damgaard, L. Birkedal, and E. Hı̈¿1
2
jsgaard. An implementation

of bigraph matching, 2008.

http://minisat.se/

References 187

[33] Graphviz - Graph Visualization Software. http://www.graphviz.org/, 2012.

[34] D. Grohmann and M. Miculan. Directed bigraphs. Electronic Notes in Theoretical

Computer Science, 173:121–137, April 2007.

[35] D. Grohmann and M. Miculan. Reactive systems over directed bigraphs. In L. Caires
and V.T. Vasconcelos, editors, Proceedings of the 18th International Conference on

Concurrency Theory (CONCUR’07), volume 4703 of Lecture Notes in Computer Sci-

ence, pages 380–394. Springer-Verlag, 2007.

[36] IEEE. Std. 802.11e-2005, Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications, Amendment 8: Medium Access Control (MAC)
quality of service enhancements, 2005.

[37] O. Jensen and R. Milner. Bigraphs and transitions. In Proceedings of the 30th ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL’03),
pages 38–49. ACM Press, 2003.

[38] H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic. In
Proc. International Conference on Principles of Knowledge Representation and Reas-

oning, pages 374–385. Morgan Kaufmann Publishers, 1996.

[39] J. Krivine, R. Milner, and A. Troina. Stochastic bigraphs. Electronic Notes in Theoret-

ical Computer Science, 218:73–96, 2008.

[40] M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic
real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd Interna-

tional Conference on Computer Aided Verification (CAV’11), volume 6806 of Lecture

Notes in Computer Science, pages 585–591. Springer, 2011.

[41] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of the
IEEE 802.11 wireless local area network protocol. In H. Hermanns and R. Segala,
editors, Proc. 2nd Joint International Workshop on Process Algebra and Probabilistic

Methods, Performance Modeling and Verification (PAPM/PROBMIV’02), volume 2399
of Lecture Notes in Computer Science, pages 169–187. Springer, 2002.

[42] J.J. Leifer. Operational congruences for reactive systems. PhD thesis, Computer Labor-
atory, University of Cambridge, 2001.

[43] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Rohit Parikh, editor,
Logics of Programs, volume 193 of Lecture Notes in Computer Science, pages 196–
218. Springer Berlin / Heidelberg, 1985.

http://www.graphviz.org/

References 188

[44] E. Lupu, N. Dulay, M. Sloman, J. Sventek, S. Heeps, S. Strowes, K. Twidle, S.-L.
Keoh, and A. Schaeffer-Filho. Amuse: autonomic management of ubiquitous e-health
systems. Concurrency and Computation: Practice and Experience, 20(3):277–295,
2008.

[45] S. Mac Lane. Categories for the Working Mathematician (Graduate Texts in Mathem-

atics). Springer, 2nd edition, September 1998.

[46] R. Milner. A calculus of communicating systems. Springer-Verlag New York, Inc.,
1982.

[47] R. Milner. The Space and Motion of Communicating Agents. Cambridge University
Press, 2009.

[48] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and II.
Information and Computation, 100(1):1–40, 1992.

[49] S. Mimram. The structure of first-order causality. In LICS ’09: Proceedings of the

2009 24th Annual IEEE Symposium on Logic In Computer Science, pages 212–221,
Washington, DC, USA, 2009. IEEE Computer Society.

[50] T. O’Connell, P. Jensen, A. Dey, and G. Abowd. Location in the aware home. In
Location Modeling for Ubiquitous Computing-Ubicomp 2001 Workshop Proceedings,
pages 41–44, 2001.

[51] Amir P. The temporal logic of programs. Foundations of Computer Science, IEEE

Annual Symposium on, 0:46–57, 1977.

[52] D. Park. Concurrency and automata on infinite sequences. Theoretical Computer Sci-

ence, pages 167–183, 1981.

[53] G. Perrone, S. Debois, and T.T. Hildebrandt. A model checker for bigraphs. In Pro-

ceedings of ACM Symposium of Applied Computing SVT, Trento, Italy, March 2012.

[54] C.A. Petri. Kommunikation mit Automaten. Technical report, Technical Report 2
(Schriften des IIM), Institut fur Instrumentelle Mathematik, Bonn, Germany, 1962.

[55] G.D. Plotkin. A structural approach to operational semantics. Technical Report Report
DAIMI FN-19, Aarhus University, 1981.

[56] M. Sevegnani and M. Calder. Bigraphs with sharing. Technical Report TR-2010-310,
University of Glasgow, 2010.

References 189

[57] M. Sevegnani, C. Unsworth, and M. Calder. A SAT based algorithm for the match-
ing problem in bigraphs with sharing. Technical Report TR-2010-311, University of
Glasgow, 2010.

[58] P. Sewell. Global/local subtyping and capability inference for a distributed π-calculus.
Automata, Languages and Programming, pages 695–706, 1998.

[59] R. Shamir and D. Tsur. Faster subtree isomorphism. Journal of Algorithms, 33(2):267
– 280, 1999.

[60] J.G. Stell. Categorical aspects of unification and rewriting. PhD thesis, University of
Manchester, 1992.

[61] J. Sventek, A. Koliousis, O. Sharma, N. Dulay, D. Pediaditakis, M. Sloman, T. Rodden,
T. Lodge, B. Bedwell, K. Glover, and R. Mortier. Proceedings of the 12th IFIP/IEEE in-
ternational symposium on integrated network management, IM 2011. In N. Agoulmine,
C. Bartolini, T. Pfeifer, and D. O’Sullivan, editors, Integrated Network Management,
Dublin, Ireland, May 2011. IEEE.

[62] A.M. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. A correction. Proceedings of the London Mathematical Society, 2(1):544, 1938.

[63] K. Twidle, N. Dulay, E. Lupu, and M. Sloman. Ponder2: A Policy System for
Autonomous Pervasive Environments. In The Fifth International Conference on Auto-

nomic and Autonomous Systems, April 2009.

[64] J.R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1):31–
42, 1976.

[65] M. Weiser, R. Gold, and J.S. Brown. The origins of ubiquitous computing research at
PARC in the late 1980s. IBM systems journal, 38(4):693–696, 1999.

[66] T. Werth. Design and Implementation of a DAG-Miner. Diploma thesis, Friedrich-
Alexander-Universität, Erlangen-Nürnberg, 2007.

[67] P.H. Yuh, C.C.Y. Lin, T.W. Huang, T.Y. Ho, C.L. Yang, and Y.W. Chang. A SAT-based
routing algorithm for cross-referencing biochips. In Proceedings of the System Level

Interconnect Prediction Workshop, SLIP ’11, pages 6:1–6:7, Piscataway, NJ, USA,
2011. IEEE Press.

190

Index

abstraction, 16
arrow, 32, 33
axiom, 22–24, 62

bigraph, 4, 11, 14
abstract, 16, 20, 52
binding, 35
concrete, 12, 14, 15, 96
directed, 35
discrete, 21
elementary, 19
ground, 29
lean, 16
prime, 21
solid, 29
stochastic, 34, 111
with sharing, 5, 39, 42, 61, 73

BigraphER, 93, 104, 105, 129
bigraphical reactive system, 5, 30, 34, 65, 95,

118
stochastic, 34, 41

BiLog, 31, 40, 106, 127, 134, 160
binary relation, 41, 43, 46

domain restriction, 41
range restriction, 41

bisimulation, 3, 34
BRS, see bigraphical reactive system

category, 4, 32, 169
codomain, 32
composition, 18, 19, 25, 32, 41, 43, 97, 100,

169
concretion, 16, 34

context, 69, 83
minimal context, 30

Continuous Time Markov Chain, 34, 95, 105,
132, 175

control, 12, 14, 23, 40, 75, 114
arity, 14

CSL, 112, 134, 175
CTMC, see Continuous Time Markov Chain

DAG, see directed acyclic graph
decomposition, 69, 85
directed acyclic graph, 2, 39, 67, 96
domain, 32

edge, 12, 14
idle edge, 16

epimorphism, 34, 54, 171

formation rule, 27, 116, 142
functor, 32, 52, 170

forgetful, 33

graph rewriting, 3
Graphviz, 105

Homework system, 139
homset, 32

identity, 19
IEEE 802.11, 111, 118
interface, 12, 19, 33

inner face, 12, 42
outer face, 12, 26, 42

ion, 23
isomorphism, 34, 75, 171

Index 191

labelled transition system, 3, 30
layer, 49
leaf, 59
lean-support equivalent, 16
level, 59
link, 4, 12

closed link, 21
idle link, 12

link graph, 13
concrete, 14, 99

linking, 23, 64
LTS, see labelled transition system

match, 148
matching algorithm, 36, 69, 73, 95
matching problem, 21
merge product, 26, 62
MiniSat, 103
monomorphism, 34, 54, 171

name, 12, 14, 23
inner name, 12, 30
outer name, 12, 64

nesting, 26, 62
nesting diagram, 48
network event, 142
node, 4, 11, 14

atomic node, 12
leaf, 58
shared node, 40

normal form, 21, 50, 59
discrete normal form (DNF), 24
stratified normal form, 59, 61

object, 32, 33
occurrence, 20, 34, 40, 64, 69

concrete, 21

parallel product, 25, 62
parameter, 69, 83

pattern, 69
permutation, 22, 58
place, 12

idle place, 12
orphan, 42, 58
partners, 42
shared, 42, 58
siblings, 12, 42, 64

place graph, 13
concrete, 14, 96
elementary, 22, 58
with sharing, 42, 55

placing, 22, 58
point, 12
policy, 150
port, 12, 23
precategory, 32, 50, 170
predicate, 148
process algebra, 2, 21
process calculus, see process algebra

rate, 34, 65
reaction rule, 4, 29, 30, 105, 143

instantaneous, 132
stochastic, 34, 118

reactum, 30, 64, 105
redex, 29, 30, 34, 64, 105
region, see root
relative pushout, 55, 171
renaming, 23
rewrite rule, 3
root, 12, 39, 42, 76

idle root, 24, 54
partners, 54

RPO, see relative pushout
rule priority, 118

s-category, 32, 50, 172
SAT, 95, 101

Index 192

self-duality, 53
signature, 12, 14, 94
site, 12, 25, 39, 42, 76

guarding, 29
SNF, see normal form
sort, 27, 40, 65, 115, 141
spatial logic, 31
spm category, 52, 172
state, 29
stratified notation, 49
sub-graph isomorphism problem, 72
substitution, 23
support, 12, 15, 32, 52, 59

support equivalent, 16
support translation, 15

symmetry, 22, 32, 172

target, 69
tensor product, 19, 20, 25, 32, 42, 46, 99,

100, 172
term rewriting, 3
tree, 2

ubiquitous computing, 1, 40

wireless network, 2, 111, 141
WLAN, see wireless network

	Introduction
	Motivation: space
	Related work
	Thesis statement
	Overview of the thesis
	Contribution
	Publications

	I Bigraphs with sharing
	Background: bigraphs
	Introduction
	Constituents of bigraphs
	Operations on bigraphs
	Algebraic form
	Axioms and elementary Bigraphs
	Normal form
	Algebraic operators

	Sorting
	Bigraphical reactive systems
	BiLog
	Categorical semantics for bigraphs
	Stochastic bigraphs
	Other extensions and applications
	Implementation

	Summary

	Bigraphs with sharing
	Motivation
	Formal definition
	Concrete place graphs with sharing
	Operations for place graphs with sharing
	Bigraphs with sharing

	Graphical notation
	Categories of bigraphs with sharing
	Algebraic form
	Axioms for bigraphical equality

	Discussion
	Summary

	Matching of bigraphs with sharing
	Introduction
	Algorithm
	Definition
	Examples
	Soundness and completeness

	Summary

	II Applications
	BigraphER: Bigraph Evaluator & Rewriting
	Overview
	Implementation
	Bigraphical structures
	Matching engine
	Rewriting engine
	Visualisation

	Checking predicates
	Summary

	Model of the 802.11 CSMA/CA RTS/CTS protocol
	Introduction
	The protocol: 802.11 RTS/CTS handshake
	Bigraphical model of wireless network topology
	Stochastic reaction rules modelling the protocol
	Execution of an example network
	CTMC analysis
	Analysis of quantitative properties

	Summary

	Real-time verification for home network management
	Overview
	Bigraphical model
	Network topology
	Network events
	Status predicates

	Generation of models in real-time
	Bigraphical models of policies
	Generating models of policy events in real-time
	Encoding forbid policy events
	Encoding allow policy events
	Interplay between network and policy events

	Model analysis
	Implementation
	Summary

	Conclusion and future work
	Thesis summary
	Conclusion
	Discussion

	Future work

	Appendices
	Category theory
	Continuous Time Markov Chains and the logic CSL
	Algebraic form of reaction rules
	Interplay between network events and policy events
	References
	Index

