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Abstract 

Decision analytic modelling (DAM) is a mathematical technique which is used to 

structure and synthesise evidence in order to inform decision making, given 

uncertainty.  Decision models are an ideal tool for undertaking economic 

evaluations as they enable a wide range of data on costs and effects to be 

synthesised within the model in order to derive cost-effectiveness outcomes.  

The iterative framework for economic appraisal has been proposed as good 

practice for undertaking economic evaluations (1), and DAM plays a key role 

within this framework.  In particular there is a role for early stage DAM prior to 

primary research, to provide an indication of the potential cost-effectiveness 

of a new health technology (2) given current evidence, and the use of value of 

information (VOI) techniques to help inform further research priority setting. In 

practice, support and funding for early stage DAM and full exploitation of VOI 

techniques is rare. 

The aim of this thesis is to examine the role for early decision analytic 

modelling in informing research priorities and the design of future studies in a 

health care setting. This thesis explores the feasibility, merits and drawbacks 

of undertaking early DAM and considers potential reasons as to why it has not 

been more widely implemented.   

This thesis demonstrates the value and importance of early DAM; in both an 

‘ideal’ setting and also in a less desirable, time-constrained setting. Applying 

early DAM and VOI techniques enables researchers to provide relevant 

conclusions and recommendations to decision makers, who can make informed 

decisions as to whether a new intervention should be adopted (or rejected), or 

whether further information is required to help make the decision; as opposed 

to making decisions based on subjective reasoning.  There is considerable merit 

with employing early DAM for health care research, such as reduced 

uncertainty, reduction of costs and efficiency gains, however, some drawbacks 

exist in terms of whether it is always viable to fully exploit VOI analyses, which 

may hinder widespread support both inside and out-with the health economics 

community. 
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1 Introduction 

1.1 Rationale 

The UK National Health Service (NHS) spends in excess of £100 billion each year 

providing health care for UK residents (14). New health technologies are 

continually emerging and even the large public NHS budget is limited; and 

therefore, there is a need for decision-making and prioritisation of health care.   

Throughout the 1990s economic evaluation became a widely used tool in health 

care to aid decision making regarding value for money in new and existing 

health technologies (15).  Economic evaluation compares the costs and benefits 

of health technologies in order to aid reimbursement agencies, such as the 

National Institute for Health and Clinical Excellence (NICE) in the UK, and the 

Pharmaceutical Benefits Scheme (PBS) in Australia; in determining which 

alternatives are cost-effective and can be considered to represent good value 

for money (16;17).  Economic evaluations are undertaken for a range of 

reasons, however their primary role is to inform decision making given limited 

health care budgets (15;18;19).  They provide a systematic approach to 

comparing alternative drugs or health technologies in terms of their costs and 

outcomes.   

Many economic evaluations that are commissioned by healthcare funding 

bodies or pharmaceutical companies are often not considered until the later 

phases of clinical trials (20), and in the case of publicly funded research, 

explorative research budgets rarely leave adequate financing to incorporate 

economic analyses.  Therefore, economic evaluations are commonly 

incorporated at the end of large trials in order to support a case for 

reimbursement. Sculpher et al. (1) suggest that as national health care 

decision making agencies are increasingly requiring evidence on cost-

effectiveness prior to reimbursement, this has triggered a mind-set amongst 

the health care sector that the function of health economics is to use clinical 

trial data for economic evaluations in order to support a case for 

reimbursement.  The authors contend (1) that such trial based evaluations 
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represent a partial or limited form of economic analysis, due to the 

‘effectiveness’ focus of the trial design and other constraints of using a trial 

designed without economic evaluation in mind.  Such a trial may not reflect 

real life clinical practice. 

An iterative approach to economic appraisal is a framework that has been 

proposed as good practice (1;3) for evaluating health technologies.  The 

framework proposes that the process of health care evaluation should begin 

with an explorative modelling approach using indicative studies, and progress 

to more rigorous assessments, updating the model over time as more data 

becomes available (1;3).  The iterative approach to evaluation provides a 

structure in which evidence from a range of sources can be synthesised and 

continually updated in order to answer cost-effectiveness decision problems 

for a defined context and population.  The premise is that rather than using 

economic evaluation as a restrictive, one-off analysis it should be an iterative 

process conducted throughout the research process.   

Decision analytic modelling (DAM) is a key process within the iterative 

framework.  An ‘early’ DAM, undertaken prior to primary research, allows 

explorative evaluation of cost-effectiveness based on existing evidence and can 

be used to assess any uncertainty surrounding the cost-effectiveness decision 

(21-23).  Developing a DAM and undertaking probabilistic analysis at an early 

stage also enables the use of value of information analyses (VOI) (9;12;13) 

which is a set of techniques used to determine the amount society would be 

willing to pay for information, prior to seeking out that information.  VOI can 

help inform research priorities, which is recommended as part of the iterative 

framework. If developed in advance of primary research, a decision model can 

enable full exploitation of VOI techniques and therefore help determine 

whether further research is potentially worthwhile. VOI can help explore the 

type of research required to address uncertainty in current evidence, and even 

help design a trial with regards to an appropriate sample size, allocation to 

arms, data to collect, etc.  Despite these advantages, in practice support and 

funding for early stage decision analytic modelling (and full exploitation of VOI 

techniques) is rare, and in the health care sector economic evaluations still 
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tend to be funded as a one-off exercise alongside a trial to justify 

reimbursement.   

The aim of this thesis is to examine the role of early decision analytic 

modelling for informing research priorities and the design of future studies in 

health care within the context of an iterative framework for economic 

evaluation. The thesis will explore the feasibility, merit and drawbacks of 

undertaking early decision analytic modelling in practice, and consider 

potential reasons as to why it has not been more widely implemented. 

 

1.2 Economic evaluation in health care 

An economic evaluation requires the comparison of two or more alternative 

interventions, as well as consideration of both the costs and outcomes of the 

interventions.  Rather than a cost reducing exercise, economic evaluation is 

concerned with the incremental difference between two or more alternatives, 

i.e. what additional health benefit can we get for what additional cost?   There 

are various forms of economic evaluation; most commonly cost-benefit analysis 

(CBA), cost-effectiveness analysis (CEA) and cost-utility analysis (CUA) (15;18).  

These three forms of evaluation vary in terms of how they measure health 

outcomes.  CBA measures costs and benefits in the same units (monetary) and 

therefore the cost can be subtracted from the monetarised health benefit of 

an intervention to determine a monetary gain or loss.  CEA measures health 

outcomes in natural units, such as reduction in blood pressure, life years 

gained, or number of cases avoided in preventative interventions.  CEA results 

are presented in terms of the incremental cost per unit of health gain, known 

as an incremental cost effectiveness ratio (ICER), which is calculated by 

dividing the difference in cost between two interventions by the difference in 

effect.  CUA is often seen as an extension of CEA, whereby health gains are 

measured in terms of utility, i.e. quality adjusted life year gains (QALYs) and 

therefore the ICER outcome would be the incremental cost per QALY gained. 

QALYs are a generic outcome measure and therefore enable comparison of 

ICERs across disease areas, which is of particular use to decision making bodies 
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(24;25). Less common forms of economic type analyses include cost 

minimisation analysis whereby the outcomes are assumed to be identical and 

therefore the evaluation is simply focussed on minimising cost, or cost-

consequence analysis (CCA) where an array of outcomes are presented in 

tabular form, but not combined with cost (and is therefore often not 

considered to be a formal evaluation).   

CEA is a popular form of evaluation in health care evaluations because disease 

specific outcomes can be readily modified to include QALYs and they avoid the 

difficulty of implicit valuation of benefits in a CBA (15). With regards to the 

ICER outcome, the larger the value of the ICER the more it costs per unit of 

effectiveness and therefore the less cost-effective the intervention is in 

comparison to the alternative. The ICER value must be compared against a 

monetary threshold of maximum willingness to pay (ceiling ratio) per unit of 

effectiveness to help aid decisions regarding appropriate resource allocation. 

I.e. if the ceiling ratio (λ) was £50,000 per QALY gained, then an intervention 

which cost an additional £9,000 (∆C) and increased QALYs by 0.2 (∆ QALYs), 

would have a resultant ICER of £45,000 per QALY and would be considered to 

be cost-effective in comparison to the alternative, at that ceiling ratio.  If the 

ceiling ratio were £20,000 per QALY, then an ICER of £45,000 per QALY would 

not be considered cost-effective.  Equation 1.1 details this decision rule which 

determines whether an intervention is cost-effective (if the ICER value is less 

than or equal to the ceiling ratio) 

λ
∆
∆

<
E

C
:ICER          (1.1). 

A CEA can also report outcomes in terms of the net monetary benefit (NMB) of 

an intervention.  The incremental NMB is calculated by monetarising the 

measure of effectiveness1, i.e. incorporating the ceiling ratio explicitly in the 

ICER calculation to determine the maximum amount that the measure of 

effectiveness is worth.  This is illustrated in Equation 1.2, which is simply a 

rearrangement of the ICER algorithm detailed in Equation 1.1.  The 

                                         
1 Presenting CEA results as a net monetary benefit (NMB) is different from a CBA.  In a CBA the 

benefits are measured and valued in monetary terms, where as in CEA the benefits are 
measured in terms of effectiveness, then transformed into a monetary value using a societal 
willingness to pay value, per unit of that effect.   
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intervention is cost-effective if the incremental NMB is greater than zero. The 

decision rule is now:  

0>CE*:NMB ∆∆λ -         (1.2). 

The incremental NMB portrays any inequalities on the cost scale; i.e. the NMB 

values represent monetary costs.  Alternatively the ICER can be re-arranged to 

express inequalities on the effect scale (whereby the values represent units of 

effect) using the Net Health benefit (NHB) approach (4;26) as illustrated in 

Equation 1.3. The decision rule now is: 

0>
C

-E:NHB
λ

∆
∆          (1.3). 

These two alternative decision rules (Equation 1.2 and 1.3) are equivalent to 

the decision rule based on the ICER, only they express cost-effectiveness in 

terms of net monetary benefit or net health benefit.  These approaches can be 

advantageous over the ratio led ICER (4), as the net benefit for each individual 

intervention can be calculated making comparisons with more than two 

interventions easier. They also have additional advantages over an ICER 

presentation when dealing with the outcomes from a probabilistic sensitivity 

analysis (4) and when calculating cost-effectiveness acceptability curves 

(CEACs) (7).  

Cost-effectiveness analyses can be undertaken using a variety of techniques 

(27). When economic evaluation was emerging in the area of health care, it 

developed recognition through two methods: decision modelling and trial based 

evaluations.  Evaluations were initially undertaken with a retrospective 

approach, using decision models to synthesise existing evidence in order to 

evaluate health interventions; or alternatively, evaluations were undertaken 

prospectively alongside randomised controlled trials (RCTs).  These two 

methods were viewed as alternative approaches to economic evaluation, with 

trial based evaluations growing in popularity and establishing a reputation for 

being more robust than the modelling approach (28).  The main critique of 

modelling was that the analyses relied heavily upon assumptions (29).   In the 
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mid 1990’s however, a different perspective emerged, proposing that the two 

alternative methods should not be viewed as alternatives, but rather, as 

complimentary approaches (3).  The two methods have different purposes; 

trials aim to estimate particular parameters or the effects of a health care 

intervention, whereas, modelling provides a framework based on assumptions 

in which available evidence can be combined. Therefore they are not 

alternative methods for economic evaluation in which one can be viewed as 

‘better’ than the other, but rather they should be viewed as complementary 

approaches (18;22).  It is possible, and more beneficial, to use a mixture of the 

two approaches, with prospective trial information supporting wider secondary 

evidence to provide a more robust analysis (1).   

1.2.1 Modelling 

Adopting a retrospective outlook, a cost-effectiveness analysis can be 

undertaken utilising a variety of published data and literature to provide 

information on costs, resource use, quality of life and effectiveness 

information which can then be synthesised in a decision analytic model (30).  

Decision analytic modelling (DAM) in health economics refers to a 

mathematical decision making tool which structures evidence on clinical and 

economic outcomes, to inform health care resource use and clinical practices 

(30).  A decision model is a framework for undertaking an economic evaluation, 

which can be structured in different ways; however, the role of a model is as a 

means of synthesising evidence on health outcomes and costs from a variety of 

sources.  Brennan & Akehurst (31) discuss the many roles of economic 

modelling, and how models can vary substantially with regards to structure and 

complexity, some being nothing more than extended spreadsheet calculations.  

Brennan et al. (32) classify various model structures to indicate the range of 

modelling approaches and their structural relationships to one another. The 

authors also provide some guidance on choice of model structure, and highlight 

that different modelling approaches can produce very different results.  The 

choice of model depends on various factors but is predominantly determined 

by the decision makers’ requirements, the complexity of disease area, and 

even modellers expertise or preference (32).  
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In the mid 1990s the discretionary nature of modelling was used to question its 

credibility (28;29), and since then considerable effort has focussed on 

promoting consistency in the process of modelling, particularly with regards to 

developing general principles for identifying and synthesising evidence. 

Sculpher et al. (33) considered what constitutes good practice in modelling, 

along with issues around validity and quality in modelling.  In 2003 the 

International Society for Pharmacoeconomics and Outcomes Research (ISPOR) 

published guidelines for conducting and reporting economic models in response 

to issues of appropriateness and consistency (30).  Philips et al. (34) continued 

to explore good practices in modelling and commented that despite the 

prevalence of various guidelines for the assessment of decision models since 

1985, there was still no standard definition of what good practice should mean 

in an economic model.  In response to this Philips et al. (34) continued earlier 

work by Sculpher et al. (33) and attempted to provide such a framework.  The 

authors reviewed and consolidated the range of existing guidelines and 

developed a standard framework for how ‘good practice’ should be defined for 

DAM.  The framework was developed around three key areas: structure, data, 

and consistency; and provides a practical and systematic means for critical 

assessment of decision analytic models.  The authors caution that it is 

unrealistic to expect all studies to adhere to every point in the framework, but 

stress that systematic application of the framework will allow the strengths 

and weaknesses of models under review to be identified.  

More recently, Petrou & Gray (35) published a review in the British Medical 

Journal to highlight issues relating to the design, conduct and analysis of 

economic evaluations using DAM and to create awareness in the wider medical 

community.  As computing capacity has increased over the last two decades, so 

have modelling methods (36) and therefore guidelines to promote good 

modelling methods have also had to adapt and be updated as more complex 

forms of modelling become ever more popular (37).  

1.2.2 Trial based 

Throughout the last two decades trial based economic evaluations have 

become fundamental as health care decision making bodies have specified a 
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requirement for evidence of cost-effectiveness to support reimbursement 

decisions.  Therefore economic evaluations have been incorporated into 

randomised controlled trials for pharmacologies and medical therapies (28;38).  

This type of evaluation is undertaken prospectively, utilising effectiveness data 

directly from a trial, and therefore can potentially collect resource use, cost 

and quality of life data directly related to the health technology under 

evaluation.    

Clinical trials are frequently viewed as the ‘best vehicle’ for economic 

evaluations as they ensure internal validity, through prospective collection of 

patient specific data, and they also present the opportunity to collect 

‘additional’ economic data (such as cost and utility information) at a low 

marginal cost alongside a large scale trial.  Therefore, large trials have many 

potential benefits for conducting economic analyses if the economic 

component is integrated into the study protocol appropriately, rather than 

added on as an extra component at a late stage.  It is important that the 

economic requirements contribute to the study design to ensure that the 

structure of the trial will provide the necessary data for a high quality 

economic study (39). Incorporation of economic relevant data into the trial 

dataset enables statistical analyses on the cost, effect and quality of life data, 

rather than just the effectiveness data.  Glick and colleagues (40) set out the 

methodology for undertaking economic evaluations alongside clinical trials, 

including details for analysing the data, calculating within trial ICERs and 

exploring uncertainty in the cost-effectiveness outcomes. 

Glick et al. (38;40) specify some ‘gold standard’ characteristics for conducting 

an economic evaluation as part of an RCT, detailing six steps for an 

appropriate analysis.  Despite such attempts to promote consistency and 

improvements in the methods for the design, conduct and analysis of economic 

data collected alongside clinical trials over the last two decades, there remains 

a great deal of variation in methodology and reporting of these types of studies 

(39).  In response to this the ISPOR task force developed guidelines for 

reporting and conduct of economic evaluations alongside trials, in an attempt 

to improve quality and enhance the credibility of cost-effectiveness analysis 

(39).  More recently Petrou & Gray (41) published a review of the methods for 
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research and reporting of evaluations alongside RCTS (alongside their review 

for DAM (35)) to highlight good practice and create awareness in the wider 

medical community.   

Despite the various guidelines, integrating economic evaluations into trial 

protocols remains challenging (42) and as the primary focus of the trial 

research is typically on effectiveness (as opposed to cost-effectiveness), it is 

likely the sample size will be determined considering only the effectiveness 

outcome.  This can potentially result in a trial that is underpowered to detect 

cost-effectiveness (43;44). Additionally, trials alone rarely provide sufficient 

evidence to fully inform an economic evaluation (38;39).  A single trial may not 

compare all relevant alternatives, may not collect important quality of life 

data, or may have a restricted follow-up time period which is inadequate. For 

example a lifetime horizon follow-up is appropriate for an economic analysis 

but the cost and feasibility of conducting an RCT in practice restricts follow-up 

periods, with three to five years being considered a long duration.  Such 

restrictions necessitate extrapolation of trial data over longer time periods, 

typically using some form of modelling technique. Therefore economic 

evaluations alongside trials are rarely undertaken solely on the trial data.  

External information for economic modelling is required, particularly for 

extrapolation (28) and therefore decision analytic modelling is used to 

incorporate additional supplementary evidence for the economic evaluation. 

Throughout the last two decades the role for cost-effectiveness analysis in 

health technology assessment has developed substantially (18) and while some 

may still hold to the view that clinical trials are the ‘best vehicle’ for economic 

evaluation, it is recognised within the health economics community that a 

mixture of trial based and modelling approaches is required for a robust 

analysis (1;39;41). Regardless of whether a modelling, trial based or mixed 

approach is used to undertake an economic evaluation, various good practice 

guidelines and checklists exist (15;30;34;37;39;45) as well as various decision 

making body guidelines (24;25); which promote a systematic and rigorous 

approach to data collection, analysis, synthesis of cost and effect 

data/evidence, reporting of outcomes and exploration of uncertainty and 

heterogeneity.  
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1.2.3 DAM in economic evaluation using an iterative approach  

In exploring a framework for quality assessment in DAM, Sculpher et al. (33) 

explain that models and trials have a separate purposes; the purpose of a 

model is to combine all available information at the time (t) the decision must 

be made to predict the impact.  The purpose of a trial based economic 

evaluation is to generate new information about one or more parameters at 

time t+1 that was not available at time t.  Therefore, rather than be viewed as 

alternative methods for economic evaluation, they should be viewed as 

complementary approaches at different time points.  They can both be used to 

fully inform a decision; i.e. in practice a short-term trial based analysis is often 

followed by a longer term decision model utilising other evidence to 

extrapolate the trial findings into a lifetime horizon, providing a more robust 

analysis.  However, rather than merely supporting a mixed methods one-off 

approach to evaluation, Sculpher and colleagues (3) outline an iterative 

process for economic evaluation, progressing from early indicative studies, to 

more rigorous assessments as more data becomes available, reducing 

uncertainty surrounding the cost-effectiveness estimates over a long time 

period.  Bayesian techniques for economic evaluation developed and promoted 

throughout the 1990s; such as probabilistic sensitivity analysis for exploring 

uncertainty in parameter estimates and the model (5;46), and value of 

information analyses (VOI) (9;13) are ideal tools for facilitating such an 

iterative process.  

Sculpher et al. (3) consider the best way to combine economic and clinical 

research.  They highlight that economic evaluation is perceived as a one-off 

exercise and attempt to dispel this perception through proposing an iterative 

process.  Claxton promotes an iterative approach through a Bayesian 

framework for decision making, exploring the uncertainty surrounding a cost-

effectiveness decision based on current information (9;13). The authors 

propose formal VOI assessments to value further research on its potential 

ability to reduce the expected costs of uncertainty surrounding the decision, 

rather than deciding on further research and its design through arbitrary 

means.  
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Fenwick et al. (21) further support the role of iterative decision analytic 

modelling, suggesting that as new health technologies emerge, DAM should be 

undertaken and updated regularly as new information becomes available.  The 

authors demonstrate the application of this process and propose the case for 

integrating such a framework into the HTA process.  The iterative approach 

recommends a process of ‘early’ modelling prior to the design of any clinical 

trials (7;47;48), whereby a decision analytic model is developed based on 

existing evidence on the costs and effectiveness of an intervention.  This 

provides a preliminary assessment of the level of uncertainty surrounding the 

costs, effects and cost-effectiveness of the intervention and which can then be 

used to provide information on whether a trial is required, and if so the 

appropriate design using VOI methods.  

Some researchers have used this approach in practice, however it was not 

widely adopted and the one-off attitude towards economic evaluation 

highlighted by Sculpher et al. (3) in 1997, prevailed in economic evaluations 

undertaken alongside clinical trials (28).  The iterative approach was 

demonstrated for the Health Technology Assessment programme in the UK (10) 

and for the UK reimbursement decision body, NICE (12); gaining some 

recognition of its benefits within the health economics community, however 

since this time there have been few other practical applications in published 

research.  

Fenwick and colleagues continue to support the iterative approach, 

particularly in the context of ‘early’ pre-trial modelling followed by VOI 

analysis to determine whether a trial was worthwhile (11); and in 2006 

Sculpher et al. (1) set out a framework for the iterative process, defining it in 

to five distinct stages.  In 2007 Briggs provided further support for the iterative 

approach, highlighting in the British Medical Journal that VOI must be 

integrated into the process of commissioning primary research (49). However, 

despite these latter developments, there is little evidence of funding and 

support for an iterative approach to economic evaluation in the health care 

sector. There remains a need for wider acknowledgement and incorporation of 

the iterative approach in the health care community, particular amongst the 

range of health care research funding bodies and the pharmaceutical industry.   
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In practice, support and funding for early stage decision analytic modelling 

(and full exploitation of VOI techniques) is rare, and in the health care sector 

economic evaluations still tend to be funded as a one-off exercise alongside a 

trial to justify reimbursement.  Therefore, the aim of this thesis is to examine 

the role of early decision analytic modelling for informing research priorities 

and the design of future studies in health care, within the context of an 

iterative framework for economic evaluation. The thesis will explore the 

feasibility, merit and drawbacks of undertaking early decision analytic 

modelling in practice, and consider potential reasons as to why it has not been 

widely implemented. 

 

1.3 Thesis outline 

The thesis is split into five main chapters.   Chapter 2 introduces economic 

evaluation in the context of publicly and commercially funded health care 

research. The chapter outlines the methodology used in building a decision 

analytic model, undertaking probabilistic sensitivity analysis, analysing 

uncertainty, and using value of information techniques to explore potential 

future research concerns. These methods are used throughout the remainder of 

the thesis. The iterative approach to economic appraisal is discussed and the 

advantages of employing such an approach to funding health care research are 

highlighted.  This chapter supports the case for early stage decision analytic 

modelling in health care research within the context of an iterative economic 

framework. 

Chapters 3 and 4 demonstrate a case study of good practice in developing an 

early decision analytic model. The case study details a piece of research that 

was funded by the National Institute for Health Research Health Technology 

Assessment programme (50) to build a decision model and undertake an 

economic evaluation of an emerging technology.  This research remit 

corresponds with the early stages of the iterative economic approach, 

developing an early decision analytic model to undertake an economic 

evaluation to determine whether the technology is cost-effective given current 
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information.  Chapter 3 details the development and parameterisation of three 

economic models, reporting the deterministic results, while Chapter 4 reports 

the probabilistic results from the models and explores uncertainty and VOI 

analyses to help inform future research priorities.  Chapter 4 demonstrates the 

importance of exploring uncertainty and how the application of value of 

information analyses, with early decision analytic models can help to inform 

the researchers, decision makers and funders on the appropriate next steps to 

take.  

Chapter 5 demonstrates the practicalities of designing clinical trials from an 

economic perspective.  The chapter offers a case study, reporting on an 

atypical real life case in which a clinical and cost-effectiveness trial was 

designed and powered to determine the sample size with regards to cost-

effectiveness.  The desire for a trial had been decided upon without prior 

economic involvement, i.e. neglecting the iterative economic approach, 

however, even when the iterative approach has been overlooked, involvement 

in the conventional design of a trial from an economic perspective is still 

desirable.  This chapter details the development of a simple DAM to inform a 

sample size calculation for the trial as the research proposal was being 

prepared.  This chapter therefore demonstrates the feasibility of developing 

decision models without prior funding and how simple models can be used to 

help design a trial and inform calculations in a real life setting.  The chapter 

simultaneously highlights limitations with undertaking sample size calculations 

and demonstrates the role for economic considerations to guide non-inferiority 

margins. 

Chapter 6 follows on from the previous (Chapter 5) case study considering 

whether the same, or an alternative conclusion would have been drawn had it 

been possible to adopt an iterative economic approach for the study; i.e. if 

pre-trial modelling had been undertaken in advance to help set research 

priorities, enabling the use of expected value of perfect information (EVPI) 

analysis to explore whether further research was of potential value, and if so 

using expected value of sample information (EVSI) to estimate an appropriate 

sample size for the RCT.   The chapter undertakes a re-analysis of the study 

from Chapter 5, adapting it in line with the iterative framework to compare 
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the resultant research priorities and sample size requirements under an 

iterative approach with the outcomes that were determined using the 

conventional framework from the trial proposal in Chapter 5.  

Chapter 7 provides a summary of the thesis.  This final chapter also proposes 

areas for further research and offers the overall conclusions. 



15 

2 DAM for economic evaluation in health care    

2.1 Introduction  

The UK National Health Service (NHS) spends in excess of £100 billion each year 

providing ‘free’ health care for UK residents (51).  The NHS is the largest 

publicly funded health care service in the world but is subject to an annual 

budget and therefore is vulnerable to the two fundamental economic concepts 

of scarcity and choice.  Decisions must be made regarding the choice of which 

health care products and services to offer, given the limited financial budget.  

Prioritisation of health care requires decisions or decision-making regarding 

which illnesses and disease areas should be allocated resources, and within 

specific disease areas, which treatments, interventions and health services to 

offer.  Therefore, there is a need to decide on the best mix of health 

technologies, especially as new technologies become available.  The term 

‘health technology’ covers a range of methods used to promote health, prevent 

and treat disease and improve rehabilitation (50). It is often used to represent 

all health care goods and services, such as pharmacologies, surgical 

techniques, intervention packages, or technologies.  Economic evaluation is a 

means of assessing alternative health technologies by comparing their costs 

and health benefits, and is increasingly being used as a major input for 

decision making bodies and reimbursement agencies throughout various 

countries for determining which interventions and health technologies 

represent good value for money (16;17).    

Economic evaluations are undertaken for a range of reasons, however their 

primary role is to inform decision making given limited health care budgets 

(15;19), through providing a systematic approach to comparing alternative 

drugs or health technologies in terms of their costs and consequences.  

Economic evaluations are not used for informing decisions regarding individual 

patients, but rather, they are undertaken to help guide drug formularies, 

disease-specific guidelines, the development of patient services, justification 

for existing or new services and also drug reimbursement decisions (19).  In the 

UK, decision making bodies for health technology reimbursement, such as the 
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National Institute for Health and Clinical Excellence (NICE) and the Scottish 

Medicines Consortium (SMC), require economic evaluation as part of their 

decision making process (24;25).    

There is a formal requirement for economic evaluation to be an integral 

component of NHS research and development funded projects (52).  However, 

health care research from other publicly funded research bodies and within the 

commercial sector is not subject to such requirements and therefore, may or 

may not include economic components within their research.  

The National Institute for Health Research (NIHR) is an NHS funded research 

body who support various research programmes (52), such as the Public Health 

Research (PHR) programme and the Health Technology Assessment (HTA) 

programme (50).  The HTA produces independent research about the 

effectiveness, cost-effectiveness and broader impacts of health care 

treatments and technologies.  The research generated is intended for an NHS 

audience, particularly those who plan and provide care in the NHS.  They 

commission both primary research and evidence synthesis, and the research 

topics are identified and prioritised to meet the needs of the NHS. The HTA 

identify evidence gaps or decision problems, for which they commission 

research, through various means such as consultation with key NHS 

stakeholders, extracting research recommendations from various resources, 

direct recommendations and communication with researchers (50).   

The Medical Research Council (MRC) is another publicly funded health care 

research body, and is one of seven research councils in the UK who are 

responsible for investing money in research in the UK (53).  The MRC aims to 

support medical research in order to ‘increase the pace of transition to better 

health’.  They set their research priorities in order to support scientists and 

deliver improved health outcomes across society. The MRC funds research 

through a range of grants, commissioned calls, and fellowships and have a 

range of board panels and groups to decide on what research should be funded 

or not (54).  The Chief Scientist Office (CSO) is a Scottish government funded 

research body who support and promote research aimed at improving the 

quality and cost-effectiveness of health services and health care offered by 
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NHS Scotland (55).  The CSO funds research through a variety of research 

grants and fellowships.  It is commonly the case that health care funding 

bodies such as the HTA, MRC and CSO define an overall research question and 

commission research (normally through a call to researchers) on specific health 

care topics to meet their organisations priorities; however, some funding 

bodies also issue open calls with an overall theme or disease area, which 

encourage researchers to identify specific decision problems within that broad 

area which need to be addressed.  

In the pharmaceutical industry, research decisions are undertaken internally, 

and drug development follows a well known and formally recognised process 

consisting of four distinct phases of clinical assessment (51;56-58). Within each 

phase rigorous testing is undertaken in order to reduce uncertainty, and ensure 

that only the safest and most marketable drug will proceed to market.  

This chapter introduces economic evaluation in the context of public and 

commercial health care research.  An overview of economic evaluation in the 

health care sector is provided followed by an outline of the methodologies 

used in decision analytic modelling for an economic evaluation in health care.  

The methodologies include building a decision analytic model, undertaking 

probabilistic sensitivity analysis, analysing decision uncertainty, and using 

value of information (VOI) techniques to explore potential future research 

concerns.  Following the decision modelling methodology, section 2.9 

introduces the iterative approach to economic appraisal as an appropriate 

framework for undertaking research in the health care sector.  The advantages 

of employing such an approach to funding health care research (both private 

and public) are highlighted, in terms of reducing uncertainty, reduction of 

costs and efficiency gains.  This chapter supports the case for early stage 

decision modelling in health care research within the context of an iterative 

economic approach.  
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2.2 Economic evaluation in health care 

Economic evaluations are undertaken to help inform decision making, for 

example to help determine which drugs or health technologies to fund given 

limited health care budgets (15).  As discussed in Chapter 1, cost-effectiveness 

analyses can be undertaken using a variety of techniques (27), most notably 

using decision analytic modelling, trial based evaluations, or a combination of 

the two.  It is this latter approach which utilises prospective trial information 

to support wider secondary evidence to promote a robust economic analysis 

(1).   

Reimbursement agencies across the world, such as the Australian 

Pharmaceutical Benefits Scheme (PBS) and the National Institute of Health and 

Clinical Excellence (NICE) in the UK, require evidence on cost-effectiveness for 

their reimbursement decisions.  In response to such requirements, the 

pharmaceutical industry has added a ‘fourth hurdle’ (59) to their drug 

development and licensing process; while publicly funded health care research 

has begun to incorporate economic components in large scale (Phase III) 

studies and occasionally in Phase II studies.  In addition to providing evidence 

of quality, safety and effectiveness, value for money must also be 

demonstrated.   

Numerous countries have introduced reimbursement policies over the last two 

decades, requiring some form of economic analysis to support the introduction 

of new drugs, (and some also have the same requirements in support of new 

health care technologies or interventions (17)), however, the stringency and 

rigour of guidelines for undertaking the analyses vary from country to country 

(16;17).  Many economic evaluations that are undertaken or commissioned by 

pharmaceutical companies are often not considered until the latter phases of 

clinical trials (20) and in the case of publicly funded research, Phase II and 

explorative research budgets rarely leave adequate financing to incorporate 

economic analyses.  Therefore, economic evaluations are commonly 

incorporated at the end of a larger scale phase III or phase IV trials utilising 

effectiveness, quality of life and cost data from the trial in order to support a 
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case for reimbursement.  Large scale Phase III trials are designed to show 

evidence surrounding the clinical effectiveness of a new intervention in 

comparison to a control to support the case for regulatory submission, and the 

economic component is often ‘piggy-backed’ on to the end of the trial (28).   

Sculpher et al. (1) suggest that reimbursement agencies’ requirements may 

have triggered a commercial mind-set that the function of health economics is 

to use RCT data for economic evaluations in order to support a business case 

for reimbursement; however, some agencies such as NICE in the UK require a 

more comprehensive approach using decision analytic modelling to synthesise 

trial information with other evidence (24).  An approach in which decisions are 

based upon economic evaluations which only incorporate RCT data can be 

considered short-sighted with regards to the purpose of and approach taken 

towards economic evaluation.  Sculpher et al. (1) argue that such trial based 

evaluations represent a partial or limited form of economic analysis, due to the 

‘effectiveness’ focus of the trial design and other constraints of using a single 

trial designed without economic evaluation in mind.  Such a trial may not 

reflect real life clinical practice, costs may not be the same, it may not 

consider all relevant alternatives, may have a limited time horizon, lack 

relevance to the decision context, or in general may not adhere to the gold 

standard characteristics for economic evaluation within a trial (40).     

A more comprehensive approach to economic evaluation involves using decision 

analytic modelling to synthesise evidence from a variety of information sources 

followed by an exploration of uncertainty, including uncertainty surrounding 

the cost-effectiveness decision.   
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2.3 Decision Analytic Modelling 

Decision analysis represents a technique for structuring decision problems.  It 

is an approach that has been used in a range of disciplines such as Engineering, 

Law, Business (60), and more recently environmental remediation.  It has also 

been adopted in health care as a framework for making decisions under 

uncertainty. A succinct definition is provided by Snider et al. (page 27) (61): 

“Decision analysis is an explicit, quantitative and systematic approach to 

decision making under conditions of uncertainty”  

Within health care, decision analysis has been adopted as a framework for 

conducting health care evaluations and economic evaluations (4;61).  An 

economic evaluation can be designed using a decision model, enabling a wide 

range of data on costs and effects to be synthesised within the model in order 

to derive cost-effectiveness outcomes. Therefore, in the context of economic 

evaluation, a decision analytic model (DAM) is a mathematical tool used to 

structure a problem regarding two or more interventions for a specific patient 

group.  The model uses mathematical relationships to synthesise input 

information (such as clinical and cost inputs) from numerous sources and 

defines a series of possible consequences depending on the options being 

compared (4).   

The basic steps for building a decision analytic model involve specifying the 

decision problem, defining the boundaries, specifying the model structure, 

identifying and synthesising evidence and dealing with uncertainty. Assessing 

the value of additional research is also a key component of the modelling 

process (4), given that the point in decision analysis is to inform decision 

making given uncertainty.  These key components are now discussed.  

2.3.1 Specifying the problem  

This stage involves considering the objective of the evaluation, so as to clearly 

define the relevant aspects of the question to be addressed by the analysis.  

The alternative interventions or health technologies being evaluated need to 
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be specified, which is likely to be the new intervention compared to a control 

or current practice, however, the evaluation may involve more than two 

alternatives.  The outcome measures should be defined, i.e. what will be the 

primary measure of effectiveness. Additionally the relevant disease area and 

patient population should be specified.  Other aspects to be included are the 

setting (i.e. primary care) and the perspective of the analysis. The perspective 

will tend to be determined by who is funding the research (i.e. an NHS funded 

research project may request a NHS perspective as opposed to a societal 

perspective which could incorporate ‘indirect’ costs incurred by patients and 

carers). 

2.3.2 Defining boundaries 

This stage involves considering what is relevant and not relevant to be included 

in the analysis, i.e. what time horizon is relevant to the model.  Should the 

outcomes be modelled over the patients’ lifetime or is a shorter duration more 

appropriate to answer the research question?  This will relate to the outcome 

of interest, for example, is it life expectancy or quality adjusted life years 

(QALYs) that is the effectiveness endpoint of interest, or is it an outcome 

which requires a shorter duration, i.e. cases of morbidity post-surgery?   

Defining boundaries for the model also relates to the potential impacts of the 

interventions under evaluation, and whether they need to be included in the 

model.  For example is it relevant to incorporate negative side-effects from 

the interventions?  If the interventions under evaluation involve treatment with 

drugs, are there any possible side-effects and if so, are they relevant to 

incorporate in the analysis?  Researchers should ask, ‘do they impact on the 

costs or patient quality of life within the time horizon relevant to the model?’  

In some cases side-effects may be negligible and not expected to have a large 

impact on the patient population; or alternatively may be longer-term impacts 

out-with the relevant model timeframe.  In such cases it may be appropriate to 

consider such impacts to be out-with the boundaries of the model. 

Defining boundaries ensures that the model is representative, and an 

appropriate (yet simplified) reflection of real life. It is important that the 
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model adheres to quality assurance in that the boundaries are not so restrictive 

that they bias the analysis by excluding important factors.  

2.3.3 Structuring the problem  

An appropriate structure for the model should be determined based on the 

problem specification and model boundaries already identified. A model can be 

as simple or as complex as required, as long as it is fit for purpose. 

Decision Trees are a common structure used for simple analyses or those with 

short time horizons. A decision tree is a model which maps the patient 

pathway, assigning cost and outcomes to alternative pathways or ‘branches’ 

throughout the tree (36).  Decision trees are popular due to their simple 

structure, and the transparent nature of the tree which makes them useful for 

short term analyses; however, they are less valuable for modelling complicated 

disease conditions or over long time durations as they can become ‘bushy’ very 

quickly if there are numerous decision options (decision nodes) at different 

stages in the model, and they lack an explicit time variable (35). 

Markov models are more useful for analyses over a longer duration, involving 

transitions between various health states and outcomes over time (62).  The 

main limitation with Markov models is that they do not account for the history 

of progression in the model.  This is known as the Markovian assumption (63) 

and means that transition probabilities between health states are independent 

of the history of the patient and depend only on the current health state. 

Despite this limitation, Markov models remain a common structure for 

modelling lifetime outcomes, however, in recent years more complex forms of 

modelling have become ever more popular (37).  

Over the last decade Discrete Event Simulations (32;36;64) have grown in 

popularity, simulating the progress of individuals through a health care system.  

The nature of DES allows complex modelling, memory of patient history in the 

model and interaction between patients over long time durations, thereby 

overcoming some of the restrictions of Markov modelling; however they require 

specialist software and programming skills to develop and run (36). Dynamic 
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modelling is an alternative method of complex modelling which allows for 

impacts to affect the behaviour of an entire population or an entire health 

system, accounting for evolving factors and effects over long time durations.  

These traits have made dynamic models popular for modelling infectious 

diseases.  Although these more complex modelling methods require 

programming skills, they have considerable value to researchers and therefore 

encourage improvements in researchers’ computational skills (35;36). 

The choice of model structure depends on various factors but they are 

predominantly determined by the decision makers’ requirements, the 

complexity of disease area, and even modellers expertise or preference (32).  

The type of model used is subjective to the modeller, but as different 

modelling approaches can produce very different results it is important for 

researchers to be explicit in the reasoning for choice of model structure.  

2.3.4 Synthesising evidence 

This stage involves the systematic combination of evidence from a range of 

sources in order to populate the decision model. There needs to be a 

systematic approach taken to identifying all the relevant evidence for the 

model.  The model input evidence is classified into parameters which are used 

to reflect the data on clinical events, effectiveness, utility information, 

resource use, and unit cost information. 

Clinical parameters tend to be incorporated as probabilities, i.e. the 

probability of a clinical event occurring (where a probability is a number 

between zero and 1 which reflects the likelihood of a specific event occurring) 

such as disease prevalence to define whether the population has a specific 

disease or not.  An example of parameters represented by probabilities could 

be for patients with a specific disease that has three alternative treatment 

options: A, B or C.  The probability of receiving one of the three treatments (A, 

B or C) is a number between zero and 1 which reflects the likelihood that a 

patient will receive one of these treatments rather than the other two.  I.e. 

there is a probability of 0.3 that a patient will receive treatment A, a 0.6 
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probability of receiving treatment B and a probability of 0.1 that treatment C 

will be given.   

Some parameters may be reported as rates rather than probabilities and 

therefore it is important to note the distinction between the two.  A rate is the 

instantaneous potential for the occurrence of an event, expressed per number 

of patients at risk (4), whereas a probability is the likelihood of an event 

occurring over a specific time period.  Government statistics tend to report 

population level mortality rates which can be useful in economic models, 

however they may require to be converted into transition probabilities.  It is 

possible to convert a rate to a probability over a specified time period, if the 

rate can be assumed to be constant over that time period: (4). Equation 2.1 

details how the probability (p) can be calculated given the instantaneous rate 

(r) and time period (t) of interest for which the rate is assumed to be constant:  

{ }rt-exp-1=p          (2.1). 

The probabilities and other parameters (effectiveness, survival, utility, 

resource use) in the model are assigned from various sources such as medical 

literature, expert opinion, and statistical analysis.  For example, utility for the 

patient population may be derived from a survey or from an observational 

study; the probability of different treatment options for a specific disease may 

be informed by a combination of published disease guidelines and clinical 

expert opinion, while effectiveness data may be derived from one or more 

clinical trials.  

The synthesis of data from various sources gives rise to potential issues, such as 

no direct comparisons from RCTs for the interventions of interest, different 

follow-up times from different studies and heterogeneity (where there is a 

difference in patient characteristics between trials).  Such issues are dealt 

with through a variety of methods including indirect and mixed treatment 

comparisons and meta-regression (65;66).   

Once the model has been developed and populated with evidence relating to 

the mean value for each of the model parameters, the economic evaluation is 
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undertaken to calculate the outcomes, which in a cost-effectiveness analysis 

would be the incremental cost-effectiveness ratio or the incremental net 

benefit of the new intervention(s) in comparison to the alternative(s).  This is a 

basic ‘deterministic’ analysis which uses point estimates to represent the 

evidence for the parameters in the model.  The next step involves handling 

uncertainty in the model, and in particular the method used to deal with 

uncertainty in the model parameters.  

2.3.5 Handling Uncertainty  

Regardless of whether an economic evaluation is undertaken based on a 

decision analytic model, or informed solely from a single clinical trial, it will 

be subject to uncertainty. Han et al. (67) highlight that there is a wide variety 

of uncertainty referred to in health care research, spanning different types, 

sources and manifestations of uncertainty.  The authors propose a conceptual 

taxonomy of different types with the intention of encouraging an organised 

approach to dealing with uncertainty (67).  With regards to decision modelling, 

uncertainty can pertain to sampling variation, heterogeneity, methodological 

uncertainty, structural uncertainty, parameter uncertainty and decision 

uncertainty; each of which requires to be dealt with differently(4-6).   

In clinical studies, variability in individual patients is normally addressed 

through randomisation and analysis of baseline statistics.  Sensitivity analysis 

can be undertaken with access to patient level data, but in a model where the 

data has been derived from published evidence, this may or may not have been 

addressed by those reporting the evidence, and it cannot be addressed through 

collection of more data (4).  

Assessing heterogeneity requires consideration of various study population 

subgroups to assess whether other factors inherent to these groups influence 

the study outcomes by confounding or overriding the actual treatment effects, 

i.e. different age groups, differences in gender or disease specification.  The 

National Institute for Health and Clinical Excellence (NICE) formally recognised 

the importance of heterogeneity and subgroup analysis in their 2004 Health 

Technology Appraisal guidance.  More recently this guidance was revised and 
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now specifically recommends subgroup analysis in all technology appraisals 

submitted to NICE for consideration (24).   

Methodological uncertainty refers to uncertainty regarding whether the 

methods used were the most appropriate.  Methodological uncertainties can be 

dealt with through the use of a benchmark approach or reference case for 

appropriate methodology, i.e. by following good practice guidelines for 

undertaking modelling (34;37).  The generalisability of model results can be 

explored by altering parameters in the model that may have been specific to a 

particular setting.  Uncertainty regarding the structure of the model (68) can 

be dealt with by one-way sensitivity analyses and scenario analyses, modifying 

one or more structural aspects or assumptions of the model and determining 

the impact on outcomes.  More recently it has been suggested that a formal 

framework is required to addressed structural uncertainty, whereby a global 

model could be developed including parameters which encompass all possible 

structural choices so that they can be addressed using probabilistic 

methods(69).    

Parameter uncertainty refers to uncertainty in the point estimates used to 

reflect the specific parameters in the model, i.e. uncertainty in the mean 

utility value assigned to a specific disease group, or uncertainty in the 

probability of an event.  Parameter uncertainty can be dealt with 

deterministically through univariate and multivariate sensitivity analysis, 

however, probabilistic sensitivity analysis (PSA) can also be undertaken to 

adequately address this, which is discussed in the next section.  Finally, 

decision uncertainty should also be explored.  Decision uncertainty refers to 

the level of uncertainty in the cost-effectiveness outcome from the model, i.e. 

uncertainty in the estimated cost-effectiveness of the treatment in comparison 

to the alternative(s) (70;71).  Parameter uncertainty is now discussed in more 

detail followed by decision uncertainty.  
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2.4 Assessing parameter uncertainty 

Parameters in a model are represented by point estimates, which reflect the 

mean value for each parameter and cost-effectiveness is determined based on 

the mean value for each of the parameter inputs.  This is known as a 

deterministic analysis.  In a probabilistic sensitivity analysis (PSA), uncertainty 

in the mean parameter estimates is accounted for by assigning a distribution to 

each parameter and drawing a random estimate from that distribution to 

represent the point estimate.  By drawing randomly from the parameter 

distributions simultaneously for all parameters in the model and repeating this 

random draw numerous times (in a Monte Carlo simulation) uncertainty in the 

parameter estimates is accounted for and the resultant cost, effect and cost-

effectiveness outcomes from the model can be calculated for each 

simultaneous random draw (iteration) (4-6). The average cost, effect and cost-

effectiveness across all the iterations in the Monte Carlo simulation are taken 

to represent the probabilistic outcomes which account for uncertainty in the 

input parameters.   

Using any number of iterations greater than 1000 is generally considered to be 

acceptable (4) to reflect uncertainty in the model parameters, however it is 

wise to test the stability of results over a varying number of iterations, i.e. 

1000, 2000, 5000, and 10,000 iterations.  If there are negligible or minimal 

changes to the incremental cost and incremental effectiveness outcomes 

between variations in the number of iterations then the outcomes can be 

considered stable; however, if there is variation in outcomes between the 

different number of iterations (i.e. between 1000, 2000 and 5000 iterations), 

then a greater number of iterations may be required, such as 10,000, and 

20,000 before the results can be considered stable.  The time taken to run the 

Monte Carlo simulation will depend on the complexity of the model, the 

computing software used and also on the number of iterations specified for the 

Monte Carlo simulation. As the number of iterations increases, the time taken 

to run the simulation will also increase, so it is important to find a balance 

between checking the stability of PSA results and needlessly running very time 
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consuming simulations; for example checking results at 100,000 iterations is 

unnecessary if they were found to be stable at 10,000 and 20,000 iterations.  

In making parameters probabilistic, there are a variety of distributional forms 

to choose from.  Briggs and colleagues (4) explain that the type of parameter 

and its method of estimation provide an indication of the appropriate 

distributional form to use. Let us first consider the different distributional 

forms available, followed by a discussion of fitting parameters to the forms.    

2.4.1 Distributional forms 

A distribution shows how the total probability of a random variable (i.e. the 

parameter of interest) is distributed. This will vary depending on the family or 

form of distribution (72), each of which will reflect different points on a scale.   

Continuous parameters (such as cost) require a continuous scale and therefore 

a distributional form that is appropriate to capture that scale.  Likewise non-

continuous parameters (such as a proportion, which will fall between zero and 

1) will require a distributional form that lies on a scale bound between zero 

and 1.  

Normal (Gaussian) distribution 

The most commonly used continuous distribution is the normal distribution, 

often referred to as the Gaussian distribution (72). The Standard Normal 

Distribution has an expected mean value of zero, and a variance of one N(0,1), 

however, a random variable (parameter) from the normal distribution is 

capable of assuming any value between negative infinity and infinity (-∞, ∞).  

Specifying the Normal distribution requires a mean value of the parameter of 

interest and the standard deviation (73).   

Many distributions can be approximated to the normal distribution (73), under 

an assumption based on the central limit theorem (CLT) which assumes that as 

a sample size gets very large (tending towards infinity) the sampling 

distribution of the mean will be normally distributed regardless of the 

underlying distribution of the data (4).   Therefore, in a decision analytic 
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model, the normal distribution can be considered a candidate for any of the 

parameters in the model; however, this is only so long as the data informing 

the parameter is of a large enough sample size to justify a normal assumption.   

Lognormal 

The Lognormal distribution is a continuous probability distribution of a random 

variable (parameter) whose logarithm is normally distributed. The lognormal 

scale is confined from zero to infinity (0, ∞), and therefore variables on this 

scale cannot have negative values.   The lognormal distribution is represented 

by the parameter mean (ų) and standard deviation (σ). Lognormal distributions 

are appropriate for parameters that are non-negative, highly skewed or have a 

multiplicative format, i.e. ratios, and as they are on the log scale, they enable 

transformation to and from the normal scale.  

Gamma distribution  

The Gamma distribution is another continuous distribution, which is on a scale 

from zero to infinity (0, ∞), and therefore allows for data that has a positive 

right skew.  Gamma distributions are defined by two parameters: a shape 

parameter (α) and a scale parameter (β).  The Gamma distribution is 

represented by Gamma (α, β).  

Beta (Binomial) distribution 

The Beta distribution is characterised by two parameters: alpha (α) and beta 

(β) such that the Beta distribution is represented by Beta (α,β). Alpha is 

considered the lower bound (location parameter) and beta the upper bound 

(scale parameter). The standard Beta distribution is constrained on the interval 

zero to one (0, 1) (where α =0 and β=1), and is therefore appropriate for 

binomial data, such as parameters represented by proportions.  However, the 

Beta distribution is not necessarily binomial; the distribution depends on the 

value of the scale (β) parameter (74).  
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Dirichlet distribution  

A Dirichlet distribution can be considered as the multinomial equivalent to the 

Beta distribution (75).  It is used to represent multinomial data where there 

are numerous categories, each represented by a proportion, of which the 

proportions sum to 1.  Therefore, the Dircihlet distribution is characterised by 

a vector of positive real values (α), such that the distribution is represented by 

Dir(α).  

2.4.2 Fitting parameters to distributions 

Briggs et al.(4) explain that the type of parameter and its method of 

estimation provide an indication of the appropriate distributional form for each 

parameter in a decision model.  A Bayesian approach is recommended (6;76) 

whereby the choice of distribution is based on prior beliefs about the 

parameter.  Therefore the characteristics of the parameter of interest should 

be considered when deciding upon an appropriate distribution. For example, 

with cost parameters, the minimal value a cost will be is zero (as it is not 

possible to have a negative cost) but the cost could potentially range up to 

infinity, in which case it would be appropriate to consider either gamma or a 

lognormal distribution for cost variables, based on the prior beliefs about the 

cost parameter characteristics.  Likewise where the parameter of interest is 

represented by a probability (and the parameter is binomial in nature), such as 

a probability of having a disease, the probability is bound on an interval 

between zero and 1, and therefore, based on this prior knowledge of the 

parameter characteristics, it is appropriate to assume a Beta distribution, 

which is also bounded on the 0-1 interval. Where parameter estimates are 

derived using multivariate logistic regression, these can be represented by a 

lognormal distribution. By following the standard distributional assumptions 

and considering the characteristics of the specific parameters in the model, 

there are only a few possible candidate distributions for most parameters in a 

model.  

Table 2-1 details a list of common parameters used in decision analytic models 

(DAM) and the distributional forms that are commonly used to represent them.  
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Table 2-1: Typical parameters and their distributional forms in a DAM  

Common Parameters Possible Distribution Distribution scale 

      

Costs Gamma ( 0, ∞) 

  Lognormal ( 0, ∞) 

  Normal ( -∞, ∞) 

      

Utilities Beta  (0, 1) 

Disutilities Gamma on disutility ( 0, ∞) 

  Lognormal on disutility ( 0, ∞) 

      

Prevalence Beta (0, 1) 

  Dirichlet (0, 1) 

      

Treatment Probabilities Beta (0, 1) 

  Dirichlet (0, 1) 
      
Mortality Probabilities Beta (0,1) 
      
Relative Risks Lognormal ( 0, ∞) 
      
 

Examples of parameters which are commonly represented by Beta distributions 

are prevalence parameters (to represent the proportion of patients who have 

or do not have a disease) and diagnostic test accuracy (DTA).  Utility 

parameters are commonly represented by the beta distribution; however this 

distribution can only be used if it is appropriate to assume utility is bound on 

the interval zero to one.  Utility values are actually bound on the scale 

negative infinity to one (-∞, 1), and therefore in cases where very low or 

negative utilities are possible (such as in cancer or other severe and life 

threatening disease areas) the beta distribution is not appropriate.  In such 

situations the distribution is better represented by a gamma or lognormal 

distribution, bound on disutility.  I.e. where disutility (D) is equivalent to 1 

minus the utility value (D = 1-utility), thereby bounding the distribution on the 

scale zero to infinity (0, ∞) (4).  

In fitting a Beta distribution: Beta (α, β), the alpha parameter (α) is 

represented by the number of events of interest, while Beta (β) is equivalent 
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to the sample size minus the events.  If the sample size and number of events 

of interest are reported in a publication (or other source of evidence), then 

these are used to represent the alpha and calculate the beta for the Beta 

distribution.  Alternatively if the published evidence only reports the mean and 

standard error for a parameter point estimate then the Method of Moments can 

be used to derive the alpha and beta estimates from the mean and standard 

error and are then fitted to the Beta distribution (4).   

The Dirichlet distribution is used to represent multinomial data where there 

are numerous categories, each represented by a proportion, of which the 

proportions sum to 1. If the overall sample size and the number of events of 

interest for each category are reported, then these can be used to calculate 

the proportion for each category and fit the Dirichlet distribution.  The 

Dirichlet distribution enables the proportion within each category to vary, but 

in relation to the other categories so that they all sum to 1. Briggs and 

colleagues (4;75) provide further details on the Dirichlet distribution and a step 

by step approach for fitting the distribution.  

In fitting a Gamma distribution: Gamma (α, β), a similar approach is adopted 

to that of the Beta, whereby the sample mean (parameter point estimate) and 

variance reported in published data can be used to determine the shape (α) 

and  scale (β) parameters using the gamma Method of Moments (4).  

Costs tend to be represented by gamma or lognormal distributions, however, 

where it is unlikely that costs will be highly skewed and the data used to derive 

cost estimates is symmetric around the mean (and sufficiently large), the 

central limit theorem (CLT) can be assumed to apply and a normal distribution 

fitted, using the mean value and standard deviation for the cost estimate.  For 

the normal and lognormal distributions the mean and standard deviation are 

adequate to fit the distribution.  

In cases where only partial evidence has been reported, i.e. a mean value with 

no standard error, assumptions can be used to determine an appropriate 

standard error (which is large enough to reflect a wide range of uncertainty). 

Additionally if 95% confidence intervals have been reported rather than a 
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specification of the standard error, then the standard error can be calculated 

using the 95% confidence limits, however, it is important to note that these 

calculations will differ for each distribution, based on the standard 

distributional assumptions (72).   

2.4.3 Illustrating parameter uncertainty 

Once distributions have been applied to each of the appropriate parameters in 

the decision model, the probabilistic sensitivity analysis can be performed.   

Monte Carlo simulation is used with a minimum of 1000 iterations to sample 

random values from each parameter distribution simultaneously to provide 

different cost, effect and cost-effectiveness outcomes for each vector of input 

parameters.  The average cost, effect and cost-effectiveness outcomes across 

all 1000 iterations represent the probabilistic outcomes.  The incremental costs 

and effect outcomes for each of the 1000 iterations can be plotted on a cost-

effectiveness plane to illustrate the uncertainty (5).  95% confidence intervals 

(uncertainty intervals) can be represented using the lower and upper 

percentiles from the simulation results using the percentile method, i.e. taking 

the 0.025 and 0.975 percentiles (4).  Figure 2-1 illustrates a cost-effectiveness 

plane, which has been used to plot the range of incremental cost and 

incremental effect outcomes from a Monte Carlo simulation.  
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Figure 2-1: The cost-effectiveness plane 

 

The cost-effectiveness plane illustrates the difference in effectiveness 

(Intervention minus Control) per patient on the horizontal axis against the 

difference in cost per patient (Intervention minus Control) on the vertical axis.   

If the cost-effectiveness estimates fall into the North West (NW) quadrant, this 

demonstrates that the new intervention is less effective than the control, but 

costs more, and is therefore dominated by the control.   Alternatively if the 

outcomes fall into the South East (SE) quadrant, this represents improved 

effectiveness with the new intervention, yet it is also cost saving, and 

therefore the new intervention is the cost-effective strategy and it dominates 

the Control.   

If the outcomes fall into either the North East (NE) or South West (SW) 

quadrants this represents a situation where a trade-off is required, i.e. 

improved effectiveness but at a greater cost in the NE quadrant, or a cost 

saving but at the expense of reduced effectiveness in the SW quadrant.  In the 
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NE and SW quadrants a value judgement regarding societies willingness to pay 

(or willingness to accept savings) per unit of effectiveness gained (lost) is 

required in order to determine cost-effectiveness.  The maximum acceptable 

cost-effectiveness ratio or ceiling ratio (λ) represents societies willingness to 

pay, and is illustrated in Figure 2-1 by the thick black line that crosses through 

the origin of the cost-effectiveness plane splitting the NE and SW quadrants.  

While the value of the ceiling ratio can be considered subjective or a value 

judgement, such as the UK recommended acceptable range of £20,000-£30,000 

per QALY (24) which has no firm basis in evidence or theory (77); it can also be 

considered to be a reflection of opportunity cost. I.e. the opportunity cost is 

the technologies that are displaced at the margin, by those technologies which 

are recommended by NICE.  In principle the ceiling ratio can be estimated 

using willingness to accept or willingness to pay, for example society’s 

willingness to pay for improved health care through increased taxation (15). 

Indeed, numerous attempts have been made to measure consumers’ and 

society’s monetary valuation of improved health or valuation of a quality 

adjusted life year (QALY) (78;79).  

The ceiling ratio is considered to be symmetrical for both the NE and SW 

quadrants, so that incremental values below the ceiling ratio (values which fall 

to the right of the ceiling ratio (λ) in Figure 2-1) will be considered cost-

effective, and those that are greater than the ceiling ratio (values that fall to 

the left of the ceiling ratio (λ) in Figure 2-1) will not be considered cost-

effective.   The UK decision making body NICE, recommends a monetary 

threshold of approximately £30,000 per QALY gained (24), and therefore 

interventions with an ICER of less than £30,000 are considered to be cost-

effective in the UK. 

The joint distribution of the costs and effects from the Monte Carlo simulation 

are plotted on the cost-effectiveness plane to demonstrate the impact of 

uncertainty in the model parameters on uncertainty in the model outcomes 

(expected incremental cost and effects). Uncertainty in incremental outcomes 

is demonstrated when the results spread across the y-axis.  Likewise a spread 

through the origin passing through the horizontal axis represents uncertainty in 

the incremental cost of the intervention.  The 95 percentile intervals for the 
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incremental costs and incremental effects from the probabilistic sensitivity 

analyses can be calculated; however it is not straightforward to calculate 95% 

intervals for the joint incremental cost-effectiveness ratio when the joint 

distribution crosses into more than one quadrant.  

In situations where the range of outcomes spread from either the NE or SW 

quadrants across the origin into the NW or SE quadrants (dominant quadrants), 

some of the ICER values will be negative, and this will cause problems for 

establishing confidence intervals around the ICER (4;40).  Therefore it is 

recommended to represent uncertainty in the cost-effectiveness estimate using 

a cost-effectiveness acceptability curve (CEAC) (4;7;71).   

 

2.5 Decision uncertainty: CEAC 

The cost-effectiveness plane was useful in terms of illustrating the impact of 

individual parameter uncertainty (within the model) on the model outcomes, 

i.e. uncertainty as to the existence and extent of any difference in costs and 

uncertainty as to the existence and extent of any difference in effect between 

the Intervention and Control.  However, any uncertainty in these may or may 

not impact on decision uncertainty.   Decision uncertainty refers to uncertainty 

in whether the intervention can be considered cost-effective in comparison to 

the alternative(s), i.e. uncertainty in answer to the question: is the 

intervention cost-effective?  When probabilistic outcomes spread into more 

than one quadrant of the cost-effectiveness plane, it can be difficult to 

determine whether the intervention is cost-effective or not and therefore 

CEACs can be used to illustrate the level of uncertainty in the estimated cost-

effectiveness of the treatment in comparison to the alternative(s) (7;70;71).   

Having undertaken an economic analysis and presented cost-effectiveness, it is 

important to address the initial research question, which was: ‘is the new 

intervention cost-effective in comparison to the control’?  To answer this 

question and give useful outcomes to decision-makers we need to consider two 

underlying questions: Given the current evidence and decision uncertainty, 



Chapter 2   37 

should the technology be adopted (or not)? and, Is further research required to 

help support this decision? (4) If these underlying questions are not addressed, 

decision makers may struggle to interpret the cost-effectiveness results, 

particularly regarding how to make the decision to adopt or reject the 

intervention given the uncertainty.  In answering these questions the 

researchers can help inform funders and decision makers on how to interpret 

the model results and the appropriate next steps to take.    

A cost-effectiveness acceptability curve (CEAC) is an ideal tool for illustrating 

decision uncertainty (uncertainty around the question of whether or not the 

intervention is cost-effective) across a wide range of alternative ceiling ratios 

(7;11). As demonstrated in Figure 2-1 a monetary threshold of willingness to 

pay (the ceiling ratio) is required to determine cost-effectiveness and ICER 

values that fall below the ceiling ratio (values which fall to the right of the 

ceiling ratio (λ) in Figure 2-1) will be considered cost-effective, and those that 

are greater than the ceiling ratio (values that fall to the left of the ceiling ratio 

(λ) in Figure 2-1) will not be considered cost-effective.  Therefore the ceiling 

ratio can be varied across a range of different values to illustrate how the 

evidence in favour of cost-effectiveness of the intervention varies at different 

monetary thresholds (4)  

The effect, cost and joint cost-effectiveness results from the probabilistic 

analysis are used to derive a cost effectiveness acceptability curve (CEAC) 

which represents the probability that the intervention is cost-effective at 

different monetary thresholds of willingness to pay (7;11).  The process of 

generating a CEAC involves calculating the proportion of iterations (from the 

PSA) where the intervention is cost-effective, given a specified ceiling ratio, 

and then re-calculating the proportion at a variety of different ceiling ratios.  

The CEAC plots the proportion of cost-effective iterations against the ceiling 

ratio. The proportion of cost-effective iterations can be calculated for the 

intervention and the alternative(s), so that they can both (all) be plotted 

graphically, as illustrated in Figure 2-2.  

For example, given two interventions (Treatment and Control), the net benefit 

for treatment (NBT) and control (NBC) can be calculated as well as the 



Chapter 2   38 

incremental net benefit ( )CEINMB ∆−∆∗λ= ; and the ceiling ratio (λ) can be 

varied across a range of values, i.e. from £0 to £100,000 in increments of £500.  

In this way the NMB from the net benefit calculation varies with the ceiling 

ratio (λ).  For each of the alternative ceiling ratios the net benefit under the 

treatment (NBT) and control (NBC) interventions are calculated across all the 

1000 Monte Carlo simulations and the average is taken (ENBT) (ENBC) to 

determine which has the highest expected net benefit.  At each ceiling ratio, 

the intervention with the greatest expected net benefit ( )[ ]CT ENB:ENBmax is 

the most cost-effective and is therefore the optimal choice at that specific 

ceiling ratio.  The proportion of cost-effective iterations for the Treatment and 

Control at each ceiling ratio can be plotted to illustrate the CEACs for each 

intervention, as illustrated in Figure 2-2. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 £-  £10,000  £20,000  £30,000  £40,000  £50,000  £60,000  £70,000  £80,000  £90,000  £100,000

P
ro

ba
bi

lit
y(

co
st

-e
ffe

ct
iv

e)

Maximum acceptable cost-effectiveness ratio ( λ)

Control Treatment  

Figure 2-2: CEAC for Treatment versus Control 

 

Figure 2-2 illustrates a hypothetical CEAC, showing the probability of each 

intervention being cost-effective at different ceiling ratios.  At a ceiling ratio 

of £10,000 there is an 85% probability that the Control is cost-effective and 
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only a 15% probability that Treatment is cost-effective.  The Control would be 

considered the optimal choice at this ceiling ratio (as it has the greatest 

expected net benefit and is therefore the most cost-effective at this ceiling 

ratio), and the CEAC characterises the uncertainty in this optimal choice.  At a 

ceiling ratio of £50,000 Treatment is the cost-effective strategy, but the CEAC 

shows that this is only with an 80% probability; there remains a 20% probability 

that Treatment is the wrong choice, which is the uncertainty in the decision. 

The aim of calculating a CEAC is to summarise and illustrate graphically the 

probability that a particular intervention is the optimal choice over a wide 

range of values for the ceiling ratio (λ) (7). Fenwick and colleagues (11) 

demonstrate this process with a clinical example and present the CEAC. 

The CEAC is straightforward to calculate, construct and interpret (11) and is 

therefore an ideal technique for presenting uncertainty in the cost-

effectiveness outcome from a PSA to decision makers who have to make the 

choice of whether to adopt or reject a new intervention, based on the current 

evidence.  Uncertainty over the results of an analysis leads to the possibility of 

incorrect decision making, which has a cost in terms of benefits from the 

correct decision forgone.  Decision makers want to avoid incorrect decisions 

and therefore a CEAC can be a useful means of summarising the uncertainty 

surrounding the cost-effectiveness decision.  

In order to adequately address the initial research question (‘is the new 

intervention cost-effective in comparison to the control?’) we need to consider 

two underlying questions: Given the current evidence and decision uncertainty, 

should the technology be adopted (or not)?; and secondly, is further research 

required to help support this decision? (4).  Summarising decision uncertainty 

with a CEAC can be considered to be a first step in addressing the second 

important question; however, further techniques are required to answer the 

question in full (71).  
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2.6 Value of Information  

Having developed a decision analytic model, undertaken probabilistic 

sensitivity analysis and considered decision uncertainty; the PSA results can 

also be used to undertake Value of Information analyses (VOI).  VOI is based on 

the rationale that decisions based on existing information will be uncertain and 

given this uncertainty, there is a chance that the wrong decision will be made 

which will have a cost in terms of health implications for patients receiving 

suboptimal care and inefficient use of health care resources (10;12). VOI 

analyses value further research on its potential ability to reduce the expected 

costs of uncertainty surrounding the cost-effectiveness decision, rather than 

deciding on further research and its design through arbitrary means (9;12;13). 

Claxton and colleagues (22) promote VOI within a Bayesian framework for 

economic evaluation and decision making, in order to address uncertainty 

surrounding a cost-effectiveness decision and address whether the intervention 

should be adopted based on current evidence, or whether more evidence is 

required to support this decision. 

VOI is based on the concept of the opportunity cost of making a wrong 

decision, given uncertainty. The Expected Value of Perfect Information (EVPI) 

is a methodological approach which uses the uncertainty surrounding the cost-

effectiveness decision based on current evidence, the patient population, and 

technology lifespan and societies willingness to pay; to place a monetary value 

on the worth of further research. VOI techniques can be used in combination 

with evidence from a CEAC to make informed decisions as to whether a new 

intervention should be adopted (or rejected) based on current evidence, or 

whether further information is required to help make the decision, as opposed 

to making research decisions subjectively. The expected cost of uncertainty is 

determined jointly by the probability that a decision based on existing 

information will be wrong and the consequences of a wrong decision.  

Decisions based on existing information will always have some uncertainty (as 

represented by the inverse of the CEAC) and therefore there will be a chance 

that the wrong decision will be made. In choosing whether or not to adopt an 
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intervention (Treatment) that had, for example, an 80% probability of being 

cost effective at society’s willingness to pay threshold (λ), such as that 

illustrated on the CEAC in Figure 2-2, there is uncertainty.  At a ceiling ratio of 

£50,000 the Treatment intervention would be considered the optimal choice 

(as it has the greatest expected net benefit [ ]CT>ENBENB and is therefore the 

most cost-effective at this ceiling ratio), however, it has only an 80% 

probability of being cost-effective in comparison to the alternative (Control).  

While Treatment is the optimal choice, 20% of the time it would have been the 

wrong decision, and this represents uncertainty in the decision to adopt the 

Treatment strategy. Uncertainty over the results of an analysis implies the 

possibility of incorrect decision making which imposes a cost in terms of the 

benefits forgone (9).  Therefore, there may be value in obtaining more 

information, if it will reduce this uncertainty.  Claxton and colleagues (4;9;21) 

provide a thorough description and worked examples of the VOI process. 

2.6.1 EVPI per decision/patient 

In a perfect world where there is perfect information, the optimal (most cost-

effective) intervention would be chosen every time, however, in an imperfect 

world there is uncertainty and in choosing an intervention which on average is 

optimal, there is a probability that it will be the sub-optimal choice. The 

expected value of perfect information (EVPI) calculates the opportunity cost of 

making the wrong decision.  

The EVPI process within the context of an iterative (Bayesian) framework for 

economic evaluation has been promoted throughout the last fifteen years 

(1;8;13;80), however it is not utilised in practice very often. The application of 

the value of information approach was demonstrated for the Health 

Technology Assessment programme in the UK (10) and for the UK 

reimbursement decision body, the National Institute for Health and Clinical 

Excellence (NICE) (12); and has gained recognition, however, practical 

applications of EVPI in published literature, while increasing in number in 

recent years, remain limited. 
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The process of calculating the EVPI follows on from calculating the CEAC using 

the results from a probabilistic sensitivity analysis.  As discussed in section 2.5, 

in determining the CEAC from the probabilistic sensitivity analysis results, the 

net benefit can be calculated for each intervention (Treatment (NBT) and 

Control (NBC)) for all 1000 iterations of the Monte Carlo simulation, and the 

average of these is taken to calculate the expected net benefit for each, in 

order to determine the optimal strategy.  Given current evidence the optimal 

intervention is the intervention which has the highest expected net benefit 

across all 1000 Monte Carlo iterations ( )[ ]CT ENB:ENBmax .  The ENB for the 

optimal strategy is the value of the decision given current information.  Under 

perfect information, the optimal strategy would be chosen each time, and this 

can be accounted for by choosing the strategy which maximises net benefit for 

each iteration of the Monte Carlo simulation, from iteration 1 through to 1000: 

( )[ ]
1C1T

NB:NBmax , ( )[ ]
2C2T

NB:NBmax ….. ( )[ ]
1000C1000T NB:NBmax . The mean of 

the 1000 optimal NB choices is the expected value of the decision given perfect 

information ( )[ ][ ]CT NB:NBmaxE .  The expected value of perfect information is 

the difference between the value of the decision with and without perfect 

information, as detailed in Equation 2.2 (4;9) 

( )[ ] ( )cTCT ENB:ENBmaxNB:NBmaxEEVPI −=      (2.2). 

This gives the expected value of perfect information per decision, i.e. the EVPI 

surrounding the decision as a whole for each time this decision is made for an 

individual patient or patient episode.  The EVPI is re-calculated for a wide 

range of alternative ceiling ratios (λ), and can be represented graphically to 

illustrate how the value of perfect information varies at different ceiling 

ratios.  

2.6.2 EVPI population level 

Having calculated the EVPI per decision/patient, it is important to account for 

what this represents in terms of the relevant patient population who would 

benefit from the additional information.   The ‘effective population’ must be 

determined.  This is the population of patients over the expected lifetime of 
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the technology who would benefit from further information about the 

technology (4). The EVPI per decision/patient can be multiplied by the 

‘effective population’ to generate the population level EVPI.   

As a first step, the annual population of patients should be determined. 

Published data on the annual incidence (I) for the specific disease of interest is 

an ideal way of estimating the annual patient population. The expected 

lifetime of the intervention or technology can then be estimated in years (t).  

While this is likely to be an assumption, it is possible to make a realistic 

assessment of the intervention or technology lifetime by considering the period 

over which the information about the decision will be useful (t) (4).  For 

example, a technology that will be undergoing continual development and 

upgrading is likely to have a short lifetime as it will be replaced every few 

years by newer more advanced models.  Therefore, an appropriate timeframe 

would be one where the estimates of effectiveness for the technology used in 

the model are relevant and unlikely to change.  Given an annual disease 

incidence (I) and a technology or intervention lifetime of T years (t), the 

effective population can be calculated, applying a discount rate (r) for patients 

in future years, and summing the population across the years (t). The effective 

population is multiplied with the EVPI per decision to give the population level 

EVPI (EVPIpop).  Equation 2.3 details the population level EVPI calculation (4;9).  

( )∑ = +
∗=

T,...2,1t t

t
pop

r1

I
EVPIEVPI         (2.3) 

The population level EVPI can then be plotted on a graph, as with the EVPI per 

decision/patient, to represent how population EVPI varies with alternative 

ceiling ratios (λ).  At societies’ maximum ceiling ratio, the population level 

EVPI can be interpreted as the maximum amount the health care system should 

be willing to pay for additional evidence to inform this decision in the future.  

This can be considered to be an upper bound on the value of conducting 

further research (4;9), a necessary but not specific condition for determining 

the worth of future research.     
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The EVPI can be used to indicate whether further research is likely to be 

worthwhile; however, it does not take into account the cost or type of further 

research (81).  This may be construed as a drawback to EVPI, however it is still 

useful in providing an indication of whether further research is worthwhile or 

not and is an important step in the stages of VOI analyses.  For example, very 

low population level EVPI values can be used to suggest whether further 

research is worthwhile or not.  A population EVPI of £8000 indicates that 

research is very unlikely to be worthwhile, and the optimal intervention should 

be adopted based on current evidence.   In contrast a population EVPI of £30 

million indicates that further research is very likely to be worthwhile.  

However, for a mid range population level EVPI of say, £800,000, it is more 

difficult to decide whether research would be worthwhile.  Depending on the 

disease area and the type and scale of research, it may cost less or more than 

the £800,000 EVPI, which is interpreted as the maximum amount the health 

care system should be willing to pay for additional evidence to inform this 

decision in the future.  

An intuitive explanation of EVPI is that it puts a monetary value on the worth 

of further research dependent on how much that research will reduce current 

uncertainty by.   A systematic (or non systematic) literature review can tell 

you there is a lack of evidence from randomised controlled trials (RCTs), but it 

does not tell you the worth or value of undertaking a further RCT to address 

the lack of current evidence.  The added value of EVPI (compared to not doing 

EVPI) is that it explicitly values potential research in terms of addressing 

current uncertainty, and can then be used to compare with the potential cost 

of further research. If EVPI is not undertaken then further research is decided 

upon arbitrarily.  

Nosyk, et al. (82) provide a recent example of employing EVPI techniques in a 

study on dosing strategies for an influenza vaccine for individuals with human 

immunodeficiency virus (HIV).  This publication highlights some of the 

advantages of undertaking an EVPI, as the authors found that the likely cost of 

further research would have been much greater than the expected value of any 

further research.  The authors model the cost-effectiveness of three 

alternative dosing strategies for an influenza vaccine.  Strategy C was found to 
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be the most effective, while strategy A was also potentially cost-effective in a 

patient sub-group.  The authors report substantial uncertainty surrounding the 

potential cost-effectiveness of strategy A compared to strategy C, in one of the 

patient sub-groups.  Rather than recommending another trial to address this 

outright, the authors undertook an EVPI to establish a maximum acceptable 

cost of further research to reduce uncertainty surrounding the implementation 

of strategy A versus C. The population EVPI was estimated to be $418,000 US 

dollars, considerably less than the cost of a large scale trial for the patient 

sub-group.  The authors highlight that the cost of further research is likely to 

be much greater than the value of that research, and therefore recommend 

adopting strategy C based on current evidence.  

This case study of a practical application of EVPI highlights the merit and 

importance of undertaking EVPI analyses.  Even though EVPI does not explicitly 

account for the cost of further research, and can therefore only indicate 

whether further research is potentially worthwhile; when the cost of a trial is 

likely to be substantially higher than the maximum willingness to pay for 

further research (EVPI), then the optimal intervention can be adopted based on 

current evidence.  EVPI helps ensure research resources are not wasted on 

further trials that have little value.  EVPI provides a justification for spending 

large amounts of (scarce) research money on one trial rather than another.  

Without EVPI, it is only assumed that further research will add value, it is not 

explicitly checked. 

2.6.3 EVPI for parameters (EVPPI) 

In circumstances where the EVPI analysis indicates further research is 

potentially worthwhile, the next step involves identifying what type of 

research.  ‘Further research’ does not necessarily mean that a large scale, 

randomised controlled trial is required.  To define the type, and possibly the 

scale, of further research (to reduce uncertainty in the cost-effectiveness 

decision), researchers need to consider what information it is that is required?  

The requirement for further information is driven by uncertainty; so in 

considering what further research is potentially of value, the parameters that 

are driving uncertainty in the cost-effectiveness model need to be identified.  
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It is these parameters that would add the most value through further 

information.  Expected value of perfect parameter information (EVPPI) is used 

to identify parameters for which more precise estimates would potentially be 

most valuable (4;21;83). 

The value of reducing uncertainty surrounding particular parameters in the 

model (EVPPI) can be determined using an approach similar to the EVPI.  In 

fact the EVPPI is the difference in expected value of the decision with perfect 

information for some parameters and the expected value of the decision with 

current information about the parameters.  Equation 2.4 details the EVPPI 

algorithm. 

( )( )[ ] ( )[ ]θ−θ= θθθ ,tNBEmax,tNBEmaxEEVPPI t      (2.4) 

The various steps in the EVPPI process are now outlined: 

1. The first step involves choosing a parameter of interest for which perfect 

information is required, drawing a random value from its probabilistic 

distribution and then holding this value constant, to represent ‘perfect’ 

information for the parameter of interest.   

2. The Monte Carlo simulation is re-run holding the ‘perfect’ parameter 

constant but allowing the probabilistic draws from all other parameters.   

3. The average NB under the treatment and control (average NBT) (average 

NBC) from the 1000 iteration Monte Carlo simulation is then recorded along 

with the intervention identity that gives the maximum expected net 

benefit[ ])NB:NBmax( CT .  

4. Following the Monte Carlo simulation a second random draw is undertaken 

for the ‘perfect’ parameter of interest, to represent a new ‘perfect’ value 

which can be held constant. Steps 1 through to 3 are repeated 1000 times, 

each time holding a different value for the perfect parameter estimate 

constant while the other parameters in the Monte Carlo simulation vary.  

For each Monte Carlo simulation the mean net benefit for Treatment and 
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Control is recorded along with the intervention identity that gives the 

maximum net benefit.   

5. Once the process has been completed, the 1000 stored mean NBs for 

Treatment and Control and maximum intervention identities are used to 

calculate the expected net benefit (ENB) for each intervention [ ]CT ENB,ENB  

and the expected maximum net benefit ( )[ ][ ]CT NB:NBmaxE  across the 1000 

Monte Carlo simulations outcomes. 

6. The intervention with the greatest ENB [ ])ENB:ENBmax( CT is the expected 

value of a decision based on current information, i.e. the intervention 

which has the greatest ENB and would therefore be the optimal (cost-

effective) choice.   

7. The expected maximum net benefit ( )[ ][ ]CT NB:NBmaxE  is the average of 

the 1000 maximum net benefit interventions from each of the Monte Carlo 

simulations. This is the expected net benefit with perfect parameter 

information.   

8. The final stage in the EVPPI process is to subtract the ENB of the decision 

under current information from the ENB of the decision with perfect 

parameter information to give the expected value of perfect parameter 

information (4).    

Equation 2.4 detailed the EVPPI algorithm with the parameters of the model 

represented by (θ) including the perfect parameter of interest and the other 

parameters which keep their distributions from the PSA.  NB(t,θ) is the net 

benefit of an intervention (t) if the parameters of the model take the value θ 

(4). 

The EVPPI can be run for specific parameters in the model, but also for groups 

of parameters, where a specified group are held constant rather than a single 

parameter.  It is useful to begin EVPPI with groups of parameters, for example 

some parameters may have been estimated from the same data source and it 
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may not make sense to consider them individually, such as parameters from a 

survival analysis.  If parameters are correlated it is also important to group 

them together, so as to preserve the correlation structure (4).  If a parameter 

is included in a group, but its correlated parameters are not included in that 

group, the correlation with those parameters may be broken and the EVPPI 

could potentially be over or under estimated depending on the type and 

direction of the correlation relationship (4).  Additionally, it is useful to 

consider small groups of parameters in order to scope out what types of 

parameters are driving uncertainty, rather than undertake the process for 

every individual parameter in the model, which would be exceptionally time 

consuming (4). Parameter groups for EVPPI should be grouped logically, i.e. 

running all the utility parameters together and all the mortality parameters 

together.  Claxton and colleagues recommend that the groups should be chosen 

to match the type of research that would be conducted (4;9), e.g. clinical 

parameters.  It must be noted that the EVPPI for individual parameters do not 

sum to the overall EVPI, and likewise the EVPPI for groups of parameters is not 

equal to the sum of the individual parameter EVPPIs, because when considered 

in isolation individual parameters do not impact on the difference in net 

benefits in the same way (4).   

The EVPPI calculated is the value surrounding the decision as a whole for each 

time this decision is made for an individual patient or patient episode (4), and 

therefore (following the same approach used to determine EVPI) it is important 

to account for what this represents in terms of the relevant patient population 

who would benefit from the additional parameter information.   The ‘effective 

population’ can be determined in the same way as described for EVPI in 

Equation 2.3.  If undertaken directly following the EVPI calculation it is likely 

that the same effective population is relevant for the EVPPI however, it may 

well be that the relevant patient population who would benefit from the 

additional parameter information is different from that used for the EVPI. For 

example if the parameter or group of parameters of interest are specific to 

one sub-group of patients. The relevant population of patients should be 

considered who would benefit from further information about the technology, 

over the expected lifetime of the technology (4). 
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The EVPPI between the different parameters or parameter groups is compared, 

and the research planned (and designed if worthwhile) based around the 

parameters of interest that will provide the most value in seeking further 

research, although it must be noted that this is still only potentially 

worthwhile.  The EVPI and EVPPI place an upper bound on the potential value 

of further research, which provides a necessary but not sufficient condition for 

acquiring further information (4;9).  To establish a sufficient condition, i.e. to 

determine if research will be worthwhile and identify an efficient research 

design, the marginal benefit and marginal cost of further research needs to be 

accounted for (9).   

 

2.7 EVSI 

Having determined that further research is potentially required, and having 

used EVPPI to specify the most likely type of information and type of study 

(i.e. an RCT to gain clinical information on diagnostic test accuracy, or a 

survey used to determine patient quality of life) that is potentially required, 

VOI techniques can also be used to help design a trial with regards to 

identifying an optimal design and sample size. The expected value of sampling 

(EVSI) (9) is the technique used to quantify the expected value to the decision 

maker of obtaining sample information before making a decision (84).  The 

EVSI is the difference between the expected value of a decision after the 

proposed research (with sample information) and the expected value of the 

decision given current information (83). Calculating the EVSI follows a similar 

approach to that used in calculating the EVPPI.  

Ades et al. (83) describe the framework for the expected value of sample 

information (EVSI) approach, detailing the various stages involved in a step by 

step outline, with the accompanying algorithms.  These are briefly summarised 

here.  The EVSI process is based around specific parameters of interest, which 

are the uncertain parameters (θi) that require further information from the 

proposed piece of research.   
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1. For an assumed new sample size (N), the initial step of the EVSI involves 

drawing a sample of the parameters of interest (θi) from the prior 

distribution, i.e. from the probabilistic Monte Carlo simulation undertaken 

for the pre-trial model; draw the parameters of interest from the first 

iteration.  These mean estimates from the first iteration represent the prior 

estimates for the parameters of interest.   

2. Secondly, draw a random sample (for example from a Beta binomial 

distribution) to simulate the true events (x) given the sample size (N) and 

the probability estimate of the parameter of interest (θi).  I.e. for the 

specified sample size and the mean estimates from the first Monte Carlo 

iteration; generate one draw from the binomial likelihood to represent the 

number of events (x). Using this draw and the prior mean for the parameter 

of interest, calculate a posterior estimate (θip). 

3. The third step is to put the posterior probabilities for the parameters of 

interest (θip) back into the model (replacing the prior estimates for the 

parameters of interest) and recalculate the net benefit (NB) for each 

intervention (t), NB(t,θip) using the posterior probabilities for the 

parameters of interest and the prior probabilities of the other parameters 

in the model.  If the model is linear, then re-calculating the NB for each 

intervention requires only the posterior probability point estimate for the 

parameter(s) of interest, while a non-linear model requires the use of the 

posterior distribution to re-run the Monte Carlo simulation, making the 

process considerably more time consuming for non-linear models.  

4. The net benefit for each intervention is calculated and stored, identifying 

the intervention (t) which maximises the net benefit.    

5. This process is repeated again (steps 1-4), using the second iteration of 

prior means from the Monte Carlo simulation, and continually repeated for 

all of the prior estimates, storing the net benefit for each intervention and 

the intervention identity that gives the maximum expected net benefit for 

each. 
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6. Once the process has been repeated for all of the prior iterations in the 

Monte Carlo simulation the stored NBs and maximum intervention identities 

are used to calculate the expected net benefit (ENB) for each intervention. 

7. The intervention with the greatest ENB is the expected value of a decision 

based on current information, i.e. the intervention which has the greatest 

ENB and would therefore be the optimal choice.   

8. The expected maximum net benefit is calculated (i.e. the average of the 

maximum NBs from step 4); this is the expected value of a decision based 

on sample information for the selected sample size N.   

9. The ENB of a decision under current information is subtracted from the ENB 

of a decision based on sample information to give the expected value of 

sample information.    

Equation 2.5 below details this EVSI algorithm with the parameters of the 

model represented by (θ) including parameters of interest for which we are 

uncertain and complimentary parameters for which we do not seek further 

information.  NB(t,θ) is the net benefit of an intervention (t) if the parameters 

of the model take the value θ: 

( )( )[ ] ( )[ ]θθ θθθ ,tNBEmax,tNBEmaxEEVSI t −=      (2.5) 

This EVSI calculation can be repeated for different sample sizes, so as to 

generate different EVSI values for a range of sample sizes, i.e. N = 10, 50, 100, 

250, 500, 1000, 1500, 2000.  The EVSI can be plotted on a graph to 

demonstrate how it varies with increasing sample size.  As sample size 

becomes very large, EVSI should tend towards the EVPI and level off, but may 

not necessarily reach the same value as EVPI (9;85).  

The EVSI calculated is the value per decision, and therefore (following the 

same approach used to determine EVPI and EVPPI) it is important to account 

for what this represents in terms of the relevant patient population who would 

benefit from the additional parameter information.   The ‘effective 
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population’ can be determined in the same way as described in Equation 2.3, 

to estimate the population of patients over the expected lifetime of the 

technology who would benefit from further information (4;9). However, when 

calculating the population EVSI, Claxton cautions that consideration should to 

be given to patients in the effective population who would be in the trial, and 

therefore have already benefitted from the treatment, so can potentially be 

subtracted from the effective future population (9). 

 

2.8 ENBS  

The greater the sample size, the less uncertainty around the variables of 

interest, however, as sample size increases, so does the cost of the study.  

Therefore the optimal sample size of a study can only be determined once the 

cost of the research is accounted for.  The difference between the expected 

benefits of sample information (EVSI) and the cost of acquiring the sample 

information is the expected net benefit of sampling (ENBS) (4;9). The ENBS is 

concerned with finding an appropriate balance between reducing uncertainty 

and an escalating sample requirement.  The optimal sample size for the 

proposed trial is the value of n (sample size) that generates the maximum 

ENBS. 

The traditional approach to designing and selecting an optimal trial sample size 

(72) gives no consideration to the marginal costs and benefits of sample 

information (13), however, ENBS does.  Claxton et al. (86) explain that 

calculating the expected value of sample information and then considering the 

ENBS produces a technically efficient research design, by considering the 

willingness to pay for the proposed research.  The ENBS is the difference 

between the EVSI and the cost of acquiring the sample information (9); with 

the optimal sample being the value of N that generates the maximum expected 

net benefit of sampling.  The ENBS of any sample size (n) can be calculated 

given the population EVSI for that sample size and the cost of research at that 

sample size (Cn), as described in Equation 2.6: 
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nnn CpopEVSIENBS −=         (2.6). 

Having undertaken the population level EVSI calculation, the effective 

population will be defined (but may be modified as the sample size increases 

to exclude members of the effective population who take part in the trial).  

The research costs will entail a variety of costs such as research staff time, 

administration, etc. that can be classified as fixed, however there will 

inevitably be some variable costs such as treatment costs, medical materials, 

and potentially a small administrative cost per additional person recruited into 

the sample.  Therefore, the cost of the study is likely to increase marginally as 

the sample size rises.   The ENBS should be calculated across a wide range of 

sample sizes, and where ENBS reaches its maximum, that is the optimal sample 

size.  The cost of the research, ENBS and EVSI can be plotted on a graph for a 

wide range of sample sizes to demonstrate how these three components 

interact and illustrate the optimal sample size.  

Essentially, the EVSI approach is used to measure the value of a range of 

sample sizes for a proposed study, and then compare those values against the 

likely cost of the study at the different sample sizes, to help identify an 

optimal (efficient) sample size.  EVSI and ENBS techniques are used to establish 

the efficiency of the proposed research design, ensuring a cost-effective use of 

research funding. Typically economic evaluation is concerned with the cost-

effectiveness of health technologies to ensure efficient use of health care 

budgets, but in using VOI techniques, EVSI and ENBS in particular, we are 

concerned with the efficient use of research funds for funding potential studies 

and trials.  

An example of a recent practical application of EVSI is provided by Stevenson 

et al. (87) in the disease area of osteoporosis. The authors employ VOI and EVSI 

techniques to establish whether an RCT of two alternative treatments for bone 

fracture prevention in postmenopausal women with previous fractures would 

be cost-effective.  The authors’ model the cost-effectiveness of Vitamin K 

compared to Alendronate based on existing information, and found that while 

Vitamin K dominated Alendronate, this cost-effectiveness outcome was subject 

to considerable uncertainty. Using VOI techniques, the authors established that 
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further research was potentially worthwhile to reduce uncertainty in the cost-

effectiveness decision.  The authors then undertook an EVSI calculation to 

establish whether a head to head RCT would be an efficient (cost-effective) 

use of research funding.  After calculating the EVSI across a range of sample 

sizes, the cost of the research design is incorporated to calculate the ENBS 

across the range of sample sizes.  The authors conclude that a sample size 

between 2000 and 5000 per arm would be sufficient to answer the cost-

effectiveness question, and is efficient in terms of a valuable use of research 

money.  The authors highlight that their case study allows the evidence base 

for decision making to be strengthened while prohibiting research that is likely 

to provide no additional value.  

 

2.9 An Iterative Approach to Economic Evaluation 

Having provided an overview of the methodologies used in decision analytic 

modelling for economic evaluations, this chapter now reconsiders the research 

context within which economic evaluations are undertaken and supports the 

iterative approach to economic appraisal as an appropriate framework for 

undertaking research in the health care sector.   

Health care decision making bodies and reimbursement agencies in different 

countries have varying requirements and different degrees of stringency for 

determining whether health technologies represent good value for money 

(16;17). In the UK there is a formal requirement for economic evaluation to be 

an integral component of NHS research and development funded projects (52), 

however, health care research from other publicly funded research bodies and 

within the commercial sector is not subject to such requirements.  Therefore 

research undertaken in the health care sector may or may not include 

economic components, in the various phases of the research process.  Many 

economic evaluations that are commissioned by healthcare funding bodies or 

pharmaceutical companies are often not considered until the latter phases of 

clinical trials (20;28).  Even in publicly funded research, explorative and Phase 

II research budgets rarely leave adequate financing to incorporate economic 
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components.  Therefore, economic evaluations are commonly only 

incorporated in the latter phases of the research process, using information 

from larger scale definitive trials in order to support a case for reimbursement 

(1).  Theoretically this one-off approach to economic evaluation is inefficient, 

as it only enables identification of new health technologies/services as unlikely 

to be cost-effective at a late phase of the research process. Sculpher et al. (1) 

caution that such a viewpoint also potentially limits the quality of an economic 

evaluation, leading to incomplete economic analyses base primarily on data 

from one large scale RCT.  A robust economic analysis requires modelling and 

data synthesis of all available data, for example with prospective trial 

information supporting a wider secondary evidence base (1;39).   

An iterative approach to economic appraisal is a framework that has been 

proposed as best practice (1;3) for evaluating health care technologies.  The 

framework proposes that the process of health care evaluation should begin 

with an explorative modelling approach using indicative studies to assess cost-

effectiveness based on existing information, and progress to more rigorous 

assessments, updating a decision model over time as more data becomes 

available (1;3).  The iterative approach to evaluation provides a structure in 

which evidence from a range of sources can be synthesised and continually 

updated in order to answer cost-effectiveness decision problems for a defined 

context and population.  The premise is that rather than using economic 

evaluation as a restrictive, one-off analysis it should be an iterative process 

conducted alongside all stages of healthcare research.   

The iterative framework has five main stages and utilises the key 

methodologies for decision analytic modelling which were outlined in sections 

2.3 to 2.8 in this chapter. The iterative economic framework utilises decision 

analytic modelling as a key tool for evidence synthesis along with Bayesian 

updating in order to answer cost-effectiveness decision problems, as illustrated 

in Figure 2.3.      
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Figure 2-3: The iterative approach to economic appraisal   
Adapted from Sculpher et al. (2006) 

Figure 2.3 is based upon the five stage iterative approach initially illustrated 

by Sculpher et al. (1) and adapted to present the economic tools and decision 

modelling processes undertaken at each stage.  The five stages of the iterative 

framework presented by Sculpher et al. are now discussed, providing some 

further detail regarding how the economic tools and methodologies for decision 

analytic modelling fit in with each stage.  

2.9.1 Stages of the iterative approach 

Stage 1: Identify decision problems 

This first stage of the iterative framework is an explorative stage, focussing on 

identifying potentially important decision problems for different patient 

populations and sub-populations within various healthcare areas.  Similar to 

the explorative nature of pre-clinical research and phase I in the drug 

development process, stage 1 of the iterative economic approach is used to 

explore the decision area and formulate an appropriate (economic) question.   
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This stage of the iterative process is also similar to the first two steps in 

building a decision analytic model: ‘specifying the problem’ whereby the 

objective of the evaluation is specified in order to ‘define boundaries’ whereby 

relevant aspects of the analysis are clearly defined such as comparators, 

outcome measures, disease area, patient population and perspective of the 

analysis.  An economic analysis informing decisions needs to be clear about 

which patient populations are being considered, the treatments, therapies and 

technologies currently available to the specified patient population, and the 

role for any new treatment.  The iterative process therefore begins by 

exploring the literature and existing information to identify the decision 

problem and specify the details.  

This stage of economic appraisal is often, but not necessarily, pre-determined 

by public funding bodies and agencies who have identified the decision 

problem through various means, such as consultation with key NHS 

stakeholders, extracting research recommendations from various resources  

and communication with researchers (52).  They may or may not have already 

defined the relevant interventions of interest and identified the relevant 

patient groups. 

Stage 2: Synthesis and modelling given available evidence 

Once a specific decision problem has been identified, stage 2 will explore any 

existing and available information, including expert opinion, and then 

undertake evidence synthesis and early economic modelling based on this 

evidence.  Undertaking systematic reviews and meta-analyses on the 

effectiveness of the current standard of care and the new drug or health 

technology can generate evidence for use in a probabilistic decision model (5).  

Meta-analyses are a useful means of synthesising evidence on a primary 

effectiveness outcome, however, decision analytic modelling in itself is a 

mechanism for evidence synthesis and therefore a wide range of relevant 

information (such as costs, outcomes and longer term impacts) from a range of 

sources can be gathered at this stage and synthesised in the early decision 

model. 
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With regards to the decision modelling methodology, stage 2 of the iterative 

economic process uses many of the tools, such as synthesising information from 

a variety of sources to building a deterministic decision model, fitting 

distributions to the model parameters and undertaking probabilistic sensitivity 

analysis.  In building an early DAM, expert opinion may be required where 

evidence is limited and this can be appropriately reflected in the use of wide 

confidence intervals around the base case estimate in the probabilistic 

sensitivity analysis.   

Developing an early decision model can provide an indication of whether the 

new drug or technology is expected to be cost-effective (2) and the associated 

uncertainty.  

Stage 3: Setting of research priorities 

This stage involves a formal process of research prioritisation determined by 

the current evidence and early decision model outcomes from stage 2; i.e. 

whether we require further information to reduce the uncertainty surrounding 

cost-effectiveness, and if so, to identify the focus of further research and an 

appropriate research design (2).    

Considering the decision modelling methodology outlined earlier in this 

chapter, value of information analysis (9;10;12) is an ideal tool for addressing 

such questions and setting research priorities.  VOI is based on the rationale 

that decisions based on existing information will be uncertain and given this 

uncertainty, there is a chance that the wrong decision will be made which will 

have a cost in terms of health implications for patients receiving suboptimal 

care and inefficient use of health care resources (10;12).  The expected cost of 

uncertainty is therefore based on the probability that a decision based on 

current information will be wrong, and the consequences of the wrong 

decision.  This can be interpreted as the expected value of perfect information 

(EVPI), because perfect information can eliminate the possibility of making the 

wrong decision (10;12).  If the EVPI exceeds the expected costs of additional 

research then it is potentially worthwhile undertaking further research to 
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gather more information. EVPI can only inform on whether further research is 

potentially worthwhile, because perfect information doesn’t exist. 

This approach can also be applied to specific parameters of interest, to help 

determine the focus of further research.  Expected value of perfect 

information for parameters (EVPPI) is used to identify which parameters (or 

groups of parameters) in the model have the greatest uncertainty, and impact 

on decision uncertainty in the model outcome (2).  If there is little impact on 

decision uncertainty from the specific model parameters, then it is unlikely to 

be worthwhile undertaking further research, however, some parameters 

uncertainty may translate into considerable decision uncertainty for the cost-

effectiveness decision, indicating a potential need for further research in these 

specific parameters.  Therefore undertaking early modelling (at stage 2 of the 

iterative process) which incorporates sensitivity analysis or formal value of 

information analysis, provides a means to identify such parameters through 

assessing the EVPPI (2), and enables appropriate priority setting at stage 3. 

Once EVPI and EVPPI have been undertaken and an indication of the potential 

value of further research in a specific parameter(s) has been identified (e.g. 

potential further exploration of the main treatment effect of a new drug 

compared to the current standard drug) the optimal study design must be 

determined.  For example, if the treatment parameter is likely to be subject 

to selection bias then an RCT design may be appropriate.  Any trial or study 

deemed to be a research priority should be powered and designed 

appropriately. For example, if primary research is commissioned based on 

insufficient data surrounding the treatment effect parameter, then the study 

should be powered to detect a difference in effectiveness.  However, if 

insufficient information surrounding cost-effectiveness was highlighted from 

stages 2 and 3, then the research should be powered to detect an economic 

difference between the alternatives under comparison, i.e. a difference in 

cost-effectiveness (44).  

Having used EVPPI to indicate the type of information and type of study of 

potential value (i.e. an RCT to gain clinical information on diagnostic test 

accuracy, or a survey used to determine patient quality of life), VOI techniques 
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can again be used to aid optimal study design.  The expected value of sample 

information (EVSI) (9;83) and the expected net benefit of sampling (ENBS) can 

be calculated to determine an appropriate sample size.   

Stage 4: Primary research (e.g. RCTs) 

Trials in this stage should have been designed and powered appropriately to 

detect a difference in the key parameter driving the primary research, based 

on the stage 2 early model outcomes and the research priorities established in 

stage 3, using VOI analyses.   

If an economic evaluation is being undertaken alongside the primary research, 

attempts should be made to adhere to the gold standard characteristics for 

economic evaluations within clinical trials as suggested by Glick et al. (38;40).   

The gold standard economic evaluation within a clinical trial will use an 

appropriate comparator, such as current practice or a commonly used cost-

effective alternative.  The trial will be adequately powered to assess 

homogeneity of economic results across a range of clinical settings, will 

provide detailed cost information and will allow adequate follow-up time to 

assess the full impact of the therapy. This will strengthen the design of the 

research and improve the quality of the economic evaluation. 

Stage 5: Synthesis and modelling with updated evidence 

In this stage new evidence is incorporated into the information set used within 

the model, i.e. the early decision model from stage 2 can be updated with the 

data generated in the primary trials undertaken in stage 4, and any other 

evidence published during the interim.  This is based on a Bayesian concept 

(8;88) whereby evidence or knowledge about each parameter in the model can 

be updated by new information as it becomes available.   Having synthesised 

the primary research outcomes with any other relevant data in stage 5, the 

iterative process then loops back to stage 2 again.   It is important to consider 

whether the decision problem specified in stage 1 was answered adequately, 

and if not, does it need re-defined given any changes to the technology or 

disease field?   
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2.9.2 Benefits of the Iterative Approach 

The iterative economic framework is gradually becoming recognised by some 

funding and decision making bodies in the UK, such as the Medical Research 

Council in the case of complex interventions (89). However, funding for 

economic evaluation of new health care technologies by both the 

pharmaceutical industry and publicly funded research bodies remains 

predominantly a one-off exercise. Vallejo-Torres et al. (20) support the 

iterative economic approach and explain that it can offer advantages in three 

specific ways: (i) by allowing the estimation of potential cost-effectiveness to 

be part of the investment/research decision process (which will improve 

internal efficiency and potentially save money, avoiding investment in health 

care technologies or interventions which could never be cost-effective), (ii) by 

supporting health care research bodies to prioritise between several competing 

and possibly cost-effective alternatives, and (iii) by enabling identification of 

the parameters that have the largest impact on the likely cost-effectiveness of 

a specific health technology or intervention from an early stage, it promotes 

efficient allocation of scarce public and private resources.  

The key advantages of employing an iterative economic approach to funding 

research in the health care sector are now discussed, in terms of reducing 

uncertainty, reduction of costs and efficiency gains.  

Improve decision making / reduce uncertainty 

The research process is based on a step wise approach, each stage feeding 

information into the next in order to reduce uncertainty and aid decision 

making throughout.  For example, in order to introduce one new drug a 

pharmaceutical company will begin with thousands of new chemical entities 

and will eliminate many through pre-clinical research.  In the drug 

development process four phases are used to improve the decision making 

process further regarding the most effective, safest, highest quality and most 

marketable drug for the patient population.  Likewise research funders such as 

the HTA identify evidence gaps or decision problems for which they commission 

research through various means, (52) in order to identify the most important 
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research questions to fund. Economic appraisal also requires a step wise 

approach. There should be various stages to improve information regarding the 

important parameters and comparators in the model and the uncertainty 

surrounding the cost-effectiveness of the drug or health technology.  Given the 

iterative approach for economic appraisal, the use of a single one-off trial is 

inadequate as a sole input for economic appraisal. 

An early stage probabilistic decision model can help set research priorities and 

inform whether further primary research is required.  If undertaken, further 

research such as an RCT will provide information on effectiveness, cost and 

other important parameters which can then be used directly to update the 

original model.  Following, this a second iteration of stages 3 to 5 of the 

iterative approach would follow, whereby the probabilistic economic model is 

updated and VOI is undertaken to explore whether any further information is 

needed to reduce uncertainty.  If there is a potential need for further research 

a decision model can again help inform the design of the further studies, for 

example; if quality of life, cost or subgroup populations information is required  

then the analysis may highlight that an RCT is not an optimal study design at 

this stage, given strong evidence from an earlier RCT.  It may be more 

appropriate to undertake an observational study or evidence on other 

parameters, negating the demand for another large scale, expensive, RCT. 

Thus, adopting an iterative economic approach in the health care research 

process can improve decision making.    

Reduction of costs 

The drug development process involves a four phased step wise approach to 

reduce uncertainty and improve decision making regarding which drugs to 

proceed with, however, it is also time consuming, costly and of high risk to 

pharmaceutical companies (58).  In pre-clinical research only a few potentially 

suitable drugs will be identified from amongst thousands, incurring huge sunk 

cost for the investment in unsuccessful medicines.  The drugs that progress to 

clinical assessment undergo rigorous testing throughout the four phases, and as 

the certainty of success in one particular drug increases, the number of 

participants required for trials increases, as does the trial length and the 
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coinciding expenditure.  It is the rigorous nature of this process which requires 

major time and cost investment in the development of a new drug.  DiMasi et 

al. (90) estimated the total cost of research and development for a new drug 

to be approximately $802million, for the price year 2000.   

Considering this huge research expenditure incurred mainly by the 

pharmaceutical industry it may appear reasonable to limit economic evaluation 

to a one-off trial based exercise, as routinely adding in stages 2, 3 and 5 of the 

iterative approach into this research process will have further cost implications 

(1); however, earlier modelling at stage 2 (an early DAM) could reduce the 

subsequent evaluation and research costs further down the process. For 

example, by eliminating the need for a large scale RCT further down the line 

or establishing cost-effectiveness earlier.  Sculpher et al. (1) note that any cost 

implications of incorporating the iterative economic framework are likely to be 

a small proportion of the cost of any subsequent primary RCT, and a sensible 

investment to ensure appropriate primary studies are funded.  Likewise in 

publicly funded health care research, incorporating an economic evaluation 

and modelling exercise (in advance of) and alongside an explorative Phase II 

research study could reduce (or possibly eliminate if found to be not 

worthwhile) the cost of any subsequent larger scale Phase III trials.  

The main purpose of the iterative economic approach is to identify priorities 

for research at the later, more expensive stages of evaluation.  The framework 

therefore helps avoid undertaking costly time consuming studies; i.e. avoiding 

trials for an intervention or technology that has little chance of being cost-

effective; or indeed avoiding a study which is not necessary given current 

evidence and therefore is unlikely to be a cost-effective use of resources.  

Investment in early stage modelling and value of information analysis can lower 

costs later on for public and private health care research bodies and any 

further economic evaluations.  

Efficiency gain with an iterative approach 

Earlier funding for economic analysis improves the economic evaluation 

process, benefitting the NHS and reimbursement decision making bodies 
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through early assessment of potential cost-effectiveness and helping to identify 

and set research priorities.  This process can help public initiatives to speed up 

approval decisions on important healthcare technologies or sought after drugs 

and make faster termination decisions for cost-ineffective drugs.  Likewise, in 

the case of publicly funded health care research, an iterative approach will 

encourage considerations of cost-effectiveness earlier in the research process 

and interventions unlikely to be cost-effective can be set aside for those with 

more promise. Involving decision modelling in early stage explorative research 

will encourage efficient allocation of publicly funded research finances.  

In the pharmaceutical industry decisions on the success of a drug are made at 

each phase based on a mix of objective and subjective information regarding 

safety, effectiveness, appropriateness for patient population, cost and 

potential future benefits of the drug (20).  The focus of these decisions is on 

potential for success in the regulatory submission, however, decisions to 

terminate development on investigational drugs primarily for economic reasons 

(with the reimbursement submission in mind) has historically occurred very 

late in the clinical testing process (3;20).  Through using the iterative 

framework for economic evaluation these decisions can be addressed much 

earlier and the health care sector can benefit by identifying which 

interventions to progress through to further research, based on potential cost-

effectiveness as well as effectiveness.  The impact on research and 

development costs can be substantial while the impact on efficiency could 

result in more innovation and new therapies reaching patients sooner (91).   

Hill & Freemantle (92) note that some health technology companies are 

beginning to use economic evaluation at earlier stages to help decision making 

regarding clinical trial parameters, and informing termination decisions on 

products in development.  Value of information analysis is an ideal tool for 

these kinds of decisions.  As illustrated in Figure 2.3, VOI can be used in stage 

3 of the iterative economic approach as a tool for setting research priorities 

and estimating the value of additional research to society; however, publicly 

funded research bodies and the pharmaceutical industry could adopt this 

approach within their internal decision making process for whether or not they 

should fund additional research and also for prioritising health care 



Chapter 2   65 

technologies with the greatest potential for cost-effectiveness.  This could 

reduce the cost of investment and reduce uncertainty regarding the final 

reimbursement decision. In the case of private health care research 

organisations, VOI analysis can be adapted to a companies’ perspective to 

assess the value of undertaking further research in a commercial context (20), 

and the value of further information to society could be considered in the 

spending of public research monies.   

Currently, research funding bodies may implicitly determine the value of 

proposed research projects, based on a variety of internal decision making 

criteria and subjective expert opinions; however, the value is not explicitly 

determined. If VOI techniques were applied to all project proposals submitted 

to funding bodies, then alternative research projects could be compared 

incrementally in terms of their value or net benefit to society.  Such an 

approach would encourage efficient use of research money.  

In the commercial context, Hill & Freemantle (92) suggest interim 

reimbursement decision making for pharmaceuticals in order to improve 

efficiency.  The authors propose this would shorten time to purchase through a 

two-stage process of economic modelling and reimbursement decision making 

prior to a randomised controlled trial, and post-trial to confirm or revoke the 

interim decision.  This approach could benefit the pharmaceutical industry, but 

may have detrimental effects for poor decision making in the interim based on 

uncertain cost-effectiveness estimates.  However, as Vallejo-Torres (20) 

suggest, an iterative approach to economic evaluation throughout the lifecycle 

of a drug or health technology accounts for all new evidence as it becomes 

available.  This is the same regardless of whether the research is regarding 

drug development or wider sector health care technologies and services.  

Incorporating the iterative economic approach in both a commercial and public 

funding context can further improve efficiency and decision making.  With 

regards to the current state of play in the publicly funded research arena, on 

paper funders do ‘encourage’ incorporation of an economic component in early 

stage and explorative research; however explorative research budgets 

(particularly for Phase I and phase II studies) rarely include adequate financing 
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to incorporate economic analyses, which as a result inevitably end up excluded 

at this stage.   With regards to the current state of play in a commercial 

context there is little evidence of incorporation of the iterative approach in 

the drug development industry, however some authors note pharmaceuticals 

are beginning to consider economic considerations at earlier stages, such as 

including the selection of compounds to develop, the choice of clinical trial 

parameters, and ‘go/no-go’ decisions on products in development (92).  To 

encourage support of an iterative approach in the commercial context, the UK 

reimbursement agency NICE set up a scientific advice consultancy service in 

2008, specifically to provide advice to pharmaceutical companies who have 

products in development that may be referred for technical appraisal (93).  

This promotes efficiency and saves time for both pharmaceutical companies 

and decision making bodies such as NICE.  For example, through seeking advice 

from NICE early in the drug development process, for example at phase II, 

pharmaceutical companies can ensure that any clinical and cost-effective 

studies undertaken at phase III onwards meet the requirements for the NICE 

technology appraisal. 

By adopting an iterative approach to economic evaluation in health care 

research, not only will economic evaluation be more useful and of better 

quality, it will also be advantageous to the research funders whether they be 

private or public.  These various advantages support the case for an iterative 

economic framework for undertaking research in the health care sector.  Early 

decision analytic modelling, in which the DAM is built in advance of primary 

research, is a key process of the iterative approach.  The framework allows a 

decision model to be developed on existing evidence and fully exploited in 

terms of addressing uncertainty given current information. VOI techniques can 

also be applied to help set research priorities and inform on the potential value 

and design of future studies.  Applying early stage DAM and VOI techniques 

enables meaningful recommendations to decision makers, who can then make 

informed decisions as to whether a new intervention should be adopted (or 

rejected) based on current evidence, or whether further information is 

required to help make the decision, as opposed to making research funding 

decisions based on subjective reasoning.   
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Despite the advantages of employing early DAM, in practice, support and 

financial funding for early stage modelling and full exploitation of VOI 

techniques is rare in the health care sector.  Given this disparity; the 

remainder of this thesis examines the role of early DAM for informing research 

priorities in the health care sector and considered potential reasons as to why 

it is not more widely implemented.  The thesis uses practical applications of 

building early decision analytic models, in which the various DAM tools 

described in sections 2.3 to 2.8 are applied, to demonstrate the feasibility and 

importance of early DAM and the design of future studies in the health care 

sector.  

 

2.10 Summary 

This chapter introduced economic evaluation in the context of public and 

commercial health care research and discussed the methods for undertaking 

decision analytic modelling for economic evaluation.  Following a review of the 

methodology, the iterative approach to economic appraisal was put forward as 

an appropriate framework for undertaking research in the health care sector 

and the benefits of such an approach were highlighted in terms of reduced 

uncertainty, reduction of costs and efficiency gains.   Incorporating an iterative 

economic framework into both private and publicly funded research in the 

health care sector can improve efficiency, research design and decision 

making.  Early decision analytic modelling, prior to primary research, is a key 

process within the iterative framework, and enables exploration of uncertainty 

and the use of VOI techniques to inform future research priorities.  However, 

in practice early DAM has been less well supported and funding for early DAM is 

rare. This thesis now explores the feasibility, merit and drawbacks of 

undertaking early decision analytic modelling through practical applications 

and considers potential reasons as to why it is not more widely implemented.  
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3 Early DAM: a case of good practice 

3.1 Introduction 

This chapter demonstrates a case of good practice in utilising early decision 

analytic modelling to help inform the design of future research.  The case 

study details a piece of research that was funded by the National Institute for 

Health Research Health Technology Assessment programme (50) to undertake a 

systematic literature review and economic evaluation of an emerging 

technology which showed potential benefit as an addition to current 

technology, rather than as a replacement.  This research remit corresponds 

with stages 2 and 3 of the iterative economic approach, developing an early 

decision analytic model based on existing evidence to undertake an economic 

evaluation to determine whether the technology is cost-effective given current 

information and whether further information is needed to make a more 

informed decision.   In this case, the decision problem had been identified and 

pre-specified by the funding body, that is, stage 1 of the iterative approach.  

As discussed in Chapter 2 this is often, but not necessarily always, the case.   

3.1.1 The decision problem 

Worldwide, colorectal cancer (CRC) accounts for more than one million cancers 

per year or 9% of all new cancer cases.   In the UK, CRC is the third most 

common malignancy after lung and breast cancer, with 37,514 new cases 

registered in 2006: around two-thirds (23,384) in the colon and one-third 

(14,130) in the rectum (94).  For patients with CRC there are a wide range of 

clinical scenarios and various treatment options with different timings, 

dependent on the stage of the cancer and also the extent of the cancer growth 

within each stage.  Therefore, accurate staging once the cancer has been 

diagnosed is necessary to help identify the most appropriate patient treatment 

(95).  The Tumour, Node, Metastases (TNM) staging classification is the 

internationally accepted cancer staging system.  The TNM system classifies the 

extent of the tumour (T); the extent of spread (if any) to nearby lymph nodes 

(N); and whether or not the cancer has spread to other organs in the body, i.e. 
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the presence of metastases (M) (95;96). Numbers from 0 through to 4 appear 

after T, N and M to indicate the presence of and increasing severity of the 

cancer within each stage.  The American Joint Committee on Cancer (AJCC) 

uses these TNM classifications to provide a uniform description of cancers 

within broader categories, known as the four AJCC stages: I II III and IV (95).   

Table 3-1 details the AJCC stages with the different TNM classifications for 

colorectal cancer, describing the extent of disease within each.  

Table 3-1: Staging colorectal cancer using AJCC and TNM classifications 

 
AJCC 
stage Description of cancer 

Tumour 
category 

Node 
category 

Metastases 
category 

I 
Invasion of inner layer of bowel & the 
bowel muscle T1-T2 N0 M0 

II 
Invasion of outer lining of bowel wall & 
other parts of the bowel T3-T4 N0 M0 

III 
Invasion of bowel & spread to lymph 
nodes T1-T4 N1-N4 M0 

IV 

Invasion of bowel, spread to lymph 
nodes & distant metastases (spread 
to one or more other sites in the body) T1-T4 N1-N4 M1a - M1b 

          
Table developed based on information from Edge et al. (95) & CRUK (96) 

Over the past two decades, a number of diagnostic tools have entered clinical 

practice and now facilitate the process of pre-operative staging for CRC.  A 

number of imaging modalities are used including: computerised tomography 

(CT), contrast enhanced computerised tomography (ceCT), magnetic resonance 

imaging (MRI), ultrasound imaging, and positron emission tomography (PET).  

Recently there has been an emerging role for CT in combination with PET 

scanning (‘hybrid’ scan) in pre-operative staging for colorectal cancer. 

PET and CT are complementary imaging techniques that, when combined, can 

maximise their individual advantages while minimising their respective 

disadvantages (97). Several studies have shown PET/CT to be more accurate 

than diagnostic CT and stand-alone PET for cancer staging including colorectal 

cancer (98;99), and the recommendation from the Royal College of Radiologists 

now is that every new PET scanner should be a PET/CT scanner and that every 

cancer network should have access to PET/CT services (97).  However, PET/CT 

scanning is considerably more time consuming than either imaging device 
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alone, and for CRC it is recommended as an addition to routine imaging 

devices, and therefore as an ‘add-on’ technology it carries a heavy cost 

burden.  Additionally, the diagnostic accuracy and therapeutic impacts of 

PET/CT in colorectal cancer are varied and currently unclear.  Therefore, the 

HTA commissioned a systematic literature review of the evidence on 

effectiveness (diagnostic test accuracy) along with an economic modelling 

component to explore potential cost-effectiveness of the PET/CT hybrid scan 

as an addition to current practice. This is slightly different from a typical 

health sector evaluation whereby a new technology is compared directly 

against current practice, and cost-effectiveness is determined as a 

replacement technology.  In this case, current practice with the addition of 

PET/CT was compared against current practice alone; therefore the cost-

effectiveness of PET/CT was determined as an ‘add-on’ technology.  

The pre-defined aim of the research was to determine whether PET/CT is cost-

effective as an add-on test in comparison to routine imaging modalities; for 

pre-operative staging in patients with colorectal cancer.  Given this aim of the 

research problem, identified by the funding body, probabilistic decision 

analytic modelling was undertaken using Monte Carlo simulation to address the 

following questions: 

• Is PET/CT likely to be cost-effective as an addition to routine tests for 

pre-operative staging in CRC compared to current routine methods of 

diagnosis and staging, given current evidence and uncertainty?  

• In which patients groups (i.e. primary, recurrent, metastatic disease)? 

A value of information analysis was also undertaken to help inform whether 

there was potential worth in undertaking further research.   

This chapter outlines the development of the economic component of the 

research, i.e. synthesising current evidence and clinical expertise to develop 

and populate the decision models.  The next section provides an overview of 

the methods employed.  Following this the design and development of each of 

the three models is detailed in turn.  Subsequently, the evidence base and 



Chapter 3   71 

data used to parameterise and populate the models is discussed for each model 

in turn and finally the deterministic results presented.  The subsequent 

chapter (Chapter 4) explores the use of early decision analytic modelling to 

help inform the design of future research; presenting the probabilistic analysis 

results from the three models developed in this chapter and exploring 

uncertainty to assess whether there is any value in further research through 

value of information analyses.   

 

3.2 Methods 

3.2.1 Overview 

The economic evaluation utilised existing evidence, incorporating decision 

modelling techniques to synthesise data from numerous sources (31;66). The 

evaluation was undertaken from the perspective of the UK NHS, reporting short 

term outcomes in terms of the incremental cost per correct diagnosis, and 

longer term outcomes in terms of the incremental cost per quality adjusted life 

year (QALY) gained.  Reporting QALY outcomes enabled the analysis to 

incorporate the potential patient management implications of accurate and 

inaccurate diagnoses, particularly the implications for the patients’ quality of 

life.   

PET/CT and conventional imaging devices have different diagnostic test 

accuracies (DTA) for staging primary, recurrent and metastatic colorectal 

cancer, as such, in order to address the questions outlined in the aims, three 

separate economic models were designed.  Patient management routes also 

differ between colon and rectal cancer, and therefore the primary and 

recurrent models were adapted to incorporate the specifics of rectal and colon 

cancer separately.  The economic evaluation therefore involved five analyses, 

based on the three models, as detailed in Table 3-2.  
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Table 3-2: Model type and analysis undertaken 

  
 
Model Analysis 

1 Primary rectal cancer 

    colon cancer 
   
2 Recurrent rectal cancer 
    colon cancer 
   
3 Metastatic metastatic disease 
      

 

The cost-effectiveness of PET/CT as an add-on imaging device in pre-operative 

staging was assessed for: (i) primary rectal cancer, (ii) primary colon cancer, 

(iii) recurrent rectal cancer, (iv) recurrent colon cancer and (v) metastatic 

disease. 

Each model was analysed probabilistically, using Monte Carlo simulation, to 

determine the expected cost, expected outcomes (correct diagnoses and 

QALYs) and the expected cost-effectiveness (cost per correct diagnosis and 

cost per QALY gained).  The Monte Carlo simulations involved 2000 iterations 

for each model. Using any number of iterations greater than 1000 is generally 

considered acceptable (4), however to ensure a robust approach, the stability 

of the results was tested at 1000 iterations and 10,000 iterations for two of the 

analyses and found to be within reasonable bounds; i.e. there was only very 

slight changes to the incremental cost-effectiveness outcomes between 1000, 

2000 and 10,000 iterations and therefore 2000 iterations was deemed 

acceptable.  

3.2.2 Existing evidence  

The economic models were designed, developed and populated based on a 

variety of information sources, in particular, from published data sources, 

literature and in consultation with clinical experts. 

Previous economic evaluations of imaging devices for CRC were used to aid the 

design of the models, while the systematic review component of the research 
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project derived diagnostic test accuracy evidence for PET/CT and alternative 

imaging modalities.  Economic and non-economic literature was required to 

inform specific model parameters, such as resource use, implications of 

diagnosis on patient management and therapeutic impact, quality of life and 

survival.  Costing and resource use information was obtained from both the 

literature and UK NHS cost information sources such as the British National 

Formulary (100), Department of Health Reference Costs (101) and the Personal 

Social Services Research Unit (102).   

Papers which were considered to be potentially relevant for the health 

economic evaluation were identified by the systematic reviewers during their 

screening process and passed on to the health economists as first-line 

literature to inform the development of the economic model.  These initial 

papers provided an indication of the types of literature that were available and 

helped inform the design of the economic evaluations.  Having established 

some first-line literature, a separate non-systematic literature search was 

undertaken in November 2009 to provide further information on the various 

parameters for the economic models. The objective was to search for and 

utilise information from economic evaluations and non-economic papers to 

develop and populate the economic models. Specifically, the search considered 

what evidence was available regarding the costs, treatment outcomes, 

management pathways, overall survival, quality of life and adverse events 

experienced by CRC patients undergoing pre-operative screening for primary, 

recurrent or metastatic colorectal cancer. 

The following electronic databases were searched from beginning until 

November 2009: Medline, Embase, Web of Science, CINAHL Plus, Cochrane 

Library (NHSEED, HTA, CENTRAL, DARE), the Health Management Information 

Consortium (HMIC) and the CEA Registry.  Specific searches were constructed 

for four main areas (PET/CT imaging for colorectal cancer, economics, adverse 

events or quality of life, and decision analysis) for each of the databases, as 

detailed in Appendix 1.   Inclusion criteria were applied to include relevant 

publications in any language that provided information on the diagnostic 

imaging devices PET/CT, contrast enhanced CT (ceCT) or MRI for detecting 

colorectal cancer, with regards to the topic areas of economic evaluation, 
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costing, patient management and therapeutic impact, quality of life and 

overall survival.  Papers that only provided details on diagnostic test accuracy 

(DTA) were excluded, as this detail was being gathered by the systematic 

review team.  Literature that was only detailed in conference proceedings or 

abstracts was also excluded.  The search outputs are detailed in Table 3-3 

below, resulting in a total 51 papers identified from the search which were 

deemed to be of relevance, plus an additional four quality of life papers 

identified through hand searching.   

Table 3-3: Economics literature search 

Search Stage Search Strategy / Specified Criteria N o. of 

papers  

 

Initial search 

 

Identified 902 papers after de-duplication.  

Appendix 1 details the search for each database 

 

902 

 

Check titles & 

abstracts 

  

 Rejected 802 papers: All deemed irrelevant at 

title and abstract 

 

100 

 

Check full paper, apply 

inclusion criteria  

  

Rejected 49 papers: Irrelevant / unavailable / 

abstract only / conference proceeding (21);  

Irrelevant / efficacy data alone (28) 

 

 

51 

 

 

Final papers 

 

Costing studies (7)  

Economic evaluations (10)  

Quality of life (2) 

Survival (4) 

Management (28) 

Hand searched quality of life papers (4) 

 

 

55 

 

Information from this literature was used in consultation with the clinical 

experts involved with the project in order to design the models, in particular 

to identify appropriate comparators, management pathways and parameter 

estimates for each model. 
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3.3 Model design and development 

Each of the three models was developed to incorporate the short term 

diagnostic pathway for the patient, the resultant treatment options and longer 

term outcomes such as patient survival and quality of life.  Each model initially 

adopted a decision tree design to illustrate the patient pathway from 

suspected disease through to test outcome to distinguish between accurate and 

inaccurate disease staging. The costs and diagnostic test accuracy of the 

imaging devices were attributed to the appropriate branches in the trees.  

Following this, optimal treatment strategies with their associated costs and 

utilities were assigned dependent on the diagnosis from the decision tree, in 

order to account for treatment under both accurate and inaccurate staging.  A 

longer term survival simulation was then undertaken to account for the costs, 

quality of life and survival impact of optimal versus received treatment.  The 

diagnostic pathway for ‘add-on’ technologies will next be explored followed by 

details of the development of the Primary, Recurrent and Metastatic models 

respectively.  

3.3.1 The diagnostic pathway 

An economic evaluation for an intervention that is utilised as an add-on 

technology can be more complex than for a typical evaluation where cost-

effectiveness is determined as a replacement technology.  In this case, the 

evaluation involves the combination of two or more diagnostic tests and 

therefore presents some issues for mapping the diagnostic pathway and 

interpretation of test results, particularly if the second test refutes the 

outcomes from the first test.  Therefore, prior to developing the decision 

models, the diagnostic pathway with a combination of two diagnostic tests 

needs to be explored.   

In mapping the patient pathway for a diagnostic technology, decision trees are 

an ideal tool and typically follow the chronological order of the patient 

experience, for example, from a patient’s initial examination, through to any 

tests, diagnosis and treatment, with the terminal node representing the true 
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patient disease status in order to distinguish between correct and incorrect 

diagnoses. However, in the case of diagnostic interventions, it may be more 

appropriate to structure the tree with disease prevalence at the beginning of 

the tree, prior to any diagnostic tests, in order to present a clearer, logical 

pathway.  Phelps et al.(103) use such a strategy and portray a standard 

decision tree for a diagnostic test with disease prevalence at the first chance 

node, prior to the diagnostic test outcomes.  Snider et al. (page 48) (61) also 

recommend this approach where appropriate. 

“Often the first chance node on a decision branch incorporates the 

characteristics of the population relevant to the prevention problem.  

The characteristics of the relevant population may be demographic, may 

be related to the prevalence of a disease or injury…” 

Classifying the disease prevalence at the outset helps build a clear and logical 

structure in which the diagnostic test and its accuracy can then be identified, 

finishing up with correct or incorrect diagnosis at the terminal node.  Fenwick 

(104) also prefers this approach for diagnostic interventions, noting that 

regardless of whether true disease status is mapped at the beginning or 

terminal nodes of the tree, the information and the probabilities associated 

with each pathway are the same.  Therefore, in developing the decision tree a 

structure with disease prevalence at the outset was considered to be an 

appropriate approach.  

Diagnostic testing is undertaken to aid in the diagnosis or detection of a 

disease, and the accuracy of the test depends on how well the technology or 

test correctly identifies or diagnoses the disease. The standard approach for 

measuring correct and incorrect diagnosis is the Diagnostic test accuracy 

(DTA), which is expressed through the test characteristics sensitivity and 

specificity. The sensitivity of a test is the probability that it can identify true 

positives, i.e. the proportion of patients who have the disease and are 

identified positively by the test (105).   The specificity of the test is the 

probability that the test correctly identifies true negatives, i.e. the proportion 

of patients without the disease who correctly receive a negative test result.  

These test characteristics are outlined in Table 3-4 for clarity.   
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Table 3-4: Diagnostic test accuracy 

 Disease Prevalence 

Test outcomes Disease +  Disease - 

Test + True Positive False Positive 
  (sensitivity) (1-specificity) 

Test - False Negative True Negative 

  (1 – sensitivity) (specificity) 
 

As detailed in Table 3-4, incorrect diagnoses can fall into two categories: false 

positives or false negatives.  When a patient has the disease but the diagnostic 

test (incorrectly) identifies no disease, this is known as a false negative, and 

the probability is equivalent to 1 minus the sensitivity of the test.  When a 

patient does not have the disease, but a diagnostic device incorrectly identifies 

the patient as disease positive, this is known as a false positive, and the 

probability of occurring is equivalent to 1 minus the specificity.   As all 

diagnostic devices classify patients with some error, a clinician must select 

amongst various ways to interpret the diagnostic test results, trading-off the 

risks of false positives and false negatives (103).  Therefore in an economic 

model it is important to analyse the longer term impact of diagnostic test 

accuracy, and specifically the impact on patient management in terms of false 

positives (where the patient may subsequently receive treatment for a disease 

they do not have) and false negatives (where patient may not receive 

treatment or experience a delay in treatment for their disease which was not 

identified).   

If there is more than one diagnostic device used in the detection or diagnosis 

of a disease, such as in the case of add-on technologies, clinicians must deal 

with test error (false negatives and false positives) from both tests, and will 

require a strategy for dealing with conflicting test results (106;107).  Figure 3-1 

provides an example of a two test intervention, illustrating one branch from a 

decision tree for intervention (A) that involves two tests.   
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Disease Prevalence Test 1 DTA Test 2  DTA Alternative strategies
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Test 2 +ive + +
sensitivity 2

Test 1 +ive
sensitivity 1

Test 2 -ive + -
Disease +ive 1-sensitivity 2

prevalence

Test 2 +ive + -
sensitivity 2

Intervention A Test 1 -ive

1-sensitivity 1

Test 2 -ive - -
1-sensitivity 2

Test 2 +ive + +
1-specificity 2

Test 1 +ive
1-specificity 1

Test 2 -ive + -
Disease -ive specificity 2

1-prevalence

Test 2 +ive + -
1-specificity 2

Test 1 -ive

specificity 1 Test 2 -ive - -
specificity 2  

Figure 3-1: Diagnostic pathway for a two test intervention 
This is an example with only 1 branch of a decision tree for an Intervention A, and does not include the comparator arm at the initial decision node  
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The branch for intervention A initially splits the patient population according 

to their true disease status, Disease positive (prevalence) or Disease negative 

(1 minus prevalence), and then incorporates the first diagnostic test, so that 

accurate (true positives and true negatives) and inaccurate (false positive and 

false negative) scan diagnoses can be identified from Test 1.  The diagnostic 

test accuracy (sensitivity and specificity) for Test 1 is initially applied 

identifying true positives (sensitivity1) and true negatives (specificity1) for 

accurate diagnoses; and false negatives (1-sensitivity1) and false positives (1- 

specificity1) for inaccurate diagnoses.  Following this, the second test is 

incorporated into the respective branches and the diagnostic test accuracy for 

Test 2 is applied (sensitivity2, 1-sensitivity2, specificity2, 1-specificity2).  As 

can be seen in Figure 3-1, Test 2 either confirms or refutes the diagnoses from 

Test 1 depending on the diagnostic test accuracy of Test 2.  In order to deal 

with the combined diagnostic test accuracy outcomes from the two tests, it is 

necessary to adopt a strategy to deal with conflicting results. 

In the upper most layer of the branch in Figure 3-1, both Test 1 and Test 2 give 

positive disease confirmation, however, in the lower section of this upper 

branch, Test 2 is negative, refuting the positive Test 1 outcome.  In this 

situation which test diagnosis should be accepted?  If Test 2 outcomes always 

override Test 1 outcomes, then there is no need for Test 1 and the situation is 

no longer an add-on scenario but a replacement, and likewise if Test 1 

outcomes are always chosen, there is no need for the add-on Test 2.  

Therefore, in a situation where the two tests are combined, there are two 

alternative strategies that can be adopted: confirmatory positive or 

confirmatory negative, as illustrated after the terminal node in Figure 3-1.   

A confirmatory positive strategy would accept positive outcomes over negative 

results, i.e. where Test 2 is positive but Test 1 was negative the positive 

diagnosis from Test 2 would be accepted. Likewise where Test 1 is positive and 

Test 2 is negative, the positive result from Test 1 is accepted.  This will have 

implications in terms of the proportion of false positives and false negatives 

identified from the tree.  A confirmatory positive strategy benefits from the 

sensitivity of both tests, and may help identify a greater proportion of true 

positives than either test alone because false negatives from Test 1 would be 
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refuted by positive results from Test 2 in this strategy.  However, this is at the 

expense of identifying fewer true negatives and also incurring a greater 

proportion of false positives i.e. trading-off specificity for improved sensitivity.  

The alternative strategies after the terminal node in Figure 3-1 shows that a 

confirmatory positive strategy results in mostly positive diagnoses from the 

tree, with a greater proportion of both true and false positives.  In terms of 

patient management, the impact of additional false positives in this strategy 

must be considered, which is likely to lead to (over)treatment of patients for a 

disease that they don’t actually have. 

Alternatively, a confirmatory negative approach can be taken, whereby 

negative results overrule positive results, and in situations where the two tests 

contradict each other, the negative outcome is accepted.  This is the second 

strategy illustrated at the terminal node in Figure 3-1, resulting in a greater 

proportion of negative outcomes.  With this strategy more true negative cases 

will be identified, however, there will also be a greater proportion of false 

negatives identified.  Therefore, this strategy benefits from the specificity of 

both tests, at the expense of lower overall sensitivity, and a greater proportion 

of false negative identifications.  In terms of patient management, the impact 

of additional false negatives in this strategy must be considered, which is likely 

to lead to missed treatment (or at least delayed treatment) for patients with a 

disease, who were not identified correctly. 

It is also important to note that if a confirmatory positive strategy is taken, 

then theoretically it would be more efficient to only incorporate Test 2 when 

Test 1 gives negative results.  This strategy would give identical results as the 

confirmatory positive strategy but would only incur the cost of Test 2 in some 

rather than all cases.  Likewise, if a confirmatory negative strategy is adopted, 

it would be more efficient and cost saving to only use Test 2 where Test 1 gives 

a positive result.  While this is theoretically more efficient, in practice this 

approach may be less well accepted, and in the case of PET/CT, clinicians 

advised that all patients would be given a scan regardless of the conventional 

test outcomes.   
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In developing the model for the PET/CT as an add-on device in colorectal 

cancer staging, clinicians advised that in practice they adopt a confirmatory 

positive strategy for add-on PET/CT, i.e. positive results overrule negative 

results, and therefore results are only treated as negative when both the 

conventional and PET/CT test outcomes are negative.  This strategy takes 

advantage of improved sensitivity from an add-on device, however this is at 

the risk of some over-staging (and subsequent unnecessary treatment) through 

false positives.  By adopting a confirmatory positive strategy the clinicians 

indicate the importance of the benefit from improved sensitivity and are 

willing to accept the risk of incurring some additional false positives which may 

result in some patients receiving treatment unnecessarily, rather than adopt a 

strategy which would favour specificity and result in false negative 

identifications where patient would be untreated (or delayed treatment).   

Therefore the baseline models adopted a confirmatory positive strategy, based 

on clinician advice, assuming that any positive test outcome overrides negative 

results.  Negative results from the conventional imaging tests which are 

refuted by the PET/CT test are treated as positive, and likewise negative 

results from a PET/CT scan which conflict with prior positive results, are still 

treated as positive.   In situations where one of the tests is found to be 

superior to the other (in terms of both sensitivity and specificity) then the 

superior test can be taken to represent the combined DTA (108), therefore, in 

the PET/CT model a confirmatory positive strategy was adopted where there 

was no test superiority, and where one diagnostic test was found to be superior 

over the other, then this was taken to represent joint DTA in the add-on arm.    
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3.3.2 Model 1: Primary rectal & colon cancer 

Diagnostic Pathway 

The cost-effectiveness of PET/CT as an add-on device in primary (rectal and 

colon) cancer relates to the initial, pre-operative staging of primary patients.  

The value of incorporating a PET/CT scan in addition to conventional imaging 

in the primary disease stage is potentially greater sensitivity for the 

identification of nodal and metastatic disease (109-111); i.e. the N and M 

classifications in the TNM staging system, as detailed earlier in Table 3-2.  The 

only diagnostic test accuracy evidence available for PET/CT in this context 

relates to the identification of lymph node involvement (109;110) and 

therefore the primary models were designed to evaluate PET/CT as an add-on 

device in nodal staging.  In the AJCC staging system (detailed in Table 3-2), 

stages 1 and 2 have no nodal involvement, while both AJCC stages 3 and 4 can 

have some nodal involvement, and therefore the AJCC stages were considered 

to be an appropriate classification for distinguishing between nodal 

involvement in the primary model.   

Figure 3-2 depicts the decision tree structure used for mapping the diagnostic 

pathway in the primary model. Due to the absence of economic models of 

PET/CT in primary CRC in the literature (none were identified from the 

systematic review or economics literature search), this model structure was 

informed primarily through consultation with clinical experts from the research 

team in order to accurately reflect the clinical pathway for nodal staging.  The 

model was altered to include the disease specific criterion for rectal and colon 

cancers separately.   
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Disease Prevalence Diagnostic Test Accuracy AJCC stage identified

Test +ive AJCC 3 as AJCC 3 (accurate)
sensitivity AJCC 4 as AJCC 4 (accurate)

Nodal Spread (+)
AJCC 3 + 4

AJCC 3 as AJCC1 (inaccurate)
Test -ive AJCC 3 as AJCC 2 (inaccurate)
1-sensitivity AJCC 4 as AJCC 1 (inaccurate)

AJCC 4 as AJCC 2 (inaccurate)
Conventional strategy

AJCC 1 as AJCC 3 (inaccurate)
Test +ive AJCC 1 as AJCC 4 (inaccurate)
1-specificity AJCC 2 as AJCC 3 (inaccurate)

AJCC 2 as AJCC 4 (inaccurate)
Initial Assessment: suspected No nodal spread (-)
primary colon / rectal cancer AJCC 1 + 2

Test -ive AJCC 1 as AJCC1 (accurate)
specificity AJCC 2 as AJCC 2(accurate)

PET/CT +ive AJCC 3 as AJCC 3 (accurate)
sensitivity 2 AJCC 4 as AJCC 4 (accurate)

Test +ive
sensitivity 1

PET/CT -ive AJCC 3 as AJCC 3 (accurate)
Nodal spread (+) 1-sensitivity 2 AJCC 4 as AJCC 4 (accurate)
AJCC 3 + 4

PET/CT +ive AJCC 3 as AJCC 3 (accurate)
sensitivity 2 AJCC 4 as AJCC 4 (accurate)

Conventional then Test -ive
add-on PET/CT 1-sensitivity 1

AJCC 3 as AJCC1 (inaccurate)
PET/CT -ive AJCC 3 as AJCC 2 (inaccurate)
1-sensitivity 2 AJCC 4 as AJCC 1 (inaccurate)

AJCC 4 as AJCC 2 (inaccurate)

AJCC 1 as AJCC 3 (inaccurate)
PET/CT +ive AJCC 1 as AJCC 4 (inaccurate)
1-specificity 2 AJCC 2 as AJCC 3 (inaccurate)

Test +ive AJCC 2 as AJCC 4 (inaccurate)
1-specificity 1

AJCC 1 as AJCC 3 (inaccurate)
PET/CT -ive AJCC 1 as AJCC 4 (inaccurate)

No nodal spread (-) specificity 2 AJCC 2 as AJCC 3 (inaccurate)
AJCC 1 + 2 AJCC 2 as AJCC 4 (inaccurate)

AJCC 1 as AJCC 3 (inaccurate)
PET/CT +ive AJCC 1 as AJCC 4 (inaccurate)
1-specificity 2 AJCC 2 as AJCC 3 (inaccurate)

Test -ive AJCC 2 as AJCC 4 (inaccurate)

specificity 1
PET/CT -ive AJCC 1 as AJCC1 (accurate)
specificity 2 AJCC 2 as AJCC 2(accurate)

 

Figure 3-2: Decision tree for staging primary colorectal cancer 

 

The decision tree model begins with patients who have had an initial 

assessment (involving a clinical examination, colonoscopy or sigmoidoscopy and 

a biopsy), which identified them as having primary (rectal or colon) cancer.  

The decision node in the tree represents the decision between the 

conventional strategy, where patients receive the standard imaging 

procedures, or the intervention strategy where PET/CT is added on.  The 
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standard procedure for patients suspected of primary colon cancer is a contrast 

enhance computerised tomography (ceCT) scan of the chest, abdomen and 

pelvis to diagnose and/or stage the extent of the disease.  In the case of 

primary rectal cancer, the conventional procedure involves a ceCT scan of the 

chest, abdomen and pelvis followed by an MRI scan of the pelvis2.  This 

conventional pathway is represented in the top half of the tree in Figure 3-2. 

The intervention arm involves the conventional work up (ceCT for colon cancer 

or ceCT and an MRI for rectal cancer) followed by a PET/CT scan, which is 

depicted in the bottom half of the tree.   

The primary decision tree model has been designed using actual CRC disease 

status at the outset, splitting the patient population according to the disease 

prevalence prior to the imaging scans, so that accurate and inaccurate scan 

diagnoses can be clearly identified.  The objective of the scan in this model is 

to assess whether there is any nodal spread and therefore, after the initial 

decision node depicting the choice between the conventional or add-on 

PET/CT intervention, the tree divides the population according to actual nodal 

spread disease status using the AJCC colorectal cancer staging system (95) as 

detailed in Table 3-2.  In the AJCC system, stages 1 and 2 have no nodal 

involvement, while both AJCC stages 3 and 4 can have some nodal 

involvement.  

After dividing patients according to their true nodal spread disease status, the 

work-up of diagnostic tests are undertaken which will either identify nodal 

involvement (test positive), or no nodal involvement (test negative), depending 

on the sensitivity and specificity of the test.  Having previously specified actual 

disease status, the top branch represents primary (rectal or colon) cancer with 

nodal spread (AJCC stages 3 and 4), and therefore at the test chance node the 

tree branch splits depending on whether the test was positive (accurately 

identified nodal involvement) or negative (inaccurately identifying no nodal 

involvement).  The true positive outcomes correctly identify AJCC 3 as AJCC 3 

and AJCC 4 as AJCC 4, however, the false negative outcomes lead to 

                                         
2 For simplification the conventional strategy is illustrated as one test and the intervention as two 

tests, however, in the case of primary rectal cancer the conventional strategy involves two 
tests and the intervention three tests.  
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inaccurate under-staging, identifying no nodal involvement (AJCC 1 and 2) 

when the patients do have nodal involvement (AJCC 3 and 4).  The outcomes 

identified are detailed at the terminal node in Figure 3-2, where AJCC3 is 

identified as AJCC1 or AJCC2, and AJCC 4 is identified as AJCC 1 or AJCC2.  

The model does not allow for inaccuracies in staging between stages AJCC 3 

and 4 or between AJCC1 and 2, as the purpose of the imaging scans (and 

therefore the model) is to identify spread to the lymph nodes.  Therefore the 

model assumes that once lymph node spread has been identified as either 

positive or negative, the corresponding AJCC classifications (AJCC 1 & 2 for no 

nodal involvement or AJCC 3 & 4 for nodal involvement) are applied based on 

the AJCC stage specific prevalence.   

The bottom half of the top branch, which split at the disease prevalence 

chance node, represents primary cancer with no nodal spread (AJCC 1 and 2).  

The tree depicts the negative test outcomes that were accurate (true 

negatives), i.e. patients who are staged as AJCC1 or 2 accurately, and also 

positive test outcomes which were inaccurate (false positives), again 

depending on the sensitivity and specificity of the test.  These false positive 

outcomes diagnose nodal involvement, over-staging the extent of the disease 

which is actually no nodal involvement (inaccurately diagnosing AJCC 1 as AJCC 

3 or AJCC 4, and AJCC2 as AJCC 3 or AJCC 4).  In this way the decision tree 

separates out accurate and inaccurate diagnosis of nodal involvement. 

Patients in the conventional arm of the model will be staged using the standard 

diagnostic test work-up described above (ceCT of the chest, abdomen and 

pelvis in colon cancer, and ceCT followed by a pelvic MRI in rectal cancer), 

represented by ‘Test’ in the top half of the tree in Figure 3-2.  Patients in the 

intervention arm of the model are also given these conventional imaging tests 

represented by ‘Test’, followed by the addition of a PET/CT scan, represented 

as ‘PET/CT’ in the bottom half of Figure 3-2.  In the intervention arm, the 

PET/CT test is given regardless of the outcomes from the initial test, and 

therefore the diagnostic test accuracies from both tests are combined.  As 

PET/CT is an add-on test after the conventional test, a strategy is required to 

deal with the combined diagnostic test accuracy outcomes, particularly when 

one of the tests refutes the other (as discussed in section 3.3.1). The clinicians 
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advised that a confirmatory positive strategy is adopted in practice, and 

therefore the baseline model adopts such a strategy, whereby positive test 

results override negative results.  Negative results from the conventional 

imaging tests which are refuted by the PET/CT test are treated as positive and 

vice versus, so that results are only treated as negative when both the 

conventional and PET/CT test outcomes are negative.   

In the intervention arm of the tree, the outcomes are different from the top 

half of the tree, due to the combined DTA and the confirmatory positive 

strategy adopted.  In Figure 3-2 the top branch in the intervention arm 

represents primary cancer with nodal spread (AJCC 3 and 4).  The tree depicts 

the conventional test outcomes which are either positive (sensitivity 1) or 

negative (1-sensitivity 1) and is then directly followed by the PET/CT test, 

regardless of the outcomes from the conventional test.  The DTA of the PET/CT 

test is then applied in the tree, distinguishing between positives (sensitivity 2) 

and negatives (1-sensitivity 2). In the top layer of this branch both tests were 

positive and therefore stages AJCC 3 and AJCC 4 are identified accurately. At 

the lower level of this branch, where the PET/CT chance node is negative, it 

conflicts with the conventional tests positive result, however, the positive 

outcome takes precedence due to the strategy adopted, and therefore this 

branch also identifies AJCC 3 and 4 accurately. Only when both the 

conventional and PET/CT tests report negative outcomes are the results 

treated as such.  Figure 3-2 reports the AJCC stages identified, and whether 

these are accurate or inaccurate at the terminal node.  

The proportion of accurate and inaccurate nodal staging outcomes at the end 

of the decision tree branches for the conventional arm of the model are 

compared against the intervention arm of the model and short-term cost-

effectiveness can be assessed in terms of the incremental cost per accurate 

diagnosis.  These interim decision model outcomes of accurate and inaccurate 

diagnosis for the four AJCC stages were then used to incorporate patient 

management in the model, as discussed next. 
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Treatment options 

Following the development of a decision tree to map the diagnostic pathway 

for primary (rectal and colon) cancer, the economic model was adapted to 

incorporate the treatment impacts of accurate and inaccurate staging in 

primary colorectal cancer. The optimal treatment strategies for each AJCC 

stage were identified, along with their associated costs and utilities and 

applied in the model depending on the stage identified (diagnosis) from the 

decision tree.   

Optimal treatment combinations for the four AJCC stages were determined 

through consideration of the literature (112-118) and in consultation with 

clinical experts. The various treatment options vary slightly between colon and 

rectal cancer, with the main difference being that radiotherapy is only 

appropriate for rectal cancer patients. Therefore the treatment combinations 

for both types of cancer were ascertained. Figure 3-3 details the optimal 

treatment options as decision tree branches, which were applied to each AJCC 

stage identified in the model for both rectal and colon cancer.   

For primary colorectal cancer the model assumed that all AJCC 1 patients 

receive primary surgery; this is the only treatment option for patients with 

stage AJCC1.  In the case of primary rectal cancer surgery entails rectal 

excision with lymphadenectomy, and for colon cancer a colonic resection with 

lymphadenectomy.   
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AJCC stage identified Primary Rectal treatment optio ns AJCC stage identified Primary Colon treatment option s

AJCC 1 Surgery (rectal excision with lymphadenectomy) AJCC 1 Surgery (colonic resection with lymphadenectomy)

Surgery
Surgery

AJCC 2  Longcourse chemo-radiotherapy then surgery AJCC 2 
Surgery followed by adjuvant chemotherapy

Surgery followed by adjuvant chemotherapy

Surgery
Surgery

AJCC 3  Longcourse chemo-radiotherapy then surgery AJCC 3
Surgery followed by adjuvant chemotherapy

Surgery followed by adjuvant chemotherapy

Surgery Surgery

 Longcourse chemo-radiotherapy then surgery Surgery followed by metastatic surgery
AJCC 4

AJCC 4 Surgery followed by metastatic surgery Surgery followed by palliative care 

Surgery followed by palliative care Palliative care 

Palliative care 

 

Figure 3-3: Treatment pathways for primary rectal & colon cancers 
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For patients with primary rectal cancer identified as stage AJCC2 or AJCC 3, 

there are three treatment options: surgery alone, long course chemo-

radiotherapy prior to surgery or surgery followed by adjuvant chemotherapy.  

Surgery refers to a rectal excision with lymphadenectomy, long course chemo-

radiotherapy refers to 5 weeks of radiotherapy (45Gy in 25 fractions over 5 

weeks) followed by a 12 week course of chemotherapy of 5 Fluorouracil (5FU) 

(119;119), and adjuvant chemotherapy involves a 6 months course post surgery 

of intravenous 5FU and Oxaliplatin (100;120).   Primary colon cancer patients 

identified as stage AJCC2 or AJCC 3, have two treatment options: surgery 

alone, or surgery followed by adjuvant chemotherapy.  Surgery refers to a 

colonic resection with lymphadenectomy, and adjuvant chemotherapy involves 

a 6 months course post surgery of intravenous 5FU and Oxaliplatin (100;120).    

AJCC4 rectal cancer patients can receive one of five treatment options: 

primary surgery alone, long course chemo-radiotherapy prior to primary 

surgery, primary surgery followed by metastatic surgery, primary surgery 

followed by palliative care or palliative care alone.  Surgery refers to a rectal 

excision with lymphadenectomy, long course chemo-radiotherapy refers to 5 

weeks of radiotherapy (45Gy in 25 fractions over 5 weeks) followed by a 12 

week course of chemotherapy of 5 Fluorouracil (5FU) (97;119), and adjuvant 

chemotherapy refers to a 6 months course post surgery of intravenous 5FU and 

Oxaliplatin (100;120).  Metastatic surgery refers to surgery at the metastatic 

site and palliative care, which is treatment designed to relieve symptoms and 

improve quality of life (as opposed to having a curative intent), represents an 

array of palliative treatments which may include chemotherapy or chemo-

radiotherapy for rectal cancer patients.  In the case of colon cancer AJCC 4 

patients have four treatment options: primary surgery alone3 (colonic resection 

with lymphadenectomy), primary surgery followed by metastatic surgery, 

primary surgery followed by palliative care or palliative care alone. 

                                         
3 There is typically a fifth treatment option of primary surgery combined with contemporaneous 

resection of metastases, however, after consultation with clinical experts it was decided this 
additional treatment option would only result in an unquantifiable and likely marginal effect on 
overall cost compared to primary surgery alone, hence these are considered together. 
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Assigning these optimal treatment options for each AJCC stage in the model 

means that patients in the decision tree who are accurately diagnosed will 

receive optimal treatment while patients who are inaccurately diagnosed 

(through false positive or false negative test outcomes) will receive suboptimal 

treatment, i.e. patients with no nodal involvement (AJCC1 or AJCC2 patients) 

who are inaccurately diagnosed as having nodal involvement (over-staged to 

either AJCC3 or 4) will receive unnecessary AJCC3 or AJCC4 treatments.  In the 

case of inaccurate staging, the model assumes patients will receive the 

treatments for their (mis)diagnosed stage, but within a year their true 

diagnosis will be correctly identified and optimal treatment will then be given. 

This assumption was made in consultation with clinical experts and was 

considered to be valid with one year as an appropriate time scale for 

encompassing most cases of under-staging.  In this way the model accounts for 

the cost and quality of life of optimal treatment and in the treatments which 

are received unnecessarily or initially failed to be received, due to over or 

under-staging.  No transitions between nodal states are allowed during the 

year. The treatment profiles were assigned costs and utility weights in the 

model, which will be discussed later in section 3.4.1.   

Survival 

Following treatment for the diagnosed AJCC stage, the model incorporated a 

survival analysis in order to capture the mortality and quality of life impacts 

for the patients in each intervention.  The survival analysis utilised a basic 

two-state Markov format for each of the four AJCC stages to calculate the 

average life expectancy and average quality adjusted life years (QALYs) in each 

AJCC stage.  Figure 3-4 illustrates the model for the four AJCC colorectal 

cancer stages.   The first state represents the patients AJCC colorectal cancer 

stage, and the patient can either remain in this state or die moving into the 

death state. 
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AJCC 2

Death

AJCC 4

Death

AJCC 3

Death

utility weight

mortality rate

AJCC 1

Death

 

Figure 3-4: Two-state survival model for each AJCC colorectal cancer stage 

 

The survival analysis assumed four patient cohorts, one for each AJCC stage, 

starting with the sample of patients in each stage in the Scottish CRC dataset 

(121). The model used annual cycles and assumed a starting age of 50 years4.  

A utility weight is applied to the AJCC state to reflect that state’s average 

utility for five years post diagnosis; each of the four AJCC states has a different 

mean utility weight (122).  Studies have shown (122;123) that five years post-

diagnosis quality of life in colorectal cancer patients is on par with age specific 

general population utility weights, and therefore after five years in the AJCC 

state, it was assumed that patients who are still alive will have age specific 

population utility weights for the remainder of time in that state (124). 

Transition from the AJCC state to death was represented by the colorectal 

cancer AJCC stage specific morality rates for the first 10 years of the model 

(based on Scottish colorectal cancer five year overall survival estimates for 

each AJCC stage (121)).  Returning to age specific population mortality rates 

five years post diagnosis was considered lenient as there is evidence of disease 

related death beyond five years (94), and therefore a more conservative 

approach was adopted whereby patients were considered to be cured 10 years 

post diagnosis.  Beyond 10 years patients were assumed to have survived their 

                                         
4 The starting age of 50 years was used in the model as the dataset is based on the Scottish 

CRC population aged 50yrs and over (mean age 61 yrs). The models were also run using an 
older population (starting at age 70yrs), with the resultant effect of lowering life expectancy 
and quality adjusted life expectancy for patients in each AJCC stage, but no overall change to 
the incremental cost-effectiveness outcomes. 
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cancer and were assigned the age specific population level mortality rates 

(which were derived from routine data, and included all mortality including 

that from cancers)(125).  

Figure 3-5 demonstrates the survival curves for each of the AJCC stages in 

patients suspected of primary rectal cancer. The population in each AJCC stage 

group was taken from the Scottish CRC dataset (121); however as the survival 

analysis is used to calculate average life expectancy in each group, the sample 

size at diagnosis (time zero) for each group in Figure 3-5 was assumed to be 

the same (n=1000) in order to clearly illustrate the difference in survival curves 

between the different AJCC groups.   
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Figure 3-5: Overall survival for primary rectal cancer for each AJCC stage  

 

As would be expected from AJCC 3 and AJCC4 patients, who have lymph node 

involvement in their primary cancer (and metastases to other sites in the body 

for AJCC 4), survival falls sharply in the first few years post-diagnosis, with 

only a small number of AJCC 4 patients surviving beyond ten years. The model 

starting age was set at 50 years for each AJCC group, based on the information 

from the Scottish dataset (121).  The AJCC4 population have been diagnosed 
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with metastatic disease at their first (primary) diagnosis.  This population have 

a very low life expectancy, and at 5 years post-diagnosis only 13% remain alive, 

and 10 years post diagnosis only 1.8% remain alive.  

Note how AJCC stages 1 through to 3 survival curves all flatten out after 10 

years; this is due to the change to population mortality rates.  If they have 

survived this long, they are considered to be cured from their cancer and 

subject to same life expectancy as the general population, for their age.  Ten 

years post diagnosis, the age specific population mortality rates kick in, and 

after 25 years the survival curves begin to decline more rapidly (population age 

75 years).  A very small percentage of the AJJC 1 & 2 populations live until 

approximately 100 years old.  This is based purely on UK age specific 

population mortality rates, which incorporate all causes of death, including 

cancer 

This survival analysis generated average life expectancies and average quality 

adjusted life years (QALYs) for each of the AJCC stages.  These represent the 

average life expectancy and QALYs for patients who were accurately staged.  It 

was assumed that patients who were inaccurately staged would be re-

diagnosed within one year to their accurate diagnosis; however they would 

suffer negative impacts on their mortality and quality of life where 

appropriate. Publications (112;114;126-128) indicate that in comparison to 

conventional imaging modalities PET/CT scanning has no impact on overall 

survival; however, consultation with clinical experts highlighted that patients 

with AJCC 3 stage cancer (nodal involvement but no metastases) who fail to 

receive adjuvant chemotherapy due to inaccurate staging, may suffer a 

reduction in overall survival.  This was incorporated into the model for AJCC 3 

patients who were inaccurately under-staged as AJCC1 or 2, as a 25% reduction 

in overall survival.  No other survival deductions were applied for inaccurate 

diagnoses; given the evidence form the literature and consultation with clinical 

experts.   

With regards to adverse impacts on quality of life, a deduction was applied to 

utility to account for the impact of misdiagnosis where patients failed to 

receive treatment (due to false negative diagnoses) or received unnecessary 
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treatment (due to false positive diagnoses).    With regards to the disutility 

applied, this was used to account for the negative health impacts of delayed 

(or no) treatment, where it would have been optimal if given. Utility values 

are applied to the various (true disease) states to reflect quality of life in that 

state, given optimal treatment.  A 6 month or 1 year disutility was added to 

cases that were inaccurately diagnosed, to reflect the negative impact on their 

health of failing to receive treatment.  While in the short term invasive 

treatments may reduce quality of life (and is accounted for in the model), 

ultimately these treatments are used to improve the health of the patient.  By 

failing to receive necessary treatment, it was felt that a reduction in quality of 

life was required to reflect the intermediate (up to 1 year) impact of this on 

the patients overall health state.   

Table 3-5 details the sub-optimal treatments received due to inaccurate 

staging, through false positive and false negative diagnoses, and the duration 

of negative impact this has on quality of life in the model.  
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Table 3-5: Inappropriate treatments for inaccurate staging 

Inaccurate 
staging Inappropriate treatment Impact on quality of life 

AJCC 3 as 1  Fail to receive long course chemo-radiotherapy 6 months disutility 
  Fail to receive adjuvant chemotherapy 6 months disutility 
        
AJCC 3 as 2 Fail to receive adjuvant chemotherapy 6 months disutility 

  
Receive unnecessary long course chemo-
radiotherapy 

6 months alternative utility 
 

        
AJCC4 as 1 Fail to receive long course chemo-radiotherapy 6 months disutility 

  
Fail to receive metastatic surgery and/or palliative 
care 

1 year disutility 
 

        

AJCC 4 as 2 
Fail to receive metastatic surgery and/or palliative 
care 

1 year disutility 
 

        

AJCC 1 as 3 
Receive unnecessary long course chemo-
radiotherapy 

6 months alternative utility 
 

  Receive unnecessary adjuvant chemotherapy 6 months alternative utility 
        

AJCC1 as 4 
Receive unnecessary long course chemo-
radiotherapy 

6 months alternative utility 
 

  
Receive unnecessary metastatic surgery and/or 
palliative care 

1 year alternative utility 
 

        
        
AJCC 2 as 3 Fail to receive long course chemo-radiotherapy 6 months disutility 
  Receive unnecessary adjuvant chemotherapy 6 months alternative utility 
        

AJCC 2 as 4 
Receive unnecessary metastatic surgery and/or 
palliative care 1 year alternative utility 

  Fail to receive long course chemo-radiotherapy 6 months disutility 
  Fail to receive adjuvant chemotherapy 6 months disutility 
        
 

These inappropriate treatments correspond to the inaccurate diagnoses 

detailed in Figure 3-2, whereby false negative diagnoses lead to stage AJCC 3 

being identified as AJCC 1 and AJCC 2, and stage AJCC 4 being identified as 

AJCC 1 and AJCC 2; while false positive diagnoses lead to stage AJCC 1 being 

identified as AJCC 3 and AJCC 4, and stage AJC C2 being identified as AJCC 3 

and AJCC 4. The parameter values and references are detailed in section 3.4 

The utility estimates were combined in the survival analysis and discounted at 

3.5% (24) to derive discounted quality adjusted life expectancies for each AJCC 

stage. 
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3.3.3 Model 2: Recurrent colorectal cancer 

The model developed for recurrent colorectal cancer follows a similar 

structure to the primary colorectal cancer model, incorporating the short term 

diagnostic pathway for the patient, the resultant treatment options and longer 

term outcomes such as patient survival and quality of life.  Development of the 

recurrent model is now discussed. 

Diagnostic Pathway 

The recurrent model was developed to assess the cost-effectiveness of PET/CT 

as an add-on technology in detecting recurrent rectal and colon cancer.  The 

additional value of incorporating a PET/CT scan to conventional imaging in this 

disease stage is through the ability to confirm or refute local recurrence and 

potentially identify metastatic recurrence.  

Figure 3-6 depicts the decision tree structure used for the recurrent model.  

This was altered to include the disease specific criterion for rectal and colon 

cancer separately.  The model structure was informed by the available 

literature (129;130) and based on consultation with clinical experts.   

The recurrent decision tree model begins with patients who have previously 

had surgical treatment for primary rectal or colon cancer and in a routine 

follow-up assessment (involving clinical examination, routine imaging and CEA 

testing) were found to have rising CEA levels, which identified them as 

potentially having recurrent rectal or colon cancer.  The decision tree then 

outlines the choice between conventional diagnostic testing and the add-on 

PET/CT strategy.  The standard procedure for patients suspected of recurrent 

colon cancer involves a ceCT scan of the chest, abdomen and pelvis, while in 

recurrent rectal patients it involves a ceCT scans of the chest, abdomen and 

pelvis and an MRI scan of the pelvis, to confirm or refute local recurrence and 

assess whether this is an isolated recurrence or associated with distant 

metastases.  The intervention arm also involves the conventional test, followed 

by a PET/CT test regardless of the conventional test outcomes.  
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Disease Prevalence Diagnostic Test Accuracy Recurrence status identified

Curable (accurate)
Test +ive
sensitivity

Non-curable (accurate)

Recurrence (+)
prevalence

Test -ive No recurrence (inaccurate)
1-sensitivity

Conventional Strategy
Curable (inaccurate)

Test + 
1-specificity

Non-curable (inaccurate)
No recurrence (-)
1-prevalence

Test - No recurrence (accurate)
specificity

Curable (accurate)
PET/CT +ive
sensitivity 2

Clinical Assessment: suspected Non-curable (accurate)
recurrent rectal / colon cancer Test +ive

sensitivity 1 Curable (accurate)
PET/CT -ive
1-sensitivity 2

Non-curable (accurate)
Recurrence (+)
prevalence

Curable (accurate)
PET/CT +ive
sensitivity 2

Test -ive Non-curable (accurate)
1-sensitivity 1

PET/CT -ive No recurrence (accurate)
Conventional plus add-on 
PET/CT 1-sensitivity 2

Curable (inaccurate)
PET/CT +ive
1-specificity 2

Non-curable (inaccurate)
Test +ive
1-specificity 1

Curable (inaccurate)
PET/CT -ive

No recurrence (-) specificity 2
1-prevalence Non-curable (inaccurate)

Curable (inaccurate)
PET/CT +ive
1-specificity 2

Test -ive Non-curable (inaccurate)
specificity 1

PET/CT -ive No recurrence (accurate)
specificity 2

 

Figure 3-6: Decision tree for staging recurrent colorectal cancer 

 

In Figure 3-6 the conventional pathway is represented in the top half of the 

tree, while the intervention pathway is represented in the bottom half.   
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Similar to the structure used in the primary models, this decision tree model 

has been designed using actual disease status, and therefore after the decision 

node depicting the choice between the conventional and intervention 

strategies, the tree splits the patient population according to their true disease 

status, so that accurate and inaccurate diagnoses can be identified.  The 

objective of the scan in this model is to assess whether there has been any 

recurrence of disease and therefore the tree divides disease prevalence into 

recurrence (isolated local or local combined with distant metastases) and no 

recurrence populations. The standard work-up of diagnostic tests are then 

undertaken, represented by ‘Test’ in Figure 3-6, which will either identify 

recurrence (test positive), or no recurrence (test negative).  Having previously 

specified actual recurrence status, the top branch for the conventional 

strategy represents recurrent cancer, and therefore the tree branch splits 

depending on whether the test was positive (accurately identified recurrence) 

or negative (inaccurately identifying no recurrence).  Positively identified 

recurrence is then further separated into curable and non-curable recurrence 

which will involve different treatment options. In the top half of this branch, 

negative test outcomes represent false negatives, which lead to patients being 

inaccurately diagnosed as having no recurrence. The objective of the scan in 

this model is to assess whether or not there has been any recurrence of disease 

and therefore the model assumes that there is no inaccurate diagnoses 

between recurrence curable and recurrence incurable. Inaccurate diagnoses 

are dependent on the DTA for the test in identifying recurrence or nor 

recurrence.  

The bottom branch in the top half of the tree represents the disease status of 

no recurrence, so negative test outcomes accurately indicate no recurrence. 

Positive test outcomes in this branch of the tree are false positives which 

inaccurately diagnose recurrence when there is no recurrence.  This population 

is further divided into curable and non-curable recurrence in order to 

determine inaccurate treatment in the next stage of the model.  

In the intervention arm of the tree, the conventional ‘Test’ is followed by the 

‘PET/CT’ scan in Figure 3-6, and therefore the test outcomes must be 

combined, and a strategy adopted for dealing with conflicting results. As with 
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the primary model a confirmatory positive strategy was the baseline approach, 

however, if one test was found to have superior test performance 

characteristics over the other, i.e. superior in terms of both sensitivity and 

specificity, then the test with superior DTA can be used to represent the joint 

DTA.  This approach of using superior test performance to represent joint 

imaging modalities has been used previously for in add-on PET/CT screening for 

cervical cancer (108).  

The accurate and inaccurate identification of recurrence at the end of the 

decision tree branches for the conventional arm of the model can be compared 

against the intervention arm and assessed in terms of the incremental cost per 

accurate diagnosis. These interim outcomes of accurate and inaccurate 

diagnosis were then used to assess the impact on patient management in the 

model, incorporating optimal treatments for curable recurrence, non-curable 

recurrence and no recurrence, as discussed next. 

Treatment Options 

Following the diagnostic pathway for recurrent rectal and colon cancer, the 

model incorporates the treatment impacts of accurate and inaccurate 

diagnoses of recurrent colorectal cancer.  Optimal treatment combinations for 

curable and non-curable recurrence were determined through the literature 

(115-118;131) and in consultation with clinical experts.  The treatment options 

vary slightly between recurrent rectal and colon cancer and therefore 

treatment combinations for each type of cancer were ascertained. Figure 3-7 

details the optimal treatment options as decision tree branches, which were 

applied to the diagnoses from the decision tree (Figure 3-6) for both recurrent 

rectal and colon cancer.  
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Diagnosis Recurrent Rectal treatment options Diagnosi s Recurrent Colon treatment options

Local surgery
Local surgery

 Local surgery followed by adjuvant chemotherapy

 Long course chemo-radiotherapy then surgery  Local surgery followed by adjuvant chemotherapy

Recurrence Curable  Local surgery followed by metastatic surgery Recurrence Curable
 Local surgery followed by metastatic surgery

 Local surgery followed by adjuvant chemotherapy then 
metastatic surgery

 Local surgery followed by adjuvant chemotherapy then 
metastatic surgery

 Long course chemo-radiotherapy followed by local 
surgery then metastatic surgery

Metastatic surgery followed by palliative care
Metastatic surgery followed by palliative care

Recurrence Incurable Recurrence Incurable

Palliative care alone Palliative care alone

No recurrence Wait and watch with an annual follow-up No recurrence Wait and watch with an annual follow-up

 

Figure 3-7: Treatment pathways for recurrent rectal & colon cancers 
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Based on clinicians advice the model assumed that 40% of recurrent rectal 

cancer patients would have received radiotherapy as part of their treatment 

for primary cancer and therefore would not receive further radiotherapy, while 

the remaining 60% of those patients who subsequently developed local 

recurrence but who did not receive radiotherapy for their primary cancer, 

would receive long course chemo-radiotherapy prior to surgery for recurrent 

disease.  Patients with curable rectal recurrence had one of six treatment 

options: local surgery alone, local surgery followed by adjuvant chemotherapy, 

long course chemo-radiotherapy prior to local surgery, local surgery followed 

by metastatic surgery, local surgery and adjuvant chemotherapy followed by 

metastatic surgery or long course chemo-radiotherapy prior to local surgery 

followed by metastatic surgery.  As with the primary colon model, radiotherapy 

is not included as a treatment option for recurrent colon cancer.  Therefore, 

patients with curable colon recurrence had one of four treatment options: 

local surgery alone, local surgery followed by adjuvant chemotherapy, local 

surgery followed by metastatic surgery or local surgery and adjuvant 

chemotherapy followed by metastatic surgery.   

Local surgery refers to a rectal excision with lymphadenectomy for recurrent 

rectal cancer patients and a colonic resection with lymphadenectomy for 

recurrent colon cancer.  Long course chemo-radiotherapy refers to 5 weeks of 

radiotherapy (45Gy in 25 fractions over 5 weeks) followed by a 12 week course 

of chemotherapy of 5 Fluorouracil (5FU) (97;119), and adjuvant chemotherapy 

involves a 6 months course post surgery of intravenous 5FU and Oxaliplatin 

(100;120).  Metastatic surgery refers to surgery at the metastatic site.   

Patients with incurable recurrence had one of two treatment options: 

metastatic surgery followed by palliative care, or palliative care alone.  This is 

the same for both rectal and colon recurrence.  Palliative care, involves 

treatments designed to relieve symptoms and improve quality of life (as 

opposed to having a curative intent), and therefore represents an array of 

palliative treatments which may include chemotherapy or chemo-radiotherapy 

for rectal cancer patients.  Patients diagnosed with no recurrence are treated 

with a wait and watch strategy in which they have an annual oncology follow-

up. 
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Assigning these optimal treatment options for each diagnoses (curable 

recurrence, incurable recurrence and no recurrence) in the model means that 

patients in the decision tree who are accurately diagnosed will receive optimal 

treatment while patients who are inaccurately staged (through false positive or 

false negative test outcomes) will receive suboptimal treatment i.e. patients 

with no recurrence who are inaccurately diagnosed as having curable 

recurrence will receive one of the curable treatment options unnecessarily.  In 

the case of inaccurate diagnosis, the model assumes patients will receive the 

treatments for their (mis)diagnosed stage, but within a year their true 

diagnosis will be correctly identified and optimal treatment will then be given. 

This assumption was made in consultation with clinical experts and was 

considered to be valid with one year as an appropriate time scale for 

encompassing most cases of misdiagnosis.  In this way the model accounts for 

the appropriate treatments and the treatments which are received 

unnecessarily or initially failed to be received, due to over or under-staging.  

The treatment profiles were assigned costs and utility weights in the model, 

and will be discussed in section 3.4.2. 

Survival 

Following treatment for diagnosis and misdiagnosis (recurrence curable, 

recurrence incurable, no recurrence), the model incorporated a lifetime 

analysis in order to capture the mortality and quality of life impacts for the 

patients in each intervention.   

The lifetime analysis was implemented using an approach similar to that used 

in the primary model.  A basic two-state Markov format was used for each of 

the three recurrence statuses, as depicted in Figure 3-8, to calculate average 

life expectancy and average quality adjusted life years in each status.   The 

first state represents the patients’ true diagnosis (no recurrence, recurrence 

curable, or recurrence incurable), and the patient can either remain in this 

state or die, moving into the death state. The model uses annual cycles and 

assumed a starting age of 50 years.   
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utility weight

mortality rate

Recurrence 
curable

Death

Recurrence 
incurable

Death

No recurrence

Death

 

Figure 3-8: Two-state survival model for each recurrence status 

 

A utility weight is applied to each of the disease states to reflect that states 

average utility for 5 years post diagnosis; each state has a different mean 

utility weight (122;132).  After five years in the disease state, it was assumed 

that patients who are still alive will have age specific population utility weights 

for the remainder of time in that state.  Five year overall survival estimates 

were determined from the literature for patients with no recurrence, 

recurrence that is curable and for non-curable recurrence (133). This 5 year 

overall survival data was used to determine an annual mortality rate under the 

assumption of an exponential survivor function, and was used to represent 

transitions from the recurrence state to death for the first 10 years of the 

model.  Beyond ten years patients were assumed to have survived their cancer 

and were assigned the age specific population level mortality rates (125). The 

disease state utility weights were applied for five years post diagnosis, based 

on available evidence (122;123), however, disease state mortality rates were 

applied for 10 years post diagnosis, adopting a conservative approach which 

incorporates evidence of disease related death beyond five years (94). The 

model did not account for transitions between the various states as this 

analysis was used to determine the average life expectancy and QALYs for each 

state.  
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Figure 3-9 demonstrates the survival curves for each of the recurrence 

categories (no recurrence, recurrence curable, recurrence incurable) in 

patients suspected of recurrent rectal cancer.  The Scottish network CRC 

dataset (121) was used to represent a cohort of AJCC1-3 patients who would be 

susceptible to colorectal recurrence (n=2409), and used disease prevalence 

estimates to determine no recurrence (n=723) and recurrence colorectal 

cancer (n=1686) samples, a subset of which was deemed to have curable 

recurrence (n=506), while the rest have incurable recurrence (n=1180). As the 

survival analysis is used to calculate average life expectancy in each group, the 

sample size at diagnosis (time zero) for each group in Figure 3-9 was assumed 

to be the same (n=1000) in order to clearly illustrate the difference in survival 

curves.   
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Figure 3-9: Overall survival for patients suspected of recurrent rectal cancer  
Note: FTT= fail to treat, Recurr= recurrence  

As would be expected the population with incurable recurrence have a drastic 

fall in their survival curve in the first few years post-diagnosis.  The recurrence 

curable population see a steep decline in survival, while the no recurrence 

population have a steady decline, which flattens out for patients surviving 

beyond ten years, who then have mortality rates on par with the age specific 

general population.   
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This survival analysis generated average life expectancies and average quality 

adjusted life years (QALYs) for the no recurrence, recurrence curable and 

recurrence incurable states.  These represent the average life expectancy and 

QALYs for patients who were accurately staged.  It was assumed that patients 

who were inaccurately staged would be re-diagnosed within one year to their 

accurate diagnosis; however they would suffer negative impacts on their 

mortality and quality of life where appropriate.  

Based on clinical advice, it was assumed that patients in the model who had 

curable recurrence but were inaccurately diagnosed as no recurrence (false 

negatives) and failed to receive treatment in the first year would have a 

negative impact on their mortality.  Therefore five year mortality rates for 

these patients were determined to be midway between curable and non-

curable mortality rates, and a fourth category was included in the survival 

analysis (and in Figure 3-9) to calculate the average life expectancy of patients 

with curable recurrences who initially fail to receive adjuvant chemotherapy 

negative diagnoses. As can be seen in Figure 3-9, using the same cohort 

population for curable recurrence, those who initially fail to receive treatment 

have a lower survival than those who are accurately staged and receive timely, 

optimal treatment. No other survival deductions were applied for inaccurate 

diagnoses; however there were implications in terms of patient quality of life.   

With regards to adverse impacts on quality of life, a deduction was applied to 

utility to account for the impact of misdiagnosis where patients failed to 

receive treatment (due to false negative diagnoses) or received unnecessary 

treatment (due to false positive diagnoses).  Table 3-6 details the sub-optimal 

treatments received due to inaccurate diagnoses, through false positive and 

false negative diagnoses, and the duration of negative impact this has on 

quality of life.  
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Table 3-6: Inappropriate treatments for inaccurate diagnosis 

 
Inaccurate diagnosis Inappropriate treatment 

Impact on  
quality of life 

Recurrence curable Fail to receive local surgery 1 year disutility 

as No recurrence Fail to receive adjuvant chemotherapy   

  
Fail to receive long course chemo-
radiotherapy   

  Fail to receive metastatic surgery   

  Fail to receive palliative care   

      
Recurrence incurable Fail to receive metastatic surgery 1 year disutility 

as No recurrence Fail to receive palliative care   

      
No recurrence as Receive unnecessary local surgery 1 year alternative utility  

Recurrence curable 
Receive unnecessary adjuvant 
chemotherapy   

  Receive unnecessary long course chemo-radiotherapy 

  Receive unnecessary metastatic surgery    
  Receive unnecessary palliative care   
      
No recurrence as Receive unnecessary metastatic surgery 1 year alternative utility 
Recurrence incurable Receive unnecessary palliative care   

      
 

These inappropriate treatments correspond to the inaccurate diagnoses 

detailed in Figure 3-6, whereby false negative diagnoses lead to Recurrence 

(curable and incurable) being misdiagnosed as No recurrence, and false 

positive diagnoses lead to No recurrence being misdiagnosed as Recurrence 

curable and incurable. The parameter values and references for this model are 

detailed in section 3.4.2. 
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3.3.4 Model 3: Metastatic cancer 

The model developed for metastatic colorectal cancer follows the same 

structure as the first two models, incorporating the short term diagnostic 

pathway, the resultant treatment options and longer term outcomes such as 

patient survival and quality of life.  The structure of the metastatic model is 

now discussed. 

Diagnostic pathway 

The metastatic model was undertaken to assess the cost-effectiveness of 

PET/CT as an add-on device in detecting metastatic cancer.  The additional 

value of incorporating a PET/CT scan to conventional imaging in this disease 

stage is through its ability to detect unsuspected, metastatic disease and 

potentially identify unsalvageable extra metastases not detected by 

conventional imaging devices.  

Figure 3-10 depicts the decision tree structure used for the metastatic model, 

informed by the literature (134-136) and based on consultation with clinical 

experts.  
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Disease Prevalence Diagnostic Test Accuracy Metastases identified

Metastases at one site (accurate)
Test +ive
sensitivity

Extra metastases (accurate)
Metastases (+)
prevalence

Test -ive No metastases (inaccurate)
Conventional Strategy 1-sensitivity

Metastases at one site (inaccurate)
Test +ive
1-specificity

No metastases (-) Extra metastases (inaccurate)
1-prevalence

Test -ive No Metastases (accurate)
Clinical Assessment: suspected specificity
metastatic recurrence

Metastases at one site (accurate)

PET/CT +ive
sensitivity 2 Extra metastases (accurate)

Test +ive
sensitivity 1 Metastases at one site (accurate)

Metastases (+) PET/CT -ive
prevalence 1-sensitivity 2

Extra metastases (accurate)

Metastases at one site (accurate)

PET/CT +ive
sensitivity 2 Extra metastases (accurate)

Test -ive
1-sensitivity 1

PET/CT -ive No metastases (inaccurate)
Conventional plus      1-sensitivity 2
 add-on PET/CT Strategy

Metastases at one site (inaccurate)

PET/CT +ive
1-specificity 2 Extra metastases (inaccurate)

Test +ive
1-specificity 1 Metastases at one site (inaccurate)

PET/CT -ive
specificity 2

Extra metastases (inaccurate)
No metastases (-)
1-prevalence

Metastases at one site (inaccurate)

PET/CT +ive
1-specificity 2 Extra metastases (inaccurate)

Test -ive
specificity 1

PET/CT -ive No metastases (accurate)
specificity 2

 

Figure 3-10: Decision tree for staging metastatic colorectal cancer 

 

The metastatic decision tree begins with patients who have previously had 

surgical treatment for primary CRC and in a routine follow-up assessment 

(involving a clinical examination and CEA testing) were found to have rising 

CEA levels, and were identified as potentially having a metastatic recurrence.  

The decision node depicts the choice between the conventional or add-on 

PET/CT strategies.  Similar to the structure used in the previous models, this 

decision tree has been designed using actual disease status, and therefore the 
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decision tree has split the patient population according to their true disease 

status (metastatic recurrence or no metastatic recurrence) prior to applying 

the DTA estimates for the tests, so that accurate and inaccurate diagnosis can 

be identified. 

The conventional procedure for patients suspected of metastatic recurrence is 

to undertake a ceCT scan of the chest, abdomen and pelvis to confirm or 

refute metastatic recurrence and potentially identify additional sites of 

metastases. This is depicted as ‘Test’ in the upper branch of Figure 3-10, and 

will either identify metastases (test positive), or no metastases (test negative).  

In the conventional arm, having specified actual disease status, the top half of 

this branch represents metastatic recurrence, and therefore the tree branch 

splits depending on whether the test was positive (accurately identified 

metastatic recurrence) or negative (inaccurately identifying no metastatic 

recurrence).  Positive identification of metastatic recurrence is further 

separated in this model to distinguish between metastases at one site or extra 

metastases at numerous sites, as the extent of the metastatic recurrence will 

impact on the treatment options in the longer-term model.  The negative test 

outcomes in the top branch of the decision tree indicate a misdiagnosis of no 

metastatic recurrence (false negative).  

The bottom half of the conventional tree branch represents the status of no 

metastatic recurrence, so negative test outcomes accurately indicate no 

metastases.  Positive test outcomes in the bottom half of the tree are false 

positives which inaccurately diagnose metastatic recurrence when there is no 

recurrence.  This population is then further divided to distinguish between 

inaccurate diagnosis of metastases at one site and inaccurate diagnosis of extra 

metastases at numerous sites.  In this way the decision tree separates out 

accurate and inaccurate diagnoses of metastatic recurrence. 

Patients in the ‘conventional arm’ of the model will be staged using the 

standard diagnostic test (ceCT chest, abdomen and pelvis), represented by 

‘Test’ in the top half of Figure 3-10.  Patients in the ‘intervention arm’ of the 

model will also be given the ceCT scan, followed by the addition of a PET/CT 

scan.  This is represented in the bottom half of the tree, with the second ‘PET-
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CT’ test added-on regardless of the conventional ‘Test’ outcomes.  As this is an 

add-on strategy the test outcomes must be combined, and a strategy adopted 

for dealing with conflicting results. As with the primary and recurrent models a 

confirmatory positive strategy was the baseline approach and is depicted in the 

intervention arm in Figure 3-10.  In the add-on strategy, if one test was found 

to have superior test performance characteristics over the other, i.e. superior 

in terms of both sensitivity and specificity, then the confirmatory positive 

strategy can be dropped and the test with superior DTA can be used to 

represent the joint DTA.  This approach of using superior test performance to 

represent joint imaging modalities has been used previously in add-on PET/CT 

screening for cervical cancer (108).  

The accurate and inaccurate identification of metastases at the end of the 

decision tree branches for the conventional arm of the model are compared 

against the intervention arm and assessed in terms of the incremental cost per 

accurate diagnosis.  These interim outcomes of accurate and inaccurate 

diagnosis were then used to assess the impact on patient management in the 

model, incorporating optimal treatments for metastases at one site, extra 

metastases and no metastatic recurrence.   

Treatment Options 

Following the development of a diagnostic pathway for metastatic colorectal 

cancer, the model incorporates the treatment impacts of accurate and 

inaccurate diagnoses of metastatic recurrence.  Optimal treatment 

combinations for metastatic recurrence at one site, extra metastases (at more 

than one site) and no metastatic recurrence were determined from the 

literature and in consultation with clinical experts.  Figure 3-11 details the 

optimal treatment options as decision tree branches, which were applied to 

the diagnoses from the decision tree in Figure 3-10.  
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Diagnosis Metastatic treatment options

Metastases at one site Pre-operative chemotherapy followed by metastatic surgery

Pre-operative chemotherapy followed by metastatic surgery and palliative care

Extra metastases

Chemotherapy followed by palliative care

No metastases Wait and watch with an annual follow-up

 

Figure 3-11: Treatment pathways for metastatic colorectal cancer 

 

The model assumes that all patients with metastases at a single site will 

receive pre-operative chemotherapy and metastatic surgery.  Pre-operative 

chemotherapy involves a 6 months course of intravenous 5FU and Oxaliplatin 

(100;120), and metastatic surgery refers to surgery at the metastatic site.   

Patients with extra metastases are assumed to be non-curable and will receive 

one of two treatment options: pre-operative chemotherapy followed by 

metastatic surgery and palliative care, or chemotherapy and palliative care.  

Palliative care, involves treatments designed to relieve symptoms and improve 

quality of life, and therefore represents an array of palliative treatments.   

It was assumed that all patients identified as having no metastatic recurrence 

would be treated with a wait and watch strategy in which they would be 

followed-up annually. 

Assigning these optimal treatment options for each of the diagnoses means 

that patients in the decision tree who are accurately diagnosed will receive 

optimal treatment while patients who are inaccurately staged (through false 

positive or false negative test outcomes) will receive suboptimal treatment i.e. 

patients with no metastatic recurrence who are inaccurately diagnosed as 

having metastases will receive treatment for either metastases or extra 

metastases unnecessarily.  In the case of inaccurate diagnosis, the model 
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assumes patients will receive the treatments for their (mis)diagnosed stage, 

but within a year their true diagnosis will be correctly identified and optimal 

treatment will then be given. This assumption was made in consultation with 

clinical experts and was considered to be valid with one year as an appropriate 

time scale for encompassing most cases of misdiagnosis.  In this way the model 

accounts for the appropriate treatments and the treatments which are 

received unnecessarily or initially failed to be received, false positive and false 

negative diagnoses.  The treatment profiles were assigned costs and utility 

weights in the model, which are discussed in section 3.4.3. 

Survival 

The survival analysis was implemented employing an approach similar to that 

used in the primary and recurrent models.  Following treatment for diagnosis 

and misdiagnosis (no metastases, metastases at one site, extra metastases), 

the model incorporated a lifetime analysis in order to capture the mortality 

and quality of life impacts for the patients in each intervention.  A basic two-

state Markov format was used for each of the three disease states, as depicted 

in Figure 3-12, to calculate average life expectancy and average quality 

adjusted life years in each status.   The first state represents the patients’ true 

diagnosis (no metastases, metastases at one site, or extra metastases), and the 

patient can either remain in this state or die, moving into the death state. The 

model uses annual cycles and assumed a starting age of 50 years.   
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Utility weight

mortality rate

No metastases

Death

Metastases 
at one site

Death

Extra 
Metastases 

Death

 

Figure 3-12: Two-stage survival model for metastatic disease status 

 

A utility weight is applied to each disease state to reflect that states average 

utility for five years post diagnosis (122;132;137).  After five years in each 

state it was assumed that patients who are still alive will have a quality of life 

similar to the general population and therefore age specific population utility 

weights were applied for the remainder of time in that state.  

Transition from the disease state to death is represented by mortality rates. 

Five year overall survival estimates were determined from the literature for 

the no metastases and metastases at one site states (133;138).  The extra 

metastases state was split between the two different treatment options for 

this state (surgery or palliative care alone), assigning a different five year 

overall survival estimates dependent on the treatment.  This is because 

patients with extra metastases who receive metastatic surgery with palliative 

intent will have a greater five year survival estimate than patients with extra 

metastases who receive palliative care alone (133;138).  The five year overall 

survival estimates were used to determine annual mortality rates under the 

assumption of an exponential survivor function. The disease state mortality 

rates (for no metastases, metastases at one site, extra metastases with 

surgery, and extra metastases palliative care only) were applied for the first 10 

years in each state, and following this age specific population mortality rates 
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(125) were assigned for the remained of time in that state.  The disease state 

mortality rates were applied for 10 years post diagnosis, adopting a 

conservative approach as in the primary and recurrent models.  

Figure 3-13 demonstrates the resultant survival curves for the three disease 

states in patients suspected of metastatic recurrence, including two survival 

curves for extra metastases (surgery and palliative alone), which were assumed 

to have different five year overall survival estimates.  As the survival analysis is 

used to calculate average life expectancy and QALYs in each group, the same 

sample size (n=600) was assumed for each group in order to clearly illustrate 

the difference in survival curves5. 
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Figure 3-13: Overall survival for patients suspected of metastatic recurrence 
No Mets=no metastases, Mets=metastases at one site 

                                         
5 Alternatively the Scottish network CRC dataset (121) can be used to represent a cohort of 

AJCC1-3 patients who would be susceptible to metastatic recurrence (n=2409), and use the 
disease prevalence estimates to determine no metastases (n=1445), metastases at one site 
(n=289) and extra metastases (n=675) populations.  The same mean life expectancy would 
be derived regardless of the sample size, as it is the average.   
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As would be expected the no metastases population have a steady declining 

survival curve for the first ten years, which then levels off as the age specific 

general population mortality rates set in, and then begins to decline again 

about 25 years post diagnosis, when the cohort population age is 75. The 

population with extra metastases have the sharpest declining survival cure 

(with palliative intent alone falling sharper than those who receive surgery), 

while the sample with metastases at one site, also have a sharp drop in 

survival, but live longer, and many survive beyond ten years.   

This survival analysis generated average life expectancies and average quality 

adjusted life years (QALYs) for each of the model diagnoses.  These represent 

the average life expectancy and QALYs for patients who were accurately 

staged.  It was assumed that patients who were inaccurately staged would be 

re-diagnosed within one year to their accurate diagnosis; however they would 

suffer negative impacts on their quality of life where appropriate.  No survival 

deductions were applied for inaccurate diagnoses; given the evidence form the 

literature and consultation with clinical experts.  

With regards to adverse impacts on quality of life, a deduction was applied to 

utility to account for the impact of misdiagnosis where patients failed to 

receive treatment (due to false negative diagnoses) or received unnecessary 

treatment (due to false positive diagnoses).  Table 3-7 details the sub-optimal 

treatments received due to inaccurate diagnoses (false positives and false 

negatives) and the duration of negative impact this has on quality of life. 
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Table 3-7: Inappropriate treatments for inaccurate diagnosis 

Inaccurate diagnosis  Inappropriate treatment 
Impact on  
quality of life 

Metastases 1 site Fail to receive pre-operative chemotherapy 1 year disutility 
as No metastases and metastatic surgery   
      
Extra metastases Fail to receive pre-operative chemotherapy, 1 year disutility 
as No metastases metastatic surgery and palliative care   
      
  Fail to receive chemo and palliative care 1 year disutility 
     

No metastases as  Receive unnecessary pre-operative 1 year alternative utility 
Metastases at 1 site chemotherapy and metastatic surgery  
     
No metastases as  Receive unnecessary pre-operative chemo, 1 year disutility 

Extra metastases metastatic surgery and palliative care   
      
  Receive unnecessary chemo & palliative care 1 year disutility 
      
 

These inappropriate treatments correspond to the inaccurate diagnoses 

detailed in the metastatic decision tree in Figure 3-10, whereby false negative 

diagnoses lead to Metastases (at one site and extra metastases) being 

misdiagnosed as No metastases, and false positive diagnoses lead to No 

metastases being misdiagnosed as Metastases at one site and extra metastases.  

Having outlined the design and development of the three models (for primary, 

recurrent and metastatic colorectal cancer), the following section discusses 

the parameterisation and population for each of the models.   
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3.4 Model Parameterisation and population 

3.4.1 Model 1: Primary rectal and colon 

The model for primary colorectal cancer was populated with parameters 

representing the prevalence of AJCC disease status, the diagnostic test 

accuracy of the conventional and intervention imaging devices, the various 

treatment options, survival estimates and quality of life.  Each of these is 

discussed in turn, followed by details of the associated costs. 

Disease Prevalence 

In the primary colorectal cancer model disease prevalence was defined as the 

spread of the primary cancer into the lymph nodes (nodal involvement) and 

therefore the AJCC stages were used to distinguish between nodal involvement 

(AJCC stages 3 & 4) and no nodal involvement (AJCC stages 1 & 2).   

Prevalence data for the four AJCC stages was derived from a Scottish network 

dataset (121) provided by the clinical experts in the research team.  The data 

comprises detailed clinico-pathological and imaging staging from an on-going 

study involving 2,383 Scottish CRC patients (average age 61 yrs).  The dataset 

is a prospective series which identifies all cases of CRC in Scotland by direct 

clinical and nurse contact, through pathology department returns, managed 

clinical networks, cancer registration and death registrations.  This series is 

considered to represent the generality of CRC in the UK as any differences in 

the epidemiology of CRC between Scotland and the rest of the UK will be 

marginal. The dataset provided information on CRC disease status using the 

AJCC colorectal cancer staging system along with five year overall survival data 

for each of the four AJCC stages.  This dataset is discussed in full in a recent 

publication detailing the population background characteristics and survival 

analysis outcomes (121). A previous analysis of a subset of the dataset was 

published in 2006 (139).  Table 3-8 presents the AJCC stage cancer prevalence 

point estimates, derived from this dataset.   
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Table 3-8: Primary CRC model prevalence parameter estimates 

  Estimates for Primary colon & rectal cancer 

Parameter 
Point 

estimate 
N 

patients 
Probabilistic 
distribution Data Source 

Cancer Prevalence         
Clinical experts 
2010 

AJCC stage 1  
(T1,T2, no nodes, no 
metastases) 0.19 n = 541* Dirichlet (121) 
     
AJCC stage 2  
(T3,T4, no nodes, no 
metastases) 0.34 n = 977* Dirichlet (121) 
     
AJCC stage 3  
(T, nodal spread, no metastases) 0.31 n = 891* Dirichlet (121)  
     
AJCC stage 4  
(T, nodal spread, metastases) 0.15 n = 429* Dirichlet (121)  

          
* Number of patients in each AJCC stage, derived from the Scottish dataset (121) 

The AJCC stage prevalence data was incorporated into the model under the 

assumption that AJCC stages 1 and 2 represent patients with no nodal 

involvement (1518, 53%), and AJCC 3 and 4 represent patients with nodal 

involvement (n = 1320, 47%).  The prevalence and number of patients in each 

AJCC stage in the dataset is detailed in Table 3-8.  Having merged the AJCC 

data to distinguish disease in terms of nodal involvement to synchronise with 

the diagnostic test outcomes, the decision tree then separates the data back 

into the individual AJCC stages in the final branches, using the prevalence 

point estimates for each stage, in order to assign treatment strategies for each 

AJCC stage.  Therefore, patients who are inaccurately staged are done so 

according to that disease stage prevalence, i.e. patients who have nodal 

involvement (AJCC 3 and 4) but have false negative test results, are 

inaccurately staged as either AJCC1 or AJCC2 based on the prevalence of AJCC 

1 and 2.  AJCC2 is more prevalent than AJCC1, as such this assumption ensures 

that when false negatives inaccurately under-stage patients as AJCC 2 and 

AJCC1 (instead of AJCC3 and 4), a greater proportion of patients will be 

inaccurately staged as AJCC2 than inaccurately staged as AJCC1.   It is also 

more likely that an AJCC3 patient would be under-staged to AJCC2 than to 

AJCC1.  In the case of false positives which lead to over-staging, as the 

prevalence of AJCC3 is greater than that of AJCC 4, a greater proportion of 
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inaccurate over-staging will be attributed to AJCC 3 than AJCC4 due to greater 

prevalence.   

For the probabilistic analysis, Dirichlet distributions (4;75) were deemed to be 

appropriate due to the nature of the prevalence data. The point estimates 

were derived from a cohort of 2838 patients in the Scottish colorectal cancer 

dataset (121), within which the sample of patients was split into four 

categories representing the four AJCC stages.  When dealing with multinomial 

data such as this, the Dirichlet distribution which is a multinomial version of 

the Beta distribution, is recommended (4).  Applying the Dirichlet distribution 

interprets the prevalence parameters as sample sizes, allowing the sample size 

within each AJCC stage to vary, but in relation to each other so that the total 

sample size remains constant.   

Diagnostic Test Accuracy 

The systematic review undertaken by the research team was intended to yield 

data on diagnostic test accuracy (DTA) for the various imaging technologies, 

which would be pooled in a meta-analysis to inform the main parameters for 

the economic models.  However, the systematic review found limited evidence 

and inadequacies and reporting bias in published papers for all stages of CRC 

disease.   

For primary colorectal cancer, evidence was required regarding the diagnostic 

test accuracy of ceCT, MRI and PET/CT scanning for staging primary colorectal 

cancer.   Only two papers were identified which evaluated the DTA of PET/CT 

for the detection of primary colorectal cancer (109;110); however one of the 

papers (110) did not include a comparator and the other (109) compared 

PET/CT against contrast enhanced PET/CT (cePET/CT) which is not available in 

the UK.  Both studies were conducted in Japan in cancer research centres, and 

therefore neither study included ceCT or MRI which are the conventional 

imaging technologies used for staging colorectal cancer in the UK.  Neither 

study reported including a consecutive series of patients or a random sample 

and therefore the studies may be unrepresentative of the test in clinical 

practice.  In both studies the assessors were blind to the clinical information 
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and results of other studies, however there was no mention of whether the 

individuals reviewing the scans were blinded. 

Due to the lack of papers it was deemed inappropriate to undertake a meta-

analysis in primary colorectal cancer.  Therefore, the two papers were 

considered one by one, along with other literature identified through the 

economic search and considerable input from the clinical experts, in order to 

decide which data to incorporate in the economic models. One of the studies 

(110) only reported DTA data at a lesion level and was therefore not useful to 

the model; however, the other study by Tateishi et al. (109) (which compared 

PET/CT to cePET/CT) reported patient level data on the sensitivity and 

specificity of PET/CT for staging nodal involvement and provided confidence 

intervals.  No distinction was made between colon and rectal cancer in either 

paper, and due to this and the lack of alternative information, the Tateishi 

paper PET/CT estimates were used in both the colon and rectal analyses.   

Table 3-9 details the DTA parameter estimates for the ceCT, MRI and PET/CT 

imaging technologies used in the primary colon and rectal analyses. 

Table 3-9: Primary colon & rectal cancer DTA parameter estimates 

  Primary Rectal Model  Primary Colon Model   

DTA Parameter 
Point 

estimate se 
Prob 
dist 

Point 
estimate se 

Prob 
dist 

Data 
Source 

              
ceCT sensitivity 0.55 0.06 Beta 0.55 0.06 Beta (140) 
ceCT specificity 0.74 0.04 Beta 0.74 0.04 Beta (140) 
MRI sensitivity 0.66 0.06 Beta  -   -   -  (140) 
MRI specificity 0.76 0.09 Beta  -   -   -  (140) 
PET/CT sensitivity 0.85 0.08 Beta 0.85 0.08 Beta (109) 
PET/CT specificity 0.42 0.10 Beta 0.42 0.10 Beta (109) 

                
Note: se=standard error, Prob dist = probability distribution 

The MRI scan is not used in the assessment of primary colon cancer and 

therefore the primary colon analysis incorporates only ceCT as the 

conventional imaging modality.  As previously discussed, the DTA literature 

made few distinctions between colon and rectal cancer, and therefore due to 

this and the lack of alternative information, the PET/CT and ceCT estimates 

were used to represent DTA for both colon and rectal cancer.   
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Sensitivity and specificity are probability parameters and therefore as the data 

is binomial, Beta distributions were used for the probabilistic analysis.  The 

Tateishi paper (109) reported the mean DTA value with the associated 

confidence intervals (CI) for sensitivity: 0.85 (95% CI 0.69, 0.936) and 

specificity: 0.42 (95% CI 0.23, 0.637).  Therefore the Method of Moments was 

used to fit the Beta distributions (4), utilising the mean DTA estimates and the 

corresponding standard errors, which were calculated using the lower 

confidence limit6.  An independent probability distribution was assumed for the 

sensitivity and specificity estimates.   

DTA data for ceCT and MRI was taken from a study (140) that undertook a 

meta-analysis in primary CRC and reported DTA estimates with confidence 

intervals for these imaging modalities for staging nodal involvement.  This was 

the only study which provided patient level DTA estimates for identifying 

lymph node involvement.  Beta distributions were applied in the probabilistic 

analysis, and therefore the lower confidence interval was used to calculate a 

standard error for use in the Method of Moments for fitting the Beta 

distributions.  PET/CT was not included in this meta-analysis, however, as the 

study detailed the sensitivity and specificity of ceCT and MRI specifically for 

nodal involvement, it is reasonable to enter these estimates into the primary 

models, to compare with the addition of PET/CT using the Tateishi (109) 

estimates specifically for staging nodal involvement.  

In the primary colon cancer analysis, there is only one test (ceCT) in the 

conventional arm and therefore the DTA and corresponding standard error 

reported in Table 3-9 were used to represent this.  The primary rectal analysis 

(which involves a ceCT scan and an MRI scan in the conventional arm) used the 

DTA estimates for MRI to represent the joint (ceCT + MRI) DTA, as overall it has 

superior test performance characteristics for lymph node involvement, i.e. 

both sensitivity and specificity of MRI is superior to ceCT (140).  This approach 

of using superior test performance to represent joint imaging modalities has 

been used by others (108) and is also reasonable given the evidence identified 

                                         
6 Both the lower and upper confidence limits were used to determine the standard error, however 

the lower confidence limit generated a larger standard error than the upper limit, and therefore 
the standard error from the lower limit was used to represent the widest range of uncertainty.  
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in the systematic review which favoured MRI in the identification of nodal 

involvement (141;142).  By adopting the superior tests’ DTA to represent joint 

DTA, conflicting test outcomes are avoided and a confirmatory positive (or 

negative) strategy, as discussed in section 3.3.1, is not required in the 

conventional arm for rectal cancer. In the intervention arm, the DTA for 

PET/CT is added-on after the conventional test, and a confirmatory positive 

strategy was adopted whereby the model assumes that positive test outcomes 

override negative test outcomes.  Therefore, negative results from the 

conventional test which are refuted by the PET/CT test are treated as positive.  

Results are only treated as negative when both the conventional and PET/CT 

tests result are negative.   

Treatments 

The systematic review and the non-systematic economics search identified 

some literature on therapeutic impact and patient management in primary 

colorectal cancer.  This literature found that while PET/CT impacts in terms of 

more accurate staging of primary colorectal cancers, it had only a minor 

impact on changing patient management (112-114;143), and none of the 

studies reported the impact that a change in management had in terms of 

patient outcomes. 

Optimal treatment combinations for the four AJCC stages were determined 

through consideration of the literature (112-118) and in consultation with 

clinical experts, and are detailed earlier in section 3.3.2.  The proportions of 

patients receiving each treatment within each AJCC stage were informed by 

publications reporting treatment and therapeutic impacts for primary rectal 

and primary colon cancer (112;113;118;134;144) however the point estimates 

were assigned based on judgement from the clinical experts on the research 

team. Table 3-10 details the point estimates for the probability of receiving 

the treatment options within each AJCC stage, for rectal and colon cancer.   

 

 



Chapter 3   123 

 

Table 3-10: Primary colon & rectal cancer Treatment parameter estimates 

  Primary Rectal Model  Primary Colon Model 

Treatment Parameters 
Point 

estimate 
N 

patients 
Prob 
dist 

Point 
estimate 

N 
patients 

Prob 
dist 

              
AJCC1             
Surgery 1.00   -  1.00   -  
              
AJCC2             
Surgery alone 0.38 n=977 Dirichlet 0.80 n=977 Dirichlet 
LCR plus surgery 0.46   Dirichlet  -     -  
Surgery & adjuvant chemo 0.15   Dirichlet 0.20   Dirichlet 
              
AJCC 3             
Surgery alone 0.34 n=891 Dirichlet 0.34 n=891 Dirichlet 
LCR & surgery 0.37   Dirichlet  -   -   -  
Surgery & adjuvant chemo 0.29   Dirichlet 0.66   Dirichlet 
              
AJCC 4             
Surgery alone 0.08 n=429 Dirichlet 0.09 n=429 Dirichlet 
LCR & surgery 0.11   Dirichlet  -   -   -  
Surgery & metastatic surgery 0.16   Dirichlet 0.19   Dirichlet 
Surgery & palliative care 0.53   Dirichlet 0.63   Dirichlet 

Palliative care alone 0.13   Dirichlet 0.09   Dirichlet 
Data sources: Clinician advice for point estimates supported by publications (113); Dirichlet 
distributions & N patients derived from Scottish CRC dataset (121) Prob dist = probability 
distribution, LCR = long course chemo-radiotherapy, chemo = chemotherapy   

For patients diagnosed with AJCC1 colon and rectal cancer, the only treatment 

option is local surgery, with a probability of 1.  There is no uncertainty in this 

parameter, everyone diagnosed with AJCC 1 will receive this treatment, and 

therefore this was held constant in the probabilistic analysis.  With regards to 

stages AJCC 2, 3 and 4, the various treatment options were assigned as 

probabilities, summing to 1 within each stage.  These are multinomial 

parameters and therefore it is appropriate to consider the Dirichlet distribution 

to represent uncertainty in the probabilistic analysis.  The sample of patients 

from the Scottish CRC dataset (121) was utilised to represent a cohort of 

patients for each AJCC stage, so that a series of Dirichlet distributions within 

each AJCC stage could be used to incorporate uncertainty.  

Survival  
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The Scottish CRC network dataset (121) (2,328 CRC patients average age 61 

yrs) detailed the five year overall survival of patients for each AJCC stage.  

This data was used to determine annual mortality rates under the assumption 

of an exponential survivor function, for use in the survival analysis, as detailed 

in section 3.3.2. The five year survival data was derived from both rectal and 

colon patients in the colorectal cancer dataset, and therefore the same 

survival estimates were used for both the colon and rectal analyses. Table 3-11 

details the survival parameters for each of the AJCC stages. 

Table 3-11: Primary colorectal cancer Survival parameter estimates 

  Estimates for Primary colon & rectal cancer 

Survival Parameters 
Point 

estimate 
Std 

error 
Prob 
dist Data Source   

            
5 year overall survival AJCC 1 0.95 0.01 Beta Data provided by 

5 year overall survival AJCC 2 0.86 0.01 Beta 
clinical experts Feb 
2010 

 
5 year overall survival AJCC 3 0.69 0.02 Beta    
 
5 year overall survival AJCC 4 0.13 0.02 Beta     
 
Reduction 5yr overall survival  0.25 0.05 Beta Author Assumption    
For fail to receive AJCC 3 chemo 
           

Data source: Scottish CRC overall survival data provided by clinical experts Feb 2010. 
Published reference (121) 

The data was binomial, in the form of the probability of survival 5 years post-

diagnosis, and therefore Beta distributions were deemed appropriate to 

represent uncertainty in the probabilistic analysis. The dataset provided the 

sample size for each AJCC stage and the number of events (deaths) in each, 

and therefore the Beta distribution was fitted in the standard way whereby the 

number of events represents alpha and the sample size minus the events is 

equivalent to beta.  Given the sample size and the number of events, the 

standard error was calculated using the moments of the Beta distribution (4). 

The point estimates and standard errors are presented in Table 3-11.  

Publications (126-128) indicate that in comparison to conventional imaging 

modalities PET/CT scanning has no impact on overall survival; however, 

consultation with clinical experts highlighted that patients with AJCC3 stage 

cancer (nodal involvement but no metastases) who fail to receive adjuvant 
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chemotherapy due to inaccurate staging, may suffer a reduction in overall 

survival.  This was incorporated into the model for AJCC3 patients who were 

inaccurately under-staged as AJCC1 or 2, as a 25% reduction in overall survival.  

The 25% reduction in five year overall survival was an author assumption based 

on advice from the clinical experts.  A corresponding standard error of 0.05 

was assumed, which was greater than the standard errors for the survival data, 

in order to represent the greater uncertainty in this parameter estimate.  

Quality of life / Utility 

Average utility estimates were used to represent quality of life for each of the 

four AJCC stages, while adjustments were made for inaccurate staging, which 

resulted in failing to receive treatment (disutility for 1 year), or receiving 

unnecessary treatment (alternative utility for duration of treatment). Table 3-

12 details the utility and disutility values used for the rectal and colon 

analyses.  

Ramsey et al. (122) report utility values for different stages of CRC at various 

time points’ post-diagnosis.  The mean 5 year utility values and corresponding 

standard errors were used to represent quality of life for each AJCC stage.   

Patients who were correctly diagnosed in the model received the average 

utility for their state for the first 5 years, followed by age adjusted population 

utility weights (124).  

Patients incorrectly diagnosed received their true disease stage utility, but 

with a disutility relating to the inappropriate treatment they received for a 

specified duration as detailed previously in Table 3-5.  It was assumed that 

patients who were inaccurately staged and failed to receive either long course 

chemo-radiotherapy or adjuvant chemotherapy post surgery received a 

disutility of 0.20 for a 6 month duration, while patients who were inaccurately 

diagnosed and failed to receive metastatic surgery or palliative care were 

assumed to receive a disutility of 0.3 for a year, reflecting the large impact on 

quality of life for delayed treatment.  The disutility values and standard errors 

were assigned at the authors discretion, based on advice from clinicians and 

related utility information provided in various papers (122;132;137).   
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Table 3-12: Primary colon & rectal cancer Utility parameter estimates 

  Primary Rectal Cancer   Primary Colon Cancer   
Utility 
Parameters 

Point 
est 

se Prob dist Point 
est 

se Prob dist Data 
Source 

AJCC1               
Mean  5 year 
utility 

0.84 0.17 Gamma on 
disutility 

0.84 0.17 Gamma on 
disutility 

(122) 

AJCC2               
Mean  5 year 
utility 

0.86 0.14 Gamma on 
disutility 

0.86 0.14 Gamma on 
disutility 

(122) 

AJCC 3               
Mean  5 year 
utility 

0.85 0.14 Gamma on 
disutility 

0.85 0.14 Gamma on 
disutility 

(122) 

AJCC4               
Mean  5 year 
utility 

0.84 0.12 Gamma on 
disutility 

0.84 0.12 Gamma on 
disutility 

(122) 

Fail to receive               
LCR or adjuvant 
chemotherapy 

0.20 0.08 Gamma   0.20 0.08 Gamma   AA based 
on (132) 

        
metastatic 
surgery / 
palliative care 

0.30 0.08 Gamma 0.30 0.08 Gamma AA based 
on (132) 

                
Receive unnecessary             
LCR 0.74 0.14 Gamma on 

disutility 
 -   -   -  (122;132) 

adjuvant chemo 0.80 0.14 Gamma on 
disutility 

0.80 0.14 Gamma on 
disutility 

(122) 

metastatic surgery 0.74 0.21 Gamma on 
disutility 

0.74 0.21 Gamma on 
disutility 

(137) 
 

                
LCR = long course chemo-radiotherapy, chemo = chemotherapy, AA = authors assumption, 
se=standard error, est=estimate, prob=probability 

Patients who received unnecessary long course chemo-radiotherapy or 

unnecessary adjuvant chemotherapy received an alternative, lower utility 

value (122;132) for six months to reflect the impact on their quality of life 

during their unnecessary treatment.  Patients who received unnecessary 

metastatic surgery or palliative care had a lower, alternative utility value (137) 

for one year.  

For probabilistic analysis of utilities it is common to assume that zero is the 

worst possible health state (no negatives) and fit Beta distributions, however, 

due to the nature of the utility values for cancer, where quality of life can be 

very low (and even negative) during treatment or in advanced stages of cancer, 

the Gamma distribution was considered to be more appropriate.  The 

transformation method was used whereby the Gamma distribution was set on 
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disutility (Disutility= 1-Utility) (4), so that the distribution was constrained on 

the interval zero to infinity, allowing for a right skew of the data which 

represents very low and even negative utility values.  The mean utility values 

and corresponding standard errors were reported in the literature, and 

therefore the method of moments for gamma was used to calculate the shape 

(alpha) and scale (beta) parameters to fit the gamma distributions.  

Costs  

The costs for the economic model are attributed to the cost of the alternative 

imaging devices as a cost per scan and the cost of the various treatments for 

each AJCC stage.  NHS reference costs data was used (101;145) along with 

various other data sources for the AJCC stage treatment options 

(97;100;102;119).  The various cost items are detailed in Table 3-13. 

The cost of the imaging devices was incorporated as a cost per scan, 

representing staff time, and use of the imaging machinery.  Cost details 

regarding ceCT and MRI scans were available in NHS reference costs, however, 

no details were provided for the cost of PET/CT scanning in either the 

Department of Health or the Scottish ISD reference costs.  Various literature 

reports the cost of a PET/CT scan in the UK as between £750 and £1000 per 

scan (120;146-148).  It is also widely reported that PET/CT scans generally 

have a duration of 20-40 minutes on equipment costing 2-3 times that of CT 

scanners, which can perform scans on a patient every 5-10mins (99) therefore, 

assigning a cost of £800 per PET/CT scan seemed appropriate.  A standard 

error for this baseline cost was derived using the upper and lower price range 

reported for an PET/CT scan (148).    
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Table 3-13: Primary CRC model costs 

  Primary Rectal Cancer Primary Colon Cancer   

Item 
Unit Cost 

(£) se 
Prob 
dist 

Unit cost 
(£) se 

Prob 
dist 

Data 
Source 

Imaging Devices               

ce CT scan  143 22 Normal 143 22 Normal (101) 
(chest abdomen & pelvis)               
MRI scan (pelvis) 179 24 Normal  -   -    (101) 

PET/CT scan 800 100 Normal 800 100 Normal (101) 

Treatments               
Primary surgery (rectal 
excision with 
lymphadenectomy):  5637 677 Normal - - - (51;145)   
Primary surgery (colonic 
resection with 
lymphadenectomy)  -   -   -  5893 746 Normal (51;145)   

LCR 13721  -   -   -   -   -  
(97;100;119
;120;145) 

Adjuvant chemotherapy 11532  -   -  11532  -   -  
(100;120;14
5) 

Palliative Care 2468 494 Normal 2468 494 Normal (149) 
Metastatic surgery 9134 1827 Normal 9134 1827 Normal (145) 
                

Prob dist=probabilistic distribution, se=standard error, LCR=long course chemo-
radiotherapy 

The cost of primary rectal surgery (rectal excision with lymphadenectomy) 

involves the cost of a distal colon procedure (including surgical consultation, 

theatre time and staff costs), an average hospital inpatient stay of 6 days and a 

CRC surgery consultant follow-up. Primary colon surgery (colonic resection with 

lymphadenectomy) involves the cost of a proximal procedure (including 

surgical consultation, theatre time and staff costs), an average hospital 

inpatient stay of 6 days and a CRC surgery consultant follow-up.  

The cost of long course chemo-radiotherapy treatment includes the 

radiotherapy drugs (45Gy in 25 fractions given over five weeks),12 weeks of 

intravenous 5-fluorouracil (5FU) for chemotherapy and the associated 

administration and hospital stay costs (97;120).  The cost of adjuvant 

chemotherapy treatment incorporated a six month course of intravenous 5FU 

plus Oxilaplatin for 24 weeks (100;120) and the associated administration and 

hospital costs.  The cost of metastatic surgery was represented by the 

Information Services Division reference cost of surgical specialities in medical 
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oncology (145), which includes the cost of surgery including theatre time, 

surgical consultation and follow-up, and an average inpatient stay in hospital 

of 10 days.  Resource use and costs for palliative care were taken from a study 

which assessed the cost to the NHS of palliative care in colorectal cancer 

(149).  The costs of palliative care were reported at price year 2000/01, and 

therefore the HCHS pay and price index was used to adjust this to price year 

2009 (102).  

The unit costs, standard errors and distributions used in the probabilistic 

analysis are reported in Table 3-13.  In the probabilistic analysis normal 

distributions were considered to be appropriate for representing the unit cost 

parameters, as the point estimates were derived from UK and Scottish 

reference costs sources, and as these are very large data sources they can be 

considered to have sufficient sample sizes for the central limit theorem to 

apply.  The unit costs for long course chemo-radiotherapy and chemotherapy 

remained constant in the probabilistic analysis.     

The average cost per AJCC stage was calculated using the proportion of 

patients receiving each treatment option within each AJCC stage.  In the 

model, if a patient was staged accurately they would receive their optimal 

treatment option and be assigned the average cost of treatment for that stage.  

The model also incorporates the extra costs incurred through inaccurate 

staging.  If a patient is inaccurately diagnosed they incur the cost of the 

misdiagnosed treatment, followed by the discounted cost of treatment for 

their true stage the following year (i.e. it is assumed that the true disease 

stage will be identified within a year).  Costs were discounted at 3.5% (24).   

Scenario analysis: cePET/CT as a lone technology 

The systematic literature review of PET/CT found suggestions within the 

literature that as PET/CT technology improves with the development and 

introduction of contrast enhanced PET/CT (cePET/CT) scanners (109), it may 

be possible to use this higher quality technology as an alternative to CT or 

ceCT in primary CRC rather than using PET/CT as an add-on imaging device.   
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While the scope of the research undertaken was focussed on PET/CT as an add-

on device, a scenario analysis was undertaken for the primary colorectal model 

in which PET/CT was considered to be a replacement for conventional ceCT, 

rather than as an add-on device.  The Tateishi paper (109) which provided DTA 

evidence for PET/CT also provided patient level DTA estimates for cePET/CT in 

nodal staging (with equivalent sensitivity to PET/CT but improved specificity).  

These contrast enhanced DTA estimates and confidence intervals were used in 

the scenario analysis to portray the future potential of improved PET/CT 

imaging.  For the primary rectal scenario, the conventional strategy (ceCT 

followed by MRI) was compared against a cePET/CT replacement strategy 

(cePET/CT followed by MRI); and for the primary colon scenario, the 

conventional ceCT was compared with cePET/CT alone.  All model parameters 

remain as detailed in Tables 3-8 to 3-13 with the exception of the DTA 

estimates and the cost of cePET/CT.  The cePET/CT DTA estimates and 95% 

confidence intervals for sensitivity: 0.85 (0.69, 0.93) and specificity: 0.68 

(0.46, 0.85) were used (109) and a cost for the cePET/CT scan was 

incorporated, assuming an increase of 20% to the PET/CT scan cost to reflect 

the cost of this more expensive technology. 
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3.4.2 Model 2: Recurrent disease  

The model for recurrent colorectal cancer was populated with parameters 

representing the prevalence of recurrent colorectal cancer, the diagnostic test 

accuracy of the conventional and intervention imaging technologies for 

diagnosing recurrent rectal and colon cancer, and the various treatment 

options, survival estimates and quality of life.  Each of these is discussed in 

turn, followed by details of the associated costs. The parameter tables 

distinguish the estimates for rectal and colon cancer separately where the 

details are different, and jointly as colorectal cancer where the same 

estimates were used for both analyses.   

Disease Prevalence 

Some publications indicate that local recurrence in rectal cancer is more 

common than local recurrence in colon cancer, however, data for the UK 

indicate only a very small difference in local recurrence for rectal and colon 

cancers (120).  Therefore, the recurrent model assumed the same probability 

of recurrence for both the rectal and colon analyses. 

The literature identified in the economics search and the systematic review 

was used to provide disease prevalence evidence for the recurrent model. 

Disease prevalence data on recurrence in CRC (150) determined a 30% 

probability of local recurrence and a 40% probability of metastatic recurrence 

for patients previously treated for primary colorectal cancer.  These point 

estimates were used and therefore the probability of no recurrence is 30%, as 

detailed in Table 3-14.   
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Table 3-14: Recurrent CRC model prevalence parameter estimates 

  Recurrent Rectal and Colon Cancer   

Prevalence Parameters 
Point 

estimate 
Standard 

error 
Probabilistic 
distribution Data source 

         

Local recurrence 0.3 n=723  Dirichlet (150) 
Metastatic recurrence 0.4 n=964  Dirichlet (150) 
No recurrence 0.3 n=723  Dirichlet   
 
Recurrence curable 0.3 0.1 Beta (135) 
Recurrence non-curable 0.7   1- above   

          

* These are not standard errors; they are the mean number of patients in each sample for 
the Dirichlet distributions 

 

It was assumed that a cohort of patients who were diagnosed as AJCC1, AJCC2 

or AJCC3 for primary CRC would be susceptible to recurrence.  The Scottish 

network CRC dataset (121) of patients (n=2838) was used to determine a 

sample of patients diagnosed with stages AJCC 1, 2 & 3 (n=2409).  This sample 

was then used to represent a cohort susceptible to recurrence, and the point 

estimate probabilities of recurrence (150) were applied; so that 30% of the 

n=2409 patients would have local recurrence, 40% would have metastatic 

recurrence, and the remaining 30% no recurrence.  Uncertainty in these 

prevalence point estimates was incorporated by applying a Dirichlet 

distribution to the cohort, so that uncertainty between the three prevalence 

categories: no recurrence, local recurrence, or metastatic recurrence was 

accounted for.  As recurrence falls into three categories in this model, it is 

appropriate to use the Dirichlet distribution, so that the prevalence 

parameters are interpreted as sample sizes, allowing the sample size within 

each recurrence category to vary, but in relation to each other so that the 

total sample size remains constant.   

Once the prevalence of recurrence had been established, the model splits 

recurrence in to curable and non-curable recurrence in order to incorporate 

appropriate treatment options.  This model structure is similar to the structure 

used in two other economic evaluations which assessed the value of using PET 

in the identification of recurrent colorectal cancer (129;130).  These two 

models also incorporated patient management and quality of life impacts to 

their models by including a probability of curable and non-curable recurrence 
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to the recurrent population (129;130).  Table 3-14 details the point estimates 

used to identify curable and non-curable recurrence (135). The probabilistic 

analysis accounted for the uncertainty in the parameter estimate by fitting a 

Beta distribution.  As there are two categories, summing to a probability of 1, 

Beta distributions were fitted, using the method of moments to find alpha and 

beta, given the reported mean value and confidence intervals (135).   

Diagnostic Test Accuracy 

The systematic review undertaken by the research team was intended to yield 

data on diagnostic test accuracy (DTA) for the various imaging technologies, 

which would be pooled in a meta-analysis to inform the main parameters for 

the economic models.  The meta-analysis was undertaken by the systematic 

review team in order to elicit pooled diagnostic test accuracy estimates of 

PET/CT for recurrent colorectal cancer (151).  The quality of evidence from 

literature identified in the systematic review was poor and subject to reporting 

bias and only five studies were considered to be eligible for meta-analysis (152-

156).  All of the studies were retrospective, patient populations were not well 

described in terms of disease classification or primary diagnosis, and all 

included only a small number of patients.  Figure 3-14 details the forest plot 

presenting the accuracy data of PET/CT in identifying recurrent disease in 276 

patients from the five studies.   
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Figure 3-14: Accuracy data of PET/CT in the detection of recurrent CRC 

 

There was little evidence of heterogeneity in the sensitivity estimates, and 

therefore a fixed effects meta-analysis was undertaken, resulting in an overall 

estimate of sensitivity of 0.91 (95% CI 0.87 to 0.95). There was some evidence 

of heterogeneity in the specificity estimates from these papers and therefore 

the random effects Bivariate/HSROC method was intended to be used, but the 

data were not adequate to fit the Bivariate/HSROC model and therefore two 

separate univariate meta-analyses were used. The overall estimate of 

specificity is 0.91 (95% CI 0.85 to 0.95).  

These pooled estimates for PET/CT may not be an accurate reflection of 

diagnostic test accuracy due to the inadequacies and reporting bias in the 

identified papers.  The pooled estimates also give tight confidence intervals 

which do not fully represent the wide uncertainty in the mean estimates. 

Therefore, it was decided that the pooled DTA estimates were not adequate 

for use in the baseline economic model.  The papers identified by the 

systematic review were considered one by one, along with other papers 

identified through the economic search and considerable input from the 

clinical experts, in order to decide which data to incorporate in the economic 



Chapter 3   135 

models and to find reasonable estimates of DTA for the economic models with 

wide uncertainty intervals. 

Three papers provided DTA evidence of PET/CT as an add-on device for 

diagnosis of recurrent colorectal cancer.  One paper (156) compared PET/CT 

with whole body MRI, but reporting bias was evident in this study.  In addition, 

the DTA for whole body MRI was inappropriate for the model which 

incorporates pelvic MRI rather than whole body MRI.  A second paper (157) 

provided evidence for ceCT in comparison to PET/CT, but the point estimates 

assigned appeared to be biased in favour of PET/CT (reporting a sensitivity of 

zero for ceCT, but with a confidence interval range up to 0.65).  The final 

paper (158) provided DTA evidence for ceCT in comparison to PET/CT; however 

they did not report any confidence intervals or other measures of uncertainty.  

The point estimates from this paper (158) were deemed to be the best 

reflection of mean DTA and were therefore used in the model along with the 

wide confidence intervals from Ramos et al. (157) to ensure a suitably wide 

range to reflect the considerable uncertainty surrounding the mean DTA 

estimates. The pooled meta-analysis DTA estimates had more restrictive 

confidence limits, and were therefore deemed inappropriate to accurately 

reflect uncertainty in the economic models.  There were no reliable estimates 

of pelvic MRI diagnostic test accuracy for recurrent rectal cancer reported, as 

such an estimate was taken from the DTA of MRI used in another (134) 

economic evaluation.  DTA estimates, their standard errors and the 

distributions used in the probabilistic model are detailed in Table 3-15. 

Table 3-15: Recurrent CRC model Diagnostic Test Accuracy estimates 

  Recurrent Rectal Cancer Recurrent Colon Cancer   

DTA Parameters 
Point 

estimate se 
Prob 
dist 

Point 
estimate se 

Prob 
dist Data source 

                
ceCT sensitivity 0.53 0.06 Beta  0.53 0.06 Beta  (157;158) 
ceCT specificity 0.98 0.015 Beta  0.98 0.015 Beta  (157;158) 
                
MRI sensitivity 0.85 0.03 Beta   -   -   -  (134) 
MRI specificity 0.95 0.08 Beta   -   -   -  (134) 
                
PET/CT sensitivity 0.93 0.069 Beta  0.93 0.069 Beta  (157;158) 
PET/CT specificity 0.98 0.025 Beta  0.98 0.025 Beta  (157;158) 

                
Prob dist=probability distribution, se=standard error  
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As the diagnostic test accuracy parameters are binomial in nature, Beta 

distributions were fit using the Method of Moments (4) with the mean 

estimates and standard errors derived from the reported confidence intervals.   

With regards to dealing with joint test outcomes (for the intervention arm of 

the model and in the conventional arm for the rectal cancer analysis), where 

there was superiority in one test, this was taken to represent combined DTA 

(108), and where there was no test superiority, a confirmatory positive 

approach was adopted.  

Treatments 

The optimal treatment combinations for patients with curable and incurable 

recurrent colorectal cancer were determined through consideration of the 

literature, and in consultation with clinical experts and are reported earlier in 

Figure 3.7.   

The proportions of patients receiving each treatment for curable recurrence 

were assigned based on consultations with clinical experts and the publications 

reporting treatment and therapeutic impacts for recurrent colorectal cancer 

(117;118;131). As patients with recurrent colon cancer do not receive long 

course chemo-radiotherapy, the treatments and probabilities of receiving the 

treatments vary from the rectal analysis.  The proportions of patients receiving 

each treatment for incurable recurrence were informed by literature and 

previous economic models for recurrent colorectal cancer (129;159).  No 

recurrence had only one treatment option and was therefore assigned a 

probability of 1. Table 3-16 details the parameter estimates for the recurrent 

colon and rectal cancer treatment options. 
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Table 3-16: Recurrent CRC model Optimal Treatment estimates 

  Recurrent Rectal Cancer Recurrent Colon Cancer 

Treatment Parameters 
Point 

estimate se 
Prob 
dist 

Point 
estimate se 

Prob 
dist 

              
Recurrence Curable              
Surgery alone  0.05   Dirichlet 0.05   Dirichlet 
Surgery & adjuvant chemo 0.1   Dirichlet 0.35   Dirichlet 
LCR then surgery 0.25   Dirichlet  -     -  
Surgery (local) & metastatic 
surgery 0.1   Dirichlet 0.1   Dirichlet 
Surgery (local), adjuvant chemo 
& metastatic surgery 0.15   Dirichlet 0.50   Dirichlet 
LCR, surgery & metastatic 
surgery 0.35   Dirichlet  -   -   -  
              
Recurrence Incurable              
Metastatic surgery & palliative 
care 0.2 0.04 Beta 0.2 0.04 Beta 
Palliative care alone 0.8   1- above 0.8   1- above 
              
No recurrence             
Wait & watch 1 - - 1 - - 
              

Data Sources: Recurrence Curable clinician advice & various refs (112;113;118), 
Recurrence Incurable (129), No recurrence: author assumption.  Chemo=chemotherapy, 
LCR=long course chemo-radiotherapy, se=standard error, Prob dist=probability distribution 

With regards to uncertainty in the treatment options for curable recurrence, 

Dirichlet distributions were considered to be appropriate given the categorical 

nature of the parameters.  Therefore, the Scottish network CRC dataset (121) 

was used to derive a cohort of patients with AJCC stages 1-3 (n=2409) who 

would be susceptible to colorectal recurrence.  The recurrent colorectal 

cancer sample was then derived using the probabilities of local and metastatic 

recurrence from Table 3.14 (n=1686), and a subset of this population was 

deemed to have curable recurrence (n=505), again using the prevalence 

probabilities assigned in the model (detailed in Table 3-14). A Dirichlet 

distribution was applied to this subset, in order to capture the uncertainty 

surrounding the treatment allocations.  

With regards to incurable recurrence, there were only two treatment options, 

making this a binomial parameter and therefore a Beta distribution was fitted 

using the mean and standard error reported in the literature (129).  
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Survival 

Five year survival estimates for recurrent and non recurrent colorectal cancer 

patients are reported by the American Cancer Society (133).  This data was 

used to determine annual mortality rates under the assumption of an 

exponential survivor function, for use in the survival analysis, as detailed in 

section 3.3.3.  As the survival data represents colorectal cancer, not 

distinguishing between colon and rectal patients, the same survival estimates 

were used for both the colon and rectal analyses. Table 3-17 details the 

survival parameters for the recurrent colorectal cancer model.  

Table 3-17: Recurrent CRC model Survival estimates 

  Recurrent Rectal and Colon   

Survival Parameters 
Point 

estimate Std error 
Probability 
distribution Data source 

          
5 year overall Survival         
No recurrence 0.85 0.01 Beta (133) 

Recurrence curable 0.3 0.02 Beta (133) 

Recurrence non-curable 0.1 0.01 Beta (133) 
 
Recurrence curable (fail to treat) 0.2    Author Assumption 
         

Std = standard 

 

The data was binomial, in the form of the probability of survival 5 years post-

diagnosis, and therefore Beta distributions were deemed appropriate to 

represent uncertainty in the probabilistic analysis. The Scottish network CRC 

dataset (121) was used to represent a cohort of AJCC1-3 patients who would be 

susceptible to colorectal recurrence (n=2409). The prevalence estimates 

(detailed in Table 3-14) were then applied to derive a population for no 

recurrence (n=723) and recurrence (n=1686), within which there would be 

curable patients (n=506) and incurable patients (n=1180).  These populations 

were taken to represent sample sizes for the three recurrence categories, and 

the number of events (deaths) within each sample was determined from the 5 

years survival estimates (133).  Beta distributions were then fit to this data 

employing the Method of Moments (4) and using the number of deaths within 
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each recurrence category to represent the alpha parameter, and the sample 

size minus the events to represent the Beta parameter.  

Patients who had curable recurrence but were inaccurately diagnosed as no 

recurrence (false negatives) and failed to receive treatment in the first year 

would have a negative impact on their mortality, as detailed in section 3.3.3.  

This was based on clinical advice, and as there was no survival estimates for 

such a scenario in the available literature, it was assumed that five year 

survival for these patients would be midway between the curable and non-

curable survival estimates (0.2), as detailed in Table 3-17.   

Quality of life / Utility 

Average utility estimates were used to represent quality of life in the no 

recurrence, curable recurrence and incurable recurrence groups.  Adjustments 

were made for inaccurate diagnoses, which resulted in failing to receive 

treatment (disutility for that year to account for the negative impact on the 

patients’ quality of life), or receiving unnecessary curative or non-curative 

treatments (an alternative, lower utility for 1 year). Table 3-18 details the 

utility and disutility values which were used for the rectal and colon analyses.     

Table 3-18: Recurrent CRC Utility parameter estimates 

  Recurrent Rectal and Colon   

Utility Parameters 
Point 

estimate 
Standard 

error 
Probability 
distribution Data source 

          
No Recurrence 0.91 0.11 Gamma (disutility) (122) 
mean 5 year utility         
          
Curable Recurrence 0.84 0.12 Gamma (disutility) (122) 
mean 5 year utility         
          
Incurable Recurrence 0.52 0.08 Gamma (disutility) (132) 
mean 5 year utility         
          
Fail to receive          
Curable treatment 0.3 0.08 Gamma   AA based on (132) 
Incurable treatment 0.2 0.08 Gamma   AA based on (132) 
          
Receive unnecessary         
Curable treatment 0.74 0.14 Gamma (disutility) AA based on (132) 
Incurable treatment 0.61 0.2 Gamma (disutility) (137) 
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Utility estimates and standard errors reported in Ramsey et al. (122) were used 

to represent mean quality of life for patients with no recurrence and curable 

recurrence, for five years post-diagnosis.  A utility estimate reported in Tengs 

& Wallace (132) for colorectal patients who receive best palliative/supportive 

care was taken to represent mean quality of life for patients with incurable 

recurrence, for five years post-diagnosis.   No standard error or confidence 

intervals were given to support this point estimate, and therefore the authors 

assumed a standard error of 0.08. Following the first 5 years in the survival 

analysis, UK age adjusted population utility weights were applied (124).  

Patients incorrectly diagnosed received their true disease stage utility, but 

with a disutility relating to the inappropriate treatment they received for a 

specified duration as detailed previously in Table 3-6.  It was assumed that 

patients who were inaccurately diagnosed and failed to receive curable 

treatments (such as surgery, adjuvant chemotherapy, long course chemo-

radiotherapy, metastatic surgery and palliative care) were assumed to receive 

a disutility of 0.2 for a year, and patients who failed to receive incurable 

treatments (metastatic surgery and palliative care) received a disutility of 0.3 

for a year, reflecting the large impact on quality of life for delayed treatment.  

The disutility values and standard errors were assigned at the authors’ 

discretion, based on advice from clinicians and related utility information 

provided in various papers (132).  The authors assumed a corresponding 

standard error of 0.08. 

Patients who received unnecessary curative treatment (local surgery, adjuvant 

chemotherapy, long course chemo-radiotherapy, metastatic surgery) received 

an alternative, lower utility value of 0.74 (132) for one year to reflect the 

impact on their quality of life during their unnecessary treatment.  No standard 

error or confidence intervals were given to support this point estimate, and 

therefore the authors assumed a standard error of 0.14 to represent 

uncertainty in the point estimate.  Patients who received unnecessary 

incurable treatments were assigned an even lower alternative utility value 

(0.61 with a corresponding standard error 0.2 (137) for one year, to reflect the 

considerable impact on quality of life of receiving unnecessary treatment for 

misdiagnosed incurable disease.  
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Similar to the approach adopted for the primary CRC model, Gamma 

distributions were considered to be appropriate for the probabilistic analysis of 

utilities. The transformation method was used whereby the Gamma distribution 

was set on disutility (Disutility= 1-Utility) (4), so that the distribution was 

constrained on the interval zero to infinity, allowing for a right skew of the 

data which represents very low and even negative utility values.  The mean 

utility values and corresponding standard errors were reported in the literature 

(or derived based on author assumption where appropriate), and therefore the 

Method of Moments for gamma was used to calculate the shape (alpha) and 

scale (beta) parameters to fit the gamma distributions.  

Costs 

The costs for the recurrent model are attributed to the alternative imaging 

devices and the treatment options for diagnoses of no recurrence, recurrence 

curable and recurrence incurable, as detailed in Table 3-19. 

Table 3-19: Recurrent CRC model costs 

  Rectal Cancer Colon Cancer   

Item 
Unit 

cost £ se 
Prob 
dist 

Unit 
cost £ se 

Prob 
dist Data Source 

Imaging Devices               
ce CT scan  143 22 Normal 143 22 Normal (101) 
(chest abdomen & 
pelvis)               
MRI scan (pelvis) 179 24 Normal  -   -    (101) 
PET/CT scan 800 100 Normal 800 100 Normal (148) 

                
Treatments               
Local surgery (rectal 
excision with 
lymphadenectomy) 5637 677 Normal  -   -   -  (101;145)   

Local surgery (colonic 
resection with 
lymphadenectomy)  -   -   -  5893 746 Normal (101;145)   

LCR 13721  -   -   -   -   -  
(97;100;119;120;
145) 

Adjuvant chemotherapy 11532  -   -  11532  -   -  (100;120;145) 

Palliative care 2468 494 Normal 2468 494 Normal (149) 

Metastatic surgery 9134 1827 Normal 9134 1827 Normal (145) 
                

Prob dist=probabilistic distribution, se=standard error, LCR=long course chemo-
radiotherapy 
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Table 3-19 details the various cost items, unit costs and standard errors.  NHS 

reference costs data was used (101;145) along with other data sources for the 

various treatment options (97;100;102;119;120).   

The costs of imaging devices are the same as those used in the primary model.  

The treatment option combinations for the recurrent rectal model are 

different to those in the primary model; however the cost of the component 

treatments were assigned in the same way. For example, the cost of local 

recurrent surgery involves the cost of the procedure (including surgical 

consultation, theatre time and staff costs), an average hospital inpatient stay 

of 6 days and a CRC surgery consultant follow-up. The cost of long course 

chemo-radiotherapy treatment, adjuvant chemotherapy treatment, metastatic 

surgery and palliative care were also determined by the same means as in the 

primary model.  

In the probabilistic analysis normal distributions were considered to be 

appropriate for representing the unit cost parameters, as in the primary CRC 

model.  The point estimates were derived from UK and Scottish reference costs 

sources, and as these are very large data sources they can be considered to 

have sufficient sample sizes for the central limit theorem to apply.   

The expected costs in the no recurrence, recurrence curable and recurrence 

incurable groups were calculated using the proportion of patients receiving 

each treatment option within each different group.  In the model, if a patient 

was diagnosed accurately they would receive their optimal treatment option 

and the associated costs of that treatment.  If a patient is inaccurately 

diagnosed they incur the cost of the diagnosed group treatment, followed by 

the discounted cost of treatment for their true diagnosis the following year 

(i.e. it is assumed that the true diagnosis would be identified within a year). 

Costs were discounted at 3.5% (24).  
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3.4.3 Model 3: Metastatic disease 

The model for metastatic colorectal cancer was populated with parameters 

representing the prevalence of metastatic colorectal cancer, the diagnostic 

test accuracy of the conventional and intervention imaging technologies for 

diagnosing metastases, and the various treatment options, survival estimates 

and quality of life.  Each of these is discussed in turn, followed by details of 

the associated costs.  

Disease Prevalence 

The literature identified in the economics search and the systematic review 

was used to provide disease prevalence evidence for the metastatic model. 

Estimates provided by Saunders et al (150) were used for the prevalence point 

estimates of metastatic recurrence for patients previously treated for primary 

colorectal cancer.  The point estimates and probabilistic distributions are 

detailed in Table 3-20. 

Table 3-20: Metastatic CRC model Prevalence parameters 

  

Prevalence 
Parameters Point estimate 

Standard 
error 

Probabilistic 
distribution 

Data 
Source 

         

No metastases 0.6 n=1445* Dirichlet (150) 
Metastases 0.4 n=964* Dirichlet (150) 
         
Metastases at one site 0.3 0.1 Beta  (135) 
Extra metastases 0.7   1 - above  

          

* These are not standard errors; they are mean number of patients assumed in each sample 
for Dirichlet distributions 

 

It was assumed that a cohort of patients who were diagnosed as AJCC1, AJCC2 

or AJCC3 for primary CRC would be susceptible to metastatic recurrence.  

Using the Scottish network CRC dataset (121) to represent this cohort (n=2409) 

and assigning the probability of metastatic recurrence (150), a cohort of 

patients with no metastases (n=1445) and metastases (n=964) was generated.  

In the probabilistic analysis, uncertainty was incorporated by applying a 
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Dirichlet distribution to the cohort, to represent the uncertainty in the mean 

sample sizes for no metastases and metastases which in turn reflects 

uncertainty in the prevalence point estimates.  As there are two categories the 

point estimates are binomial in nature, and therefore a Beta distribution would 

typically be used to represent uncertainty, however, there was no standard 

error and as Dirichlet distribution had been used to represent uncertainty in 

the prevalence parameters for the primary and recurrent CRC models, a 

consistent approach was adopted. 

Once the prevalence of metastases had been established, the model splits 

metastases in to metastases at one site and extra metastases (at more than 

one site), in order to incorporate appropriate treatment options. This model 

structure is similar to that used by previous economic evaluations assessing the 

cost-effectiveness of using add-on PET/CT in the identification of metastatic 

disease (134;135).  Previous models have attempted to incorporate patient 

management and quality of life impacts by distinguishing between resectable 

and unresectable metastases (135) or by distinguishing between hepatic 

metastases and extra metastases (134).  Our evaluation distinguished between 

metastases at one site and at multiple sites (extra metastases), assigning a 

probability for each in the overall metastatic recurrence population (135).   In 

this way the model could distinguish between metastatic and extra metastatic 

disease, even though the DTA estimates referred only to identification of 

metastases.   

The probabilistic analysis accounted for uncertainty in these parameter 

estimates by fitting a Beta distribution.  As there are two categories, summing 

to a probability of 1, Beta distributions were fitted, using the method of 

moments to find alpha and beta, given the reported mean value and 

confidence intervals (135).
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Diagnostic Test Accuracy 

The systematic review undertaken by the research team was intended to yield 

data on diagnostic test accuracy (DTA) for the various imaging technologies, 

which would be pooled in a meta-analysis to inform the main parameters for 

the economic models.  The meta-analysis was undertaken by the systematic 

review team in order to elicit pooled diagnostic test accuracy estimates of 

PET/CT for metastatic colorectal cancer.  The quality of evidence from 

literature identified in the systematic review was poor and out of 16 studies 

identified only seven studies were considered to be eligible for meta-analysis 

(158;160-165).  The majority of papers did not reveal how sample patients 

were recruited, but three did report taking a consecutive approach 

(158;163;164).  Figure 3-15 details the forest plot presenting the accuracy data 

of PET/CT in identifying metastatic CRC in n=281 patients from the seven 

studies. 

 

Figure 3-15: Accuracy of PET/CT in detecting hepatic metastases 

 

The systematic review team undertook two univariate meta-analyses for 

sensitivity and specificity separately.  There was little evidence of 

heterogeneity in sensitivity estimates, and therefore a fixed effects model was 
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used, giving an overall estimate of sensitivity of 0.91 (95% CI 0.87 to 0.94).  

There was evidence of some heterogeneity in the specificity estimates, so a 

random effects model was used and the overall estimate of specificity was 

found to be 0.76 (95% CI 0.58 to 0.88).  The validity of these pooled estimated 

is compromised due to the retrospective study designs (case series, audits), the 

variation in the types of reference standard used (differential verification bias) 

which undermines the estimates and several other types of bias including 

review bias. 

Due to the inadequacies and reporting bias in the identified papers, the pooled 

estimates for PET/CT were considered unlikely to be an accurate reflection of 

the mean diagnostic test accuracy.  The confidence intervals for the pooled 

estimates were also tight around the pooled mean, restricting the level of 

uncertainty represented.  Therefore, the meta-analysis of DTA data was 

deemed to be inappropriate for use in the baseline economic model and papers 

identified by the systematic review were considered along with papers 

previously identified through the economic search, to find reasonable 

estimates of DTA for the economic models.  

Four papers provided DTA evidence of PET/CT at the patient level for 

diagnosing metastatic recurrence in comparison to ceCT (158;161-163).  These 

papers were all deemed to be of variable quality. The DTA evidence reported 

by Chau et al. (161) compared ceCT and PET/CT in identifying hepatic 

metastases and appeared to provide reasonable point estimates and confidence 

intervals for PET/CT, however, the point estimate of specificity for ceCT was 

very low (0.25) compared with that reported in other studies, and appeared to 

bias the results in favour of PET/CT. Therefore, the point estimates and 

confidence intervals for PET/CT and the sensitivity for ceCT were taken from 

Chau et al. (161), with the point estimate for ceCT specificity and 

accompanying wide confidence interval from Selzner et al. (158). The DTA 

estimates, their standard errors and the distributions used in the probabilistic 

model are detailed in Table 3-21. 

 



Chapter 3   147 

 

Table 3-21: Metastatic CRC model Diagnostic Test Accuracy parameters 

   

Diagnostic Parameters 
Point 

estimate 
Standard 

error 
Probabilistic 
distribution Data Source 

          

ceCT sensitivity 0.91 0.05 Beta (161) 
ceCT specificity 0.7 0.15 Beta (158) 
PET/CT sensitivity 0.94 0.04 Beta (161) 
PET/CT specificity 0.75 0.17 Beta (161) 
          

 

As the diagnostic test accuracy parameters are binomial in nature, Beta 

distributions were fit using the Method of Moments (4) with the mean 

estimates and standard errors derived from the reported confidence intervals.   

With regards to dealing with joint test outcomes for the intervention arm of 

the model where PET/CT is an add-on after the conventional ceCT test; the 

PET/CT test characteristics were superior to the conventional test, and this 

was taken to represent combined DTA, as adopted in other studies involving 

combined tests (108).  

Treatments 

The treatment combinations for metastatic diagnosis (metastatic recurrence at 

one site, extra metastases and no metastatic recurrence) were determined 

from the literature and in consultation with clinical experts, as detailed 

previously in Figure 3-11.  For a diagnosis of metastases (at one site) there is 

only one treatment option (pre-operative chemotherapy followed by 

metastatic surgery) and therefore this treatment is assigned a probability of 1.  

Likewise, patients with no metastatic recurrence are treated as wait and 

watch with an annual follow-up, and this treatment option was also assigned a 

probability of 1. The proportion of patients receiving each of the two 

treatment options for extra metastases was determined from previous 

economic evaluations (129;130). Table 3-22 details these treatment options. 
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Table 3-22: Metastatic CRC model Treatment Parameters 

   

Treatment Parameters 
Point 

estimate 
Standard 

error 
Probabilistic 
distribution 

Data 
Source 

          
Metastases (1 site)        

Pre-op chemo & metastatic surgery 1     
Author 

assumption 
         
Extra metastases        
Pre-op chemo & metastatic surgery 0.2 0.04 Beta (129) 
Palliative care & chemotherapy 0.8   1 - above (129) 
         
No metastases        

Wait Watch; annual follow up 1     
Author 

assumption 
          

Pre-op=pre-operative, chemo=chemotherapy 

The treatment parameter estimates for metastases and no metastases were 

kept constant in the probabilistic analysis, as everyone diagnosed as such will 

receive these respective treatments. Uncertainty in the extra metastases 

parameter estimates was accounted for by fitting a Beta distribution.  As there 

are two treatment options summing to a probability of 1, Beta distributions 

were fitted, using the method of moments to find alpha and beta, given the 

reported mean value and standard error (129). 

Survival 

Five year survival estimates for CRC patients who do not experience 

metastases were reported by the American Cancer Society (133); this estimate 

is the same as that used for no recurrence in the recurrent CRC model.  

Survival estimates for metastases at one site and extra metastases (for surgery 

with palliative intent and palliative care alone) were taken from the American 

Joint Committee on Cancer staging manual (138). These estimates were used 

to determine annual mortality rates under the assumption of an exponential 

survivor function, for use in the survival analysis, as detailed in section 3.3.4.  

Table 3-23 details the survival parameters for the metastatic colorectal cancer 

model.  
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Table 3-23: Metastatic CRC model Survival Parameters 

5 year Survival Parameters 
Point 

estimate 
Standard 

error 
Probabilistic 
distribution Data Source 

         
Metastases 0.24 0.03 Beta (138) 
Extra metastases (surgery) 0.12 0.04 Beta (138) 
Extra metastases (palliative) 0.06 0.04 Beta (138) 
No Metastases 0.85 0.01 Beta (133) 

          

 

The data was binomial, in the form of the probability of survival 5 years post-

diagnosis, and therefore Beta distributions were applied for the probabilistic 

analysis. The Method of Moments was used to fit the distributions, using the 

mean survival estimate and standard errors reported for Metastases and Extra 

metastases (surgery with palliative intent).  No standard error was given for 

the Extra metastases - palliative alone estimate, so the standard error was 

assumed to be the same as that for Extra metastases - surgery. No standard 

error was provided with the 5 yr survival estimate for patients who have No 

metastases (133) and therefore, a sample size was derived from the Scottish 

network CRC dataset (121).  This data was used to represent a cohort of 

AJCC1-3 CRC patients who would be susceptible to metastases (n=2409). The 

prevalence estimates (detailed in Table 3-17) were then applied to derive a 

population for no metastases (n=1445), and the number of events (deaths) was 

determined from the 5 years survival estimate (133).  Beta distributions were 

then fit to this data employing the Method of Moments (4) using the number of 

deaths to represent the alpha parameter, and the sample size minus the events 

to represent the Beta parameter.  

Quality of life / Utility 

Utility estimates were incorporated into the model, representing the average 

quality of life for patients in the no metastatic recurrence, metastases at one 

site and extra metastases groups.  Patients who were inaccurately diagnosed as 

no metastatic recurrence (false negatives) and therefore failed to receive 

treatment for either metastases or extra metastases in the first year were 

assigned a disutility for that year to account for the negative impact on the 

patients’ quality of life.  Likewise, patients who were inaccurately diagnosed 
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as metastatic (false positives) and received unnecessary metastatic surgery or 

treatments for extra metastases were assigned a lower utility status for that 

year to account for the negative impact of unnecessary treatment on quality of 

life.   Table 3-24 details the utility parameter estimates, standard errors and 

distributions used in the probabilistic model.  

Table 3-24: Metastatic CRC model Utility Parameters 

Utility Parameters 
Point 

estimate 
Standard 

error 
Probabilistic 
distribution Data Source 

          
No Metastases 0.91 0.11 Gamma (disutility) (122) 
          
Metastases 0.84 0.12 Gamma (disutility) (122) 
          
Extra Metastases         
Palliative care alone 0.52 0.08 Gamma (disutility) (132) 
Metastatic surgery & palliative 0.74 0.21 Gamma (disutility) (137)  
          
Fail to receive         
Metastases treatment 0.3 0.08 Gamma   Assumption (132) 
Extra metastases treatment 0.2 0.08 Gamma   Assumption (132) 
          
Receive unnecessarily         
Metastases treatment 0.74 0.14 Gamma (disutility) (137)  
Extra metastases treatment 0.61 0.2 Gamma (disutility) (132) 

          
 

Utility estimates and standard errors reported in Ramsey et al. (122) were used 

to represent the mean quality of life for patients with no metastases and 

metastases at one site, for five years post-diagnosis.  A utility estimate 

reported in Tengs & Wallace (132) for colorectal patients who receive best 

palliative/supportive care was taken to represent mean quality of life for 

patients with extra metastases who receive palliative care alone. Patient with 

extra metastases who receive surgery with palliative intent are assigned a 

slightly higher utility value (137) to represent their slightly better scenario, as 

recommended by clinical experts.  These were applied in the model for five 

years post-diagnosis, followed by UK age adjusted population utility weights for 

the remainder of time alive in the model (124). 

Patients incorrectly diagnosed received their true disease stage utility, but 

with a disutility relating to the inappropriate treatment they received for a 
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specified duration as detailed previously in Table 3-7. Patients who were 

inaccurately diagnosed and failed to receive treatment for metastases at one 

site (pre-operative chemotherapy and metastatic surgery) were assumed to 

receive a disutility of 0.3 for a year, and patients who failed to receive 

treatment for Extra metastases received a disutility of 0.2 for a year, 

reflecting the impact on quality of life for delayed treatment.  The disutility 

values and standard errors were assigned at the authors discretion, based on 

advice from clinicians and related utility information provided in various 

papers (132).  The authors assumed a corresponding standard error of 0.08. 

Patients who received unnecessary metastatic treatment received an 

alternative, lower utility value of 0.74 (132) for one year to reflect the impact 

on their quality of life during their unnecessary treatment, a standard error of 

0.14 was assumed to represent uncertainty in the point estimate.  Patients who 

received unnecessary extra metastases treatments were assigned an even 

lower alternative utility value (0.61 with a corresponding standard error 0.2 

(137)) for one year, to reflect the considerable impact on quality of life of 

receiving unnecessary treatment for misdiagnosed extra metastases.  

Similar to the approach adopted for the primary and recurrent models, Gamma 

distributions were set on disutility (Disutility= 1-Utility) so that the distribution 

was constrained on the interval zero to infinity, allowing very low and even 

negative utility values.  The mean utility values and corresponding standard 

errors were reported in the literature (or derived based on author assumption 

where appropriate), and therefore the Method of Moments for gamma was used 

to calculate the shape (alpha) and scale (beta) parameters to fit the gamma 

distributions.  

Costs 

As in the previous models, the costs for the metastatic model are attributed to 

the alternative imaging devices (as a cost per scan) and the various treatment 

options for diagnoses of no metastases, metastases at one site, extra 

metastases. NHS reference costs data was used (101;145) along with other data 

sources for the various treatment options (100;120;149). The various unit costs 
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point estimates, standard errors and the distributions used in the probabilistic 

analysis are detailed in Table 3-25.   

Table 3-25: Metastatic CRC model costs 

Item 
Unit 

Cost (£) 
Standard 
error (£) 

Probabilistic 
distribution Data Source 

          

Imaging Devices        

ce CT scan  143 22 Normal (101)  

(chest, abdomen, pelvis)        

MRI scan (pelvis) 179 24 Normal (101)  

PET/CT scan 800 100 Normal (146;148) 

     

Treatments        

Chemotherapy 11532  -  - (100;120;145) 

Palliative Care 2468 494 Normal (149) 

Metastatic surgery 9134 1827 Normal (145)  

Wait & watch: annual follow-up 60 13 Normal (101)  

          
 

The cost of the imaging devices are the same as those used in the previous 

models.  The treatment option combinations for the metastatic model are 

different to those in the primary and recurrent models; however the cost of 

the component treatments were assigned in the same way. For example, the 

cost of metastatic surgery includes surgical consultation, theatre time, staff 

costs and an average inpatient stay of 10 days; pre-operative chemotherapy 

includes six months treatment with 5-FU and Oxilaplatin, and the wait and 

watch treatment involves an annual oncology consultation.  

For the probabilistic analysis normal distributions were considered to be 

appropriate for representing the unit cost parameters, as in the previous two 

models.  The point estimates were derived from UK and Scottish reference 

costs sources, and as these are very large data sources they can be considered 

to have sufficient sample sizes for the central limit theorem to apply.   

The expected costs of treatment for the groups were calculated using the 

proportion of patients receiving each treatment option within each different 

group.  In the model, if a patient was diagnosed accurately they would receive 
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their optimal treatment option and the associated costs of that treatment.  If a 

patient is inaccurately diagnosed they incur the cost of the treatment for the 

(mis)diagnosed group, followed by the discounted cost of treatment for their 

true diagnosis the following year (i.e. it is assumed that the true diagnosis 

would be identified within a year if the patient were still alive).  Costs were 

discounted at 3.5% (24).    
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3.5 Deterministic Results 

Having detailed the development of the three models and how they were 

parameterised, this section now reports the deterministic results for each 

model reporting the incremental cost per correct diagnosis and incremental 

cost per QALY.  The exploration of uncertainty through probabilistic sensitivity 

analysis and value of information analysis is reported in Chapter 4.  

The evaluations were undertaken from the perspective of the UK NHS, 

reporting short term outcomes in terms of the incremental cost per correct 

diagnosis, and longer term outcomes in terms of the incremental cost per 

quality adjusted life year (QALY) gained.  For the three models, five 

evaluations were undertaken to assess the cost-effectiveness of PET/CT as an 

add-on imaging device in pre-operative staging for (i) primary rectal cancer, 

(ii) primary colon cancer, (iii) recurrent rectal cancer, (iv) recurrent colon 

cancer and (v) metastatic disease.  In the primary colon and rectal models a 

scenario analysis was undertaken to assess the future potential (if and when 

the technology becomes readily available in the UK) for contrast enhanced 

PET/CT (cePET/CT) as a replacement for conventional ceCT, rather than as an 

add-on imaging device.  

3.5.1 Primary colorectal cancer results  

Primary Rectal Cancer  

Table 3-26 details the expected costs of the imaging involved in the 

conventional strategy and the intervention strategy, the expected probability 

of a correct diagnosis under each strategy and the probability of a true positive 

diagnosis.  Cost-effectiveness for these two alternative measures of 

effectiveness is presented as incremental cost-effectiveness ratios (ICER). 

Correct diagnosis embodies the probability of identifying both true positives 

and true negatives in the model, and on this basis, the addition of PET/CT is 

dominated by the conventional strategy.  PET/CT is both more expensive and 

less effective in terms of the probability for correct diagnosis.  
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Table 3-26: Primary rectal cancer – cost per correct diagnosis 

Diagnostic 
Tool 

Mean cost per 
scan £ 

Probability correct 
diagnosis 

Probability true 
positive 

     
CT £322 0.71 0.31 
CT + PET/CT £1,122 0.61 0.44 
     
Difference £800 -0.10 0.13 
     
ICER  CT dominates £5,931 
 

This is due to the add-on nature of the PET/CT intervention, and the 

confirmatory positive strategy adopted, which identifies lots of true positives 

(and false positives) but results in fewer true negatives being identified, and 

overall fewer correct diagnoses.  In using an add-on technology there is a 

trade-off between specificity and sensitivity, and in this case, adopting a 

confirmatory positive strategy resulted in improvements in sensitivity, at the 

expense of a reduction in specificity.   

Reporting the overall result of correct diagnoses (true positives plus true 

negatives) implicitly gives an equal weight to the incorrect diagnoses: false 

positive and false negatives, however, they are not equal.  The confirmatory 

positive strategy recommended by the clinicians confirms that in this case false 

negatives are considered to be worse than false positives; as clinicians would 

rather gain additional true positive cases and over-treat additional cases 

incorrectly (false positives) than risk some cases going undetected (false 

negatives). To understand the correct diagnoses outcome more clearly, it is 

worthwhile looking at the probabilities of each of the DTA characteristics.  

Table 3-27 illustrates the outcomes in terms of the probability of correct 

diagnoses, true positives, false negatives, false positives and true negatives, 

for the conventional, and add-on PET/CT strategy adopted in this model.  The 

table also illustrates outcomes if a confirmatory negative approach had been 

adopted, and if PET/CT had only been implemented when the conventional 

test gave a negative result.   
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Table 3-27: Primary rectal cancer – DTA outcomes under different strategies 

 
Outcomes Conventional  add on PET/CT  add on PET/CT  PET/CT only if 
   confirmatory + confirmatory - conventional -ive  

Correct diagnoses 0.71 0.61 0.72 0.61 

          

True positives (TP) 0.31 0.44 0.26 0.44 

False negatives (FN) 0.16 0.02 0.20 0.02 

False positives (FP) 0.13 0.36 0.07 0.36 

True negatives (TN) 0.41 0.17 0.46 0.17 
          

Cost £322 £1,122 £1,122 £774 
          
Cost-effectiveness   ICER ICER ICER 
Correct diagnoses   Dominated £89,695 Dominated 
True positives    £5,931 Dominated £3,349 

          
 

Table 3-27 shows that while the conventional strategy results in a greater 

probability of correct diagnosis than the add-on PET/CT intervention, in terms 

of true positives (TP), PET/CT has the better outcome.  The conventional 

strategy identifies more true negatives (TN) than add-on PET/CT, and once 

they are combined with TP the conventional strategy is the most effective in 

terms of correct diagnosis.  The add-on PET/CT strategy identified more true 

positives, but at the expense of false positives, which have a higher probability 

than in the conventional arm, yet in the conventional arm, many true 

negatives are identified, but at the expense of a greater proportion of false 

negatives. 

Table 3-27 also illustrates the potential outcomes if a confirmatory negative 

strategy had been adopted for add-on PET/CT.  In such a strategy (which 

favours specificity over sensitivity), even fewer true positives are identified 

(0.26) than in the confirmatory positive intervention (0.44), and the 

conventional (0.31), however, more true negatives are identified (0.46) 

resulting in an overall correct diagnosis slightly greater than the conventional 

strategy.  The alternative strategy in which add-on PET/CT is only used when 
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the conventional test is negative, results in the same DTA outcomes as the 

confirmatory positive strategy.  

Table 3-27 also details the cost of each strategy and reports the incremental 

cost-effectiveness ratios (ICER) with effectiveness measured by correct 

diagnoses and by true positives. The confirmatory negative strategy may have 

the best outcome in terms of correct diagnoses, however, it is only marginally 

so and this is reflected in a high ICER of approximately £90,000.  If true 

positives were the measure of effectiveness, then the confirmatory negative 

strategy would be dominated by both the conventional strategy and the 

confirmatory positive strategy.  When a correct diagnosis is the outcome of 

interest, add-on PET/CT with confirmatory positive is dominated by the 

conventional strategy, however under the true positives outcome, it has an 

ICER of approximately £6000. When PET/CT is used only when the conventional 

test is negative, the DTA results are the same as confirmatory positive 

strategy, however cost-effectiveness is improved with an ICER of 

approximately £3000, as the cost of PET/CT would only be incurred in some of 

the patients, those who get a negative result from the conventional test (56%).  

This is a more efficient research design and has been used by others (134) 

however, in practice this approach may be less well accepted and in the case 

of PET/CT, clinicians advised that all patients would be given a scan regardless 

of the conventional test outcomes. 

Given the add-on PET/CT intervention with a confirmatory positive strategy 

compared with the conventional strategy, the cost-effectiveness depends on 

whether the effectiveness outcome of interest is ‘probability of correct 

diagnosis’ (conventional strategy dominates) or ‘probability of true positives’ 

(PET/CT cost-effective at £5,900 per true positive identified).  These interim 

analysis outcomes detailed in Tables 3-26 appear to ignore the impact of false 

positives and false negatives (or implicitly value them as equal), which is not 

the case. They are incorporated in the longer term analysis through the 

treatment given under correct and incorrect diagnosis.  The longer term model 

also captures the resultant life expectancy and quality of life for patients, 

reporting the incremental cost per QALY gained, which incorporates the 
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diagnoses which were true positives, true negatives, false positives and false 

negatives.    

Table 3-28 details the long term cost-effectiveness outcomes.  The expected 

cost per person incorporates the imaging device and the subsequent treatment 

costs associated with the conventional and intervention strategies.  The 

outcomes are reported in terms of QALYs under each strategy and cost-

effectiveness is reported in terms of the incremental cost per QALY gain for 

primary rectal cancer. 

Table 3-28: Primary rectal cancer – cost per QALY gain 

Diagnostic Tool  Cost per person (£) QALY gain 

MRI + CT £15,151 9.42 

MRI + CT + PET/CT £17,418 9.43 

Difference £2,267 0.0053 

ICER £431,691  

 

These outcomes reflect the cost and quality of life implications of false 

negative and false positive diagnoses from the model. Tables 3-26 and 3-27 

showed that under an interim effectiveness outcome of correct diagnoses, the 

conventional strategy dominated the add-on PET/CT intervention.  However, 

Table 3-28 illustrates an ICER outcome, in which the intervention arm is no 

longer dominated.  This is due to the superior sensitivity from the PET/CT 

intervention which resulted in a greater probability of true positives than in 

the conventional strategy.  However, the impact of the additional false 

positives and false negative outcomes are also incorporated here. The low 

specificity of PET/CT as an add-on technology (under a confirmatory positive 

strategy) results in a greater number of false positive outcomes, in which 

patients are over-staged and incur additional costs and suffer quality of life 

impacts for unnecessary treatments.  The resultant impact in terms of QALYs is 

marginal, with the PET/CT intervention gaining only 0.005 QALYs per person.  

This is reflected in the extremely high ICER outcome from the primary rectal 

cancer analysis. 
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 The addition of PET/CT to the conventional strategy involves an additional 

cost of approximately £432,000 per QALY gained and therefore would not be 

considered cost-effective in the UK under the usual definition of between 

£20,000 and £30,000 per QALY (£20k/QALY < ICER < £30k/QALY) (24). 

Primary Colon Cancer 

The results from the primary colon cancer analysis are now presented.  Table 

3-29 details the outcomes in terms of both the incremental cost per correct 

diagnosis and the incremental cost per true positive diagnosis. The expected 

costs of the imaging devices involved in each strategy are presented along with 

the expected probability of a correct diagnosis, and probability of a true 

positives diagnosis under each strategy. 

Table 3-29: Primary colon cancer – cost per correct diagnosis 

Diagnostic 
Tool 

Mean cost per 
scan £ 

Probability correct 
diagnosis 

Probability true 
positive 

        
CT £143 0.65 0.26 
CT + PET/CT £943 0.60 0.43 
        
Difference £800 -0.05 0.18 
        
ICER   CT dominates £4,481 

 

The addition of PET/CT is dominated by the conventional strategy in terms of 

correct diagnosis, i.e. PET/CT is both more expensive and less effective than 

CT alone.  The add-on nature of the PET/CT strategy gives rise to a combined 

DTA where more cases of true positives are identified than the conventional 

strategy, but far fewer true negatives and therefore has a lower overall 

probability of correct diagnosis.  However, as with primary rectal cancer, when 

the probability of a true positive diagnosis is used as a measure of 

effectiveness the PET/CT intervention has an ICER, in this case of 

approximately £4000 per true positive diagnosis.  These interim outcomes do 

not reflect the inaccurate diagnoses (FP and FN test outcomes) under either 

strategy and therefore, it is the longer term QALY analysis that is more 

informative.  
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Table 3-30 details the cost per QALY outcomes. The expected costs incorporate 

the cost of the imaging device as well as the subsequent costs of treatment 

following the outcomes of each strategy.  The expected outcomes are reported 

in terms of QALYs under each strategy and the cost-effectiveness in terms of 

incremental cost per QALY gain for primary colon cancer. 

Table 3-30: Primary colon cancer – cost per QALY gain 

Diagnostic Tool  Cost per person (£) QALY gain 

   

CT £12,815 9.41 

CT + PET/CT £15,066 9.42 

Difference £2,253 0.013 

ICER £171,018  

 

The impact of the additional false positives and false negative in the model are 

incorporated in these outcomes. The low specificity of PET/CT as an add-on 

technology (under a confirmatory positive strategy) results in a greater number 

of false positive outcomes, in which patients are over-staged and incur 

additional costs and suffer quality of life impacts for unnecessary treatments.  

However, in the conventional arm there are a greater proportion of false 

negative diagnoses where patients fail to receive necessary treatment for a 

year, and incur negative impacts on their survival and quality of life impacts. 

The resultant impact in terms of QALYs is marginal, with the PET/CT 

intervention gaining only 0.01 QALYs per person.  This is reflected in a high 

ICER (£170,000), which is lower than the ICER for PET/CT in the primary rectal 

analysis (£430,000) but still far too high to be considered cost-effective. 

The addition of PET/CT to the conventional strategy involves an additional cost 

of approximately £171,000 per QALY gained and would not be considered cost-

effective under the typical UK definition of £20,000 to £30,000 per QALY (24). 
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Primary Colorectal Cancer Scenario: cePET/CT as a lone technology  

PET/CT technology is rapidly advancing (120;148) and contrast enhanced 

PET/CT (cePET/CT) is already being explored in Japan (109;110).  

Improvements in PET/CT technology may lead to improved accuracy of the CT 

component, so that if and when cePET/CT becomes readily available for use, it 

could potentially be used as a replacement for conventional ceCT, rather than 

as an add-on technology.  

Primary Rectal Cancer Scenario 

The primary rectal scenario explored the potential cost-effectiveness of such 

an advanced cePET/CT technology; replacing standard ceCT test with contrast 

enhanced PET/CT (cePET/CT) in addition to an MRI scan.  The results are 

detailed in Table 3-31, and offer an improvement in cost-effectiveness 

compared to the baseline add-on PET/CT results detailed in Table 3-28.  

Table 3-31: Primary rectal cancer scenario – cost per QALY 

Diagnostic Tool  Cost per person (£) QALY gain 

MRI+ CT £15,120 9.43 

MRI+ cePET/CT £16,095 9.44 

Difference £975 0.009 

ICER £107,652  

 

In primary rectal cancer, an advanced cePET/CT technology would be useful 

but would not negate the requirement for an MRI scan, and therefore, the 

additional benefit in terms of QALYs is marginal, while there would be an 

additional cost of the cePET/CT scan.  This scenario results in an ICER of 

£107,600 and therefore this potential future strategy of cePET/CT as a 

replacement for contrast enhanced CT in primary rectal cancer is not 

considered to be cost-effective under the typical willingness to pay threshold 

in the UK, i.e. £20,000 per QALY < ICER < £30,000 per QALY (24). 
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Primary Colon Cancer Scenario 

MRI scans are not used for the detection of colon cancer, and therefore 

cePET/CT could be used as a complete replacement for the conventional 

strategy (ceCT), if and when it becomes available in the UK.  With regards to 

the primary colon scenario, the results indicate that there is potential for this 

strategy to be highly cost-effective.  Table 3-32 details the cost-effectiveness 

results. 

Table 3-32: Primary colon cancer scenario – cost per QALY 

Diagnostic Tool  Cost per person (£) QALY gain 

CT £12,766 9.45 

cePET/CT £12,972 9.47 

Difference £206 0.02 

ICER £12,832  

 

The incremental cost of cePET/CT is £200 and the improved diagnostic test 

accuracy of cePET/CT is reflected in a QALY gain of 0.02.  This results in an 

ICER of £12,800 which is considerably below the typical UK willingness to pay 

threshold of £20,000 to £30,000 per QALY (24).  Therefore, using contrast 

enhanced PET/CT as a replacement technology for contrast enhanced CT is 

likely to be cost-effective, given current evidence.   
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3.5.2 Recurrent colorectal cancer results  

Recurrent Rectal Cancer 

The cost-effectiveness results from the recurrent rectal cancer analysis are 

detailed in Table 3-33, in terms of the incremental cost per correct diagnosis 

and the incremental cost per true positive diagnosis.  The expected costs of 

the imaging involved in both the conventional and intervention test strategies 

are detailed along with the expected probabilities. 

Table 3-33: Recurrent rectal cancer – cost per correct diagnosis 

Diagnostic Tool 
Mean cost per 
scan £ 

Probability correct 
diagnosis 

Probability true 
positive 

        

MRI + CT £322 0.88 0.60 

MRI+CT + PET/CT £1,122 0.95 0.65 
        
Difference £800 0.07 0.06 
        
ICER   £11,713 £13,769 
 

The inclusion of a PET/CT scan involves an additional cost of £800 but this also 

leads to an increased probability of correct diagnosis (true positives and true 

negatives), resulting in an ICER of approximately £12,000 per correct diagnosis.  

If the probability of a true positive diagnosis is the outcome of interest, then 

the add-on PET/CT strategy is also more effective than the conventional 

strategy, resulting in an ICER of approximately £14,000 per true diagnosis. The 

PET/CT intervention is superior to the conventional test in terms of both 

sensitivity and specificity and therefore rather than adopting a confirmatory 

positive strategy (as was done in the primary CRC model) the PET/CT 

diagnostic test accuracy was taken to represent joint DTA.  As PET/CT has 

superior DTA characteristics, the interim cost-effectiveness outcomes reflect 

this. Therefore, given current information, the MRI, CT and PET/CT scan 

strategy would be considered cost-effective compared with the conventional 

strategy under the typical UK willingness to pay threshold of £20,000 to 30,000 

per QALY gained (24).  
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These interim outcomes don’t reveal the impact of false positives and false 

negative diagnoses, and therefore the longer term outcomes reporting 

incremental cost per QALY gains are more informative. The lifetime analysis 

results are presented in Table 3-34.  The expected cost per person is presented 

which includes the cost of the imaging devices along with the subsequent costs 

of treatment associated with each of the test strategies.  The QALYs under 

each strategy are presented and cost-effectiveness is reported in terms of cost 

per QALY gain for recurrent rectal cancer.   

Table 3-34: Recurrent rectal cancer – cost per QALY gain 

Diagnostic Tool Cost per person (£) QALY gain 

MRI + CT £7,243 4.56 

MRI + CT + PET/CT £7,955 4.59 

Difference £712 0.03 

ICER £21,409  

 

The addition of PET/CT to the conventional strategy involves an additional cost 

of approximately £700, with an increase of 0.03 QALYs.  The ICER is 

approximately £21,500 and would therefore be considered cost-effective under 

the usual UK definition (£20k/QALY < ICER < £30k/QALY) (24). 

Recurrent Colon Cancer 

The results from the recurrent colon model are now presented. Table 3-35 

details the interim analysis outcomes for probability of correct diagnosis and 

probability of true positive diagnosis.  The expected costs of the imaging 

devices for each strategy are presented along with the expected probability of 

a correct diagnosis under each strategy and the cost-effectiveness in terms of 

incremental cost per correct diagnosis for recurrent colon cancer. 
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Table 3-35: Recurrent colon cancer – cost per correct diagnosis 

Diagnostic 
Tool 

Mean cost per 
scan £ 

Probability correct 
diagnosis 

Probability true 
positive 

        
CT £143 0.67 0.37 
CT + PET/CT £943 0.94 0.65 
        
Difference £800 0.27 0.28 
        
ICER   £2,999 £2,857 
 

The PET/CT intervention is superior to the conventional test in terms of both 

sensitivity and specificity and this is reflected in the correct diagnosis and true 

positive outcomes.  The benefit of add-on PET/CT is through improved 

sensitivity, with an increase of 0.28 in the probability of true positive diagnosis 

and resulting in fewer false negative diagnoses than in the conventional arm.  

As the DTA of PET/CT is superior to that of ceCT, PET/CT was taken to 

represent joint DTA in the intervention arm.  Including a PET/CT scan as an 

add-on technology involves an additional cost of £800, but this strategy also 

improves the probability of correct diagnosis by 28%.  The resultant 

incremental cost-effectiveness ratio is approximately £3,000 per correct 

diagnosis and per true positive diagnosis.  This ratio would be considered cost-

effective compared with the conventional strategy under the typical UK 

threshold for cost-effectiveness, i.e. £20,000 to £30,000 per QALY (24). 

The outcomes in terms of incremental cost per QALY gain are presented in 

Table 3-36.  The expected costs incorporate the cost of the imaging devices as 

well as the longer term costs associated with treatment under each strategy.  

The expected outcomes are in terms of QALYs under each strategy. 

Table 3-36: Recurrent colon cancer – cost per QALY gain 

Diagnostic Tool  Cost per person (£) QALY gain 

CT £6,677 4.44 

CT + PET/CT £7,543 4.58 

Difference £866 0.14 

ICER £6,189  
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In the longer term analysis the addition of a PET/CT scan improves QALYs by 

0.14 QALYs at an additional cost of £860. This translates to an ICER of 

approximately £6,000 per QALY gain and would be considered highly cost-

effective under the typical UK definition (£20k/QALY < ICER < £30k/QALY) (24). 
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3.5.3 Metastatic colorectal cancer results  

The deterministic results from the metastatic model are now presented. Table 

3-37 reports the incremental cost per correct diagnosis and per true positive 

diagnosis.  The expected cost represents the cost of the imaging devices 

involved in each strategy and the outcome is the expected probability of a 

correct diagnosis under each strategy. As with the recurrent colorectal cancer 

analyses, DTA for PET/CT was found to be superior to ceCT in terms of both 

sensitivity and specificity and therefore, was used to represent joint DTA in the 

intervention arm. 

Table 3-37: Metastatic cancer – cost per correct diagnosis 

Diagnostic 
Tool 

Mean cost per 
scan £ 

Probability correct 
diagnosis 

Probability true 
positive 

        
CT £143 0.78 0.36 
CT + PET/CT £943 0.83 0.38 
        
Difference £800 0.04 0.01 
        
ICER   £19,048 £66,667 
 

The intervention strategy of PET/CT in additional to contrast enhance CT 

involves an additional cost of £800 and results in an expected improvement in 

correct diagnoses of 4%. The correct diagnosis outcome incorporates both true 

positive and true negative outcomes, and as can be seen the intervention arm 

benefits from improved sensitivity and specificity over the conventional 

strategy.  In terms of true positive outcomes alone, the intervention strategy is 

only marginally more effective, with an improvement in probability of correct 

diagnosis of 0.01, leading to a higher ICER of £66,000 which would not be 

considered cost-effective in the UK.  The correct diagnosis outcome reflects 

the superiority of the PET/CT test in both the sensitivity and specificity 

characteristics, and results in an ICER of approximately £19,000 which would 

be considered cost-effective compared with the conventional strategy under 

the usual definition of cost-effectiveness in the UK (24). 
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The longer term analysis formally incorporates the impact of false negative and 

false positive outcomes, and the results are presented in Table 3-38.  The 

expected costs incorporate the cost of the imaging devices as well as the 

subsequent treatment costs associated with each strategy, while QALYs 

incorporate the quality of life and life expectancy for patients diagnosed 

accurately and inaccurately.  

Table 3-38: Metastatic cancer – cost per QALY gain 

Diagnostic Tool  Cost per person (£) QALY gain 

CT £10,184 7.48 

CT + PET/CT £10,460 7.49 

Difference £276 0.01 

ICER £21,434  

 

The addition of PET/CT to the conventional strategy involves an additional cost 

of approximately £300 and results in a gain of 0.01 QALYs.  The lifetime QALY 

impact of the addition of a PET/CT scan is marginal; however impact on cost is 

also small resulting in an incremental cost-effectiveness ratio of £21,000 per 

QALY gained.  This is likely to be considered cost-effective under the usual 

definition of £20,000 to £30,000 per QALY (24). 
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3.6 Summary 

This chapter outlined the development of three economic models using existing 

evidence and clinical opinion as part of an early stage economic evaluation to 

determine the potential cost-effectiveness of PET/CT as an additional to 

routine care for staging colorectal cancer.  This case study demonstrated the 

benefit and ease of synthesising current evidence and clinical expertise to 

develop early stage models, for an explorative economic evaluation, i.e. stage 

2 of the iterative economic approach.  Systematic literature reviewing (166) is 

an efficient, structured technique which ensures all relevant literature has 

been captured, and following this with meta-analysis techniques (167) is an 

ideal means of establishing pooled estimates of key parameters which can be 

used in economic models.   However, decision analytic modelling in itself is a 

mechanism for synthesising information, and this chapter highlighted that even 

when existing evidence is of poor quality and clearly subject to various forms 

of bias (including reporting bias), clinical expertise and research group 

consensus decision making can be used to decide on appropriate mean point 

estimates and wide uncertainty intervals to capture the present uncertainty. 

This is particularly of use when meta-analysis cannot be undertaken due to lack 

of data or (in the case of recurrent and metastatic CRC) where meta-analysis 

results do not credibly represent the wide range of uncertainty.  Early decision 

analytic models may be undertaken prior to the design of large scale trials, and 

require to capture cost-effectiveness based on current (and potentially limited 

or poor quality) evidence.  Just because evidence is poor, does not mean that 

the economic evaluation will be poor quality.  

With regards to the alternative interventions and delivery strategies compared 

in the PET/CT models, it is of interest to consider the extent to which this was 

led by the current clinical context.  One of the key advantages of early DAM is 

that it enables explicit strategy identification through exploring a wide range 

of alternative interventions; however, in practice implicit judgements are 

often made concerning which strategies should be included, based on arbitrary 

judgements.  Recommended good practice for decision modelling (30;37) 
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emphasises that all relevant alternatives and strategies should be incorporated 

into a decision model.   

In the PET/CT assessment, the choice of comparators was led primarily by the 

research question set by the funders and the clinicians involved in the study.  

As such the comparators, structure and boundaries of the decision model were 

potentially constrained by the current clinical context, limiting the range of 

strategies compared in the decision model.  For example, early into the 

research project it became evident that as an add-on technology PET/CT was 

not efficient and would have limited benefit in primary CRC; while an 

advanced cePET/CT technology (which may become available in the UK in the 

near future) has potential value as a replacement technology in primary CRC. 

The original scope of the research question, defined by the funding body, was 

restrictive with regards to specifying PET-CT as an add-on device in primary 

colorectal cancer and therefore limited the baseline analysis.   To counter-act 

this limitation, a scenario analyses was incorporated in the primary CRC 

assessment, to model the potential impact of cePET-CT as a stand alone 

device.   

With regards to clinician led approaches potentially restricting the strategies 

modelled there were two examples. The confirmatory negative strategy for the 

add-on test was not incorporated as an alternative strategy in the baseline 

model as clinicians identified that this would not be considered in practice.  

Additionally, a potentially much more efficient strategy was identified as 

appropriate for the economic evaluation, in which PET-CT is used as an add-on 

test only when the conventional test is negative.  This strategy was dismissed 

by the clinicians due to their concerns over the practicalities and possibly a 

preoccupation with current practice. 

The confirmatory positive strategy recommended by the clinicians confirms 

that false negatives are considered to be worse than false positives; as 

clinicians would rather gain additional true positive cases and over-treat 

additional cases incorrectly (false positives) than risk some cases going 

undetected (false negatives).  This is also of interest when the possibility for 

litigation proceedings to the NHS is considered.  A confirmatory negative 
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approach has a much higher proportion of false negative cases (as detailed in 

Table 3-27) than the other strategies, and therefore may result in a greater 

proportion of unhappy patients attempting to sue the NHS for false negative 

results. The potential importance of litigation costs to the NHS could be 

explored in the model by incorporating an additional scenario analysis.  By 

making an assumption about the proportion of false negative cases that will 

proceed to legal/court proceedings (based on morbidity through failing to 

detect/early treatment of cancer) the potential additional litigation costs can 

be incorporated.   

While the confirmatory positive approach was not considered to be the most 

efficient from an economic standpoint (the ‘PET-CT only if conventional test is 

negative’ was the most efficient approach as demonstrated in Table 3-27), by 

insisting on a confirmatory positive approach, doctors are implicitly 

incorporating an additional source of benefit (through less false negatives, and 

less unhappy patients).  An evaluation may miss this implicit benefit in the 

confirmatory positive approach, which may only become apparent when the 

(importance of) potential costs of litigation proceedings are assessed in the 

economic model.  
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3.6.1  Primary CRC 

Few diagnostic tests have both high sensitivity and specificity and therefore 

combining two tests can help improve DTA, but creates a problem where 

results from two tests conflict with one another. Given the add-on nature of 

the PET/CT intervention, a strategy must be adopted to deal with conflicting 

test results.  A confirmatory positive strategy, also known as the ‘either 

positive’ strategy (106), accepts positive results when either of the tests give a 

positive result; while a confirmatory negative strategy favours negative results 

and therefore a positive result is only accepted when both tests report a 

positive.  Adopting one of these strategies involves a trade-off between 

sensitivity and specificity.  The confirmatory positive strategy results in an 

overall larger number of positive outcomes, both true positives and false 

positives, and a reduction in negative outcomes, while the confirmatory 

negative approach favours specificity and results in a greater proportion of 

both true and false negative outcomes (as demonstrated in Table 3-27).  In the 

PET/CT case study, a confirmatory positive approach was adopted as 

recommended by clinicians.  This implies a preference for improving true 

positive outcomes and that false negative results (in which patients with the 

disease would be undetected or under-staged) are considered to be worse than 

false positive outcomes where patients would be treated for a disease they do 

not have.   

An alternative strategy, in which add-on PET/CT is only used when the 

conventional test is negative, is likely to be a much more efficient research 

design.  As demonstrated in Table 3-27, such a strategy would give the same 

DTA outcomes as a confirmatory positive strategy, however, the cost of a 

PET/CT scan (which is approximately four times that of the conventional scans) 

and the inconvenience to the patient would only be incurred when 

conventional imaging results are negative, reducing the overall cost of the 

strategy.  Table 3-27 illustrated this for primary rectal cancer, showing that 

using PET/CT only when conventional tests gave negative results would 

improve short-term cost-effectiveness (where probability of a true positive 

diagnosis is the effectiveness endpoint of interest) with an ICER of 
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approximately £3,000 per true positive diagnosis rather than £5,900 under a 

test all approach.  This is a more efficient research design and has been used 

by others (134) however, in practice this approach may be less well accepted 

and in the case of PET/CT, clinicians advised that all patients would be given a 

scan regardless of the conventional test outcomes.  The add-on nature of the 

PET/CT technology also causes difficulty for interpreting short term cost-

effectiveness based on DTA.  The cost-effectiveness of the PET/CT intervention 

in primary CRC depends on whether the effectiveness outcome of interest is 

the probability of correct diagnosis, whereby the conventional strategy 

dominates, or probability of a true positive diagnosis, in which case the 

PET/CT intervention is cost-effective at £5,900 per true positive identified.  

The probability of correct diagnosis considers the overall advantage of the 

combined tests, in terms of both true positives and true negatives, whereas 

the probability of a true positive outcome is only interested in the sensitivity 

of the tests.  As a confirmatory positive strategy was adopted, it could be 

argued that identification of true positive cases is the outcome of interest; 

however, it is the longer term outcomes that need to be considered to give a 

more appropriate measure of cost-effectiveness.   The lifetime analysis 

formally incorporates the impact of accurate and inaccurate (false positive and 

false negative) diagnoses, in terms of the costs of the inappropriate and 

appropriate treatments and the resultant impact on quality of life.  

The cost per QALY analyses for primary rectal and colon cancer showed that 

the confirmatory positive strategy and low specificity of PET/CT in primary 

CRC results in a greater number of false positive outcomes, in which patients 

are over-staged and incur additional costs and suffer quality of life impacts for 

unnecessary treatments.  This is reflected in the extremely high incremental 

cost per QALY outcomes.  Further, the therapeutic impact literature identified 

in the systematic review (112-114;143) found that while PET/CT may 

potentially impact on accurate staging of primary colorectal cancer, it had only 

a minor impact on changing patient management.  In the decision analytic 

models developed for this analysis, both the rectal and colon primary models 

identified an incremental QALY gain of only 0.005 and 0.01 for rectal and colon 
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cancer respectively, indicating that PET/CT as an add-on imaging device in 

primary CRC does not have any overall impact on patient outcomes.  

The cost per QALY results for both the primary rectal and primary colon 

evaluations are extremely high, greater than £400,000 per QALY and greater 

than £170,000 per QALY respectively.  As such, PET/CT is not cost-effective in 

either primary rectal or primary colon cancer given the UK recommended QALY 

threshold of £20k-£30k per QALY (24).  
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3.6.2 Recurrent CRC 

The recurrent CRC model found PET/CT as an add-on imaging device to have 

an ICER of £21,409 for rectal cancer and £6,189 for colon cancer.  Considering 

the UK monetary threshold of £20-30,000 per QALY, these can be considered to 

be cost-effective. 

The ICER for the recurrent colon cancer analysis is considerably lower than 

that for recurrent rectal cancer, indicating that PET/CT is more cost-effective 

in the assessment of colon recurrence than in rectal recurrence.  This 

difference is likely to be due to the sensitivity estimate for the CT diagnostic 

test parameter, which has considerably lower sensitivity than the PET/CT 

sensitivity estimate. Uncertainty around these parameter estimates is explored 

in Chapter 4 in the probabilistic sensitivity analysis.  

Meta-analyses were undertaken using relevant papers identified from the 

systematic review to elicit pooled diagnostic test accuracy estimates of 

PET/CT for the recurrent colorectal cancer model.  Due to inadequacies and 

reporting bias in the identified papers, the pooled estimates for PET/CT were 

considered to be an inaccurate reflection of the diagnostic test accuracy and 

the confidence intervals were tight around the pooled means, which was 

considered to be restrictive in terms of capturing the wide range of 

uncertainty.  Therefore, expert judgment was used to determine point 

estimates and wide uncertainty intervals from the literature.  

Most previous economic evaluations undertaken for recurrent CRC have been 

specifically interested in hepatic metastases.  Two papers were identified 

which were interested in assessing recurrence.  A cost-effectiveness analysis 

undertaken in Canada (130)  considered PET/CT in comparison to CT for 

diagnosing colorectal recurrence, and an Australian based study (129) 

undertook a cost-consequence analysis of PET versus no PET for diagnosing 

local recurrence. The decision analytic model developed for this piece of 

research adds to this literature, providing an assessment of the cost-

effectiveness of PET/CT as an add-on imaging device for diagnosing both 

recurrent rectal and recurrent colon cancer.   
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The Canadian CEA (130) reports cost savings with the PET/CT approach through 

avoidance of unnecessary surgeries.  The paper does not report the number of 

unnecessary surgeries avoided in each strategy, just the cost savings.  After 

considering the parameter estimates used in their model, it can be seen that 

the DTA estimates assigned to PET/CT are superior to those in the CT 

comparator arm by a wide margin, so it is no surprise that the PET/CT 

intervention was found to dominate CT.  The recurrent model developed for 

the present analysis utilised DTA estimates from three trials (156-158) and 

based on this evidence adopted a more conservative approach, assigning the 

same specificity values to ceCT and PET/CT.  This resulted in no difference 

between the alternative strategies in terms of the unnecessary surgeries 

outcome in the recurrent colon model; however, the recurrent rectal model 

did indicate reductions in unnecessary surgeries with the PET/CT intervention.  

The Australian publication (129) also report cost savings through the use of PET 

in comparison to a no PET strategy, however, few details are provided as to 

what the no PET strategy entails.    

In comparison to other economic evaluations undertaken in this disease area, 

the model developed for this piece of research appears to have adopted a 

more conservative approach in assigning DTA estimates and through 

incorporating quality of life impacts and overall survival impacts in a cost per 

QALY outcome.  This conservative approach attempted to minimise bias in the 

model to avoid unfairly favouring the intervention arm (add-on PET/CT).   
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3.6.3 Metastatic CRC 

The metastatic model found PET/CT as an add-on device to have an ICER of 

£21,434 per QALY gained.  This ICER value is within the UK monetary threshold 

range of £20-30,000 per QALY for determining cost-effectiveness (24). 

Most of the existing publications which have undertaken economic evaluations 

of PET for CRC have been specifically interested in hepatic metastases.  An 

American study (134) developed a decision model to determine the cost-

effectiveness of PET and CT imaging in comparison to CT alone.  They 

evaluated outcomes in terms of life year gains and report an incremental cost 

per life year gained of $16,437.  This paper is the most similar to our model, 

but does not incorporate quality of life impacts. 

Another economic evaluation in metastatic CRC was undertaken in France from 

the national health insurance perspective (135), reporting cost savings of €2671 

($3213) with no change in life expectancy when PET/CT was compared against 

CT in staging metastatic colorectal cancer.  Another American study (136) 

assessed the cost-effectiveness of PET/CT in comparison to CT for identifying 

the presence of extra hepatic metastases.  They report a cost saving of $5,269, 

due to unnecessary surgeries avoided, however they provide few details of how 

their model was constructed.   Details were not provided of the diagnostic test 

accuracy estimates used in the model or how the impact on patient 

management was incorporated.  None of these metastatic models used 

probabilistic analysis to incorporate uncertainty to each of the model 

parameters. Uncertainty around the parameter estimates in the present 

analysis is explored in Chapter 4 in the probabilistic sensitivity analysis.  

3.6.4 Next steps in the analysis 

The economic models developed in this chapter relied heavily on clinical 

expertise, given the dearth of previous economic evaluations and poor quality, 

biased DTA evidence in this area.  Some reviewers may consider this to be a 

major drawback to this type of decision analytic modelling approach; however, 

this is precisely the point of early stage decision models: attempting to capture 



Chapter 3   178 

what knowledge is available and what is not, in a systematic manner.   Just 

because the existing evidence is poor, does not necessarily mean the outcomes 

of the economic evaluation are poor.  It is entirely appropriate to utilise 

clinical expertise in such situations, however it is important to capture the 

uncertainty in these parameters, and explore what this means for uncertainty 

in terms of the model outputs.   

In the PET-CT models, the parameters for the various treatments at diagnosis, 

probability of receiving those treatments and assumptions regarding the 

negative health impacts of incorrect diagnosis, were informed directly by the 

clinical experts on the team, due to a lack of published evidence.   Ideally 

formal elicitation of clinical opinion would have been undertaken (using Delphi 

techniques); however, due to time constraints on the research project a 

slightly less formal elicitation process was used.  Tables were created for each 

of the treatment parameters and the two senior clinicians on the research 

team completed them with their estimates and surrounding uncertainty 

estimates.  Uncertainty in these model parameters was dealt with in 

probabilistic sensitivity analysis with wide uncertainty intervals.  The structural 

uncertainty regarding these could also potentially have been dealt with 

through scenario analyses.  For example, alternative scenarios for greater and 

lower disutility impacts for receiving unnecessary treatment, or failing to 

receive treatment could have been modelled to explore the impact of this 

structural uncertainty on the model outcomes.  Due to time constraints this 

was not included in the scenario analyses undertaken, however, given the wide 

uncertainty around the mean estimates used in the PSA, it is unlikely that such 

scenario analyses would have changed the conclusions around decision 

uncertainty.   

Chapter 4 reports the outcomes of the probabilistic analyses, explores 

uncertainty in the cost-effectiveness outcomes and undertakes value of 

information analyses to demonstrate the advantage of early stage decision 

modelling in exploring whether further research is worthwhile, and if so, what 

type of research is appropriate.   
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4 Setting research priorities 

4.1 Introduction 

Following on from the preceding chapter where three economic models were 

developed in order to explore the potential cost-effectiveness of PET/CT as an 

add-on staging technology for colorectal cancer; this chapter explores 

uncertainty in the cost-effectiveness outcomes.  Value of information analyses 

are undertaken to explore decision uncertainty further, in terms of whether 

further research is potentially worthwhile, and if so, what type of research is 

appropriate. This chapter uses the case study of PET/CT to demonstrate the 

rationale for funding evidence synthesis and early decision analytic modelling 

prior to primary research by highlighting the importance of this type of 

research in determining future research priorities. 

4.1.1 Identifying the decision problem 

The Health Technology Assessment (HTA) is a programme funded by the 

National Institute for Health Research (NIHR) (52) which produces independent 

research about the effectiveness, cost-effectiveness and broader impacts of 

health care treatments and technologies.  The research generated is intended 

for an NHS audience, particularly those who plan and provide care in the NHS.  

They commission both primary research and evidence synthesis research, and 

the topics are identified and prioritised to meet the needs of the NHS. The HTA 

identify evidence gaps or decision problems for which they commission 

research through various means, such as consultation with key NHS 

stakeholders, extracting research recommendations from various resources, 

direct recommendations and communication with researchers (52).  This 

process is akin to Stage 1 of the iterative approach to economic appraisal (1), 

but rather than the researchers exploring and forming the research question, 

the HTA programme have already defined the decision problem, specifying the 

intervention of interest and the relevant patient groups.  It is commonly the 

case that funding bodies such as the HTA define an overall research question 

and put out a call for bids to undertake the research. Research bodies are, 
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arguably, well placed to do this as they are likely to have formal criteria for 

setting research priorities, as well as the ability to engage with various 

stakeholders, and also may have financing available to review current evidence 

in order to define an appropriate research question. However, a call for 

research from a funding body does not necessarily mean that an appropriate 

research question has been defined.  The call may well be too prescriptive, or 

alternatively too broad to adequately define the problem, or it may well 

require some explorative research to define the appropriate question.  In the 

context of the iterative economic framework, stage 1 in itself may involve an 

iterative process where exploration of the literature leads to updating and re-

defining of the research question for evidence synthesis and modelling in stage 

2.   

In the context of the PET/CT case study, the HTA identified a decision problem 

for PET/CT in colorectal cancer and commissioned a research brief to answer 

the question: “In which groups of patients with colorectal cancer does the 

addition of PET/CT to preoperative staging add most value?” 

In the United Kingdom colorectal cancer is the third commonest malignancy 

behind lung and breast cancer with 37,514 new cases registered in 2006 (94).  

For patients with colorectal cancer there are a wide range of clinical scenarios 

and various treatment options with different timings, dependent on the stage 

of the cancer and also the extent of the cancer growth within each stage.  

Over the past two decades, a number of diagnostic tools (such as ultrasound, 

CT, ceCT, MRI, and PET/CT) have entered clinical practice and now facilitate 

the process of pre-operative staging for CRC.  Largely due to its wider 

availability and relatively low cost, ceCT is the technique most commonly used 

for staging colorectal cancer, however, supplementary imaging is often needed 

to provide sufficient information to inform surgical decisions, such as MRI 

imaging in rectal cancer. PET/CT is recommended for use in some cancers, but 

its advantages in staging for CRC are less clear.  Several studies have shown 

PET/CT to be more accurate than diagnostic ceCT for staging colorectal cancer 

(98;99), however, PET/CT scanning is considerably more time consuming than 

either imaging device alone, and for CRC it is recommended as an addition to 

routine imaging devices (97), and therefore as an ‘add-on’ technology it carries 



Chapter 4   181 

a heavy cost burden.  Additionally, the diagnostic accuracy and therapeutic 

impacts of PET/CT in colorectal cancer are varied and unclear.   

Given the unclear evidence as to the effectiveness and cost of PET/CT in 

colorectal cancer the HTA programme commissioned research to explore and 

synthesise the existing evidence.  The brief specified a systematic review with 

the requirement for an economic component which incorporated patient 

management and quality of life, to explore potential cost-effectiveness of 

PET/CT as an addition to current practice in the UK.  Clearly the HTA 

recognised the importance of exploring the current evidence (regarding 

effectiveness with an accompanying economic model to determine cost-

effectiveness given the current evidence) before commissioning primary 

research for PET/CT in colorectal cancer.   

In response to this call, a multi-disciplinary research team consisting of clinical 

experts (CRC surgeons, radiographers etc), systematic reviewers, statisticians 

and health economists was formed.  A proposal was developed to undertake a 

systematic review and meta-analysis, which would be used to inform and build 

a DAM to assess potential cost-effectiveness.  Probabilistic modelling was 

specified in the economic analysis to enable the research to explore 

uncertainty in the model parameter estimates.  The proposal also included a 

value of information analysis component for the DAM in order to adequately 

answer the research questions.  If the purpose of the research is a precursor to 

commissioning primary research, what we want to know from reviewing the 

evidence is “should more research be commissioned?”  The research brief only 

specified a requirement for a cost-effectiveness decision model, not any VOI 

analyses, however, VOI techniques are necessary to help explore whether 

research is potentially worthwhile, and if so EVPPI can be undertaken to help 

define the type of research that is required.  Rather than using lack of 

evidence as a justification for further research, VOI allows the potential value 

of further research to be formally assessed and understood through exploring 

uncertainty.  

Chapter 3 detailed the development of the economic models and reported 

deterministic outcomes.  The probabilistic outcomes are now reported, 
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exploring uncertainty in the parameter estimates through the cost-

effectiveness planes, and then uncertainty in the decision using cost-

effectiveness acceptability curves.   

 

4.2 Probabilistic results 

The three economic models (primary, recurrent and metastatic) were analysed 

probabilistically, using Monte Carlo simulation (2000 iterations) to determine 

the expected cost, expected outcomes and the expected cost-effectiveness.  

The costs represent the cost of the imaging scans in each strategy and the 

resultant (accurate and inaccurate) treatments received; while outcomes are 

represented in terms of QALYs gained.  The cost-effectiveness of PET/CT as an 

add-on imaging device in pre-operative staging was assessed for: (i) primary 

rectal cancer, (ii) primary colon cancer, (iii) recurrent rectal cancer, (iv) 

recurrent colon cancer and (v) metastatic disease. The incremental costs and 

QALYs with their 95% confidence intervals are now reported and illustrated on 

cost-effectiveness planes to demonstrate the impact of parameter uncertainty 

on the cost and QALY outcomes for each of the analyses.   

4.2.1 Primary CRC results 

Primary rectal cancer  

In primary rectal cancer the intervention strategy (ceCT, MRI and PET/CT) cost 

an additional £2,267 (95% CI £932 to £3602) per person with a QALY gain of 

0.005 (95% CI -0.02 to 0.03) in comparison to the conventional strategy. This 

represents an incremental cost-effectiveness ratio of £431,691 per QALY 

gained and would not be considered cost-effective in the UK, given the NICE 

threshold of £20,000 to £30,000 per QALY (24). The confidence intervals for 

incremental costs and QALYs were calculated using the percentile method, 

using the 2.5 and 97.5 percentiles (4).   It is important to note that the lower 

95% confidence interval for incremental QALYs is negative, while the mean 
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value and upper confidence interval are positive.  This represents uncertainty 

as to the existence of any QALY gains.  

Figure 4.1 plots the probabilistic outcomes from the Monte Carlo simulation, 

illustrating the uncertainty surrounding the expected incremental costs and 

incremental QALYs for primary rectal cancer.  
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Figure 4-1: The CE plane for PET/CT in primary rectal cancer 

 

The joint distribution of the costs and effects from the Monte Carlo simulation 

are plotted on the cost-effectiveness plane to demonstrate the impact of 

uncertainty in the model parameters on the model outcomes (expected 

incremental cost and effects).  Some guidance exists regarding appropriate 

interpretation of cost-effectiveness results on the cost-effectiveness plane, 

and on the cost-effectiveness acceptability curves (49;70;71). Uncertainty in 

incremental outcomes is demonstrated when the results spread across the y-

axis, representing both QALY gains (in the eastern quadrants) and QALY losses 

(in the western quadrants).  Likewise a spread through the origin passing 

through the horizontal axis represents uncertainty in the incremental cost of 
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the intervention.  The extent of the spread also indicates the extent of 

uncertainty. 

In Figure 4-1 the horizontal plane illustrates the incremental QALYs and shows 

that there is considerable uncertainty regarding the existence of additional 

QALYs, as the spread of points pass through the origin.  Negative QALYs 

represent outcomes in which the conventional strategy had a greater QALY 

gain that the intervention strategy, and therefore we are uncertain as to the 

existence of any QALY gains, and the extent of any gains, represented by the 

wide spread.  The vertical plane represents incremental costs.  Figure 4-1 

illustrates that there is considerable uncertainty about the extent, but not the 

existence, of the additional expected costs.  The additional costs range from 

approximately -£300 to £4500, however, there are only two points below the 

origin representing a negative incremental cost (where the conventional 

strategy is cheaper than the intervention strategy).  Therefore we can be 

confident that the intervention will cost more than the conventional strategy, 

however we are less certain about what the additional cost will be, ranging 

from £900 up to £3,600 within the 95% CI.   

Primary colon cancer  

In primary colon cancer the intervention strategy (ceCT and PET/CT) cost an 

additional £2,253 (95% CI £1195 to £3310) per person with a QALY gain of 0.01 

(95% CI -0.02 to 0.05) in comparison to the conventional strategy. The 95% 

confidence interval for the costs is similar to that in the primary rectal 

analysis, however the 95% CI for incremental QALYs is a little wider and again 

includes negative values in the lower interval, indicating considerable 

uncertainty in both the existence of any QALY gain, and in the extent of gain 

when there is a gain. These probabilistic outcomes are plotted on the cost-

effectiveness plane in Figure 4-2.  
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Figure 4-2: The CE plane for PET/CT in primary colon cancer 

 

Figure 4-2 shows that none of the values for incremental cost fall below zero, 

indicating that we can be certain the intervention strategy will cost more than 

the conventional strategy, however, the extent of additional cost ranges 

between £220 and £4400, with 95% falling within the interval £1195 and £3310.  

The cost-effectiveness plane also illustrates the uncertainty in incremental 

QALYs which was evident from the 95% CI.  The incremental QALY points pass 

through the origin on the horizontal plane and in general are quite spread out, 

illustrating the wide 95% confidence interval and lower negative value.    

The cost-effectiveness plane represents the impact of the uncertainty in the 

model parameters on the incremental cost and QALY outcomes; however it 

does not tell us about uncertainty in the decision regarding cost-effectiveness.  

Figure 4-2 shows that some of the time the conventional strategy will dominate 

the intervention, when the ICER points are in the NW quadrant, however, the 

majority of the points fall into the NE quadrant where cost-effectiveness will 

be dependent on societies’ willingness to pay.  The cost-effectiveness 

acceptability curve can help explore uncertainty in this decision.  
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Primary Rectal Scenario: cePET/CT as a lone technology 

The primary rectal scenario was undertaken to explore the potential cost-

effectiveness of an advanced cePET/CT technology as a replacement for 

standard contrast enhanced CT, in the event that a cePET/CT technology 

becomes available in the UK.  However, in primary rectal cancer an MRI scan 

will still be undertaken and therefore even the cePET/CT would be an add-on 

technology in rectal cancer.   

The probabilistic results indicate an expected incremental cost of £975 (95% CI 

-£322 to £2271) and an incremental QALY gain of 0.01 (95% CI -0.01 to 0.03).  

The lower confidence intervals for both cost and QALYs are negative, while the 

mean value and upper intervals are positive, indicating considerable 

uncertainty in these outcomes.   Figure 4-3 illustrates these probabilistic 

outcomes, showing the spread of ICER outcomes from the Monte Carlo 

simulation. The incremental costs illustrated on the vertical axis have a wide 

range, from -£733 at the lowest value up to £3250 and even the lower 95% 

confidence interval is a negative value indicating uncertainty as to what the 

additional costs, if any, will be.  There is also uncertainty as to the existence 

of additional QALYs, as these values also cross through the origin; however the 

range is narrow and quite tight around the mean value of 0.01.  
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Figure 4-3: The CE plane for cePET/CT in primary rectal cancer scenario 

 

These results indicate uncertainty in the cost and QALY outcomes from the 

primary rectal scenario analysis, which is due to parameter uncertainty in the 

model.    

Primary Colon Scenario: cePET/CT as a lone technology 

The scenario analysis was also undertaken for primary colon cancer where an 

advanced cePET/CT technology could be used as a replacement the 

conventional ceCT scan, in the event that a cePET/CT technology becomes 

available in the UK.  In this scenario the ceCT is the only scan in the 

conventional strategy and therefore cePET/CT would be a replacement 

technology.  Figure 4-4 plots the probabilistic outcomes on the cost-

effectiveness plane.  

The probabilistic results indicate an expected incremental cost of £206 (95% CI 

-£1476 to £1887) and an incremental QALY gain of 0.02 (95% CI -0.0024 to 

0.03).   
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Figure 4-4: The CE plane for cePET/CT in primary colon cancer scenario 

 

There is considerable uncertainty in whether a cePET/CT strategy would cost 

more or less than the conventional ceCT strategy, as shown in Figure 4-4 where 

the incremental cost ranges from -£2300 up to an additional £3400.  The mean 

incremental cost of £206 is therefore a very uncertain expectation.  Likewise 

there is uncertainty as to the existence and extent of any QALY gains, ranging 

from -0.04 to 0.05 QALYs, however, the 95% confidence interval is narrower 

around the mean, but still incorporates negative values, crossing through the 

origin on the horizontal axis in Figure 4-4.  In this scenario, there is 

considerable uncertainty as the ICER values spread into three of the quadrants 

of the cost-effectiveness plane.  The cePET/CT intervention dominates ceCT 

when ICER values fall into the South East quadrant representing a reduction in 

cost and a QALY gain, however, the North West quadrant represent ICER values 

where ceCT dominates PET/CT.  In the North East quadrant of the cost-

effectiveness plane neither technology dominates, therefore societies’ 

willingness to pay will need to be considered to determine whether the ICER 

values are cost-effective in this quadrant.  
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4.2.2 Recurrent CRC results 

Recurrent rectal cancer 

In recurrent rectal cancer the intervention strategy (ceCT, MRI and PET/CT) 

cost an additional £712 (95% CI £185 to £1239) per person with a QALY gain of 

0.03 (95% CI -0.04 to 0.11) in comparison to the conventional strategy. This 

represents an incremental cost-effectiveness ratio of £21,409 per QALY gained 

which would be considered cost-effective in the UK (24).  However, it is of 

interest to consider the impacts of parameter uncertainty on uncertainty in the 

incremental cost and QALY outcomes.  The confidence intervals for 

incremental costs and QALYs were calculated using the 2.5 and 97.5 

percentiles from the Monte Carlo iterations.   The 95% CI for incremental cost 

ranges from approximately £200 to £1200 which is a substantial variation, 

however they are all positive.  Figure 4-5 illustrates that only a few of the 

incremental cost outcomes fall below zero, with a minimum value of -£1150, 

however, these negative incremental costs values are outside the 95% CI.  
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Figure 4-5: The CE plane for PET/CT in recurrent rectal cancer 
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The uncertainty surrounding the existence of additional QALY gains is 

substantial.  There is wide variation around the mean point estimate of 0.03 

and Figure 4-5 shows that the majority of incremental QALY values are 

positive, to the right of the origin on the horizontal axis, however the lower 

95% CI incorporates negative QALY values up to -0.04 QALYs and there are a 

few outlying negative up to -0.17 QALYs. There is considerable uncertainty 

regarding both the existence of and the extent of any expected QALY gains, as 

highlighted by the spread of points along the horizontal plane crossing through 

the origin. 

Recurrent colon  

The results from the recurrent colon probabilistic analysis indicate an expected 

incremental cost of £866 (95% CI £562 to £1170) per person with a QALY gain of 

0.14 (95% CI -0.08 to 0.36) in comparison to the conventional strategy. This 

translates to an ICER of approximately £6,000 per QALY gain and would be 

considered highly cost-effective under the typical UK definition (24).   Figure 

4-6 illustrates the cost-effectiveness plane. 
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Figure 4-6: The CE plane for PET/CT in recurrent colon cancer 
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The expected incremental costs are all greater than zero, and the mean value 

has a reasonably tight 95% CI as illustrated on the vertical axis in Figure 4-6.  

Therefore, we can be confident that the intervention will incur additional costs 

and there is a little uncertainty regarding the extent of the additional costs.  

Figure 4-6 shows that there is greater uncertainty, as to both the existence and 

extent of any additional QALY gains.  The 95% CI for incremental QALYs is very 

wide and the lower interval is negative passing through the origin on the 

horizontal axis, however, the majority of incremental QALYs are positive and 

even though the upper 95% interval is at 0.36 QALY gains, the maximum gain is 

as high as 0.59 QALYs. Given these values we are uncertain as to the existence 

of and extent of any additional QALY gains.   



Chapter 4   192 

4.2.3 Metastatic results 

With regards to the metastatic model, the intervention strategy (ceCT plus 

PET/CT) has an expected additional cost of £276 (95% CI -£4384 to £4937) per 

person with a QALY gain of 0.01 (95% CI -0.08 to 0.10) in comparison to the 

conventional strategy. This represents an incremental cost-effectiveness ratio 

of £21,434 per QALY gained which would be considered cost-effective in the 

UK; however, it is of importance to consider the confidence intervals and note 

that there is considerable uncertainty in both the incremental cost and QALY 

outcomes.   

The results from the probabilistic analysis indicate that we are extremely 

uncertain as to the existence and extent of any additional cost in the 

intervention strategy.  The 95% CI around the incremental cost expectation is 

very wide, crossing through the origin and incorporating negative values as low 

as -£4300, and at the upper level nearly £5000.  Figure 4-7 illustrates these 

outcomes on the vertical axis of the cost-effectiveness plane.  
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Figure 4-7: The CE plane for metastatic cancer 
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It can be seen that at a maximum there would be an additional cost of nearly 

£8000, while at the minimum the intervention strategy is approximately £7000 

cheaper than the conventional strategy. Likewise, the confidence interval for 

QALYs is wide and the spread of values passes through the origin including a 

wide range of both additional and negative QALY gains.   

Looking at the scatter of incremental values, about a third fall in the South 

Eastern quadrant, where the add-on PET/CT intervention is dominant over the 

conventional strategy, but another third of the incremental values fall in the 

North Western quadrant where it is the conventional strategy that dominates. 

The remaining values fall in the North East and South West quadrants, where 

ICERs will be present; therefore, even though the overall ICER can be 

considered cost-effective, the probabilistic results paint a very unclear picture.   

These results illustrate that there must be considerable uncertainty in the 

model parameters, which has impacted on the expected costs and QALY 

outcomes.  
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4.3 Decision Uncertainty 

The incremental costs and QALYs and their 95% confidence intervals (2.5 & 

97.5 percentiles from the distribution of Monte Carlo results) from the 

probabilistic sensitivity analyses were illustrated on cost-effectiveness planes 

to demonstrate the impact of uncertainty in the model parameters on 

uncertainty in the model outcomes (expected incremental cost and QALYs).  

The results showed that in all of the analyses, the spread of incremental QALYs 

passed through the origin on the horizontal axis, representing a situation where 

in some instances there would be a positive ICER value but in other instances 

the conventional strategy would dominated the intervention strategy (in the 

North West quadrant).  If the spread of ICER values had all been contained to 

one quadrant, then a decision regarding cost-effectiveness would be more 

straight forward, yet still dependent on a willingness to pay value (λ) if ICER 

points fall in the North East or South West quadrants.  As the spread of results 

involved two or more quadrants (for all of the analyses), cost-effectiveness is 

more complicated to determine.   

As all of the analyses incorporated instances where the spread of results 

entered two or more quadrants of the cost-effectiveness plane, the 95% 

confidence intervals for the ICERs involve negative values due to some of 

results being dominated by one of the strategies.  In such cases, the 95% CI for 

the ICER may appear back to front with the lower confidence interval 

representing a higher ICER value than the upper confidence interval (40;168).  

Therefore 95% confidence intervals were not presented for the ICER values.  In 

such cases careful consideration must be given to the spread of ICER values and 

the interpretation of the confidence intervals (40); and decision uncertainty 

(as to whether the intervention is cost-effective or not) is better represented 

on cost-effectiveness acceptability curves (CEACs) than in confidence intervals 

(4).   

Having presented the impact of uncertainty in the model parameters on the 

incremental cost and incremental QALY outcomes, cost-effectiveness 

acceptability curves will now be used to present decision uncertainty for each 
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of the analyses, illustrating the probability of each intervention being cost-

effective at different willingness to pay thresholds. 

4.3.1 Primary CRC decision uncertainty 

The aim of calculating a CEAC is to summarise and illustrate graphically the 

probability that a particular intervention is the optimal choice over a wide 

range of values for the ceiling ratio (λ) (7). Fenwick and colleagues (11) 

demonstrate this process and provide a guide to interpreting the CEAC (7;71). 

Primary rectal cancer 

The cost-effectiveness acceptability curve (CEAC) for primary rectal cancer is 

illustrated in Figure 4-8, representing the uncertainty in the cost-effectiveness 

estimate for primary rectal cancer. The CEAC shows the probability that 

PET/CT is cost-effective as an add-on imaging device in comparison to ceCT 

and MRI at different values for the maximum acceptable cost-effectiveness 

ratio (λ).  
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Figure 4-8: The CEAC for primary rectal cancer 
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At a monetary threshold of £100,000 the probability that the PET/CT 

intervention will be cost-effective is less than 20%. Within the usual UK range 

of values for the maximum acceptable cost-effectiveness ratio (λ) (£20,000 to 

£30,000 per QALY) the CEAC illustrates that the conventional strategy (CT and 

MRI) has approximately 100% probability of being cost-effective and the 

PET/CT intervention has a 0% probability of being cost-effective. 

The CEAC illustrates that there is little uncertainty in the cost-effectiveness 

decision.  The cost-effectiveness plane for primary rectal cancer in Figure 4-1 

illustrated considerable uncertainty in the existence and extent of expected 

incremental QALYs and some uncertainty in expected incremental costs, 

however, the CEAC illustrates that this parameter uncertainty does not 

translate into decision uncertainty.  

Primary colon cancer 

The uncertainty in the cost-effectiveness estimate for primary colon cancer is 

illustrated on a cost-effectiveness acceptability curve in Figure 4-9.   
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Figure 4-9: The CEAC for primary colon cancer 
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The CEAC shows that at a monetary threshold of £100,000/QALY the 

probability that the PET/CT intervention will be cost-effective is 

approximately 30%. At a threshold of £30,000 per QALY, the CEAC illustrates 

that the probability that PET/CT will be cost-effective is approximately 1%. At 

this threshold the probability that the conventional ceCT strategy will be cost-

effective is approximately 99%.  

The cost-effectiveness plane for the primary colon cancer PSA results in Figure 

4-2 illustrated considerable uncertainty in the existence and extent of 

expected incremental QALYs and some uncertainty in the extent of additional 

costs; however, this did not translate to decision uncertainty.  At a monetary 

threshold of £30,000 per QALY we can be 99% certain that the conventional 

strategy (ceCT) is cost-effective.  

Primary Rectal Scenario: cePET/CT as a lone technology 

The uncertainty around the cost-effectiveness estimate for the primary rectal 

cancer scenario is illustrated on the CEAC in Figure 4-10.   
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Figure 4-10: The CEAC for primary rectal scenario 
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The CEAC shows that at a monetary threshold of £30,000/QALY the probability 

of cePET/CT and MRI being cost-effective in comparison to ceCT and MRI is less 

than 20%.   As the monetary threshold increases, the probability of the 

intervention strategy (cePET/CT + MRI) being cost-effective increases, however 

even at a threshold of £60,000/QALY which is double the UK recommended 

threshold (24), the probability that the intervention strategy will be cost-

effective is only 35%.  The willingness to pay threshold would need to be 

greater than £100,000 per QALY for the cePET/CT and MRI strategy to be the 

optimal intervention.   

The probabilistic sensitivity analysis for the primary rectal scenario resulted in 

a scatter of ICER vales over three quadrants of the cost-effectiveness plane, 

indicating uncertainty in the existence of both incremental QALYs and 

incremental costs.  This parameter uncertainty translates into some decision 

uncertainty, as we can be reasonably certain (over 80%) that at a monetary 

threshold of £30,000 per QALY the conventional strategy would cost-effective.  

Primary Colon Scenario: cePET/CT as a lone technology 

The cost-effectiveness acceptability curve for the primary colon cancer 

scenario is illustrated in Figure 4-11. The figure shows that at a monetary 

threshold of £30,000/QALY there is a 63% probability of cePET/CT being cost-

effective in comparison to ceCT.  Note that the two curves cross at a 

willingness to pay threshold of approximately £12,800, which corresponds to 

the ICER point estimate value.  If society is willing to pay greater than £12,800 

per QALY then cePET/CT is likely to be the optimal strategy, given current 

information.    
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Figure 4-11: The CEAC for primary colon scenario 

 

The cost-effectiveness plane in Figure 4-4 illustrated uncertainty in the 

existence and extent of both incremental costs and QALYs, with a spread of 

ICER values that crossed three quadrants of the plane.  Some of this 

uncertainty translates into decision uncertainty as can be seen on the CEAC in 

Figure 4-11.  If society is willing to pay greater than £12,800 per QALY then 

cePET/CT is likely to be the optimal strategy, however there is still 

considerable uncertainty surrounding this decision. At £30,000 per QALY the 

probability that the cePET/CT strategy is cost-effectiveness is 63%, and even at 

a threshold of £60,000/QALY the probability is only 75%.  Therefore, there 

remains some decision uncertainty as to whether cePET/CT is the optimal 

strategy in the primary colon scenario. 
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4.3.2 Recurrent CRC decision uncertainty 

Recurrent rectal 

The cost-effectiveness acceptability curve, plotted in Figure 4-12, illustrates 

the uncertainty in the cost-effectiveness estimate for recurrent rectal cancer.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

£0 £10,000 £20,000 £30,000 £40,000 £50,000 £60,000 £70,000 £80,000 £90,000 £100,000

Maximum acceptable cost-effectiveness ratio ( λλλλ)

P
ro

ba
bi

lit
y(

co
st

-e
ffe

ct
iv

e)

CT+MRI CT+MRI+PET/CT
 

Figure 4-12: The CEAC for recurrent rectal cancer 

 

The figure shows that at a monetary threshold of less than £21,000/QALY there 

is a greater probability that the conventional (ceCT and MRI) strategy is the 

most cost-effective, but at a monetary threshold of greater than £21,000/QALY 

the intervention (add-on PET/CT) strategy has a greater probability of being 

the most cost-effective strategy. The two curves cross at the mean ICER 

estimate of £21,000 per QALY, and therefore, at the £30,000 per QALY 

threshold recommended by NICE (24) the CEAC indicates approximately 70% 

probability that the intervention strategy will be cost-effective in comparison 

to the conventional strategy.  



Chapter 4   201 

The cost-effectiveness plane in figure 4-5 illustrated considerable uncertainty 

regarding both the existence of and the extent of any expected QALY gains, 

and some uncertainty in the extent of additional costs.  This parameter 

uncertainty has translated into some decision uncertainty.   

Recurrent colon 

Uncertainty in the cost-effectiveness estimate at different monetary thresholds 

is illustrated for recurrent colon cancer in Figure 4-13.  
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Figure 4-13: The CEAC for recurrent colon cancer 
 

At a monetary threshold of less than £6,000 per QALY, the conventional 

strategy is the most cost-effective; while at a threshold above £6,000 per QALY 

the PET/CT strategy has the greatest probability of being cost-effective.  At 

the monetary threshold of £30,000/QALY there is an 85% probability that the 

intervention will be cost-effective, versus a 15% probability that the 

conventional strategy will be cost-effective.  Given that the cost-effectiveness 

plane in Figure 4-6 illustrated considerable uncertainty in the incremental 
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QALY estimate and some uncertainty in cost, this parameter uncertainty has 

translated into only a little uncertainty regarding cost-effectiveness.  We can 

be confident that the PET/CT intervention is cost-effective at a monetary 

threshold of £30,000/QALy, but only with a probability of 85%.    

4.3.3 Metastatic decision uncertainty 

With regards to metastatic colorectal cancer, Figure 4-7 illustrated that the 

ICER values from the PSA fall into all four quadrant of the cost-effectiveness 

plane, indicating uncertain as to the existence and extent of any additional 

cost or QALYs in the intervention strategy. The cost-effectiveness acceptability 

curve, in Figure 4-14, can help provide some insight regarding the decision 

uncertainty. 
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Figure 4-14: The CEAC for metastatic cancer 

 

Figure 4-14 illustrates the considerable uncertainty surrounding the cost-

effectiveness of the add-on PET/CT strategy. At a monetary threshold of 

£21,000 per QALY the probability that the PET/CT intervention will be cost-
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effective equals approximately 50% as is the probability that CT will be cost-

effective. Beyond this threshold the probability of cost-effectiveness for the 

intervention strategy increases slightly, but never reaches beyond 57%, even at 

a monetary threshold of £100,000/QALY.  At the £30,000 per QALY threshold 

recommended in the UK (24) the CEAC indicates that the PET/CT intervention 

has a slightly greater probability of being cost-effective (52%) than the 

conventional strategy (48%). This confirms that there is considerable 

uncertainty as to which intervention is cost-effective in the metastatic 

analysis, regardless of societies’ willingness to pay threshold.   



Chapter 4   204 

4.4 Value in further research: EVPI & EVPPI 

Having presented the PSA results and explored the decision uncertainty for 

each of the analyses, illustrating the probability of each intervention being 

cost-effective at different ceiling ratios, it is important to consider two 

questions: given the current evidence and decision uncertainty, should the 

technology be adopted (or not)?, and is further research required to help 

support this decision (4)?  If these questions are not answered, decision makers 

may struggle to interpret the cost-effectiveness results, particularly regarding 

how to make the decision to adopt or reject the add-on PET/CT technology 

given the uncertainty.  In answering these questions the researchers can help 

inform funders and decision makers on how to interpret the results for each 

CRC patient group and the appropriate next steps to take, based on the 

outcomes from the PSA.   

In the PET/CT case study, the results from the probabilistic analysis indicate 

that given current evidence add-on PET/CT is not cost-effective in primary CRC 

and should not be adopted, but it may be cost-effective in recurrent and 

metastatic disease.  This summary does not formally capture the decision 

uncertainty for each of the analyses.  Therefore, value of information analysis 

can be used to formally evaluate whether further research is necessary to 

support the decision to adopt or reject the technology.  

4.4.1 Primary CRC: Value of Information 

Primary Rectal cancer 

The expected value of perfect information (EVPI) was calculated using the 

probabilities of cost-effectiveness for each intervention which were generated 

in the CEAC calculation, over a range of monetary thresholds in increments of 

£500 from zero to £100,000 per QALY gain.  The EVPI results showed that at a 

monetary threshold of £30,000/QALY the expected value of perfect 

information per decision in primary rectal cancer is £1.30.  
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This EVPI is very low; however, when the decision uncertainty demonstrated in 

the CEAC in Figure 4-8 is considered, it is not surprising.  At the monetary 

threshold of £30,000/QALY the probability that PET/CT would be cost-effective 

was only 0.4% and therefore the conventional strategy (CT+MRI) was the 

optimal strategy, with a 99.6% probability.  The EVPI is equivalent to the 

opportunity loss from choosing the optimal (conventional) strategy in the 

instances that the optimal strategy would have been ‘wrong’ given perfect 

information.  Given that there was only a 0.4% probability that the 

conventional strategy is the wrong decision, it makes logical sense that the 

opportunity loss of choosing the conventional strategy is low.  Even at a 

greater ‘willingness to pay’ threshold of £100,000/QALY, the probability that 

PET/CT is cost effective was only 20%.  Therefore at this higher threshold there 

is a 20% probability that choosing the conventional strategy is the wrong 

decision, and this wrong decision resulted in an average opportunity loss, or 

value of perfect information, of £60 per decision.      

It is important to represent what this EVPI per decision represents in terms of 

the relevant patient population who would benefit from the additional 

information.   In order to determine the population value of EVPI, the patient 

population over the lifetime of the technology must be considered.   The 

annual incidence of primary rectal cancer in the UK was estimated to be 

13,315 (94) and a technology timeframe of two years was applied (and 

discounted at 3.5% (24), i.e. PET/CT in its current form will be considered as 

an add-on for imaging for two years. This (relatively short) timeframe was 

been determined in part by the continual development and upgrading of 

PET/CT, such that the estimates that we have for DTA are likely to change 

outside of this timeframe.   Therefore the effective population of primary 

rectal cancer patients who would potentially benefit from additional 

information was estimated to be 26,180. Figure 4-15 details the results from 

the expected value of perfect information analysis (EVPI) at a population level.  
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Figure 4-15: EVPI for primary rectal cancer – population level 

 

At a willingness to pay threshold of £30,000/QALY the expected value of 

perfect information for the population is approximately £34,000. If a monetary 

threshold of £100,000 per QALY were applied, then the population value of 

further research would be £2.3 million, however, the UK recommended 

threshold is £20,000 to £30,000 per QALY (24). This value can be considered to 

be the maximum society should be willing to pay for further research, and 

therefore, it is not worthwhile seeking additional information for PET/CT for 

primary rectal cancer.  The cost of undertaking further research activity, 

would out way this population value of £34,000 and therefore it is not 

worthwhile.    

Primary colon cancer 

Similar to the primary rectal results, the EVPI per decision for primary colon 

cancer was found to be very low. At a willingness to pay threshold of 

£30,000/QALY the expected value of perfect information per decision was 

£1.60. This low EVPI value can be explained by considering the (lack of) 

decision uncertainty demonstrated by the CEAC in Figure 4-9.  The CEAC for 

primary colon cancer showed that at a monetary threshold of £30,000 per 
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QALY, there was only a 1 % probability that the PET/CT intervention would be 

cost-effective, and therefore the conventional strategy was the optimal choice 

with a 99% probability of being cost-effective.   Given that there was only a 1% 

probability that the conventional strategy is the wrong decision, it makes 

logical sense that the opportunity loss of choosing the conventional strategy 

under perfect information is low, and therefore the value of further research is 

low. 

In order to determine the overall population value of EVPI for primary colon 

cancer the annual incidence of primary colon cancer was determined to be 

21,574 (94) and the PET/CT technology timeframe was estimated to be two 

years, discounted at 3.5% (24) to give an effective population of 42,418 

primary colon patients.  As with the primary rectal evaluation, the short 

technology timeframe was determined to reflect the continual development 

and upgrading of PET/CT technology, such that the current estimates for DTA 

are likely to change outside of this timeframe.  Figure 4-16 details the results 

from the expected value of perfect information analysis (EVPI) at a population 

level.   
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Figure 4-16: EVPI for primary colon cancer – population level 
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At a willingness to pay threshold of £30,000/QALY the expected value of 

perfect information for the population is approximately £70,000. Thus, it is 

unlikely that research will cost less than this value, and therefore it is not 

worthwhile seeking additional information for PET/CT for primary colon 

cancer. 

Scenario analysis: cePET/CT in primary rectal cancer 

The scenario analysis for primary rectal cancer was undertaken to explore the 

potential cost-effectiveness of an advanced cePET/CT technology along with 

MRI as an alternative to the conventional contrast enhanced CT and MRI scans.  

The CEAC in Figure 4-10 indicated that while the conventional strategy was the 

cost-effective option, there was some decision uncertainty around this choice.   

The results from the population level expected value of perfect information 

analysis (EVPI) are presented in Figure 4-17, based on the same patient 

population (26,180) and technology timeframe as that specified for the 

baseline primary rectal evaluation.   
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Figure 4-17: EVPI for primary rectal cancer scenario – population level 
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The EVPI results indicate that at a willingness to pay threshold of £30,000 per 

QALY, the expected value of perfect information per decision is £68, which 

translates to a population EVPI of £1.7million.  Therefore it is potentially 

worthwhile undertaking further research to explore whether cePET/CT can 

(and is available to) be used as a replacement for ceCT in primary rectal 

cancer, if the research cost was less than £1.7 million.  

Scenario analysis: cePET/CT in primary colon cancer 

The EVPI analysis for the primary colon cancer scenario was undertaken based 

on the same patient population (42,418) and technology timeframe as that 

specified for the baseline primary colon evaluation.  The results are presented 

in Figure 4-18.    
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Figure 4-18: EVPI for primary colon cancer scenario – population level 

 

The CEAC for the primary colon scenario found that if society is willing to pay 

greater than £12,800 per QALY then cePET/CT is likely to be the optimal 

strategy.  However, there was still considerable uncertainty surrounding this 
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decision, and at £30,000 per QALY the probability that the cePET/CT strategy 

would be cost-effectiveness was 63%.  This decision uncertainty is reflected in 

the value of further research.  The EVPI analysis resulted in an expected value 

of perfect information per decision of £290 at a willingness to pay threshold of 

£30,000 per QALY.  When scaled up to reflected this value to the patient 

population, further research is worth £12.3million as detailed in Figure 4-18.    

Figure 4-18 shows the kink in the EVPI curve, which occurs at the point where 

the ceiling ratio is equivalent to the ICER.  For the primary colon scenario this 

value is £12,800.  Beyond this point the EVPI is still high but diminishing. Given 

the high population EVPI, it can be concluded that it is potentially worthwhile 

undertaking further research to reduce the uncertainty surrounding the 

question of whether cePET/CT can be used as a replacement for ceCT in 

primary colon cancer. 
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4.4.2 Recurrent CRC 

Recurrent Rectal cancer 

As with the Primary model analyses, the EVPI for recurrent CRC was calculated 

using the probabilities of cost-effectiveness for each intervention which were 

generated in the CEAC calculation, over a range of monetary thresholds from 

zero to £100,000 per QALY gain.   

The EVPI results for recurrent rectal cancer report that at a monetary 

threshold of £30,000/QALY the expected value of perfect information per 

decision is £316. To understand this value it is useful to consider the 

probabilistic results and the decision uncertainty presented for recurrent rectal 

cancer in Figure 4-12. The results showed that at a monetary threshold above 

£21,000 per QALY it is most likely that the intervention (PET/CT) strategy will 

be cost-effective, but at a monetary threshold of £30,000/QALY there is only a 

70% probability of cost-effectiveness.  Given that there is a 30% probability 

that the optimal (intervention) strategy will be the wrong decision, the EVPI is 

equivalent to the opportunity loss from choosing the optimal (intervention) 

strategy in the 30% of instances that the optimal strategy would have been 

‘wrong’ given, perfect information.  At a ceiling ratio of £30,000/QALY the 

expected value of further research is £316 per decision. 

It is important to represent the EVPI per decision in terms of the relevant 

patient population who would benefit from the additional information.   In 

order to determine the effective recurrent rectal cancer population an annual 

incidence of recurrent rectal cancer of 9,054 cases was estimated (derived 

using the annual incidence of rectal cancer (94) and applying a 70% probability 

of recurrence (150) and a 2.8% death rate prior to recurrence) along with a 

technology timeframe of two years, to derive an effective population of 

17,802.  As noted previously, the two year timeframe was determined in part 

by the continual development and upgrading of PET/CT, such that the 

estimates for DTA are likely to change outside of this timeframe. The 

population level EVPI results are illustrated in Figure 4-19. 
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Figure 4-19: EVPI for recurrent rectal cancer – population level 
 

The EVPI per decision of £316 translated to population level EVPI of 

approximately £5.6 million, at a monetary threshold of £30,000/QALY.  It is 

likely that further research would cost less than £5million, and therefore, the 

EVPI results indicate that it is potentially worthwhile collecting more 

information about the use of PET/CT for staging in recurrent rectal cancer. 

Having established that further research is likely to be worthwhile in recurrent 

rectal cancer, it is useful to consider what type of research is required.  

‘Further research’ does not necessarily mean that a large scale, randomised 

controlled trial is required.  Rather, the type of research will depend on the 

different parameters that require further information.  For example, utility 

values can be collected alongside a large scale randomised trial, but if they are 

the sole source of uncertainty, then it would be much more efficient (and 

cheaper) to determine utility values from an observational study.  Large scale 

clinical trials are only necessary for clinical information.  Likewise further 

information regarding disease prevalence for a model could be derived by 

accessing and analysing routine data sources rather than undertaking a 

prospective clinical trial.  To define the type, and possibly the scale, of the 

further research that is required (to reduce uncertainty in the cost-
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effectiveness decision), researchers need to consider what is driving the 

uncertainty.  What parameters are driving the uncertainty in the cost-

effectiveness model and would therefore add the most value through further 

information?  Expected value of perfect parameter information (EVPPI) is used 

to identify parameters for which more precise estimates would be most 

valuable.  

In the case of recurrent rectal cancer, EVPPI was undertaken to explore which 

groups of parameters would add most value through further research. The 

various parameter inputs to the model were considered and six parameter 

groups were deemed to be of potential value in gaining further information: 

Prevalence, Diagnostic test accuracy, Five year overall survival, Cost of 

PET/CT, Cost of treating metastases and Utility values for the disease states.   

The parameter groups are summarised in Table 4-1.  With regards to 

prevalence the relevant parameters were those for establishing the probability 

of no recurrence, recurrence (local and metastatic), and for those who have 

recurrence: curable and incurable recurrence.  Likewise the DTA group 

included the sensitivity and specificity parameters for the relevant tests. 

With regards to the cost group, PET/CT is a relatively new technology in 

colorectal cancer and there is no UK reference cost information for PET/CT.  

Additionally there is uncertainty as to the resource use and professional time 

involved and therefore it may well be worthwhile collecting further 

information on the cost of PET/CT in colorectal cancer.  Likewise, the cost of 

metastatic surgery and palliative care were considered to have some 

uncertainty in terms of resource use and were therefore included to explore 

whether or not there is any expected value of perfect information in these 

parameters. 
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Table 4-1: EVPPI parameter groups and parameters 

 
Parameter Groups Parameters 
    
Prevalence no recurrence 
  recurrence 
  recurrence curable 
  recurrence incurable 
    
Diagnostic Test Accuracy ceCT sensitivity & specificity 
  MRI sensitivity & specificity 
  PET/CT sensitivity & specificity 
    
5 year overall survival no recurrence 
  recurrence curable 
  recurrence incurable 
    
Cost PET/CT cost PET/CT 
    
Cost metastases cost metastatic surgery 
  cost palliative care 
    
Utilities (disease state) no recurrence 
  recurrence curable 
  recurrence incurable 
    
Trial information Diagnostic Test Accuracy group 
  cost PET/CT 
  Utilities group 
 

Given these six parameter groups there is only one group which would require 

a randomised trial to gain further information, and that is the DTA group.  If a 

randomised trial was undertaken to determine DTA, the trial could also gather 

information on quality of life for the disease states and the cost of PET/CT 

without requiring additional duration for longer term follow-up.  Therefore, a 

seventh ‘Trial information’ group was established which considered the DTA, 

disease state utilities and cost of PET/CT parameters as a group of their own 

for the EVPPI. The EVPPI was run using 1000 x 1000 iterations for each of the 

seven parameter groups, using a monetary threshold (λ) of £30,000/QALY.   

The EVPPI analysis reports outcomes in terms of the value per decision, but it 

is important to consider the EVPPI in terms of the relevant patient population 

who would benefit from the additional information.  The population EVPPI was 
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based on the same patient population (17,802) and technology timeframe as 

that specified for the recurrent rectal EVPI calculation, and the results are 

presented in Figure 4-20.   
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Figure 4-20: EVPPI for recurrent rectal cancer – population level (λ=£30,000) 

 

The population EVPPI values differed substantially between the seven 

parameter groups, and therefore they are presented on a log scale in Figure 4-

20 so as to adequately illustrate the different values.  The analysis found that 

there was zero value in undertaking further research in the five years overall 

survival and cost of metastases parameter groups.  In the utilities group the 

value of additional information per decision was very low at 1 pence (£0.0144), 

so even when this non-zero value is scaled up by the population to give a 

population EVPPI of £256, the cost of undertaking research would exceed this 

value.   Likewise, the value of further research for the cost PET/CT parameter 

was very low at 25 pence (£0.25) per decision and £4,429 at the population 

level. The value of perfect parameter information for the prevalence group 

was worth £5.64 per decision, translating to £100,000 at the population level. 
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It may or may not be worthwhile undertaking further research on prevalence 

parameters, depending on if the cost of research was lower than £100,000.   

The only parameter groups of any real value in the analysis were the DTA and 

the Trial information groups.  Clearly it is the diagnostic test accuracy 

parameters which are driving uncertainty in the model, leading to uncertainty 

in the cost-effectiveness decision.   

The trial information group (which combined the DTA, utilities and cost of 

PET/CT parameters) had an EVPPI similar to the DTA group, and considering 

the value for the cost and utilities groups, the EVPPI is clearly being driven by 

the DTA parameters in this group.  It is interesting to note that the cost of 

PET/CT and utilities parameters appear to have a reducing impact on the 

value, lowering the combined Trial information EVPPI (£4.9 million) to less 

than that of DTA alone (£5.6 million).  As described by Briggs and colleagues 

(4), individual parameters when considered in isolation do not resolve the same 

way as they do when they are joined as a group.  The EVPPI for the individual 

parameters do not sum to the decision EVPI, and equally, the EVPPI for a group 

of parameters is not the sum of the individual EVPPIs (4). Therefore, there is 

no reason why the various parameter groups should act in an additive fashion 

when combined.  This is evident in the Trial Info group.  There is no particular 

reasoning as to why this group of parameters would have an additive or 

negative effect when combined, however, in this case the utilities and cost of 

PET/CT parameters have an effect of reducing uncertainty, resulting in a lower 

EVPPI value than when the DTA parameters are valued alone.  Also, it is 

perfectly reasonable for EVPPI on all the individual parameters to be zero, but 

as a group they may be substantial. 

In general the EVPPI for the various parameter groups are in line with 

expectation; all being very low with the exception of the DTA parameters.  In 

populating the decision model with DTA evidence from the systematic review, 

the evidence was found to be limited and what did exist was found to be 

inadequate and subject to reporting bias for all stages of CRC disease.   

Therefore, it is unsurprising that it is this set of parameters that is driving 

uncertainty in the model, and driving the expected value in further research to 

help reduce that uncertainty.  Given the results of the EVPPI, the type of 
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further research that would be required is likely to be a trial to evaluate the 

DTA characteristics for both PET/CT and MRI technologies.  Such a trial would 

not necessarily be an RCT; however, the existing DTA studies (identified in the 

systematic review) derived their evidence mostly from retrospective studies in 

university or oncology hospital settings.  Most of the studies used consecutive 

samples and only a few had comparators with no details provided regarding the 

use of blinding.  Therefore an RCT would provide some stronger evidence 

regarding DTA especially if it had an appropriate comparator, was blinded etc. 

Additionally, any further research on DTA would not necessarily require a long-

term duration, as the EVPPI showed that there is little value in further 

research for the survival parameters.  A short enough duration to determine 

unbiased DTA characteristics would suffice, and could possibly also be used to 

derive mean utilities for the disease states.  

Recurrent Colon Cancer 

The EVPI results for recurrent colon cancer are now reported.  The expected 

value of information analysis was undertaken to explore whether it is 

potentially worthwhile collecting more information about the use of PET/CT 

for recurrent colon cancer.  

 At a willingness to pay threshold of £30,000/QALY the expected value of 

perfect information per decision is £178.  The recurrent colon cancer analysis 

determined an ICER of £6000 per QALY, however despite this being 

considerably below the £30,000/QALY ceiling ratio, the CEAC in Figure 4-13 

illustrated that this intervention strategy (ceCT plus PET/CT) was only cost-

effective with an 85% probability.  Therefore, at the £30,000/QALY threshold 

there remains some decision uncertainty, and this is reflected in the EVPI value 

of £178 per decision. Figure 4-21 displays the population level EVPI results.  
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Figure 4-21: EVPI for recurrent colon cancer – population level 
 

The overall population value of EVPI was based on an annual incidence of 

14,670 cases of recurrent colon cancer, derived in the same manner as for the 

recurrent rectal evaluation (using the annual incidence of colon cancer (94) 

and applying a 70% probability of recurrence (150) and a 2.8% death rate prior 

to recurrence).  As with the previous EVPI analyses, a timeframe of two years 

was applied to the PET/CT technology to represent its current lifespan, out 

with which the DTA estimates are likely to change reflecting the continual 

development and upgrading of PET/CT technology.  The effective population of 

recurrent colon patients for which further information may be required, was 

determined to be 28,845.  

Figure 4-21 illustrates that at a willingness to pay threshold of £30,000/QALY 

the expected value of perfect information for the population is approximately 

£5.1 million. It is likely that further research would cost less than £5million, 

and thus it is potentially worthwhile seeking additional information for PET/CT 

in recurrent colon cancer. 

Having established that further research is likely to be worthwhile in recurrent 

colon cancer, EVPPI is undertaken to explore what parameters are driving the 
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uncertainty in the cost-effectiveness analysis.  Establishing what parameter 

information would add the most value will help determine what type of 

‘further research’ is required.    The same parameter groups which were 

determined to be possible sources of uncertainty for the recurrent rectal 

analysis were used for the recurrent colon EVPPI analysis.  The seven 

parameter groups identified were: Prevalence, Diagnostic test accuracy, Five 

year overall survival, Cost of PET/CT, Cost of treating metastases, Utility 

values for the disease states and a Trial Information group.  Table 4-1 details 

the specific parameters within each group, and these are the same for colon 

recurrence, except for the DTA group which only includes ceCT and PET/CT, as 

MRI scans are not used to stage colon patients.   

The EVPPI analysis reported results in terms of the value per decision, and 

these are presented in terms of the relevant patient population who would 

benefit from the additional information.  The population EVPPI was based on 

the same patient population (28,845) and technology timeframe as that 

specified for the recurrent colon EVPI calculation, and the results are 

presented in Figure 4-22.  The results are presented on the log scale, for 

consistency with the recurrent rectal EVPPI results in Figure 4-20.  

The analysis found that there was zero value in undertaking further research in 

the majority of the parameter groups, except for DTA and Trial information.  In 

consideration of the EVPPI results for these parameter groups from the 

recurrent rectal analysis, this is not surprising. The recurrent rectal EVPPI also 

found zero value in cost of treating metastases and overall survival parameter 

groups, and in the Utilities, cost of PET/CT and Prevalence groups the EVPPI 

was extremely low.  It is clear that in the recurrent CRC model, these 

parameters may have some uncertainty surrounding them, but not enough to 

warrant any further information.  The only parameter groups of any value in 

the colon analysis were the DTA and the Trial information groups, with per 

decision values of £155 and £150 respectively.  Clearly it is the diagnostic test 

accuracy parameters which are driving uncertainty in the model, leading to 

uncertainty in the cost-effectiveness decision.   
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Figure 4-22: EVPPI for recurrent colon cancer – population level (λ=£30,000) 

 

As in the rectal analysis, the Trial information group (which combined the DTA, 

utilities and cost of PET/CT parameters) had an EVPPI similar to the DTA 

group, and again the cost of PET/CT and utilities parameters appear to have a 

reducing impact on the EVPPI (even though they had no value in their own 

separate group evaluations), lowering the combined Trial information EVPPI 

(£4.3million) to less than that of DTA alone (£4.4million).  As described by 

Briggs et al. (4), it is perfectly reasonable for EVPPI on all the individual 

parameters to be zero, but as a group they may be substantial.  In the case of 

recurrent (colon and rectal) cancer the utilities and cost of PET/CT parameters 

have zero individual EVPPI, but when combined they have an effect of reducing 

uncertainty, resulting in a lower Trial Info EVPPI value than when the DTA 

parameters are valued alone.  The results of the EVPPI for recurrent colon 

cancer indicate that a short term DTA study could help evaluate the diagnostic 

test characteristics for both PET/CT and ceCT technologies, and could possibly 

also gather information on patient quality of life for the disease states and 

establish the routine cost of PET/CT. 
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4.4.3 Metastatic 

As with the Primary and Recurrent model analyses, the EVPI for metastatic CRC 

was calculated over a range of monetary thresholds from zero to £100,000 per 

QALY gain.   

The EVPI analysis was undertaken to determine whether there is value in 

further research, based on the uncertainty surrounding the cost-effectiveness 

decision.  At the £30,000 per QALY threshold the CEAC in Figure 4-14 indicated 

that even though the PET/CT intervention had an ICER of £21,400 the 

probability of this being cost-effective was only 52%, with the conventional 

strategy having a 48% probability of being the optimal strategy. This confirms 

that there is considerable uncertainty as to which intervention is cost-effective 

in the metastatic analysis, and it is therefore unsurprising that the EVPI results 

for metastatic CRC report that at a monetary threshold of £30,000/QALY the 

expected value of perfect information per decision is £1328.  This is very high 

in comparison to the EVPI values for the primary and recurrent CRC models, 

yet it is unsurprising given that the metastatic model had the most uncertain 

outcomes, as illustrated on the CEAC.  

In order to determine the overall population value of EVPI an annual incidence 

of 4000 cases of metastatic colorectal cancer was assumed (derived from the 

annual incidence of colorectal cancer (94), the probability of metastases (150) 

and the probability of death prior to metastatic diagnoses) and a technology 

timeframe of two years was assumed, in line with the previous EVPI 

calculations. The effective population of metastatic CRC patients who could 

potentially benefit from further evidence was determined to be 7872. The EVPI 

results are presented in Figure 4-23 at the population level.  
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Figure 4-23: EVPI for metastatic colorectal cancer - population 

 

The EVPI results show that it is worthwhile collecting more information about 

the use of PET/CT for recurrent rectal cancer.  At a willingness to pay 

threshold of £30,000/QALY the expected value of perfect information per 

decision is £1,328, which translates to approximately £10.5 million at the 

population level.  Even if societies’ willingness to pay was zero, the value of 

additional information would still be extremely high at £6.3 million. This high 

population EVPI is mostly due to the high degree of uncertainty given current 

information, and therefore it is worthwhile seeking additional information to 

help inform the decision regarding the cost-effectiveness of a PET/CT strategy 

for metastatic colorectal cancer.    

Given that further research is worthwhile in metastatic cancer, the analysis 

can be extended by using EVPPI to establishing what type of further research is 

required.  In this way the model outcomes can be meaningful to decision 

makers. The same parameter groups which were determined to be possible 

sources of uncertainty for the recurrent model were used for the metastatic 

EVPPI analysis: Prevalence, Diagnostic test accuracy (ceCT and PET/CT), Five 
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year overall survival, Cost of PET/CT, Cost of treating metastases, Utility 

values for the disease states and a Trial Information group.  Table 4-2 details 

the seven parameter groups and the parameters specific to the metastatic 

model.  

Table 4-2: EVPPI parameter groups and parameters 

Parameter Groups Parameters 
    
Prevalence no metastases 
  metastases 

  metastases at one site 
  extra metastases 
    
Diagnostic Test Accuracy ceCT sensitivity & specificity 
  PET/CT sensitivity & specificity 
    
5 year overall survival no metastases 
  metastases at one site 
  extra metastases - surgery 
  extra metastases - palliative 
    
Cost PET/CT cost PET/CT 
    
Cost metastases cost metastatic surgery 
  cost palliative care 
    
Utilities - disease state no metastases 
  metastases 
  extra metastases - surgery 
  extra metastases - palliative 
  
Trial information Diagnostic Test Accuracy group 
  cost PET/CT 
  Utilities group 
 

The population EVPPI was based on the same patient population (7,872) and 

technology timeframe as that specified for the metastatic EVPI calculation.  

The EVPPI analysis reported results in terms of the value per decision, and 

these are presented in terms of the relevant patient population who would 

benefit from the additional information in Figure 4-24. The results are 

presented on the log scale, so that the lowest and highest EVPPI values can be 

adequately illustrated and for consistency with the previous EVPPI analyses. 
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Figure 4-24: EVPPI for metastatic CRC – population level (λ=£30,000) 

 

The analysis found that there was value in undertaking further research in all 

of the parameters, but that the DTA and Trial information parameter groups 

were driving the majority of uncertainty in the model.  

The five years overall survival parameter group had an EVPPI per decision of 

£10 which was similar to the cost of metastases parameter groups at £11 per 

decision.  These translated to population values of approximately £80,000.  

Gathering additional evidence on overall survival would not necessarily require 

a trial (if for example a routine CRC data set could be accessed), and therefore 

it may be possible to undertaken research on these parameters at a cost lower 

than £80,000.  The per decision value of further information on the 

prevalence, utilities and cost of PET/CT groups were £14, £22 and £24 

respectively. This translates into population level values of greater than 

£100,000.  These results show that there is a greater uncertainty surrounding 

the cost of PET/CT than there is the cost of metastatic surgery and palliative 

care.  Also, it is likely to be worthwhile collecting information on the cost of 
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PET/CT and the utility parameters.  While the cost of PET/CT and utilities 

information can be collected in a clinical trial, one is not necessary, and 

therefore they could be collected for less than £174,000.  Further information 

on these five parameter groups is of some value; however, the major driver of 

uncertainty is clearly the uncertainty in DTA parameters.  At a per decision 

value of £1339 and a population value of £10.5 million it is clear that further 

information would be beneficial and help reduce uncertainty in the cost-

effectiveness decision. 

Given that these results indicate that a study would be of value to collect 

information on the DTA characteristics for ceCT and PET/CT in metastatic CRC, 

the Trial data group indicates that including data collection on utilities and 

cost of PET/CT would also be worthwhile.  However, the cost of PET/CT and 

utilities parameters appear to have a reducing impact on the overall value, 

lowering the combined Trial information EVPPI (£10.1 million) to less than that 

of DTA alone (£10.5 million).  This effect was also apparent, and in the same 

direction, in the recurrent CRC model. The utilities and cost of PET/CT 

parameters have an effect of reducing uncertainty, resulting in a lower EVPPI 

value than when the DTA parameters are valued alone.  However, it can be 

concluded that at a value of £10.1 million if a trial was undertaken to gather 

evidence on DTA it would also be worthwhile collecting data on utility for the 

different disease groups and the cost of PET/CT. 



Chapter 4   226 

4.5 Discussion 

This chapter used the case study of PET/CT to demonstrate an example of good 

practice where evidence synthesis and early decision analytic modelling was 

funded prior to primary research. The chapter explored uncertainty in the 

results for the each of different CRC patient groups and demonstrated that in 

using value of information techniques the results can be examined in terms of 

decision uncertainty to give meaningful recommendations to funders and 

decision making bodies.   

The results for each of the analyses will now be summarised followed by a 

discussion of using value of information analyses with early decision analytic 

modelling.   

4.5.1 Primary results 

The cost-effectiveness planes in the primary analyses showed that there was a 

lot of uncertainty surrounding both the incremental costs and incremental 

effects associated with PET/CT; however the cost-effectiveness acceptability 

curves show that this parameter uncertainty which impacted on the model 

outcomes does not translate into decision uncertainty. For both the primary 

rectal and primary colon analyses the probability that PET/CT as an add-on 

imaging device is cost-effective, is zero over the recommended QALY threshold 

range of £20k-£30k per QALY.  Therefore, we can be certain (99%) that the 

conventional strategy is cost-effective. In considering the value of further 

research, the EVPI value was very small, reflecting the low decision 

uncertainty.  Therefore, given current evidence we can be certain that the use 

of PET/CT as an add-on imaging device for staging primary colorectal cancers 

is not cost-effective and that there is no value associated with the collection of 

further information.  

As PET/CT technology develops, there will be an increased potential in the 

future for this improved technology to be used as a lone device, replacing 

contrast enhanced CT, as opposed to being utilised as an add-on imaging 
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device.  In primary rectal cancer, cePET/CT could potentially replace ceCT 

with the addition of an MRI scan, and in primary colon cancer, cePET/CT could 

be used alone as a replacement for ceCT.  The two scenario analyses 

undertaken to explore this in primary CRC indicated that such an improved 

cePET/CT device is unlikely to be cost-effective for use in primary rectal 

cancer, but is likely to be very cost-effective for use in colon cancer.    

In primary rectal cancer, an improved cePET/CT technology will not negate the 

necessity for an MRI scan, and therefore the potential incremental value of 

improved cePET/CT is limited by the strong DTA achievable with MRI scanning.  

The primary rectal cancer scenario CEAC indicated that at a monetary 

threshold of £30,000/QALY the probability of cePET/CT technology being cost-

effective in comparison to the conventional ceCT and MRI is less than 20%.  The 

colon cancer scenario analysis indicated substantial improvement in DTA from 

cePET/CT compared to ceCT and improved efficiency through eliminating the 

need for an add-on test, thereby giving a highly cost-effective outcome.  

However, there remains considerable parameter uncertainty and decision 

uncertainty, which is highlighted in the value of information analyses, 

indicating potential value in further research with a population EVPI of £1.7 

million for the primary rectal population, and a value of £12.3 million for the 

primary colon population.    

The scope of the research undertaken was set by the funding body and 

focussed on PET/CT as an add-on device, however, given the information from 

the systematic literature review it was evident that as an add-on technology 

PET/CT was not efficient and would have limited benefit in primary CRC; while 

an advanced cePET/CT technology (which is currently available in Japan and 

may become available in the UK in the near future) could be used as a 

replacement technology for conventional ceCT, rather than as an add-on 

device. The analysis was limited by the pre-specified research question, and 

therefore a scenario analysis was undertaken to demonstrate the potential for 

this alternative to the funders and decision-makers. However, if the funding 

body had undertaken some explorative research in defining the research 

question (at stage 1 of the iterative process) they might have been able to 

specify a more appropriate research question for primary CRC.  By applying the 
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formal process of evidence synthesis and early decision modelling (stage 2 of 

the iterative economic approach) we realise that the decision problem 

identified by the funding body was not quite appropriate.  The original scope 

was not fit for purpose with regards to primary CRC, and if a truly iterative 

process had been adopted, it could have allowed for a re-specification of the 

research question to explore the potential for cePET/CT in primary colorectal 

cancer.  

4.5.2 Recurrent results 

The ICER for the recurrent colon cancer model is considerably lower than that 

for the recurrent rectal cancer model, indicating that PET/CT is more cost-

effective in the assessment of colon recurrence than in rectal recurrence.  This 

difference is likely to be due to the sensitivity estimate for the ceCT diagnostic 

test parameter, which has considerably lower sensitivity than the PET/CT 

sensitivity estimate.  The wide difference favours the accuracy of PET/CT, and 

even though uncertainty around both these estimates was incorporated into 

the model, the strong influence of the DTA parameters on model outcomes is 

evident.  The PET/CT intervention does not have the same DTA sensitivity 

advantage in the recurrent rectal model, as the MRI scan DTA estimates are 

also incorporated.  The MRI DTA was superior to ceCT and therefore in the 

recurrent rectal model, the conventional imaging DTA estimates are closer to 

those of PET/CT, limiting the incremental value of PET/CT.   

At a cost per QALY threshold of £30,000 the probability that the PET/CT 

intervention will be cost-effective for recurrent rectal cancer is 70%, this is 

greater for recurrent colon cancer (85%). Compared with the primary model 

analyses (which showed 99% and 100% certainty that PET/CT was not cost-

effective) the recurrent model exhibits greater levels of decision uncertainty in 

both the rectal and colon analyses leading to non-zero values for the EVPI 

analyses.  At a population level the EVPI is £5.6 million for recurrent rectal 

cancer and £5.1 million for recurrent colon cancer, and therefore there is 

potential worth in collecting further information to inform the decision 

regarding the use of PET/CT in the future.   
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Given that further research is potentially worthwhile, EVPPI analyses were 

then undertaken for rectal and colon cancer to determine what type of 

‘further information’ would add most value.  Seven parameter groups were 

identified as potential sources of uncertainty and these were used in the EVPPI 

to explore whether any or all of them were responsible for driving the decision 

uncertainty. The EVPPI outcomes for the various parameter groups were in line 

with general expectations; all being very low (or zero in the colon analysis) 

with the exception of the DTA parameters which had population values of £5.6 

million and £4.5 million in the rectal and colon analyses respectively.   Given 

the limited and poor-quality DTA evidence found in the systematic review, it is 

unsurprising that it is this set of parameters that is driving uncertainty in the 

model.  For both rectal and colon recurrence the EVPPI for the DTA parameter 

group is very close to the overall EVPI value and therefore it is clear that the 

DTA parameters are driving the expected value in further research to help 

reduce the decision uncertainty.   

As it is the DTA parameters that require additional evidence, the type of 

further research that would be required is a study to evaluate the DTA 

characteristics for the PET/CT, ceCT and MRI technologies. Such a trial would 

not necessarily be an RCT, however, the existing DTA studies (identified in the 

systematic review) derived their evidence mostly from retrospective studies in 

university or oncology hospital settings.  Most of the studies used consecutive 

samples and only a few had comparators with no details provided regarding the 

use of blinding.  Therefore an RCT would provide some stronger evidence 

regarding DTA especially if it had an appropriate comparator, was blinded etc.  

Such a trial would not necessarily be a long term trial (as the EVPPI showed 

that there is little or no value in further research for the survival parameters), 

but of a short enough duration to determine unbiased DTA characteristics, and 

could possibly also be used to derive more accurate data on patients’ quality of 

life in the different disease states and the cost of PET/CT.  

4.5.3 Metastatic results 

The metastatic model found PET/CT as an add-on device to have an ICER of 

£21,434 per QALY gained.  This ICER value is within the UK monetary threshold 
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range of £20-30,000 per QALY (24) and could therefore be considered cost-

effective, however, the probabilistic sensitivity analysis and cost-effectiveness 

acceptability curve highlighted that there is considerable uncertainty regarding 

the cost-effectiveness decision.  The CEAC (in Figure 4-14) illustrated that at 

£30,000 per QALY the probability that the intervention strategy (add-on 

PET/CT) is cost-effective was only 52%.  This level of uncertainty leads to an 

EVPI of £10.5million for the population. Thus there is considerable decision 

uncertainty regarding PET/CT in metastatic CRC and therefore it is potentially 

worthwhile collecting further information to inform the decision regarding the 

cost-effectiveness. 

Having established that further research is worthwhile, it is necessary to 

explore the EVPPI in order to provide more meaningful results and 

recommendations to decision makers; particularly regarding what type (and 

possibly adequate duration) of ‘further research’ is required.  The EVPPI 

analysis found that there was potential value in undertaking research on all 

seven parameter groups identified, but that it is the diagnostic test accuracy 

parameters that drive the decision uncertainty.   With a population value of 

£10.5 million it is clear that further diagnostic information on the ceCT and 

PET/CT parameters would be beneficial and help reduce uncertainty in the 

cost-effectiveness decision. 

The EVPPI results indicate that a study (possibly, but not necessarily an RCT) 

would be of most value to collect unbiased evidence on the DTA characteristics 

for ceCT and PET/CT in metastatic CRC.  If such a trial were being undertaken 

it would be advantageous to also collect data regarding the utility for the 

different disease groups and the cost of PET/CT as indicated in the combined 

Trial information group which had an EVPPI of £10.1million. 

4.5.4 Model conclusions 

The economic literature and DTA systematic review undertaken for this 

research found only a small amount of evidence to support the use of PET/CT 

in the pre-operative staging of primary, recurrent and metastatic CRC and the 

data were generally divergent and the quality of research poor.  The economic 
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models were therefore designed, developed and populated based on a variety 

of information from published data sources, literature and in consultation with 

clinical experts. 

The economic evaluations reveal that given the high degree of uncertainty in 

the models and decision uncertainty in the results, PET/CT as an add-on 

imaging device is cost-effective in recurrent colon, recurrent rectal and 

metastatic colorectal disease.  There is value in undertaking further research 

in these disease areas, particular for generating evidence on diagnostic test 

accuracy.  The evaluations also found that add-on PET/CT is not cost-effective 

in primary colon or rectal cancer and further research is not worthwhile.  

However, the results of a scenario analysis suggest that future developments in 

PET/CT technology to enhance the CT element, making it equivalent to regular 

ceCT, might make cePET/CT cost-effective as a replacement rather than an 

add-on imaging device in primary colon cancer, although not in primary rectal 

cancer. Under this scenario further research is potentially worthwhile for both 

primary rectal and primary colon cancer. 

4.5.5 Early DAM & VOI 

This chapter has demonstrated the advantages of developing early stage 

probabilistic models which can be used to inform future research needs, as 

opposed to a more traditional approach whereby a research problem or lack of 

evidence is identified and used to support a case for primary research, without 

involving any decision analytic modelling.   In this case study, an exploration of 

existing evidence was undertaken, and separate analyses were undertaken for 

each of the appropriate patient groups (primary rectal cancer, primary colon 

cancer, recurrent rectal cancer, recurrent colon cancer, and metastatic 

disease); which each had different outcomes in terms of cost-effectiveness and 

the research needs.   

The decision problem was identified (at stage 1 of the iterative approach to 

economic evaluation) by the funding body and therefore the overall research 

question was pre-specified. This is commonly the case with research funding 

bodies which define an overall research question and put out a call for bids to 
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undertake the research.  Research bodies are, arguably, well placed to do this 

as they are likely to have formal criteria for setting research priorities, as well 

as the ability to engage with various stakeholders, however, a call for research 

from a funding body does not necessarily mean that the research question will 

adequately reflect the correct decision problem.  The call may be too 

prescriptive or alternatively too broad to adequately define the problem and, 

additionally, the research problem itself may not have been sufficiently 

explored, resulting in a sub-optimal research question.   

In this case of the PET/CT study the original research question was broad, 

stipulating an economic model to capture PET/CT as an add-on technology in 

pre-operative staging of colorectal cancer; however, staging pre-operative 

colorectal cancer is complicated. PET/CT and conventional imaging devices 

have different diagnostic test accuracies (DTA) for staging primary, recurrent 

and metastatic colorectal cancer, and as such, in order to address the initial 

research question, three separate economic models were designed.  Patient 

management routes also differ between colon and rectal cancer, and therefore 

the primary and recurrent models were adapted to incorporate the specifics of 

rectal and colon cancer separately.  Therefore, five analyses were undertaken, 

which was considerably more time consuming than originally envisaged.  

Additionally, the original scope of the question was not fit for purpose with 

regards to primary colorectal cancer.  Early into the research project it 

became evident that as an add-on technology PET/CT was not efficient and 

would have limited benefit in primary CRC; while an advanced cePET/CT 

technology (which may become available in the UK in the near future) has 

potential value as a replacement technology in primary CRC.  

It is interesting to consider that had the funding body undertaken some 

explorative research and possibly a DAM in defining the research question (at 

stage 1 of an iterative process) an iterative process could have been applied, 

allowing for a re-specification of the research question.  In the context of the 

iterative approach methodology, Stage 1 in itself may involve an iterative 

process where exploration of the literature leads to updating and re-defining of 

the research question for evidence synthesis and modelling in stage 2. A pre-

prescribed question set by a funding body may have less room for such 
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updating at an early stage and can lead to a research scope that is not fit for 

purpose or an inappropriate research question.  

Having developed a decision analytic model and undertaken probabilistic 

sensitivity analysis, the results can be used to undertake value of information 

analyses.  VOI is a methodological approach which uses the uncertainty 

surrounding the cost-effectiveness decision based on current evidence, the size 

of the patient population, the length of the technology lifespan and societies 

willingness to pay in order to place a monetary value on the worth of further 

research. VOI techniques can be used to make informed decisions as to 

whether a new intervention should be adopted (or rejected) based on current 

evidence, or whether further information is required to help make the 

decision, as opposed to making decisions subjectively.  

In some cases, such as with the primary colorectal evaluations, further 

research is found to be not worthwhile and if undertaken would be a waste of 

resources which could be used elsewhere, i.e. funding other, more promising 

research or used to fund clinical practice.  This case study highlighted that a 

lack of evidence (or poor quality evidence) does not necessarily mean that 

further research is required.  The primary CRC results illustrated considerable 

uncertainty in the cost and QALY outcomes from the probabilistic analysis (as 

detailed in Figures 4-1 and 4-2), however this did not translate into decision 

uncertainty.  If the analysis had not been extended beyond the PSA to consider 

decision uncertainty in the CEAC followed by EVPI, the cost-effectiveness 

outcomes may have been interpreted differently.  Limited DTA evidence in 

primary CRC along with uncertainty in the cost and QALY outcomes could have 

been considered to mean that further evidence in this area would be 

beneficial.  However, the EVPI showed that perfect information would not 

change the cost-effectiveness decision, and therefore there is no value in 

conducting further research.  This highlights the advantage of employing early 

decision modelling and using it to formally explore further research needs 

rather than deciding research needs subjectively on the basis of a lack of 

evidence. 
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The EVPI analyses for the recurrent CRC and metastatic patient populations 

demonstrated that further research is potentially worthwhile, with values in 

the region of £5 million and £10 million respectively.  As a research 

recommendation these EVPI outcomes are useful in terms of setting an upper 

limit on the cost of further research.  The EVPI sets an upper bound on the 

value of further research, so that research must cost less than the EVPI to be 

considered potentially worthwhile.  EVPPI analysis can be undertaken to help 

explore what type and scale of research is appropriate.  EVPPI analysis helps 

consider what parameters are driving the uncertainty in the cost-effectiveness 

decision, and it is through identifying the relevant parameters, that the 

appropriate type of research can be determined.  Further research does not 

necessarily mean that a large scale, randomised controlled trial is required, 

but rather, the type of research will depend on the different parameters that 

require further information.  Likewise, the cost of further research is also 

dependent upon the type, for example a large scale RCT with a 4 year follow-

up period may cost millions of pounds, which would be substantially greater 

than a smaller scale observational study, or an analysis of a routine dataset. 

Therefore, using value of information analyses to undertake EVPI, and then an 

EVPPI if it is potentially worthwhile is necessary to make the most use of 

outcomes and give informed recommendations to funders and decision-makers.  

The EVPPI results for the seven parameter groups identified were in line with 

expectations. In both the recurrent and metastatic models it was the DTA 

parameters that had the highest EVPPI value and were driving uncertainty, 

which makes sense as these were the parameters with most uncertainty 

identified from the literature.  If uncertainty had been restricted to 

parameters such as the utility or prevalence parameters then a clinical trial 

would not have been necessary, however for evidence on the diagnostic test 

accuracy of PET/CT, ceCT and MRI a trial would be required to determine 

unbiased test characteristics (but not necessarily a randomised controlled 

trial).  The duration of such a study could be relatively short term as the EVPPI 

determined that there would be little value in additional information regarding 

five year overall survival.  Both the recurrent and metastatic analyses 

indicated that the Trial information group (which included DTA, utility and cost 
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of PET/CT parameters) would be of value, however, the utilities and cost of 

PET/CT parameters have an effect of reducing uncertainty (in both the 

recurrent and metastatic analyses), resulting in a lower EVPPI value than when 

the DTA parameters are valued alone.  However, it can be concluded that at a 

value of £5 million and £10 million for recurrent and metastatic CRC 

respectively, if a trial was undertaken to gather evidence on DTA it would also 

be worthwhile collecting data on utility for the different disease groups and 

the cost of PET/CT. 

In summary, this chapter has demonstrated that even though early decision 

analytic modelling is not often funded and value of information analyses are 

even less frequently utilised in practice, it can be relatively straightforward 

and can have substantial benefits in terms of understanding outcomes and 

determining future research priorities when adequate funding and time is 

allocated to these activities.  Just because current evidence is limited or of 

poor quality, does not necessarily mean that further research is required, and 

therefore, applying early DAM and VOI techniques allows decision makers to 

make informed decisions as to whether a new intervention should be adopted 

(or rejected) based on current evidence, or whether further information is 

required to help make the decision, as opposed to making decisions based on 

subjective reasoning.  
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5 Designing clinical trials with economic 

evaluations 

Economic analyses are commonly undertaken alongside randomised controlled 

trials (RCTs) however; such trials are rarely designed with the economic 

outcomes in mind, and rarely involve the use of an early decision analytic 

model to aid in the trial design.  RCTs are typically designed to show evidence 

surrounding the clinical effectiveness of a new treatment or health technology 

in comparison to the current standard of care, and the economic component is 

often seen as an add-on to the trial (20;28).  Design considerations are 

different for clinical and economic analyses (44) and consequently when 

economic evaluations are conducted alongside clinical trials which were 

designed with only the effectiveness outcome in mind, they may be 

inadequately powered and designed for the cost-effectiveness analysis and 

therefore may represent a partial or limited form of economic analysis. 

If the purpose of the analysis is to inform decision making based on cost-

effectiveness outcomes then sample size and power calculations should be 

directly related to the cost-effectiveness result rather than to the 

effectiveness outcome alone.  Over the last decade there has been much 

discussion in the health economics community over alternative methods for 

undertaking such calculations (40;46;169-171) and the methodology for such an 

approach is now established.  Therefore considerations of economic 

assessments alongside clinical trials can and should be used to guide 

conventional trial design (39).  Despite the established methodology, in 

practice, health economists are rarely given the opportunity to contribute to 

trial design (46).   

This chapter reports on an atypical real life case in which a clinical and cost-

effectiveness trial was designed and powered to determine the sample size 

with regards to cost-effectiveness.  The Health Technology Assessment (HTA) 

programme (50) had issued a commissioning call for research to undertake an 

RCT and therefore the trial had already been planned without prior economic 

involvement, i.e. neglecting the first two stages of the iterative economic 
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approach.  In principal there could/should have been a formal exploration of 

the decision problem followed by a literature review and evidence synthesis 

process involving a comprehensive decision analytic model built on the existing 

evidence.  If such an approach had been undertaken prior to the call for an 

RCT, probabilistic sensitivity analysis could have been undertaken to determine 

the potential cost-effectiveness of the new treatment and to formally explore 

uncertainty in the current evidence with regards to the cost-effectiveness 

decision. Value of information analyses (EVPI and EVPPI) could also have been 

undertaken to determine whether and what further evidence was potentially 

worthwhile with an EVSI analysis (as described in Chapter 2) undertaken to 

determine an appropriate sample size for any such trial.  EVSI is a technique 

used to quantify the expected value to the decision maker of obtaining sample 

information before making a decision (84).  EVSI and ENBS techniques are used 

to establish the efficiency of the proposed research design, ensuring a cost-

effective use of research funding.   

As is often the case, an iterative process such as this had not been followed, 

and an RCT was already planned, however, the opportunity arose to power the 

trial for economic endpoints.    Therefore a simple decision model was 

constructed as the proposal was being prepared and used to help inform the 

design of the trial. Even when there has been no prior economic modelling, 

involvement in the design of a trial from an economic perspective is still 

desirable and made possible by constructing a simple model within a short time 

frame.   

This chapter demonstrates the feasibility of sample size calculations from an 

economic perspective in the context of a standard frequentist trial, while 

simultaneously highlighting that a decision model can be constructed quickly 

and simply alongside the preparation of a trial proposal.  

The chapter discusses the proposed RCT of fetal fibronectin screening (fFN) for 

women with threatened pre-term labour, followed by the design of a 

preliminary model which was developed as the proposal was being prepared to 

inform the trial design calculation.  The predictions from this early ‘pre-trial’ 

model indicate potential cost-savings, but with a marginal detrimental impact 
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on the effectiveness endpoint, neonatal morbidity.  The atypical context of 

this situation, i.e. a trade-off between cost savings and a reduction in 

effectiveness, meant it may be appropriate to design the RCT as a non-

inferiority trial.  The aim of a non-inferiority trial is to demonstrate that the 

fFN test is not worse than the comparator (in terms of the outcome neonatal 

morbidity) by more than a pre-specified small amount known as the non-

inferiority margin (172). Therefore this chapter explores an appropriate design 

and sample size for the RCT using the outcomes from the pre-trial decision 

model.   The model predictions are discussed and used to explore sample size 

calculations based on each endpoint to determine their importance.  Following 

this, the net monetary benefits (NMB) approach for cost-effectiveness is 

discussed and used to calculate the required sample sizes at different powers.  

A non-inferiority approach, which is likely to be the best design for the trial, is 

then explored and a suitable non-inferiority margin determined.  The sample 

size calculations are then recalculated using the non-inferiority margin and 

compared with the NMB sample size, to select an optimal sample size for the 

trial which is sufficient for the cost-effectiveness endpoint and also to 

demonstrate non-inferiority for the effectiveness endpoint.   

5.1 Case study: fFN testing for pre-term labour 

Pre-term births (before 37 weeks) occur in nearly 8% of pregnancies in the UK 

(over 50,000 deliveries per annum); they are the leading cause of neonatal 

death and are also associated with both short and longer term morbidities 

(173).  Neonatal morbidities, including respiratory disease syndrome, are 

experienced by approximately 24% of pre-term infants (174), impacting on the 

infants’ future quality of life, but also affecting the parents and families 

quality of life.  There is currently no effective way of preventing pre-term 

labour; however, timely interventions such as administering steroids (175) to 

pregnant women who have symptoms of pre-term labour can help reduce 

morbidity and mortality experienced by preterm infants.   

In the UK approximately 15% of all pregnant women will experience symptoms 

of pre-term labour (120,000 annually) and under current practice these women 
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are hospitalised and receive steroids to lower the risk of infant morbidity and 

mortality.  Accurate diagnosis of preterm labour is challenging, and only 20% of 

women who are clinically diagnosed with symptoms actually experience 

premature births (174).  This clinical diagnostic uncertainty results in a large 

proportion of women with symptoms of pre-term labour being treated 

unnecessarily to ensure benefits to the small proportion of babies that do 

actually deliver pre-term.  While this ‘treat-all’ approach is clinically 

understandable, it is also detrimental, both for the women who are 

unnecessarily hospitalised and frequently transferred between maternity units 

causing considerable distress to them and their families (176), and also to the 

NHS which incurs a substantial cost burden.   

The fetal fibronectin (fFN) test is a diagnostic test which is easily performed 

and is potentially an effective means of diagnosing symptoms of pre-term 

labour.  A research study was proposed to explore whether using fetal 

fibronectin testing in women threatened with pre-term labour in the UK would 

lead to an improvement in patient management and resource use through 

reducing hospital admissions, transfers and intervention rates without 

increasing the risk of morbidities and mortality experienced by preterm 

infants.  The test was to be compared with standard practice in which 

diagnosis of pre-term labour amongst presenting women is based on clinical 

judgement and an ‘admit all to hospital’ approach.  This could be considered 

as an equivalence trial, assessing any improvements in patient management, 

with an expectation of similar endpoints in terms of actual pre-term births, 

neonatal mortality and neonatal morbidity.  There is, however, the potential 

for a slight increase in neonatal morbidity due to false negative test results, 

which needs to be considered.  Therefore the trial was designed based on the 

hypothesis that introduction of the fFN test would decrease unnecessary 

antenatal interventions, leading to substantial cost savings for health services, 

but that the existence of false negative test results could potentially increase 

neonatal morbidity.   Given this hypothesis, it is likely that a non-inferiority 

trial would be the most appropriate design, aiming to demonstrate that the fFN 

test is not worse than standard practice, (the admit all approach) in terms of 

neonatal morbidities, by more than a pre-specified small amount.  
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While infant death from pre-term labour is rare (177) pre-term labour is very 

common, with a resulting morbidity impact on approximately 9 in 1000 

pregnancies in the UK (178-180).  Therefore the RCT was designed in order to 

undertake a cost-effectiveness analysis of the fFN diagnostic test, in which cost 

savings that accrue through reduced hospitalisations could be accounted for, 

along with any potential impact on neonatal morbidities. 

5.1.1 A pre-trial model for fFN testing 

Prior to the commission of the RCT in fFN, there had been no economic 

involvement in the project, and therefore no funding or time allocated to the 

development of a comprehensive decision analytic model.  Such a situation is 

very common in the ‘real world’, where an economic component of the trial is 

not considered until the desire for and possibly the development of the trial is 

underway. However, such a situation does not necessarily negate economic 

input. A simple economic model can be constructed within a relatively short 

time frame and therefore it is still possible to have some economic input while 

the trial is being designed. Decision analytic models are simplified versions of 

reality and they can be as simple or complex as required without losing 

credibility (30).  Therefore, in the fFN case study, a simple ‘pre-trial’ decision 

model was developed with the intent of informing the trial sample size 

calculations.   

The model was populated with available data to assess the potential impact of 

introducing the fFN test on hospitalisations, neonatal morbidity and neonatal 

mortality in comparison to no test.  These model outcomes could then be used 

to aid the protocol design and undertake sample size calculations.  The model 

was developed in order to inform the trial design within the constraints of a 

grant submission timeframe utilising the most readily available evidence on the 

costs and effectiveness of fFN testing.  This model is therefore a simple, 

preliminary estimation, and like all models, subject to uncertainty in the 

parameter estimates.    

The two interventions of interest in the trial are (i) practice based on the 

results of the fFN test and (ii) standard practice in which there is no test and 
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diagnosis is based upon clinical judgement alone.  The pre-trial model was 

developed using a decision tree.  It was structured over a time horizon of 

months, representing the maximum time frame for women presenting with 

threatened pre-term labour (24+ weeks gestation) through to neonatal 

discharge (or until 3 months post birth).  Those women with a positive 

diagnosis (either based on clinical judgement or fFN test results) are 

hospitalised and receive steroids to lower the risk of pre-term related infant 

morbidity and mortality, while those diagnosed as negative are sent home and 

do not receive steroids.  The model timeframe ends at 3 months post-birth in 

order to capture the resultant neonatal morbidity and mortality impacts.  The 

decision tree detailed the patient pathway from a clinical diagnosis of 

threatened pre-term labour through to test outcome and actual birth term 

status to distinguish between accurate and inaccurate diagnoses and the 

resultant impact on hospitalisation, morbidity and mortality. The details of the 

decision tree are explained in the following section.  Once the patient pathway 

was depicted, model parameters (such as the costs, prevalence of pre-term 

delivery, diagnostic test accuracy and risk of morbidity) were assigned to the 

appropriate branches in the tree, to calculate the proportion of 

hospitalisations, pre-term neonatal morbidities and neonatal mortalities in 

each arm. 

5.1.2 Decision Tree 

The decision tree (Figure 5-1) was developed to illustrate the alternative 

pathways in the proposed trial.  The tree begins with the population of women 

in the UK who have been clinically diagnosed with pre-term labour (threatened 

pre-term labour) who will then be randomised to either the intervention arm 

(fFN Test) or the control arm (No test).  The tree has been designed based on 

the probability of actual term and pre-term births within the threatened pre-

term labour population. The tree splits the patient population according to 

pre-term and term prevalence prior to the test outcomes, so that accurate and 

inaccurate test diagnosis can be identified based on the sensitivity and 

specificity of the fFN test.   
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Prevalence Test Outcome Hospitalisation Morbidity Risk Mortality

Survive

Morbidity
Die

Hosp
No morbidity

Test +ve
True positive Survive

Morbidity
Die

No Hosp
No morbidity

Survive
Pre-term

Morbidity
Die

Hosp

No morbidity

Test -ve
False negative Survive

Morbidity
Die

fFN Test No Hosp

No morbidity

Hosp
Test +ve
False positive

Term No Hosp

Hosp
Test -ve 
True Negative

No Hosp

Clinical diagnosis Survive
threatened pre-term labour

Morbidity
Die

Hosp
No morbidity

Pre-term
Survive

No test Morbidity
Die

No Hosp
No morbidity

Hosp
Term

No Hosp

 

Figure 5-1: Decision tree for diagnosing pre-term labour 
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In the intervention arm (the top branch of Figure 5-1), those identified as 

“Test positive” by the test are diagnosed as pre-term labour (accurately and 

inaccurately) and are hospitalised and receive steroids which reduce the risk of 

neonatal morbidity.  Those identified as “Test negative” by the fFN test are 

diagnosed as a term labour (accurately and inaccurately) and are not 

hospitalised and therefore do not receive the morbidity reducing steroids.  

It is unrealistic to assume that the introduction of a diagnostic test will 

completely overrule clinical judgement and be adhered to fully, and therefore 

the structure of the model allows for the possibility of hospitalisation with 

negative test results and also for the possibility of no hospitalisation in some 

cases that had positive test results.  These assumptions were based on clinical 

advice and probabilities were determined from relevant audit data (181;182). 

By overruling the diagnostic test results with their clinical judgement the 

clinicians could be considered to be behaving irrationally, however, as clinical 

judgement has been the long standing current practice, this is more of an issue 

of professional trust in a new diagnostic test.  By overruling the test and 

‘admitting anyway’ the clinicians may in fact be (implicitly) addressing 

potential false negative results, possibly avoiding complications through failing 

to administer steroids and any potential resultant litigation proceedings for 

malpractice/incorrect diagnosis. 

The control arm (No test) is represented in the bottom half of the decision 

tree.  As in the top half of the tree, the population is split based on actual 

birth term status.  There is no test in this arm of the trial, and therefore all 

women clinically diagnosed with threatened pre-term labour would be 

hospitalised and receive steroids. While current clinical practice follows an 

‘admit all’ approach, a 100% admittance assumption was deemed to be 

unrealistic in consideration of obstetrician’s clinical judgement and therefore 

the model structure allows for the possibility that some women who were 

clinically diagnosed as pre-term would not be admitted to hospital. 

The model assumes that all pre-term infants are subject to a risk of neonatal 

morbidity, however those whose mothers were hospitalised in the model (and 

therefore received steroids) have a lower risk of morbidity, than those whose 
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mothers were not hospitalised, and did not receive steroids.  Therefore, 

women who experience false negative test results and so do not receive the 

risk reducing steroids may consequently have infants who experience greater 

neonatal morbidity than those in the control arm (under an ‘admit all’ 

approach).  The model does not attribute any negative effects of receiving 

steroids unnecessarily, as clinicians advised that any adverse effects would be 

experienced over the longer term (183;184) out with the time horizon of the 

model.  The clinical experts on the project team advised that in current 

practice (where there is an ‘admit all’ approach based on clinical judgement) 

the potential risk of future negative consequences from receiving steroids 

unnecessarily are likely to be outweighed by the short term risk to mother and 

child of not receiving steroids that are needed. The model assumes that only 

pre-term infants subject to neonatal morbidity are at risk of neonatal 

mortality.  Term infants are assumed not to be subject to either pre-term 

morbidity or mortality.    

The parameter estimates applied to the model were based on available 

evidence and are detailed in Table 5-1.  The sensitivity and specificity of the 

fFN test, probabilities of delivering pre-term, experiencing pre-term neonatal 

morbidity, mortality and the morbidity risk reduction from steroids were based 

on published evidence.   

The probabilities of hospitalisation in the intervention arm for test positive 

(93%) and test negative (32%), were based on recent UK audit data (181;182), 

and in the control arm an author assumption (based on clinician advice) was 

applied for probability of hospitalisation (90%), rather than assuming a protocol 

adherence of 100%. 

A scenario analysis was also undertaken, where the clinical judgement 

assumptions were relaxed and there was 100% adherence to protocol.  

Therefore 100% of women in the control (no test) arm would be hospitalised, 

and in the intervention arm 100% of positive diagnoses would hospitalised and 

100% of negative diagnoses would be sent home. 
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Table 5-1: Model parameters 

Item Unit Description Source 

        

fFN Sensitivity 0.822 Average sensitivity from 7, 14 & 21 days sensitivity outcomes (185) 

fFN Specificity 0.787 Average specificity from 7, 14 & 21 days sensitivity outcomes (185) 

        

Prob pre-term 0.2 Probability of delivering pre-term amongst threatened pre-term population (174)  

Prob pre-term morbidity 0.244 Probability of morbidity in pre-term births (ICU admissions only) (174)  

Steroid risk reduction 0.54 Relative risk pre-term morbidity reduction with steroids (175) 

Prob mortality 0.0257 Probability of mortality in pre-term births (average ≤36 weeks) (177) 

        

Prob hosp admit fFN +ive 0.93 Clinical judgement: Probability of hospital admission when fFN positive  (181;182) 

Prob hosp admit fFN -ive 0.32 Clinical judgement: Probability of hospital admission when fFN negative (181;182) 

Prob hosp admit NoTest 0.9 Clinical judgement: Probability of hospital admission when No Test  Author assumption 

    

Risk hospital transfer 0.321 Risk of hospitalised patients being transferred to another hospital (186) 

        

Cost fFN Test £50 Cost of administering test (185) 

Cost hospital admission £1,068 Maternity inpatient cost per stay (average 2.2days) including treatment (187) 

Cost hospital transfer £1,000 Estimate to reflect NHS cost of transfers between different hospitals Author & clinical expert assumption 

        
ICU=intensive care unit, prob=probability 
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5.1.3 Pre-trial model predictions 

The pre-trial model was used to calculate the proportion of women that were 

hospitalised and the proportion of infants that experienced pre-term neonatal 

morbidity and mortality, for the intervention (test) and control (no test) arms. 

These model outcomes are predictions based on the decision tree pathways, 

assumptions and parameter estimates.  Table 5-2 details the model 

predictions, showing that there are nearly 37.6% fewer hospitalisations in the 

test arm, while there is a minor increase in pre-term morbidity and mortality 

of 0.18% and 0.005% respectively.  So, in comparison to the current standard of 

care where there is no test administered, the introduction of the fFN test is 

likely to substantially reduce hospitalisations but at the expense of an 

additional 18 neonatal morbidities and 0.5 neonatal mortalities per 10,000 

threatened pre-term births. 

Table 5-2: Model predictions 

Model Arm 
Proportion 

Hospitalised 
Proportion 
Mortality  

Proportion 
Morbidity 

        
Test (intervention) 0.52423 0.00078 0.03036 
No test (control) 0.90000 0.00073 0.02860 
    

Difference -0.37577 0.00005 0.00176 
 

The average cost of hospitalisation was found to be £1439.  This is based upon 

the unit costs detailed in Table 5-1 for admissions, test and transfer and the 

associated probabilities of incurring these costs.  Therefore, a reduction in 

hospitalisations by 0.375 is equivalent to a cost saving of £541 per women with 

threatened pre-term labour. Considering that it is estimated approximately 

120,000 women are clinically diagnosed with threatened pre-term labour in the 

UK each year (173), an fFN screening test which reduced pre-term 

hospitalisation of these women by 37.5% at an average cost of £1439 per 

hospitalisation, could potentially save the NHS approximately £65 million per 

year through avoiding unnecessary hospitalisations, however, this strategy is 

likely to present an additional 211 cases of pre-term neonatal morbidity and 6 

additional cases of neonatal mortality annually.   
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In this case the model predictions would fall into the South West quadrant of 

the cost-effectiveness plane.  This is demonstrated in Figure 5-2, showing the 

model predictions of a reduction in effectiveness (an increase in probability of 

morbidity by 0.0018) accompanied by cost savings of £541 per women with 

threatened pre-term labour.  
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Figure 5-2: Cost-effectiveness plane for fFN model prediction 

 

Interventions that fall in the North East and South West quadrants require an 

estimate or ‘value judgement’ regarding societies willingness to pay (or 

willingness to accept savings) per unit of effectiveness gained (lost).  This 

value is the maximum acceptable cost-effectiveness ratio or ceiling ratio (λ), 

as discussed in Chapter 2 (section 2.4.3).  To determine whether the fFN model 

outcomes are cost-effective or not, the ceiling ratio needs to be determined7.   

                                         
7 A detailed discussion of the ceiling ratio and how it was derived for the fFN trial is provided in 

section 5.2.2 
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Most commonly society is happy to accept a monetary threshold of willing to 

pay per unit of effectiveness gained, but many decision makers can become 

uncomfortable when considering the reverse, a willingness to accept a cost 

saving per unit of effectiveness lost.  Logically, if we are willing to accept a 

specified ceiling ratio for gaining effectiveness, we should be willing to accept 

the reverse.  However, in the South West quadrant ethical issues may come in 

to play and some decision makers may be less willing to accept the same 

ceiling ratio for this quadrant. O’Brien and colleagues make the case that 

consumers’ willingness to accept a payment to forego a benefit is greater than 

their willingness to pay to get the benefit and therefore, such considerations 

should be applied to the maximum cost-effectiveness ratio (78).  Under this 

approach decision makers may require a much greater cost saving in order to 

accept a reduction in effectiveness, resulting in a kinked ceiling ratio.   

This concept of a kinked ceiling ratio (78) is however, irrational as it results in 

a situation where for example, the ceiling ratio for the North East (NE) 

quadrant of the cost-effectiveness plane is £30,000 per QALY gained, but for 

the south west (SW) quadrant is £50,000 per QALY lost.  In such a situation 

society is not willing to accept an intervention which saves £30,000 but is 

accompanied by a reduction of 1 QALY; the intervention would have to save at 

least £50,000 per QALY lost.  However, this is irrational, and importantly it 

does not consider the opportunity cost of imposing a greater ceiling ratio in the 

SW quadrant. The £30,000 saved (at the expense of 1 QALY lost) could be spent 

more efficiently on another health technology in the NE quadrant which had 

for example an ICER of £15,000 per QALY, i.e. gaining 2 QALYs for £30,000.  So 

by setting a greater ceiling ratio for willingness to accept a reduction in 

effectiveness (SW quadrant) society is imposing an even greater opportunity 

cost in terms of other highly cost-effective technologies which could have been 

funded on the basis of accepting a technology which gives a saving of £30,000 

per QALY lost.   
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Scenario: 100% protocol adherence 

Table 5-3 details alternative model predictions under a scenario where the 

clinical judgement assumptions are relaxed and patients in the intervention 

arm are only hospitalised when the fFN test is positive, and 100% of women in 

the control (no test) arm are hospitalised under the ‘admit all’ approach.  

Table 5-3: Scenario model predictions 

Model Arm 
Proportion 

Hospitalised 
Proportion 
Mortality  

Proportion 
Morbidity 

        
Test (intervention) 0.33480 0.00078 0.03035 
No test (control) 1.00000 0.00068 0.02635 
        

Difference -0.66520 0.00010 0.00400 
 

The scenario analysis predicts a 66% reduction in hospitalisations in the test 

arm compared to the control, with an increase in pre-term morbidity and 

mortality of 0.4% and 0.01% respectively.  In comparison to the baseline model 

predictions in Table 5-2, the reduction in hospitalisations is improved (as there 

are more hospitalisations in the control arm, and fewer under the test arm); 

however the negative impact on effectiveness in terms of mortality and 

morbidity is greater.  Under the assumption of no clinical judgement and 100% 

protocol adherence, the introduction of the fFN test is likely to substantially 

reduce hospitalisations by 66% but at the expense of an additional 40 neonatal 

morbidities and 1 neonatal mortality per 10,000 pre-term births in comparison 

to the current standard of care where all threatened pre-term labour women 

are admitted to hospital to receive risk reducing steroids.  By relaxing the 

clinical judgement assumptions the model outcomes are exaggerated in both 

directions.  The cost savings through reduced hospitalisations are even greater 

than in the baseline model; however, the cases of pre-term morbidity have 

more than doubled, increasing from 18 per 10,000 births in the baseline model 

predictions to 40 per 10,000 births in this extreme scenario.    In reality clinical 

judgement will always come into play alongside the results of a diagnostic test, 

and in the control arm, where only clinical judgement is used it is unrealistic 
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to assume that 100% of the threatened pre-term labour women would be 

admitted to hospital.  

The pre-trial model predicted that the new intervention (fFN test) is likely to 

be cost saving, with a small but potentially detrimental impact on 

effectiveness in terms of both a marginal increase in neonatal morbidity and 

also in neonatal mortality. Therefore it is important to investigate both the 

morbidity and mortality endpoints when designing the fFN trial in order to 

explore what can be considered an acceptable reduction in effectiveness, 

which in turn will impact on the sample size calculations.   

5.2 Sample Size calculations 

5.2.1 Superiority Sample Size  

The sample size for a trial is calculated at the design stage to ensure the study 

will have adequate power to show a significant difference between the two 

arms, this is known as a superiority trial design i.e. it is designed to detect a 

significant difference between treatments (188).  The endpoints of interest 

from the fFN trial are the differences in hospitalisations, neonatal morbidity 

and neonatal mortality, reported as proportions.  In this study hospitalisations 

represent the cost endpoint, but there are two effectiveness endpoints of 

potential interest, morbidity and mortality.  Superiority sample sizes were 

initially calculated for each of these three endpoints, in order to determine 

which of the two effectiveness endpoints was likely to be the most meaningful 

for the cost-effectiveness sample size calculation.  

The superiority sample size requirements were calculated using standard 

methods for proportions (72). Typically sample sizes are calculated by 

comparing the means of two populations which have the same known variance, 

however; when detecting a difference between two proportions, the approach 

is slightly different. A test of the null hypothesis is specified, that each 

proportion is equal to the pooled value of the two proportions and the variance 

of the difference between the proportions can be different for the null and 
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alternative hypotheses.  As this case study uses proportions from the pre-trial, 

for simplicity sake a normal distribution was assumed for the proportions (as n 

approaches infinity) to allow equal variance for the difference in effect under 

the null and alternative. Table 5-4 details the parameters used for these 

calculations and their values, where M represents the effectiveness outcome 

for the morbidity calculation, D represents the effectiveness outcome for 

mortality and H represents the hospitalisation outcome. 

Table 5-4: Sample size calculation parameters 

Abbreviation Value Description 
H 0.712114 Hospitalised proportion pooled 
HT 0.524228 Hospitalised proportion Treatment 
HC 0.9 Hospitalised proportion Control 
M 0.0294788 Morbidity proportion pooled 
MT 0.0303608 Morbidity proportion Treatment 
MC 0.0285968 Morbidity proportion Control 
D 0.0007576 Mortality proportion pooled 
DT 0.0007803 Mortality proportion Treatment 
DC 0.0007349 Mortality proportion Control 
λ £25,700 Value of avoiding morbidity 
C £1,439 Cost Hospitalisation  
Power 0.9 Beta (β) 
Significance 0.05 Alpha (α) 
Zα/2 1.96 Critical value of significance test 
Zβ 1.28 Critical value for desired power 
ρ 1 correlation of the difference in costs & effects 
      
 

The sample size (n) is required to show a significant difference in effect (∆Ε) 

between the two arms.  This is calculated using the algorithm detailed in 

Equation 5.1.  The sample size problem is expressed as one of determining the 

sample size given the power and magnitude of the specified effect to be 

detected (72).  Therefore, following the convention for statistical significance, 

alpha (α) was set to show a significant difference at the 5% level and the power 

was set at 90%.  zα is the 100 percentile for the standard normal distribution, 

so that zα/2 is the standard normal deviation with a two sided significance 

level, and given a specified power of 90%, zβ is the critical value.  The null 

hypothesis (∆ΕN) assumes there is no difference between the pre-term neonatal 
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morbidity in the two arms (ET = EC), i.e. the pooled proportion is used; and the 

alternative hypothesis (∆ΕA) assumes that there is a difference between the 

two arms (ET ≠ EC).  zα/2 is multiplied by the variance (v) of the change in 

morbidity under the null hypothesis, and zβ is multiplied by the variance (v) of 

the change in morbidity under the alternative hypothesis. 

( ) ( ) 2

AβN2

E

Ev*zEv*z
n 









∆
∆+∆

> α
       (5.1) 

Equation 5.2 (72) provides a more detailed breakdown of this calculation, 

specifying the variance of the difference in morbidity under each hypothesis.  

As the null assumes no difference (∆Ε = 0) between the treatment and control 

arms, a pooled value for effect (E) is used, while the alternative hypothesis 

calculates the difference in effect (∆Ε = ET - EC) using the proportion of 

effectiveness in the intervention arm (ET) and the proportion of effectiveness 

in the control arm (EC).   
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   (5.2) 

This equation was solved for pre-term neonatal morbidity using the M values 

(M, MT and MC) detailed in Table 5-4 to represent Ε, ET and EC which are the 

pooled, treatment and control predictions for morbidity from the pre-trial 

model.  The calculation was then repeated solving for hospitalisations (using 

the H proportions in Table 5-4 to represent Ε, ET and EC) and for mortality 

(using the D proportions in Table 5-4 to represent Ε, ET and EC).  The sample 

sizes derived from each of these calculations are detailed in Table 5-5. 

Table 5-5: Superiority sample sizes for each endpoint 

Outcome Sample per arm Total sample size 

Hospitalisations (H) 28 56 

Morbidity (M) 193,222 386,444 

Mortality (D) 7,740,945 15,481,890 

      
 



Chapter 5   253 

Using this superiority approach it can be seen that the mortality outcome 

measure predicts an enormous and unrealistic sample size requirement of over 

7 million participants per arm to show a significant difference between the 

intervention and control.  The sample size based on the morbidity measure is 

much smaller but also unrealistic at over 193,000 per arm; while the 

hospitalisation measure requires an extremely small sample size of only 28 

participants per arm to show a significant difference between the treatment 

and control.   

These outcomes illustrate that it is possible to base a superiority sample size 

calculation on the hospitalisation measure; however, this is only an indicator of 

cost and does not provide any information about safety or mortality outcomes.  

It is clear from the model predictions in Table 5-2 and the superiority sample 

size outcomes in Table 5-5 that the mortality outcome will only show a 

negligible difference between the intervention and control arms.  The 

morbidity outcome measure predicted from the pre-trial model indicates a 

slight increase in morbidity (18 per 10,000 threatened pre-term labours), and 

therefore has some potential to be a meaningful measure of effectiveness.  

Therefore it was deemed appropriate to explore the relevance of a non-

inferiority approach for morbidity as a measure of effectiveness, i.e. to show 

that the fFN test is not worse than the control, within a pre-specified margin 

of non-inferiority for morbidity (172;188).   

Ultimately the trial was concerned with calculating the sample size based on 

the cost-effectiveness outcome rather than the cost or effectiveness outcomes 

individually.  Therefore it was decided that the hospitalisation and morbidity 

predictions from the pre-trial model would be used in the cost-effectiveness 

sample size calculation using the net monetary benefit approach (NMB), and 

would then be double-checked against a non-inferiority calculation for the 

morbidity effect alone. 

The next section discusses the NMB approach and details the sample size 

calculation that was undertaken, followed by a discussion of the non-inferiority 

approach that was used to ensure the sample was large enough to show that 
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the test was no less effective than the control within a pre-specified margin of 

non-inferiority.   

5.2.2 Net Monetary Benefit Sample Size 

The NMB approach  

With regards to the fFN case study, neonatal morbidity is the effectiveness 

endpoint while hospitalisations are used to reflect any potential cost savings.  

As such the NMB approach will balance the monetarised value of the increase 

in neonatal morbidities against the cost savings resulting from reduced 

hospitalisations.  Therefore the two elements of the cost-effectiveness 

outcome are the difference in hospitalisations (∆H) and the difference in 

neonatal morbidity (∆E) between the two arms.  Equation 5.3 illustrates the 

net monetary benefit calculation, which requires a ‘willingness to pay’ value 

(λ) to reflect the monetary value of avoiding morbidity. This is multiplied with 

the difference in neonatal morbidity (∆E), while the average cost of 

hospitalisation (C) is combined with the difference in hospitalisations (∆H) and 

subtracted. 

H*CE*NMB ∆−∆=
λ

        (5.3) 

The ‘willingness to pay value’ (λ) is a subjective value.  In this case it is used 

to reflect the monetary value of avoiding pre-term neonatal morbidity and 

therefore some assumptions are used to derive an appropriate value.  In order 

to derive a realistic value, the statistical value of a life was taken to be a 

useful monetary indicator for the value of preventing an infant mortality and 

was multiplied by the probability of experiencing pre-term mortality, given 

pre-term morbidity in the model, to determine a value of avoiding an infant 

morbidity.  The European Union (2001) recommendations suggest that a value 

between €0.9 and €3.5 million (1€ ~ £0.6004, 2001) should be assigned to 

reflect the value of a life (189).  The UK Department for Transport recommend 

a value of £1.4million (190) while Abelson et al. (191) also report similar 

ranges in a review of studies that have estimated the value of a life, however 

they note that some studies have indicated that the top end of these ranges 
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are overestimations.  Given this evidence it was deemed to be reasonable to 

assign a value between £500,000 and £2.5million, and it was assumed that an 

estimate of £1million would be a realistic reflection of the statistical value of a 

newborn life which has not yet contributed to society.  The statistical value of 

avoiding a pre-term neonatal morbidity was then derived (by multiplying the 

probability of mortality amongst pre-term births (177) with the statistical value 

of a life at birth), and estimated to be £25,700. 

The NMB can then be calculated using the values from the model predictions, 

for the difference in neonatal morbidity (∆E) (effectiveness), the difference in 

hospitalisations (∆H) (cost) and the average cost of hospitalisation (C) and 

incorporating the willingness to pay estimate (λ) into the NMB formula. 

Using NMB to calculate sample size 

Over the last decade there has been much discussion on appropriate methods 

for calculating conventional trial sample sizes based on expected cost-

effectiveness outcomes (40;46;169-171).  Most typically this can be done 

following the net monetary benefit approach.  By using the NMB approach, a 

sample size for a cost-effectiveness outcome can be calculated in the standard 

way as typically used for mean effectiveness (72), but based on the expected 

change in NMB.  Briggs et al. (46), provides a thorough explanation of the 

theory and equations, which are briefly summarised here.    

The calculation is based on a hypothesised difference in both costs and effects 

with associated hypothesised variances and covariance along with a set 

monetary willingness to pay value (λ).  These are used to calculate a 

hypothesised net monetary benefit (NM �B).  The null hypothesis (NM �BN) assumes 

the net benefit is zero, i.e. there is no difference between the costs and 

effects of the interventions, while the alternative hypothesis (NM �BA) assumes 

that there is a difference between the costs and effects, i.e. the net benefit is 

different from zero.   

Equation 5.4 illustrates the standard equation to show a hypothesised net 

monetary benefit (NM �B) as different from zero.  Let zβ represent the critical 
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value from the standard normal distribution corresponding to a required power 

of 1-β and the variance expressions (v) for net-benefit are based on the 

hypothesised variance in cost and effect, and their covariance.  zα/2 is 

multiplied by the variance of the net monetary benefit under the null 

hypothesis, and zβ is multiplied by the variance of the net monetary benefit 

under the alternative hypothesis. Note that this is the same as the standard 

approach for effectiveness, as illustrated in Equations 5.1 and 5.2, with the 

difference in NMB under the null (NM�BN) and alternative (NM �BA) hypotheses 

replacing the difference in effectiveness under the null and alternative 

hypotheses. 

 ( ) ( )AβN2 BM
~

NvzBM
~

NvzBM
~

N ∆∗+∆∗> α       (5.4) 

Where: 

 HCENMB ∆∗−∆∗λ= ,        (5.3) 

and: 

( ) ( ) ( ) ( )C,Ecov2CvEv*BM
~

Nv 2 ∆∆λ−∆+∆λ=       (5.5). 

As the net monetary benefit calculation uses the cost and effect variables, 

which in this case are proportions, the standard methods are slightly modified 

for dealing with proportions (72), i.e. the null hypothesis uses the pooled 

proportions for cost and effect, and the variance for the NMB under the null 

and alternative hypotheses can differ.  A normal distribution was assumed for 

simplicity, allowing equal variance expressions for the null and alternative 

hypotheses.  Therefore, given Equations 5.4 and 5.5, the variance of the 

difference in NMB under the null hypothesis is: 
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and the variance of the difference in NM �B under the alternative hypothesis is: 
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(5.7). 

By incorporating these variance expressions for the hypothesised null and 

alternative NM �B (Equations 5.6 and 5.7) into the standard NM �B significance 

expression (Equation 5.4) the variance expressions can then be divided by the 

required number of participants in the control and treatment arms (n), and 

rearranged to solve for the required sample size (n) to show a significant 

difference in hypothesised NM �B.  Equation 5.8 illustrates this and is fully 

expanded in Equation 5.9 to detail the variance expressions.   
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This is the standard methodological approach for sample size calculations using 

the NMB approach, but in this case we have used proportions for the cost and 

effect variables, as opposed to continuous variables. This process was used to 

determine the sample size required for the fFN trial, in order to detect a net 

monetary benefit greater than zero.  The calculation was based on 

conventional power and significance levels, taken to be 90% power at the 5% 

significance level.  The inputs for this sample size calculation are the same as 

those used in the individual sample size calculations, (i.e. the pre-trial model 

prediction values for morbidity (M, MT, MC) (effectiveness), hospitalisations (H, 

HT, HC) (cost), and the average cost of hospitalisation in the model (C)), as 

detailed in Table 5-4, with the addition of the willingness to pay value (λ), and 

a correlation value for the covariance (ρ). 

Table 5-6 shows the outcomes from this calculation, detailing the sample sizes 

required in the trial to detect a NMB greater than zero at different levels of 

power.  As would be expected a stronger power for the study requires a larger 
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sample size per arm.  At a 90% power a total sample of 1850 participants would 

be adequate to detect a NMB greater than zero.   

Table 5-6: NMB sample sizes under different power specifications 

Power Sample per arm Total sample size 
   

90% 925 1850 

80% 701 1402 

70% 559 1118 

 

Choice of ceiling ratio 

As previously discussed the ceiling ratio or ‘willingness to pay’ value for the 

NMB expression is a subjective value; there is no universally accepted ceiling 

ratio which exists for decision making purposes.  In the UK, the threshold of 

£20,000-30,000 per QALY, recommended by NICE (24), tends to be adopted.     

The value of a statistical life was used in the fFN pre-trial model to reflect the 

value of preventing an infant mortality, and used to derive the value of 

preventing an infant morbidity.  This value was set at £1million, however there 

is considerable debate regarding the approaches used to derive this value (189) 

and the resultant monetary amount that appropriately reflects this value 

(190;191). It was felt that a value of £1million would be a realistic reflection of 

the value of a statistical life for a new-born who has not yet contributed to 

society, for the fFN case.  However, it may have been appropriate to use a 

value reflecting the cost of initial intensive care for neonates with pre-term 

morbidity to represent the willingness to pay value.  Costs of caring for low 

birth weight and premature babies are extremely variable with some sources 

reporting between £720 - £3280 per case depending on severity (192), while 

others report a mean cost of £5063 (price year 1998), which again varies 

considerably depending on gestational age (193).  Alternatively the monetary 

value of a QALY (194;195) could be used to reflect the willingness to pay value, 

rather than the monetary value of a statistical life or a hospitalisation cost of 

neonatal morbidity.   Using alternative methods to derive a willingness to pay 

value will generate different sample sizes.  Briggs & Gray (170) suggest plotting 
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the sample size requirements as a function of the maximum cost-effectiveness 

ratio to explore the impact of the choice of ceiling ratio on the sample size. 

In order to explore the structural uncertainty surrounding which approach and 

alternative values should be used; the sample size calculations were repeated 

using a variety of QALY thresholds for willingness to pay.   

The baseline model developed was based on morbidities avoided, applying a 

willingness to pay societal value per morbidity avoided.  Using this method the 

cost-effectiveness evaluation was directly related to the proposed trial primary 

outcome (pre-term morbidity).  Alternatively, a QALY model could have been 

developed.  This alternative was considered and a very rough assessment of 

QALY outcomes incorporated.  The present value of a QALY at birth was 

calculated using 2007 life expectancies for both males and females (196) and 

UK population norm QALY values (124), discounted at a rate of 3.5% (24).  This 

generated an estimated present value of a new life of 42.7 QALYs.  This QALY 

outcome was used to re-calculate the NMB sample size under different 

monetary thresholds for a QALY (λ).  Table 5-7 details the baseline sample size 

generated for the fFN RCT using the statistical value of avoiding morbidity 

(£25,700), alongside the sample sizes generated at alternative thresholds (λ) of 

£20,000, £30,000, £40,000 and £50,000 per QALY.  All calculations were 

undertaken using a power of 90% and significance at 5%. 

Table 5-7: NMB sample sizes under alternative monetary thresholds (λ) 

Monetary threshold( λ) Sample per arm Total sample size 

£25,700† 925 1850 

£20,000 per QALY 662 1324 

£30,000 per QALY 1537 3074 

£40,000 per QALY 2683 5366 

£50,000 per QALY 4045 8090 
†baseline WTP value to avoid morbidity derived from statistical value of a life at birth 
(assumed to be £1million) 

As the monetary threshold increases, the sample size requirements increase.  

Increasing the λ value reflects an increase in societies willingness to pay to 

avoid a neonatal morbidity (each neonatal morbidity has a greater cost to 
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society), and therefore the cost saving which accrue from fewer 

hospitalisations with the fFN test become outbalanced by the greater cost to 

society for the few false negative test cases who do experience a neonatal 

morbidity.  Therefore as the willingness to pay value increases, the fFN test 

will have a lower NMB gain against current practice, becoming less cost-

effective and requiring a greater sample size to show that the fFN test has a 

significantly positive NMB. 

In light of these alternative outcomes, potential funders should consider what 

society/they consider to be an appropriate ceiling ratio/willingness to pay 

(accept) value per QALY gained (lost).  The current recommended ceiling ratio 

in the UK is £30,000 per QALY, however, as the cost-effectiveness decision is in 

the south west quadrant of the cost-effectiveness plane, decision makers may 

require a much greater cost saving in order to accept a reduction in 

effectiveness (resulting in a kinked ceiling ratio), as previously discussed.  If 

the willingness to accept a cost saving per QALY loss is greater than £30,000 

per QALY, then funders should consider that a trial with a sample size of 

approximately 2000 is unlikely to show any conclusive results. For example, 

once funded, such a trial may well require an extension, or may well not show 

a significant difference.  However, given the current ceiling ratio of £30,000 

per QALY recommended by NICE in the UK, the sample size required to show a 

significant difference is feasible.   

5.2.3 Non-inferiority approach 

Standard approach to non-inferiority 

A non-inferiority trial aims to demonstrate the intervention is not worse than 

the control by more than a pre-specified, small amount known as the non-

inferiority margin (NI margin) (172). The NI margin is a criterion that is set so 

that the new interventions non-inferiority can be judged, i.e. that any 

difference in effect between the intervention and control is less than or equal 

to the NI margin, but not greater than this amount.  Therefore, non-inferiority 

designs require the specification of the NI margin in advance of a trial.  Setting 

an appropriate NI margin is essentially an arbitrary judgement; however, 
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guidelines on the choice of non-inferiority margin (172) are available.  These 

highlight important considerations for the choice, which should be based upon 

a combination of statistical reasoning and clinical judgement.  

In establishing an NI margin for a new intervention, it is common to base the 

margin on a proportion of the control effect size, for example less than a third 

of the established effect, and therefore, it is recommended to look historically 

at placebo-controlled trials for the active comparator and use statistical 

reasoning to determine an appropriate NI margin (197).  The Committee for 

Medicinal Products for Human use (CHMP)(172) propose that a systematic 

review be undertaken to identify studies relevant to the comparison of the 

control treatment with placebo in the disease area being considered. Using 

such literature, indirect comparisons can then be made with studies comparing 

the control with a placebo using the lower bound of a 95% confidence interval 

to establish an efficacy advantage over a placebo.  

The CHMP guidelines are concerned with establishing an NI margin based on an 

effectiveness endpoint, however, from an economic perspective we are 

interested in both the effect and cost endpoints and therefore acceptance of a 

new intervention is dependent on ‘non-inferiority’ in both clinical and cost 

terms.   

Non-inferiority in the fFN trial 

Due to the atypical nature of the fFN intervention (cost saving but with a 

potential marginal reduction in effectiveness), a non-inferiority design may be 

appropriate for the effectiveness endpoint, which aims to demonstrate that 

the fFN test is no worse in terms of the clinical outcomes than the control, by 

more than a pre-specified, small amount.  However, in terms of the cost 

endpoint the intervention is likely to show superiority over the control.  The 

pre-trial model predictions detailed in Table 5-2 and the superiority sample 

sizes in Table 5-5 illustrate that this is likely to be the case.  The trial is likely 

to show a substantial reduction in the number of hospitalisations, which will 

have considerable cost saving implications, without having a significant 

detrimental effect on neonatal morbidity.  Therefore, a non-inferiority sample 
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size calculation for morbidity (combined with a superiority outcome for costs) 

was undertaken in addition to the previously specified NMB sample size 

calculation.  This ‘additional’ NI sample size calculation was undertaken to 

ensure that the sample for the trial was also large enough to show that the test 

was no less effective than the control within a given cost-effectiveness defined 

margin of non-inferiority.   

The non-inferiority margin (NIm) was determined based upon a combination of 

statistical reasoning and clinical judgement, as recommended by the CHMP, 

using an economic definition of non-inferiority which incorporated both the 

cost and effectiveness considerations. NIm was determined from the cost-

savings that might accrue through reduced hospitalisations in the intervention 

arm and the willingness to pay value to avoid neonatal morbidity (λ). The 

difference in hospitalisations (∆H) between the intervention and control arms 

is multiplied with the average cost of hospitalisation (C), to give the cost 

savings which accrue through fewer unnecessary hospitalisations in the fFN test 

arm.  This is then divided by the value of avoiding neonatal morbidity (λ) to 

provide the non-inferiority margin from an economic perspective, as illustrated 

in Equation 5.10:   

 
λ

∆= C*H
NIm         (5.10), 

i.e. where the net health benefit equals zero( )0=NHB .  

For this calculation the model prediction values for the difference in 

hospitalisations and the average cost per hospitalisation were used, as detailed 

in Table 5-4, giving an expected saving of £541 per woman tested.  Populating 

Equation 5.10 with these values along with the willingness to pay to avoid 

morbidity value of £25,700 (λ), a non-inferiority margin of 0.02 was 

determined.  On this basis, an increase in morbidity of up to 0.02 would be 

considered “acceptable” in the trial.  Having specified this non-inferiority 

margin for morbidity, the standard sample size calculation can be used to 

determine the sample required to show that an expected difference of 0.00176 
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(pre-trial model prediction for morbidity, Table 5-2) has an upper confidence 

limit below 0.02.   

This specified non-inferiority margin (NIm) was incorporated into the basic 

sample size calculation previously detailed in Equations 5.1 and 5.2, utilising 

the morbidity outcomes (M probabilities: M, MT & MC) from Table 5-4 as the 

measure of effectiveness (E, ET & EC), using 90% power and a significance of 

5%.  Equation 5.11 details the sample size calculation based on the morbidity 

non-inferiority margin, and is expanded in Equation 5.12 to detail the variance 

under the null and alternative hypotheses.   
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The resultant non-inferiority sample size for morbidity is detailed in Table 5-8, 

indicating the variation in sample size requirements to changes in the power 

specification.   

Table 5-8: Non-inferiority sample size under different power specifications 

Power Sample per arm Total  sample size 

90% 1156 2312 

80% 864 1728 

70% 679 1358 

 

When the non-inferiority approach is used with the morbidity outcome 

measure, a trial with 90% power will require a sample size of 2312 participants.  

This is approximately 500 participants more than that required to show cost-

effectiveness using the NMB approach (Table 5-6).  Therefore, designing the 

trial with a total recruitment sample of 2312 participants has a 90% power, 

which is adequate to detect a NMB greater than zero and non-inferiority given 

a cost-effectiveness defined non-inferiority margin.  
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5.3 Discussion 

The ‘pre-trial’ model developed to inform the fFN trial sample size calculations 

predicted that potential cost-savings were likely, but with a marginal 

detrimental impact on neonatal morbidity, indicating that a non-inferiority 

trial design may be appropriate.  Therefore, the sample size calculations were 

undertaken using the NMB approach to demonstrate cost-effectiveness, and 

also using a non-inferiority design to ensure the trial sample size would be 

sufficient to demonstrate non-inferiority for the effectiveness endpoint, given 

a cost-effectiveness defined NI margin.  Adopting the NMB approach, a total 

sample size of 1850 with a power of 90% is required to demonstrate a NMB 

greater than zero; while a total trial sample size of 2312 would be required to 

demonstrate non-inferiority, given the cost-effectiveness defined non-

inferiority margin.  Therefore, the trial was powered at 90% requiring a total 

sample size of 2312, in order to satisfy both approaches.  

This real life application of a sample size calculation based on a cost-

effectiveness outcome demonstrates the feasibility of this approach, leading to 

appropriately sampled trials with respect to the cost and cost-effectiveness 

outcomes.  While calls for health economic involvement in trial design are 

abundant (39;44;169-171), very few trials which involve economic evaluation 

as a primary outcome actually undertake sample size calculations based on the 

economic outcome.   

In terms of practicality, the skills required for building a simple, early model to 

inform trial design and a funding application are feasible to health economists 

who undertake economic evaluations.  The skills required for calculating 

sample sizes, however, are slightly less generalisable.  Many health economists 

may not normally become involved with sample size calculations, or indeed the 

wider trial design, leaving the sample size aspect up to trial statisticians.  

However, given that the methodology for such an approach is now well 

established, and that the role of the health economist is becoming ever more 

statistical (particularly for economic evaluations undertaken alongside clinical 

trials) (40) , economic led sample size calculations are not such a barrier for 
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health economists as they might once have been.  As recommended in good 

practice guidelines, it is important that the economic requirements contribute 

to the study design to ensure that the structure of the trial will provide the 

necessary data for a high quality economic study (39).  

It is encouraging that in this case study the health economics perspective was 

included in time to influence the sample size calculation; however, this was 

possibly only due to the atypical context of this situation, i.e. a trade-off 

between cost savings and a reduction in effectiveness, as opposed to the 

typical trade-off between additional costs and an improvement in 

effectiveness. Had this been a typical scenario, the cost-effectiveness 

perspective may well have been ignored until after the design of the trial.  In 

trials where the cost-effectiveness trade-off is expected to be straightforward 

the design tends to focus solely on effectiveness, overlooking the importance 

of the cost-effectiveness outcome and not even considering whether a cost-

effectiveness based sample size may be appropriate. It should be further 

promoted and recognised within a wider clinical audience that these 

techniques are valid methodology for calculating cost-effectiveness based 

sample sizes in both typical and atypical situations. 

Diagnostic test accuracy evaluations present the possibility for litigation 

proceedings to the NHS, due to false negative test outcomes (failing to detect 

disease). Current NICE guidelines (24) recommend all relevant costs be 

incorporated into an evaluation, and in the case of DTA studies (particularly 

one such as fFN) it could be argued that litigation costs are likely to have a 

significant impact on cost the of introducing the fFN test to the NHS, given the 

probability for false negative outcomes and the increasing tendency in the UK 

for claims against the NHS.  The potential importance of litigation costs for the 

DTA evaluation could be explored in a scenario, by making an assumption 

about the proportion of false negative cases which result in morbidity that will 

proceed to legal/court proceedings and include the additional litigation costs.  

It is indeed worthwhile exploring the importance of and potential impacts of 

this on the model outcomes in a scenario analyses.  
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The design and development of trial protocols are typically undertaken in short 

periods of time in order to meet tight submission deadlines; however this can 

impact on the quality of the trial design.  In the fFN case study discussed in 

this chapter, a pre-trial model was developed over a relatively short time 

period utilising the most readily available secondary evidence in order to 

undertake sample size calculations.  This demonstrates that even without prior 

funding or support to develop a comprehensive decision analytic model, a 

simple DAM can be constructed relatively quickly which can be used to help 

design the study.   

A basic, deterministic model can still have considerable advantages (in terms 

of evaluating alternative endpoints of interest to select the most appropriate 

for the trial, and enabling sample size calculations based on economic 

endpoints) within the context of a standard frequentist trial design. Preferably 

uncertainty in the model and sample size estimates should be considered.  

Briggs & Gray (170) recommend increasing the sample size of the study beyond 

that suggested by the formulas in order to account for additional uncertainty 

to be quantified in sensitivity analysis.  They also propose increasing upon the 

initial recruitment target to account for potential drop-out in the study, as is 

standard practice when sample size calculations are based on effectiveness 

alone.  The role of uncertainty in sample size calculations has been given 

further attention in published literature and it has been proposed that 

probabilistic sensitivity analysis is a good way to deal with this uncertainty 

(198), however, in practical terms the time constraints imposed by protocol 

submission deadlines may interfere and dealing with this uncertainty may only 

be feasible after protocol submission. 

If a non-inferiority design is appropriate for a study, as opposed to the typical 

superiority design, then there is a further role for economists (or the research 

team) in defining an appropriate non-inferiority (NI) margin. While there are 

general guidelines to adhere to in choosing a non-inferiority margin (172), 

based upon a combination of statistical reasoning and clinical judgement, the 

approach taken will also need to incorporate economic considerations (for both 

cost and clinical outcomes) of non-inferiority when the trial is undertaken to 

determine cost-effectiveness. The NI margin is subjective by nature and for 
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example, different values used to reflect the value of a statistical life will 

generate different sample sizes.  The structural uncertainty surrounding which 

approach should be used to determine this value therefore has implications for 

the sample size estimate. 

There is also scope for assessing how variations in required sample sizes will 

affect recruitment costs and feasibility for a trial.  The greater the sample 

size, the more precise the estimates of the parameters and their differences, 

but the more expensive the trial will be.  Exploring the specific trade-off 

involved can be useful in determining the appropriate balance between 

precision and availability of resources, however, this line of enquiry leads back 

to the methodological advantages of using value of information analyses.  With 

regards to ‘frequentist’ type sample size calculations, uncertainty can be 

incorporated and there should be a trade-off considering the feasibility and 

cost of recruitment as well as the sample size to show a significant difference.  

However, when you are starting to formally consider the trade-offs in terms of 

the size, cost and feasibility of recruitment, the VOI approach is much more 

appropriate.  Rather than implicitly considering the trade-offs between size, 

cost and feasibility – which is the current state of play in practice– research 

funders could more formally be incorporating these trade-offs, explicitly 

considering further research on the basis of how it addresses current 

uncertainty and valuing it on that basis.  Expected value of sample information 

and ENBS as part of an iterative economic approach explicitly incorporates 

these considerations and trade-offs, rather than conventional trial design as 

explored in the case study for this chapter.  

The feasibility or cost of recruitment may also become an issue if a regulatory 

or funding body dictate what the power endpoint of interest should be for a 

trial and it yields an unrealistic sample size.  This was not the case in the fFN 

trial design as the researchers were given freedom to explore various endpoints 

(morbidity, mortality and hospitalisations) and also to determine the most 

appropriate method for the evaluation, i.e. a net monetary benefit approach 

or a non-inferiority design.     
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In the context of this thesis it would have been preferable to develop a 

comprehensive decision analytic model and undertake EVSI following an 

iterative approach to trial design; however, this was not feasible within the 

context of the case study research bid.  This chapter demonstrated that even 

without prior economic involvement (or funding) to develop a comprehensive 

decision analytic model, a simple DAM can be constructed relatively quickly 

(and fairly simply) which can be used to help design the study.  Given that a 

basic, deterministic model such as that developed for the fFN trial can help in 

the design and development of a standard frequentist trial, there is no reason 

for economists not to be involved in the design stage of a trial, when the 

purpose of that trial is to determine cost-effectiveness.  The fFN model helped 

determine the power and sample size for the study; exploring both a NMB 

approach and a non-inferiority approach for sample size calculation and 

demonstrating their feasibility, while simultaneously highlighting limitations 

and demonstrating the role for economic considerations to guide non-

inferiority.  Considerations of economic assessments alongside clinical trials 

can and should be used to guide conventional trial design.
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6 Designing trials following an iterative approach 

Following on from the fFN case study in the previous chapter it is of interest to 

consider whether the same, or an alternative conclusion would have been 

drawn had the iterative approach to health technology assessment been 

adopted. Under an iterative approach, formal evidence synthesis and early 

decision analytic modelling would have been undertaken in advance of 

designing the trial, helping to explore and set the research priorities.  

Following the development of an early probabilistic DAM, expected value of 

perfect information (EVPI) analysis could have been undertaken to explore 

whether further research was potentially worthwhile, and if so, expected value 

of perfect parameter information (EVPPI) analysis could have indicated the 

appropriate type of any further research (i.e. an RCT or observational study) 

based on the parameters that were driving uncertainty in the model outcomes. 

If a study was deemed potentially worthwhile then expected value of sample 

information (EVSI) analysis could be used to determine an appropriate sample 

size for the study.    

As discussed in Chapter 5, the UK Health Technology Assessment (HTA) 

programme (50) had issued a commissioning call for research to undertake a 

randomised controlled trial to explore the cost-effectiveness of fFN testing in 

women threatened with pre-term labour.  Therefore the desire for a study and 

specification for an RCT had already been planned without prior economic 

involvement.  The trial was under design with a planned duration of three 

years costing approximately £1.65 million, when the opportunity arose to 

power the trial for economic endpoints, in the context of a frequentist trial 

design. This chapter explores whether the same, or an alternative conclusion 

(in terms of the desire for an RCT, and the appropriate sample size) would 

have been drawn had an iterative approach been followed whereby a DAM had 

been developed in advance and explored to its full potential.  
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This chapter undertakes a re-analysis of the fFN study, adapting it so that the 

cost and effect estimates are determined probabilistically.  The probabilistic 

results are then used to explore the EVPI and EVSI to compare the resultant 

research priorities and sample size under an iterative approach with the 

outcomes that were determined through conventional methods for the trial 

proposal, as detailed in Chapter 5.  This chapter then discusses the 

practicalities of employing the EVSI approach and some of the complexities.  

 

6.1 Re-analysis of the fFN case study 

6.1.1 Probabilistic analysis of fFN model 

With regards to the fFN model developed in Chapter 5, naturally there is 

uncertainty surrounding the parameter point estimates in the pre-trial model; 

and variability in the willingness to pay value (λ) for the NMB calculation and 

the non-inferiority margin which are subjective (172), leading to uncertainty 

surrounding the model outcomes and variation in the sample size estimates.  

Therefore, it is appropriate to undertake a probabilistic sensitivity analysis 

(PSA) on the baseline model to reflect uncertainty in the model parameters 

and explore the impact that this has on the predicted net benefit for both the 

treatment and control arms, as well as allowing further analysis on the value of 

further information.   

The parameters from the pre-trial model for which we are most uncertain, are 

the diagnostic test accuracy (sensitivity and specificity) of the fFN test, the 

risk of hospital transfer, the risk reduction of pre-term morbidity provided by 

steroids and the probability of hospitalisation given the fFN test results.  The 

model in Chapter 5 used point estimates of these parameters to predict 

deterministic estimates for the outcome parameters of interest: the proportion 

of hospitalisations and the proportion of neonatal morbidity experienced in 

each arm.  The deterministic model parameters as detailed in Table 5-1 were 

used to produce the predictions detailed in Table 6-1. 
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Table 6-1: fFN model predictions 

Parameter Point estimate Source 
      

fFN test: Proportion hospitalised 0.52423 model prediction 
No test: Proportion hospitalised 0.90000 model prediction 
fFN test: Proportion morbidity 0.03036 model prediction 
No test: Proportion morbidity 0.02860 model prediction 
      

fFN = fetal fibronectin 

If a trial were undertaken, the model predictions are the key parameters which 

would be informed.  Therefore, for the purpose of the PSA and VOI analyses, 

these four key parameters of interest (proportion hospitalised and proportion 

of pre-term morbidity, for each arm) were assigned distributions. In this way 

the model was kept simple which was advantageous for undertaking the EVSI 

calculation.   

The four model prediction parameters are represented by proportions, so when 

considering distributions for the probabilistic analysis, Beta distributions were 

deemed appropriate (as detailed in Chapter 2).  There was no prior study 

information from which to determine the alpha and beta parameters.  Ideally 

formal elicitation of clinical opinion could have been undertaken (for example, 

using Delphi techniques), to inform the uncertainty surrounding the parameter 

mean estimates, however, due to time constraints a best guess approach was 

used.  Wide confidence intervals were applied to handle the resultant 

uncertainty in the model parameters in the probabilistic sensitivity analysis.  

Standard errors were assumed and the alpha and beta values were derived 

using the Method of Moments (4), as detailed in Chapter 2.  A standard error of 

20% of the mean value was assigned to the probability of pre-term morbidity in 

the model for both arms and to the probability of hospitalisation under the 

treatment (fFN test) arm.  There is less uncertainty about the probability of 

hospitalisation in the control arm, as current practice is an admit all approach, 

therefore a smaller standard error of 6% of the mean value was assumed to 

represent the uncertainty for this parameter.  Table 6-2 details the mean 

values and probabilistic details for the four key parameters which would be 

determined in a trial.  
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Table 6-2: fFN Parameters for probabilistic model 

Parameter of interest 
Mean 
value 

Standard 
error Distribution α β 

Hospitalisation treatment arm 0.524 0.105 Beta 11 10 
Hospitalisation control arm 0.9 0.05 Beta 31 3 
Morbidity treatment arm 0.03 0.0061 Beta 24 773 
Morbidity control arm 0.029 0.0057 Beta 24 824 
            

 

The PSA used Monte Carlo simulation to draw randomly from the specified beta 

distributions for the proportion of hospitalisations and proportion of neonatal 

morbidity in each arm, and generate 10,000 probabilistic results.  The average 

cost of hospitalisation was combined with the proportion of hospitalisation in 

each arm to determine the cost for each of the iterations, from which the 

incremental cost could be determined.  The incremental effect was 

determined as the difference in probability (neonatal morbidity) between each 

arm, for each of the iterations.  

Figure 6-1 depicts the resultant cost-effectiveness plane, plotting the 

incremental costs and incremental effects, for each of the 10,000 PSA 

iterations.  It illustrates that we can be almost certain that the treatment will 

reduce cost in comparison to control (only six of the iterations do not fall 

below the x axis), but as the probabilistic results cross through the y axis, we 

can not be certain that the two interventions differ in effectiveness.  The x 

axis in Figure 6-1 illustrates incremental effectiveness, where an improvement 

in effectiveness means a reduction in pre-term morbidity.  Therefore, points in 

the western quadrant reflect a reduction in effectiveness, where the 

treatment arm has a greater proportion of pre-term morbidity than the control 

arm; whereas points in the eastern quadrants reflect an improvement in 

effectiveness, i.e. where the treatment arm has less morbidity than the 

control arm.  The spread across the y axis is not unexpected in this non-

inferiority type situation, whereby we would expect a marginal reduction in 

effectiveness (increase in morbidity) in the treatment arm, within the pre-

specified margin of non-inferiority (as discussed in Chapter 5). 
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Figure 6-1: The CE plane for Treatment (fFN test) versus Control (no test) 

 

By employing the NMB approach as discussed in Chapter 5; the impact on 

effectiveness can be monetarised using a willingness to pay value (λ) to avoid 

morbidity, in this case the pre-defined value of £25,700 (as detailed in Chapter 

5). Given this monetary threshold (λ), in Figure 6-1 all points that fall to the 

right of the monetary threshold (λ) can be considered cost-effective, while all 

points that fall to the left are not cost-effectiveness. The NMB for each 

intervention was calculated for all 10,000 iterations.  The expected net 

benefits under the treatment and control arms were then calculated, that is, 

the average net benefit in each arm across the 10,000 iterations.  The 

treatment arm had the greatest ENB (£26) compared to the control arm (-

£559), and would therefore be the treatment of choice, maximising NB at the 

willingness to pay (λ) value of £25,700. It should be noted that in Chapter 5 it 

was the incremental net monetary benefit that was reported, i.e. the 

difference in net benefit between the treatment and control. Given the ENB 

for the treatment and control arms, the incremental net monetary benefit 

from the probabilistic analysis is £584, and therefore the treatment arm is the 

optimal strategy. In the fFN case study the NBs for both interventions are low 

and sometimes negative, which is due to the nature of the fFN case study, i.e. 
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in comparison to the control the treatment arm leads to cost savings in terms 

of hospitalisations avoided, but at the expense of a marginal reduction in 

effectiveness (some additional pre-term morbidity).   

Figure 6-2 illustrates the cost-effectiveness acceptability curve, showing the 

probability of the Treatment and Control interventions being cost-effective at 

different willingness to pay values for avoiding morbidity.    
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Figure 6-2: The CEAC for fFN 

 

At a willingness to pay value (λ) to avoid a case of morbidity of £30,000, the 

probability that the Treatment intervention is cost-effective is 98% and there is 

only a 2% probability that the Control is cost-effective.  Even if the ceiling 

ratio per pre-term morbidity is raised to £50,000, there remains a 92% 

probability that the Treatment will be cost-effective compared to the control.  

As the ceiling ratio increases, the probability of Treatment being the most 

cost-effective intervention falls, however, at a value of £100,000 per pre-term 

morbidity, the curves flattens out and there is still an 80% probability that 
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Treatment is the cost-effective choice, with only a 20% probability that the 

Control is cost-effective. 

The CE plane in Figure 6-1 illustrated considerable uncertainty as to whether 

there was a difference in effectiveness, which is what we would expect in this 

non-inferiority type case.  However, when the willingness to pay threshold of 

£25,700 per morbidity avoid (λ) was added to Figure 6-1, it could be seen that 

the majority of points fall to the right of this threshold, indicating that they 

would be considered cost-effective.  Following this, the CEAC in Figure 6-2 

illustrates that there is little decision uncertainty, i.e. we can be confident 

that the Treatment is cost-effective in comparison to the Control over a wide 

range of ceiling ratios.  At the ceiling ratio of £25,700 per morbidity, the CEAC 

illustrates a 98.8% probability that the Treatment is cost-effective.  Utilising 

the probabilistic model results further, an expected value of perfect 

information analysis could be undertaken to explore whether it is worthwhile 

undertaking further research or make the decision to adopt or reject the 

Treatment intervention based on the current information.   

The EVPI was calculated (as described in Chapter 2) and at a ceiling ratio of 

£25,700 per morbidity the expected value of perfect information is £2.10 per 

decision/patient.  At a ceiling ratio of £30,000 the EVPI per patient is £3.13.  

Even if society were willing to pay a maximum of £50,000 per neonatal 

morbidity avoided, the EVPI per patient would only be £15.  These EVPI values 

are very low, and reflect the low level of uncertainty in the cost-effectiveness 

decision that was illustrated in the CEAC.  Figure 6-2 illustrated that at a 

ceiling ratio of £25,700 there is a 98.8% probability that Treatment is cost-

effective.  Given this very low uncertainty surrounding the cost-effectiveness 

of the optimal intervention (Treatment), the expected value of further 

information to aid the decision is low.   

The EVPI can be scaled up to the population of patients, multiplying the EVPI 

per person by the population over the technology life time, and can then be 

interpreted as the maximum amount the health care system should be willing 

to pay for additional evidence to inform this decision in the future, i.e. an 

upper bound on the value of conducting further research (4;86).  The 
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population EVPI for fFN was calculated, based on an annual population of 

120,000 suspected pre-term labour cases (181).  A four year technology 

lifetime was assumed on the basis that this is the appropriate time period 

(until it is replaced by another more accurate test).  Discounted at 3.5% (24) 

this gives an effective population who could potentially benefit from further 

information regarding the fFN test of 456,196 women suspected of pre-term 

labour. The EVPI for the population is depicted in Figure 6-3.   
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Figure 6-3: EVPI for fFN – population level 
 

Figure 6-3 indicates that at a willingness to pay of £30,000 per morbidity 

avoided the EVPI for the population is approximately £1.4 million; therefore, 

research which costs less than this value is potentially worthwhile.  However, 

when this ceiling ratio is lowered, i.e. at a monetary threshold of £10,000 per 

morbidity avoided, the EVPI is only £70,000.  At this lower EVPI value the cost 

of further research (such as an RCT) is likely to exceed the EVPI and therefore 

would not be worthwhile.  Implementing the pre-specified ceiling ratio of 

£25,700 as derived in Chapter 5, the EVPI is approximately £957,000.  If further 

research costs more than £957,000 then it is not worthwhile and current 

evidence can be regarded as sufficient to support the decision to accept fFN 
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technology. However, if research costs less than £957,000 then it may 

potentially be worthwhile undertaking that research in order to reduce 

uncertainty in the decision to adopt or reject the fFN test.  

If the maximum that society is willing to pay for avoiding a pre-term morbidity 

is £25,700, then the EVPI of £957,000 can be interpreted as the maximum 

amount the health care system should be willing to pay for additional evidence 

to inform the decision regarding the fFN test.  The fFN trial proposal estimated 

the cost of the proposed research to be approximately £1.65million, which is 

substantially greater than the maximum willingness to pay for the proposed 

research. Even at a greater ceiling ratio of £30,000 per morbidity avoided the 

population EVPI was £1.4 million, which is still lower than the research cost of 

£1.65 million.  Therefore it would be concluded that further research will cost 

more than the maximum amount the health care system is willing to pay for 

additional evidence, and therefore the fFN test should be adopted based on 

current evidence with no further research.   

This conclusion contradicts the funding body call for an RCT in fFN. Under an 

iterative approach the research priorities indicate that further research is 

unlikely to be worthwhile and therefore the research process would end, 

without undertaking any further value of information analyses.  An EVSI would 

only be undertaken if the EVPI had exceeded the fixed costs of research, i.e. if 

further research was potentially worthwhile.  However, for the sake of this 

thesis; it is of interest to demonstrate the EVSI process that could have been 

followed had a trial been deemed potentially worthwhile and again compare 

the resultant sample size with those determined through conventional methods 

for the trial proposal, as detailed in Chapter 5.   
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6.1.2 EVSI for the fFN case study 

In order to calculate the EVSI for the fFN case study, the steps and algorithms 

outlined in Ades, et al. (83) were followed.  The fFN pre-trial model was a 

simple linear model with four key parameters of interest, as described earlier 

in this chapter.  Therefore the EVSI algorithms for a linear model were used, 

i.e. utilising the posterior estimates directly to calculate net benefits, rather 

than re-running the probabilistic Monte Carlo simulation to sample from the 

posterior distribution as would be required in a non-linear model.  The EVSI 

process is based around specific parameters of interest, which are the 

uncertain parameters (θi) that require further information from the proposed 

piece of research. The calculation undertaken is now outlined as follows:    

1. A probabilistic sensitivity analysis (PSA) was undertaken on the model: 

Monte Carlo simulation generated 10,000 prior estimates (p1 to p10,000) for 

the four uncertain parameters of interest.  

2. A sample size (N) was assumed for a new piece of research.  

3. Data collection was simulated for the new sample size (N) from the 

binomial likelihood using the prior estimate for the parameter(s) of interest 

from the first iteration of the PSA in step 1 (p1).  

• Draw 1 sample result (x) from the binomial likelihood: ( )p,n~β  

where n is the new sample size and p is the prior probability 

estimate from the Monte Carlo simulation.  

• This draw represents the number of events (x) which can then be 

used to calculate a posterior probability. 

4. The prior estimate and the simulated number of events (x) are then used to 

calculate the Beta posterior distribution ( )xN,x −+β+αβ for the 

parameter(s) of interest.  The posterior estimate (Ppost) for the 

parameter(s) of interest can then be derived, as detailed in Equation 6.1.  
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( )
N

x
ppost +β+α

+α=          (6.1) 

5. The next step is to put the posterior probabilities (Ppost) for the 

parameter(s) of interest back into the model (replacing the prior estimates) 

in order to recalculate net benefit for treatment and control (NBT NBC) 

using the posterior probabilities for the parameters of interest and the prior 

probabilities of the other parameters in the model. The NBs for each 

intervention were stored.   

6. Steps 3 to 5 were repeated for each prior estimate from the PSA in step 1.  

I.e. in turn using p2, p3….p10,000  in step 3 to simulate new data (x2, 

x3…x10,000) and calculate the Beta posterior and net benefit for treatment 

and control each time (NBT2 NBC2, NBT3 NBc3….NBT10,000 NBC10,000). 

7. The Expected Net Benefit for Treatment and Control was calculated across 

the 10,000 posterior net benefits, as illustrated in Table 6-3 to establish the 

which intervention is the optimal choice[ ])ENB:ENBmax( CT given current 

information. 

Table 6-3: Net Benefits from posterior calculation 

 
Net Benefit Treatment 

 
Net Benefit Control 

 
Maximum Net Benefit 

NBT1 NBC1 max(NBT1:NBC1) 
 

NBT2 NBC2 max(NBT2:NBC2) 
   

NBT3 NBC3 max(NBT3:NBC3) 
…… ……. …… 

NBT10,000 NBC10,000 max(NBT10,000:NBC10,000) 
 

ENBT ENBC E max(NB) 
 

8. For each of the individual iterations the intervention which had the 

maximum net benefit was chosen and stored, essentially making the 

optimal decision based on sample information for each of the iterations.  

However, we still do not know the actual results of the sample in advance, 

and therefore the expected value of a decision taken with sample 
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information is found by averaging the maximum net benefits over the 

distribution of possible values (4).  The average (or expectation) of the 

maximum NBs is calculated [E max(NB)], as illustrated in Table 6-3. 

9. The intervention which has the greatest ENB across the 10,000 PSA 

outcomes is the intervention of choice under current information.  The 

average of the 10,000 maximum net benefits is the expected value of a 

decision made with sample information. Subtract the ENB of the 

intervention of choice from the maximum ENB; this is the expected value of 

sample information, as illustrated in Equation 6.1: 

[ ] [ ]( )[ ] [ ]CTiCiT ENB:ENBmaxNB,NBmaxE=EVSI -        (6.1), 

or 

( )( )[ ] ( )[ ]θθ θθθ ,tNBEmax,tNBEmaxEEVSI t −=      (6.2). 

In order to undertake the EVSI calculations in a timely manner, the fFN model 

was re-programmed into the programming language FORTRAN and the EVSI 

calculation was undertaken for sample sizes n = 1, 10, 20, 50, 100, 150, 250, 

500, 750, 1000, 2000, 3000; then it was re-run for all possible sizes between 1 

and 50,000 to explore where the maximum EVSI was reached.   

 

6.1.3 EVSI Results 

Table 6-4 presents the EVSI results for a range of sample sizes.  All values are 

calculated for a willingness to pay value (λ) of £25,700 as specified in Chapter 

5.   Table 6-4 also presents the probability that further research of size n 

would change the current decision regarding the cost-effective intervention 

(Treatment).  This is calculated using a similar process to that of the cost-

effectiveness acceptability curve, detailed in chapter 2.  For the set ceiling 

ratio and sample size n, the probability that each intervention will be cost-

effective under perfect sample information is calculated and the optimal 
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strategy given perfect information is chosen. Given that Treatment was the 

optimal strategy under current information, the probability of a change in 

decision is equivalent to the probability that Control is the optimal strategy 

given perfect information, i.e. 1 minus the probability that Treatment is cost-

effective under perfect sample information.   

Table 6-4: EVSI calculations for a range of sample sizes 

Sample size (n)  
EVSI 

per person 
EVSI 
population 

Probability of change in 
decision 

0 £0.00 £0 0.0000 
20 £0.00 £0 0.0000 
80 £0.00 £904 0.0001 
100 £0.00 £2,131 0.0001 
150 £0.01 £6,334 0.0003 
200 £0.02 £10,935 0.0005 
250 £0.04 £17,333 0.0007 
500 £0.12 £53,973 0.0020 
750 £0.22 £98,226 0.0031 
1000 £0.30 £136,234 0.0041 
1500 £0.44 £200,966 0.0058 
2000 £0.55 £249,086 0.0069 
3000 £0.70 £319,945 0.0083 
5000 £0.88 £399,780 0.0099 
10000 £1.04 £474,983 0.0114 
20000 £1.13 £516,572 0.0121 
30000 £1.17 £532,408 0.0124 
40000 £1.18 £540,431 0.0125 
50000 £1.20 £545,446 0.0126 
 

As the proposed sample size increases from 0 to 50,000 the value of sample 

information increases from 0 to £1.20 per person.  The EVSI results from this 

case study are extremely low, showing that a sample size of 500 is only valued 

at 12 pence per person, and even with a sample of 2000 participants in the 

treatment arm, the value is only 55 pence per person.  As with EVPI, the per 

person/decision level of EVSI can be scaled up by the estimated population 

(here judged to be 456,169 women over a four year period) in order to 

determine the population level EVSI.  At a sample size of 3000 the EVSI per 

person is only 70 pence; however this translates into a population level value 

of nearly £320,000.  
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The EVSI is clearly related to the probability that the proposed study will 

change the decision from that under current information; identified in Table 6-

3 as iterations where: max(NBT:NBC) ≠ max(ENBT:ENBC). In Table 6-4 the very 

low probabilities for a change in decision explain the extremely low EVSI 

results.  The probability that a study with 50,000 participants will change the 

decision on cost-effectiveness (from the treatment strategy being optimal) is 

only 0.013 and therefore, the value of such a study is also very low, £1.20 per 

person.  Figure 6-4 plots how the EVSI changes as the sample size increases 

from 0 to 50,000 in the treatment arm at a monetary threshold of £25,700.    

The EVSI is very low at all sample sizes, with the curve continuing to rise 

(albeit very slowly) beyond a sample size of 40,000 and 50,000.  
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Figure 6-4: EVSI with varying sample size – per patient/decision 

 

The shape of the curve is as would be expected, with the EVPI increasing with 

sample size but with diminishing returns (85;199), however, as sample size 

tends towards infinity the EVSI should tend towards the value of EVPI (200) and 

level off.  The EVPI per person at the monetary threshold of £25,700 (λ) is 

£2.09, and as can be seen from Figure 6-4, at a sample size of 50,000 the EVSI 

per person is only £1.20.  The value of sample information is still increasing 

beyond a sample size of 50,000, but at a diminishing rate, and therefore a 

sample much greater than 50,000 would be required to reach the EVPI value of 

£2.09.  The EVSI calculation for this example was not re-run for sample sizes 
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beyond 50,000 in order to limit the computational time, however, it can be 

concluded that a sample size beyond 50,000 in each arm of an RCT is 

unrealistic in terms of patient recruitment.   

Figure 6.5 presents the population level EVSI (assuming an annual incidence of 

threatened pre-term labour of 120,000 with a technology lifetime of 4 years 

discounted at 3.5%).  
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Figure 6-5: EVSI with varying sample size – population level 

 

With an effective population of 456,196 women, the population level EVSI is 

£136,000 for a sample size of 1000 per arm, while a sample size of 2000 per 

arm gives a value of £249,000 at the population level.   The EVSI at the 

population level is the same shape as that for the EVSI per decision/patient, 

and again the value of sample information is still increasing beyond a sample 

size of 50,000, but at an ever diminishing rate. 

The difference between the EVSI and the cost of acquiring the sample 

information is the expected net benefit of sample information (ENBS) (9;86); 

with the optimal sample being the value of N that generates the maximum 

expected net benefit of sampling.   The cost of the fFN trial as detailed in 

Chapter 5 was budgeted at £1.65million and therefore in order to generate an 
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expected net benefit with sample information, the EVSI would need to be 

greater than this value.  

In order to plot the cost of the research and the resultant ENBS for the fFN 

trial, the costs from the commissioned research proposal were consulted.  

There was no maximum budget set by the funders, and therefore the cost of 

the research was established based on the research professionals’ time and 

estimates of the resources involved in the trial.  The total cost of the proposed 

three year RCT aiming to recruit 2312 participants (1156 per arm as calculated 

in Chapter 5) was £1.65 million.    The variable costs incurred in a trial would 

incorporate the cost of the test (which at £50 a test would only be used in the 

participants randomised to the intervention arm, and would therefore cost £25 

per participant), plus an additional £5 per person to cover administration. 

Therefore the variable costs can be assumed to be approximately £30 per 

additional participant recruited.  The fixed costs of the trial can be assumed to 

be approximately £1,600,000 with a sample size of zero (to cover project set-

up, research staff time, travel etc).  Figure 6-6 plots the EVSI at the population 

level, along with the cost of the research and the resultant ENBS. The figure 

illustrates that the cost of the research exceeds the value, at all potential 

sample sizes.  
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Figure 6-6: EVSI, Cost & ENBS for fFN trial 

 

Figure 6-6 does not display the typical illustration of ENBS and cost in relation 

to the EVSI.  The cost of the research is greater than the EVSI at a sample size 

of zero (as is typically the case), however the EVSI rises with sample size but in 

this case the EVSI never reaches the cost of the trial and therefore the 

expected net benefit of sampling (which is the EVSI minus the cost) remains 

negative regardless of the sample size.  The sample size where ENBS is at its 

highest is a sample of 5000 participants per arm, at an ENBS of -£1.35 million.  

As this value is negative, clearly the optimal option would be not to undertake 

a trial of this magnitude (i.e. a sample size of zero).  

Out with the demonstration of EVSI for this thesis chapter, an EVSI would not 

have been undertaken in the fFN case study as it was found not to be 

worthwhile at the EVPI stage (EVPI < fixed cost of research).  To illustrate how 

the EVSI and ENBS curves would typically look, let us assume that the cost of 

research was lower than the EVPI value of £957,000 (i.e. much less than that 

for the fFN case study).  Had a six months observational study of fFN been 

commissioned (rather than a three year RCT) the cost of research may have 
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had a fixed cost of £100,000, with an additional variable cost of £10 per 

participant recruited.  If this were the case, the trial could potentially have 

been worthwhile, and the ENBS may have taken a more typical form, as 

illustrated in Figure 6-7. 
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Figure 6-7: Alternative EVSI, Cost & ENBS for an observational study   

 

Figure 6-7 illustrates the hypothetical case where the fixed cost of the 

proposed research was £100,000 with a small variable cost of £10 per 

additional person recruited to the sample.  At the outset, where the sample 

size is zero, there is no value in the research and the ENBS is negative due to 

the fixed £100,000 cost of the trial.  As the sample size increases so does the 

EVSI, and at a sample size greater than approximately 900 participants the EVSI 

exceeds the cost of the research, and at this point the ENBS is no longer 

negative.  Figure 6-7 demonstrates that in this hypothetical case the ENBS 

reaches the maximum at a sample size of 9000 participants per arm, and 

therefore, this would be considered to be the optimal sample size for the 

study.  
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The purpose of this chapter was to explore whether the same or an alternative 

conclusion would have been drawn had the iterative Bayesian approach to 

health technology assessment been adopted in the design of the fFN trial, 

rather than the sample size being determined pragmatically through traditional 

methods to inform the design of the trial as it was being prepared.  Under the 

iterative approach outlined in this chapter, the EVSI outcomes indicate that a 

sample size of greater than 50,000 participants in the treatment arm will be 

required to be worth any value, as lower sample sizes are unlikely to change 

the cost-effectiveness decision based on current information.  A sample size of 

5,000 participants in each arm will generate the greatest expected net benefit 

of sampling (-£1.35 million), however, as this is a negative value clearly the 

optimal option would be not to undertake a trial (sample size of zero).  The 

sample conclusions that were determined previously, under the traditional 

approach described in Chapter 5, suggested a sample size of approximately 

1000 participants in each arm.  Table 6-5 details the alternative sample sizes 

for the fFN trial, derived from the various approaches, and shows that the EVSI 

approach highlights that any kind of trial is unlikely to be worthwhile in terms 

of altering the cost-effectiveness decision. 

Table 6-5: Sample sizes under different approaches 

Power Sample per arm  Total  sample size 

      
NMB approach 925 1850 

NI approach 1156 2312 

EVSI approach Zero/no trial Zero/no trial 
      
 

A study with a total sample of approximately 2000, as prescribed by the NI and 

NMB calculations in Chapter 5, is likely to be a waste of resources in terms of 

the opportunity cost for research spending.  The EVSI results in Table 6-4 

showed that at a sample size of 1000 per arm the EVSI is only 30 pence 

(£136,000 at the population level) and the probability of the study changing 

the decision from that under current information is 0.004, i.e. it is extremely 

unlikely that the study would change the decision, which under current 

information was to adopt the fFN test.  At a cost of £1.65 million the proposed 
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trial costs more than the expected value of sample information, £136,000, and 

therefore, undertaking a trial at this scale is not providing additional value in 

term of reducing uncertainty about cost-effectiveness.  The EVPI analysis in 

section 6.1.1 demonstrated that at a monetary threshold of £25,700 per 

morbidity avoided, the EVPI of £957,000 can be interpreted as the maximum 

amount the health care system should be willing to pay for additional research 

and therefore the fFN test should be adopted based on current evidence with 

no further research. This presents resource allocation issues when the 

opportunity cost of a study costing in the range of £1.6million is considered.   

The EVSI calculation highlights that a much larger study would be required to 

generate any value, however, considering the additional cost of a larger trial, 

it becomes clear that for this case study any kind of trial is unlikely to be 

worthwhile in terms of altering the cost-effectiveness decision. 

Based on these results, under an iterative framework the likely conclusions 

would have been that rather than undertaking a clinical trial the fFN test 

should be adopted in practice, freeing up research resources for more valuable 

research.  The fFN test could be filtered into practice on a small scale, and 

then the economic model updated at a later stage with routine data to further 

support the reimbursement of fFN by the NHS.  Given this suggestion, it is of 

interest to consider whether any funding body would change policy or practice 

without evidence from an RCT.  In the case of drugs, this is unlikely; however, 

in the context of health services and public health interventions, many NHS 

boards introduce new services without formal assessment of effectiveness in a 

trial/study setting.  In the case of fFN, this diagnostic test had begun to be 

implemented in some hospitals in the UK as the trial application was being put 

together.  As a result of this, the fFN trial was not funded.  Implicitly, the 

funding body for the fFN trial came to the same conclusion as this VOI analysis 

(which was undertaken post-application for demonstration purposes in the 

context of this thesis).  Ultimately the review committee queried the value of 

undertaking the trial because fFN had already begun to be implemented in 

some UK hospitals, given existing evidence from USA.  Implicitly the review 

committee judged the proposed trial to be not worthwhile, given current 

practice which was beginning to implementing it anyway.   
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6.2 Practicalities with employing the EVSI approach  

Having demonstrated the use and potential value in undertaking early 

modelling and incorporating an EVSI analysis to inform trial design, it is 

important to discuss some of the potential reasons that this approach may have 

been less well adopted in practice, despite strong support from some quarters 

of the health economics community (9;85;199).   

6.2.1 Interpretation of the EVSI process 

The EVSI process has been described by numerous authors (4;83;199) however, 

many health economists are still unfamiliar with the exact process, if not the 

methodology.  Unfamiliarity with the process may present problems with 

interpretation, particularly for researchers undertaking an EVSI analyses for 

the first time.  The outline and various algorithms presented by Ades et al. (83) 

are comprehensive, yet the EVSI calculation is complex, involving a choice 

between different algorithms and complexities depending on the situation and 

type of model employed.  In undertaking the EVSI calculation for this chapter, 

some interpretation issues were experienced with regards to the simulation of 

binomial data, and also with regards to the appropriate approach to adopt with 

a linear model design, which is different if the model design is non-linear.   

Simulating sample data  

In the various publications outlining the EVSI process, the terminology used to 

describe simulating the data under perfect sample information is open to 

misinterpretation.  Following the guidelines “simulate a dataset of a specified 

sample size and design” (199) or “draw a sample from the distribution of the 

sufficient statistics arising from a new study of size N” (83), it is unclear 

whether the sample drawn should be one single draw or numerous draws to 

generate a full sample, i.e. 1, 1000 or 10,000 draws for each prior estimate.  

After consultation with health economists who have previous experience of 

employing the EVSI technique (111), it was clarified that only one single draw 

is required, regardless of the type of model employed.  
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Therefore, in step 3 of the EVSI calculation, detailed in section 6.1.2, only one 

sample (x) is simulated from the beta binomial distribution, and this single 

draw can be assumed to reflect the distribution. The terminology used in the 

EVSI guidelines with regards to this does not make it clear that only one sample 

(x) is required to be drawn.  Misinterpretation of this step could lead to 

simulating an additional 9,999 binomial estimates for each prior estimate 

unnecessarily. It makes intuitive sense to draw from the beta binomial 

distribution numerous times for each prior estimate to reflect the true events 

across the whole distribution.  However, this is unnecessary in the EVSI 

calculation as the process (step3 to step 6) is repeated 10,000 times, drawing 

one sample (x) for each of the prior iterations from the Monte Carlo simulation 

and this is considered to be sufficient to represent the beta binomial 

distribution.  For each iteration of the outer loop of the EVSI calculation the 

single binomial draw each time is different (because it is an independent 

binomial draw) and therefore an additional inner loop of numerous binomial 

draws within each iteration is unnecessary.   

In order to check this premise, the EVSI calculation was re-run with a 

modification to step 3 in the process to draw 10,000 estimates from the beta 

binomial likelihood for each of the 10,000 prior estimates (rather than just 

once for each prior) and the outcomes were compared.   Table 6-6 details the 

results of this comparison, and shows that both approaches have very similar 

outcomes.   
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Table 6-6: EVSI results for 1 and 10,000 binomial draws  

Sample 
size (n) 

EVSI: 1 
binomial draw 

Probability of 
change decision 

EVSI: 10,000 
binomial draws 

Probability of 
change decision 

20 £0.00 0.0000 £0.00 0.0000 

50 £0.00 0.0000 £0.00 0.0000 

80 £0.00 0.0001 £0.00 0.0000 

100 £0.01 0.0002 £0.00 0.0001 

150 £0.01 0.0002 £0.01 0.0002 

250 £0.03 0.0006 £0.03 0.0006 
500 £0.11 0.0021 £0.11 0.0018 

1000 £0.31 0.0033 £0.28 0.0040 

5000 £0.83 0.0095 £0.78 0.0090 

10000 £0.99 0.0108 £0.92 0.0101 

20000 £0.93 0.0100 £1.00 0.0107 

30000 £1.03 0.0111 £1.02 0.0109 

40000 £1.00 0.0104 £1.04 0.0110 

50000 £1.06 0.0108 £1.04 0.0110 
          
 

As the sample becomes greater than 1000 the additional draw generates a 

slightly lower EVSI, but only marginally.  Therefore, it is appropriate and more 

efficient to just draw once from the binomial distribution for each of the prior 

estimates, substantially reducing computational running time. It is however, 

interesting to note that the 9,999 additional draws from the binomial 

generates a smoother EVSI curve than the single draw.   This is demonstrated 

in Figure 6-8. 
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Figure 6-8: EVSI curves under one and 10,000 binomial draws 

 

Figure 6-8 plots the EVSI results for each sample size using the two different 

approaches.  The 9,999 additional binomial draws generated a smoother curve, 

which is unsurprising given the increase in iterations.  If the initial number of 

iterations from the prior was increased from 10,000 to 100,000 the ‘noise’ 

shown in the one binomial draw curve would be ironed out, because as the 

number of iterations tends towards infinity, the true distribution is 

represented.      

Misinterpretation of this step could lead to simulating 10,000 draws 

unnecessarily, generating an additional (unnecessary) 9,999 binomial estimates 

for each prior estimate, and requiring a second loop in the EVSI calculation 

which substantially slows the EVSI computational time, i.e. running through the 

calculation 100,000,000 times rather than just 10,000 times.   
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Alternative approaches for linear and non-linear models  

Another area open to confusion and misinterpretation in the EVSI process is the 

alternative approaches and algorithms required depending on whether the 

model is linear or non-linear.  Following the steps and algorithms outlined by 

Ades et al. (83) the researcher must decide whether the model is linear or non-

linear for the parameters of interest (θi) and for the complementary 

parameters (θc) and then choose from four possible algorithms to calculate the 

posterior expected net benefits for each intervention.  Linearity is determined 

by whether the relationship between the parameters is directly proportional or 

not, i.e. in a linear model a change in one of the parameters would lead to a 

directly proportional change in the other parameters and the model outcomes, 

whereas in non-linear models outcomes are a multiplicative function of the 

input parameters (4;72).  In step 5 of the EVSI calculation, detailed in section 

6.1.2, the posterior probabilities for the parameters of interest (θip) must be 

put back into the model (replacing the prior estimates for the parameters of 

interest) in order to calculate the net benefit (NB) for each intervention (t), 

NB(t,θip).  A linear model requires only the posterior probability for the 

parameter(s) of interest to calculate the net benefits.  A non-linear model 

requires the use of the posterior distribution to re-run the Monte Carlo 

simulation, making the process considerably more time consuming for non-

linear models.  

Researchers undertaking an EVSI analysis for the first time may become 

confused as to which of the algorithms presented in the guidelines (83;85) is 

most appropriate for their model, and also in interpreting the algorithms.  

Table 6-7 sets out the four alternative procedures which can be used to 

calculate the posterior net benefits, depending on the type of model involved.  
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Table 6-7: Alternative methods for calculating posterior net benefits in EVSI 

 Model specifications Process to calculate the poste rior net benefits 

1 Linear  parameters of interest 
(θi) & linear  complementary 
parameters (θc) 

Use posterior mean for θi and the prior mean for 
θc.  Plug them into model and calculate NB for 
each intervention.  No need to re-run the PSA. 

2 Linear  parameters of interest 
(θi) & non-linear  
complementary parameters (θc) 
 

Use posterior mean for θi and the prior distribution 
for θc.  Re-run the PSA drawing from the prior 
distribution for complimentary parameters but 
using the set posterior mean for parameters of 
interest. Calculate the ENB for each intervention. 

3 Non-linear  parameters of 
interest (θi)& linear  
complementary parameters (θc) 

Use posterior distribution for θi and the prior mean 
for θc.  Re-run the PSA drawing from the posterior 
distribution for the parameters of interest but using 
the set prior mean for the complimentary 
parameters. Calculate the ENB for each 
intervention. 

4 Non-linear  parameters of 
interest (θi) & non-linear  
complementary parameters (θc) 

Use posterior distribution for θi and the prior 
distribution for θc.  Re-run the PSA drawing from 
the prior distribution for complimentary parameters 
and the posterior distribution for the parameters of 
interest. Calculate the ENB for each intervention. 

Developed based on information in Ades et al. 2004 (83) & personal communication with 
experts (111) 

If either the complementary or parameters of interest in the model are non-

linear, then the EVSI process involves an inner loop to re-run the PSA (nested 

Monte Carlo integration(83)) with 10,000 iterations, for each of the prior 

estimates from the outer loop of the calculation.   The process is therefore 

more complex from step 5 onwards than the linear process followed in section 

6.1.2.  The non-linear process is as follows: 

1. Undertake a probabilistic sensitivity analysis (PSA) on the model: Monte 

Carlo simulation to generate 10,000 prior estimates (p1 to p10,000) for the 

uncertain parameters of interest.  

2. Assume a sample size (N) for a new piece of research.  

3. Simulate data collection for the new sample (N), from the binomial 

likelihood using the prior estimate for the parameter(s) of interest from the 

first iteration of the PSA in step 1 (p1).  



Chapter 6   295 

• Draw 1 sample result (x) from the binomial likelihood 

4. Calculate the Beta posterior distribution β(α + x, β + N-x) for the 

parameter(s) of interest and derive the posterior estimate for the 

parameter of interest. 

5. Put the posterior distribution for the parameters of interest back into the 

model (along with the complimentary parameters and their prior 

distributions which have not changed).  Re-run the PSA using Monte Carlo 

simulation with 10,000 iterations, drawing from the posterior distributions 

for the parameters of interest and the prior distributions for the 

complimentary parameters.  This is the inner loop. 

6. Calculate the net benefit for treatment (NBT) and control (NBC) for each 

iteration of this inner loop and calculate the expected net benefit E(NB) 

across all 10,000 for each intervention. 

7. Store the ENB for each intervention and then choose the maximum of the 

expected net benefits max(ENBT:ENBC) and store this too. 

8. Repeat steps 3 to 7 for each prior estimate from the PSA in step 1.  I.e. use 

p2, p3….p10,000  in step 3 to simulate a single draw from the binomial for 

each (x2……x10,000) and calculate the posterior distribution for each, then re-

run the 10,000 iteration PSA Monte Carlo simulation each time.  Calculating 

the expected net benefit for treatment and control, storing the maximum 

each time as detailed in Table 6-8. 

9. Average across the maximum expected net benefits, as illustrated in Table 

6-8, this is the expected value of a decision based on sample information. 

The intervention which has the greatest ENB across the 10,000 PSA 

outcomes is the intervention of choice under current information.  Subtract 

the ENB of the intervention of choice from the maximum ENB, this is the 

expected value of sample information. 
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Table 6-8: Calculating ENB for EVSI in a non-linear model  

Net Benefit Treatment Net Benefit Control Maximum E NB 

ENBT p1 ENBCp1 max(ENBT : ENBC)  p1 

ENBTp2 ENBCp2 max(ENBT : ENBC)  p2 

ENBTp3 ENBCp3 max(ENBT : ENBC)  p3 

…… ……. …… 

ENBTp10,000 ENBCp10,000 max(ENBT : ENBC)  p10,000 

E(ENBT) E(ENBC) E(max(ENB T : ENBC) 

 

Interpreting the Value of Current Information 

A further potential area for confusion in undertaking an EVSI calculation is 

misinterpretation of what exactly the ‘value under current information’ is.    A 

researcher new to the EVSI process may interpret the ‘value under current 

information’ literally, and therefore misinterpret it as the value of ENB from 

the intervention of choice from the prior Monte Carlo simulation.  However, as 

with EVPPI and following the EVSI algorithm detailed in Equation 6.1, the 

‘value of current information’ is actually generated within the EVSI simulation.  

Given existing evidence the optimal decision is the intervention that generates 

the maximum expected net-benefit, so from the EVSI simulation we choose the 

intervention with the maximum net benefits over all the iterations because 

each iteration represents a possible future realisation of the existing 

uncertainty in the parameter(s) of interest (4).  Therefore the intervention 

with the greatest ENB across all 10,000 iterations in the EVSI simulation is the 

best we can do without sample information, aka ‘the value of current 

information’; while the Expected Maximum NB is the best we can do with 

sample information as it is the average of the ‘best choice’ chosen for each 

iteration. 

Current EVSI methodology papers provide the relevant EVSI algorithm (Equation 

6.1) and simply refer to it as the ‘value of current information’, however they 
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could be more explicit, explaining the reasoning behind its generation from 

within the EVSI simulation to avoid misinterpretation and confusion amongst 

first time or unfamiliar EVSI users.      

6.2.2 Computation 

As demonstrated throughout this chapter, undertaking an EVSI calculation can 

vary in complexity depending on the form of model used and the relationship 

between the model parameters.  The EVSI process requires intensive 

computation (83;86) and dependent on the complexity of the model can be 

even more burdensome.  The ability to undertake an EVSI analysis depends on 

the processing power of the computer and the programming language used to 

undertake the calculation.  Brennan and colleagues (85;199) discuss 

computational and mathematical issues surrounding EVSI calculations and 

explore alternative methods to try and reduce computational time, for 

example, using an approach called Laplace approximations (199;199). 

Health economists may be familiar with a variety of computer packages, such 

as TreeAge (201), R (202) and STATA (203), but for many researchers the basic 

Microsoft Office package Excel TM will suffice for developing a probabilistic 

model and using macros to run Monte Carlo simulations.  However, Excel TM is 

not sufficiently powerful to undertake EVSI calculations, even with a simple 

linear model such as that developed for the fFN case study.  The fFN EVSI 

calculation used a simple linear model with four parameters of interest, 

therefore requiring 10,000 iterations of the model simultaneously for each of 

the four parameters.  The calculation was initially attempted using Excel TM, 

but it was extremely cumbersome and the running time was approximately 66 

hours to complete the full 10,000 iterations (for the linear model with four 

parameters of interest) for just one sample size. The calculation then had to 

be repeated for a range of sample sizes.  Additionally, if a non-linear model 

had been used, 10 thousand iterations times 10 thousand would have been 

required, making a non-linear EVSI calculation impractical in Excel TM.  

Therefore, the model was reprogrammed using the programming language 

FORTRAN for the EVSI calculations. However, even in more sophisticated 
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languages, such as FORTRAN, it is still not an instant process and can be time 

consuming unless the code is manipulated to run efficiently.    

For the EVSI calculation 10,000 iterations from the prior distribution was 

deemed to be a sufficient number of iterations to be representative (85;111), 

however, after the initial calculation was undertaken, variation in the EVSI 

results was explored using alternative numbers of iterations from the prior. 

Figure 6-9 details variation in the EVSI curve under alternative numbers of 

draws from the prior distribution. 
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Figure 6-9: EVSI curves under alternative number of prior draws 

 

As can be seen drawing 1000 iterations is not nearly enough to generate a 

smooth curve, and as recommended (85) 10,000 simulations are more likely to 

give representative outcomes.  However, as can be seen, the 10,000 iteration 

draw is still subject to some ‘noise’ for this case study.  As the number of 

iterations increases, the EVSI curves converge towards the ‘true’ solution.  This 

figure shows that 100,000 to 1 million iterations are required in the fFN EVSI 

calculation to generate a realistic ‘smooth’ EVSI curve.  Therefore, the EVSI 



Chapter 6   299 

calculation for this case study was re-run using 1 million iterations of the 

calculation as opposed to 10,000.  The EVSI results reported in section 6.1.3 

are these more thorough results8.   

Running the EVSI calculation with an ever increasing number of iterations from 

the prior substantially increases computational running time, and therefore 

necessitates efficient code manipulation to reduce the time.  Table 6-9 details 

the duration of the EVSI calculations in FORTRAN for the variety of prior 

iterations presented in Figure 6-9; for each iteration running the EVSI 

simulation for 5000 different sample sizes (simulating from n=10 to n=50,000 in 

increments of 10).   

Table 6-9: Duration to run linear simulation with alternative number of priors 

N iterations Time (minutes) (seconds) 

1,000  1.551 

10,000  14.363 

100,000 3 0.825 

1,000,000 39 48.004 

      
 

Increasing the iterations from 100,000 to 1 million puts a substantial strain on 

the time duration, and this was only for the simple linear fFN model.  Had the 

fFN model been non-linear, the calculation would have required an additional 

inner loop of 1 million Monte Carlo iterations for the posterior PSA; i.e. 1 

million times 1 million iterations.   

Therefore, in order to undertake an EVSI calculation a modern computer with 

strong processing power is required, as well as access to and knowledge of 

programming languages that are sufficiently powerful to undertake the 

complex simulations required.  Extensive knowledge of how to manipulate 

specific programming languages is also beneficial for eliciting more efficient 

running times for complex, multi-loop simulations. Therefore, health 

                                         
8 Note that for consistency the binomial draws comparison in section 6.2.1 used 10,000 priors for 

both approaches. 
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economists or researchers considering utilising the EVSI methodology for the 

first time may not have the capacity, or programming know-how to undertake 

an EVSI calculation.  This is likely to be a considerable hindrance to the wide 

spread adoption of EVSI methodology.  

Eckermann, Karnon & Willan (81) contend that VOI needs to be useful in 

addressing real decisions yet simple enough to be applied by analysts and 

understood by decision makers in practice.  They suggest that calculating the 

EVSI over all possible ranges of sample size using the methods proposed by 

Ades et al. (83) is too complex and they advocate a simpler method based on 

assumptions using the central limit theorem (CLT).  They propose that EVSI can 

be considered equivalent to the current value of EVPI minus the expectation of 

EVPI with updated information from the trial, and that under the CLT the 

information from a new trial will reduce the EVPI; and as sample sizes 

increases, so does the amount that EVPI will be reduced by.  While this 

approach may be more straightforward than undertaking two-level Monte Carlo 

simulations under the approach proposed by Claxton and Ades (83), it does not 

consider what is driving the uncertainty regarding cost-effectiveness.  It is 

based upon the concept that a trial has already been designed based on a 

frequentist approach. As demonstrated in this Chapter, a trial commissioned by 

a funding body without early DAM may not be necessary in the first place, and 

will therefore have a specified sample size that does not add any value in 

terms of reducing uncertainty.  By using a decision analytic modelling 

approach, EVPPI can help inform on the type of research required. Brennan & 

Kharroubi (84;199) continue to explore ways to simplify the EVSI calculation, 

improve efficiency and reduce computational running time.  
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6.3 Conclusion 

This chapter has demonstrated the use of EVSI methodology and highlighted 

that it is a more efficient means of designing a trial through considering the 

value of additional information.  By calculating the expected net benefit of 

sampling the opportunity cost of research funding can be considered.  The EVPI 

analysis undertaken on the fFN case study at the beginning of this chapter 

showed that any additional research exceeding a cost of £957,000 would not be 

worthwhile and therefore, the EVSI approach (undertaken for illustrative 

purposes) called for an impractically high sample size in order to generate any 

value, and was therefore not worthwhile.  These findings are contrary to those 

in Chapter 5 where an external funding body commissioned a call for an RCT in 

fFN, signifying that they considered such research to be worthwhile, and in 

response to this call a trial was designed and powered on economic endpoints. 

The resultant sample determined by the conventional sample calculations in 

Chapter 5 was far too low to have an impact on reducing uncertainty about 

cost-effectiveness. It also demonstrated that the sample size prescribed by 

conventional methods in Chapter 5 (n=1156 per arm) would generate an 

expected population value of £136,000 and was therefore worth less than the 

cost of the study, budgeted at £1.65 million.  Based on these results, under an 

iterative framework the likely conclusions would have been: rather than 

undertaking a clinical trial the fFN test should be adopted in practice, freeing 

up research resources for more valuable research.  The fFN test could be 

filtered into practice on a small scale, and then the economic model updated 

at a later stage with routine data to further support the reimbursement of fFN 

by the NHS. Implicitly the peer review committee for the potential funders 

came to the same conclusion as the VOI undertaken for this thesis, that the fFN 

trial added little value, given current practice in some areas which was 

beginning to incorporate the fFN trial based on evidence from the USA, and 

therefore the fFN trial was not funded.  

Despite a strong case being presented in support of value of information 

techniques for designing trials, there remain some practical difficulties in 

employing the EVSI approach which may explain the reluctance amongst some 
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health economists, trial clinicians and statisticians to adopt this approach.  

There is a general perception in the medical decision making community that 

EVSI in particular is time-consuming, computationally expensive and has a 

reputation for being ‘too difficult’.  When these drawbacks are combined with 

the current research set-up, in which VOI in general is not supported (or 

required) by funding bodies in research applications, then it is unsurprising 

that many decision modellers and some health economists do not seem to think 

EVSI is a worthwhile exercise.  Another drawback appears to be lack of 

experience with EVSI (for both health economists and clinicians etc.) which 

may compound the negative perceptions with EVSI.  Despite these drawbacks, I 

maintain that VOI and EVSI is a worthwhile exercise, as demonstrated in this 

chapter.  Just because it is computationally heavy and time consuming, does 

not mean that it should not be attempted.  However, unless the current 

research funding set-up changes (i.e. unless a requirement for formal VOI to 

justify research applications is required), unfortunately many researchers are 

unlikely to adopt this ‘good practice’ in practice.  
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7 Summary & Conclusions 

7.1 Introduction 

The aim of this thesis was to examine the role of early decision analytic 

modelling for informing research priorities and the design of future studies in 

health care within the context of an iterative framework for economic 

evaluation.  The thesis explored the feasibility, merits and drawbacks of 

undertaking early decision analytic modelling in practice, and considered 

potential reasons as to why it is not more widely implemented. 

The iterative approach to economic appraisal is a framework that has been 

proposed as good practice (1) in which evaluations should begin with 

explorative modelling using indicative studies, and progress to more rigorous 

assessments, updating the model over time as more data becomes available.  

Therefore, decision analytic modelling is a key process within the iterative 

framework.  An ‘early’ DAM, undertaken prior to primary research, allows 

explorative evaluation of cost-effectiveness based on existing evidence and can 

be used to assess any uncertainty surrounding the cost-effectiveness decision.  

Developing a DAM and undertaking probabilistic analysis at an early stage also 

enables the use of value of information analyses which can be used to help 

inform research priorities, as recommended as part of the iterative framework 

(1).  If developed in advance of primary research, a decision model can enable 

full exploitation of VOI techniques and therefore help determine whether 

further research is potentially worthwhile, help explore the type of research 

required to address uncertainty in current evidence, and even help design a 

trial, for example with regards to an appropriate sample size.   Despite these 

advantages, in practice support and funding for early stage decision analytic 

modelling (and full exploitation of VOI techniques) is rare, and in the health 

care sector economic evaluations still tend to be funded as a one-off exercise 

alongside a trial to justify reimbursement decisions.   

This thesis explored the feasibility and benefits of decision analytic modelling 

in practice, using case study examples. Practical applications of building early 
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decision analytic models were used to demonstrate the importance of early 

DAM; in both an ‘ideal’ setting where early stage modelling was adequately 

funded and also in a less desirable, time-constrained setting where early DAM 

had not been funded but proved a valuable tool for informing trial design 

nonetheless.   This Chapter now provides an overview of the main points from 

the thesis followed by a section considering some practical limitations and 

finally, areas for future research.  

 

7.2 Overview 

7.2.1 Chapter 1 

Chapter 1 introduced the basic concepts and rationale for this thesis, as well as 

providing an overview of the structure of the thesis. Background was provided 

regarding economic evaluation in the health care sector and decision analytic 

modelling was introduced as a means to undertake these evaluations, 

regardless of whether the evaluation is being undertaken alongside a 

prospective trial, or from an entirely retrospective perspective. The iterative 

approach to economic evaluation has been proposed as a framework for good 

practice in economic evaluation (1), but in practice there has been little 

support and many stakeholders in the health care sector remain reluctant to 

adopt the iterative approach.  The aim of this thesis was to examine the role 

for early decision analytic modelling through case studies of practical 

applications.  

7.2.2 Chapter 2  

This chapter introduced economic evaluation in the context of public and 

commercial health care research.  An overview of economic evaluation in the 

health care sector was provided followed by a closer look at the role for 

decision analytic modelling.  The various methodologies involved in DAM for 

economic evaluation were described in detail, including building a decision 
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analytic model, undertaking probabilistic sensitivity analysis, analysing decision 

uncertainty, and using value of information (VOI) techniques in order to 

provide relevant conclusion to decision makers and recommendations for 

further research. 

The iterative approach to economic appraisal has been suggested as an 

appropriate framework for undertaking research in the health care sector, 

within which DAM plays a key role. Chapter 2 explored the benefits of an 

iterative approach for undertaking research in the health care sector, such as 

improvements for decision making in terms of reduced uncertainty, reduction 

of costs and efficiency gains.  Given these potential benefits, this chapter 

supported the case for early stage decision modelling as part of an iterative 

economic process.   

7.2.3 Chapter 3 

Chapter 3 demonstrated a case of good practice whereby the development of 

an early stage decision analytic model was funded by a research body. This 

case study highlighted that some (national) funding bodies do recognise the 

importance of undertaking explorative economic analysis prior to 

commissioning primary research and in some cases are willing to fund and 

support early stage economic research along with the more conventionally 

funded systematic reviews.   

The chapter detailed the development of three early DAMs to assess the 

potential cost-effectiveness of an emerging technology (PET/CT) and in doing 

so demonstrated the benefit and ease of synthesising current evidence and 

clinical expertise to develop such models.  Additionally the chapter illustrated 

the feasibility and viability of modelling techniques in the face of limited and 

poor quality evidence.  When little evidence is found from a systematic review 

it is still possible, and indeed appropriate, to develop a probabilistic model 

using clinical expertise and research group consensus decision making to verify 

the limited existing data, apply an appropriate mean estimate and wide 

uncertainty intervals to represent the uncertainty in probabilistic analysis. The 

economic models developed in Chapter 3 relied heavily on clinical expertise, 



Chapter 7   306 

given the dearth of previous economic evaluations and poor quality, biased 

diagnostic test accuracy evidence in this area.  Some reviewers may consider 

this to be a major drawback to this type of decision analytic modelling 

approach; however, this is precisely the point of employing early decision 

analytic modelling: to attempt to capture what knowledge is available and 

what isn’t, in a systematic manner.  Just because evidence is of poor quality 

does not mean that the economic evaluation will be poor quality.   

Chapter 3 demonstrated the feasibility and benefit of synthesising current 

evidence and clinical expertise in an early decision analytic model, which is 

then used to assess potential cost-effectiveness given current information.  

7.2.4 Chapter 4 

Following on from the development of thee decision models for the PET/CT 

case study in Chapter 3, Chapter 4 explored uncertainty in the model results 

and demonstrated that in using cost-effectiveness acceptability curves the 

results can be examined in terms of decision uncertainty, followed by value of 

information techniques to give meaningful recommendations to funders and 

decision making bodies. This chapter demonstrated the advantages of early 

stage probabilistic models which can be used to inform on future research 

needs, as opposed to a more traditional approach whereby a research problem 

or lack of evidence is identified and used to support a case for primary 

research, without involving any decision analytic modelling.      

Using VOI can identify cases where further research is not worthwhile, and if 

undertaken would be a waste of resources which could be used elsewhere, i.e. 

funding other, more promising research or used to fund clinical practice.  As 

illustrated in the case of primary colorectal cancer, when current evidence is 

limited or of poor quality, this does not necessitate a trial.  Additionally, in 

cases where further research is warranted, a large scale, randomised 

controlled trial is not necessarily required.  Rather, the type of research will 

depend on the different parameters that require further information.  In the 

PET/CT case study, the recurrent and metastatic analyses determined that 

further research would be of potential value and that it was the DTA 
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parameters that were driving uncertainty in the cost-effectiveness decision.  

Therefore the type of further research that would be required is likely to be a 

randomised trial to evaluate unbiased DTA characteristics for the PET/CT, 

ceCT and MRI technologies, however, such a trial would not necessarily be a 

long term trial (as the EVPPI showed that there is little or no value in further 

research for the 5 year survival parameters).  A short term trial would be 

adequate to determine unbiased DTA characteristics, and could possibly also 

be used to derive more accurate data on patients’ quality of life and the cost 

of PET/CT. 

In addition to identifying research priorities, Chapter 4 demonstrated that 

applying the formal process of evidence synthesis and decision modelling at an 

early stage (in advance of a trial), can help ensure the appropriate research 

question is set.  The PET/CT case study highlighted that the original decision 

problem identified by the funding body was not quite appropriate with regards 

to primary CRC, and had the funding body undertaking an iterative process, 

whereby explorative research and possibly a DAM was used in defining the 

research question the research question for Primary CRC may have been re-

specified.   

Chapter 4 demonstrated that even though early decision analytic modelling is 

not often funded and value of information analyses are even less frequently 

utilised in practice, on occasion they are supported by funding bodies.  In such 

situations the practicality of undertaking these analyses is relatively 

straightforward and can have substantial benefits in terms of understanding 

outcomes and determining future research priorities. Just because current 

evidence is limited or of poor quality, does not necessarily mean that further 

research is required, and therefore, applying early DAM and VOI techniques 

allows decision makers to make informed decisions as to whether a new 

intervention should be adopted (or rejected) based on current evidence, or 

whether further information (and what kind of information) is required to help 

determine cost-effectiveness, as opposed to making decisions based on 

subjective reasoning.   
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7.2.5 Chapter 5 

Chapter 5 verified that even when early decision analytic modelling has not 

been funded, a simple DAM can be constructed relatively quickly and fairly 

simply which can be used to help inform the design of a study.  In the context 

of this thesis it would have been preferable to inform a clinical trial design 

following an iterative approach, whereby a comprehensive decision analytic 

model was developed and EVSI undertaken.  However, this was not feasible 

within the context of the fFN study research bid.  Chapter 5 offered a practical 

example of how an economic perspective can still be incorporated into trial 

design and sample size calculations in the context of a frequentist design.  

Given that a basic model constructed within a short time frame, such as that 

developed for the fFN trial, can help in the design and development of a 

standard frequentist trial, there is no reason for economists not to be involved 

in the design stage of a trial, when the purpose of that trial is to determine 

cost-effectiveness.  This chapter highlighted that economic considerations for 

evaluations alongside clinical trials can and should be used to guide 

conventional trial design when an iterative approach to economic evaluation is 

not possible.   

7.2.6 Chapter 6 

Chapter 6 developed the fFN case study from Chapter 5, expanding the analysis 

to consider whether the same or an alternative conclusion would have been 

drawn had it been possible to adopt an iterative economic approach for the 

fFN trial design.   

Formal exploration of uncertainty in the decision model highlighted that the 

fFN test was likely to be cost-effective, with a very high probability of being 

the optimal choice across a wide range of monetary thresholds.  Given the low 

decision uncertainty, the EVPI analysis showed that the value of further 

information per decision was very low, but given the large effective 

population, further research up to a cost of £957,000 could potentially be of 

value.  Considering that the cost associated with undertaking a randomised 

controlled trial is likely to exceed this level of population EVPI, the findings 
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under an iterative approach are in contrast to the research commission brief 

which called for research bids to undertake an RCT in fFN.  The EVSI 

calculation was undertaken for illustrative purposes and called for an 

impractically high sample size in order to generate any value, which is 

unsurprising given the low EVPI per decision.  The EVSI results illustrated that a 

sample of the size determined by the conventional calculations in Chapter 5, 

(n=1156 per arm) would generate an expected population value of £136,000 

and was therefore worth less than the cost of the trial, budgeted at £1.65 

million.  Therefore, at a cost of £1.65 million the proposed fFN trial was likely 

to be a waste of resources in terms of the opportunity cost for research 

spending.   

Based on these results, under an iterative framework the conclusions would 

have been that (rather than undertaking a clinical trial) the fFN test should be 

adopted in practice, freeing up resources for more valuable research.  The fFN 

test could be filtered into practice on a small scale, and then the economic 

model updated at a later stage with routine data to further support the 

reimbursement of fFN by the NHS.     

While the results of Chapter 6 promote the use of an iterative approach, and in 

particular the use of EVSI, there remain some practical difficulties in 

employing the EVSI approach (in terms of correct interpretation of the process, 

computation and time constraints) which may explain the reluctance amongst 

some health economists, trial clinicians and statisticians to adopt this 

approach. This chapter demonstrated the EVSI methodology and highlighted 

that it is a more efficient means of designing a trial through considering the 

value of additional information and through ENBS, the opportunity cost of 

research funding. 
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7.3 Practical limitations for early DAM & VOI 

Time constraints in the process of designing a piece of research are an 

important practical hindrance to undertaking VOI calculations.  The design and 

development of trial protocols are typically undertaken in short periods of time 

in order to meet tight protocol submission deadlines, and therefore, even if 

researchers have familiarity with the VOI methodology and processes, as well 

as knowledge and access to programming languages; a further constraint is the 

time required to develop a decision model, undertake a probabilistic analysis, 

followed by an EVPI analysis and finally undertake an EVSI calculation for a 

wide range of sample sizes.  

In practice the decision problem under question (stage 1 of the iterative 

approach to economic evaluation) will often have been identified by a funding 

body who issue a call for trial proposals to address the specific question of 

interest, as in the fFN case study described in Chapter 5. This method means 

the rigorous evidence synthesis and early modelling stage of the iterative 

process may have been skipped, and if health economists want to contribute to 

the design of the trial they must do so within a short time period specified by 

the funding body, potentially limiting the capacity for full exploration of VOI 

techniques.  In such circumstances adequate resources and time are not 

allocated to the development of a comprehensive early decision analytic model 

to inform the design of the trial, and any attempt to use the VOI process will 

likely involve a rushed, simplified analysis, open to considerable uncertainty. 

However, that is not to say that such an analysis should not be undertaken.   

Despite a strong case being presented in this thesis in support of value of 

information techniques for designing trials, there remain some practical 

difficulties in employing the EVSI approach in particular which may explain the 

reluctance amongst some health economists, trial clinicians and statisticians to 

adopt this approach.  There is a general perception in the medical decision 

making community that EVSI in particular is time-consuming, computationally 

expensive and has a reputation for being ‘too difficult’.  When these 

drawbacks are combined with the current research set-up, in which VOI in 
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general is not supported (or required) by funding bodies in research 

applications, then it is unsurprising that many decision modellers and some 

health economists do not consider undertaking VOI or EVSI analyses in practice. 

Despite these drawbacks, this thesis has demonstrated that VOI methodologies 

and even EVSI is a worthwhile useful exercise for explicitly informing research 

funding decisions. Just because EVSI techniques are computationally heavy and 

time consuming does not mean that they should not be attempted.  However, 

unless the current research funding set-up changes and formally require VOI 

analysis, unfortunately many researchers are unlikely to adopt VOI techniques. 

The fFN case study in Chapter 5 demonstrated that it is possible to build a 

simple model when subject to strict time constraints and that even a basic 

deterministic model can be informative. A simple DAM was constructed within 

a short time frame and was fit for purpose with regards to helping identify 

which of the potential clinical endpoints was the most appropriate (neonatal 

morbidity) and was then used to undertake the sample size calculation in the 

context of a frequentist trial design.  Chapter 6 demonstrated that if funding 

bodies adopted a more flexible, iterative approach to commissioning research, 

it would have been possible to apply VOI techniques to the simple model and 

potentially feedback to the funding body regarding a more appropriate 

research design, within the short timeframe.  A basic probabilistic analysis was 

undertaken on the fFN model using just the four key parameters of interest, 

and this in turn enabled an EVPI analysis which informed that further research 

is only likely to be worthwhile at a cost of less than £957,000.  Even though the 

model was simple and undertaken in a short time period, such a conclusion 

could be useful in terms of highlighting to the funding body that a 

commissioned call for a large scale RCT is likely to be an inefficient use of 

funding. In such a situation funding bodies could make better use of their 

finances by funding the researchers to develop the basic model into a more 

comprehensive model, and reanalyse the PSA to get a more accurate 

representation of uncertainty, and explore EVPPI to determine whether an 

alternative smaller scale study is appropriate, rather than the initially 

envisaged large scale RCT.  
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7.4 Areas for further research 

7.4.1 Fully exploiting VOI within an iterative context 

Chapter 4 demonstrated that in the PET/CT case study no further research was 

required in primary CRC, but that in recurrent and metastatic CRC further 

research was potentially worthwhile.  The EVPPI in both models determined 

that the diagnostic test accuracy parameters were the main drivers for 

uncertainty and therefore a short-term randomised trial would most likely be 

an appropriate future research design. Having submitted the research 

recommendations to the funding body, no further primary research has yet 

been commissioned.  If funding were made available for further research in 

this area, the early model developed for this piece of work could be fully 

exploited by extending the VOI analysis to undertake EVSI and explore ENBS in 

order to determine an appropriate sample size and design criteria for such a 

trial. This would also be optimal in the context of the iterative framework, and 

in the longer term the decision model could be updated with the new DTA 

information from the trial.  

7.4.2 Exploring uncertainty in sample size calculations 

Chapter 5 demonstrated the feasibility of developing a simple DAM and 

undertaking sample size calculations based on cost-effectiveness endpoints 

within the context of a frequestist trial design.  The design and development of 

trial protocols are typically undertaken in short periods of time in order to 

meet submission deadlines, resulting in potential uncertainty in the parameter 

estimates and sample size calculations. The role of uncertainty in sample size 

calculations has been given further attention in published literature and it has 

been proposed that probabilistic sensitivity analysis is a good way to deal with 

this uncertainty (198).  By making a ‘pre-trial’ decision model probabilistic, 

uncertainty regarding the probability of cost-effectiveness could be 

incorporated into the sample size calculations.  However, in practical terms 

the time constraints imposed by protocol submission deadlines may interfere 
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with such an approach and dealing with this uncertainty may only be feasible 

at a later time.  

7.4.3 A simple guide to undertaking EVSI 

Chapter 6 demonstrated the EVSI calculation; however this process also 

highlighted a number of issues, particularly with regards to complexity and 

interpretation, which is likely to hinder more widespread adoption of the EVSI 

technique.  In moving EVSI forward, a potential means to overcome some of 

these issues would be the development of a simple guide to EVSI.  The EVSI 

process has been described by numerous authors; however, existing guidelines 

are complicated to follow and are open to misinterpretation at numerous 

points, as highlighted in Chapter 6 (section 6.2).  A simple guide to EVSI which 

outlined the process involved at each step and explicitly addressed potential 

pitfalls could be of considerable help to first time users of EVSI or even for 

researchers less familiar with the process. Such a guide could address each of 

the misinterpretation issues described in Chapter 6. 

Additionally an area that could provide further clarity on EVSI would be with 

regards to determining whether a model is linear or non-linear in the 

parameters of interest and in the complementary parameters.  The four 

alternative model specifications detailed in Table 6-7 highlight the four 

different approaches for the EVSI calculation; however, a practical worked 

example of the process under each different specification would provide 

additional clarity on the appropriate specification to adopt for those 

undertaking EVSI calculations. Such examples could potentially be incorporated 

into the EVSI user guide discussed above.  
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7.5 Conclusions 

This thesis discussed and demonstrated the application of early decision 

analytic modelling in health care.  The aim was to examine the role for early 

decision analytic modelling through case studies of practical applications.   

The thesis has shown that developing ‘early’ decision modelling in advance of 

primary research is feasible and of considerable merit, regardless of whether 

the DAM was a fully funded comprehensive model, or an unfunded simple 

model constructed under relatively short/strict time constraints.  Undertaking 

early DAM can help explore appropriate endpoints for a planned trial and, in 

the context of an iterative framework for economic evaluation; it can help in 

determining whether further research is potentially worthwhile.  Applying 

early DAM and VOI techniques enables meaningful recommendations to decision 

makers, who can then make informed decisions as to whether a new 

intervention should be adopted (or rejected) based on current evidence, or 

whether further information is required to help make the decision, as opposed 

to making decisions based on subjective reasoning.  There is considerable merit 

in terms of efficiency with employing early DAM prior to primary research, such 

as reduced uncertainty, reduction of costs and efficiency gains, however, some 

drawbacks exists.  It may not always be viable to fully exploit VOI analyses 

and, with regards to undertaking EVSI calculations to inform the design of a 

trial, some issues remain which hinder the widespread support both inside and 

out-with the health economics community. 
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Appendix 1: Literature Search Histories 

Medline (OvidSP) 1950-Nov week 2 2009  

Base search for PET/CT and Colorectal cancer 

1. exp Colorectal Neoplasms/ 

2. ((rectal or rectum or colonic or colon or colorectal or bowel* or sigmoid or anus or 

anal) adj3 (cancer* or carcinoma* or neoplas* or tumor* or tumour* or sarcoma* or 

adenocarcinoma* or adeno?carcinoma* or adenom* or lesion* or CRC)).mp. 

3. or/1-2 

4. exp Tomography, emission-computed/ 

5. positron emission tomography.ti,ab,rw,sh. 

6. pet$.ti,ab,rw,sh. 

7. animal/ not (human/ and animal/) 

8. 6 not 7 

9. exp Deoxyglucose/ 

10. deoxyglucose.ti,ab,rw,sh. 

11. deoxy-glucose.ti,ab,rw,sh. 

12. fluorodeoxyglucose.ti,ab,rw,sh. 

13. 18fluorodeoxyglucose.ti,ab,rw,sh. 

14. fludeoxyglucose.ti,ab,rw,sh. 

15. 18FDG$.ti,ab,rw,sh. 

16. 1818FDG.ti,ab,rw,sh. 

17. f-18-dg.ti,ab,rw,sh. 

18. fluoro-2-deoxy-d-glucose.ti,ab,rw,sh. 

19. 2fluoro-2deoxyglucose.ti,ab,rw,sh. 

20. fluoro-d-glucose.ti,ab,rw,sh. 

21. or/4-5,8-20 

22. animals/ not (humans/ and animals/) 

23. (3 and 21) not 22 
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Economics search 

1. exp "Costs and Cost Analysis"/ 

2. Economics/ 

3. Cost allocation/ 

4. Cost control/ 

5. Cost savings/ 

6. Cost of illness/ 

7. Cost sharing/ 

8. Health care costs/ 

9. Direct service costs/ 

10. Drug costs/ 

11. Employer health costs/ 

12. Hospital costs/ 

13. Health expenditures/ 

14. Capital expenditures/ 

15. Value of life/ 

16. exp economics, hospital/ 

17. exp economics, medical/ 

18. Economics, nursing/ 

19. Economics, pharmaceutical/ 

20. exp "fees and charges"/ 

21. exp budgets/ 

22. (low adj cost).mp. 

23. (high adj cost).mp. 

24. (health?care adj cost$).mp. 

25. (fiscal or funding or financial or finance).tw. 

26. (cost adj estimate$).mp. 

27. (cost adj variable).mp. 

28. (unit adj cost$).mp. 

29. (economic$ or pharmacoeconomic$ or price$ or pricing).tw. 

30. exp models, economic/ 

31. ec.fs. 

32. or/1-31 
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Toxicity, Adverse events, QoL search 

1. ae.xs. 

2. "Quality of Life"/ 

3. mo.fs. 

4. quality-adjusted life years/ 

5. "cost of illness"/ 

6. (QALY or QALM or Quality-Adjusted Life Month or DALY or Disability Adjusted Life-

Years).mp 

7. or/1-6 

 

Decision-making search 

1. Decision Trees/ 

2. algorithms/ 

3. exp decision making, computer-assisted/ or exp decision support techniques/ or 

decision support systems, clinical/ 

4. Decision Making/ 

5. exp Patient Care Planning/ 

6. or/1-5 

 

Embase (OvidSP) 1980 to 2009 Week 47 

Base search for PET/CT and Colorectal cancer 

1. exp anus tumor/ or exp colon tumor/ or exp rectum tumor/ 

2. ((rectal or rectum or colonic or colon or colorectal or bowel* or sigmoid or anus or 

anal) adj3 (cancer* or carcinoma* or neoplas* or tumor* or tumour* or sarcoma* or 

adenocarcinoma* or adeno?carcinoma* or adenom* or lesion* or CRC)).mp. 

3. 1 or 2 

4. exp computer assisted emission tomography/ or exp positron emission 

tomography/ or exp whole body tomography/ 

5. positron emission tomography.mp. 

6. (pet* not (animal not (human and animal))).mp. 

7. Deoxyglucose/ 

8. Fluorodeoxyglucose/ 

9. Fluorodeoxyglucose F 18/ 

10. deoxyglucose.mp. 

11. deoxy-glucose.mp. 
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12. fluorodeoxyglucose.mp. 

13. 18fluorodeoxyglucose.mp. 

14. fludeoxyglucose.mp. 

15. 18FDG*.mp. 

16. 1818FDG.mp. 

17. f-18-dg.mp. 

18. fluoro-2-deoxy-d-glucose.mp. 

19. 2fluoro-2deoxyglucose.mp. 

20. fluoro-d-glucose.mp. 

21. exp tomography/ 

22. or/ 4-21 

23. (rat or rats or mouse or mice or monkey* or rabbit* or hamster* or bovine or 

sheep).mp.  

24. animal/ or experimental animal/ 

25. 23 or 24 

26. (3 and 22) not 25 

 

Economics search 

1. Socioeconomics/ 

2. Cost benefit analysis/ 

3. Cost effectiveness analysis/ 

4. Cost of illness/ 

5. Cost control/ 

6. Economic aspect/ 

7. Financial management/ 

8. Health care cost/ 

9. Health care financing/ 

10. Health economics/ 

11. Hospital cost/ 

12. (fiscal or financial or finance or funding).tw. 

13. Cost minimization analysis/ 

14. (cost adj estimate$).mp. 

15. (cost adj variable$).mp. 

16. (unit adj cost$).mp. 

17. pe.fs. 

18. or/1-17 
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Toxicity, Adverse events, QoL search 

1. exp "Quality of Life"/ 

2. "cost of illness"/ 

3. (QALY or QALM or Quality-Adjusted Life Month or DALY or Disability Adjusted Life-

Years).mp. [mp=title, abstract, subject headings, heading word, drug trade name, 

original title, device manufacturer, drug manufacturer name] 

4. ae.fs. 

5. to.fs. 

6. or/1-5 

 

Decision-making search 

1. "decision tree"/ 

2. decision support system/ 

3. decision making/ 

4. algorithm/ 

5. clinical pathway/ 

6. or/1-5 

 

Web of Science all content up to 25 Nov 2009 

Base search for PET/CT and Colorectal cancer 

Topic=(((rectal or rectum or colonic or colon or colorectal or bowel* or sigmoid 

or anus or anal) same (cancer* or carcinoma* or neoplas* or tumor* or tumour* 

or sarcoma* or adenocarcinoma* or adeno-carcinoma* or adenom* or lesion* or 

CRC)) AND (positron emission tomography or Fluorodeoxyglucose or 

18fluorodeoxyglucose or deoxy-glucose or Deoxyglucose or fludeoxyglucose or 

18FDG* or 1818FDG or f-18-dg or fluoro-2-deoxy-d-glucose or 2fluoro-

2deoxyglucose or fluoro-d-glucose or (PET* same (CT or computer 

tomography))) NOT (rat or rats or mouse or mice or monkey* or rabbit* or 

hamster* or bovine or sheep))  

Economics search 

Topic=(Economic* OR cost* ) 
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Toxicity, Adverse events, QoL search  

Topic= (toxic* or adverse or "quality of life" or QALY or "quality adjusted life years" or 

QALM or "quality adjusted life month" or DALY or "disability adjusted life years") 

 

Decision-making search 

Topic= (decision* OR algorithm* OR pathway* OR (patient SAME management)) 

 

CINAHL Plus via Ebsco download (30 Nov 2009) 

Base search for PET/CT and Colorectal cancer 

((MH "Colorectal Neoplasms+") or ( TX (cancer* OR carcinoma* OR neoplas* OR tumor* 

OR tumour* OR sarcoma* OR adenocarcinoma* OR adeno?carcinoma* OR adenom* OR 

lesion* OR CRC) AND (rectal OR rectum OR colonic OR colon OR colorectal OR bowel* 

OR sigmoid OR anus OR anal))) AND ((MH "Tomography, Emission-Computed+") or TX 

("positron emission tomography" OR "18FDG PET-CT" OR "18FDG PET*" ) or TX 

fluorodeoxyglucose or ( (MH "Fludeoxyglucose F 18")))  

 

Economics search 

MW EC OR (TX cost or costs or economic* OR pharmacoeconomic* OR price* OR 

pricing*) OR (MH "Health Resource Utilization") OR (MH "Health Resource Allocation") 

OR (MH "Business+") OR (MH "Financing, Organized+") OR (MH "Financial Support+") OR 

(MH "Financial Management+") OR (MH "Economics+")   

 

Toxicity, Adverse events, QoL etc search 

( QALY or QALM or DALY ) OR quality adjusted life years OR quality adjusted life 

months OR disability adjusted life years OR (MH "Ferrans and Powers Quality of Life 

Index") OR MW "AE" OR MW "TO" OR MW "MO" OR (MH "Quality of Life") 

 

Decision-making search 

(MH "Decision Making+") OR (MH "Algorithms") OR (MH "Triage") OR pathway* OR policy 

OR policies 
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Cochrane Library (NHSEED, HTA, CENTRAL, DARE) Issue 
4, 2009 

#1 MeSH descriptor Colorectal Neoplasms explode all trees 

#2 (rectal OR rectum OR colonic OR colon OR colorectal OR bowel* OR sigmoid OR 

anus OR anal) NEAR/3 (cancer* OR carcinoma* OR neoplas* OR tumor* OR tumour* OR 

sarcoma* OR adenocarcinoma* OR adeno?carcinoma* OR adenom* OR lesion* OR CRC) 

#3 MeSH descriptor Tomography, Emission-Computed explode all trees 

#4 (positron emission tomography OR Fluorodeoxyglucose OR 18fluorodeoxyglucose 

OR deoxy-glucose OR Deoxyglucose OR fludeoxyglucose OR 18FDG* OR 1818FDG OR f-18-

dg OR fluoro-2-deoxy-d-glucose OR 2fluoro-2deoxyglucose OR fluoro-d-glucose OR 

(PET* NEAR/5 (CT OR computer tomography))) 

#5 MeSH descriptor Deoxyglucose explode all trees 

#6 (( #1 OR #2 ) AND ( #3 OR #4 OR #5 )) 

 

HMIC Health Management Information Consortium 
(OvidSP) November 2009 

1. positron emission tomography.mp. 

2. 18FDG PET-CT.mp. 

3. computed tomography scanners/ or tomography/ 

4. colorectal cancer/ 

5. ((rectal or rectum or colonic or colon or colorectal or bowel* or sigmoid or anus or 

anal) adj3 (cancer* or carcinoma* or neoplas* or tumor* or tumour* or sarcoma* or 

adenocarcinoma* or adeno?carcinoma* or adenom* or lesion* or CRC)).mp. 

6. 1 or 2 or 3 

7. 4 or 5 

8. 6 and 7 

 

CEA Registry 

“positron emission tomography” 

(Anything more detailed yielded nil results) 
 
 



  322 

Reference List 

 (1)  Sculpher M, Claxton K, Drummond M, McCabe C. Whither trial-based 
economic evaluation for health care decision making? Health 
Economics 15, 677-687. 2006.  

 
 (2)  Fenwick E, Sculpher M, Claxton K, Briggs AH. Improving the efficiency 

and relevance of health technology assessment: The role of decision 
analytic modelling. Discussion paper. 1999. Birmingham, UK, Health 
Economics Study Group.  

 
 (3)  Sculpher M, Drummond M, Buxton M. The iterative use of economic 

evaluation as part of the process of health technology assessment. 
Journal of Health Services Research & Policy 2[1], 26-30. 1997.  

 
 (4)  Briggs AH, Claxton K, Sculpher M. Decision Modelling for Health 

Economic Evaluation. Oxford: Oxford University Press, 2006. 

 (5)  Briggs AH. Handling uncertainty in cost-effectiveness models. 
Pharmacoeconomics 17[5], 479-500. 2000.  

 
 (6)  Briggs AH. Handling uncertainty in economic evaluations and 

presenting the results. In: Drummond M, McGuire A, editors. Economic 
Evaluation in Health Care: merging theory with practice. Oxford: 
Oxford University Press, 2001: 172-214. 

 (7)  Fenwick E, Claxton K, Sculpher M. Representing Uncertainty: the role 
of cost-effectiveness acceptability curves. Health Economics 10, 779-
787. 2001.  

 
 (8)  Claxton K. Bayesian approaches to the value of information: 

implications for the regulation of new pharmaceuticals. Health 
Economics 8[3], 269-274. 1999.  

 
 (9)  Claxton K. The irrelevance of inference: a decision-making apoproach 

to the stochastic evaluation of health care technologies. Journal of 
Health Economics 18, 341-364. 1999.  

 
 (10)  Claxton K, Ginnelly L, Sculpher M, Philips Z, Palmer S. A pilot study on 

the use of decision theory and value of information analysis as part of 
the NHS Health Technology Assessment programme. Health Technology 
Assessment 8[31], 1-118. 2004.  

 
 (11)  Fenwick E, Palmer S, Claxton K, Sculpher M, Abrams K, Sutton A. An 

iterative Bayesian approach to health technology assessment: 
application to a policy of preoperative optimization for patients 
undergoing major elective surgery. Medical Decision Making 26, 480-
496. 2006.  

 



  323 

 (12)  Claxton K, Eggington S, Ginnelly L, Griffin S, McCabe C, Philips Z et al. 
A Pilot Study of Value of Information Analysis to support research 
reccommendations for NICE. CHE Research Paper 4. 2005. York, Centre 
for Health Economics, Univerity of York.  

 
 (13)  Claxton K, Posnett J. An economic approach to clinical trial design and 

research priority-setting. Economic Evaluation 5, 513-524. 1996.  
 
 (14)  Department of Health. Spending Review 2010. cited online 30/10/11. 

2010.  
 
 (15)  Drummond M, Sculpher M, Torrance G, O'Brien B, Stoddart G. Methods 

for the economic evaluation of health care programmes. Third ed. 
Oxford: Oxford University Press, 2005. 

 (16)  Hjelmgren J, Berggren F, Andersson F. Health Economic Guidelines: 
Similarities, Differences and Some Implications. Value In Health 4[3], 
225-250. 2001.  

 
 (17)  Hutton J, McGarth C, Frybourg J, Tremblay M, Bramley-Harker E, 

Henshall C. Framework for describing and classifying decision-making 
systems using technology assessment to determine the reimbursement 
of health technologies (fourth hurdle systems). International Journal of 
Technology Assessment in Health Care 22[1], 10-18. 2006.  

 
 (18)  Sculpher M, Claxton K, Akehurst R. It's just evaluation for decision-

making: recent developments in, and challenges for, cost-
effectiveness research. In: Smith PC, Ginnelly L, Sculpher M, editors. 
Health Policy and Economics: Opportunities and Challenges. 
Maidenhead: Open University Press, 2005: 8-41. 

 (19)  Elliott R, Payne K. Essentials of Economic Evaulation in Healthcare. 
London: Pharmaceutical Press, 2005. 

 (20)  Vallejo-Torres L, Steuten L, Buxton M. Integrating health economics 
modelling in the product development cycle of medical devices: A 
Bayesian approach. International Journal of Technology Assessment in 
Health Care 24[4], 459-464. 2008.  

 
 (21)  Fenwick E, Claxton K, Sculpher M, Briggs AH. Improving the efficiency 

and relevance of health technology assessment: The role of iterative 
decision analytic modelling. 179. 2000. York, Centre for Health 
Economics, University of York.  

 
 (22)  Claxton K, Sculpher M, Drummond A. A rational framework for decision 

making by the National Institute of Clinical Excellence. The Lancet 
360[9334], 711-715. 2002.  

 
 (23)  Claxton K, Cohen JT, Neumann P. When is evidence sufficient? Health 

Affairs 24[1], 93-101. 2005.  



  324 

 (24)  National Institute for Health and Clinical Excellence. Guide to the 
methods of technology appraisal.  2008.  National Institute for Health 
and Clinical Excellence.  

 
 (25)  Scottish Medicines Consortium. Submissions Process: Economic 

Questions and Answers. cited online 30/10/11. 2011.  
 
 (26)  Stinnett A, Mullahy J. Net Health Benefits : A New Framework for the 

Analysis of Uncertainty in Cost-Effectiveness Analysis. Medical Decision 
Making 18[2], S68-S80. 1998.  

 
 (27)  Drummond M, McGuire A. Economic evaluation in health care:merging 

theory with practice. Oxford: Oxford University Press, 2001. 

 (28)  Kuntz K, Weinstein M. Modelling in Economic Evaluation. In: Drummond 
M, McGuire A, editors. Economic Evaluation in Health Care. Oxford: 
Oxford University Press, 2001: 141-171. 

 (29)  Sheldon T. Problems of using modelling in the economic evaluation of 
health care. Health Economics 5, 1-11. 1996.  

 
 (30)  Weinstein M, O'Brien B, Hornberger J, Jackson J, Johannesson M, 

McCabe C et al. Principles of good practice for decision analytic 
modeling in health-care evaluation: report of the ISPOR task force on 
good research practices-modeling studies. Value In Health 6[1], 9-17. 
2003.  

 
 (31)  Brennan A, Akehurst R. Modelling in Health Economic Evaluation: What 

is its place?  What is its value? Pharmacoeconomics 17[5], 445-459. 
2000.  

 
 (32)  Brennan A, Chick S, Davies R. A taxonomy of model structures for 

economic evaluation of health technologies. Health Economics 15, 
1295-1310. 2006.  

 
 (33)  Sculpher M, Fenwick E, Claxton K. Assessing quality in decision analytic 

cost-effectiveness models. Pharmacoeconomics 17[5], 461-477. 2000.  
 
 (34)  Philips Z, Bojke L, Sculpher M, Claxton K, Golder S. Good practice 

guidelines for decision-analytic modelling in health technology 
assessment: A review and consolidation of quality assessment. 
Pharmacoeconomics 24[4], 355-371. 2006.  

 
 (35)  Petrou S, Gray A. Economic evaluation using decision analytical 

modelling: design, conduct, analysis, and reporting. British Medical 
Journal 342[1766], 1195-1198. 2011.  

 
 (36)  Barton PM, Bryan S, Robinson S. Modelling in the economic evaluation 

of health care: selecting the appropriate approach. Journal of Health 
Services Research & Policy 9[2], 110-118. 2004.  



  325 

 (37)  Caro J, Briggs AH, Siebert U, Kuntz K. Modeling Good Research 
Practices - Overview: A Report of the ISPOR SMDM Modeling Good 
Research Practices Task Force Working Group Part 1. Draft Report. 
2012.  

 
 (38)  Glick H, Polsky D, Schuman K. Trial-based economic evaluations: an 

overview of design and analysis. In: Drummond M, McGuire A, editors. 
Economic evaluation in health care: merging theory with practice. 
Oxford: Oxford University Press, 2001: 113-140. 

 (39)  Ramsey S, Willke R, Briggs AH, Brown R, Buxton M, Chawla A et al. 
Good Research Practices for Cost-Effectiveness Analysis Alongside 
Clinical Trials: The ISPOR RCT-CEA Task Force Report. Value In Health 
2005; 8(5):521-533. 

 (40)  Glick H, Doshi J, Sonnad S, Polsky D. Economic evaluation in clinical 
trials. Oxford: Oxford University Press, 2007. 

 (41)  Petrou S, Gray A. Economic evaluation alongside randomised 
controlled trials: design, conduct, analysis, and reporting. British 
Medical Journal 342[1548], 1069-1073. 2011.  

 
 (42)  Edwards R, Hounsome B, Linck P, Russell I. Economic evaluation 

alongside pragmatic randomised trials: developing a standard 
operating procedure for  

 (43)  Gray A, Marshall M, Lockwood A, Morris J. Problems in conducting 
economic evaluations alongside clinical trials: Lessons from a study of 
case management for people with mental disorders. British Journal of 
Psychiatry 170, 47-52. 1997.  

 
 (44)  Briggs AH. Economic evaluation and clinical trials: size matters. British 

Medical Journal 321, 1362-1363. 2000.  
 
 (45)  Drummond M, BMJ Economic Evaluation Working Party. Guidelines for 

authors and peer reviewers of economic submissions to the BMJ. 
British Medical Journal 313, 275-283. 1996.  

 
 (46)  Briggs AH, O'Brien B, Blackhouse G. Thinking outside the box: recent 

advances in the analysis and presentation of uncertainty in cost-
effectiveness studies. Annual Review of Public Health 23, 377-401. 
2002.  

 
 (47)  Fryback D, Chinnis J, Ulvila J. Bayesian cost-effectiveness analysis. 

International Journal of Technology Assessment in Health Care 17[1], 
83-97. 2001.  

 
 (48)  Eldridge S, Spencer A, Cryer C, Parsons S, Underwood M, Feder G. Why 

modelling a complex intervention is an important precursor to trial 
design: lessons from studying an intervention to reduce falls-related 
injuries in older people. Journal of Health Services Research & Policy 
2005; 10(3):133-143. 



  326 

 (49)  Briggs AH. New methods of analysing cost-effectiveness. British 
Medical Journal 2007; 335:622-623. 

 (50)  National Institute for Health Research. About the HTA programme. 
cited online 30/10/11. 2011.  National Institute for Health Research.  

 
 (51)  Merck Sharp & Dohme Corp. Discovery & Development, Clinical 

Development. cited online 9/06/10. 2010.  
 
 (52)  National Institute for Health Research. Identifying and prioritising HTA 

research. cited online 30/10/11. 2011.  
 
 (53)  Research Councils UK. About the individual research councils. cited 

online 05/12/11. 2011. 5-12-0011.  
 
 (54)  Medical Research Council. Our Research. cited online 02/12/11. 2011. 

2-12-0011.  
 
 (55)  Chief Scientist Office. About the Chief Scientist Office. cited online 

10/01/12. 2011. 10-1-2012.  
 
 (56)  Pfizer Ltd. Overview of the clinical trials process. cited online 

9/06/10. 2010.  
 
 (57)  Hoffmann-La Roche Ltd. Research & Development Value Chain. cited 

online 9/06/10. 2010.  
 
 (58)  Janodia M, Sreedhar D, Ligade V, Pise A, Udupa N. Drug Development 

Process: A Review. cited online 8/06/11. 2007.  Pharmainfo.net.  
 
 (59)  Taylor R, Drummond M, Salkeld G, Sullivan D. Inclusion of cost 

effectiveness in licensing requirements of new drugs: the fourth 
hurdle. British Medical Journal 329, 972-975. 2004.  

 
 (60)  Raffia H, Schlaifer R. Probability and statistics for business decisions. 

New York: McGraw-Hill, 1959. 

 (61)  Snider D, Holtgrave D, Duñet D. Decision Analysis. In: Haddix A, 
Teutsch S, Shaffer P, Duñet D, editors. Prevention Effectiveness: A 
guide to decision analysis and economic evaluation. Oxford: Oxford 
University Press, 1996. 

 (62)  Sonnenberg F, Beck RJ. Markov Models in medical decision making: a 
practical guide. Medical Decision Making 1993; 13:332-338. 

 (63)  Briggs AH, Sculpher M. Commentary: Markov models of medical 
prognosis. British Medical Journal 314[354.2]. 1997.  

 (64)  International Society for Pharmacoeconomics and Outcomes Research. 
Modeling Discrete Event Simulation: A Report of the ISPOR SMDM 
Modeling Good Research Practices Task Force Working Group Part 6. 
Draft Report. 2010.  

 



  327 

 (65)  Glenny AM, Altman D, Song FJ, Sakarovitch C, Deeks J, D'Amico R. 
Indirect comparisons of competing interventions. Health Technology 
Assessment 9[26]. 2005.  

 
 (66)  Ades AE, Sculpher M, Sutton A, Abrams K, Cooper N, Welton N et al. 

Bayesian methods for evidence synthesis in cost-effectiveness analysis. 
Pharmacoeconomics 2006; 24(1):1-19. 

 (67)  Han P, Klein W, Arora N. Varieties of uncertainty in health care: a 
conceptual taxonomy. Medical Decision Making 31, 828-838. 2011.  

 
 (68)  Bojke L, Claxton K, Sculpher M, Palmer S. Characterizing Structural 

Uncertainty in Decision Analytic Models:A Review and Application of 
Methods. Value In Health 12[5], 739-749. 2009.  

 
 (69)  Jackson J, Bojke L, Thompson J, Claxton K, Sharples L. A Framework 

for Addressing Structural Uncertainty in Decision Models. Medical 
Decision Making 31, 662-674. 2011.  

 
 (70)  Barton G, Briggs AH, Fenwick E. Optimal Cost-Effectiveness Decisions: 

The Role of the Cost-Effectiveness Acceptability Curve (CEAC), the 
Cost-Effectiveness Acceptability Frontier (CEAF), and the Expected 
Value of Perfection Information (EVPI). Value In Health 11[5], 886-897. 
2008.  

 
 (71)  Fenwick E, Byford S. A guide to cost-effectiveness acceptability 

curves. British Journal of Psychiatry 187[106], 108. 2005.  
 

 (72)  Armitage P, Berry G, Matthews J. Statistical methods in medical 
research. 4th ed. Oxford: Blackwell Publishing, 2002. 

 (73)  Easton VJ, McColl J. Statistics Glossary V1.1. 
http://www.stats.gla.ac.uk/steps/glossary/ . 1997. 5-9-2010.  

 

 (74)  Filliben J. Exploratory Data Analysis. In: Croarkin C, Tobias P, editors. 
Engineering Statistics Handbook. NIST/SEMATECH  
http://www.itl.nist.gov/div898/handbook/, 2012. 

 (75)  Briggs AH, Ades AE, Price MJ. Probabilistic Sensitivity Analysis for 
Decision Trees with Multiple Branches: Use of the Dirichlet Distribution 
in a Bayesian Framework. Medical Decision Making 2003; 23(4):341-
350. 

 (76)  Ades AE, Claxton K, Sculpher M. Evidence synthesis, parameter 
correlation and probabilistic sensitivity analysis. Health Economics 15, 
373-381. 2006.  

 
 (77)  Appleby J, Devlin N, Parkin D, Buxton M, Chalkidou K. Searching for 

cost effectiveness thresholds in the NHS. Health Policy 2009; 
91(3):239-245. 



  328 

 (78)  O'Brien B, Gertsen K, Willan A, Faulkner A. Is there a kink in 
consumers' threshold value for cost-effectiveness in health care? 
Health Economics 11[2], 175-180. 2002.  

 
 (79)  Donaldson C, Baker R, Jones-Lee M, Lancsar E, Loomes G, Mason H et 

al. Weighting and valuing quality adjusted life years: preliminary 
results from the Social Value of a QALY Project.  2008.  The SVQ 
Research Team, Newcastle University .  

 
 (80)  Claxton K, Eggington S, Ginnelly L, Griffin S, McCabe C, Philips Z et al. 

A Pilot Study of Value of Information Analysis to support research 
recommendations for the National Institute for Health and Clinical 
Excellence. CHE Research Paper 4. 2005. York, Centre for Health 
Economics, University of York.  

 
 (81)  Eckermann S, Karnon J, Willan A. The Value of Value of Information: 

Best Informing Research Design and Prioritization Using Current 
Methods. Pharmacoeconomics 28[9], 699-709. 2010.  

 
 (82)  Nosyk B, Sharif B, Sun H, Cooper C, Anis A. The Cost-Effectiveness and 

Value of Information of Three Influenza Vaccination Dosing Strategies 
for Individuals with Human Immunodeficiency Virus. PLoS ONE 2011; 
6(12):e27059. 

 (83)  Ades AE, Lu G, Claxton K. Expected value of sample information 
calculations in medical decision modelling. Medical Decision Making 
24[2], 207-227. 2004.  

 
 (84)  Kharroubi SA, Brennan A, Strong M. Estimating Expected Value of 

Sample Information for Incomplete Data Models Using Bayesian 
Approximation. Medical Decision Making 31[6], 839-852. 2011.  

 
 (85)  Brennan A, Chilcott J, Kharroubi SA, O'Hagan A, Cowan J. A two level 

Monte Carlo approach to calculating expected value of sample 
information: How to value a research design. ScHARR Research Paper. 
2002. Available online at: 
https://sheffield.ac.uk/content/1/c6/02/96/29/EVSI.doc, School of 
Health & Related Research (ScHARR), University of Sheffield.  

 
 (86)  Claxton K, Fenwick E, Sculpher M. Decision making with uncertainty: 

the value of information. In: Jones AM, editor. The Elgar Companion to 
Health Economics. Glos, UK: Edward Elgar Publishing Limited, 2012. 

 (87)  Stevenson M, Llyod-Jones M. The cost effectiveness of a randomized 
controlled trial to establish the relative efficacy of Vitamin K 
compared with Alendronate. Medical Decision Making 31, 43-52. 2011.  

 
 (88)  Spiegelhalter D, myles J, Jones D, Abrams K. An introduction to 

Bayesian methods in health technology assessment. British Medical 
Journal 319, 508-512. 1999.  

 



  329 

 (89)  Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. 
Developing and evaluating complex interventions: new guidance.  
2008.  Medical Research Council.  

 
 (90)  DiMasi J, Hansen R, Grabowski H. The price of innovation: new 

estimates of drug development costs. Journal of Health Economics 22, 
151-185. 2003.  

 
 (91)  DiMasi J. The Value of Improving the Productivity of the Drug 

Development Process: Faster Times and Better Decisions. 
Pharmacoeconomics 20[3], 1-10. 2002.  

 
 (92)  Hill S, Freemantle N. A Role for Two-Stage Pharmacoeconomic 

Appraisal? Is There a Role for Interim Approval of a Drug for 
Reimbursement Based on Modelling Studies with Subsequent Full 
Approval Using Phase III Data? Pharmacoeconomics 21[11], 761-767. 
2003.  

 
 (93)  National Institute for Health and Clinical Excellence. Scientific Advice 

Consultancy Service. cited online 02/07/10. 2010.  
 
 (94)  Cancer Research UK. Cancer Stats: Large Bowel Cancer UK.  2006.  

Cancer Research UK.  
 
 (95)  Edge S, Byrd D, Compton C, Fritz G, Greene F, Trotti A. Colon and 

Rectum. American Joint Committee on Cancer Staging Manual. New 
York: Springer, 2009. 

 (96)  Cancer Research UK. Treating Bowel Cancer: A quick guide.  2011.  
 
 (97)  The Royal College Radiologists. PET-CT in the UK: a strategy for 

development and integration of a leading egde technology within 
routine clinical practice. BRCR(05)0. 2005. London, The Royal College 
Radiologists.  

 
 (98)  Cohade C, Osman M, Leal J, Wahl RL. Direct comparison of (18)F-FDG 

PET and PET/CT in patients with colorectal carcinoma. Journal of 
Nuclear Medicine 2003; 44(11):1797-1803. 

 (99)  Hicks RJ, Ware RE, Lau EW. PET/CT: will it change the way that we 
use CT in cancer imaging? Cancer Imaging 2006; 6:S52-S62. 

 (100)  British National Formulary. BNF 58.  2009.  
 
 (101)  Department of Health. NHS Reference Costs 2008 - 2009.  2009. online, 

Department of Health.  
 
 (102)  Personal Social Services Research Unit. Unit costs of health & social 

care 2009.  2009. Kent, UK, Personal Social Services Research Unit.  
 
 (103)  Phelps C, Mushlin A. Focusing Technology Assessment Using Medical 

Decision Theory. Medical Decision Making 8[4], 279-289. 1988.  



  330 

 
 (104)  Fenwick E. The application of decision analysis to the economic 

evaluation of diagnostic interventions. Department of Economics & 
Related Studies, University of York, 1998. 

 (105)  Altman D, Bland J. Statistics Notes: diagnostic tests 1: sensitivity and 
specificity. British Medical Journal 1994; 308:1552. 

 (106)  Tang M. On simultaneous assessment of sensitivity and specicity when 
combining two diagnostic tests. Statistics in Medicine 23[23], 3593-
3605. 2004.  

 
 (107)  Borowiak D, Reed J. Utility of combining two diagnostic tests. 

Computer Methods and Programs in Biomedicine 35, 171-175. 1991.  
 
 (108)  Pandharipande P, Choy G, del Carmen M, Gazelle SG, Russell A, Lee S. 

MRI and PET/CT for triaging stage IB clinically operable cervical cancer 
to appropriate therapy: decision analysis to assess patient outcomes. 
American Roentgen Ray Society 192[March], 802-814. 2009.  

 
 (109)  Tateishi U, Maeda T, Morimoto T, Miyake M, Arai Y, Kim EE. Non-

enhanced CT versus contrast-enhanced CT in integrated PET/CT 
studies for nodal staging of rectal cancer. European Journal of Nuclear 
Medicine & Molecular Imaging 2007; 34(10):1627-1634. 

 (110)  Tsunoda Y, Ito M, Fujii H, Kuwano H, Saito N. Preoperative diagnosis of 
lymph node metastases of colorectal cancer by FDG-PET/CT. Japanese 
Journal of Clinical Oncology 2008; 38(5):347-353. 

 (111)  McKenna C, Claxton K, Soares M. Expected Value of Sample 
Information. Personal Communication: 21.09.2011. 2011. York, Centre 
for Health Economics, University of York. 21-9-0011.  

 

 (112)  Gearhart SL, Frassica D, Rosen R, Choti M, Schulick R, Wahl R. 
Improved staging with pretreatment positron emission 
tomography/computed tomography in low rectal cancer. Annals of 
Surgical Oncology 2006; 13(3):397-404. 

 (113)  Davey K, Heriot AG, Mackay J, Drummond E, Hogg A, Ngan S et al. The 
impact of 18-fluorodeoxyglucose positron emission tomography-
computed tomography on the staging and management of primary 
rectal cancer. Diseases of the Colon & Rectum 2008; 51(7):997-1003. 

 (114)  Bassi MC, Turri L, Sacchetti G, Loi G, Cannillo B, La Mattina P et al. 
FDG-PET/CT imaging for staging and target volume delineation in 
preoperative conformal radiotherapy of rectal cancer. International 
Journal of Radiation Oncology Biology Physics 2008; 70(5):1423-1426. 

 (115)  Engledow AH, Bond-Smith GEL, Francis D, Pakzad F, Bomanji J, Groves 
A et al. The incremental value of dual modality PET/CT imaging over 



  331 

PET imaging alone in advanced colorectal cancer. Indian Journal of 
Surgery 2009; 2009:71-68. 

 (116)  Garin E, Devillers A, Prigent F, Bouriel C, Girault S, Boudjema K et al. 
Contribution of coregistrated PET/CT for patients with suspected 
recurrence of colo-rectal cancer. Medecine Nucleaire 2003; 
27(12):665-675. 

 (117)  Soyka JD, Veit-Haibach P, Strobel K, Breitenstein S, Tschopp A, Mende 
KA et al. Staging pathways in recurrent colorectal carcinoma: is 
contrast-enhanced 18F-FDG PET/CT the diagnostic tool of choice? 
Journal of Nuclear Medicine 2008; 49(3):354-361. 

 (118)  Maroun J, Ng E, Berthelot J, Le Petit C, Dahrouge S, Flanagan W et al. 
Lifetime costs of colon and rectal cancer management in Canada. 
Chronic Disease Cancer 24[4], 91-101. 2003.  

 
 (119)  The Royal College Radiologists. Radiotherapy Dose Fractionation. 

BFCO(06)1. 2006.  
 
 (120)  Cancer Research UK.Treating Bowel Cancer. 2009.Cancer Research UK.  
 
 (121)  Tenesa A, Theodoratou E, Din F, Farrington S, Cetnarskyj R, Barnetson 

R et al. Ten common genetic variants associated with colorectal 
cancer risk are not associated with survival after diagnosis. Clinical 
Cancer Research 16[14], 3754-3759. 2010.  

 

 (122)  Ramsey S, Andersen MR, Etzioni R, Moinpour C, Peacock S, Potosky A 
et al. Quality of Life in survivors of colorectal cancer. American Cancer 
Society 2000; 88:1294-1303. 

 (123)  National Institute for Health and Clinical Excellence. Capecitabine and 
oxaliplatin in the adjuvant treatment of stage III (Dukes' C) colon 
cancer. Technology Appraisal 100. 2006.  National Institute for Health 
and Clinical Excellence. 2006.  

 
 (124)  Kind P, Hardman G, Macran S. UK population Norms for EQ-5D. 

Discussion Paper 172. 1999. York, Centre for Health Economics, 
University of York.  

 
 (125)  Office National Statistics. Deaths: age and sex, numbers and rates: 

Population Trends.  2009. online, Office National Statistics.  
 
 (126)  Capirci C, Rubello D, Chierichetti F, Crepaldi G, Fanti S, Mandoliti G et 

al. Long-term prognostic value of 18F-FDG PET in patients with locally 
advanced rectal cancer previously treated with neoadjuvant 
radiochemotherapy. American Journal of Roentgenology 2006; 
7(2):W202-W208. 

 (127)  Fernandez FG, Drebin JA, Linehan DC, Dehdashti F, Siegel BA, 
Strasberg SM. Five-year survival after resection of hepatic metastases 



  332 

from colorectal cancer in patients screened by positron emission 
tomography with F-18 fluorodeoxyglucose (FDG-PET). Annals of Surgery 
2004; 240(3):438-447. 

 (128)  Strasberg SM, Dehdashti F, Siegel BA, Drebin JA, Linehan D. Survival of 
patients evaluated by FDG-PET before hepatic resection for metastatic 
colorectal carcinoma: a prospective database study. Annals of Surgery 
2001; 233(3):293-299. 

 (129)  Medical Services Advisory Committee. Positron emission tomography 
for recurrent colorectal cancer. 35a. 2008. Australia, Medical Services 
Advisory Committee.  

 
 (130)  Sloka J, Hollett P, Mathews M. Cost-effectiveness of Poitron Emission 

Tomography in recurrent colorectal cancer in Canada. McGill Journal 
of Medicine 7[2], 165-174. 2004.  

 
 (131)  Chen LB, Tong IL, Song HZ, Zhu H, Wang YC. F-18-DG PET/CT in 

detection of recurrence and metastasis of colorectal cancer. World 
Journal of Gastroenterology 2007; 13(37):5025-5029. 

 (132)  Tengs T, Wallace A. One Thousand Health-Related Quality of Life 
Estimates. Medical Care 2000; 38(6):583-637. 

 (133)  American Cancer Society. Colorectal Cancer: Facts and Figures Special 
Edition.  2005. Atlanta, American Cancer Society.  

 
 (134)  Park K, Schwimmer J, Shepherd J, Phelps M, Czernin J, Schiepers C et 

al. Decision Analysis for the cost-effective management of recurrent 
colorectal cancer. Annals of Surgery 233[3], 310-319. 2001.  

 
 (135)  Lejeune C, Bismuth M, Conroy T, Zanni C, Bey P, Bedenne L et al. Use 

of a decision analysis model to assess the cost-effectiveness of F-FDG 
PET in the management of metachronous liver metastases of colorectal 
cancer. The Journal of Nuclear Medicine 46[12], 2020-2028. 2005.  

 
 (136)  Zubledia J, Bednarczyk E, Baker J, Nabi H. The Economic Impact of 

FDG Positron Emission Tomography in the Surgical Management of 
Colorectal Cancer with Hepatic Metastases. Cancer Biotherapy & 
Radiopharmaceuticals 20[4], 450-456. 2005.  

 
 (137)  Langenhoff B, Krabbe p, Peerenboom L, Wobbes T, Ruers T. Quality of 

life after surgical treatment of colorectal liver metastases. British 
Journal of Surgery 93, 1007-1014. 2006.  

 
 (138)  American Joint Committee on Cancer. Colon and Rectum Cancer 

Staging. 7th. 2010. New York, American Joint Committee on Cancer.  
 
 (139)  Barnetson R, Tenesa A, Farrington S, Nicholl I, Cetnarskyj R, Porteous 

M et al. Identification and survival of carriers of mutations in DNA 
mismatch-repair genes in colon cancer. New England Journal of 
Medicine 354[26], 2751-2763. 2006.  



  333 

 
 (140)  Bipat S, Glas A, Slors F, Zwinderman A, Bossuyt P, Stoker J. Rectal 

Cancer: local staging and assessment of lympth node involvement with 
endoluminal US, CT and MR Imaging: a meta-analysis. Radiology 
232[3], 773-783. 2004.  

 
 (141)  Schaefer O, Langer M. Detection of recurrent rectal cancer with CT, 

MRI and PET/CT. European Radiology 2007; 17(8):2044-2054. 

 (142)  Current Problems in Surgery. The curent management of rectal cancer. 
Current Problems in Surgery 42[2], 78-131. 2005.  

 
 (143)  Eglinton T, Luck A, Bartholomeusz D, Varghese R, Lawrence M. 

Positron-emission tomography/computed tomography (PET/CT) in the 
intitial staging of primary rectal cancer. Colorectal Disorders 12[667], 
673. 2010.  

 
 (144)  Heriot AG, Hicks RJ, Drummond EG, Keck J, Mackay J, Chen F et al. 

Does positron emission tomography change management in primary 
rectal cancer? A prospective assessment. Diseases of the Colon & 
Rectum 2004; 47(4):451-458. 

 (145)  Information Services Division. Scottish Health Service Costs Book 2009.  
2009. online, Information Services Division.  

 
 (146)  National Cancer Research Institute. A Framework for PET Research in 

the UK.  2007.  National Cancer Research Institute. 2007.  
 
 (147)  Price P, Laking G. How should we introduce clinical PET in the UK?  

The oncologists need to have a view. Clinical Oncology 16, 172-175. 
2004.  

 
 (148)  Department of Health. A Framework for the Development of Positron 

Emission Tomography (PET) Services in England. Gateway Number 
5265. 2005.  

 
 (149)  Guest J, Ruiz F, Greener M, Trotman I. Palliative care treatment 

patterns and associated costs of healthvare resource use for specific 
advanced cancer patients in the UK. European Journal of Cancer Care 
15[1], 65-73. 2006.  

 
 (150)  Saunders TH, Mendes Ribeiro HK, Gleeson FV. New techniques for 

imaging colorectal cancer: the use of MRI, PET and 
radioimmunoscintigraphy for primary staging and follow up. British 
Medical Bulletin 2002; 64:81-99. 

 (151)  Brush J, Boyd KA, Chappell F, Crawford F, Dozier M, Fenwick E et al. 
The value of 18FDG positron emission tomography/computerised 
tomography (PET/CT) in pre-operative staging of colorectal cancer: a 
systematic review and economic evaluation. Health Technology 
Assessment 15[35]. 2011.  

 



  334 

 (152)  Sarikaya I, Bloomston M, Povoski SP, Zhang J, Hall NC, Knopp MV et al. 
FDG-PET scan in patients with clinically and/or radiologically 
suspicious colorectal cancer recurrence but normal CEA. World Journal 
of Surgical Oncology 2007;(5):article no 64. 

 (153)  Bellomi M, Rizzo S, Travaini LL, Bazzi L, Trifiro G, Zampino MG et al. 
Role of multidetector CT and FDG-PET/CT in the diagnosis of local and 
distant recurrence of resected rectal cancer. Radiologia Medica 2007; 
112(5):681-690. 

 (154)  Votrubova J, Belohlavek O, Jaruskova M, Oliverius M, Lohynska R, 
Trskova K et al. The role of FDG-PET/CT in the detection of recurrent 
colorectal cancer. European Journal of Nuclear Medicine & Molecular 
Imaging 2006; 33(7):779-784. 

 (155)  Even-Sapir E, Parag Y, Lerman H, Gutman M, Levine C, Rabau M et al. 
Detection of recurrence in patients with rectal cancer: PET/CT after 
abdominoperineal or anterior resection. Radiology 2004; 232(3):815-
822. 

 (156)  Schmidt GP, Baur-Melnyk A, Haug A, Utzschneider S, Becker CR, Tiling 
R et al. Whole-body MRI at 1.5 T and 3 T compared with FDG-PET-CT 
for the detection of tumour recurrence in patients with colorectal 
cancer. European Radiology 2009; 19(6):1366-1378. 

 (157)  Ramos E, Martinez L, Gamez C, Torras J, Valls C, Rafecas A et al. Use 
of PET-CT in pre-surgical staging of colorectal cancer hepatic 
metastases. Cirugia Espanola 2008; 84(2):71-77. 

 (158)  Selzner M, Hany TF, Wildbrett P, McCormack L, Kadry Z, Clavien PA. 
Does the novel PET/CT imaging modality impact on the treatment of 
patients with metastatic colorectal cancer of the liver? Annals of 
Surgery 2004; 240(6):1027-1034. 

 (159)  Sloka J, Hollett P. Cost effectiveness of Poitron Emission Tomography 
in Canada. Medical Science Monitor 11[10], PH1-PH6. 2005.  

 
 (160)  D'Souza MM, Sharma R, Mondal A, Jaimini A, Tripathi M, Saw SK et al. 

Prospective evaluation of CECT and 18F-FDG-PET/CT in detection of 
hepatic metastases. Nuclear Medicine Communications 2009; 
30(2):117-125. 

 (161)  Chua SC, Groves AM, Kayani I, Menezes L, Gacinovic S, Du Y et al. The 
impact of 18F-FDG PET/CT in patients with liver metastases. European 
Journal of Nuclear Medicine & Molecular Imaging 2007; 34(12):1906-
1914. 

 (162)  Kong G, Jackson C, Koh DM, Lewington V, Sharma B, Brown G et al. 
The use of 18F-FDG PET/CT in colorectal liver metastases-comparison 
with CT and liver MRI. European Journal of Nuclear Medicine & 
Molecular Imaging 2008; 35(7):1323-1329. 



  335 

 (163)  Rappeport ED, Loft A, Berthelsen AK, der Recke P, Larsen PN, 
Mogensen AM et al. Contrast-enhanced FDG-PET/CT vs. SPIO-enhanced 
MRI vs. FDG-PET vs. CT in patients with liver metastases from 
colorectal cancer: A prospective study with intraoperative 
confirmation. Acta Radiologica 2007; 48(4):369-378. 

 (164)  Coenegrachts K, De GF, ter BL, Walgraeve N, Bipat S, Stoker J et al. 
Comparison of MRI (including SS SE-EPI and SPIO-enhanced MRI) and 
FDG-PET/CT for the detection of colorectal liver metastases. European 
Radiology 19(2)()(pp 370-379), 2009 Date of Publication: 2009 
2009;(2):370-379. 

 (165)  Wildi SM, Gubler C, Hany T, Petrowsky H, Clavien PA, Jochum W et al. 
Intraoperative sonography in patients with colorectal cancer and 
resectable liver metastases on preoperative FDG-PET-CT. Journal of 
Clinical Ultrasound 2008; 36(1):20-26. 

 (166)  Scottish Intercollegiate Guidelines Network. SIGN 50: A guideline 
developer's handbook.  2011. Edinburgh, Scottish Intercollegiate 
Guidelines Network.  

 
 (167)  Harbord RM, Deeks J, Egger M, Whiting P, Sterne J. A unification of 

models for meta analysis of diagnostic accuracy studies. Biostatistics 
8[2], 239-251. 2007.  

 
 (168)  Briggs AH. Statistical approaches to handling uncertainty in health 

economic evaluation. European Journal of Gastroenterology & 
Hepatology 2004; 16:551-561. 

 (169)  Drummond M. Economic analysis alongside clinical trials. London: 
Department of Health, 1994. 

 (170)  Briggs AH, Gray A. Power and sample size calculations for stochastic 
cost-effectiveness analysis. Medical Decision Making 18, S81-S92. 1998.  

 
 (171)  Briggs AH, Tambour M. The design and analysis of stochastic cost-

effectiveness studies for the evaluation of health care interventions. 
Drug Information Journal 35[4], 1455-1468. 1998.  

 
 (172)  Committee for medicinal products for human use. Guideline on the 

choice of the non-inferiority margin. EMEA/CPMP/EWP/2158/99. 2005. 
London, UK, European Medicines Agency.  

 
 (173)  Information Services Division. Births and Babies.  2005.  NHS National 

Services Scotland.  
 
 (174)  Kenyon S, Taylor D, Tarnow-Mordi W. Broad-spectrum antibiotics for 

spontaneous preterm labour: the ORACLE II randomised trial. The 
Lancet 357[9261], 989-994. 2001.  

 



  336 

 (175)  Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal 
lung maturation for women at risk of preterm birth. Cochrane 
Database of Systematice Reviews 3[CD004454]. 2006.  

 
 (176)  Phillipson B, Clark P. Baby steps to better care: Bliss Baby Report 

2008.  2008. London, Bliss.  
 
 (177)  Information Services Division. Scottish Perinatal Infant Morbidity and 

Mortality Report 2008.  2009.  NHS National Services Scotland.  
 
 (178)  Hospital Episode Statistics Online. Maternity Data Reports .  2010. 

online, The Information Centre for Health and Social Care, NHS.  
 
 (179)  The Consortium on Safe Labor. Respiratory Morbidity in late Preterm 

Births. JAMA 304[4], 411-418. 2010.  
 
 (180)  Altman M, Vanpee M, Cnattingius S, Norman M. Neonatal Morbidity in 

Moderately Preterm Infants: A Swedish National Population-Based 
Study. The Journal of Pediatrics 158[2], 239-244. 2011.  

 
 (181)  Healthcare Commission. Towards better births: A review of maternity 

services in England. Commission for Healthcare Audit and Inspection, 
Concordat gateway number: 134. 2008.  

 
 (182)  Hogg M, Penney G, Carmichael J. Audit of Care Provided and Outcomes 

Achieved by Community Maternity Units in Scotland 2005. Scottish 
Programme for Clinical Effectiveness in Reproductive Health, 
Publication Number 29. 2007.  NHS Quality Improvement Scotland.  

 
 (183)  Crowther C, Doyle L, Haslam R, Hiller J, Harding J, Robinson J. 

Outcomes at 2 years of age after repeat doses of antenatal 
corticosteroids. New England Journal of Medicine 357[12], 1179-1189. 
2007.  

 
 (184)  de Heus R, Mol B, Erwich J, van Geijn H, Gyselaers W, Hanssens M et 

al. Adverse drug reactions to tocolytic treatment for preterm labour: 
prospective cohort study. British Medical Journal 338[b744]. 2009.  

 
 (185)  Tekesin I, Marek S, Hellmeyer L, Reitz D, Schmidt S. Assessment of 

Rapid Fetal Fibronectin in Predicting Preterm Delivery. Obstetrics & 
Gynecology 105[2], 280-284. 2005.  

 
 (186)  Macintyre-Beon S, Skeoch C, Jackson L, Boot P, Cameron A. Perinatal 

Collaborative Transport Study (CoTS) Final report. DS30/LC. 2008. 
Glasgow, NHS Quality Improvement Scotland.  

 
 (187)  Information Services Division. Cost Book: Maternity, Special Baby Care 

Unit.  2008. online, Information Services Division.  
 
 (188)  Committee for proprietary medicinal products. Points to consider on 

switching between superiority and non inferiority. CPMP/EWP/482/99. 



  337 

2000. London, European Agency for the Evaluation of Medicinal 
Products.  

 
 (189)  Johansson P. On the definition and age-dependency of the value of a 

statistical life. The Journal of Risk and Uncertainty 25[3], 251-263. 
2002.  

 
 (190)  Department for Transport. Highways Economics Note No. 1: 2005 

Valuation of the Benefits of Prevention of Road Accidents and 
Casualties. 1. 2007.  Department for Transport.  

 
 (191)  Abelson P. The value of life and health for public policy. The Economic  

 (192)  Godfrey C, Pickett K, Parrott S, Mdege N, Eapen P. Estimating the 
Costs to the NHS of Smoking in Pregnancy for Pregnant Women and 
Infants. Final report. 2010. York, Public Health Research Consortium, 
University of York.  

 
 (193)  Petrou S, Mehta Z, Hockley C, Cook-Mozaffari P, Henderson J, 

Goldacre M. The impact of pre-term birth on hospital inpatient 
admissions and costs during the first 5 years of life. Pediatrics 112[6], 
1290-1297. 2003.  

 
 (194)  Dolan P, Metcalfe R, Munro V, Christensen M. Valuing lives and life 

years: anomalies, implications, and an alternative. Health Economics, 
Policy & Law 2008; 3:277-300. 

 (195)  Mason H, Jones-Lee M, Donaldson C. Modilling the monetary value of a 
QALY: A new approach based on UK data. Health Economics 18[8], 933-
950. 2008.  

 
 (196)  Office National Statistics. Life expectancy at birth: UK 2005-2007.  

2008. online, Office National Statistics.  
 
 (197)  Kay R. Issues in non-inferiority trials. Online lecture slides, cited 

05/08/2010. 2009. Sheffield, Sheffield University.  
 
 (198)  O'Hagan A, Stevens J. Bayesian assessment of sample size for clinical 

trials of cost-effectiveness. Medical Decision Making 21, 219-230. 2001.  
 
 (199)  Brennan A, Kharroubi SA. Efficient computation of partial expected 

value of sample information using Bayesian approximation. Journal of 
Health Economics 26, 122-148. 2007.  

 
 (200)  Brennan A, Chilcott J, Kharroubi SA, O'Hagan A. Cost-effectiveness 

models to inform trial design: Calculating the expected value of 
sample information . Online lecture slides, cited 3/01/2011. 2011. 
Sheffield, School of Health and Related Research.  

 
 (201)  TreeAge Software Inc. TreeAge .  2012. USA, TreeAge Software Inc.  
 



  338 

 (202)  The R Project for Statistical Computing. The R Project for Statistical 
Computing.  2012. Vienna, Austria, Institute for Statistics and 
Mathematics.  

 
 (203)  StataCorp. STATA.  2012. USA, StataCorp TX.  
 
 
 


