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Summary 

Chronic lymphocytic leukaemia (CLL) is the most prevalent leukaemia of the 

Western world, and despite the recent evolution in clinical treatment of the 

disease, it remains incurable.  Although current therapies such as allogeneic 

hematopoietic stem cell (HSC) transplantation have been successfully used to 

treat CLL, this is an option for only a minority, as most CLL patients are diagnosed 

over the age of sixty and cannot withstand the harsh transplantation procedures. 

Combination chemotherapy, such as fludarabine and cyclophosphamide, has 

been shown to significantly improve response rate and prolonged remission in CLL 

patients, however, no improvement in overall survival has been observed. Patients 

eventually relapse due to re-emergence of minimal residual disease (MRD). 

Therefore it is critical that further clinical therapies are investigated in order to 

eliminate MRD, and offer hope to patients that are unresponsive to current 

treatments.   

CLL is marked by the presence of the accumulation of long-lived mature 

monoclonal B cells in peripheral lymphoid organs, bone marrow and peripheral 

blood with the specific phenotype of CD19hi, CD5+, CD23+ and IgMlo that resist 

apoptosis. The in vivo accumulation of leukaemic lymphocytes is highly facilitated 

by interactions of CLL cells with other cells present in their microenvironment, 

including stromal cells and soluble factors such as IL4.  Studies have established 

a variety of mechanisms potentially responsible for disease progression in CLL, 

including chromosomal abnormalities and intrinsic defects in the apoptotic 

machinery due to higher levels of the anti-apoptotic protein Bcl-2 family member 

proteins Bcl-2 and Mcl-1, thus making this disease extremely heterogeneous.  

Although the apoptotic machinery is certainly dysregulated in CLL, it is not simply 

a disease of a clonal accumulation of B cells, rather, proliferation is occurring as 

well as apoptosis, accounting for up to 2% of the clone size per day. CLL B cell 

proliferation centres exist within lymph nodes (LN) and bone marrow (BM) where B 

cells receive signals from their B cell antigen receptor (BCR) to proliferate, 

generating a very aggressive form of the disease.  In addition, evidence suggests 

that stimulation through the BCR plays a pivotal role in pathogenesis of CLL since 

CLL B cells have a phenotypic profile of B cells activated by antigen interaction 

and a genetic expression profile of antigen experienced B cells.  

During the course of our studies assessing the impact of modulating protein kinase 

C (PKC) signaling in B cell development in vitro or in vivo, we developed a unique 
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model system to investigate the mechanisms underlying the induction of CLL.  

Introduction of full length, catalytically inactive PKCα (PKCα-KR) into HSCs 

derived from wild type mouse fetal liver (FL), and subsequent culture of the cells 

either in vitro or in vivo resulted in the generation of a population of B lymphocytes 

that are phenotypically similar to human CLL cells (CD19hi, CD5+, CD23+, IgMlo). 

PKCα-KR-expressing FL cells also expressed enhanced proliferative capacity over 

untransduced cells and were refractory to apoptosis.  These results indicate that 

the subversion of PKCα signaling acts as an oncogenic trigger for developing B 

lymphocytes. The aim of this project was to identify similarities between our 

murine CLL (mCLL) model and human CLL and investigate putative translational 

therapeutic targets.  The main findings of this study implicate PKCβII as an 

important survival and proliferation signal within mCLL.  Cyclin D1 is also 

upregulated within mCLL, linked to an increase in the proliferative capacity of 

mCLL cells, and is regulated through transcriptional repressor 4EBP1, which 

appears inactive in both mCLL and human CLL.  In addition, PKCα-KR transduced 

cells harbour the potential for lineage plasticity in a microenvironment-dependent 

manner, whereby PKCα-KR B cells lineage switch to T cells upon Notch ligation.  

The reprogramming occurs via a reduction in B cell specific genes and an 

upregulation of T cell specific genes, implicating the deregulation of PKCα 

activity/expression as a potential mechanism for lineage trans-differentiation 

during malignancies. Importantly, in human CLL, PKCα is downregulated at the 

transcript and protein levels implicating it a tumour suppressor, highlighting the 

translational capacity of our CLL mouse model. 
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1.1 Normal B cell development and function 

1.1.1 Summary of B cell development 

B cell development is characterized by a series of steps marked by the 

upregulation or downregulation of specific genes that regulate differentiation, 

proliferation, migration, survival and apoptosis (Honjo & Neuberger 2004). At each 

stage of B cell development, gene rearrangements lead to either successful or 

unsuccessful immunoglobulin (Ig) protein chain products, allowing the cell to 

proceed to the next stage of development or to apoptose respectively (Murphy et 

al. 2008).   It is crucial that a B cell expresses only one receptor specificity, and is 

therefore strictly monitored by inherent checkpoints to avoid dysfunctional 

development (Murphy et al. 2008). Therefore an immature B cell that binds self-

surface antigen is removed through negative selection in the BM.  A mature B cell 

bound to foreign antigen is activated and eventually gives rise to plasma and 

memory cells (Murphy et al. 2008).   

1.1.2 B cell development  

Pluripotent haematopoietic stem cells (pHSCs) develop into lymphoid progenitors 

that can generate B, T and NK cells and are phenotypically Lin-CD27+ckithi Sca-1+ 

within the mouse and Lin-CD34+CD38- within the human (Honjo & Neuberger 

2004; Nagasawa 2006) (Figure 1.1). Within the BM microenvironment lie stromal 

cells that provide cell-to-cell contact through cell adhesion molecules and their 

ligands and also secrete necessary cytokines and chemokines for the subsequent 

differentiation into B cells.  Multipotent progenitor cells (MPPs) express cell-

surface receptor tyrosine kinase called Flt-3 in human (Flt-3/Flk-2 in mice) that 

binds Flt-3 ligand on stromal cells.  Through Flt-3 signaling, an MPP differentiates 

to a common lymphoid progenitor (CLP) that can give rise to both B and T cells 

(Honjo & Neuberger 2004).  Flt-3 signaling together with activity of transcription 

factor PU.1 (also known as spleen focus forming virus (SFFV) proviral integration 

oncogene SPI1) induces expression of the interleukin-7 receptor (IL7R) in both 

human and mouse.  IL7 secreted by the stromal cells is important for the 

development of B and T cells in mice (Honjo & Neuberger 2004).  In human, 

although IL7R is expressed on HSCs from the BM and foetal liver (FL), stem cells 

within human cord blood (CB) that are CD34+CD38-CD7+ do not express IL7R, 

indicating that it may not be necessary in human B cell development (Hao et al. 

2001; Milne & Christopher J Paige 2006; Hoebeke et al. 2007).  In addition to IL7, 
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stem-cell factor (SCF) is another cytokine that stimulates growth of the 

haematopoietic lineage and B cell progenitors (Honjo & Neuberger 2004).  SCF is 

a membrane bound cytokine that interacts with receptor tyrosine kinase ckit 

(CD117) on precursor cells.  Stromally secreted stromal cell-derived factor 1 (SDF-

1), also known as chemokine CXCL12 is also important in B cell development at 

this stage for retention of B cell precursors within the BM (Honjo & Neuberger 

2004). CLP are marked by surface expression of CD45+Lin-ckitlo Sca-1lo in mouse 

and CD34+CD38+CD10- in human (Honjo & Neuberger 2004; Nagasawa 2006) 

(Figure 1.1).  At this point of development definitive B cell fate is specified by 

activity of E2A and early B cell factor (EBF) (see Section 1.1.4).  

The CLP gives rise to the pre-pro-B cell, where Ig rearrangement begins with the 

heavy-chain locus driven by recombination activation genes (RAG)s (Figure 1.2). 

Phenotypically pre-pro-B cells are ckit-B220+Flt-3+CD43+BP-1- and heat stable 

antigen (HSA/CD24)- in mouse and CD34+CD38+CD19+CD10- in human (Figure 

1.1) (Nagasawa 2006).  Ig heavy chain (IgH) rearrangement begins with the 

coming together of diverse (D) to joining (J)H regions at both alleles of the IgH locus 

(Figure 1.2). However these cells are not decisively B cells, as DH-JH gene 

rearrangements are also found in T, NK and myeloid cells (Honjo & Neuberger 

2004). As the lymphoid progenitors continue differentiation toward the B cell fate, 

some cells begin to express Igα (CD79a).  In addition transcription factors paired-

box-protein-5 (PAX5) and aiolos are expressed within this population, and Id 

genes repressed (Honjo & Neuberger 2004). 
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Figure 1.1 B cell development: surface protein expression 
 

At this point the cell becomes a pro-B cell that begins rearrangement of variable 

heavy chain (VH) gene segment to DJH on one chromosome (Honjo & Neuberger 

2004)(Figure1.2).   If this rearrangement is unsuccessful, rearrangement on the 

other allele begins.  Phenotypically pro-B cells are characterized as 

CD19+ckit+B220+Flt-3-CD43+BP-1-HSA+ in mouse and CD34+CD38+CD19+CD10+ 

in human (Figure 1.1) (Nagasawa 2006; Igarashi et al. 2002). 

Terminal deoxynucleotidyl transferase (TdT) is an enzyme that is expressed by 

pro-B cells.  By adding non-templated nucleotides at the joints in between 

rearranged gene segments, TdT aids in the diversity of the BCR repertoire.  Once 

V(D)J has rearranged, the rearranged heavy chain (IgVH) must be functionally 

tested.  The heavy chain is incorporated into a receptor along with two surrogate 

proteins that have similar structures to the light chains (which have not yet 

rearranged) (Ogawa et al. 2000; Gounari et al. 2002).  Expression of these two 

surrogate proteins: λ5 and VpreB are induced by E2A and EBF.  Alongside these 

surrogate proteins, Igα (CD79α) and Igβ (CD79b) are two other necessary proteins 

expressed by pro-B cells that are crucial components of the pre-B cell receptor 
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(pre-BCR) (Honjo & Neuberger 2004). Unlike λ5 and VpreB, Igα and Igβ are also 

necessary for the formation of the BCR.   

Formation of the pre-BCR marks the transition between a pro-B cell toward a large 

pre-B cell population which is CD19+ckit-B220+Flt-3-CD43-BP-1+HSA+ in mouse 

and CD34-CD19+CD10+ in human (Figure 1.1) (Nagasawa 2006; Murphy et al. 

2008). Signaling via the pre-BCR involves key molecules such as B cell linker 

protein (BLNK) and Bruton’s tyrosine kinase (Btk), and ensures that only one of 

the two heavy chain alleles are expressed in a cell, a process termed ‘allelic 

exclusion’.  Allelic exclusion involves a reduction in expression of RAG1 and 

RAG2 and reduction in access to heavy chain locus to the recombinase 

machinery.  Pro-B cell to large pre-B cell transition is also marked by a 

proliferation event, whereby the population of cells that have successfully formed 

the pre-BCR expands before it becomes a population of small pre-B cells. 

Expression of VpreB and λ5 is turned off at this point (Grawunder et al. 1995) 

through pre-BCR signaling via Igα/Igβ, spleen tyrosine kinase (SYK) and BLNK 

(Melchers 2005).   

 

Modified from Murphy et al. 2008 

Figure 1.2 V(D)J Recombination  
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Large proliferating pre-B cells eventually stop dividing and light chain 

rearrangement re-occurs.  At this point TdT is activated in human cells (but not in 

mouse) (Honjo & Neuberger 2004; Payne & Crooks 2007).   

Light chain rearrangement is initiated by the reactivation of RAG proteins.  Each 

small pre-B cell can generate a unique rearranged light chain, thus again enlarging 

the overall pool of B cells with different antigen specificities.  Since light chain loci 

lack D segments, rearrangement occurs by VJ joining (Figure 1.2). Once light 

chain rearrangement is successful on both alleles, a light chain pairs with a µ 

chain forming an intact IgM that is expressed on the cell surface and the cell 

enters the immature B cell stage. Allelic and isotypic exclusion occur after light 

chain rearrangement to produce B cells expressing only one type of light chain: κ 

or λ. Immature B cells are found in BM and spleen and express IgM but not IgD on 

their surface. They also continue to express RAG1, RAG2, and AA4.1, whereas 

CD21 and CD23 are not yet expressed (Honjo & Neuberger 2004).  If immature B 

cells express autoantigen specific BCR, arrest in differentiation is initiated and 

apoptosis follows.  On the other hand, low avidity to autoantigen can result in 

positive selection of immature B cells into the B1 cell compartment in the mouse, 

or periphery for human (Honjo & Neuberger 2004). Separate B1 and B2 

compartments found in the mouse are yet to be identified in human (see section 

1.1.2.1) (Payne & Crooks 2007). An immature B cell passes through a transitional 

stage (see section 1.1.2.2) where it can be positively selected for and allowed to 

mature, now expressing both IgM and IgD. A mature B cell bound to foreign 

antigen is activated and eventually gives rise to plasma and memory cells (Murphy 

et al. 2008). 

1.1.2.1 B1 versus B2 cells 

In mouse, B1 cells consist of B1a and B1b cells, which differ based on surface 

phenotype whereby B1a cells are IgMloIgDlo/-CD5+ and B1b cells are IgMhiIgDlo/-

CD5lo/-. B2 cells are IgMloIgDhiCD5- (Hayakawa & Hardy 2000).  B1 cells are 

thought to be derived from FL, whereas B2 cells are of adult BM origin.  B1 cells 

are found within spleen, pleural and peritoneal cavities and can express CD11b 

within the peritoneal cavity (Berland & Wortis 2002).  Two models exist that 

explain the origin of a B1 and B2 cells.  In the single lineage model, B1 and B2 
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cells are thought to derive from two distinct committed precursors, and are 

therefore distinct lineages.  In the layered model, B1 cells are thought to develop 

as a result of antigen-driven differentiation and selection (Berland & Wortis 2002).  

B1 cells are thought to develop as a result of B cells encountering repetitive 

antigens during neonatal life, whereas B2 cells develop as a result of B cells being 

exposed to exogenous antigens during adult life.  In this model, B2 cells can 

transition into B1 cells through BCR stimulation (Herzenberg 2000).  However, 

Montecino-Rodriguez and colleagues show that B1 and B2 progenitors are distinct 

subsets based on CD138 and MHC class II molecule expression during early B 

cell development (Montecino-Rodriguez et al. 2006; Tung et al. 2006). 

1.1.2.2 Transitional B cells  

Between BM immature B cells and peripheral mature B cells exist a subset of 

transitional B cells, termed transitional 1 (T1) and transitional 2 (T2) cells.  The 

transitional stage is a key juncture where developing B cells gain access to the 

spleen, start responding to T-cell help and become insensitive to negative 

selection.  Transitional B cells still resemble their BM counterparts (Chung et al. 

2003).  They are still susceptible to negative selection and are HSAhighAA4.1+, 

express surface IgM at higher levels and CD22 and B220 at lower levels 

compared to mature B cells.  Phenotypically, T1 B cells are AA4.1+IgM+IgD-

CD21loCD23- whereas T2 B cells IgMhiIgDhiCD21+CD23+.  Allman et al describe a 

T3 subset which is similar to T2 but expresses sIgM at lower levels than T2 cells 

(Allman et al. 2001).   

When immature B cells exist in the BM, they emigrate to the spleen via terminal 

branches of central arterioles and enter the red pulp, penetrating the marginal 

zone sinuses and reaching the periarteriolar lymphoid sheath (PALS).  T1 cells are 

limited to the outer PALS where the T-cell-B cell interphase lies, whist T2 cells 

migrate toward B cell follicles, most likely due to their high surface expression of 

chemokine receptor CXCR5 compared to T1 cells (Chung et al. 2003).  Whereas 

mature B cells induce proliferation upon BCR engagement, T1 cells do not 

proliferate and are vulnerable to apoptosis.  It is unclear whether T2 cells 

proliferate and are resistant to apoptiosis following BCR engagement (Loder et al. 

1999; Allman et al. 2001; Su & Rawlings 2002; Petro et al. 2002; Chung et al. 

2002; Chung et al. 2003).  However, with T-cell help, T2 B cells do proliferate 

when stimulated and evade BCR-induced apoptosis, unlike T1 cells (Chung et al. 
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2002).  Both T1 and T2 cells, however, are capable of processing and presenting 

antigen like mature B cells.  Therefore the transition from T1 to T2 is key in their 

subsequent development into mature B cells as T2 cells are more responsive to 

positive selection pressures in comparison to T1 cells.   

1.1.2.3 Marginal zone B cells 

Marginal zone (MZ) B cells are IgMhiIgDlowCD21hiCD23- cells that can be found 

within the outermost portion of the white pulp within the spleen, in tonsil 

subepithelial areas, dome regions of Peyer patches and within the subcapsular 

portions of the LN (Chiorazzi & Ferrarini 2011).  MZ B cells are capable of a T-cell 

independent response to bacterial polysaccharides and can carry either 

unmutated or mutated IgV rearrangements (Weill et al. 2009).  In human, 70-80% 

of MZ B cells have mutated IgVH rearrangements (Chiorazzi & Ferrarini 2011).   

MZ B cells can undergo IgVH mutations and Ig isotype switching during responses 

in MZ areas. Activation-induced deaminase (AID) has been postulated by some to 

be responsible for inducing IgV mutations in MZ B cells, although some argue that 

AID cannot be detected in splenic MZ B cells (Chiorazzi & Ferrarini 2011; 

Willenbrock et al. 2005). A more accepted explanation is migration of B cells that 

have acquired mutations and undergone class switch recombination (CSR) within 

the germinal centre (GC) into the MZs.  MZ B cells have been demonstrated to be 

antigen-experienced as confirmed by evidence of clonal expansion of IgMhiIgDlow 

IgV unmutated B cells.  Also, IgV mutated MZ B cells are capable of diversification 

and expansion within the MZ (Dono et al. 2000; William et al. 2002; Dono et al. 

2007).  Within MZ areas, IgG or IgA expressing B cells are found, termed switched 

memory B cells, that use mutated IgVH genes and are most likely of post-GC origin 

(Chiorazzi & Ferrarini 2011). 

1.1.3 The germinal centre reaction 

If a foreign antigen invades the system, CD4+ helper T cells are activated by 

antigen-presenting cells in the periphery (Melchers 2005).  These activated T cells 

travel into the perpheral lymphoid organs where the antigen activates resting 

mature B cells, forming GCs where centroblast and centrocyte B cells proliferate.  

After a few days, a GC becomes visible with histology and is marked by the 

presence of a light zone, rich in follicular dendritic cells (FDCs) and a dark zone 

filled with a compact pool of centroblasts  (Figure 1.3).   Within the GC, CD40 on B 

cells binds to CD40 ligand (CD154) on helper T cells and AID is expressed.  AID 
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induces somatic hypermutation (SHM) in VH and VL regions of Ig, induces CSR via 

switch regions and induces replacement of V-region encoding segments (Melchers 

2005).   

 

Modified from Küppers 2005 

Figure 1.3 The germinal centre reaction 
 

The Igs on these B cells are now hypermutated and express IgH classes other 

than IgM (such as IgG, IgE or IgA) (Klein & Dalla-Favera 2005).  These cells can 

become long-living memory B cells that have high affinity to that particular antigen 

that will in turn get reactivated if the same/similar antigen invades the system 

(Klein & Dalla-Favera 2005).  The hypermutated sIg-expressing B cells can also 

turn into high-affinity antibody-secreting plasma cells.  Both memory and plasma 

cells exit the GC and return to the BM (Melchers 2005). Alternatively if a B cell 

does not exhibit high affinity to an antigen, it is unlikely to survive, resulting in 

apoptosis.   

SHM of mature B cells in response antigen stimulation by T cells not only leads to 

hypermutation of Ig VH and VL regions and Bcl-6 gene, but occasionally also other 

genes that are actively transcribed within the GC which can in turn lead to 

malignancies. For example, in diffuse large cell lymphoma, genes such as c-
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myelocytomatosis viral oncogene (c-myc),  proto-oncogene serine/threonine-

protein kinase (pim-1) and PAX5 are also hypermutated (Melchers 2005).   

1.1.4 Transcriptional Control  

The decision of a lymphoid progenitor to become a B or T cell is controlled by the 

Ikaros gene which controls downstream target genes RAG, TdT, IgH and IgL chain 

genes and Igα (Honjo & Neuberger 2004).  B cell commitment specifically, is 

initially mainly dependent on two transcription factors: the basic-helix-loop-helix 

protein E2A and EBF.  E2A gene has two isoforms: E12 and E47 generated by 

alternate splicing.  IL7 signaling promotes E2A expression that cooperates with 

PU.1 to induce EBF expression (Murphy et al. 2008). Together these transcription 

factors induce expression of B cell specific proteins and thus B cell fate.  In fact, 

absence of E2A negatively affects B lineage differentiation. E2A-/- mice do not 

rearrange Ig at the DH-JH nor VL-JL level (Bain et al. 1994; Zhuang et al. 1994; Lin 

& Grosschedl 1995; Sigvardsson et al. 1997; Kee & Murre 1998).  Transcript 

levels of RAG1, RAG2, CD19, Igα, Igβ, VpreB, λ5 and PAX5 are reduced or 

abolished when E2A is downregulated.  In addition, E2A isoform E47 induces 

expression of TdT and IgH chain locus (Choi et al. 1996).  Also, deficient EBF 

expression in mice results in a B cell developmental block similar to E2A-/- mice 

(Lin & Grosschedl 1995).  

Although E2A and EBF are important initially in B cell development, they are not 

sufficient to push B cell precursors to develop pre-BCRs and functional BCRs.  

Expression of transcription factor PAX5 is crucial to B cell development (Honjo & 

Neuberger 2004).  It is expressed in all stages of B cell development apart from 

plasma cells (Urbánek et al. 1994; Busslinger & Urbánek 1995).  In PAX5-/- mice B 

cell development stops at the pro-B stage (Urbánek et al. 1994).  These cells 

express VpreB and λ5 genes, Igα and Igβ, RAG1 and RAG2, octamer transcription 

factors 1 and 2 (Oct1; Oct2), sex-determining region Y-box 4 (Sox-4), PU.1, 

Ikaros, E2A and EBF (Honjo & Neuberger 2004). PAX5-/- cells do not initiate VH to 

DH-JH rearrangement as normal pro-B cells and cannot therefore generate large 

pre-B cells that express the pre-BCR.  Therefore, these cells cannot rearrange VL-

JL and form immature or mature B cells.   

PAX5 is not only necessary for B cell commitment, but also for the maintenance of 

B cell identity during subsequent differentiation (O’Brien et al. 2011).  PAX5 

activates the transcription of a number of downstream genes responsible for pre-
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BCR signaling as well as other transcription factors that ensure B cell identity.  

More specifically, PAX5 regulates expression of pre-BCR components: V-DJ 

recombined IgH chain alongside surrogate light chains VpreB and λ5, and the Igα/β 

dimmer.  Co-receptor CD19 which is responsible for positive amplification of pre-

BCR signaling is also regulated by PAX5, alongside BLNK and phospholipase C 

gamma (PLCγ)2 (Holmes et al. 2007).  Signaling through the pre-BCR results in 

pre-B cell proliferation, activation of Igκ and allelic exclusion of the IgH locus.   

Expression of Aiolos which in turn represses λ5 resulting in termination of pre-BCR 

signaling, is also regulated by PAX5.  In addition to activating B cell specific 

genes, PAX5 represses genes that are not B cell specific such as macrophage 

colony-stimulating factor (M-CSF) receptor encoding gene Csf1r important in 

macrophage development, Notch homolog-1 (Notch1) important in T cell 

development, and Flt3 which is important in early haematopoietic progenitors and 

early B cell development but downregulated during B cell commitment (Holmes et 

al. 2007).  Therefore, PAX5 is a key regulator in the B cell gene expression 

program. 

1.2 Chronic Lymphocytic Leukaemia  
CLL is a disease characterised by the monoclonal expansion of mature B cells that 

highly express surface protein markers CD5 and CD23, and downregulate 

monoclonal sIgM.  Gene expression profiling data has highlighted the idea of 

phenotypic homogeneity within CLL, implicating transformation of a normal B cell.   

A B cell count of 5 x 109/L for 6 months or longer is used as a benchmark for CLL 

prognosis. Chromosomal abnormalities that are present in 80% of CLL cases are 

identified via fluorescence in situ hybridization (FISH), and are good predictors of 

progression (Desai & Pinilla-Ibarz 2012).   Levels of β2-microglobulin and soluble 

CD23, lymphocyte doubling time, evidence of infiltration into the BM and 

lymphadenopathy, splenomegaly or hepatomegaly are also considered when 

assessing progression (Desai & Pinilla-Ibarz 2012).   Mutational status of IgVH 

genes as well as surrogate markers ZAP70 and CD38 are also good determinants 

of disease stage (Rassenti et al. 2008).   

Clinical staging is carried out using the Rai or Binet staging system (Desai & 

Pinilla-Ibarz 2012).  Patients with the most advanced stage in either staging 

system have a 1-2 year median survival time whereas lowest stage CLL patients 

have a medium survival of more than 10 years (Rai et al. 1975; Binet et al. 1981).   
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Classically, CLL was considered a disease of accumulation rather than 

proliferation, because within the accumulation department (blood), most CLL cells 

are arrested in G0/G1 phase of cell cycle (Caligaris-Cappio & Hamblin 1999).  

However, current opinion highlights the importance of proliferative compartments 

within CLL, where cells are not resting yet actively proliferating and apoptosing 

(Messmer et al. 2005), eradicating the idea that CLL is a static disease, but rather 

dynamic.  In fact, proliferation centres within the BM and LN of CLL patients 

display an aggregate of dynamic CLL cells that eventually make their way into the 

accumulation department (Granziero et al. 2001).  Within proliferation centres are 

prolymphocytes and paraimmunoblasts surrounded by CD4+ CD40L+ T cells.  Of 

interest, stimulation of CD40 on CLL B cells through CD154 (CD40L) induces 

proliferation of otherwise resting CLL B cells (Buske et al. 1997; Kitada et al. 1999; 

Fluckiger et al. 1992) in vitro.  This microenvironment mimicking system also 

allows for the upregulation of survivin, chemokine (C-C motif) ligand 17 (CCL17) 

and 22 (CCL22) which are characteristic of CLL cells within proliferation centres 

(Ghia et al. 2001; Granziero et al. 2001).  Antigen stimulation together with T cell 

help, thus aids in clonal expansion of leukaemic cells which eventually accumulate 

within the blood through additional stromal help (Caligaris-Cappio & Ghia 2007).  

Proliferation compartments are a unique feature of CLL that other B cell 

malignancies do not share.  Interestingly, however, in rheumatoid arthritis and 

multiple sclerosis, these proliferation centres do exist, substantiating the idea that 

a CLL cell is in fact antigen-experienced (Messmer et al. 2005), perhaps self-

antigen-experienced due to the auto-immune characteristics of these two 

diseases.  

1.2.1 IgVH mutational status  

CLL cells have been demonstrated to be heterogeneous in terms of molecular and 

functional features such as clinical course (Klein et al. 2001; Caligaris-Cappio & 

Ghia 2007). While some CLL patients require immediate therapeutic intervention, 

others may never need therapy.  The most prominent feature of CLL intraclonal 

heterogeneity arises from the two distinctive CLL subtypes based on IgVH gene 

mutational status.  One group of CLL patients carries unmutated IgVH genes, while 

the other carries mutated IgVH genes.  The two subsets have remarkable 

differential clinical outcomes whereby unmutated IgVH carrying patients display a 

worse overall prognosis than mutated IgVH carrying patients (Hamblin et al. 1999; 

Damle et al. 1999).  CD38 expression and 70 kDa zeta associated protein 
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(ZAP70) positivity are another two distinguishing features within CLL patients, 

whereby patients that express CD38 and are ZAP70+ display a worse overall 

disease course (Damle et al. 1999; Crespo et al. 2003; Wiestner et al. 2003) (see 

sections 1.2.2 and 1.2.3).  In fact, unmutated CLL cases have higher expression of 

ZAP70 and CD38 and can better activate key signal transduction pathways in 

response to BCR activation (see Section 1.2.5). Unmutated IgVH CLL cells also 

display greater proliferative capacity than mutated CLL cells (Klein et al. 2001; 

Rosenwald et al. 2001; Wiestner et al. 2003),  supported by different telomere 

lengths (Damle et al. 2007; Messmer et al. 2005; Roos et al. 2008).   In addition 

unmutated CLL cells are more likely to carry harmful genetic lesions such as 

11q23 and 17p13 deletion (Kröber et al. 2002; Oscier et al. 1997; Stilgenbauer et 

al. 2007; Shanafelt et al. 2006).   

At a functional level, intraclonal heterogeneity is also evident when CLL cells are 

stimulated through the BCR, CD40 or CD5 (Chen et al. 2002; Lanham et al. 2003; 

Moreau et al. 1997; Klein et al. 2001; Hamblin 2002; Hamblin et al. 1999; Damle et 

al. 1999; Crespo et al. 2003; Wiestner et al. 2003; Law et al. 1994; Zupo et al. 

2000; Zupo et al. 1996; Lankester et al. 1995). There are also differences in 

expression of genes when considering different locations of a CLL cell within the 

body such as BM, LN and blood (Caligaris-Cappio & Ghia 2007).  CLL cells 

residing within the proliferation centres, for example, have differential expression 

of survivin, CCL-17 and CCL-22 (Granziero et al. 2001).  CD38 expression may 

also vary, whereby it is more present on CLL cells that have infiltrated the BM than 

those circulating within blood (Ghia et al. 2003). 

1.2.2 Prognositic marker ZAP70 

ZAP70 is a member of the ZAP70 protein tyrosine kinase family (of which SYK is 

another member) involved in T cell activation (Klein & Dalla-Favera 2005). When 

the T cell receptor (TCR) is engaged, ZAP70 interacts with immunoreceptor 

tyrosine-based activation motifs (ITAM) sequences of the TCR ζ-chains resulting 

in recruitment and activation of downstream signaling kinases (Au-Yeung et al. 

2009).  In normal B cells, it is exclusively expressed on mature tonsillar activated B 

cells and only transiently expressed in pro-B to pre-B cell transition (Schweighoffer 

et al. 2003).  In CLL, its expression is used as a surrogate marker for the level of 

IgV gene mutation status, and thus as a predictor of clinical outcome (Crespo et al. 

2003; Orchard et al. 2004). In concordance with this, stable expression of ZAP70 
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was shown to be correlated to 93% of unmutated CLL cases (Crespo et al. 2003; 

Wiestner et al. 2003). A study of 307 CLL patients revealed that ZAP70+ patient 

groups displayed a signifiantly shorter median time from diagnosis to treatment 

compared to ZAP70- CLL patients implicating ZAP70 to be a strong predictor of 

need for treatment in CLL (Rassenti et al. 2004).   

1.2.3 Prognostic marker CD38 

CD38 is a non lineage-restricted transmembrane glycoprotein that can function as 

an ectoenzyme, with the ability to catalyze cyclic ADP-ribose synthesis and 

dyrolysis that functions as a receptor.   CD38 was originally also thought to be 

indicative of mutational status, whereby 30% of unmutated CLL cases investigated 

in one study expressed CD38 (Damle et al. 1999).  More recently, no such 

association has been demonstrated (Poeta et al. 2001; Damle et al. 1999; D’Arena 

et al. 2001), however IgVH mutational analysis together with ZAP70 expression 

and CD38  expression can collectively prove to be of greater prognostic value than 

these factors individually (Morilla 2008; Giudice et al. 2005).  

1.2.4 MicroRNA (miRNA)  

Recent studies have highlighted the fact that CLL is a disease with substantial 

alterations of miRNA expression.  miRNA gene expression profiles of normal 

versus CLL CD5+ cells revealed a significant proportion of differently expressed 

miRNAs including miR-183, miR-190, miR-24-1, miR-203, miR-16-1 and miR-15a 

all of which are down-regulated in CLL (Calin et al. 2004).  Patients with 13q14 

deletions have a better prognosis compared with patients with complex 

cytogenetic changes (Döhner et al. 2000).  In addition 13q14.3 deletions are 

associated with the mutated subset of CLL which is also indicative of a good 

prognosis (Oscier et al. 2002). A comparative analysis of CLL samples either 

carrying or not carrying a 13q14 deletion revealed that miR-16-1, miR-24-2, miR-

195, miR-203, miR-220, mirR221 were expressed at significantly lower levels and 

miR-7-1, miR-19a, miR-136, miR-154, miR-217 are expressed at significantly 

higher levels within the 13q14 deletion carrying patients (Calin et al. 2004). When 

mutated versus unmutated CLL subsets were analysed, five miRNAs were 

differentially expressed (miR-186, miR-132, miR-16-1, miR-102, miR-29c), 

highlighting the prognosis potential of miRNAs (Calin et al. 2004; Calin et al. 

2005). 
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1.2.5 BCR Signaling in CLL  

A stereotyped CDR3 is most commonly found within unmutated CLL cases, 

however 10% of mutated cases may carry an identical BCR.   The notion of 

antigen exposure in CLL is underlined by the CLL cell’s signature of BCR-

mediated stimulation (Damle et al. 2002).  Signaling through the BCR is variable in 

CLL, where some cases, mostly unmutated have a significantly higher ability to 

signal through the BCR than their mutated counter parts (Lanham et al. 2003; 

Lankester et al. 1995). Intracellular regions of BCR components CD79a and 

CD79b contain ITAMs that interact with intracellular tyrosine kinases such as SYK 

and LYN (Zenz et al. 2010).  These kinases in turn activate downstream pathways. 

The ability to transduce a BCR-mediated signal may depend on molecules such as 

ZAP70, HIS, CD38, or IgVH mutational status (Figure 1.4) (Zenz et al. 2010).  For 

example, CLL cells that have unmuated IGVH genes and are ZAP70+ are 

stimulated through their BCR, resulting in recruitment of SYK and ZAP70 which 

phosphorylate and activate downstream targets BTK, phosphoinositide 3-kinase 

(PI3K), BLNK, PLCγ which in turn activate pro survival and anti-apoptotic signaling 

pathways such as protein-threonine protein kinase Akt, nuclear factor kappa B 

(NF-κB), extracellular regulated mitogen activated protein kinase (ERK) and 

mammalian target of rapamycin (mTOR) (Figure 1.4) (Zenz et al. 2010).    
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Modified from Zenz et al. 2010 

Figure 1.4 Signaling in CLL.  
 

Constant BCR stimulation by low-affinity antigen could in fact lead to an overall 

worse prognosis associated with the unmutated CLL group through induction of 

survival and growth of the leukaemic clone (Caligaris-Cappio & Ghia 2007).  On 

the other hand, in patients that have a better overall survival rate, a high-affinity 

self-antigen could also cause selection of a responsive clone, but would however 

lead to receptor desensitization and an anergic state (Melchers & Rolink 2006; 

Caligaris-Cappio & Ghia 2007).  

Among the most common genetic alterations leading to a good prognosis is the 

deletion of tumour suppressor region 13q14. The 13q14 cluster contains miR-

15a/16 which targets B cell CLL/lymphoma 2 (Bcl-2) anti-apoptotic protein, adding 

to the complexity of good and bad prognostic markers. Downregulation of DAPK1 

through epigenetic silencing is another genetic alteration leading to a bad 

prognosis (Zenz et al. 2010).  The interactions of CLL cells with their environment 

composing of soluble factors (such as vascular endothelial growth factor (VEGF)α, 

SDF1 and IL-4) and stromal cells and T cells (expressing CD40L) also contributes 

to pathogenesis through upregulation of anti-apoptotic proteins myeloid cell 
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leukaemia sequence 1 (Mcl-1), Bcl-2 and survivin (Figure 1.4) (Zenz et al. 2010).    

Targeting BCR signaling has therefore been a major focus in CLL therapy with use 

of specific inhibitors, antisense therapy or BCR interference. 

1.2.6 SHM and CSR 

Ever since the discovery that CLL B cells express remarkably low levels of sIgM, 

the role of the BCR has been a feature of CLL research.  As discussed above, in 

normal B cell development antigen stimulation leads to activation which in turn 

induces proliferation and differentiation, eventually generating an antigen-specific 

memory B cell or plasma cell.  In CLL, the role of chronic antigen stimulation has 

been highlighted as an aid in malignant transformation (Mackay & Rose 2001).  In 

other lymphomas, constant bacterial or viral stimulation has been shown to be a 

cofactor in disease development (Jelić & Filipović-Ljesković 1999; Ferreri et al. 

2004).  In addition BCR sequencing studies have underlined the role of antigen 

encounter in CLL (Stevenson & Caligaris-Cappio 2004a).  SHM, normally a post 

antigen encountering event, occurs in at least half of CLL patients (Fais et al. 

1998). This process generates long-lived, high-affinity antibody producing memory 

B cells from a naïve B cell precursor (Wabl et al. 1999). It is usually thought to 

occur within GCs in a T-cell dependent manner (Berek et al. 1991; MacLennan 

1994a), however it can also occur in a T-cell independent manner and outside of 

GCs (William et al. 2002) (as discussed in section 1.2.10.2).  

SHM is characterised by insertions/duplications or deletions within the sequence 

of the variable region of the BCR.  Since it is a common phenomenon in normal, 

neoplastic or autoreactive B cells (Caligaris-Cappio & Ghia 2007), it is therefore 

difficult to associate SHM with CLL cells in particular, with the exception of CLL 

IgHV3-21 expressing cells where a specific deletion was found in all stereotyped 

receptor cases (Tobin et al. 2003).  In addition CLL cases show a bias toward 

certain IgVH genes and the complementarity-determining region 3 (CDR3) 

sequences.  CDR3 sequences are unique for each B cell and its progeny and 

define BCR specificity. However, more than 20% of unrelated CLL cases in both 

mutated and unmutated CLL carry identical or closely homologous CDR3 

sequences on IgH and IgL chains (Tobin et al. 2003; Widhopf et al. 2004; Tobin et 

al. 2004; Ghiotto et al. 2004; Messmer et al. 2004; Stamatopoulos et al. 2007; 

Ghia et al. 2005). This remarkable statistic implies that the CLL clone is selected 

for through recognition of a limited set of particular antigens (Caligaris-Cappio & 
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Ghia 2007).   Antigen stimulation has also been implicated in the progression of 

CLL.  For example, the CDR3 sequence a patient carries may correlate to overall 

clinical outcome.  Patients with V3-21 carrying a short HCDR3 have an overall bad 

outcome regardless of mutational status (Ghia et al. 2005).  In patients carrying 

the VH1-69 gene, two unmutated subsets display opposite clinical outcomes, 

whereby VH1-69/D2-2/J6 patients have a short lifespan compared to VH1-69/D3-

10/J6 patients that live significantly longer (Stamatopoulos et al. 2007).  In 

contrast, VH4-39 also predominates among the unmutated cases, whereas VH3-

23, VH4-34 and VH3-07 predominates within the mutated CLL subgroup (Oppezzo 

& Dighiero 2005).   

CSR and SHM allow a B cell to mature, however during the various stages of 

maturation, B cells become susceptible to abnormal development and generation 

of diverse forms of leukaemia (Fu et al. 1978). There are various mechanisms 

employed  by CSR in isotype switching (Oppezzo & Dighiero 2005) such as 

deletional recombination between DNA-switch regions, duplication of sister 

chromatids and trans-splicing (Oppezzo & Dighiero 2005). These mechanisms can 

sometimes lead to the production of double isotype expression in the same cell.  

Similarly, in CLL, some sub-populations of B cells express clonal isotype switch, 

whereby different isotypes sharing same hypervariable domains are found within 

the same cell due to trans-splicing or duplication of sister chromatids mechanisms 

(Oppezzo & Dighiero 2005). VH rearrangement genes within these cells remain 

unmutated, indicating that CSR can occur without SHM (Siekevitz et al. 1987; 

Sideras et al. 1989).  Normally, CSR is thought to follow SHM within the GC 

(Oppezzo & Dighiero 2005; Sideras et al. 1989; Siekevitz et al. 1987).  Therefore 

the process of differentiation and diversification are not necessarily interconnected 

(Siekevitz et al. 1987; Sideras et al. 1989). 

1.2.7 Role of antigen in CLL 

V(D)J gene recombination of Ig loci, along with SHM and CSR after antigen 

encounter allow for the generation of many different BCR specificities against an 

array of exogenous pathogens.   However, 20 percent of CLL patients share a 

restricted BCR repertoire with almost identical Ig sequences (Darzentas et al. 

2009).  Over-usage of Ig genes VH1-69, VH4-34, VH3-7 and VH3-21 in CLL and 

similar CDR3 regions in patients that were geographically distributed became 

apparent in CLL research (Fais et al. 1998; Potter et al. 2003; Widhopf et al. 2004; 
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Ghiotto et al. 2004; Tobin et al. 2004; Messmer et al. 2004). Ig light chain 

repertoire was also demonstrated to be frequently restricted and presented 

homogeneity within κ and λ CDR3 regions (Widhopf et al. 2004; Ghiotto et al. 

2004; Tobin et al. 2004; Tobin et al. 2003).  Because of the minimal likelihood of 

randomly selecting two B cells that harbour almost identical Ig rearrangements, 

CLL’s Ig repertoire restriction and CDR3 composition could probably not occur by 

chance.  Therefore this implicates antigen selection of CLL cells, conferring a 

tumour cell’s growth advantage. In mucosa-associated lymphoid tissue (MALT) 

lymphoma and Burkitt’s lymphoma, infectious agents such as Helicobacter and 

Epstein-Barr virus (EBV) respectively have been implicated in development of 

disease (Wotherspoon et al. 1991; Vereide & Sugden 2009).  In CLL, history of 

pneumococcal pneumonia has been linked with increased risk for CLL (Anderson 

et al. 2009; Landgren et al. 2007).  Nevertheless, some studies indicate that a 

number of CLL monoclonal antibodies, similarly to natural antibodies, can 

recognize molecular structures existing in bacterial and apoptotic cells (Chu et al. 

2008; Myhrinder et al. 2008; Catera et al. 2008), providing an alternative 

explanation to antigen selection of CLL clones.  Therefore, CD5+ CLL cells were 

implicated to be derived from a subset of cells producing natural antibodies that 

have a function as scavengers of apoptotic debris as well as binding to bacterial 

cell structures.   Collectively these data indicate that antigen/autoantigen, 

apoptotic cells and microbial pathogens can synergistically drive CLL 

pathogenesis by constantly stimulating the BCR.  

1.2.8 Role of the Microenvironment 

Ex-vivo culture of CLL B cells without stroma results in spontaneous apoptosis, 

thus highlighting the role of the microenvironment within CLL (Lagneaux et al. 

1999; Chiorazzi & Ferrarini 2003). Within BM and secondary lymphoid tissues CLL 

cells interact with stromal cells and matrix, leading to increased survival, 

proliferation, CLL-cell homing, tissue retention and drug resistance of CLL cells 

(Burger 2011).  Among the cells that make up the microenvironment are nurse-like 

cells (NLCs), mesenchymal stromal cells and T cells (Figure 1.5).  CLL cells also 

express chemokine receptors and adhesion molecules that allow for contact with 

NLCs or BM stromal cells (BMSCs) (Burger 2011).   
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Figure 1.5 The microenvironment in CLL 

1.2.8.1 Role of NCL and BMSCs 

NLCs protect CLL cells from spontaneous or drug-induced apoptosis, whereas 

BMSCs provide a nourishing niche where CLL cells are protected from cytotoxic 

agents (Burger et al. 2000; Tsukada et al. 2002).  Co-culture of CLL cells with 

NLCs results in increased NFκB activation and upregulation of target genes CCL3 

and CCL4 (Burger et al. 2009; Herishanu et al. 2011).  NLCs secrete chemokine 

(C-X-C motif) ligand 12 (CXCL12 or SDF-1) and CXCL13, platelet/endothelial cell 

adhesion molecule 1 (CD31), plexin B1 (PLXNB1), B cell activating factor (BAFF), 

a proliferation-inducing ligand (APRIL) and vimentin (Figure 1.5) (Burger 2011).   

NLCs also attract CLL cells through secretion of CXCL12 and CXCL13 whereas 

BMSCs secrete CXCL12 (Burger 2011).   G-protein coupled chemokine receptors 

(GPCRs) CXCR4 and CXCR5 on CLL cells bind to CXCL12 and CXCL13 

respectively.   CXCR4 (CD184) is highly expressed on CLL cells and regulates cell 

chemotaxis, actin polymerization, and migration over vascular endothelium and 

under BMSCs (Burger 2011).   BCR signaling downregulates CXCR4 and 

upregulates chemotaxis toward CXCL12 and CXCL13 (Quiroga et al. 2009; Vlad 

et al. 2009).  Compared to ZAP70- cells which are correlated to a better prognosis, 

ZAP70+ cells which are correlated to higher responsiveness to BCR stimulation 

and worse prognosis, survive better in response to CXCL12 (Richardson et al. 

2006; Chen et al. 2002).  In addition, ZAP70+ and CD38+ CLL cells display higher 

levels of chemotaxis toward CXCL12 (Richardson et al. 2006; Deaglio et al. 2007).  
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CXCR5 (CD185) binds to chemokine CXCL13, regulating lymphocyte homing and 

situating within the lymph follicles (Burger 2011).    Deleting CXCR5 in mice results 

in an absence of inguinal LNs and a defect in development of primary follicles and 

GCs within the spleen and Payer patches (S. N. Mueller & R. N. Germain 2009).  

Like CXCR4, CXCR5 is highly expressed on CLL cells.  When CXCR5 is 

stimulated with CXCL13, an activation of PI3Ks, and ERK signaling occurs leading 

to actin polymerization, chemotaxis and endocytosis (Bürkle et al. 2007).   Other 

receptors including CXCR3 and CCR7 are also expressed on CLL cells and are 

important in lymphoid tissue homing.   

NLCs highly express CD31 which is the ligand for CD38 expressed by normal B 

and T cells and poor prognosis CLL cells (Deaglio et al. 2005). In vitro co-culture 

of CLL cells with murine fibroblasts expressing CD31 resulted in proliferation of 

CLL cells (Deaglio et al. 2005).  Increased proliferation was shown to correlate 

with upregulation of survival receptor CD100 and down regulation of CD72 which 

is an inhibitory receptor on CLL cells (Deaglio et al. 2005).  Integrins such as VLA-

4 (CD49d) work in concert with chemokine receptors to establish cell-cell 

adhesions (Deaglio et al. 2005).   

1.2.8.2 Role of T cells 

T cells have also been implicated as necessary components of the CLL 

microenvironment.  CLL is marked by a dysregulation of T lymphocyte function 

that may correlate to clinical features in CLL such as hypogammaglobulinaemia 

and autoimmune haemolytic anaemia (Mellstedt & Choudhury 2006).  CD4+ and 

CD8+ T cells are elevated during CLL progression and display oligoclonality 

(Mellstedt & Choudhury 2006; Serrano et al. 1997).  Within proliferation centres 

where CLL cells reside, CD38+ CLL cells co-localize with activated CD4+ T cells, 

suggesting that these T cells may play a role in the CLL clone’s expansion (Patten 

et al. 2008). Within a CLL-transfer model where CLL cells were injected into 

immunodeficient mice, activated CD4+ T cells were demonstrated to support CLL-

cell proliferation (Bagnara et al. 2011).   

CLL cells are also activated through interactions of CD40 with CD40L present on T 

cells, a member of the tumour necrosis factor (TNF) family, along with BAFF, and 

APRIL (Burger 2011).  Activation through CD40L, BAFF and APRIL leads to 

immune recognition, increased survival and increased outgrowth of CLL cells. 

Binding of BAFF can occur via BAFF receptor (BAFF-R) or interaction with 
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receptors B cell maturation antigen (BCMA) or transmembrane activator and 

calcium modulator and cyclophilin ligand-interactor (TACI) on a CLL cell (Mackay 

et al. 2003).  APRIL also interacts with BCMA and TACI (Mackay et al. 2003).  

BAFF overexpression leads to increased B cell proliferation and autoimmunity in 

mouse models (Shanafelt et al. 2010), whereas overexpression of APRIL leads to 

a B-1 lymphoproliferative disorder similar to human CLL (see section 1.2.12). 

BAFF and APRIL have been shown to protect CLL cells from drug-induced and 

spontaneous apoptosis in vitro (Nishio et al. 2005), by activating the canonical 

NFκB pathway (Endo et al. 2007).  In addition, analysis of serum levels of APRIL 

in CLL patients revealed elevated expression compared to normal B cells, and 

negatively correlated to survival (Nishio et al. 2005).  In addition, activation of the 

BCR on CLL cells leads to cytokine secretion which may attract other cells to the 

microenvironment (Ghia et al. 2002; Burger et al. 2009). 

1.2.9 Genetic homogeneity 

CLL cells exhibit exceptionally high genetic homogeneity indicative of their clonal 

outgrowth (Klein et al. 2001; Caligaris-Cappio & Ghia 2007). In fact, unsupervised 

hierarchical gene expression cluster studies of CLL cases displayed a common 

gene expression profile, independent of mutational status of CLL or expression of 

surrogate marker CD38 (Klein et al. 2001; Rosenwald et al. 2001; Dürig et al. 

2003). Therefore, although genotypic and clinical differences exist between the 

two subgroups of CLL, CLL represents a homogenous disease (Klein & Dalla-

Favera 2005).  It is therefore unlikely that the hypothesis stating that different 

origins of CLL are based on different subgroups of CLL is correct.  Genetic 

homogeneity indicates that all CLL B cells derive from a common precursor (Klein 

& Dalla-Favera 2005).  Microarray analyses of CLL compared to other lymphoma 

subtypes demonstrated that the CLL signature is very distinct from that of other 

lymphomas (Rosenwald et al. 2001; Wang et al. 2004; Jelinek et al. 2003).  CLL 

specific genes that were identified include ZAP70 and exchange protein activated 

by cyclic AMP (EPAC) (Klein et al. 2001; Tiwari et al. 2004).  Another observation 

within the CLL signature was the comparatively low expression of cycle-associated 

genes as compared to normal and transformed B cells analyzed (Klein et al. 

2001).  However, the source of the cells analysed does not represent cells from 

proliferation centres within lymphoid organs and thus may have led to a 

generalization of all CLL cells, regardless of location within the body (Chiorazzi & 

Ferrarini 2003).  
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When a supervised gene expression analysis was conducted on the data set, a 

small set of genes were discovered that were different between the two mutational 

subgroups of CLL (Klein et al. 2001; Rosenwald et al. 2001).  Another study 

investigated gene expression differences between CD38+ and CD38- CLL cases, 

and found very few differences (Dürig et al. 2003).  Within this study, an 

unsupervised clustering did identify some gene profile differences between two 

subgroups: one with a more favourable outcome and one with a less favourable 

outcome (Dürig et al. 2003).  Another group identified genetic differences 

according to patient survival and clinical staging (Stratowa et al. 2001).  Similarly, 

Jelinek et al demonstrated the presence of a set of genes that are distinguishable 

between low risk and high risk patients based on Rai stage (Jelinek et al. 2003).  

However, Klein and Dalla-Favera point out complications with the above studies 

(Stratowa et al. 2001; Dürig et al. 2003) arising from lack of CLL B cell purification 

prior to analysis and lack of independent panel validation (Klein & Dalla-Favera 

2005).    

1.2.10 Origin of a CLL cell 

To date, there is no consensus as to the normal cell counterpart to CLL, however 

evidence suggests that it is an antigen-experienced B cell (Chiorazzi & Ferrarini 

2011).  It is also unclear whether a single or multiple normal precursors evolved 

into a CLL cell. 

As mentioned above (section 1.2.1), CLL can be divided into two patient 

subgroups with distinct clinical courses based on mutational status of IgVH genes.  

This finding gave rise to the hypothesis that unmutated and mutated CLL clones 

come from distinct cellular origins.  CLL IgVH repertoire is non-random and is 

different in unmutated versus mutated CLL subsets.  IgVH repertoire between 

normal and CLL cells is also different.  The higher frequency of poly/auto-reactive 

BCRs, particularly within unmutated CLL cases and retention of BCR signaling in 

unmutated CLL suggest that specificity of antigen-binding and capacity of the BCR 

to signal both influence clonal expansion, resulting in increased tumour survival 

and growth (Chiorazzi & Ferrarini 2011).  However, microarray gene expression 

studies suggest that although the CLL cell gene profile differs from the normal B 

cell, very few genetic differences exist between unmutated and mutated CLL cells 

implying a single cell of origin (section 1.2.9).   
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1.2.10.1 CD5 expression 

One of the notable features of a CLL cell is high expression of CD5. CD5 is 

normally considered a T-cell molecule that inhibits signaling in T cells (Brossard et 

al. 2003).  Mouse B1 cells have been implicated to be the mouse equivalent of the 

human CLL cell of origin because of their high expression of CD5 (Caligaris-

Cappio et al. 1982).  B1 cells within the mouse are responsible for producing 

multireactive antibodies and lack the ability to form GCs and undergo isotype class 

switching (Montecino-Rodriguez & Dorshkind 2006). Unlike murine CD5+ B cells, 

human CD5+ B cells do not respond to T-independent antigens and do not 

produce autoreactive antibodies (Chiorazzi & Ferrarini 2003; Hervé et al. 2005). In 

adult mice, these B1 cells remain constant in numbers and can clonally expand 

(Stall et al. 1988).   

Mouse B1 CD5+ cells express unmutated IgV genes (Kocks & Rajewsky 1989), 

similar to healthy human CD5+ B cells as demonstrated by single cell PCR of 

CD5+ B cells from healthy individuals (HBrezinschek et al. 1997; Fischer et al. 

1997; Geiger et al. 2000). CLL cells, however can express both unmutated and 

mutated IgVH genes, therefore a CD5+ B cell cannot alone be considered a 

precursor to all CLL. Therefore, Fischer et al made an assumption that IgV 

mutated CLL cells derive from CD5+ B cells that only occasionally proliferate and 

mutate their Ig genes in the GC reaction (Fischer et al. 1997).  These assumptions 

were based on the canonical B cell development pathway where unmutated IgV B 

cells are naïve B cells and somatically mutated B cells are memory B cells (Klein & 

Dalla-Favera 2005).   

Some argue that expression of CD5 is a consequence of activation requirements 

(Wortis et al. 1995). Although high expression of CD5 on CLL cells is a constant 

occurrence, CD5 can serve as an activation marker within CD5- B cells and CD5+ 

B cells can downregulate CD5 upon activation (Morikawa et al. 1993; Caligaris-

Cappio et al. 1989).  In addition, some healthy older individuals (above 65) carry a 

small population of CLL-like CD5+CD19+ cells within circulating blood (Ghia et al. 

2004; Rawstron et al. 2002). 

Studies ruled out CD5+ B cells as the normal counterpart to the CD5+ CLL B cell 

through gene expression profile analysis that demonstrated that CD5+ B cells 

derived from cord blood displayed a very different profile than CLL B cells (Klein et 

al. 2001; Rosenwald et al. 2001).  However, CD5+ B cells from cord blood may be 
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different from adult CD5+ B cells (Klein & Dalla-Favera 2005).  Therefore CD5 

cannot alone be used as a distinguishing marker of B-CLL. However, high 

expression of CD5 coupled with low expression of CD20 is characteristic of CLL 

(Rawstron et al. 2001).  

1.2.10.2 Marginal Zone B cell/Memory B cell 

Another speculative suggestion for the origin of a CLL cell is the MZ B cell 

(Chiorazzi & Ferrarini 2003; Klein & Dalla-Favera 2005).  In most GC 

malignancies, chromosomal translocation occurs within the GC, and since CLL B 

cells lack chromosomal translocations, it is therefore possible that they are derived 

from post-GC MZ B cells in which Ig class switching and SHM are no longer active 

(Figure 1.6) (Klein & Dalla-Favera 2005). Of note, a small subset of CLL cells can 

class switch.  Gene expression analysis of CLL cells compared to different subsets 

of normal B cells indicated high similarity of CLL cells with CD27+ memory B cells 

found in the tonsil (Klein et al. 2001).  Indeed, IgM-expressing CD27+ B cells also 

respond to T-independent antigens, eluding to their MZ B cell identity (Dono et al. 

2001; Werner-Favre et al. 2001).  In mouse and human cells, SHM was 

demonstrated to occur outside of the GC and in a T-independent manner (Weller 

et al. 2004), and therefore the origin of a CLL cell may not lie within the GC (Figure 

1.6).  In addition, other studies (Weller et al. 2004; Kruetzmann et al. 2003) 

indicate the possibility of somatically mutated IgM-expressing B cells generated in 

an antigen-independent fashion, and elude to the idea that SHM can give rise to a 

diversified pre-immune repertoire (Klein & Dalla-Favera 2005).  These T-

independent IgM+ IgV mutated cells are generated in the spleen through an 

unknown pathway (Kruetzmann et al. 2003; Weller et al. 2004).   

However CD27 can be found on B cells other than post-GC memory B cells 

reacting to T-dependent antigens (Klein & Dalla-Favera 2005).  CD27+ B cells can 

carry unmutated IgV genes, however CD27- B cells are IgM+IgD+ and thus naïve in 

Ig status.  Therefore CD27+ cells can be: classical GC-generated memory B cells; 

antigen experienced B cells reacting to T-independent antigens; or somatically 

mutated B cells generated in a T-cell dependent or independent manner.  Since all 

of these cells reside within the MZ of peripheral lymphoid organs, they can be 

referred to as MZ B cells (Klein & Dalla-Favera 2005).  
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Modified from Klein & Dalla-Favera 2005 

Figure 1.6 Speculative origins of a CLL cell 
 

The above arguments support the hypothesis that MZ B cells derived from T cell 

dependent/independent stages of development are the normal counterpart to the 

human CLL B cell.  Indeed, CD27 is often expressed on tumour cells of human B 

cell malignancies (Oers et al. 1993).  Since CLL B cells display a restricted IgV 

gene repertoire (in both mutated and unmutated subsets) and antigen selection 

occurs within mutated CLL subsets, it can be concluded that antigen stimulation 

plays an important role within CLL pathogenesis (section 1.2.7).  Interestingly, 

hairy-cell leukaemia (HCL) cells also resemble CD27+ B cells in terms of gene 

expression profile (Basso et al. 2004).  In addition, like CLL cells, HCL cells lack 

chromosomal translocation (Haglund et al. 1994; Sambani et al. 2001). This leads 

to the hypothesis that CLL and HCL cells arise from a similar precursor, a CD27+ 

MZ or a memory B cell (Klein & Dalla-Favera 2005).   

1.2.10.3 Antigen-experienced B cell 

The complexity of understanding the origin of a CLL cell arises from the lack of 

unique molecular abnormality in CLL, lack of balanced chromosomal translocation 

and CLL’s long natural history (Caligaris-Cappio & Ghia 2007). The low levels of 
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sIg may imply that a CLL cell has been exposed to antigens (Chiorazzi & Ferrarini 

2003).  However, this anergy-related feature of CLL cells does not mean that BCR 

signaling is impaired as demonstrated by the ability to stimulate some CLL cells in 

vitro through sIgM (Lanham et al. 2003; Chen et al. 2002). CLL B cells express 

activation markers, express transcripts of many cytokines and secrete some as 

seen in activated B cells (Caligaris-Cappio & Ghia 2007).  Therefore, it is plausible 

to consider that a CLL cell’s normal equivalent is an antigen-experienced B cell, 

especially within the somatically mutated IgV gene carrying CLL cases (see 

section 1.2.7) (Rajewsky 1996; MacLennan 1994) (some studies highlight that 

somatically mutated IgM-expressing cells can be generated in an antigen-

independent manner).  In fact, telomere expression and length studies 

demonstrate that some CLL cells, particularly of the unmutated subset, display a 

history of cell division prior to leukaemic transformation, implying a post-antigen 

encountering event (Caligaris-Cappio & Ghia 2007).  Some believe that mutated 

IgV carrying B cells come from antigen experienced B cells whereas unmutated 

IgV carrying CLL B cells come from antigen-inexperienced, naïve B cells (Oscier 

et al. 1997; Fais et al. 1998; Hamblin et al. 1999; Küppers et al. 1999). However, 

as discussed above (section 1.2.10.2) others have demonstrated through 

microarray studies comparing mutated versus unmutatated CLL subsets that both 

subsets display an antigen-experienced memory B cell phenotype (Klein et al. 

2001).  Collectively interpretations of studies done to date have not resulted in a 

clear answer as to the origin of a CLL cell, but have certainly highlighted the 

complexity of understanding the initiating factors leading to this very 

heterogeneous disease.   

1.2.11 CLL prognosis and Current Therapies 

As CLL is a heterogeous disease and presents with a highly variable clinical 

course, some patients need immediate treatment whilst others do not need 

treatment at all (Yuille et al. 2000).  Traditionally, alkylating agents such as 

chlorambucil or cyclophosphamide have been used to treat CLL. Monoclonal 

antibody therapies in combination with chemotherapy have proven to be much 

more effective and increase progression-free survival (PFS) and overall survival 

(OS) (Desai & Pinilla-Ibarz 2012).   
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1.2.11.1 Single Agent Chemotherapy/Monotherapy 

Chlorambucil, an alkylating agent has been the standard in CLL treatment for over 

four decades however response is variable between 30-70% within previously 

untreated patients (Desai & Pinilla-Ibarz 2012).  Treatment of previously untreated 

CLL patients with single agent fludarabine, a purine analog, has resulted in 

superior overall response (OR) and complete remission (CR) rates when 

compared to alkylating agents alone (Rai et al. 2000; Leporrier et al. 2001; 

Eichhorst et al. 2009).  It was also shown to be better than combination regimens 

cyclophosphamide/doxorubicin/vincristine/prednisone (CHOP) or 

cyclophosphamide/doxorubicin/prednisone (CAP) in inducing CR rates but overall 

survival did not improve (Leporrier et al. 2001). It is important to note that patients 

with p53 (17p) dysfunction are often refractory to purine analogues such as 

fludarabine, thus making treatment very difficult (Döhner et al. 1995).  

Bendamustine is another alkylating agent that is similar structurally to both 

alkylating agents and purine analogs.  It restores p53 function by activating DNA-

damage stress response, and downregulates mitotic checkpoint regulation genes 

(Desai & Pinilla-Ibarz 2012). Phase III clinical trial of previously untreated CLL 

patients with bendamustine versus chlorambucil demonstrated improved OR/CR 

rates over chlorambucil but no improvement of OS rate (Desai & Pinilla-Ibarz 

2012). 

1.2.11.1.1 Monoclonal Antibodies 

Targeting CD20 and CD52 with monoclonal antibodies rituximab and 

alemtuzumab has been popular in CLL therapy.  Rituximab, which targets CD20, 

has been shown to be more effective in previously untreated patients as CD20 

levels subside with treatment (Desai & Pinilla-Ibarz 2012).  In addition, CD20 is 

present in plasma of CLL patients which interferes with treatment (Huhn et al. 

2001; Byrd et al. 2001; O’Brien et al. 2001).  Therefore single agent monotherapy 

with rituximab is not as effective as rituximab and chemotherapy combined.  

Alemtuzumab targets CD52 and has been demonstrated to induce cell death of 

CLL cells in vitro (Mone et al. 2006). When compared to chlorambucil alone 

OR/CR rates increased drastically (83/24% for alemtuzumab versus 56/2% for 

chlorambucil) (Hillmen et al. 2007).  However, more than half of alemtuzumab 

treated patients developed cytomegalovirus (CMV) reactivation compared to 2% 

within the chlorambucil arm (Hillmen et al. 2007).  Newer monoclonal antibodies 
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such as ofatumumab and GA-101 are currently being tested for improved 

effectiveness over rituximab or alemtuzumab (Desai & Pinilla-Ibarz 2012) 

1.2.11.2 Combination Therapies 

Combination therapy of purine analogs and alkylating such as FC resulted in 

improvements in OR, CR and PFS over fludarabine monotherapy  (Eichhorst et al. 

2006; Flinn et al. 2007; Catovsky et al. 2007).  However, patients subjected to FC 

therapy often developed neutropenias (Desai & Pinilla-Ibarz 2012).  Combination 

therapy of fludarabine and rituximab in one study demonstrated evidence of 

synergy where OR/CR rates of combination therapy increased over fludarabine 

alone  (84/38% for combination therapy versus 63/20% for fludarabine 

monotherapy) (Byrd et al. 2005).   

FCR was shown to increase CR and OR rates, and increase MRD negative-status 

over FC treatment alone but not in patients harbouring a 17p/11q deletion.   

Other combination therapies are being investigated including FCR/Alemtuzumab, 

Cladribine/Rituximab, and Bendamustine/Rituximab among others, in order to 

generate a therapy that is more effective and less toxic than other combination 

therapies (Desai & Pinilla-Ibarz 2012).   

1.2.11.3 Small molecule inhibitor therapies 

Newer treatments targeting the BCR within CLL and the microenvironment have 

been a key focus in current therapy development. SYK inhibitors (such as 

Fostamatinib R788), BTK inhibitors (such as PLC32765), PI3δ inhibitors (such as 

CAL101), and CXCR4 antagonists (such as Plerixafor) have all shown to be 

effective in targeting CLL cells (Burger 2011). In summary, CLL therapy is evolving 

to increase OS, PFS, OR and decrease MDR, however no current therapy is 

100% effective.  Although CLL still remains incurable, new knowledge in CLL 

biology is leading to novel therapies that may prove beneficial.  

1.2.11.3.1 Inhibiting PKCβ 
Recent studies have highlighted a role for PKCβII in CLL. BCR signaling is 

important to the survival of CLL cells and a key mediator is PKCβ that regulates 

deactivation of BTK and activation of IκB through phosphorylation events after 

engagement of the BCR (Abrams et al. 2007a).  PKCβII was shown to be 

overexpressed and enzymatically active in primary cells from CLL patients 

(Abrams et al. 2007; Abrams et al. 2010). Additionally, its activity correlates to 
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BCR engagement response in CLL, amplifying survival signals (Zent et al. 2010).   

Treatment of CLL cells with enzastaurin, a PKCβ inhibitor resulted in CLL cell-

specific apoptosis (Abrams et al. 2007; Holler et al. 2009).  Activation of PKCβII 

was shown to be stimulated with VEGF, contributing to the enhanced survival and 

malignant phenotype of CLL cells (Abrams et al. 2010).  In a murine model of CLL, 

the Eµ-TCL1 transgenic mouse model (see section 1.2.12), PKCβ was shown to 

be necessary for the development of CLL, as PKCβ-deficient TCL-1 transgenic 

mice did not develop CLL (Holler et al. 2009).  Therefore, inhibiting PKCβ may 

prove to be beneficial in treatment of CLL.   

1.2.11.3.2 Inhibiting mTOR Signaling 
 
mTOR proteins belong to a group of evolutionarily conserved serine/threonine 

protein kinases that regulate the balance between protein synthesis and 

degradation in response to intracellular energy and nutrients such as amino acids 

(Memmott & Dennis 2009; Raught et al. 2001) directing cell growth and 

proliferation. These processes contribute to tumour formation, and many cancers 

are characterized by abnormal activation of the mTOR signaling pathway 

(Memmott & Dennis 2009). In CLL, mTOR has also been demonstrated to be 

active (Aleskog et al. 2008).  

In vitro treatment of CLL cells with rapamycin showed anticancer activity (Aleskog 

et al. 2008) by inducing apoptosis (Hayun et al. 2009), and attenuating 

proliferation by induction of G1 arrest in cycling CLL B cells through 

downregulation of cyclins and survivin (Decker et al. 2003).  A Phase II pilot trial of 

advanced CLL patients with rapamycin analogue RAD001 (everolimus) was 

shown to be promising, however also demonstrated high toxicity (Thomas Decker 

et al. 2008).  Another study of 22 CLL patients demonstrated clinical responses 

and CLL cell mobilization in response to RAD001 treatment (Zent et al. 2010).  In 

the Eµ-TCL1 model, treatment of mice with rapamycin significantly prolonged life 

span.  Collectively targeting the mTOR pathway in combination with other agents 

may prove to be beneficial in CLL.   

1.2.12 Mouse Models of CLL 

1.2.12.1 Eµ-TCL1 mouse model 

TCL1 is an oncogene that was initially associated with T cell leukaemias through 

inversions/translocations at locus 14q32.1.  TCL1 rearranges with the TCR α/β at 
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locus 14q11 in a reciprocal manner.  When activated, TCL1 is associated with 

mature T cell leukaemias, preleukaemic conditions, and AIDS-related 

immunoblastic lymphoma plasmacytoid (IBLP) (Narducci et al. 1995; Thick et al. 

1996; Pekarsky et al. 2007; Teitell et al. 1999).  Activation of TCL1 is possibly due 

to inversions inv(14)(q11:q32) or translocation of t(14;14)(q11;q32) (Brito-

Babapulle & Catovsky 1991; Virgilio et al. 1994; Narducci et al. 2000).   In T cells, 

TCL1 is only expressed during the early stages of development at the double 

negative (CD4-CD8-) stage. In B cells, TCL1 is expressed in early pre-B cells, and 

IgM expressing cells and to some extent in GC B cells, but not in plasma cells 

(Pekarsky et al. 2007; Narducci et al. 2000).  

 

Modified from Pekarsky et al. 2007 

Figure 1.7 TCL mouse model of CLL 
 

 

TCL1 is involved in the Akt oncogenic pathway (Laine et al. 2000; Pekarsky et al. 

2007) which is important in proliferation, survival and death (Chan et al. 1999).  In 

particular Akt has been demonstrated to be important in the survival and 

proliferation of T and B cells (Chan et al. 1999).  As indicated in the Figure 1.7, 

PI3K is activated through growth and survival factors such as insulin, platelet-
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derived growth factor (PDGF) and epidermal growth factor (EGF) in the plasma 

membrane (Pekarsky et al. 2007). 

The two domains of Akt, the pleckstrin homology (PH) and kinase domain have 

distinct roles (Figure 1.7).  The PH domain binds phosphoinositides (PIP3) and is 

also responsible for protein-protein interactions and membrane recruitment 

whereas the kinase domain regulates Akt’s enzymatic activity. TCL1 and Akt have 

been demonstrated to physically interact through the PH domain of Akt.  When Akt 

binds to TCL1, there is an increase in kinase activity of Akt thereby implicating 

TCL1 as Akt’s co-activator  (Laine et al. 2000; Ahmed et al. 1993; Pekarsky et al. 

2000).  In addition TCL1 mediates Akt’s translocation into the nucleus (Pekarsky et 

al. 2000).     

When Akt binds to PIP3, it moves to the plasma membrane where it becomes 

activated through phosphorylation at residue Thr308 by 3’-phosphoinositide-

dependent kinase 1 (PDK1) and at residue Ser473 by mTOR.  The now active Akt 

phosphorylates  and thus regulates a variety of pro- and anti-apoptotic factors 

such as IκB kinase-α (IKKα) leading to NFκB activation, mTOR, the nerve growth 

factor IB (NGFIB) also known as Nur77, glycogen synthase kinase-3 (GSK3), Bcl-

2 pro-apoptotic family member Bad, and cyclin AMP-responsive element binding 

protein (CREB) among others (Figure 1.7) (Chan et al. 1999; Cross et al. 1995; 

Ozes et al. 1999; Mok et al. 1999; Pekarsky et al. 2007) 

When human TCL1 is expressed in mice under control of immature and mature B 

cell specific VH promoter enhancer IgH-Eµ (Bichi et al. 2002), it results in a 

pathogenesis similar to human CLL. Peripheral blood lymphocytes of Eµ-TCL1 

mice at 1-9 months displayed a characteristic CLL phenotype marked by the 

expression of CD5, and were also B220+/IgM+. Sorted peripheral blood malignant 

B cells displayed cell cycle arrest at G0/G1 phase, as seen in human CLL (Bichi et 

al. 2002).   By 6 months, an expansion of these cells was seen in all mice, but no 

signs of disease. Eventually all Eµ-TCL1 transgenic (10-20 months) exhibited an 

overall increased white blood cell count, enlarged LN, spleen, liver with evidence 

of malignant cell infiltrations that were TCL1 positive (Bichi et al. 2002). Analysis of 

Ig gene rearrangement demonstrated the presence of pre-leukaemic and leukemic 

clones, similar to human CLL (Bichi et al. 2002). Some mice exhibited 

lymphoadenopathy as seen in some cases of CLL (Bichi et al. 2002). Secondary 

non-haematological malignancies were also seen in Eµ-TCL1 mice similar to poor 

prognosis human CLL cases (Kyasa et al. 2004).   
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When TCL1 is expressed in mice within both B and T cells, a similar phenotype as 

the Eµ-TCL1 transgenic model is seen (Hoyer et al. 2002).  This TCL1 model 

shows evidence of accumulation of malignant B cells with increased proliferative 

capacity in vitro and higher survival capabilities in vitro compared to normal 

counterparts (Hoyer et al. 2002).  

Importantly, TCL1 protein is present in 90% of human CLL cases (of 213 patients 

studied) as assessed by flow cytometry, immunohistochemistry (IHC) and western 

blot (Herling et al. 2006).  In addition, TCL1 expression was shown to positively 

correlate to ZAP70 expression and was more frequent within the unmutated CLL 

subset (Herling et al. 2006).  As in human CLL, there is a bias toward VH11, VH12 

and VH4 gene usage in Eµ-TCL1 mice (Yan et al. 2006). In human CLL, the 

unmutated subset exhibits long CDR3 containing tyrosine and serine rich sections 

that favour polyreactivity (Pekarsky et al. 2007). VH1-69 and VH4-39 

rearrangements in particular, are always associated with poor outcome (Ghiotto et 

al. 2004). Similarly, within the TCL1 mouse, CDR3s also contain charged amino 

acids that are often not coded by germline D and JH segments (Pekarsky et al. 

2007). Collectively, the TCL1 mouse model is representative of the unmutated, 

more aggressive form of CLL.   

BCR signaling has also been demonstrated to play an important role within the 

TCL1 mouse model.  In fact, TCL1 mice that also had a PKCβ knockout failed to 

develop CLL even though they did develop an expanded CD5+ B cell population 

(Holler et al. 2009). The TCL1 transgenic mouse is the best known CLL mouse 

model to date and has been used as a tool to test pre-clinical drugs. Transformed 

lymphocytes from the Eµ-TCL1 mouse express Bcl-2, Mcl-1, DNA (cytosine-5-)-

methyltransferase 1 (DNMT1), PDK1 and are sensitive to agents currently used in 

therapy such as fludarabine and flavopiridol (Johnson et al. 2006). 

1.2.12.2 Simian virus 40 (SV40) large T antigen model 

SV40 is an oncogene that is able to transform a variety of cell types (Suda et al. 

1987; Ahuja et al. 2005) and has been associated with a number of cancers 

(Gazdar et al. 2002; Vilchez et al. 2003) including non-Hodgkin’s lymphoma 

(NHL).  It functions by inactivating p53 and Rb proteins thereby inducing genomic 

instability (White & Khalili 2004).  Introduction of SV40T gene under the control of 

IgH enhances results in increased proliferation of haemopoietic cells, similar to 

occurrences in myelodysplastic syndromes (Inoue et al. 1994).  Introduction of the 
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SV40T gene that lacked a promoter in the reverse orientation between IgH D and 

JH segments, led to the generation of a disease similar to human CLL (Brugge et 

al. 2009). 

The aim was to generate sporadic SV40 T antigen expression through 

homologous recombination in embryonic stem (ES) cells.  Briefly, SV40 large and 

small T antigen-coding unit was introduced in between DQ52 and JH1 in the IgH 

locus (Brugge et al. 2009). An extra copy of the Eµ enhancer was introduced in 

one construct.  Homologous recombination in ES cells was selected for and 

chimeric mice generated that carried the targeted IgH allele. Neomycin generated 

excision occured through the cre-loxP system.  The mice generated above were 

crossed with mice expressing Cre recombinase under control of CMV immediate 

early enhancer-chicken beta-actin hybrid promotor.  Mice expressing a single 

targeted allele were bred with C57BL/6 mice generating heterozygous offspring 

IgH.TEµ or IgH.T.  Analysis of 8-week old IgH.T, IgHTEµ or wild type mice revealed 

no difference in BM and spleen cellularity and no difference in proportions of B 

cells (different stages of B cell development and also different types of B cells 

such as follicular, MZ or spleen cells) (Brugge et al. 2009). 

In addition there was no bias of use of either targeted or wildtype IgH allele usage.  

SV40 T gene and protein expression in spleen was higher in the IgH.TEµ than 

IgH.T as expected due to Eµ promoter (Brugge et al. 2009).  No SV40T 

transcription/translation was evident within the wildtype mice. 

Interestingly, a subpopulation within the IgH.T and IgH.TEµ cohorts showed 

accumulation of monoclonal B cells.  These B cells phenotypically resemble 

human CLL by expression of CD19, CD5.  Leukaemia formation in these mice was 

evident within the blood, spleen and BM within 10 months. IgH.TEµ mice had 

higher incidence than IgH.T mice due to the extra copy of Eµ within the D-JH region 

which may be due to increased antisense transcription.   In addition, crossing of 

IgH.TEµ mice with p53-deficient background increased incidence of CLL.  Whereas 

p53-/- littermates developed T cell tumours, both IgH.T and IgH.TEµ mice biased 

toward B cell leukaemia. However, age of mice at evidence of malignancy 

increased with loss of 53, and tumour formation was not increased as a result of 

p53 loss. 

In some cases, it was demonstrated that usage of IgVH genes within the IgH.TEµ 

cohorts that developed leukaemia resembled unmutated human CLL whereas 
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characterisation of VH regions revealed predominantly germline sequences.  In 

other cases, high levels of hypermutation was seen with use of VHJ558.  Within 

the unmutated set, there was evidence of non random VH family usage (mostly 

VH11) and serine/tyrosine rich CDR3 regions.  Interestingly two mice expressed 

VH11 domains identical to those from a TCL1 CLL clone. 

Also, the unmutated group expressed AID at high levels, similar to human CLL 

whereas low AID expression was seen in the rest of the cases. AIDhi and AIDlow 

cases had similar transcription factor expression profiles supporting the idea that 

both subsets originate from a common post-GC cell. 

The authors suggest that the predominant use of VH11 in the IgH.TEµ leukaemic 

cells demonstrated that the cell of origin was not a CD5+ B-1 cell that had 

randomly transformed because only 10% of this B cell population use VH11.  The 

authors imply use of auto antigen-driven selection within the clonally expanded 

CD5+ B cells in aging mice that leads to disease. The fact that a number of CLL 

IgH.TEµ cases  demonstrated almost identical CDR3 regions was evidence of a 

restricted BCR repertoire. 

Collectively, the authors show a mouse model that is able to generate both 

mutated and unmutated forms of CLL with similarities to the TCL1 mouse model 

and human CLL in terms of characterization of the BCR (Brugge et al. 2009). 

1.2.12.3 miR15a/16-1 mouse model 

As previously discussed, deletions in chromosomal region 13q14 are common in 

CLL implicating that this region contains a tumour suppressor gene (Klein et al. 

2010).  Minimal deleted region (MDR) of 13q14 encodes the deleted leukaemia 

(DLEU2) gene, and the micro RNA cluster miR-15a/16-1 which are considered to 

be tumour suppressors, targeting anti-apoptotic proteins like Bcl-2, and have been 

shown to be downregulated in CLL (Calin et al. 2004).  DLEU2’s function is not 

well characterized because its sequence is not similar to any known non-coding 

RNA.  miR15a/16-1 cluster has been characterized as a negative regulator of 

proliferation and apoptosis (Calin et al. 2005). Deletion of the MDR of 13q14 leads 

to proliferation in both human and mouse B cells and can result in clonal 

lymphoproliferative disorders (Bandi et al. 2009; Calin et al. 2008; Klein et al. 

2010).  
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Klein et al developed a transgenic mouse that harboured conditional alleles that 

mimicked MDR deletion of miR-15a/16-1 or specifically deleted this region without 

any effect on DLEU2 (Klein et al. 2010).  Homozygous deletion of MDR region or 

miR-15a/16-1 did not have an effect on lymphocyte development in the early 

months, however at 12 months both cohorts displayed an expansion of 

CD5+B220low cells within the peritoneal cavity.  At 15-18 months, a clonal 

CD5+B220low population was evident within peripheral blood. Within a 

subpopulation of these mice infiltration of CD5+ B cells into lymphoid organs was 

evident, and histopathologically resembled human CLL.  These mice harboured 

enlarged splenic white pulp, smudge cells and aggregates of a clonal population of 

small lymphocytes in the BM similar to human CLL.  Collectively 42% of MDR-/- 

and 26% of miR-15a/16-1-/- cohorts at 15-18 months developed B cell 

lymphoproliferative disorders of clonal origin (Klein et al. 2010).   

MiR-15a/16-1-/- mice developed a milder disease than MDR-/- mice and had no 

apparent increase in survival than wild-type littermates, unlike MDR-/- mice that 

died earlier (Klein et al. 2010).  When miR-15a/16-1 and MDR was deleted 

particularly within B cells, development of clonal lymphoproliferations occurred in a 

B cell autonomous manner in both MDR-/- and mir-15a/16-1 cohorts. 

When IgV genes were sequenced within tumours of homozygous or heterozygous 

MDR and miR-15a/16-1 mice, CD5+ tumours harboured unmutated IgVH genes 

while CD5- NHL tumours harboured mutated IgVH genes, indicating that 

lymphoproliferation originated from B cells that have undergone T-cell dependent 

and independent antibody responses (Klein et al. 2010).  In addition, whereas the 

CD5- NHL tumours expressed HCDR3 regions that were variable, within the CD5+ 

B cell proliferations IgV gene usage was limited and showed similar HCDR3 

regions. Therefore CD5+ B cell lymphoproliferation in MDR-/- and miR-15a/16-1-/- 

mice can express antibodies that have stereotypical antigen binding regions, 

implying common or auto antigens within clonal expansion, similarly to human CLL 

(Ghia et al. 2008).   

Klein et al. also showed that miR-15a/16-1 cluster (and not DLEU2) negatively 

regulated proliferation of mouse and human B cell line I83E95 derived from human 

13q14-/- CLL) (Klein et al. 2010).  Importantly miR-15a/16 negatively regulates Bcl-

2 expression and the cluster’s downregulation results in an increase in Bcl-2, as 

seen in human CLL. 
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1.2.12.4 Bcl-2/TRAF3 mouse model 

TNF-receptor associated factors (TRAFs) belong to a family of adaptor proteins 

important in signal transduction pathways such as gene expression, proliferation 

and regulation of apoptosis (Zapata et al. 2004).  When deregulated, TRAFs can 

lead to generation of automimmiune and inflammatory diseases (Zapata et al. 

2004).  In NHL and CLL, TRAF1 is overexpressed and is associated with 

resistance to apoptosis (Wang et al. 1998; Arron et al. 2002; Lin et al. 2003).  

Zapata et al developed a transgenic mouse expressing Bcl-2 and TRAF2 mutant 

that lacks N’ terminus RING and zinc finger domains (TRAF2DN).  These mice 

develop B cell leukemia and lymphoma that is similar to human CLL, although 

over expression of Bcl-2 alone or TRAF2DN alone does cause polyclonal B cell 

expansion, but does not lead to lethal malignancies (Zapata et al. 2004). 

More specifically, transgenic mice overexpressing Bcl-2 and TRAF2DN develop 

extreme splenomegaly already evident at birth.  In addition these mice die at 

accelerated rates compared to single transgenic (Bcl-2 or TRAF2DN alone) 

cohorts. Histological analysis of double transgenic mice revealed an expansion of 

MZ with the presence of infiltrating small B cells.  In addition, double transgenic 

mice had infiltration of B220+ lymphocytes within major tissues and organs at 

much more invasive rates than single transgenic cohorts (Zapata et al. 2004).    

Phenotypic analysis of spleen lymphocytes from double transgenic mice revealed 

a significant population of B220medIgMhiIgDlowCD21low-nullCD23nullCD11blow B cells.  

CD5 was also expressed on most splenic B cells from double transgenic mice.   In 

addition, blood counts were up to 167x106 B cells/ml in double transgenic mice 

compared to wild-type counts of 4x106 B cells/ml indicative of leukemia 

development ( Zapata et al. 2004).     

Analysis of double transgenic cohorts assessed for levels of expression of 

adhesion molecules indicative of elevated invasiveness revealed increased 

expression of CD54 (intercellular adhesion molecule-1), CD29 (β1 integrin) , 

CD49d (α4 integrin) and CD11a (LFA-1) compared to Bcl-2 single transgenic and 

wild-type cohorts (Zapata et al. 2004).  Additionally, analysis of IgH gene 

rearrangements in double transgenic cohorots revealed clonal origin of B cells.  

Assessment of proliferation, cell cycle and apoptosis within double transgenic 

cohorts revealed that B cells from transgenic cohorts had comparable proliferation 

rates but had much higher ability to resist apoptosis when treated with 

chemotherapeutic drugs compared to single transgenic and wild-type cohorts 
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(Zapata et al. 2004).   

1.2.12.5  APRIL mouse model 

APRIL is a protein that stimulates proliferation of tumour cells in vitro (Medema et 

al. 2003), is expressed in a number of nonhaematopoietic carcinoma cell lines and 

tumour samples, and in haematopoietic cells (Hahne et al. 1998; Kelly et al. 2000; 

Novak et al. 2002; Litinskiy et al. 2002; Pradet-Balade et al. 2002; Deshayes et al. 

2004).  Its role in tumour growth is highlighted by studies in colon and lung 

carcinomas (Rennert et al. 2000).  In CLL, APRIL was found to be expressed in a 

small percentage of patients by one group (Novak et al. 2002), and in all CLL 

cases but at comparative levels to normal B cells by another group (Kern et al. 

2004).  Analysis of APRIL levels in sera of CLL versus normal donors through 

ELISA revealed elevated expression in CLL patients (Stein et al. 2002; Planelles 

et al. 2004) 

When transgenic mice were generated overexpressing APRIL, there was evidence 

of thymus-independent humoral immune responses (both type 1 and type 2) (Stein 

et al. 2002).  At 6-12 weeks, no difference in B1/B2 cell ratio was seen in APRIL 

transgenic mice, however as the mice aged a significantly higher percentage of B1 

cells was seen in the peritoneal cavity of APRIL mice (and not spleen) compared 

to control littermates.  APRIL mice also exhibited higher IgA serum levels, 

indicative of B1 cell activity.  The B1 cells found within the peritoneum were also 

CD5+, and accumulated over time similarly to the human CLL phenotype.  By 9-12 

months, 40% of APRIL mice displayed enlargement of and increase in cell number 

of mesenteric lymph nodes (mLN) or Peyer’s patches (PP).  Older APRIL mice 

also displayed a highly disorganized splenic architecture and B cell infiltration 

(Stein et al. 2002).  B and T cell populations within aged APRIL mice had 

expanded within mLN, and there was evidence of activation.   Expansion within 

mLN was concluded to be due to lymphocyte hyperactivation leading to 

hyperplasia (Planelles et al. 2004). Expanded mLNs also harboured B1 cells that 

were phenotypically CD5+CD19+IgMdimB220dimCD23- and therefore imply higher 

activation status due to downregulation of surface IgM. Furthermore, ex-vivo 

culture of B1 cells from APRIL mice and control littermates revealed that B1 cells 

from APRIL mice had a survival advantage, surviving longer ex-vivo (Stein et al. 

2002).   
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1.2.12.6 New Zealand Black mouse model 

Unlike the previous models discussed, the New Zealand Black (NZB) mouse 

model is not induced by expression of exogenous genes (Scaglione et al. 2007).  It 

is an age-associated expansion of malignant CD5+ B1 clones (Scaglione et al. 

2007).  IL-10 has been associated with the expansion of these malignant B cells 

that first go through a monoclonal B cell lymphocytosis (MBL)-like stage before 

developing into a disease that resembles human CLL.  Of note, MBL can be a 

precursor in human CLL but may also never develop into CLL (Salerno et al. 

2010).   NZB model also develops a mild form of autoimmunity (Scaglione et al. 

2007). As in human CLL, miR-15a/16-1 tumour suppressive cluster is altered.  

Although within human CLL it is usually deleted, within the NZB mouse, it is 

mutated making it structurally unstable and unable to fully mature (Raveche et al. 

2007).  Interestingly, a similar point mutation was reported in 2 cases of human 

CLL (Calin et al. 2005). Restoring miR-16 levels in NZB mice allows for enhanced 

sensitivity to drug treatment (Coll-Mulet et al. 2006).  Within the NZB a side 

population of stem-like cells was found and implicated to be the CLL progenitor 

cell (Tárnok et al. 2010).   

1.2.12.7 miR-29 mouse model  

miR-29 targets a number of oncogenes including TCL1, Mcl-1, and cyclin-

dependent kinase 6 (CDK6) and is thought of as a tumour suppressor in some 

systems (Pekarsky et al. 2006; Zhao et al. 2010; Mott et al. 2007) and a tumour 

promoter in others (Gebeshuber et al. 2009; Han et al. 2010).  Analysis of miR-29 

expression revealed that it is up-regulated in unmutated CLL compared to mutated 

CLL and normal B lymphocytes (Santanam et al. 2010).  Generation of a 

transgenic mouse over-expressing miR-29 under the Eµ promoter led to a model 

of CLL whereby there was evidence of an expanded CD5+ population.  In 

particular, at 2 months 85% of Eµ-miR-29 transgenic mice harboured a CD5+ B 

cell population that rose to 100% at 2 years of age.  Enlarged spleen and liver 

were a common feature of the Eµ-miR-29 cohorts and 20% developed frank 

leukemia and died.  Some evidence of clonality of B cells was also demonstrated 

within the Eµ-miR-29 cohorts, however only 5 were examined and 3 showed clonal 

outgrowth of B cells (Santanam et al. 2010).   

Histological analysis of blood smears from wild type mice and high-grade CLL Eµ-

miR-29 mice revealed the presence of increased number of atypical and malignant 
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lymphoid cells, including smudge cells within the Eµ-miR-29 cohorts.  Eµ-miR-29 

also displayed distorted splenic architecture coupled with an increase in cyclin D1 

expression.  The authors suggest that the CLL phenotype in the Eµ-miR-29 model 

is not only due to accumulation, yet also to active proliferation of CD5+B220+ cells 

within the BM, LN and spleen.  In fact, BrdU analysis of Eµ-miR-29 versus wild 

type mice reveals a higher percentage of proliferating B220+CD5+ B cells. The Eµ-

miR-29 mice also developed hypogammaglobulinemia that is a common 

occurrence in CLL patients. Crossing of Eµ-TCL1 mice with Eµ-miR-29 mice 

revealed an even more aggressive phenotype, with an increase of 40% in 

CD5+CD19+ splenic B cells in the double transgenic compared to Eµ-TCL1 alone, 

suggesting that miR-29 can contribute to the pathogenesis of CLL independently 

of TCL1 (Santanam et al. 2010). 

Although there are clear disadvantages in using murine models such as 

differences from pathogenesis of human disease and differences between 

microenvironment of mouse and human, they are nevertheless important tools in 

understanding human disease, particularly in light of the heterogeneity of the 

human disease.  They can be used to study initiation and development of a CLL, 

and characterize novel therapeutic targets that may prove beneficial in treatment 

of the disease.  Although no model to date exactly emulates human disease, all 

models have furthered our understanding of human CLL and may reflect the 

heterogeneity of CLL.  

1.3 The Protein Kinase C Family 

The PKC family comprises of nine closely related serine/threonine kinase isoforms 

that have evolutionarily conserved structural features.  PKCs belonging to the 

mammalian family share common catalytic domains (Figure 1.8), but differ in their 

regulatory domain which dictates the co-factors required for their activation.  The 

isoforms are subdivided into three main groups: conventional, novel and atypical 

PKCs.  Conventional PKCs (α, βI, βII and γ) are activated by phospholipids, 

diacylglycerol (DAG) and Ca2+ binding (Figure 1.8).  Novel PKCs (δ, ε, η, and θ) 

do not require Ca2+ for activation, but are still dependent on phospholipids and 

DAG.  Finally, atypical PKC isoforms (ζ and ι/λ) are activated independently of 

Ca2+ and DAG (Newton 2001; Rosse et al. 2010).  
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Figure 1.8 The structure of PKCs 
 

1.3.1 Regulators of PKCs 

GPCR or receptor tyrosine kinases (RTK) are activated resulting in PLC regulated 

generation of inositol triphosphate (IP3) and DAG from cell membrane 

phospholipids (Griner & Kazanietz 2007).  IP3 releases Ca2+ from the sarcoplasmic 

reticulum (or other intracellular stores) which primes conventional PKCs.  Before a 

PKC is activated, it must undergo a process of maturation involving a series of 

phosphorylation steps (Figure 1.9) (Griner & Kazanietz 2007).  The first 

phosphorylation step of a PKC is mediated by PDK1 and occurs at the activation-

loop site.  This first phosphorylation step exposes the turn and hydrophobic motifs 

within the C terminal. The PKC now autophosphorylates, leading to increased 

stabilization of the enzyme and maturity.  The mature yet still inactive PKC is now 

released into the cytosol awaiting activation (Griner & Kazanietz 2007).  Upon 

increase in levels of intracellular Ca2+ and DAG, Ca2+ binds the C2 domain of 

classical PKCs and DAG binds the C1 domain conferring a high-affinity interaction 

between the membrane and the PKC resulting in a conformational change that 

results in release of the pseudosubstrate from the substrate-binding site, thus 

releasing this domain for binding of actual substrates, serine/threonine 
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phosphorylation and activation of signaling effectors that lie downstream (Colón-

González & Kazanietz 2006).  Novel PKCs are not pre-targeted by Ca2+ but have 

higher affinity to DAG (Giorgione et al. 2006).   

 

Figure 1.9 Activation of cPKCs 
 

1.3.2 PKCs: Tumour Promoters or Suppressors? 

PKCs are ubiquitously expressed and necessary for regulation of processes in 

normal cells such as proliferation, apoptosis, differentiation and migration (Newton 

2001; Tan & Parker 2003). PKCs are not only a target of tumour promoting phorbol 

esters which act as DAG analogues, but have also been linked to oncogenes such 

as RAS, FOS and myc, placing PKCs at the core of cancer signaling pathways 

(Griner & Kazanietz 2007).  Indeed, expression of specific PKCs is dysregulated in 

a number of cancers (Griner & Kazanietz 2007; Michie & Nakagawa 2005). PKCs 

have also been implicated in mitogenesis, survival and transformation (Griner & 

Kazanietz 2007).  Overexpression of PKCβI and PKCγ in murine fibroblasts causes 

a malignant transformation of these cells and enhances tumorigenesis in nude 

mice (Bredel & Pollack 1997). Overexpression of PKCβII in colon cancer causes 

hyperproliferation of colonic epithelium and increased carcinogenesis (Griner & 

Kazanietz 2007). In fact inhibiting PCKβ with enzastaurin has shown to effectively 

induce apoptosis in or stop the proliferation of cancerous cells in colon cancer, T 

cell lymphoma, glioma and thyroid cancer (Griner & Kazanietz 2007). Therefore 

PKC inhibition has been a key focus in cancer therapy to date.  

However, not all PKCs act as tumour promoters.  Sometimes, where one isoform 

acts as a tumour promoter, another acts as a tumour suppressor.  For example, 
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some isoforms like PKCε and PKCδ can have opposing roles in proliferation, 

survival and tumour promotion.  PKCε acts as a tumour promoter, whereas PKCδ 

has been shown to have tumour suppressive qualities such as delivery of anti-

proliferative and apoptotic signals in various cell types (Griner & Kazanietz 2007). 

Similarly, overexpression of PKCβII in mice stimulates the proliferation of colon 

epithelial cells and is an early promoting factor in colon carcinogenesis (Gökmen-

Polar et al. 2001), whereas PKCα expression is usually decreased (Dupasquier et 

al. 2009).  

1.3.3 PKCα 

A single isoform can serve completely opposing roles in a system-dependent 

manner. For example, PKCα is upregulated in a variety of human cancers such as 

breast, gastric, prostate and brain cancers, implicating it as a tumour promoter in 

these cancers (Griner & Kazanietz 2007; Michie & Nakagawa 2005).  In 

melanoma, PKCα activation is associated with increased tumour cell proliferation, 

invasiveness and decreased differentiation (Lahn & Sundell 2004; Krasagakis et al. 

2004). Similarly, in breast cancer cells, PKCα expression has been linked to 

increased aggressiveness and invasiveness (Tan et al. 2006; Lønne et al. 2010).  

Moreover, PKCα and PKCβI antisense depletion studies in gastric cancer cells 

demonstrated reduced size and rate of tumour formation and anchorage-

independent growth (Griner & Kazanietz 2007). Such studies have led to the 

development of pharmacological agents targeting the expression or activity of 

PKCα, however clinical trials results have not been encouraging (Martiny-Baron & 

Fabbro 2007; Tortora & Ciardiello 2003; Mackay & Twelves 2007; Cripps et al. 

2002).  However, the expression or function of PKCα has been found to be 

downregulated in thyroid, pituitary, epidermal, pancreatic, colon cancers (Kahl-

Rainer et al. 1994; Alvaro et al. 1997; Detjen et al. 2000; Gökmen-Polar et al. 

2001; Tibudan et al. 2002; Neill et al. 2003)  as well as in CLL (Alkan et al. 2005; 

Abrams et al. 2007) suggesting that in these cancers PKCα may act as a tumour 

suppressor.  Overexpression of PKCα in melanocytes results in attenuated 

proliferation (Bredel & Pollack 1997).  In a carcinogen-induced colon cancer mouse 

model, expression of PKCα decreases (Gökmen-Polar et al. 2001). Similarly, within 

the ApcMin/+  mouse model of colorectal cancer PKCα expression is decreased 

(Nakashima 2002), and crossing of ApcMin/+  mice with PKCα-/- mice resulted in 

development of more aggressive tumours within mice that died earlier than their 

PKCα-proficient counterparts (Oster & Leitges 2006; Leitges 2007). Another mouse 
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colorectal cancer study showed that PKCα transcription is repressed by the SOX9 

transcription factor in proliferating intestinal epithelial cells in vitro and in vivo 

(Dupasquier et al. 2009), generating the cancerous phenotype.  Collectively, these 

studies underline the fact that a single isoform can have either tumour promoting or 

tumour suppressive roles, stressing the importance of differential regulation of PKC 

isoforms in distinct cell contexts.  

Importantly, subversion of PKCα signaling through expression of dominant-

negative PKCα (PKCα-KR) in lymphoid progenitor cells has led our laboratory to 

develop a murine model of CLL ( Nakagawa et al. 2006).  Therefore, within our 

model of CLL, PKCα acts as a tumour suppressor.  The aim of this project was to 

investigate events downstream of PKCα subversion during the initiation and 

development of disease and to draw links to human CLL. The following thesis will 

therefore characterize a previously established CLL model in order to gain further 

understanding of human CLL with the following aims: 

 

Aims: 

1. Elucidate similarities between human CLL and the mCLL model; 

2. Investigate properties of mCLL cells and define molecular events occurring 

downstream of subversion of PKCα signaling; 

3. Evaluate the lineage plasticity potential of mCLL cells. 
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2.1 Plasmids and cell lines 

2.1.1 Plasmids 

All plasmids encoding PKC mutants were a kind gift from Dr. Jae-Won Soh. 

Briefly, PKCα-KR was generated by introducing a point mutation in the full length 

PKCα cDNA at lysine (K) 368 in the ATP-binding site, changing it to arginine (R), 

the denomination PKCα-KR. The mutant was introduced into the backbone 

plasmid pHACE (Figure 2.1 top; Soh et al. 1999) at the EcoRI site.  pHACE was 

derived from pcDNA3 (Invitrogen, Paisley, UK; summary of supplier’s addresses 

can be found in Table 2.1), modified to contain a C-terminal HA tag. The 

constitutively active PKCβI and PKCβII isoforms (PKCβI-CAT and PKCβII-CAT) 

were generated by deletion of the respective gene’s regulatory domain, and were 

introduced into the backbone pHANE (Figure 2.1 bottom; Soh et al, 1999) at the 

EcoRI restrictin site.  pHANE was derived from pcDNA3 but modified to contain an 

N-terminal HA tag.  The full-length, wildtype PKCβI and PKCβII (PKCβI-WT and 

PKCβII-WT) were introduced into the pHACE and pHACB backbone (Figure 2.1 

top; Figure 2.2 top) at the EcoRI site (into pHACE) and BamHI site (into pHACB) 

respectively. Like pHACE, pHACB was generated by altering pcDNA3 to contain a 

C-terminal HA tag.   

Retroviral constructs were generated by subcloning of wildtype and mutated 

isoforms into the retroviral backbone MIEV (Figure 2.2, bottom). MIEV contains 5’ 

and 3’ long terminal repeats (5’LTR, 3’LTR) flanking a cytomegalovirus (CMV) 

promoter and green fluorescent protein (eGFP) driven by an IRES sequence.  

LTRs are used by viruses to insert their genetic information into the genome of the 

host, whereas the IRES sequence allows for initiation of translation of messenger 

RNA (mRNA).  PKCα-KR, PKCβI-CAT and PKCβII-CAT were cloned into MIEV at 

BglII-NotI restriction enzyme sites (Figure 2.3 top). PKCβI-WT was cloned into 

MIEV at XhoI, NotI (Figure 2.3 bottom). PKCβII-WT was excised out of pHACB 

with XhoI, EcoRV and subcloned into MIEV at XhoI, SnaBI (Figure 2.4).  MIEV-

CyclinD1 was created by subcloning CyclinD1 from pCMV-Sport6 (Bioscience 

LifeScience Ltd., Nottingham, UK; Figure 2.5 top) into MIEV at EcoRI, NotI sites 

(Figure 2.5 bottom). All inserts were cloned into MIEV 5’ of the internal-ribosomal 

entry site (IRES), allowing for the bicistronic expression of the specific gene of 

interest with GFP and effective tracking.   



 

 47 

2.1.2 Cell Lines 

2.1.2.1 PT67 retroviral packaging cells 

PT67 cells (ClonTech, Saint-Germain-en-Laye, France) are NIH/3T3 fibroblasts 

that express gag, pol, and env genes to continuously produce retrovirus packaged 

into an amphotropic envelope 10A1 capable of infecting most mammalian cells 

after co-transfection with a retroviral vector (Miller & Chen 1996). PT67 cells were 

cultured in DMEM medium (10% FBS (Invitrogen), 100 U/ml penicillin, 100 µg/ml 

streptomycin, 50 µM β-ME (Sigma-Aldrich, Dorset, UK) and 2 mM L-glutamine 

(Invitrogen)) at 37°C in a humidified incubator containing 5% (v/v) CO2.   

2.1.2.2 GP+E.86 retroviral packaging cells 

GP+E.86 cells are NIH/3T3 fibroblast cells that were modified to contain gag, pol, 

and env genes to continuously produce an ecotropic virus after co-transfection 

with a retroviral plasmid.  For safety reasons, the gag, pol and env genes were 

initially separated onto two different plasmids and their Ψ packaging sequence 

was deleted, alongside the 3’ LTR to ensure replication incompetent virus 

(Markowitz et al. 1988). GP+E.86 cells were cultured in DMEM medium at 37°C in 

a humidified incubator containing 5% (v/v) CO2.   

2.1.2.2.1 Generation of retroviral packaging lines 

PT67 cells were transfected with retroviral vectors generated above (section 2.1.1) 

using lipofectamine or CaCl2.  Virus was collected after 48 hr, filtered through a 

0.45 µm filter, ultracentrifuged at 24 000 g for 2 hr at 4°C and used to transduce 

GP+E.86 cells. GFP+ GP+E.86 cells were sorted twice using BD FACSAria (BD 

Biosciences, Oxford, UK) and subsequently used to continuously generate virus 

for retroviral transduction of lymphoid progenitors (Figure 2.6). 

2.1.2.3 OP9 cells 

OP9 cells are a murine stromal cell line generated from newborn B6C3F2 op/op 

mouse calvaria (Kodama et al. 1984) with a mutation in the gene encoding for M-

CSF, thus resulting in the lack of secretion of functional M-CSF (Nakano 1995).  

OP9 cells support the differentiation of ES cells into B cells when co-cultured with 

cytokine IL7 and β-mercaptoethanol (β-ME) (Nakano et al. 1994; Nakano 1995) 

and have since been used to differentiate FL cells into B cells under similar 

conditions. OP9 cells were cultured in complete medium: α-MEM (Invitrogen) 

containing 20% foetal bovine serum (FBS) (Invitrogen), 100 U/ml penicillin, 100 
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µg/ml streptomycin, 50 µM β-ME, 2 mM L-glutamine, 10 mM HEPES, 1 mM 

Sodium Pyruvate and 10 µg/ml gentamycin (Invitrogen) at 37°C in a humidified 

incubator containing 5% (v/v) CO2.   

2.1.2.4 OP9-DL1 cells 

OP9-DL1 cells are OP9 cells that have been modified to ectopically express the 

Notch ligand delta-like-1 (DL1) (Schmitt & Zúñiga-Pflücker 2002). During 

lymphocyte development, Notch receptors and their ligands are important 

regulators of T cell linage commitment, and in particular, Notch1 has been shown 

to be critical in T cell development (Wang et al. 2006).  Following the addition of 

Flt3L and IL7 (PeproTech, London, UK), OP9-DL1 cells preferentially support T 

cell differentiation of ES cells and FL stem cells. OP9-DL1 cells were cultured in 

complete medium at 37°C in a humidified incubator containing 5% (v/v) CO2. 

2.2 Tissue culture 

All tissue culture was conducted under sterile conditions using a laminar air flow 

hood.  Tissue culture consumables were purchased from Fisher Scientific U.K. 

and Greiner Bio-One Ltd unless otherwise stated.  

2.2.1 Preparation of HPCs from FL cells 

Single cell FL suspensions were created via crushing of FL extracted at day 14 of 

gestation and filtering through a 70 µM nylon mesh (Biodesign Inc., NY, USA) 

followed by a wash in DMEM media (4 min, 324g, RT). Complement-mediated 

lysis was carried out using anti-CD24 antibody, and incubating cells with low-lox 

rabbit complement (Cedar Lane, ON, Canada) at 37ºC for 30 min.  Thereafter, a 

discontinous density gradient centrifugation over Lympholyte-Mammal (Cedar 

Lane) was performed for 30 min (623g; RT) in order to extract all viable CD24-/low-

HPCs.  Viable HPCs were then washed in DMEM medium for 5 min (324g) once 

before subsequent use.   

2.2.2 Retroviral transduction of HPCs 

Retroviral GP+E.86 packaging lines expressing PKCα-KR (GP+E.86-PKCα-KR) or 

MIEV empty retroviral vector (GP+E.86-MIEV) were plated at 60% confluence one 

day prior to retroviral transduction in 6-well plates.  Packaging lines were 

incubated with mitomycin C (10 µg/ml) for 3 hr at 37°C, and subsequently washed 

twice with DMEM. Single cell suspensions of prepared FL were re-suspended in 

complete medium supplemented with 10 ng/ml polybrene, 5 ng/ml IL7 and Flt3L 
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and were co-cultured with packaging cell lines for overnight transduction prior to 

being placed on an in vitro B cell generation system (OP9).  

2.2.3 In vitro B cell generation system  

OP9 stromal cells were plated at 60% confluence one day prior to FL co-culture. 

FL:OP9 co-culture was maintained in complete medium supplemented with 10 

ng/ml IL7 and Flt3L with a change of media every second day, and a change of 

OP9 layers every fourth day. After day 5 of FL:OP9 co-culture Flt3L was removed 

from the medium (Figure 2.7 top).  

2.2.4 In vitro T cell generation system 

OP9-DL1 cells were plated at 70% confluence one or two days prior to FL co-

culture.  Pro-B cells or HSCs were sorted from FL:OP9 co-cultures and 

subsequently co-cultured with DL1 cells in complete medium supplemented with 5 

ng/ml IL7 and Flt3L. Medium was changed every 2 days and OP9-DL1 layers were 

replaced once per week (Figure 2.7 bottom).  

2.2.5 Isolation of HSC, pro-B and T cells from FL in vitro cultures 

FL cells were transduced overnight with MIEV or PKCα-KR retroviral packaging 

lines in complete medium and thereafter labelled with fluorochrome conjugated 

antibodies (B220-PE, CD45-PerCP, Sca1-PE-Cy7, CD117-APC, CD19-APC-Cy7) 

and a lineage cocktail of biotin-conjugated antibodies (CD3ε, CD4, CD8, CD11b, 

Gr1, NK1.1 and Ter119) and visualized by streptavidin (SA) -conjugated Pacific 

blue (Invitrogen) (refer to Table 2.2 for list of FACS antibodies used). HSC 

populations were sorted by gating on: GFP+Lin-CD45+B220-CD19-CD117hiScaIhi 

and subsequently co-cultured with OP9 cells in complete medium supplemented 

with 10 ng/ml IL7 and Flt3L for 9 days. Late pro-B populations were then sorted 

from day 9 HSC:OP9 co-cultures by gating on: GFP+Lin-

CD45+B220+CD19+CD117+ and subsequently cultured on OP9-DL1 stromal layers 

in complete medium supplemented with 5 ng/ml IL7 and Flt3L.   B lineage cells 

(CD19+ B220+ Lin-) were sorted from both MIEV and PKCα-KR cultures and CD19-

B220- CD90.2+ CD25+ Lin- cells were sorted from PKCα-KR-cultures.  

2.2.6 Drugs and Inhibitors 

Details of the stock concentrations, manufacturers and storage conditions of all 

drugs and inhibitors used are listed in Table 2.8.  
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Phorbol-12-myristate-13-acetate (PMA; Sigma-Aldrich) is a polyfunctional 

diterpene phorbol that is an activator of PKC (Saitoh & Dobkins 1986) and is 

known as a widespread tumour promotor in cancer (O’Brien et al. 1975). 

Ionomycin (Iono) (Sigma-Aldrich) is an ionophore that is used to raise intracellular 

Ca2+ levels and is often used in combination with PMA to stimulate the activation 

of PKCs.  Hispidin (Sigma-Aldrich) is a fungal metabolite that inhibits PKCβI and βII 

isoforms.  Enzastaurin, a synthetic bisindolylmaleimide, inhibits PKCβ by binding 

to the ATP-binding site and was a kind gift from Eli Lilly (Eli Lilly and Co. Ltd, 

Hampshire, UK). Rapamycin (rapa) is an inhibitor of mammalian mTOR by 

associating with its intracellular receptor FKBP12 and was purchased from 

Calbiochem.  Okadaic Acid (OA) is an potent inhibitor of protein serine/threonine 

phosphatase A (PP2A) and was also purchased from Merck (Merck Chemicals 

Ltd., Nottingham, UK).   

2.2.6.1 In vitro drug treatment 

B cells were carefully harvested from FL:OP9 co-cultures and centrifuged over 

Lympholyte-Mammal prior to drug treatments. 1 x 106 cells per condition were 

plated in complete medium and treated with drug or vehicle control for 24 or 48 hr.  

2.2.6.2 In vivo drug treatment 

Enzastaurin was re-suspended in D5W (5% dextrose in water) and dosed by oral 

gavage (0.2 ml per dose) with 80 mg/kg daily in order to approximate the plasma 

concentrations achieved clinically as suggested by Eli Lilly. Mice were dosed for 

14-21 consecutive days and maintained on a normal diet.  

2.3 In vivo models 

2.3.1 RAG-/- and ICR mice 

All animal work was carried out in accordance with regulations set by the Animals 

Scientific Procedures Act 1986 (ASPA, 1986).   Imprinting control region (ICR) 

mice purchased from Harlan UK Ltd (Harlan UK Ltd., Blackthorn, UK) and RAG1-/- 

mice were used, and were maintained at the University of Glasgow Central 

Research Facilities.  ICR mice are an outbred strain of Swiss mice established by 

Hauschka and Mirand in 1973 (Eaton et al. 1980) and are often used for 

oncological research.  RAG1-/- mice have a blockade in lymphocyte differentiation 

at the pro-B to pre-B cell stage in development, similar to that described in severe 

combined immunodeficient  (SCID) mice. RAG genes are also responsible for 
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TCR rearrangement, and therefore RAG1-/- mice have no mature B and T 

lymphocytes (Mombaerts et al. 1992), and an impaired immune system.   

In preparation for isolation of FL derived HPCs, timed pregnant mice were 

generated, and FL was extracted at day 14 of gestation. 

2.3.2 In vivo adoptive transfer 

Lymphocytes were isolated from retrovirally transduced HPC FL cultures by 

centrifugation over Lympholyte-Mammal.  Briefly, HPCs were isolated from day 14 

gestation FL (as described in section 2.2.1), retrovirally transduced overnight (as 

described in section 2.2.2), collected, washed and re-suspended in 5 ml, underlaid 

with Lympholyte-Mammal and centrifuged for 30 min (623g; RT).  Cells were 

isolated from the interphase, washed twice in PBS and re-suspended in PBS at a 

concentration of 1x106 cells/ml.  Neonatal RAG1-/- mice were injected intra-

peritoneally (i.p.) with the cell suspension at a desired concentration of cells and 

monitored for the development of disease.   Mice were sacrificed by cervical 

dislocation 4-8 weeks post-injection and organs (BM, LN, spleen), blood, 

peritoneal wash and any present tumours were harvested for processing and 

analysis or storage for later analyses.  

2.3.2.1 Processing of blood and organs from injected RAG1-/- mice 

Lymphoid organs were removed from injected RAG1-/- mice and placed into 

separate tubes containing 2 ml PBS.  The organs were crushed in order to 

generate a cell suspension.  Cells were filtered through a 70 µM nylon mesh 

(Biodesign Inc., NY, USA) and pelleted by centrifugation for 5 min at 400 g at RT.  

The cell pellet was re-suspended in 5 ml PBS and underlaid with 2.5 ml 

Lympholyte-Mammal (as described in Section 2.1.1) in order to remove red and 

dead cells.  Cells were re-suspended in FACS buffer and stained with antibodies 

for FACS analysis.   

2.4 Normal human B cells and CLL blood samples 

Normal B lymphocytes were isolated from buffy coat samples acquired from 

healthy individuals through the Scottish National Blood Transfusion Service 

(SNBTS), with approval from SNBTS ethics committee.  Samples were received 

within 24 hr after bleeding of donor, after standard virology screening was 

completed. B cells were isolated using MACS human CD19 MicroBeads according 

to the manufacturer’s protocol (Miltenyi Biotec, Surrey, UK).  CLL lymphocytes 

were isolated from peripheral blood of patients with a clinically confirmed diagnosis 
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of B-CLL, after informed consent.  Patients had not received treatment within the 

preceding three months.  CLL B cells were isolated using RosettesepTM human B 

cell enrichment cocktail (Stemcell Technologies, Grenoble, France) according to 

the manufacturer’s protocol.  After separation, B cell purity was >90% assessed by 

FACS in both normal and CLL samples. For a list of clinical characteristics CLL 

samples used see Table 2.3.  CLL patients were anonymised and linked through 

acquisition of a field of clinical data. 

2.5 Western Blotting 

B lineage cells were removed from OP9 co-cultures and placed on empty 6-well 

plates in complete medium for 2 hr in order to separate B cells from adherent OP9 

layers.  1 x 107 cells were washed twice in ice-cold PBS with phosphatase 

inhibitors (Roche, West Sussex, UK) and re-suspended in 100 µl lysis buffer (20 

mM Tris pH7.5, 137 mM NaCl, 10% glycerol, 1% NP40) containing protease 

inhibitor cocktail  (Roche, West Sussex, UK) and phosphatase inhibitor cocktail 

(Roche) on ice for 30 min. Lysates were then spun at 14 000 rpm for 30 min at 4°C 

and supernatant collected.   

Quantification of lysates was conducted with a bicinchoninic acid (BCA) Protein 

Assay Kit (Pierce, Northumberland, UK). Bovine albumin serum (BSA) protein 

standards were prepared in sterile water at concentrations of: 2000, 1500, 1000, 

750, 500, 250, 125, 26 and 0 µg/ml and stored at -20°C until use.  2 µl of BSA 

protein standard or sample lysate was pipetted per well of 96-well plate in triplicate 

and 200 µl of 50:1 solution of kit reagent A:B was pipetted to each well and the 

plate was incubated at 37°C for 30 min.  Absorbance was read at 562 nM on a 

Spectramax M5 plate reader (MDS Analytical Technologies, Berkshire, UK) and 

analysed with SoftMax Pro 5.2 software (MDS Analytical Technologies).   

Equal amounts of protein (typically 10-20 µg) were incubated with NuPage LDS 

Sample buffer (10 % (w/v) Glycerol, 1.7% (w/v) Tris-Base, 1.7% Tris-HCl, 2% (w/v) 

lithium dodecyl sulfate (LDL), 0.15% (w/v) EDTA, 0.019% Serva Blue G250 and 

0.063% Phenol Red (pH 8.5) (Invitrogen) and sample reducing agent (Invitrogen) 

at 72ºC for 15 min.  Proteins were separated by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) in a 4-12% NuPAGE Novex Bis-

Tris precast gel (Invitrogen) (unless otherwise stated), using MOPS SDS Running 

Buffer buffer (50 mM 3-(N-morpholino) propane sulfonic acid (MOPS), 50 mM Tris-

Base, 3.5 mM SDS and 1.0 mM EDTA (pH 7.7)) supplemented with NuPAGE 
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antioxidant (Invitrogen).  Samples were run alongside SeeBlue® Plus2 Pre-

Stained Standard (Invitrogen) at 150 volts (V) for 1 hr.  

Gels were then transferred onto an Immun-Blot polyvinyliden difluoride (PVDF) 

membranes (BioRad Laboratories, West Sussex, UK) using a 1 x solution of 20 x 

NuPAGE transfer buffer (25 mM Bicine, 25 mM Bis-Tris, 1.0 mM EDTA, 50 µM 

Chlorobutanol (pH 7.2)) supplemented with 20% (v/v) methanol (Sigma-Aldrich).  

Briefly, the PVDF membrane was soaked in 100% methanol for 1 min, rinsed in 

distilled water (dH20) and equilibrated in transfer buffer prior to assembly of 

gel/membrane sandwiches using 1.0 mm gel blotting paper (Whatman plc, Kent, 

UK) and sponges in an XCell IITM Blot Module (Invitrogen).  Transfer was 

performed at 30 V for 1 hr.    

Blots were washed with 1 x TBST (20 mM Tris HCl pH 7.4, 150 mM NaCl, 0.01% 

Tween 20), blocked in TBST containing 5% BSA (Sigma-Aldrich) or 5% milk for 1 

hr at RT, and incubated with primary antibody overnight at 4ºC. Thereafter, the 

blots were washed 4 times with TBST and incubated with horseradish-peroxidase 

(HRP)-labelled secondary antibodies for 1 hr at RT. After 4 washes with TBST, the 

blots were developed with Immun-StarTM Western CTM HRP chemiluminescent kit 

for one minute, and imaged with the Molecular Imager® ChemiDocTM XRS system 

(BioRad Laboratories). Western blot antibodies were purchased from Cell 

Signaling Technology unless otherwise stated.  Refer to Table 2.4 for a list of 

antibodies used. 

2.5.1 Membrane stripping and re-probing 

When multiple proteins or proteins of similar sizes were viewed on the same gel, 

PVDF membranes were stripped.   Blots were incubated for 5 - 10 min in mild 

stripping buffer (200mM Glycine, 01% SDS, 1% Tween 20), 2 x 10 min in PBS, 2 x 

5 min in TBST and subsequently re-blocked in 5% BSA (TBST) or 5% milk (TBST) 

for 1 hr at RT prior to incubation with primary antibody. 

2.6 Genomic DNA extraction 

Cells were sorted, pelleted by centrifugation at 4°C and re-suspended in PBS.   

DNA was isolated using the Easy-DNA kit according to the manufacturer’s protocol 

(Invitrogen) and then dissolved in DNase-free H20. 



 

 54 

2.6.1 Genomic DNA PCR 

For each reaction, DNA from 1 - 5 x 103 cells was used.  DNA was amplified in a 

PCR reaction with a hot start at 94°C for 2 min, 35 cycles of: 10 sec denaturation 

at 94°C, 30 sec annealing at 59°C, 2 min extension at 68°C; and a final extension 

at 68°C for 6 min.    TCR Dβ-Jβ, IgH D-J and IgH V-J primers used for gene 

rearrangement analysis have been previously described (Pennycook et al. 1993; 

Michie et al. 2001). Genomic DNA from wildtype mouse splenocytes was used as 

the positive control, H20 as the negative control, and β2M was used as the loading 

control. Refer to Table 2.5 for primer sequences and PCR conditions. All primers 

were made by Eurofins MGW Operon (London, UK).  Products were separated by 

1% agarose gel electrophoresis and visualized by addition of Ethidium Bromide 

(EtBr) and imaging with the Molecular Imager® ChemiDocTM XRS system. 

2.7 Total RNA extraction 

RNA was purified using RNeasy mini kit columns (Qiagen, West Sussex, UK) 

according to the manufacturer’s protocol. Samples were re-suspended in RNase-

free H20 and quantified with a spectrophotometer (Nanodrop ND1000 

Spectrophotometer; Labtech International Ltd, East Sussex, UK). 

2.7.1 Measuring mRNA levels using qRT-PCR 

Up to 1 µg RNA was used as a template per 20 µl reverse transcription reaction 

using the First Strand cDNA Synthesis Kit for RT-PCR (Roche, West Sussex, UK).  

Quantitative PCR was performed using Taqman® Gene Expression Assays 

(Applied Biosystems, Warrington, UK; see list of assay IDs in Table 2.6). 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as the 

housekeeping gene unless otherwise stated.  1 µl cDNA was used per 20 µl PCR 

reaction containing 1 x TaqMan® Gene Expression Mastermix (AmpliTaq Gold® 

DNA Polymerase (Ultra Pure), Uracil-DNA glycosylase, dNTPs with deoxyuridine 

triphosphate, ROX™ Passive Reference; Applied Biosystems).  All reactions were 

performed in technical triplicates and at least three biological replicates using the 

7900HT Fast Real-Time PCR system (Applied Biosystems) programmed to 

complete 40 cycles as follows: 50°C for 2 min, 95°C for 10 min, 95°C for 15 sec, 

and 60°C for 1 min. After normalization to the endogenous control gene GAPDH, 

levels of gene mRNA expression in each sample were determined by the 2-ΔΔCT 

method of relative quantification (Schmittgen & Livak 2008).  
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2.8 Cell proliferation by 5-bromo-2’-deoxyuridine (BrdU) incorporation  

Cell proliferation was indirectly measured by monitoring of DNA synthesis by 

relative incorporation of BrdU using the Cell Proliferation ELISA, BrdU 

(colorimetric) kit as per manufacturer’s protocol (Roche).  Briefly, cells from 

OP9:FL co-cultures were passed through lympholyte mammal to isolate live 

lymphocytes and consequently plated in 96-well plates at a confluence of 1 x 104 – 

5 x 104 cells/well in complete medium +/- drug treatments. Prior to the termination 

of a time point of an experiment, cells were labelled with 10 µl of 100 µM BrDU 

and cultured for an additional 2 hr.  Plates were then centrifuged at 300g for 10 

min at RT and medium was removed by flicking.  Cells were consequently dried 

with a hair-dryer for 15 min and fixed with 200 µl/well of FixDenat reagent (ethanol 

based) for 30 min at RT.  FixDenat reagent was then removed by flicking and 

peroxidase-conjugated anti-BrdU antibody was added to the wells and cells 

incubated for 90 min at RT.  Anti-BrdU antibody was removed by flicking and wells 

washed three times prior to addition of 100 µl per well of 3,3′,5,5′-

tetramethylbenzidine (TMB) substrate. Absorbance was read at 370 nM and 492 

nM on a Spectramax M5 plate reader and analysed with SoftMax Pro 5.2 software.   

2.9 Assessment of surface antigen expression 

Cells were harvested by gentle pipetting and washed in flow cytometry (FACS) 

buffer (Hank’s Balanced Salt Solution (HBSS) supplemented with 1% BSA and 

0.05% sodium azide (Sigma-Aldrich)).  Cells were then incubated with anti-

CD16/CD32 antibody (1/200 dilution) to block Fc receptors and non-specific 

binding.  Cells were washed again in FACS buffer and stained with fluorochrome-

conjugated antibodies (in 100 µl FACS buffer) at 4°C in the dark for 30 min.  When 

biotin antibodies were used, cells were incubated with fluorescent-conjugated SA 

for 30 min at 4°C in the dark.  Cells were then washed twice (in FACS buffer), re-

suspended in 100 µl FACS buffer and passed through a 70 µM nylon mesh prior to 

FACS analysis. FACS analysis was performed using a FACSCanto II flow 

cytometer (BD Biosciences), data was acquired using BD FACSDiva (BD 

Biosciences) software and analysed using FlowJo (Tree Star Inc., Ashland, USA) 

software.   

2.10 Analysis of intracellular proteins by flow cytometry 

ZAP70 protein levels were measured by intracellular flow cytometry. Cells were 

washed once in FACS buffer, fixed using Cytofix/Cytoperm (BD Biosciences) 
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solution, and incubated for 20 min at 4°C.  Cells were washed twice in BD 

Perm/Wash solution (BD Biosciences) and subsequently stained with PE-

conjugated ZAP70 (ZAP70-PE) antibody. Cells were acquired on FACSCanto II 

flow cytometer as mentioned above (section 2.9).  

2.11 Detection of apoptosis using Annexin V  

Following drug treatments, 1 x 106 cells were washed once in ice-cold PBS, and 

re-suspended in 100 µl HBSS (Sigma-Aldrich) containing 5 µl Annexin V APC and 

5 µl Viaprobe (BD Biosciences) per test, and incubated for 15 min in the dark at 

RT. To stop the reaction, 400 µl HBSS was added to the samples, and the cells 

were analysed on a FACS CantoII flow cytometer. When autofluorescent drugs 

such as enzastaurin and hispidin were used, diamidino-2-phenylindole (DAPI, 10 

µg/ml final concentration) was used instead of Viaprobe, and was added just prior 

to FACS analysis.  Control tubes containing unstained cells, Annexin V or DNA 

stain (Viaprobe/DAPI) single-stained cells were recorded to set FSC/SSC voltages 

and compensation.  FCS analysis was performed as described above (section 

2.9).  Viable cells were considered to be Annexin V-/DNA stain- (Figure 2.8).  

2.12 Cell Cycle Analysis using Propidium Iodine (PI) staining  

All solutions used for PI staining were ice cold.  1 x 106 cells were harvested and 

suspended in 1 ml PBS and centrifuged for 5 min at RT. After aspiration of PBS, 

cells were re-suspended in 500 µl PBS and fixed by adding 4.5 ml 70% (v/v) 

ethanol. Cells were centrifuged (400g for 5 min), washed in 5 ml PBS and re-

suspended in DNA staining solution (20 µg/ml PI in PBS containing 0.2 mg/ml 

Dnase free RNase) for 30 min at RT in the dark (Riccardi & Nicoletti 2006). FACS 

data was acquired using a FACSCantoII flow cytometer. Figure 2.9 illustrates an 

example of cell cycle analysis pattern.   

2.13 Sorting of Cells 

Cells were harvested, washed once in PBS, once in sorting buffer (HBSS; 1 % 

BSA), incubated with anti-CD16/CD32 antibody as described above for 10 min on 

ice, and then incubated with appropriate antibodies on ice in the dark for 30 min. 

Cells were then washed and re-suspended in 500 µl sorting buffer in order to dilute 

out sodium azide present in antibody solutions, and passed through a sterile 70 

µm nylon mesh prior to sorting. All sorting was performed using a BD FACSAria 

and data acquired using FACSDiva software.  
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2.14 Immunohistochemistry 

Paraffin embedded sections were cut into 3 µm slices and placed on slides (Leica 

Microsystems, Buckinghamshire, UK) that were dewaxed with 2 washes with 

xylene, followed by 4 washes in 100% alcohol (to remove excess xylene), and 

finally water.  Heat antigen retrieval was carried out by submerging slides into hot 

EDTA solution (10 mM Tris, 1 mM EDTA, pH 8.0) in a pressure cooker and 

subsequently microwaved on high for 3 min, and 6 min thereafter.  The solution 

was cooled with water and slides washed in 1 x EnvisionTM Flex wash buffer 

(DAKO UK Ltd, Cambridge, UK). All endogenous biotin was blocked using 

Avidin/Biotin Blocking Kit (Vector) and sections were blocked with a 3% H2O2  

peroxidase blocking solution  Thereafter sections were blocked with 5% horse 

serum (in DAKO wash buffer), incubated with primary antibody for 30 min, 

washed, and incubated with biotin-labelled secondary antibody (in all cases apart 

from biotinylated B220).  The sections were washed again in DAKO wash buffer 

incubated with the avidin-biotin-complex (ABC) using the Alkaline Phosphatase or 

HRP Vectastain ABC kit (DAKO UK Ltd).  Finally substrate was added (either 

ImmPACTTM diaminobenzidine (DAB) or Peroxidase Substrate) for 5 min, washed 

with DAKO buffer, washed with H2O, stained with haematoxylin solution and 

dipped into 1% HCl-alcohol solution, then Scot’s Tapwater, 0.5% Copper Sulphate 

solution, and finally H2O prior to mounting.  Tissue sections were scanned with 

SlidePath Digital Pathology Solutions system and uploaded to the University of 

Glasgow SlidePath server. Refer to Table 2.7 for a list of antibodies used. 

2.15 Data and statistical analysis 

All results are shown as mean ± standard error of mean (SEM). Statistical analysis 

was performed using GraphPad Prism 4 software (GraphPad Software Inc., CA), 

using the Students unpaired t-test.  
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Table 2.1 Supplier addresses 
 

Name of Company Address: 

Applied Biosystems, Warrington, 
UK 

Lingley House, 120 Birchwood Boulevard, Warrington, WA3 
7QH, UK 

BD Biosciences, Oxford, UK The Danby Building, Edmund Halley Road, Oxford, OX4 
4DQ, UK 

Enzo Life Sciences Ltd. Palatine House, Matford Court,  
Exeter, EX2 8NL, UK  

Biodesign Inc.  P.O. BOX 1050, Carmel, NY, USA 
BioRad Maxted Rd, Hemel Hempstead,  

West Sussex, HP2 7DX, UK 
Bioscience Lifescience Ltd. 10 Orchard Place, Nottingham Business Park, Nottingham 

NG8 6PX, UK 
Bristol-Myers Squibb Route 206, Provinceline Road, P.O. Box 4000 

08543 New Jersey, U.S.A. 
Carl Zeiss Ltd. 15 - 20 Woodfield Road, Welwyn Garden City 

Hertfordshire, AL7 1JQ, UK 
Cedarlane 4410 Paletta Court, Burlington, Ontario 

L7L 5R2, Canada 
Cell Signaling Technology 
c/o New England Biolabs  

75-77 Knowl Piece, Wilbury Way, Hitchin,  
Herts SG4 0TY, UK 

ClonTech Avenue du President Kennedy 
78100 Saint-Germain-en-Laye, France 

DAKO Ltd. Cambridge House, St. Thomas Place,  
Cambridge CB7 4EX, UK 

Eli Lilly and Co. Ltd. Lilly House, Priestley Road,  
Hampshire, RG24 9NL, UK 

Eppendorf UK Ltd. Endurance House, Vision Park,  
Histon, Cambridge, CB24 9ZR 

Eurofins MWG Operon  Westway Estate 28-32 Brunel Road   
Acton London W3 7XR, UK 

Fisher Scientific UK Bishop Meadow Road, Loughborough,  
Leicestershire, LE 1 5RG, UK 

Greiner Bio-One Ltd. Unit 5, Stroudwater Business Park, Gloucestershire, 
GL103SX, UK 

Harlan UK Ltd. Blackthorn, UK 
 

Invitrogen, Paisley, UK Ltd. 
Part of Life Technologies 

Invitrogen, Paisley, UK Ltd, 3 Fountain Drive, Paisley, UK 

Labtech International Ltd. Acorn House, The Broyle, Ringmer, East Sussex, BN8 5NN, 
UK 

Leica Microsystems Davy Avenue Knowlhill,  
Milton Keynes, MK5 8LB, UK 

LC Laboratories 165 New Boston Street, Woburn, MA 01801, USA 
Merck Chemicals Ltd. Boulevard Industrial Park, Padge Road, Beeston, 

Nottingham, NG9 2JR, UK 
Millipore (U.K.) Limited Suite 3 & 5, Croxley Green Business Park,  

Watford, WD18 8YH, UK 
Miltenyi Biotech Almac House, Church Lane, Bisley,  

Surrey, GU24 9DR, UK 
PeproTech EC Ltd  PeproTech House, 29 Margravine Road,  

London, W6 8LL, UK 
Pierce, 
c/o Perbio Science UK Ltd. 

Unit 9, Atley Way, North Nelson Industrial Estate, 
Cramlington, Northumberland, NE23 1WA, UK 

Qiagen Fleming Way, Crawley, West Sussex, RH10 9NQ, UK 
R&D Systems R&D Systems Europe Ltd., 19 Barton Lane, Abingdon 

Science Park, Abingdon, OX14 3NB, UK 
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Supplier addresses continued 
 

Name of Company Address: 

Roche, West Sussex, UK Roche, West Sussex, Charles Avenue,  
Burgess Hill, RH15 9RY, UK 

Sigma-Aldrich  The Old Brickyard, New Rd, Gillingham,  
Dorset, SP8 4XT, UK 

Stemcell Technolgies 40 Rues des Berges, Miniparc Polytec, Bâtiment Sirocco, 
38000 Grenoble, France 

Tree Star, Inc. 340 A Street #101 Ashland, OR 97520, USA 
Vector Laboratories Inc. 3, Accent Park, Bakewell Road, Orton Southgate, 

Peterborough, PE2 6XS, UK 
Whatman plc Springfield Mill, James Whatman Way, Maidstone,  

Kent, ME14 2LE, UK 
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Table 2.2 FACS antibodies 
 

Name of Antibody Reactive 

Species 

Clone Format Manufacturer 

CD4 mouse RM4-5 PE BDBiosciences 
CD5 mouse 53-7.3 APC BDBiosciences 
CD8α mouse 53-6.7 APC BDBiosciences 
CD11b mouse M7/70 PE BDBiosciences 
CD16/32 mouse 2.4G2 Purified BDBiosciences 
CD19 mouse 1D3 APC-Cy7 BDBiosciences 
CD23 mouse M-L233 Pe-Cy7 BDBiosciences 
CD24 mouse J11d Purified BDBiosciences 
CD25 mouse PC61 PE BDBiosciences 
CD45 mouse 30-F11 PerCP BDBiosciences 
CD45R/B220 mouse RA3-6B2 PE BDBiosciences 
CD71 mouse C2 PE BDBiosciences 
CD90.2 mouse 53-2.1 PE BDBiosciences 
CD98 mouse RL-388 PE BDBiosciences 
CD117 mouse 2B8 APC BDBiosciences 
Ly-6A/E (Sca-1) mouse D7 APC-Cy7 BDBiosciences 
Ly-6G and Ly6C (Gr-1) mouse RB6-8C5 APC BDBiosciences 
NK1.1 mouse PK136 APC BDBiosciences 
H-2Kb mouse AF6-88.5 FITC BDBiosciences 
CD19 Human HIB19 APC BDBiosciences 
CD5 Human UCHT2 PE BDBiosciences 
CD23 Human M-L233 APC BDBiosciences 
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Table 2.3 Details of CLL samples 
  
Sample 
Number 

Age Sex Binet 
Stage 

Treated ZAP-70 
Status 

FISH 

7 74 M C yes pos 11q- 
13 77 M A no neg 13q- 
14 63 M C yes pos 17q- 
18 62 F B Yes pos 11q- 
21 66 F C Yes pos nil 
23 80 F A No n/a n/a 
32 66 F B + C No pos nil 
34 65 M B Yes pos 11q- 
41 60 M A No neg nil 
45 79 M B Yes pos 13q- 
46 53 F A No pos nil 
51 77 M A/C No neg nil 
52 79 F B Yes neg 11q- 
54 55 F A No neg nil 
56 92 F A/C No n/a n/a 
58 66 M A No n/a n/a 
60 60 F A No pos nil 
62 84 F A Yes n/a n/a 
69 45 M A Yes pos nil 
70 75 F C No neg nil 
 
 
neg = ZAP-70 negative,  pos = ZAP-70 positive 
n/a = not available 
nil = no abnormality detected by FISH 
Chromosomal deletions are indicated by (-) and trisomy denoted by (+) 
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Table 2.4 Western Blot Antibodies 
 

Name of Antibody Reactive 

Species 

Dilution  Block  Manufacturer 

4-EBP1 Rabbit 1:1000 5 % BSA Cell Signaling 
β-Tubulin Rabbit 1:1000 5 % BSA Cell Signaling 
c-Myc Rabbit 1:1000 5 % BSA Cell Signaling 
Cyclin D1 Rabbit 1:1000 5 % BSA Thermo Scientific 
E47 Mouse 1:250 5 % MILK BD Biosciences 
EIF4E Rabbit 1:1000 5 % BSA Cell Signaling 
GAPDH 
 

Rabiit 1:1000 5 % BSA Cell Signaling 

GFP Rabbit 1:1000 5 % BSA Cell Signaling 
HA 
 

Rabbit 1:250 5 % BSA Covance 

Lck Mouse 1:500 5 % BSA BD Biosciences 
Mcl-1 Rabbit 1:1000 5 % BSA Cell Signaling 
Phospho-IKBα 
 

Mouse 1:500 5 % BSA Cell Signaling 

Phospho-p70s6 kinase (Thr389) 
 

Rabbit 1:1000 5 % BSA Cell Signaling 

Phospho p44/42 MAPK 
(Thr202/Tyr204) (pERK1/2) 
 

Rabbit 1:1000 5 % BSA Cell Signaling 

PKCα 
 

Mouse 1:1000 5 % BSA BD Biosciences 

PKCβI 
 

Mouse 1:1000 5 % BSA Santa Cruz 

PKCβII 
 

Rabbit 1:1000 5 % BSA Santa Cruz 

ZAP70 
 

Mouse 1:500 5 % BSA BD Biosciences 

Anti-rabbit IgG (H+L) – HRP 
conjugated 

Goat 1:2000 5 % BSA Cell Signaling 

Anti-mouse IgG (H+L) – HRP 
conjugated  

Horse 1:2000 5 % BSA Cell Signaling 
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Table 2.5 DNA primer sequences 
 

Primer Name Sequence 

Internal Control β2M 

β2M forward 5’-GGCGTCAACAATGCTGCTTCT-3’ 

β2M reverse 5’-CTTTCTGTGTTTCCCGCTCCC-3’ 

TCR Dβ-Jβ 

Dβ forward 5’-GTAGGCACCTGTGGGGAAGAAACT-3’ 

Jβ reverse 5’-TGAGAGCTGTCTCCTACTATCGAT T-3’ 

IgH D-J 

DFS forward 5’-AGGGATCCTTGTGAAGGGATCTACTACTGTG-3’ 

JH4 reverse 5’-AAAGACCTGCAGAGGCCATTCTTACC-‘3’ 

IgH V-J 

VHF forward 5’-AGGT(CG)(AC)A(AG)CTGCAG(CG)AGTC(AT)G G-3’ 

JH4 reverse 5’-AAAGACCTGCAGAGGCCATTCTTACC-‘3’ 
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Table 2.6 RNA gene expression assays 
 

Name  ID NAME Manufacturer 
CD3ε Mm00599683_m1 Applied Biosystems 

CD79a Mm00432423_m1 Applied Biosystems 

Cyclin D1 (mouse) Mm00432358_m1 Applied Biosystems 

Cyclin D1 (human) Hs00765553_m1  
 

Applied Biosystems 

Deltex Mm00492297_m1 Applied Biosystems 

E2A Mm01175588_m1 Applied Biosystems 

EBF1 Mm00395519_m1 Applied Biosystems 

GAPDH (mouse) 4352339E-0705012 Applied Biosystems 

GAPDH (human) Hs99999905_m1 Applied Biosystems 

GATA3 Mm00484683_m1 Applied Biosystems 

HPRT Mm01545399_m1 Applied Biosystems 

Id2 Mm00711781_m1  
 

Applied Biosystems 

Id3 Mm00492575_m1 Applied Biosystems 

PAX5 Mm00435501_m1  
 

Applied Biosystems 

PKCα (mouse) 
 

Mm00440858_m1 Applied Biosystems 

PKCα (human) 
 

Hs00925195_m1  
 

Applied Biosystems 

PKCβ (mouse) 
 

Mm00435749_m1 Applied Biosystems 

PKCβ (human) 
 

Hs00176998_m1  Applied Biosystems 

pTα Mm00478363_m1  

 

Applied Biosystems 

Sox9 Mm00448840_m1  
 

Applied Biosystems 

TCF1 Mm00481144_m1  
 

Applied Biosystems 

VEGFα Mm004377304_m1 Applied Biosystems 
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Table 2.7 IHC antibodies 
 

Name of 

Antibody 

Reactive 

Species 

Host 

Species 

Dilution Block Manufacturer 

 
B220 biotin Mouse Rat 1:200 5 % Horse Serum BD Bioscience 

 
GFP Mouse Rabbit 1:500 5 % Horse Serum Cell Signaling 

 
PKCβII Mouse Rabbit 1:200 5 % Horse Serum Santa Cruz 

 
Cyclin D1 
(clone SP4) 

Human/ 
mouse 

Rabbit 1:200 5 % Horse Serum Thermo Scientific 

2° antibody Host Species Dilution Manufacturer 
Biotin anti-
rabbit IgG 

Horse 1:50 DAKO 
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Table 2.8 Drugs 
 

Drug Name Stock 

Concentration 

Molar Mass Storage 

Conditions 

Diluent Manufacturer 

 
Enzastaurin 10 mM 552.0750 

g/mol 
-20°C DMSO Eli Lilly and 

Company 
Hispidin 5 mM 246.2 g/mol -20°C DMSO Sigma-Aldrich 

 
Ionomycin 1 mM  747.1 g/mol -20°C DMSO Sigma-Aldrich 

 
Okadaic Acid 60.8 µM 822 g/mol -20°C H2O Calbiochem  

 
PMA 1.62 mM 616.83 g/mol -20°C DMSO Sigma-Aldrich  

 
Rapamycin 1 mM 914.2 g/mol -20°C MeOH Calbiochem 
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Figure 2.1 Vector map of pHACE and pHANE constructs 
pHACE and pHANE are mammalian expression vectors containing a CMV 

promoter, Kozak translational initiation sequence, ATG start codon, EcoRI cloning 

site and a stop codon.  In addition, pHACE has a C-terminal HA epitope tag whilst 

pHANE has an N-terminal HA epitope tag.    
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Figure 2.2 Vector map of pHACB and MIEV constructs 
pHABE is a mammalian expression vector containing a CMV promoter, Kozak 

translational initiation sequence, ATG start codon, BamHI cloning site, C-terminal 

HA epitope tag and a stop codon.  MIEV is a retroviral vector containing a CMV 

promoter and 5’ IRES, allowing for the bicistronic expression of the gene of 

interest along with GFP.   
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Figure 2.3 Vector map of MIEV-PKCα-KR, MIEV-PKCβI-CAT, MIEV-PKCβII-
CAT and MIEV-PKCβI-WT 
MIEV-PKCα-KR plasmid was generated by subcloning of full length open reading 

frame of PKCα with a point mutation at the ATP binding site out of pHACE and into 

MIEV at BglII, NotI sites.  MIEV-PKCβI-CAT and MIEV-PKCβII-CAT were 

generated by subcloning of cDNA fragments encoding the catalytic domains of 

PKCβI or PKCβII  out of pHANE and into MIEV at BglII, NotI sites. MIEV-PKCβI-WT 

plasmid was generated by subcloning of full-length open reading frame of PKCβI 

out of pHACE and into MIEV at XhoI, NotI sites. 
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Figure 2.4 Vector map of MIEV-PKCβII-WT 
MIEV-PKCβII-WT plasmid was generated by digesting full-length open reading 

frame of PKCβII out of pHACB with XhoI, EcoRV and subcloned into MIEV at XhoI, 

SnaBI sites.   
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Figure 2.5 Vector map of pCMV-Sport6 and MIEV-CyclinD1 
pCMV-Sport6 is a mammalian expression vector containing a CMV promoter, and 

a multiple cloning site in which Cyclin D1 was cloned in at SalI, NotI sites.  MIEV-

CyclinD1 was generated by subcloning of Cyclin D1 into MIEV at EcoRI, NotI 

sites.   
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Figure 2.6 Generation of retroviral packaging lines 
Retroviral packaging lines were generated by transfecting DNA into PT67 cells 

using CaCl2 or Lipofectamine, collecting and concentrating the virus by 

ultracentrifugation, and subsequently transducting GP+E.86 cells.  GFP+ GP+E.86 

cells were sorted twice and grown for at least two weeks before HPCs were 

transduced by co-culture with GP+E.86 cells.   
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Figure 2.7 In vitro OP9 and OP9-DL1 system 
HPCs were prepared from d14 gestation FL and were co-cultured on OP9 cells 

with growth factors to generate B cells (OP9 system).  In order to generate T cells, 

pro-B cells from FL:OP9 co-cultures were sorted and subsequently co-culture with 

growth factors and OP9-DL1 cells that express Notch ligand allowing for Notch 

ligation.  
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Figure 2.8 Apoptosis assessed by Annexin V/Viaprobe 
Cells were stained with Annexin V and Viaprobe as described in Section 2.8.3 and 

gated as shown above.  Annexin V-/Viaprobe- gate represents viable cells, Annexin 

V+/Viaprobe- gate represents early apoptotic cells, and Annexin V+/Viaprobe+ gate 

indicates late apoptotic cells.   
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Figure 2.9 Cell cycle analysis using PI 
PI incorporation was analysed by FACS and a typical histogram is shown above. 

SubG0 population represents apoptosing cells; G0 represents quiescent cells; G1 

represents cells that are growing and preparing chromosomes for replication; S 

phase indicates DNA synthesis; G2 phase is where mitosis preparation occurs; M 

phase is where mitosis occurs.   
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 Chapter 3 

Over-expression of PKCα-KR in murine haematopoietic progenitor cells 
results in the generation of a CLL-like disease marked by the upregulation of 

PKCβII 
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3.1 Introduction 
The use of murine CLL models has proven to be very beneficial in gaining 

understanding of the human disease.  In fact, the importance of oncogenes like 

TCL1 was highlighted by transgenic mouse models expressing TCL1, indicating 

that deregulation of this gene may be a key event in the pathogenesis of CLL 

(Herling et al. 2005; Hamblin 2010; Gorgun et al. 2009).  Similarly, deregulation of 

human PKCα in a murine model was shown to generate a disease similar to 

human CLL ( Michie & Nakagawa 2006; Nakagawa et al. 2006).  This chapter 

aims to further develop the PKCα-KR CLL mouse model, investigating events that 

occur downstream of PKCα deregulation.  

3.2 Aims and Objectives 
The specific aims of this chapter were: 

i. To recapitulate the CLL mouse model; 

a. In vitro and  

b. In vivo 

ii.   To assess the similarities between human CLL and that generated within 

the PKCα-KR mouse model;  

iii. To investigate therapeutic targets in the PKCα-KR mouse model by 

treatment with drug.  
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3.3 Results 

3.3.1 Introduction of dominant negative human PKCα into murine HPCs 
results in a generation of cells with increased survival capacity and 
surface CLL phenotype expression profile. 

In order to reinforce previous findings that loss of PKCα may act as an oncogenic 

trigger within murine CLL (mCLL) ( Nakagawa et al. 2006; Michie & Nakagawa 

2006), HPCs were isolated from FL of day 14 gestation ICR wildtype mice and 

retrovirally transduced to express vector only (MIEV) or PKCα-KR containing 

vector.  The resultant cells were maintained in an in vitro B cell generating system 

containing stromal cells (OP9) with the addition of IL7 and FLT3L (Figure 3.1A). 

The PKC mutants used in this study which were constructed as described in 

Section 2.1.1, contain the bicistronic expression of GFP alongside the PKC gene 

of interest, thereby allowing GFP fluorescence to be monitored by FACS.  The 

PKC constructs are also tagged with HA at the C or N terminus which can be 

validated by Western blot using an anti-HA antibody. HA was detected in lystates 

of PKCα-KR containing B cells and not in MIEV control B cells (Figure 3.1B).  

MIEV and PKCα-KR cultures were maintained in the in vitro B cell generating 

system and GFP expression was assessed by FACS (Figure 3.2).  At day 1, the 

PKCα-KR transduced cells were less bright in GFP fluorescence and contained 

significantly less GFP+ cells (22%), compared to MIEV control that were brighter 

and already mostly GFP+ (80%). The difference in overall fluorescence intensity of 

GFP between the cultures is likely due to the presence of the CMV promoter 

driving IRES and GFP and lack of a 2 Kb gene (PKCα-KR) upstream of GFP 

within the MIEV vector (see Figure 2.2).  At day 10, there was a notable increase 

in the percentage GFP+ cells in the PKCα-KR cultures (68.3 % ± 13.3% n = 4) and 

by day 17, both MIEV and PKCα-KR cultures contained virtually no GFP- cells (<5 

%). The increase in GFP+ cells indicated a possible growth advantage of GFP+ 

cells over GFP- cells within the PKCα-KR culture. 

In order to assess the surface phenotype of MIEV and PKCα-KR cells, FACS 

analysis was carried out at day 10 and 17 of OP9 co-culture using cell surface 

markers indicative of B cell commitment (CD45 and CD19) and CLL phenotype 

(CD19, CD23, CD5). At day 10, both cultures contained almost 100% 

CD45+/CD19+ cells (Figure 3.3A) as expected within the in vitro B cell generating 

system.  When CLL surface markers were assessed, PKCα-KR cultures 
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expressed a notably higher level of CD19, CD5 and CD23 compared to MIEV 

control.  Also, IgM surface expression was downregulated within the PKCα-KR 

expressing B cells (Figure 3.3B and C).  Collectively, these findings indicate that 

murine PKCα-KR expressing B cells resemble human CLL B cells by surface 

marker expression profile.  

3.3.2 PKCα-KR cells express key CLL markers indicative of a poor 
prognostic outcome  

Once it was established that murine PKCα-KR expressing B cell phenotypically 

resemble human CLL B cells, the expression of key genes and proteins 

associated with CLL pathogenesis were assessed within the PKCα-KR cultures 

including Bcl-2, aicda (encodes for AID), ZAP70 and activated NFκB. 

At day 6 and 13 of OP9:FL cultures,  Bcl-2 transcript levels were significantly 

higher in PKCα-KR expressing cells compared to MIEV control (Figure 3.4A left). 

Similarly, PKCα-KR cells express significantly higher mRNA transcripts of aicda, 

another key CLL gene, similar to a more aggressive, unmutated form of human 

CLL (Heintel et al. 2004) (Figure 3.4A right). In accordance with human unmutated 

CLL cells, PKCα-KR cells also express higher ZAP-70 protein levels as 

determined by Western blot and intracellular FACS analysis (Figure 3.4B, 3.4C). 

Constitutive activation of the NFκB pathway has become one of the hallmarks in 

CLL (Frenzel et al. 2011). Phosphorylation of NFκB-dependent genes are 

associated with anti-apoptosis (Bcl-2, XIAP), cell proliferation (cyclins) and 

metastasis (VEGF) and collectively contribute to a worse overall prognosis 

(Pepper et al. 2009).  Similarly to human CLL, the NFκB pathway also seems to be 

active in PKCα-KR expressing cells as phosphorylation of IκBα protein, a classic 

activation marker of NFκB, is higher in PKCα-KR expressing cells compared to the 

MIEV control (Figure 3.4B left).   

3.3.3 RAG1-/- mice injected with PKCα-KR-HPCs exhibit shortened lifespan 

In order to evaluate the effects of subversion of PKCα signaling in vivo, neonatal 

RAG1-/- mice were subjected to i.p. in vivo adoptive transfer of MIEV or PKCα-KR 

retrovirally transduced HPCs (see section 2.3.2) and monitored for development of 

disease.  Four to six weeks post injection, PKCα-KR injected mice exhibited signs 

of distress marked by significant weight loss and development of subcutaneous 

tumours at injection sites. At this time, mice were sacrificed and time of death 

recorded. PKCα-KR-HPC injected mice had a significantly shorter lifespan than 
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their MIEV-HPC injected counterparts (Figure 3.5).  Importantly, lifespan was 

inversely dependent on number of PKCα-KR-HPCs injected. 

3.3.4 Evidence of expansion of haematopoietic lineage cells with CLL 
phenotype in lymphoid organs and blood of RAG1-/- mice injected with 
PKCα-KR cells 

At signs of distress, mice injected with PKCα-KR or MIEV HPCs were sacrificed 

and organs (BM, spleen, LN) and blood were processed (as described in section 

2.3.2.1) and analyzed by FACS to determine the percentage of GFP+ 

haematopoietic (CD45+) cells and B cells (CD19+). There was a significant 

increase in the haematopoietic lineage within the PKCα-KR-HPC injected mice 

evident in the blood, spleen and BM (Figure 3.6).  In addition, there was a 

significant increase of B cells within the spleen, BM and LN of PKCα-KR-HPC 

injected mice (Figure 3.6).   

Blood and spleen of mice injected with PKCα-KR or MIEV HPCs were also 

subjected to FACS analysis to evaluate expression CD19, CD23, IgM and IgD 

(Figure 3.7). Concurrent with in vitro surface phenotype of PKCα-KR expressing 

cells, B cells within the blood and spleen of RAG1-/- mice injected with PKCα-KR-

HPCs expressed surface IgM and IgD at lower levels than their MIEV-HPC 

injected counterparts (1.1% vs 76.2% of IgM+IgD+ B cells).  Co-expression of 

CD19 and CD23 revealed consistently lower expression of CD23 on CD19+ cells 

within the MIEV cohorts (Figure 3.7).  

3.3.5 PKCα-KR injected RAG1-/- mice develop splenomegaly and 
disorganized splenic architecture  

Analysis of the gross structure of spleen from PKCα-KR HPC-injected neonatal 

RAG1-/- mice revealed enlarged spleens and disorganized splenic architecture 

assessed by H & E staining of splenic tissue sections (Figure 3.8 and 3.9) 

indicative of tumour formation. As expected, MIEV HPC-injected harboured 

average sized spleens and displayed an organised splenic architecture.  Splenic 

tissue sections were also stained with antibodies specific for B cell (anti-B220) 

antigens and GFP to assess the location of GFP+ B cells within the spleen.  B cells 

were located within the follicles of the spleen in an organized fashion in MIEV 

injected mice, whereas PKCα-KR injected mice displayed disrupted follicular 

development (Figure 3.10; see appendix 3-A for staining controls).  Of note, before 

B220 was used to identify B cells within splenic sections, co-expression with CD19 
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was verified by FACS (see Figure 3.10B). Very few GFP+ cells were observed 

within the spleen tissue sections from MIEV injected RAG1-/- mice compared to a 

higher number of GFP+ cells within the PKCα-KR injected mice (Figure 3.10).  It 

appears that there are many GFP+ cells that are not B cells within the PKCα-KR 

injected mice, although their identities were not established. 

3.3.6 Downregulation of PKCα signaling results in a gradual and sustained 
upregulation of PKCβII 

Although the overall PKC kinase activity is reduced early on in the PKCα-KR 

expressing B cell cultures compared to their MIEV counterparts, at later stages 

(day 17), PKC kinase activity is elevated in the PKCα-KR cultures (see Appendix 

3-B; Nakagawa et al. 2006).  The elevation in overall PKC kinase activity within the 

PKCα-KR expressing B cells is coupled with an upregulation of particularly PKCβII 

protein, where as PKCβI protein expression remains constant (Figure 3.11A) and 

PKCβ mRNA (Figure 3.11C) expression specifically during the later stages of 

culture, similar to that noted in human CLL cells (Abrams et al. 2007a; 

Buschenfelde et al. 2009).  Of note, the primers and probes for determining mRNA 

expression are not specific to a particular isoform of PKCβ, but detects both 

isoforms. The upregulation in PKCβII coincides with an increase in transcript levels 

of VEGF which regulates and is regulated by PKCβII, and ERK signaling which, 

like PKCβII, is important in CLL B cell survival (Krysov et al. 2012; Calpe et al. 

2011)(Figure 3.11A; 3.11D). In vivo, PKCβII  expression is concentrated in B cell 

areas within spleens of MIEV and PKCα-KR injected RAG1-/- mice (Figure 3.12).  

3.3.7 Introduction of PKCβII into HPCs provides a survival advantage to B 
cells 

In order to determine whether PKCβII alone is sufficient to transform HPCs into 

CLL cells, PKCβI-WT, PKCβI-CAT, PKCβII-WT and PKCβII-CAT were cloned into 

MIEV backbone and virus was generated as described before (section 2.1.1). 

HPCs were isolated from d14 gestation FL and retrovirally transduced to express 

MIEV, PKCα-KR or PKCβ genes and subsequently co-cultured on OP9 in a B cell 

generating in vitro environment.  Cells were harvested at day 1, 14, 17 and 22 of 

co-culture and assessed by flow cytometry to determine the percentage of GFP+ 

cells within the culture (Figure 3.13).  As seen previously, MIEV cells transduced 

at a higher efficiency than the vectors containing a gene of interest.  Also, as seen 

before, the PKCα-KR culture showed a rapid increase in the percentage of GFP+ 
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cells over time, overtaking the culture completely by day 14.  All of the PKCβ 

constructs had a much lower transduction efficiency compared to MIEV and 

PKCα-KR.  Of interest, only the PKCβII transduced HPCs expanded over the time 

course of the experiment increasing from 7.84% GFP+ at day 1 to over 40% GFP+ 

at day 22 (Figure 3.13), indicating that these cells have a survival advantage.   

To determine whether PKCβII transduced B cells harbour CLL phenotypic surface 

markers as seen in the PKCα-KR cultures, B cells from day 22 FL:OP9 co-cultures 

were harvested and stained with CD45, CD19, CD5 and CD23 antibodies and 

analysed by flow cytometry.  When assessing CD19 and CD5 positivity (Figure 

3.14), only the PKCα-KR expressing cells displayed the CLL phenotype, with 31% 

of cells staining for both CD5 and CD19.  When CD23 expression was assessed 

(Figure 3.15), 15% of PKCα-KR cultures were highly co-expressing CD23 and 

CD19, similarly to what was seen previously.  Interestingly, a small but distinct 

population of cells (2.75%) co-expressing CD23 and CD19 was evident within 

PKCβII-WT cultures.  Collectively these results indicate that at this stage of the in 

vitro culture, PKCβII is alone not sufficient to transform HPCs into B cells 

resembling human CLL cells by phenotypic surface protein analysis, as seen 

within the PKCα-KR cultures, although it is possible that the transformation toward 

a CLL-like cell may just take longer.     

3.3.8 Inhibition of PKCβ does not cause preferential apoptosis of murine 
CLL cells 

To address whether inhibition of PKCβII can result in apoptosis of PKCα-KR 

expressing cells, B cells were harvested from MIEV and PKCα-KR FL:OP9 co-

cultures, centrifuged over lympholyte mammal to remove dead cells and OP9 

stroma, and subsequently treated with pan PKCβ inhibitors hispidin and 

enzastaurin.  Hispidin is an older agent (in comparison to enzastaurin) that targets 

mainly PKCβ, but also β-secretase, protein tyrosine phosphatase, α-glucosidase, 

aldose reductase and some NFκB pathways (Gonindard et al. 1997; Park et al. 

2004; Lee et al. 2010; Huang et al. 2011; Wu et al. 2011).  Enzastaurin is a 

selective PKCβ/PI3K inhibitor (Rizvi et al. 2006; S. Ma & Rosen 2007; Chen & 

LaCasce 2008; Willey et al. 2010). We used the drugs in the µM range based on 

previously published work within the field.  At 24 and 48 hr, cell viability was 

assessed by FACS by annexin V/DAPI staining.  Treatment with hispidin (Figure 

3.16) resulted in concentration-dependent apoptosis of both MIEV and PKCα-KR 
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cells expressed as percentage of annexin V- cells, similar for both cultures at 24 

hr, and a slightly higher for MIEV culture at 48 hr.  Enzastaurin treatment (Figure 

3.17) resulted in only a moderate drop in cell viability (around 20-30%) at 24 hr.  At 

48 hr, the drug was more potent, however even at 50 µM, the percentage of viable 

cells did not drop below 40%.  

To confirm results obtained with annexin V/DAPI, induction of cell death was also 

evaluated by considering the sub-G0 phase of cell cycle.  PI analysis was 

conducted on hispidin and enzastaurin treated MIEV and PKCα-KR cultures and 

apoptosis was assessed by observing the percentage of cells in sub-G0 phase of 

cell cycle. As seen with apoptosis measured by annexin V/DAPI, PI analysis 

indicated no preferential induction of cell death in either culture (Figure 3.18).  

3.3.9 Inhibiting PKCβ results in an attenuation of proliferation of murine 
CLL cells 

Although initially CLL was considered a disease of the accumulation of abnormal B 

cells that resist apoptosis, CLL is now considered a disease not only of 

accumulation, but also proliferation (Messmer et al. 2005; Chiorazzi 2007).  The 

murine PKCα-KR expressing cells exhibit notably higher proliferation rates than 

their MIEV counterparts (see Figure 3.2 and Chapter 4).  Since PKCβII is highly 

upregulated in the PKCα-KR cultures, it was of interest to investigate whether 

inhibition of PKCβ could result in the attenuation of proliferation within these 

highly-proliferative cultures.  Therefore, MIEV and PKCα-KR OP9:FL cultures were 

maintained as before, and 1 x 104 cells were plated (per well of 96 well plate) in 

the presence or absence (DMSO only) of hispidin and enzastaurin and labelled 

with BrdU two hours prior to endpoint (24 or 48 hr). As expected, the PKCα-KR 

expressing cells proliferate at a significantly higher rate than MIEV (**p<0.005 for 

24 hr and ***p<0.001 for 48 hr) as seen in the untreated cultures (Figure 3.19).  

The addition of hispidin at 10 µM resulted in a significant drop in proliferation levels 

of specifically the PKCα-KR containing cultures at both 24 and 48 hr (Figure 3.19).  

Similarly, inhibition of PKCβ with enzastaurin treatment at 10µM resulted in an 

even more dramatic drop in proliferation rates of particularly PKCα-KR containing 

cultures. 
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3.3.10 Inhibition of PKCβ results in an accumulation of cells in G0/G1 phase 
of cell cycle  

In order to confirm results obtained by BrdU analysis of MIEV and PKCα-KR 

cultures treated with PKCβ inhibitors, cell cycle analysis was conducted on these 

cultures at 24 and 48 hr after drug (hispidin and enzastaurin) treatment.  

Treatment of cells with hispidin for 24 hr (Figure 3.20) resulted in a significant 

increase in the percentage of cells arrested in G0/G1 phase of cell cycle at 20 µM 

hispidin for PKCα-KR expressing cultures and at 30 µM hispidin for the MIEV 

counterpart.  A significant decrease in the percentage of cells in S phase of cell 

cycle was only observed at 50 µM hispidin for both PKCα-KR and MIEV cultures at 

24 hr (Figure 3.20).  The percentage of cells in G2/M phase of cell cycle at 24 hr 

post hispidin treatment significantly decreased more prominently in MIEV cultures 

rather than the PKCα-KR cultures (20 µM for MIEV vs. 30 µM for PKCα-KR).  At 

48 hr, MIEV cells were more sensitive to hispidin as the percentage of G0/G1 

arrested cells significantly increased for MIEV cultures at 10 µM compared to 30 

µM for PKCα-KR cultures.  Similarly, percentage of cells in S phase significantly 

decreased for MIEV cultures at 10 µM compared to 30 µM in PKCα-KR cultures.  

Finally, a significant decrease in the percentage of cells in G2/M phase was seen 

at 30 µM for both MIEV and PKCα-KR cultures. 

Treatment with enzastaurin resulted in a significant increase in the percentage of 

cells arrested in G0/G1 phase of cell cycle at 10 µM enzastaurin particularly for the 

PKCα-KR expressing cultures at both 24 and 48 hr (Figure 3.21).  A significant 

drop in percentage of cells in S phase of cell cycle was only observed at 48 hr at 

10 µM within the PKCα-KR expressing cultures.  Finally the percentage of cells in 

G2/M phase of cell cycle significantly decreased in the PKCα-KR expressing 

cultures treated with 10 µM enzastaurin at both 24 and 48 hr.  Collectively, these 

data indicate that the PKCα-KR expressing cultures are sensitive specifically to 

more selective PKCβ inhibitor enzastaurin, as treatment with enzastaurin resulted 

in an accumulation of non-dividing cells within G0/G1 phase of cell cycle, and a 

decrease in the amount of cells preparing for and going through cell division (S 

and G2/M). 
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3.3.11 Enzastaurin decreases amount of CLL-like GFP+ cells in vivo 

In order to determine whether enzastaurin has an anti-proliferative effect of CLL-

like cells in vivo, neonatal RAG1-/- mice were injected with PKCα-KR retrovirally 

transduced HPCs as described above (section 2.3.2). Four weeks post injection, 

mice were either treated with vehicle only or 80 mg/kg enzastaurin twice daily for 

two weeks. At this time, mice were sacrificed and organs subjected to FACS 

analysis in order to determine apoptosis in vivo using annexin V/Viaprobe and 

CD19 staining.  A significant increase in the percentage of apoptosing GFP+ CLL-

like cells was noted upon treatment of mice with enzastaurin (Figure 3.22A).  In 

addition, there is an evident decrease in spleen size (Figure 3.22B) post 

enzastaurin treatment.  

3.3.12 PKCα is downregulated in transcript levels and protein levels in 
human CLL compared to normal human B cells 

In order to determine whether the findings in the murine PKCα-KR model translate 

to human CLL, it was necessary to consider RNA and protein levels of PKCα in 

human CLL compared to normal B cells.  Therefore normal B cells and human 

CLL cells were isolated from buffy coats and whole blood respectively (as 

described in section 2.4) and subjected to qRT-PCR analysis and Western blot.  

PKCα is down-regulated at the transcript level in most of the CLL samples 

examined (in 64% of cell samples tested), although the mean level of PKCα 

transcript levels is higher in CLL compared to normal B cells (Figure 3.23A left).  

As described previously (Abrams et al. 2007; Abrams et al. 2010), CLL cells 

express high levels of PKCβ mRNA (Figure 3.23A right).  When levels of protein 

were examined, it was evident that PKCα protein was downregulated in CLL cells 

compared to normal B cells (Figure 3.23B). PKCα was downregulated at the 

protein level in 75% of samples tested (n=16). However, no clear relationship was 

found between prognostics (age, treatment, Binet stage, cytogenetic 

abnormalities, mutational status of IgVH genes, ZAP70 expression) and PKCα 

expression.   

3.4 Discussion 
Further classification of the PKCα-KR murine CLL model has demonstrated its 

strength as a translational model because of its similarities to human CLL.   The 

introduction of kinase inactive PKCα into early murine HPCs results in a 

transformation event leading to a survival advantage.  The low percentage of 
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PKCα-KR retrovirally transduced cells soon overtake the in vitro B cell culture, 

resulting in a homogeneous GFP+ population.   

B lymphocytes from CLL patients also strongly and constitutively express the 

CD23 antigen which is an important prognostic marker (Fournier et al. 1992; Goller 

et al. 2002; Sarfati et al. 1996).   Surface IgM is characteristically low in expression 

on CLL cells, despite normal transcription and intracellular synthesis. This poor 

surface expression has been accounted for by a defect in the ability of the CLL 

cells to assemble BCR chains, resulting in unprocessed µ chains (Payelle-Brogard 

et al. 2003). In normal human B cells, repeated BCR simulation leads to anergy 

and CD5 expression which are both important in CLL.  In addition, CD5 

phosphorylation has been linked to enhanced signaling of anti-apoptotic pathways 

such as Bcl-2, NFκB, Wnt, Stat, TGFβ, VEGF, MAPKs and various chemokines 

and cytokines leading to increased cell survival (Gary-Gouy et al. 2007).  Indeed, 

PKCα-KR expressing B cells phenotypically resemble human CLL cells by surface 

protein expression whereby they are CD19hiCD23hiCD5+IgMlo.  

Bcl-2 is an anti-apoptotic protein that is a key player implicated in the resistance of 

CLL cells to chemotherapy and resistance to external microenvironmental signals 

that direct healthy B cells to undergo programmed cell death ( Adams & Cory 

2007). Like human CLL cells, PKCα-KR expressing cells express Bcl-2 at high 

levels, possibly indicating other intrinsic properties similar to human CLL such as a 

defect in apoptosis.   

Another gene that bears high importance in human CLL is aicda.  Aicda gene 

encodes AID which is essential for immunoglobulin SHM and CSR (Xu et al. 

2007).  CLL patients can either express mutated or unmutated variable IgVH 

genes, and this mutational status represents an important prognostic factor 

whereby unmutated VH carrying patients exhibit a poorer prognosis.  CSR also 

predominates within the unmutated VH group, however CLL B cells can undergo 

CSR without SHM (Oppezzo et al. 2003).   Unmutated CLL B cells have been 

shown to constitutively express AID which may promote genetic changes that may 

lead to a more aggressive disease (Leuenberger et al. 2009; Oppezzo et al. 2003; 

Albesiano et al. 2003; Reiniger et al. 2006; McCarthy et al. 2003; Heintel et al. 

2004). Expression of AID is also associated with proliferating cells.  Importantly, 

PKCα-KR cells express significantly higher mRNA transcripts of aicda and are 

therefore similar to a more aggressive, unmutated form of human CLL. Hi Ki67 

positivity within B cell proliferation centres was demonstrated to be positively 
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associated with AID expression in human CLL (Leuenberger et al. 2009). In our 

model it is plausible that the higher proliferative capacity of PKCα-KR cultures can 

be linked higher expression of aicda.   

Patients harbouring an unmutated form of IgVH genes also express ZAP70 at high 

levels.  In fact, ZAP70 is expressed in over 90% of unmutated CLL cases and is 

associated with an increased cell survival and inferior clinical outcome (Wiestner 

et al. 2003; Crespo et al. 2003). In accordance with human unmutated CLL cells, 

PKCα-KR cells express higher ZAP70 protein levels. The survival of CLL cells is 

also dependent on the NFκB pathway, which is constitutively active in CLL 

(Herreros et al. 2010). The phosphorylation status of IκBα, which binds and 

sequesters NFκB dimer to prevent binding of DNA and activation of transcription, 

is often used to indicate NFκB activity (Shih et al. 2011). IκBα is phosphorylated by 

IκB kinases (IKKs) and consequently targeted for proteosomal degradation, 

allowing for NFκB heterodimers to enter the nucleus and initiate transcription of 

key genes essential for survival and function of mature B cells (Pasparakis et al. 

2002; Gilmore 2006). As in human CLL, the NFκB pathway also seems to be 

active in PKCα-KR expressing cells as phosphorylation of IκBα protein is higher 

compared to the MIEV control.    

The aggressive characteristic of the PKCα-KR expressing cells is even more so 

evident when these cells are observed in vivo.  Indeed, adoptive transfer of PKCα-

KR-HPCs into RAG1-/- recipient mice quickly causes tumorigenesis, marked by 

enlarged spleens with disorganized B cell areas.  This results in a shortened 

lifespan of PKCα-KR-HPC injected mice compared to their MIEV counterparts.  

The PKCα-KR expressing cells quickly proliferate within the mice evident from the 

increase in the percentage of GFP+ CD45+ cells, and more specifically CD19+ B 

cells within the blood, spleen, BM and LN, resembling human CLL.  Of note, when 

spleen sections of PKCα-KR-HPC injected mice were examined by IHC, it was 

evident that not all GFP+ cells were B220+, and therefore implies an expansion of 

other lineages that can result from PKCα subversion in HPCs (see Chapter 5).   

PKCα has been implicated as a tumour suppressor previously, whereby its 

expression/activity is downregulated (Gökmen-Polar et al. 2001; Kahl-Rainer et al. 

1994; Detjen et al. 2000).  Similarly within the PKCα-KR mouse model, PKCα acts 

as a tumour suppressor in B lymphocyte progenitors.  Although initially, overall 

PKC kinase activity is lowered within the PKCα-KR expressing cells, at later 

stages of culture overall PKC kinase activity is elevated, coupled by a dramatic 
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elevation in PKCβII expression specifically. In vivo, PKCβII is expressed within the 

B220+ B cell areas, however comparative quantification of protein in vivo between 

MIEV and PKCα-KR HPC injected mice was not possible because of the 

limitations set by this technique.  Of note, upregulation in PKCβII expression and 

activity has been strongly linked to poor prognosis in human CLL and disease 

progression (Abrams et al. 2010; Buschenfelde et al. 2009; Abrams et al. 2007). 

Similarly, within the TCL1 transgenic mouse model, PKCβ was shown to be 

essential for the development of CLL because PKCβ deleted TCL1 transgenic 

mice did not develop a CLL disease (Holler et al. 2009). 

It is therefore possible that the downregulation of tumour suppressor PKCα is 

linked to the upregulation of PKCβII and that PKCβII aids in the poor prognosis 

associated with the PKCα-KR mouse model. In fact PKCβII activation has been 

shown to be stimulated by oncogenic pathways such as VEGF signaling which can 

drive its expression, contributing to the malignant phenotype of CLL cells (Abrams 

et al. 2010).  In the PKCα-KR mouse model, VEGF transcript levels are elevated 

compared to control and could possibly correlate to increased PKCβII signaling, 

however further experiments need to be conducted to validate this relationship.   

It is clear that introduction of PKCβII into HPCs provides them with a survival 

advantage because HPCs transduced with PKCβII expand over time compared to 

untransduced HPCs within the same culture.  This survival advantage, however, is 

not enough to immediately transform HPCs into B cells that phenotypically 

resemble human CLL cells, as seen with introduction of PKCα-KR into HPCs. 

Perhaps PKCβII-transformed HPCs take longer to transform and thus analysing 

them at a later time point would be beneficial. The current data, however, suggest 

that the transformation of HPCs toward CLL-like cells does not depend on a single 

genetic event, but rather a combination of different events.   

The rationale behind targeting PKCβ in CLL is clear.  Targeting BCR signaling 

may prove beneficial because the mutational status of the IgVH and BCR 

downstream signaling molecules like ZAP70 are indicative of poor prognosis in 

CLL patients.  In fact, treatment of primary CLL cells with enzastaurin in vitro 

results in apoptosis regardless of mutational status (Holler et al. 2009).  In vivo, 

one study comprised of seven patients showed an ORR of 14.3% and a 

progression-free survival of 308 days (Forsyth et al. 2009). Within our PKCα-KR 

model, treatment with pan PKCβ inhibitors hispidin or enzastaurin did not 

preferentially induce apoptosis of PKCα-KR expressing cells in vitro, however it did 
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slow down their proliferation as assessed by a decrease in BrdU incorporation 

post treatment, most dramatically with enzastaurin treatment. The decrease in 

proliferation was coupled with an arrest in cell cycle post drug treatment, marked 

by an increase in percentage of cells in G0/G1 phase of cell cycle, and a decrease 

in percentage of cells in S and G2/M phases, particularly with enzastaurin 

treatment.  There was however, a relevant lack of effect of hispidin treatment on 

cell cycle as compared to BrdU, highlighting a difference in the two assay 

readouts.  In vivo, treatment with enzastaurin resulted in a decrease in the 

percentage of GFP+ CLL-like cells and a decrease in spleen size.  These results 

were encouraging, but do need to be repeated for validation purposes.   

Finally, PKCα seems to act as a tumour suppressor in human CLL because it is 

downregulated at the transcript and protein levels in most human CLL cases 

investigated.  Therefore, understanding the molecular events that lead to its down-

regulation could prove beneficial in developing new therapeutic approaches for the 

treatment of human CLL. 
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Figure 3.1 Isolation of HPCs from FL, retroviral transduction and in vitro B 
cell generating system 
A FL was excised from day 14 gestation mice and single cell suspensions were 

prepared by crushing of FL and filtering through a 70 µm nylon mesh.  The cells 

were incubated with anti-CD24 antibody and rabbit complement to allow for 

complement-mediated CD24+ cell lysis.  Viable CD24lo/- cells were isolated by 

Lympholyte-Mammal gradient centrifugation and subsequently retrovirally 

transduced over night on mitomycin C treated (10 µg/ml) GP+E.86 retroviral 

packaging lines producing either vehicle only (MIEV) or PKCα-KR virus. The cells 

were collected from the packaging lines, washed, and subsequently co-cultured on 

OP9 cells with 10 ng/ml IL7 and FLT3L.  Medium was replenished every second 

day and OP9 layers were replenished every fourth day.  B The construct 

containing PKCα-KR is tagged with HA at the C-terminus, therefore allowing 

PKCα-KR expression to be monitored by Western blot.  B cell lysates from MIEV 

and PKCα-KR cultures were prepared and examined for HA expression. 
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Figure 3.2 PKCα-KR expressing cells exhibit a growth advantage over their 
MIEV counterparts. 
The PKCα-KR construct bicistronically expresses GFP at the C-terminus, thus 

GFP fluorescence can be monitored by FACS. Cells were obtained from FL:OP9 

cultures at day 1, day 10, day 17 and consequently analysed by flow cytometry to 

determine the percentage of GFP+ cells over the duration of the culture. 

Haematopoietic (CD45+) cells were live and size gated (FSC vs SSC) prior to 

evaluation of GFP fluorescence.  
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Figure 3.3 PKCα-KR expressing cells phenotypically resemble human CLL 
cells by surface protein expression 
A Representative FACS plot of FL cultures around day 10.  Cells were live and 

size gated (FSC vs SSC) and CD45 and CD19 analysis shown. B Cells from day 

10 and 17 FL:OP9 MIEV and PKCα-KR cultures were stained with anti-CD19, anti-

CD5, anti-CD23 and anti-IgM antibodies in order to determine levels of surface 

protein expression.  These are representative plots of over 50 separate biological 

replicates. Haematopoietic (CD45+) cells were live and size gated (FSC vs SSC) 

and CD5 vs CD19, CD23 vs CD19, IgM vs CD19 analysis shown. C FL cultures 

were subjected to FACS analysis.  Haematopoietic (CD45+) cells were live and 

size gated (FSC vs SSC) and GFP, CD19, CD23, CD5 and IgM expression shown 

as an average of mean fluorescence intensity (MFI). GFP p < 0.0001 (n = 6); 

CD19 p = 0.0068 (n = 5); CD23 p = 0.0058 (n = 3); CD5 p = 0.0125 (n = 4); IgM p 

= 0.0003 (n = 3). Data are represented as mean (± SEM) of biological replicates. p 

values were generated using the student’s unpaired t-test to compare groups 

(*p<0.05, **p<0.005, ***p<0.001). 
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Figure 3.4 PKCα-KR expressing cells have higher levels of Bcl-2, aicda, 
ZAP70 and activated NFκB  
A RNA was isolated from MIEV and PKCα-KR cultures and subjected to qRT-PCR 

in order to determine transcript levels of CLL-associated genes Bcl-2 and aicda 

relative to housekeeping gene GAPDH. B Protein lysates were also prepared from 

MIEV and PKCα-KR cultures to determine levels of phospho-IκBα and ZAP70 

protein by Western blot and C intracellular ZAP70 protein by FACS.  Results are 

shown as mean ± SEM. p values were generated using the student’s unpaired t-

test to compare groups (n=3).  
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Figure 3.5 RAG1-/- mice injected with PKCα-KR-HPCs exhibit a shortened 
lifespan 
Neonatal RAG1-/- mice were subjected to i.p. in vivo adoptive transfer of MIEV or 

PKCα-KR retrovirally transduced HPCs. For MIEV-HPC injected mice, 1 x 106 

cells were used, whereas for PKCα-KR-HPC injected mice, either 1 x 106 or 4 x 

106 cells were injected.  Mice were sacrificed at signs of distress and day since 

injection was recorded.  The graph indicates a survival curve and each point 

marks a different mouse. n = 15 (1 x 106 PKCα-KR cells); n = 31 (4 x 105 PKCα-

KR cells); n = 20 (1 x 106 MIEV cells).  
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Figure 3.6 PKCα-KR-HPC injected mice express expansion of 
haematopoietic lineage and increase in percentage of GFP+ B cells. 
Neonatal RAG1-/- mice were subjected to in vivo adoptive transfer of MIEV or 

PKCα-KR retrovirally transduced HPCs.  Four to six weeks post injection, mice 

were sacrificed and organs and blood removed.  Single cell suspensions were 

generated from spleen, BM and LN.  FACS analysis was conducted on organs and 

blood stained with CD45 and CD19.  Each point on the graph represents a single 

mouse.  Averages are represented by lines and p values were generated using the 

student’s unpaired t-test to compare groups (*p<0.05, **p<0.005, ***p<0.001) n=13 

(MIEV) and n=21 (PKCα-KR). 
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Figure 3.7 PKCα-KR HPC-injected RAG1-/- mice exhibit CLL phenotype in 
vivo  

Lymphocytes were isolated from blood and spleen of MIEV and PKCα-KR HPC-

injected RAG1-/- mice (1 x 106 MIEV cells injected; 4 x 105 PKCα-KR cells injected) 

and subjected to FACS analysis.   Haematopoietic (CD45+) cells were live and 

size gated (FSC vs SSC) and CD23 vs CD19; CD45+CD19+ cells were gated and 

IgM vs IgD analysis shown. 
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Figure 3.8 PKCα-KR-HPC injected mice exhibit splenomegaly  
FL cells were prepared from wildtype mice and retrovirally transduced to express 

MIEV or PKCα-KR as described before.  After over-night transduction, 4 x 105 

cells were injected i.p. into neonatal RAG1-/- mice.  Four weeks post injection, mice 

were sacrified and spleens excised.   
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Figure 3.9 PKCα-KR-HPC injected mice exhibit disrupted splenic 
architecture 
Spleens from RAG1-/- mice injected with 4 x 105 MIEV or PKCα-KR HPCs were 

removed four weeks post injection and immediately embedded in paraffin. Three 

micron sections were cut and stained with H & E.  
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Figure 3.10 PKCα-KR-HPC injected mice display disrupted B cell follicular 
formation and more GFP+ cells within the spleen 
A Paraffin embedded spleens from RAG1-/- mice injected with 4 x 105 MIEV or 

PKCα-KR HPCs four weeks post injection were cut into three micron sections and 

subsequently stained for B220 antigen and GFP using anti-B220 and anti-GFP 

antibodies (for isotype controls, see Appendix A). B FL cultures were subjected to 

FACS analysis.  Haematopoietic (CD45+) cells were live and size gated (FSC vs 

SSC) and CD19 vs B220 analysis shown. 
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Figure 3.11 Attenuation of PKCα activity within the PKCα-KR expressing B 
cells leads to an upregulation of PKCβII  
A Protein lysates were prepared from MIEV and PKCα-KR cultures. Proteins were 

separated by gel electrophoresis and immunoblotted for PKCβII, PKCβI and 

phospho-ERK (pERK1/2).  GAPDH was included as a protein loading control.  B In 

order to determine when PKCβII protein is upregulated within the PKCα-KR 

cultures, protein lysates were taken at earlier (day 8, 10) and later (day 15, 17) 

time points of the B cell culture.  Immunoblotting for PKCβII and GAPDH (loading 

control) was performed. C RNA was isolated from MIEV and PKCα-KR cultures 

and subjected to qRT-PCR to evaluate the levels of PKCβ and D VEGFα mRNA 

transcripts. B and T cells sorted from wildtype spleen serve as additional controls.  

Results are expressed as 2(-ΔCT) relative to GAPDH housekeeping gene and 

represent mean ± SEM (*p<0.05, ***p<0.001). 
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Figure 3.12 PKCβII protein is expressed in vivo within the B cell follicles of 
the spleen 
Paraffin embedded spleen sections from MIEV and PKCα-KR HPC-injected mice 

were stained for B220 and PKCβII. 
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Figure 3.13 PKCβII transduced cells expand over time 
Full length PKCβI and PKCβII (PKCβI-WT and PKCβII-WT) and constitutively active 

PKCβI and PKCβII isoforms (PKCβI-CAT and PKCβII-CAT) were cloned into 

retroviral backbone MIEV. Retroviral packaging lines were generated as described 

in Section 2.1.2.2.1 and FL HPCs were transduced overnight.   FL HPCs were 

also transduced with MIEV and PKCα-KR for comparison.  Cells were then co-

cultured with OP9 and cytokines in a B cell generating system and subjected to 

FACS at different stages of culture (day 1, 14, 17, 22) to determine the percentage 

of GFP+ cells. B cells (CD45+CD19+) were live and size gated (FSC vs SSC) prior 

to GFP gating. 
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Figure 3.14 PKCβII transduced cell surface phenotype: CD5 expression 
HPCs that were retrovirally transduced to express MIEV, PKCα-KR, PKCβI-WT, 

PKCβII-WT, PKCβI-CAT and PKCβII-CAT were subjected to FACS analysis to 

determine expression of CD19 vs CD5 at day 22 of FL:OP9 co-culture. FACS 

analysis was carried out on GFP- and GFP+ populations. Haematopoietic (CD45+) 

cells were live and size gated (FSC vs SSC) and CD5 vs CD19 analysis shown.   
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Figure 3.15 PKCβII transduced cell surface phenotype: CD23 expression 
HPCs that were retrovirally transduced to express MIEV, PKCα-KR, PKCβI-WT, 

PKCβII-WT, PKCβI-CAT and PKCβII-CAT (as in Fig 3.10) were subjected to FACS 

analysis to determine expression of CD19 vs CD23 at day 22 of FL:OP9 co-

culture. FACS analysis was carried out on GFP- and GFP+ populations. 

Haematopoietic (CD45+) cells were live and size gated (FSC vs SSC) and CD19 

vs CD23 analysis shown. 
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Figure 3.16 Inhibition of PKCβ with hispidin does not favour apoptosis of 
PKCα-KR cells compared to MIEV control 
Cells were harvested from MIEV and PKCα-KR FL:OP9 cultures at later stages 

(>14 days of in vitro culture) and treated with increasing concentrations of pan 

PKCβ inhibitor hispidin for 24 and 48 hr. Apoptosis was assessed by annexin 

V/DAPI staining. Data are represented as means (± SEM) of at least 3 biological 

replicates.  The graphs on the left represent cell percentage; whereas the graphs 

on the right represent percentage of no drug control (NDC). p values were 

generated using the student’s unpaired t-test to compare groups (*p<0.05, 

**p<0.005, ***p<0.001).   
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Figure 3.17 Inhibition of PKCβ with enzastaurin does not favour apoptosis of 
PKCα-KR cells compared to MIEV control 
Cells were harvested from MIEV and PKCα-KR and treated with increasing 

concentration of more selective PKCβ inhibitor enzastaurin for 24 and 48 hr and 

apoptosis was assessed by FACS using annexin V/DAPI staining. Data are 

represented as mean (± SEM) of at least 3 biological replicates.  The graphs on 

the left represent cell percentage; whereas the graphs on the right represent 

percentage of NDC. p values were generated using the student’s unpaired t-test to 

compare groups (*p<0.05, **p<0.005, ***p<0.001).   
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Figure 3.18 Representation of apoptosis by assessment of SubG0 population 
in hispidin and enzastaurin treated cells  
Cells were harvested from MIEV and PKCα-KR cultures and treated with 

increasing concentration of hispidin or enzastaurin for 24 and 48 hr. Cells were 

then washed in PBS and re-suspended in PBS containing 20 µg/ml PI in the 

presence of DNAse-free-RNAse.  Cell cycle profile was assessed by FACS.  Data 

are represented as mean (± SEM) of at least 3 biological replicates. p values were 

generated using the student’s unpaired t-test to compare groups (*p<0.05, 

**p<0.005, ***p<0.001).   
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Figure 3.19 Inhibition with hispidin and enzastaurin causes a decrease in 
proliferation of specifically PKCα-KR cultures as assessed by BrdU 
incorporation  
Cells were harvested from MIEV and PKCα-KR cultures and treated with 

increasing concentrations of hispidin or enzastaurin for 24 and 48 hr. Cells were 

incubated with BrdU for 2 hr prior to end point, and fixed.  Absorbance is 

represented as values read at 492 nm - 370 nm after addition of TMB substrate.  

Data are represented as mean (± SEM) of at least 3 biological replicates, each 

carried out in technical triplicates. p values were generated using the student’s 

unpaired t-test to compare groups (*p<0.05, **p<0.005, ***p<0.001).   
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Figure 3.20 Cell cycle analysis after treatment with hispidin shows no 
preference for PKCα-KR cultures in terms of cell cycle arrest 
Cells were harvested from MIEV and PKCα-KR cultures and treated with 

increasing concentration of hispidin for 24 and 48 hr. Cells were then washed in 

PBS and resuspended in PBS containing 20 µg/ml PI in the presence of DNAse-

free-RNAse.  Cell cycle profile was assessed by FACS. The sub-G0 population 

was gated out prior to analysis.  Data are represented as mean (± SEM) of at least 

3 biological replicates. p values were generated using the student’s unpaired t-test 

to compare groups (*p<0.05, **p<0.005, ***p<0.001).   
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Figure 3.21 Treatment of PKCα-KR cultures with enzastaurin causes cell 
cycle arrest  
Cells were harvested from MIEV and PKCα-KR cultures and treated with 

increasing concentration of enzastaurin for 24 and 48 hr. Cells were then washed 

in PBS and re-suspended in PBS containing 20 µg/ml PI in the presence of 

DNAse-free-RNAse.  Cell cycle profile was assessed by FACS. The sub-G0 

population was gated out prior to analysis.  Data are represented as mean (± 

SEM) of at least 3 biological replicates. p values were generated using the 

student’s unpaired t-test to compare groups (*p<0.05, **p<0.005, ***p<0.001).   
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Figure 3.22 Treatment of PKCα-KR-HPC injected mice with enzastaurin 
results in a reduction of CLL-like cells and spleen size  
RAG1-/- mice were injected with PKCα-KR-HPCs and treated with 80 mg/kg 

enzastaurin or vehicle control four weeks post injection.  A Cells were isolated 

from organs of mice and assessment of apoptosis was done by FACS using 

annexin V/Viaprobe.  Prior to annexin V+ gating, cells were gated on CD19 and 

GFP.   B Spleen size of control (RAG1-/-), PKCα-KR-HPC injected untreated, and 

PKCα-KR-HPC injected and enzastaurin treated mice. p values were generated 

using the student’s unpaired t-test to compare groups. 
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Figure 3.23 PKCα mRNA and protein is down-regulated in human CLL  
Normal human B cells and CLL cells were isolated from buffy coats and CLL 

patients respectively.  A qRT-PCR data showing expression of PKCα (left) and 

PKCβ (right) genes relative to GAPDH and represented as fold change over 

Normal B cells.  B PKCα and PKCβII protein expression by Western blot of 3 

normal and 6 CLL patients.  

 



 

 113 

 

Appendix 3-A Isotype controls for immunohistochemistry 
Paraffin embedded spleens from RAG1-/- mice injected with MIEV or PKCα-KR 

HPCs were stained with secondary only and isotype controls. 

 

 

Appendix 3-B PKCα-KR expressing cells have decreased kinase activity in 
early (day 10) but not in late cultures (day 17)  
Cell lysates were prepared from FL:OP9 co-cultures of MIEV and PKCα-KR 

retrovirally transduced cells at day 10 and 17.  PKC activity was determined with 
32P PKC kinase kit.  The graphs express percentage of total PKC activity in PKCα-

KR  expressing cells relative to MIEV expressing cells. Statistics were generated 

using the student’s unpaired t-test (**p<0.005). Part of this figure was published 

previously in Nakagawa et al, 2006. 
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Chapter 4 

Attenuation of PKCα signaling in HPCs results in the activation of mTOR 
signaling and upregulation of Cyclin D1 
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4.1 Introduction 

The mTOR pathway is responsible for cell growth and proliferation and its 

deregulation is associated with human disease, including cancer (Sarbassov et al. 

2005).  The mTOR signaling pathway mediates signals from nutrients, growth 

factors and energy status in order to regulate bioprocesses such as metabolism 

and autophagy.  One of the many processes regulated by mTOR is nutrient 

metabolism. As cells grow, their requirement for nutrient intake is enhanced, 

resulting in an elevation of nutrient receptor expression.  CD98 is a cell surface 

protein that regulates amino-acid transport.  In murine fibroblasts, over-expression 

of CD98 is associated with malignant transformation (Shishido et al. 2000).  CD71 

is a transferrin receptor that is usually expressed on activated lymphocytes 

(among other cell lineages).  CD71 binds Fe(Apo)-transferrin  and delivers iron by 

internalization that is necessary for cellular metabolism of a growing cell (Sargent 

et al. 2005; Aisen 2004). 

mTOR consists of two distinct complexes, mTORC1 and mTORC2.  mTORC1 is 

comprised of mTOR, Raptor, GβL and Deptor, whilst mTORC2 is comprised of 

mTOR, Rictor, GβL, Sin1, PRR5/Protor-1 and Deptor (Laplante & Sabatini 2009).  

mTORC2 can promote cell survival by activating Akt. mTORC1 can promote cell 

growth if adequate nutrients, growth factors or energy are available, or can 

regulate catabolic processes under stress conditions.  Hormones such as insulin 

and growth factors signal via PI3K/Akt to mTORC1, inactivating tuberous sclerosis 

complex 2 (TSC2) and preventing mTORC1 inhibition.  In contrast, low ATP levels 

can activate TSC2 in order to inhibit mTROC1 signaling.  Ras-related GTPase 

(Rag) proteins are involved with signaling to mTORC1 in regard to amino acid 

availability.  Active mTORC1 can regulate downstream biological effects such as 

mRNA translation via downstream target 4EBP1.  Like ERK, mTORC1 can 

phosphorylate translational repressor 4EBP1, thereby releasing eIF-4E and 

allowing it to generate a complex with eIF-4A and eIF-4G that is responsible for 

cap-dependent translation (Figure 4.1) (Laplante & Sabatini 2009).  PKCα 

activates protein serine/threonine phosphatase A (PP2A) which in turn 

dephosphorylates 4EBP1, thus activating translational repressor 4EBP1 that binds 

eIF-4E, preventing it from forming the eIF-4F complex (Guan et al. 2007). 
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Figure 4.1 Regulation of cap-dependent translation by eIF-4E through 4EBP1 
phosphorylation 
 

4.2 Aims and Objectives 

One of the early notable features of HPCs that have been transduced with PKCα-

KR mutant is their ability to expand within the culture (Figure 3.2).  The attenuation 

of PKCα signaling leads to a survival advantage marked by an evident increase in 

the percentage of GFP+ cells in culture.  To gain a deeper understanding of the 

transformation characteristics of PKCα-KR transduced cells, the specific aims of 

this chapter were: 

i.   To investigate whether attenuation of PKCα signaling in HPCs leads to 

increased proliferation and changes in cell cycle; 

ii.   To delineate the molecular mechanisms responsible for the expansion of 

the PKCα-KR expressing cells over their control counterparts; 

iii.  To determine whether the signaling pathways associated with 

transformation in mCLL mirror those that occur in human CLL. 
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4.3 Results 

4.3.1 PKCα-KR expressing cells are bigger than their MIEV counterparts 
and have activated mTOR signaling 

PKCα-KR cells appeared larger in size in comparison to their MIEV counterparts. 

In order to determine whether there was a size difference between the PKCα-KR 

and MIEV cultures, the two cultures were photographed (Figure 4.2A) and 

analysed by FACS (Figure 4.2B) at day 13 of FL:OP9 co-culture.  The PKCα-KR 

expressing cells were larger than their MIEV counterparts as demonstrated in the 

picture (Figure 4.2A) and in the overlay histogram of forward scatter (Figure 4.2B; 

average of FSC mean for MIEV = 6.83 x 104 versus 8.91 x 104 for PKCα-KR, n = 

6; p = 0.0049).  A larger size of cell is correlated to an increased requirement for 

nutrients and elevation in cellular processes such as metabolism.  Therefore, the 

expression of two nutrient receptors, CD71 and CD98 was investigated on the 

surface of PKCα-KR and MIEV cultures by FACS (Figure 4.3A). PKCα-KR cells 

expressed both CD98 and CD71 at higher levels than their MIEV counterparts at 

day 14 of co-culture.  The increase in mammalian cell size and its growth has 

been attributed to the mTOR pathway (Sarbassov et al. 2005), so initial activation 

of the pathway was investigated by examining the phosphorylation state of p70 S6 

Kinase, a common downstream target of mTOR activity. Indeed, mTOR is active in 

PKCα-KR cultures at day 11 and day 18 (Figure 4.3B).  Phospho-p70 S6 Kinase 

was also present in day 11 MIEV cultures, however it was more pronounced in 

PKCα-KR cultures.  In addition to an elevation of mTOR activity, PKCα-KR 

expressing cells have constitutively active ERK signaling as demonstrated by early 

and sustained phoshorylation of ERK1/2 (Figure 4.3B).   

4.3.2 Treatment of PKCα-KR cells with mTORC1 inhibitor rapamycin does 
not cause preferential apoptosis compared to the control  

Since it was determined that mTOR signaling is active within PKCα-KR cultures, 

we investigated whether inhibition of mTOR signaling by rapamycin treatment 

would result in apoptosis of these cells.  Therefore MIEV and PKCα-KR cells were 

harvested from (> day 14) FL:OP9 co-cultures and treated with increasing 

concentrations of rapamycin in the presence or absence of OP9 stroma (Figure 

4.4).  The rationale behind testing drug efficacy on stroma was derived from recent 

studies indicating that drug resistance in vivo is correlated to the dependency of a 

leukaemic cell on its microenvironment that protects it from the effects of drug 
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seen in vitro in medium alone, rendering it chemoresistant (McCaig et al. 2011; 

Tabe et al. 2011).  There was a significant but modest decrease in the percentage 

of viable cells in both MIEV and PKCα-KR cultures treated with 10 nM at 24 hr 

(Figure 4.4A).  At 24 hr, this decrease was moderate even at highest concentration 

of rapamycin (300 nM) as percentage of decrease in viable cells was ≤25.  The 

presence of OP9 stroma had a slight protective effect for both MIEV and PKCα-KR 

cultures.  At 48 hr, a significant decrease in the percentage of viable cells was 

seen for rapamycin treated MIEV cultures only in the presence of stroma (Figure 

4.4B left). In the absence of stroma, a significant decrease in the percentage of 

viable cells was seen at 10 nM rapamycin for PKCα-KR cultures, and only at 300 

nM for MIEV cultures (Figure 4.4B right). 

4.3.3 Treatment of PKCα-KR cultures with mTORC1 inhibitor rapamycin 
results in the attenuation of proliferation as marked by BrdU 
incorporation 

Although treatment with rapamycin did not result in a preferential induction of 

apoptosis in PKCα-KR cultures compared to their control counterparts, we aimed 

to determine whether treatment with rapamycin would result in a decrease in 

levels of proliferation within these cells.  Thus, MIEV and PKCα-KR cells were 

treated with increasing concentrations of rapamycin and proliferation was 

assessed by BrdU incorporation (Figure 4.5).  There was a significant reduction in 

proliferation with addition of lowest concentration of rapamycin (10 nM) specifically 

in the PKCα-KR cultures. Treatment with higher concentrations of drug resulted in 

a further modest decrease in proliferation within these cultures.  

4.3.4 A higher percentage of PKCα-KR cells are undergoing cell division 
compared to MIEV cells, and are dependent on OP9 stroma 

In CLL, the microenvironment within the LN and BM has proven to be crucial for 

the survival and proliferation of a CLL cell.  Since it was demonstrated that PKCα-

KR cells proliferate more than their MIEV counterparts it was of interest to 

determine whether the in vitro microenvironment (stroma and cytokines) aid in the 

proliferation of PKCα-KR cells. Therefore, MIEV and PKCα-KR cells were cultured 

in medium alone (in the absence of stroma and IL7), with stroma alone, or with 

stroma and IL7 and cell cycle profile was analysed using FACS by PI staining 

(Figure 4.6A).  In medium alone, in comparison to MIEV cells, PKCα-KR cells 

displayed a significantly lower percentage of cells in subG0 phase and a trend of 



 

 119 

an increase in percentage of cells in G2/M phase of cell cycle.  The addition of 

OP9 stroma resulted in a further decrease in the subG0 population (although not 

significant), a significant decrease in cells arrested in G0/G1 phase of cell cycle, 

and a significant increase in cells preparing for and undergoing cell division (S and 

G2/M) phase.  Finally, the addition of IL7 decreased the percentage of dead cells 

as marked by the subG0 population for both the MIEV and PKCα-KR cultures.  

Although not significant, the addition of IL7 and OP9 to PKCα-KR cultures further 

decreased the percentage of cells arrested in G0/G1 phase of cell cycle, and 

increased the percentage of cells in S and G2/M phases of cell cycle.    

To determine whether the increased proliferative capabilities of the PKCα-KR 

cultures occurred early on in the in vitro culture, or as a later event, two early (day 

9,10) and two late (day 24, 28) MIEV and PKCα-KR cultures were cultured on OP9 

with IL7 and labelled with BrdU (Figure 4.6 B).  It appears that the PKCα-KR 

cultures are proliferating more than the MIEV cultures at both early and late 

phases of cell culture (Figure 4.6B).  

4.3.5 PKCα-KR cells express cyclin D1 mRNA and protein in vitro and in 

vivo  

In the intestine, cyclin D1 was shown to be negatively regulated by PKCα (Pysz et 

al. 2009; Guan et al. 2007), therefore within the CLL mouse model, where PKCα 

signaling is attenuated, we hypothesised that cyclin D1 may be upregulated thus 

aiding in the proliferative characteristics of PKCα-KR cells.  As such, transcript 

levels of cyclin D1 mRNA were determined at day 6, 10 and 17 of FL:OP9 MIEV 

and PKCα-KR cultures (Figure 4.7A).  There was a notable increase in cyclin D1 

mRNA in PKCα-KR cultures compared to MIEV and control B and T cells.  In vivo, 

mRNA levels were determined within spleen, tumour and BM of PKCα-KR-injected 

mice and demonstrated to be higher than B or T controls (Figure 4.7B).  Since 

cyclin D1 mRNA was upregulated within the PKCα-KR cultures, protein expression 

was evaluated by Western blot analysis in early (day 6) mid (day 13) and late (day 

26) FL:OP9 co-cultures (Figure 4.7C). PKCα-KR cultures contained a higher 

amount of cyclin D1 protein even early on (day 6), and in correlation with the 

mRNA data obtained (Figure 4.7A) cyclin D1 protein levels were higher in the later 

cultures (Figure 4.7C).  In human embryonic stem cells, cyclin D1 was shown to 

be regulated by miR302 that is activated by Sox2 ( Card et al. 2008). Of interest, 

Sox2 mRNA is downregulated within the PKCα-KR cultures in vitro (Figure 4.7D).  
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As a result of the focus of the microenvironment in regard to CLL cell survival and 

proliferation, we determined whether cyclin D1 is expressed in B cells within the 

proliferation centres of PKCα-KR injected mice.  Therefore consecutive spleen 

sections of MIEV and PKCα-KR-injected mice were stained for B220 and cyclin D1 

(Figure 4.8).  Within the MIEV spleen, cyclin D1 was found outwith the B cell 

follicle, whereas within the PKCα-KR spleen, cyclin D1 and B220 were co-

localized within the B cell follicles as demonstrated by sequential staining of B220 

and cyclin D1 respectively. It is evident that other cells within both MIEV and 

particularly within the PKCα-KR spleens were positive for cyclin D1, although their 

identities were not clarified.    

In human CLL, cyclin D1 mRNA and protein is upregulated when CLL cells are co-

cultured with NTL cells and NTL cells expressing CD40L (CD154) as compared to 

medium alone (Appendix 4-A).  In addition, in human CLL LN biopsies, out of the 

seven samples tested, three revealed some positive staining for cyclin D1 

(Appendix 4-B). 

4.3.6 Over-expression of cyclin D1 does not result in an expansion of GFP+ 
cells, however the GFP+ cells do exhibit hallmark CLL markers  

Since it was demonstrated that cyclin D1 mRNA and protein are upregulated early 

within the PKCα-KR cultures, we determined whether expression of cyclin D1 

alone could transform HPCs into malignant cells by acting as an initiation factor.  

Therefore, cyclin D1 was cloned into retroviral backbone MIEV (see section 2.1.1) 

and retroviral packaging lines were generated as described in section 2.1.2.2.1.  

HPCs were isolated from FL as described previously, retrovirally transduced to 

overexpress cyclin D1, and analysed by FACS at day 1, 14, 17, and 22 (Figure 

4.9).  When assessing the percentage of GFP+ cells, no elevation in growth or 

survival advantage occurs in cells that over-express cyclin D1, as indicated by lack 

of expansion of GFP+ cells. However, when the cells were assessed by FACS at 

day 14 to determine the expression of surface makers CD19, CD5 and CD23 

indicative of CLL, the small populations of GFP+ B cells (CD19+) expressed both 

CD5 and CD23, however the cell number was minimal (Figure 4.10).  In fact, 

whereas 0% of B cells within MIEV GFP+ and cyclin D1 GFP- populations 

expressed CD23, 9.6% of B cells within the cyclin D1 GFP+ population expressed 

CD23 comparative to 7.28% within the PKCα-KR GFP+ population (Figure 4.10).  

Similarly, whereas B cells within MIEV GFP+ and cyclin D1 GFP- populations 

expressed CD5 at levels less than 4%, B cells within cyclin D1 GFP+ populations 



 

 121 

expressed CD23 at levels above 20%, at even higher levels than the PKCα-KR 

GFP+ populations (7.4%) (Figure 4.10).   

4.3.7 Within mCLL cyclin D1 is regulated through transcriptional repressor 
4EBP1 

In order to determine how cyclin D1 expression is regulated within the PKCα-KR 

model, the phosphorylation state of translational repressor 4EBP1 was assessed 

since published work indicates a negative regulation of cyclin D1 by PKCα through 

4EBP1 in a PP2A-dependent manner (Figure 4.11) (Hizli et al. 2006; Guan et al. 

2007).  In addition mTOR signaling has been demonstrated to be important in 

4EBP1 regulation (Gingras et al. 2001; Averous et al. 2008).  Therefore, day 14 

MIEV and PKCα-KR cells were treated with pan-PKC activator PMA to activate 

PKCα (among other PKCs) and selective calcium ionophore agent Iono, mTORC1 

inhibitor rapa, and PP2A inhibitor OA.  Within the untreated cultures, 4EBP1 is 

hyperphosphorylated in PKCα-KR cultures compared to the MIEV cultures as 

demonstrated by the stronger expression of the higher band of 4EBP1.  Upon 

treatment with PMA/Iono, the middle band of 4EPB1 is lost, indicating a shift 

toward further 4EBP1 repression. Treatment with rapamycin causes a shift toward 

the lower bands of 4EBP1 (hypophosphorylated and therefore active state) in both 

MIEV and PKCα-KR cultures.  Finally treatment with OA within the PKCα-KR 

cultures results in an expression of the top (hyperphosporylated) band of 4EBP1, 

however it is unclear whether this band is stronger than that within the untreated 

PKCα-KR cultures.  Treatment of MIEV cultures with OA results in re-expression 

of the top band of 4EBP1.  Cyclin D1 expression is higher in untreated PKCα-KR 

cultures compared to MIEV control as demonstrated previously, and treatment 

with PMA and rapamycin results in a slight reduction of cyclin D1 protein levels.  

Activation of PKCs and attenuation of mTOR signaling results in a decrease of 

cyclin D1 protein.   

4.3.8 4EPB1 is hyperphosphorylated in human CLL cell line HG3 and  
human CLL and regulates expression of Mcl-1 and c-myc in a 
mTORC1 and PKC-dependent manner 

Cap-dependent translation and eIF-4E have been shown to regulate Mcl-1 and c-

myc expression ( Benedetti & Graff 2004; Huo et al. 2011).  To determine whether 

cyclin D1 expression is regulated through 4EBP1 as in the mCLL model, HG3 CLL 

cell line or human CLL cells were cultured on NTL stroma and treated with 
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rapamycin or PMA.  Untreated HG3 cells express hyperphosphorylated bands of 

4EBP1 indicating that it is inactive (Figure 4.12).  Treatment with rapamycin results 

in the shift toward the hypophosphorylated form and a reduction in pP70 S6K 

demonstrating the ability of rapamycin to inhibit mTORC1 signaling (Figure 4.12).  

In addition Mcl-1 and c-myc are down-regulated upon rapamycin treatment.  

Stimulation with PMA/Iono did not alter the phosphorylation state of 4EBP1, 

however it did result in an increase in levels of Mcl-1, pP70 S6K and c-myc (Figure 

4.12). No cyclin D1 protein was detected in this cell line under any condition.  In 

human CLL, 4EBP1 is hyperphosphorylated and therefore inactive (Figure 4.13 

left).  The regulation of 4EBP1 by mTOR signaling was indicated by a marked shift 

toward the hypophosphorylated form of 4EPB1 upon treatment with rapamycin 

(Figure 4.13 left). Treatment with rapamycin also results in a decrease in pP70 

S6K as expected, and a decrease in c-myc levels as seen in the HG3 cell line  

(Figure 4.13 right).  There was no change in cyclin D1 and Mcl-1 levels upon 

treatment with rapamycin.  Treatment with PMA resulted in a slight decrease in the 

inactive form of 4EBP1 (Figure 4.13 left).  A decrease in cyclin D1 levels was seen 

with PMA treatment as in the mCLL model, however this result did not occur in 

another CLL sample tested. Treatment with PMA/Iono resulted in an increase in 

Mcl-1 and c-myc, as seen in the HG3 cell line, (Figure 4.13 right).  Levels of p-

ERK were evaluated in the human CLL samples and demonstrated an elevation 

upon PMA/Iono treatment (Figure 4.13 left).  Cells treated with OA were removed 

from the analysis because a toxic effect was seen and thus little protein was 

detected.   

4.4 Discussion 

Co-culture of CLL cells with cytokines and stroma allows for the survival and 

proliferation of CLL cells in vitro (McCaig et al. 2011).   In fact, it was demonstrated 

that the LN and BM (more prominently LN) are sites of CLL active cell proliferation 

( Stevenson & Caligaris-Cappio 2004).  Within CLL LN and BM biopsies, a 

subpopulation of malignant lymphocytes are located within the proliferation centres 

surrounded by accessory cells such as stroma, T cells, macrophages and dendritic 

cells (see section 1.2.8). Similarly, within the mCLL model an early observation of 

the PKCα-KR cultures was their highly poliferative characteristic.  It was therefore 

hypothesised that attenuation of PKCα signaling results in a generation of CLL 

cells similar to those found within the proliferation centres of lymphoid organs 

responsible for the expansion of the CLL clone.  Therefore, we wanted to delineate 
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signaling molecules responsible for this proliferative capability of PKCα-KR cells, 

and in particular the mTOR signaling pathway. 

PKCα-KR expressing cells were larger than their MIEV counterparts and 

expressed nutrient receptors CD98 and CD71 at higher levels.  In addition, mTOR 

signaling was active in these cells by considering the levels of phosphorylation of 

p70 S6K, a common mTOR activation marker (Averous & Proud 2006). However, 

treatment of PKCα-KR cultures with rapamycin did not result in a dramatic 

preferential induction of apoptosis in these cultures compared to MIEV control 

cultures at 24 hr.  However, the decrease in the percentage of viable cells was 

more significant for the PKCα-KR cultures at 24 hr.  OP9 stroma had a slight 

protective effect on both MIEV and PKCα-KR cultures.  Rapamycin has been 

demonstrated to be relatively unstable under tissue culture conditions (37°C, 5% 

CO2), with a t1/2 of around 9.9 hr for degradation (Hosoi et al. 1999).  Perhaps 

repeated treatment with consistent low concentrations of rapamycin (10 nM) may 

result in preferential apoptosis of PKCα-KR cultures.  

mTOR is a multidomain protein that interacts with other proteins by forming 

complexes (Wullschleger et al. 2006).  Rapamycin only targets mTORC1 therefore 

using a pan mTOR inhibitor such as PP242 and AZD8055 that targets both 

mTORC1 and mTORC2 (Huo et al. 2011) may prove to be more effective in 

causing apoptosis preferentially within the PKCα-KR cultures.  

When cell cycle of MIEV and PKCα-KR cultures was examined in medium alone, 

stroma alone, or stroma with cytokine IL7, it was evident that PKCα-KR cells are 

more viable than MIEV cells without the microenvironment, demonstrating their 

survival advantage as seen in a significant decrease in the percentage of dead 

cells (subG0 population).  In addition, without stroma or IL7, PKCα-KR cells were 

still dividing, as indicated by a trend of an increase in the percentage of cells in 

G2/M phase.  It was evident that addition of stroma significantly decreased the 

percentage of non-dividing cells (G0/G1) and significantly increased the amount of 

dividing cells (S, G2/M). With the addition of IL7, similar viability was observed in 

both MIEV and PKCα-KR cells, and IL7 further increased the amount of 

proliferating PKCα-KR cells (as marked by an increase in percentage of S and 

G2/M and a decrease in G0/G1 phases of cell cycle).  Collectively these data 

indicate that indeed the increased capabilities of the PKCα-KR cells to proliferate 

are microenvironment dependent.  
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The process whereby a normal cell transforms into a leukaemic cell involves the 

progressive acquisition of genetic abnormalities leading to inhibition of tumour 

suppressors and overexpression or activation of oncogenes within a certain 

biological system.  An important group of genes, the cyclins are often deregulated 

in transformed cells.  In particular, cyclin D1 is often overexpressed in some 

cancers, including breast cancer, colorectal carcinoma and lymphoid malignancies 

such as mantle cell lymphoma (Weinstein 2000).  In these cancers, the 

overexpression of cyclin D1 plays a crucial role in cell transformation, leading to 

increased proliferation and tumorigenesis (Weinstein 2000). In CLL, cyclin D1 

mRNA is expressed, whereas it is not within normal B cells (Gladkikh et al. 2010).  

In concordance with these findings, within the mCLL model, cyclin D1 mRNA and 

protein were upregulated both in vitro and in vivo. Interestingly, there was a 

notably higher amount of cells that stained for cyclin D1 that were not B220+, 

perhaps implying an accessory oncogenic role for cyclin D1 whereby it is 

expressed within the epithelium and cells surrounding the CLL cells.  In human 

CLL, cyclin D1 mRNA and protein is upregulated upon co-culture with 

microenvironmental simulatory conditions (NTL and NTL-CD154).  In addition, 

some human CLL LN biopises were positive for cyclin D1, indicating that the 

findings within the mouse model translate at least partially to the human disease, 

implicating that cyclin D1 could be important within the proliferation centres of the 

lymphoid organs in CLL.   

Over-expression of cyclin D1 within HPCs did not result in an expansion of GFP+ 

cells as seen previously within the PKCα-KR cultures evident by a decrease in 

GFP+ cell population from 10.6% to 1.2%.  However the small population that 

remained GFP+ (1.2%), did display hallmark surface CLL phenotype makers.  

Although this experiment was conducted only once, with more reproducibility, it 

could indicate that cyclin D1 is important in the transformation of normal HPCs into 

CLL cells.  Perhaps over extended periods of time these cyclin D1 positive cells 

can accumulate and acquire further changes in order to generate CLL cells.   

To determine how cyclin D1 is regulated, we assessed the role of Sox2, one of the 

main transcription factors necessary for pluripotency during early embryogenesis 

and embryonic stem cell maintenance (Card et al. 2008). Sox2 was downregulated 

transcriptionally within the PKCα-KR in vitro cultures. Sox2 activates miR-302, 

which in turn negatively regulates cyclin D1 post-transcriptionally (Card et al. 

2008). The decreased expression of Sox2 mRNA within the PKCα-KR cultures 
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may be an indication of its reduced functionality, thereby its inability to activate 

miR-302 which represses cyclin D1, leading to an accumulation of cyclin D1.  

However, no protein analysis of Sox2 was conducted and further experiments 

should be considered before making such an assumption.  

In colon cancer cells, restored PKCα expression was shown to decrease cyclin D1 

levels through transcriptional and translational inhibition (Pysz et al. 2009).  In 

intestinal epithelial cells, PKCα can inhibit cyclin D1 expression through 

translational repressor 4EBP1 and attenuation of cap-dependent translation 

initiation (Hizli et al. 2006) in a PP2A dependent manner (Guan et al. 2007).  

4EBP1 is a binding partner of elF-4E, a known target of mTOR that has been 

documented to have a significant role in tumorigenesis and has a key role in 

mRNA translation and metabolism (Gingras et al. 2001; Averous et al. 2008).  

Often, the genes that are extensively translated are oncogenes that aid in 

transformation of normal cells, such as Mcl-1 and c-myc.  4EBP1 is regulated 

through phosphorylation at seven sites, four of which are associated with mTOR 

signaling (Mothe-Satney et al. 2000; Gingras et al. 2001). In its 

hyperphoshorylated form, 4EBP1 is not active and thus releases eIF-4E allowing 

for the formation of the eIF-4E complex that is responsible for cap-dependent 

translation.   

Within the PKCα-KR cultures, 4EBP1 is hyperphosphorylated and therefore not 

active. As such, it cannot repress translation of cyclin D1 which is highly 

expressed within the PKCα-KR cultures.  PKC activation with PMA/Iono results in 

an activation of 4EBP1 and reduction of cyclin D1 protein levels.  Pan-PKC 

activation includes PKCα reactivation, and thus it is plausible that reactivation 

leads to a downregulation of cyclin D1 as seen in other systems (Hizli et al. 2006; 

Guan et al. 2007). Inhibition of mTOR signaling with rapamycin treatment also 

results in a slight reduction of cyclin D1 levels, indicating that activated mTOR 

signaling within the PKCα-KR cultures is modulating 4EPB1 activity.  In fact, it has 

been demonstrated that mTORC1 is responsible for PP2A phosphorylation which 

inhibits PP2A activity leading to an accumulation of hyperphosphorylated (inactive) 

form of 4EBP1 (Gustafson & Weiss 2010).  Treatment with rapamycin, therefore, 

inhibits the ability of mTORC1 to inactivate PP2A resulting in hypophosphorylation 

and activation of translational repressor 4EPB1. A recent study shows that in 

mammalian cells, cell size and cell cycle progression are independent.  Whereas 

S6K is responsible for cell growth but not proliferation, 4EBPs were demonstrated 
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to be essential in control of mTORC1-dependent proliferation, but not cell growth 

(Dowling et al. 2010).  Similarly, in our mCLL model, an inhibition of mTORC1 via 

treatment with rapamycin results in a re-activation of 4EPB1 and an attenuation of 

proliferation.  It is unclear whether treatment with PP2A inhibitor OA in PKCα-KR 

cultures results in a greater hyperphosphorylation of 4EBP1 because in the 

untreated PKCα-KR cultures the top band is very highly expressed, and perhaps 

this method is not sensitive enough to see further changes in phosphorylation 

state.  

In human CLL cell line HG3 and primary human CLL cells 4EBP1 is 

hyperphosphorylated and therefore inactive.  Its phosphorylation state is regulated 

through mTOR signaling as seen through sensitivity to rapamycin treatment.   In 

two CLL samples tested cyclin D1 levels did not change upon treatment with 

rapamycin at 4 hr indicating that the protein is not regulated though mTORC1 in 

human CLL or that a longer time point is needed to see the effects of rapamycin 

treatment.  Again, a pan-mTOR inhibitor could prove to be more effective here.  A 

decrease in levels of c-myc was seen in HG3 cells and in one of the two CLL 

samples tested. Mcl-1 was only down-regulated in HG3 cells upon rapamycin 

treatment.  Indeed, both Mcl-1 and c-myc are known to be regulated by eIF-4E 

and cap dependent translation (Benedetti & Graff 2004; Huo et al. 2011).  

Treatment with PMA resulted in an increase of Mcl-1 and c-myc in both HG3 cells 

and primary CLL cells.  An increase in ERK activity was also seen in primary CLL 

samples that were analysed. Of note, ERK can also phosphorylate S6 kinases 

under specific conditions (Pende et al. 2004). These data suggest that inactivation 

of 4EBP1 through other PKCs or ERK could result in an increased translation or 

an accumulation of these proteins. A reduction in cyclin D1 protein was seen in 

one of the two CLL samples analysed after treatment with PMA.  Further studies in 

primary CLL samples are required to determine whether different patients differ in 

cyclin D1 expression, possibly correlated with prognostic data, and whether cyclin 

D1 expression is regulated through mTOR and PKC signaling.  
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Figure 4.2 PKCα-KR cells are larger than their MIEV counterparts. 
A Cells were cultured as described previously until day 13 of OP9:FL co-culture 

and subsequently photographed with an inverted light microscope under 10x 

magnification.   B Unstained cells were analysed by FACS, live-gated on 

FSC/SSC, and representative histographs were over-laid. 
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Figure 4.3 PKCα-KR cells express higher levels of CD98, CD71 and pP70 S6 
Kinase indicative of mTOR activation. 
A PKCα-KR and MIEV cells were incubated with CD98 and CD71 antibody and 

analyzed by FACS to determine levels of surface protein expression at day 13 

(PKCα-KR late culture was day 18).  Cells were first gated FSC/SSC, CD45+, 

GFP+ and CD19+ prior to CD98 and CD71 analysis. B Protein lysates were 

prepared from early, mid and late PKCα-KR and MIEV cultures prior to Western 

blot analysis of pP70 S6 Kinase and pERK.  GAPDH was used as a loading 

control. 
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Figure 4.4 Treatment with mTORC1 inhibitor rapamycin does not cause 
preferential induction of apoptosis in PKCα-KR cultures compared to their 
MIEV counterparts. 
Cells were harvested from MIEV and PKCα-KR cultures and treated with 

increasing concentrations of mTORC1 inhibitor rapamycin +/- OP9 for 24 hr (A) 

and 48 hr (B).  Apoptosis was assessed by Annexin V/7AAD staining.  Data are 

represented as means (± SEM) of 3 biological replicates.  The graphs are 

represented as percentage of no drug control (NDC).  p values were generated 

using the student’s unpaired t-test to compare groups (*p<0.05, ** p<0.005, 

***p<0.001). 
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Figure 4.5 Treatment with mTORC1 inhibitor rapamycin causes a significant 
attenuation of proliferation in PKCα-KR cultures. 
Cells were harvested from MIEV and PKCα-KR cultures and treated with 

increasing concentrations of mTORC1 inhibitor rapamycin for 24 hr (A) and 48 hr 

(B). Cells were incubated with BrdU for 2 hr prior to the endpoint. Data are 

represented as means (± SEM) of 3 biological replicates.  p values were 

generated using the student’s unpaired t-test to compare groups (*p<0.05, ** 

p<0.005, ***p<0.001). 
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Figure 4.6 A higher percentage of cells are undergoing cell division in PKCα-
KR cultures. 
A MIEV and PKCα-KR cells were cultured in medium alone, with OP9 stroma 

alone, or with OP9 stroma in the presence of cytokine IL7. Cells were stained with 

PI as described before and assessed by FACS. For percentage of cells in G0/G1, S 

and G2/M phases, the sub-G0 population was gated out prior to analysis. Data are 

represented as means (± SEM) of 3 biological replicates.  p values were 

generated using the student’s unpaired t-test to compare groups (*p<0.05, ** 

p<0.005, ***p<0.001). B Cells were harvested from MIEV and PKCα-KR cultures 

and incubated with BrdU for 2 hr.  Error bars represent S.D. of technical triplicates.   
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Figure 4.7 PKCα-KR cells express higher levels of cyclin D1 transcripts and 
protein in vitro compared to MIEV counterparts. 
A RNA was isolated from MIEV and PKCα-KR cultures and subjected to qRT-PCR 

to determine levels of cyclin D1 mRNA at early (day 6), mid (day 10) and late (day 

17) in vitro cultures.  B qRT-PCR analysis of cyclin D1 transcript levels in spleen, 

tumour and B.M. of PKCα-KR injected Rag 1-/- mouse.  C Protein lysates were 

prepared from early (day 6) mid (day 13) and late (day 26) MIEV and PKCα-KR 

cultures to determine levels of cyclin D1 protein by Western blot.  D qRT-PCR 

analysis of Sox2 mRNA in early (day 3, 6), mid (day 13, 14) and late (day 28) 

cultures.  For all qRT-PCR graphs, error bars represent S.D. of technical 

triplicates.  B and T cells isolated from wild type spleen were used as an additional 

control.     



 

 133 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Cyclin D1 protein is found within B cell follicles of spleens of 
PKCα-KR HPC-injected mice. 
Consecutive paraffin embedded spleen sections from MIEV and PKCα-KR injected 

mice were stained for B220 and cyclin D1 respectively. 
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Figure 4.9 Over-expression of cyclin D1 in HPCs does not result in an 
expansion of GFP+ cells. 
Full length cyclin D1 was cloned into MIEV retroviral backbone and packaging 

lines were generated as described in (see section 2.1.1). FL HPCs were 

transduced with cyclin D1 and co-cultured with OP9 and cytokines in a B cell 

generating system and subjected to FACS at different stages of culture (day 1, 14, 

17, 22).  Haematopoietic (CD45+) cells were live and size gated (FSC vs SSC) 

and percentages of GFP+ cells are shown.   
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Figure 4.10 Overexpression of cyclin D1 in HPCs  results in generation of 
CLL surface phenotype. 
HPCs were retrovirally transduced to express MIEV, PKCα-KR or cyclin D1 and 

subjected to FACS analysis at day 14 of FL:OP9 co-culture to determine 

expression of CD19, CD5 and CD23. Haematopoietic (CD45+) cells were live and 

size gated (FSC vs SSC) and CD19 vs CD23, and CD19 vs CD5 analysis shown.  

For cyclin D1 transduced cells, GFP+ and GFP- populations are shown.  
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Figure 4.11 Cyclin D1 is regulated through 4EBP1 in PKCα-KR cultures in a 
mTORC1 and PKC-dependent manner. 
Western blot of day 14 MIEV and PKCα-KR cultures treated with 30 nM rapamycin 

(rapa), 100 nM PMA plus 1 µg/ml ionomycin (PMA/Iono), or 2.5 µM Okadaic Acid 

(O.A) for 1 hr. β tubulin was used as loading control. 
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Figure 4.12 Phosporylation of 4EBP1 is regulated by mTORC1, whereas PKC 
stimulation leads to upregulation of Mcl-1, pP70 S6 Kinase and c-myc in CLL 
cell line HG3. 
Western blot of HG3 cell line cultured with NTL mouse fibroblasts for 44 hr 

followed by treatment with 30 nM rapamycin (rapa) or 100 nM PMA plus 1 µg/ml 

ionomycin (PMA/Iono) for an additional 4 hr. β tubulin and actin were used as 

loading controls. 
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Figure 4.13 4EBP1 phosphorylation is sensitive to rapamycin treatment in 
human CLL, and PMA stimulation leads to upregulation of Mcl-1 and c-myc. 
Western blot of primary CLL sample cultured on NTL cells for 44 hr followed by 

treatment with 30 nM rapamycin (rapa) or 100 nM PMA plus 1 µg/ml ionomycin 

(PMA/Iono) for an additional 4 hr. β tubulin was used as loading control. 
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Appendix 4-A Co-culture of human CLL cells with stroma upregulates cyclin 
D1 mRNA and protein. 
Cyclin D1 mRNA (left) and protein (right) expression of a primary CLL sample 

cultured in in vitro with NTL cells or NTL-CD154 cells in the presence of IL4. This 

experiment was conducted by Dr. Emilio Cosimo.  
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Appendix 4-B Cyclin D1 is expressed in human lymph node of CLL patients.  
Paraffin embedded lymph node biopsies from CLL patients were stained with 

cyclin D1.  Two separate patients are shown. Out of 7 tested, 3 were positive for 

cyclin D1.  Isotype control is also depicted. This experiment was conducted by Dr. 

Mark Catherwood (Belfast City Hospital). 
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Chapter 5: 

PKCα-KR B cells exhibit ability to lineage switch to T cells upon Notch-
ligation 
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5.1 Introduction 

5.1.1 Plasticity of pluripotent HSCs 

Haematopoiesis is normally a highly regulated process whereby an HSC 

subsequentally commits toward a myeloid or a lymphoid lineage in a hierarchical 

manner, however lineage plasticity, although rare, is not impossible.  Cells can 

undergo transdifferentiation whereby the lineage-specific gene program of a cell is 

replaced by an alternate lineage-specific program.  Alternatively, differentiated 

cells can primarily dedifferentiate into a more primitive state and proceed to 

redifferentiate into another lineage (Figure 5.1) (Greer 2005).   

 

Figure 5.1 Transdifferentiation, dedifferentiation and redifferentiation 
 

Although ordered B cell development was thought of as unidirectional, more 

recently, attention has been brought to the apparent plasticity of B cells. Indeed, 

introduction of a nucleus from a fully differentiated B cell into an enucleated 

embryonic stem cell gave rise to a broad spectrum of cell lineages (Gurdon et al. 

1975; Hochedlinger & Jaenisch 2002). Similarly, reprogramming of differentiated B 

cell into macrophages through inhibition of PAX5 activity and subsequent 

downregulation of CD19 can occur when expression of C/EBPα and C/EBPβ is 
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enforced (Xie et al. 2004).  Also raf/ras oncogenes and activated M-CSF receptor 

are capable of reprogramming oncogene-immortalized B cell lines into 

macrophages (Klinken et al. 1988; Borzillo et al. 1990).  Therefore, although in the 

most probable scenario, the developmental pathway of an HSC to a fully 

functional, antigen-reactive B cell is usually directional, nevertheless it is incorrect 

to say that it is irreversible (Honjo & Neuberger 2004).  Indeed, redifferentiation 

can be induced by external stimuli or increases/decreases in levels of specific 

transcription factors that regulate cell fate (Honjo & Neuberger 2004).  

As mentioned previously (Section 1.1.4), PAX5 is a master B cell regulator that is 

present in all stages of B cell development apart from plasma cells.  Of note, 

PAX5-/- pro-B cells are very sensitive to environmental stimuli and their fate is 

heavily determined by cytokines and stroma.  For example, co-culture of PAX5-/- 

pro-B cells with stroma and IL7 retains their pro-B state.  Alternatively, removal of 

stroma and co-culture with alternative cytokines promotes differentiation of PAX5-/- 

pro-B cells into other lineages, such as NK cells, macrophages, dendritic cells, 

osteoclasts or granulocytes (Nutt et al. 1999; Schaniel et al. 2002; Carotta et al. 

2006).  Specifically, addition of IL15 causes a de-differentiation into the NK lineage 

(Carotta et al. 2006), whilst co-culture with M-CSF induces macrophage 

differentiation (Nutt et al. 1999).   The newly formed alternate fate cells (NK or 

myeloid) still carry immunoglobulin DJ rearrangements reminiscent of their pro-B 

cell origin.  In addition, in vivo adoptive transfer of PAX5-/- cells into RAG2-/- mice 

causes de-differentiation in CD8- or CD8+ dendritic cells.  Normal T cell 

development is also observed in the thymus and periphery (Rolink et al, 1999).  

Later analysis of these mice demonstrated the additional presence of myeloid cells 

and erythrocytes (Schaniel et al. 2002). Importantly, these PAX5-/- pro-B cells 

display self-renewal and long-term reconstitution potential whereby they travel to 

the BM prior to re-differentiating again (Schaniel et al. 2002).  Therefore deletion of 

PAX5 allows for the generation of cells that closely resemble pHSCs.   

5.1.2 T cell development 

T lymphopoiesis is characterised by a series of commitment events such as TCR 

V(D)J gene rearrangement (see Section 5.1.2.1), TCRβ selection and positive and 

negative selection of thymocytes (Ciofani & Zúñiga-Pflücker 2007).  These events 

are coupled by the ordered expression of specific phenotypic markers, namely 

CD4 and CD8 co-receptors.  BM derived HSCs within the thymus develop into 

immature thymocytes which are CD4-CD8- (DN) (Figure 5.2A).  These DN cells 
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are further characterised into four developmental stages that are present within the 

outer thymic cortex (DN1, DN2, DN3 and DN4) based on the surface expression of 

CD117 and CD25: CD117+CD25-(DN1), CD117+CD25+(DN2), CD117-CD25+(CD3) 

and CD117-CD25-(DN4) (Ciofani & Zúñiga-Pflücker 2007) (Figure 5.2B).  At DN3, 

thymocytes rearrange their TCRβ and thus commit toward the T cell lineage.  β-

selection allows for a functionally rearranged TCRβ to complexes with pTα and 

form the pre-TCR (Kearse 2000).  A dysfunctional TCRβ rearrangement results in 

apoptosis.  Signaling via the pre-TCR complex leads to proliferation and transition 

into the DP stage (CD4+CD8+) which is followed by selection toward the SP (CD4+ 

or CD8+) stage (Ciofani & Zúñiga-Pflücker 2007). The DP stage also marks the 

initiation of TCRα rearrangement.  CD3ε is also important at this stage in that it 

forms a complex with the TCR which is important in intracellular signal-

transduction (Gold et al. 1986).  A complete αβ-TCR/CD3 complex in DP 

thymocytes induces positive and negative selection resulting in mature SP 

thymocytes. Here, the second checkpoint occurs whereby recognition by DP cells 

of major histocompatibility complex (MHC) class I molecules leads to CD8 

committed SP cells and recognition of MHC class II molecules leads to CD4 

committed SP cells within the inner cortex of the thymus (Figure 5.2A)(Kearse 

2000).  Thymocytes that improperly rearrange TCRα or generate TCRα/β complex 

with high self-MHC affinity are negatively selected for resulting in apoptosis.  

Positively selected T cells can now move out of the thymic medulla and migrate 

into the periphery.   
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A 

 

B 

 

Figure 5.2 T cell development 
A T cell development within the thymus.  B Expression of surface molecules 

during T cell development; CD117+CD25-(DN1), CD117+CD25+(DN2), CD117-

CD25+(CD3) and CD117-CD25-(DN4). 

5.1.2.1 TCR rearrangement 

The α and β chains of the TCR consist of variable (V) amino-terminal and constant 

(C) regions.  Similarly to lights chains of IgM, TCRα contains V and joining (J) 

gene segments (Vα, Jα), whilst TCRβ contains V, J and D gene segments (Vβ, Jβ, 

D) (K. P. Murphy et al. 2008).  TCRα is located on chromosome 14 and consists of 

leader sequence (L) followed by 70-80 Vα segments (Figure 5.3).  61 Jα segments 
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are located a distance away from Vα segments followed by one C gene.  TCRβ is 

located on chromosome 7 and contains an L sequence followed by 52 functional 

Vβ segments, and two distal clusters of 6 or 7 Jβ segments, each preceded with a 

separate Dβ segment and followed by a separate C segment (Figure 5.3) (K. P. 

Murphy et al. 2008). 

 

 

 

Adapted from Murphy et al. 2008 

Figure 5.3 Germline organization of TCRα and TCRβ loci 
 

During T cell development TCR gene segments rearrange in the thymus to form 

complete V-domain exons.  For TCRα chain generation, Vα rearranges to Jα 

forming VJα (Figure 5.4).  Transcription and subsequent splicing of VJα to Cα 

generates mRNA that is subsequently translated to TCRα protein.  For TCRβ chain 

generation, similarly to IgMH, rearrangement of Vβ, Dβ, and Jβ forms a functional 

VDJβ V-region exon (Murphy et al. 2008). Transcription and splicing of VDJβ to Cβ 

generates mRNA that is subsequently translated to TCRβ protein.  The two chains, 

α and β join to form a α:β TCR heterodimer (Figure 5.4). 
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Adapted from Murphy et al. 2008 

Figure 5.4 TCRα and TCRβ loci rearrangement 
 

The key difference between IgM genes and genes encoding the TCR is effector 

function.  In B cells (see Chapter 1), secreted antibodies’ heavy chain C region 

isotypes trigger an effector mechanism, whereas in T cells cell-cell contact and not 

the TCR directly mediates effector mechanisms (Murphy et al. 2008).  The TCR’s 

main role is antigen recognition, and thus the C regions of the α and β TCR loci 

are less complex than IgMH.  

5.1.2.2 Role of Notch in T cell commitment 

T cell development is regulated via transcription factors such as GATA3, TCF1 

and Notch downstream transcription regulator Deltex (Joulin et al. 1991; Matsuno 

et al. 1998; Liu & Lai 2005; Weber et al. 2011).  Notch proteins belong to a family 

of type I transmembrane receptors that are involved in regulating cell fate (Deftos 

& Bevan 2000).  Notch signaling involves the interaction between one of five Notch 

ligands of the Jagged (1, 2) or Delta-like (1, 3, 4) families and one of four Notch 

receptors (1-4) (Sandy et al. 2012). When ligand binds receptor an S2 cleavage 

site is exposed to a metalloprotease which cleaves Notch within or in high 

proximity to its transmembrane domain.  An intra-membrane protease complex, or 

the ϒ-secretase complex conducts the final cleavage of Notch, releasing its 

intracellular domain to translocate to the nucleus allowing for interaction with the 

CBF1 transcription factor changing it from a repressor to an activator of gene 
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transcription (of for example Hes1, Deltex and Notch1).   In T cell development, 

deletion of Notch1 in BM stem cells (BMsc)s or newborn mice results in a block in 

T cell development and an upregulation of B cell markers on CD25-CD44+CD4-

CD8- (DN1) thymic cells, highlighting that Notch signaling is necessary for 

commitment toward the T cell fate (Tomita et al. 1999), and lack of Notch signals 

results in differentiation to a B cell lineage. Introduction of BMscs expressing 

constitutively active Notch1 into irradiated hosts gives rise to CD4+, CD8+ and Thy-

1+ thymus-independent T cells, whilst no B cells were observed (Pui et al. 1999).  

Therefore Notch signaling plays a crucial role in T or B cell lineage commitment.  

In addition to its role in T cell commitment, Notch1 is important in later stages of T 

cell development such as αβ T cell commitment versus Υδ T cell commitment 

(Washburn et al. 1997), and in maturation of CD4+ and CD8+ SP thymocytes 

(Deftos et al. 1998).   

5.1.2.3 In vitro system to assess T cell development 

Zúñiga-Pflücker and colleagues developed an in vitro T cell system using OP9-

DL1 cells.  OP9-DL1 cells are OP9 cells that ectopically express the Notch ligand 

DL1, thus losing the ability to support B cell lymphopoiesis and acquiring the ability 

to support T cell lymphopoiesis (Schmitt & Zúñiga-Pflücker 2002).  

Within a B cell environment, subversion of PKCα signaling in HPCs resulted in 

transformed B cells that resemble human CLL cells (see Chapter 3; Nakagawa et 

al. 2006).  Because lineage switching has been implicated in a number of B cell 

malignancies (Mikkola et al. 2002; Cobaleda et al. 2007), we were therefore 

interested in investigating whether PKCα-KR transformed B cells were capable of 

lineage trans-differentiation. 

5.2 Aims and Objectives: 

In order to assess whether PKCα-KR transduced B cells have the potential to 

lineage switch, the specific aims of this chapter were to: 

i.   Compare the expression of B cell specific genes between the MIEV and 

PKCα-KR B cells; 

ii. Assess the ability of MIEV and PKCα-KR B cells to differentiate into other 

lineages upon Notch ligation by co-culture with OP9-DL1;  
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iii. Investigate whether B and T cell specific genes are differently expressed 

between the MIEV and PKCα-KR cultures upon Notch ligation and assess 

implicated molecular mechanisms. 

5.3 Results 

5.3.1 PKCα-KR B cells express B cell specific genes at higher levels than 
MIEV counterparts 

In human CLL B cells, CD19 surface expression is diminished as compared to 

normal B cells (Ginaldi et al. 1998; Cabezudo et al. 1999; Yang et al. 2005). In 

contrast, one of the early notable features of PKCα-KR transduced B cells was the 

higher expression of surface marker CD19 (Figure 3.3 and Figure 5.5A) compared 

to MIEV control.  Hence it was of interest to determine whether other B cell 

specific genes are upregulated within the PKCα-KR expressing cells, particularly in 

vivo because of the importance of microenvironmental interactions for B cell 

development.  Therefore MIEV and PKCα-KR transduced HPCs were injected into 

neonatal RAG1-/- mice and spleens were excised 4 weeks post injection.  

Lymphocytes were isolated from the spleen and sorted for GFP+Lin-CD45+CD19+ 

B cells.  Similarly B and T cells were sorted from wildtype mice to be used as 

additional controls.  Analysis of B cell specific genes PAX5, EBF1, CD79a and T 

cell specific gene CD3ε was conducted with qRT-PCR and revealed that PKCα-KR 

cells express higher amounts of B cell specific genes PAX5, EBF1 and CD79a.  

As expected, only the T cells expressed CD3ε (Figure 5.5B).   

5.3.2 PKCα-KR B cells have the ability to lineage switch 

In order to determine whether PKCα-KR B cells have the potential to lineage 

switch as seen in other malignancies, MIEV and PKCα-KR transduced HSCs  

were isolated by cell sorting (GFP+Lin-CD45+B220-CD19-CD117hiSca1hi) and co-

cultured on OP9 stroma.  Thereafter, the late pro-B cell population was sorted 

(GFP+Lin-CD45+B220+CD19+CD117+) and subsequently co-cultured with OP9-

DL1 cells that ectopically express Notch ligand DL1, and thus support T cell 

development (Schmitt & Zúñiga-Pflücker 2002).  Unlike in MIEV-expressing CD19+ 

cells, co-culture of PKCα-KR-expressing CD19+ cells with OP9-DL1 resulted in the 

generation of cells expressing markers indicative of alternative lineages (Figure 

5.6). FACS analysis of CD19, CD11b, NK1.1, CD4 and CD8 surface markers 

demonstrates that whereas <0.2% of MIEV cultures expressed macrophage 

marker CD11b, >1% of PKCα-KR cultures expressed the myeloid marker (Figure 
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5.6).  In addition 2.7% of cells were CD19-CD11b- within the PKCα-KR cultures as 

compared to 0.8% in MIEV cultures, indicating lineage switching to other cell 

types.  When NK cell marker NK1.1 expression was assessed, MIEV cultures 

contained <0.1% NK1.1+ cells compared to 3.6% within the PKCα-KR cultures.  

FACS analysis of CD8 and CD4 revealed that 2.4% of PKCα-KR cells were SP 

CD8+, 3.7% CD4+ and 1.2% DP compared to no CD4 nor CD8 positive cells within 

the MIEV cultures. Collectively these data indicate that CD19+ PKCα-KR cells are 

capable of lineage switching upon Notch ligation to macrophages, NK cells and to 

T cells.  

5.3.3 CD19+ PKCα-KR lineage switching cells aberrantly express T cell 
specific genes  

Since it was demonstrated that PKCα-KR expressing B cells have the ability to 

lineage switch to T cells by surface marker expression analysis, we aimed to 

determine whether CD19-CD4+CD8+ T cells generated from OP9-DL1 co-cultures 

of CD19+ PKCα-KR cells express T cell specific genes.  Therefore CD19-Lin- 

progenitor MIEV cells and CD19+Lin- PKCα-KR B cells were sorted from OP9 co-

cultures and subsequently co-cultured with OP9-DL1. The MIEV CD19-Lin- cells 

developed into T cells (CD4+CD8+) as expected, and also into B cells 

(CD19+NK1.1-), indicating that the sorted CD19- progenitors were already primed 

toward the B cell lineage (Figure 5.7 left).  Within the PKCα-KR sorted CD19+Lin- 

cultures, some cells retained CD19 expression whilst others switched into T cells 

(Figure 5.7 left).  CD8+CD4+ T cells and CD19+NK1.1- B cells were subsequently 

sorted from the cultures using the indicated gates (Figure 5.7 left) and subjected to 

qRT-PCR in order to determine the expression of T cell specific genes (pTα, 

CD3ε), and B cell specific gene PAX5 (Figure 5.7 right).  Within the MIEV cultures, 

the sorted T cells expressed T cell specific genes (pTα, CD3ε) and GATA3, 

whereas they did not express PAX5, whilst the sorted B cells expressed PAX5 and 

not the T cell specific genes as expected.  Similarly, the lineage switched B cells 

(now T cells) within the PKCα-KR cultures expressed T cell specific genes, 

although at lower levels than T cells generated from progenitor cells within MIEV 

cultures (Figure 5.7 right), and did not express PAX5.  Interestingly the cells that 

remained CD19+ within the PKCα-KR cultures expressed low levels of T cell 

specific genes (Figure 5.7 right).  Collectively these data demonstrate the potential 

of CD19+ PKCα-KR expressing cells to lineage switch into T cells upon Notch 
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ligation as marked by T cell specific surface protein expression and upregulation of 

T cell specific genes.    

5.3.4 Lineage switching of PKCα-KR CD19+ B cells occurs gradually via a 
transitional CD19+CD90+ stage 

Since it was demonstrated that PKCα-KR expressing CD19+ B cells were capable 

of lineage switching into T cells upon Notch ligation, we aimed to determine when 

this switch occurs.  Therefore retrovirally transduced MIEV and PKCα-KR HSCs 

were cultured on OP9 for 9 days and afterward sorted to isolate the pro-B cell 

population (GFP+CD19+B220+CD117+Lin-) which was subsequently cultured on 

OP9-DL1 stroma for an additional 10 days.  Surface expression of B cell maker 

CD19 and T cell marker CD90 revealed a large CD19+CD90+ population within 

PKCα-KRα-KR cultures, indicating that lineage switching of CD19+CD90- cells 

toward the T cell fate (CD19-CD90+) happens through a transitional CD19+CD90+ 

stage (Figure 5.8).  In fact, whereas the majority of sorted ProB cells within the 

MIEV cultures remained CD19+, 11% of sorted ProB cells within the PKCα-KR 

cultures expressed both CD19 and CD90 (compared to <2% within the MIEV 

cultures).  In addition, as previously demonstrated 1.5% of sorted ProB cells within 

the PKCα-KR culture lineage switched into T cells as demonstrated by loss of 

CD19 and upregulation of CD90.   

Previously it was demonstrated that PKCα-KR lineage switched B cells (now T 

cells) expressed T cells specific genes (Section 5.3.3).  Therefore it was of interest 

to determine whether the upregulation of these genes occurred sequentially, in line 

with the transitional stage of CD19+CD90+ cells within the PKCα-KR lineage 

switching cultures. Therefore, CD19+CD90-, CD19+CD90+ MIEV and PKCα-KR 

expressing cells and CD19-CD90+ PKCα-KR cells were isolated from  OP9-DL1 

cultures (post 9 day OP9 culture) as indicated in Figure 5.8, and analysed by qRT-

PCR to determine the expression of B cell specific genes (E2A, EBF1 and PAX5) 

and T cell specific genes (CD3ε, TCF1, Deltex and pTα). PKCα-KR expressing 

CD19+CD90- cells expressed B cell specific genes E2A, EBF1 and PAX5 at higher 

levels than their MIEV CD19+CD90- counterparts (Figure 5.9), similar to that noted 

in Figure 5.5.  The transitional CD19+CD90+ stage in both MIEV and PKCα-KR 

culture was marked by the decrease in B cell specific genes E2A, EBF1 and PAX5 

(significant for E2A within MIEV cultures and for E2A and PAX5 within PKCα-KR 

cultures).  The CD19-CD90+ population within the PKCα-KR expressing cells 

exhibit a further significant decrease in all three B cell specific genes investigated.  
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The sequential downregulation of B cell specific genes within the PKCα-KR 

transitioning cultures (CD19+CD90-!CD19+CD90+!CD19-CD90+) is coupled with 

a  sequential upregulation of T cell specific genes CD3ε, TCF1, Deltex and pTα 

indicating that expression of PKCα-KR allows the CD19+ B cells to become 

sensitive to Notch signaling through DL1 ligation.   

5.3.5 PKCα-KR transdifferentiated B cells (now T cells) maintain 
rearrangements of antibody producing Ig genes  

Although it was demonstrated that CD19+ PKCα-KR-expressing B cells can 

undergo lineage switching as a result of Notch ligation through analysis of surface 

markers and T-lineage associated genes, to demonstrate that these T cells 

originated from B cells, IgH rearrangement was investigated within these cells.  

Therefore, CD19+CD90-,CD19+CD90+ MIEV and PKCα-KR cells and CD19-CD90+ 

PKCα-KR cells were sorted from OP9-DL1 cultures (after OP9 cultures as 

described in 5.3.4) and subjected to genomic PCR to determine D-JH and V-DJH 

rearrangements (indicative of B cell origin) and TCRβ rearrangement at the D-Jβ 

level (indicative of T cell origin).  The analysis revealed that the CD19+CD90- and 

CD19+CD90+ populations within both MIEV and PKCα-KR cultures had completed 

IgH gene rearrangement at the D-JH and V-DJH level (Figure 5.10) as expected.  

CD19-CD90+ PKCα-KR cells also rearranged TCRβ at the D-Jβ level confirming 

that they are T cells. However D-JH and V-DJH gene rearrangement was also 

present in the lineage switched CD19-CD90+ PKCα-KR cells. Collectively these 

data confirm that the lineage switched T cells had a B cell origin.  Notably, no D-Jβ 

rearrangement occurred within the PKCα-KR CD19+CD90+ transitioning population 

suggesting that although these cells possess potential to convert into T cells, they 

have not yet fully committed to the T cell lineage.    

5.3.6 Lineage switching from B cells to T cells occurs by E2A and PAX5 
downregulation  

Since it was demonstrated that the gradual lineage switching from B cells into T 

cells occurs via a downregulation of B cell specific genes and upregulation of T 

cell specific genes at the transcript level (Figure 5.9), it was of interest to 

determine if the same occurs at a functional (protein) level. Therefore, 

CD19+CD90-,CD19+CD90+ MIEV and PKCα-KR cells and CD19-CD90+ PKCα-KR 

cells were sorted from OP9-DL1 cultures (after OP9 co-cultures as described in 

5.3.4) and subjected to western blot analysis to determine protein levels of E2A 
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protein product E47 and its downstream target PAX5, and T-cell specific protein 

Lck (Figure 5.11 and Appendix 5-A). Within the PKCα-KR cultures levels of PAX5 

and E47 protein are decreased in the CD19-CD90+ lineage switched cultures, 

whilst levels of Lck are increased. Total levels of ERK and β tubulin remained 

constant in all MIEV and PKCα-KR cultures (Figure 5.11; Appendix 5-A). 

5.3.7 ERK signaling is upregulated as B cells transition into T cells within 
the PKCα-KR cultures 

Since it was demonstrated that lineage switching within the PKCα-KR cultures 

occurred via a downregulation of E2A, it was of interest to determine the signaling 

pathways implicated in this phenomenon. E2A proteins are known to be negatively 

regulated by inhibitor of differentiation (Id) protein family members (Kee 2009).  Id2 

and Id3 expression was analysed within the cultures to determine levels of their 

transcripts.  Analysis shows that levels of Id2 are upregulated and levels of Id3 are 

downregulated within the lineage switched PKCα-KR cultures (Figure 5.12). 

Since ERK-MAPK signaling has also been shown to regulate E2A gene products 

in T and B cell progenitors ( Bain et al. 1994; King et al. 2007), pMEK and pERK 

levels were investigated in PKCα-KR lineage switched cultures. Western blot 

analysis of CD19+CD90- MIEV and CD19+CD90-, CD19+CD90+ and CD19-CD90+ 

PKCα-KR cells sorted from OP9-DL1 cultures (after OP9 co-cultures as described 

in 5.3.4) revealed an upregulation in MEK/ERK-MAPK signaling cascade within 

the lineage switching cultures, whilst total ERK and MEK mirrored the loading 

controls (Figure 5.13).  

5.4 Discussion 

The idea that commitment toward a mature cell type is unidirectional and 

irreversible can no longer be considered a dogma.  Recent studies suggest that 

committed B cells can reverse to other lineages (Cobaleda et al. 2007; Mikkola et 

al. 2002; Nakagawa et al. 2012). One study demonstrates that PAX5 inactivation 

gives differentiated B cells the ability to de-differentiate, and ultimately become 

macrophages in vitro or T cells in vivo (Mikkola et al. 2002). Another study 

demonstrated that conditional PAX5 deletion in mature B cells of mice allowed for 

de-differentiation into uncommitted progenitors in vivo and subsequent 

differentiation into T-cells within the thymus (Cobaleda et al. 2007).  Mice with 

PAX5 deleted B cells also developed aggressive progenitor cell lymphomas 

(Cobaleda et al. 2007).   
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Similarly, we show here that PKCα-KR cells display the ability of lineage plasticity, 

whereby fully differentiated B cells can reverse their lineage into T cells via a 

downregulation of B cell specific genes (CD19, PAX5, EBF1, E2A) and an 

upregulation of T cell specific genes (pTα, CD3ε, TCF1, Deltex).   

Upon notch ligation, PKCα-KR CD19+ cells can switch to macrophages, NK cells 

and T cells demonstrated by surface marker analysis. In order to determine 

whether the lineage switched CD19+ PKCα-KR expressing cells expressed T cell 

specific genes, mRNA from sorted B and T cells from MIEV progenitor cultures on 

OP9-DL1 and CD19+ PKCα-KR cultures on OP9-DL1 was analyzed by qRT-PCR.  

In fact, the T cells generated from CD19+ PKCα-KR cells expressed T cells 

specific genes pTα, CD3ε and upregulated GATA3.  By co-staining with CD19 and 

CD90 (a commonly used T cell marker expressed on mouse thymocytes and 

peripheral T cells), we demonstrated that CD19+ B cells within notch-ligated 

PKCα-KR cultures go through a transitional CD19+CD90+ stage before fully losing 

expression of CD19.   The transition from B cells into T cells is marked by the 

decrease in B cell specific genes E2A, EBF1 and PAX5, and an increase in T cell 

specific genes CD3ε, TCF1, Deltex and pTα at transcript levels. Importantly 

lineage switched PKCα-KR B cells (now T cells) maintain rearrangements of Ig 

genes indicative of their origin, whilst also demonstrating evidence of TCRβ 

rearrangement at the D-Jβ level.  However, PKCα-KR CD19+CD90+ cells show no 

TCRβ rearrangement, suggesting that although these cells have the potential of 

lineage converting, they have not entirely committed to the T cell lineage or that 

PAX5 is still inhibiting rearrangement of the TCRβ gene. 

We demonstrated that lineage conversion from B cells to T cells within the PKCα-

KR cultures upon Notch ligation occurs via degradation of E2A isoform E47 at the 

protein level. This is not surprising because although E2A is required in the early 

stages of T cell development, its activity is subsequently downregulated as 

thymocytes mature (Barndt et al. 1999; Gretchen Bain et al. 1999; Engel et al. 

2001; Pan et al. 2002; Taghon et al. 2006; Jones & Zhuang 2007). E2A 

degradation is coupled with PAX5 protein downregulation and upregulation of the 

protein tyrosine kinase Lck. Lck is important in the DN2-DN3 stage of T cell 

development (Buckland et al. 2000). The degradation of E2A could be a result of 

the increase in ERK-MAPK signaling activation within the PKCα-KR B cells as they 

transition into T cells in comparison to the control MIEV cells.  In fact, in T and B 

cell progenitors, ERK-MAPK signaling can regulate E2A gene products (Bain et al. 
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1994; King et al. 2007). E proteins, like E2A can also interact with antagonistic 

helix-loop-helix Id proteins that when activated inactivate E proteins’ DNA binding 

activity (Benezra et al. 1990; Kee 2009). Id protein expression is diminished as a B 

cell matures, correlating to Ig enhancer function (Saisanit & Sun 1995).  Id over-

expression in vivo was found to repress Ig enhancers implicating their inhibitory 

role in B cell development (Wilson et al. 1991). Within the PKCα-KR lineage 

switched cultures, Id2 expression was upregulated in the CD19-CD90+ cells while 

absent in the B lineage cells.  However, Id3 expression was reduced within the 

PKCα-KR CD19-CD90+ cells compared with the CD19+ cells.  This is surprising 

because others have shown that Id3 expression is activated in thymocytes by 

ERK-MAPK signaling which in turn results in a decrease in E2A’s DNA binding 

activity (Bain 2001). In addition Lck activity was shown to be able to induce Id3 

expression and decrease E12/E47 DNA binding activity (Bain et al. 2001). 

Collectively these data indicate that committed CD19+ cells within the PKCα-KR 

cultures are capable of lineage switching upon Notch ligation, by modulating E2A 

function.  The lineage switched T cells expressed T cells specific surface markers, 

T cell specific genes and carried TCRβ gene rearrangements. In addition, these 

lineage switched cells carried IgH gene rearrangements indicating their B cell 

origin.   
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Figure 5.5 PKCα-KR cells express B cell genes at higher levels than their 
control counterparts 
A MIEV and PKCα-KR transduced HPCs were co-cultured with OP9 as previously 

described and stained with CD45 and CD19. Haematopoietic (CD45+) cells were 

live and size gated (FCS vs SSC) and an over-lapping histogram of CD19 

expression is displayed.   B Neonatal Rag1-/- mice were injected with MIEV or 

PKCα-KR transduced HPCs and spleens were excised 4 weeks post injection.  

Lin-CD19+GFP+ haematopoietic (CD45+) cells were sorted from spleens and 

subjected to qRT-PCR to determine relative levels of B cell specific genes PAX5, 

EBF1 and CD79a and T cell gene CD3ε. Data are expressed as means of 

technical triplicates ± SD and are representative of (>3) biological replicates. 

Sorted B and T cells obtained from wildtype ICR mice were used as controls.   
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Figure 5.6 Co-culture of PKCα-KR CD19+ B cells with OP9-DL1 promotes 
differentiation into other lineages 
Sorted MIEV and PKCα-KR transduced HSC cells (GFP+Lin-CD45+B220-CD19-

CD117hiScaIhi) were cultured on OP9 for 9 days. Pro-B cells were then sorted from 

these cultures (GFP+CD19+B220+CD117+Lin-), subsequently cultured on OP9-DL1 

for an additional 9 days and analysed for expression of CD19, CD11b, NK1.1, 

CD4 and CD8 surface markers.   
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Figure 5.7 CD19+PKCα-KR cells express T cell specific markers 
MIEV and PKCα-KR transduced HSCs were co-cultured with OP9 for 9 days as 

previously described.  CD19-Lin- MIEV cells and CD19+Lin-PKCα-KR cells were 

sorted from these cultures and subsequently co-cultured with OP9-DL1 for an 

additional 20 days.  The resultant CD19+B cells and CD4+CD8+ T cells were sorted 

from the cultures using the gates indicated above and subjected to qRT-PCR  to 

determine transcript levels of T cell specific genes pTα, CD3ε and GATA3 and B 

cell specific gene PAX5. HPRT was used as the houskeeping gene and results are 

expressed as fold change normalized to T cells.  Data are expressed as mean ± 

SEM of 3 biological replicates.  p values were generated using the student’s 

unpaired t-test (*p<0.05, **p<0.005, ***p<0.001) 
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Figure 5.8 Lineage switching of PKCα-KR CD19+ occurs through a 
transitional CD19+CD90+ stage 
Retrovirally transduced MIEV and PKCα-KR HSCs were co-cultured with OP9 

cells for 9 days, proB cells were sorted and subsequently co-cultured on OP9-DL1 

for an additional 10 days.  Cells were then sorted according gates demonstrated 

above: 1=MIEV CD19+CD90-; 2=MIEV CD19+CD90+; 3=PKCα-KR CD19+CD90-; 

4=PKCα-KR CD19+CD90+; 5=PKCα-KR CD19-CD90+.   
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Figure 5.9 Lineage converted PKCα-KR cells downregulate B cell specific 
genes and upregulate T cell specific genes  
RNA was isolated from cells sorted in Figure 5.8 and expression of mRNA was 

analysed by qRT-PCR using GAPDH/HPRT as the housekeeping genes. 1=MIEV 

CD19+CD90-; 2=MIEV CD19+CD90+; 3=PKCα-KR CD19+CD90-; 4=PKCα-KR 

CD19+CD90+; 5=PKCα-KR CD19-CD90+.  Data are expressed as means ± SEM of 

at least 3 biological replicates.  p values were generated using the student’s 

unpaired t-test (*p<0.05, **p<0.005, ***p<0.001)   
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Figure 5.10 Lineage converted PKCα-KR B cells carry IgH gene 
rearrangements 
Cells were cultured and sorted as in Figure 5.8 (1=MIEV CD19+CD90-; 2=MIEV 

CD19+CD90+; 3=PKCα-KR CD19+CD90-; 4=PKCα-KR CD19+CD90+; 5=PKCα-KR 

CD19-CD90+) and DNA was analyzed by PCR to determine IgH D-J and V-DJ and 

TCRβ D-J rearrangement status. β2M was used as the loading control and 

genomic DNA from wildtype mouse splenocytes was used as the positive control.      

 
 



 

 162 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.11 Lineage converted PKCα-KR B cells downregulate PAX5 and E47 
and upregulate Lck 
Cells were cultured and sorted as in Figure 5.8 (1=MIEV CD19+CD90-; 2=MIEV 

CD19+CD90+; 3=PKCα-KR CD19+CD90-; 4=PKCα-KR CD19+CD90+; 5=PKCα-KR 

CD19-CD90+) and protein lysates were analysed by Western blot to determine 

expression of PAX5, E47, total ERK and Lck.  β tubulin was used as the loading 

control.  
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Figure 5.12 Lineage conversion in PKCα-KR B cells occurs by Id2 and Id3 
modulation  
Cells were cultured and sorted as in Figure 5.8 (1=MIEV CD19+CD90-; 2=MIEV 

CD19+CD90+; 3=PKCα-KR CD19+CD90-; 4=PKCα-KR CD19+CD90+; 5=PKCα-KR 

CD19-CD90+) and RNA was isolated.  Transcript levels of Id2 and Id3 were 

determined by qRT-PCR and expressed as fold change relative to GAPDH and 

normalized to sample 3 (PKCα-KR CD19+CD90- cells). Data are expressed as 

means ± SEM of at least 3 biological replicates.  p values were generated using 

the student’s unpaired t-test (*p<0.05, **p<0.005, ***p<0.001)    
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Figure 5.13 PKCα-KR B cells upregulate ERK signaling 
Cells were cultured and sorted as in Figure 5.8 (1=MIEV CD19+CD90-; 2=PKCα-

KR CD19+CD90-; 3=PKCα-KR CD19+CD90+; 4=PKCα-KR CD19-CD90+) and 

protein lysates were analysed by Western blot to determine expression of 

pERK1/2 and pMEK1/2, ERK and MEK.  β tubulin was used as the loading control.  
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Appendix 5-A Lineage converted PKCα-KR B cells downregulate E47 and 
PAX5, and upregulate Lck (example 2) 
Cells were cultured and sorted as in Figure 5.8 (1=MIEV CD19+CD90-; 2=MIEV 

CD19+CD90+; 3=PKCα-KR CD19+CD90-; 4=PKCα-KR CD19+CD90+; 5=PKCα-KR 

CD19-CD90+) and protein lysates were analysed by Western blot to determine 

expression of E47, PAX5, total ERK and Lck.  GAPDH was used as the loading 

control. Quantification of E47 signal strength as a ratio of loading control is shown 

(right) as mean ± S.D. of 4 biological replicates. p values were generated using the 

student’s unpaired t-test (*p<0.05).    
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6.1 Concluding Remarks 
CLL is a disease marked by the accumulation of malignant B cells that harbour a 

characteristic phenotype of CD19+CD5+CD23+IgMlo.  It is a disease of intraclonal 

heterogeneity and genetic homogeneity.  For example clinical course is highly 

varied between patient groups whereby two distinctive subgroups of CLL patients 

exist: those that harbour mutated IgVH genes and those that harbour unmutated 

IgVH genes. The mutational status of IgVH, alongside surrogate markers ZAP70 

and CD38 dictates prognosis, whereby an unmutated IgVH and ZAP70 and CD38 

positivity indicate a worse overall prognosis.  Unmutated IgVH CLL cells also have 

the ability to signal through the BCR at a stronger intensity than mutated CLL cells, 

thereby amplifying downstream signaling pathways including ERK, NFkB, mTOR, 

Akt and VEGF, and upregulating anti-apoptotic factors such as the Bcl-2 family. 

However, even though two distinct subsets of CLL patients exist with significant 

heterogeneity in clinical course, there is a remarkable genetic similarity in all CLL 

patients, implying a homogenous disease, and a common origin to all CLL cells.  

The microenvironment plays a key role in the survival and proliferation of CLL 

cells.  In fact, CLL cells spontaneously apoptose ex vivo, but survive and 

proliferate with addition of stroma and cytokines (Lagneaux et al. 1999; Chiorazzi 

& Ferrarini 2003).  The BM and secondary lymphoid tissues provide a 

microenvironment whereby CLL cells interact with stromal cells that protect and 

nurture.  NLCs, BMSCs within the microenvironment interact with CLL cells, 

safeguarding them from drug-induced apoptosis and cytotoxic agents (Burger et 

al. 2000; Tsukada et al. 2002) and play important roles in chemotaxis. In addition, 

T cells within the microenvironment have the ability to activate CLL cells through 

the CD40L, and induce proliferation (Buske et al. 1997; Kitada et al. 1999; 

Fluckiger et al. 1992).  Importantly, it is now evident that CLL is not simply a 

disease of accumulation, rather, a disease of active proliferation whereby CLL 

cells proliferate within specific compartments in the BM and LN, thereby causing 

the expansion of the leukaemic clone and resulting in a more aggressive CLL 

(Messmer et al. 2005). 

Our studies have led to the development of a murine model emulating an 

aggressive form of CLL.  Subversion of PKCα signaling in HPCs and subsequent 

in vitro B cell culture has resulted in the generation of B cells that phenotypically 

resemble CLL by the specific upregulation of surface markers CD19, CD5, CD23 

and downregulation of surface IgM. Like umutated CLL, our mCLL cells upregulate 
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anti-apoptotic protein Bcl-2, are ZAP70+ and express AID which promotes genetic 

changes through SHM and CSR, collectively leading to a more aggressive 

disease. Among the signaling pathways upregulated within our CLL model are 

NFκB-, ERK- and mTOR- mediated pathways. 

Injection of PKCα-KR expressing HPCs into RAG1-/- recipients results in 

development of disease coupled with a shorter lifespan as compared to MIEV 

control HPC injected mice.  In addition, there is evidence of enlarged spleens 

harbouring disorganized architecture within the PKCα-KR HPC injected mice. An 

expansion of GFP+CD45+CD19+ cells is evident within the blood, spleen BM and 

LN of these mice in vivo (there is however, IHC evidence of an expansion of B220-

GFP+ cells in vitro and in vivo implicating that subversion of PKCα signaling can 

drive HPCs toward other lineages in a micro-environment specific manner). Within 

such a complex biological system, HPCs can develop into any lineage depending 

on the environment.  Therefore, the expansion of GFP+ cells in vivo implies that 

subversion of PKCα signaling may be an oncogenic trigger for lineages other than 

B cells.   It would be interesting to downregulate PKCα within particular lineages 

through transgenic murine models with a lineage-specific promoter dictating 

deletion of PKCα.   

Downregulation of PKCα also results in a sustained upregulation of PKCβII without 

changes in PKCβI levels.  Similarly, in human CLL, PKCβII  is overexpressed and 

enzymatically active (Abrams et al. 2007; Abrams et al. 2010). In addition, PKCβII 

has been shown to be regulated by and to regulate VEGF aiding in development 

of the malignant phenotype of CLL (Abrams et al. 2010).  In our mouse model 

VEGF mRNA is upregulated, however no correlative links to PKCβII have been 

made thus far, and further experiments are necessary to determine whether a 

relationship between the two exists.  One study demonstrates that crossing of 

PKCβ-/- mice with Eµ-TCL1 mice results in the slowing down of CLL with loss of 

one PKCβ allele or complete abrogation of the disease with loss of both alleles 

(Holler et al. 2009).  However CD5+ B cells were present in mice lacking PKCβ 

especially after TCL1 overexpression suggesting that TCL1 can compensate for 

loss of PKCβ and that PKCβ is not essential of the development of CD5+ B cells 

that may become malignant. Additionally, some mice within the PKCβ-/+ cohorots 

developed disease, although different from that developed within the Eµ-TCL1 

mice (Holler et al. 2009). The authors of this study report significant induction of 

apoptosis of human CLL cells with PKCβ inhibitor enzastaurin, however CLL cells 
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were not isolated prior to treatment, rather a mixed population of MNCs was used.  

On the contrary, Abrams et al found that enzastaurin had little effect on isolated 

CD19+ CLL cells (Abrams et al 2007).  Similarly, in our study treatment with PKCβ 

inhibitor hispidin or with more selective PKCβ inhibitor enzastaurin even at high 

concentrations did not induce apoptosis preferentially within the mCLL cultures.  

However, treatment with hispidin, and more dramatically with enzastaurin induced 

an attenuation in proliferation of mCLL cells and caused them to enter cell cycle 

arrest, indicating that PKCβ is important for the expansion of the malignant clone 

within the proliferation centres.  

Importantly, introduction of PKCβII in HPCs and subsequent in vitro B cell co-

culture resulted in an expansion of GFP+CD19+ B cells over time, however not at 

the same rate as HPCs harbouring PKCα-KR. In addition, a small population 

CD19+CD23+ cells (2.75 %) was apparent within the PKCβII cultures, collectively 

implicating PKCβII as important for the survival and initiation of CLL cells.  Also, 

treatment with enzastaurin in vivo resulted in an increase in apoptosis of GFP+ 

CLL-like cells and a reduction in spleen size. However, limited biological 

replication within these experiments due to time limitations disallow for any 

concrete conclusions to be made.   

A key signaling pathway implicated in our mCLL model is mTOR.  In fact, PKCα-

KR cells upregulate nutrient receptors CD98 and CD71, are larger in size then 

their MIEV counterparts and begin to upregulate pP70 S6 kinase early on, 

implicating activation of mTOR as an oncogenic event. However, treatment of 

mCLL cells with mTORC1 inhibitor rapamycin does not result in dramatic induction 

of apoptosis, however similarly to PKCβ inhibition, treatment with rapamycin 

results in attenuation of proliferation of mCLL cells and increase in cell cycle 

arrest. Therefore mTOR signaling, like PKCβII signaling may be important in the 

generation of a more aggressive, highly proliferative CLL. Coupled with mTOR 

activation, is the activation of ERK which has been demonstrated to be capable of 

phosphorylating S6 kinases under certain conditions (Pende et al. 2004).  PKCβ 

has also been demonstrated to activate ERK (Guo et al. 2008; Lee et al. 2003).  

ERK signaling is important in cell survival and proliferation (Chuderland & Seger 

2005), and can phosphorylate and subsequently activate IKKα resulting in 

phosphorylation of IκBα, its proteosomal degradation and activation of NFκB 

(Chen & Lin 2001).  Indeed PKCα-KR cells exhibit higher levels of IκBα 

phosphorylation indicative of NFκB activation.   



 

 170 

The oncogenic  transformation of PKCα-KR expressing cells is coupled with an 

upregulation of cyclin D1 mRNA and protein in vitro and in vivo.  It is localized 

within the leukemic B cell areas of the spleen of PKCα-KR injected mice, 

emulating a proliferation centre within human CLL. Importantly, when human CLL 

cells are cultured in the presence of stroma and IL4, cyclin D1 is upregulated, 

implicating it to be important within the microenvironment.  In accordance with this 

finding, we found that some human CLL LN biopsies were positive for cyclin D1.  

Over-expression of cyclin D1 in HPCs was alone insufficient to generate a 

leukaemic phenotype as seen with introduction of PKCα-KR.  The cells expressing 

cyclin D1 did not have an apparent survival advantage over untransduced cells 

within the same culture evident by a decrease in the percentage of GFP+ cells, 

however a small population of cells that expressed cyclin D1 also expressed 

hallmark CLL markers including CD23 and CD5.  This implicates cyclin D1 to be 

important for the CLL phenotype but not the progressive nature of CLL in the 

mCLL model. 

In mCLL, cyclin D1 was shown to be regulated through translational repressor 

4EPB1 that also regulates other key genes such as c-myc and Mcl-1.  4EBP1 was 

found to be inactive in PKCα-KR cultures and regulated by mTOR, as evidenced 

by sensitivity of its phosphorylation states in response to rapamycin treatment.  

Similarly to the findings from mCLL, we found 4EBP1 to be inactive in human CLL, 

and sensitive to phosphorylation in response to rapamycin, however no 

relationship with cyclin D1 was established.  Treatment with PMA resulted in an 

increase of Mcl-1 and c-myc in both HG3 cells and primarly CLL cells, coupled 

with an increase in ERK activity, suggesting inactivation of 4EBP1 through 

activation of other PKCs, such as PKCβII.  This mechanism could be responsible 

for the accumulation of oncogeneic proteins such as Mcl-1 and c-myc. 

Finally, PKCα-KR expressing differentiated B cells are capable of lineage 

switching into the NK, macrophage and T cell lineage upon Notch ligation.  We 

focused on their ability to switch into T cells and show that the transition of B to T 

cell occurs via degradation of E2A and PAX5.  B cell specific genes including 

PAX5, CD19 and EBF1 are downregulated whilst T cell specific genes including 

CD3ε, TCF1, Deltex and pTα become upregulated.  Importantly the lineage 

switched B cells (now T cells) still retain BCR rearrangement reminiscent of their 

origin.  Therefore, in our system, attenuation of PKCα signaling allows cells to fully 

differentiate down a given lineage according to internal and external environmental 
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stimuli, yet also allows for the ability to change lineage according to other stimuli.  

Although fully differentiated, our mCLL cells have preserved pluripotent quality.  

Recently, Kikushige et al. have highlighted the role of stem cells in CLL (Kikushige 

et al. 2011).  Although B and pro-B cells isolated from CLL patients failed to 

engraft into immunodeficient recipient mice, CD34+CD38-(CD90+) stem cells 

isolated from CLL patients not only engrafted stably but also gave rise to myeloid 

and lymphoid cells.  In particular, the engrafted stem cells biased toward a 

polyclonal pro-B cell population, and upon VDJ recombination analysis of more 

mature B cells, mono-and oligoclonaility was evident as well as CD5 expression, 

similarly to that found in monoclonal B cell lymphocytosis (MBL), a precursor to 

CLL. These mature B cells were also CD5+ and exhibited a biased V-gene 

repertoire. Collectively the authors imply a potential origin of a CLL cell to be a 

leukaemic HSC, that after antigen (or autoantigen) selection develops into mono- 

or oligoclonal leukaemic B cell populations that along with additional genomic 

abnormalities develop into CLL (Kikushige et al. 2011).  Given the finding that 

subversion of PKCα signaling in mCLL B cells allows for lineage plasticity, it would 

be interesting to investigate the expression and role of PKCα within different 

populations of human CLL cells, particularly within the CLL HSC population.   
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