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Abstract 

Despite many advances in technology and significant levels of funding, the 

genetic factors that regulate blood pressure in the population remain unclear. 

The public health implications of this lack of knowledge are conspicuous and a 

better understanding of the mechanisms behind hypertension would lead to 

better management of this important risk factor. The myriad of physiological 

systems involved in maintaining blood pressure can be variably dysregulated in 

patients with hypertension. Therefore, taking more account of hypertension as a 

heterogeneous condition may be a useful approach. Given the lack of success in 

dissecting the genetic factors to date, it seems reasonable to refocus attention 

on more carefully phenotyped groups of subjects, with the aim of identifying 

mechanisms specific to them. 

 Hypertension with inappropriate aldosterone level for salt and volume status, as 

measured by the use of the aldosterone to renin ratio, is one such sub-

phenotype and is present in around 10% of hypertensive patients. This sub-

phenotype has been associated with both altered adrenal corticosteroid 

production and genetic variation in the aldosterone synthase (CYP11B2) and 11β-

hydroxylase (CYP11B1) genes. However, the mechanisms behind this genotype-

phenotype relationship are not apparent. It has been proposed that inefficient 

11β-hydroxylation leads to increased ACTH drive in order to maintain cortisol, 

and that this subtle increase over time leads to hyperplasia of the zona 

glomerulosa of the adrenal gland and an increased capacity for aldosterone 

production. Alternatively, as it is known that the aldosterone synthase and 11β-

hydroxylase genes are in a locus of high linkage disequilibrium. It may be that 

functional changes in the aldosterone synthase gene are co-inherited with 

functional changes in 11β-hydroxylase and this digenic phenomenon leads to the 

phenotype observed.  In order to test this second hypothesis, a number of 

investigations were carried out and are reported in this thesis.  

Firstly, the pattern of linkage disequilibrium in the promoter region of the 

aldosterone synthase gene is examined in chapter 3. Polymorphic variation in 

this region has previously been reported but the degree to which these 

variations are inherited in a “haplotype block” was unclear. In this study, it is 

demonstrated that the -344 polymorphism in CYP11B2, which has been widely 
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investigated in the past and is associated with hypertension and an elevated 

aldosterone to renin ratio, can serve as a surrogate for at least 5 other single 

nucleotide polymorphisms within 2 kilo bases of the transcriptional start site of 

the aldosterone synthase gene. As such, any of these polymorphisms could be 

responsible for alteration in transcriptional activity of the gene.  

In order to investigate the transcriptional activity of aldosterone synthase, a 

suitable in vitro model system is required. In chapter 4 the H295R cell line is 

assessed for this purpose. This cell line has been extensively used to explore a 

variety of aspects of adrenal function; it is the only human cell line capable of 

expressing the required steroidogenic enzymes and responding to trophins of 

steroid production. The investigations in chapter 4 confirm the presence of those 

characteristics of this cell line necessary for use as a model of transcriptional 

activity of the aldosterone synthase gene, as well as describing some of the 

limitations of this in vitro system. These include variation in steroidogenesis and 

enzyme expression over time in culture as well as the clear differences in terms 

of regulation of steroidogenesis from the in vivo system. In particular, the lack 

of zone-specific gene expression in the H295R cells in contrast to the normal 

adrenal gland is noted. 

Having validated a model of aldosterone production, chapter 5 describes the use 

of this model for investigations of the functional effects of variation in the 

aldosterone synthase promoter region. A sequence of experiments is described in 

this chapter. Initially, a bioinformatic search was undertaken to prioritise 

further investigations. This confirmed the theoretical possibility that single base 

changes in this region may lead to altered transcription factor binding. Using this 

data, a single site of variation in CYP11B2 (-1651 rs13268025) was selected for 

further study. Differential transcriptional activity was confirmed using gene 

reporter assays. This demonstrated that the C allele at -1651 of the promoter 

region of CYP11B2 was associated with greater transcriptional activity that the T 

allele at this site. It was hypothesised that this was due to altered transcription 

factor binding. Therefore, the next investigation was an assessment of DNA: 

protein interaction in the presence of the T or C allele at -1651. An 

electromobility shift assay demonstrated that a larger (less mobile) complex of 

radiolabelled DNA and nuclear protein from H295R cells was formed in the 

presence of the T allele than the C allele. This indicated that a previously 
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unidentified protein that bound more avidly to this region of the gene in the 

presence of the T allele could act as a transcriptional repressor. In order to 

identify this protein, biotinylated probes bond in a protein: DNA complex were 

captured by streptavidin beads and, following trypsin digestion, analysed by 

mass spectroscopy. This analysis suggested that a transcription factor called 

APE1 was detectable in the presence of the T allele but not the C allele. In order 

to test whether APE1 could act as a transcriptional repressor, it was inhibited in 

a further reporter gene assay. This confirmed that when APE1 was inhibited, 

there was greater transcriptional activity of aldosterone synthase promoter and 

that this inhibition was greater in the presence of the T allele. In summary, the 

evidence presented in this chapter suggests that the polymorphic variation at 

position -1651 of CYP11B2 is associated with allelic-dependant variation in 

transcriptional activity mediated by APE1. 

Finally, the effects of variation of the aldosterone synthase gene in human 

subjects were considered. Normal volunteers were studied under standardised 

conditions of posture and salt intake. Plasma responses to trophins of 

corticosteroid production were assessed as well as 24 hour urine collections for 

metabolites of corticosteroids. Data presented in Chapter 6 confirm that 

subjects homozygous for the T allele at -1651 have a lower excretion rate of 

aldosterone metabolites than subjects homozygous for the C allele. This is 

consistent with the notion that these individuals have less transcriptional 

activity of the aldosterone synthase gene. No allele-dependant difference was 

observed in response to salt intake or in response to trophins of aldosterone was 

observed, and some of the possible reasons for this are discussed.  

In summary, this work confirms that the linkage disequilibrium across the 

aldosterone synthase gene promoter region is high, as is the linkage 

disequilibrium across the entire CYP11B1/CYP11B2 locus. It demonstrates that a 

number of polymorphisms are co-inherited with the -344 SNP in CYP11B2. 

Variation at -1651 of CYP11B2 is shown to be associated with allele-dependant 

variation in transcriptional activity of the aldosterone synthase promoter region. 

Data are presented to support the hypothesis that the transcription factor APE1 

binds more avidly to the T allele at -1651 and acts as a transcriptional repressor. 

This is supported by the data from normal volunteers confirming that the T 

allele is associated with reduced aldosterone production. These findings 
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demonstrate how a common polymorphic variant might lead to a functional 

change in gene expression that translates into an important physiological 

phenotype. Further work is required to establish precisely how APE1 functions to 

alter transcriptional activity of this gene and whether this knowledge can be 

utilised to improve clinical care. 
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1. Introduction 

1.1 Hypertension 

1.1.1 Historical context 

 Hypertension remains the most significant modifiable risk factor for 

cardiovascular disease and makes a major contribution to the global burden of 

disease (World Health Organisation, 2002). Despite advances in understanding of 

the pathophysiology of hypertension as well as a significant expansion in 

therapies available, the effect of uncontrolled disease on morbidity and 

mortality continues to rise.  

 Historically, many of the consequences of high blood pressure have been 

recognised for hundreds of years, but it was only with the invention of accurate 

methods of measurement of blood pressure that the study of blood pressure 

advanced. Our current understanding of blood pressure began in the age of 

Enlightenment: this era inspired reasoned enquiry in the field of natural 

philosophy in general, and the study of cardiovascular physiology and blood 

pressure was not left behind. The spirit of the age was embodied by the 

Reverend Stephen Hale, who was the first to physically demonstrate blood 

pressure in 1733 (Hales, 1733). He inserted one end of a brass tube into the 

artery of a horse and attached a vertical glass tube, to the other. Blood pressure 

was demonstrated when the artery which had been tied off was released and 

blood rose in the tube to a height of eight feet three inches above the left 

ventricle of the heart. Despite this clear demonstration of physiology, it was not 

until 1896 that this was used in a practical sense when an Italian physician, Dr 

Scipione Riva-Rocci, developed an inflatable rubber cuff that occluded the 

artery of the upper arm (Riva-Rocci S., 1896). Systolic blood pressure 

corresponded to the pressure at which the brachial pulse could no longer be 

palpated and his device was strongly promoted by Dr Harvey Cushing the 

neurosurgeon and one of the founding fathers of endocrinology (Cushing H, 

1903). However, the measurement of systolic and diastolic blood pressure did 

not become a common clinical measurement until 1905, when Dr Korotkoff 

described the systolic and diastolic sounds that can be heard with a stethoscope, 

just below the levels that Riva-Rocci palpated using his inflatable cuff (Korotkoff 

NC, 1905). Thus, having established a more accurate measurement technique, 
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the debate began regarding what was considered normal blood pressure, and 

was the stimulus to a rapid expansion in the investigation of the pathogenesis of 

the elevated blood pressure values. From a clinical perspective, it became 

possible for the first time to identify patients with elevated blood pressure prior 

to developing end organ damage as well as monitor treatment.   

1.1.2 Hypertension: The clinical definition 

 Although the advances made by the pioneers of blood pressure measurement 

allowed physicians to objectively monitor blood pressure, blood pressure targets 

and the threshold for intervention has been a subject of controversy since that 

time. Hypertension could be defined as a “blood pressure level above which 

investigation and treatment do more good than harm”; a definition that was first 

used by Evans and Rose in 1971 (Evans and Rose, 1971) and this remains a useful 

tenet today. To that end, the concept of cardiovascular risk has gained 

prominence and an estimation of this can be calculated based on extensive 

epidemiological data gathered from the Framingham study (Anderson et al., 

1991) or other sources (Woodward et al., 2007). This allows the synthesis of 

numerous risk factors (e.g. age, gender, cholesterol, blood pressure) in 

considering the prevention of cardiovascular disease. Nevertheless, cut off 

values are required, however arbitrary, and the British Hypertension Society 

gives clear guidelines regarding the thresholds for treatment as well as targets, 

in the context of overall cardiovascular risk (Williams et al., 2004) (see Table 

1-1). Blood pressure targets are based on resting clinic blood pressure 

measurements, using instruments based on Riva-Rocci and Korotkoff’s 

observations with standardised techniques in order to increase reproducibility 

and minimise error (Williams et al., 2004) (see Table 1-2). 
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CATEGORY SYSTOLIC BLOOD 
PRESSURE 
(mmHG) 

DIASTOLIC BLOOD 
PRESSURE 
(mmHG) 

Optimal blood pressure 
Normal blood pressure 

High-normal blood pressure 
 

<120 
<130 
130–139 

<80 
<85 
85–89 

Grade 1 Hypertension (mild) 
Grade 2 Hypertension (moderate) 

Grade 3 Hypertension (severe) 

140–159 
160–179 
>180 

90–99 
100–109 
>110 

Isolated systolic hypertension 
(Grade 1) 

140–159 <90 

Isolated systolic hypertension 
(Grade 2) 

>160 <90 

Table 1-1 British Hypertension Society classificati on of blood pressure levels.  

Report of the fourth working party of the British H ypertension Society, 2004—BHS IV 
(Williams et al., 2004). 
 

GUIDELINES FOR BLOOD PRESSURE MEASUREMENT 
 

Use a properly maintained, calibrated and validated device 
 

Measure sitting blood pressure routinely: standing blood pressure 
should be recorded at the initial estimation in elderly and diabetic 

patients 
 

Remove tight clothing, support arm at heart level, ensure hand 
relaxed and avoid talking during the measurement procedure 

 
Use cuff of appropriate size 

 
Lower mercury column slowly (2 mm/s) 

 
Read blood pressure to the nearest 2 mmHg 

 
Measure diastolic as disappearance of sounds (phase V) 

 
Take the mean of at least two readings; more recordings are needed 

if marked differences between initial measurements are found. 
 

Do not treat on the basis of an isolated reading 
 

Table 1-2 Guidelines for blood pressure measurement . 

 Report of the fourth working party of the British Hypertension Society, 2004—BHS IV 
(Williams et al., 2004) 
 

 



Chapter 1  25 

 There is an awareness that blood pressure measurements as one-off, office 

assessments may not reflect the day-to-day blood pressure of patients and 

alternatives to this have been proposed including ambulatory monitoring, and 

home blood pressure monitoring (O'Brien et al., 2003; Stergiou and Bliziotis, 

2011; Hodgkinson et al., 2011). It should be borne in mind that the thresholds 

for diagnosing hypertension are lower using these methods. There is mounting 

evidence to support both ambulatory and home monitoring as efficacious and 

cost effective in terms of diagnosis (Lovibond et al., 2011), and this has resulted 

in a recent change to the NICE guidelines (http://guidance.nice.org.uk/CG127) 

published in August 2011, to support the use of use of ambulatory blood pressure 

monitors to confirm the diagnosis of hypertension.  However, there are limited 

data to inform clinicians regarding appropriate targets for treatment using this 

method of monitoring.  

 In addition, given the current and appropriate focus on blood pressure as a 

function of overall cardiovascular risk (British Cardiac Society, 2005), interest 

has been shown in measurements that may better reflect this. For example, 

pulse wave analysis as an indication of central pressure measurements has been 

proposed as a prognostic marker which could assist in cardiovascular assessment 

(Task Force Members: et al., 2007). Measurement of this index has been 

hampered by the invasive nature of the gold standard method of measuring 

central pulse pressure or by controversy over the relevance of surrogate 

markers. Williams et al have recently proposed a novel method of measurement 

and analysis of radial artery pulse wave velocity and recommend its clinical 

utility in assisting in identifying and monitoring disturbances of blood pressure 

(Williams et al., 2011). However, a lack of outcome data with all these 

measurements hinders their use in clinical practice and measurements seated in 

the clinician’s consulting room, using the traditional brachial cuff instrument, 

developed over 100 years ago, remain the cornerstone of blood pressure 

management.  

1.1.3 Aetiology of essential hypertension 

Although distinct values have been determined for the diagnosis of hypertension, 

it is recognised that blood pressure is a continuous variable with a normal 

distribution and it has been many years since the continuous association 
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between increasing blood pressure values and increased cardiovascular risk was 

confirmed (Hamilton et al., 1964). In around 5% of patients with elevated blood 

pressure a clear pathophysiological mechanism can be identified but in the 

remainder, it is very likely that multiple genetic and environmental influences 

combine to determine blood pressure. This thesis will focus on the role of 

genetic variation in a candidate gene, aldosterone synthase, and its role in 

hypertension and relative aldosterone excess. However, I will first discuss some 

of the other contributing factors to the development of hypertension as well as a 

brief overview of investigations to date exploring relevant physiological and 

genetic factors leading to hypertension. 

Lifestyle factors  

 The majority of this thesis will focus on genetic and pathophysiological 

mechanisms for the development of hypertension. However it is important to 

mention in brief the lifestyle mechanisms that have contributed to the 

significant increase in global burden of hypertension.  

 Weight gain is associated with a rise in blood pressure (Masuo et al., 2000) and 

strategies to lose weight have been shown to result in lower blood pressure. A 

meta-analysis of 25 randomised controlled trials included 4874 participants from 

different ethnic populations and showed a blood pressure reduction of 4.4/-3.6 

mm Hg for around 5kg weight loss either by energy restriction, increased 

physical activity, or both (Neter et al., 2003). Exercise, even in the absence of 

weight loss improved blood pressure parameters. A further meta-analysis of 54 

trials showed that blood pressure reduction of 3.8 mmHg SBP (95% CI 2.7 to 5.0 

mm Hg, p <0.001) and 2.6 mmHg DBP (95% CI 1.8 to 3.4 mm Hg, p < 0.001) with 

regular aerobic exercise. This effect was achieved in people regardless of their 

initial blood pressure, weight or ethnicity (Whelton et al., 2002).   

 Placebo-controlled studies have shown that reduced sodium intake lowers blood 

pressure and increases response to pharmacological therapy (Cappuccio et al., 

1997; Elliott, 1989; Cutler and Stamler, 1997).  However, until very recently, 

evidence of long term benefit was lacking. This has now been addressed in a 

recent major long term follow up study (Cook et al., 2007) where reduction in 

dietary sodium intake is associated with a reduced risk of cardiovascular 
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morbidity and mortality (relative risk 0.75, 95% CI 0.57 to 0.99, p=0.04 adjusted 

for trial, clinic, age, race, and sex). The interaction of potassium and sodium 

status has been proposed as an important factor in the regulation of blood 

pressure. Epidemiological data provide support for this view in that those 

societies with low sodium/ high potassium diets have lower blood pressure than 

industrialised societies (Adrogue and Madias, 2007). Potassium supplementation 

is associated with a  reduction in blood pressure (Whelton et al., 1997) and the 

need for antihypertensive medication (Siani et al., 1991). In addition, the DASH 

trial (Appel et al., 1997) demonstrated that a fruit and vegetable rich diet 

containing a potassium content more than twice that of an average American 

diet, reduced blood pressure to a greater extent than controls with a similar 

level of sodium.  

Genetic factors 

Clearly environmental influences must be taken into account both by the 

patient, their physician, as well as public health organisations. However, 

environmental factors only account for part of blood pressure variation and 

genetic factors are estimated to account for 15-40%.  

 

Figure 1-1 Interaction of genetic and environmental  factors leading to elevated blood 
pressure.  
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The search for genes responsible for blood pressure variation remains ongoing. 

While some rare monogenic conditions have a large impact on an individual’s 

blood pressure, more common genetic variations at multiple loci with smaller 

effects on blood pressure are likely to have a cumulative effect. Strategies for 

investigation of hypertension based on these approaches will be discussed in 

more detail in section 1.1.5 to 1.1.8.  

 As most investigation of culprit genes has focused on those involved in 

physiological systems known to regulate blood pressure, a brief overview of 

some of the homeostatic systems of blood pressure control will now follow.  

1.1.4 Physiological regulation of blood pressure. 

 Normal control of blood pressure depends on a number of complementary 

neural, endocrine and paracrine mechanisms and the development of 

hypertension can result from perturbation of any or all of these. Blood pressure 

depends on cardiac output which is a function of heart rate and stroke volume 

multiplied by peripheral resistance. While systems that modulate all three of 

these variables will be discussed in the following section, the main focus will be 

on the renin- angiotensin- aldosterone system (RAAS) and in particular, 

aldosterone, which will be discussed at greater length in this work. 

Renin-angiotensin- aldosterone system 

The RAAS plays a crucial role in the regulation of blood volume. The classical 

mechanisms of homeostatic control mediated by the RAAS are demonstrated in 

Figure 1-2. Angiotensinogen, mainly synthesised in the liver, is cleaved by renin 

to form angiotensin I. Renin (encoded by the REN gene on chromosome 1) is 

released from the juxtaglomerular cells in the kidney in both an active and 

inactive form in response to signals from baroreceptors in the afferent arteriole, 

sympathetic neural activity and circulating catecholamines as well as 

chemoreceptor in the macula densa of the distal tubule. Prorenin (the inactive 

form) is cleaved to form active renin in vivo (Hsueh and Baxter, 1991) (this 

reaction requires recognition as cryoactivation of prorenin to renin can be a 

source of measurement errors unless samples are properly handled). Increased 

pressure to the juxtaglomerular cells inhibits renin release, thus forming a 

conventional negative feedback loop and maintaining homeostasis.  
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 The angiotensin I peptide is the substrate for angiotensin converting enzyme 

(ACE), which cleaves angiotensin I to the biologically active angiotensin II 

(AngII). There are at least two subtypes of AngII receptors: the cardiovascular 

actions are effected mainly via the angiotensin type 1 (AT1) receptor (de 

Gasparo et al., 2000), mediating  numerous physiological actions including 

vasoconstriction and increased sodium and water retention both directly via the 

renal tubule cells and via aldosterone. These actions are described in Figure 1-2. 

The AT2 receptor is thought to antagonise some of these effects of the AT1 

receptor and appears to have a mainly hypotensive action although the precise 

nature of this is still a subject of debate (de Gasparo et al., 2000). 

 

Figure 1-2 Schematic representation of the classica l renin-angiotensin-aldosterone system.  
 

 Angiotensin II was until relatively recently thought to be the critical and central 

product of the RAAS, but current evidence suggests an important role of a 

number of other biologically active peptide products of the RAAS. Angiotensin II 

is swiftly degraded via the enzymatic action of aminopeptidase A, giving rise to 

angiotensin III (AngIII or Ang 2-8) and this can be further cleaved to form 

Angiotensin  IV (AngIV or Ang 3-8), via aminopepdidase N. Ang III can bind to the 

AT1 receptor and there is evidence that this peptide has a centrally acting 

pressor effect; intracerebroventricular injections cause blood pressure to rise 
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(Wright et al., 1985), and aminopeptidase A inhibitors that can cross the blood 

brain barrier have been shown to reduce blood pressure in experimental animals 

(Fournie-Zaluski et al., 2004).  

 Angiotensin I can also be converted to angiotensin 1-7 by neutral 

endopeptidase, and it can also be generated from angiotensin II by angiotensin 

converting enzyme 2 (ACE2) (Donoghue et al., 2000). Angiotensin 1-7 appears to 

act as a vasodilator and the discovery of the ACE2 enzyme and its product has 

refocused investigation of the RAAS. Much interest has been shown in 

understanding its mechanism of action as well as potentiating its effects 

(Ferrario et al., 2005) but the physiological implications of these novel peptides 

remain unclear, particularly given their very short half lives in vivo.  

Bradykinin is a peptide with vasodilating properties and is part of the kallikrein-

kinin cascade, an important system of modulation of the cardiovascular system 

in its own right. It is known to be an alternative substrate for angiotensin 

converting enzyme (ACE). Pharmacological inhibition of ACE leads to increased 

bradykinin (in clinical practice this manifests as the most common side effect of 

cough) and is has been proposed that this may contribute to the beneficial 

effects of these agents (Sharma, 2006). A summary of these novel products of 

the RAAS are demonstrated in Figure 1-3. 

 

Figure 1-3 Schematic representation expanded renin angiotensin system.  

Enzymes are shown in shaded boxes and their role in  enzymatic reactions by dotted arrows. 
Peptides with vasodilating properties are in italic s.  
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 Thus, it is now apparent that the traditional concept of a simple, sequential 

pathway underestimates the complexity and sophistication of the RAAS. Further, 

it is clear that manipulation of the system as in the pharmacological treatment 

of hypertension can have multiple feedback consequences that were previously 

unrecognised. Of course, aldosterone is the end product of the RAAS and further 

discussion of its regulation and mechanism of action can be found in section 1.2 

and 1.3.  

Sympathetic nervous system 

The sympathetic nervous system influences the control of blood pressure both by 

regulating heart rate directly by innervations of the cardiac muscle to increase 

heart rate (positive chronotropy), inotropy and conduction velocity (positive 

dromotropy), via  beta-adrenoceptors, as well as activation of alpha 

adrenoreceptors in the adventitia, leading to vasoconstriction of the peripheral 

vasculature and increased peripheral resistance. In addition, it contributes in a 

more indirect manner via release of humoral factors into the blood stream. 

Renin release from the juxtaglomerular cells in the kidney is stimulated by 

sympathetic nerve activation, triggering the RAAS system discussed above 

(Gordon et al., 1967). Angiotensin II enhances the release of norepinephrine 

from sympathetic nerve endings and inhibits re-uptake, leading to enhanced 

sympathetic adrenergic function and producing a feedback loop (Wang et al., 

1997). Catecholamine release from the adrenal medulla contributes to the 

maintenance of blood pressure. Indeed, as the medulla originates from 

neuroectoderm tissue, it can be viewed as a modified sympathetic ganglion.  

The crucial role of the sympathetic nervous system (and the kidney as a key 

modulator of a number of pathophysiological mechanisms) has recently been 

highlighted in a study demonstrating the efficacy of selective renal denervation 

in the management of treatment-resistant hypertension (The Simplicity HTN-2 

Trial, 2010). The authors propose that selective denervation of the kidneys 

reduces renin release, renal blood flow and central sympathetic outflow and 

provide evidence that, in patients with hypertension resistant to pharmaceutical 

intervention, this technique is effective in lowering blood pressure by 

32/12mmHg (St Dev 23/11). Although the role of the sympathetic nervous 

system in both the aetiology and treatment of hypertension is the subject of 
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ongoing investigation, it is beyond the scope of this current work and will not be 

discussed further. 

Oxidative stress 

 The concept of oxidative stress as a key mechanism in the control of blood 

pressure and the development of hypertension has been the focus of much 

research. Increased generation or reduced clearance of reactive oxygen species 

leads to increased oxidative stress and this, it is suggested, leads to a myriad of 

alterations in cell signaling, ultimately leading to vascular injury, remodeling 

and hypertension (Briones and Touyz, 2010). While perturbations in oxidative 

stress have been shown to be associated with cardiovascular disease, it remains 

to be established whether this is a cause or a result of the underlying 

pathological mechanisms. For example, both animal models (Rocha et al., 1999) 

and human examples of aldosterone excess (Farquharson and Struthers, 2002) 

are associated with increased markers of oxidative stress.  

Given these various factors, it is apparent that the mechanisms of maintaining 

blood pressure homeostasis are interdependent and interconnected, involving 

numerous humoral factors and organ systems but ultimately culminating in their 

major effect on salt and water homeostasis mediated via the kidneys. Data from 

both animal (Rettig et al., 1990) and human (Curtis et al., 1983) studies 

underline this, with the observation that renal transplantation can normalise 

blood pressure in previously hypertensive subjects. With this in mind, there will 

now follow a discussion of investigations of genetic factors that may contribute 

to perturbations of blood pressure regulation.  

1.1.5 Genetic basis of hypertension 

 Hypertension has a strong genetic component, as clearly demonstrated by 

family and twin studies (Williams et al., 1991; Hunt et al., 1989; Havlik et al., 

1979; Rose et al., 1979). While there are lifestyle factors, as discussed above 

(1.1.3), that influence blood pressure, it is a highly heritable trait and family 

history remains one of the strongest predictors of future risk of developing high 

blood pressure. It seems likely that these genetic factors will lie in genes 

involved in systems which are known to contribute to the control of blood 

pressure (as described above). However, despite much investigation focused on 
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these systems, a comprehensive understanding of the causative genetic factors 

has not yet been achieved. 

 In recent years, two separate strategies have been proposed to investigate the 

genetic aetiology of hypertension. One focuses on comparing the prevalence of a 

specific candidate gene or genes identified from the systems previously 

described in groups of hypertensive or control subjects. The other is to seek to 

identify causative genetic regions by comparing the entire genome in groups of 

normotensive and hypertensive individuals. The following section will discuss 

some aspects of the progress made to date using these two approaches. 

1.1.6 Candidate gene studies 

 This approach depends on a detailed knowledge of the disease, and of the 

systems that might be responsible, in order to make a “best guess” at genes that 

have a high probability of being involved. Many of the studies using this 

approach have examined genes known or suspected to be involved in monogenic 

disorders of blood pressure regulation, and postulating that “essential” 

hypertension is a forme fruste of these conditions. After selecting the candidate 

gene of interest, the hypothesis is that if variation in a particular gene is 

responsible for elevated blood pressure it will be over represented in a group of 

patients with hypertension compared with a matched group of controls. There 

are numerous examples of monogenic conditions causing blood pressure 

disturbance and subsequent investigations into the mechanisms underlying them 

has informed the study of population variation in blood pressure. The specific 

examples regarding monogenic disorders of sodium chloride transport in the 

renal tubule are given below. However, a fuller list of monogenic disorders of 

blood pressure regulation incorporating other mechanisms including adrenal 

steroidogenesis and action is given in Appendix 7.1. 

Monogenic disorders of the distal convoluted tubule  and the thick ascending 
limb 

 Monogenic disorders causing defects in the sodium chloride co-transporter of 

the apical (luminal) membrane in the distal convoluted tubule and thick 

ascending loop of Henle΄ can lead to dysregulation of blood pressure and 

electrolytes- Gitelman, Bartter and Gordon syndromes are all examples of this. 
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Greater understanding of these disorders has resulted in the identification of a 

number of candidate genes for hypertension. 

 Gitelman’s syndrome is characterised by renal salt wasting, resulting in 

hypokalaemia, hypomagnasaemia, hypocalciurea, metabolic alkalosis and low 

blood pressure. In addition, patients compensate for their salt wasting by 

activating the RAAS i.e. increasing serum renin and aldosterone levels. The 

molecular defect is known to be in the thiazide-sensitive sodium chloride 

cotransporter of the distal convoluted tubule (Figure 1-4). Mutations on solute 

carrier family 12 (sodium/chloride transporters), member 3 (SLC12A3) gene on 

chromosome 16, causes this condition (Simon et al., 1996) which is inherited in 

an autosomal recessive manner. This clinical syndrome resembles that seen in 

patients abusing thiazide diuretics.  

 

Figure 1-4 Schematic representation of salt losing tubulopathy Gitelman’s syndrome. 

 In the distal convoluted tubule Na +Cl- moves from the tubular lumen into the cell along a  
concentration and electrical gradient. A Na +-K+ ATPase pump allows Na + to be reabsorbed at 
the basolateral membrane back into the circulation.  Cl- is reabsorbed via a Cl - channel in the 
basolateral membrane. Calcium passes across the lum inal membrane via a Ca 2+ Channel 
and binds to vitamin D-induced binding protein (Ca- BP). It is then exchanged for Na + which 
follows the concentration and electrical gradient. The site of disruption of these processes 
in Gitelman’s syndrome is shown in the apical membr ane of the distal convoluted tubule. 
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 The thiazide-sensitive sodium chloride transporter in the distal convoluted 

tubule can also be affected by a gain of function mutation causing high blood 

pressure. This causes a phenotype precisely opposite to Gitelman syndrome and 

is known as pseudohypoaldosteronism type 2 (PHAII) or Gordon syndrome. The 

clinical features of hypertension, hyperkalemia, metabolic acidosis, normal renal 

function, low or low-normal plasma renin activity and normal or elevated 

aldosterone concentrations are inherited in an autosomal dominant fashion. The 

primary physiological defect in PHAII is enhanced distal chloride reabsorption 

and it is interesting to note that the abnormalities can be corrected by a 

thiazide diuretic, which these patients are exquisitely sensitive to. However, in 

contrast to Gitelman’s syndrome, there is no defect in the gene encoding the 

sodium chloride transporter in the DCT (SLC12A3) but rather mutations in genes 

located on chromosomes 12 and 17. These encode With No Lysine (WNK) 

serene/threonine kinases 1 and 4 respectively (Wilson et al., 2001). WNK1 and 4 

localise to the DCT and cortical collecting duct and are involved in the 

regulation of the NaCl transporter. In the presence of WNK4, the transporter is 

down regulated and in the presence of some isoforms of WNK1, WNK4 itself is 

down regulated (Yang et al., 2003) The WNK enzymes act via a kinase cascade, 

phosphorylating the effector kinases SPAK (Ste20-related proline-alanine−rich 

kinase)  and OSR1 (odd-skipped-related 1) shown in Figure 1-5.  

 

Figure 1-5 Kinase cascade regulating sodium/chlorid e transport.  

 In PHAII mutant WNK4 leads to loss of inhibition o f sodium chloride cotransporter and 
increased expression at the apical surface 
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 With increased understanding of these monogenic disorders of blood pressure 

regulation, attempts have been made to implicate these in population blood 

pressure variation. Ji et al studied variation in the genes SLC12A3 (Gitleman’s 

syndrome), KCNJ1 and SLC12A1 (mutations here are known to be associated with 

Bartter’s syndrome), in the Framingham Heart Study offspring cohort (Ji et al., 

2008). 3125 individuals from this cohort had DNA available for analysis. They 

found that the carrier state for rare functional mutations in SLC12A1, SLC12A3 

and KCNJ1 reduced blood pressure by on average 6.3mmHg systolic 

measurements and -3.4mmHg diastolic. 

 A further examination of polymorphic variants in these genes and association 

with hypertension was undertaken in the GRAPHIC (Genetic Regulation of 

Arterial pressure of Humans in the Community) cohort (Tobin et al., 2008). This 

family study recruited 2037 individuals from around 500 families. The 

investigators looked at variants with a frequency of >0.1 in genes known to be 

involved in monogenic forms of altered blood pressure regulation. The study 

demonstrated a significant association between 5 single nucleotide 

polymorphisms (SNP) in KCNJ1 and mean 24 hour SBP and DBP. The effect size of 

the variants in this study was modest and in the order of -1.58mmHg for mean 

SBP and -0.95 for mean DBP. In this study, which was limited to examining 

common variants, no association was found in other genes involved in monogenic 

disorders, specifically those involved in other forms of Bartter’s syndrome, 

Gitelman’s syndrome, apparent mineralocorticoid excess, Liddle’s syndrome and 

autosomal recessive pseudohypoaldosteronism.  

 The same investigators had previously interrogated this cohort to examine the 

effect of SNPs in the WNK1 (9 SNPs) and WNK4 genes (1 SNP) and hypertension 

(Tobin et al., 2005). 996 individuals from 250 families were studied and an 

association was found between 4 polymorphisms in the WNK1 gene and mean 24 

hr SBP and 5 SNPs in WNK1 with mean DBP. The effect size was small, affecting 

both SBP and DBP by less than 1.5mmHg. There is little variability in the WNK4 

gene in Caucasian population and in this study, there were no associations with 

variation in WNK4 (one polymorphism) and blood pressure. The British Genetics 

of Hypertension study (BRIGHT) (Newhouse et al., 2005) also confirmed an 

association between variations in the WNK1 gene and extremely hypertensive 

subjects. Importantly, the BRIGHT investigators extended and replicated these 
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findings in a large case control cohort composed of 6 sub-studies (Newhouse et 

al., 2009). Although the effect of WNK1 variation did not always reach statistical 

significance in the replication groups, there was consistency in the direction of 

effect, and in combination the statistical association was strong in the 

replication groups. These findings in a large study cohort, with replication in an 

independent sample, using careful and comprehensive genotyping and 

appropriate statistical analysis, provided convincing evidence of the involvement 

of WNK1 in the pathogenesis of hypertension. It is also interesting to note that 

the BRIGHT investigators also found a significant blood pressure effect of rare 

haplotypes, in line with the findings of Ji et al (Ji et al., 2008) and Tobin et al 

(Tobin et al., 2008) as discussed above.  

1.1.7 Candidate Gene studies: Conclusions 

Major advances in the understanding of pathways involved in blood pressure 

regulation, renal salt handling and monogenic disorders of blood pressure have 

increased dramatically and this has led to focused exploration of candidate 

genes. However, despite this expansion in knowledge, there has been limited 

success in extending this to our understanding of genetic causes of essential 

hypertension. There are significant limitations of the candidate gene approach 

as there remain areas of incomplete understanding and possible pathways as yet 

undiscovered. The candidate gene approach is distinctly biased towards known 

pathways and previously explored hypotheses and unexpected genes involved in 

novel pathways could be missed. In addition, as most candidate gene studies 

investigate only one gene or one pathway at a time, the impact of gene-gene 

interactions and pathway-pathway interactions is not taken into account. This 

may lead to false positive or false negative studies. 

 In addition, given current knowledge of the likely small effect size of each 

mutation, most candidate gene association studies were too small and, as a 

result, underpowered to detect an effect. Perhaps as a consequence, there have 

often been conflicting reports regarding whether the variant of interest is 

associated with disease, and there have often been as many negative studies 

associated with a gene of interest as positive. Many examples of these are 

described above. Further explanation for this is likely to lie in the different 

ethnicities of study populations; there is significant variation in the haplotypes 
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structures of different ethnic groups, as well as often widely varying allele 

frequencies. These population differences have a substantial influence on the 

outcome of case-control studies, particularly bearing in mind that positive 

studies only confirm association and not causation. Thus, given the well 

recognised phenomenon of linkage disequilibrium, the genotyped polymorphism 

may not be functional, but merely co-inherited with the functional variation. 

Further, differences in study population sizes, definitions of disease as well as 

altered and unquantified changes in environmental factors are all likely to 

contribute to the heterogeneity of the results of many candidate gene studies. 

In response to some of the inherent flaws in the design of candidate gene 

studies, the alternative “genome wide” approach was proposed. This is discussed 

in the following section.  

1.1.8 Linkage analysis and GWAS 

Given that the inherent drawback of the candidate gene approach is the 

restrictive nature of the investigations in which results are limited to known 

pathways, alternatives have been proposed which do not suffer from this bias.  

Linkage analysis 

Linkage studies are a method whereby regions of a genome that contain genes 

which may be responsible for a trait can be identified. In order to understand 

linkage studies, two simple terms must be comprehended: linkage, and linkage 

disequilibrium. These terms have been used above but an understanding of the 

distinction between them is important. Two loci are linked if they are inherited 

together more often than expected if inheritance is random. Therefore, during 

meiosis, recombination occurs between the loci with a probability of less than 

50%. However, linkage disequilibrium (LD) refers to the phenomenon observed in 

a population when the two loci are found together on the same haplotype more 

often than expected. When recombination events occur between the two loci, 

linkage disequilibrium is weakened. LD is preserved the closer the loci are to 

each other.  

Linkage studies utilise family based cohorts and DNA is examined for areas that 

are shared by affected relatives but not by unaffected family members. Non-
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identical siblings should share 50% of the genome, so for any individual marker, 

the chance of sib pairs carrying the same marker is 1:2. In sib pairs that are both 

affected by hypertension, the allele close to the locus causing hypertension 

should be should shared more often. This allows the identification of 

quantitative trait loci (QTL) within which the causative gene may be located but 

depends on the phenomenon of linkage disequilibrium between the marker used 

(either a SNP or microsatellite) and the causative gene. Linkage is assigned a 

logarithm of the odds (LOD) score; large positive scores are evidence for linkage, 

and negative scores are evidence against. A LOD score of 3 is regarded as 

significant evidence of linkage with genome wide significance and this is 

equivalent to a p value of 0�0001. The QTL may encompass a significant area of 

the genome and does not identify the gene responsible for the phenotype.  

Numerous linkage studies for hypertension have been undertaken over the last 

10 years. Many linkage peaks have been identified but few have achieved LOD 

scores that suggest genome wide significance and fewer still have been 

replicated. Studies that have successfully isolated statistically significant 

associations suggesting association with chromosome 17q (60-76cM) (Levy et al., 

2000) from the Framingham cohort, 18q (80-94cM) in a genetically homogenous 

Icelandic cohort (Kristjansson et al., 2002), 4p (13-43cM) in a study of 18 Dutch 

families (Allayee et al., 2001) and 2p (26.5-27.1cM) in probands with severe 

hypertension from an isolated Sardinian village (Angius et al., 2002). In addition, 

the BRIGHT investigators identified a susceptibility locus on chromosome 6q in 

their cohort of severely hypertensive sib pairs (Caulfield et al., 2003). It is 

interesting that none of these results have been replicated within this group of 

studies, nor has there been any publication of replication with the same degree 

of statistical significance in the rest of the literature. The reason may be in the 

genetic heterogeneity of the different study populations with different genetic 

aetiologies underlying the causes of hypertension, altered effect size of the loci 

in different populations, and varying degrees of linkage disequilibrium in 

discrete ethic groups.  

Genome wide association studies 

With the advent of the Human Genome Project and the International HapMap 

project, a more complete knowledge of the reference sequence and the 
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common variations from this within the human genome, as well as a better 

understanding of the pattern of linkage disequilibrium was available. As a result, 

the linkage strategy was expanded and “tag SNPs” could be nominated to 

represent portions of the genome and give comprehensive coverage and the 

genome of cases and controls compared. High throughput genotyping using 

microarray chips enabled the practical application of this detailed understanding 

of the human genome to be interrogated further. This has allowed the 

genotyping of up to a million SNPs in thousands of cases and controls, and the 

conclusions of these studies were eagerly awaited and published in 2007. Initial 

results did not provide major insights into the origins of hypertension; the 

Wellcome Trust Case Control Consortium failed to identify any SNPs that were 

significant at a genome wide level (Wellcome Trust Case Control Consortium, 

2007). However, proof of concept was achieved in the identification of 

association signals in bipolar disorder, coronary artery disease, Crohn’s disease, 

rheumatoid arthritis, Type 1 diabetes and Type 2 diabetes. It was suggested that 

the reason for a lack of association with any SNPs for hypertension may have 

been that the effect size for each SNP was too small and as such the study was 

underpowered to detect them. A potential confounding factor was the validity of 

controls in this study as there was a significant discrepancy in age (cases mean 

age 68, controls mean age 48). This may have led to misclassification of controls 

that may go on to develop hypertension over the next 10-20 years. In addition, it 

was suggested that greater coverage across the genome could be achieved and 

this was undertaken in subsequent studies using 1000K chips.  

 In recognition that larger populations were needed, researchers collaborated to 

pool resources internationally. Two “mega-analyses” were constructed by 

collecting numerous biobanks of data. This resulted in the publication in 2009 of 

the Global BP-Gen consortium (Newton-Cheh et al., 2009) and the Cohorts for 

Heart and Ageing Research in Genome Epidemiology (CHARGE) BP consortium 

(Levy et al., 2009). These studies included 34,433 individuals from 17 studies in 

the Global BP-Gen and 29,136 individuals from 6 cohorts in the CHARGE study. 

Both undertook a comparison with data from the other study and were published 

simultaneously in Nature Genetics in 2009. The CHARGE study identified 13 SNPs 

for SBP, 20 for DBP and 10 for hypertension at P < 4 10-7 while the Global BP-

Gen study identified 3 SNPs for SBP and 5 for DPB. However, due to differences 
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in analysis, the results from each investigator were not identical and only 

CYP17A1 and SH2B2 achieved genome wide significance in both analyses for 

phenotypes of blood pressure (See Table 1-3). The magnitude of the effect on 

blood pressure varied between 0.5-1.5mmHg.  



Chapter 1  42 

 

Chromosome Gene 
 

Possible 
Pathway  

 

Phenotype Study 

Ch10 CYP17A1 Steroidogenesis SBP 
HTN 

CHARGE 
BP-Gen 

Ch12 SH2B3 Negative regulator 
of cytokine 
signalling 

 

DBP CHARGE 
BP-Gen 

Ch 1 MTHFR Homocystine 
metabolism 

 

SBP 
DBP 

BP-Gen 

Ch 17 PLCD3 Phospholipase C, 
catalyses formation 

of second 
messengers (DAG, 

IP3) 
 

SBP BP-Gen 

Ch 4 PRDM8/ 
FGF5 

Fibroblast growth 
factor family 

 

DBP 
HTN 

BP-Gen 

Ch 15 CYP1A2 Drug metabolism 
 

DBP BP-Gen 

Ch 10 c10orf107 Uncharacterised 
protein 

 

DBP BP-Gen 

Ch 17 ZNF652 Zinc finger protein, 
transcriptional 

repressor 
 

DBP BP-Gen 

Ch 11 PLEKHA7 Cellular structural 
protein 

 

SBP CHARGE 

Ch 12 ATP2B1 Plasma membrane 
calcium pump 

SBP 
DBP 
HTN 

CHARGE 

Ch 10 CACNB2 Voltage dependant 
calcium channel 

protein 
 

DBP CHARGE 

Ch 15 CSK-ULK3 Sereine/threonine 
protein kinase 

 

DBP CHARGE 

Ch 12 TBX3-TBX5 Transcriptions 
factors involved in 
embryological 
development 

 

DBP CHARGE 

Ch 3 ULK4 Sereine/threonine 
protein kinase 

 

DBP CHARGE 

Table 1-3 Results from the Global BP-Gen and CHARGE  meta-analyses 

 SNPs which achieved genome wide significance p<5x1 0-7. Possible pathways (summarised 
from NCBI Gene http://www.ncbi.nlm.nih.gov/gene) ar e given but it should be borne in mind 
that the SNPs examined are associated with hyperten sion but there is currently no proof of 
causation. The phenotype associated with SNP and th e study which contributed evidence is 
displayed.  
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 Attempts have been made to replicate these findings in other, independent 

populations. The Women’s Genome Health Study (WGHS) was examined in which 

28 345 female health professionals from North America were genotyped for 

nominated SNPs (Ho et al., 2011). Many of the findings of the Global BP-

Gen/CHARGE studies were reproduced. SH2B3, ATP2B1, MTHFR, CYP17A1 and 

PLEKHA7 were significantly associated with SBP. Eight SNPs were associated with 

DBP in the WGHS: CACNB2, ATP2B1, CYP1A2, c10orf107, SH2B3, ZNF652, were 

significant. The significance level was set at P < 1.2 × 10-3 (this was arrived at 

after correction for multiple testing and is less stringent than required for 

genome wide significance). In addition, a new locus was identified, CASZ1,   

which did not reach significance in the Global BP-Gen or CHARGE studies. 

Reanalysis of the GRAPHIC study in a “pathway-omic” manner (Tomaszewski et 

al., 2010) (ie high throughput analysis of common variant in genes involved in 

nominated candidate pathways) concurred with the finding that SNPs in MTHFR 

(encompassing the CLCN6 gene) are implicated.  

 Two further studies have successfully identified SNPs that are significant at a 

genome wide level. First, Wang et al examined a group of Amish subjects and 

identified STK39 as independently associated with blood pressure increase of 

increases of 3.3/1.3 mm Hg in SBP/DBP (Wang et al., 2009). The investigators 

replicated their findings in 4 other Caucasian populations and found a consistent, 

albeit weaker BP effect. The STK39 gene encodes the SPAK protein, which 

interacts with WNK kinases (discussed in section 1.1.6) and thus a possible 

functional explanation exists as to why variation in this gene may influence 

blood pressure. Further work has supported this hypothesis and a polymorphism 

in STK39 has been associated with hypertension in a large group of middle aged 

Swedes (Fava et al., 2011) but not in a cohort of British subjects (Cunnington et 

al., 2009) and the STK39 gene has not been found to associate with hypertension 

in either of the two larges genome wide studies described above. Second, Org et 

al identified variation in CDH13 gene as being associated with blood pressure and 

hypertension (Org et al., 2009) although the association was not consistent in all 

cohorts examined. CDH13 encodes for a calcium-dependent cell–cell adhesion 

glycoprotein T-cadherin and is also an attractive susceptibility gene as it 

interacts in vascular endothelial and smooth muscle cells and may regulate 
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vascular wall functions. However, to date, there have been no further studies 

directly linking this gene to hypertension. 

GWAS from other ethnic populations have also been published within the last 

year. A large (25 826 subjects) Japanese study (Takeuchi et al., 2010), 

concluded that MTHFR, FGF5, CYP17A1, ATP2B1, and CSK-ULK3 were important 

loci in a non-European cohort as well as the Caucasian populations studied in 

CHARGE and Global BP-Gen. In addition, two further loci (CASZ1, ITGA9) which 

had been implicated but not confirmed in CHARGE and Global BP-Gen achieved 

statistically significant associations in this Asian cohort. A study of African-

American participants identified variation in PMS1, SLC24A4, YWHA7, IPO7, and 

CACANA1H as associated with hypertension (Adeyemo et al., 2009). Genes that 

were identified by CHARGE and Global BP-gen were associated with hypertension 

in this cohort but with less statistical significance. These results suggest that, 

while there may be similarities between ethnic groups, there are likely to be 

different genes involved in blood pressure disturbance and this should provoke 

caution when investigators are attempting to replicate their results in other 

populations.  

1.1.9 Linkage analysis and GWAS: Conclusions 

 The advent of techniques to analyse the genome in its entirety gave great 

promise for the understanding of heritable disease. However, disappointingly, 

despite the very large numbers of subjects studied and significant economic 

cost, results have not provided clear and incontrovertible candidate genes, nor 

have they yet suggested novel treatable pathways.  

 Although there is disparity between results in different replication studies and 

different ethnic populations, there have been some consistent messages from 

GWAS. However, it is important to remember that SNPs identified within these 

genes are “Tag SNPs” (as listed in Table 1-3) and that these represent many 

other SNPs that they are in linkage disequilibrium with, sometimes spanning 

significant portions of the genome. The causative SNP could lie a large distance 

away or even within another gene.  

However, the major message from the GWAS era has been the small effect size 

of many of the identified genes which leaves a large proportion of the heritable 
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component of blood pressure unexplained. This “missing heritability” has been 

the subject of much controversy. It has been proposed that hypertension is even 

more polygenic than previously thought, with many genes each having a very 

small effect, and consequently that studies have been underpowered to detect 

them. “Mega-analyses” sought to address this problem of loss of power but there 

remain significant missing data to account for the heritable nature of blood 

pressure variation. It has been proposed that another possible source of the 

“missing heritability” is in rare alleles. GWAS studies were set up to capture 

allele frequencies of greater than or equal to 5%. However it has been suggested 

that multiple rare alleles (rather than a few common alleles) may be the 

explanation for blood pressure heritability. Even the combined resources of the 

“mega-analysis” GWAS trials were not adequately powered to detect these rare 

variations. Further, the hypothesis-free approach of these studies results in 

multiple comparisons and consequently, there is a need to increase the 

stringency required to achieve statistical significance. This may have resulted in 

true positive findings being rejected. 

 As with previous methods of investigation, including candidate gene and linkage 

analysis, results have been difficult to replicate and population heterogeneity is 

again likely to be a factor in this. The small effect size of the variation in genes 

that have been implicated must make their effects more easily obscured in the 

different genetic and environmental milieu of a replicate study population. 

Gene-environment interactions are difficult if not impossible to study using 

GWAS approaches, due to the unmanageable number of subjects required. Given 

that environmental factors play such a crucial role in determining blood pressure 

phenotype (see section 1.1.3) on the background of genetic susceptibility, this 

may have reduced the power of these studies to identify culprit genes. Further, 

given that the accuracy and success of GWA studies depends heavily on the 

linkage disequilibrium in the population (this allows investigators to choose 

appropriate “tag” SNPs and impute and interpret results), accurate and precise 

knowledge of this is essential. The international HapMap project was a 

significant advance in our understanding of this. However, the 1000 Genome 

Project (Durbin et al., 2010) aims to detail this in a more complete manner and 

new sequencing technologies will allow this to be completed more 

comprehensively and economically. The 1000 Genomes project, using next-
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generation sequencing (NGS) or massively parallel sequencing technologies has 

allowed millions of sequence reads of short lengths (35–250bp) at a time. 

However, although cost has reduced substantially over the last 5-10 years, 

sequencing remains expensive. Innovative measures have been suggested e.g. 

pooling of DNA samples (Lee et al., 2011), to overcome some of these 

difficulties. These emerging technologies will undoubtedly increase the volume 

of data that can be gleaned from large scale GWA studies but there remain many 

other difficulties to be overcome before this approach is likely to produce 

clinically meaningful results.  

Therefore, while GWAS have provided important insights into the genetic 

architecture of human hypertension, the quest for causative genes and pathways 

continues and the debate surrounding how best to proceed persists. It seems 

clear that hypothesis driven research remains fundamental to progress in this 

area, given the complex nature of gene- environment interactions. While the 

limitations of candidate gene studies should be borne in mind, focused 

genotype- phenotype studies and continued use of sub-phenotypes of 

hypertension, are crucial to improving understanding of hypertension. Loci 

containing CYP17A1, MTHFR and SH2B3, as well as many other genes mentioned 

above, are likely to contribute to susceptibility to hypertension. However, there 

is strong evidence that many other genes and gene regulatory areas are 

involved; particularly those involved in renal sodium handling, prominent among 

these are those affecting aldosterone synthesis and action.  

1.2 Relative aldosterone excess: a sub-phenotype 

of hypertension 

 The multi-factorial mechanisms underlying the pathogenesis of hypertension 

have led to descriptions of sub-phenotypes, i.e. building a profile of clinical 

features of sub-groups which might share similar common pathogenic 

mechanisms. In terms of clinical research, a potential advantage of this 

approach is that, by enriching study cohorts with patients who share common 

aetiologies, the causes (particularly genetic) are more likely to be discovered. In 

addition, identifying homogeneous groups of patient may allow better targeting 

of therapies to control blood pressure and prevent complications. (A practical 

example of this is the advice regarding treatment for hypertension issued by the 
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British Hypertension Society which suggests the use of diuretics as first line 

therapy in older adults and those of African decent, and ACE inhibition in 

younger patients (Williams et al., 2004)) 

The sub-phenotype under further investigation in this work is that of relative 

aldosterone excess. In order to investigate this further, an understanding of the 

role of aldosterone in health and disease is necessary and this will be discussed 

in the following sections. 

1.2.1 Discovery of aldosterone 

Aldosterone was first identified by Silvia (nee Simpson) and James Tait in 1952 

and crystallised in 1953 in collaboration with the pharmaceutical company Ciba 

and the Reichstein group in Basel (Tait et al., 2004). This was achieved by 

extracting 60-70mg of pure aldosterone from a colossal 1500kg of pig adrenal 

glands (Heusler and Kalvoda, 1996). Initially named electrocortin, prior to its 

structure being known, this substance has long been recognised to be involved in 

the retention of sodium and water and is the most potent (although not the most 

abundant) mineralocorticoid in humans. We now know that aldosterone acts on 

the classic mineralocorticoid receptor in the cortical collecting duct of the 

kidney to increase activity of the epithelial sodium channel (ENaC), resulting in 

net reabsorption of sodium and water; electrical neutrality is maintained by loss 

of potassium and hydrogen ions from the renal cell to the tubular fluid. 

1.2.2  The mineralocorticoid receptor 

 The classical actions of aldosterone are mediated by the mineralocorticoid 

receptor (MR) which, like the glucocorticorticoid receptor (GR), belongs to the 

nuclear hormone receptor (NHR) family, a group of ligand- activated 

transcription factors. When unoccupied, these receptors are present in the 

cytosol but when bound by their ligand, translocate to the nucleus, interact with 

their respective response elements and induce a change in transcriptional 

activity leading to an increase in activity of the ENaC.  

The structure of both the MR and GR receptors are typical of this group of 

receptors, possessing an N-terminal domain, a central DNA-binding domain, and 

a hinge region that links to a ligand-binding domain (LBD) within the C-terminal 
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half of the receptor. The DNA-binding domain, which comprises two zinc finger 

structures, binds to specific DNA sequences on its target gene. The MR DNA-

binding domain is 94% identical to that of the glucocorticoid receptor (GR) and 

90% identical to that of the progesterone receptor (Lombes et al., 2000). Subtle 

differences in the structure of aldosterone and cortisol (discussed in greater 

detail in section 1.2.4) lead to greater affinity for their relative receptors; 

nevertheless, there is considerable overlap in the types of steroid that can be 

bound by MR and GR. Thus, in spite of its name, the MR is able to bind cortisol, 

which circulates in plasma at levels a thousand fold higher than 

mineralocorticoids, with equal affinity to aldosterone. Therefore an alternative 

mechanism is required to maintain the tissue specificity of aldosterone. The 

enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), acts to convert 

cortisol to cortisone; without this activity, cortisol, which binds with high 

affinity to the mineralocorticoid receptor, will activate the receptor and prevent 

its regulation by aldosterone (White et al., 1997)(Figure 1-6).  

 

Figure 1-6. Schematic representation of kidney cort ical collecting duct.  

Cortisol (blue open circle) is inactivated to corti sone (blue lined circle) by the NAD+ 
dependant “chaperone” enzyme 11 β-hydroxysteroid dehydrogenase type 2 (11 β-HSD2). 
This prevents promiscuous occupation and activation  of the MR by cortisol and allows 
regulation by aldosterone (pink open circle).  
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11β-HSD is a bidirectional enzyme, and it has been proposed that the redox state 

of the cell determines whether it functions as a dehydrogenase (cortisol to 

cortisone) or reductase (cortisone to cortisol) (White et al., 1997). 

1.2.3 Mechanism of action of aldosterone 

Epithelial sodium channel 

In epithelial tissues, aldosterone primarily acts via the epithelial sodium channel 

(ENaC) to excrete potassium and retain sodium and water. Activation of the 

mineralocorticoid receptor by aldosterone results in increased expression of 

ENaCα subunit, which combines with ENaCβ and γ (which are constitutatively 

expressed) and this complex moves to the apical cell surface. The molecular 

mechanism of regulation of ENaC is now better understood as a result of the 

study of the monogenic disorder, Liddle’s syndrome. This is a rare autosomal 

dominant condition resulting in a gain of function of ENaC, and is clinically 

associated with moderate to severe hypertension presenting in childhood (see 

Appendix 1). The genetic abnormality causing Liddle’s syndrome lies on 

chromosome 16 and mutations identified to date affect the cytoplasmic C-

terminal tails of the β- and γ-subunits of ENaC (Hansson et al., 1995). These 

result in loss of an adaptor motif that interacts with Nedd4-2 (neural precursor 

cell-expressed, developmentally down-regulated 4-2). Nedd4-2 ligates a 

ubiquitin “tag” to the ENaC which targets it for internalisation and subsequent 

destruction (Soundararajan et al., 2010)(Figure 1-7). This induces constitutative 

activity of the epithelial sodium channel (ENaC) in the cortical collecting duct 

(Shimkets et al., 1994), as if activated by aldosterone (see Figure 1-7). 

Importantly, in this condition, spironolactone (a mineralocorticoid receptor 

antagonist) is not effective because activation of ENaC is not due to excessive 

aldosterone levels and is independent of the mineralocorticoid receptor. 

However, the ENaC is amiloride-sensitive making this the treatment of choice in 

these patients.  

 Other components of the ENaC regulatory complex (as shown in Figure 1-7 and 

discussed in the figure legend) are clearly also of physiological importance. 

Although no monogenic disorders of SGK1 affecting blood pressure have yet been 

identified, an SGK1 knock out mouse model demonstrated higher levels of 

aldosterone under normal conditions compared to wild type animals under 
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normal salt intake. When examined under reduced salt intake, the SGK1 knock 

out animals demonstrate a salt losing, aldosterone resistant phenotype, with 

lower blood pressure and reduced glomerular filtration (Wulff et al., 2002).  

While polymorphisms of SGK1 have been associated with hypertension in a 

candidate gene study (Busjahn et al., 2002), this has not been replicated in 

genome wide association studies (as discussed in section 1.1.7 and 1.1.9). 

 

Figure 1-7 The ENaC regulatory complex under the co ntrol of aldosterone.  

In the absence of aldosterone (top panel) the ENaC regulatory complex composed of NED4-
2, ERK, MEK and Raf-1 results in ubiquitination (U)  and phosphorylation (P) of ENaC. This 
means the channel is degraded and endocytosed. In t he presence of aldosterone (bottom 
panel) increased expression of SGK1 and GILZ1 is se en and these compounds prevent the 
inhibition of ENaC via NED4-2 and the ERK/MEK/Raf-1  complex, resulting in increased 
surface expression and increased sodium flux throug h the channel. Adapted from 
Soundararajan et al (Soundararajan et al., 2010) 
 

Aldosterone has other actions that increase ENaC expression or action. For 

example, aldosterone induces the expression of small, monomeric Kirsten Ras 

GTP-binding protein (Ki-Ras). The mechanism of action is not clear but Ki-Ras 

appears to both keep ENaC open and decrease the number of channels in the 

plasma membrane (Stockand, 2002). In addition, PI3K is a possible point of 

“cross talk” between ADH, insulin and aldosterone signalling (Stockand, 2002) as 

aldosterone increases PI3K activity and reduction in PI3K reduces the effects of 

aldosterone.  
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Other actions in the distal nephron 

While the main effect of aldosterone induced proteins in the distal nephron is to 

stimulate ENaC subunits or proteins that modify ENaC (as described above), 

aldosterone also regulates the Na-K-ATPase pump on the basolateral membrane 

via increased transcription of the pump subunits and activation of signalling 

cascades, including upregulation of SGK-1 (Thomas et al., 2008). The Renal 

Outer Medullary Potassium (ROMK) channel is also modulated by aldosterone, 

providing a mechanism for the secretion of potassium ions. These combined 

actions are known as the “aldosterone paradox”; that is, that the distal nephron 

has the ability to independently regulate salt reabsorption in a state of 

hypovolaemia versus potassium secretion in a state hyperkalaemia, given the 

same stimulus (increased aldosterone). The answer to how these two processes 

are differentially regulated despite the same initial stimulus arose from further 

study of pseudohypoaldosteronism type 2 (PHAII, see section 1.1.6). In PHAII, an 

inactivating mutation of WNK4 results in increased reabsorption of sodium 

without increased potassium secretion. It has also been demonstrated that 

phosphorylation of WNK kinases in response to hypertonic stress and possibly 

decreased chloride concentration, increases WNK4 activity and suppressing 

ROMK, providing a mechanism for uncoupling of this system in normal physiology 

(Kahle et al., 2010).   

Non-epithelial tissues 

Mimeralocorticoid receptors are present in a number of non-epithelial sites. 

However, it is not clear whether activation of these receptors can be attributed 

to aldosterone rather than cortisol in vivo, given the absence of co-localising 

11βHSD at these sites. Nevertheless, in experimental models of aldosterone 

excess, clear detrimental actions have been demonstrated. Cardiac fibrosis is 

seen in animals exposed to excess aldosterone, independent of blood pressure 

(Brilla and Weber, 1992). Histological features of aldosterone-induced cardiac 

fibrosis include proliferation of cardiac myocytes and fibroblasts and although 

the mechanism is unclear, an increase in collagen I and III synthesis is seen in 

response to aldosterone in cardiac fibroblasts (Robert et al., 1994). Excess 

aldosterone is also associated with evidence of increased myocardial 

inflammation (Brilla and Weber, 1992) and early increases in inflammatory 
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markers for example, tumour necrosis factor α and ED-1 positive macrophages 

has been observed in a rat model of mineralocorticoid hypertension (Young et 

al., 2003).  

Aldosterone excess is associated with reduced vascular reactivity (Farquharson 

and Struthers, 2002) and increased markers of oxidative stress; aldosterone 

regulates NADHP subunit expression and this can be ameliorated by blockade of 

the mineralocorticoid receptor (Young and Rickard, 2011). Further, aldosterone 

excess (in combination with salt loading) causes an increase in redox sensitive 

NFκB (Sun et al., 2002) as well as reduced glucose-6-phosphate dehydrogenase 

(G6DP) (Leopold et al., 2007), which plays an important part in determining the 

redox state of the cell.  

Mineralocorticoid receptors in the central nervous system (CNS) are unprotected 

by 11βHSD but aldosterone specific effects have been demonstrated (Gomez-

Sanchez, 1997). In addition, blockade of CNS receptors by RU28318 attenuates 

the hypertensive effects of systemic administration of aldosterone (Gomez-

Sanchez et al., 1990) but not the cardiac fibrosis and hypertrophy (Young and 

Funder, 1996).  

Nongenomic actions 

It has been proposed that aldosterone can also triggers rapid, non-genomic 

effects in both traditional aldosterone target tissues (cortical collecting duct) as 

well as in non-epithelial tissues. In epithelial tissues it is evident that there is 

increased ENaC activity measured by sodium flux within a few minutes of 

exposure to aldosterone (Zhou and Bubien, 2001). The rapidity of this response 

suggests actions that are not mediated by “genomic” mechanisms i.e. do not 

provoke increased gene transcription. In non-epithelial tissues rapid non-

genomic effects have also been observed in heart rate (Schmidt et al., 1999) 

baroreflex sensitivity (Yee and Struthers, 1998) and central (Schmidt et al., 

1999) and peripheral (Romagni et al., 2003) vascular resistance.  These non-

genomic effects may not act entirely via the mineralocorticoid receptor. For 

example recent work by Gros et al (Gros et al., 2011) ascribes the rapid action 

of aldosterone in vascular smooth muscle cells to a G protein coupled receptor, 

GPR30. These rapid effects are diminished but not abolished by the classical 
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mineralocorticoid receptor antagonists, spironolactone and eplerenone. 

Although remaining controversial, this recent data raise the possibility of 

developing novel pharmaceutical agents to block the rapid, non-genomic actions 

of aldosterone. If such agents were available, it would allow a more precise 

analysis of the mechanism of action of aldosterone as well as an improved 

understanding of the benefits of aldosterone blockade (as described in section 

1.3.2 and 1.3.3).  

1.2.4 Aldosterone synthesis 

The production of steroid hormones within in the adrenal gland and the gonads 

involves a pathway of sequential enzymatic reactions beginning with cholesterol 

as substrate. Steroid hormones share a common basic configuration of four 

carbon rings known as a cyclopentanoperhydrophenanthrene structure, shown in 

Figure 1-8. The universally accepted numbering of the carbon atoms of the 

cholesterol molecule is shown in Figure 1-9.  

 

Figure 1-8 The cyclopentanoperhydrophenanthrene str ucture.  

This structure is present in all steroid hormones. The rings are identified by letter according 
to the universally recognised International Union o f Pure and Applied Chemistry (IUPAC). 
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Figure 1-9 Site of action of steroidogenic enzymes on cholesterol molecule.  

Cholesterol is the basic molecule from which steroi d hormones are derived. The numbering 
of the carbon atoms is according to the universally  recognised International Union of Pure 
and Applied Chemistry (IUPAC). Enzymes which confer  changes that induce 
mineralocorticoid activity are shown in red while e nzymes which confer changes associated 
with glucocorticoid activity are shown in blue. 3 β HSD, 3β-hydroxysteroid dehydrogenase, 
17αOH, 17α-hydroxylase, 21 αOH, 21α-hydroxylase,11 βOB, 11β-hydroxylase, aldo synthase, 
aldosterone synthase.   
 

The first step is the transfer of hydrophobic cholesterol across the aqueous 

mitochondrial membrane, and this rate limiting process is regulated by 

steroidogenic acute regulatory protein (StAR) (Stocco, 2001). Cholesterol is then 

converted to pregnenolone by the action of a cytochrome P450 enzyme (Side 

chain cleavage or CYP-450scc, encoded by the gene CYP11A1) which cleaves the 6 

carbon unit form the original cholesterol molecule, leaving a 21 carbon 

compound, pregnenelone.  

The fate of the pregnenolone molecule then depends on which enzyme it is then 

exposed to. The enzymes involved in steroidogenesis perform either a 

hydroxylase reaction (the conversion of a -CH  group to a -COH group) or 

hydroxysteriod dehydrogenase (the conversion of a hydroxyl –OH to carboxyl C=O 

group) as can be seen from Figure 1-10. This is discussed further in section 1.2.5.  
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Figure 1-10 Corticosteroid biosynthesis. 

 Enzymes, substrates and products in human steroido genesis.  
With reference to the production of the corticosteroids, cortisol and 

aldosterone, there are 5 further key enzymes involved and the next steps take 

place in the endoplasmic reticulum. 3β-hydroxysteroid dehydrogenase (encoded 

by 3βHSD) oxidises the hydroxyl group at the 3rd carbon atom to from 

progesterone. If then exposed to 17 α-hydroxylase (encoded by CYP17A1), 

pregnenolone is the substrate for a hydroxylation reaction at carbon 17 to form 

17 α-hydroxypregnenolone and this step is necessary for the production of both 

androgens (prior to the action of 17,20 lyase (also encoded by CYP17A1) and 

glucocorticoid compounds. The carbon at position 21 is hydroxylased by 21 α-

hydroxylase (encoded by CYP21B) converting progesterone to 

deoxycorticosterone and 17 α-hydroxyprogesterone to 11-deoxycortisol.  

Like the initial enzymatic reaction involving P-450scc, the final steps aldosterone 

productions are undertaken in the mitochondria by a cytochrome P450 enzyme. 

The conversion of deoxycorticosterone to aldosterone involves three consecutive 
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reactions catalysed by aldosterone synthase (CYP11B2). This enzyme is the focus 

of this work and will be discussed in depth in future sections. It catalyses the 

formation of a hydroxyl group at position 11 to produce corticosterone, followed 

by 18-hydroxylation to yield 18-hydroxycorticosterone and finally 18-

methyloxidation to aldosterone (Connell and Davies, 2005) (see Figure 1-11).  

 

Figure 1-11 Reactions undertaken by aldosterone syn thase at C18 of deoxycorticosterone 
 

Aldosterone spontaneously converts to the hemiacetal form (shown in Figure 

1-12) and this change is not associated with any change in activity. However, 

this structure does protect aldosterone from the action of 11 β-hydroxysteroid 

dehydrogenase which converts cortisol to the inactive cortisone (as discussed in 

section 1.2.2).  

 

Figure 1-12 Structure of aldosterone and the (predo minant) hemiacetal form.  
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The enzyme 11 β-hydroxylase (encoded by CYP11B1) can also undertake a 

hydroxylation reaction at position 11 and 18 (Freel et al., 2004). However, the 

18-methyloxidation reaction is an exclusive function of aldosterone synthase and 

this is the final rate limiting step in the synthesis of aldosterone. 

1.2.5 Regulation of aldosterone production 

In order to further investigate the mechanisms of control of aldosterone 

synthesis, both genetic and environmental, it is necessary to spend some time 

describing the normal stimuli to aldosterone production and the points at which 

production can be regulated.  

Structural and anatomical mechanisms 

The structure and anatomy of the adrenal gland plays a crucial role in the 

mechanisms of regulation of production of aldosterone as well as of the other 

corticosteroids. Processes which disrupt this elegant arrangement provide clear 

examples of the importance of the structural integrity of the gland in 

maintaining an ability to differentially produce the physiologically relevant 

steroids in response to their trophins. The following section will address the 

functional relevance of the anatomical structure of the adrenal gland. 

The adrenal glands consist of an inner adrenal medulla and an outer cortex. 

These distinct regions arise from separate embryological origins; mesenchymal 

cells which form the cortex originate from the coelomic cavity lining, adjacent 

to the urogenital ridge, while invasion of neuroectoderm cells into this region 

give rise to the adrenal medulla (Wilson J.D. and Foster D.W., 1992). The 

adrenal cortex is further subdivided onto histological distinct zones which have 

separate functional properties. The outermost glomerulosa cells produce 

aldosterone, the fasciculata produces cortisol and corticosterone and the 

reticularis is the main site of adrenal androgen production. It is suggested that 

development of the vascular system in crucial in developing the functional 

zonation of the adrenal gland with blood vessels from the outer cortex draining 

inwardly into venules of the adrenal medulla. Thus, glomerulosa cells 

differentiate on the arterial side and reticularis cells on the venous side. 
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However, the crucial functional difference in the adrenal gland zonation is the 

differential expression of steroidogenic enzymes, i.e. aldosterone synthase 

(encoded by CYP11B2 gene) in the glomerulosa and 17 α- hydroxylase (encoded 

by CYP17A1) and 11 β-hydroxylase (encoded by CYP11B1 gene) in the 

fasciculata.  

 However, it is now recognised that the distinct histological zones of the adrenal 

gland are not static; in utero, the foetal adrenal consists of a smaller outer zone 

but it is the larger, inner zone that appears to be the dominant source of 

steroids, mainly DHEA and DHEAS. There is also a so called “transitional zone” 

between these two areas that appears to produce cortisol near the end of the 

gestational period (Kempna and Fluck, 2008). After birth, the large inner zone 

involutes and the three zoned adult adrenal begins to develop, and it is not until 

adrenache (a specifically human phenomenon that occurs around the age of 6-8) 

that adrenal androgens again begin to rise. The processes which initiate and 

maintain this functional zonation are not clear. It has been proposed that 

common stem cells exist within the capsule and differentiate while migrating in 

a centripetal direction to form these layers but  this remains a matter of debate 

(Wood and Hammer, 2011). Recent advances in this area stemmed from the 

identification of the crucial role of steroidogenic factor 1 (SF-1) in the 

development of the adrenal gland (Luo et al., 1994). The importance of this 

molecule in humans was confirmed when the monogenic disorder resulting from 

a mutation in SF-1 in humans was described, giving rise to a phenotypic female 

with an XY genotype as a result of gonadal dysgenesis and primary adrenal 

failure (Achermann et al., 1999). However, the multitude of signalling pathways 

involved in the maintenance of adrenal stem cells as well as their differentiation 

to functioning steroidogenic cells is only beginning to be understood.  

 The importance of the structure of the adrenal gland in regulating steroid 

production can be observed in a further monogenic condition, Glucocorticoid 

Remedial hyperaldosteronism (GRA). This is an autosomal dominant monogenic 

disorder caused by a hybrid gene comprising the regulatory element of 11 β-

hydroxylase and the coding region of aldosterone synthase gives rise to a 

phenotype of  hypertension and mineralocorticoid excess (Lifton et al., 1992). 

Aldosterone is produced in response to ACTH rather than its usual trophins (as 

described later in this section), but importantly, the chimeric gene is expressed 
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ectopically in the fasciculata, which is a much higher output system that the 

glomerulosa. This allows the gene product inappropriate access to greater 

quantities of 11-deoxycorticosterone as a substrate for substantial aldosterone 

production. Importantly therefore, it is not only that the gene is under 

regulation by ACTH that produces a state of mineralocorticoid excess, but also 

the aberrant locus of enzyme expression and structure of the gland that causes 

dysregulated corticosteroid production, thus highlighting the necessity of strict 

anatomical and functional zonation.   

For many years, further study of zonation in the human adrenal has been limited 

by the high degree of homology between aldosterone synthase and 11 β-

hydroxylase, making the development of specific antibodies difficult and thus 

reliable separation of the of the zones challenging. But recent success in the 

development of specific antibodies has been successfully achieved by Nishimoto 

et al (Nishimoto et al., 2010), who have confirmed the pattern of conventional 

zonation with CYP11B1 expressed constitutively in the fasciculata and CYP11B2 

expressed sporadically in the glomerulosa. However, they also demonstrated a 

novel pattern of CYP11B2 expression with clusters of aldosterone producing cells 

expressing CYP11B2, 3BHSD and no CYP17A1, which appeared to be 

constitutively active in terms of aldosterone production, in that they were 

present even in tissue adjacent to aldosterone-producing adenomas. This is in 

contrast to the previously held belief that there would be suppression of 

CYP11B2 expression due to the negative feedback of the renin- angiotensin 

system. This novel pattern of CYP11B2 expression was confirmed by Boulkroun et 

al (Boulkroun et al., 2010) who examined the structure of the zona glomerulosa 

in normal adrenals and compared this to aldosterone producing adenoma as well 

as tissue from around the adenoma. They provided further evidence that the 

tissue from around the adenoma was hyperplastic with persistent expression of 

CYP11B2, in some cases encompassing the entirety of the zona glomerulosa. This 

work adds further to the body of evidence confirming both the non-static nature 

of the structure of the adrenal gland, and specifically that the zona glomerulosa 

can enlarge and steroidogenic enzymes be switched on and off, with consequent 

implications for regulation of aldosterone. 

There remain many unanswered questions regarding the development and 

maintenance of adrenal zonation. Is the fate of an adrenal stem cell 
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predetermined or can it be altered by environmental factors? What causes the 

hyperplasia seen in adjacent tissue in aldosterone producing adenomas and how 

can this be influenced? What causes CYP11B2 to be constitutively expressed in 

this context and become unshackled from the control of the renin- angiotensin 

system? It is clear that the structure of the adrenal gland as well as the 

processes which regulate it are crucial to its function. While advances have been 

made, further investigations into the regulation of geographical expression of 

steroidogenic enzymes, as well as how this relates to the regulation of steroid 

production, would be enlightening. 

Cytochrome P450 enzymes and electron transport 

 As previously discussed, the enzymes involved in steroid synthesis fall into 

either cytochrome P450 enzymes (encoded by CYP11A1, CYP17A1, CYP21A2, 

CYP11B1 and CYP11B2) or hydroxysteroid dehydrogenase enzymes (e.g. 3βHSD). 

The cytochrome P450 enzymes can be further classified according to their 

location in the mitochondria or endoplasmic reticulum. The distinction is 

important because these two classes of enzymes use different strategies for 

electron transfer and this may be an important method of regulating enzyme 

function, distinct from enzyme expression.  

Mitochondrial enzymes receive electrons from reduced nicotinamide adenine 

dinucleotide (NADPH) via an electron transfer chain. NADPH binds to adrenodoxin 

(ferredoxin) reductase, which then interacts with and transfers a pair of 

electrons to adrenodoxin (ferredoxin). Adrenodoxin accepts and also interacts 

with the redox partner binding site of the mitochondrial P450 enzyme to donate 

electrons to it (Miller, 2005). Adrenodoxin reductase is encoded by a single gene 

on chromosome 17q24-q25 but recent evidence suggests that there are two 

forms of adrenodoxin/ ferredoxin, encoded by FDX1 on chromosome 11q22 and 

FDX2 on chromosome 19p13.2, each with distinct functions. FDX1 appears to be 

specific for electron transfer in steroidogenesis while FDX2 is essential for Fe/S 

protein biogenesis and haem A formation (protein co-factors essential for a 

variety of cellular functions) but is unable to reduce cytochrome P450 enzymes 

(Sheftel et al., 2010) (Figure 1-13). Steroid synthesis may be limited by the 

availability of reducing agents (or the relative composition). However, the 



Chapter 1  61 

relative quantities of adrenodoxin 1/ 2, adrenodoxin reductase and CYP P450 

enzymes in humans are not currently known.  

 

Figure 1-13 Electron transport of ferredoxin and fe rredoxin reductase in the mitochondria. 

 FDX1, ferredoxin 1, is involved in electron transf er in steroidogenesis and FDX2, ferredoxin 
2, involved in electron transfer in Fe/S protein bi ogenesis and haem A formation. FeRed, 
ferredoxin reductase; CYP, Cytochrome P450 enzyme. 
 

 In contrast, CYP P450 enzymes located in the endoplasmic reticulum receive 

electrons from NADPH via the electron chain involving P450 oxidoreductase 

(POR), sometimes with the assistance of cytochrome b5 (Miller, 2005). This 

electron transfer system is a mechanism by which the lyase/ hydroxylase dual 

action of the product of CYP17A1 is regulated. Cytochrome b5 acts as an 

allosteric factor to promote the interaction of CYP17 with POR, selectively 

increasing 17,20 lyase activity (Lin et al., 1993). Further, increased POR 

increases 17, 20 lyase activity (Lin et al., 1993) and greater amounts of POR are 

observed in testicular tissue (where C19 steroids are produced) rather than 

adrenal tissue (where steroidogenesis is predominantly limited to C21 steroids).  

While POR knock out in mice is embryonically lethal, the first POR mutations in 

humans were described in 2004 (Fluck et al., 2004). These individuals had 

disordered sexually development and steroid production consistent with partial 

deficiencies of CYP17 and CYP21. In addition, in individuals carrying severe 
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mutations, a disorder of skeletal development is also observed, similar to 

Antley-Bixler syndrome (http://www.omim.org/entry/207410). The POR gene is 

highly polymorphic and there is much interest in examining whether less severe 

mutations may be associated with clinical syndromes associated with milder 

alterations in steroid profiles. In addition, it is worth remembering that as well 

as being involved in crucial reactions in steroidogenesis, POR is the system by 

which electron donation is achieved for cytochrome P450 drug metabolising 

enzymes. Thus, the possibility of a greater understanding of pharmacogenetics 

may be possible with deeper knowledge of the effects of variation in POR. To 

date, no defects of adrenodoxin or adrenodoxin reductase have been described 

in humans but clearly, given the example of POR, this is a potential area of 

regulation of aldosterone production as yet largely uninvestigated. 

Trophins of aldosterone production 

 As has been previously mentioned, increased aldosterone secretion is an 

outcome of activation of the renin-angiotensin system, and has the effect of 

restoring circulating volume as well as being a mechanism for excreting 

potassium ions. Increases in angiotensin II and serum potassium levels are thus 

the major physiological regulators of plasma aldosterone concentration. Both 

utilise changes in intracellular free calcium to increase transcription of the key 

steroidogenic enzymes, but it is clear that there are discrete and separate 

mechanisms involved in the responses to these two trophins, as the rise in 

intracellular free calcium invoked by potassium could be blocked with  calcium 

channel antagonists but this was not the case for angiotensin II (Capponi et al., 

1984). This difference in action was further exposed by Pezzi et al (Pezzi et al., 

1997) who demonstrated the essential role of calmodulin and calmodulin-

dependant protein kinases (CaMK) in potassium stimulated increase in 

intracellular calcium but inhibition of calmodulan and CaMK had little effect on 

angiotensin II stimulated increases in aldosterone synthase transcripts. This 

suggests that the role of angiotensin II is more complex than potassium and 

relies on several mechanisms to stimulate increased aldosterone synthase 

transcription. These factors as well as other trophins of aldosterone production 

will be discussed in the following sections.  
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Angiotensin II 

As discussed above, angiotensin II-stimulated aldosterone production via the AT1 

receptor rather than the AT2 receptor (Section 1.1.4). Activation of this G 

protein receptor leads to a cascade of intracellular signalling mechanisms which 

are incompletely understood. Activation of phospholipase C, which hydrolyzes 

phosphatidylinositol 4,5-bisphosphate  (PIP2) to inositol trisphosphate (IP3) is 

observed and this leads to release of intracellular calcium ions, 1,2 

diacylglycerol (1,2 DAG) and activation of protein kinase C (PKC) (Spat and 

Hunyady, 2004) (see Figure 1-14). PKC does not appear to directly increase 

CYP11B2 expression (Denner et al., 1996) but does appear to reduce expression 

of CYP17 (Bird et al., 1996), thus preventing substrate from entering the 

glucocorticoid/ androgen pathway. 

. 

Figure 1-14 Angiotensin II and potassium regulation  of intracellular calcium leading to 
increased aldosterone production.  
 

A rise in intracellular free calcium activates CaMKI and possible CaMKIV (Condon 

et al., 2002), feeding into the same mechanism utilised by increased calcium via 

potassium-dependant channels but the effect of angiotensin II on transcription of 

CYP11B2 is not limited to this mechanism.  
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Potassium 

The role of potassium as a regulator of aldosterone secretion is crucial to 

physiological homeostasis, the mechanisms were considered to be well 

understood and straightforward. However, recent investigations have suggested 

a novel molecular system of potassium-mediated regulation of 

mineralocorticoids. TASK (TWIK-related acid sensitive K+) channels are two pore, 

four trans-membrane domain potassium channels, first characterised in the early 

1990s and are expressed predominantly in cells where modification of the cell 

membrane potential is essential to function such as neurotransmitters, hormone 

secretion and neuronal and muscular excitability (for a review see Lesage et al 

(Lesage and Lazdunski, 2000), Bayliss et al (Bayliss and Barrett, 2008)). The 

importance of these channels in aldosterone secretion was highlighted by the 

development of a TASK subunit knock out mouse which exhibited features of 

autonomous aldosterone production (Davies et al., 2008).  These animals had 

increased plasma aldosterone concentrations apparently not stimulated by 

plasma renin which was unchanged or lower than in control animals. Plasma 

aldosterone concentrations were not suppressed by salt or by blockade of the 

AT1 receptor with candesartan. Elimination of functional TASK channels caused 

the membrane potential of the glomerulosa cells to be significantly more 

depolarised, and it is proposed that this leads to continuous calcium channel 

activity and increased sensitivity to angiotensin II. It is particularly interesting to 

note that there appears to be sexual dimorphism in the physiological 

consequences of manipulation of the TASK channels. Heitzmann et al (Heitzmann 

et al., 2008) produced a TASK 1 knock out mouse model in which impaired 

mineralocorticoid homeostasis was restricted to female animals. Both male and 

female animals exhibited abnormal adrenal cortex zonation i.e. ectopic 

expression of aldosterone synthase in the high capacity fasciculata layer, but in 

male mice, this regressed following puberty. This finding highlights two key 

points, firstly the crucial importance of geographic expression of steroidogenic 

enzymes within the adrenal cortex (as discussed in more detail earlier in this 

section) and secondly the multiple influences, in this case presumably sex 

hormones, that can influence steroidogenesis.  

The discoveries regarding the role of potassium channels have been further 

extended by the recent publication of a study identifying an inherited mutation 

in the KCNJ5 (potassium inwardly-rectifying channel, subfamily J, member 5) 
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gene in a family with severe hyperaldosteronism and bilateral adrenal 

hyperplasia. In addition, 2 different somatic mutations in the potassium channel 

gene KCNJ5 were found in 8 out of 22 aldosterone producing adrenal adenomas 

examined (Choi et al., 2011). The authors suggest that the mutations identified 

lead to the channel to be more permeable to sodium, resulting in sodium entry 

to glomerulosa cells, chronic depolarisation, and consequent activation of 

calcium channels, thus leading to constitutive stimulation of aldosterone 

production. This is an exciting development in the understanding of the 

aetiology of aldosterone excess and aldosterone-producing adenomas in 

particular, although further work is required to ascertain the contribution of this 

pathway to patients with less severe phenotypes. 

Adrenocorticotrophin stimulating hormone 

 Conventionally recognised as the principle trophin of cortisol, 

adrenocorticotrophin (ACTH) is released from the pituitary as part of a classical 

endocrine feedback mechanism as shown in Figure 1-15. 

 

 

Figure 1-15 Hypothalamic pituitary axis.  

Hormones released from the hypothalamus (CRH, corti cotrophin releasing hormone, AVP, 
Vasopressin) regulate the release of pituitary horm one production which in turn stimulates 
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release of active hormone from the adrenal gland. H ypothalamic inhibition is achieved by 
glucocorticoids as well as a direct effect of ACTH.   
 

It is clear that the acute effects of increased ACTH stimulate aldosterone 

production. This is predominantly achieved via increased intracellular cyclic 

adenosine monophosphate (cAMP), which occurs after ACTH binds to cell surface 

receptors and activates adenlyate cyclase. However, this effect also depends on 

the movement of calcium into the cell, as no effect of ACTH stimulation is 

observed in the absence of calcium (Spat and Hunyady, 2004). It is important to 

remember that the mechanism by which ACTH leads to increased aldosterone 

may not simply be via increasing activity of the final steps in steroidogenesis. By 

increasing the generation of precursors to aldosterone as a result of increased 

activity of steroidogenic enzymes further upstream, the production of 

aldosterone may be increased, as long as aldosterone synthase is not the rate 

limiting step. Indeed ACTH  stimulation leads to increased  activity of StAR 

(Stocco, 2001), an early, rate limiting step in steroidogenesis (as described in 

1.2.4). However, chronic administration of ACTH suppresses aldosterone 

secretion (Rayfield et al., 1973). The mechanism behind this does not appear to 

be by down regulation of the renin-angiotensin system but rather by some direct 

effect on the ACTH signal either via its receptor or second messenger pathway 

(Abayasekara et al., 1989). In clinical practice, patients with hypopituitarism do 

not demonstrate signs of mineralocorticoid insufficiency, nor do patients with 

ACTH excess (i.e. Cushing’s disease) have high aldosterone levels, which would 

lend support to the theory that ACTH does not play a major role in regulating 

aldosterone. 

Nevertheless, there remain unanswered questions regarding the role of ACTH in 

regulating aldosterone production. In particular, it is striking that there is a 

diurnal variation in aldosterone secretion in man (Richards et al., 1986; Freel et 

al., 2008) consistent with some degree of regulation by ACTH. Recently 

published data described abnormally elevated aldosterone production in 

circadian clock–deficient Cry-null mice (Doi et al., 2010), a mechanism that may 

be at least partly mediated by ACTH. Further, some individuals with salt losing 

adrenal hyperplasia and mineralocorticoid insufficiency have been shown to 

carry severe loss of function mutations of the adrenocorticotrophin receptor 
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(MCR2) (Lin et al., 2007), suggesting ACTH is important in the maintenance of 

normal levels of aldosterone.  

Other pituitary factors  

There is some evidence for the involvement of other pituitary factors in the 

regulation of aldosterone. Corticotrophin releasing hormone and other ACTH 

secretagogues e.g. vasopressin are released from the hypothalamus and 

stimulate ACTH release in the form of a precursor molecule pro-

opiomelanocortin (POMC). This 241-amino acid peptide is cleaved to form ACTH 

which is only 39 amino acids in length, by the enzyme pro-hormone convertase 1 

(PC1/3) (Nillni, 2007). This cleaves the peptide at lysine-arginine to form 

biologically active products as shown in Figure 1-16.  

 

Figure 1-16 Processing of POMC to form ACTH and oth er anterior pituitary factors. 

POMC is cleaved in the anterior pituitary to form β-lipotrophin and pro-ACTH by the actions 
of pro-hormone convertase 1 (PC1/3). Pro-ACTH is fu rther cleaved to form ACTH, N-teminal 
proopiocortin (N-POC) and joining protein (JP). The se are anterior lobe peptides and boxes 
are coloured grey. Further cleavage takes place in the intermediate lobe which is not active 
in normal humans. Intermediate lobe peptides are co loured blue. These are not present in 
significant amount in normal human plasma, but may be present in tumours as well as in 
the foetus and during pregnancy. ACTH 1-7 and corti cotrophin- like- intermediate lobe-
peptide (CLIP) is generated from ACTH cleavage by p ro-hormone convertase 2 (PC2), which 
also acts on β-lipotrophin ( β-LPH) to produce γ-LPH and β-endorphin ( β-EP). PC2 also 
cleaves γ-LPH to produce β-melanocyte stimulating hormnone ( β-MSH). Carboxypepdidase 
E and peptidyl α-amidating monooxygenase (PAM) act to produce deasc etyl MSH (da-MSH), 
prior to the action of N-acetyl transferase (NAT) w hich converts this to α-MSH. Adapted from 
(Pritchard and White, 2007) and (Wilson J.D. and Fo ster D.W., 1992). 
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McCaa et al demonstrated that patients with pituitary insufficiency exhibit 

altered response to ACTH and angiotensin II which was not corrected by 

administration of ACTH (McCaa et al., 1981). POMC knock out mice have been 

demonstrated to have absent or low levels of aldosterone by some (Coll et al., 

2004; Karpac et al., 2005; Yaswen et al., 1999) but not all (Linhart and Majzoub, 

2008) investigators, and this phenotype is not reversed by administration of 

ACTH. Some specific POMC products other than ACTH stimulate aldosterone 

production e.g. β-endorphin (β-EP) and, to a lesser extent, joining peptide (JP), 

have the capacity to stimulate aldosterone production in human adrenal cell 

suspensions (Molloy et al., 1998) and  the actions of ACTH are potentiated by α-

MSH in rats (Vinson et al., 1980; Szalay, 1993). However, as these factors are 

present in negligible amounts in humans, it seems unlikely that they will 

contribute significantly to the regulation of aldosterone. 

Other Factors 

There is in vitro evidence to suggest that numerous other factors may be 

involved in the stimulation or inhibition of aldosterone. However, there is little 

in vivo evidence to suggest that they play a major physiological role.  These will 

not be discussed further but a list can be found in Table 1-4(adapted from 

(Wilson J.D. and Foster D.W., 1992; 1992))  
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INHIBITING FACTORS STIMULATING FACTORS 

Atrial natriuretic hormone*   
Calcitonin gene-related peptide   

Dopamine  
Nitric oxide  

Platelet-derived growth factor   
Somatostatin 

Transforming growth factor- 
Unsaturated fatty acids 

 

Acetylcholine  
Angiotensin II*  

ATP  
Bradykinin  

Cholecystokinin 
Corticotrophin (ACTH)*  

-Endorphine  
Enkephalins 
Endothelin 

Epidermal growth factor  
12-Hydroxyeicosatetraenoic acid 

K+* 
Melanocyte stimulating hormone 

Neuropeptide Y 
Neurotensin   

Norepinephrine  
Parathormone 

Prolactin 
Prostaglandins 

Serotonin  
Substance P 

Vasoactive intestinal polypeptide 
Vasopressin 

Table 1-4 Inhibitory and stimulatory factors regula ting plasma aldosterone in vitro.  

Starred factors are thought to be physiologically m ost relevant.  
 

1.2.6 Aldosterone in circulating plasma and its met abolism  

Once aldosterone synthase catalyses the final reaction in the production of 

aldosterone, the steroid is not stored but immediately released from the adrenal 

gland into the circulation. Thus, in addition to the rate of production, the 

amount of “free” hormone (i.e. not bound by plasma proteins) and the rate of 

metabolism and clearance also affect the concentration of the steroid. The half 

life of aldosterone is much shorter than that of cortisol; some possible reasons 

for this are described in the following section. 

In contrast to cortisol which is 90-97% protein bound, aldosterone is only weakly 

associated with corticosteroid binding globulin (20%) and albumin (40%) (Wilson 

J.D. and Foster D.W., 1992), with the remainder circulating freely in the plasma. 

It is proposed that this may make plasma concentrations of aldosterone more 
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susceptible to variation than cortisol as being bound to plasma proteins provides 

a “reservoir” of cortisol, preventing rapid swings in plasma concentrations.  

The metabolism of aldosterone is achieved via reactions that take place in the 

liver: aldosterone is reduced by 5β-reductase and 3α-dehydrogenase enzymes 

and conjugated with glucuronic acid to render it more water soluble. The major 

urinary metabolite of aldosterone is tetrahydroaldosterone (this comprises 

around 35%) but aldosterone-18-glucuronide is formed from direct conjugation of 

the unreduced aldosterone (making up around 20%). There are acquired 

conditions associated with altered aldosterone metabolism and clearance; as 

aldosterone metabolism takes place almost exclusively via hepatic enzymes, 

these are predominantly due to alteration in liver function. For example, 

patients with liver failure, or patients with cardiac failure have a degree of 

functional liver failure due to hypo perfusion. Both these patient groups can 

have increased levels of aldosterone.  

 There are no reported cases in the literature to date of genetic abnormalities of 

metabolism of aldosterone. However, in the case of androgen metabolism, an 

exciting advance in understanding has highlighted how this aspect of control of 

steroid regulation may be important. Dehydroepiandrosterone (DHEA) is the 

principle precursor of adrenal androgens. Rather than being conjugated with 

glucuronic acid as is the case with aldosterone, DHEA is sulphated to form 

DHEAS. As DHEAS, it can be excreted in the urine and in humans this is the most 

abundant steroid. However, only DHEA can be converted to active androgens. 

Therefore, the control of DHEA sulfation is a mechanism by which androgen 

production can be regulated. Noordam et al (Noordam et al., 2009) described a 

patient with low levels of DHEAS and a phenotype of precocious puberty in 

childhood and features consistent with polycystic ovary syndrome in adulthood. 

They demonstrated that this was associated with a mutation in a key enzyme 

involved in the DHEA-DHEAS sulfation system. This enzyme, 3'-phosphoadenosine 

5'-phosphosulfate synthase 2 (PAPSS2) is an activated sulphate donor used by the 

sulfotransferase SULT2A1. Functional assays of these mutations in the PAPSS2 

gene reconstructed the DHEA-DHEAS sulfation system and confirmed inactivation 

of the PAPSS2 enzyme. This important discovery of a functional mutation in 

metabolism of adrenal androgens leading to a clinical syndrome of androgen 

excess highlights the potential role at this level of regulation. While these 
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mechanisms are clearly important in the regulation of androgens, little is known 

about the regulation of metabolism of aldosterone.  

1.2.7 CYP11B1 and CYP11B2 

As discussed above, the final steps of aldosterone and cortisol synthesis are 

catalysed by the enzymes aldosterone synthase encoded by CYP11B2 and 11β 

hydroxylase encoded by CYP11B1. Transcriptional regulations of these two rate 

limiting enzymes are crucial regulating mechanisms in the control of aldosterone 

and cortisol production. This thesis, in particular the experimental work, will 

focus on the effect of variation in CYP11B2 on regulation of transcription of 

aldosterone synthase. Current evidence regarding the regulation of CYP11B2 will 

be discussed in section 1.2.8 but in order to put this into context, a short section 

will follow on the general considerations to be taken into account when studying 

these two genes, including their origins, as well as a brief overview of general 

principles of transcriptional regulation. 

Evolution of CYP11B1 and CYP11B2 

Thought to arise from a gene duplication event around 400 million years ago 

around the time of colonisation of land (Colombo et al., 2006), CYP11B1 and 

CYP11B2 lie in tandem on chromosome 8 have 9 exons and share around 95% 

homology in their coding regions (Mornet et al., 1989) and this homology 

contributes to significant technical difficulties in laboratory experiment. Their 

structures diverge in the 5’ untranslated region of the genes as can be observed 

in Appendix 7.3. For some years there was controversy over whether one 

multifunctional gene was responsible for 11-hydroxylation, 18-hydroxylation and 

18-oxidation step in man (Globerman et al., 1988), as in the bovine adrenal 

(Hashimoto et al., 1989), or whether two separate genes were responsible 

(Mornet et al., 1989; Kawamoto et al., 1992). We now the second option is 

correct. The different biochemical reactions undertaken by these two enzymes 

are discussed above (section 1.2.4); however some consideration must also be 

given to the different mechanisms of regulation of gene transcription as 

maintaining independent function clearly depends on the ability to discriminate 

between signals to produce more cortisol without necessarily increasing 

aldosterone synthesis, and vice versa. 
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Gene transcription 

The principles of gene transcription are integral to the central dogma of 

molecular biology; that is the concept of DNA transcribed to RNA, and this then 

translated to protein. The control of these processes involves numerous 

mechanisms that ensure tight regulation of gene expression. RNA transcription 

must be controlled and regulated, and in contrast to DNA replication, processes 

must be present which allow selective transcription of certain genes and not 

others in order to maintain distinct cellular properties and functions. In order for 

transcription to take place, a pre-initiation complex is formed comprising of 

transcription factors including TATA box binding protein and RNA polymerase II 

(Pol II). The hydrogen bonds between complementary nucleotides of DNA are 

broken and Pol II moves along the DNA strand pairing RNA nucleotides with 

complementary DNA bases with the exception that thymines are replaced with 

uracils and the nucleotides are composed of a ribose (5-carbon) sugar where DNA 

has deoxyribose in its sugar-phosphate backbone. Finally, the hydrogen bonds of 

the untwisted RNA+DNA helix break, freeing the newly synthesized RNA strand.  

 The simplest transcriptional unit contains a core promoter element (usually a 

TATA sequence) around 20-30bp from the transcriptional start site, an upstream 

activator sequence, and silencer element both within 100-200 bp of the TATA 

box. However, a typical eukaryotic gene has more complex regulatory 

mechanisms, with a transcription factor complex containing numerous 

transcription factors which can be tissue specific. In addition, eukaryotic genes 

can possess several enhancer regions which can be located within introns, 3’ or 

5’ regulatory regions. Further, many genes contain binding sites for proximal 

regulatory factors which may not function as classical activators but rather 

tethering elements that act as anchors for other transcription factors to bind 

and act in a enhancing or repressive manner (Levine and Tjian, 2003). It is also 

now understood that distal regulatory elements (up to 1Mb away) can control 

gene transcription and this may be achieved through physical proximity if the 

DNA loops round to lie close to the transcriptional start site (Maston et al., 

2006).  

The chromatin structure of DNA is known to influence transcription as chromatin 

can prevent the transcriptional machinery from accessing the DNA. Chromatin-
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modifying activities and histone-modifying complexes, which add or remove 

covalent groups (e.g., acetyl groups, methyl groups, and phosphates) from 

histone tails can alter gene transcription and provide an alternative mechanism 

of control (Maston et al., 2006).  

DNA methylation is another mechanism by which transcription is regulated and is 

associated with transcriptional silencing. This can be achieved in two ways. 

Firstly, methylation at CpG dinucleotides (GC rich areas of the genome) can 

repress transcription by blocking the ability of transcription factors to bind their 

recognition sequences. Secondly, methylation-specific binding proteins can 

specifically bind methylated CpG dinucleotides and recruit histone 

deacetyltransferases which can alter the chromatin structure to make it 

available to transcriptional binding complexes (Clouaire and Stancheva, 2008).  

1.2.8 Transcriptional regulation of CYP11B2 

 The first observations regarding the transcriptional regulation of CYP11B2 via 

protein: DNA interactions in a human cell line were made by Clyne et al, using 

reporter constructs for promoter deletion assays, DNAse foot printing 

experiments and electromobility shift assays (Clyne et al., 1997). Functionally 

important regions of the human CYP11B2 promoter were identified by this group 

as -776/756 (NBRE-1), -129/144 (Ad5) and -71/64 (CRE).  

 This last site, CRE, is also present in the CYP11B1 promoter (Bassett et al., 

2004b) and therefore it is likely that the NBRE-1 and Ad5 sites are more 

important for differential regulation of CYP11B1 and CYP11B2. It was observed 

that the CRE site was similar to other sites that bound CREB, ATF-1 (activating 

transcription factor 1) and ATF-2 (activating transcription factor 2) and 

therefore, DNA- protein complexes were interrogated for the presence of these 

transcription factors using electromobility shift assays and a  “super-shift” 

approach with antibodies to these proteins (Bassett et al., 2000). More recently, 

their role was further confirmed by siRNA knock down as well as transfection 

with constitutively active vectors for of ATF1, ATF2 and CREM and CREB 

(Nogueira and Rainey, 2010).  

 Transcription factors belonging to the NGFIB family were previously known to be 

expressed in the human adrenal gland and implicated in the transcriptional 
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control of other steroidogenic enzymes e.g. CYP21 (Davis and Lau, 1994). The 

presence of a consensus sequence for NGFIB (AAAGGTA) within one of the 

functionally important regions supports the hypothesis that they are likely to be 

involved in the transcriptional regulation of CYP11B2. Indeed, NGFIB (Nerve 

Growth factor 1B, also known as NURR77 and NR4A1) and NURR1 were shown to 

form complexes with oligonuctiotides spanning the sequences for the NBRE-1 and 

Ad5 sites (Wilson et al., 1993).  

The Ad5 element has also been shown to bind COUP-TF (chicken ovalbumin 

upstream promoter transcription factor), a transcription factor that is thought to 

inhibit transcription of CYP17 but to promote that of CYP11B2. It has been 

suggested that this tissue specific regulation is mediated by co-regulator 

proteins, for example, Ubc9, small ubiquitin-related modifier-1 (SUMO-1)-

conjugating enzyme and PIAS1 (protein inhibitor of activated STAT 1) SUMO-1-

conjugating ligase (Shibata et al., 2004; Kurihara et al., 2005).  

 A summary of these transcription factors and binding sites within the CYP11B2 

promoter are shown in Figure 1-17. It is worth noting that these discoveries have 

arisen as a result of focused, hypothesis-driven experiments. However, they do 

not exclude the possible role of other factors in controlling CYP11B2 

transcription. Recent advances in molecular biology techniques allow a more 

biologically agnostic approach, without a priori assumptions which may limit the 

discovery of novel mechanisms. In addition, to date, there has been no research 

published regarding the influence of mechanisms such as chromatin modification 

or methylation (as described above) on the transcriptional regulation of 

CYP11B2. In short, there remain many unanswered questions around the control 

of this important process. 
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Figure 1-17 Transcription factor binding sites char acterised in the CYP11B2 promoter 
region.  

DNA binding sites denoted by grey rectangles, posit ion relative to transcriptional start site 
given in italics. Transcription factor proteins den oted by blue shapes below. NGFIB, Nerve 
Growth factor 1B; NURR1, Nuclear receptor related p rotein 1; COUP-TF, chicken ovalbumin 
upstream promoter transcription factor; ATF1, activ ating transcription factor 1; ATF2, 
activating transcription factor 2; CREB, cAMP respo nse element-binding protein.  
 

1.2.9 Angiotensin II and CYP11B2 gene transcription  

In order to further investigate the effect of angiotensin II on aldosterone 

producing cells, both Rainey (Nogueira et al., 2007) and Gomez-Sanchez (Romero 

et al., 2007) et al have carried out microarray analyses of RNA from H295R cells 

(an adrenal cortical carcinoma cell line) exposed acutely to angiotensin II and 

compared the response to cells under basal conditions. This technique allows 

quantitative changes in expression of thousands of gene to be measured across 

the human genome. Despite experimental differences (angiotensin II 

concentrations were not the same, nor was the time incubated with the 

trophin), these two groups identified a core of 6 transcription factors in 

common. Included in these were transcription factors from the NGFIB family 

(Nurr1 and Nor1). In addition, members of the AP1 (activator protein 1, i.e. FOS 

and JUNB) family of transcription factors, which are known to be induced in the 

adrenal gland by angiotensin II (Viard et al., 1992): Egr (early growth response), 

BTG2 and ATF3 (activating transcription factor 3). It is interesting that 

mechanisms previously suspected to be involved in regulation of aldosterone 

synthase transcription have now been confirmed using this unbiased approach. 
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However, there are problems with this experimental method. Only a fraction of 

the volume of data produced in these experiments is published and although 

some investigators use publicly available repositories for depositing their data, 

methodological details are not always available or not similar enough to allow 

valid comparisons with other experiments. In addition, given the pleotrophic 

effects of angiotensin II, including its effects on other steroidogenic enzymes, it 

is not possible from microarray data alone to identify transcription factors which 

directly influence aldosterone synthase transcription and further experiments 

are required to confirm the role of transcription factors identified by this 

method. However, this does not always result in a clear answer. For example, 

both groups demonstrated up-regulation of FOS by angiotensin II, and the 

Gomez-Sanchez group indicated that up-regulation of FOS was associated with 

increased aldosterone synthase promoter activity (Romero et al., 2007). It would 

be tempting to speculate that increased angiotensin II leads to increased FOS 

causing increased aldosterone synthase promoter activity and increased 

production of aldosterone. However in the experimental model used by Nogueira 

et al this was not found to be the case in H295R cells (Nogueira et al., 2009a). It 

is worth noting that there is evidence that increased FOS leads to down-

regulation of CYP17 (possibly via an interaction with SF-1) (Sirianni et al., 2010). 

This effect may not be seen in H295R cells as they express all the characteristics 

of androgen, glucocorticoid and mineralocorticoid producing cells (Gazdar et al., 

1990); in fact their principle product is adrenal androgens, thus a relative excess 

of CYP17 compared to CYP11B2 may obscure this phenomenon in H295R cells. 

 Both groups have published subsequent work in order to further dissect these 

pathways (Nogueira et al., 2009b; Romero et al., 2010a). However, the relative 

contributions of these novel transcription factors in steroidogenesis in general 

and the regulation of aldosterone synthase in particular remains to be further 

elucidated.  

 The effects of potassium and ACTH on the transcription of human CYP11B2 are 

even less clear. This is predominantly due to limitations of the model system. 

H295R cells respond to potassium but only at supra-physiological concentrations 

and there is no effect of ACTH (although the effect of ACTH can be mimicked by 

the use of dibutyryl cyclic AMP or forskolin) due to low levels of expression of 
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the ACTH receptor. To date, there are limited data regarding the mechanisms of 

their actions on transcription of CYP11B2. 

1.3 Cardiovascular consequences of disruption of 

aldosterone production  

The main physiological role of aldosterone and the mechanisms by which its 

production is regulated have been discussed in the preceding sections. How 

disruption of these mechanisms may lead to adverse cardiovascular 

consequences will be discussed in the following sections. 

1.3.1 Blood pressure effects of mutations in steroi dogenic 

genes: Congenital adrenal hyperplasia 

As discussed previously, the perturbation of normal mechanisms of homeostasis 

observed in monogenic disorders can provide useful insights into normal function 

and the steroidogenic pathway offers many such examples.  

 The commonest condition seen in clinical practice is 21 -hydroxylase deficiency, 

which is described as either classical, commonly presenting in the neonatal 

period with salt wasting +/- ambiguous genitalia (rare: incidence 1:14 000 (New, 

2004)), or non-classical, presenting in adulthood with symptoms of androgen 

excess and often asymptomatic in men (more common: incidence estimated 

1:100 in Caucasian population (New, 2004) and http://omim.org/entry/613815). 

The biochemical phenotype, while covering a wide spectrum, arises from a 

reduced ability to convert progesterone and 17 α-hydroxyprogesterone (17-OHP) 

to 11-deoxycorticosterone (DOC) and 11-deoxycortisol (Compound S) and thence 

to the end products, aldosterone and cortisol (Compound F) respectively. This 

leads to increased ACTH drive in an attempt to restore homeostasis; however, 

this results only in androgen excess. Indeed, the diagnosis is made on the basis 

of elevated 17- OHP levels in response to ACTH. Treatment with exogenous 

steroids to suppress ACTH ameliorates many of the metabolic manifestations.  

However, mutations in other genes in the steroidogenic pathway can lead to 

congenital adrenal hyperplasia (CAH), and provide clear examples of the 

influence of these genes on steroid, and cardiovascular phenotypes. These are 

described in Table 1-5.The syndrome of aldosterone synthase deficiency is 

associated with low blood pressure and salt loss but a condition associated with 
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a “gain of function” would be of interest in the development of hypertension 

and relative aldosterone excess. Of particular relevance to studies of the 

pathogenesis of hypertension, it is worth noting that 17α-hydroxylase deficiency 

can present with perturbations of blood pressure and it has already been 

observed that a SNP in the locus of this gene has been identified as associated 

with blood pressure phenotypes in genome wide association studies of essential 

hypertension (See section 1.1.8,). No further direct association studies have 

been carried out with variants in this gene in populations of hypertensive 

patients, nor has any functional work to identify “milder” mutations yet been 

published. This would be an area of much interest for future work. 
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ENZYME 

21 
hydroxylase  

11-beta-
hydroxylase  

Aldosterone 
synthase  

17-alpha-
hydroxylase  

3-beta 
hydroxysteroid 
dehydrogenase  

 
GENE 
AFFECTED 

 
CYP21A 

 
CYP11B1 

 
CYP11B2 

 
CYP17 

 
HSD3B2 

 
AMBIGUOUS 
GENETALIA 

 
Females 

 
Females 

 
No 

Males 
No pubertal 
development 
in females 

Males 
Mild in females 

 
INCIDENCE 

 
1: 14 000 

 
1:10 000 

 
Rare 

 
Rare 

 
Rare 

 
GLUCO-
CORTICOIDS 

 
↓ 

 
↓ 

 
Normal 

 
↓ 

 
↓ 

 
MINERALO-
CORTICOIDS 

 
↓ 

 
↑ 

 
↓ 

 
↑ 

 
↓ 

 
ANDROGENS 

 
↑ 

 
↑ 

 
Normal 

 
↓ 

 
↓Males 
↑Females 

 
BLOOD 
PRESSURE 

 
↓ 

 
↑ 

 
↓ 

 
↑ 

 
↓ 

 
NA BALANCE 

 
↓ 

 
↑ 

 
↓ 

 
↑ 

 
↓ 

 
K 
BALANCE 

 
↑ 

 
↓ 

 
↑ 

 
↓ 

 
↑ 

 
ACIDOSIS 

 
Yes 

 
+/- alkalosis 

 
Yes 

 
+/- alkalosis 

 
Yes 

 
 
ELEVATED 
STEROIDS 

 
17OHP 

 
DOC, 
11-

deoxycortisol 

 
Corticosterone 

+/- 18-
hydroxy-

corticosterone 

 
DOC, 

corticosterone 

 
DHEA, 17OHPreg 

Table 1-5 Characteristics of different forms of CAH . 

Adapted from(146). 17OHP, 17 α-hydroxyprogesterone, DOC, deoxycorticosterone, DHE A, 
dehydroepiandrosterone, 17OHpreg, 17 α- hydroxypregnenelone.   
 

1.3.2 Aldosterone and Hypertension 

10-15% of patients with hypertension have an aldosterone level that is elevated 

in relation to the level of renin (Rossi et al., 2006; Lim et al., 1999; Lim et al., 

2000a; Fardella et al., 2000). A proportion of these patients will have 

autonomous aldosterone secretion. From a clinical perspective, classical Conn’s 

syndrome or an aldosterone-producing adenoma remains the most important 

diagnosis to make in this context, as patients who have no contraindications to 

surgery may be cured of their high blood pressure by adrenalectomy, as initially 

described by Jerome Conn in 1956 (Conn and LOUIS, 1956). Since this 
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phenomenon was first described by Conn, there has been significant controversy 

regarding the contribution of aldosterone excess to the incidence of 

hypertension. However, it quickly became apparent that relatively few patients 

with hypertension harboured a large, unilateral, surgically resectable adenoma. 

Difficulties interpreting biochemical analyses including difficulties establishing 

normal reference ranges, the confounding effects of antihypertensive 

medication and other environmental factors all contributed to the difficulty in 

arriving at a diagnosis of aldosterone excess and establishing the prevalence of 

aldosterone excess in hypertension. The greater use of the aldosterone to renin 

ratio (ARR) as a screening test meant that the diagnosis could be considered and 

excluded in a significant proportion of hypertensive patients (unlike serum 

potassium which may be normal). This lead to a number of investigators 

contributing data to suggest the prevalence of aldosterone excess was greater 

than previously recognised (Gordon et al., 1994; Fardella et al., 2000; Calhoun 

et al., 2002; Lim et al., 2000b; Lim et al., 1999; Loh et al., 2000; Rossi et al., 

2006). The largest and most comprehensive of these studies was the PAPY study 

(Rossi et al., 2006). This prospective study carefully established the biochemical 

features of aldosterone excess using suppression testing after an initial ARR 

screening test, and attempted to lateralise the source of aldosterone excess 

with adrenal vein sampling where available. The rates of aldosterone secreting 

adrenal adenoma in this study were 4.8% and the overall rate of aldosterone 

excess was 11%.  Similar rates have been described in Scottish primary (Lim et 

al., 1999) and secondary care (Lim et al., 2000a) settings.  

 In patients with aldosterone excess but no evidence of a unilateral adenoma, 

the underlying pathophysiology is less clear and the majority of cases are 

attributed to “idiopathic bilateral hyperplasia”. The spectrum of pathological 

change from a normal adrenal gland to an aldosterone-producing adenoma is not 

well understood and there remains much controversy as to whether the 

development of abnormal bilateral hyperplastic adrenals precedes the 

emergence of a single dominant nodule. Some aspects of this have been 

discussed in section 1.2.5. While this topic raises interesting and important 

points, it is clear that regardless of the precise process of pathological change, 

there is a relationship between plasma aldosterone concentration and risk of 

high blood pressure, even when levels are within the so-called normal range and 
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secretion does not exhibit automaticity as in primary aldosteronism. Evidence 

for this comes from the Framingham cohort where, in normotensive subjects, a 

plasma aldosterone level at the top end of the normal range was associated with 

a higher incidence of hypertension at 4 year follow up than a lower plasma 

aldosterone level (Vasan et al., 2004). Further, data from Reynolds et al 

(Reynolds et al., 2009) demonstrated in an elderly population a positive 

correlation between plasma aldosterone concentration after stimulation, and 

suppression and blood pressure. The efficacy of spironolactone as a blood 

pressure lowering agent in resistant hypertension (Chapman et al., 2007) has 

also contributed to the body of evidence which places aldosterone in a central 

role in the pathogenesis of hypertension. 

1.3.3  Cardiovascular damage independent of blood 

pressure 

 Animal models from Rocha et al (Rocha et al., 1998; Rocha et al., 2000; Rocha 

et al., 1999) and Weber et al (Brilla et al., 1990) elegantly demonstrated the 

detrimental effect of aldosterone on a range of cardiovascular tissues, including 

the heart, brain and the kidney in rat models of mineralocorticoid excess and 

hypertension. Vascular damage was prevented by mineralocorticoid blockade 

and was independent of blood pressure. It is of interest that the presence of 

aldosterone proved necessary but not sufficient for the development of vascular 

pathology as the detrimental effects required the presence of a high salt diet 

(Rocha et al., 1998; Rocha et al., 2000; Blasi et al., 2003). A murine model of 

aldosterone induced vascular damage did not develop the cardiovascular 

phenotype in the absence of high salt diet (Wang et al., 2004), confirming that 

this phenomenon is constant across species. In man, the crucial role of dietary 

sodium has been confirmed in a cohort of hypertensive patients, where the 

blood pressure lowering effect of a restricted sodium intake was considerable 

(Pimenta et al., 2009). These data from Pimenta et al suggests that elevated 

aldosterone (without confirmation of autonomous aldosterone production) in 

combination with a high salt intake, leads to increased urinary protein 

excretion, independent of blood pressure. Further evidence of end organ 

damage caused by the combination of high salt and high aldosterone can be 

found in work by Du Cailar et al, who demonstrate that in a group of patients 

with hypertension, left ventricular hypertrophy progressively increased across 
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sodium tertiles only in patients with high plasma aldosterone concentration (du 

Cailar G. et al., 2010).  

Further evidence for the adverse effects of aldosterone is provided by findings 

that patients with primary aldosteronism have higher rates of left ventricular 

hypertrophy (Rossi et al., 1996) and other adverse cardiovascular events 

including stroke, non-fatal myocardial infarction (MI), atrial fibrillation (Rossi et 

al., 1996; Milliez et al., 2005) and renal dysfunction (Sechi et al., 2006) than 

patients with similar levels of blood pressure where aldosterone is not increased. 

The increased proteinurea associated with primary aldosteronism is partly 

reversible following medical therapy with mineralocorticoid antagonist or 

surgical resection (Sechi et al., 2006). 

 Aldosterone excess has also been associated with poor outcomes in heart failure 

as well as adverse events post myocardial infarction (Beygui et al., 2006). It is 

known that the degree of neurohumoral activation and specifically, increased 

aldosterone concentrations in plasma, are associated with increased mortality; 

both the SAVE trial (Vantrimpont et al., 1998) (post MI) and CONSENSUS 

(Swedberg et al., 1990) (heart failure) demonstrated that high aldosterone levels 

predict poor cardiovascular outcome. In addition, further data have confirmed 

that this association of increased mortality is present in patients across all NYHA 

classifications of heart failure (Guder et al., 2007).  These adverse effects are 

likely to reflect specific actions of aldosterone on the heart, given that the 

hormone in excess provokes myocardial fibrosis and remodelling in the rat heart, 

independent of blood pressure and angiotensin II (Brilla et al., 1990). Blocking 

aldosterone using mineralocorticoid receptor antagonists is associated with less 

remodelling both in animal models (Fraccarollo et al., 2003) and in a human 

cohort post MI (Weir et al., 2009). 

 Finally, the importance of mineralocorticoid receptor activation on 

development of cardiovascular dysfunction is illustrated by studies in patients 

with cardiac failure and myocardial infarction. A large number of clinical trials 

have investigated the utility of inhibition of renin/angiotensin system the in 

cardiovascular conditions, but the focus was predominantly on inhibition of 

angiotensin converting enzyme (ACE) or blockade of the angiotensin II receptor. 

However, pilot data from the RESOLVD trial (McKelvie et al., 1999) 
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demonstrated that even the combination of an ACE inhibitor and angiotensin 

receptor blocker does not chronically suppress aldosterone secretion - a 

phenomenon described as “aldosterone escape” - prompting the evaluation of 

inhibition of aldosterone action as an alternative approach in cardiovascular 

therapy.  The Randomised Aldactone Evaluation Study (RALES) (Pitt et al., 1999) 

provided the first crucial evidence that blockade of aldosterone receptors 

decreased mortality in patients with left ventricular systolic function, leading to 

a re-evaluation of the perception of aldosterone antagonists and their clinical 

applications. This study had a major influence on clinical practice and indeed, 

prompted a degree of concern regarding the increased incidence of adverse 

events associated with spironolactone, specifically hyperkalaemia. The EPHESUS 

study used the selective mineralocorticoid-receptor antagonist eplerenone 

added to recommended medical therapy. This reduced the rates of death from 

any cause and hospitalization for cardiovascular reasons among patients with 

acute myocardial infarction complicated by left ventricular systolic dysfunction 

and heart failure (Pitt et al., 2003). Most recently, EMPHASIS-HF evaluated the 

effects of eplerenone in patients with systolic heart failure and mild symptoms 

(NYHA class II) and also confirmed a mortality benefit as well as a reduction in 

hospitalisation (Zannad et al., 2011). 

In summary, it is clear that inappropriate aldosterone for the level of renin and 

salt intake can be detrimental and that blocking the action of aldosterone via 

mineralocorticoid receptor antagonists ameliorates this effect.  The mechanisms 

behind inappropriate aldosterone production are not clear. However, 

aldosterone levels (Inglis et al., 1999) and the aldosterone to renin ratio 

(Alvarez-Madrazo et al., 2009; Newton-Cheh et al., 2007) (the most commonly 

used screening test for aldosterone excess) are heritable, consistent with an 

underlying genetic mechanism. The aldosterone synthase gene catalyses the 

final rate limiting steps in the production of aldosterone and is a logical 

candidate gene for hypertension and the sub-phenotype of relative aldosterone 

excess. Further discussion of the aldosterone synthase gene and the effect of 

variation within it, leading to altered regulation of plasma aldosterone 

concentration will now follow.  

  



Chapter 1  84 

1.4 Structure of CYP11B2: Mutations and variations  

 CYP11B2 lies on chromosome 8 q24.3 and is a gene with 9 exons, all of which 

are transcribed. It is highly polymorphic with high linkage disequilibrium across 

the locus (White and Slutsker, 1995). However, this varies according to ethnicity 

with a greater degree of polymorphism and less strong LD in African populations, 

presumable due to greater frequency of recombination events (Alvarez-Madrazo 

S et al., 2009). CYP11B2 lies just 40kb from CYP11B1 (11 β-hydroxylase). These 

two enzymes are structurally very similar, with around 93% homology, reflecting 

their shared origin (they are thought to be as a result of a gene duplication 

event). However, there is less similarity between their 5’ untranslated regions, 

presumable reflecting their separate mechanisms of regulation. 

Mutations in aldosterone synthase which alter the protein code can result in 

decreased or absent aldosterone synthase activity. As aldosterone synthase 

catalyses both the 18-hydroxylation of corticosterone to 18-

hydroxycorticosterone (18-OHB) as well as the final biochemical step of 

aldosterone biosynthesis, the 18-hydroxylation of 18-OHB to aldosterone, an 

inability to undertake either or both of these reactions can occur. 

 To test the hypothesis that variation in aldosterone synthase could lead to a 

phenotype of hypertension and inappropriate aldosterone level for the level of 

renin, Smithies group (Makhanova et al., 2008) generated a mouse model with 

increased expression of the aldosterone synthase gene. This was achieved by 

inserting the more stable 3’ end of the human growth hormone gene instead of 

the endogenous 3’ end of aldosterone synthase gene. The group confirmed that 

the experimental mouse had greater levels of expression of aldosterone synthase 

and demonstrated that the experimental mouse had less activation of the RAAS 

under low salt conditions with less deactivation of the RAAS under high salt 

conditions than control animals. In addition, the experimental mice became 

hypertensive in response to high salt conditions and demonstrated greater 

cardiac hypertrophy in response to angiotensin II infusions, a phenomenon not 

exhibited by control mice. These important experiments are a proof of principle 

that increased expression of aldosterone synthase can lead to minor elevations 

in plasma aldosterone concentrations, but that phenotypic differences in the 
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form of hypertension and other adverse cardiovascular phenotypes are only 

evident under specific environmental conditions.  

Polymorphic variations in CYP11B2 (i.e. variation that is more frequent than 5% 

of the population and do not affect protein coding) have been described. White 

et al first described a polymorphism at position -344 in the 5’untranslated region 

of the gene (White and Slutsker, 1995). This corresponds to a binding site for 

steroidogenic factor 1 (SF-1), a transcription factor implicated in the 

transcriptional regulation of many steroidogenic enzymes. The C allele at 

position -344 binds SF-1 four-five times more avidly than the T allele (White and 

Slutsker, 1995; Bassett et al., 2002) but, this site appears to have no functional 

effect in vitro as deletion has no effect on transcription (Clyne et al., 1997) and 

reporter constructs carrying to two contrasting alleles are expressed at the same 

level (Bassett et al., 2002). 

 In addition, a variation in the intron 2 was also first described by White et al 

(White and Slutsker, 1995), where part of the sequence in the CYP11B2 intron 2 

corresponds to that of the intron 2 in CYP11B1. It is though that this has arisen 

from a gene conversion event. However, its functional significance is unclear 

and has as yet not been assessed in vitro, or indeed, clearly delineated in vivo. 

As we are now recognising the possible functional roles of what was previously 

thought of as “junk DNA” it may be worth investigating the possibility that the 

intron conversion polymorphism may play a functional role resulting in altered 

regulation of the gene.  

1.5 CYP11B2 and hypertension phenotypes 

There has been much interest in the polymorphic variation in CYP11B2 in 

relation to hypertension and the sub-phenotype of inappropriately elevated 

aldosterone levels. The T allele at -344 has been associated with increased 

excretion of urinary metabolites of aldosterone (Davies et al., 1999) and plasma 

aldosterone (Paillard et al., 1999). There is also evidence that, amongst 

hypertensive subjects with an elevated ARR, the T allele is more frequent (Lim 

et al., 2002). However, there are conflicting reports in the literature as to 

whether the T or the C allele is more prevalent in patients with hypertension. 

The discrepancy between different populations (not an uncommon finding in 
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candidate gene studies as discussed above in section 1.1.6) may be as a result of 

variation in linkage disequilibrium in different populations, a phenomenon that 

we know varies with ethnicity. A meta-analysis conducted in 2007 concluded 

that, overall the -344 C allele was associated with around a 17% reduced relative 

risk of hypertension than the -344 T allele (Sookoian et al., 2007).  

 An interesting phenomenon associated with genetic variation at -344 is that of 

an alteration in index of 11β- hydroxylation. Elevated deoxycorticosterone and 

11-deoxycortisol in relation to corticosterone and cortisol has been consistently 

found in T allele carriers compared to C allele carriers (Davies et al., 1999; 

Davies et al., 2001). Why alteration in CYP11B2 is associated with a phenotype 

of reduced efficiency of the enzyme encoded by CYP11B1 is not clear. However, 

it has been demonstrated that the polymorphism at -344 in CYP11B2 is in strong 

LD with variation in the promoter region of CYP11B1 which is associated with 

reduced transcriptional activity in response to ACTH in in vitro studies (Barr et 

al., 2006). The mechanism may have some similarities to that observed in 

individuals with 11 β-hydroxylase deficiency i.e. that increased ACTH as a result 

of an absence of negative feedback from cortisol, leads to increased drive to the 

adrenal cortex. In the case of congenital adrenal hyperplasia caused by the 

monogenic disorder 11 β-hydroxylase deficiency, this increased ACTH drive is 

associated with increased deoxycorticosterone (see section 1.3.1, Table 1-5) 

which acts as a mineralocorticoid leading to increased sodium and water 

retention and thus suppression of renin. In contrast, in the case of the more 

minor reduction in 11 β-hydroxylation described here, in which cortisol levels 

are entirely normal, it has been suggested that increased ACTH drive (as 

evidenced by increased morning plasma ACTH concentrations (Freel et al., 2008) 

and increased adrenal androgens (Freel et al., 2007), leads to increased 

synthetic capacity for aldosterone production either by causing hyperplasia of 

the zona glomerulosa or by increasing expression of CYP11B2. Thus, according to 

this hypothesis, the phenotype may not be driven by variation in the CYP11B2 

gene but rather that the -344 polymorphism is merely a “passenger” SNP which 

is inherited along with the “driver” SNPs in the promoter region of CYP11B1. 

However, as described above (see section 1.2.5), the role of ACTH as a trophin 

of aldosterone production is controversial. Indeed, in the case of CAH due to 11 

β-hydroxylase deficiency hypertension is caused not by increased aldosterone 
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but rather by increased deoxycorticosterone secretion, and aldosterone levels 

are low. 

Another possible alternative hypothesis is that the entire CYP11B1/ CYP11B2 

locus is necessary for the development of the phenotype, with variation in the 

CYP11B1 promoter driving the elevated DOC: S, B: F ratio and that this is co 

inherited with variation within the CYP11B2 promoter which causes increased 

aldosterone. Recent data from within the Connell/ Davies group suggest that the 

haplotype containing the T allele at -344 along with A/G at -1881/ 1851 in 

CYP11B1 is associated with increased transcription of aldosterone synthase and 

reduced transcription of 11 β-hydroxylase in vitro and an increased risk of 

hypertension in vivo. 

Having described some of the current knowledge in the field relating to the 

regulation of aldosterone levels in general and the regulation of transcription of 

aldosterone synthase in particular, a programme of work has been undertaken to 

investigate the hypotheses discussed in the following section.  

1.6 Hypothesis: Aldosterone and essential 

hypertension 

1.6.1 Hypothesis  

The principle hypotheses to be explored in the following work is firstly, that 

there is a genotype-dependant increase in basal aldosterone production and/ or 

increased responsiveness of aldosterone production to its principle trophins and 

secondly, that this phenotype also displays evidence of inefficient 11β-

hydroxylase activity as evidenced by an increase in the ratio of 11-deoxycortisol 

to cortisol and an increase in the ratio of 11-deoxycorticosterone to 

corticosterone. Further, I propose that the molecular mechanisms that produce 

this phenotype are a result of polymorphisms that are inherited in a non-random 

fashion in the two genes controlling the final stages of corticosteroid 

metabolism. Specifically, I aim to test whether increased aldosterone production 

is a result of variation in the promoter region of CYP11B2 and corresponds to 

increased promoter activity and/ or increased sensitivity to trophins. Thus, a 

mechanism for increased aldosterone in some individuals may be independent of 
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relative inefficiency of 11β-hydroxylase which is co-inherited as a result of high 

linkage disequilibrium within the locus. 

1.6.2  Aims 

To identify the pattern of linkage disequilibrium across the promoter region of 

aldosterone synthase. 

To investigate and validate the H295R adrenocortical cell line as an appropriate 

model for the study of the regulation of steroidogenesis in general and 

aldosterone production in particular.  

To investigate the functional effects of candidate polymorphisms in the 

promoter region of aldosterone synthase in order to determine their likely 

effects on aldosterone production.  

To explore in detail the effect of variation in the promoter region of aldosterone 

synthase on corticosteroid production and regulation in normal adult volunteers 

studied under standardised salt conditions.  
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2. Methods 

2.1 Genotyping of polymorphisms in the CYP11B2 

and CYP11B1 locus 

2.1.1 Subjects 

Oxford cohort (HTO) has been previously described (Baker et al., 2005) and 

consists of 1773 individuals from 255 families where the proband was found to 

have essential hypertension. Subjects were recruited from 1993-1996 and 

families were ascertained from the hypertension clinic at the John Radcliffe 

Hospital, Oxford, or through general practices in the Oxford area. Hypertension 

was defined as mean SBP> 140mmHg and DBP>90mmHg on daytime ambulatory 

monitoring or more than three office BP readings of SBP>160mmHg 

DBP>95mmHg. All patients were 60 or younger at time of onset of hypertension. 

Subjects aged more than 30 years with a diastolic blood pressure <90 mmHg and 

a systolic blood pressure <140 mmHg were considered unaffected. Exclusion 

criteria were a BMI >30 kg/m2, use of oral contraception or a diagnosis of a 

secondary causes of hypertension. All probands and family members were UK 

residents of self reported Caucasian ethnicity. For the purposes of this work, 279 

individuals were selected at random from this cohort for genotyping across the 

CYP11B2 promoter region. 

2.1.2 PCR of CYP11B2 promoter region 

The 2kb region of the CYP11B2 promoter was amplified by polymerase chain 

reaction (PCR) followed by sequencing. A number of primers were designed 

based on published sequences of the CYP11B2 gene 

(http://www.ensembl.org/index.html) and were between 20 -24 bp in length. 

They had less than 60% Guanine/ Cytosine (G/C) content and were screened for 

their ability to form secondary structures and dimers. In addition, they were 

checked for specificity using the BLAST database, 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi).  The primers, which had been purified 

by the High Purity Salt Free (HPSF) purification method, were commercially 

obtained (Eurofins MWG Operon, Ebersberg, Germany). The optimum primer 

combination was selected and used for PCR amplification of the region. Primer 

sequences are shown in the following table.  
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PRIMER 
DIRECTION 
 

SEQUENCING/ 
PCR 

PRIMER 
NAME 

SEQUENCE BASE 
PAIRS 

TM 
(°C) 

Sense PCR B2_F2 GCC AAT AGA 
ACT GAC TTG CC 

20 57.3 

Antisense Sequencing B2_R1 AGG ATT T GG 
GCT GAA CA G 
GGT GGA 

24 64.4 

Antisense Sequencing SF1R AGG CGT GGG 
GTC TGG ACT 

18 60.5 

Antisense Sequencing B2Pro494 TTC AAG CAA 
TTC TCC CGC CT 

20 57.3 

Antisense PCR B2 5’ 
783 

AGA TCA TCC 
CAC TGC ACT 

CC 

20 59.3 

 

The Taq polymerase that was used was a mixture of Thermostable Taq DNA 

Polymerase and a polymerase with proof reading (3’-5’ exonuclease) activity, 

Expand High Fidelity PCR systems (Roche Diagnostics, Mannheim, Germany). The 

PCR conditions were optimized using a temperature gradient and the most 

successful annealing temperature was chosen. PCR reactions were set up in 96 

well plates and the PCR was performed on Tetrad PTC-225 Thermo Cycler (MJ 

Research Waltham, Massachusetts, USA). 5 µl DNA (5ng/ µl) was added to the 

following reaction mixture: 

Reagent Volume added per 
well  

Final concentration 

dNTPs 2 µl 80µM 

Forward Primer 0.75µl 400nM 

Reverse Primer 0.75µl 400nM 

Expand High Fidelity Taq DNA 
polymerase  

0.75µl 

Expand High Fidelity Buffer, 
10x conc. with MgCl2  

2.5 µl 

Nuclease free water  13.25 µl 

Total 20 µl 

 

 

  

 



Chapter 2  92 

The PCR conditions were as follows: 

1. 94°C for 2 mins    Denaturing step 
2. 94°C for 15 secs    Denaturing step 
3. 61.4°C for 30 secs    Annealing step 
4. 68°C for 4 mins    Elongation step 

Repeat steps 2-4 for 9 cycles 
5. 94°C for 15 secs    Denaturing step 
6. 61.4°C for 30 secs     Annealing step 
7. 68°C for 4 mins (+ 5 secs per cycle) Elongation Step 

Repeat step 5-7 for 19 cycles 
8. 72°C for 7 mins    Final Elongation 

 
Selected samples, including a negative control, were resolved on a 1% agarose 

gel. Agarose (1g) was added to 100ml TBE buffer and heated to boiling point in a 

950W microwave oven for 50 seconds. 1 µl ethidium bromide was added and 

gently mixed. This was allowed to cool in gel moulds with Teflon combs until 

set. To confirm the presence of PCR product and the absence of contamination, 

10 µl of PCR product was loaded into the wells and run at 90 volts for 40 mins. 

DNA bands were visualised under UV light at 302nm and results were recorded 

using Multi-Analyst software v1.1 (Bio-Rad, Hertfordshire, UK) and a 2kb band 

was visualised. 

The PCR product was cleaned up prior to sequencing using the AMPure system 

(Agencourt, Beverly, MA, USA.) removes unincorporated primers, dNTPs, DNA 

polymerases and salts used during PCR amplification that can interfere with the 

sequencing reaction. AMPure was re-suspended by vortexing before adding to 

the PCR reaction products. The plate was spun down and incubated for 3 min 

before being placed on a magnetic block for 10 min. 200µl of 70% ethanol was 

added to each well and after 30 sec, the supernatant was discarded by inverting 

the plate, whilst still on the magnet, onto absorbent paper. The inverted plate 

and magnet were spun down at 76x g for 30 sec. The plate was removed form 

the magnet and left to air dry for 20 min before the addition of 40µl of NF 

water. The plate was returned to the magnet for 10 min and 2µl of this final 

solution was the substrate for the sequencing reaction.  

2.1.3 Sequencing reactions for CYP11B2 promoter reg ion 

PCR products were sequenced using Applied Biosystems Big Dye v3.1 cycle 

sequencing chemistry (PE Applied Biosystems, Foster City, California, USA), a 
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modification of the chain terminator method. This process requires a primer 

which is complementary to the beginning of the sequence of DNA previously 

amplified by PCR. This is annealed to the DNA and then extended by DNA 

polymerase using modified substrate which includes labeled 2’-3’- 

dideoxynucleotides. Each base is labelled with a different colour; these ddNTPs 

are incorporated into the replicate DNA however, once incorporated further 

extension is not possible due to the lack of a 3’ hydroxyl group. PCR products of 

varying lengths are produced, which can be fractionated on a sequencing 

column. Fluorescent sensors detect the colour of each DNA strand, allowing the 

nucleotide sequence to be interpreted.  

Sequencing reactions were set up in 96 well plates with the following 

components:  

Reagent Volume added per well  
PCR product 2 µl 

Primer (3.2pmol/ µl) 1 µl 
Sequencing Buffer (5x) 3.5 µl 

ABI PRISM BigDye Termination v3.1 
Ready Reaction Mix 

0.5 µl 

Nuclease free water 13 µl  
Total 20 µl 

 

Sequencing primers are shown in the first table. The sequencing reaction was 

performed on 96 well PTC 225 Peltier Thermal Cycler (MJ Research, Waltham, 

MA, USA) and the conditions were as follows: 

1. 96°C for 45 seconds 
2. 50°C for 25 minutes 
3. 60°C for 4 minutes 

4. Repeat from step (1) x 24 
5. Incubate at 94°C for 15 minutes 

 

The CleanSEQ purification method (Agencourt, Beverly, MA, USA) was utilised to 

remove reagents of the sequencing reaction prior to automated sequencing. The 

CleanSEQ reagent was resuspended by vortexing before adding 10µl was added 

to the sequencing product. 62µl of 85% ethanol was also added to each well. The 

plate was placed on the magnet for 5 min before the solution was removed and 
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discarded. 150µl of 85% ethanol was added to each well and this was incubated 

at room temperature for 30 secs. The plate and magnet were inverted on 

absorbent paper and centrifuged at 210 x g for 30 secs. The plate was removed 

from the magnet and left to dry for 20 min before the addition of 40µl of NF 

water. The plate was vortexed, spun down at 210 x g for 30 sec before being 

placed back on the magnet when 20µl was transferred to a bar coded plate for 

automated sequencing.  

Automated sequencing was preformed on ABI 3730 DNA analyser (Applied 

Biosystems, Foster City, CA, USA) 

Results were analysed using SeqScape v2.2 genotyping software (Applied 

Biosystems, Foster City, CA, USA) and sequences were aligned to a reference 

sequence based on published sequences of the CYP11B2 gene (Entrez Gene 

database, NCBI  http://www.ncbi.nlm.nih.gov/gene). Sequence annotated with 

location of SNPs and primers used is given in Appendix 7.2. Samples of poor 

quality were excluded from further analysis.  

2.1.4 PCR and sequencing of CYP11B2 intron 2 region  

The intron 2 polymorphism was genotyped according to a protocol previously 

optimised in the laboratory. The PCR primers are shown in the following table. 

PRIMER 
DIRECTION 

SEQUENCING/
PCR 

PRIMER NAME SEQUENCE BASE 
PAIRS 

TM 
(°C) 

Sense PCR ICTAQMAN F GATGGCATGAAGCA
CAAAGCT 

21 57.9 

Antisense PCR ICTAQMAN R CCTTGGGCGACAG
CACA 

17 57.6 

Antisense Sequencing INTCONR 
(B1B2) 

GTGTTCGAGCTGC
AGCCTTTTC 

22 62.1 

 

 PCR reactions were set up in 96 well plates and the PCR was performed on 

Tetrad PTC-225 Thermo Cycler (MJ Research Waltham, Massachusetts, USA).10µl 

of DNA (5ng/µl) was added to the following master mix: 
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Reagent Volume added per 
well 

Final concentration 

dNTPs 5 µl 200µM 
Forward Primer 0.5µl 400nM 
Reverse Primer 0.5µl 400nM 
MgCl2(25mM) 2 2.0mM 

Thermostart Taq, Abgene  1.25µl 
Thermostart Buffer, 10x conc. 2.5 µl 

Nuclease free water  6.25 µl 
Total 15 µl 

 

 
The PCR conditions were as follows:  

1. 95°C for 15 mins 
2. 95°C for 15 secs 
3. 62°C for 30 secs 
4. 72°C for 2 mins 

Repeat steps 2-4 for 44 cycles 
5. 72°C for 7 mins 

 

Selected samples, including a negative control, were resolved on a 1% agarose 

gel as previously described and a 600bp band was visualised. The PCR products 

were cleaned up as previously described.  

2.1.5 PCR and sequencing of CYP11B1 promoter region  

The polymorphisms in the promoter region of CYP11B1 were genotyped 

according to a protocol previously optimised in the laboratory. The PCR primers 

are shown in the following table. 

PRIMER 
DIRECTION 

SEQUENCING/ 
PCR 

PRIMER 
NAME 

SEQUENCE BASE 
PAIRS 

TM 
(°C) 

Sense 1ST PCR B1 5’UTR TCCTTCGCATCCCTTG
TAAGTT 

22 58.4 

Antisense 1ST PCR B1 PROM-
260 

CTTGGATTATTCAT
CTCCTTGCAAGG 

26 61.6 

Sense 2ND PCR B1 5’  
732 

GCATCCCTTGTAAG
TTGGATTCCTAA 

26 61.6 

Antisense 2ND PCR B1 5’ 
369-393 

AAGCATTCCCTTTG
AAAACTGGTAC 

25 59.7 

Antisense Sequencing B1 PROM 
250-229 

AAGTCAAATTGTCT
CTGTTTG 

21 52 
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The first PCR reactions were set up in 96 well plates and the PCR was performed 

on Tetrad PTC-225 Thermo Cycler (MJ Research Waltham, Massachusetts, 

USA).5µl of DNA (5ng/µl) was added to the following master mix: 

Reagent Volume added per 
well 

Final concentration 

dNTPs 5 µl 200µM 
Forward Primer 1µl 400nM 
Reverse Primer 1µl 400nM 
MgCl2(25mM) 1.5 µl 2.0mM 

Thermostart Taq, Abgene  0.25µl 
Thermostart Buffer, 10x conc. 2.5 µl 

Nuclease free water  8.75 µl 
Total 20 µl 

 

 

The PCR conditions were as follows:  

1. 95°C for 15 min 
2. 95°C for 30 sec 
3. 60°C for 30 sec 
4. 72°C for 3 min 

Repeat steps 2-4 for 34 cycles 
5. 72°C for 7 min 

 

The PCR products were then diluted 1:10 in nuclease free water and 1µl used as 

a template for the second PCR reaction using the following master mix: 

Reagent Volume added per 
well 

Final concentration 

dNTPs 5 µl 200µM 
Forward Primer 1µl 400nM 
Reverse Primer 1µl 400nM 
MgCl2(25mM) 1.5 µl 2.0mM 

Thermostart Taq, Abgene  0.125µl 
Thermostart Buffer, 10x conc. 2.5 µl 

Nuclease free water  12.875 µl 
Total 24 µl 
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The PCR conditions were as follows:  

1. 95°C for 15 min 
2. 95°C for 30 sec 
3. 60°C for 30 sec 
4. 72°C for 3 min 

Repeat steps 2-4 for 34 cycles 
5. 72°C for 7 min 

 
Selected samples, including a negative control, were resolved on a 1% agarose 

gel as previously described and a 387bp band was visualised. The PCR products 

were cleaned up as previously described.  

2.1.6 Data analysis 

The data from the sequencing of the CYP11B1 and CYP11B2 region was analysed 

using Haploview V4.2 (http://www.broad.mit.edu/mpg/haploview)(Barrett et 

al., 2005). This package was used to determine Hardy- Weinberg equilibrium, 

percentage of genotyping, pattern of linkage disequilibrium and haplotype 

structure.  

2.2 Cell culture  

2.2.1  H295R cell maintenance and subculturing proc edure 

H295R cells were a gift from Prof W Rainey (Medical College of Georgia). DNA 

was extracted according to standard techniques and Short Tandem Repeat (STR) 

profiling was performed by LGC standards (Teddington, Middlesex, UK). Short 

tandem repeat analysis is a commonly used forensic test and has been proposed 

for verifying the identity of cell lines (Masters et al., 2001). Shown below Figure 

2-1 is the profile of the Strain 2 H295R cells, cultured as described above. This 

profile matches the expected result from the commercially available H295R cells 

(H295R CRL-2128) and verifies that the cells have not been cross contaminated 

or misidentified. 



Chapter 2  98 

 

Figure 2-1 Short Tandem Repeat analyisis of H295R D NA 
 

Cells were grown in a monolayer in medium consisting of DMEM/ F12 (Invitrogen, 

Paisley, Scotland) supplemented with 2% Ultroser G serum (Pall scientific, Cergy, 

France), 1% ITS Universal culture supplement (Insulin, Transferrin, Selenous acid. 

BD Bioscience, Oxfordshire, UK), 1% Penicillin/streptomycin (Invitrogen, Paisley, 

Scotland). Cells were cultured at 37°C with 5% CO2 until approximately 80% 

confluent.  The culture medium was removed and the cells rinsed with 

phosphate buffered saline (PBS) solution. Trypsin-EDTA 0.25% (Sigma, St Louis, 

Missoiuri, USA) was added to cover the cells and after incubation for 

approximately 3 minutes the cells detached from the flask. Complete growth 

medium was added to inactivate the trypsin and the solution was spun at 

1500rpm for 5 minutes. The cells formed a pellet and after removing the growth 

medium, were re-suspended in fresh complete growth medium and aliquoted to 

new flasks according to the desired sub cultivation ratio. Cells were fed with 

fresh media every 3 days and usually spit in a ratio of 1 in 2 to 1 in 3 once per 

week.  

 Cells that were frozen down were handled in the same way however, after 

being spun down to a pellet they were re suspended in growth medium 

supplemented by dimethyl sulphoxide (DMSO). Aloquots were transferred to 

cryovials and frozen gradually in a Nalgene cryo freezing container (Thermo 

Fisher Scientific, NY, USA) before being transferred to liquid nitrogen for long 

term storage. When cells were removed from liquid nitrogen, they were thawed 

in a water bath at 37°C, the cell were pelleted by centrifugation and after the 
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defrosted medium was removed, fresh growth medium was added and the 

solution was transferred to a 75cm3 flask and incubated at 37°C with 5% CO2. 

2.2.2 H295R Phenotyping: General 

H295R cells were sub-cultured into 100mm tissue culture dishes at a 

concentration of 5x106 per dish. After 24 hours, the cells were rinsed with 

phosphate buffered saline (PBS) (Invitrogen, Paisley, Scotland) and the medium 

replaced with serum-free medium (10 ml). After a further 24 hours, this was 

replaced, either with fresh serum-free medium alone or with medium containing 

Ang II (10 pM), potassium chloride (6 mM) or dibutyryl cAMP (Bu2cAMP) (1 mM) 

(Sigma, St Louis, Missouri). Each experiment was performed in triplicate.   

2.2.3 H295R phenotyping: RNA extraction and analysi s 

Cells were trypsinised and pelleted as described above and the pellet was 

washed twice in DPBS. The cells were disrupted using Buffer RLT from RNeasy 

Mini Kit (QIAGEN, Crawley, U.K.) with the addition of 1% β-mercaptoethanol to 

inhibit RNAse activity. Lysates were transferred to 2ml lysing matrix tubes 

(Lysing matrix D 1.4mm ceramic spheres, MP Biomedical, Salon, Ohio, USA) and  

homogenised for 30 sec on a rotator stator homogeniser (MagNA Lyser Roche, 

Switzerland). One volume of 70% ethanol was added and mixed well by 

pippetting. This was passed through an RNeasy spin column, which selectively 

binds RNA molecules longer than 200 bases to its silica membrane, and 

centrifuged for 15 secs at > 8000x g. The membrane was washed with 700µl of 

buffer RW1 followed by 2 washes of 500µl Buffer RPE before being eluted with 

30µl of PCR grade water (x2).   

To eliminate genomic DNA contamination, the samples were DNased using the 

TURBO DNA-free kit (Applied Biosystems, Foster City, CA, USA). 0.1 volumes of 

10x Turbo DNase buffer and 1 µl TURBO DNase was added to the RNA. This was 

incubated at 37°C for 30 min before the addition of 0.1 volume of DNase 

inactivation reagent. This was left for 5 min at room temperature with 

occasional mixing before being spun down at 10 000 x g for 1.5 min. The 

supernatant containing the RNA was aspirated and the remaining pellet 

discarded.   
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RNA was diluted to a constant concentration using a spectrophotometer (ND-

1000 spectrophotometer, Nanodrop Technologies, Washington, USA) before 

being transcribed to cDNA using the ImProm-II Reverse Transcription System 

(Promega, Madison, Wisconsin, USA) on a 96 well plate according to the standard 

protocol. All samples were reverse transcribed alongside an equivalent reaction 

omitting reverse transcriptase (–RT control) and reactions substituting water for 

RNA were also performed (blank controls).   

Denature 

Reagent Volume per reaction 
 

RNA 2 µl 
Random primers(0.5 µg/reaction) 1 µl 

Nuclease free water 2 µl  
Total 5 µl 

 

This was heated to 70°C for 5 mins then chilled on ice to 5°C for 5 mins. 

Reverse transcription 

Reagent Volume per reaction Final concentration 
Nuclease free water 3.7 µl 

ImProm-II 5x reaction buffer 4.0 µl 
 

MgCl2  4.8 µl 6 mM 
dNTPs  1.0 µl 0.5 mM each dNTP 

Inhibitor 0.5 µl 20 U 
RT/Water 1.0 µl 

Total 15 µl 
 

 

The Reverse transcription conditions were as follows:  
 

1. 25°C for 5 mins     Annealing step 
2. 42°C for 1 hour    Elongation step 

3. 70°C for 15 mins    Inactivation 
 

Quantitative RT-PCR assays for CYP17 (17α-hydroxylase), CYP11B1 (11β-

hydroxylase) and CYP11B2 (aldosterone synthase) were performed with β-actin 

used as a housekeeping gene. All reactions were performed in a 384-well plate 

format on an ABI 7900 HT Prism Sequence Detection System (Applied Biosystems, 
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Foster City, California, USA). Primers were obtained from Eurofins MWG Operon, 

Ebersberg, Germany, ABsolute QPCR ROX Mix from ABgene,Epsom, UK and 

probes from Universal Human Probe Library, Roche Diagnostics, Burgess Hill, UK. 

GENE PRIMER SEQUENCE PROBE 
CYP11B2 (F) GCACCTGCACCTGGAGATG 

(R) CACACACCATGCGTGGTCC 
 

#57 

CYP11B1 (F) ACTAGGGCCCATTTTCAGGT 
(R) GGCAGCATCACACACACC 

 

#68 

CYP17 (F) CTATGCTCATCCCCCAC AG 
(R) TTGTCCACAGCAAACTCACC 

 

#67 

β-ACTIN (F) CCA ACC GCG AGA AGA TGA 
(R) CCA GAG GCG TAC AGG GAT AG 

 

#64 

 

Reagent 
 

Volume per reaction Final concentration 

Nuclease free water 2.1 µl 
ABsolute QPCR ROX Mix 5.0 µl 

 

Forward primer 0.4 µl 400nM 
Reverse primer 0.4 µl 400nM 

Probe 0.1 µl 100nM 
Total 8 µl  

 

  8 µl master mix was pippetted into a 384 well plate. This was spun down before 

the addition of 2 µl cDNA. Reactions were incubated at 95°C for 15 min followed 

by 40 cycles at 95°C for 15 s and 60°C for 1 min. Results were analysed using the 

comparative CT method (2-∆∆Ct) (Livak and Schmittgen, 2001). 

2.2.4 H295R phenotyping: steroid and protein 

measurements 

Medium was removed at 24 hours and stored at -20°C. Steroid extraction and 

measurement was performed by Miss Mary Ingram. Steroids were extracted from 

medium (10 ml) using ChemElute cartridges (Varian, CA, USA) and eluted with 

dichloromethane. The eluates were evaporated to dryness under nitrogen and 

reconstituted in acetonitrile (60 µl). An aliquot (20µl) was chromatographed on a 
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reversed phase column (Polaris 5 µm, 150mm x 2mm C18-A) and the effluent 

analysed by tandem LC:MS (Varian 1200L, California, USA).  

2.2.5 Protein assay: Bicinchoninic acid (BCA) assay  

Cells were washed with DPBS, (Invitrogen, Paisley, Scotland), 1000µl of Reporter 

Lysis Buffer (Promega, Wisconsin, USA) was added and the cells left at room 

temperature for 15 mins with occasional rocking. Culture vessels were then 

stored at -70°C until analysis. Samples were thawed and protein assays were 

carried out to correct for cell number using a commercially available 

bicinchoninic acid (BCA) kit (Pierce Biotechnology, Rockford Illinois, USA). This 

assay relies on the principle that protein will reduce Cu 2+ to Cu 1+ in an alkaline 

environment. The Cu 1+ ion can be detected by the reaction of bicinchoninic acid  

with Cu 1+ which turns purple. The BCA/copper complex is water-soluble and 

exhibits a strong linear absorbance at 562 nm with increasing protein 

concentrations. 25µl of cell lysate was pippetted into a clear 96 well plate. 

200µl of BCA working reagent was added to the sample and after incubation at 

37°C for 30 mins the plate was read using a Wallac Victor 1420 Multilabel 

Counter (PerkinElmer Life Scciences, Boston, Massachusetts, USA). A standard 

curve was made up with bovine serum albumin (BSA) protein standards and 

Reporter Lysis Buffer, and this was used to determine protein concentration. 

2.3 Promoter in vitro  functional studies 

2.3.1 Reporter gene system 

The effect of polymorphic variation on the promoter activity was investigated 

using a reporter gene assay system. The CYP11B2 5’ region (1880kb) was cloned 

into the pGL3 Basic vector (Promega, Wisconsin, USA) by Mrs Christine Holloway. 

The pGL3 Basic vector contains a modified coding region for firefly (Photinus 

pyralis) luciferase. The construct was sequenced to confirm the insert was 

present and orientated correctly. Site directed mutagenesis was carried out by a 

commercial company (Eurofins MWG Operon, Ebersberg, Germany). This resulted 

in one plasmid containing a T allele at position -1651 and one identical plasmid 

with the exception of a C allele at position -1651. In order to control for 

transfection efficiency, the plasmid pGL4.73 was co-transfected with the pGL3 

reporter construct at a ratio of 50:1. The pGL4.73 plasmid contains a coding 



Chapter 2  103 

region for renilla (Renilla reniformis) luciferase. Both plasmids were prepared in 

the same way as described in the following sections.  

2.3.2 Transformation of competent cells 

The plasmid DNA was transformed into JM109 E.Coli competent cells (Promega, 

Wisconsin, USA). Each construct was transformed alongside a positive control 

and a no DNA control. 1ml eppendorf tubes were pre chilled on ice and JM109 

cells were thawed to 4°C.  50µl of competent cells were dispensed to the pre 

chilled eppendorfs before adding 50ng of plasmid DNA. This was left on ice for 

10 minutes before being subjected to heat-shock treatment at 42°C for 50 

seconds. The cells were returned to ice for a further 2 minutes before 900µl cold 

Super Optimal broth with Catabolite repression medium (SOC) was added. This 

was incubated for 1 hour at 37°C while shaking. 100µl of cells were plated on 

Luria broth with ampicillin and incubated overnight at 37°C. Single transformed 

colonies were used to inoculate incubations which were then shaken overnight at 

37°C in 5ml Luria broth with ampicillin. 

2.3.3 DNA purification 

Plasmid DNA was extracted using the QIAprep Mini Prep kit (QIAGEN Ltd, West 

Sussex, UK). The cultured Luria broth was transferred to a 1.5ml eppendorf tube 

and centrifuged at maximum speed for 2 min. The resultant cell pellets were 

resuspended in 250µl of Buffer P1 (50mM 2-amino-2-hydroxymethyl-1,3-

propanediol, pH8; 10mM EDTA, 100µg/ml RNAase A). To lyse the cells 250µl 

buffer P2 (200mM NaOH; 1% sodium dodecyl sulphate) was added and mixed 

gently by inverting. 350µl buffer P3 (3 M potassium acetate at pH5.5) was added 

and mixed by gently inverting the tube. The samples were centrifuged at 

maximum speed for 10 min using a table top centrifuge. The supernatants were 

transferred to a QIAprep Spin Column and centrifuged at maximum speed for 1 

min. The flow through was discarded and the column washed by adding 0.5 ml 

buffer PE before being centrifuged at maximum speed for 1 min. This step was 

repeated with 0.75ml buffer PE before further centrifugation at maximum speed 

for 1 min. The column was then placed in a clean 1.5 ml eppendorf and the DNA 

eluted by adding 50µl of nuclease free water to the spin column. This was 

allowed to stand for 1 min prior to being centrifuged at maximum speed for 1 

min. The mini preps were stored at 4°C for further use.  
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2.3.4 Restriction digestion 

To ensure the construct was of the correct size and contained the appropriate 

insert, restriction analysis was performed. Plasmid DNA was digested with HinDIII 

restriction enzyme, which linearized the cDNA, producing a single fragment of 

6740 bp and BamHI which produced 3 fragment of 2863 bp, 2594 bp and 1283 bp. 

2 µl of plasmid DNA was incubated with 0.5 µl of enzyme, 2 µl of buffer, 0.2 µl 

of BSA and 15.3 µl of nuclease free water. The reaction mixture was incubated 

for 2 hours at 37°C. The construct was resolved on a 1% agarose gel. Agarose 

(1g) was added to 100ml TBE buffer and heated to boiling point in a 950W 

microwave oven for 50 seconds. 1 µl ethidium bromide was added and gently 

mixed. This was allowed to cool in gel moulds with Teflon combs until set. The 

gel and digestion products were subjected to electophoresis at 100V for 40 min.  

 

Figure 2-2 Agarose gel electrophoresis of plasmid c onstruct and plasmid control.  

Lane 1 ladder, lane 2 pGL3 basic vector following r estriction enzyme digestion, lane 3 basic 
vector incubated with no enzyme, lane 4 pGL3 contro l vector following restriction enzyme 
digestion, lane 5 pGL3 control vector incubated wit h no enzyme, lane 6 pGL3 construct 
(CYP11B2 5’ region) following restriction enzyme di gestion, lane 7 pGL3 construct 
(CYP11B2 5’ region) incubated with no enzyme, lane 8 reaction mix, no DNA, lane 9 ladder. 
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2.3.5 Large scale plasmid preparations 

Large scale plasmid preparations were performed using a QIAgen plasmid Maxi 

kit. A single colony from a freshly streaked ampicillin Luria plate which had been 

gown overnight was picked and used to inoculate a starter culture. This was 

grown in 5ml Luria broth containing 100µg/ml ampicillin and shaken in an 

incubator at 37°C for 8hrs. 1ml of this was diluted in 100ml of Luria broth with 

ampicillin and incubated overnight in a shaking incubator at 37°C.  

The bacterial cells were harvested by centrifugation at 6000 x g for 15 min at 

4°C. Culture media was removed and pellets were resuspended in 10ml of buffer 

P1 (50mM 2-amino-2-hydroxymethyl-1,3-propanediol, pH8; 10 mM EDTA, 100 

µg/ml). 10 ml of buffer P2 was added (200 mM NaOH; 1% SDS) to initiate the lysis 

reaction and this was inverted 4-6 times and kept at room temperature for 5 

min. 4ml of chilled buffer P3 (3 M potassium acetate at pH5.5) was added to 

neutralise the lysate and the mixture was inverted again 4-6 times and 

incubated on ice for 20 min. The solution was centrifuged at 16000 x g for 40 

min at 4°C. A QUIATIP column was equilibrated with 10 ml of buffer QBT (750 

mM NaCl; 50 mM 3-morpholinopropanesulfonic acid pH7 (MOPS); 15% 

isopropanol; 0.15% Triton-X 100) which was allowed to empty by gravitational 

flow. The lysate supernatant was applied to the column and allowed to enter the 

resin. The column was washed twice with 30ml buffer QC (1 M NaCl; 50 mM 

MOPS pH7; 15% isopropanol), and the plasmid DNA was eluted with 15ml of 

buffer QF (1.25 M NaCl; 50 mM Tris pH8.5; 15% isopropanol) into polypropylene 

tubes. The DNA was precipitated with the addition of 10.5ml isopropanol and 

centrifuged at 15000 x g for 20min at 4°C. The supernatant was poured off and 

pellets resuspended in 5ml of 70% ethanol and aliquoted into eppendorfs. These 

were centrifuged at 160000 x g for 10 min and once the supernatant was 

discarded, allowed to air dry for around 1 hour and DNA dissolved in 100 µl of 

nuclease free water.  

2.3.6 H295R transient transfection procedure 

H295R cells were grown as described in section 2.2. For transfection, cells were 

sub-cultured onto 24 well subculture dishes at a density of 2x105 cells/ well. 

Cells which were initially grown in 175cm flasks were counted according to the 

following protocol. The culture medium was removed and the cells rinsed with 
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phosphate buffered saline (PBS) solution. Trypsin-EDTA 0.25% (Sigma, St Louis, 

Missouri, USA) was added to cover the cells and after incubation for 

approximately 3 minutes the cells detached from the flask. Complete growth 

medium was added to inactivate the trypsin and the solution was spun at 

1500rpm for 5 minutes. The cells formed a pellet and after removing the growth 

medium, were re-suspended in 1ml of fresh complete growth medium. This was 

diluted 1:100 and cells counted using a haematocytometer. The cells were 

diluted to a concentration of 4x105 cells/ ml in a universal tube and placed back 

in the incubator until ready for use. 

 Cells were transfected with pGL3 basic (Promega, Madison, Wisconsin, USA) 

expression vectors containing 1.8kb of the CYP11B2 promoter and plasmid with T 

allele at position -1651) and C allele at -1651 (mutated by site directed 

mutagenesis) were compared. pGL4.73 (Promega, Madison, Wisconsin, USA) was 

co-transfected to control for transfection efficiency. Transfections were carried 

out using siPORT™ NeoFX™ Transfection Agent (Applied Biosystems, Foster City, 

California, USA) according to the manufacturers protocols using the reverse 

transfection method. The protocol was as follows. A solution of containing 1.5 µl 

of NeoFX™ and 48.5 µl Opti-Mem reduced serum media (Invitrogen, Paisley, 

Scotland) per well was made and allowed to equilibrate for 10min. Solutions 

containing 1000ng of pGL3 plus insert plasmid, 20ng pGL4.73 reporter plasmid 

(50:1 ratio) made up to a total volume of 50 µl per well was made and allowed 

to equlibrate for 10 min. The Opti-Mem/ NeoFX™ solution and the DNA/ Opti-

Mem solution were then combined (50 µl of each per well) and this was allowed 

to equilibriate for 10min. 100 µl of this soulition was then dispensed to each well 

and once the cells had been briefly resuspended with pippetting, 400 µl of cell 

solution was added.  

The plate was tipped gently to ensure even coverage. Positive controls were 

included and these consisted of either control pGL3 plasmid alone (containing 

the luciferase gene and a viral promoter) or pGL4.73 plasmid alone (containing 

the renilla gene and a viral promoter). Negative controls were included and 

consisted of a 50:1 ratio of pGL3 basic vector (containing the luciferase gene but 

no promoter) and pGL4.73 plasmid. Also, wells with no DNA transfected were 

included. 
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The cells were incubated at 37°C and after 24 hours the transfectant was 

removed and replaced with normal media. Transfection efficiency was not 

formally measured (but was controlled for by co-transfection with renilla 

plasmid). However, when green fluorescent protein plasmid was transfected, the 

efficiency was noted to be low (approximately 50%). When cells were 

stimulated, the concentrations of trophins used were as follows: angiotensin II 

(1x10-7M), dibutyryl cAMP (1mM) or potassium (22mM). APEX 1 inhibitor was 

added after 24 hours for the relevant experiments at a concentration of 10µM or 

vehicle.  

After a further 24 hours, the cells were lysed with 100µl passive lysis buffer, 

before the addition of Dual-Glo assay reagents (Promega, Madison, Wisconsin, 

USA).  

2.3.7  Luciferase assay 

Luciferase measurements were carried out using the DUAL luciferase assay 

(Promega, Madison, Wisconsin, USA). Buffers were allowed to thaw slowly to 

room temperature. LAR II was reconstituted by adding 10ml of buffer to the 

substrate.  

20 µl of lysate was dispensed into the bottom of a 5ml round bottom 

polypropylene tube (75 x 12mm) (Sarstedt, Leicester, UK). After priming the 

tubing of the luminometer (Lumat LB 9507, Berthold Technologies, Herts, UK) 

with the relevant reagents, the reactions were commenced. The luminometer 

was programmed to inject 100 µl of LAR II into the tube (firefly measurement) 

followed by 100 µl of Stop and Glo reagent (renilla measurement) and perform a 

2 second pre-measurement delay, followed by a 10-second measurement period 

for each reporter assay. On completion the tube was discarded and moved on to 

the next assay. Finally, the primed lines were purged and cleaned with 70% 

ethanol and distilled water. The ratio of firefly to renilla luciferase was used for 

analysis as this allowed the variation in transfection efficiency to be controlled 

for. 
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2.4 Protein:DNA binding studies 

2.4.1 H295R nuclear protein extraction 

Nuclear extracts from human adrenal carcinoma cell line (H295R) were isolated 

using a modified method based on Dignam et al (Dignam et al., 1983).Nuclear 

protein was extracted under varying salt conditions in the presence of sodium 

orthovanadate (a tyrosine phosphatase inhibitor). Cells were cultured as 

described in section 2.2, trypsinised, pelleted by centrifugation at 400g. The 

pellet was washed with PBS and spun down again before the supernatant was 

aspirated and discarded. The cells were lysed by the addition of 0.4 ml per tube 

of Buffer A (10 mM HEPES, pH 7.9, 10 mM potassium chloride, 0.1 mM EDTA, 0.1 

mM EGTA, 1 mM DTT, 0.625% (v/v) Nonidet P-40, 0.5 mM PMSF). The samples 

were then centrifuged at 48,000g for 30 s at 4°C, and the supernatant was 

removed. The pellet was resuspended in 50 µl of buffer B (20 mM HEPES, pH 7.9, 

100mM – 500 mM sodium chloride, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 0.5 mM 

PMSF) Samples were agitated for 15 min at 4°C, centrifuged at 48,000g for 5 

min, and the protein content of the supernatant was determined using a 

Bradford assay. 

2.4.2 Protein quantification; Bradford assay  

The Bradford Reagent can be used to determine the concentration of proteins in 

solution. The procedure is based on the formation of a complex between the 

dye, Brilliant Blue G, and proteins in solution. The protein-dye complex causes a 

shift in the absorption maximum of the dye from 465 to 595 nm. The amount of 

absorption is proportional to the protein present. The Bradford Reagent is 

compatible with reducing agents, in this case, DTT. Other protein assay 

procedures (e.g. Lowry and BCA) are not compatible with reducing agents. A 

standard curve was prepared using BSA diluted in Buffer B as follows: 

Final concentration Vol of Dilutant µl  
(Buffer B) 

Volume of BSA µl  
(2mg/ml) 

0 10 0 
1 9.5 0.5 
2 9.0 1.0 
5 7.5 2.5 
10 5.0 5.0 
15 2.5 7.5 
0 10 0 
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3 µl of sample was added to each tube. 500 µl of water was then added along 

with 500 µl of Bradford reagent. Absorbance was measured at 595 nm on a 

spectrophotometer. Samples were diluted to a final concentration of 2 µg/ µl.  

2.4.3 Oligonucleotide probes 

Oligonucleotides were commercially obtained (Eurofins MWG Operon, Ebersberg, 

Germany). The sequences are as follows: 5’ GGA CGA GAC TAG CCT GGC CAA C 

3’ which was complementary to 5’ GTT GGC CAG GCT AGT CTC GAA CTC C 3’, 

and 5’ GGA CGA GAC CAG CCT GGC CAA C 3’ which was complementary to 5’ 

GTT GGC CAG GCT GGT CTC GAA CTC C 3’. Oligonucleotides were diluted to a 

concentration of 10pM and end labelled with γ32P ATP. Oligos were incubated at 

37°C for 30 mins with 2ul buffer (70mM Tris-HCl pH 7.6, 10mM MgCl2, 5mM DTT), 

2µl oligo, 1 µl γ32P ATP (MP Biomedicals, Illkirch, France) and 1 µl T4 

Polynucleotide kinase (Promega, Madison, Wisconsin, USA) and 14 µl Nuclease 

free water.  

 Complementary oligonucleotides were annealed by incubating together in 1 ml 

eppendorf suspended in a water bath heated to boiling temperature and 

gradually allowed to cool. Labelled oligonucleotides were separated from free 

radioactivity on an Illustra probe quant G-50 micro column (GE Healthcare, 

Amersham, UK) according to the manufacturer’s instructions.  

2.4.4 Electromobility shift assay  

DNA: protein binding reactions were carried out in a final volume of 20 µl as 

follows: 
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Reagent 
 

Volume 

Binding Buffer  
(HEPES pH 7.9 20mM, MgCl2 10mM, EDTA 

0.5mM, NaCl 20mM, 50% glycerol) 

5.4 µl 

Bovine serum albumin (0.001g/ml) 
 

1 µl 

Dithiothreitol 
 

100mM 

PolyDI·DC (0.01g/10ml) 
 

1 µl 

Radiolabelled probe 
 

1 µl 

NF water 
 

6.6 µl 

Nuclear protein 
 

5 µl 

 

Nuclear extract was allowed to incubate with the reaction buffer for 20 minutes 

at room temperature before the addition of radio labelled probe, then for a 

further 20 minutes also at room temperature. The protein: DNA complex was 

loaded onto a 6% resolving acrylamide gel. (10ml 30% Acrylamide mix (Sigma, St 

Louis, USA), 5ml 10x TBE buffer, 35ml dH2O; following degassing for 3 mins, 500 

µl 25% ammonium persulphate and 10 µl TEMED were also added). Loading buffer 

consisted of 500 µl TE buffer, 500 µl binding buffer, 10% glycerol, Bromophenol 

blue. The gel was run at 100mV for 3 hours (Hoefer SE600 Ruby, GE Healthcare, 

Amersham, UK) in Tris-borate EDTA buffer.  

The gel was washed twice in 5% ascetic acid and then once in 10% glycerol 

before being dryed on a gel dryer (Model 583 Gel Dryer, Bio-Rad, CA, USA) for 2 

hours. The gel was visualised after autoradiography for 4 days at -80°C. 

2.5 In vivo studies in normal volunteers 

2.5.1 Recruitment of normal volunteers 

The “Role of Genetic Variation in aldosterone synthase- physiological studies” 

(Adrenal Function Study, AFS) was submitted for ethical review to the West 

Glasgow Ethics Committee in June 2007 and received ethical approval on the 3rd 

July 2007 (REC ref no 07/S0703/70).  
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Subjects were recruited from a number of sources including advertisements and 

promotional articles in the local media, the University website and alumni 

association and via advertisements from around the University campus and local 

area. Initial screening visits were carried out by the investigator and the 

exclusion criteria are listed in Table 2-1.  

Exclusion criteria 

 
Age<18 or >70 at time of recruitment 

Resting blood pressure >145/90 
Use of any antihypertensive medication 

Pregnant or plans to become so in 6 months following participation 
in study  

Use of oral, inhaled or topical steroids in 6 months preceding study 
History of severe atopy or asthma 

Known renal or cardiac dysfunction 
Inability to comply with study instructions 

Table 2-1 Exclusion criteria for study examining th e effects of variation in the promoter 
region of aldosterone synthase on corticosteroid pr oduction 
 

Study visits took place in the Glasgow Clinical research facility, tenant Memorial 

building, Church St, Glasgow. The investigator was present at each visit which 

was undertaken with the help of the Nursing staff in the Clinical research facility 

(lead study nurse Sister B McLaren). 

2.5.2 Study protocol 

Subjects were studied during careful dietary sodium control to maintain either a 

high (200 mmol per day) or low (80 mmol per day) sodium intake. A diet sheet 

was provided which gave advice on a low salt diet (approx 4.8g per day). Salt 

loading using sodium supplement (HK Pharma, Bangkok, Thailand) tablets 

containing 600mg sodium chloride, achieved a total intake of 200 mmol per day 

(approx 12g) (four tabs 3 times per day).  Placebo tablets (Western Infirmary 

Pharmacy Production Unit, Glasgow, UK) were prescribed for the duration of the 

low salt week to ensure the subjects and investigators were blinded to the salt 

status. 
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 Once in balance (after 3 days) subjects were infused with ACTH (1ng/kg/minute 

for 30 mins); on the following day subjects were given an infusion of angiotensin 

II (3 ng/kg/minute for 30 mins) (BAChem, Weil am Rhein, Germany). Infusions 

were prepared by the Western Infirmary Pharmacy Production Unit. Basal, 

stimulated and 30 minutes post stimulation plasma samples were collected, for 

renin (baseline) and steroid measurements. Blood pressure was monitored at 

baseline, after 30 minutes recumbent rest and at 10 minute intervals for the 

duration of the infusion. A final blood pressure recording was made at the end of 

the study visit after a final 30 minutes. Blood pressure was recorded using a 

Mindray VS 800 monitor. In addition, 24 hr urine collections were undertaken 

and were analysed for steroid measurements by GC:MS. Urine samples were 

measured for sodium concentration which allowed and estimate of total sodium 

excretion in 24hrs. 

Blood samples were drawn using the Vacutainer system (BD, Oxford Science 

Park, Oxford UK) at baseline blood tests before the infusion (x2 Lith Heparin and 

x 1 EDTA), at completion of the infusion, as well as 30 mins after completion (x2 

Lith Heparin and x 1 EDTA).Lithium heparin samples were stored on ice and spun 

down at 4°C and EDTA samples were stored at room temperature and spun down 

at 25°C for 15 mins at 3000g. Plasma was aspirated and stored immediately at -

80°C.  

The patient information sheet, study protocol and data collection sheet are 

included in Appendix 7.4, 7.5 and 7.6 

2.5.3 Urinary electrolyte measurements 

Aliquots of urine were measured in the NHS biochemistry laboratory Gartnavel 

Hospital for sodium concentration.  

2.5.4 Urinary steroid measurements 

24 hour urine samples were collected in plain containers and the volume 

measured before being aliquoted and stored at -20°C without preservatives. 

Steroid metabolites were measured by Miss Mary Ingram by gas chromatography 

using the method of Shackleton et al(Shackleton, 1993). 
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2.5.5 Plasma steroid measurements 

Plasma steroids were measured by Miss Mary Ingram. Samples were extracted 

from 3ml plasma using Chem Elute cartridges (Varian, CA, USA) and eluted with 

dichloromethane. The eluates were evaporated to dryness under nitrogen and 

reconstituted in 60ul acetylonitrile. Aliquots (20ul) were injected into a Polaris 5 

micron, 150mm x2mm C-18-A reversed phase HPLC column. Identification and 

quantification were accomplished by tandem mass spectrometry using a Varian 

1200L mass spectrometer with a triple quadropole detector. The internal 

standard was 16βmethylprednisolone. 

2.5.6 Plasma renin measurements 

Plasma renin concentration was measured by the Department of Clinical 

Biochemistry Glasgow Royal Infirmary by means of a Diasorin Liaison® 

immunochemiluminometric analyser (DiaSorin Ltd, Wokingham, Berkshire, 

UK)(Dorrian et al., 2010).  

2.5.7 DNA extraction and Genotyping  

DNA was extracted using an automated method (Gentra System Autopure LS, 

Large Sample Nucleic Acid Purification Automated DNA extraction, Quiagen, 

West Sussex, UK) according to the manufacturers instructions by Ms C Brock. 

Genotyping of normal volunteer DNA was carried out by Mrs Elaine Friel and 

subjects were genotyped were determined for the seven polymorphisms in the 

promoter region of CYP11B2 as well as the presence of the intron 2 conversion 

and the polymorphisms in the promoter region of CYP11B1 as described in 

section 2.1.  

2.5.8 Data analysis 

Data was collected and stored using Microsoft Access and statistical analysis was 

carried out using Minitab V 12.21. Supplementary graphs were produced using 

GraphPad Prism V4 and Microsoft Excel.   
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3. Characterisation of the CYP11B2 promoter 
region 

3.1 Introduction 

Studies linking variation of the promoter region of the aldosterone synthase gene 

and hypertension have mainly focused on the C/T polymorphism at position -344, 

with some groups reporting an association with hypertension and a low ARR and 

the T allele (Davies et al., 1999; Brand et al., 1998; Freel et al., 2007), but 

other groups have found the association to be with the C allele (Matsubara et 

al., 2004). A meta-analysis of the literature published up until 2006 concluded 

that individuals homozygous for the C allele have a 17% lower risk of 

hypertension (Sookoian et al., 2007). As discussed in the introduction to this 

work (section 1.5), some of the controversy in the literature may have arisen 

from the variation in composition of the populations studied. Although smaller 

numbers of African and Asian subjects have been studied, the association of 

hypertension with the T allele is less robust in these populations (Sookoian et 

al., 2007) and it is clear that the allele frequencies vary substantially between 

ethnic groups. There is strong linkage disequilibrium across the CYP11B2 locus in 

the Caucasian population (Alvarez-Madrazo S et al., 2009; Barr et al., 2007) 

however, there is significantly less linkage disequilibrium in the CYP11B2 locus 

amongst people of African decent (Alvarez-Madrazo S et al., 2009) presumably 

due to greater degree of recombination in this population and a loss of genetic 

variation in the Caucasian population due to bottlenecks during migration out of 

Africa.  

In vitro studies have demonstrated that the T allele binds to the transcription 

factor steroidogenic factor 1 (SF-1, NR5A1) with 4-5 fold greater affinity than 

the C allele. However, deletion of this site does not alter transcriptional activity 

suggesting it has no functional effect (Clyne et al., 1997). Given the high degree 

of linkage disequilibrium exists across this locus (Barr et al., 2007), it has been 

hypothesised that this polymorphism may be in linkage with alternative, 

functional polymorphisms. It is known that when a disease causing allele enters 

the gene pool it is often surrounded by alleles that may have no functional 

effect. Over time, with recombination, the link between the disease causing 

allele and surrounding neutral alleles becomes less strong (Conrad et al., 2006; 
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Barnes, 2006).  It may be hypothesised that this is the phenomenon that is 

observed within the CYP11B2 locus; a disease-causing polymorphism in linkage 

disequilibrium with the -344C/T has entered the gene pool. In the African 

population, recombination has reduced the linkage disequilibrium but in the 

Caucasian population it functions as a “tag” SNP for the disease-causing allele 

elsewhere in the locus.  

Previous studies have identified seven common polymorphisms in the promoter 

region of the CYP11B2 gene each with a frequency of >1% in the population (Barr 

et al., 2007). These SNPs were identified following sequencing of twenty six 

normotensive individuals, selected from the WHO MONICA (multinational 

MONItoring of trends and determinants in CArdiovascular disease) and stratified 

according to genotype at -344 and intron conversion. None of these seven novel 

polymorphisms are in areas of the promoter region that have been previously 

been shown to be involved in regulation of the CYP11B2 gene. However, 

previously published work has predominantly focused on an area more proximal 

to the transcriptional start site and none have directly examined these sites of 

variation (Bassett et al., 2004b). In addition, more than one polymorphism may 

alter promoter activity and such variants may promote or inhibit activity. 

Classical promoter deletion studies may have obscured any differentially 

regulating effects by removing more than one polymorphic site at a time (Clyne 

et al., 1997). For these reasons the polymorphic variations in the promoter 

region deserve further analysis. 

 Characterising the pattern of inheritance is an important first step, as it is 

important to ascertain the linkage disequilibrium between the disease-

associated polymorphism at -344 and any possible causative polymorphisms. 

Although publicly available repositories of genotyping information e.g. HapMap 

(2005) (http://hapmap.gov), and latterly the 1000 genome project (Via et al., 

2010) (http://www.1000genomes.org) are available, the pattern of linkage 

disequilibrium in this region was not described in sufficient detail. Therefore in 

order to further investigate the linkage between SNPs in the promoter region of 

the CYP11B2 region in a Caucasian population, a detailed examination of the 

CYP11B2 promoter region was undertaken in the following study.  
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3.2 Aims 

To sequence seven single nucleotide polymorphisms in the promoter region of 

CYP11B2 in 300 subjects from the Oxford hypertension study cohort, in order to 

describe the allele frequencies and the pattern of linkage disequilibrium. 

3.3 Methods 

3.3.1 Subjects 

Three hundred DNA samples selected at random from the Oxford family study 

were analysed. Probands and their families were recruited in the Oxford region 

of the UK from 1993-1997. Patients were screened for secondary causes of 

hypertension according to local practice. Families consisted of at least three 

siblings (including the proband) and at least one parent, but at least four siblings 

(including the proband) were required if no parent was available for DNA 

analysis. DNA was extracted according to standard methods (Keavney et al., 

1998). 

3.3.2 Genotyping 

The CYP11B2 gene from approximately 2kb upstream of intron one to the 

beginning of intron one was amplified by PCR as described in section 2.1.1. PCR 

products were identified by resolving on a 1% agarose gel (Figure 3-1) 

 

Figure 3-1 PCR product of CYP11B2 promoter region ( 2000bp) length  

The product was resolved on 1% agarose gel. 1kb lad der is shown and Lane 4 is negative 
control. 
 



Chapter 3  118 

Following PCR, three separate sequencing reactions were carried out and the 

seven polymorphisms identified as described in section 2.1.2. The resultant 

sequences were analysed using SeqScape V2.2 software (Applied Biosystems, 

Foster City, CA, USA) which displayed electropherograms of the sequencing 

sample aligned to a reference sequence (Figure 3-2). The reference sequence is 

included in Appendix 7.2. 

 

Figure 3-2 Electropherogram of polymorphisms  

Variation at position -470T/C, -645T/C, -663T/C, 14 72A/G, -1513T/C, -1667G/C, upstream of 
CYP11B2 transcriptional start site are shown. 
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3.3.3 Statistical Analysis 

Data were collated on an Excel spreadsheet before being imported to Haploview 

v. 4.2. This software was used to analyse genotype frequencies and calculate 

Hardy Weinberg equilibrium as well as interpret and visualise haplotype 

structure (Barrett et al., 2005; Barnes, 2006).  

3.4  Results 

3.4.1 CYP11B2 promoter polymorphisms 

The 5’ promoter region was amplified as described to produce a 2kb fragment 

shown in Figure 3-1. Following direct sequencing, electropherograms were 

constructed to identify alleles at the sites of polymorphic variation. The 280 DNA 

samples sequenced from the Oxford cohort were from 37 families. The data 

were analysed using Haploview 4.2 software.   

Characteristics of the polymorphisms are shown in Table 3-1. All polymorphisms 

were in Hardy-Weinberg equilibrium using a p value cut off of 0.001. As the 

percentage of samples genotyped for the rs62524561 (-1513 T/C) and rs62524560 

(-1472 A/G) was below 80%, they were excluded from further analysis.  

 

Figure 3-3 Characteristics of SNPs genotyped in the  promoter region of CYP11B2 
 

Patterns of linkage disequilibrium (LD) and haplotype structure were assessed for 

6 SNPs. The LD plot for the CYP11B2 promoter region for the Oxford cohort is 

shown in Figure 3-4 where D’ values are given. In Figure 3-5 the r2 values for the 
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population are shown. It can be seen from both measurements that there is high 

LD across the region. From these data, three haplotypes were constructed and 

are shown in Figure 3-6. These three haplotypes account for 95.6% of the 

population. These data have been combined with sequencing results from across 

the CYP11B1 and CYP11B2 locus and the entire pattern of linkage disequilibrium 

across this locus is included in Appendix 7.2.  

 

 
Figure 3-4 Linkage disequilibrium plot of CYP11B2 p romoter polymorphisms D’ values 
 

 
Figure 3-5 Linkage disequilibrium plot of CYP11B2 p romoter polymorphisms r 2 values 
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Figure 3-6 Three common haplotypes and their freque ncies for CYP11B2 promoter 
polymorphisms representing 95.6% of the study popul ation.  
 

3.5 Discussion 

Linkage disequilibrium (LD) is an extremely useful concept in the area of analysis 

of single nucleotide polymorphisms and statistical genetics. LD refers to the 

association between alleles when their frequencies are significantly different 

from their predicted individual allele frequencies if they were to occur together 

(in contrast to “linkage” which refers to the tendency of markers, genes or DNA 

sequences at a specific locus to be inherited together due to their proximity on a 

single chromosome).  This concept allows certain observations to be made, 

because the linkage disequilibrium between alleles declines over generations 

with increasing recombination and mutation events. Thus, it can be used to map 

population evolution as well as a tool for genetic mapping of particular diseases 

and reduces the amount of genotyping required for association studies. 

The statistical concepts D’ or r2 are measurements of linkage disequilibrium and 

both are displayed in the LD plots for the promoter region of CYP11B2 (Figure 

3-4, Figure 3-5). For further discussion, some explanation of these values is 

necessary. The value D describes the deviation of haplotype frequencies from 

the equilibrium. D is calculated thus: If a haplotype formed by two SNPs with 

alleles (A,a) and (B,b) there would be four possible haplotypes: AB, Ab, aB and 

ab. The frequency of each haplotype can be calculated by the product of the 

frequencies of the alleles f(A)f(B), where f(A) is the frequency of allele A at the 

first locus and f(B) is the frequency of allele B at the second locus and the 
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frequency of haplotype AB is f(AB). From this D can be calculated using the 

following simple equation: 

 

LD can be said to be occurring when the value of D is significantly greater than 

zero. The value of D is important because both D’ and r2are calculated from D.  

D’ is the absolute ratio of D compared with its maximum value, Dmax (Dmax = 

f(A)f(B)). Complete equilibrium would mean a D’ of 1. D’ is a useful concept for 

the assessment of historical recombination in a population as in the absence of 

any recombination, there would be no deviation from linkage equilibrium. 

Therefore statistically significant values of D' that are near 1 provide a useful 

indication of minimal historical recombination, but intermediate values are not 

useful either for comparison of the strength of LD between studies or to measure 

the extent of LD. In terms of the data presented here it can be seen that in the 

population studied, D’ values were high in the CYP11B2 promoter region, 

suggesting little historical recombination in this locus. Given that this is the 

case, it is unlikely that the two SNPs that were not genotyped successfully would 

demonstrate LD that deviates significantly from the rest of this locus. 

In contrast, r2 is a measure of correlation between two alleles, i.e. how much 

does one allele predict the other; thus when r2=1, the genotypes of alleles of 

one SNP will perfectly predict the genotypes of another SNP. 

The r2 value is more useful in the context of association studies and can provide 

an estimate of the sample size required to provide the power to detect an 

association between a causal SNP and a disease (calculated as the inverse of the 

r2 value).  For example, the region of the promoter with less strong LD is the 

polymorphism at position -645. The r2 value for this polymorphism and -344 is 

0.25 which means that if only one were to be genotyped in an association study, 

the sample size would have to increase by a factor of 4 to maintain the same 

power (Wang et al., 2005). 
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It is useful to remember that D’ and r2 are both derived from D and in fact, r2 

describes the upper limit of D’2 and the maximum potential level of useful LD for 

the purposes of association mapping.  

This current study was undertaken to map polymorphisms in the promoter region 

of the CYP11B2 gene and assess the LD of the novel SNPs in the promoter region 

with the extensively studied polymorphism at position -344. This region has been 

implicated in previous case control/ association studies which have essentially 

used the polymorphism at position -344 as a “tag” SNP. The CYP11B2 gene is 

highly homologous to the CYP11B1 gene, making sequencing across this region 

difficult. Given the high linkage disequilibrium elsewhere in this locus (see 

Appendix 7.7.) and the close geographical proximity of the SNPs in the promoter 

region seemed likely that they were in LD with the SNP at -344 but the pattern 

of LD and the haplotype blocks remained to be established. From these results, 

it can be seen from both the D’ and r2 values that there is a high degree of 

linkage disequilibrium across the promoter region. As a consequence, three 

haplotypes account for greater than 95% of the population and, by genotyping 

only one SNP, the pattern of inheritance of the remaining SNPS can be predicted 

with reasonable accuracy. This has certain advantages in an association study as 

it reduces the amount of genotyping required; however, it does not provide any 

evidence of which SNP in the haplotype is driving the phenotype. The high 

degree of LD in the promoter region as well as across the entire CYP11B1 and 

CYP11B2 locus make it impossible to identify causative SNPs at this stage. 

Ongoing work within our group is investigating this issue in large population 

cohorts but, the 5’promoter region remains a likely region within the locus for a 

functional polymorphism to be found. Studies of the functional effect of 

polymorphisms within the CYP11B1 promoter region have demonstrated altered 

transcriptional activity and this is a potentially interesting area to study in more 

depth in the CYP11B2 gene in both in vivo and in vitro investigations. 

3.6 Conclusions 

This study confirms a low degree of historical recombination in this locus in a 

Caucasian population and high degree of linkage disequilibrium between all SNPs 

in the promoter region of CYP11B2. Although data from large genotyping studies 

which have examined polymorphisms within this locus can be extrapolated to 
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variation in the promoter region by imputation, this provides no information 

regarding selecting polymorphisms for further functional work. 

 The high degree of linkage disequilibrium also means that there is a small 

number of common haplotypes that make up the majority of the genetic 

variation at this locus in the Caucasian population, and this has implications for 

recruitment of normal subjects for dynamic studies as discussed in Chapter 6.
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4. Characterisation of the H295R cell line 

4.1 Introduction 

 The previous chapter described in detail common polymorphisms in the 

promoter region of CYP11B2 and their pattern of linkage disequilibrium in a 

Caucasian population. In order to assess CYP11B2 promoter function and 

examine DNA: protein interactions, and assess any functional effects of these 

polymorphisms, an appropriate model system of adrenocortical function is 

necessary. A number of different model systems have been used in previous 

investigation of steroidogenesis, but all have shortcomings. These shortcomings 

are an important consideration and have limited studies of many aspects of 

adrenocortical function.  

 Normal human adrenal tissue is rarely available for primary cell culture in 

laboratory studies and while recent progress has been made regarding 

generating differentiated steroidogenic cells from mesenchymal (MSC) and 

embryonic stem cells (ESC), this technique has not yet developed sufficiently to 

be widely used. Indeed, while treatment of MSC and ESC with steroidogenic 

factor 1 (SF-1) and other transcription factors have been reported to induce an 

adrenocortical phenotype, the pattern of steroidogenic enzyme expression is 

more consistent with adrenal fasciculata cells (Miyamoto et al., 2011) and 

further work is required before the expression and functionality of aldosterone 

synthase in induced stem cells can be confirmed. 

An alternative approach is to use animal models. However, they can differ 

anatomically and physiologically from their human counterparts, for example, 

bovine adrenal cells have been an attractive system to study as fresh tissue is 

readily available and the size of the gland is suitable for most practical 

purposes. However, the bovine genome contains only CYP11B1 and, although 

there are multiple forms of this gene present (Kirita et al., 1990), the gene 

product catalyses both the conversion of 11-deoxycortisol to cortisol and DOC to 

aldosterone (Morohashi et al., 1990). Rats have four CYP11B genes (Mukai et al., 

1993) with CYP11B1 and CYP11B2 functioning in a similar way to those of 

humans. CYP11B3 is only expressed in utero and in the early postnatal period 

(Mellon et al., 1995). The CYP11B4 gene appears to be non-functional and is 
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referred to as a pseudo-gene. Rodent steroidogenesis differs further from human 

steroidogenesis because it lacks 17α-hydroxylase so that the predominant 

glucocorticoid generated by CYP11B1 is corticosterone rather than cortisol. 

Despite these important interspecies differences, both rodent primary cell 

cultures as well as immortalized cell lines have provided valuable insights into 

the understanding of steroidogenesis (Rainey et al., 2004). The Y1 cell line was 

developed from an irradiated mouse and, after repeated sub-culturing, a clone 

with steroidogenic properties that displayed responsiveness to ACTH was 

obtained (Yasumura et al., 1966). The murine genome is similar to that of 

humans, in that it expresses CYP11B1 and CYP11B2. However like the rat, it lack 

the capacity of 17-hydroxylation and does not produce cortisol as its main 

glucocorticoid and instead, the main product of CYP11B1 is corticosterone.  

Clearly, given this interspecies variation, a human adrenal cell line would be an 

advantage. To this end, the H295 cell line was developed from a human 

adrenocortical carcinoma (Gazdar et al., 1990). It synthesises a range of steroid 

hormones; over thirty steroids have been identified in its secretion including the 

principal corticosteroids. However, over one third of its steroid output is adrenal 

androgens. This is much higher than would be expected in normal tissue, but is 

consistent with the clinical pathology of the donor patient. The cells respond to 

the zona glomerulosa trophins, angiotensin II and potassium, although ACTH-

dependent function must be tested with dibutyryl cAMP (Bu2cAMP) as expression 

of ACTH receptors is negligible (Rainey et al., 1994). This cell line grows in 

suspension and has a phenotype of loosely adherent clumps. A number of H295 

subtypes have been developed by different investigators with the aim of 

cultivating adherent cells or of favouring production of particular steroids by 

selectively growing in specific medium. One such subtype that has been widely 

used to study many aspects of adrenocortical function is the H295R strain. It 

grows in a monolayer and the ACTH dependant pathway responds well to cAMP 

analogues. However, aldosterone production is less responsive than in the 

original H295 cells. This sub-strain (H295R Strain 1 ATCC CRL-2128) was 

deposited in a publically available repository (American Type Culture Collection, 

available in the UK via LGC Standards, Middlesex) by Prof W Rainey; his group 

have also developed alternative sub-strains (Strain 2 and Strain 3) with greater 

aldosterone responses to agonists. Strain 2 responds to angiotensin II and 
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potassium but is cultured in a serum substitute that is difficult to obtain, leading 

to the development of a third strain. Strain 3 grows in a more easily available 

commercial calf serum and maintains its response to aldosterone agonists, 

although this decreases over time in culture (personal communication, Prof W 

Rainey, Medical College Georgia, Augusta, Georgia). The H295R cell line has 

made important contributions to the understanding the second messenger 

systems operating in the gland and the complex pattern of transcription factors 

that governs gene expression (Bird et al., 1993). It has also simplified the 

assessment of the effects of a wide range of xenobiotics (Muller-Vieira et al., 

2005). However, to use these cells for quantitative studies of the dynamics of 

corticosteroidogenesis may present problems given suggestions that the potency 

of the cells and the profile of the secretion change over time and varies 

according to medium composition and culture conditions. As the H295R cells 

have a relatively long doubling time and must be cultured for an extended time 

in order to generate sufficient numbers for experimental purposes, this may be a 

significant cause of variation between in vitro studies. In the following 

experiments, the steroid profile of the Strain 2 H295R cells was assessed and 

changes in the profile of C21 steroid production over time were followed. These 

were examined in basal culture and during stimulation with a number of 

trophins. These changes were compared with concurrent variation in the level of 

expression of steroidogenic genes. For comparison, the profile and effects of 

trophins on plasma steroid concentrations were followed in healthy human 

volunteers.  

4.2 Aims 

To assess the H295R (strain 2) cell line as a paradigm for human steroidogenesis 

by: 

1. Confirming the capacity of cells in culture to produce mineralocorticoid 

and glucocorticoid at basal levels and comparing the corticosteroid profile 

of the in vitro cell line model to in vivo steroid production 

2.  Confirming the capacity of the cells to respond to trophins of aldosterone 

and cortisol synthesis.  
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3. Quantifying the variability of these parameters over time in culture, in 

order to assess the stability of the cell line as a model of corticosteroid 

synthesis for future experiments.  

4.3 Methods 

Strain 2 H295R cells (gift from Prof W Rainey, Medical College Georgia, Augusta, 

Georgia) were sub-cultured in 100mm culture vessels as described in Methods 

Chapter 2.2. Initial assessment of H295R cell phenotype (steroid production and 

mRNA expression of steroidogenic enzymes at basal levels and in response to 

trophins) was made with cells at passage 10. This was compared to cells that had 

been passaged a further 20 times to assess the effect of time in culture. Cells 

were cultured for 24 hours in serum free media before being stimulated at both 

these time points with angiotensin II (1x10-7M), Bu2cAMP (1mM) and potassium 

(22mM). For comparison, the plasma measurements of 6 normal volunteers 

selected at random from the cohort described in Chapter 6 are shown. 

Coefficient of variation and limits of detection for the LC:MS method are shown 

in Appendix 8.4.  

Steroid concentrations were measured in media after incubation with cells for 24 

hours. Measurements were made by LC:MS after solid phase extraction as 

described in Chapter 2. Steroid measurements were obtained from 4 samples 

under each condition and total amount of steroid was normalised to total protein 

content to account for variation in cell number.  

RNA was obtained from 3 samples under each condition. Messenger RNA (mRNA) 

was first reverse transcribed to produce complementary DNA (cDNA) before 

quantifying with real time PCR (qRT-PCR) to measure the relative amounts. An 

oligonucleotide probe with a fluorescent reporter dye and quencher moiety 

attached, binds to the amplicon created by the PCR reaction. When the Taq 

polymerase replicates the template (amplicon bound to probe), the quencher 

moiety is cleaved off the probe, allowing the fluorescence to be detected. Thus, 

fluorescence increases in each cycle, proportional to the amount of probe 

cleavage. The crossing point (Ct) is the PCR cycle number at which a sample 

reaches the threshold level of fluorescence. The Ct is inversely proportional to 

the amount of target material in any given sample: the lower the Ct, the higher 
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the amount of target material within a sample (Figure 4-1). Each sample was 

analysed in technical triplicate.  

 
Figure 4-1 Example of amplification plot showing se rial dilutions of pCMVB2 plasmid 
 

The qRT-PCR data are presented as change in mRNA level relative to a reference 

gene and normalized to a housekeeping gene (2-∆∆Ct) (Livak and Schmittgen, 

2001). Given the high degree of homology between the CYP11B1 and CYP11B2 

genes, optimisation was required to ensure that no cross reactivity of the assays 

was present. Plasmids containing CYP11B1 and CYP11B2 were a gift from Dr P. C. 

White (University of Texas, Southwestern Medical Centre). Serial dilutions were 

made spanning a 105 range and assessment of the assay efficiency was made. In 

addition, CYP11B1 samples were spiked with CYP11B2 plasmid and vice versa to 

assess any cross reactivity of the assays. 

4.4 Results 

4.4.1 Steroid production and enzyme expression the H295R 

cell 

 The steroid profile of the H295R cell line was assessed under basal conditions. 

The results are shown in Figure 4-2 where the amount of each compound 

measured is expressed as a percentage of the total steroid measured. In 

interpreting these values it is important to remember that androgens were not 
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measured and do not form part of this data, although it is clear from previous 

reports that they form a significant part of the steroid output of H295R cells. It 

was confirmed that the cells produced aldosterone and cortisol. The proportion 

of cortisol relative to the total steroid measured was similar to that of human 

plasma. Similarly aldosterone was a small proportion of the total steroid output 

of the H295R cells, a situation mirrored in human plasma. However, as expected 

given that adrenal cells do not express 11βHSD, a clear difference is that 

cortisone is detected in human plasma but was not present in significant 

amounts in the steroid output of the H295R cells. A further contrast to the 

plasma pattern is that 11-deoxycorticosterone, corticosterone and 11-

deoxycortisol were proportionally much higher in the H295R cells than in vivo. 

Indeed, in normal subjects these compounds form a very minor part of the 

steroid levels measured.  
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 Human (n=6) 
% total Mean (StDev) 

 

H295R cells (n=3) 
% total mean (StDev) 

18OH corticosterone 4.49 (1.02) 
 

1.06 (0.02) 

Aldosterone 0.45 (0.10) 
 

0.90 (0.05) 

Cortisol 30.68 (4.88) 
 

24.47 (4.64) 

Cortisone 53.73 (6.09) 
 

0.94 (0.01) 

18OH 
deoxycorticosterone 

0.11 (0.07) 1.65 (0.05) 

11-dehydrocorticosterone 3.18 (0.99) 
 

1.96 (0.24) 

Corticosterone 6.89 (1.74) 
 

40.01 (2.10) 

11-deoxycortisol 0.45 (0.11) 
 

23.94 (0.73) 

Deoxycorticosterone 0.01 (0.01) 
 

4.98 (0.11) 

Figure 4-2 Steroid production of human plasma (6 no rmal volunteers) and H295R cells (P10, 
basal conditions).  

Pie charts give visual representation of difference s between H295R steroid production (left) 
and human plasma (right). Results in table represen t the mean values of the percent of total 
steroids measured and standard deviation (brackets) . 
 

These differences between human plasma and the steroidogenesis of the H295R 

cells can be further interrogated by examining the ratio of a steroid to its 

precursor compound, as seen in Table 4-1. The ratio of the concentration of 11-

deoxycortisol to cortisol (S:F) is used as an index of 11β-hydroxylation (CYP11B1) 

efficiency. The ratio of corticosterone to cortisol (B:F) can be used as an index 

of 17α-hydoxylase activity (CYP17). Aldosterone production is the best available 
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index of aldosterone synthase (CYP11B2) activity. The ratios of S: F and B: F 

were much higher in the H295R steroid output than in human plasma, reflecting 

less efficient enzyme activity.  Quantification of the expression of steroidogenic 

genes is displayed in Table 4-2. In this table, the crossing thresholds (Ct values) 

are shown along with the values obtained from RNA extracted from a normal 

human adrenal gland. The ∆∆Ct value is not used; only one measurement was 

made for the adrenal tissue as it was included as a positive control. 

Nevertheless, it provides useful values for comparison. Lower levels of 

expression (i.e. higher Ct values) in H295R cells than adrenal tissue was seen for 

all enzymes measured.  

 11-DEOXYCORTISOL: 
CORTISOL 

S:F 
 

CORTICOSTERONE: 
CORTISOL 

B:F 

Human plasma 
basal 

0.001 0.02 

H295R cells 
basal 

0.970 1.636 

H295R cells 
Angiotensin II 

0.356 1.624 

H295R cells 
Bu2cAMP 

0.639 1.144 

H295R cells 
potassium 

0.468 1.438 

Table 4-1 Ratio of steroids to precursor compounds in human plasma and H295R cells  

Human plasma obtained from 6 normal volunteers. H29 5R cells at P10 under basal and 
stimutated conditions. 
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ENZYME H295R 
n=4 

CT Mean (StDev) 
 

Adrenal 
n=1 
CT 

Β-actin 
 

20.75 (0.32) 21.24 

StAR 
 

20.20 (0.07) 16.06 

CYP11A1 
 

20.66 (0.07) 15.57 

CYP21A2 
 

22.74 (0.61) 17.46 

CYP17A1 
 

23.76 (0.32) 17.47 

CYP11B1 
 

31.19 (0.40) 18.11 

CYP11B2 
 

27.19 (0.80) 23.71 

Table 4-2 qRT-PCR of steroidogenic enzymes in H295R  cells and normal adrenal sample.  

Results for the H295R cells at P10 (basal condition s) represent a mean (n=3) and standard 
deviation. Human adrenal results were only performe d once. 
 

4.4.2 Response of the H295R cell to trophins 

 Aldosterone production by the H295R cell responds to stimulation by angiotensin 

II and potassium although not to ACTH (Bird et al., 1993). In order to stimulate 

cortisol production, intracellular cAMP must be increased by using dibutyryl 

cAMP or forskolin. The response to trophins can vary with time and culture 

conditions and therefore it was important to establish response parameters 

under our own conditions. The steroid response of the H295R cells at passage 10 

can be seen in Figure 4-3. Three biological replicates were measured from the 

same batch of cells. Aldosterone production was increased by almost 6-fold by 

angiotensin II and potassium. While Bu2cAMP had an effect on aldosterone 

production, it was not as potent as angiotensin II or potassium. This is mirrored 

in the changes in CYP11B2 expression as shown in Figure 4-5. The trophins that 

produced the greatest increase in aldosterone synthase (CYP11B2) were 

potassium and angiotensin II with Bu2cAMP producing a less potent rise in 

CYP11B2 expression.  

 However, cortisol production was stimulated to an equal extend by all three 

trophins tested, despite dibutyryl cAMP causing a more substantial increase in 

CYP11B1 expression than angiotensin II or potassium.  
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 CYP17 expression was affected only minimally by angiotensin II but was 

stimulated to some extent by both potassium and dibutyryl cAMP. This is 

consistent with the steroid data which show a slight increase in 11-deoxycortisol 

production, a reduction in 11-deoxycortisosterone production (Figure 4-3) and a 

reduction in the B:F ratio (Table 4-1) with these two trophins.  

 Finally, it is interesting to compare the responses of the H295R cell line to those 

seen in vivo by plasma analysis (Figure 4-4). While it must be remembered that 

in comparing the response in vivo to the cell model that different doses were 

used, it is relevant that angiotensin II produced a very specific rise in plasma 

aldosterone concentration, whereas a more pleiotrophic effect was observed in 

the H295R cells. In vivo ACTH produced a rise in cortisol concentration as well as 

in the concentrations of corticosterone, 11-deoxycortisol and 11-

deoxycorticosterone but not aldosterone. Again, this is in contrast to the 

response of the H295R model. 

 

Figure 4-3 H295R cell (P10) steroid response to tro phins  

Data expressed as fold change in steroid production , normalised to total protein content. 
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Figure 4-4 Human steroid response to ACTH and Angio tensin II in 6 normal volunteers 

 

Figure 4-5 H295R cell (P10) change in enzyme expres sion in response to trophins 

Data expressed as fold change compared to basal sam ples (normalized to β-actin). 
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4.4.3 Effect of time in culture on basal and stimul ated 
aldosterone and cortisol production 

Figure 4-6 shows cortisol production in H295R cells at passage 10 (labelled 

“Young”) and passage 30 (labelled “Old”). Three biological replicates were 

measured from the same batch of cells. Under basal as well as stimulated 

conditions, cortisol production was greater in older cells. Figure 4-7 shows 

aldosterone production for the same cells. Aldosterone production was less in 

cells passaged more times. In Figure 4-8 and Figure 4-9, the expression of 

CYP11B1 and CYP11B2 in the younger cells are displayed relative to old cells. 

The relative expression under basal and angiotensin II stimulated conditions of 

CYP11B1 and CYP11B2 was greater than 1, i.e. higher in young cells than in older 

cells for both genes. For both CYP11B1 and CYP11B2, it is the response to 

potassium and even more, the response to angiotensin II, which was more 

pronounced in young cells. In contrast, the expression of CYP17A1 did not differ 

significantly between young and older cells (Figure 4-10).  

 

 

Figure 4-6 Cortisol production in young (P10) and o ld (P30) cells  

Data normalised to total protein. Results represent  mean and standard deviation (n=3).  
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Figure 4-7 Aldosterone production in old (P10) and young (P30) cells  

Data normalised to total protein. Results represent  mean and standard deviation (n=3) 
 

 

Figure 4-8 CYP11B1 expression in young (P10) cells relative to old (P30) cells.  

Results represent mean and standard deviation (n=3) . 
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Figure 4-9 CYP11B2 expression in young (P10) cells relative to old (P30) cells. 

 Results represent mean and standard deviation (n=3 ) 
 

 

 

Figure 4-10 CYP17A1 expression in young (P10) cells  relative to old (P30) cells.  

Results represent mean and standard deviation (n=3)   
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4.5 Discussion 

The purpose of these studies was to explore the function of the H295R cell line 

in order to assess its utility as a model of human aldosterone production. To be 

acceptable as a surrogate for human adrenocortical secretion, it was necessary 

to assess the steroid production of the cell line under basal conditions and in 

response to stimulation and compare this to the in vivo steroid profile. In 

addition, it was important to establish any change in the H295R cell steroid 

pattern and response over time.  

Results have confirmed that the H295R cell line expresses the necessary enzymes 

to produce both aldosterone and cortisol and that these compounds are secreted 

from the cells in measureable quantities. In addition, both aldosterone synthase 

and aldosterone synthesis increased in response to angiotensin II and potassium, 

as did 11β hydroxylase and cortisol synthesis in response to Bu2cAMP. From this 

perspective, it has been demonstrated that the cell line is an appropriate model 

of mineralocorticoid and glucocorticoid production. This was the main purpose 

of these experiments and the data shown here is robust in this regard. 

However, there are characteristics of the H295R cell line that are less desirable 

in a model system. Firstly, the steroid profile of the H295R cell line showed clear 

differences from the human plasma steroid profile. The relative amounts of the 

C21 precursor compounds corticosterone, deoxycorticosterone and 11-

deoxycortisol were significantly higher in H295R cells than in human plasma 

where they were a minor constituent. This pattern of elevated precursors as 

compared to end products is somewhat analogous to the clinical picture of 

adrenal malignancy in general (Kikuchi et al., 2000) and the clinical presentation 

of the donor patient in particular (Gazdar et al., 1990). This pattern could be 

explained by a reduced level of expression of CYP11B1 and CYP11B2 relative to 

other steroidogenic genes in the H295R cells as compared to normal adrenal 

expression. Limited conclusions can be drawn from the comparison of normal 

adrenal mRNA compared to H295R mRNA profile as only one  normal adrenal 

sample (originally included simply as a positive control for the reaction) was only 

measured once. Nevertheless, the results do suggest that while CYP11B1 and 

CYP11B2 are expressed at a lower level than in normal adrenals, the same can 

also be said of the other steroidogenic genes measured. This part of the study 
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should be repeated to increase confidence in the results but it may suggest that 

it is not simply expression of CYP11B1 and CYP11B2 that determines the enzyme 

activity. This will be discussed in more detail later in this section.  

Secondly, cortisone makes up a significant proportion of the human plasma 

steroid profile but in the H295R cell this is present in very small quantities. This 

is not surprising as 11β-hydroxysteroid dehydrogenase (11β-HSD), the enzyme 

which catalyses the conversion of cortisol to inactive cortisone in vivo, is not 

expressed in the adrenal cortex and was not found to be expressed in 

measurable amounts in the H295R cells.  

Finally, the pattern of steroidogenesis changed over time in culture, with both 

aldosterone and cortisol production diminishing. It should be borne in mind that 

due to the scale of these experiments, the three biological replicates was from 

the same batch of cells and repetition in an independent experiment would give 

greater confidence, nevertheless, this lack of consistency over time in culture is 

clearly an important consideration when planning large scale or repeated 

experiments with this cell line. In this regard, one of the most interesting 

findings of these studies has been the discordance between enzyme expression 

and steroid production. This phenomenon was observed in two of the 

experiments described in this chapter. When the cells were stimulated with 

Bu2cAMP, a brisk increase in CYP11B1 was measured, greater than the increase 

in CYP11B1 measured in cells stimulated with either potassium or angiotensin II. 

Although cortisol rose in response to Bu2cAMP treatment, the rise was no greater 

with this trophin than with potassium or angiotensin II. Further, cells that had 

been in culture for a longer period of time and subjected to more passages 

expressed less CYP11B1 but incongruously secreted more cortisol than those that 

had been in culture for less time and expressed more CYP11B1. The mechanisms 

behind this phenomenon are not clear. Some forms of congenital adrenal 

hyperplasia, e.g. patients with 3β-hydroxysteroid dehydrogenase (3β-HSD) 

deficiency, present with a lack of cortisol and aldosterone despite normal 

CYP11B1 and CYP11B2 as a consequence of not being able to generate substrate 

for 11β-hydroxylase and aldosterone synthase. Alternatively, an increase in 

17,20 lyase activity relative to hydroxylase activity of CYP17A1 (even in the 

context of a constant amount of mRNA levels of CYP17A1 as was demonstrated in 

these experiments) would result in more androgen production and less substrate 
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for glucocorticoid production. In fact, changes in expression of 3βHSD and 

CYP17A1 have been proposed to be the mechanism for increased androgen 

production in the H296R compared to the H295A cell line (Samandari et al., 

2007). However, in these experiments it is not likely that lack of substrate was 

the rate limiting factor in the H295R cells as 11-deoxycortisol was always 

present in relatively high amounts. 

 It has been previously recognised that the characteristics of the H295R cells can 

vary with time in culture. Wang et al described a reduction in expression of 

CREB in H295R cells of late passage compared to earlier passage cells (Wang et 

al., 2000). Some investigators have found that H295R cells in their hands do not 

express CREB at all. CREB is implicated in the regulation of transcription of 

CYP11B1 (Wang et al., 2000; Bassett et al., 2000) and CYP11B2 (Nogueira and 

Rainey, 2010) (see section 1.2.8). This may be an importance mechanism 

contributing to the altered pattern of transcription of steroidogenic genes over 

time in culture.  

 The increase in CYP11B1 transcripts measured implies that the mechanisms 

controlling the up regulation of transcription of the gene in response to trophins 

is intact. The dissonance between amount of CYP11B1 mRNA measured and the 

amount of product of the 11β-hydroxylase enzyme in the form of cortisol may be 

as a result of mechanisms that regulate translation of the mRNA to functional 

protein, or as a result of processes that affects the function of the 11β-

hydroxylase enzyme itself. It would clearly be useful to be able to measure the 

levels of 11β-hydroxylase protein in order to establish if there is reduced 

translation of mRNA to protein, but due to the high degree of homology between 

the coding regions of the CYP11B1 and CYP11B2 genes there are no antibodies 

currently available that can reliable distinguish between the 11β hydroxylase 

and aldosterone synthase protein products. Therefore it is not possible to 

conclude whether the unexpectedly low cortisol occurred as a result of not 

enough enzyme or of an inefficient enzyme. 

Once mRNA is transcribed in the nucleus, it is capped, spliced, cleaved and 

polyadenylated prior to being exported to the cytoplasm (McKee and Silver, 

2007). In the cytoplasm, it can be transcribed, stored and transcribed later or 

degraded (Shyu et al., 2008). Clearly, there are many steps which can be 
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disrupted and could lead to reduced transcription of protein. One such 

mechanism that has received increasing attention in recent years is the action of 

microRNA. MicroRNAs are short (around 21 base pairs) strands of RNA that have 

been cleaved from longer (around 70 base pairs) hairpin structured molecules. 

They have imperfect complementarity for a target sequence and controversy 

remains as to their precise mechanism of action. Current consensus suggests that 

there is likely to be more than one mechanism of action and that microRNAs are 

able to inhibit translation as well as cause degradation of mRNA (Jackson and 

Standart, 2007). Another mechanism of RNA interference (RNAi) that causes 

degradation of mRNA is siRNA; these are also short strands of RNA but are 

derived from longer double stranded RNA precursors. Given that qRT-PCR 

detects amplified fragments of mRNA, it will not distinguish between degraded 

and intact mRNA, and thus RNAi may be an explanation for why increase in 

CYP11B1 mRNA is not associated with increased cortisol in the experiments 

described above.  

 Alternatively, there are a number of reasons why the protein may not catalyse 

the conversion of 11-deoxycortisol to cortisol efficiently. Alterations in the gene 

sequence could affect the function of the protein while not altering its rate of 

production. However, both the CYP11B2 and B1 gene in the H295R cell line have 

been sequenced in our laboratory and no mutations were detected. CYP11B1 

along with CYP11B2 and CYP11A1 are cytochrome P450 enzymes and require 

electron transfer from the NADPH/adrenodoxin/adrenodoxin reductase (Miller, 

2005) system (see Section 1.2.5). Changes in this electron transfer system may 

impact on enzyme activity; indeed co-transfecting adrenodoxin with the 

cytochrome P450 enzyme CYP11A1 increases enzyme activity (Zuber et al., 1988) 

and there is evidence that the availability of adrenodoxin and adrenodoxin 

reductase has rate limiting effects on the activity of CYP11B1 (Cao et al., 2000; 

Hakki et al., 2008). It is interesting to note that adrenodoxin expression is 

increased with exposure to dibutyryl cAMP but not to the same extent as the 

effect observed on expression of CYP11B1 (Sewer and Waterman, 2002). The 

availability of electron donors may be responsible for the blunted production of 

cortisol in the face of substantially increased expression of CYP11B1. However; it 

is not clear why a similar phenomenon is not seen with CYP11B2 which depends 

on the same system for reducing equivalents. There is some evidence using 
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bovine CYP11B1 that truncated forms of adrenodoxin can specifically increase 

aldosterone production without increasing cortisol production (Cao and 

Bernhardt, 1999), but this has not been tested for human CYP11B1 and CYP11B2. 

Alternatively, there could be competition for reducing equivalents between 

CYP11B1, CYP11B2 and CYP11A1.  

Finally, protein-protein interactions may also have an effect that could be 

specific to CYP11B1 or CYP11B2 beyond competition for NADPH. Bovine CYP11A1 

increases 11β-hydroxylation and reduces 18-hydroxylation and 18-oxidation 

leading, to increased cortisol and reduced aldosterone when co-transfected with 

bovine adrenodoxin and CYP11B1 in COS-1 cells (Cao and Bernhardt, 1999). It has 

been proposed that CYP11A1 induces conformational change of the CYP11B1 

enzyme, leading to altered function (Lisurek and Bernhardt, 2004). However it 

should be said that the only evidence that exists for this is in a bovine model 

system and human CYP11B1 and B2 co-transfected with bovine adrenodoxin did 

not show the same relationship (Cao and Bernhardt, 1999). 

4.6 Conclusion 

These studies of the H295R cell line have confirmed and extended previous 

work. The H295R cell line remains the best and most widely used model for 

adrenal cell function and its ability to produce steroid from all three 

biochemical pathways and respond to stimulation makes their utility 

unquestionable. However, these data raise some interesting and useful points for 

their further use. The changes in gene expression and steroid production over 

time in culture have been previously acknowledged but not comprehensively 

described and it has not previously been well recognised that the rate and 

pattern of this change across the steroid pathway can be diverse. In addition, by 

examining both the mRNA expression as well as the indices of steroid conversion, 

is it apparent that there are other rate limiting steps in the production of the 

end points of mineralocorticoid and glucocorticoid synthesis than the levels of 

enzyme expression of the terminal steps in steroidogenesis. How comparable 

these in vitro findings are to the in vivo systems is not yet known, particularly as 

the H295R cell collectively expresses components of the glomerulosa, fasiculata 

and reticularis, in contrast to the distinct functional zonation seen in mammals. 

However, as the major human adrenal cell line, it is the most informative model 
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at our disposal currently. Further studies could provide greater insight into the 

intricate sequence of events leading to human mineralocorticoid and 

glucocorticoid production.  



146 

 

 

 

 

 

 

 

In vitro studies of CYP11B2 transcription 

 



Chapter 5  147 

5. In vitro  studies of CYP11B2 transcription 

5.1 Introduction 

As there is virtually no storage of steroid hormones within the adrenal gland, 

increased synthesis of products from cholesterol in response to trophins is the 

main mechanism for increasing circulating steroid hormone levels. Thus, 

regulation of transcription is the pivotal point of homeostatic control of 

steroidogenesis. This chapter aims to investigate the functional effects of 

polymorphic change in the promoter region of CYP11B2 on gene transcription.  

Transcriptional regulation of CYP11B2 has been studied in some detail and has 

been previously described in depth (see Section 1.2.8). However, to recap 

briefly, both angiotensin II and potassium produce an increase in transcription of 

CYP11B2 beginning with increase intracellular calcium. Angiotensin II achieves 

this by binding to the Type 1 angiotensin receptor (AT1) which is coupled to a 

heterotrimeric G-protein (Gq) (Higuchi et al., 2007). This causes activation of 

phospholipidase C and consequent rise in diacylglycerol (DAG) and inositol 

trisphosphate (IP3) (Neves et al., 2002) and activation of protein kinase C (PKC). 

Increased extracellular potassium initiates a depolarisation of the glomerulosa 

cell membrane. Both processes culminate in an increased intracellular calcium 

flux which activates calmodulin (CaM), in turn activating CaM protein kinases to 

regulate CYP11B2 transcription (Clyne et al., 1996). Adrenocorticotrophin 

stimulating hormone (ACTH) acutely increases aldosterone production directly 

via cAMP (Bassett et al., 2004a).  

Several regulatory elements in the 5’ flanking region of the gene have been 

localised (Clyne et al., 1997),  proteins that bind to them have been identified 

(Bassett et al., 2004b), and the influence of post translational modification of 

transcription factors e.g. phosphorylation (Nogueira and Rainey, 2010), have 

been described. The acknowledged sites of transcription factor binding in the 

CYP11B2 promoter region are illustrated in Chapter 1 Figure 1.17 and were first 

described by Clyne et al (Clyne et al., 1997) but the effects of polymorphic 

variation at the sites under investigation in this work on transcription are not 

known. The positions of the known regulatory sites in relation to these 

polymorphisms are displayed in Figure 5-1.  
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Figure 5-1 Schematic diagram of promoter region of CYP11B2.  

CREB and ATF1 bind to the CRE and this binding is i ncreased after phosphorylation by 
CamKinases as a result of Angiotensin II receptor a ctivation. Ad5 and NBRE-1 bind the 
transcription factors NURR1 and NGFIB and these are  increased in response to angiotensin 
II. The -344 polymorphism is shown as Ad4. However,  deletion of this site has no effect on 
transcriptional activity. The red arrows demonstrat e the polymorphisms described in 
chapter 3 in relation to these known transcription factor binding sites.  
 

 In order to investigate the functional effects of the polymorphic variants in 

CYP11B2 promoter region, a number of approaches were undertaken. A 

bioinformatics search strategy was used to prioritise the polymorphisms to be 

studied in more detail, reporter gene assays undertaken to assess any effect of 

allelic variation on transcriptional activity and transcription factor binding 

studies to begin to identify proteins that may play a role.  

5.2 Aims 

To investigate functional effects of polymorphic variation in the promoter region 

of CYP11B2 by:  

1. Identifying putative transcription factor binding at the sites of 

polymorphic variation using a bioinformatic database (Transfac® 

Professional) and compare polymorphic variants in order to prioritise 

further in vitro studies.  

2. Establishing if promoter activity is altered by single nucleotide 

polymorphic variation at candidate site within the promoter region of 

CYP11B2 using an in vitro reporter gene system 
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3. Investigating alterations in transcription factor binding with contrasting 

alleles in candidate polymorphic sites using electromobility shift assay 

system. 

5.3 Bioinformatics 

5.3.1 Methods 

 To investigate whether the polymorphisms altered putative transcription factor 

binding sites the DNA sequences flanking the SNPs were entered into the 

Transfac® Professional V 10.1 database. This is a commercial, subscription only 

database which contains experimental data extracted from peer reviewed 

journals to provide a searchable database for transcription factor binding 

sequences. Within Transfac® Professional is Match, a web-based tool which 

identifies transcription factor binding sites in DNA sequences by weight matrix 

search (Matys et al., 2006). Matrices are constructed using both experimentally 

confirmed transcription factor binding sequences and data extrapolated from 

biological studies to produce a measurement of the relative likelihood of a 

transcription factor binding to a particular sequence. The frequency that a 

particular nucleotide appears at a certain position in a binding sequence is 

recorded and consensus binding sequence is produced for the matrix. The five 

most highly conserved bases are called the “core”. Thresholds can be set for 

“core” and “matix” matching with 1.0 corresponding to 100% similarity. If the 

sequence passes the threshold for core similarity it is then aligned for matrix 

similarity. If this threshold is also passed, the transcription factor is included in 

the output.  

 Searches were undertaken between Tuesday 23/10/07 and Monday 12/11/07.  

Thresholds were set at 0.75 for core binding and 0.70 for matrix binding. Only 

vertebrate matrices were analysed. The input sequences are shown in Table 5-1.  
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SNP 
POSITION 5’ 

SNP 
POSITION 

EXON 1 

SEQUENCE 

357 G/C (331-
380) 

-1667 >ccgaggtgggcagatcacctgaggtcaggagttcgagact 
>ccgaggtgggcagatcacctgacgtcaggagttcgagact 

 
373 T/C 

(351-400) 
-1651 >cctgaggtcaggagttcgagactagcctggccaacacggt 

>cctgaggtcaggagttcgagaccagcctggccaacacggt 
 

511 C/T 
(491-530) 

-1513 >tgaacccgggagacagaggtcgcagtgagccgagatcaca 
>tgaacccgggagacagaggttgcagtgagccgagatcaca 

 
552 G/A 
(531-570) 

-1472 >ccattgcactctagcctgggcgacagagtgagactctgtc 
>ccattgcactctagcctgggcaacagagtgagactctgtc 

 
1361 A/T 

(1341-1380) 
-663 >ctggggcaggagggatgagcaggcagagcacaggttttct 

>ctggggcaggagggatgagctggcagagcacaggttttct 
 

1379 C/T 
(1361-1400) 

-645 >aggcagagcacaggttttcttttcctctttttaagacagt 
>aggcagagcacaggtttttttttcctctttttaagacagt 

 
1554 C/T 

(1533-1573) 
-470 >tcacatggaaccagtgcgctcctgtggtggagggtgtacc 

>tcacatggaaccagtgcgctcttgtggtggagggtgtacc 
 

Table 5-1 Flanking sequence entered in bioinformati cs search for putative transcription 
factor binding around sites of polymorphic variatio n 
 

Output files from Transfac® Professional searches were converted to Microsoft 

Excel files and the results for each sequence containing contrasting alleles at the 

site of polymorphic variation were compared.  

5.3.2 Results 

All SNPs were associated with variation in predicted transcription factor binding. 

In total, over 900 alterations in bindings were introduced across the seven 

polymorphisms. Most suggested an altered binding affinity for one allele 

compared to the other. However, there were 131 incidences of where 

transcription factor binding was predicted to be introduced on the basis of a 

single base change and was not predicted to be present in the presence of the 

alternate allele. These results for each SNP are shown in Table 5-2, Table 5-3, 

Table 5-4, Table 5-5, Table 5-6, Table 5-7, and Table 5-8.  
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357 (-1667) C 
 

357 (-1667) G 

ATF1 
(Nogueira 

and 
Rainey, 
2010; 

Clyne et 
al., 1997; 
Bassett et 
al., 2004a; 
Bassett et 
al., 2000) 

 

activating transcription 
factor 1 

RUNX1 
 

runt-related transcription 
factor 1 

 

ATF6 
 

activating transcription 
factor 6 

AREB6 zinc finger E-box binding 
homeobox 1 

 
C/EBP 

 
CCAAT/enhancer binding 

protein 
COUP-TF  

(Bassett 
et al., 
2004a; 

Wang et 
al., 1989; 
Clyne et 
al., 1997)  

nuclear receptor subfamily 
2, group F 

 

Myc 
 

v-myc myelocytomatosis 
viral oncogene homolog 

 

deltaEF1 zinc finger E-box binding 
homeobox 1 

E4F1 E4F transcription factor 1 GR 
 

Glucocorticoid receptor 

ER 
 

Oestrogen receptor HEN1 nescient helix loop helix 1 

HIF1 
 

Hypoxia inducible factor 1 LXR direct 
repeat 

 

nuclear receptor subfamily 
1, group H, member 2 

Pax-2 
 

paired box 2 RUNX2 runt-related transcription 
factor 2 

SREBP-1 
 

sterol regulatory element 
binding transcription 

factor 1 

PEBP phosphatidylethanolamine 
binding protein 1 

v-ErbA 
 

Also known as thyroid 
hormone receptor, alpha 

 

  

v-Jun 
 

Jun protoconcogene, also 
known as AP-1 

 

  

XBP-1 X-box binding protein 1 
 

  

Table 5-2 Transcription factors predicted to bind t o only the C allele or the T allele at 
position 373 (-1667) of CYP11B2.  

Transcription factors implicated in the literature in the transcriptional regulation of 
aldosterone synthase are highlighted. 
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373 (-1651) C 373 (-1651) T 
AP-4 activating enhancer 

binding protein 4 
AP-3 activating enhancer 

binding protein 3 
AR Androgen receptor AREB6 

 
zinc finger E-box binding 

homeobox 1 
 

ER Oestrogen receptor Pax-2 
 

Paired box 2 

GR Glucocorticoid receptor Pitx2 
 

paired-like homeodomain 2 

Pax-6 Paired box 6 SF1 (Ye et 
al., 2009; 
Bassett et 
al., 2002; 
Clyne et 
al., 1997) 

 

Steroidogenic factor 1 

PR Progesterone receptor SMAD 
 

SMAD family member 

Zic3 Zic family member 3 (odd-
paired homolog) 

SREBP sterol regulatory element 
binding transcription 

factor 
 

  VDR 
(Romero 

et al., 
2007; 

Romero 
et al., 
2010) 

 

Vitamin D receptor 

Table 5-3  Transcription factors predicted to bind to only the C allele or the T allele at 
position 357 (-1651) of CYP11B2. 

 Transcription factors implicated in the literature  in the transcriptional regulation of 
aldosterone synthase are highlighted. 
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510 (-1513) C 
 

510 (-1513) T 

COUP-TF 
(Bassett et 
al., 2004b; 
Clyne et 
al., 1997; 
Wang et 
al., 1989) 

nuclear receptor subfamily 
2, group F 

C/EBP CCAAT/enhancer binding 
protein 

Egr 
(Nogueira 

et al., 
2007) 

Early Growth response Gfi1 growth factor independent 1 
transcription repressor 

 

GR Glucocorticoid receptor HIC1 hypermethylated in cancer 1 
 

HNF4 Hepatocyte nuclear factor 4 HMG IY 
(Romer
o et al., 
2010; 

Romero 
et al., 
2007) 

high mobility group AT-
hook 1 

 

RORalpha1 RAR-related orphan 
receptor A 

HOXA7 homeobox A7 

SMAD SMAD family member MYB v-myb myeloblastosis viral 
oncogene homolog 

 
  Nkx2-5 NK2 transcription factor 

related, locus 5 
 

  Pax-3 Paired box 3 
 

  RFX regulatory factor X, 1 
 

  SOX10 SRY (sex determining 
region Y)-box 10 

 

Table 5-4 Transcription factors predicted to bind t o only the C allele or the T allele at 
position 510 (-1513) of CYP11B2.  

Transcription factors implicated in the literature in the transcriptional regulation of 
aldosterone synthase are highlighted. 
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551 (-1472) G 
 

551 (-1472) A 

AP-2 
 
 

activating enhancer 
binding protein 2 

 

AP-4 
 
 

Activating enhancer binding 
protein 4 

ATF (Bassett 
et al., 
2000; 

Sirianni et 
al., 2010; 
Clyne et 
al., 1997) 

 
 

activating transcription 
factor 

 

C/EBP 
 
 

CCAAT/enhancer binding 
protein 

CREB 
(Clyne et 
al., 1997)  

 

cAMP responsive element 
binding protein 

 

FOXO1 
 
 

forkhead box O1 

Egr 
(Nogueira 

et al., 
2007)  

 

Early Growth response FOXO4 
 

forkhead box O4 

MEIS1 
 
 
 

Meis homeobox 1, myeloid 
ecotropic viral 

integration site 1 
homolog  

HIC1 
 
 
 

hypermethylated in cancer 1 

MZF1 
 

myeloid zinc finger 1 HNF3 
 

Hepatocyte nuclear factor 3 

EGR4 
 

early growth response 4 IRF-1 
 

interferon regulatory factor 1 

SMAD3 
 

SMAD family member 3 LEF1 
 

lymphoid enhancer-binding 
factor 1 

 
WT1 

 
Wilms tumor 1 MYB 

 
v-myb myeloblastosis viral 

oncogene homolog 
 

YY1 
 
 

YY1 transcription factor RBP-
Jkappa 

 

recombination signal binding 
protein for 

immunoglobulin kappa J 
region 

 
  RFX1 

 
regulatory factor X, 1 

  SOX10 
 

SRY (sex determining region 
Y)-box 10 

Table 5-5 Transcription factors predicted to bind t o only the G allele or the A allele at 
position 551 (-1472) of CYP11B2.  

Transcription factors implicated in the literature in the transcriptional regulation of 
aldosterone synthase are highlighted. 
 



Chapter 5  155 

1361 (-663) A 
 

1361 (-663) T 

AhR 
 

aryl hydrocarbon receptor AP-4 
 

activating enhancer 
binding protein 4 

 
HIC1 

 
 

hypermethylated in cancer 
1 

C/EBP 
 
 

CCAAT/enhancer binding 
protein 

HSF1 
 
 

heat shock transcription 
factor 1 

DBP 
 
 

D site of albumin promoter 
(albumin D-box) 
binding protein 

KAISO 
 
 
 

zinc finger and BTB 
domain-containing 

protein 33 

E2A 
 
 
 

transcription factor 3 (E2A 
immunoglobulin 

enhancer binding factors 
E12/E47) 

MAF 
 
 
 

v-maf musculoaponeurotic 
fibrosarcoma oncogene 

homolog 

HNF4 
 
 
 

Hepatocyte nuclear factor 4 

Msx-1 
 
 

msh homeobox 1 MEIS1 
 
 

Meis homeobox 1, myeloid 
ecotropic viral 

integration site 1 
homolog 

 
NERF1a 

 
E74-like factor 2 (ets 

domain transcription 
factor) 

NF-1 
 
 

neurofibromin 1 

p53 
 

tumor protein p53 RFX 
 

regulatory factor X, 1 

HIC1 
 
 

hypermethylated in cancer 
1 

RORalpha1 
 

RAR-related orphan 
receptor A 

SMAD 
 

SMAD family member TGIF 
 

TGFB-induced factor 
homeobox 1 

VDR 
(Romero 

et al., 
2007; 

Romero et 
al., 2010) 

 
 

Vitamin D receptor YY1 
 

YY1 transcription factor 

Table 5-6 Transcription factors predicted to bind t o only the A allele or the T allele at 
position 1361 (-663) of CYP11B2. 

 Transcription factors implicated in the literature  in the transcriptional regulation of 
aldosterone synthase are highlighted.  
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1379 (-645) T 1379 (-645) C 
 

AR 
 
 

Androgen receptor BLIMP1 
 
 

PR domain containing 1, with 
ZNF domain 

 
FAC1 

 
 
 

bromodomain PHD finger 
transcription factor 

 

C/EBP 
 
 

CCAAT/enhancer binding 
protein 

FOXD3 
 
 

forkhead box D3 Elf-1 
 
 

E74-like factor 1 (ets domain 
transcription factor) 

FOXJ2 
 

forkhead box J2 GATA-1 
 

GATA binding protein 1 
(globin transcription factor 

1) 
 

FOXO1 
 
 

forkhead box 01 GATA-2 
 
 

GATA binding protein 2 
(globin transcription factor 

2) 
FOXO3A 

 
 

forkhead box 03A HSF 
 
 

Heat Shock factor 

FOXO4 
 
 

forkhead box 04 ICSBP 
 
 

interferon regulatory factor 8 

HNF3alpha 
 
 
 

Hepatocyte nuclear factor 3 
alpha 

NF-AT 
 
 
 

nuclear factor of activated T-
cells, cytoplasmic, 

calcineurin-dependent 2 
interacting protein 

HNF3beta 
 

Hepatocyte nuclear factor 3 
beta 

NIT2 
 

nitrilase family, member 2 

TBP 
 
 

TATA box binding protein 
 

  

ZBRK1 
 

zinc finger protein 350   

Table 5-7 Transcription factors predicted to bind t o only the T allele or the C allele at 
position 1379 (-645) of CYP11B2.  

Transcription factors implicated in the literature in the transcriptional regulation of 
aldosterone synthase are highlighted. 
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1554 (-470) C 1554 (-470) T 
 

AP-2 
 
 

activating enhancer 
binding protein 2 

 

AP-3 
 
 

activating enhancer 
binding protein 4 

 
 

AP-4 
 
 

activating enhancer 
binding protein 4 

 

C/EBP 
 
 

CCAAT/enhancer binding 
protein 

 
 

AREB6 
 
 

zinc finger E-box binding 
homeobox 1 

 

FAC1 
 
 

bromodomain PHD finger 
transcription factor 

 
AREB6 

 
zinc finger E-box binding 

homeobox 1 
 

HNF3 
 

Hepatocyte nuclear factor 3 
 

E2A 
 
 
 

transcription factor 3 (E2A 
immunoglobulin 

enhancer binding factors 
E12/E47) 

 

LRH1 
 
 
 

nuclear receptor subfamily 
5, group A, member 

 
 

Elk-1 
 
 

ELK1, member of ETS 
oncogene family 

 

MRF-2 
 
 

Modulator recognition 
factor 2 

 
 

Eve 
 

SH3 domain containing 19 
 

Nkx2-5 
 
 

NK2 transcription factor 
related, locus 5 

 
 

LEF1 
 

lymphoid enhancer-binding 
factor 1 

 

p53 
 
 

tumor protein p53 
 
 

p54 
 
 
 

non-POU domain 
containing, octamer-

binding 
 

SOX10 
 
 
 

SRY (sex determining 
region Y)-box 10 

 
 
 

Sp1 
 

Sp1 transcription factor SOX9 
 

SRY (sex determining 
region Y)-box 9 

 
Spz1 

 
spermatogenic leucine 

zipper 1 
 

TBP 
 
 

TATA box binding protein 
 
 

USF 
 
 

upstream transcription 
factor, c-fos interacting 

  

Eve 
 
 

SH3 domain containing 19   

Table 5-8 Transcription factors predicted to bind t o only the T allele or the C allele at 
position 1554 (-470) of CYP11B2.  
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 Candidate transcription factors identified above were further investigated with 

literature search to explore the possibility that they may be involved in the 

regulation of aldosterone synthase. Transcription factors implicated in the 

literature in the transcriptional regulation of aldosterone synthase are 

highlighted.  

The role of ATF1 and CREB has been previously investigated with regard to the 

regulation of CYP11B2. As described in Chapter 1.2.8, a CRE site at position -64 

is known to be crucial for basal expression of aldosterone synthase. COUP-TF has 

been identified as binding to oligonucleotide spanning -129/114 (known as the 

Ad5 element) (Bassett et al., 2004b; Wang et al., 1989; Clyne et al., 1997). SF-1 

is involved in the regulation of a number of steroidogenic enzymes and its role in 

the transcriptional regulation of aldosterone synthase is controversial; the 

extensively investigated polymorphism at -344 is a putative SF-1 site with the C 

allele binding more avidly than the T allele. However, SF-1 at the -344 site does 

not appear to influence transcription of the gene (Bassett et al., 2002; Ye et al., 

2009). Finally, recent data has been published examining angiotensin II 

responsive genes and suggested that Vitamin D receptor and HMG1Y and 

angiotensin II responsive and may play a role in regulating aldosterone synthase 

(Romero et al., 2010; Romero et al., 2007).  

5.3.3 Discussion 

 Numerous transcription factor binding sites are predicted to be introduced or 

abolished with the substitution of a single nucleotide change. In the first 

instance, a literature search was undertaken to identify transcription factors 

known to be involved in the regulation of aldosterone synthase as a means to 

prioritise further in vitro investigation of functional effects of SNPs. The SNPs 

and relevant transcription factors are summarised in Table 5-9.  
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Position Allele Predicted binding Sequence Transcription factor 

357 C 
G 

tGACGTcagga 
gcagatcacctgaGGTCAggagt 

ATF-1 
COUP-TF 

373 T tagCCTGGc 
tagcctggccAACAC 

SF-1 
VDR 

 
510 
510 

C 
T 

ggagacagaGGTCG 
agGTTGC 

COUP-TF 
HMG1Y 

551 G gggCGACAg CREB 
 

1361 A ggaggGATGAgcaggcagagc VDR 
 

Table 5-9 Transcription factors implicated in the r egulation of aldosterone synthase. 

 Putative binding sites relative to single nucleoti de polymorphisms are given. Nucleotide 
sequence deemed to be “core” five nucleotides are i n upper case.  
 

However, there are a number of points that should be made regarding the 

published literature. Initial information regarding possible transcription factor 

binding sites were identified by reporter gene deletion assays and DNAse I 

footprint studies of the bovine CYP11B gene (Takayama et al., 1994; Kirita et 

al., 1990). This raises obvious issues regarding the validity of animal models with 

regard to human steroidogenesis, as previously mentioned in Chapter 4. There is 

only one bovine CYP11B gene and its transcript codes for a protein with both 

glucocorticoid and mineralocorticoid functions. As a result, the regulation of this 

gene may not be comparable to the human CYP11B2, or indeed the human 

CYP11B1. Later work was carried out by Clyne et al (Clyne et al., 1997) used the 

H295R cell model, extensively described in Chapter 4. Some of the results 

observed in the bovine model were indeed confirmed in these investigations. 

However, promoter deletion assays, by removing relatively large sections of the 

promoter in an iterative process, may remove positive and negative regulating 

regions simultaneously, obscuring any individual effect. Further, it has been 

suggested that the binding and action of transcription factors can vary 

depending on the three dimensional structure of the DNA, the conformation of 

which can be altered by protein: DNA interactions up or down stream of the 

binding site of interest. Thus, promoter deletion assays may provide incomplete 

data regarding sites involved in gene regulation.  Recently published data has 

looked at the effect on aldosterone production of H295R cells of over expression 



Chapter 5  160 

of genes previously shown to respond to angiotensin II (Romero et al., 2007). 

These included HMGA1 and VDR, both of which increased aldosterone production 

in response to angiotensin but not under basal conditions (Romero et al., 2010). 

These and other transcription factors may be involved in the regulation of the 

gene and clearly require further study however, the genotype dependant 

difference may not be angiotensin II mediated and may in fact be under basal 

conditions. 

 The parameters of the bioinformatics search were deliberately permissive and 

as a result, are likely to have generated a significant proportion of false positive 

results. In addition, the Transfac® Professional database is based only on 

experiments that have been undertaken and the extrapolation of published 

results, therefore it is difficult to quantify the false negative rate for this type of 

investigation. Transfac® Professional, by necessity, makes certain assumptions 

in order to compile the database and create search results. These assumptions 

may also be a source of error. For example, as mentioned above, the 5 most 

highly conserved bases are designated the “core” binding site and the logarithm 

that is followed requires a user determined threshold to be passed regarding 

alignment with the binding site. However, this may not accurately reflect the 

biological binding process as not all transcription factors have a core binding 

sequence of just five nucleotides. In addition, transcription factors often form 

homo or heterodimers before binding to DNA and the three dimensional 

structure is central to the specificity of binding. Further, the three dimensional 

structure of the DNA strand is also crucial and this may be affected by up or 

down stream protein:DNA interactions (Sarai and Kono, 2005). The results 

described above must be interpreted with this in mind. Whilst the in silico 

investigation should not be seen as definitive evidence of biological interactions 

it raises a number of further lines of enquiry and certainly provides a rational for 

ongoing investigations around the functional effect of SNPs in this region.   

One of the objectives of the bioinformatics search was to prioritise which SNP to 

proceed with for further in vitro studies. On the basis that the SF-1 is a 

transcription factor most heavily implicated in the regulation of steroidogenic 

genes, albeit with a less clear role in the transcriptional regulation of CYP11B2, 

it was decided that further work would continue with the SNP which putatively 

introduced a new SF-1 site (-1651).  
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5.4  Reporter gene assays 

Reporter gene assays can be used to study the function of promoter regions of a 

gene of interest. The promoter region is cloned into a plasmid, upstream of a 

“reporter gene”, in this case firefly luciferase. The plasmid is then transfected 

into a cell line along with a control plasmid, this allows for normalisation of 

results to account for variables like transfection efficiency or variation in cell 

handling/ survival. The cell line, which should be chosen to contain the 

necessary signal transduction pathways and transcription factors necessary to 

induce transcription, is cultured under controlled conditions. A strong promoter 

will produce more luciferase mRNA than a weak promoter and this is translated 

into protein which can be detected using a simple luciferase assay. 

5.4.1 Methods 

 Based on the results of the bioinformatics search, reporter constructs of the 2 

polymorphic variants at position -1651 were designed (Figure 5-2).  
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Figure 5-2 pGL3-CYP11B2 promoter construct.  

1880 bp of the CYP11B2 promoter was cloned into the  pGL3 plasmid containing a luciferase 
reporter gene. Features on the plasmid are origin o f replication (Col E1 origin) for 
replication of plasma in bacteria, viral late polya denylation signal (SV40 late polyA), Firefly 
luciferase gene (Firefly luciferase), 1.8kb section  of the CYP11B2 promoter (CYPB2 
promoter), LacZ alpha gene (LacZ alpha) for blue-wh ite screening and the F1 origin of 
replication sequence (F1ori). The site of polymorph ic variation (rs13268025 T/C) of interest 
is shown in red.  
 

The wild type construct was used as a template and the allele at -1651 was 

mutated from T to C (Eurofins MWG Operon, Ebersberg, Germany) (Section 

2.3.1). Plasmids were prepared and sequence confirmed as described in section 

2.2.2-2.3.5. (Plasmid sequence is shown in Appendix 7.9). Transient transfection 

was carried out as described (section 2.3.6) and a renilla luciferase containing 

control plasmid pGL4.73, (Promega, Wisconsin, USA) was co-transfected at a 

ratio of 50:1, to enable adjustment for transfection efficiency. Control wells 

containing untransfected cells, Renilla luciferase plasmid alone (pGL4.73), 

firefly luciferase plasmid alone (pGL4.10) as well as the empty vector (pGL3 

basic) with renilla luciferase plasmid (pGL4.73) were also included in each 
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experiment. Transfected H295R cells were incubated under basal conditions, and 

with the addition of agonists of aldosterone production: angiotensin II (1x10-7M), 

Bu2cAMP (1mM) and potassium (22mM). After 24 hrs, cells were lysed and 

assayed for firefly and Renilla luciferase using Dual Luciferase assay (Promega, 

Wisconsin, USA) (section 2.3.7). The Dual-Luciferase Reporter (DLR) Assay 

System allows the activities of firefly and Renilla luciferases to be measured 

sequentially from a single sample. The firefly luciferase reporter is measured 

first by adding Luciferase Assay Reagent II (LAR II) to generate a “glow-type” 

luminescent signal. After quantifying the firefly luminescence, this reaction is 

quenched, and the Renilla luciferase reaction is initiated by adding Stop & Glo 

Reagent to the same tube. As both measurements can be made from the same 

sample of lysate, there is a reduction in variation and simplification of the 

experimental procedure over other methods (e.g. β-galactosidase). Six biological 

replicates were included in each experiment and this was repeated in 3 

independent experiments. 

5.4.2 Results 

The two plasmids, identical with the exception of a single base change at 

position -1651 (T/C) were compared. Transfection efficiency is influenced by the 

number and density of cells in each well and in order to control for this variable, 

constructs were co-transfected with pGL4.73, a plasmid which produces renilla 

luciferase. The results are expressed as firefly luciferase activity (relative light 

units)/ renilla luciferase activity (relative light units).  There were six biological 

replicates in each experiment and the experiment was repeated three times. A 

graph showing representative results is displayed in Figure 5-3.  
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Figure 5-3 Basal expression of -1651 C and T constr ucts. 

 H295R cells were transfected with luciferase repor ter constructs. Basic plasmid contains 
the pGL3 empty vector only. WT CC plasmid is TT at position -1651 and 1651C plasmid is 
CC at position -1651. Results are displayed as rela tive light units (RLU) of firefly luciferase 
relative to RLU renilla luciferase. Data expressed as mean plus standard deviation of the 
mean, t-test. Representative graph of 3 independent  experiments, each with n=6.  
 

 These results demonstrate that the C allele (1651 C basal) has an approximately 

80% increased transcriptional activity compared to the T allele (WT CC basal) 

under basal conditions. This is statistically significant with a p value of 0.02. The 

transcriptional activity of the empty vector (Basic Basal) is shown to 

demonstrate that the transcriptional activity arises as a result of the insertion of 

1.8kb of the CYP11B2 promoter and not the vector backbone.  

The response of the reporter constructs to stimulation with trophins of 

aldosterone was assessed and results are shown in Figure 5-4.  
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Figure 5-4 Basal and stimulated expression of -1651  C and T constructs.  

H295R cells were transfected with luciferase report er constructs. Basic plasmid contains 
the pGL3 empty vector only. WT CC plasmid is TT at position -1651 and 1651C plasmid is 
CC at position -1651. Reporter constructs were stud ies under basal conditions and in 
response to angiotensin II (1x10 -7M), Bu 2cAMP (1mM) and potassium (22mM). Results are 
displayed as relative light units (RLU) of firefly luciferase relative to RLU renilla luciferase. 
Data expressed as mean plus standard deviation of t he mean, t-test. Representative graph 
of 3 independent experiments, each with n=6. 
 

 The difference in transcriptional activity between the constructs carrying the T 

and C allele at position -1651 is present under all conditions and particularly 

exaggerated with stimulation with angiotensin II and Bu2cAMP. Figure 5-5 

displays this data as fold change and this clearly demonstrates that the change 

in transcriptional activity in response to stimulation with all trophins does not 

differ between the constructs with the T or C allele. It does not appear, 

therefore that the response to trophins is altered by the allele at -1651 but 

rather there is an increased basal transcription associated with the C allele at 

position -1651 which is exaggerated when transcription is increased by 

stimulation with trophins. 
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Figure 5-5 Fold change in transcriptional activity of of -1651 C and T constructs.  

Graph shows comparison of C allele (1651C plasmid) and T allele at -1651 (WT CC plasmid) 
in response to stimulation with angiotensin II (1x1 0-7M), Bu 2cAMP (1mM) and potassium 
(22mM). Data expressed as mean and plus standard de viation of the mean, t test. * indicates 
no statistically significant change. 
 

5.4.3 Discussion 

 The reporter gene assays described above are useful biological tools to assess 

transcriptional activity in an in vitro system. However, there are a number of 

considerations when interpreting the results. Transfection can vary considerably 

from well to well, both as a result of variation in cell number and density as well 

as a result of cell death due to toxicity from the transfectant. The H295R cells 

proved to be difficult to transfect and optimisation was a lengthy process. 

Toxicity and cell death remained a problem and as a result, 6 biological 

replicates were included in each experiment to ensure that adequate numbers of 

representative wells were available for analysis at the end of the experiment. 

The use of the dual luciferase assay where both renilla and firefly luciferase 

were measured on one sample of lysate meant that this number of biological 

replicates was feasible. As a result of the lengthy optimisation procedure, the 

large number of biological replicates and the use of a robust method for 

controlling for transfection efficiency, the variability in transcriptional 

efficiency under basal conditions were minimised. The results were reproducible 
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and convincing. However, the response to stimulation was more variable and 

greater variability as can be observed in the wider error bars for these 

experiments. There may be an alteration in response to trophins (in particular in 

response to angiotensin II) which is obscured as a result of the limitations of the 

experimental model. However, this is not supported by the data presented 

above.  

 In summary, it has been demonstrated that a single base change at position -

1651 in the promoter region of the CYP11B2 gene leads to an alteration in 

transcriptional activity under basal conditions but does not induce a greater 

responsiveness to trophins. This is consistent to some extent with the in vivo 

results in Chapter 6 which demonstrated that subjects who were homozygote for 

the T allele at position -344 (corresponds to the C allele at position -1651) had a 

higher excretion of tetrahydroaldosterone that those who were homozygote for 

the C allele at -344, but that there was no demonstrable difference in response 

to trophins. Clearly the complexities of the in vivo system are very poorly 

reproduced in the reporter gene assays described above; nevertheless the 

consistency of the results gives encouragement for further investigation.  

5.5 Electromobility shift assay 

 Having established that there is allelic dependant increase in transcriptional 

activity at the -1651 site, further work was undertaken to establish the 

mechanism. The electromobility shift assay, or gel retardation assay, is based on 

the principle that a complex of double stranded oligonucleotide and protein will 

move more slowly through a polyacrylamide gel under an electric current than 

free double stranded oligonucleotide (Garner and Revzin, 1981) (Figure 5-6). 

Free oligonucleotides and oligonucleotide: protein complexes can be detected if 

they are end labelled with γ32P. As H295R cells have been demonstrated to 

produce aldosterone they must also produce the nuclear proteins necessary to 

drive aldosterone synthase transcription, therefore nuclear extracts from H295R 

cells were hybridised with oligonucleotides containing contrasting alleles at the 

site of polymorphic variation (-1651 base pairs upstream of the transcription 

start site). The hypothesis that there will be a difference in the bands seen on a 

polyacrylamide gel in the oligonucleotide containing the C allele at -1651 

compared to the T allele at -1651 was tested in the following experiments.   
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Figure 5-6 Principles of the electromobility shift assay. 

 The oligonucleotide containing the T allele at -16 51 is shown in panel A and the 
oligonucleotide containing the C allele in panel B.  If the single base change obliterates a 
binding site for a transcription factor the free pr obe in panel B will move more rapidly 
through the gel than the probe bound to transcripti on factor.  
 

5.5.1  Methods 

Cells were lysed and cellular compartments fractionated as described in section 

2.4.1, according to a method based on Dignam et al (Dignam et al., 1983). 

Oligonucleotides containing contrasting alleles at the site of polymorphic 

variation were commercially obtained (Eurofins MWG Operon, Ebersberg, 

Germany). Oligonucleotides were end labelled with γ32 P as described in section 

2.4.3. 

 Oligonucleotides were incubated with nuclear extracts containing transcription 

factors from H295R cells obtained under 3 different sodium chloride conditions 

as well as with and without sodium orthovanadate, a phosphotase inhibitor. 

Culture conditions for the H295R cells are described in Chapter 2 and the cells 

were lysed without stimulation at passage number 22.  
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5.5.2 Results 

The results of the electromobility shift assay are shown in Figure 5-7. Firstly, it 

can be seen that the phosphorylation state of the proteins significantly affects 

binding. Bands of the lowest molecular weight (marked arrow 1) are consistent 

regardless of the presence or absence of sodium vanadate. However, the 

remainder of the complexes are significantly dependant on the phosphorylation 

state. This is particularly striking with regard to the complexes marked arrow 3 

which are not apparent under any sodium chloride concentration in the presence 

of sodium vanadate. 

 The sodium chloride concentration of the extraction buffer also has a strong 

effect on binding. This is best seen in the highest molecular weight complexes 

(arrow marked 2) where in the presence and absence of sodium vanadate, the 

strongest binding is seen with the extraction buffer of 250mM sodium chloride. 

The most consistent difference between the T and C allele, in the presence and 

absence of sodium vanadate and across all sodium chloride concentrations can 

be seen in the complexes of the lowest molecular weight (arrow marked 1). 

Strong protein- DNA complexes of a low molecular weight can be seen in all 

lanes with probes containing T allele with only very weak binding seen in the 

lanes with C allele probes.  

 The relevance of the variation in binding with phosphorylation and in the 

context of varying concentrations of sodium chloride is not clear. However, the 

main aim was to assess if there was a difference in DNA: protein binding 

between oligonucleotides containing the T and the C allele and this has been 

clearly demonstrated. It is somewhat unexpected that greater binding is seen in 

the T allele as the plasmid carrying this allele demonstrated less transcriptional 

activity and it is possible that the protein bound to the T allele acts as a 

transcriptional repressor in this context. 
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Figure 5-7 Electomobility shift assay. 

 γ32P end labelled oligonucleotide probes, spanning p olymorphism at position 373 (-1651) 
were hybridised with nuclear extract from H295R cel ls extracted under varying salt 
conditions with and without the presence of sodium orthovanadate (a tyrosine phosphatase 
inhibitor). Complexes were run on 6% gel and film e xposed for 4 days at -80°C.  
  

5.5.3 Discussion 

The in vitro model system of reporter gene assays demonstrated that a single 

base change of a T to a C allele at position -1651 causes increased 

transcriptional activity. The substitution of a T allele for a C allele at position -

1651 was predicted to alter binding of numerous transcription factors in silico 

but the EMSA demonstrated that there is indeed altered protein: DNA binding in 

this region in an in vitro system. However, the identity of the proteins bound to 

the DNA can not be identified as it is not clear whether the bands contain only 

one transcription factor or a complex of numerous factors, making the molecular 

weight an unreliable guide.  

 One approach to identifying the transcription factor or factors in the protein: 

DNA complex is by the use of a “super-shift assay”. This involves incubating the 
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protein: DNA complex with an antibody to a candidate protein. If the protein has 

been correctly identified, the larger protein: DNA: antibody complex will move 

even more slowly through the gel under current and the band will be observed 

“shifted” higher up the gel. An antibody to SF-1 is available but based on the 

bioinformatics study, there were a further seven transcription factors which 

were predicted to bind to the T allele only and a there are a further nine that 

have reduced but not absent affinity for the C allele. Even if all 16 “supershift” 

assays were performed, given the uncertainties regarding the bioinformatics 

databases and the possibility of false negative results described earlier, there 

was significant concern that this approach could overlook the correct protein.  

 An alternative approach is to identify the protein by direct sequencing. This can 

be achieved by using a mass spectrometer to separate ions by their mass: charge 

ratio. The band from the EMSA gel can be isolated and the protein digested with 

a proteolytic enzyme (trypsin) which selectively cleaves the protein at specified 

amino acid sites. The resulting products from the proteolytic digestion are then 

separated on a liquid chromatography column and transferred to the mass 

spectrometer. The protein fragments are subjected to electron spray ionisation 

and broken down to form the individual component amino acids which are 

identified by the mass spectrometer. From these data the identity of the protein 

can be confirmed by checking the sequence tag and molecular weight against a 

database. This technique was felt to be more robust and reliable and was carried 

out by Dr W Sands (MRC Blood Pressure Group). Nuclear extracts prepared as 

described previously were incubated with 5’biotinylated double-stranded DNA 

probes and streptavidin-agarose beads. The protein-DNA complexes were 

separated on SDS-PAGE gel and following trypsin digestion, peptides were 

analysed by tandem mass spectrometry by FingerPrints Proteomics Facility 

College of Life Sciences, University of Dundee. 

Two peptides were identified which bound to the T oligo only, apyrimidinic 

endonuclease (APE 1) and Heterogeneous Nuclear Ribonucleoprotein K 

(HNRNPK). Although neither of these is known to be involved in transcriptional 

regulation of CYP11B2, they both have known generic functions as 

transcriptional regulators. APE 1 has functions as a redox factor, maintaining 

transcription factors in an active reduced state (Evans et al., 2000), and HNRNPK 

interacts with RNA polymerase II transcription machinery to stimulate 
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transcription(Michelotti et al., 1996). The availability of a commercially 

available APE 1 inhibitor made it an attractive candidate for further study. 

5.6 APE 1 inhibitor assay 

5.6.1 Methods 

 Plasmids were prepared and sequence confirmed as previously described 

(section 2.3.2-2.3.5). The protocol for transient transfection was not altered. 

Transfected H295R cells were incubated under basal conditions, and with the 

addition of agonists of aldosterone production: angiotensin II (1x10-7M), Bu2cAMP 

(1mM) and potassium (22mM). However, in this experiment, they were also 

incubated with either 1µM APE 1 inhibitor E3330 (Sigma- Alderich, Missoiuri, 

USA) or vehicle. After 24 hrs, cells were lysed and assayed for firefly and Renilla 

luciferase as previously described (section 2.4.7). Six biological replicates were 

included.  
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5.6.2 Results 

 

Figure 5-8 Effect of APEX-1 inhibitor on transcript ional activity of reporter constructs  

Graphs show reporter constructs containing the C (1 651C plasmid) and T (WT CC plasmid) 
allele at position -1651 under basal (Panel A), ang iotensin II (1x10 -7M) (Panel B), Bu 2cAMP 
(1mM) (Panel C) and potassium (22mM) (Panel D). Dat a expressed as mean plus standard 
deviation of the mean, t-test. * indicates no stati stically significant change. Representative 
graph of 3 independent experiments, each with n=6.  
 

As previously shown in section 5.4, the plasmid with T allele at position -1651 

produced less luciferase that the plasmid with C allele at -1651 under basal 

conditions. The addition of the APE 1 inhibitor produced a trend to increased 

transcriptional activity in both plasmids. There difference did not reach 

statistical significance under basal conditions, possibly as the transcriptional 

activity was too low to be able to detect a significant difference. However, 

under stimulated conditions (angiotensin II: Panel B, Bu2cAMP: Panel C and 

potassium: Panel D) the plasmid carrying the T allele demonstrated a 

statistically significant increase in transcriptional activity in the presence of the 

APE1 inhibitor as compared to vehicle. This is consistent with the previous 

results and the hypothesis that the T allele binds APE 1 which functions as a 
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negative regulator of transcription of CYP11B2. Thus inhibition of this protein 

leads to an up regulation of transcription. The effect would be expected to be 

less in the C allele as no APE 1 was detected bound to the sequence containing 

the C allele (Section 5.5).  

5.6.3 Discussion 

The regulation of aldosterone production is a heritable trait (Inglis et al., 1999), 

yet the genetic determinants of increased aldosterone and a consequent rise in 

blood pressure are poorly understood, particularly at a mechanistic level. These 

data demonstrate a clear, plausible means by which an alteration in a single 

base in the promoter region of CYP11B2 may alter transcription via allele 

dependent binding of a repressive transcription factor. They provide evidence 

that the presence of the C allele at position -1651 in the CYP11B2 promoter is 

associated with decreased transcriptional activity and that the mechanism of 

this is likely to be mediated by the transcription factor APE 1. This hypothesis is 

supported by further work within our group demonstrating the association of 

APE1 to the promoter of CYP11B2 in H295R cells using a chromatin 

immunoprecipitation assay (personal communication, Dr W Sands).  

APE 1 (apurinic/apyrimidinic endocunlease, also known as APEX 1, Ref-1, HAP-1) 

is encoded on chromosome 14 and is ubiquitously expressed. It was first 

described as a key enzyme in the base excision repair (BER) pathway (Levin and 

Demple, 1990). It responds to damage by reactive oxygen species by 

participating in a four step process; firstly, excision of a damaged base by a DNA 

glycosylase which results in the generation of an AP site due to cleavage of the 

N-glycosidic bond of the damaged base. APE 1 cleaves the AP site in the second 

step, to generate 3′ OH and 5′ deoxyribose phosphate terminus. The third 

reaction in the pathway involves the DNA polymerase to fill in the single 

nucleotide gap generated due to lesion base removal and finally the gap is 

sealed by the DNA ligase in the final step (Hegde et al., 2008). Essentially, APE1 

functions as an “end cleaning” molecule in the repair process. It is thought that 

the C-terminus of the protein mediates this function and it is interesting to note 

that this is the most highly conserved region (Xanthoudakis et al., 1994). 
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 However, there is evidence that APE 1 has a dual function and also plays a role 

as a redox co-activator in mammals (Xanthoudakis and Curran, 1992). Several 

transcription factors possess a redox sensitive cysteine residue which can be 

reduced by APE1, enhancing their DNA binding activity. Members of the 

CREB/ATF and AP1 family have been shown to be reduced by APE1 (Xanthoudakis 

and Curran, 1992; Xanthoudakis et al., 1992), and these, as discussed previously, 

are known to bind to the CRE element in the CYP11B2 promoter to increase 

transcription of aldosterone synthase. The N-terminus of the protein is thought 

to contain the structure necessary for the redox reactions (Xanthoudakis et al., 

1994). The small molecule inhibitor of APE 1 (E3330) used in the experiments 

described in this chapter selectively inhibits the redox function of APE 1 (Luo et 

al., 2008), probably via the cysteine residue at position 65, although this 

remains controversial (Ordway et al., 2003; Georgiadis et al., 2008). Thus it may 

be that the APE 1 effect on transcriptional regulation of CYP11B2 is mediated via 

a redox interaction with activating transcription factors. However, most 

interactions between APE and transcription factors described in the literature 

suggest that APE1 converts transcription factors from an oxidised to reduced 

state, allowing them to bind to their target promoters and switch on the 

transcription of genes (Tell et al., 2009) rather than functioning as a negative 

regulator. It is not clear therefore, how increased binding of APE1 in the 

CYP11B2 T allele leads to reduced transcriptional activity. It is possible that 

binding of APE at the -1651 prevents it from participating in the redox reactions 

of CREB/ ATF -1 transcription factors, thus leading to reduced transcription but 

further evidence would be required to support this hypothesis. It would be 

interesting to repeat the reporter construct experiments described above after 

mutation of the CRE site; if APE 1 is acting via CREB/ATF there should be no 

difference between the T allele which binds APE 1 and the C allele which does 

not. 

 APE 1 has a further mode of action. It has been shown to act as a negative 

transcription factor in its own right and this has been demonstrated in the 

context of its regulation of the parathyroid hormone gene (PTH) (Okazaki et al., 

1994), and the process by which APE 1 appears to regulate its own expression 

(Kuninger et al., 2002). In these circumstances APE 1 binds to the negative 

calcium response elements (nCaRE) in the promoters of these genes and the 
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sequence of the nCaRE site is demonstrated below along with the sequence 

within the CYP11B2 promoter for comparison. 

GGA CGA GAC TAG CCT GGC  CYP11B2 T allele 
 
GGA CGA GAC CAG CCT GGC  CYP11B2 C allele 
 
TTT TGA GAC AGA GTT TCA   nCaRE-B 
     
TTT TGA GAC AGG GTC TCA  nCaRE-A  
 
 

 It seems that APE 1 is incapable of binding alone and must form heterodimers 

with other proteins. In the case of the PTH gene, it dimerised with the Ku 

antigen p70 and p86 to nCaRE-A (Chung et al., 1996), and with heterogeneous 

nuclear ribonucleoprotein L (hnRNP-L) in the APE gene itself (Kuninger et al., 

2002). It is interesting that the complex that was analysed in the experiments 

described above identified not only APE 1 but also hnRNP-K in the association 

with the T allele but not the C allele. Thus, the mechanism by which APE 1 

regulates the expression of aldosterone synthase may be analogous to these 

examples.  

A potential mechanistic link between the regulation of the PTH gene and 

aldosterone is particular interest given the long recognised but poorly 

understood relationship between hyperparathyroidism and hypertension (Yu et 

al., 2010; Hedback et al., 1990). It could be speculated that if APE 1 was down 

regulated in some way in patients with hyperparathyroidism, leading to the 

development of parathyroid adenomas, they may also develop hypertension as a 

result of the lack of inhibition of aldosterone synthase. Bearing in mind that the 

excess of cardiovascular death appears to persist in hyperparathyroid patients 

even after a surgical “cure” (Hedback et al., 1991; Hedback et al., 1990), this 

hypothesis, while highly speculative, may be worthy of further investigation.  

 Attempt have been made to generate an APE 1 null mouse however these 

animals have been found to die in utero (Xanthoudakis et al., 1996). Animals 

heterozygous for the APE 1 allele survive to adulthood. It is particularly 

interesting to note that the APE+/- mouse is hypertensive (Jeon et al., 2004), 

although to date, there has been no exploration of their renin angiotensin 
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system and the blood pressure phenomenon is thought to be mediated at least in 

part by endothelial nitric oxide production and increased vascular tone. It would 

be interesting to investigate whether the APE+/- mouse has evidence of up-

regulated aldosterone production and measuring plasma renin, aldosterone and 

adrenal CYP11B2 expression would help to elucidate the potential link.  

Clearly the issues specific to the investigation of steroidogenesis regarding 

animal models that were discussed at greater length in chapter 4 would remain 

problematic. It is therefore pertinent to note that a case control study 

examining the association of polymorphic variation in the human APE 1 gene and 

hypertension has suggested that it may be a susceptibility gene for high blood 

pressure (Naganuma et al., 2010). Although there are methodological flaws in 

this report and importantly, it remains a single association study that has not 

thus far been replicated in another population, it contributes to the body of 

evidence to suggest that the role of APE 1 in hypertension deserves further 

analysis. 

5.7 Conclusion 

The studies described above suggest a plausible molecular mechanism to explain 

the association between genetic variation in the aldosterone synthase gene and 

hypertension. By providing evidence that a single nucleotide change can alter 

transcriptional activity and subsequent identification of possible protein: DNA 

complexes, they suggest a novel hypothesis of regulation of aldosterone synthase 

transcription. A number of exiting avenues for future investigation and 

clarification of the role of APE1 in the regulation of aldosterone synthase and 

subsequent development of hypertension have been raised. In addition, 

numerous questions remain regarding the mechanism by which APE 1 may exert 

its effect either alone or in combination with other proteins. Nevertheless, the 

evidence presented here makes a compelling case for further study in this area. 
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6. Phenotypic consequences of variation in the 
CYP11B2 promoter region on corticosteroid 
production in normal volunteers 

6.1 Introduction 

 Variation in the promoter region of CYP11B2, most commonly stratified by 

genotype at position -344, is associated with hypertension and a relatively higher 

aldosterone to renin ratio (ARR)(Sookoian et al., 2007; Lim et al., 2002); 

however, this relationship between genotype and biochemical phenotype is not 

consistent. A more reliable finding is a phenotype of reduced 11β-hydroxylase 

activity (Davies et al., 2001; Freel et al., 2008; Inglis et al., 1999; Keavney et 

al., 2005; Freel et al., 2007). A possible mechanism for this has been identified 

in functional polymorphisms in the promoter of CYP11B1, which are in linkage 

disequilibrium with the polymorphism at -344 in CYP11B2, and are associated 

with reduced transcriptional activity in vitro (Barr et al., 2007). While this could 

be a plausible mechanism to explain the phenotype of inefficient 11β-

hydroxylation, the mechanism behind the development of hypertension and an 

elevated ARR is not apparent.  One hypothesis is that the reduced 11β-

hydroxylation leads to a subtle, long term rise in ACTH drive to the adrenal 

cortex which maintains cortisol at appropriate levels. This increased ACTH drive 

leads to hyperplasia of the adrenal gland and increased synthetic capacity for 

corticosteroids either at basal levels or in response to trophins. An alternative 

hypothesis is that the functional variations in the CYP11B1 promoter is in linkage 

disequilibrium with further functional variations at the promoter region of the 

CYP11B2 gene, as identified in the previous chapter. These may lead to 

increased transcriptional efficiency of aldosterone synthase and increased 

aldosterone production, and the digenic phenomenon where the phenotype 

depends on functional change at more than one point across the locus. Given 

that there is little robust evidence to suggest an absolute genotype-dependant 

difference in the end products of the corticosteroid pathway (aldosterone is not 

elevated but the ARR is; cortisol is not altered but the ratio of 11deoxycortisol 

to cortisol is higher), it seems likely that the difference is associated with 

altered enzyme efficiency and responsiveness to stimulation or suppression. 

These relationships are currently poorly understood. 
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 The effects of environmental factors are likely to be important in the 

development of the phenotypic consequences of the genotype. In particular, the 

effect of dietary sodium intake may be a crucial factor in the development of 

the ultimate physiology. For example, the strain of Dahl hypertensive rat which 

has 5 mutations in the in 11β-hydroxylase gene (Cicila et al., 2001), develops 

hypertension only in response to a high salt diet. Similarly, an animal model of 

increased aldosterone synthase activity develops a phenotype of hypertension 

and relative mineralocorticoid excess only under high salt conditions (Makhanova 

et al., 2008).  

 The studies set out in this chapter aim to explore these issues further in a study 

of the regulation of corticosteroid production in normal volunteers.  

6.2 Aims 

 To examine the aldosterone production of a group of normal volunteers  

1. Under standard salt intake in response to stimulation of their (RAAS) 

renin-angiotensin-aldosterone system by angiotensin II and 

adrenocorticotrophin stimulating hormone  

2. Under conditions designed to suppress the RAAS (high salt intake) and in 

response to stimulation of their (RAAS) renin-angiotensin-aldosterone 

system by angiotensin II and adrenocorticotrophin stimulating hormone 

 To examine the effect of genetic variation at the CYP11B1/2 locus on these 

responses.  

6.3 Methods 

6.3.1 Study volunteers and protocol 

Normal volunteers were recruited by advertisement in local media as well as 

around the university campus. In order to recruit across a range of ages, the 

university’s retired staff was also contacted via e mail. Volunteers were required 

to be in good health and between the ages of 18-70 at the time of recruitment 

and not on any antihypertensive or steroid containing medication. Full exclusion 

criteria are listed in Table 2-3. It was calculated that 60 volunteers would be 
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needed to achieve 80% power to detect a difference in plasma concentration of 

aldosterone of 20% in response to trophins of aldosterone production, with α of 

0.05.  

 Full details of the study protocol are described in Chapter 2.5.2 and Appendix 

7.5. In brief, the design was that of a double blind cross over study. The subjects 

were asked to adhere to a low salt diet for 5 days and were given either salt 

tablets (aim of total salt intake of 200mmol/day) or placebo (aim of total salt 

intake of 80mmol/day). On day 3 they began a 24hr urine collection and on day 

4 they attended the Clinical Research Facility. Intravenous cannulation was 

performed and, after 30 minutes recumbent rest, blood was drawn for steroid 

measurements. ACTH was administered at a rate of 1ng/kg/min and after 30 

minutes the infusion was stopped and further blood sampling was performed. 

After a further 30 minutes rest (60 mins from baseline), a third blood sample 

was obtained.  The volunteers returned on day 5 for the same protocol at which 

time, the infusate was angiotensin II, administered at a rate of 3ng/kg/min. 

Blood pressure was monitored at 10 minute intervals throughout both infusions. 

At least one week for a wash out period was allowed before volunteers crossed 

over to the salt/ placebo arm of the study. 

6.3.2 Genotyping and Haplotype analysis 

Subjects were genotyped across 8 polymorphisms in CYP11B2 promoter region as 

well as the Intron 2 conversion and two polymorphisms in the CYP11B1 promoter 

(1889G/T and -1859 A/G). Details of the DNA extraction, PCR and sequencing 

reactions, as well as haplotype analysis, are given in Chapter 2.5.7 and 2.5.8.  

6.3.3 Corticosteroid phenotype measurements 

24 hour urine samples were collected in plain containers and the volume 

measured before being aliquoted and stored at -20°C without preservatives. 

Steroid metabolites were measured by gas chromatography using the method of 

Shackleton (Shackleton, 1993) with minor modifications described in Chapter 

2.5.4. Blood samples for plasma steroids analysis was drawn in lithium heparin 

tubes and separated by centrifugation at 4°C and snap frozen at -80°C. Plasma 

steroids were extracted from 3ml plasma using Chem Elute cartridges (Varian, 

CA, USA) and eluted with dichloromethane. The eluates were evaporated to 
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dryness under nitrogen and reconstituted in 60ul acetylonitrile. Aliquots (20ul) 

were injected into a Polaris 5 micron, 150mm x2mm C-18-A reversed phase HPLC 

column. Identification and quantification were accomplished by tandem mass 

spectrometry using a Varian 1200L mass spectrophotometer with a triple 

quadropole detector. The internal standard was 16βmethylprednisalone.  

6.3.4 Renin measurements 

Blood was drawn in EDTA tubes and plasma separated by centrifugation at room 

temperature for 15mins at x3000g and snap frozen at -80°C. Care was taken to 

ensure the samples did not thaw until renin measurements were undertaken in 

order to avoid cryoactivation. Plasma renin concentration was measured by 

means of a Diasorin Liaison® immunochemiluminometric analyser (DiaSorin Ltd, 

Wokingham, Berkshire, UK) (Dorrian et al., 2010).  

6.3.5 Urinary electrolytes 

Urinary sodium was measured in the 24 hr urine sample by the Department of 

Biochemistry (Gartnavel General Hospital, Glasgow, UK) using an ion selective 

electrode.  

6.3.6 Data analysis 

Biochemical data that were not normally distributed were log transformed (log 

10) to enable the option of the use of parametric hypothesis tests. Statistical 

analysis was carried out by Minitab 12.21 and Graph Pad Prism 4. Haploview v4.2 

software was used to analyse genotype frequencies for Hardy Weinberg 

equilibrium and to calculate the haplotype structure. 

6.4 Results 

6.4.1 Demographic characteristics 

The demographic characteristics of the volunteers are shown in Table 6-1, 

stratified according to their genotype at the -344 locus.  The numbers of men 

and women were equal and the gender ratio did not vary significantly across the 

genotype groups. Similarly, age, weight and blood pressure were not statistically 

different between the genotyped groups, although there was a trend to younger 

age in the -344 CC group.  
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Demographic 
characteristics 

All subjects 
N=60 

-344 CC 
Subjects 
N=13 

-344 TC 
Subjects 
N=33 

-344 TT 
Subjects 
N=14 

p 

-344 
Polymorphism 

     

 *Age, y 51  
(32- 67) 

36  
(30-58) 

57  
(30-65) 

57  
(49-69) 
 

NS 

Gender, 
 Male 

Female 

 
27 
33 

 
6 
7 

 
15 
18 

 
6 
8 
 

 
NS 

*Weight, kg 70  
(61 -76) 

65  
(57-85) 

71  
(62-76) 

71  
(68-77) 
 

NS 
 

†SBP, mmHg 127  
(+/- 13.91) 

121.46 
 (+/- 14.07) 

128.85  
(+/-14.33) 

127.29   
(+/- 12.22) 
 

NS 

†DBP, mmHg 76  
(+/- 10.26) 

74.85 
(+/- 8.38) 

74.76  
(+/- 11.51) 

80.43  
(+/- 7.66) 
 

NS 

Table 6-1 Demographic information on all study subj ects. 

Subjects divided according to -344C/T. *Median and IQ range, Kruksal-Wallis. †Mean and 
StDev, ANOVA. 
 

6.4.2 Genotype and Haplotype data 

 The polymorphisms in the promoter region of CYP11B2, as well as in the intron 2 

region and the promoter region of CYP11B1 were sequenced and the results are 

shown in Table 6-2. The genotyping success rate was high (between 95-100%) 

and all SNPs were in Hardy-Weinberg equilibrium. 
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# Name Position Obs. 

Het 

Pred. 

Het 

HWE p % 

Genotyped 

MAF Alleles 

1 B1-1859 143963455 0.52 0.48 0.84 100 0.408 A:G 
 

2 B1-1889 143963486 0.48 0.48 1 100 0.392 G:T 
 

3 B2_IC 143997133 0.50 0.48 1 100 0.400 A:C 
 

4 B2 -344 143999600 0.55 0.50 0.65 100 0.492 T:C 
 

5 B2 -470 143999726 0.55 0.50 0.65 100 0.492 C:T 
 

6 B2 -645 143999901 0.39 0.35 0.74 98.3 0.229 C:T 
 

7 B2 -663 143999919 0.54 0.50 0.74 98.3 0.492 T:A 
 

8 B2 -1472 144000727 0.58 0.50 0.38 95 0.482 A:G 
 

9 B2 -1513 144000786 0.56 0.50 0.53 95 0.474 T:C 
 

10 B2 -1651 144000906 0.56 0.50 0.53 95 0.474 T:C 
 

11 B2 -1667 144000922 0.56 0.50 0.53 95 0.474 G:C 
 

Table 6-2 Characteristics of polymorphisms in CYP11 B2 and CYP11B1.  

Position in base pairs derived from NCBI SNP databa se (http://www.ncbi.nlm.nih.gov/SNP) 
Genome build 37.1, Group term GRCh37. Obs.Het, obse rved hetrozygosity; Pred.Het, 
predicted hetrozygosity; HWE, Hardy Weinberg Equili brium p value; MAF, minor allele 
frequency. 
 

Haplotypes were generated with Haploview V4.2 and the linkage disequilibrium 

plot and haplotype frequencies are shown in Figure 6-1. The high degree of 

linkage disequilibrium and the haplotype frequencies is consistent with that 

found in Chapter 3.  
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Figure 6-1 Haplotype frequencies and Linkage disequ ilibrium plot of 60 normal volunteer 
subjects. 

 Values shown are R 2 values.  
 

 From these results, it can be seen that in this population the polymorphisms in 

the promoter region are in such strong linkage disequilibrium that any individual 

SNP can be used as a proxy for several other SNPS with the exception of the 

polymorphism at position -645 and the polymorphism at -663 of CYP11B2. 

However, the minor allele frequency of these haplotypes is low. Therefore, the 

phenotypic data presented in this chapter will be stratified according to the 

allele present at position -344 in the CYP11B2 promoter as a proxy for the other 

5 SNPS (-470, -1472, -1513, -1651 and -1667) that are in 100% linkage 

disequilibrium. 

6.4.3 Standard salt and high salt study phase 

 The urinary sodium collections demonstrate a clear difference in the mean 

urinary sodium excretion between the sodium loading phase and the standard 

sodium phase, although the range of urinary sodium was wide in both phases of 
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the study. As expected, plasma aldosterone and renin concentrations are lower 

under high salt conditions than under standard salt intakes. While the difference 

between tetrahydroaldosterone excretion rate in the high and low salt arms was 

not statistically different, the trend was for excretion rate under high salt 

conditions to be lower than under standard salt conditions. The 24 hour urine 

collections were commenced on day 3 and completed by day 4; this may have 

been too early for the subjects to have achieved salt balance.  

 High salt 
 

Standard salt p 

Urinary Na  
mmol/24 Hr 

200.73  
(+/-66.7) 
 

97.99  
(+/- 40.35) 

<0.001 

*Plasma aldosterone  
ug/ml 

1.93  
(+/-3.17) 
 

3.66  
(+/-3.11) 

<0.001 

Tetrahydroaldosterone  
ug/ 24 Hr 

51.85  
(+/-20.53) 

55.05 
 (+/-20.14) 

NS 

*Plasma renin concentration 
mIU/l 

8.00 
(+/-1.95) 

15.23  
(+/-1.99) 

<0.001 
 

Table 6-3 Biochemical effect of high salt and stand ard salt conditions.  

Measurements made under high salt and standard salt  conditions for all subjects shown as 
mean and standard deviation.  Data marked * were lo g10 transformed prior to paired t-test. 
 

6.4.4  Measurement of aldosterone production strati fied by 

genotype 

The hypotheisis that aldosterone production varies in association with variation 

in the CYP11B2 promoter was examined by measuring plasma aldosterone 

concentration, plasma aldosterone to renin ratios and 24hr urinary excretion of 

aldosterone metabolites. As demonstrated in 6.4.2, given the high LD at the 

CYP11B1 and CYP11B2 locus, the -344 polymorphism can be used as an effective 

proxy for the 5 other SNPs in the promoter region. The plasma aldosterone and 

aldosterone to renin ratios measurements under standard salt conditions are 

illustrated in Figure 6-2 and Figure 6-3.  
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Figure 6-2 Log 10 plasma aldosterone concentration under standard sa lt conditions.  

Data displayed as mean and standard deviation, ANOV A. 
 

 

Figure 6-3 Log 10 plasma aldosterone concentration: plasma renin con centration ratio 
standard salt conditions.  

Data displayed as mean and standard deviation, ANOV A. 
 

It can be seen that there is no significant difference between the plasma 

aldosterone levels or the aldosterone/ renin ratio according to genotype at the 

CYP11B2 promoter. The 24hr urinary excretion of tetrahydroaldosterone is 

displayed according to genotype in Figure 6-4. There is a genotype-dependent 

increase in THAldo excretion which rises in a “dose-response” manner.  
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Figure 6-4 Urinary 24 Hr THAldo excretion under and  standard salt conditions. 

 Data displayed as mean and standard deviation, ANO VA 
 

 The 24hr urinary excretion rate is a more robust measurement of aldosterone 

production given that it integrates aldosterone production over a longer period 

of time than a single plasma measurement. While attempts were made to 

standardise the conditions under which the plasma aldosterone concentration 

was sampled with regards to posture, the level may have been affected by other 

factors, e.g. diurnal rhythm. 

6.4.5  Effect of salt loading on aldosterone 

The effect of salt on suppression of aldosterone was examined in both plasma 

and urine to test the hypothesis that variation in the CYP11B2 promoter may 

affect suppressibility of aldosterone in response to salt. Change in urinary 

tetrahydroaldosterone (THAldo) excretion rate in response to salt suppression is 

displayed in Figure 6-5 and change in plasma aldosterone in response to high salt 

intake is displayed in Figure 1-6.  
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Figure 6-5 Change in urinary tetrahydroaldosterone excretion in response to salt loading.  

Data displayed as mean and standard deviation, ANOV A. 

 

Figure 6-6 Change in plasma aldosterone concentrati on in response to salt loading.  

Data displayed as mean and standard deviation of Lo g10 transformed data, ANOVA. 
 

Neither parameter displayed a genotype dependant difference in the suppression 

of aldosterone levels in response to salt. The change in plasma and urinary 

THAldo excretion in response to salt suppression is small across all genotypes 

and as such, the study may not have been large enough to detect a significant 

difference. 
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6.4.6  Effect of stimulation of the CYP11B2 pathway  by 

trophins of aldosterone 

The hypothesis that variation in the promoter of the CYP11B2 gene may be 

associated with altered response to trophins of aldosterone was also tested. The 

response of plasma aldosterone to angiotensin II under standard salt and high 

salt conditions are shown in Figure 6-7. 

 Neither raw data, nor log transformed data were normally distributed which 

excluded analysis by ANOVA; therefore non parametric testing was employed 

(Kruskal Wallis test). As expected, there was a marked increase in plasma 

aldosterone measurements following the administration of angiotensin II (30 

mins) which then fell over time (60 mins), likely to be due to increased 

expression of CYP11B2 (Spyroglou et al., 2009). There is no observable 

difference in response to angiotensin II between individuals carrying contrasting 

alleles in the CYP11B2 promoter, either under salt loaded or standard salt 

conditions. The rise in aldosterone in response to angiotensin II was blunted 

under high salt conditions but there was no gene dependant effect, as assessed 

by comparison of the difference in response to angiotensin II (baseline and 30 

min) under high and low salt conditions (Table 6-4) (see Matthews et al 

(Matthews et al., 1990) for a discussion of the use of summary statistic in this 

context). 
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Figure 6-7 Response to angiotensin II (3ng/kg/min) under high and standard salt conditions. 

 Due to the non-normal distribution of the data, gr aphs are displayed as median and inter-
quartile range. Hypothesis tests (Kruskal Wallis) w ere performed comparing genotypes at 
each time point (Basal, 30 min and 60 min). 
 

GENOTYPE 
CYP11B2 -344 

MEAN DIFFERENCE IN RISE IN PLASMA 
ALDOSTERONE 

P VALUE 

CC 8.38 
TC 5.62 
TT 5.56 

0.11 

Table 6-4 Difference in rise in plasma aldosterone following angiotensin II stimulation 
between high salt and low salt conditions.  

Hypothesis test (AVOVA) was performed comparing res ponse for each genotype. 
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The response of plasma aldosterone to adrenocorticotrophin stimulating 

hormone (ACTH) under standard salt and high salt conditions is shown in Figure 

6-8.  Data were similarly non-normally distributed and the same non-parametric 

testing was used for data analysis. Aldosterone was stimulated by the 

administration of ACTH, although to a lesser extent than with angiotensin II. As 

with angiotensin II stimulation, there was no genotype dependant difference 

between plasma aldosterone concentrations following ACTH stimulation either 

immediately following ACTH administration at 30 minutes or after a further 30 

minute period.  
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Figure 6-8 Response to ACTH (1ng/kg/min) under high  and standard salt conditions. 

 Due to the non-normal distribution of the data, gr aphs are displayed as median and inter-
quartile range, Hypothesis tests (Kruskal Wallis) w ere performed comparing genotypes at 
each time point (Basal, 30 min and 60 min).  
 

The ratio of the plasma concentration of a compound to that of its precursor 

may be a better index of the efficiency of enzyme activity. Aldosterone is 

synthesised from deoxycorticosterone (DOC) by three separate “hydroxylations” 

(see chapter 1.2.4), catalysed by aldosterone synthase in the adrenal 

glomerulosa. The response of this index, (DOC:Aldo) to angiotensin II, a specific 

inducer of the CYP11B2 pathway is worthy of examination. However, 
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interpretation of this index is compromised by the fact that DOC is also a 

product of the zona fasciculata, which secretes higher quantities than does the 

zona glomerulosa. The basal DOC:Aldo ratios are shown in Figure 6-9. 

 

Figure 6-9 Log 10 Deoxycorticosterone:aldosterone (DOC:Aldo) ratio u nder standard salt 
conditions.  

Graphs displayed as mean and standard deviation, AN OVA. 
 

Under standard salt conditions there is a genotype-dependant effect in DOC: 

Aldo ratio. The DOC: Aldo ratio is higher with TT>TC>CC (p=0.029). This could 

suggest that TT individuals have less aldosterone synthase activity and are less 

efficient at converting DOC into aldosterone. However, it could also be a 

consequence of less efficient 11β-hydroxylase activity, which also uses DOC as a 

substrate. The effect on DOC: Aldo of stimulation of the CYP11B2 pathway with 

angiotensin II is shown in Figure 6-10. 
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Figure 6-10 Deoxycorticosterone: Aldosterone (DOC:A ldo) ratio, response to angiotensin II 
(3ng/kg/min) under standard salt conditions.  

Data are displayed as mean and standard deviation. Hypothesis tests (ANOVA) were 
performed comparing genotypes at each time point (B asal, 30 min and 60 min). 
 

Following administration of angiotensin II the DOC: Aldo ratio would be expected 

to fall due to stimulation of CYP11B2 transcription and increased aldosterone 

synthase activity. The difference between individuals of different genotypes 

seen under standard salt conditions loses statistical significance following 

administration of angiotensin II. It seems likely that the increased DOC: Aldo 

ratio observed at baseline arises as a result of inefficient 11β-hydroxylase 

activity rather than aldosterone synthase activity. However, it is interesting to 

note that while the DOC: Aldo ratio falls in response to AII in TT individuals, 

indicating a clear response to AII and increased aldosterone synthase activity, 

the response in CC individuals is less marked. The change between DOC: Aldo 

ratios in TT Vs CC individuals is not statistically significant but the trend raises 

the possibility that TT individuals are more sensitive to the effects of AII.  
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6.4.7 Effect of stimulation of the CYP11B1 pathway by 

trophins of aldosterone 

Whilst previous evidence has suggested that 11β-hydroxylase activity is less 

efficient in individuals who carry the T allele at position -344 in the promoter 

region of CYP11B2 than those carrying the C allele, there is no evidence of any 

absolute difference in the level of cortisol produced. The cortisol measurements 

at baseline for study participants stratified according to genotype are shown in 

Figure 6-11 which confirms these previous findings with no genotype dependant 

difference in plasma cortisol concentration. 

 

Figure 6-11 Log 10 Basal cortisol under standard salt conditions. 

 Data displayed as mean, standard deviation, ANOVA.  
 

The ratio of 11-deoxycortisol (S) to cortisol (F) can be used as a measure of 11β-

hydroxylase efficiency. This was measured at baseline and in response to 

stimulation of the CYP11B1 pathway with ACTH to test the hypothesis that 

carriers of the -344 TT polymorphism in CYP11B2 display a phenotype of relative 

CYP11B1 inefficiency. S:F ratios stratified according to genotype are displayed in 

Figure 6-12 while the response of the S:F ratio to stimulation of the CYP11B1 

pathway by ACTH is shown in Figure 6-13. 
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Figure 6-12 Log 10 Basal 11-deoxycortisol (S): cortisol (F) under sta ndard salt conditions. 

 Data displayed as mean, standard deviation, ANOVA.  
 

 

Figure 6-13 Log 10 11-deoxycortisol (S): cortisol (F), response to AC TH (1ng/kg/min) under 
standard salt conditions. 

 Data displayed as mean, standard deviation. Hypoth esis tests (ANOVA) were performed 
comparing genotypes at each time point (Basal, 30 m in and 60 min). 
 



Chapter 6  198 

There is less efficient 11β-hydroxylation in individuals carrying the T allele at 

position -344 in the CYP11B2 promoter than those carrying the C allele at 

baseline. Stimulation with ACTH causes S:F to rise, i.e. there is relatively more 

precursor (11-deoxycortisol) relative to its product, cortisol. However, the 

genotype-dependant difference remains relatively constant at baseline, 

immediately following ACTH (30 minutes) and after a further 30 minutes. 

As mentioned above, DOC is a substrate for both aldosterone synthase and 11β-

hydroxylase, thus, both can generate corticosterone (B). However, in the 

glomerulosa, aldosterone synthase can also perform an 18-oxidation (to produce 

aldosterone) and 18-hydroxylation (to produce 18-hydroxycorticosterone). As the 

fasciculata is a higher capacity system than the glomerulosa, it is likely that the 

ratio of DOC: B relates more to 11β-hydroxylase activity than aldosterone 

synthase activity. DOC: B ratios response to ACTH is shown in Figure 6-14 and in 

order to discern whether this is a CYP11B1 or CYP11B2 effect, the response to 

angiotensin II, a specific trophin of CYP11B2 is also displayed Figure 6-15.  

 

Figure 6-14 Log 10 Deoxycorticosterone (DOC): corticosterone (B) rati o response to ACTH 
(1ng/kg/min) under standard salt conditions. 

 Data displayed as mean, standard deviation. Hypoth esis tests (ANOVA) were performed 
comparing genotypes at each time point (Basal, 30 m in and 60 min). 
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Figure 6-15 Log 10 Deoxycorticosterone (DOC): corticosterone (B) rati o response to 
Angiotensin II (3ng/kg/min) under standard salt con ditions. 

 Data displayed as mean, standard deviation. Hypoth esis tests (ANOVA) were performed 
comparing genotypes at each time point (Basal, 30 m in and 60 min). 
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Figure 6-16 Log 10 Deoxycorticosterone (DOC) ACTH (1ng/kg/min) under standard salt 
conditions. 

 Data displayed as mean, standard deviation. Hypoth esis tests (ANOVA) were performed 
comparing genotypes at each time point (Basal, 30 m in and 60 min). 

 
Administration of ACTH reveals a genotype-dependant difference in DOC: B 

ratios with TT individuals demonstrating less efficient conversion of precursor 

(DOC) to product (B) at 30 minutes than TC or CC individuals (P<0.0001). The 

ratio is driven by a higher DOC in TT individuals Figure 6-16. As this is not 

observed on stimulating the CYP11B2 pathway with angiotensin II, it can be 

concluded that this is likely to be an effect of less efficient 11β-hydroxylation. 

There are no statistically significant differences between genotype groups on 

stimulation with angiotensin II.  

6.5 Discussion 

 Polymorphic variation in the CYP11B2 promoter region at position -344 has 

previously been shown to be associated with reduced 11β-hydroxylation (Davies 

et al., 2001; Freel et al., 2008; Inglis et al., 1999; Keavney et al., 2005; Freel et 

al., 2007) and the data above confirm these findings in a normal population. The 

association with indices of aldosterone production have been more controversial, 

and clarification of this issue was one of the main aims of this study. 24 Hr 
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urinary THAldo excretion was significantly higher in TT genotyped individuals in 

this study, confirming that they are exposed to higher levels of aldosterone than 

CC individuals. Although plasma measurements showed no genotype dependant 

difference, the longer duration of sampling makes the urine collection a more 

robust measurement of aldosterone production than plasma concentration 

measurement which may be more sensitive to confounding factors. 

 There was no genotype-dependant difference in the extent of suppression of 

aldosterone levels by salt loading. However, the study methodology may have 

been a limiting factor here, particularly given the greater reliance on urinary 

measurements to detect differences in aldosterone production bearing in mind 

that the difference between THAldo excretion under high salt and standard salt 

conditions was not statistically significant. Subjects commenced the 24 hour 

urine collection on day 3 and the 24 hour urine collection in the salt loading 

phase may have been more useful if subjects were given longer to achieve 

sodium balance. Further, the plasma aldosterone to renin ratio has been more 

reliably associated with -344 polymorphism (Lim et al., 2002) but in this study, 

the method chosen to measure plasma renin was plasma renin concentration 

(PRC), using a chemiluminescent method, rather than plasma renin activity 

(PRA). The chemiluminescent method has the advantage of low cost and high 

throughput capacity, but is less specific especially at the lower end of the 

normal range than PRA (Dorrian et al., 2010). This would have been particularly 

relevant for measurements during the high salt phase of the study and may be a 

possible explanation for why there was no detectable difference in ARR between 

the genotyped groups. 

 The relationship between aldosterone production and genetic variation in the 

CYP11B2 promoter was further explored and the hypothesis that individuals with 

TT genotype are more sensitive to trophins of aldosterone that CC individuals 

was tested. No evidence to support this hypothesis was found with regard to 

plasma aldosterone concentration response to either angiotensin II or ACTH. It 

has previously been suggested that chronic subtle increase in ACTH as a 

consequence of inefficient 11β-hydroxylation lead to increased synthetic 

capacity of the glomerulosa resulting in increased sensitivity to trophins. As the 

age range of the study participants was wide (in particular of the TT individuals 

who had a mean age of 57 years, StDev 49-69 years), there is no reason to 
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believe that the negative result is due to inadequate time to develop this 

phenotype. However, the dose of ACTH used (1ng/kg/min) may have provoked a 

maximal adrenal response (Arvat et al., 2000) and in order to detect a genotype 

dependant difference, a much lower, sub-maximal dose may be necessary.   

 Although there were no genotype dependant differences in absolute aldosterone 

levels in response to stimulation, interesting trends were observed in the ratios 

of product to precursor which can be used as a marker of enzyme efficiency. In 

particular, the contrasting response of DOC:Aldo ratio following stimulation of 

the CYP11B1 and CYP11B2 pathways between TT and CC individuals raises 

intriguing questions. Bearing in mind the ambiguities of this ratio as a marker of 

aldosterone synthase activity as well as the relatively small magnitude of change 

of the DOC:Aldo ratio means that these results should be interpreted with 

caution. In addition, the study is significantly underpowered for this 

measurement. Although these results should not be over interpreted, the 

difference in response to stimulation may be worthy of further study in larger 

numbers.  

 An alternative explanation for the lack of a consistent association between 

aldosterone and variation in CYP11B2 could be the existence of another 

compound with mineralocorticoid properties, leading to lower renin without an 

elevated aldosterone. This can be seen in the syndrome of apparent 

mineralocorticoid excess where deficiency of 11βhydroxysteroid dehydrogenase 

type 2 (11βHSD2) allows cortisol to occupy the mineralocorticoid receptor 

illicitly (Stewart et al., 1996). In the situation of relative 11β-hydroxylase 

deficiency, a relative excess of DOC could function as a mineralocorticoid, freed 

from the regulation of the RAS system. In this study, plasma DOC concentration 

is higher in TT individuals although there is no significant difference in THDOC 

excretion rate. However, although DOC is present in roughly equivalent 

concentrations to aldosterone and although the mineralocorticoid activity of the 

compound is similar (Porter and Edelman, 1964), the affinity for the MR is 

significantly less than aldosterone (Baxter et al., 1976). Thus the physiological 

relevance of these genotype dependant differences is questionable, although it 

is possible that the increased DOC in TT individuals in response to increased 

ACTH in combination with the basal increase in aldosterone seen in the same 

individuals could lead to greater activation of the mineralocorticoid receptor. It 
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would be useful to have more accurate measurement total body sodium in order 

to have a better understanding of total mineralocorticoid activity.   

How could these studies be taken further to explore whether the corticosteroid 

phenotype is a result of functional changes in CYP11B1 alone or in combination 

with functional variation in CYP11B2? ACTH measurements may provide 

additional evidence to support the hypothesis of chronic, low grade increased 

ACTH drive, but the limits of assay sensitivity and sampling difficulties are likely 

to limit this approach. Increased ACTH drive to the adrenals should also result in 

increased adrenal androgens; indeed earlier work has suggested an association 

between variation in the CYP11B1/2 locus and adrenal androgen production 

(Imrie et al., 2006). However, this study population may not be the most 

suitable for this analysis given the inclusion of both men and women of a range 

of ages. Inhibitors of CYP11B1 and CYP11B2 are available but are promiscuous 

and it is not possible to replicate with pharmacological agents the clinical 

hypothesis of decreased CYP11B1 activity with preserved or increased CYP11B2 

activity. Patients with increased ACTH as a result of Cushing’s disease may 

provide useful insights in terms of whether they are more responsive to trophins 

of the CYP11B2 pathway. But this extreme situation is quite dissimilar to the 

subtle, long term increase that is being proposed as a mechanism in this 

situation. An alternative situation where ACTH drive is increased may be the use 

of 11 beta hydroxysteroid dehydrogenase (11βHSD1) inhibitors. 11 βHSD1 

converts cortisone to cortisol and inhibition of this enzyme has been shown to 

lead to increased ACTH and adrenal volume in animal models (Kotelevtsev et al., 

1997). A recent study on the use of 11 βHSD1 inhibitors in humans with type 2 

diabetes confirms a dose dependant elevation in ACTH level (Rosenstock et al., 

2010). Basal cortisol levels did not alter and adrenal androgens were unchanged, 

however it would interesting to observe the effect of this increased ACTH drive 

on long term mineralocorticoid production under basal conditions as well as in 

dynamic studies.  

In conclusion, the studies outlined above have confirmed and extended current 

knowledge regarding the relationship between the CYP11B1/2 locus and ultimate 

phenotype. They have confirmed the relationship between CYP11B2 

polymorphisms and relative aldosterone excess and provided further evidence to 

support the phenotype of relative 11β-hydroxylase deficiency. No evidence was 
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found to support the notion of an increased response to trophins of aldosterone 

production in this study. Further questions have been raised; in particular the 

role of intermediate corticosteroids should be further examined in order to 

discern whether they could play any meaningful role in the pathophysiology of 

hypertension.
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7. General Discussion 

 The investigations presented in this thesis were designed to explore the 

hypothesis that there are functional polymorphisms in the aldosterone synthase 

promoter region that are co-inherited with the much studied site of variation at 

-344 (rs1799998) of CYP11B2, and that these functional SNPs in the promoter 

region of CYP11B2 contribute significantly to the phenotype of hypertension and 

an elevated aldosterone to renin ratio. Starting with a descriptive study of the 

pattern of linkage disequilibrium in this locus, followed by the validation of an in 

vitro model system and identification of a functional variation at -1651 

(rs13268025) of CYP11B2, the data presented here support this original 

hypothesis.  

 It could be argued that the in vitro studies presented in Chapter 5 are limited in 

that only one SNP from the haplotype structure was investigated in an artificial 

context i.e., the normal pattern linkage disequilibrium would suggest that this a 

T at -1651 would be inherited along with a C at -344 as well as a predictable 

pattern of variation at a number of other sites. In examining the effects of an 

individual SNP out of the context of the haplotype block, the possible functional 

effects (potentially of opposite effect) may be overlooked. Thus, in 

combination, the cumulative effect of the haplotype may be neutral. However, 

there is validity in the experimental approach undertaken here. In particular, it 

should be borne in mind that the data from the normal volunteers in Chapter 6 

demonstrates a genotype-dependant effect on THAldo excretion (in the context 

of the entire promoter haplotype). This confirms that the cumulative effect of 

the SNPs in the haplotype is not neutral. In addition, the influence of rare alleles 

and haplotypes in the population determinants of blood pressure should be borne 

in mind; the individual effects on single polymorphic variation may exert a 

bigger physiological impact, albeit in a small number of individuals. However 

certainly, there has been no data presented here to suggest that the SNP at -

1651 of CYP11B2 is the only functional variation and further assessment of the 

remaining SNPs is warranted. 

One aspect of the hypothesis was not supported in the data from chapter 6. That 

is, that polymorphic variation in the aldosterone synthase promoter region leads 

to altered responsiveness to trophins of aldosterone production or suppression 
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under high salt intake. There were no genotype-dependant differences observed 

in any of these phenomena in the data presented. The hypothesis is therefore 

not supported by the results. There are a number of possible reasons for this.  

The experimental design could have made it difficult to observe a significant 

effect. For example, as mentioned in the discussion section in Chapter 6, the 

period of salt loading may not have been long enough for the subjects to achieve 

salt balance. While a longer period of dietary restriction would be difficult in 

terms of subject recruitment and compliance, it may be that this is required to 

discern any genotype dependant difference. Other mechanisms of salt excretion 

(sweat, gastrointestinal losses) were not controlled for. While these may be 

minor in comparison to the effect of renal mechanisms of salt handling, they 

were unquantified in this study. On the other hand, there was evidence that the 

experimental design was sufficient to observe physiological changes in response 

to salt intake. For example, there was a clear difference observed between the 

high salt and standard salt phase of the study in terms of responsiveness to 

angiotensin II. Specifically, under lower salt intake, subjects had a greater rise 

in plasma aldosterone concentration in response to angiotensin II as compared to 

the change in plasma aldosterone concentration under salt loading conditions. 

This demonstrates that the experimental design was robust enough for these 

changes to be observed. It is certainly clear that any genotype differences are 

likely to be small and may even be obscured by technical variability, thus 

requiring a significant increase in the number of individuals studied to be able to 

discern. 

In addition, the participants of the experiments described here were all 

normotensive and covered a wide range of ages. It may be that older, 

hypertensive individuals would be most likely to demonstrate these responses 

than younger participants, having had more time to develop the genotype-

phenotype relationship. Or it may be that in selecting older, normotensive 

subjects, they may have contributed to a “survivor bias” and therefore less 

likely to display the phenotype of increased responsiveness to trophins or less 

aldosterone suppression in response to salt loading, possible due to 

undetermined compensatory, protective mechanisms. In practice, this 

hypothesis would be difficult to test; older hypertensive subjects are likely to be 

taking antihypertensive medications which will make interpretation of 
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biochemical measurements difficult and changing or stopping medications for 

the purposes of research studies would be ethically questionable.  

 Despite the difficulties of delineating the phenotype in terms of response to 

suppression and stimulation of aldosterone, it seems clear that the hypothesis 

that there is an allele specific effect on transcription mediated by APE1 is 

strongly supported by these studies and should be further investigated. The 

mechanism by which APE1 exerts its effects has not been addressed here 

although a number of possibilities have been discussed.  Further experiments 

would be necessary to explore this. Firstly, whether APE1 acts by activating or 

inactivating other transcription factors known to be involved in the regulation of 

aldosterone synthase, could be tested by mutating the known transcription 

factor binding sites and comparing a plasmid with -1651 T and C with and 

without APE1 inhibitor or SiRNA. Secondly, the role of HNRNPK remains unclear. 

Given the previous reports that APE1 heterodimerises with members of the 

HNRNP family, the hypothesis that it is also involved in the regulation of 

aldosterone synthase is attractive. Again, some simple experiments could 

increase understanding here, for example SiRNA knock down of HNRNPK in 

combination reporter gene assays using plasmids containing the T and C alleles 

at -1651. Finally, looking back again at the shift assay gel from chapter 5 (Figure 

5-7), it would be worth investigating the identity of the other DNA: protein 

complexes, given the numerous complexes that can be observed. It may be that 

APE1 is only one of a number of transcriptional proteins that bind at this site. 

 The APE1 deficient mouse is hypertensive (Jeon et al., 2004) and provides an 

exciting opportunity to explore the relevance of my hypothesis in vivo. The first 

stage in exploiting this system would be to assess the renin-angiotensin-

aldosterone system. If the mouse displayed increased aldosterone levels (in 

combination with reduced renin) or increased transcription of aldosterone 

synthase compared to its wild type littermates, this would provide compelling 

evidence to support the role of APE1 in the regulation of CYP11B2.  

Is this relationship of clinical utility? Given that APE1 is a multifunctional protein 

with roles in fundamental processes regulating DNA repair, preventing mutations 

and oncogenesis as well as redox regulation of numerous transcription factors 

with disparate function, the idea of this as a focused therapeutic target does not 
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seem promising, due to the huge scope for off target actions and side-effects. 

One possibility could be to find a means of targeting the adrenal gland 

specifically. The possibility of using viral vectors for this purpose has been of 

much interest but remains a theoretical strategy in the laboratory rather than a 

practical technique in the clinic. A greater understanding of the role of APE1 

may reveal other steps in the regulatory process which could be targeted in 

order to inhibit aldosterone synthase transcription, particularly if, as mentioned 

above, APE1 acts as part of a complex of regulatory proteins. There is currently 

much interest in developing a specific aldosterone synthase inhibitor but 

progress is hindered by the sequence homology between aldosterone synthase 

and 11β-hydroxylase, (LaSala et al., 2009). Targeting aldosterone synthase by an 

alternative mechanism, for example by manipulating the transcriptional 

machinery, may result in less off-target effects.  

 Another possible area of interest is pharmacogenomics or stratified medicine, 

developing techniques to better select pharmacological therapies specific for 

individuals, tailored to their genetic predispositions. There has been no evidence 

to date to suggest that variation in the CYP11B1/B2 locus is associated with a 

differential response to pharmacotherapy. Indeed, there is mounting evidence 

that MR blockade is a useful strategy in an ever increasing range of clinical 

indications, regardless of genotype. However, there remains controversy as to 

whether this is as a result of blocking MR activation by aldosterone or preventing 

activation by another ligand (e.g. Cortisol in non-epithelial sites lacking 

11βHSD). A better and more specific inhibitor of aldosterone synthase would 

better answer this question, and it may be that individuals carrying polymorphic 

variation in CYP11B2 leading to greater enzyme transcription respond better to 

therapy than those without such a genetic pattern. 

This thesis began with an overview of investigations to date in the field of 

genetic determinants of hypertension, and presented data resulting from two 

contrasting methods of enquiry, namely the hypothesis-driven candidate gene 

approach and, more recently, the unbiased genome wide association studies. 

However, despite large investments of time as well as economic resources, the 

genes responsible for the large, heritable component of blood pressure variation 

are unknown and the genetic mechanisms underpinning essential hypertension 

remain elusive. Much specultation has been made in the literature regarding the 
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next leap in technology and potential advances possible with next generation 

sequencing with massive parallel sequencing platforms and the prospect of 

detecting rare variants with larger physiological effects. However, what is often 

overlooked is the crucial element of phenotyping of subjects. For example, salt 

sensitivity, response to angiotensin II, age of onset, etc. 

 In this thesis I have explored the significant advances that have been made in 

understanding the pathophysiology of hypertension using well developed, robust 

hypotheses and careful phenotyping. As discussed in Chapter 1, many of these 

advances have originated in the study of monogenic conditions in individuals, 

and some have lead to insights into mechanisms that influence the blood 

pressure of populations, such as the analysis by Ji et al of the Framingham 

cohort and frequency of rare alleles in genes associated with Gordon’s, Liddle’s 

and Bartter’s syndrome (Ji et al., 2008). A similar success can be observed in the 

recent discovery of the KCNJ5 mutation in a proportion of aldosterone producing 

adrenal adenomas (Choi et al., 2011), which arose from careful examination of a 

series of patients with familial hyperaldosteronism (Geller et al., 2008) but may 

be involved in the development of this important, curable cause of 

hyperaldosteronism and hypertension. The success of future work examining the 

role of aldosterone synthase in hypertension (as well as progress in many other 

area of hypertension research) will depend on similar careful clinical studies 

with high fidelity phenotyping and a clear hypothesis. The idea that 

hypertension is a homogeneous entity and that it is reasonable to study 

“hypertensive” subjects without further description is in some ways analogous to 

the idea that all patients with a fever are suffering from identical 

pathophysiological processes and will be cured by paracetamol. While it is 

tempting to pursue ever larger screens of genetic analysis, including more 

samples, and covering a greater number of sites of variation, it seems unlikely 

that progress will be made until studies taking greater account of factors like 

age of onset, gender and salt status are undertaken. Knowledge of the roles of 

epigenetic modification including methylation, histone modification and the 

actions of microRNA remain rudimentary and a greater understanding of the 

transcriptional process is needed. Until greater attention is paid to the spectrum 

of pathophysiological mechanisms involved, including epigenetic phenomenon 

and environmental factors, and greater attention paid to the consequent 
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intermediate phenotypes, progress will be limited, despite advancing technology 

and resources.  

 In conclusion, as a result of a combined approach, utilising laboratory 

techniques and in vivo observations, I have demonstrated a plausible mechanism 

behind the phenotype of hypertension with an elevated aldosterone to renin 

ratio and the associated genetic motifs in aldosterone synthase/ 11β 

hydroxylase. I have presented data which identify a role for APE1 in the 

regulation of aldosterone synthase gene transcription. Further investigation is 

warranted to clarify the mechanisms involved and explore the potential for 

therapeutic intervention.  
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8. Appendix 

8.1 Monogenic disorders affecting blood pressure 

DISORDER GENE BLOOD 
PRESSURE 

CLINICAL FEATURES 

Liddle’s Syndrome SCNN1B, 
SCNN1G 

High Gain of function of ENaC, leading 
to increased sodium reabsorption, 
low renin, low aldosterone, 
hypokalaemia and metabolic 
alkalosis. 
 

Gitelman’s 
syndrome 

SCL12A3 Low Constitutative activity of thiazide 
sensitive channel (distal convoluted 
tubule) causing hypokalemic 
alkalosis with hypocalciuria and 
hypomagnesemia 
 

Bartters’ 
syndrome 

SCL12A1, 
ROMK, 
CLCNKB 

Low Defect in sodium chloride channel 
in thick ascending limb, causing 
hypokalemic alkalosis, 
hypercalcuria, normal serum 
magnesium 
 

Pseudo-hypo-
aldosteronism 
type 1 (autosomal 
dominant) 

NR3C2 Low Resistance of the mineralocorticoid 
receptor. Increased sodium loss and 
hyperkalaemic acidosis despite 
aldosterone and renin levels. 
Neonatal salt wasting but adults 
may be asymptomatic. Mutation 
L810 associated with hypertension 
exacerbated by pregnancy as 
progersterone able to activate 
mutant mineralocorticoid receptor. 
 

Pseudo-hypo-
aldosteronism 
type 1 (autosomal 
recessive) 

SCNN1A, 
SCNN1B, 
SCNN1G 

Low Loss of function of ENaC leading to 
increased sodium loss from urine, 
sweat, stool, and saliva despite 
increased aldosterone and renin 
levels with hyperkalaemia. 
 

Gordon’s 
syndrome 
(Pseudo-hypo-
aldosteronism 
type 2) 
 

WNK1, 
WNK4 

High Increased activity of  Na-Cl co-
transporter in distal nephron 
causing increased sodium retention 
and hyperkalaemia 

Syndrome of 
apparent 
mineralocorticoid 
excess 

HSD11B2 High Lack of conversion of cortisol to 
cortisone, leading to activation of 
the MR by cortisol. Low aldosterone 
and suppressed renin.  
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Glucocorticoid 
remediable hyper-
aldosteronism 

CYP11B1/  
CYP11B2 

High Ectopic expression of aldosterone 
synthase under the control of 
ACTH, leading to elevated 
aldosterone, low renin.  
 

21α-hydroxylase 
deficiency 

CYP21A1 Low Loss of function of 21α 
hydroxylation leads to lack of 
conversion of 17OHP 11-
deoxycortisol, and progesterone to 
DOC. Reduced cortisol and 
aldosterone leads to increased 
ACTH drive causing 
hyperandrogonism. 
 

11β- hydroxylase 
deficiency 

CYP11B1  Loss of function of 11β 
hydroxylation leads to lack of 
conversion of 11deoxycortisol to 
corticosterone and cortisol. 
Increased precursors lead to 
increased blood pressure 
 

Aldosterone 
synthase 
deficiency 

CYP11B2 Low Loss of function of aldosterone 
synthase, leading to a lack of 
aldosterone production, increased 
renin, reduced sodium 
reabsorption, hyperkalaemia and 
metabolic alkalosis 
 

17α-hydroxylase 
deficiency 

CYP17A1 High Loss of function of 17α 
hydroxylation leads to lack of 
conversion of progesterone to 
17OHP. Loss of 17, 20 lyase 
function leads to lack of conversion 
of 17OHP and 17OHPreg to DHEA 
and androstenedione.  
 

3β-hydroxysteroid 
dehydrogenase 
deficiency 

HSD3B2 Low Variable clinical presentation. 
Reduced aldosterone and cortisol 
production can result in salt 
wasting. Variable degrees of 
abnormal androgen production.  
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8.2 Nucleotide sequence of human CYP11B2 5’ 
untranslated region.  

Contructed from Entrez Nucleotide database in 2002 
(http://www.ncbi.nlm.nih.gov/gene , Accession number D10170)  
Location of primers and SNPs highlighted in green.  

 
1 Gaattctgca tcctgtgaaa ttatccttca aaagtgaaca   
41 taaatatttt ctcaggtaaa taaaaattga ggggattcgc  
   B2PROMF2 

81 tgccaataga actgacttgc cagaaatgtt ttttaaaagt 
121 tctgcagaga gaaagaaaat gatacaggtc agcaaccctg  
161 agctacataa agaaaggaag agcatttcag aaggaatcag  
201 taaagagaaa atgaagtctt ttattttttc ttaatcttaa  
241 ttgatctaag agtttgctaa aacaaaacaa caacaataaa  
281 aataggccgg gcgcggtgac tcaccacacc tgtaatccca  
321 gcactttggg aggccgaggt gggcagatca cctgaggtca  
361 ggagttcgag ac tagcctgg ccaacacggt gaaaccccgt  
401 ctctactaaa aatacaaaaa ttagctgggc gtggtggtgg 
        B2Pro494 

441 cacatgcctg taatcccagc tacttgggag gctgaggcgg  
481 gagaattgct tgaacccggg agacagagg t cgcagtgagc  
521 cgagatcaca ccattgcact ctagcctggg c gacagagtg  
561 agactctgtc tcaaaaataa ataaataaat aaataaataa  
601 ataataaaaa taaataaata aaagccagaa agtgtatttg  
641 atgatcatag ttatgtatat gtgaaatgaa ggacagcaat  
681 gatgcaaggg atgggtgagt ggaattaaaa atatcttatt  
721 atttatttat tttgagatgg agtcttgctt tgctgcccag  
  B2 5’783  
761 gttggagtgc agtgggatga tctcaactca ctgcaacctc  
801 cgcctccttg attcaagcat tcatcttgac tcagcctgct  
841 gagaagccga gattacaggc atgcgccacc acacctggct  
881 aattttgtat ttttagtaga gacagggttt tgccatgttg  
921 gccaggctgg tctcgaactc ctgacctcag gtgatccacc   
961 tgcatcagcc tcccaaagtg ctgggatgac agacatgagc  
1001 cactatgccc agcctaagaa tatctgatga ttataaagtg  
1041 cttgcattac ctctgaagct gtatagtgtt atatgaaggt  
1081 ggagttggag agatgagttt taagcgtata ttgcaaactc  
1121 tagggcaacc actaaagaag tgagacccag cctctagaaa 
1161 aaaaaaaaaa aaaggaaatt agctatcaag ccacgaaaag  
1201 aaatggagga accttaaacg catattacta actgagatac 
1241 gtcactttga aaaggctaca aacggtgtca ttccaactat  
1281 acaacatttt ggaaaaggcc aaagcatggt gatgataaaa  
1321 aagatcggag atgtcaggga ctggggcagg agggatgagc  
1361 aggcagagca caggtttt ct  tttcctcttt ttaagacagt  
1401 gaaaatactc ctaggatcct gcaaggaggg atacaaatta  
1441 catacatttg tcaaaaccca cagcatgttg accaccagga  
1481 ggagacccca tgtgactcca ggaccctggt tgataacaac  
1521 gtatcgagat tcctcacatg gaaccagtgc gct cctgtgg  
 
     SF1 F 
1561 tggagggtgt acctgtgtca gggcaggggg tacgtggaca  
1601 ttttctgcag tttttgatca attttgcaat gaactaaatc  
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1641 tgtggtataa aaataaagtc tattaaaaga atccaaggc t  
1681 ccctctcatc tcacgataag ataaagtccc catccatttt  
1721 actcctctca gccctggaga aaggagaggc caggtcccac 
 
        SF1_R 
1761 caccttccac cagcatggac ccccagtcca gaccccacgc  
1801 cttttctcag catcctcaga ccagcaggac ttgcagcaat 
1841 ggggaattag gcacctcact tctccttcat ctacctttgg   

1881 ctgggggcct ccagccttga ccttcgctct gagagtctca  
1921 ggcaggtcca gagccagttc tcccatgacg tgatatgttt  
       B2-R1 

1961 ccagagcagg ttcctgggtg agataaaagg atttgggctg  
2001 aacagggtgg agggagcatt gga 
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8.3  Consensus sequence for CYP11B1 and CYP11B2 5’ untranslated region and exon 1   

    1                                                                                                                                          
130 
  b1b1b1b1  TCCTTC-GCA TCCCTTGTAA GTTGGATTCC TAAGTAT--- TTTATTCTCT TTGAAGCAAT TGTGAAT--- GGGAGTTCAC TC ATGATTTG GCTCTCTGTT TGTCTGTTAA GTGTGTATAA GAATGCTTGT 
  b2b2b2b2  GAATTCTGCA TCCTGTGAAA TTATCCTTCA AAAGTGAACA TAAATATTTT CTCAGGTAAA TAAAAATTGA GGGGATTCGC TGCCAATAGA ACTGACT--- TGCCAGAAAT GTTT-TTTAA AAGTTCTGCA 
 Consensus  gaaTTC.GCA TCCcgTGaAA gTagcaTTCa aAAGTa a... TaaATacTcT cTcAaGcAAa TaaaAAT... GGGaaTTCaC Tc acaATaga aCTcaCT... TGcCaGaaAa GTgT.TaTAA aAaTgCTgc a 
 
               
    131                                                                                                                                        
260 
  b1b1b1b1  GATTTTTGTA CGTTGATTTT GTATCCTGAG ACTTTGCTGA AGTTGCTTAT CAGCTTAAGG AG-ATTTTGG GCTGAGACAA TGGGGTTTTC TAGATATACA ATCATGTCGT CTGCAAACAG AGACAATTTG 
  b2b2b2b2  GAGAGAAAGA AAATGATACA GGT--CAGCA ACCCTG---- AGCTACATAA AGAAAGGAAG AGCATTTCAG AAGGAATCAG TAAAGAGAAA ATGAAGT-CT TTTATTTTTT CTTAATCTTA ATTGATCTAA 
 Consensus  GAgagaaagA aaaTGATaca Gga..CaGaa ACccTG .... AGcTaCaTAa aaaaagaAaG AG.ATTTcaG aagGAaaCAa Ta aaGagaaa aaGAaaT.Ca aTcATgTcgT CTgaAaacaa AgacAacTa a 
 
            261                                                                                                                                        39 0 
  b1b1b1b1  ACTTCCTCTT TTCCTAATTG AATACCCTTT ATTTCC TTCT CCTGCC-TAA TTGCCCTGGC CAGAACTTCC AACACTATGT TGAATAGGAG TGG------- ---TGAGAGA GGGCATTCCT GTCTTGTAC C 
  b2b2b2b2  GAGTTTGCTA AAACAAAACA ACAACAATAA AAATAGGCCG GGCGCGGTGA CTCACCACAC CTGTAATCCC AGCACTTTGG GAGGCCGAGG TGGGCAGATC ACCTGAGGTC AGGAGTTCGA GACTAG--CC 
 Consensus  aagTccgCTa aaaCaAAaca AaaACaaTaa AaaTac gcCg cccGCc.TaA cTcaCCacaC CaGaAaTcCC AaCACTaTGg ga aacaGaaG TGG....... ...TGAGaga aGGaaTTCca GaCTaG..C C 
 
            391                                                                                                                                        52 0 
  b1b1b1b1  AGTTTTCAAA GGGAATGCTT CCAGTTTTTG ACCATTCAGT ATGATATTGG CTGTGGGTTT GCCATAGATA GCTCTTATTA TTTTGAGATA CGTCCCATCA A-TACCTAAT TTATTGAGAG TTTTTAGCAT 
  b2b2b2b2  TGGCCAACAC GGTGAAAC-- CCCGTCTCT- ACTAAA AATA CAAAAATTAG CTGGGCGT-- ---GGTGGTG GCACATGCCT GTAA------ --TCCCAGCT ACTTGGGAGG CTGAGGCGGG AGAATTGCTT 
 Consensus  aGgccaaaAa GGgaAaaC.. CCaGTcTcT. ACcAaa aAga aaaAaATTaG CTGgGcGT.. ...agaGaTa GCaCaTacca gT aa...... ..TCCCAgCa A.TaccgAag cTaagGaGaG agaaTaGCa T 
 
            521                                                                                                                                        65 0 
  b1b1b1b1  GAAGGTTGTT GAATTTTGTC AAAG---GCC TTTTCT GCAT CTATTGAGAT AATCATGTGG TTTTTGTCTT TGGTTCTGTT TATATGCTGG ATTAC--ATT TATTGATTTG CATATATTGA ACCAGCCTTG 
  b2b2b2b2  GAACCCGGGA GACAGAGGTC GCAGTGAGCC GAGATCACAC CATTGCACTC TAGCCTG-GG CGACAGAGTG AGACTCTGTC TCAAAAATAA ATAAATAAAT AAATAAATAA ATAATAAAAA TAAATAAATA 
 Consensus  GAAcccgGga GAaagagGTC aaAG...GCC gagacc aCAc CaaTgcAcac aAgCaTG.GG cgacaGacTg aGacTCTGTc Ta aAaaaTaa ATaAa..AaT aAaTaAaTaa aaaATAaaaA aaaAgaaaT a 
 
            651                                                                                                                                        78 0 
  b1b1b1b1  CATCCCAGGG ATGAAGCCCA CTTGATCATG GT---GGATA AGCTTTTTGA TGTGCTGCTG -GATTC--GG TTTGCCAGTA TTTTATTGAG GATTTTTGCA TCAATGTTCA TCAAGGATAT TGGTCTAAAA 
  b2b2b2b2  AAAGCCAGAA A-GTGTATTT GATGATCATA GTTATGTATA TGTGAAATGA AGGACAGCAA TGATGCAAGG GATGGGTGAG TGGAATTAAA AATATCTTAT TATTTATTTA TTTTGAGATG GAGTCTTGCT 
 Consensus  aAacCCAGaa A.Gaagacca caTGATCATa GT...G gATA aGcgaaaTGA aGgaCaGCaa .GATgC..GG gaTGccaGaa Tg gaATTaAa aATaTcTgaa TaaaTaTTcA TcaaGaaaag gaGTCTaaa a 
 
            781                                                                                                                                        910 
  b1b1b1b1  TTCTCTTTTT TGGTTGTGTC TCTGCCCGGC TTTGGTATCA GGATGATGCT GGCCTCATAA AATGAGTTAG GGAGGATTCC CT--CTCTTT CTATTGATTG GAATAGTTTC AGAAGGAATG GTACCAGTTC 
  b2b2b2b2  TT-GCTGCCC AGGTTGGAG- --TGCAGTGG GATGAT CTCA ACTCACTGCA ACCTCCGCCT CCTTGATTCA AGCATTCATC TTGACTCAGC CTGCTGAGAA GCCGAGATTA CAGGCATGCG CCACCACACC 
 Consensus  TT.gCTgccc aGGTTGgag. ..TGCacgGc gaTGaT aTCA acacaaTGCa acCccCacaa aaTgaaTTaa aGaagacacC cT ..CTCagc CTacTGAgaa GaagAGaTTa aaaacaaacG ccACCAcac C 
             
            911                                                                                                                                       104 0 
  b1b1b1b1  CTCCTTGTAC -GTCTGGTAT AATTCGGCTG TGAAT- -CCA TCTGGTCATG GACTCTTTTT GGTTGGTAAT CTATTGATTA TTGCCACAAT TTCAGATCCT GTTATTGGTC TATTCAGAGA TTCAACTTCT 
  b2b2b2b2  TGGCTAATTT TGTATTTTTA GTAGAGACAG GGTTTTGCCA TGTTGGCCAG GCTGGTCTCG AACTCCTGAC CTCAGG--TG ATCCACCTGC ATCAG--CCT CCCAAAGTGC TGGGATGACA GACATGAGCC 
 Consensus  cgcCTaaTac .GTaTggTaa aaagaGaCaG gGaaT. .CCA TcTgGgCaaG GacgcTcTcg aacTccTaAc CTaagG..Ta aT cCaaCaac aTCAG..CCT cccAaaGggC TaggaaGAcA gaCAacagC c 
 
 
    1041                                                                                                                                      
1170 
  b1b1b1b1  TACTGGTTTA GTCTTGGGAG AGTGTATGTG TCGAGGAATT TATCCATTTC TTCTAGATTT -TCTAGTTTA TTTGCGTAGA GGTGTTTGTA GTATTC--TC TGATGGTAGT TTGTATT-TC TGTGGGATC- 
  b2b2b2b2  ACTATGCCCA GCCTAAGAAT ATCTGATGAT TATAA-AGTG CTTGCATTAC CTCTGAAGCT GTATAGTGTT ATATGAAGGT GGAGTTGGAG AGATGAGTTT TAAGCGTATA TTGCAAACTC TAGGGCAACC 
 Consensus  aacagGcccA GcCTaaGaAg AgcggATGag TagAa. AaTg caTcCATTaC cTCTaaAgcT .TaTAGTgTa aTagcaaaGa GG aGTTgGaa agATga..Tc TaAgcGTAga TTGcAaa.TC TagGGcAaC . 
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            1171                                                                                                                                      1300 
  b1b1b1b1  -----GGTGG TGATATCC-- CCTTTATCAT TTTTTA TTGC ATC---TATT TGAT-TCTTC TCTCTTTTTT TCTTT-ATTA GT CTTGCTAG CGGTCTATCA ATTTTGTTGA -TCCTTTCAA AAAACCAGCT 
  b2b2b2b2  ACTAAAGAAG TGAGACCCAG CCTCTAGAAA AAAAAAAAAA AAAGGAAATT AGCTATCAAG CCACGAAAAG AAATGGAGGA ACCTTAAACG CATATTACTA ACTGAGATAC GTCACTTTGA AAAGGCTACA 
 Consensus  .....aGaaG TGAgAcCC.. CCTcTAgaAa aaaaaA aaaa Aaa...aATT aGaT.TCaac cCaCgaaaag aaaTg.AggA ac CTTaaaaG CagacTAccA AcTgaGaTaa .TCacTTcaA AAAacCaaC a 
 
 
            1301                                                                                                                                      143 0 
  b1b1b1b1  CCTGGATTCA TTAATTTTTT GAAGGGTTTT TTGTGT CTCT ATTTCCTTCA GTT-CTGCAC TGATTTTAGT TATTTCTTGC CTTCTGCTAG TTTTGAATGT GTTTGCTCTT GCTTTTCTAG TTCTTTTAAT 
  b2b2b2b2  AACGGTGTCA TTCCAACTAT ACAACATTTT GGAAAAGGCC AAAGCATGGT GATGATAAAA AGATCGGAGA TGTCA-GGGA CTGGGGCAGG AG--GGATGA GCAGGCA-GA GCACAGGTT- TTCTTTTCCT 
 Consensus  aacGGagTCA TTaaaacTaT aaAacaTTTT ggaaaa cgCc AaagCaTgca GaT.aTaaAa aGATcggAGa TaTca.ggGa CT gcgGCaaG ag..GaATGa GcagGCa.ga GCacagcTa. TTCTTTTaa T 
 
            1431                                                                                                                                      156 0 
  b1b1b1b1  TGTGATGTTA GGGTGTCAGT TTTGGATCTT TCCTGCTTTC TCTTGTGGGC ATTTAGTGCT ATAAATTTCC CTCTACACAC TGCTTTGAAT GTGTTCCAGA GATTCTGGTA TGCTGTGTCT TTGTTCTCGT 
  b2b2b2b2  CTTTTTAAGA CAGTGAAAAT ACTCCTAGGA TCCTGCAAG- ----GAGGGA TACAAATTAC ATACATTTGT CAAAACCCAC AGCAT--GTT GACCACCAGG AGGAGACCCC ATGTGACTCC AGGACCCTGG 
 Consensus  cgTgaTaagA caGTGaaAaT acTccaacga TCCTGC aag. ....GaGGGa aacaAaTgac ATAaATTTcc CaaaACaCAC aG CaT..aaT GaccaCCAGa aagacaccca agcTGacTCc agGacCccG g 
 
          
            1561                                                                                                                                      169 0 
  b1b1b1b1  TGGTTTCAAG AACATCTTTA TTTCTGCCTT CATTTT GTTA CGTACCCA-- ---GTAGTCA TTCAGGAG-C AGGTTGCTCA GTTTCCATGT AA---TTGAG CGGTTTTGAG TGAGTTTCTT AATCCTGAGT 
  b2b2b2b2  TTGATAACAA CGTATCGAGA TTCCTCACAT GGAACCAGTG CGCTCCTGTG GTGGAGGGTG TACCTGTGTC AGG--GCAGG GGGTACGTGG ACATTTTCTG CAGTTTTTGA TCAATTTTGC AATGAACTAA 
 Consensus  TgGaTaaaAa aacATCgagA TTcCTcaCaT caaacc agTa CGcaCCca.. ...GaaGgca TaCagGaG.C AGG..GCaca Gg gTaCaTGg Aa...TTcaG CaGTTTTgaa TcAaTTTcgc AATcaacaa a 
 
            1691                                                                                                                                      182 0 
  b1b1b1b1  TCTAGTTTGA TTGCACTAAA ATTTTTAAAA AGTAAA AAAA ATACATGTGG TTTAATACAA TTCATGCCAA CTCATTCCCT CGTTTTTTGC TATAAACCTT G---CAAGGA GATGAATAAT CCAAGGCTCT 
  b2b2b2b2  ATCTGTGGTA TAAAAATAAA GTCTATTAAA AGAATCCAAG GCTCCCTCTC ATCTCACGAT AAGATAAAGT CCCCATCCAT --TTTACTCC TCTCAGCCCT GGAGAAAGGA GAGGCCAGGT CCCACCACCT 
 Consensus  accaGTgggA TaaaAaTAAA aTcTaTaAAA AGaAaa aAAa acaCacgcgc aTcaaaacAa aacATaaaaa CcCaaTCCaT .. TTTacTcC TaTaAaCCcT G...aAAGGA GAgGaaaaaT CCaAccacC T 
 
                 
            1821                                                                                                                                      195 0 
  b1b1b1b1  TGGATAAGAT AAGGGCCCCA -TCCA--TCT TGCTCC T--- ---------C TCAGCCCTGG AGGA-----G GAGGGAGAGT CC TTTTCCCC TGTCTACGCT CATGCACCCC CAATGAGTCC CTGCCTCCAG 
  b2b2b2b2  TCCACCAGCA TGGACCCCCA GTCCAGACCC CACGCCTTTT CTCAGCATCC TCAGACCAGC AGGACTTGCA GCAATGGGGA ATTAGGCACC TGACTTCTC- CTTCATCTAC CTTTGGCTGG GGGCCTCCAG 
 Consensus  TccAcaAGaa aaGacCCCCA .TCCA..cCc caCgCC T... .........C TCAGaCCaGc AGGA.....a GaaagaGaGa ac TaggCaCC TGaCTaCgC. CaTcaaCcaC CaaTGacTcc cgGCCTCCA G 
 
             
            1951                                                                                                                                      208 0 
  b1b1b1b1  CCCTGACCTC TGCCCTCGGT CTCTCAGGCA GATCCAGGGC CAGTTCTCCC ATGACGTGAT CCCTCTCGAA GGCAAGGCAC CAGGCAAGAT AAAAGGATTG CAGCTGAACA GGGTGGAGGG AGCATTGGAA 
  b2b2b2b2  CCTTGACCTT CGCTCTGAGA GTCTCAGGCA GGTCCAGAGC CAGTTCTCCC ATGACGTGAT ATGTTTCCAG AGCAGGTTCC TGGGTGAGAT AAAAGGATTT GGGCTGAACA GGGTGGAGGG AGCATTGGAA 
 Consensus  CCcTGACCTc cGCcCTcaGa cTCTCAGGCA GaTCCA GaGC CAGTTCTCCC ATGACGTGAT accTcTCcAa aGCAaGgcaC caGGcaAGAT AAAAGGATTg caGCTGAACA GGGTGGAGGG AGCATTGGAA 
 
 
 
            2081                                                                                                                                      221 0 
  b1b1b1b1  TGGCACTCAG GGCAAAGGCA GAGGTGTGCA TGGCAGTGCC CTGGCTGTCC CTGCAAAGGG CACAGGCACT GGGCACGAGA GCCGCCCGGG TCCCCAGGAC AGTGCTGCCC TTTGAAGCCA TGCCCCGGCG 
  b2b2b2b2  TGGCACTCAG GGCAAAGGCA GAGGTGTGCG TGGCAGCGCC CTGGCTGTCC CTGCAAAGGG CACGGGCACT GGGCACTAGA GCCGCTCGGG CCCCTAGGAC GGTGCTGCCG TTTGAAGCCA TGCCCCAGCA 
 Consensus  TGGCACTCAG GGCAAAGGCA GAGGTGTGCa TGGCAGcGCC CTGGCTGTCC CTGCAAAGGG CACaGGCACT GGGCACgAGA GCCGCcCGGG cCCCcAGGAC aGTGCTGCCc TTTGAAGCCA TGCCCCaGCa 
 
            2211                                                                                                                                      234 0 
  b1b1b1b1  TCCAGGCAAC AGGTGGCTGA GGCTGCTGCA GATCTGGAGG GAGCAGGGTT ATGAGGACCT GCACCTGGAA GTACACCAGA CCTTCCAGGA ACTAGGGCCC ATTTTCAGGT AAAGCCCTCC CTGGCCCTCG 
  b2b2b2b2  TCCAGGCAAC AGGTGGCTGA GGCTGCTGCA GATCTGGAGG GAGCAGGGTT ATGAGCACCT GCACCTGGAG ATGCACCAGA CCTTCCAGGA GCTGGGGCCC ATTTTCAGGT AAAGCCCTCC CTGGCCCTCG 
 Consensus  TCCAGGCAAC AGGTGGCTGA GGCTGCTGCA GATCTGGAGG GAGCAGGGTT ATGAGcACCT GCACCTGGAa aTaCACCAGA CCTTCCAGGA aCTaGGGCCC ATTTTCAGGT AAAGCCCTCC CTGGCCCTCG 
 
Exon 1 highlighted.  
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8.4 Coefficient of variation and limits of detectio n for 
LC:MS plasma corticosteroid measurements  

CORTICOSTEROID ADDED 
STANDARD 

CV % PLASMA % LIMITS OF 
DETECTION 

18 OH 
corticosterone  
 

50pg 15.1 18.7 * 

Aldosterone 
 

50pg 11.8 13.4 3.0pg 

Cortisol 
 

25ng 6.1 9.1 1.1µg 

Cortisone 
 

5ng 5.0 7.9 0.7 µg 

Corticosterone 
 

500 pg 10.9 8.2 61.3pg 

11-deoxycortisol 
 

250 pg 11.1 14.5 15.0pg 

Deoxycortcosterone 
 

50 pg 9.4 20.1 2.7pg 

CV, coefficient of variation; Plasma, between batch  variations. (* No value for limits of 
detection for 18OH corticosterone is shown due to d ifficulty obtaining standard.)  
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8.5 Patient information sheet 

Patient Information Sheet 

 

1. Study Title 

“Role of Genetic variation in aldosterone synthase and hypertension.” 

“A study of the control of blood pressure.” 

2. Invitation to take part 

You are invited to take part in a study looking at how blood pressure is 
controlled. Before you decide whether or not to take part, it is important for 
you to understand why the research is being done and what it will involve. 
Please take time to read the following information carefully and discuss it with 
others if you wish. Ask us if there is anything that is not clear or if you would 
like more information. Take time to decide whether or not you wish to take 
part. 

Thank you for reading this. 

3. What is the purpose of this study? 

High blood pressure affects a large number of people and increases the risk of a 
number of medical problems (heart disease, stroke etc). Why some people have 
high blood pressure and others do not, is not known. The hormones that are 
produced by the adrenal glands (steroid hormones) affect blood pressure. One of 
these hormones regulates fluid and salt balance in the body and it has been 
suggested that variation in this gene may play a role in high blood pressure. This 
study aims to examine more closely how people with different genetic patterns 
respond to stimulation of their adrenal glands in terms of blood pressure and 
hormones. 

4. Why have I been chosen? 

You have been asked to take part because you do not have any conditions that 
are affected by taking too much salt (kidney problems, heart problems, high 
blood pressure.) We will look at approximately 60 to 80 people to get an overall 
picture of how different people respond. 

5. Do I have to take part? 

It is up to you to decide whether or not to take part. If you do decide to take 
part you will be given this information sheet to keep and be asked to sign a 
consent form. If you decide to take part you are still free to withdraw at any 
time and without giving a reason. If you withdraw, information that has already 
been gathered will form part of the analysis. If you decide not to take part it 
will not affect the care you receive at any time in the future. 
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6. What will happen to me if I take part? 

This study will involve 5 visits to the Glasgow Cardiovascular Research Centre 
(travel expenses will be paid). The first visit will take around 15 mins. The next 
visits will take 1.5-2 hours. 

1) On the first visit, a blood sample (approx one tablespoon) will be 
taken. This will take only a few minutes. Your DNA will be analysed to 
see what pattern of genes you carry with regard to the steroid 
regulating genes. It may take a few days/weeks to get these results. 
We are interested in looking at specific patterns. If you carry the 
pattern of genes we are interested in, we will ask you to participate in 
the second section. 

2)  You will be asked to follow a diet without excess salt for 4 days. You 
will be given advice about this. You will be asked to take some tablets 
which may contain either salt supplement or placebo (A placebo is a 
pill which looks like the real thing but contains no active ingredient). 
You will not know which you have been given. 

3)  On the third day you will be asked to take a urine collection for 24 
hours. After the third day you will be asked to visit the Glasgow 
Cardiovascular Research Centre where, after 30 minutes rest, another 
blood sample will be taken (approx one tablespoon). You will receive a 
drip containing a hormone that naturally occurs in the body. This will 
take 30 minutes. When it is complete we will take a further blood 
sample (one tablespoon). Your blood pressure and heart rate will be 
monitored during this time. 

4) You will be asked to return the following day to repeat this procedure. 

5) The following week the experiment will be repeated however the 
tablet will be switched from a salt table to placebo or vice versa. 

The attached diagram helps to explain exactly what will be involved. 

7. What are the possible disadvantages and risks of taking part? 

The procedures described above are very safe. The main potential side effect is 
a rise in your blood pressure which may be associated with a headache. This 
is most likely to happen during the high salt phase with one of the infusions (a 
hormone called angiotensin II). Your blood pressure and pulse will be monitored 
throughout this period and the study will be stopped if it rises above a certain 
level. The effects of the hormone infusions are very short and there are no 
known long term effects 

Blood samples will be taken. This is a safe and commonly practiced procedure 
however bruising may occur at the site of the needle, some people may feel 
faint. 

You have been asked to participate as you no not have a chronic disease that 
may deteriorate by taking extra salt in your diet (e.g. kidney problems, heart 
problems, high blood pressure). If you think you may have any of these 
conditions, please let the research doctor know. 
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It is possible that if this study is carried out on a woman who is pregnant it could 
harm the unborn child. Women who could be pregnant may be asked to take a 
pregnancy test before the study commences. Women who could become 
pregnant should use effective contraception for the duration of the study. 
Women who think they may have become pregnant during the duration of the 
study should immediately let their research doctor know. 

8. What are the possible benefits of taking part? 

You will receive no direct benefit from taking part in this study. The information 
that is collected during this study will give us a better understanding of how high 
blood pressure develops and how best to treat it. 

 
9. What if something goes wrong? 
 
There are no special compensation arrangements if you are harmed by taking 
part in this research project. If you are harmed due to someone’s negligence, 
then you may have grounds for a legal action but you may have to pay for it. If 
you have a concern about any aspect of this study, you should ask to speak to 
the researchers who will do their best to answer your questions. If you remain 
unhappy and wish to complain formally, you can do this through the NHS 
Complaints Procedure. 
 
10. Will my taking part in this study be kept confidential? 
 
If you consent to take part in the research your medical records may be 
inspected by the research doctor for purposes of analysing the results. Only 
government regulatory authorities and the research doctor will have access to 
your medical notes. 
 
All information collected about you during the course of the research will be 
kept strictly confidential. Any information about you which leaves the hospital 
will have your name and address removed so that you cannot be recognised from 
it. Reports or publications resulting from the study will not contain any personal 
details. Your General Practitioner will be informed of your participation. 
 
11. What will happen to the results of the research study? 
 
The results of the research study will be stored on a computer database and are 
likely to be published in medical journals. Reports or publications resulting from 
the study will not contain any personal details. The research doctor will provide 
a copy of the results on request. 

12. Who is organising and funding the research? 

The research is being organised by the Division of Cardiovascular and Medical 
Science, University of Glasgow. The Medical Research Council funded Blood 
Pressure Research Group is the section responsible for this study. 

13. Who has reviewed the study? 

This study has been reviewed and approved by Glasgow West Local Research 
Ethics Committee which is an independent panel set up to protect your safety, 
rights, wellbeing and dignity. 
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Contact 

If you have any further questions please contact 

Dr Frances McManus 

British Heart Foundation Glasgow Cardiovascular Research Centre 

126 University Place, 

G12 8TA  

0141 330 1933 

www.gla.ac.uk/bhfgcrc 

Questionnaire 

 

Do you have any of the following conditions? (Y/N) 

 

High blood pressure? 

Heart disease (including angina, previous heart attack 

 or heart failure)? 

Kidney disease? 

Are you pregnant of likely to become so in the next 6 months?   

Have you used of systemic or topical steroids  

within the last 6 months? 

Do you have a history of severe allergies? 

Are you on any regular medication?  

Please list below: 
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Subject Identification Number for this trial: 

CONSENT FORM 

Title of Project:  Role of Genetic Variation in Aldosterone Synthase and 
Hypertension 

   Please initial box 

1. I confirm that I have read and understand the information sheet dated 
August 2007 (version 2) for the above study and have had the opportunity   
to ask questions. 

2. I understand that my participation is voluntary and that I am free to 
withdraw at any time, without giving any reason, without my legal rights 
being affected. 

3.    I agree to take part in the above study.   

4.     I understand that the DNA in my blood will be analysed as part of this  
study 

5.     I agree that to my GP being informed of my participation in this study 

 

           

Name of subject Date Signature  

    

Name of Person taking consent  Date Signature 

(If different from researcher) 

   

Researcher Date Signature 
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Week 1   
Day 1. Start low salt diet and 
take tablets from box 1 

Day 4.  
Attend Clinical Research 
Facility 38 Church St, 1st floor, 
for  

1. 30 minutes rest 
2. Venflon and blood test 
3. Drip for 30 mins 
4. Further blood test 

immediately and 
30mins later 

Day 5. 
Continue low salt diet and 
tablets. Attend Clinical 
Research Facility 38 Church St, 
1st floor, for  

1. 30 minutes rest 
2. Venflon and blood test 
3. Drip for 30 mins 
4. Further blood test 

immediately and 
30mins later 

Stop low salt diet and tablets 
 

Day 3  
Start 24Hr Urine collection 
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8.6 Clinical study protocol 

Clinical Study Protocol: Version 2  
 
 
 
Study Title : Role of Genetic Variation in Aldosterone Synthase in Hypertension. 
Physiological Studies 
 
 
 
 
Chief Investigators :  Professor J Connell MBChB MD FMedSci FRCP FRSE 
     Glasgow Cardiovascular Research Centre 
     126 University Place 

University of Glasgow, 
Glasgow, G12 8TA  
 
 
 
 
 
Dr Frances McManus MBChB BSc (Med Sci) MRCP 

     Glasgow Cardiovascular Research Centre 
     126 University Place 

University of Glasgow, 
Glasgow, G12 8TA 
Tel: 0141 330 1933 
e-mail: F.McManus@hotmail.com 
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Background: Hypertension is a common condition that contributes to the global 

burden of cardiovascular disease. In the majority of patients no single cause is 

found and its pathogenesis reflects a complex interaction of genes and 

environment. 

 It is recognised that aldosterone is an important cardiovascular hormone across 

a range of disorders. However, aldosterone is also recognised as an important 

contributor to the pathogenesis of hypertension and its consequences. 

Approximately 15% of patients with essential hypertension have evidence of 

dysregulation of aldosterone production so that there is an abnormally high ratio 

of aldosterone to renin (ARR). There is uncertainty about whether such patients 

have genuine primary aldosterone excess; in the majority of instances 

aldosterone is still responsive to Angiotensin II, and it is likely that the raised 

ARR reflects increased sensitivity of aldosterone release to its usual trophins. For 

this reason it is important to understand better the mechanism(s) that underlies 

this biochemical abnormality: the planned studies seek to investigate possible 

mechanisms that may contribute to the regulation of aldosterone in 

hypertension. 

Adrenal corticosteroid secretion is strongly heritable, consistent with genetic 

determination, stimulating a search for candidate genes that may account for 

this. Attention has focussed on the late steps in adrenal steroid synthesis.  

 The late stages of aldosterone synthesis are catalysed by the enzyme 

aldosterone synthase, encoded by the gene CYP11B2, and expressed in zona 

glomerulosa of the adrenal cortex. This gene is located in chromosome 8 in man, 

and lies in close proximity to the gene CYP11B1, which encodes the enzyme 11β-

hydroxylase to catalyses the conversion of deoxycortisol to cortisol within the 

zona fasciculata. (Figure 1)  
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Figure 1 Corticosteroid biosynthesis in the human adrenal 
gland 

 

 

 

 

 

 

 

Figure 1: Steroid synthesis pathway 

 These genes are plausible candidates for contributing to the population 

variation in aldosterone and cortisol production, and development of 

hypertension and cardiovascular disease.  

 Previous studies have identified a common single nucleotide (-344 C/T) 

polymorphism in CYP11B2. Studies have shown that this polymorphism is 

associated with hypertension, particularly with a phenotype of a raised ARR.  

 Recent data confirm that polymorphisms in the 5’ regulatory region in CYP11B1 

are in strong linkage disequilibrium with those in the regulatory regions of 

CYP11B2. It is not clear what the individual effects of the polymorphisms within 

the two separate genes are on the phenotypes of aldosterone excess and the 

development of hypertension, however, as in the Dahl rat, it is possible that 

there is an interaction between CYP11B1 and CYP11B2 (essentially, a digenic 

effect) that results in increased ACTH drive to the adrenal (due to changes in 

CYP11B1) and abnormal sensitisation of regulation of expression of CYP11B2 to 

agonists including potassium, ACTH and Angiotensin II, leading to the  phenotype 

of chronically altered aldosterone regulation. 
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Hypothesis:  Polymorphisms in the genes encoding aldosterone synthase and 11β-

hydroxylase are inherited in haplotype blocks and lead to altered production of 

mineralocorticoids and glucocorticoids in affected individuals.  

Aims: To measure steroid response (plasma and urine) to its conventional trophin 

(angiotensin II) of aldosterone production in high and low salt intake in normal 

volunteers with contrasting haplotypes. 

To measure steroid response to its unconventional trophin (ACTH) of aldosterone 

production in high and low salt intake in normal volunteers with contrasting 

haplotypes. 

Study Design: The study will be carried out at the BHF Glasgow Cardiovascular 

Research Centre. The study duration will be 3 years. The length of participation 

of each subject will be 2 weeks.  

 Volunteers will be recruited via poster campaign and through advertisements 

using local media.  

Screening: Subjects will be screened for participation in the study initially.  

 Volunteers will sign a consent form indicating their willingness to participate in 

screening. Consent will be taken by Dr Frances McManus. Consent forms will be 

stored in the site file in the Glasgow Cardiovascular Research Centre. Volunteers 

will be given a copy of the patient information sheet and consent form. This will 

be documented and filed in the project folder. Volunteers will be asked if they 

suffer from any medical conditions likely to deteriorate as a result of 

participation in this study (heart failure, hypertension, renal impairment).  

Exclusion criteria are as follows 

Age greater than 75 years or less than 18 years. 

Cardiac failure 

Renal impairment 
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Uncontrolled hypertension (BP > 160/90) 

Treatment with beta blockers, ACE inhibitors, diuretics. 

Use of systemic or topical steroids within the last 6 months 

Pregnancy 

Inability to comply with study protocol 

History of severe allergy 

Screening blood tests are as follows: 

Baseline biochemistry to assess renal function (6ml gel tube).   

DNA will be extracted from blood sample (5ml EDTA) and genotyped for the 

polymorphisms of interest.  

 Study: Volunteers with the polymorphisms of interest will be invited to return 

for the second phase of the study. Subjects will be studied during careful dietary 

sodium control to maintain either a high (200 mmol per day) or low (80 mmol 

per day) sodium intake. They will be given a diet sheet to follow which will give 

advice on a low salt diet (approx 4.8g per day). Salt loading will aim for an 

intake of 200 mmol per day (approx 12g) using sodium supplement tablets 

containing 600mg sodium chloride (four tabs 3 times per day).   

 Once in balance (after 3 days) subjects will be infused with ACTH 

(1ng/kg/minute for 30 mins); on the following day subjects will be given an 

infusion of angiotensin II (3 ng/kg/minute for 30 mins). Infusions will be made by 

pharmacy. Basal and stimulated plasma aldosterone levels, as well as a range of 

other steroids will be measured.  This will require baseline blood tests before 

the infusion (x2 Lith Heparin and x 1 EDTA), at completion of the infusion, as 

well as 30 mins after completion (x2 Lith Heparin and x 1 EDTA). 

 In addition, 24 hr urine collections will be analysed for steroid measurements. 

Spot urine samples will be measured for sodium excretion. 
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 The study will last for two weeks to allow volunteers to complete both the salt 

loading and salt restricted (placebo) arms.  

Results will be entered onto the Clinical Record sheet by Dr Frances McManus or 

a research nurse. Observations (BP, HR) will be documented by the nursing staff 

of the clinical studies unit at the GCRC. 

Risks: The risks relating to venepuncture are low and standard precautions will 

be taken. The participant may experience some local bruising. 

 The recommended daily salt intake is 6g per day. Salt loading may be associated 

with mild nausea however slow release tablets will be used to minimise this 

effect. Patients with uncontrolled hypertension, significant renal disease and 

heart failure may experience a small, reversible deterioration in their condition 

with prolonged salt loading however; volunteers will be screened for these 

conditions and excluded from the study.  

 Angiotensin II can cause the blood pressure to rise. This could cause potential 

harm if it was allowed to continue however the blood pressure will be monitored 

and the study will be stopped if it the mean arterial pressure (MAP) rises more 

than 20mmHg. The length of time it takes for Angiotensin II to wear off is very 

short.   

 ACTH can cause blood pressure to rise however, this effect is transient and 

blood pressure will be regularly monitored and stopped if MAP rises more than 

20mmHg. Short term exposure to ACTH in adults has not been reported to be 

associated with any further complications. ACTH is commonly used in hospitals 

as a diagnostic tool, with no reported complications.  

Adverse Events Adverse events are likely to be rare and mild given the nature of 

this study. All serious adverse events will be reported to the sponsor (North 

Glasgow NHS Trust). 

Pharmacy: Pharmaceutical products will be dispensed from the pharmacy 

department of the Western Infirmary Glasgow/ Clinical Trials Pharmacy Unit and 

this has been agreed with the pharmacy department.  
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 Placebos will be matched as closely as possible to the active substance.  

 Products will be manufactured to the standards of Good Medical Practice. 

 Labelling of the placebo and active substances will be managed by pharmacy 

and checked with clinicians involved. 

 Volunteers will be requested to return unused products to the Glasgow 

Cardiovascular Research Centre, where they will be passed on to pharmacy. 

Patients will be informed of this when the product is being dispensed.   

Randomisation:  Randomisation will be computer generated.  

Patient Data: All patient data will be held on a password locked computer file in 

anonymised form. This will be stored in a locked cabinet in the Glasgow 

Cardiovascular Research Centre. Patient identifier data and Clinical Record 

Forms will be kept in a locked cabinet. 

Withdrawal: Volunteers can withdraw at any time. This is explained in the 

patient information sheet. Information gathered up to the date of withdrawal 

will be used in the analysis. Once a volunteer has withdrawn they will not be 

invited for further blood or stimulation tests. This will be recorded in the site 

file and on the Clinical Record Form.  

Results and Statistics: Large scale clinical studies have not been performed in 

this area and power calculations are hindered by this lack of information. 

However, we estimate that a sample size of 20 individuals per haplotype (likely 

to be 3 common haplotypes) will be necessary to identify a significant difference 

in the aldosterone response to angiotensin II, and we base this estimate on a 

recent study which was able to demonstrate significant differences in 

angiotensin responses with low salt intake using around 10 individuals in each 

contrasting genotype.  A total of 60 individuals will be required to participate. 

This will require around 100 individuals to be screened. 
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Staff: Dr Frances McManus (Research Fellow) has attended a Good Clinical 

Practice course (4th April 2007 Clinical Trials Unit North Glasgow/ Glasgow 

University). 

 Dr Marie Freel (Clinical Lecturer) has experience in similar studies. 

 Prof J Connell has had extensive experience as a lead investigator in similar 

studies  

 Dr Eleanor Davies (Senior Lecturer) will be involved in the data analysis.  

 The staff in the clinical unit of the Glasgow Cardiovascular Research Centre are 

familiar with the principles and practices involved in Good Clinical Practice. 
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8.7 Clinical Records form 

Clinical Record Form  
 
 

Patient Study no: 

 

AFS 064 

Patient name: 

 

 

Address: 

 

 

E mail 

 

 

Telephone: 

 

 

 

Date of Birth: 

 

 

 
 

Consent form signed Yes/ No 

 

Patient copy of consent form 

 

Yes/ No 

 

Co-morbidities excluded 

 

Yes/ No 

 

 

Slow sodium/ placebo prescription? Yes/ No 

 

Ang II/ ACTH Prescription? Yes/ No 

 

Infusions prescribed? Yes/ No 
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Initial resting blood pressure  

Height (cm)  

Weight (Kg)  

 
 

Initial Bloods taken 

 

Biochemistry (yellow x 1)  

Result (eGFR)  

DNA extraction (purple x 1 )  

24 Hr Urine bottle given ?  
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Visit 1/ 2/ 3/ 4  
 
 
Date of visit: 
 
Negative pregnancy test    Yes/ No / NA 
 
24 hr Urine collection completed?    Yes/ No 
 
Total Volume/ Weight = _____________  
 
 
ACTH = 1 ng/kg/min 
 
 Batch No; __________________   Exp Date____________ 
 

Infusion 1 

ACTH 

Time 
from 

start of 
infusion 

Heart 
Rate 

MAP BP 
mmHg 

Bloods taken 

Lithium Heparin (green) x 
3 

EDTA (Purple) 9ml x 1  

Blood 
pressure 
1 

- 30 min    Start Time:  

Blood 
pressure 

 0 min    Li 
Hep 

Li 
Hep 

Li 
Hep 

EDTA  

Blood 
pressure 

10 min    

Blood 
pressure 

20 min     

 

Blood 
pressure 

30 min    Li 
Hep 

Li 
Hep 

Li 
Hep 

EDTA 

Blood 
pressure 

60 min    Li 
Hep 

Li 
Hep 

Li 
Hep 

EDTA 

 
  
Infusion discontinued?  
  
Time from start of infusion: 
Bloods taken at termination of infusion   Yes/ No 
 
Other adverse effects?  
 
Patient withdrawal from study?  
 
Reason given?  
 
Other Notes:  
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8.8 Linkage disequilibrium CYP11B1 and CYP11B2 locu s 

 
 
D’ values demonstrating linkage disequilibrium across the CYP11B1 and CYP11B2 

promoter region. Data pooled from genotyping described in chapter 3 and data 

from Imrie et al (Imrie et al., 2006) and Alvarez-Madrazo et al (Alvarez-Madrazo 

et al., 2009).  
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8.9 Table of polymorphisms  

 

 

 

NCBI SNP database 

 

http://www.ncbi.nlm. 
nih.gov/projects/SNP 

 

ENSMBL 

 

http://www.ensembl.org/Homo_sapiens
/Gene/Sequence?g=ENSG00000179142 

 

Ch Position Group 
Term 

 

Pos. 
from 
Exon1 

 

Pos.  
from 
5’ end 

 

Pos.  on 
plasmid  

Allele 1 Allele 2 rs number 

144000922 GRCh37 -1667 357 276 G C rs13254375 

144000906 GRCh37 -1651 373 292 T C rs13268025 

144000786 GRCh37 -1513 510 427 T C rs62524561 

144000727 GRCh37 -1472 551 468 A G rs62524560  

143999919 GRCh37 -663 1360 1269 T A rs28659182 

143999901 GRCh37 -645 1379 1287 C T rs11781082 

143999726 GRCh37 -470 1554 1462 T C rs10087214 

143999600 GRCh37 -344 1680 1590 C T rs1799998 
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8.10 Sequence of pGL3-CYP11B2 plasmid 

<Serial Cloner V2.0> -- <04 Mar 2010   14:44> 
Restriction map of pGL3_pCRscript_B2proCC_march 201 0.xdna 
Showing restriction enzymes cutting maximum 1 time [using Serial Cloner Internal RE list as a Restrict ion Enzyme Library] 
 
        SacI          NheI 
        Eco53kI       BmtI       EcoRI 
  KpnI          AflIII           ApoI 
  Acc65I        MluI         >CdiI                                                               <SapI 
  |     |       |     |      |   |             • pG L3 plasmid                                    | 
  GGTACCGAGCTCTTACGCGTGCTAGCCCATCGAATTCCTGCAGCCCGGGGGATCCGCCCGATACAGGTCAGCAACCCTGAGCTACATAAAGAAAGGAAGA  < 100 
  CCATGGCTCGAGAATGCGCACGATCGGGTAGCTTAAGGACGTCGGGCCCCCTAGGCGGGCTATGTCCAGTCGTTGGGACTCGATGTATTTCTTTCCTTCT 
           10        20        30        40        50        60        70        80        90  
 
  GCATTTCAGAAGGAATCAGTAAAGAGAAAATGAAGTCTTTTATTTTTTCTTAATCTTAATTGATCTAAGAGTTTGCTAAAACAAAACAACAACAACAAAA  < 200 
  CGTAAAGTCTTCCTTAGTCATTTCTCTTTTACTTCAGAAAATAAAAAAGAATTAGAATTAACTAGATTCTCAAACGATTTTGTTTTGTTGTTGTTGTTTT 
           110       120       130       140       150       160       170       180       190  
 
                           >TstI 
                           |                 T • C 
  ATAGGCCGGGCGCGGTGACTCACCACACCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGCAGATCACCTGAGGTCAGGAGTTCGAGACTAGCCTGGC  < 300 
  TATCCGGCCCGCGCCACTGAGTGGTGTGGACATTAGGGTCGTGAAACCCTCCGGCTCCACCCGTCTAGTGGACTCCAGTCCTCAAGCTCTGATCGGACCG 
           210       220       230       240       250       260       270       280       290  
 
                   
 
  CAACACGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGCGTGGTGGCACATGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGCGGGAGG  < 400 
  GTTGTGCCACTTTGGGGCAGAGATGATTTTTATGTTTTTAATCGACCCGCACCACCGTGTACGGACATTAGGGTCGATGAACCCTCCGACTCCGCCCTCC 
           310       320       330       340       350       360       370       380       390  
 
                                      
  ATTGCTTGAACCCGGGAGACAGAGGTTGCAGTGAGCCGAGATCACACCATTGCACTCTAGCCTGGGCAACAGAGTGAGACTCTGTCTCAAAAATAAATAA  < 500 
  TAACGAACTTGGGCCCTCTGTCTCCAACGTCACTCGGCTCTAGTGTGGTAACGTGAGATCGGACCCGTTGTCTCACTCTGAGACAGAGTTTTTATTTATT 
           410       420       430       440       450       460       470       480       490  
 
 
   
  ATAAATAAATAAATAATAAAAATAAATAAATAAAAGCCAGAAAGTGTATTTGATGATCATAGTTATGTATATGTGAAATGAAGGACAGCAATGATGCAAG  < 600 
  TATTTATTTATTTATTATTTTTATTTATTTATTTTCGGTCTTTCACATAAACTACTAGTATCAATACATATACACTTTACTTCCTGTCGTTACTACGTTC 
           510       520       530       540       550       560       570       580       590  
 
                                                                                 
 
  GGATGGGTGAGTGGAATTAAAAATGTCTTATTATTTATTTATTTTGAGATGGAGTCTTGCTTTGCTGCCCAGGTTGGAGTGCAGTGGGATGATCTCAACT  < 700 
  CCTACCCACTCACCTTAATTTTTACAGAATAATAAATAAATAAAACTCTACCTCAGAACGAAACGACGGGTCCAACCTCACGTCACCCTACTAGAGTTGA 
           610       620       630       640       650       660       670       680       690  
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  CACTGCAACCTCCGCCTCCTTGATTCAAGCATTCATCTTGACTCAGCCTGCTGAGAAGCCgAGATTACAGGCATGCGCCACCACACCTGGCTAATTTTGT  < 800 
  GTGACGTTGGAGGCGGAGGAACTAAGTTCGTAAGTAGAACTGAGTCGGACGACTCTTCGGcTCTAATGTCCGTACGCGGTGGTGTGGACCGATTAAAACA 
           710       720       730       740       750       760       770       780       790  
 
                          
                          
  ATTTTTAGTAGAGACAGGGTTTTGCCATGTTGGCCAGGCTGGTCTCgAACTCCTGACCTCAGGTGATCCACCTGCATCAGCCTCCCAAAGTGCTGGGATG  < 900 
  TAAAAATCATCTCTGTCCCAAAACGGTACAACCGGTCCGACCAGAGcTTGAGGACTGGAGTCCACTAGGTGGACGTAGTCGGAGGGTTTCACGACCCTAC 
           810       820       830       840       850       860       870       880       890  
 
  ACAGACATGAGCCACTATGCCCAGCCTAAGAATATCTGATGATTATAAAGTGCTTGCATTACCTCTGAAGCTGTATAGTGTTATATGAAGGTGGAGTTGG  < 1000 
  TGTCTGTACTCGGTGATACGGGTCGGATTCTTATAGACTACTAATATTTCACGAACGTAATGGAGACTTCGACATATCACAATATACTTCCACCTCAACC 
           910       920       930       940       950       960       970       980       990  
 
                                                                   
                                                                   
  AGAGATGAGTTTTAAGCGTATATTGCAAACTCTAGGGCAACCACTAAAGAAGTGAGACCCAGCCTCTAGAAAAAAAAAAAAAAAGGAAATTAGCTATCAA  < 1100 
  TCTCTACTCAAAATTCGCATATAACGTTTGAGATCCCGTTGGTGATTTCTTCACTCTGGGTCGGAGATCTTTTTTTTTTTTTTTCCTTTAATCGATAGTT 
           1010      1020      1030      1040      1050      1060      1070      1080      1090  
 
                                              
                                              
  GCCACGAAAAGAAATGGAGGAACCTTAAACGCATATTACTAACTGAGATACGTCACTTTGAAAAGGCTACAAACGGTGTCATTCCAACTATACAACATTT  < 1200 
  CGGTGCTTTTCTTTACCTCCTTGGAATTTGCGTATAATGATTGACTCTATGCAGTGAAACTTTTCCGATGTTTGCCACAGTAAGGTTGATATGTTGTAAA 
           1110      1120      1130      1140      1150      1160      1170      1180      1190  
 
                                                                                                                              
          
  TGGAAAAGGCCAAAGCATGGTGATGATAAAAAGATCGGAGATGTCAGGGACTGGGGCAGGAGGGATGAGCTGGCAGAGCACAGGTTTTCTTTTCCTCTTT  < 1300 
  ACCTTTTCCGGTTTCGTACCACTACTATTTTTCTAGCCTCTACAGTCCCTGACCCCGTCCTCCCTACTCGACCGTCTCGTGTCCAAAAGAAAAGGAGAAA 
           1210      1220      1230      1240      1250      1260      1270      1280      1290  
 
                      
                      
  TTAAGACAGTGAAAATACTCCTAGGATCCTGCAAGGAGGGATACAAATTACATACATTTGTCAAAACCCACAGCATGTTGACCACCAGGAGGAGACCCCA  < 1400 
  AATTCTGTCACTTTTATGAGGATCCTAGGACGTTCCTCCCTATGTTTAATGTATGTAAACAGTTTTGGGTGTCGTACAACTGGTGGTCCTCCTCTGGGGT 
           1310      1320      1330      1340      1350      1360      1370      1380      1390  
 
                                                                                    
                                                                                    
  TGTGACTCCAGGACCCTGGTTGATAACAACGTATCGAGATTCCTCACATGGAACCAGTGCGCTTCTGTGGTGGAGGGTGTACCTGTGTCAGGGCAGGGGG  < 1500 
  ACACTGAGGTCCTGGGACCAACTATTGTTGCATAGCTCTAAGGAGTGTACCTTGGTCACGCGAAGACACCACCTCCCACATGGACACAGTCCCGTCCCCC 
           1410      1420      1430      1440      1450      1460      1470      1480      1490  
 
   
   
  TACGTGGACATTTTCTGCAGTTTTTGATCAATTTTGCAATGAACTAAATCTGTGGTATAAAAATAAAGTCTATTAAAAGAATCCAAGGCCCCCTCTCATC  < 1600 
  ATGCACCTGTAAAAGACGTCAAAAACTAGTTAAAACGTTACTTGATTTAGACACCATATTTTTATTTCAGATAATTTTCTTAGGTTCCGGGGGAGAGTAG 
           1510      1520      1530      1540      1550      1560      1570      1580      1590  
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  TCACGATAAGATAAAGTCCCCATCCATTTTACTCCTCTCAGCCCTGGAGAAAGGAGAGGCCAGGTCCCACCACCTTCCACCAGCATGGACCCCCAGTCCA  < 1700 
  AGTGCTATTCTATTTCAGGGGTAGGTAAAATGAGGAGAGTCGGGACCTCTTTCCTCTCCGGTCCAGGGTGGTGGAAGGTGGTCGTACCTGGGGGTCAGGT 
           1610      1620      1630      1640      1650      1660      1670      1680      1690  
 
                                    
                                    
                                    
  GACCCCACGCCTTTTCTCAGCATCCTCAGACCAGCAGGACTTGCAGCAATGGGGAATTAGGCACCTGACTTCTCCTTCATCTACCTTTGGCTGGGGGCCT  < 1800 
  CTGGGGTGCGGAAAAGAGTCGTAGGAGTCTGGTCGTCCTGAACGTCGTTACCCCTTAATCCGTGGACTGAAGAGGAAGTAGATGGAAACCGACCCCCGGA 
           1710      1720      1730      1740      1750      1760      1770      1780      1790  
 
                                                           
                                                           
  CCAGCCTTGACCTTCGCTCTGAGAGTCTCAGGCAGGTCCAGAGCCAGTTCTCCCATGACGTGATATGTTTCCAGAGCAGGTTCCTGGGTGAGATAAAAGG  < 1900 
  GGTCGGAACTGGAAGCGAGACTCTCAGAGTCCGTCCAGGTCTCGGTCAAGAGGGTACTGCACTATACAAAGGTCTCGTCCAAGGACCCACTCTATTTTCC 
           1810      1820      1830      1840      1850      1860      1870      1880      1890  
 
 
                                          
                                pGL3 plasmid•                                        
  ATTTGGGCTGAACAGGGTGGAGGGAGCATTGGGCTAGAGCGGCCGGGCTCGAGATCTGCGATCTAAGTAAGCTTGGCATTCCGGTACTGTTGGTAAAGCC  < 2000 
  TAAACCCGACTTGTCCCACCTCCCTCGTAACCCGATCTCGCCGGCCCGAGCTCTAGACGCTAGATTCATTCGAACCGTAAGGCCATGACAACCATTTCGG 
           1910      1920      1930      1940      1950      1960      1970      1980      1990  
 
 
    
  ACCATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTGGAAGATGGAACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGAT  < 2100 
  TGGTACCTTCTGCGGTTTTTGTATTTCTTTCCGGGCCGCGGTAAGATAGGCGACCTTCTACCTTGGCGACCTCTCGTTGACGTATTCCGATACTTCTCTA 
           2010      2020      2030      2040      2050      2060      2070      2080      2090  
 
                                                                          
 
                     
  ACGCCCTGGTTCCTGGAACAATTGCTTTTACAGATGCACATATCGAGGTGGACATCACTTACGCTGAGTACTTCGAAATGTCCGTTCGGTTGGCAGAAGC  < 2200 
  TGCGGGACCAAGGACCTTGTTAACGAAAATGTCTACGTGTATAGCTCCACCTGTAGTGAATGCGACTCATGAAGCTTTACAGGCAAGCCAACCGTCTTCG 
           2110      2120      2130      2140      2150      2160      2170      2180      2190  
 
                                       
 
                                       
  TATGAAACGATATGGGCTGAATACAAATCACAGAATCGTCGTATGCAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGTTATTTATCGGA  < 2300 
  ATACTTTGCTATACCCGACTTATGTTTAGTGTCTTAGCAGCATACGTCACTTTTGAGAGAAGTTAAGAAATACGGCCACAACCCGCGCAATAAATAGCCT 
           2210      2220      2230      2240      2250      2260      2270      2280      2290  
 
 
   
  GTTGCAGTTGCGCCCGCGAAC  < 2321 
  CAACGTCAACGCGGGCGCTTG 
           2310     
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