

Ferguson, Phillip David (2012) Implementation exploration of imaging
algorithms on FPGAs. EngD thesis.

http://theses.gla.ac.uk/3419/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior
permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author

The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given

Enlighten:Theses
http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/3419/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk

Implementation Exploration of

Imaging Algorithms on FPGAs

Phillip David Ferguson MEng

A thesis submitted to

The Universities of

Glasgow

Strathclyde

Edinburgh

Heriot Watt

for the Degree of

Doctor of Engineering in System Level Integration

© Phillip David Ferguson, 14th May 2012

This thesis is dedicated to my mother and sister, Josephine and Katherine Ferguson,

without your patience and support throughout the years this work would not have

been possible. I love you both very much.

Abstract

This portfolio thesis documents the work carried out as part of the Engineering Doctorate

(EngD) programme undertaken at the Institute for System Level Integration. This work

was sponsored and aided by Thales Optronics Ltd, a company well versed in developing spe-

cialised electro-optical devices. Field programmable gate arrays (FPGAs) are the devices

of choice for custom image processing algorithms due to their recon�gurable nature. This

also makes them more economical for low volume production runs where non-recoverable

engineering costs are a large factor. Asynchronous circuits have had a remarkable surge in

development over the last 20 years, to such an extent that they are beginning to displace

conventional designs for niche applications. Their unique ability to adapt to environmental

and data dependent processing needs have lead them to out-perform synchronous designs

in ASIC platforms for certain applications.

The main body of research was separated into three areas of work presented as three

technical documents. The �rst area of research addresses an FPGA implementation of

contrast limited adaptive histogram equalisation (CLAHE), an algorithm which provides

increased visual performance over conventional methods. From this, a novel implementa-

tion strategy was provided along with the key design factors for future use in a commercial

context. The second area of research investigates the ability to create asynchronous cir-

cuits on FPGA devices. The main motivation for this work was to establish if any of the

bene�ts which had been demonstrated for ASIC devices can be applied to FPGA devices.

The investigation surmised the most suitable asynchronous design style for FPGA devices,

a design �ow to allow asynchronous circuits to function correctly on FPGAs and novel

design strategies to implement consistent and repeatable asynchronous components. The

result of this work established a route to implement circuits asynchronously in an FPGA.

The �nal area of research focused on a unique conversion tool that allows synchronous

circuits to run asynchronously on FPGAs whilst maintaining the same data �ow patterns.

This research produced an automated tool capable of implementing circuits on an FPGA

asynchronously from their synchronous descriptions. This approach allowed the primary

motivators of this work to be addressed. The results of this work show timing, resource

utilisation and noise spectrum bene�ts by implementing circuits asynchronously on FPGA

devices.

Acknowledgements

Over the past 4 years, I have been supported by a number of people during this project

and I would like to thank those that have o�ered me encouragement and help. Firstly

I would likely to thank a number of individuals at Thales Optronics who have played a

pivotal role in my studies and kept my feet grounded, both electrically and physically. I

owe my industrial supervisors, Andrew Parmley and Danny Hume a signi�cant amount of

gratitude and thanks. Their insights and encouragement were always uplifting and bene-

�cial. I would like to thanks especially Garry Widley, Adam Rixon and Steve Pattinson

for instructing me in FPGA �rmware design and patiently enduring my technical talks. I

was never far from a sensible ear, a joke and a distracting conversation on Formula 1.

I am indebted to my academic supervisors who have been an outstanding source of in-

sight and inspiration. Without the encouragement and suggested avenues of investigation

from Tughrul Arslan and Ahmet Erdogan the initial probing of research directions would

have been a much longer and troubling process. My eternal gratitude goes to Aristides

Efthymiou, our discussions on asynchronous logic were invaluable. Without his support,

guidance and encouragement this thesis might not have seen the light of day in the time

that it has. I would also like to acknowledge Mathew Marshall for his encouragement and

support in the early stages of the asynchronous logic research. A large amount of gratitude

goes to my academic support mechanism, Khodor Fawaz. I will miss our conversations

on research topics, life and being the only persons investigating asynchronous logic in

Scotland.

I would like to address a few individuals that have kept a smile on face throughout the

years and encouraged me to submit this thesis in a timely fashion. I would like acknowledge

the co�ee crew: The laughter was always a welcome break, never allowing the research to

overwhelm me. I would like to acknowledge my good friends James Yorkshakes, Christo-

pher Morrison, Iain Taylor and Stephen Bain. Without your support and snowboarding

adventures, the days or research might not have been as much fun.

Finally I would like to especially thank my girlfriend and my extended family, Laura,

Martin, Paul, Rachel, Michael, Carole, Maime, Jim and Nibbles the cat. I only hope you

can forgive the time spent on this research, now it can be spent with you in front of the

�re.

Declaration of Originality

I declare that this portfolio thesis was composed entirely by myself and that the work contained

herein is my own except where acknowledged in the text. A list of references has been given in the

bibliography of each Technical Report. I also declare that this portfolio thesis has not been submitted

for any other degrees or professional quali�cations at any university. I am the sole author of this thesis

and any errors contained herein are my own.

(Phillip David Ferguson)

iv

Contents

Abstract ii

Acknowledgements iii

Declaration of Originality iv

I Portfolio Introduction 1

1.1 Executive Summary . 2

1.2 Portfolio Organisation . 3

1.3 Commercial Relevance . 4

1.4 External Events . 6

1.4.1 Academic and Industrial Events . 6

1.4.2 Conference Publications . 7

1.5 Taught Modules and Training . 7

1.5.1 Technical Modules . 8

1.5.2 Business Modules . 9

1.5.3 Handshake Solutions TiDE Training . 10

II Technical Reports 12

Region-Based Contrast Enhancement 13

2.1 Aims and Introduction . 14

2.2 Contrast Enhancement Background . 14

2.2.1 Algorithm Developments . 14

2.2.2 Platform Developments . 16

2.3 Contrast Limited Adaptive Histogram Equalisation . 17

2.3.1 Histogram Creation . 17

2.3.2 Clipping and Redistribution . 18

v

Contents Page vi

2.3.3 Forming the re-mapping function and smoothing artifacts 19

2.4 CLAHE Implementation . 22

2.4.1 Implementation Tool Flow . 22

2.4.2 Top Level Overview . 23

2.4.3 Memory Management . 24

2.4.4 Pixel feeder . 25

2.4.5 Weight Generator . 26

2.4.6 Bilinear sequencer . 26

2.4.7 Histogram Pipeline . 29

2.4.8 Smoothing Contextual Regions . 36

2.4.9 Top Level FSM . 38

2.5 Analysis and Results . 39

2.5.1 Image Correctness . 39

2.5.2 Resource Utilisation Results . 43

2.5.3 Timing Results . 44

2.5.4 Power consumption . 46

2.6 Conclusions and Future Work . 51

2.7 References . 53

Establishing Asynchronous Circuits on FPGAs 55

3.1 Aims and Introduction . 56

3.2 Challenges and Motivation . 56

3.2.1 Previous Contributions . 56

3.2.2 Fundamental Issues . 57

3.3 Technical Background . 59

3.3.1 Synchronous Logic . 59

3.3.2 Self-timed Logic . 60

3.4 FPGA Implementation Considerations . 65

3.4.1 Asynchronous Component Challenges . 66

3.4.2 Design Tool Considerations . 68

3.5 Design Flow Proposal . 73

3.5.1 Standard FPGA Design Flow Modi�cation . 73

3.5.2 Component Construction . 75

3.6 Veri�cation and Results . 81

3.6.1 Back Annotation . 82

3.6.2 In-circuit Veri�cation . 83

Contents Page vii

3.6.3 Delay Chain Matching . 84

3.7 Conclusions and Future Work . 86

3.8 References . 88

Automated Asynchronous Circuits Implemented in FPGAs(AACIF) 92

4.1 Aims and Introduction . 93

4.2 FPGA Design Flow Proposal . 93

4.3 EDIF Circuit Representations . 95

4.3.1 Mapping EDIF Files to Object Orientated Structures 98

4.4 Conversion Algorithm/Process . 100

4.4.1 Parsing Input Files and Grouping Data Path registers 100

4.4.2 Graphing Structures . 101

4.4.3 Register Duplication and Controller Insertion 103

4.4.4 Register Mapping and Tracing Interconnections 105

4.4.5 Connecting Controllers and Inserting Delay chains 109

4.4.6 Constraint Insertion . 109

4.5 Creating a Device Dependent Asynchronous library . 111

4.5.1 Delay Chains . 111

4.5.2 Asynchronous Controllers . 111

4.6 Analysis and Results . 120

4.6.1 Timing Results . 121

4.6.2 Utilisation Results . 127

4.6.3 Power Spectrum Analysis and Core Voltage Stability 129

4.7 Conclusions and Future work . 134

4.7.1 Further Considerations . 135

4.8 References . 136

III Conclusions 138

5.1 Thesis Summary . 139

5.2 Thesis Contributions . 140

IV Additional Material 143

A CLAHE Implementation and Analysis Supplements 144

A.1 CLAHE Design Tools . 144

A.2 Critical Path Synthesis View . 145

Contents Page viii

A.3 Histogram Pipeline Power Consumption . 146

B Implementations of Asynchronous Components 148

B.1 Delay Chains . 148

B.1.1 XOR Carry Chains . 148

B.1.2 Look Up Table Carry Chains . 152

B.2 Muller C-element Implementations . 154

B.3 Asynchronous Wrapper Implementation . 156

C AACIF Supplementary Material 157

C.1 EDIF Muller C-Element . 157

C.2 Controller Comparisons . 158

C.2.1 Comparison TestBench Files . 158

C.2.2 Expanded Waveforms . 163

C.3 Power Spectrum Setup . 164

C.4 Power spectrum for the 422 to 444 circuit . 165

List of Figures

2.1 Histogram Equalisation Enhancements [15] . 15

2.2 Contrast Limiting E�ects on AHE [15] . 16

2.3 Contextual Region Histograms . 18

2.4 Redistribution Options . 19

2.5 Bilinear Regions over Image . 20

2.6 Bilinear Interpolation . 21

2.7 Synchronous Design �ow . 23

2.8 CLAHE Processing Stages . 24

2.9 Image Memory Con�guration . 25

2.10 Histogram Pipeline Arithmetic . 29

2.11 Histogram Pipeline Structure . 30

2.12 Redistribution Options . 31

2.13 Redistribution Waveform . 33

2.14 Mach Band . 34

2.15 Histogram Pipeline with Finite State Machine . 35

2.16 Histogram Pipeline States . 35

2.17 Bilinear Interpolation Minimisation . 37

2.18 Top Level State Machine . 38

2.19 Image Results Comparison . 40

2.20 Adapthisteq VHDL di�erences . 41

2.21 Additional Image Results Comparison . 42

2.22 Consistent 'Adapthisteq' VHDL Di�erences . 43

2.23 Critical Path through Redistribution block . 45

2.24 Development Board . 46

2.25 Voltage Regulator for FPGA Core . 47

2.26 Input Variation Options . 48

2.27 Overall Power Drain . 50

ix

List of Figures Page x

3.28 4 Stage Synchronous pipeline . 59

3.29 Synchronous Pipeline Occupancy . 59

3.30 4 Stage Asynchronous Pipeline . 60

3.31 Asynchronous Pipeline Occupancy . 61

3.32 Simple Dual-Rail Encoding . 62

3.33 Signalling and Validity Regions . 64

3.34 Muller C-element . 66

3.35 Half Latch Controller . 67

3.36 Handshake Solutions Prototyping Design Flow . 69

3.37 Balsa Design Flow [25] . 70

3.38 BESST Design Flow [32] . 72

3.39 Proposed Design Flow . 74

3.40 Xilinx Slice Architecture [63] . 75

3.41 Delay Chain Variability Reductions . 77

3.42 Muller C-element FPGA Implementations . 78

3.43 Unconstrained Controller Routing . 79

3.44 ROM Wrapper Example . 81

3.45 Handshake Test Points . 82

3.46 Back Annotated Waveform . 82

3.47 Chipscope Waveform . 83

3.48 Test Pin Outputs of Handshake Di�erentials . 84

3.49 Delay Chain Comparison . 85

4.50 FPGA Design Flow . 94

4.51 EDIF Structure . 97

4.52 UML Diagram of the EDIF Structure . 99

4.53 Flattened Linear Pipeline . 102

4.54 Inserting Asynchronous Control Blocks . 104

4.55 Single Register Conversion with Feedback . 105

4.56 Register DFS connections . 107

4.57 Register Depth First Search Algorithm . 108

4.58 EDIF Mapping Constraint . 110

4.59 UCF Constraint Example . 110

4.60 Undecoupled Latch Controller . 112

4.61 Undecoupled Latch Controller Waveform . 113

4.62 Semi-Decoupled Latch Controller . 114

List of Figures Page xi

4.63 Semi Decoupled Latch Controller Waveform . 114

4.64 Broad Request Activated Fully Decoupled Latch Controller 115

4.65 BRF Latch Controller Waveform . 116

4.66 Critical Arcs of the BRF Latch Controller . 116

4.67 Mousetrap Latch Controller . 117

4.68 Mousetrap Latch Controller Waveform . 117

4.69 AACIF Register Controller . 118

4.70 AACIF Controller STG . 119

4.71 AACIF Controller Waveform . 120

4.72 Delay Chain Accuracy of 422 to 444 Circuit . 122

4.73 Delay Chain Accuracy of 444 to RGB Circuit . 123

4.74 Balancing Data Path and Controller Delay . 124

4.75 Matching Clock Nets of 422 to 444 Circuit . 125

4.76 Matching Clock Nets of 444 to RGB Circuit . 125

4.77 Scope Probe with Decoupling Capacitors Removed . 130

4.78 Noise Spectrum of the Background . 131

4.79 444 to RGB Circuit Noise . 132

4.80 444 to RGB Circuits Noise Spectrum Overlay . 133

A.1 Critical Path through Redistribution Block . 145

A.2 Current Traces of Options 1 & 2 . 146

A.3 Current Traces of Options 3 & 4 . 147

B.1 VHDL Implementation of a Muller C-element . 154

B.2 EDIF Implementation of a Muller C-element . 155

B.3 VHDL Wrapper Implementation . 156

C.1 EDIF Muller C-element Description . 157

C.2 Expanded Waveforms . 163

C.3 Board Setup . 164

C.4 422 to 444 Circuits Noise Spectrum Overlay . 165

List of Tables

1.1 Technical Modules . 8

1.2 Business Modules . 9

2.3 Redistribution Conditions 1, 2 & 4 . 32

2.4 Redistribution Condition 3 . 32

2.5 Device Utilisation . 44

2.6 Histogram Parameter Summary . 49

2.7 Pipeline Xpower Consumption Estimate . 49

2.8 Total Xpower Consumption Estimate . 50

3.9 2-bit Data Channel Encoding Examples . 63

4.10 Controller Delays of the 422 to 444 circuit . 126

4.11 Controller Delays of the 444 to RGB circuit . 127

4.12 Resource Utilisation Comparison . 128

xii

List of Abbreviations

AACIF Automated Asynchronous Circuits in FPGAs

API Application Programming Interface

ASIC Application Speci�c Integrated Circuit

CLAHE Contrast Limited Adaptive Histogram Equalisation

CLB Con�gurable Logic Block

CMOS Complementary Metal-Oxide Semiconductor

EDA Electronic Design Automation

EDIF Electronic Design Interchange Format

EM Electro Magnetic

FPGA Field Programmable Gate array

HDL Hardware Description Language

IP Intellectual Property

JTAG Joint Test Action Group

LED Light Emitting Diode

LUT Look-up Table

NAND Inverted logical AND gate

PCB Printed Circuit Board

RTEMS Real-Time Executive for Multiprocessor Systems

RTL Register-Transfer Level

SIMD Single Instruction Multiple Data

xiii

List of Tables Page xiv

STG Signal Transition Graph

UML Uni�ed Modelling Language

VHDL VHSIC Hardware Description Language

VLIW Very Long Instruction Word

VLSI Very Large Scale Integration

Part I

Portfolio Introduction

1

1.1. Executive Summary Page 2

1.1 Executive Summary

The objective of this engineering doctorate (EngD) research project, proposed in conjunction with the

Institute of System Level Integration and Thales Optronics Ltd, was to investigate how asynchronous

design techniques could be applied to FPGA designs for processing raw image detector data from

electro-optical sensors. This potentially included the development of a methodology and practical

implementation of the methodology on working hardware. The primary aim was to improve the

implementation of FPGA designs by assessing the applicability of asynchronous design techniques to

the processing of detector data.

This initial brief was designed to provide a large scope, allowing �exibility in the speci�c research

direction. Although experts in producing optical sensors and imaging algorithms, Thales Optro-

nics, due to the nature of their business environment, are inexperienced in state of the art design

methodologies outwith the standard EDA practises that have a long history of reliable hardware im-

plementations. The research methodology adopted involved looking at an advanced, state of the art

imaging algorithm, suitable for use on a number of future product lines. Then an investigation into

asynchronous circuit design on a FPGA device would determine the best approach to combine the

two domains. The result being a methodology to evaluate the applicability to imaging algorithms. As

a result there were three distinct areas of work undertaken.

The �rst major period of research was the design and implementation of a contrast enhancement

algorithm. Contrast limited adaptive histogram equalisation (CLAHE) is a contrast enhancement

algorithm that had the potential to be utilised in forthcoming projects within Thales Optronics. This

provided an opportunity to become familiar with the FPGA design �ow used in the company, inves-

tigate FPGA device architectures and assess their suitability for region based contrast enhancement

algorithms. The novel implementation of the CLAHE algorithm was analysed and characterised in

the context of design accuracy with respect to a golden reference model, FPGA resources utilisation,

device timing and power consumption. These areas allow a summary of the key design factors to be

formed for future projects and products.

The second period of research initially involved investigations into design space of asynchronous

logic. There are a number of di�erent asynchronous design styles which exhibit characteristics depen-

dant on the application. In recent times each branch of asynchronous logic has focused on a niche

application, it was therefore important to determine the most suitable style for FPGA devices. Further

to this an evaluation of design tools and methodologies was performed to determine existing methods

of creating reliable asynchronous circuits. With each asynchronous design style came a series of tools

from academic and industrial sources. Establishing their compatibility to current FPGA design �ows

and EDA standards was a critical in guiding the research direction. The main focus then turned to

implementing a class of asynchronous circuits that use FPGA resources. This piece of research looked

1.2. Portfolio Organisation Page 3

into connecting the most primitive components available with the FPGA device to suit fundamental

asynchronous behaviours. In doing so a design methodology was formed along with speci�c fabric

level asynchronous structures and veri�cation approaches. All of which integrated seamlessly into the

conventional FPGA design �ow.

The third major period of research moved into investigating the options on how to automate

asynchronous circuits into the current FPGA design �ow. A unique approach is presented which

converts synchronous circuits to operate asynchronously. This approach maximises the compatibility

of these circuits with existing EDA standards. The conversion focuses around the post-synthesis

EDIF netlist. This process abstracts an EDIF netlist in the domain of graph theory using an object

orientated approach to perform the conversion. There is a signi�cant discussion on the stages of

conversion including the constraints vital to the correct asynchronous circuit operation. A novel

asynchronous controller speci�cally designed for FPGA devices is presented and compared. The

analysis of this conversion process covers its timing accuracy and improvements, resource utilisation

and power spectrum noise.

1.2 Portfolio Organisation

The introductory part of this portfolio thesis provides a context to the research period and the sup-

porting work by the author. Firstly, the commercial context outlines what has motivated Thales

Optronics Ltd to support the topics of research undertaken by the research engineer. The company

has identi�ed these topics as being bene�cial to their future development. The second section details

the external events that have been attended to publish research results and gain visibility within the

wider research community as well as internal divisions of Thales Optronics Ltd. The third section

discusses the taught elements to the EngD and external training course that have contributed to the

success of this research. The taught business modules were of signi�cant value within the industrial

context, providing insight to the commercial forces around the EngD. The taught technical courses

and external training provided a succinct technical context to guide the direction of research at a very

early stage.

The core of this portfolio thesis is split into three technical reports that re�ect the sub-projects

there were undertaken during the period of research. The �rst report documents the research conduc-

ted investigated the use of region-based contrast enhancement within the current platforms used by

Thales Optronics. The second report documents the investigations into establishing asynchronous cir-

cuits on FPGA devices. The third report presents an automated methodology to implement circuits

asynchronously on FPGA devices. Each report contains individual aims and motivations as well as

technical context and conclusions from for the research conducted.

The �nal part of this portfolio thesis summarises and concludes the contributions and novel as-

1.3. Commercial Relevance Page 4

pects from each technical report and provides a direction for any future derivatives of this research.

Appendices and supporting material make up the remainder of this portfolio thesis.

1.3 Commercial Relevance

Although this research provides novel technical contributions it must also be of value and commercial

relevance to the sponsoring �rm, Thales Optronics Ltd. This section will highlight the industrial value

of the research and the commercial bene�ts it may bring in the future.

The �rst section of work on contrast enhancement produced an academically credible publication,

but this project provided great value to the company in determining the FPGA resources required to

implement such an algorithm on an embedded device. For thermal imaging cameras a large amount

of e�ort is expended in determining algorithms that can enhance image quality and clarity. To this

extent contrast enhancement methods are particularly important in minimising noise from an infrared

photodetector and enhancing lower detail regions. FPGA devices are the choice at the heart of

most thermal imaging cameras. Their con�guration �exibility, performance and ability to service low

volume manufacturing make them ideal to contain the required amount of corrective and enhancing

image processing algorithms. Region based contrast enhancement algorithms (like CLAHE) show

signi�cant image quality bene�ts over image wide techniques, and so it was a logical conclusion for

the �rm to support the direction taken by the EngD research to investigate improving the current

contrast enhancement algorithms with region based alternatives. This support could give the �rm a

key advantage over competitors in bringing products to market quicker. The research conducted in

this area gives valid estimates on an industrial application of the same functionality. Non-recurring

engineering costs are always targeted to minimise overall project costs, having a valid implementation

that constitutes a more predictable element of a project massively reduces uncertainty and inevitably

cost.

The second section of work on establishing asynchronous logic on FPGAs again has the potential to

bring further savings and advantages to the the �rm. Traditionally the large asynchronous design space

has allowed for many niche applications to bene�t from improved performance in terms of speed and

power when utilising a particular asynchronous design style.These bene�ts have always been applied

in the context of high-volume ASIC products. This research has identi�ed the most appropriate

method/framework that would allow low-volume FPGA products to assess these advantages within

their own context. Applying various design styles to FPGA fabric could bring better performance

to niche applications of the sponsoring �rm. In a synchronous circuit implemented on an FPGA the

clock network can consume a signi�cant proportion of power required to operate the device. The drive

current required to constantly switching an extensive clock network will a�ect the power supply design.

The demands of many output pins switching altogether mean that printed circuit board designers need

1.3. Commercial Relevance Page 5

to account for the high currents and cross coupling e�ects- all of which add the cost of designing an

embedded system. Asynchronous systems average out power spikes as they have no clock and as a

consequence this reduces supply variability which can reduce the cost of designing power supplies and

PCBs. The speed of a synchronous circuits is governed by the slowest propagation delay between

registers. In an asynchronous circuit the speed is governed by the average propagation delay between

registers. Meaning that system latency can be signi�cantly smaller than the synchronous equivalent.

From a cost perspective, using a high speed grade device to sample input data very quickly could be

replaced by a simple asynchronous circuit (with its average case performance) to sample input data

just as quickly but with the bene�t of using a lower speed grade device, which costs signi�cantly less.

The third section of work on automated asynchronous circuits provides a unique ability to the

�rmware design capabilities of the �rm. Automatically implementing circuits asynchronously on a

synchronous FPGA device has a number of bene�ts the �rm can leverage. Firstly designs do not

need to learn asynchronous design techniques in order to operate circuits without a clock. This allows

asynchronous bene�ts to be easily assessed against each circuit design. There may be applications that

call for low EM noise from the PCB, response times where latency is the most important factor, power

e�ciency where there are limitations on the available current to operate a circuit or changeable envi-

ronments that require circuits to be robust against single-event upsets and varying temperatures. All

of these potential design scenarios may be instances where design implementation explorations reveals

that an asynchronous design style maybe the best performing in that context. Providing the �rm with

the capability to assess the capability of asynchronous design styles with these design requirements is

key competitive advantage. Although this a conversion �ow, bene�ts are extracted further down the

FPGA design �ow. The novel aspect of this work is how the asynchronous circuits are implemented

on the FPGA. Changing the behavioural description language to a dedicated asynchronous language

or a modelling language could result would allow optimisation of di�erent source languages to FPGA

architectures. This low-level access to the FPGA fabric allows operations to be constructed with �ner

granularity, in the same manner that assembler code can be inserted into C-programs. This approach

provides another potential competitive advantage, allowing circuit descriptions to make into products

quicker (reducing time-to-market) or performing better than they normal would.

The commercial relevance of this work is very strong due to the industrial motivators for performing

this research. This direction adds signi�cant tangible value to the research described in this thesis as

well as its novel contributions to knowledge.

1.4. External Events Page 6

1.4 External Events

1.4.1 Academic and Industrial Events

Throughout the period of research there were a number of events that provided welcome discussion and

feedback on the work being undertaken. No attempt to contribute to these events was made, however

the bene�t came in networking opportunities and the ability to discuss and explain the directions

of research. Since the (asynchronous) topic of research is signi�cantly outwith the comfort zone of

Thales Optronics Ltd, the opportunities provided by these events were signi�cant.

1.4.1.1 IEEE Symposium on Asynchronous Circuits and Systems

The symposium on asynchronous circuits and systems was attended between the 7th and 10th of

April 2008. Although not presenting any papers, this symposium was of most value in being able to

access, what is regarded as the latest research in asynchronous circuits. The symposium also acted

as a networking opportunity to gain a number of peer contacts to question and query the direction

of research. There were a few presentations that had commonalities with this line of research and

provided an array of markers from which the research can be clearly de�ned. The most informative

parts of this conference were the range of tools being used to design and verify asynchronous circuits on

ASICs as well as the minimisation techniques used to reduce the number of asynchronous components

that would explicitly limit the usage of asynchronous structures on FPGA devices.

1.4.1.2 UK Asynchronous Forum

As part of maintaining connections made at the symposium for asynchronous circuits and systems, the

20th UK asynchronous forum was attended on the 1st of September 2008 to �rstly discuss research

ideas and secondly evaluate new ideas and concepts generated by the UK asynchronous research

community. There are very few events that cater for the asynchronous design space and so this was

a welcomed opportunity to discuss the research progress with an audience that are very familiar with

region of interest this research occupies.

1.4.1.3 Thales Group les Journée du Computing

The PhD computing day is an annual event held by the Computing Network of Excellence as part of

the Software and Critical Information systems group in Palaiseu, France. This event was attended

on the 16th of November 2011 and provided a concluding presentation of the work presented in this

thesis to the sponsoring company. The goal of this event is to gather all the Thales Group PhD

students working on computing research to share their research topics and recent progress, as well

as their experience. This event was reasonably similar to the Asynchronous Forum, but with a 30

1.5. Taught Modules and Training Page 7

minute presentation and subsequent poster session, the �nished work generated a signi�cant amount

of discussion and interest from various attendees.

1.4.2 Conference Publications

Two contributions were given at major academic conferences. One involved a poster presentation and

the other a full length 20 minute presentation slot, both contributions are accompanied by papers

published in the conference proceedings for each event

1.4.2.1 IEEE International System on a Chip Conference

Due to an accepted paper submission, 'Evaluation of contrast limited adaptive histogram equalization

(CLAHE) enhancement on a FPGA' on contrast limited adaptive histogram equalisation, the inter-

national system on a chip conference was attended between the 15th and 20th of September 2008.

The conference took place in Newport California and contained �ve days worth of paper and poster

presentations, tutorials and discussions on many areas relevant to system on chip design- including

image and video processing as well as a small asynchronous design tutorial. The paper was presented

as a poster and received signi�cant interest. There were a number of professional and academic or-

ganisations represented at this conference, presenting and discussing the latest topics of research and

development. The networking and critical discussions at this conference were of great value to the

direction of this research at that time.

1.4.2.2 Euromicro Conference on Digital System Design

Another paper, 'Optimising Self-Timed FPGA Circuits' was accepted to the 13th Euromicro Confe-

rence on Digital System Design: Architectures, Methods and Tools in Lille, France, on the 1st to

3rd of September, 2010. This paper was speci�cally aimed at allowing the work around the design

�ow of AACIF circuits to be peer reviewed. The conference includes a number of topics within its

scope, including system and circuit synthesis which aligns with the intentions of the paper. It focuses

on advanced circuit and system design, design automation concepts, paradigms, methods and tools,

as well as modern implementation technologies from full custom in nanometre technology nodes to

FPGA and multicore infrastructures. As with the previous conference the event provided a good

opportunity and discussion forum to seek feedback, di�erent interpretations and impressions on the

direction of research- all positive and bene�cial.

1.5 Taught Modules and Training

As part of the EngD requirements, a total of 180 credits at Master's level are required. These are

made up of 120 technical credits and 60 business and management credits. The technical modules

1.5. Taught Modules and Training Page 8

were sourced from the MSc in System Level Integration o�ered by the Institute for System Level In-

tegration (ISLI) and Continuing Education in Electronics Systems Integration (CEESI). The business

and management modules were sourced from the MBA programme of the University of Strathclyde

Graduate School of Business (USGSB).

1.5.1 Technical Modules

Out of the 120 MSc level technical credits required for the EngD course, 4 of them were taken in the

�rst term of the MSc course from the ISLI, and 3 were taken in the second semester. The remaining

came from the 3rd semester and external courses.. Table 1.1 summarises the modules taken and their

corresponding credit weightings. The most signi�cant courses were:

Subject Credits

Introduction to Hardware Design Automation 8
IP Block Authoring 15

Microcontrollers and Microprocessors 15
VLSI Design 15

Embedded Software 1 15
Real Lift System Level Integration 8

IP Block Integration 15
System Partitioning 15

Table 1.1: Technical Modules

IP Block Authoring - provided a solid base in various design methodologies and discussed the

attributes of the di�erent classi�cations of I.P blocks. The main emphasis was on I.P. block re-use

and power/speed/area evaluations.

Microcontrollers and Microprocessors - discussed design knowledge gained on instruction set ar-

chitecture design. This also covered parallel and pipelined processor design with investigation into

e�cient cache architectures and brief coverage of VLIW and SIMD processor architectures.

VLSI Design - provided additional experience in fundamental CMOS circuit design, following

the design �ow from data path modelling and implementation down to the transistor layout design

including automatic place and route techniques.

Embedded Software 1 - developed skills in embedded software construction, with extensive focus

on DSP orientated data manipulation. This was tested with development of a responsive real time

operating system embedded application using RTEMS.

IP Block Integration - provided hands on experience with hardware veri�cation languages, Spec-

man. The module covered simulation technologies with rapid prototyping, formal and timing veri�-

cation tools. There was signi�cant emphasis on design for test ability and test bench con�guration.

System Partitioning - Increased awareness of modelling languages to aid system partitioning with

a depth SpecC project. The module also covered models for computation and communication. The

1.5. Taught Modules and Training Page 9

concise introduction to UML and the bene�ts from its features as a system speci�cation language were

highlighted from an object-orientated design perspective.

There was only one module that was taken outwith the MSc curriculum provided by the ISLI, 'Self-

timed logic' provided by the University of Manchester on behalf of CEESI. This was a 16 week long

distance learning course which will began in October 2008 and was worth 15 credits. This module

was determined to be particularly useful in the context of the research brief provided by Thales

Optronics Ltd. This module was taken by distance learning and provided a clear, concise insight and

introduction into the asynchronous design space. The course covered a crucial number of topics that

were of signi�cant use in the latter part of the research, providing a preliminary understanding of

asynchronous data and control protocols as well as asynchronous synthesis tools.

1.5.2 Business Modules

The 60 business credits were obtained by completion of the classes listed in Table 1.2. Distance learning

and part-time study was the most convenient and �exible method to undertake these classes whilst

balancing the requirements of the technical research. The business modules provided an opportunity

to look at the EngD from a theoretical commercial perspective. Although the EngD is minor in

comparison to the activities within Thales Optronics Ltd as a business, considering the EngD in a

business environment rather than a research perspective provided an insight into the support measures

required.

The business modules also provided an understanding of the key performance indicators chosen by

the business, the operations management that drive the internal procedures and the �nancial respon-

sibilities that balance every decision throughout the company. As with all textbook interpretations,

the real-life application of theoretical methodologies are always subject to commercial compromises.

The subjects chosen (shown in Table 1.2) were very bene�cial in allowing the technical requirements

of the EngD to remain fully supported by the company whilst being una�ected by the commercial

environment. Subjects such as Finance & Financial Management and Financial & Management Ac-

Subject Credits

The Learning Manager 3
Operations Management 12
Marketing Management 12

Financial and Management Accounting 9
Finance and Financial Management 12

Making Decisions 6
Data Management 6

Table 1.2: Business Modules

counting gave an insight into the costing practises, balance sheets, capital expenditure, and other

�nancial topics which a�ect all engineering projects. These aspects are normally encompassed by

1.5. Taught Modules and Training Page 10

project managers and purchasing departments but are rarely tackled by engineers on a wider scale

than development work.

Operations Management showed businesses from a strategic perspective, outlining the operations

function and how operations management acts to implement strategy by process design and impro-

vement measures. This mechanism outlines how businesses judge their performance and quality of

output. In Thales Optronics, primarily being a technology company, there is a strong operations

in�uence on all aspects of the business. This class was a key insight into how the company transforms

in adapting to market changes and optimising internal processes.

Marketing Management showed the importance of a customer-facing company. Technology-based

companies tend to focus on producing advanced products because the technology is available and

assume that the customer will follow. Understanding exactly what the customer needs and creating

products to match those needs (as well as bettering the competition) is fundamental to a successful

business. This class was particularly enlightening when considering the strategic marketing required

by Thales Optronics Ltd to anticipate customer requirements 5 to 10 years in advance and predict

how to meet those needs in that time frame. A substantial report was submitted for this class based

upon the marketing activities for particular segment of Thales Optronics. This provided the �rst hand

motivation to justify the direction of the research and development activities.

Making Decisions demonstrated the bene�ts of Multi-Criteria Decision Analysis (MCDA). A

unique, methodical approach to decision making within a complex environment such as Thales Op-

tronics Ltd. Decisions matter when an issue is su�ciently complex and detailed that there is con�ict

between criteria and the importance of criteria in the decision. In this situation a gut feel decision is

not su�cient. The principle aim is to help decision makers identify preferred courses of action. This

is achieved through the structuring of values and judgements from stakeholders who have in�uen-

ce/interest in the outcome of the decision. In the context of Thales Optronics, a parallel investigation

was conducted, demonstrating MCDA on a decision required for the choice of software packages for

engineering issue management. The conclusion of this investigation was another angle on the solution

possibilities, a traceability document that justi�es course of action from top level requirements and a

support to the resultant action plan.

1.5.3 Handshake Solutions TiDE Training

Following advice from an academic supervisor under the assumption that the tool of choice for imple-

menting asynchronous structures in the near future would be supplied by Handshake Solutions, this

3-day course was attended between the 12th and 14th of November 2007. This course provided �rstly,

a very clear overview of the asynchronous design �ow, TiDE (Timeless Design Environment) and an

explanation of the requirements for a design language (Haste) to accurately represent asynchronous

1.5. Taught Modules and Training Page 11

circuits. Secondly, this course provided the �rst glimpse into the commercial design �ow for creating

asynchronous structures on an FPGA However it is important to note, that although this was the

only commercially recognised asynchronous design �ow it is not the only one in existence. There are

a number of academic based asynchronous design �ows in existence that automate di�erent areas of

the asynchronous design space.

Part II

Technical Reports

12

Technical Report 1:

Region-Based Contrast Enhancement

on a FPGA Platform

Author: Phillip David Ferguson

Academic Supervisors: Prof Tughrul Arslan, Univ. of Edinburgh

Dr Ahmet Erdogan, Univ. Of Edinburgh

Industrial Supervisor: Andrew Parmley, Thales Optronics Ltd

13

2.1. Aims and Introduction Page 14

2.1 Aims and Introduction

The body of work contained in this Technical Report documents the initial period of research at

Thales Optronics Ltd. The primary motivation for this research is based on an industrial need to

improve the performance of image algorithms used in their products.

A primary element of these products is the contrast enhancement mechanism used to improve the

clarity and de�nition of images from thermal imaging sensors. Previous contrast enhancement tech-

niques have been based around computations that are applied to an entire image. This body of work

evaluates the relative merits of using a region based contrast enhancement algorithm on a platform

that is common to most imaging products from Thales Optronics Ltd - the �eld programmable gate

array (FPGA). Region based contrast enhancement algorithms show signi�cant image quality bene�ts

over image wide techniques, and so it was a logical conclusion to assess the feasibility of suitable

algorithms.

This work discusses the implementation considerations and performance limitations of CLAHE.

In doing so the suitability of an FPGA for this type of contrast enhancement is analysed. At the time

of writing there were no known FPGA implementations of region based contrast enhancement that

evaluated the performance attributes of this type of contrast enhancement algorithm on an FPGA.

This novel approach to implementing CLAHE provides the industrial bene�t of trialling CLAHE on

an FPGA device allowing the �rm to surmise the hardware requirements for region based contrast

enhancement algorithms.

2.2 Contrast Enhancement Background

Previous studies [12] have discussed simpler contrast enhancement algorithms within the same indus-

trial context, however due to the superior image enhancement ability of CLAHE, these conclusions

need to be reevaluated. The following sections document the considerations and implementations in

exploring an FPGA implementation of CLAHE.

2.2.1 Algorithm Developments

Contrast enhancement is familiar to most individuals through picture settings on their television or

monitor. Changing this setting allows the contrast of an image to be adjusted to obtain better clarity

and de�nition. This is achieved by scaling or o�setting the intensity values of the pixels so that the

full range of the intensity values are used within the image. E.g. if each pixel has an 8-bit range from

white to black of 255-0, an image may contain pixels values from 220-10. In this case, visually white

may not be pure white and black my not be pure black. Adjusting the contrast setting scales the

intensity values so that an image with a white equal to 220 now becomes an image with white equal

2.2. Contrast Enhancement Background Page 15

to 255. This scaling is a linear ramp with a particular gradient. The contrast setting on a monitor

alters the gradient of this ramp that is applied to every pixel in the image.

Histogram equalisation (HE) [1, 4] was initially developed to counteract the imbalance in pixel

intensity created from computed tomography and magnetic resonance scanners to cathode ray tube

display units. Previously a linear ramp had been used as a re-mapping function in a 1-to-1 pixel

transform to improve the contrast of a given image. Histogram equalisation uses a non-linear ramp to

provide an intensity level mapping that increases the output intensity level range dependent on the

frequency distribution (a histogram) of the intensity levels within an image. This is accomplished by

a cumulative distribution function to provide the re-mapping function which transforms the intensity

values in an image such that the histogram intensity for a transformed image is constant. However

the resultant image in some circumstances is worse than the equivalent image that had been enhanced

using the linear ramp windowing method. This is due to large concentrations of background noise,

creating peaks in the original histogram that once levelled out (see Figure 2.1) enhanced the visibility

of background noise to the same levels as the image detail, thus losing minor local contrast changes.

(a) Human knee MR scan (b) Histogram Equalisation Result

Figure 2.1: Histogram Equalisation Enhancements [15]

As HE uses the entire image to produce a re-mapping function, the next logical step was to

minimise the size of the region with which the contrast enhancement was performed. Independent

studies [9, 5, 3] of di�erent variants began to explore the subtleties of balancing independent contrast

regions. Creating an individual remapping function for a reduced region size creates an image where

each region has been adaptively equalised. Adaptive histogram equalisation (AHE) improves overall

image contrast for two reasons:

� Large peaks in background noise can be minimised to local regions, thus limiting the image wide

noise enhancing e�ects.

� The human visual system adapts to the local context of images to evaluate the contents, as

previously multiple linear ramps were applied to improve regions of interest in an image.

2.2. Contrast Enhancement Background Page 16

Splitting the image into contextual regions and then performing the remapping will inherently intro-

duce visible contextual boundaries across the image. Thus a bilinear interpolation (discussed further

in Section 2.3.3) is performed to remove these boundaries.

However now that important contextual regions can be enhanced with the bene�ts of histogram

equalisation, the background regions of images, which are predominantly dark, su�er (shown in Figure

2.2) a dramatic enhancement in their noise content. To address this issue, spreading the histogram

peaks over the entire contextual region removes any majority intensity and so reducing the inter-

contextual region contrast. Many methods [2, 13] have been devised to minimise this e�ect through

a series of region weightings or modi�cations to the cumulative function.

(a) Adaptive HE (b) Contrast limited AHE

Figure 2.2: Contrast Limiting E�ects on AHE [15]

Contrast limited adaptive histogram equalisation (CLAHE) [9, 10] solves this inherent problem by

limiting the contrast enhancement in homogeneous areas where grey levels are mostly constant. To

accomplish this, CLAHE limits the maximum value a bin can hold in the image histogram. This has

the cumulative e�ect of reducing the gradient of the re-mapping function. CLAHE analyses the image

histogram and clips the o�ending bins to a maximum value. The excess of pixels creamed o� the

top of the histogram must be redistributed to maintain the total number of pixels in the histogram.

The resulting transfer function restricts the output range of high concentration pixel intensities in the

original histogram to their intended output range in the transformed image.

2.2.2 Platform Developments

Currently implementations of CLAHE have mostly remained in the software domain. Pizer [9] initially

performed operations on a VAX 11/780 using C or assembler as the implementation tool. This usually

took around 2 minutes to complete with image sizes up to 512 x 512 pixels. The hardware of choice

then moved to a dedicated multiprocessor machine, MAHEM [10], composed of 64 pixel processors

that was able to reduce the run time of CLAHE to 4 seconds. Gauch [2] in 1992, used �oating point

2.3. Contrast Limited Adaptive Histogram Equalisation Page 17

arithmetic to demonstrate various strands of HE including AHE. Using a 7 MIPS workstation, most

variants took several minutes to compute for image sizes up to 512x512 pixels. The next development

came in a general purpose C based implementation from Zuderveld1 [14] which due to the growth

of general purpose x86 processors meant that CLAHE took less than a second on a HP 9000/720

workstation for 8-bit 512x512 image using 8x8 contextual regions. Another dedicated platform [6]

was developed in 1998 with a move to a Xilinx XC4010 FPGA. This silicon level implementation

gave a real-time performance jump, however this was only performing HE across the entire image.

With an image size of 256x256 pixels and a clock rate of 50MHz, an entire image was transformed

in approximately 1 millisecond. In 2000 Stark [13], continued analysis and development on general

purpose x86 cpu's which due to their pace of development allowed a great range of image analysis to be

performed on a wider variety of AHE variations and there computational implications. In 2002 Matlab

added a CLAHE function to its image processing tool box. Based on the Zuiderveld implementation

it brought the additional option of redistribution according to a uniform, exponential or Rayleigh

distribution. Since then the only mention of CLAHE was a proposal by Reza [11], however this had

no results or implementation to compare against.

2.3 Contrast Limited Adaptive Histogram Equalisation

This section will document the various stages and operations required to perform the contrast impro-

vement achieved by CLAHE algorithm in greater detail than touched upon previously.

2.3.1 Histogram Creation

Firstly a decision must be taken to establish the contextual region size relative to the image size.

The contextual regions divide the source image space up into equal sized tiles as shown in Figure

2.3. These tiles de�ne the local regions of contrast that will be used to construct the contents of the

re-mapping histograms. There is no general purpose ratio, and so a compromise between contrast

detail and computational requirements needs to be taken. Larger image sizes will lose contrast detail

with large contextual regions at the expense of computational time. Zuiderveld [14] does not limit the

image or contextual region size, but does limit the ratio to be 16. Pizer [10] uses an 8x8 kernel for a

512 x 512 image size, at the expense of hardware. Increases in image size disguise larger contextual

regions but lose contrast detail, thus if detail is be retained an 8x8 contextual region is likely the

lowest practical limit.

1Karl Zuiderveld also co-wrote the initial AHE paper by Stephen M. Pizer in 1987

2.3. Contrast Limited Adaptive Histogram Equalisation Page 18

9

0 6

0
0

2

6

0

1

0

0

9

0 6

0

7

0

4

0

1

0

0

Contextual

Regions

Image space

Figure 2.3: Contextual Region Histograms

A histogram of each contextual region is then constructed to identify the contrast de�ciencies in

that region of the image. The pixel depth must also be taken into account when creating a histogram

so that there is su�cient contents to redistribute. The number of bins present in the histogram is

a factor of the number of intensity levels (the pixel depth) that can be represented in the image.

Reducing the number of bins reduces the dynamic range of the output image, essentially limiting the

change in intensity to improve contrast and reduce histogram storage requirements. This also relates

to the size of the contextual region, where a lesser number of pixels will not produce a reasonable

representative distribution relative to the pixel size and thus clipping the histogram is unlikely to have

an e�ect. For example, if an 8 x 8 contextual region was used then 64 pixels (of 8-bit depth) must

be divided up across a histogram that could have between 256 and 2 bins. In the case of 32 bins, the

average pixel per bin is only 2, providing very little to redistribute if there isn't a dominant intensity.

Thus contextual regions should realistically contain an integer multiple of the pixel depth.

2.3.2 Clipping and Redistribution

The clip limit (or contrast factor) is de�ned as an integer multiple of the average histogram contents.

Based on the peaks in the histogram, the clip limit performs a noise control mechanism between

zero contrast enhancement (a low re-mapping slope hence a low factor) and AHE which removes

the redistribution operation altogether. If there is a large peak in the histogram, forming the re-

mapping function (i.e. accumulating the histogram bins to form a non-linear ramp) will result in

a steep gradient change. This steep gradient creates a large change in pixel value, resulting in the

noise shown in Figure 2.2a. The clip limit indicates how much excess is trimmed from the histogram,

limiting histogram peaks and consequently background noise.

2.3. Contrast Limited Adaptive Histogram Equalisation Page 19

80

10

0

40

Clip limit

Flattened HistogramOriginal Histogram

Overflow excess

Redistribution

Options

Figure 2.4: Redistribution Options

Clipping a histogram according to the clip limit produces a �attened histogram and an over�ow

of excess pixels as shown in Figure 2.4. This over�ow is redistributed across bins in the �attened

histogram that are less than the clip limit. There are various computationally dependent methods

(examples shown in Figure 2.4) to redistribute the over�ow, from creating an average that is added to

every bin to identifying the bins with low contents and adding proportions of the over�ow dependent

on their contents. The Matlab implementation mentioned previously provides many di�erent methods

to redistribute the over�ow excess for each histogram including a uniform, Rayleigh, or Exponential

distribution. Redistribution is not performed if there is no over�ow from clipping the histogram.

2.3.3 Forming the re-mapping function and smoothing artifacts

Once the histogram from each contextual region has been redistributed, it must be transformed with a

cumulative distribution function and then scaled to suit the pixel depth of the image. The re-mapping

function e�ectively redistributes or reduces the dynamic range of the source image. In many cases

this scales or stretches the image so that instensity di�erences between pixels are more apparent.

Each contextual region will have its own local contrast speci�c re-mapping function. If we were to

apply these re-mapping functions, the boundaries between contextual regions would become visible

introducing artifacts to the resultant image. Thus a bilinear interpolation is used to smooth the

boundary artifacts from the local contrast enhancements.

2.3. Contrast Limited Adaptive Histogram Equalisation Page 20

Contextual

Regions

Image space

Remapping Function Tiles

Corner Region

(1 re-mapping source)

Side Region

(2 re-mapping sources)

Mid-Region

(4 re-mapping sources)

Contextual Region

Re-mapping Function (Q12)

Contextual Region

Re-mapping Function (Q11)

Figure 2.5: Bilinear Regions over Image

For each pixel in the image, the transformed intensity value is a weighted sum of the closest four

contextual region re-mapping functions as shown in Figure 2.5. Depending on the position of the

current pixel relative to the boundaries of these remaping functions their in�uence will be increased

or decreased. Pizer [9] suggested that the four re-mapping functions could come from interpolation

regions that spanned multiple contextual regions o�set by half the width of a contextual region. As

larger contextual regions will tend to lose image sharpness and detail, the simplest and most accurate

solution sets the contextual and interpolations regions to be the same size. Additional considerations

need to be made for boundary contextual regions that surround the outer edges of the image. In these

cases there may only be one or two in�uential contextual regions.

For the mid-regions in Figure 2.5 the resultant intensity value requires the re-mapping functions

of the four surrounding contextual regions(Q11, Q12, Q21, Q22). This is described by

Pnew =
(y − y1)
(y2 − y1)

(
(x2 − x)
(x2 − x1)

f(Q12(Pold) +
x− x1
x2 − x1

f(Q22(Pold)

)
(2.1)

+
(y2 − y)
(y2 − y1)

(
(x2 − x)
(x2 − x1)

f(Q11(Pold) +
(x− x1)
(x2 − x1)

f(Q21(Pold))

)

Here the intensity value of the current pixel Pold is passed through the 4 contributing re-mapping

functions. Depending on the position of the pixel (shown in Figure 2.6) relative to the contextual

2.3. Contrast Limited Adaptive Histogram Equalisation Page 21

region that each re-mapping function describes, they are weighted according to their contrast changed

that would impact the current pixel.

Q21

Q22

Q11

Q12

X2X1

Y1

Y2

x

y
p

Figure 2.6: Bilinear Interpolation

The side regions in Figure 2.5 only overlap two contextual regions, and so Equation 2.1 reduces to

2.2 where the vertical terms of the equation and the corresponding re-mapping functions,

Pnew =
(y − y1)
(y2 − y1)

f(Q22(Pold)) +
(y2 − y)
(y2 − y1)

f(Q21(Pold)). (2.2)

The corner regions in Figure 2.5 have no external in�uence from neighbouring re-mapping function,

and so equation 2.2 reduces to only one term that performs the re-mapping transform.

Pnew = f(Q21(Pold)) (2.3)

2.4. CLAHE Implementation Page 22

2.4 CLAHE Implementation

The aim of this implementation is to evaluate the implications of CLAHE in an image processing

context on an FPGA. This means assessing the necessary hardware functionality, required resources,

power and timing implications for such an algorithm within a single device. The platform of choice

is the Avnet DS-BD-V4FX12LC development board [19]. During this period of research, Thales

Optronics Ltd was using these boards as a basis for evaluating their capability in future products. It

therefore made the board the ideal choice to implement CLAHE on. This development board houses

a Xilinx Virtex 4 device [22], and consequently the implementation parameters were based on its

ability to implement this. A brief discussion of the design tools used in conjunction with this board

is presented in Appendix A.1.

Instead of specifying a prede�ned image size, a contextual region size was used as a basis for CLAHE

operations. This allows �exibility in determining common operations and scaling them according to

the resources available. A contextual region of 64 pixels, 8-bits wide falls in line with previous

implementations where it had been judged that su�cient detail is retained through this contextual

region size. This consequently means that image size must be a multiple of 8 pixels in each direction.

For testability and proof-of-concept reasons, the resultant histogram was limited to 8 bins. This was

the optimal such in accessing local memory stores within the device that would be used to construct

histograms. To provide the redistribution operation with su�cient work, a clip limit close to the

average bin contents (8) was set. With these two parameters the implementation discussion can move

onto the tool �ow, subsequent algorithm parameters will be discussed in the context of the following

subsections which are most appropriate.

2.4.1 Implementation Tool Flow

The design steps for the implementation of CLAHE are shown in Figure 2.7. There is very little

di�erence from the standard synchronous FPGA design �ow that caters for time, power and speed

driven performance goals. Assessing the speed and temporal aspects of di�erent parts of the design

are mostly encapsulated within each step the design �ow from design entry to device programming.

Simulation has been used throughout each stage verify the functionality against the HDL design. The

veri�cation �ow was based around Mathworks in-built MATLAB function 'adapthisteq' (CLAHE) [7]

as the golden reference. This is explored in greater detail in subsequent sections. The use of the

on-chip logic analyser was the last stage in veri�cation and debugging, highlighting design (mostly

timing) �aws that had escaped detection in earlier simulations. Power analysis, although not captured

in Figure 2.7 requires a back annotated timing model and the corresponding standard delay format

�les (generated from the implementation stage) for the simulator to produce the necessary switching

characteristics (value change dump �les) used in the power estimator.

2.4. CLAHE Implementation Page 23

Vendor Circuit Description

EDIF Circuit Description

HDL Circuit Description

HDL Design Entry

In-Circuit Verification

Functional Simulation
Static Timing Analysis

Back Annotated Timing Simulation

Behavioural Simulation

Device Programming

Implementation

Mapping

Placing

Routing

Synthesis

Gate Level Synthesis
Fabric Synthesis

Embedded
Components

Post-Synthesis Simulation

CLAHE Description CLAHE Testbench

Design Verification

Figure 2.7: Synchronous Design �ow

2.4.2 Top Level Overview

A block diagram of the CLAHE processing stages is shown in Figure 2.8. Assuming the source

image is stored contiguously in an external frame store, a pixel feeder is required to �rstly retrieve the

correct pixels for the contextual region required and secondly distribute them to the histogram pipeline

requesting that contextual region. Each histogram pipeline will clip and redistribute a histogram and

then deposit the accumulated histogram (the re-mapping function) in the histogram RAM (HRAM).

Since each histogram pipeline is running in parallel and there is no guarantee how much processing

is required on each contextual region, a histogram sequencer is required to sequence write operations

into HRAM. Arbitrating this shared resource means that feedback signals are sent up the processing

stream to control the �ow of contextual regions into each histogram pipeline. The pixel feeder must

also arrange the original image to be sent to the weight generator in a rasterised format to coincide

with the histogram scheduling. For each pixel in the source image, the weight generator creates the

correct pixel weights required by each pixel in the bilinear interpolation process. Along with the

original image addresses are generated so that the bilinear sequencer can arrange, the input pixel, the

bilinear weights, and the results of the histogram remapping functions from the HRAM in the correct

2.4. CLAHE Implementation Page 24

Pixel

Feeder

Histogram pipeline

Histogram

Sequencer

Histogram pipeline

Histogram pipeline

Histogram pipeline

CLAHE ImageOriginal Image

Weight Generator Bilinear Sequencer

Histogram

RAM

Bilinear

Interpolation

Figure 2.8: CLAHE Processing Stages

order so that the bilinear interpolation is constantly active.

A �nite state machine (not shown in Figure 2.8 for simplicity)coordinates the every top level block

to retrieve contextual regions from memory, produce re-mapping functions through the histogram

pipelines and sequence the bilinear interpolation correctly. To correctly feed the bilinear interpolation,

at least two rows of re-mapping functions must be stored to maintain constant operation. For each

pixel, at most, four re-mapping functions are required. Pixels from each new interpolation row require

re-mapping functions from the previous row. This makes memory requirements crucial in maintaining

su�cient precision for bilinear interpolation.

The following sections will decompose each top level block and provide fuirther detailed discussion

on their operation and the design choices for implementation.

2.4.3 Memory Management

The key decision decision that governs the parameters of the algorithm implementation is memory.

Modern FPGA devices are available with a wide range of on-chip memory, therefore it is a scalable

resource that can be chosen to suit the application. The device present on the development platform,

a Xilinx Virtex 4 FX12 [22] has 36 block RAM (BRAM) modules totalling 648Kb. Although most

modern embedded systems assume an external image store, for proof-of-concept testing the image store

was kept purposefully limited to keep simulation and testing times down. Integrating and testing an

embedded memory controller to interface to external memory was expected to consume over half of

the development time but would have gained little in terms of concluding results.

The on-chip memory resources were consequently split across an image store, histogram RAM, local

histogram pipeline memory and various scaling look-up tables which utilised the same primitive BRAM

memory resource on the FPGA. Each BRAM can store 18Kbits of data, with su�cient �exibility to

change its breadth and depth within that limit.There is multiple con�guration options that allow the

primitive memory blocks to act as dual port RAMs with separate clocking schemes or pre-loaded

2.4. CLAHE Implementation Page 25

ROM look-up tables.

At most bilinear interpolation requires four re-mapping functions to form one output pixel. To

ensure that there are no stalls in creating new pixel values, two rows of remapping functions will

need to be stored. The storage required is heavily dependant on the size of the image, the size of the

contextual region, and the size of the histograms/re-mapping functions. Starting with an assumption

of an 8x8 contextual region, each histogram pipeline will require one BRAM to create a histogram and

another BROM for scaling the image into bins. If we use an image size of 256x256, 32 BRAMs would

be required, include the memory requirements of the histogram pipeline and we are already over the

available BRAMs on the device. This means that an image size of 128x128 was chosen, occupying

8 BRAMs, allowing su�cient margin for additional BRAM utilisation. The total amount occupied

would be 18.

2.4.4 Pixel feeder

For simplicity, early testing models of the histogram pipeline assumed that the contextual input

pixels would be supplied from a contiguous memory. A translation mechanism is required to supply

the histogram pipelines with contiguous data per contextual region and rasterised image data for

the interpolation from the same image store. The image space is decomposed into four dual port

memory blocks. One port allows image data to be retrieved in a rasterised format for interpolation.

In this operation, a combined address bus shares all the low order address for each block RAM and

the high order address bits are used as enables to select each memory block. On the other port

there are four separate address generators (loadable counters) that sequence themselves to isolate

contextual regions in the order shown in Figure 2.9. This order is speci�c to ensure the correct

contextual regions are loaded to the histogram pipelines, allowing the re-mapping functions to align

to the correct interpolation operations.

Histogram

pipelines

2
1

Contextual

Regions

Image space

(memory blocks)

1 3 4 5 6 7 8

9

2

3

4

5

6

7

8

9

Figure 2.9: Image Memory Con�guration

Since there is no de�nitive time for redistribution, the pixel feeder requires feedback from the

histogram sequencer to continue loading contextual regions in the order shown in Figure 2.9.

2.4. CLAHE Implementation Page 26

2.4.5 Weight Generator

The weight generator produces a number of parameters sourced from the pixel feeder. These include

the interpolation weights, the interpolation region �ags and the image contextual region �ags. All

output �ags and parameters associated with each pixel are derived from one fourteen bit image address

counter within the pixel feeder. Firstly the rasterised pixel output is controlled by the sequencing of

address counters to each memory module. The contextual regions are identi�ed through the sixth to

third bit (for the rows) and thirteenth to tenth bit (for the columns) of the image address counter.

The pixel weights that are passed out to the interpolation calculation are sourced from the image

address counter, in the case of:

µ-weight (vertical direction) : divide the image address by 128(i.e. counting each row) to produce

the quotient, add an o�set of 4 to this due to the interpolation regions. Then use the remainder

of the division by 8 (the vertical contextual region dimension) to loop the weight between zero

and seven. In terms of the equations shown in Section 2.3.3:

µ =
(y − y1)
(y2 − y1)

η-weight (horizontal direction) : use the remainder of the division of the image address by 128, add

an o�set of 4 to this due to the interpolation region. Then again use the remainder of the

division by 8 (the horizontal contextual region dimension) to loop the weight between zero and

seven. In terms of the equations shown in Section 2.3.3:

η =
(x2 − x)
(x2 − x1)

The interpolation regions are identi�ed in part again by the image address and also the pixel weights.

The vertical interpolation region is identi�ed by dividing the image address by 512 and rounding the

output down. In doing this the half size interpolation regions can be identi�ed at the image sides. The

horizontal interpolation regions are identi�ed by testing the η-weight for the appropriate interpolation

region dimensions and counting them accordingly. With the pixel data and address being delayed by

a similar amount the weight generator synchronises each pixel with the correct interpolation weight

and region �ag.

2.4.6 Bilinear sequencer

The bilinear sequencer acts to align the data from the weight generator with the correct re-mapping

function. Once a pixel has its various parameters synchronised the next stage is to probe the his-

tograms held in the histogram RAM ready for the interpolation of that pixel value. This means

2.4. CLAHE Implementation Page 27

generating four RAM addresses from a single pixel value. This would indicate that the generation of

the ram address must run four times faster, in this case the pixel feeder runs four times slower than

the clock signal. Firstly the pixel value must be passed through the same look-up table that is used to

create histograms(see Section 2.4.7.1) in order to identify the correct bin for each address and thus the

value to be passed to the interpolation operation. Since there will be 32 histograms stored in waiting

for the interpolation, the address calculation must take into account where the four components of the

interpolation are logically sourced from in memory. From the interpolation region identi�ers(created

in the weight generator) the valid addresses for a particular region are identi�ed through a series of

range tests shown in Algorithm 2.1 in the form of a psuedo VHDL process. For example: if the pixel

passed through is in a corner region there is only one in�uential weight, all four can be assigned the

same address. However if there is a centre, side, top or bottom region the address must be o�set to

�nd the correct memory location for that weight. The functional block which identi�es the correct

memory address operates in a clock wise manner from the lower right weight, in most cases specifying

four di�erent locations for each weight that are at most 129 memory locations apart.

2.4. CLAHE Implementation Page 28

Algorithm 2.1 Interpolation Range Testing

Interp_Block: process(clk)

begin

if (CLK'event and CLK= CLKPOL) then

if (reset ='0')then

if (row = 0) then

if (col= 0) then

-- we are in the top left corner

elsif(col = 15) then

-- we are in the top right corner

else

-- then we are in the top row that is not a corner

end if;

end if;

-- end of top row

--==

if (row = 15) then

if (col = 0) then

-- we are in the bottom left corne

elsif (col = 15) then

-- we are in the bottom right corner

else

-- then we are in the bottom row that is not a corne

end if;

end if;

-- end of bottom row

--==

if ((row /= 0) and (row /= 15)) then

if (col = 0) then

-- we are in the left side regio

elsif (col = 15) then

-- we are in the right side region

else

-- we are in the middle sections

end if;

end if;

else

-- reset condition

end if;

end if;

end process Interp_Block;

2.4. CLAHE Implementation Page 29

2.4.7 Histogram Pipeline

The histogram pipeline forms the back bone of the CLAHE algorithm. Provided with a singular

contextual region, a pipeline will produce a re-mapping function to be used in the bilinear interpolation

in order to adjust the contrast in a particular region of the source image. From the top level description,

there are four pipelines operating in parallel. Each pipeline retrieves a contextual block from the source

image, creates a local histogram, redistributes its contents and then signals to the histogram sequencer

that this remapping function is available to be stored in the histogram RAM.

7

255

3

10
9

10

4
2

10

3

Contextual Region = 64 pixels

0

Look-up Table

sum= 64

7
17

27
37 42

49
59 64

0 1 2 3 4 5 6 7

28
68

108
148

176 196
236 255

max= 64 max=255

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Form Histogram and overflow

After Accumulation After Scaling

7

10 10 10

7
5

10

5

sum= 64

0 1 2 3 4 5 6 7

After Redistribution

Figure 2.10: Histogram Pipeline Arithmetic

A graphical view of the stages through the pipeline is shown in Figure 2.10. The histogram pipeline

contains four distinct parts to accomplish the construction of the re-mapping functions:

1. The look-up table (LUT) translates a pixel value into the histogram bin that it inhabits.

2. When a bin has been identi�ed, the current value is assessed to see if adding to its contents will

increase the value past the clip limit.

3. After all the pixels have been assigned a bin, a histogram and over�ow will remain.This over�ow

is then redistributed.

4. The �nal stage forms a remapping function by accumulating and scaling the contents of the

redistributed histogram.

The end result of this pipeline is a re-distributed histogram contained in a block RAM module allo-

wing ease of access for the bilinear interpolation. When requested by the histogram sequencer, the

histogram can be accumulated, scaled and transferred out to the appropriate location required by the

bilinear interpolation.The following Subsections describe the histogram pipeline in the context of the

implementation structure shown in Figure 2.11.

2.4. CLAHE Implementation Page 30

Histogram Creator

HBRAM

Bin Select(LUT)

HBRAM writeHBRAM read

overflowclip limit

Data In

Redistribution

Scaling

Accumulator

HBRAM read HBRAM write

overflowclip limit

Address Generator
Data Out

Figure 2.11: Histogram Pipeline Structure

2.4.7.1 Histogram Creation

Histogram creation is the �rst stage in CLAHE. The aim of this block is to produce a clipped histogram

and over�ow amount from the clip limit and contextual region pixels. Both the redistribution operation

the histogram creation operation are performed around one dual port block RAM. The block RAM

module2 allows one port to write and read the resultant histogram values into the RAM and the other

port allows the redistribution operation to have access to the clipped histogram. To store the over�ow

a register was instantiated which updates with each new histogram created.

From each pixel value supplied to the histogram pipeline, a corresponding address must be gene-

rated to indicate which bin the pixel belongs in. This function is easily implemented by a block ROM

module (see Figure 2.11) acting as a look-up table. This look-up table divides the pixel values from

an eight bit range of 0-255 down to the histogram range of 0-7 for an eight bin histogram. The output

from the look-up table provides the address lines for a bin (i.e. a memory location) in the histogram

block RAM (HBRAM). The contents of an address are read, one is added to that value, and the

updated value written back to the same address. On the condition that the contents read from bin are

already equal to the clip limit, one is written to the over�ow register and the bin contents remain at

the clip limit. Once all the pixel values have been read the HBRAM will contain a clipped histogram

and register the over�ow contents ready for redistribution. A small FSM is used to sequence these

operations and alert the redistribution operation that it is now allowed to operation on the contents

held in HBRAM.

2A member of the prede�ned hardware blocks available from Xilinx Core Generator[62]

2.4. CLAHE Implementation Page 31

2.4.7.2 Redistribution

The redistribution process operates on the same block RAM module as the histogram creation ope-

ration. It occupies the second port of the HBRAM for its read and write cycles, interfacing solely on

the one block RAM. Redistribution is composed of two parts:

1. Histogram bin update calculation

2. Over�ow reduction calculation

The redistribution operation begins by storing the over�ow count and then reads a value from each

memory location. For each bin value that is read a decision must be made upon what action to take on

that value. This decision is dependent on the current value of the over�ow and how close the bin value

is to the clip limit. The over�ow must be divided sequentially (not equally) across the histogram and

so the over�ow is separated into a quotient and a remainder. The quotient is produced by dividing the

over�ow by the number of bins (shifting to the right 3 binary places for eight bins) and a remainder

is produced by subtracting the quotient from the over�ow.

6
8 9

10

7
5 6

4

Clip Limit

Quotient

Figure 2.12: Redistribution Options

From Figure 2.12 we can see that there are 3 options for each bin read from HBRAM:

1. If the bin value is equal to the clip limit the do nothing and return the same value to the HBRAM

2. If the bin value is equal to the (clip limit - quotient) then we can only add the quotient

3. If the bin value is in between the clip limit and (clip limit - quotient) then we must add the

quotient (creating a value larger that the clip limit), subtract the clip limit and add the result

to the remainder to be redistributed. The value returned to the HBRAM is the clip limit.

4. If the bin value is less than (clip limit - quotient) then we can add the quotient plus one from the

the remainder- the maximum value that can be added to one bin in one cycle. If the remainder

value is zero, the quotient must still be added to a bin.

After the quotient has been added the number of bin times (in this case 8), the quotient must be

changed to zero. At this point, in most cases the remainder should also be zero and the operation

is complete, however due to condition 3 there may still be a remainder left to distribute. All four

2.4. CLAHE Implementation Page 32

Bin Addresses 0 1 2 3 4 5 6 7
Original Bin Values 3 12 9 16 4 2 15 3

Redistribution Parameters clip = 10, over�ow = 13
Cliped Contents 3 10 9 10 4 2 10 3

Active Condition 4 1 2 1 4 4 1 4
Cycle 1 quotient = 1 1 0 1 0 1 1 0 1

remainder = 5 1 0 0 0 1 1 0 1
Update 5 10 10 10 6 4 10 5

Active Condition 4 1 1 1 4 4 - -
Cycle 2 quotient 1 0 0 0 1 1 0 0

remainder 1 0 0 0 0 0 0 0
Final Bin contents 7 10 10 10 7 5 10 5

Table 2.3: Redistribution Conditions 1, 2 & 4

conditions are demonstrated in Tables 2.3 & 2.4. The �rst two rows indicate the contents of a

histogram bin and its address. The address only indicates by how much the pixel value range has

been sectioned. Applying the a clip limit will automatically form an over�ow value. The following rows

show the over�ow being redistributed and the condition that apply from the options discussed above.

For Table 2.4, dividing the over�ow across eight bins produces a quotient of two and a remainder of

four. The quotient must be added to the histogram eight times (to evenly distribute it across eight

bins in the histogram) and the remainder must be added where it can �t. This does bias the remainder

across the lower bins but should not result in a signi�cant skew. For bin 4 on cycle 2, the value 7 will

apply condition 3- this means that only 1 out of 2 can be added to that bin to keep it under the clip

limit.In this case, one is added to the bin and the remainder.

Bin Addresses 0 1 2 3 4 5 6 7
Original Bin Values 3 12 9 16 4 2 15 3

Redistribution Parameters clip = 8, over�ow = 20
Clipped Contents 3 8 8 8 4 2 8 3
Active Condition 4 1 1 1 4 4 1 4

cycle 1 quotient = 2 2 0 0 0 2 2 0 2
remainder = 4 1 0 0 0 1 1 0 1

Update 6 8 8 8 7 5 8 6
Active Condition 4 1 1 1 3 4 1 4

Cycle 2 quotient 2 0 0 0 1 2 0 2
remainder 0 0 0 0 0 1 0 0

Final Bin contents 8 8 8 8 8 8 8 8

Table 2.4: Redistribution Condition 3

To accomplish this, on every clock cycle a bin value is evaluated by concurrent conditions that

preset multiplexers to indicate the next action to perform on that bin value. There is only one

condition where redistribution would be partially successful - if the clip limit was less that the number

of histogram bins. However it is prede�ned that the clip limit must be greater than or equal to the

number of histogram bins.

2.4. CLAHE Implementation Page 33

Figure 2.13: Redistribution Waveform

The redistribution operation due to its indeterminacy is the largest bottle neck in the algorithm, it

is therefore important that it is very cycle e�cient in its implementation approach. The redistribution

operation produces a revised bin value within one clock cycle, meaning that the interface to the

HBRAM is very active throughout the operation. A typical redistribution operation is shown in Figure

2.13, where the memory interface(hbram_addr and hbram_web) change every clock to multiplex the

read and write update cycles. Between each rising edge of the redistribution clock(redist_clk) the

memory will have been clock twice. Firstly to read the contents of the current bin and secondly to

write out the update to the previous bin. In the context of Figure 2.13 this means that the bin addr will

increment on every rising edge of the redistribution clock. However on its falling edge the previous bin

address will be updated. Once the quotient has been added the number of bin times(which matches

quot_count), and the remainder is zero then a �ag to indicated the end of the redistribution(cyc_end)

is raised and the state machine will then schedule subsequent events.

2.4.7.3 Accumulation

The next stage of CLAHE, to create a re-mapping function, is to �rstly sum the contents of the

histogram, and secondly to blank the HBRAM so that it is empty for the next contextual region.

The address and data bus to the HBRAM are shared between the redistribution operation and the

accumulation operation. The accumulation operation does not need the complex addressing scheme

used by the redistribution operation and so it can be deactivated in favour of a simpler mechanism (a

counter) to read the memory contents. On each read, the value is passed to an accumulator and then

writes back a zero to the same location in the HBRAM. The output from the accumulator is pick up

and passed to the histogram RAM. During the accumulation there are 2 issues to address:

1. Summing the histogram would produce a re-mapping function with an output range of 0-64, a

6-bit number, whereas the input is an 8-bit number, a pixel value range of 0-255 range.

2. Set the re-mapping function to have an o�set to match the zero intensity pixels or the maximum

intensity pixel.

2.4. CLAHE Implementation Page 34

In the case of point 1 the output pixel values must be in the range 0-255, however they are pre-

quantised in their potential values by the number of bins in the histogram (if reduced to less than

pixel bit-width). The input pixel values need only pass through the ROM look-up table from the

histogram creation (Section 2.4.7.1) to select the correct output value. Scaling the output range is

achieved by shifting the accumulated values by 4 (the inverse gradient of the look-up table function),

however this would mean that the �nal value would be 256, wrapping around to 0. To combat this the

�nal value from the memory is altered to ensure that the maximum output value is 255. The scaled

re-mapping function is only applied when the histogram is being moved out to the larger interpolation

function store.

Figure 2.14: Mach Band

Point 2 can be answered with a simple mach band shown in Figure 2.14. Although intended to

demonstrate the overshoot and undershoot in brightness of the human visual system, here the mach

band is a simple example of how the human visual system can perceive the lighter bands with greater

distinction than the darker bands. This justi�es the decision to o�set the re-mapping function to 255

meaning that there will be greater separation between the lighter band.

2.4.7.4 Histogram Pipeline Finite State Machine

The role of the �nite state machine (FSM) is to coordinate the operations within the histogram

pipeline(as discussed previously) and conduct the transfer of re-mapping functions to the histogram

RAM. As each histogram may require an indeterminate redistribution time, the FSM must handshake

to the histogram RAM once redistribution is complete and then sequence the next contextual region

from the image store. A hierarchical view of the FSM and histogram pipeline is shown in Figure 2.15.

2.4. CLAHE Implementation Page 35

Histogram Pipeline

FSM

Histogram Req

Histogram Ack

clk
reset

Image Store

Interface

Control Links
Histogram

RAM Interface

Figure 2.15: Histogram Pipeline with Finite State Machine

The control links are essentially the enable lines of the components in the histogram pipeline. These

are primarily memory blocks, address counters and progress indicators such as 'cyc_end' shown in

Figure 2.13. The image store interface, although a simple memory interface, is governed by the state

of the handshake signals that sequence the loading of remapping data into the histogram RAM. The

interface to the histogram RAM is simply the output of the scaling accumulator with additional control

signals to indicate address locations and write transactions.

Initialise

Histogram

Create & Cllip

Redistribution

Histogram

Request

Histogram

Transfer

Reset Pipeline

Figure 2.16: Histogram Pipeline States

The state graph in Figure 2.16 shows the top level sequence of histogram pipeline states. The

initialise block is active on start up to ensure that no element in the operation is free-running. The

next step is to create histograms, clipping their contents as they are assembled in memory. The

primary function of this state is to sequence the interface to the image store whilst enabling the

2.4. CLAHE Implementation Page 36

address counter for the HBRAM and the HBRAM itself. The redistribution state is also very similar,

this time enabling the redistribution operation and associated memory block. After this process is

complete the state machine indicates to the histogram RAM controller that a histogram is ready to be

transferred over. In between this handshake the histogram is accumulated and scaled into a re-mapping

function. The child states within the Histogram Transfer state sequence the operation to enable the

accumulator and allow access to the histogram RAM. The �nal reset state, controls a sequences of

events to clear the HBRAM and resets all address counts to allow another histogram to be processed.

The state machine will always stop on the �ow request and await con�rmation before moving the

re-mapping functions out of HBRAM. The create and clip state usually takes approximately 70 clock

cycles, the redistribution state although indeterminate typically takes under 3 passes to redistribute

the over�ow, the transfer of the remapping function out to the histogram RAM is dependent on the

size of the histogram in the case it is normally 10 cycles to complete the transfer.

2.4.8 Smoothing Contextual Regions

The inherent use of contextual regions to construct localised histograms means that there will always

be contrast di�erences between contextual regions. Without a smoothing process, a blocking e�ect will

occur allowing pixel intensity di�erences between contextual regions to be identi�able in the output

image. Bilinear interpolation is more commonly associated with resizing images, in the case of CLAHE

it is used to eliminate the blocking e�ect between contextual regions, normalising the contrast change

between contextual regions. The parallel nature of FPGA devices mean that they are well suited to

implement bilinear interpolation regardless if it is being used to smooth or re-size images. Normally

this is an arrangement of registers, dedicated multipliers and adders which perform the majority of

the arithmetic, the complication comes in ensuring that the correct parameters and data are aligned

in the correct order. When resizing an image interpolation would normally be decomposed into its

horizontal and vertical components to produce a low latency, e�cient pipelined implementation. In

the case of smoothing contextual region boundaries the focus is on reducing the amount of hardware

and arithmetic operations need to achieve the desired operation.

The equations from Section 2.3.3 can be reduced and re-factored to:

Pnew = µ(η · f(Q12) + (1− η) · f(Q22)) (2.4)

+(1− µ)(η · f(Q11) + (1− η) · f(Q21))

= µη f(Q12)− µη f(Q22) + µ f(Q22) (2.5)

−µη f(Q11) + µη f(Q21)− µ f(Q21)

+ η f(Q11)− η f(Q21) + f(Q21)

2.4. CLAHE Implementation Page 37

= µ [η (f(Q12)− f(Q22)) + f(Q22)] (2.6)

−µ [η (f(Q11)− f(Q21)) + f(Q21)]

+ η (f(Q11)− f(Q21)) + f(Q21)

If the substitutions are made that:

P1 = η (f(Q12)− f(Q22)) + f(Q22)

P2 = η (f(Q11)− f(Q21)) + f(Q21)

then Equation 2.6 reduces to:

Pnew = µ(P1 − P2) + P2

This reordering has reduced the implementation to a simple sequence of multiplication and additions.

The resultant hardware is arranged as shown in Figure 2.17. This implementation has the �exibility

to reuse and share hardware if there is su�cient memory available. This arrangment is easily arranged

into the embedded DSP48 slices [18] provided by the Virtex 4 device

n / u

Output / P2 / P1
fq12 / fq11

fq21 / fq22

Figure 2.17: Bilinear Interpolation Minimisation

The bilinear sequencer acts to arrange the various parameters for this operation. Depending on

the postion of the pixel being processed, the correct remapping function must be aligned and the pixel

weights must be introduced at the correct time. As with other memory operations, we assume that it

is running at the faster clock speed and the operation, in this case interpolation is clocked to support

data being processed in a contiguous manner without any enable lines to validate the data.

2.4. CLAHE Implementation Page 38

2.4.9 Top Level FSM

The top level FSM coordinates the entire algorithm from a block level perspective as discussed in

Section 2.4.2. Although some interactions between blocks are autonomous such as loading remapping

functions into the histogram RAM the remaining top level modules require an FSM to implicitly

sequence their operations correctly. Figure 2.18 shows a graphical view on the sequence of operations.

Initialise

Preload Rows

Load Histogram

Row

Interpolate

Figure 2.18: Top Level State Machine

A debounced user activated pin activates the algorithm from a reset state. The initialise state then

enables the histogram pipelines to process two full rows of contextual regions. After this, contextual

regions are loaded one row at a time. Pre-loading 2 rows of contextual regions allows the interpolation

to free run until it requires additional histograms.Since there are �nite memory resources, the top

level will then oscillate between loading and processing contextual regions and interpolating between

them. This means that the top level FSM must coordinate with the weight generator, e�ectively

controlling what pixels are read from the image store as well as the histogram sequencer to ensure

that the interpolation operation has all its parameters easily accessible. Once the �nal contextual

region, and eventually the �nal pixel are interpolated the top level FSM will return to the initialise

state to begin on another image. As mentioned previous nearly all of the operations are �nite in their

duration apart from the histogram formation. This is why the interpolation and remapping function

generation cannot execute in parallel because there is a danger that the interpolation will be looking

for a remapping function that is not available due to delays in redistributing its histogram.

2.5. Analysis and Results Page 39

2.5 Analysis and Results

The analysis of the work undertaken in developing the CLAHE implementation has been divided into

three sections: the image quality evaluation, the speed of the algorithm and the power consumption

of operating the algorithm entirely within an FPGA device.

2.5.1 Image Correctness

In the standard FPGA design �ow implementation errors are never entirely discovered during beha-

vioural or even post synthesis simulations. Normally �rmware implementation errors continue to exist

when the design is fully implemented on the device. To verify that the downloaded bit stream on the

FPGA was accurate and functionally correct, the output from the algorithm was captured through

a series of trigger points using an on-chip logic analyser, Chipscope Pro [16]. This tool inserts a

customisable logic analyser into the synthesised netlist, allowing on-chip events to be monitored and

captured. The logic analyser can monitor any internal signal and can be triggered o� any number

of events. Data can then be captured and communicated back to the host pc via a JTAG boundary

scan port. This tool runs synchronous to the source design and thus applies any design constraints

to its own logic, reducing any potential impact on the source design. The data captured by the logic

analyser is presented as a waveform on the host pc, which is then exported for comparison.

In this context the FPGA implementation is compared against a tailored version of MATLAB's

'adapthisteq' function with the same parameters. This provides a golden reference model to assess

the accuracy of the image from the FPGA implementation.

2.5. Analysis and Results Page 40

(a) Original Image (b) 'Adapthisteq' Image

(c) Size and Location of Errors (d) FPGA Image

Figure 2.19: Image Results Comparison

From �rst observations, the di�erence in images3 in Figure 2.19b and Figure 2.19d are minimal.

As expected, there is a signi�cant improvement in contrast from the original image in Figure 2.19a.

However using a clip limit of 40 indicates that there are few areas where there is any signi�cant

contrast enhancement di�erences between the two implementations. Figure 2.19c displays the results

of the imabsdi� function in MATLAB, which returns the absolute di�erence between the two images

clearly showing the locations where errors in the FPGA implemenation occur. The black pixels signify

no error, the brighter the pixel the larger the size of the error.

3Note the images have been rescaled to show the individual pixels in detail

2.5. Analysis and Results Page 41

0 1 4 1 0 1 6
2 5 5

5 9 2
8 6 1

8 1 7 4

1 0 0 0 0 0 0 0 0 0

3 4 3 0

1 2 3 6

1 7 9 5

-1 0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 1 0

P ix e l D iffe r e n c e

N
o.

 O
f P

ix
el

s

Figure 2.20: Adapthisteq VHDL di�erences

A histogram of this di�erence image shows (in Figure 2.20) that the majority of discrepancies are

coming from the hardware variant overshooting, i.e. producing an output pixel intensity value that

is larger than the same pixel intensity value in the 'adapthisteq' image. Considering that 82% of

the pixels are with ±1 intensity step value of the MATLAB image this is an acceptable image. Two

measures of conformity can be drawn from this function, the sum of absolute di�erences and the mean

squared error. Spread over 16384 pixels the sum of absolute di�erences equates to 14150, leaving a

mean absolute error per pixel of 0.86. The mean squared error for this image is 2.1489.

The same di�erences can be seen in the peppers image of Figure 2.21 where again there is a

minimal di�erence in intensities that are noticeable to the naked eye.

2.5. Analysis and Results Page 42

(a) Original Image (b) 'Adapthisteq' Image

(c) Size and Location of Errors (d) Hardware Image

Figure 2.21: Additional Image Results Comparison

The di�erence between these test images are comparable to the �rst test image with a 76% of pixels

within ±1 step value and the sum of absolute di�erences is 18472 resulting in a mean absolute error

per pixel of 1.127 average error. The mean square error are to be expected is greater on this image at

3.5051. As with Figure 2.20 the intensity di�erence shown in the Figure 2.22 are not identi�able by

image locations or artifacts and they must be attributed to speci�c arithmetic conditions.

2.5. Analysis and Results Page 43

0 1 6 4 4 1 1 2 2 1 0
3 5 8

6 7 4
1 0 0 3

1 5 3 2

3 9 7 5

7 0 6 5

1 3 9 2

3 0 0 0 0 0 0 0 0

- 1 0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 1 0

P ix e l D i f fe r e n c e

N
o

. O
f

P
ix

el
s

Figure 2.22: Consistent 'Adapthisteq' VHDL Di�erences

These slight di�erences can be attributed to two factors:

1. the limited greyscale range of a 3-bit image will force pixel intensity to change greater by a

greater amount than an 8-bit image.

2. there is signi�cant truncation of fractional bits in the interpolation scheme which when compared

to the dynamic range of the MATLAB number system would indicate that in some cases rounding

has preserved certain contrast changes.

2.5.2 Resource Utilisation Results

A key metric in integrating CLAHE into an image processing system that is based around an FPGA

is resource utilisation. Commercial design FPGA designs are chosen so that the implemented logic

occupies around 60% of the available resources, allowing for any subsequent speci�cation changes

and future upgrades to happen with minimal cost. There is no published FPGA implementation to

compare the utilisation results of CLAHE against and so the follow discussion will be in context of its

ability to integrated into an FPGA based image processing system.

2.5. Analysis and Results Page 44

Device Utilisation Summary

Logic Utilisation Used Available Utilisation
Number of occupied Slices 1715 5472 31%
Number of Slice Registers 1578 10944 14%
Total Number 4 input LUTs 2671 10944 24%
Number used as logic 2490 22%
Number used as a route-thru 181
Number of bonded IOBs 70 320 21%
Number of FIFO16/RAMB16s 18 36 50%
Number used as FIFO16s 0
Number used as RAMB16s 18
Number of DSP48s 16 32 50%
Number of RPM macros 11
Total equivalent gate count for design 1,211,190

Table 2.5: Device Utilisation

As is evident from Table 2.5 there is plenty of space still available on the device. Only 14% of

the slice registers and 24% of the slice Look-up tables are used in this implementation leaving ample

room for other elements in a video processing pipeline. The Bonded IO Blocks are included as a point

to note on external memory interfaces, otherwise the number included is mostly debug pins. The

output would only be the width of the data used and a validity indicator, in this case that would be

9 bits. If an external memory device was to be used the pin count would increase to accommodate

this interface. As previously discussed in Section 2.4.3 18 BRAMs are used in this implementation,

split between image memory and histogram stores. Scaling up the image size and histogram precision

would naturally push the image memory onto an external device. The histogram stores would be

a design consideration if the contextual regions were to stay the same size. This would be the key

balance between other parts of an image processing system, allowing histogram formation to occur

on-chip could occupy a signi�cant amount of block RAM. All DSP48 blocks, the embedded arithmetic

blocks consisting of a large multiply accumulate unit are utilised within the bilinear interpolation and

inferred through the synthesis process for the histogram updates.

This implementation is very well suited to an FPGA implement due to its parallelism in processing

contextual regions and remapping functions, however there is concerns over the on-chip memory

utilisation given the choice of remapping function size.

2.5.3 Timing Results

Throughout the design �ow there are various estimates on the maximum clock that can be used in the

circuit. The synthesis tool reports a maximum clock speed of 126.566MHz. Once the netlist has gone

through place & route, the static timing analysis tool reports that the maximum clock speed is 107.009

MHz. Both tools report the same critical path which spans the redistribution block. The critical path

in terms of primitive components is shown in Appendix A.2. The redistribution operation shown in

2.5. Analysis and Results Page 45

HBRAM writeHBRAM read

Histogram Bin Update

Bin Conditionals

Quotient

+

Remainder

Quotient and Remainder

Calculation

Critical Path

Figure 2.23: Critical Path through Redistribution block

Figure A.1 is made up of two blocks. The histogram bin update accesses the HRAM, reads a value,

sets conditional �ags (as discussed in Section 2.4.7.2), and waits on the values to update the HRAM

location. The new values are calculated in the other block which tracks how and when to distribute

the quotient and remainder from the over�ow value based on the conditional �ags. The quotient and

the remainder calculation has a number of feedback lines that are not pipelined due to the timing

required for the HRAM interface as detailed in Section 2.4.7.2. The maximum clock reported by

this tool means that the logic is more that capable of running at the 100MHz clock supplied by the

development board.

For both test images shown in Section 2.5.1, Lena took 796.86µs to complete and the peppers

took 794.9µs. This is proximately 80,000 clock cycles. The variability between each image is due

to the number of passes of the histogram required to redistribute the contents. In the majority of

cases this will only be one or two passes however there may be the odd case that requires more,

unfortunately this is image dependant. The only way to guarantee a completion time is to restrict

the number of passes, discarding the modulus after at most two passes. At this point the majority of

the histogram would be redistributed, but due to mismatch of the number of pixels in a contextual

region the re-mapping function would be inaccurate. In a video stream these in-accurate re-mapping

functions would require a visual acceptance test.

For a 25 frame per second video stream, a frame must be formed and complete in 40ms. If

we were using the implementation discussed previously this would leave 39.2ms to load the image

and exporting the results to a frame bu�er. However this Figure is only for a small image size,

increasing this size to something practical as shown in previous studies would increase the processing

time dramatically. Due to the design of the implementation, scaling the amount of processing time

required is relatively simple. Assuming that an 8 bit range histogram is used, requiring an average

bin contents of 16, the image dimensions would scale to a multiple of 64 and thus an appropriate and

historically comparable image size would be 512 x 512. In terms of a single histogram pipeline, there

2.5. Analysis and Results Page 46

would be 16 contextual regions processed in total each containing 256 pixels. One contextual region

would take 768 clock cycles to load, create the histogram and calculate the excess. If we assume that

this is a worst case homogeneous contextual region with only one brightness value, and that the clip

limit was set to the minimum (histogram average of 16) then redistribution would take another 256

clock cycles. Transferal to the bilinear store would then take 512 clock cycles. For interpolation, each

pixels takes 4 clock cycles to computes and so would take a total of 512 x 512 x 4 clock cycles to

complete the image. In total (excluding the control clock cycles) this would take 1146880 clock cycles

to complete. Using the development board clock one 512 x 512 image would take 11.47ms to enhance,

and assuming that the DDR memory interface is operating at 1600MBs then this is more than capable

of sustaining constant video.

2.5.4 Power consumption

Another aspect to characterising CLAHE on an FPGA is the power consumption. Along with resource

utilisation, power consumption is a key factor in which FPGA engineers use to characterise their

circuit/system. This Section discusses the power consumed during the operation of CLAHE and more

speci�cally the variation when partial image textures are predominant in an image.

The development board used to implement the histogram pipeline had the option to measure the

current drawn by the voltage regulator [21] (shown in Figure 2.24) for the FPGA core voltage lines.

Figure 2.24: Development Board

This allows measurement of the current being drawn from the core FPGA logic and not the

current required by the input/output blocks to drive signals on the development board. On activation

of power-on reset the Virtex 4 FPGA draws a start-up current of at least 110mA. After this the current

will lower and then rise again when the devices is con�gured with a bit-stream. We assume that any

2.5. Analysis and Results Page 47

increase in supply current that is measured when the circuit is not in reset indicates dynamic power

consumption.

2.5.4.1 Measurement Setup

The current is measured using a LeCroy 6100A [87] scope with a AP015 current probe. Unlike using

a shunt resistor, the current probe does not a�ect the measurement itself. The only element to skew

the measure of current is the voltage regulator. The break-in points, shown in Figure 2.25 are situated

on the particular parallel branch of the 5 volt line that supplies the voltage regulator con�gured for

1.2v. This means that the current drawn from this line has the ine�ciencies of the regulator to take

into account.

Figure 2.25: Voltage Regulator for FPGA Core

When the regulator is setup to supply 1.2v for the FPGA core the e�ciency is stated in the

data sheets as 82%. This means that 18% of the measured current is being lost through the voltage

regulator. Since one histogram takes approximately 2.7µs to form and create a re-mapping function,

attempting to measure the current drain with su�cient temporal resolution over this short period of

time is very di�cult. To ensure a su�cient run time, the algorithm is triggered and terminated by a

push button and the execution status indicated by on-board LED's. This provides a simplistic system

to identify the dynamic power consumption when the algorithm is running continuously.

2.5.4.2 Histogram Pipeline Results

Since the majority of the activity in the algorithm is focused around the histogram pipelines, an indivi-

dual analysis is performed to determine their impact. For an accurate representative power evaluation

a histogram pipeline has been supplied with four di�erent contextual regions which generalise the

typical histograms (shown in Figure 2.26) that could be formed from 64 pixels. Option 1 was initially

created to test the redistribution engine fully, but in this case would approximate a contextual region

where there is a consistent texture across the region. Option 2 appears signi�cantly more extreme

but could represent a region where there is a soft edge, similar to the mach band transition of Figure

2.14. Option 3 is the case that CLAHE is most e�ective - here there is single a dominant intensity

2.5. Analysis and Results Page 48

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

Bins

N
o.

 O
f P

ix
el

s

Option 1

(a) Option 1

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18
Option 2

Bins

N
o.

 O
f P

ix
el

s

(b) Option 2

0 1 2 3 4 5 6 7
0

4

8

12

16

20

24

28

32

35

Option 3

Bins

N
o.

 O
f P

ix
el

s

(c) Option 3

0 1 2 3 4 5 6 7
0

4

8

12

16

20

24

28

32

36
Option 4

BIns

N
o.

 O
f P

ix
el

s

(d) Option 4

Figure 2.26: Input Variation Options

that needs to be preserved and the noise minimised at an acceptable ratio. Option 4 is similar option

2 but with is a much harder edge indicated by a sharp transition between two intensities. On each

variation redistributing to a clip limit of 8 requires two or three passes of the histogram, employing

multiple branches of the redistribution calculation, which in turn should a�ect the power consumption.

From the direct current measurement, the oscilloscope traces are shown in Appendix A.3. Table 2.6

summarises the important parameters to be drawn from the oscilloscope traces. There are a number

of factors which appear to be contributing to the current drain on the 1.2v rails:

1. the over�ow amount resulting from clipping

2. the quotient and remainder values produced throughout the redistribution

3. the contents of the clipped histogram bins - lower contents involve a simpler decision process

during redistribution

All of these issues contribute to the change in current drawn. Options 1 and 2 require two passes of

the histogram where as options 3 and 4 due to there larger over�ow count require 3 passes. Option 4

is the anomaly that has a lower drain di�erence due to the lack of decision spread in the redistribution

calculation - the majority of the bin contents are zero resulting in no quotient and remainder addition

combinations.

2.5. Analysis and Results Page 49

Option 1 2 3 4

Max Current Drawn(mA) 87.9 89.1 88.8 87.4
Current Change(mA) 4.5 5.0 5.5 3.6

Over�ow 20 32 36 48
Quotient/Remainder 2/4 4/0 4/4 6/0

Table 2.6: Histogram Parameter Summary

As a comparative measure, the XPower power estimation tool [22] was used with option 1 to

estimate the power consumption of the FPGA core resources. Other components that drive output

pins such as IOB's are explicitly not used in the design so as not to obscure the estimations and

measurements. XPower requires a value change dump �le to approximate the switching characteristics

of the implemented design. This is achieved by generating a post-place & route simulation model

and using Modelsim to perform the same test bench simulation as the HDL version. The switching

characteristics of the entire design are evaluated by accumulating the power consumed by each element

in the design. The recorded transitions allow XPower to produce consumption estimates as listed in

Table 2.7. XPower reports a total current (quiescent and dynamic) of 103.06mA which is 17.2%

more that the average measured current of 87.9mA. Taking into account the losses from the voltage

regulator, the current being drawn by the core is 72.078mA which means that Xpower's over estimate

increases to 42.98%. This is consistent with other studies into the accuracy of Xpower [8].

VccInt = 1.2v Current (mA) Power (mW)

Dynamic 52.47 62.96
Quiescent 50.59 60.71

Category Current Drawn (mA) Power Consumed(mW) Dominant Source

Clocks 27.11 32.54 Global clock
Logic 21.39 25.67 Block RAMs
Signals 3.97 4.76 Counters

Table 2.7: Pipeline Xpower Consumption Estimate

2.5.4.3 Overall System Results

The overall system power analysis is expected to di�er from the histogram pipeline analysis due to

the handshaking of data between the interpolation and the histogram pipelines. The oscillation in

activity between the two parts is expected to average out the peaks from the histogram pipelines.

With the same setup as found in Section 2.5.4.2 the graph shown in Figure 2.27 indicates that even

with the addition of additional resources of the interpolation blocks etc, the power drawn form the

supply rails is less than what was seen from the histogram pipelines running continuously.

2.5. Analysis and Results Page 50

Figure 2.27: Overall Power Drain

The 2mA increase in consumption during run time brings the total power including the ine�ciencies

of the voltage regulator to 62.98mW. This is quite a reasonable number since the clip limit used in

the Lena image was 50 rather than the extreme case of 8 which essential forced further calculations

in the redistribution engine. There is quite a di�erence compared to the values seen in the Xpower

estimation as shown in Table 2.8. The summation of the dynamic and quiescent currents totals 99mA,

which in terms of an accurate estimate is very poor, however it does provided a wide margin of error

in designing a power supply to support the FPGA core.

VccInt = 1.2v Current (mA) Power (mW)

Dynamic 48.76 58.49
Quiescent 50.65 60.78

Category Current Drawn (mA) Power Consumed(mW) Dominant Source

Clocks 31.51 37.81 Global clock
Logic 14.16 17.00 Block RAMs
Signals 3.07 3.69 Counters

Table 2.8: Total Xpower Consumption Estimate

The breakdown of components that contribute to the the power drain indicate the e�ort required

to reduce power drain must focus on the clock tree and look to minimise routing across the FPGA.

2.6. Conclusions and Future Work Page 51

2.6 Conclusions and Future Work

The work described in this document provides detailed discussion and a valid set of results on a

novel FPGA implementation of the CLAHE region based contrast enhancement algorithm. The

FPGA implementation provides a valuable commercial feasibility study as well as a novel contribution

to knowledge on the suitability of implementing this algorithm on a FPGA. The analysis of this

implementation provides results that indicate comparable accuracy to the golden reference MATLAB

implementation. The resource utilisation results indicate that the logic for implementing this algorithm

is very well suitable to an FPGA architecture. However the key design factors are image size, region

size and the amount of hardware memory resources. The timing results suggest that there is no

throughput reducing logic that limits the clock speed at which the algorithm can operate. This is very

important with most FPGA based imaging systems operating o� of a high speed core clock which

derives slower interface clocks. The power consumption analysis was designed to assess the impact that

the CLAHE algorithm would have on the power consumption. With a set of tests that exercise the

main computational element to the algorithm in comparison to a general image the results suggestion

that there is minimal impact on the core voltages.

From these results we can summise that the FPGA platform is very suited to implementing regional

contrast enhancement. The fast, local, memory stores embedded in its architecture are optimally place

to perform contrast operations. The �exibility of the resources mean that it is adaptable to many

image sizes and region sizes. The key factor in system design is the memory stores and frame bu�ers

and how they are architected to minimise the amount data transactions to produce an output image.

Although the quality of the enhancement provided by CLAHE has been very well documented

and demonstrated, there are a few aspects of this implementation, primarily concerning latency, that

would hinder its industrial application:

1. Billinear Interpolation - there is a clear focus to ensure su�cient smoothing in the output image,

preventing contextual regions being identi�ed. This approach requires additional computation

to create weights and store two contextual rows of re-mapping functions. The implementation

e�ectively requires two passes of data increasing latency

2. Re-mapping Function Formation - the histogram pipelines create re-mapping functions in an

indeterminate time. This is due to the redistribution process and the various options there are

on how the over �ow is distributed. This completion time uncertainty is unwelcome and would

likely be restricted in an industrial application, sacri�cing accuracy.

Investigating the design and allocation of the memory resources would address these issues. Allowing

histograms to be formed in a more dynamic nature as data is sampled would reduce the contention

for the histogram RAM and the weighting of the interpolation process. Controlling the redistribution

2.6. Conclusions and Future Work Page 52

times would require a changes to the logic that governs access to the small memory blocks that

contain each remapping function. These slight alterations would be classi�ed under development and

optimisation, the fundamental characteristics of the algorithm lend themselves very well to current

FPGA architectures.

2.7. References Page 53

2.7 References

[1] K. R. Castleman, Digital Image Processing, ser. Englewood Cli�s, NJ. Prentice-Hall Professional

Technical Reference, 1979, ISBN: 0132123657.

[2] J. M. Gauch, �Investigations of Image Contrast Space De�ned by Variations on Histogram Equa-

lization,� CVGIP: Graphical Models Image Processing, vol. 54, no. 4, pp. 269�280, 1992.

[3] R. Hummel, �Image Enhancement by Histogram Transformation,� Computer Graphics and Image

processing, vol. 6, pp. 184�195, 1977.

[4] ��, �Histogram Modi�cation Techniques,� Computer Graphics and Image processing, vol. 4,

no. 3, pp. 209�234, September 1975.

[5] D. Ketcham, R. Lowe, and J. Weber, �Real-Time Image Enhancement Techniques,� in Seminar

on Image processing, Hughes Aircraft, Paci�c Grove, California, 1976, pp. 1�6.

[6] X. Li, G. Ni, Y. Cui, T. Pu, and Y. Zhong, �Real-time Image Histogram Equalization using

FPGA,� in Electronic Imaging and Multimedia Systems II, vol. 3561. Beijing, China: SPIE,

1998, pp. 293�299.

[7] Mathworks, �Adapthisteq : Contrast-limited adaptive histogram equalization (CLAHE),� Last

Accessed: December 2011. [Online]. Available: http://www.mathworks.fr/help/toolbox/images/

ref/adapthisteq.html

[8] D. Meintanis and I. Papaefstathiou, �Power Consumption Estimations vs Measurements for

FPGA-Based Security Cores,� in International Conference on Recon�gurable Computing and

FPGAs 2008, December 2008, pp. 433 �437.

[9] S. M. Pizer, E. P. Amburn, D. A. John, C. Robert, G. Ari, G. Trey, R. Bart Ter Haar, and B. Z.

John, �Adaptive Histogram Equalization and its Variations,� Computer Vision, Graphics, and

Image Processing, vol. 39, no. 3, pp. 355�368, 1987.

[10] S. M. Pizer, R. E. Johnston, J. P. Ericksen, B. C. Yankaskas, and K. E. Muller, �Contrast-

limited Adaptive Histogram Equalization: Speed and E�ectiveness,� in Proceedings of the First

Conference on in Biomedical Computing, 1990, pp. 337�345.

[11] A. M. Reza, �Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for

Real-Time Image Enhancement,� Journal of VLSI Signal Processing Systems for Signal, Image,

and Video Technology, vol. 38, pp. 35�44, 2004.

[12] O. Sims, �E�cient Implementation of Video Processing Algorithms on FPGA,� Ph.D. disserta-

tion, Institute of System Level Integration, 2007.

http://www.mathworks.fr/help/toolbox/images/ref/adapthisteq.html
http://www.mathworks.fr/help/toolbox/images/ref/adapthisteq.html

References Page 54

[13] J. A. Stark, �Adaptive Image Contrast Enhancement using Generalizations of Histogram Equa-

lization,� IEEE Transactions on Image Processing, vol. 9, no. 5, pp. 889�896, 2000, ISBN 1057-

7149.

[14] K. Zuiderveld, �Contrast Limited Adaptive Histogram Equalization,� Graphics Gems

IV, pp. 474�485, 1994, Last Accessed: December 2011. [Online]. Available: http:

//tog.acm.org/GraphicsGems/

[15] P. S. Heckbert, Ed., Graphics gems IV. San Diego, CA, USA: Academic Press Professional, Inc.,

1994.

[16] ChipScope Pro 10 User Guide, Xilinx Inc, Last Accessed: December 2011. [Online].

Available: http://www.xilinx.com/support/documentation/dt_chipscopepro_chipscope10-1_

userguides.htm

[17] Core generator. Xilinx Inc. Last Accessed: December 2011. [Online]. Avai-

lable: http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/PlanAhead_

Tutorial_RTL_Design_IP_Generation_w_CORE_Generator.pdf

[18] Xilinx XtremeDSP DSP48 Slice User Guide, Xilinx Inc, Last Accessed: December 2011. [Online].

Available: http://www.xilinx.com/support/documentation/user_guides/ug073.pdf

[19] Avnet V4FX12LC Development Board, Avnet-Memec, 2007, Last Accessed: September 2008.

[Online]. Available: http://www.em.avnet.com

[20] LeCroy 6100A Series Scope, Le Croy, 2007, Last Accessed: September 2008. [Online]. Available:

http://www.lecroy.com

[21] PTH04070W Voltage Regulator, Texas Instruments, 2007, Last Accessed: December 2011.

[Online]. Available: http://focus.ti.com/docs/prod/folders/print/pth04070w.html

[22] Virtex 4 FX12 Data sheets, Xilinx Inc, 2007, Last Accessed: December 2011. [Online]. Available:

http://www.xilinx.com/support/documentation/virtex-4_data_sheets.htm

http://tog.acm.org/GraphicsGems/
http://tog.acm.org/GraphicsGems/
http://www.xilinx.com/support/documentation/dt_chipscopepro_chipscope10-1_userguides.htm
http://www.xilinx.com/support/documentation/dt_chipscopepro_chipscope10-1_userguides.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/PlanAhead_Tutorial_RTL_Design_IP_Generation_w_CORE_Generator.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/PlanAhead_Tutorial_RTL_Design_IP_Generation_w_CORE_Generator.pdf
http://www.xilinx.com/support/documentation/user_guides/ug073.pdf
http://www.em.avnet.com
http://www.lecroy.com
http://focus.ti.com/docs/prod/folders/print/pth04070w.html
http://www.xilinx.com/support/documentation/virtex-4_data_sheets.htm

Technical Report 2:

Establishing Asynchronous Circuits on

FPGAs

Author: Phillip David Ferguson

Academic Supervisors: Dr Aristides Efthymiou, Univ. of Edinburgh

Dr Ahmet Erdogan, Univ. Of Edinburgh

Industrial Supervisor: Andrew Parmley, Thales Optronics Ltd

55

3.1. Aims and Introduction Page 56

3.1 Aims and Introduction

The initial aim and motivation for this work was sourced from an industrial perspective. Asynchronous

circuits in general have been beginning to gather momentum, demonstrating better performance for

niche areas and applications. Some circuit styles are extremely fast and data-driven, demonstrating

lower latencies and greater throughput than their synchronous counter parts. Other styles are extre-

mely low power, providing inherent �ne grain clock gating. However, these advantages only target

high volume ASICs and general purpose processors rather than lower volume products that apply to

niche applications such as laser range �nding, thermal imaging systems and vehicle based networks

as o�ered by Thales Optronics Ltd.

The question was then asked, are these bene�ts transferable to FPGA devices which are much

more �exible and a�ordable for niche companies? Can asynchronous design styles exploit greater

throughput and reduced latency, or can they o�er power bene�ts for current widespread synchronous

FPGA devices? There is an additional motivator in allowing asynchronous circuit designers the same

prototyping freedom to test asynchronous circuits on working silicon without the expensive masks etc.

This document describes the challenges and fundamental issues in creating asynchronous circuits

on a FPGA device. This discussion is then furthered into a theoretical overview of asynchronous logic

and an evaluation of current asynchronous EDA tools. These design styles and tools are then evaluated

on their practical implementations and an appropriate style selected. A design �ow is then proprosed

the methods to create asynchronous components on FPGA fabric tested. A working asynchronous

pipeline is then tested and veri�ed, ensuring that there is a �rm footing for subsequent work.

3.2 Challenges and Motivation

3.2.1 Previous Contributions

Previously there has been very little crossover in terms of utilising FPGA resources for asynchronous

constructs. There are fundamental problems with the ability of the FPGA fabric and the development

tools to support the necessary principles of asynchronous design. So much so that research to date

has taken the view of re-designing FPGA fabric for asynchronous design rather than attempting to

persuade and constrain current devices into housing asynchronous structures.

There have been 3 main approaches to producing recon�gurable asynchronous circuits:

1. Redesigning FPGA architectures speci�cally for asynchronous logic (and in some cases both

synchronous and asynchronous logic [33, 50, 36, 40]), which is still in the academic research

environment and designs have been mostly based on derivations of synchronous devices.

2. Redesigning FPGA architectures in an asynchronous style to implement faster synchronous

3.2. Challenges and Motivation Page 57

designs [56, 23]. Mapping synchronous logic to asynchronous structures may not map e�ciently

and there has been no indication that the core asynchronous fabric on these devices can be

utilised for asynchronous design.

3. Mapping asynchronous logic to synchronous FPGA fabric [34, 44, 45, 61]. This has been treated

with caution due to the overhead in attempting to make components within a clocked device

and their inherent hazards conform to the hazard free design requirements of asynchronous logic

design. Thus there has only been a few selected publications which document these attempts.

3.2.2 Fundamental Issues

Historically there have been a few crucial limitations that have prevented FPGAs taking on the

prototyping �ow and providing a recon�gurable design platform that they have done for synchronous

design. These include:

1. Hazard free operation - in a synchronous circuit the clock edge indicates that data or control

signals are stable and valid at that moment in time. In between clock edges, data or control

signals are assumed invalid and still settling according to their inputs, thus spurious signal

transitions are acceptable up until the clock edge. Asynchronous circuits on the other hand de�ne

their own validity schemes so spurious signal transitions would upset and corrupt these validity

periods. Asynchronous circuits are thus composed of components that do not produce hazards or

they are designed in such a manner that hazardous situations are removed from the circuit. The

synthesis stage of the FPGA design �ow decomposes and translates the asynchronous circuit from

a gate level implementation to a look-up table based implementation. Synchronous synthesis

tools have no concept of how hazards a�ect asynchronous circuits, and so the synchronous

synthesis procedure will introduce hazards that were not present in the initial design.

2. Signal ordering - since there is no clock present to sequence and synchronise signals, an asyn-

chronous circuit relies upon the ordering of signals to function correctly. Bundled-data circuits

require completion detection (from some sort of delay matching approach) to assert the request

signal and delay insensitive circuits require isochronic forks that make the assumption that all

recipients from a fan-out receive the signal event. Delays and matched routing delays are crucial

in maintaining signal ordering regardless of the design style and delay model. The placement

and routing stage of the FPGA design �ow is usually targeted to �nd the shortest path with

respect to a cost measure. In the case of delay matching it is highly unlikely that the same al-

gorithms can �nd the shortest path that has a delay greater than a certain value. Often routing

delays are greater that the logic delays and so meeting ordering requirements usually requires

more resources than routing lines.

3.2. Challenges and Motivation Page 58

3. Arbitration - sharing resources in a synchronous circuit usually involves a time division of the

resource to its suitors. However in an asynchronous circuit there is no discrete notion of time

and so arbitration must be performed in another way. A mutual exclusion element (MUTEX) is

required to process two handshake requests to access a single resource. The MUTEX will block

the latter request from proceeding with its handshake until the �rst request has been de-asserted

and the �rst handshake completes. A problem occurs if both requests appear simultaneously.

The MUTEX must make an arbitrary decision on what request proceeds, inevitably risking

metastability. This decision is fundamentally based on analogue electronics. In ASICs, cross

coupled NAND gates form the simplest solution, however since FPGA devices only house digital

logic elements the possibility of providing arbitration that is correct and hazard-free (yet again)

is very di�cult, resource hungry [45] and normally has �xed priorities [58] to reduce the time

for metastability to resolve.

In recent times there have been a few research projects [52, 43, 41] that have demonstrated asynchro-

nous FPGA implementations of small 5 stage pipeline RISC processors. Marshall [41] began from an

asynchronous gate level description and converted each gate into the equivalent Xilinx primitive block.

This netlist could then be placed and routed on any FPGA. Although this approach was successful, it

is impractical to design at the schematic level as it left the designer with signi�cant work in accurately

determining matched delay elements and adjusting the sources schematic accordingly. Desynchroni-

zation [52] is a conversion �ow that takes in synchronous designs and replaces the clock tree network

with a series of asynchronous control blocks. Although demonstrated in an FPGA (and an ASIC) it is

unclear how many resources were taken up by the asynchronous constructs. The amount of place and

route constraint information required to maintain the asynchronous structure indicated that there was

a signi�cant amount of development time spent tweaking timing on chip just as with Marshall's e�ort.

Although both projects are modest in their achievements, both used a reasonably similar approach of

creating a primitive translation to convert ASIC components into the equivalent gate netlist suitable

for FPGA synthesis. From this point various circuit speci�c timing and routing constraints could be

applied to this netlist, guaranteeing operation for the chosen device.

The methods presented in this document are squarely aimed at creating a consistent repeatable

implementation that does not need tweaking to operate correctly. This unique approach does not

involve a gate level intermediary stage but targets FPGA primitive components directly from a high

level description, side-stepping some of the fundamental issues previously discussed. The proposed �ow

makes use of current synchronous tools to optimise packing combinatorial logic into look-up tables.

This allows asynchronous circuits to be implemented consistently on synchronous FPGA devices.

3.3. Technical Background Page 59

3.3 Technical Background

3.3.1 Synchronous Logic

A simple logical or arithmetic operation involves a set of stable inputs that are passed through a cloud

of combinatorial logic. Depending on the information/data presented by these inputs, the corres-

ponding outputs are produced. When simple operations are connected to produce more complicated

functions methods to control synchronisation, data �ow and determine operation completion are re-

quired. In a clocked synchronous system simple operations are partitioned by state holding elements

(latches or registers) that allow these control operations to act simultaneously on an event, a global

clock. This external timing reliance prevents data being destroyed or corrupted.

Stage 1

Register

Combinatorial

logic

Stage 2

Register

Combinatorial

logic

Stage 3

Register

Combinatorial

logic

Stage 4

Register

clock

Figure 3.28: 4 Stage Synchronous pipeline

Figure 3.28 shows a pipeline structure where each combinatorial operation is contained between

two registers. On each clock tick, data is passed from the outputs of one stage to the inputs of

another stage. Each stage can only hold one data entry, thus the function is divided temporally and

spatially. The more important consequence of this pipelining is that the throughput of the function

has increased at the expense of latency due to the addition of registers. The period of the clock is

assumed to be larger that the time taken for the slowest combinatorial operation to complete. Thus

the speed of the pipeline is governed by the worst case delay between registers. This is evident in the

timing diagram in Figure 3.29, where the di�erent colours indicate the time di�erence between the

next clock edge and the time taken for the operation on that piece of data to complete.

Stage 4

Stage 3

Stage 2

Stage 1

Clock

Time

0 1 2 3 4 5 6 7

D0 D3D2D1

D3D2D1D0

D2D1D0 D3

D2D1D0 D3

Figure 3.29: Synchronous Pipeline Occupancy

3.3. Technical Background Page 60

Stage 1
Latch

Combinatorial
logic

Stage 2

Latch
Combinatorial

logic

Stage 3

Latch

Latch
Controller

Latch
Controller

Latch
Controller

Ack1 Ack2

Req1 Delay Req2 Delay

Combinatorial
logic

Stage 4

Latch

Latch
Controller

Ack3

Req3 Delay

(a) Worst Case Matched Delays

Stage 1

Latch

Combinatorial
logic

Stage 2

Latch
Combinatorial

logic

Stage 3

Latch

Latch
Controller

Latch
Controller

Ack1

Req1

Delay3

Combinatorial
logic

Stage 4

Latch

Estimate

Delay1

Delay2

Latch
Controller

Ack1

Req1

Delay3

Estimate

Delay1

Delay2

Latch
Controller

Ack2

Req2

Delay3

Estimate

Delay1

Delay2

(b) Speculative Completion

Stage 1
Latch

Combinatorial
logic

Stage 2

Latch
Combinatorial

logic

Stage 3

Latch

Latch
Controller

Latch
Controller

Latch
Controller

Ack1 Ack2

Combinatorial
logic

Stage 4

Latch

Latch
Controller

Ack3

Comp
Detect

Comp
Detect

Comp
Detect

(c) Completion Detection

Figure 3.30: 4 Stage Asynchronous Pipeline

3.3.2 Self-timed Logic

Self-timed or asynchronous logic is another approach to provide control mechanisms that coordi-

nate data �ow and provide stage completion detection. Without a clock signal to provide timing

assumptions, each stage is timed according to its individual propagation delay and so communication

mechanisms must take into account that variability. There are a number of asynchronous communi-

cation protocols which provide the necessary control information and completion detection between

stages [53, 42]. In general each protocol has a mechanism to provide each combinatorial block with a

data ready or request signal that indicates that valid data is ready at the inputs. The combinatorial

block then processes the data and indicates to the successor stage that processing is completed and

valid data can be transferred onwards. An indicator (or acknowledge) to the predecessor stage must

also be produced to indicate that the output data has been stored and input data can be changed.

This handshake will always enclose the transfer of only one data element.

Firstly stage completion is addressed: there are 3 options to ensure data at the output of a stage

is valid.

1. Matched Delay: this assumes that there is an event on the request line simultaneously as new

3.3. Technical Background Page 61

data is presented at the combinatorial inputs. Shown in Figure 3.30a, the request line is separate

from the combinatorial block and passes through a delay equivalent to the worst case delay

through that individual combinatorial block. Usually this delay is a stream of gates that can react

to process technology and environmental variations in a similar manner as the combinatorial

block.

2. Data Selectable Matched Delay [49, 48]: here multiple matched delays (shown in Figure 3.30b)are

produced to re�ect di�erent operations of the combinatorial block that have di�erent propagation

times. The appropriate delay for the request line can be selected depending on a speculative

estimate of the data (through additional logic) or an internal event to indicate the required

operation.

3. Delay Insensitive Codes4: the most accurate indicator of stage completion (shown in Figure

3.30c) is to have the combinatorial block indicate data validity and thus process completion

at its outputs (explicitly shown in Figure 3.30). This is accomplished by using data codes to

represent validity and neutrality, such that code words in between neutral and valid signify that

the process is not complete or has not reset.

The handshaking mechanism can reliably transfer data whilst making no delay assumptions in the

transmitter or the receiver. This mechanism provides a number of advantages and disadvantages over

the clocked synchronous mechanism. From the timing diagram in Figure 3.31, the �rst marker to

make an impact is the speed. With each stage completing its operation as fast as possible, each stage

does not take the worst case delay to complete as assumed in the synchronous implementation.

Stage 4

Stage 3

Stage 2

Stage 1

Time

0 1 2 3 4 5 6 7

D0 D3D2D1

D3D2D1D0

D2D1D0 D3

D2D1D0 D3

Starvation

Blocking

Figure 3.31: Asynchronous Pipeline Occupancy

There are however two di�erent stalls in the system that were dealt with in the synchronous

version. The �rst stall is due to stage starvation. Here stage 1 has not completed its operation before

stage 2 is ready to accept data and so stage 2 is forced to wait until valid data is available. The second

stall is due to stage blocking where data is trying to move to stage 3 but is unable to because it is still

processing the previous data word. In pipelines with too few data elements starvation is common and

4Further details of delays insensitive codes will be covered in the following sections

3.3. Technical Background Page 62

the throughput is naturally low. The opposite also holds where in the case that there are too many

data elements the pipeline with blocking causing a high latency.

3.3.2.1 Data Level Encoding

If Boolean encoding is used to build combinatorial blocks in a similar manner to synchronous design

there is no way to accommodate completion detection. This also means that explicit request and

acknowledge handshake signals will act in parallel to the combinatorial logic. However in order to

guarantee a certain validity region, handshake signal and data signal order must be preserved. In

order to do this delay matching is required. The �rst event that could represent data validity (or

completion detection) is the request line, and so the worst case delay through the combinatorial block

must be duplicated through the request line. This is the key element in bundled-data (or single-rail)

protocols.

If data signals through combinatorial blocks use two wires per bit of information communicated, a

code word could be used to represent data validity, negating the need for an explicit request line. In

Figure 3.32, two bits with 4 possible values are used to represent an empty value, a valid '0' and a valid

'1'. Any codeword in between these values is deemed to be invalid. The main bene�t of this encoding

scheme is that it has inherent completion detection, and so a matched delay line is not required. This

encoding scheme is named dual-rail and forms the simplest of a set of delay insensitive codes [57].

V a lid E m ptyE m pty

A ck

D ata value Empty �0� �1� Not Used

wire0 0 1 0 1
wire1 0 0 1 1

Figure 3.32: Simple Dual-Rail Encoding

To expand further, 1-of-N codes (also referred to as one-hot) uses one wire for each value of data.

Where this becomes bene�cial is in the number of wires per number of values of data and the number

of transitions (hence speed, power and energy) of changing between valid data values.

In Table 3.9 we show a 2 bit data word that has been encoded using dual-rail and 1-of-N. For an

N-bit data word, dual-rail uses 2*N wires, in the case of 2 bits, this means 4 wires are required. If

the bits of the original word are paired and each pair is 1-of-4 encoded,this coding also requires 2*N

wires but only requires N transitions versus 2*N transitions in the assignment of a valid value. To

take delay insensitive codes even further 1-of-N codes are a subset of k-out-of-N codes, which instead

of using one true bit out of N code bits, k true bits are used to represent a valid code value. The

maximum number of valid values for a given N is obtained by choosing k as N/2.

3.3. Technical Background Page 63

value Empty �0� �1� �2� �3�

wire0.0 0 1 0 1 0
wire0.1 0 0 1 0 1
wire1.0 0 1 1 0 0
wire1.1 0 0 0 1 1

(a) Dual Rail Encoding

value Empty �0� �1� �2� �3�

wire0.0 0 1 0 0 0
wire0.1 0 0 1 0 0
wire1.0 0 0 0 1 0
wire1.1 0 0 0 0 1

(b) 1-of-N Encoding

Table 3.9: 2-bit Data Channel Encoding Examples

Delay insensitive codes are unfortunately limited by practical requirements that reduce their usage

to dual-rail or 1-of-4 encoding. Firstly, validity tests need to be simple and resource e�cient, secondly

the encoding and decoding of data words must also be simple and e�cient, thirdly the overhead in

terms of the number of bits used for a code word versus the number of bits used for a data word

should be minimal.

3.3.2.2 Signalling and Validity Regions

The crucial construct to handshake protocols is the signalling. There are 2 common types that have

been around since the earliest days (1950's) of asynchronous design. For simplicity examples use

bundled data encoding where there are explicit request and acknowledge signals running between the

source and destination latch controllers. A communication channel includes the data word and the

request and acknowledge signals. If a handshake is initiated by the data source, it is de�ned as a

push channel, where as if the handshake is initiated by the destination of the data, it is de�ned a pull

channel.

2-phase signalling encodes information on the request and acknowledge signals as transitions, so

regardless of the voltage level change, 1 → 0 or 0 → 1 both represent a signal event. Figure 3.33(a)

shows the behaviour of this protocol on a push channel. Firstly with valid data now available there is

a transition on the request line, the receiver then responds with another transition to acknowledge the

valid data. Since now the request and acknowledge lines will be in the same state another transaction

may begin. Despite being fast in terms of protocol events, implementing circuits (registers, latches

and their controllers) that respond to signal events is complex and so very few have ventured down

this road[53].

4-phase signalling (shown in Figure 3.33(b)) on the other hand is much easier to implement as

transactions are level based. It allows construction of latches and their controllers to be much simpler

at the expense of a slightly slower signalling protocol. Here a push transaction is initialised by the

request line going high, the acknowledge responds accordingly. At this point the sender pulls request

low to indicate that it has received the acknowledge and accordingly the receiver resets the acknowledge

line.

There is a range of data validity schemes that are possible with 4-phase signalling. The early

3.3. Technical Background Page 64

A ck

R eq

D ata

(a) 2-Phase Signalling

A ck

R eq

B road

E arly

La te

(b) 4-Phase Signalling with validity regions

Figure 3.33: Signalling and Validity Regions

scheme is used when the source has control of a data bus (push channel), placing data on the bus and

issuing a request. When the destination has control of the data bus (pull channel) the late scheme

is used. Here the request line issues an access request to the data bus. The broad scheme is the

generic scheme that will work for both early and late schemes, allowing compatibility between the

two. There are other validity schemes that can be created between any event on the request and

acknowledge signals, however there are usually targeted for a speci�c purpose for examples speed or

signal transitions.

3.3.2.3 Delay Models

Delay models are normally a trivial consideration for synchronous designers. Outputs from combina-

torial logic only need to be valid and stable around clock edges. As a result delay models are relatively

simple, e.g. the inertial delay model used in VHDL that de�nes a delay time and a reject time. In

asynchronous design delay models are crucially linked to the resolution of hazards in a circuit.

Hazards are the result of input changes and delays through wires and gates in a circuit. In

synchronous design hazards are allowable outside the clock edge regions, in asynchronous design

signals must be valid all of the time. Thus, delay models are crucial in �ltering out and interpreting

hazards, and so make assumptions about the circuit environment and the delays for wires and gates.

Asynchronous circuits that are modelled at the gate level can be classi�ed as being speed inde-

pendent, delay insensitive or quasi-delay insensitive. These classi�cations are dependent on the delay

assumptions made for the circuit to operate correctly.

Speed -Independence (SI): David Muller's speed independent classi�cation [46] models gates as

boolean operators with a non-zero delay. Wires were modelled as ideal. A circuit is then described as

a set of concurrent boolean functions. The state of a circuit is the set of all gate outputs. A gate is

described as stable if the output is consistent with its inputs. A gate is described as excited if one of

its inputs have changes and an output change is required. After an arbitrary delay the gate will �re,

3.4. FPGA Implementation Considerations Page 65

i.e. the output will change to be consistent with its inputs. To describe the dynamic operation of a

circuit a state graph of all the possible �ring sequences can be constructed.

A circuit is described as speed independent if a gate that has been excited by an input condition

still stays in this excited state if that input condition changes before the gate has �red. Since gate

delays are unknown we need to assume that a gate will always �re on a correct input condition. An

excited gate that does not �re is a potential hazard.

Delay-Insensitive (DI): Delay-insensitive circuits take the speed independent assumptions and

expand them to include realistic wire model delays. In assuming wires were ideal speed independent

circuits infer that the output of a gate will always appear on the inputs of connected gates. Since DI

circuits have arbitrary wire delays the only way to determine that a gate has seen a change on its

inputs is by a change on its output, i.e. the property of indication, where every transition must be

acknowledged by another event.

Delay-insensitive circuits will operate correctly if gates and wires have unknown positive bounded

delays. In this model all transitions have to be acknowledged before transitioning again. This robust-

ness suits communication mechanisms like handshakes very well, however applying this to a gate is

impractical as this would mean that each gate would need to have the property of indication. There

are only two gates whose inputs can be determined from their output state, the Muller-C-element(see

Section 3.4 for details of this component) and the inverter. This means that circuits which compute

cannot be realised [53] as the common AND, XOR gates do not indicate their inputs for every output

state.

Quasi-Delay-Insensitive(QDI): There is an exception to DI circuits that use wire forks with equal

timing delays on each fork. These isochronic forks allow one acknowledgement for all branches of the

fork, the assumption being that if one branch has seen a transition and all branches have equal delay

then all other branches have seen the transition. Quasi-delay-insensitive circuits require all isochronic

forks to have at least one acknowledgement. Most circuits that compute are classi�ed as QDI.

3.4 FPGA Implementation Considerations

As mentioned brie�y in the previous section there are a few components that are fundamental to the

operation of asynchronous circuits. This section will discuss a few of those and the role they play in

maintaining correct operation in an asynchronous circuit.

3.4. FPGA Implementation Considerations Page 66

C O

P

N

+

-

C

O
P

N

C

Figure 3.34: Muller C-element

3.4.1 Asynchronous Component Challenges

Muller C-element: A Muller C-element is a fundamental gate that is used in all asynchronous

components. Through the indication principle it is able to merge and synchronise signals at its inputs

by only changing its output only when both inputs are in the same state. If the inputs are in di�erent

states the output will remain the same. Since the indication principle is only partially true for certain

inputs of AND and OR gates, the C-element can be built from these basic gates. If the output of

an OR gate is '0' then we can determine that for this output state to be correct both of its inputs

must be zero. Similarly for an AND gate, if the output is '1' we know that for this output state to

be correct both its inputs must be '1'. An asymmetric (or generalised) C-element (shown in Figure

3.34 as a gate and logical decomposition) takes into account an additional two inputs that are biased

towards pulling the output high or low. If the positive biased input (P) is high when the common

terminal is high the output will go high regardless of the state of the negative (N) input. Conversely

the output will go low only when the negative biased input is low and the common terminal(C) is also

low. Implementing these devices optimally is crucial in maintaining circuit performance.

A Muller C-element can be implemented in an FPGA in two ways: a set/reset latch structure

[34] using two look-up tables and a latch for driving the output net or a singular look-up table with

feedback [58] from the output to maintain a consistent value when the outputs do not change in a

manner to provoke an output change . The compromising choice is between greater resource usage and

greater routing delay in the case of the feedback option. Deciding between implementations will be

dependent on routing constraints for delays and synthesis tools to optimise as much logic as possible

into the set/reset conditional look-up tables.

Latch Controllers: The structure enclosed below the level sensitive latches in Figure 3.35 is res-

ponsible for the transparency of the latch and the coordination of the various handshake signals on

each side of the latch. A signi�cant amount of time and research has been spent on the design of latch

controllers as their properties and characteristics are crucial in the performance and robustness of an

asynchronous system.

3.4. FPGA Implementation Considerations Page 67

Stage 1
Latch

Combinatorial
logic

Stage 2

Latch
Combinatorial

logic

Stage 3

Latch
Combinatorial

logic

Stage 4

Register
DoDi

Ack1 Ack2 Ack3

Req1
Req2

CD2

Req3

CD3

Ri
Ro

Ao

CD1

C C C
C

Ai

Figure 3.35: Half Latch Controller

The Muller C-element and inverter structure of Figure 3.35 is known as an undecoupled controller

[39]. It maintains the sequence of handshakes as well as the transparency of the latch in the simplest

manner possible. There is however a drawback to this simplicity. New data can only be latched on

Ri↑, when the output handshake link has completed with Ao↓. With this in mind, only 50% of the

pipeline stages shown in Figure 3.35 will be holding valid data, the remaining 50% will be transparent

and in the return to zero state of a handshake, i.e. 50% of the pipeline capacity is lost.

A semi-decoupled latch controller relaxes the requirement of not initiating an input handshake

until the output handshake is complete and allows new inputs after Ro↓. This also means that Ai↑

can be produced independently of the handshaking on the output channel. With the undecoupled

latch controller both handshakes link through Ro and Ai, where as with the semi-decoupling, this link

is altered to Ao↑ and Ai↑.

A fully decoupled latch controller relaxes the handshake inter-dependency even further by allowing

new inputs to be latched after the output link has acknowledged that it has latched the current data,

i.e. when Ao↑. This means that after this event the input handshake can be completed without any

further interaction from the output link.

All of the above latch controllers have inherently made the assumption that the latch itself is

normally transparent. This property means that data will �ow through combinatorial blocks regard-

less. In this case, processing is completed immediately regardless of when it is required. This has

power implications as the number of transitions will increase dramatically, however it will allow the

pipeline to perform at its quickest. Conversely if the latches are assumed to be normally opaque then

super�uous transitions in the combinatorial blocks will not occur and dramatic power savings will be

made [38] in a trade o� with performance.

Designing controllers means making assumptions about their environment and consequently inter-

nal operation. There are two general assumptions that support two design formalisms.

Input-Output mode assumes that a circuit is in a stable state, and only at in this state can

the environment change its inputs. When the circuit has produced its corresponding output the

environment can change the inputs again. There are no assumptions about the internal signals and so

a subsequent input change could occur before the internal signals and other outputs have stabilised

from the previous input change. For a circuit to operate in this mode, all of environment changes must

3.4. FPGA Implementation Considerations Page 68

be described by causal relationships between input and output signals transitions. These circuits are

therefore speed-independent and can be built using a number of design methods which are documented

later.

Fundamental mode assumes knowledge of the stabilisation time (not the state of the internal

signals) of a circuit. In this context the environment can only change one input and must wait for

the longest delay in the circuit before changing another input. Burst mode is a generalisation of

fundamental mode, allowing multiple input changes in bursts, but maintaining fundamental mode

between these bursts.There is also a number of synthesis options [60] for this design style that will be

consider in later sections.

Implementing controllers in a FPGA is a crucial balance between resource usage, propagation

delay, and the ability of the FPGA architecture to lend itself to controllers that minimise both these

aspects. This means that the relative position as well as the number of primitive components (look-up

tables, latches, registers, multiplexers, XOR gates, etc) used in a controller is critical in evaluating a

suitable controller that optimises its overhead and contribution to the critical path of a circuit.

3.4.2 Design Tool Considerations

This section aims to discuss the practicality in using a number of design tools that could aid in

implementing asynchronous circuits on FPGA devices. These tools are classi�ed into two domains

that are based on their initial behavioural descriptions, syntax directed compilation and transition

systems. This has implications for the choices in terms of a behavioural description language, a

consistent synthesis system and quality of the circuits implemented on an FPGA. These tools are

considered in the context of their ability to: support bundled data circuits, have multiple design

templates, ease of use, circuit complexity capability, have a route to integrate into current FPGA

design �ows. There is an inherent assumption that to program a FPGA and optimise circuits for

speci�c device architectures vendor place and route tools will be required. It is therefore important

that any higher level design tools must integrate into these vendor speci�c tool �ows.

3.4.2.1 Syntax Directed Compilation

Timeless Design Environment (TiDE)

Handshake solutions [27] are one of a few companies that have created a sustainable business model5

from their tool �ow, TiDE. Their contribution to asynchronous design is signi�cant as they provide

an entire design suite to augment current ASIC design �ows. This involves using dedicated tools

for asynchronous speci�c tasks such as compilation and synchronous tools for standard tasks, such

as logic optimisation and timing validation. Re-using industry standard synchronous tools requires

5Unfortunately this changed in early 2011 when Handshake solutions ceased to exist due to market forces.

3.4. FPGA Implementation Considerations Page 69

Haste Program

Handshake Circuit

Synchronous Verilog Netlist

htcomp

htmap -sync

FPGA Mapping tool

Figure 3.36: Handshake Solutions Prototyping Design Flow

strong constraints but keeps a familiarity to synchronous design for new asynchronous designers.

The design speci�cation begins from a high level language called Haste (originally Tangram) which

describes circuits behaviourally. Originally based on CSP and Occam, Haste provides constructs

for sequential and parallel execution as well as communication (handshakes) and hardware sharing

constructs. The aim of Haste was to describe the behaviour of circuits, hiding the underlying asyn-

chronous design and allowing the compiler to generate handshake protocols via syntax directed trans-

lation. This has the potential advantage of avoiding hazards and glitches. The handshake circuit is

constructed from a library of approximately 50 components that map into concise, hardware circuit

descriptions. The resultant (Verilog) netlist is then optimised and mapped onto an implementation

of standard cells.

The resultant circuits are implemented with a low power priority over performance and so cru-

cial restrictions are placed in the �nalised design. Handshake solutions use a 4 phase bundled data

approach to implement all handshake circuits. This has its bene�ts in ASIC design but can become

particularly troublesome to implement on an FPGA. Four phase protocols are widely accepted as the

lowest power protocol where each handshake has a return-to-zero phase. A bundled data approach

aligns the request signals with the output from a combinatorial block by using a matched delay. This

is not a problem for ASIC implementations however it poses signi�cant challenges to produce a sys-

tematic delay line from FPGA fabric that is not automatically altered or optimised out at various

stages in the synchronous tool �ow.

Handshake solutions provide a speci�c method for implementing handshake/asynchronous circuits

on FPGA devices. However, this is presented as a prototyping �ow in Figure 3.36. The problem

with this �ow is that in order to translate the handshake circuit correctly (so that a mapping tool

3.4. FPGA Implementation Considerations Page 70

Figure 3.37: Balsa Design Flow [25]

can allocated the appropriate device components) the htmap program decomposes the circuit into

primitive behavioural verilog cells then inserts synchronous registers and adds a clock to the entire

design. The result is a synchronous verilog netlist that can be mapped by any commercial FPGA tool

suite. This guarantees correct functionality but does not represent a true asynchronous circuit any

more.

Balsa

Balsa [25] has very close links with the TiDE design �ow (see Figure 3.37), however being aca-

demically developed it is completely open source and thus o�ers increased �exibility in terms of

implementation options. Balsa also operates on the concept of handshake components and hand-

shake circuits.This allows a number of customisable features that balsa takes advantage of to a much

greater extent than TiDE. The balsa description can be targeted to dual-rail and 1-of-4 encoding

schemes (as well as bundled data) which being part of the delay-insensitive codes will not need the

delay matching required for bundled data. This could potentially o�er a mechanism to explore FPGA

implementations of asynchronous circuits. However as described previously, only bundled data allows

the exploitation of current FPGA synthesis tools and reduces the potential of hazardous asynchronous

implementations by attempting to use synchronous synthesis tools on non-binary data encoding.

The FPGA design �ow di�ers slightly from the TiDE options, where the Balsa netlist is converted

into a gate level netlist which can then be directed to the technology speci�c implementation. Again,

like TiDE the netlist is synchronised resulting in a synchronous circuit on the FPGA. However, due

to the open nature of the tool this provides signi�cant �exibility in what the FPGA interprets as

3.4. FPGA Implementation Considerations Page 71

asynchronous structures. The Balsa cell library could be altered to re�ect hard wired components

with de�ned timing assumptions, providing a more accurate representation of asynchronous circuits.

The problem with this approach is that a gate level netlist would have no low level asynchronous

optimisations (as employed by TiDE) and it would be subject to a signi�cant amount of synchronous

synthesis optimisations without respecting the distinct separation between asynchronous datapaths

and control networks.

3.4.2.2 Transition Systems

Petrify

Petrify [29] is a tool developed in the late 90's that allowed asynchronous design automation to take

a signi�cant step forward. From an initial behaviour description in the form of Petri Nets[47] or Signal

transition graphs (STGs) the tool will produce an optimal concurrent description and synthesise the

appropriate asynchronous control circuit. To accomplish this, Petrify performs a token �ow analysis

that produces a safe irrendundant description. States are then assigned by solving the Complete

State Coding problem [37], after which state assignment is coupled with logic minimisation and speed

independent technology mapping. The resultant netlist is hazard-free under any distribution of gate

delays and multiple input changes in accordance with the initial speci�cation.

The �nal netlist is made up of primitive gates that can be combined into a look-up table. Merging

small gates into larger gates can be accomplished without the risk of hazards [28], (only decomposi-

tion introduces new hazards) combining gates into look-up tables which have a �xed delay per logic

function. This opens the possibility of applying Petrify to create asynchronous circuits for a FPGA.

Speed independent circuits assume zero delay in the wires between primitive gates. Since Petrify only

produces Speed independent circuits there are potential hazards in the delays introduced by FPGA

routing. There are two possibilities to mitigate this risk: constrain the FPGA routing in such a man-

ner to maintain Speed Independence or utilise timing assumptions within Petrify to de�ne aspects of

the environment and the circuit to simplify the circuit and maintain hazard free operation.

Petrify is very capable at designing asynchronous controllers that can be utilised within FPGA

fabric. This makes it very suitable for design of the control paths within an asynchronous circuit.

However it does not cater for the datapath. This means that an additional tool will need to be selected

for this aspect of asynchronous circuits.

BESST

Behavioural Synthesis of Self-Timed Systems (BESST) [32] is a design �ow that expands upon

Petrify and extend the applicability of Petri-Nets for asynchronous system design. The BESST de-

sign �ow shown in 3.38 describes the behaviour of a system in Verilog/VHDL and splits the control

path and data path for separate synthesis �ows. Control paths are synthesised with either: a di-

3.4. FPGA Implementation Considerations Page 72

Figure 3.38: BESST Design Flow [32]

rect mapping approach(i.e. syntax directed translation) where Petri-Net structures have direct logic

implementations- much like the handshake circuits described in Balsa and TiDE but with a stricter

formalism and no control path information, or with an alternative to Petrify (veriSAT [35]) which uses

a Boolean Satis�ability approach to avoid the state space explosion seen with creating reachability

graphs from STGs. The end result is a synthesis system that is just as e�ective as Petrify but with

signi�cantly less computational costs. Datapaths are synthesised with a colour petri-net mapping

approach [51] that partitions the design suitable for a direct mapped translation from Petri-net to

logic structures. After synthesis, the two streams are merged into a Verilog netlist that can be passed

on to other down stream EDA tools.

From an FPGA context, although very novel in the initial circuit descriptions, much like Balsa,

there is no direct mapping (primarily of the data path) to FPGA primitive components. David cells

especially, which are used in control path synthesis are particularly di�cult to map to a look-up

table style fabric. The resourcing overhead required to construct a David Cell from FPGA primitive

components is excessive. Considering the potential timing risks from its multiple feedback paths this

choice appears unsuitable for current FPGA architectures. Passing the Verilog netlist produced by

this �ow through a synchronous synthesis tool in order to target FPGA devices would potentially

destroy circuit functionality, making it unsuitable for FPGA implementation.

Cascade

The �nal set of tools which shows promise is the Cascade suite of tools developed by the University of

Columbia. These tools have been designed with the objective of design space explorations, and so they

o�er a few options in specifying asynchronous circuits. Since the focus has been preset on burst mode

speci�cations describing this involves a distinct syntax di�erence from other HDL's and asynchronous

3.5. Design Flow Proposal Page 73

design languages. Similar to signal transition graphs with restricted transition properties they are

exportable to Verilog which can then be directed further down the tool �ow. The most promising

tool from this toolset is the ATN OPT toolset which optimises dual-rail logic and in turn reduces the

hardware cost of implementing completion measures. Supporting VHDL and Verilog, this lends itself

promisingly to reducing the amount of completion detection logic required for a FPGA, and so allows

the inbuilt synthesis tool to optimise further to suit the architecture. Although this approach shows

signi�cant promise for delay insensitive datapath design, the overheads are still too signi�cant and

delay prone to suit current FPGA architectures.

3.4.2.3 Summary

It is clear from the time spent on asynchronous tools and the asynchronous circuit theory they im-

plement that the decision on how to integrate asynchronous circuits into a synchronous FPGA is not

trivial. There are a series of tradeo�s that must be considered:

i. Using standard HDL languages, from an asynchronous perspective could introduce ambiguity

into syntax and the hardware translation.

ii. Using asynchronous tools could possibly introduce debug problems as well as more interventions

into the lower level synchronous tool �ow.

iii. Determining the asynchronous structures that an FPGA can support may be restricted by the

choice of tool/input language.

Implementation considerations must be dependant on the ease of design for asynchronous circuits,

the steps necessary to augment the current synchronous design �ow and the time taken to learn how

to fully utilise the tool. With this in mind the remainder of this text will deal only with 4-phase

bundled data circuits. The primary reason for this is to maintain the optimisations performed by

the synchronous synthesis tool that are speci�c to an FPGA device family. The control path can

be constructed externally, minimising the disruption to the synchronous design �ow. Moreover this

approach saves area and power overheads associated with other asynchronous design styles.

3.5 Design Flow Proposal

3.5.1 Standard FPGA Design Flow Modi�cation

The design �ow proposal that allows asynchronous circuits to operate on an FPGA is shown in Figure

3.39. The description of the circuit is separated into two synthesis streams, a data path description

and a control path description. The datapath is described entirely in VHDL, whilst the control

path is also described in VHDL but in a separate �le of primitive FPGA components (e.g lookup

tables, registers, etc) that require minimal use of a synchronous synthesis tool. The �ow then utilises

3.5. Design Flow Proposal Page 74

Vendor Circuit Description

EDIF Circuit Description

HDL Circuit Description

HDL Design Entry

Functional Simulation

Static Timing Analysis

Back Annotated Timing Simulation

HDL Design Entry

Device Programming

Design Implementation

Mapping

Placing

Routing

Synchronous Synthesis

(Look-up table packing)

Constrained Asynchronous

Structure Insertion
EDIF asynchronous Library

Datapath Description Control Path components

Synchronous Synthesis

(Look-up table packing)

Figure 3.39: Proposed Design Flow

the EDIF [54] netlist as the main focus for modi�cation. In here the asynchronous control path

components are combined with data path components. There are a number of reasons why this is

the most suitable stage in the standard FPGA design to create asynchronous circuits. Architecturally

optimised asynchronous control components can be created independently of the main circuit function,

focusing purely on their performance in the device architecture. In the standard FPGA design �ow the

post-synthesis EDIF netlist will contain optimised boolean encoded logic compacted into look-up tables

and other primitive components(adders, multipliers, etc) found on the FPGA fabric. Synthesising the

data path in this manner maximises the use of standard design �ow tools. This means that hazards are

avoided from an asynchronous control path view, and data paths are optimised for the target FPGA

fabric. The combined post-synthesis EDIF is then passed to place and route tools with a number of

constraints to ensure that optimisations made in the implementation process do not disrupt functional

correctness. Assuming that FPGA families share a similar architecture, only vendor or device family

speci�c libraries containing fabric level implementations of control path components are required, i.e.

control path components only need to be synthesis once.

As bundled data circuits are the target asynchronous implementation, delay chain matching must

occur at a suitable point. On the initial implementation cycle delays are inserted with the same

static value to allow placement and routing to be aware of the resources they may allocate in that

region. The remainder of circuit will already be compacted into look-up tables, embedded FPGA

components[62] and registers. Locking this implementation allows the �nal place and route cycles to

only consider the delay element construction and placement. The feedback �ow from place and route

3.5. Design Flow Proposal Page 75

tools alters these delays to re�ect the true timing of the combinatorial logic in the datapath, ensuring

that the delay chains match the combinatorial delay with su�cient precision.

The following subsections will discuss in greater detail the steps involved in creating the asyn-

chronous control path components and the additional elements required to perform a validation of a

simple bundled data circuit on an FPGA, demonstrating the proposed design �ow.

3.5.2 Component Construction

It has already been outlined that a library of asynchronous control path components will be used to

implement asynchronous circuits on FPGA fabric. In order to achieve this, key components must be

tested and veri�ed on a sample FPGA. At this stage, development was restricted to Xilinx devices,

speci�cally the common architectures of the Virtex 2 and Virtex 4 devices [63]. The main reason for

this was resource availability and supporting the common usage trend of Xilinx devices within Thales

Optronics Ltd. Supporting additional devices would not result in a large deviation of the intended

design �ow but an increase in the number of libraries to support primitive components speci�c to

other device families. Thus it was not conducive to spend time supporting additional devices.

Figure 3.40: Xilinx Slice Architecture [63]

Figure 3.40 shows half of a Xilinx slice. These slices are arranged in blocks of four that form

con�gurable logic blocks (CLB). Constructing circuits from this perspective permits asynchronous

3.5. Design Flow Proposal Page 76

circuits to be constructed using look-up tables, registers, routing matrices and additional slice logic in

the same manner as synchronous circuits. A synchronous EDIF netlist will contain a number of cells

de�ned in relation to device primitive components. Cells are instantiated and connected through nets

to the ports of other cell instances. These cells make up the hierarchy that has been synthesised from

high level descriptions. A bundled-data approach requires several components that must be formed

from FPGA fabric. The following sections will describe how these components are constructed.

3.5.2.1 Matched Delays

The simplicity of bundled-data circuits is founded on delay assumptions. This simplicity comes at

the expense of data-driven delays, meaning that delay chains are a key performance factor in bundled

data circuits. The accuracy of delay chains in representing the worst-case combinatorial delay in a

pipeline stage must be managed carefully for both ASIC and, in this context, FPGA circuits as well.

Although FPGA devices have a �xed layout there is a large computational requirement in balancing

combinatorial delays for synchronous circuits [64]. This requirement is increased again for bundled

data circuits as each delay chain may be di�erent from its neighbour depending on what resources

are used to construct its matching combinatorial block. Having highly accurate delay chains allows

bundled-data circuits to exhibit lower end-to-end latency than their synchronous equivalents.

For each combinatorial block it is imperative that the delays between registers can be �rstly

determined with a degree of accuracy, and secondly matched with an equal degree of accuracy. Since

the FPGA fabric is already laid out, the timing information is predetermined as opposed to ASIC

chips that requires process models to simulate this timing information.

Normally ASICs can rely on creating delays by daisy chaining a series of gates, however performing

the same technique on an FPGA would occupy more recon�gurable resources and potentially degrade

the performance of the combinatorial blocks. As with matched delays in ASICs it is preferable to

keep the matched delay close to the combinatorial block it is paired with. Sortiriou [52] uses 'keep'

constraints to prevent synthesis tools removing inverter chains made up of look-up tables. This

technique, although valid has been derived from ASIC intentions and not optimised for an FPGA

architecture. Minas and Marshall [43] proposed the use of unoccupied carry chain logic from the

con�gurable logic blocks (the XORG gate in Figure 3.40) to build delay chains that could not be

optimised away. This freed up the more commonly used look-up tables for circuit design and instead

used the carry chain XOR gates which are more commonly used for behavioural looping structures

e.g. FOR loops within VHDL. However this technique still left room for signi�cant variation in the

distribution of the delay chains relative to their own components and the combinatorial blocks they

represent. Without guidance, place and route tools will scatter these instantiated delay chains around

the fabric. This introduces further delay within the components of the delay chain, and adds more

3.5. Design Flow Proposal Page 77

(a) Unconstrained (b) Constrained

Figure 3.41: Delay Chain Variability Reductions

inaccuracy by placing them without any consideration of the combinatorial block they represent.

The novel delay chain structures utilised in this design �ow improve upon those previously dis-

cussed. Firstly look-up tables are used as well as XOR gates to create delay chains and secondly

constraints are applied to limit the divergence of the delay chain components across the device. The

impact of this unique approach is shown on an FPGA architecture map in Figure 3.41. The two

diagrams demonstrate the impact the appropriate constraints have on the mapping of delay chains

and their constituent parts. Figure 3.41a shows the delay chain spanning 16 slices to connect the

primitive components, whilst Figure 3.41b shows the impact of constraints to maintain the delay

chains in a localised area. The code used to accomplish this is located in Appendices B.1.1 and B.1.2.

From VHDL, delay chains of any length can be con�gured with each component of the delay chain

individually assigned constraints in order to be positioned as close as possible to each other. The

results of these improvements are shown in Section 3.6.3.

At this stage there is ground for further improvement within the routing of the delay chains. The

main justi�cation for creating delay chains based on either XOR gates or Look up tables is delay

granularity. These are based on altering the logic used in the delay and constraining the routing.

Other studies [59, 55, 26, 31] have shown avenues to control the routing directly with Xilinx Design

Language, which allows the lower level routing to be altered before a device is con�gured with the

appropriate bit stream. Although very useful in this context, there is a heavy dependence on lower level

tool capability to supply the necessary information to instigate changing the routing con�gurations

at this period in the design �ow.

3.5. Design Flow Proposal Page 78

(a) Feedback Implementation (b) Set/Reset Implementation

Figure 3.42: Muller C-element FPGA Implementations

3.5.2.2 Latch Controllers

As with the matched delays, latch controllers must be designed with the target FPGA architecture

in mind. Since these controllers will be fully asynchronous, their design must take into account the

potential hazards present in FPGA fabric. Synchronous synthesis tools naturally decompose logic

for many reasons: re-timing, reducing fan-out, etc. Decomposing logic in asynchronous controllers

will produce hazards. It is therefore imperative that logic decomposition is avoided. For this reason,

latch controllers have been designed from the primitive components level, i.e. inter-connecting look-up

tables and other components shown in Figure 3.40.

In this section latch controllers will be discussed from an implementation perspective. i.e. how

gates are allocated into look-up tables and the relevant constraints required to ensure consistent

hazard-free behaviour. An additional comparative analysis is performed in the following chapter.

Initially an undecoupled latch controller consisting of a Muller C-element and an inverter was

created using two alternate structures [34, 58]. What is important to note about these two implemen-

tations is the granularity with which they were designed. Functionality was translated into primitives

that could be instantiated in VHDL and arranged in hazard free structures with routing constraints

explicitly stated. Figures 3.42a and 3.42b show the gate-level circuit encapsulated by the FPGA re-

sources in constructing the two implementations. The look-up tables have been expanded to show

their gate-level contents. From a resource perspective the feedback implementation uses less resources,

but at the risk of hazards from the feedback path. We negate this risk by assuming that this controller

would be operating in an environment where the feedback path would be faster that the circuit to

change the input to the look-up table and potentially create a glitch and hazardous state.

The limitations of an undecoupled latch controller in terms of throughput are well documented [53]

so the decision was made to utilise a latch controller with full decoupling at the expense of increased

complexity and constraints. The undecoupled latch controller only consumes 1 look-up table. From

a resource and timing perspective one CLB was determined to be a reasonable limit for one latch

controller regardless of the complexity. The fully decoupled latch controller by Lui [39] could be

3.5. Design Flow Proposal Page 79

(a) Constrained Controller Routing (b) ControllersWithout Constraints

Figure 3.43: Unconstrained Controller Routing

ideally mapped to this architecture. Since the Muller C-element FPGA fabric equivalent had already

been explicitly created, adding additional gates to create a fully decoupled variant was a trivial matter

in VHDL. However the placement constraints required tuning to ensure that the mapping of look-up

tables were properly positioned within the CLB so as to minimise routing delays and consequently

the forward and reverse latencies. With a combination of regional location constraints (RLOCs)

and basic element of logic location (BEL) constraints, look-up tables can be explicitly positioned to

minimise routing delay around routing matrices, much like editing programmable interconnect points

but without knowing prior routing information. Figures 3.43a and 3.43b show the impact (much

like the delay chains) of how place and route tools will scatter the primitive components without

considering the delays associated with their performance and function. In synchronous design, delay

constraints organise look-up tables and other primitive components between registers, however in the

design of asynchronous controllers, placement constraints are the preferred choice to organise primitive

components rather than adding a signi�cant amount of timing constraints to every net in the design.

Describing controllers in such detail in VHDL is not e�cient and e�ectively asking synthesis tools

to do additional work in interpreting these structures and potentially changing their functionality

based on a synchronous interpretation.The natural description of these controllers is in EDIF where

the design is much more connected to the placement and routing directives/constraints. Appendix

B.2 provides a small discussion on the di�erences between the two implementation possibilities.

3.5.2.3 Interfacing to Embedded Components

One of the obvious issues when producing asynchronous circuits on FPGA fabric is the need to

interface to dedicated embedded components and external environments. In most cases this may be

3.5. Design Flow Proposal Page 80

embedded multipliers and adders, as well as blocks of RAM and Input/Output blocks. Embedded

components can be separated into two groups: arithmetic operations that may not need a clock

to perform their intended function, and higher level operations that do require a clock, e,g. RAM

blocks. In their synchronous implementations multipliers and adders can be pipelined to improve their

performance, however there is no access to these registers and so they must be setup without this �ne

grain pipelining. RAM blocks on the other hand do require a clock and so must be surrounded by a

wrapper to ensure their compatibility with asynchronous circuits.

There are two approaches to the design of such a wrapper:

1. If we assume the wrapper is designed synchronously, the input handshake signals need to be

treated as asynchronous control signals and consequently double-registered to minimise the risk

of metastability. The state of these handshake signals must be translated into the appropriate

control signals for the synchronous block.

2. If we assume the wrapper is designed asynchronously, the clock enable lines must be driven by

the handshake lines. There is a risk here that the handshakes will not respond fast enough and

data will be lost.

The key decision comes down to whether the wrapper is implemented as a push or pull system. Figure

3.44 shows a simple view of the wrapper to illustrate the input/output connections. If the assumption

is made that the asynchronous interface is faster than the clock, a push system is preferred and

consequently the synchronous wrapper is the choice due to its simplicity to design. In doing so the

only asynchronous input to the wrapper is the acknowledge from the �rst stage of the asynchronous

logic. This must be double registered to remove the possibility of metastability; otherwise the design of

the wrapper is reasonably straight forward. However in doing so we reduce the latency of the wrapper

signi�cantly. An engineering design was made based on a Xilinx application note [24] (discussing the

probability of metastability) to remove the double registers. On initialisation the wrapper will retrieve

a value by enabling an address counter and the ROM for one clock cycle, on the next clock this will

be detected and under the assumption that valid data is on the output of the pins, the request line

to the asynchronous block is raised and the data transferred. Only when the handshake is complete

will the RAM and address counter be clocked again. The corresponding VHDL implementation is

discussed in Appendix B.3.

Although not explicitly stated the wrappers and techniques discussed here have been used in the

following section to ensure that bundled data circuits are implemented and supplied correctly with

data.

3.6. Veri�cation and Results Page 81

CLK

Async

Wrapper

Address
Generator

Block ROM

CE

address data data

Req

Ack

Figure 3.44: ROM Wrapper Example

3.6 Veri�cation and Results

To the validate this design �ow a set of tests were constructed on a simple computational pipeline.

These tests con�rm that the constructed circuits operate correctly on the appropriate device.

A simple pipeline (shown in Figure 3.45) consisting of a subtractor (-3) and multiplier (×3) was

created in VHDL, the code was then synthesised to the equivalent netlist description of the device

primitives. Next the clock tree was removed and each pipeline register altered to a latch con�guration

with a local controller now driving its transparency. An arbitrary length delay element is inserted

between latch controllers to allocate routing space for further �ne tuning. At this point in the design

�ow, the single rail combinatorial blocks can be placed and routed as normal and the pre-routed

control network components were inserted (via the EDIF netlist) pre-routed.

The key assessment of this pipeline is to con�rm that the constraints used to ensure e�cient

functionality of the asynchronous controllers were e�ective, the delay chains are implemented with

su�cient accuracy,the data is correct and that the handshake protocols operate as expected. In order

to test the pipeline, �rstly a back annotated netilst was extracted from the post-place and route

stage of the design �ow. Running the same behavioural simulations on a circuit that has all the

place and route timing information con�rms that the pipeline is functionally correct. Secondly, an

in-circuit simulation (i.e. a on-chip logic analyser) con�rms that there is no anomalies from removing

the circuit from a behavioural simulation and that it can interact with other embedded components

successfully. Finally, an evaluation of the delay chains con�rm that the crucial control network can

match the combinatorial delays from the data path with su�cient granularity and repeatability across

the fabric.

3.6. Veri�cation and Results Page 82

Stage 1

Latch

Combinatorial

Logic

(-3)

Stage 2

Latch

Combinatorial

Logic

(x3)

Stage 3

Latch

Latch
Controller

Latch
Controller

S2_ack S3_ack

Stage 2 Handshake differentials Stage 3 Handshake differentials

Input_num

S1_combin S2_combin

Output_num

S1_lt S2_lt S3_lt
req_l

ack_l

req_r

ack_r

Tsn Tsn+1

Trn+1Trn

Tcn

Figure 3.45: Handshake Test Points

3.6.1 Back Annotation

Asynchronous structures are inserted at a very �ne granularity and the standard synchronous �ow

provides various avenues at each stage of the design �ow to compare implementation and behavioural

functionality. The most accurate simulation used to test correctness is the back annotated timing

simulation. This stage has the most accurate timing information for the design and so can be used

to �ne tune matched delays up to the point of downloading the con�guration onto the device. The

timing information is derived from the architecture of a Xilinx Virtex 2 Pro, where the pins for the

design were locked down and no test bench was included in creating the timing model. Figure 3.46

100 ns 200 ns 300 ns 400 ns

reset

req_l

ack_l

input_num 4 5 6 7 8 9 0

s1_lt

s1_combin 0 4 5 6 7 8 9 0

Stage 2

s2_req

s2_req_d

s2_ack

s2_lt

s2_combin 0 1 2 3 4 5 6 253

Stage 3

s3_req

s3_req_d

s3_ack

s3_lt

Output Stage

output_num 0 3 6 9 12 15 18 247

req_r

ack_r

Figure 3.46: Back Annotated Waveform

shows the waveforms produced from the timing simulation, where the pipeline has a subtraction of

three and then a multiplication of 3 to act as combinatorial clouds. The waveform includes the request

lines from each stage, the delayed request through each delay chain, and the acknowledge for that data

3.6. Veri�cation and Results Page 83

Figure 3.47: Chipscope Waveform

transaction. The waveform also shows the transitioning of the datapath combinatorial logic before

the correct value is passed through the latch. Although the data lines take time to settle, their values

are always stable and valid over the handshake transaction duration. Please refer to Figure 3.45 for

associated circuit signal names.

From this simulation we are able to con�rm correct operation of pipeline from a timing perspective

and assume that the placement constraints and synthesis partitioning would function correctly for on-

chip implementation.

3.6.2 In-circuit Veri�cation

The only method of on-chip veri�cation is by inserting a synchronous logic analyser to the netlist

before the design is placed and routed. This tool allows signal values to be recorded on a triggering

event and sent back to the host computer for analysis. The problem with this tool is that in being

synchronous it must be clocked fast enough to achieve su�cient temporal resolution to sample the

asynchronous transitions relative to each other. To verify the pipeline on-chip, we also add a ROM and

accompanying wrapper as mentioned in Section 3.5.2.3 to generate source data for the pipeline. From

the resultant waveform in Figure 3.47 it is easy to see that although data appears to be correct the

transitions are inaccurately sampled. There is no validity information because of insu�cient sampling

resolution to resolve the validity regions from the data lines. We would have expected to see very

similar waveforms to that of the back annotated timing simulation (shown in Figure 3.46) where the

stages of the handshake that signify when the data is ready to be allowed through a latch can be seen.

From the point of verifying combinatorial logic, the logic analyser is su�cient however it will only

backup or disprove the results from the timing simulation.

To verify the handshake protocols additional logic was inserted to isolated the timing di�erences

between each stage of the handshake. In order to do this two XOR gates are attached to the control

wires in the arrangement shown in Figure 3.45. The outputs of the XOR gates were then fed to pins

3.6. Veri�cation and Results Page 84

Controller Response Delays

Time (10 ns per division)

A
m

p
lit

u
d

e
 (

1
V

 p
e
r

d
iv

is
io

n
)

Figure 3.48: Test Pin Outputs of Handshake Di�erentials

where an oscilloscope could determine their changes in state. Starting from a 4-phase handshake,

when the request line goes high, both XOR outputs will rise according to the di�erence in their inputs

between the request, the delayed request and acknowledge lines. The output of the XOR surrounding

the delay element will fall �rst due to the delay element equalising its inputs and the other XOR output

will fall a short period later when the connected latch controller decides to raise the acknowledge line.

If this sequence of events can be identi�ed on the scope then we can con�rm correct operation of

the latch controllers. Figure 3.48 shows the output of the oscilloscope from a timebase of 10ns per

division. The �rst two peaks (of the Stage 2 di�erentials) rise at the same time and fall at di�erent

times, indicating the delay between the input Rin and the Ain output of the latch controller. The

second two peaks (from Stage 3 di�erentials) follow the same pattern shortly after. This method o�ers

a unique way to measure forward and reverse latencies for asynchronous controllers on a FPGA. The

key factor is making sure the XOR gates function as expected by minimising the delay between the

input wires and also the output wires, and positioning them in a manner as so not to in�uence the

operation of the circuit. From this oscilloscope plot we can say with certainty that the handshake

sequences function correctly providing valid data transfer across the FPGA.

3.6.3 Delay Chain Matching

A signi�cant amount of e�ort is expended creating delay chains to match combinatorial delays. This is

a key focus for the design of the bundled data circuits used by Handshake Solutions. These are vitally

important as the handshake guarantees when the data is valid at the input of the receiving register.

3.6. Veri�cation and Results Page 85

C arry C h a in L o g ic vs L o o k-u p tab le

0

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 2 3 4 5 6 7 8

N o . O f C o m p o n e n ts

D
e

la
y

 (
n

s
)

Xo rcy

L u ts

Figure 3.49: Delay Chain Comparison

Normally these control delays are accurate to within 10-20% of the combinatorial delay inclusive of

engineering margins. In FPGAs matching delays requires a balance between logic delay and routing

delay. In Figure 3.45 this means matching the logic and routing delay of the combinatorial block, Tsn

to the logic and routing delay of the request line, Trn. The logic and the routing can be indi�erent as

long as the total each is the same. This variation means that the only way to guarantee a reasonable

match is to iteratively alter the delay chains in coordination with incremental compilation.This ensures

that only the delay chains are changing on each iteration. The impact the delay chains have on

circuit performance is signi�cant, they mimic the local timing of the combinatorial operations on the

asynchronous control network and so an over-estimation in their values degrades overall circuit latency

and throughput.

There are two methods of creating delay chains on modern FPGA devices. Look-up tables are

commonly used to implement logic functions in a FPGA, they accomplish this with constant delay

regardless of the logic function. We can connect look-up tables in series to create a range of delay

chains that have consistent delays. The other mechanism involves XOR gates that are only utilised

when a recon�gurable logic block is con�gured for an addition. We can take advantage of the unused

carry chains to connect them in series in a similar manner to the look-up tables. Both implementations

need signi�cant constraints (as shown in Figure 3.41b) to ensure delay consistency across the device.

Figure 3.49 shows the di�erence in delay granularity from using the carry chain logic and look-up

tables. These values in the graph are an average of delay chain lengths (the number of components

connected in series) over the entire fabric of a Xilinx Virtex 2 FPGA, so they provide an initial

estimate of delay chain lengths. Whereas look-up tables work well for �ne grain delays they have two

3.7. Conclusions and Future Work Page 86

disadvantages:

1. The amount of logic resources they utilise with large delays is excessive and detrimental to

routing delays.

2. The choice of 4 inputs per look-up table means that routing delays have more variation between

design iterations.

XOR carry chain logic is more e�cient in terms of the maximum delay per the amount of logic utilised

and it also has a more consistent routing delay compared to the look-up table delays. However the

penalty is the granularity of delay chains constructed, which, for minor boolean logic functions, is

a large overhead. Constraints are used to position the components used to create delay chains, the

routing however is left to the vendor tools. This �exibility allows the vendors to optimise the routing

within the routing matrices, but this comes at the expense slight variation in the input port of the

look up table used and thus delay chain variation. The two delay chain components have not been

mixed to increase the delay granularity above 3ns because bulk of combinatorial delays are below 3ns.

The larger combinatorial delays are easily covered by the XOR based delay chains. The additional

complexity of mixing the two delay component types also introduces further routing delay, increasing

the variability of the delay chain.

3.7 Conclusions and Future Work

The piece of work described in this document lays the foundations for asynchronous circuits on syn-

chronous FPGA fabric. The key challenge was �nding common ground between the theoretical requi-

rements of asynchronous design (that can easily be satis�ed in an ASIC) and the limited resources and

architecture provided by an FPGA. To this extent the bulk of the work has tackled the problem from

both ends, looking at the most practical implementations and con�guring FPGA fabric resources in

a manner that allows them to operate asynchronously with consistent performance.

To implement circuits asynchronously on an FPGA this work has concluded that 4-phase bundled

data circuits are the preferred option against data driven approaches. Although able to absorb delay

variations associated with FPGA routing, the overhead in implementing any class of delay insensitive

logic is too much for synchronous FPGA devices. Targetting asynchronous circuits for the majority

of synchronous FPGA devices will inherently come into con�ict with the native tools and language

descriptions throughout the synchronous design �ow. This is the main reason why synchronous EDA

tools have been used to synthesise data path logic. These tools allow the maximum utilisation of the

limited resources on an FPGA, allowing the focus of this work to be concentrated on the asynchronous

components.

3.7. Conclusions and Future Work Page 87

A new design �ow has been tested and veri�ed to implement bundled data circuits correctly. This

�ow contributes a novel implementation of asynchronous controllers and delay chains through the

EDIF netlist where a particular set of constraints allow these components to be implemented consis-

tently and reliably across the device. This unique approach of embedding constraints within the

primitive descriptions provides a degree of accuracy that allows the technology independent assump-

tions of asynchronous design to be implemented with the correct constraints that allow asynchronous

circuits to operate correctly in a speci�ed FPGA technology. This approach has been veri�ed by the

construction of a simple arithmetic pipeline, simulating and validating its results from behavioural to

implementation stages.

The debug and veri�cation posed the most problems with the work completed. Since circuits

are modi�ed below the RTL description, veri�cation and debugging is through the back annotation

cycle. As with synchronous circuits, the addition of accurate timing information causes behavioural

simulation times to grow substantially with increased design complexity. Altering the front end

tool �ow to utilise an asynchronous simulation environment would reduce this dependency. The

ability to determine problems and bugs is also compromised with the requirement of using in-circuit

veri�cation to determine the correct functionality of the handshake control circuits. However the novel

in-circuit veri�cation methods demonstrated prove that functionality is not altered and this approach

of designing asynchronous circuit on a FPGA is valid.

The natural evolution of this work is to automate the synthesis of asynchronous circuits for FPGAs.

This means that a strict conversion must be created to allow synchronously described circuits to

operate asynchronously. An automated process would also allow �exibility in the types of controllers

used and an easier delay matching process. The focus for future work must investigate a methodology

to identify the correct circuit structures and approaches which allow the functional capabilities of

synchronous circuits to be maintained whilst changing the operating nature of the circuits.

This technical report has successfully provided ground work in developing a novel design �ow

that will allow circuits to operate asynchronously on synchronous FPGA fabric. The results and me-

thods presented have added to the capabilities of Thales Optronics Ltd in implementing asynchronous

circuits and understanding the optimisations that can be achieved a the post- synthesis level.

3.8. References Page 88

3.8 References

[23] Achronix Semiconductor Corp. (2006) Picopipe White Paper. Last Accessed: December 2011.

[Online]. Available: http://www.achronix.com/achronix-picopipe-white-paper.html

[24] P. Alfke, �Metastable Recovery in Virtex-II Pro FPGAs (XAPP094),� Xilinx Ltd,

Tech. Rep., February 2005, Last Accessed: December 2011. [Online]. Available: http:

//www.xilinx.com/support/documentation/application_notes/xapp094.pdf

[25] A. Bardsley and D. A. Edwards, �The Balsa Asynchronous Circuit Synthesis System,� in Forum

on Design Languages, September 2000.

[26] E. Bergeron, M. Feeley, M.-A. Daigneault, and J. David, �Using dynamic recon�guration to

implement high-resolution programmable delays on an FPGA,� in Joint 6th International IEEE

Northeast Workshop on Circuits and Systems and TAISA Conference, June 2008, pp. 265 �268.

[27] A. Bink. (2008) A Glance at Handshake Solutions. Handshake Solutions. Last Accessed: March

2011. [Online]. Available: http://async.org.uk/async2008/async-nocs-slides/Tuesday/Keynote/

GlanceatHandshakeSolutions_Async_2008.pdf

[28] J. Cortadella, M. Kishinevsky, A. Kondratyev, and L. Lavagno, �Introduction to Asynchronous

Circuit Design: Speci�cation and Synthesis,� in 6th International Symposium on Advanced Re-

search in Asynchronous Circuits and Systems, April 2000.

[29] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, �Methodology and

Tools for State Encoding in Asynchronous Circuit Synthesis,� in Proceedings for the 33rd Design

Automation Conference, June 1996, pp. 63 �66.

[30] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, �Desynchronization: Synthesis of

Asynchronous Circuits From Synchronous Speci�cations,� IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 25, no. 10, pp. 1904�1921, October 2006.

[31] L. Dai, Z. bin Liu, S. chi Liang, M. Yang, and L. li Wang, �FPGA Interconnect Testing Algo-

rithm Based on Routing-Resource Graph,� in 9th International Conference on Solid-State and

Integrated-Circuit Technology, October 2008, pp. 2087 �2090.

[32] M. S. D. R. Group, �Asynchronous System Design Flow Based on Petri Nets.� University

of Newcastle upon Tyne, March 2005, last Accessed: March 2011. [Online]. Available:

http://www.sta�.ncl.ac.uk/alex.yakovlev/home.formal/talks/besst-�ow-slides.pdf

[33] S. Hauck, S. Burns, G. Borriello, and C. Ebeling, �An FPGA for Implementing Asynchronous

Circuits,� IEEE Design and Test of Computers, vol. 11, no. 3, 1994.

http://www.achronix.com/achronix-picopipe-white-paper.html
http://www.xilinx.com/support/documentation/application_notes/xapp094.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp094.pdf
http://async.org.uk/async2008/async-nocs-slides/Tuesday/Keynote/GlanceatHandshakeSolutions_Async_2008.pdf
http://async.org.uk/async2008/async-nocs-slides/Tuesday/Keynote/GlanceatHandshakeSolutions_Async_2008.pdf
http://www.staff.ncl.ac.uk/alex.yakovlev/home.formal/talks/besst-flow-slides.pdf

References Page 89

[34] Q. T. Ho, J.-B. Rigaud, L. Fesquet, M. Renaudin, and R. Rolland, �Implementing Asynchronous

Circuits on LUT Based FPGAs,� in 12th International Conference on Field-Programmable Logic

and Applications. Springer-Verlag, 2002, pp. 36�46.

[35] V. Khomenko, M. Koutny, and A. Yakovlev, �Logic Synthesis for Asynchronous Circuits based on

Petri net Unfoldings and Incremental SAT,� in Fourth International Conference on Application

of Concurrency to System Design, June 2004, pp. 16 � 25.

[36] R. Konishi, H. Ito, H. Nakada, A. Nagoya, N. Imlig, T. Shiozawa, M. Inamori, K. Nagami, and

K. Oguri, �PCA-1: A Fully Asynchronous, Self-Recon�gurable LSI,� International Symposium

on Asynchronous Circuits and Systems, 2001.

[37] L. Lavagno and A. L. Sangiovanni-Vincentelli, Algorithms for Synthesis and Testing of Asynchro-

nous Circuits. Kluwer Academic Publishers, 1993.

[38] M. Lewis, J. Garside, and L. Brackenbury, �Recon�gurable Latch Controllers for Low Power

Asynchronous Circuits,� in ASYNC '99: Proceedings of the 5th International Symposium on

Advanced Research in Asynchronous Circuits and Systems, 1999.

[39] J. Lui, �Arithmetic and Control Components for an Asynchronous System,� Ph.D.

dissertation, University Of Manchester, 1998, last Accessed: March 2011. [Online]. Available:

ftp://ftp.cs.man.ac.uk/pub/amulet/theses/JianweiPhD.pdf

[40] R. Manohar, �Recon�gurable Asynchronous Logic,� IEEE Conference on Custom Integrated Cir-

cuits, pp. 13�20, September 2006.

[41] M. Marshall and G. Russell, �A Low Power Information Redundant Concurrent Error Detecting

Asynchronous Processor,� Digital System Design Architectures, Methods and Tools, 2007. DSD

2007. 10th Euromicro Conference on, pp. 649�656, August 2007.

[42] A. Martin and M. Nystrom, �Asynchronous Techniques for System-on-Chip Design,� Proceedings

of the IEEE, vol. 94, no. 6, pp. 1089�1120, June 2006.

[43] N. Minas, M. Marshall, G. Russell, and A. Yakovlev, �FPGA Implementation of an Asynchro-

nous Processor with Both Online and O�ine Testing Capabilities,� 14th IEEE International

Symposium on Asynchronous Circuits and Systems, pp. 128�137, April 2008.

[44] R. U. R. Mocho, G. H. Sartori, R. P. Ribas, and A. I. Reis, �Asynchronous Circuit Design on

Recon�gurable Devices,� in Proceedings of the 19th Annual Symposium on Integrated circuits and

Systems Design. ACM, 2006, pp. 20�25.

ftp://ftp.cs.man.ac.uk/pub/amulet/theses/JianweiPhD.pdf

References Page 90

[45] S. Moore and P. Robinson, �Rapid Prototyping of Self-timed Circuits,� Proceedings of the In-

ternational Conference on Computer Design: VLSI in Computers and Processors, pp. 360�365,

October 1998.

[46] D. Muller and W. Bartky, �A Theory of Asynchronous Circuits,� in Proceedings of the Interna-

tional Sympymposion on Theory of Switching. Harvard University Press, 1959, pp. 204�243.

[47] T. Murata, �Petri Nets: Properties, Analysis and Applications,� Proceedings of the IEEE, vol. 77,

no. 4, pp. 541 �580, April 1989.

[48] S. Nowick, �Design of a low-latency asynchronous adder using speculative completion,� IEE Pro-

ceedings -Computers and Digital Techniques, vol. 143, no. 5, pp. 301 �307, September 1996.

[49] S. Nowick, K. Yun, P. Beerel, and A. Dooply, �Speculative Completion for the Design of High-

Performance Asynchronous Dynamic Adders,� in Proceedings of the 3rd International Symposium

on Advanced Research in Asynchronous Circuits and Systems, April 1997, pp. 210 �223.

[50] R. Payne, �Asynchronous FPGA Architectures,� IEE Proceedings: Computers and Digital Tech-

niques, vol. 143, pp. 282�286, September 1996.

[51] D. Shang, F. Burns, A. Koelmans, A. Yakovlev, and F. Xia, �Asynchronous System Synthesis

based on Direct Mapping using VHDL and Petri Nets,� IEE Proceedings: Computers and Digital

Techniques, vol. 151, pp. 209 � 220, May 2004.

[52] C. Sotiriou, �Implementing Asynchronous Circuits using a Conventional EDA Tool-Flow,� Pro-

ceedings. of the 39th Design Automation Conference, pp. 415�418, 2002.

[53] J. Sparso and S. Furber, Principles of Asynchronous Circuit Design - A Systems Perspective.

Kluwer Academic Publishers, December 2001.

[54] P. Standford, P. Mancuso, Electronic Design Interchange Format Version 2 0 0, Electronic In-

dustries Association Std., Rev. 2nd edition, March 1988.

[55] M. Tahoori and S. Mitra, �Automatic Con�guration Generation for FPGA Interconnect Testing,�

in Proceedings of the 21st VLSI Test Symposium, April 2003, pp. 134 � 139.

[56] J. Teifel and R. Manohar, �Highly pipelined Asynchronous FPGAs,� in Proceedings of the 12th

international Symposium on Field Programmable Gate Arrays. ACM, 2004, pp. 133�142.

[57] T. Verhoe�, �Delay-Insensitive Codes - An Overview,� Journal of Distributed Computing, vol. 3,

pp. 1�8, 1988.

References Page 91

[58] X. Wang, T. Ahonen, and J. Nurmi, �Prototyping a Globally Asynchronous Locally Synchronous

Network-On-Chip on a Conventional FPGA Device Using Synchronous Design Tools,� Interna-

tional Conference on Field Programmable Logic and Applications, pp. 1�6, August 2006.

[59] J. Yao, B. Dixon, C. Stroud, and V. Nelson, �System-level Built-In Self-Test of Global Routing

Resources in Virtex-4 FPGAs,� in 41st Southeastern Symposium on System Theory, March 2009,

pp. 29 �32.

[60] K. Yun and D. Dill, �Automatic Synthesis of Extended Burst-Mode Circuits. I. (Speci�cation

and hazard-free implementations),� IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 18, no. 2, pp. 101 �117, February 1999.

[61] Y. Zafar and M. Ahmed, �Globally asynchronous locally synchronous micropipelined processor

implementation in FPGA,� Proceedings of the IEEE Symposium on Emerging Technologies, pp.

277�282, September 2005.

[62] Core Generator. Xilinx Inc. Last Accessed: March 2011. [Online]. Avai-

lable: http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/PlanAhead_

Tutorial_RTL_Design_IP_Generation_w_CORE_Generator.pdf

[63] Virtex-II Datasheet. Xilinx Inc. Last Accessed: March 2011. [Online]. Available: http:

//www.xilinx.com/support/documentation/virtex-ii_data_sheets.htm

[64] XST User Guide Chapter 3- Flip-FLop Retiming. Xilinx Inc. Last Accessed: March 2011.

[Online]. Available: http://www.xilinx.com/itp/xilinx10/books/docs/xst/xst.pdf

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/PlanAhead_Tutorial_RTL_Design_IP_Generation_w_CORE_Generator.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/PlanAhead_Tutorial_RTL_Design_IP_Generation_w_CORE_Generator.pdf
http://www.xilinx.com/support/documentation/virtex-ii_data_sheets.htm
http://www.xilinx.com/support/documentation/virtex-ii_data_sheets.htm
http://www.xilinx.com/itp/xilinx10/books/docs/xst/xst.pdf

Technical Report 3:

Automated Asynchronous Circuits

Implemented in FPGAs(AACIF)

Author: Phillip David Ferguson

Academic Supervisors: Dr Aristides Efthymiou, Univ. of Edinburgh

Dr Ahmet Erdogan, Univ. Of Edinburgh

Industrial Supervisor: Danny Hume, Thales Optronics Ltd

92

4.1. Aims and Introduction Page 93

4.1 Aims and Introduction

Following the previous work on establishing asynchronous circuits on FPGAs, this body of research

addresses the need for a repeatable automated solution for asynchronous circuits on FPGAs. With

embedded system complexities growing year on year, the need to capture the functionality of a digital

circuit has also expanded. Abstract behavioural descriptions are now common place with lower level

implementations becoming building blocks in larger designs. Digital circuit designers are no longer

designing circuits from the ground up, as a result there has been increased focus and scrutiny on

the performance and abilities of automated tools to synthesise functional descriptions into the correct

implementation. Synchronous design languages have been able to serve these roles for decades, howe-

ver asynchronous description languages have always remained at a lower abstraction level. Circuits

implemented in FPGAs can now be behaviourally described by multiple languages that synthesise

to primitive components on the device. Each option is a di�erent design �ow which attempts to

design circuits in a more e�ective and e�cient manner. Implementing circuits in an FPGA asynchro-

nously with an automated approach provides an additional design �ow option, the bene�ts of this new

approach will be presented in this work.

This document introduces an automated design �ow to allow asynchronous circuits to be imple-

mented consistently on FPGA devices. This automated design �ow is the primary focus of this report

and is discussed in signi�cant detail. Firstly EDIF circuit representations are introduced and then

the process by which asynchronous circuits are eventually implemented on devices is explained in

detail. An asynchronous controller comparison is then performed, concluding with a new asynchro-

nous controller that �ts directly into the automated design proposal. To validate this automated

design �ow, analysis of the timing performance is documented along with comparison on the resource

utilisation of the resultant circuits and their e�ects on the power supply network.

4.2 FPGA Design Flow Proposal

The standard FPGA design �ow (as discussed in previous reports) provides a controlled environment

for designers to implement circuits described in Hardware Description Languages (HDLs) on their

chosen device. Device vendors have a signi�cant amount of control over circuit performance in the form

of proprietary place and route tools (and sometimes synthesis tools) which implement a synthesised

netlist of primitive device components in the most optimal arrangement. Xilinx place and route tools

only accept two formats of synthesised circuits, their proprietary format, NGC �les or EDIF �les

that include proprietary �les describing speci�c embedded components. To increase design portability

and reuse capabilities in accordance with the Reuse Methodology Manual [76] most designers will

create circuit designs in a high level language that use embedded components as black boxes. This

4.2. FPGA Design Flow Proposal Page 94

Vendor Circuit Description

EDIF Circuit Description

HDL Circuit Description

HDL Design Entry

In-Circuit Verification

Functional Simulation
Static Timing Analysis

Back Annotated Timing Simulation

Behavioural Simulation

Device Programming

Asynchronous
Implementation

Mapping
Placing
Routing

Synchronous Synthesis

Gate Level Synthesis
Fabric Synthesis

Embedded
Components

Constrained Asynchronous
Structure Insertion

Design Verification

Asynchronous Component Library

Figure 4.50: FPGA Design Flow

ensures the most optimal components are used during synthesis. These components, such as block

RAMs or multiply-accumulate units require additional con�guration information post synthesis to be

con�gured correctly for optimal performance. All of this external information resolves into a single

EDIF �le and a number of Xilinx speci�c �les that represent the con�gurations for the embedded

components used in the design. The EDIF �le therefore operates as the primary exchange format, or

glue between synthesis and place and route tools. Although the same can be achieved with NGC �les,

being proprietary, these �les are encrypted and there is no direct access to their contents, limiting

their reuse capability.

In an asynchronous context, without creating a new design tool for asynchronous circuits (e.g.

Balsa or Haste), EDIF �les are the most appropriate place to create asynchronous circuits from lower

level FPGA primitive components. This decision infers a conversion �ow from synthesised synchronous

circuits to asynchronous circuits capable of being placed and routed by commercial tools. We make

the assumption that additional devices can be serviced with an additional library of asynchronous

components customised to that device architecture. The design �ow shown in Figure 4.50 provides a

simplistic view of the FPGA design �ow and the modi�cations required to implement asynchronous

circuits on FPGA fabric. If the additional stages (indicated with a broken outlines) were removed,

4.3. EDIF Circuit Representations Page 95

a synchronous FPGA design �ow would be evident. Where as in previous work asynchronous com-

ponents were created independently, in this design �ow an EDIF asynchronous library would plug

into the Constrained Asynchronous Structure Insertion process, removing the need to create a control

path separately. The novel method of creating the control path automatically from the datapath

structure presented in this report allows a signi�cant reduction in design time and portability of the

asynchronous components between di�erent device architectures.

4.3 EDIF Circuit Representations

Initially designed in 1986 the electronic design interchange format (EDIF) is a neutral data format

that had the primary goal of capturing all aspects of VLSI design a single respresentation. As a

result this format is capable of capturing and representing a multitude of information including:

high level design entry, electronic schematics including symbol libraries, physical design libraries (for

PCB's, standard cells, FPGAs etc), physical layout information and interconnect routing, simulator

stimulus and response data and simulator logic and timing models. With syntax similar to the LISP

programming language [81] or postscript printer language, EDIF is particularly di�cult to write by

hand and thus its main usage in modern EDA �ows is an exchange format between tools. The main

bene�t of this syntax is that it is easy to parse and can be extended with minimal disruption to

the language. In its simplest form the EDIF syntax (shown brie�y in Figure 4.51 and completely

in Appendix C.1) is a series of statements. Keywords and associated constructs represent electronic

design data, i.e. objects, their characteristics, relationships between objects and placeholders grouping

such information.

This format has gone through four version revisions, each gradually enhancing the capability of

the format to accurately represent electronic design data. EDIF version 2 0 0 [69] has cemented itself

in the FPGA design �ow as the default exchange format between synthesis and place and route tools.

In this context it can completely capture the post synthesis netlists generated for di�erent devices and

vendor place and route tools. The revisions made to EDIF in its 3rd and 4th iteration have not been

supported as they target stages of electronic system design outside of the FPGA context.

Design information is arranged in a hierarchical structure. A single EDIF �le is the highest level

of hierarchy which must contain status information, and may contain several designs and libraries.

Each library contains a technology de�nition and a set of cell de�nitions, each cell can be represented

by one or more views that show the cell in the form of a schematic, layout, behavioural speci�cation,

document, etc. A library allows cells to be grouped according to common characteristics such as

device primitives or process technology. Each view is de�ned as a particular view type and contains

an interface and a contents section. Di�erent views are linked to other views via a view map. The

interface section de�nes how a cell can be connected to other cells. The contents section de�nes the

4.3. EDIF Circuit Representations Page 96

components and interconnections that make up the functionality or operation of that cell. Libraries

also contain technology information so that defaults can be speci�ed for given behaviour, graphics

and other attributes. The relevant view for FPGA synthesis is the NETLIST view. This view is

appropriate as it only provides a description of how internal primitive FPGA components connect

through nets.

Design hierarchy is represented by including other instances of cells in the cell description. A

design will identify a particular cell within a library as the top cell, providing a starting point for

the design within the �le. This is graphically shown in Figure 4.51. There are 3 levels of complexity

that are contained within an EDIF �le. Level 0 means that the �le only contains constants and no

parameters, level 1 allows cells to be de�ned with functions, operators, variables and parameters, level

2 allows control constructs such as if statements to be used.

4.3. EDIF Circuit Representations Page 97

EDIF File

edif example_file
 (edifVersion 2 0 0)
 (edifLevel 0)
 (keywordMap (keywordLevel 0))
 (status
 (written
 (timestamp 2009 04 21 13 21 53)))

Library

Library

(library example _library
 (edifLevel 0)

Technology

(technology (numberDefinition))

Cell

Cell

(cell part1 (cellType GENERIC)

View

View

(view arch (viewType NETLIST)

Interface

 (interface
 (port a (direction INPUT))
 (port rst (direction INPUT))
 (port o (direction OUTPUT)))

Contents

(contents
 (instance comp2(viewRef NETLIST
 (cellRef LUT3_L (libraryRef xcv2p)))
 (property INIT (string "E8")))
 (net a
 (joined
 (portRef a)
 (portRef I1 (instanceRef comp2))))
 (net rst
 (joined
 (portRef rst)
 (portRef CLR (instanceRef comp2))))
 (net o
 (joined
 (portRef o)
 (portRef I2 (instanceRef comp2))))
 (net PWR
 (joined
 (portRef P (instanceRef PWR))
 (portRef G (instanceRef comp3)))))))
)

Design

(design part 1 (cellRef comp1 (libraryRef example_library)))

Figure 4.51: EDIF Structure

4.3. EDIF Circuit Representations Page 98

4.3.1 Mapping EDIF Files to Object Orientated Structures

The EDIF format is an interchange format that is intended to be parsed by EDA tools. Manual

modi�cation is both tedious and prone to error. Creating an automated conversion requires parsing of

an EDIF �le and analysis of its structure. To this end the EDIF Tools API by the EDIF Team at Bri-

gham Young University [85] provides the environment to create a conversion process in JAVA [70].This

section will document the abstractions of the EDIF structure into graph theory and consequently an

object orientated environment supported by JAVA.

A graph is a set of nodes and the connections between these nodes. In reality these nodes could

represent anything from cities to computer terminals. Formally nodes are described as vertices and

the connections between them as edges:

A simple graph is de�ned, G = (V, E) where V is a �nite set called the vertices of G,

and E is a �nite set called the Edges of G.

In the context of EDIF circuits constructed from cells and nets that interconnect them, we associate

primitive FPGA components such as registers, look-up tables, multiplexers to vertices with a range

of properties, and nets to be the edges that connect these vertices. This association allows a circuit

to be completely described and subsequently queried according to graphing algorithms. Vertices are

then distinguishable by the FPGA primitive component they represent.

What we gain by transposing netlists to graphs is a signi�cant amount of information on how

circuits interconnect. This is initial phase of conversion where the synchronous netlist must be altered

into a format where the structure of registers can be determined.

The BYU API replicates the EDIF �le internal structure in an object orientated environment.

From the UML diagram in Figure 4.52 we can relate directly to what was described previously. For

each object within an EDIF �le we have associated classes. For example, a cell has an EdifCell class

which has relevant attributes such has the library the cell is contained in, the ports that cells use to

connect to other cells and a list of all of the instances of that cell. The EdifCell class has methods

to return those attributes and add new aspects to the cell such as adding ports or nets. The UML

diagram uses composition to represent the existence dependency of all the class objects, and provides

the background information and functions to begin treating the EDIF netlist as a graph . The key

bene�t of this API is that it allows the netlist to be queried according to graph theory. In essence

it produces a richer description of an EDIF �le allowing access to the naming conventions and EDIF

cell interlinking.

4.3. EDIF Circuit Representations Page 99

+EdifCell()

+EdifCell(in name : String)

+addNet(in net : EdifNet)

+addPort(in port : EdifPort)

+addSubCell(in cellInstance : EdifCellInstance)

+deleteSubCell(in cellInstance : EdifCellInstance)

+equals(in cell : EdifCell)

+equalsInterface(in cell : EdifCell)

+getLibrary() : EdifLibrary

+getNetList() : List

+getPort(in name : EdifPort)

+getPortList() : List

+getSortedNetList() : List

+getSortedPortList() : List

+getSortedPropertyList() : TreeMap

+getSortedSubCellList() : List

+getSubCellList() : List

+isLeafCell() : boolean

+setLibrary(in library : EdifLibrary)

+toString()

+toString(in sorted : boolean, in indent : int)

+trimToSize()

-_library : EdifLibrary

-_cellInstanceList : ArrayList

-_netList : ArrayList

-_portList : ArrayList

EdifCell

+addLibrary(in library : EdifLibrary)

+getLibraries() : Map

+getLibrary(in lib : String)

+getTopDesign() : EdifDesign

+mergeEdifFile(in newfile : EdifFile, in overwriteCells : boolean, in overwriteDesign : boolean)

+findBlackBoxes(in library : EdifLibrary) : Collection

+findBlackBoxes(in libraries : Collection) : Collection

+welson_merge(in subEdifFile : EdifFile)

+updateCellRef(in newCell : EdifCell)

+setTopDesign(in design : EdifDesign)

+toString() : String

+trimToSize()

-_libraries : LinkedHashMap

-_topDesign : EdifDesign

EdifFile

+setEdifFile(in file : EdifFile)

+getEdifFile() : EdifFile

+addCell(in cell : EdifCell)

+addCellToTop(in cell : EdifCell)

+deleteCell(in cell : EdifCell)

+deleteCell(in name : String)

+isExternal() : boolean

+getCell(in name : String) : EdifCell

+getCells() : Collection

+mergeLibrary(in newlib : EdifLibrary)

+merge(in subEdifLib : EdifLibrary)

+setExternal()

+setExternal(in external : boolean)

+toString() : String

+removeCell(in cell : EdifCell)

+trimToSize()

-_definedCells : ArrayList

-_external : boolean

-_edifFile : EdifFile

-_previous : EdifLibrary

-_next : EdifLibrary

EdifLibrary

+getTopCellInstance() : EdifCellInstance

+setTopCellInstance(in cellInstance : EdifCellInstance)

+toString() : String

-_topCellInstance : EdifCellInstance

EdifDesign

+EdifPort()

+EdifPort(in p : EdifPort)

+EdifPort(in name : String, in width : int, in direction : int)

+equals(in port : EdifPort)

+getDirection() : int

+getWidth() : int

+isInOut() : boolean

+isInput() : boolean

+isInputOnly() : boolean

+isOutput() : boolean

+isOutputOnly() : boolean

+oppositeDirection(in dir : int) : int

+setDirection(in dir : int)

+setWidth(in setWidth : int)

+toString() : String

-_direction : int

-_width : int

EdifPort

+getCellRef() : EdifCell

+getParent() : EdifCell

+getType() : String

+setCellRef(in cellRef : EdifCell)

+setParent(in p : EdifCell)

+toString() : String

-_cellType : EdifCell

-_parent : EdifCell

EdifCellInstance

+addPortConnection(in port : EdifPortRef)

+getConnectedPortRefs() : ArrayList

+getParent() : EdifCell

+setParent(in cell : EdifCell)

+toString()

+toString(in indent : int)

+toString(in indent : int, in detail : int)

+trimToSize()

-_attachedPortRefs : ArrayList

-_parent : EdifCell

EdifNet

NamedPropertyObject

<<interface>>

EdifOut

+EdifPortRef(in net : EdifNet, in port : EdifPort, in instance : EdifCellInstance, in width : int)

+clone() : Object

+getBusMember() : int

+getNet() : EdifNet

+getRefCell() : EdifCellInstance

+getRefPort() : EdifPort

+toString() : String

-busMember : int

-refPort : EdifPort

-cellRef : EdifCellInstance

-net : EdifNet

EdifPortRef

1
*

1

*

1

*

1

*

1

*

1

*

1

*

1 1

Each class inherits the

NamedPropertyObject abstract class and

implements the EdifOut interface

Figure 4.52: UML Diagram of the EDIF Structure

4.4. Conversion Algorithm/Process Page 100

4.4 Conversion Algorithm/Process

The conversion of a synchronous EDIF netlist [75] is split into 5 stages. The resultant circuits are

compatible with synchronous data patterns and in doing so they require special considerations for

clock enable pins and feedback structures commonly used in FPGA designs.

1. The �rst stage parses the EDIF netlist in terms of Xilinx primitive components and maps this

to a graph structure where nodes can be assigned additional information about surrounding

connections. Next data path registers which have been spilt into 1-bit �ip-�ops during synthesis

are identi�ed and grouped according to their EDIF cell name. This assigns a single controller

to drive the transparency of the data path registers.

2. The second stage disconnects the global clock from each register group then duplicates the

register to connect them in series with the original group. An asynchronous controller is then

connected to each group through local clock lines.

3. The third stage analyses each data path stage and creates linking tables indicating the intercon-

nection between other data path register groups.

4. Based on the information gathered in the previous stage, the fourth stage inserts the asyn-

chronous control network (the local request and acknowledge signals) to mimic the data path

connections, adding delay chains on the request lines to match the combinatorial delays on

the data path, and additional Muller C-elements to accommodate non-linear (fork and join)

structures.

5. The �fth and �nal stage inserts mapping and timing constraints to ensure controllers are kept

local to register groups and combinatorial delays, as well as delay chains are minimised.

Each stage will now be discussed in greater detail including the challenges that directed speci�c design

decisions.

4.4.1 Parsing Input Files and Grouping Data Path registers

We assume two input �les require parsing into object orientated respresentations as described by the

API. One is the EDIF �le produced from synchronous synthesis tools targetting a Xilinx device, the

other is an EDIF �le containing a library of asynchronous components that are speci�c to that device

architecture. These asynchronous EDIF cells are created with Xilinx primitive components that map

directly onto the FPGA architecture of that device.

Since subsequent place and route tools only accept one EDIF �le, the two �les must be merged, i.e.

an asynchronous cell library must be created within the synchronous EDIF netlist and the asynchro-

nous cells that will be used in that netlist copied over. However, in order to ensure this is successful,

4.4. Conversion Algorithm/Process Page 101

the primitive FPGA components used in the asynchronous cells must also be present in the source

synchronous �le, if they are not then the asynchronous cells will not have the correct primitive com-

ponents to describe their functionality. A small function compares the primitive components used in

the synchronous netlist with those in the asynchronous cell library and only copies over the primitives

components that are not present. Finally the entire asynchronous cell library can be copied over.

Grouping registers identi�es the crucial locations where asynchronous controllers will eventually

be inserted. This is achieved by establishing an EDIF bus net naming policy that allows the names of

single bit registers to be grouped according to similar names. Every cell that is identi�ed as a register

populates a hashmap that contains a list of buses in the design and the registers that made up those

buses. From this hashmap a graph is created to establish another layer of abstraction away from the

original netlist. It is this graph that is used in subsequent search and insertion processes.

4.4.2 Graphing Structures

Visualising and representing the netlist as a formal graph allows datapaths to be extracted from bit

level netlists by grouping nodes. To facilitate identi�cation of register groups, the graphs were split

into 4 stages. As a simple example, a linear pipeline with a �xed operand multiplier and an adder

between three registers was constructed. Figure 4.53 shows the �attened synchronous netlist. This

is graphically equivalent information to the netlist place and route tools will see. Synthesis tools

will naturally �atten any hierarchical blocks to identify areas of optimisation. This is what makes

tracing signals form RTL level to FPGA fabric level very di�cult. The red squares highlighted are

input/output bu�ers and the green squares indicate bit-level registers. At this stage it is very di�cult

to link this EDIF structure to the source RTL description. The second iteration of this graph identi�es

register groupings by searching for common naming patterns and begins to rebuild the structure of the

circuit into a recognisable form. The common naming patterns are based upon regular expressions that

can be formed using the regular expression toolbox supplied with a standard installation of JAVA.

Synchronous synthesis tools have their own particular naming conventions when they are creating

EDIF netlists. This conversion tool has been tested with a single synthesis tool, Mentor Precision.

As a result, only one naming policy has been used:

UNDERSCORE_BITPOSITION_UNDERSCORE_REGEX = "^(.+)_(\\d+)_$";

This regular expression will match against a net name that ends in �_<#>_� where <#> is a decimal

number e.g. �test_5_ �. There are no restriction on creating additional naming policies to suit other

synthesis tools such as:

PARENTHESIS_BITPOSITION_PARENTHESIS_REGEX = "^(.+)\\((\\d+)\\)$";

4.4. Conversion Algorithm/Process Page 102

(ix1
202

3z1
956

4)(X
OR

CY
)

(re
g_s

2_c
om

bin
(1)

)(F
DC

)

(ix1
800

5z6
334

6)(M
UX

CY
_L)

(ix1
302

0z1
956

4)(X
OR

CY
)

(ix1
800

5z6
334

5)(M
UX

CY
_L)

(reg
_s2

_co
mb

in(2
))(F

DC
)

(ix1
401

7z1
956

4)(X
OR

CY
)

(ix1
800

5z6
334

4)(M
UX

CY
_L)

(re
g_s

2_c
om

bin
(3)

)(F
DC

)
(ix1

501
4z1

956
4)(X

OR
CY

)
(ix1

800
5z6

334
3)(M

UX
CY

_L)

(re
g_s

2_c
om

bin
(4)

)(F
DC

)
(ix1

601
1z1

956
4)(X

OR
CY

)
(ix1

800
5z6

334
2)(M

UX
CY

_L)

(re
g_s

2_c
om

bin
(5)

)(F
DC

)
(ix1

700
8z1

956
4)(X

OR
CY

)
(ix1

800
5z6

334
1)(M

UX
CY

_L)

(re
g_s

2_c
om

bin
(6)

)(F
DC

)
(ix1

800
5z1

956
4)(X

OR
CY

)

(re
g_s

2_c
om

bin
(7)

)(F
DC

)

(ou
tpu

t_n
um

_ob
uf(0

))(O
BU

F)

(ou
tpu

t_n
um

_ob
uf(1

))(O
BU

F)

(ou
tpu

t_n
um

_ob
uf(2

))(O
BU

F)

(ou
tpu

t_n
um

_ob
uf(3

))(O
BU

F)

(ou
tpu

t_n
um

_ob
uf(4

))(O
BU

F)

(ou
tpu

t_n
um

_ob
uf(5

))(O
BU

F)

(ou
tpu

t_n
um

_ob
uf(6

))(O
BU

F)

(ou
tpu

t_n
um

_ob
uf(7

))(O
BU

F)

(RE
SE

T_i
buf

)(IB
UF

)

(re
g_s

1_c
om

bin
(7)

)(F
DC

)
(re

g_s
1_c

om
bin

(6)
)(F

DC
)

(re
g_s

1_c
om

bin
(5)

)(F
DC

)
(re

g_s
1_c

om
bin

(4)
)(F

DC
)

(re
g_s

1_c
om

bin
(3)

)(F
DC

)
(re

g_s
1_c

om
bin

(2)
)(F

DC
)

(re
g_s

1_c
om

bin
(1)

)(F
DC

)
(re

g_s
1_c

om
bin

(0)
)(F

DC
)

(re
g_s

2_c
om

bin
(0)

)(F
DC

)

(reg
_ou

tpu
t_n

um
(7))

(FD
C)

(re
g_o

utp
ut_

num
(6)

)(F
DC

)

(reg
_ou

tpu
t_n

um
(5))

(FD
C)

(reg
_ou

tpu
t_n

um
(4))

(FD
C)

(reg
_ou

tpu
t_n

um
(3))

(FD
C)

(reg
_ou

tpu
t_n

um
(2))

(FD
C)

(re
g_o

utp
ut_

num
(1)

)(F
DC

)

(reg
_ou

tpu
t_n

um
(0))

(FD
C)

(inp
ut_

num
_ib

uf(0
))(I

BU
F)

("in
put

_nu
m_

ibu
f(1)

")(I
BU

F)
(inp

ut_
num

_ib
uf(2

))(I
BU

F)
(inp

ut_
num

_ib
uf(3

))(I
BU

F)
(inp

ut_
num

_ib
uf(4

))(I
BU

F)
(inp

ut_
num

_ib
uf(5

))(I
BU

F)
(inp

ut_
num

_ib
uf(6

))(I
BU

F)
(inp

ut_
num

_ib
uf(7

))(I
BU

F)

(ix1
800

5z1
322

)(LU
T1)

(ix1
102

6z1
315

)(LU
T1)

(m
od

ge
n_

ad
d_

1_
ix4

49
52

z13
21

)(L
UT

2_
L)(m

od
ge

n_
ad

d_
1_

ix4
49

52
z13

23
)(L

UT
2_

L)

(m
od

ge
n_

ad
d_

1_
ix4

49
52

z13
25

)(L
UT

2_
L)

(m
odg

en_
add

1
ix4

495
2z6

334
2)(

MU
XC

Y_
L)

(m
od

ge
n_

ad
d_

1_
ix4

49
52

z13
27

)(L
UT

2_
L)

(m
od

ge
n_

ad
d_

1_
ix4

49
52

z63
34

4)(
MU

XC
Y_

L)

(m
od

ge
n_

ad
d_

1_
ix4

49
52

z13
29

)(L
UT

2_
L)

(m
odg

en_
add

1
ix4

495
2z6

334
6)(

MU
XC

Y_
L)

(m
od

ge
n_

ad
d_

1_
ix4

49
52

z13
31

)(L
UT

2_
L)

(m
od

ge
n_

ad
d_

1_
ix4

49
52

z63
34

8)(
MU

XC
Y_

L)

(m
od

ge
n_

ad
d_

1_
ix4

49
52

z13
33

)(L
UT

2_
L)

(m
odg

en_
add

1
ix4

495
2z6

335
0)(

MU
XC

Y_
L)

(m
odg

en_
add

1
ix4

495
2z6

335
2)(

MU
XC

Y_
L)

(clk
_ib

uf)(
BU

FG
P)

(ix
44

95
2z

46
80

)(G
ND

)

(m
od

ge
n_

ad
d_

1_
ix3

89
70

z19
56

4)(
XO

RC
Y)

(m
od

ge
n_

ad
d_

1_
ix3

99
67

z19
56

4)(
XO

RC
Y)

(m
od

ge
n_

ad
d_

1_
ix4

09
64

z19
56

4)(
XO

RC
Y)

(m
od

ge
n_

ad
d_

1_
ix4

19
61

z19
56

4)(
XO

RC
Y)

(m
od

ge
n_

ad
d_

1_
ix4

29
58

z19
56

4)(
XO

RC
Y)

(m
od

ge
n_

ad
d_

1_
ix4

39
55

z19
56

4)(
XO

RC
Y)

(m
od

ge
n_

ad
d_

1_
ix4

49
52

z19
56

4)(
XO

RC
Y)

Figure 4.53: Flattened Linear Pipeline

4.4. Conversion Algorithm/Process Page 103

This regular expression will match against a net name that ends in �(<#>)� e.g. �test(5)�6. From

these regular expressions, we can extract a basename and a bit position indicating the name of the

data bus and the position of that bit in the bus. This allows the individual nets to be grouped back

into abstracted data paths as described at the RTL level. Figure 4.54 shows the groupings in blue and

again the input/output bu�ers in red. Here we can clearly identify the combinatorial primitives the

FPGA uses to construct the multiplier and adder. This information will be used later to construct

timing information for representative delay chains. At this stage of graphing we can clearly identify

the clock network and what register groupings every register group connects. The �nal stage, as shown

in Figure 4.54 by the purple blocks, replaces the clock tree with asynchronous latch controllers and

delay chains.

4.4.3 Register Duplication and Controller Insertion

With a list of register groups now identi�ed, every group requires two modi�cations before operation

speci�c tailoring begins. The �rst modi�cation is to insert a secondary register (as shown in Figure

4.55) behind each register in the circuit. There are three main reasons for doing so.

In a synchronous circuit every combinatorial block performs its operation simultaneously. If the

equivalent asynchronous circuit uses a 4 phase handshake protocol this level of decoupling has to

be designed in. Adding a register means that the circuit is fully decoupled without increasing the

combinatorial logic used in the controller.

A synchronous circuit assumes that every register will receive data correctly after an explicit time,

thus it does not require an acknowledge line. As an asynchronous system needs this acknowledge. If

only one register/latch is used a feedback circuit will cause a circular dependency on the control lines,

i.e. the output needs to con�rm the reception of data at the input before it initiates another data

cycle, a secondary register removes this dependency. The additional register allows new data on the

input to be captured whilst the output data is still processing in the subsequent stage, removing this

dependency. The acknowledge will still act as expected if there is more input data still waiting on

the output data to be transferred. The additional register only adds one extra bubble to each register

group.

The third and �nal reason is �ow-equivalence. This justi�cation is explored in the context of

controller discussion in Section 4.5.2.

The second modi�cation is to insert controllers that trigger the capturing of data on the input

of each register. These controllers are augmented with Muller C-elements (shown in Figure 4.55)

on the input request (Ri) and output acknowledge (Ao) pins to deal with non-linear fork and join

constructs that combine and synchronise multiple input/output connections for each register group.

6Note that this is not a valid EDIF name but has historically been used by some place and route tools

4.4. Conversion Algorithm/Process Page 104

(ix1
202

3z1
956

4)(X
OR

CY
)

(reg
_s2

_co
mb

in(7
))(L

DC
_1)

 (re
g_s

2_c
om

bin
(6))

(LD
C_

1) (
reg

_s2
_co

mb
in(5

))(L
DC

_1)
 (re

g_s
2_c

om
bin

(4))
(LD

C_
1) (

reg
_s2

_co
mb

in(3
))(L

DC
_1)

 (re
g_s

2_c
om

bin
(2))

(LD
C_

1) (
reg

_s2
_co

mb
in(1

))(L
DC

_1)
 (re

g_s
2_c

om
bin

(0))
(LD

C_
1)

(ix1
800

5z6
334

6)(M
UX

CY
_L)

(ix1
302

0z1
956

4)(X
OR

CY
)

(ix1
800
5z6
334
5)(M

UX
CY
_L)

(ix1
401

7z1
956

4)(X
OR

CY
)

(ix1
800

5z6
334

4)(M
UX

CY
_L)

(ix1
501

4z1
956

4)(X
OR

CY
)

(ix1
800

5z6
334

3)(M
UX

CY
_L)

(ix1
601

1z1
956

4)(X
OR

CY
)

(ix1
800
5z6
334
2)(M

UX
CY
_L)

(ix1
700

8z1
956

4)(X
OR

CY
)

(ix1
800

5z6
334

1)(M
UX

CY
_L)

(ix1
800

5z1
956

4)(X
OR

CY
)

(ou
tpu

t_n
um

_ob
uf(0

))(O
BU

F)
(ou

tpu
t_n

um
_ob

uf(1
))(O

BU
F)

(ou
tpu

t_n
um

_ob
uf(2

))(O
BU

F)
(ou

tpu
t_n

um
_ob

uf(3
))(O

BU
F)

(ou
tpu

t_n
um

_ob
uf(4

))(O
BU

F)
(ou

tpu
t_n

um
_ob

uf(5
))(O

BU
F)

(ou
tpu

t_n
um

_ob
uf(6

))(O
BU

F)
(ou

tpu
t_n

um
_ob

uf(7
))(O

BU
F)

(RE
SE

T_i
buf

)(IB
UF

)

(reg
_ou

tpu
t_n

um
(7))

(LD
C_

1) (
reg

_ou
tpu

t_n
um

(6))
(LD

C_
1) (

reg
_ou

tpu
t_n

um
(5))

(LD
C_

1) (
reg

_ou
tpu

t_n
um

(4))
(LD

C_
1) (

reg
_ou

tpu
t_n

um
(3))

(LD
C_

1) (
reg

_ou
tpu

t_n
um

(2))
(LD

C_
1) (

reg
_ou

tpu
t_n

um
(1))

(LD
C_

1) (
reg

_ou
tpu

t_n
um

(0))
(LD

C_
1)

(reg
_s1

_co
mb

in(7
))(L

DC
_1)

 (re
g_s

1_c
om

bin
(6))

(LD
C_

1) (
reg

_s1
_co

mb
in(5

))(L
DC

_1)
 (re

g_s
1_c

om
bin

(4))
(LD

C_
1) (

reg
_s1

_co
mb

in(3
))(L

DC
_1)

 (re
g_s

1_c
om

bin
(2))

(LD
C_

1) (
reg

_s1
_co

mb
in(1

))(L
DC

_1)
 (re

g_s
1_c

om
bin

(0))
(LD

C_
1)

(inp
ut_

num
_ib

uf(0
))(I

BU
F)

(inp
ut_

num
_ib

uf(1
))(I

BU
F)

(inp
ut_

num
_ib

uf(2
))(I

BU
F)

(inp
ut_

num
_ib

uf(3
))(I

BU
F)

(inp
ut_

num
_ib

uf(4
))(I

BU
F)

(inp
ut_

num
_ib

uf(5
))(I

BU
F)

(inp
ut_

num
_ib

uf(6
))(I

BU
F)

(inp
ut_

num
_ib

uf(7
))(I

BU
F)

(ix1
102

6z1
315

)(LU
T1)

(ix1
800

5z1
322

)(LU
T1)

(clk
_ib

uf)(
BU

FG
P)

(ix4
495

2z4
680

)(G
ND

)

(mo
dge

n_a
dd_

1_i
x38

970
z19

564
)(X

OR
CY

)
(mo

dge
n_a

dd_
1_i

x44
952

z63
352

)(M
UX

CY
_L)

(mo
dge

n_a
dd_

1_i
x44

952
z13

33)
(LU

T2_
L)

(mo
dge

n_a
dd_

1_i
x39

967
z19

564
)(X

OR
CY

)
(mo

dge
n_a

dd_
1_i

x44
952

z63
350

)(M
UX

CY
_L)

(mo
dge

n_a
dd_

1_i
x44

952
z13

31)
(LU

T2_
L)

(mo
dge

n_a
dd_

1_i
x40

964
z19

564
)(X

OR
CY

)
(mo

dge
n_a

dd_
1_i

x44
952

z63
348

)(M
UX

CY
_L)

(mo
dge

n_a
dd_

1_i
x44

952
z13

29)
(LU

T2_
L)

(mo
dge

n_a
dd_

1_i
x41

961
z19

564
)(X

OR
CY

)
(mo

dge
n_a

dd_
1_i

x44
952

z63
346

)(M
UX

CY
_L)(mo

dge
n_a

dd_
1_i

x44
952

z13
27)

(LU
T2_

L)

(mo
dge

n_a
dd_

1_i
x42

958
z19

564
)(X

OR
CY

)
(mo

dge
n_a

dd_
1_i

x44
952

z63
344

)(M
UX

CY
_L)

(mo
dge

n_a
dd_

1_i
x44

952
z13

25)
(LU

T2_
L)

(mo
dge

n_a
dd_

1_i
x43

955
z19

564
)(X

OR
CY

)
(mo

dge
n_a

dd_
1_i

x44
952

z63
342

)(M
UX

CY
_L)

(mo
dge

n_a
dd_

1_i
x44

952
z13

23)
(LU

T2_
L)

(mo
dge

n_a
dd_

1_i
x44

952
z19

564
)(X

OR
CY

)

(mo
dge

n_a
dd_

1_i
x44

952
z13

21)
(LU

T2_
L)

reg_
s2_

com
bin_

LC(
latc

h_c
trl)

reg_
s1_c

omb
in_L

C(lat
ch_c

trl)

reg_
s2_d

elay
chai

n_8
(del

aych
ain_

8)

reg_
outp

ut_n
um_

LC(
latc

h_c
trl)

reg
_s1

_de
layc

hain
_8(

dela
ych

ain_
8)

Figure 4.54: Inserting Asynchronous Control Blocks

4.4. Conversion Algorithm/Process Page 105

C LK

(a) Synchronous Circuit

RsRm

C Ri

CAo

Ro

Ai

Regin Regout

(b) Asynchronous Equivalent Circuit

Figure 4.55: Single Register Conversion with Feedback

Some controllers may not require additional Muller C-elements and are removed later in the process

when the control network is created. Figure 4.70 shows the behaviour of each controller in the form

of a signal transition graph (STG) [83]. This graph describes the sequence of events each controller

must adhere to, including clocking both register groups. The initial reset conditions are shown with

black dots on the STG. To deal with clock enable pins, specialised controllers have been designed to

synchronise an additional input request that represents the clock enable data validity before the �rst

register is opened (Rm+). Here we treat the clock enable line as another data input, but a data input

that connects to another port on the register (CE). Assuming we have two input requests to indicate

that the clock enable is valid and the data is valid, we allow the transfer of data to continue. The

value of the clock enable will indicate if the transaction allows new input data through or data that

is currently on the output of the �rst register (Regin).

4.4.4 Register Mapping and Tracing Interconnections

Mapping register groups with data paths is the key component of conversion. Synchronous synthesis

optimisations are already complete, however in doing so key information on data �ow through the

circuit has been lost. As well as register groups the asynchronous control network also needs to know

how register groups are connected in order to sequence the data transfers correctly.

For each register group there are seven possible connections, shown in Figure 4.56 and described

below:

Forward Connections

1. The Q output of a register is connected to the D input of another register.

� this infers that the asynchronous control network needs a request line including a delay

element in the control network for each member of this list and a Muller C-element may

be required to collect the acknowledge signals if there are multiple outputs

2. The Q output of a register is connected to an output bu�er, which then drives an output pad.

4.4. Conversion Algorithm/Process Page 106

� this infers that additional output and input bu�ers will be required to deal with the outgoing

and incoming asynchronous control connections.

3. The Q output of a register connect to the clock enable (CE) input of another register.

� this infers that request lines from the source register group will not connect to the standard

inputs of the controller.

Reverse Connections

4. The D input of a register is connected to the Q output of another register.

� if there are multiple entries in this list this infers that a combining Muller C-element is

required for the incoming request signals of this register group

5. The D input of a register is connected to an input bu�er, which is sourced from an input pad.

� this also infers that additional output and input bu�ers will be required to deal with the

outgoing and incoming asynchronous control connections.

6. The clock enable (CE) input of a register is connected to the Q output of another register.

� this infers that a speci�c controller is required by this register group to maintain clock

enable functionality

7. The clock enable (CE) input of a register connects to an input bu�er

� this infers that additional output and input bu�ers will be required to deal with incoming

clock enable connections.

For each register group(i.e. one node in the graph), all of these attributes of registers are stored

in a hierarchical set of hashmaps that characterise register group interconnectivity through speci�c

input/output ports. To determine the interconnections that �ll up these data sets we probe abstracted

graphs for connections shown in Figure 4.56. In order to accomplish this a Depth First Search (DFS)

algorithm[78] is required to iterate through the netlist, probing for data path connections to and from

registers. The connections that are represented in graphs by edges are categorised by their direction:

� A back edge connects to a vertex that has already been visited in the graph. This could be a

feedback edge within a combinatorial cloud.

� A cross edge connect vertices that are not ancestors of each other. This could be where two

look-up tables share inputs and the output from one look-up table feeds into the inputs of the

other look up table.

4.4. Conversion Algorithm/Process Page 107

CE

DQ

CLK

3

1

2

(a) Forward Connections

CE

Q

CLK

5

4

6
D

7
CE

D

(b) Backward Connections

Figure 4.56: Register DFS connections

� A forward edge connects to a vertex that is a descendant of another branch on the graph. This

could be the combination of two edges, e.g. a multiplexer.

Edges in this context represent nets throughout the entire design that enter and exit register groups,

only by testing the connection attributes of each edge can we determine if it is connected to a register

group and so classify it according to the connection types listed above.This algorithm �lters the edges

and returns sets of registers that indicate the source registers that drive the input combinatorial block

to the current register group and the sink registers at the end of the output combinatorial block from

which the current register group drive.

Creating a map (technically a graph) of the registers within the circuit via DFS is the main

workhorse of the entire conversion. Processing time here is linked to how large a netlist this algorithm

has to search through. The order that a depth �rst algorithm traverses a tree (or netlist in this case) is

graphically demonstrated in Figure 4.57a. Pseudo code of this algorithm is presented in Figure 4.57b

and is based around the functionality of stack that records the nodes and edges the algorithm passes

through whilst attempting to trace links between register groups. Initially a source node is passed

to the algorithm, this is a register group from the abstracted graph, there is no particular register

group order required. From this node, edges to other nodes are added to the top of the stack for each

register in the source node group. The algorithm then follows the edge on the top of the stack to its

connecting node, if this node is a register then it records this in the appropriate list and then pops

the current edge o� of the stack and follows the next edge on top of the stack. If this node is not a

register (i.e. it is a LUT) it then traces more edges from that node(depending on the search direction

from the source node) and adds them to the stack to be followed.Once all the edges from the source

node have been followed and the set of hashmaps �lled with the interconnection information another

source node group is selected from the abstracted graph and the process begins again.

4.4. Conversion Algorithm/Process Page 108

1

72

43

5 6

8

9 10

11 12

(a) Depth-First Search Order

while (stack is not empty)
{ if (edge)
 { pop edge
 determine targetNode
 if (targetNode has been visited)
 { determine edge type[forward, back cross,feedback]
 add to list of edges traced
 }
 else(targetNode not visited)
 { push Node onto stack
 add to edges traced list
 }
 end if
 }
else(node)
 { if (already visited)
 { pop from stack
 }
 else (not visited)
 { mark as visited
 if (register or IO Buffer and not the topNode)
 { add register or IOBUF to the connections list
 // do not extend the tree
 }
 else(not a register or IOBUFF and topNode)
 { // extend the tree as this is a combinatorial block
 add edges to targetLinks list
 }
 end if
 if (topNode)
 { // partially extend the tree
 add direction edges to the targetLinks list
 }
 else (not the topNode)
 { // extend the tree
 add all edges of that node to the targetLinks list
 }
 end if
 }
 end if
 add targetLinks/edges to the stack
 }
end while

(b) Register Depth First Search Pseudo Code

Figure 4.57: Register Depth First Search Algorithm

4.4. Conversion Algorithm/Process Page 109

4.4.5 Connecting Controllers and Inserting Delay chains

Based on the information collected for each register group we link the control network. For each

register group, we cycle through the possible connection types discussed in Section 4.4.4 that form the

contents of the hashmap. For each connection type, D-inputs, Q-outputs, CE-inputs and CE-outputs

we trace di�erent lines in the control network. The input connection types establish the acknowledge

network by querying another layer of hashmaps. Logical tests con�rm if the inputs to that register

group are driven by external inputs or registers. Depending in the number of those sources and if those

source also drive di�erent register groups, we can establish if the acknowledge (Ai) for that controller

will be spilt, connected to another controller, connected to a c-element in front of another controller or

connected to an output bu�er. The output connection types establish the request network including

delay chains in a very similar manner. For each register group we count the number of other register

groups the datapath connects to via hashmaps. After this the hashmap of each connecting register

group is tested to assess if it has a single or multiple datapath inputs, then we know if the request

line will connect directly to a C-element or controller. Only then can we move onto another register

group and trace its request network. The information based on the combinatorial logic the delay

chains are trying to replicate is placed in the UCF �le for later optimisation. The delay chains are

initially con�gured with a generic value of 8 look-up tables. We assume that this choice will have the

maximum amount of routing delay and variabiliy. In latter stages this will either be reduce to a lesser

amount of look-up tables or increase to an XOR gate, both requiring less routing an making the delay

chain more predicable. After all the register groups have been processed, the external connection to

Input/Output bu�ers are created for the control network. These input and output ports were never in

the original design and so care must be taken in combining all the relevant request and acknowledge

control lines for each data input or output.

4.4.6 Constraint Insertion

Synchronous designs need constraints to maintain register-to-register, IO-block-to register and register-

to-IO-block timing consistent with internal or external clocks. The natural assumption would be that

these constraints would be of minimal use to asynchronous circuits on FPGAs. However, placement

and routing tools have not been designed with asynchronous circuits in mind and so without appro-

priate constraints, like the synchronous circuits, these tools will not consider the delays in the circuit

relevant to component placement or circuit performance. Whilst asynchronous circuits would be more

robust to this variation in delays they would su�er the same if not greater slow down in throughput.

User contraint �les (UCF) are normally used by place and route tools to guide the placement of

components in order to achieve timing closure. Whilst there are explicit constraints to direct tools

where exactly to place primitive components, there are no such explicit constraints on what precise

4.4. Conversion Algorithm/Process Page 110

routing resources should be used to interconnect these components. In this context routing constraints

with the UCF only limit what routing resources can be utilised. Routing resources can only be altered

post place and route via editing of the programmable interconnect points (PIPs).

To extract the bene�t of minimum input to output latency in a circuit, constraints must still be

applied to the asynchronous circuit. Constraints are placed in two locations, within the EDIF �le

itself and within the User Constraints File. Normally constraints within the EDIF �le are targeted

towards the mapping and placement processes within the place and route tools. The relative location

(instance (rename reg_c_2_prim �reg_c(2)�)
(viewRef PRIM (cellRef FDCE (libraryRef xcv2p)))
(property U_SET (string "reg_c_2_"))
(property RLOC (string "X0Y0")))

(instance reg_c_2_sec
(viewRef PRIM (cellRef FDC (libraryRef xcv2p)))
(property U_SET (string "reg_c_2_"))
(property RLOC (string "X0Y1")))

Figure 4.58: EDIF Mapping Constraint

constraint (RLOC) shown in Figure 4.58 allows components to be con�ned to certain areas of the

device, this means that timing between primitive components can be guaranteed. In this example

these mapping constraints are applied on the components that have the same U_SET property and

restrict the placement of the secondary registers relative to the primary registers. They are also

primarily used within the controllers to minimise the physical distrances between Muller C-elements.

Timing constraints, which mostly a�ect placement and routing tools, are contained within the UCF

�le. They are used to limit the worst case propagation delay through combinatorial logic, this in turn

INST "OUT_VIDEO_CB<0>" TNM = PADS outPort_OUT_VIDEO_CB;
INST "OUT_VIDEO_CB<1>" TNM = PADS outPort_OUT_VIDEO_CB;
INST "OUT_VIDEO_CB<2>" TNM = PADS outPort_OUT_VIDEO_CB;
INST "OUT_VIDEO_CB<3>" TNM = PADS outPort_OUT_VIDEO_CB;
INST "OUT_VIDEO_CB<4>" TNM = PADS outPort_OUT_VIDEO_CB;
TIMESPEC "TS_del_reg_OUT_VIDEO_CB_OUT_VIDEO_CB"
= FROM "reg_OUT_VIDEO_CB_sec" TO "outPort_OUT_VIDEO_CB" 3 ns;

Figure 4.59: UCF Constraint Example

makes delay chain matching much more predictable. The example in Figure 4.59 shows output pads

being assigned the same timing group (TNM). Timing speci�cations (TIMESPEC) are then assigned

between the groups. In this case 3ns is the delay between the last register in the pipeline and the

output bu�ers.

4.5. Creating a Device Dependent Asynchronous library Page 111

4.5 Creating a Device Dependent Asynchronous library

To introduce asynchronous operation to a circuit/netlist, an additional set of cells are required to re-

place the synchronous clock net. Ideally an additional EDIF �le containing a library of asynchronous

components described in terms of architecture primitive components would provide a simple mecha-

nism to modify the source synchronous EDIF �le. This option is facilitated by the use of the external

keyword in the EDIF speci�cation to allow linking between multiple EDIF �les and a sharing of cells.

However it was discovered that Xilinx place and route tools will only accept one EDIF �le in its input

list of design �les. This adds an additional complication in that only asynchronous components used

in the conversion will be added to the source EDIF �le: in essence merging the two EDIF �les into

one.

The following subsections will document the asynchronous components required and their resultant

structure within the EDIF �le.

4.5.1 Delay Chains

For completeness the asynchronous component library contain delay chains as well as controllers. The

discussion on how delay chains are created and their performance is documented in the previous report.

In the context of the design �ow proposed in this document, the delay chains are described in terms

of primitive EDIF cell components within the external library. These EDIF components are the result

of the code discussed in the previous report. There are sixteen delay chains within the asynchronous

library, eight that composed of XOR gates in series and eight that are composed of look-up tables in

series. Each has speci�c constraints based on their component placement and are named according to

their delay properties. Both variants are asymmetric delays that allow a larger delay for rising edge

events and a smaller delay for falling edge events. The performance of these delays in context of this

design �ow will be explored further in Section 4.6.

4.5.2 Asynchronous Controllers

The undecoupled controllers demonstrated in previous work, although small, do not have su�cient

performance for the resources used. Using an undecoupled controller would mean that only half of the

latches/registers in a design would hold valid data at any one instant. At this stage a number of other

controllers were investigated for various attributes. Their operations were also considered in terms

of the synchronous circuit structures they would augment. The investigation and evaluation is based

around a linear pipeline. This provides a testbench platform to determine the throughput potential

of the controllers in an ideal environment with accurate implementation delays. This pipeline also

provides su�cient �exibility to explore the constraints required to �nd the optimal implementation

that minimises routing delay.

4.5. Creating a Device Dependent Asynchronous library Page 112

(a) Synthesised EDIF

attribute BEL : string;
attribute BEL of c_mull: label is "F";
� limits LUT postition in slice

c_mull : LUT4_L
generic map (INIT => x"00d4")
� implements c= (rst')(ab'+ c(a+b'))
port map (LO => c_int,
� Altered for better feedback timing
I0 => b_int,
I1 => a_int,
I2 => c_int,

I3 => RESET);

(b) VHDL Description

Figure 4.60: Undecoupled Latch Controller

This section documents the controllers considered and their FPGA implementations. A comparison

of their linear pipeline performance is discussed along with the evolution of the primary controller

used in the conversion �ow.

4.5.2.1 Undecoupled Latch Controller

As mentioned in the previous report, the undecoupled latch controller was primarily used as a trial

controller to allow simple debugging opportunities and assessing the ease of which Muller C-elements

can be transferred and optimised on an FPGA. In the context of creating a library of asynchronous

components, this controller was the �rst entry in this library. It provided useful guidance in progra-

ming look-up tables to optimise gates and and inverters. The Figure 4.60 shows a Muller C-element

described in VHDL vs its equivalent synthesised EDIF netlist description. This EDIF representa-

tion was the key testing platform for the combination of mapping constraints requirement to ensure

consistent performance. This means altering the input combinations for particular signals, conse-

quently altering the look-up table contents and ensuring that the look-up table is positioned correctly

within a slice to minimise the feedback delay. The downside to this controller is performance. A pipe-

line using undecoupled latch controllers will only contain half as many valid tokens as there are latches

in the pipeline. Figure 4.61 shows the timing waveform of a 4 stage pipeline circuit and the amount

of tokens successfully passed after 500ns. In this simulation we assume that the output response is

instantaneous and the input response is also instantaneous between the Request and Acknowledge

events. The intermediary stages show request signals after the delay chains as well as the acknowledge

signals. For these comparisons the delay chains were all the same value to minimise any impact they

might have on evaluating the controller performance. These simulations form a simple comparison of

the subsequent controllers and their relative merits in relation to the amount of resources they use.

4.5. Creating a Device Dependent Asynchronous library Page 113

0 (ps) 100000 200000 300000 400000 500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

reset

req_l

ack_l

input_num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

dp(1) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

cp_r(1)

cp_rd(1)

cp_a(1)

dp(2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

cp_r(2)

cp_rd(2)

cp_a(2)

dp(3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

cp_r(3)

cp_rd(3)

cp_a(3)

output_num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

req_r

ack_r

Figure 4.61: Undecoupled Latch Controller Waveform

The result of the undecoupled controller was surprising. Within the 500ns time limit 19 data tran-

sactions were concluded. In FPGAs the dominant delays are routing delays and since the undecoupled

controller has minimal logic, it bene�ts from reduced routing congestion and good performance com-

pared with the subsequent controllers.

4.5.2.2 Semi-decoupled Latch Controller

The next addition to the asynchronous library was the semi-decoupled latch controller [71] presented

Paul Day and Steve Furber that increased performance to allow every latch in the pipeline to hold

valid data. In terms of FPGA resources utilised, Figure 4.62 shows the increase in complexity where,

look-up tables require constraints to position themselves relative to their neighbours. Look-up tables

now need speci�c constraints on the suitable input pin for the function (i.e. the correct position for

a feedback, request or acknowledge pins), the correct position within the slice to minimise the delay

between internal controller signals and the correct position of the controller relative to the datapath

latches/registers it is associated with. This means using a number of placement constraints, regional

location constraints (RLOC) to maintain relative look-up table positions, BEL constraints to restrict

output pins within a slice and specifying look-up input pins explicitly. Evaluating all con�guration

possibilities required an extensive testing period to �nd the optimal combination.

4.5. Creating a Device Dependent Asynchronous library Page 114

Rin

Rout

Aout

Ain

Q

D

G
CLR

LDC

LO

I0

I1

I2

LUT3_L

Ltin out

LO

I0

I1

I2

I3

LUT4_L

RESET

Q

D

G
CLR

LDC

Figure 4.62: Semi-Decoupled Latch Controller

Note that latches are now used within controllers. This is for two reasons: the �rst concerns how

Muller C-elements are reset and the second is concerns the utilisation of resources within an FPGA

slice. A 4 input look-up table can singularly represent a three input Muller C-element, with the fourth

input used for feedback as shown in Figure 4.60. If a reset pin is required another input is consumed,

meaning a single look-up table could only implement a two input Muller C-element. The Xilinx slice

architecture has a register/latch primitive located after each look-up table (for synchronous design

e�ciency) and so can act as a reset point for the output of Muller C-elements. This novel technique

allows four input look-up tables to implement a three input Muller C-element.

The timing waveform from the simulation shows the performance di�erences slight modi�cations

to handshake dependencies can make. The throughput unfortunately has not increased, managing

18 transactions within 500ns. As mentioned previously, the increased complexity means increased

routing congestion and thus the bene�ts of further decoupling are not realised.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0(ps) 100000 200000 300000 400000 500000

reset

req_l

ack_l

input_num0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

dp(1) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

cp_r(1)

cp_rd(1)

cp_a(1)

dp(2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

cp_r(2)

cp_rd(2)

cp_a(2)

dp(3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...

cp_r(3)

cp_rd(3)

cp_a(3)

output_num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

req_r

ack_r

Figure 4.63: Semi Decoupled Latch Controller Waveform

4.5. Creating a Device Dependent Asynchronous library Page 115

4.5.2.3 Broad Request-Activated Fully Decoupled (BRF) Latch Controller

Originally proposed by Lui [79] this controller proved to have very high performance within the class

of 4-phase controllers evaluated. The unique aspect of this controller was achieving fully decoupled

performance from only three gates, as opposed to the four gate solution suggested by Paul Day and

Steve Furber [71]. From an FPGA context this controller was another step up in complexity, requiring

additional routing constraints to maintain optimal routing delay between look-up tables. Increasing

the decoupling within an asynchronous controller means increasing the number of internal variables

to indicate when the parts of the input and output handshakes are complete and the latch can be

enabled. In terms of the amount of resources, shown in Figure 4.64, this fully decoupled controller

needs an additional look-up table and latch over and above the semi-decoupled version as discussed

previously. Again the locations of these primitive components need to be found empirically to establish

the optimal time of the key timing arcs in the STG.

Figure 4.64: Broad Request Activated Fully Decoupled Latch Controller

Figure 4.65 shows minimal increase in speed over the semi-decoupled controller, with only an

additional transaction completed in the same time period. There is also a crucial di�erence in this

simulation.

4.5. Creating a Device Dependent Asynchronous library Page 116

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 100000 200000 300000 400000 500000

reset

req_l

ack_l

input_num0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

dp(1) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

cp_r(1)

cp_rd(1)

cp_a(1)

dp(2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

cp_r(2)

cp_rd(2)

cp_a(2)

dp(3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

cp_r(3)

cp_rd(3)

cp_a(3)

output_num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

req_r

ack_r

Figure 4.65: BRF Latch Controller Waveform

Previously the input and output response delays to the pipeline were zero, using this controller

the request response (Rin−) was delayed by 5ns after every acknowledge event otherwise data would

be lost. The primary reason for this was the critical arcs in the STG shown in Figure 4.66. If the

internal transitions take longer than either the input or output arcs then data will be lost. Since there

is a degree of variability in FPGA routing even with constraints, this assumption could be violated

thus making this controller unsuitable for use in FPGAs.

Lt+

Lt-

Rin+

Rin-

Ain+

Ain-

Rout-

Aout+

Aout-

A-

A+ Rout+

Figure 4.66: Critical Arcs of the BRF Latch Controller

4.5.2.4 Mousetrap Latch Controller

To increase performance and resource utilisation again, the mousetrap latch controller [82] was also

considered. This design uses 2-phase signalling for the transfer of data between latches and level-

based signalling for the transparency of latches, removing the complex capture/pass register structure

of traditional 2-phase designs [84]. It is a very elegant and quick solution, that allows �exibility for

non-linear datapaths. Figure 4.67 shows with only one XOR gate in its gate-level description it can

be synthesised without using look-up tables at all, instead using the carry chain logic within the slice

architecture.

4.5. Creating a Device Dependent Asynchronous library Page 117

Rout

Ain
Rin

RESET

Q

D

G
CLR

LDC

in out

in[0]

in[1]
out

Lt

in outAout

Figure 4.67: Mousetrap Latch Controller

The timing waveform shows a large increase in throughput from using 2-phase signalling nearly

doubling the number of transactions to 41. This performance comes from three controller functions

acting in parallel: the request to the successor stage is generated, the acknowledge is sent to the

predecessor stage and the latch becomes opaque- protecting the data held in the current stage. This

speed and simplicity has only one timing constraint that cannot be modelled in an STG: there is a race

condition between disabling the latch of the current stage and receiving new data from the previous

stage. If the latches are not opaque quick enough data corruption will occur. In a traditionally

designed asynchronous circuit these controllers are a very persuasive design decision. In the context

of synchronous conversion, there are other issues that must be addressed. As discussed in Section

4.4.4 feedback loops are a major justi�cation for using multiple registers. Using multiple mousetrap

controllers, with their lower resource usage would be a simple solution however adapting the mousetrap

controller to accommodate the re-ordering of signal events to initiate data transfer would mean re-

designing the mousetrap controller to be �ow equivalent.

�Two behaviours are �ow equivalent if and only if they have the same domain and their

signals hold the same values in the same order.� [73]

In other words, if a synchronous and an asynchronous circuit which perform the same operation are

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 ...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

0 100000 200000 300000 400000 500000

reset

req_l

ack_l

input_num0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

dp(1) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

cp_a(1)

dp(2) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

cp_a(2)

dp(3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 ...

cp_a(3)

output_num 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

req_r

ack_r

Figure 4.68: Mousetrap Latch Controller Waveform

4.5. Creating a Device Dependent Asynchronous library Page 118

Q

D

G

PRE

LDP

Rsin out

Rout

Rmin out

Rin

Q

D

G
CLR

LDCLO

I0

I1

I2

LUT3_L

Q

D

G

PRE

LDP

LO

I0

I1

I2

LUT3_L

RESET

LO

I0

LUT1_L

Aout

LO

I0

I1

I2

LUT3_L

Q

D

G
CLR

LDC
Ain

Figure 4.69: AACIF Register Controller

supplied with the same input data, the output data would be exactly the same. Where this becomes a

problem is in redundancy used in synchronous design to represent data validity. The classic example

is a clock enable line: if we assume that a register and a FIFO are connected in series using the same

clock signal. If a logical test is performed on the input data of the register to control the validity7

of that data, that control signal would drive the clock enable pin of that register. The FIFO would

sample the output data from the register on every rising clock edge, including the valid and invalid

data. There would be over head in having to sample the same clock enable control signal and bundled

it with the data for every subsequent clock enable pin. The equivalent asynchronous design would not

output invalid data at all. A true asynchronous design would perform the same logical test to assess

data validity, the logical test would then interact the control handshake to inhibit the request signal

ever reaching the controller of the corresponding register. In this case the FIFO would not store the

same data values as the synchronous circuit. In other words the behaviours are not �ow equivalent,

although both circuits have the same domain (the same input values), the signals would not hold the

same values nor the same order.

The complexity of introducing a further control step to deal with feedback structures and changing

the order of transitions proved an investigation point that drifted out of context and thus this design

exploration was not continued. The focus then changed to designing a controller that could implement

decoupled operation as well as maintain �ow-equivalence.

.

4.5.2.5 AACIF Controller

This is a new 4-phase controller (shown in Figure 4.69) which was designed to approximate the

performance of the mousetrap controllers whilst accommodating �ow equivalence. The controller also

maintains the implementation restrictions of one slice per controller, using at most only four look-up

tables and 4 registers. The �rst major di�erence to the other controllers, as mentioned previously

in Section 4.4.3, is the use of double data path registers. There are two motivators for this decision.

7Validity does not indicate the validity regions in the context of handshake protocols

4.5. Creating a Device Dependent Asynchronous library Page 119

Firstly feedback structures require an additional storage element to complete the dependencies required

by their combinatorial operation. More detail on this scenario is discussed in Section 4.4.3. The

second motivator was decoupling performance. The previous fully decoupled controller discussed in

Section 4.5.2.3, in light of the performance di�erence from the mousetrap controller, is hindered by

the fundamental coupling of a pipeline:

�One pipeline stage may store a new data token from its predecessor stage if its successor

stage has input and stored the data token that the pipeline stage was previously holding�

[83]

i.e. the performance of the fully decoupled controller is still limited by the dependencies of operation,

blocking or starvation of a pipeline stage will still occur. Adding an additional register relieves these

dependencies further. Combinatorial operations can execute in parallel, allowing a bundled data

implementation to approximate true data dependent execution.

R m +

R m -

R s+

R s-

R in+

R in-

A in+

A in-

R ou t+

R ou t-

A ou t+

A ou t-

A +A-

Figure 4.70: AACIF Controller STG

The motivation for using registers as opposed to latches has more implementation origins. Firstly

the storage elements in an FPGA are recon�gurable to either registers or latches. There is no area

penalty (the common motivator in ASIC implementations) in using a register rather than a latch.

Most clocked designs in FPGA devices will naturally use registers with low skew clock inputs and

use latches to implement incomplete combinatorial assignments. Edge-triggered components, such as

registers, are e�ectively composed of level-triggered components (i.e. latches) with timing constraints

on their setup times and transition rates. These constraints allow the design of the controller to

be simpler. The only consideration is the position of the rising edge for the clock input in relation

to the handshake signals. A controller for a latch may need more logic to ensure the status of the

latch (open or opaque) is managed succinctly. The �nal motivator for using a register is power

savings. Normally open latches have been shown [68] to have greater power consumption (in return

for decreased latency) whilst normally opaque latches have lower power consumption because they

limit the number of transitions in nearby combinatorial logic. Registers are normally opaque meaning

there is very few advantages in using latches in this asynchronous context.

4.6. Analysis and Results Page 120

Flow equivalence has been addressed in this controller by altering the sequence of handshake events

coupled with the naturally opaque nature of registers. For the STG shown in Figure 4.70 the initial

state of the controller indicated by the dots is Rout+, A+ and Ain−. This means that each controller

we always push date to its successors. This allows the output environment to control the data rates

through the circuit. In the context of the �ow equivalence discussion in Section 4.5.2.4 where the

clock enable line would invalidate the output data transaction, this controller would still intiate a

transaction, maintaining the value and order of data signals. Designing the controller to operate in

this manner with registers restricts the data validity regions to early or broad schemes.

With the output handshake starting �rst, data on the output of the secondary register is passed

to the successor stage �rst. Only then will an input handshake from the predecessor stage be allowed

and data can be captured by the primary register (Rm+). This new input data will only be captured

by the secondary register (Rs+) once the output handshake is complete (Aout−). This controller

was used in all subsequent simulations and performance measurement metrics. Further detail on its

response times etc is contained in the Analysis and Results Section. In comparison to the previous

controllers the timing waveforms from this controller (in Figure 4.71) are unsurprisingly substantially

denser than the fully decoupled controllers with around 50 transactions happening at the output of the

pipeline within 500ns. An uncompressed waveform showing the full 50 transactions can be found in

Appendix C.2.2. This implementation has demonstrated substantially better performance that other

controllers in the same testbench.

0 2 3 4 5 6 7 8 9 ...

0 1 2 3 4 5 6 7 8 9 ...

0 1 2 3 4 5 6 7 8 9 ...

0 1 2 3 4 5 6 7 8 9 ...

0 1 2 3 4 5 6 7 8 9 ...

0 100000 200000 300000 400000 500000

reset

req_l

ack_l

input_num0 2 3 4 5 6 7 8 9 ...

dp(1) 0 1 2 3 4 5 6 7 8 9 ...

cp_r(1)

cp_rd(1)

cp_a(1)

dp(2) 0 1 2 3 4 5 6 7 8 9 ...

cp_r(2)

cp_rd(2)

cp_a(2)

dp(3) 0 1 2 3 4 5 6 7 8 9 ...

cp_r(3)

cp_rd(3)

cp_a(3)

output_num0 1 2 3 4 5 6 7 8 9 ...

req_r

ack_r

Figure 4.71: AACIF Controller Waveform

4.6 Analysis and Results

Two test circuits have been used to evaluate various aspects of the design. As part of an industrial

FPGA based video system used to condition and process multiple streams of 24bit video data, a 422

to 444 format converter and a 444 to RGB format converter [80] are required. These provide a simple

4.6. Analysis and Results Page 121

mechanism to evaluate how circuit size and structure a�ect the performance of the control network.

The 422 to 444 circuit only performs data duplication and realignment utilising approximately 10

registers and 30 look-up tables with clock enable logic. The 444 to RGB is a signi�cantly larger

circuit utilising over 120 registers and look-up tables as well as 5 embedded multipliers and feedback

structures that challenge the conversion tool in a far more expansive manner. In using these two

di�erent circuits we can examine the e�ect of more resource competition and constraint interactions.

The test circuits were implemented solely on the device without any testbench circuitry that could

skew the results. Although this may a�ect the performance of the overall circuit due to I/O delays,

there is no impact on the local performance of the asynchronous structures evaluated in the following

sections.

4.6.1 Timing Results

4.6.1.1 Delay Chain Accuracy

The �rst area for evaluation is the delay chains, and how close they match the worst case delay

through their corresponding combinatorial logic block. Delay chain accuracy was measured using

timing groups placed in the UCF �les that accompany the altered EDIF �les. These timing groups

can subsequently be targeted by static timing analysis tools (included the Xilinx tool suite) after the

circuit has been placed and routed. The timing information of combinatorial clouds and delay chains

can then be directly compared. This information is the key parameter that is passed back up the

design �ow to the asynchronous structure insertion within the design �ow shown in Section 4.2.

Figure 4.72 and Figure 4.73 show the percentage di�erence between the worst case delay through

the data path and the delay through the corresponding delay chain. The delay chain length (i.e. the

number of components connected in series) has a 'x' pre�x if XOR carry chain logic is used instead

of look-up tables. The 422 to 444 converter circuit shows a relatively accurate set of delay chains

compared with wide variety of di�erences for the 444 to RGB circuit. There are occasions in each

circuit where delay chains are dominated by routing delay rather than logic delay. This means that the

total delay of some delay chains does not correspond to the expected delay from a particular length

of delay chain, making the tuning and constraint process even more important. Ideally we would

prefer the di�erence to be zero, however there are a few occasions where the delay chains signi�cantly

overshoot and other occasions where they undershoot. A circuit will not function correctly if a delay

chain undershoots, thus additional delay elements must be added to restore functionality.

4.6. Analysis and Results Page 122

0.8

1.3

1.8

2.3

2.8

3.3

3.8

-4
.4

4%

54
.8

1%

56
.8

6%
4.

32
%

57
.9

2%
5.

72
%

1.
93

%

-8
.9

8%
1.

39
%

-1
.0

0%
8.

39%

-3
.5

5%
5.

29
%

3.4
8%

4.0
0%

1.8
4%

4.0
7%

0.3
6%

19
.4

9%

Difference (%)

D
el

ay
 (

ns
)

2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 6 6 6 6 6 8 8 8 8 8 x2

Delay Chain Length

Delay Chain Data Path

Figure 4.72: Delay Chain Accuracy of 422 to 444 Circuit

There are only 4 delay chains in Figure 4.72 that are signi�cantly larger than the worst case delay

through their corresponding logic block. These are due to the minimum delay we can create using 2

look-up tables. The large negative di�erences seen in Figure 4.73 rely on the fact that the request

signal still has to go through another look-up table within the controller and then upwards to the clock

pin of the register. We have allowed a maximum di�erence of -15% to be absorbed in the controller.

This is due to controller delay from a transition on the input request port to a transition on the clock

input of the �rst register. This delay is su�cient to move the data out of the setup and hold region

for that register, providing the delay chain with additional margin.

The embedded 36 bit multipliers are the only component that force an over estimation. To optimise

synchronous designs each multiplier has a register built into the output pins. This means that the

static timing analysis tool is only able to measure the delay up until the inputs pins of the multiplier.

There are 5 multipliers in the 444 to RGB circuit and Figure 4.73 shows 5 occurrences that have delay

chain lengths over-estimated to 3 XOR gates to accommodate for this additional delay. Overall the

444 to RGB circuit has larger delays requiring XOR based delay chains. This comes at the cost of

delay overhead which explains the greater variations in accuracy compared to the smaller 422 to 444

circuit.

4.6. Analysis and Results Page 123

0.8

1.8

2.8

3.8

4.8

5.8

6.8

-1
.28

%
2.

83
%

40
.83

%

11
.04

%

21
.28

%

24
.00

%
9.

56
%

6.
00

%
5.

39
%

11
.18

%

13
.54

%

-1
2.4

3%

-2
.83

%
0.

27
%

2.
58

%

32
.93

%

47
.97

%

47
.24

%

36
.28

%

Difference (%)

D
el

ay
 (

n
s)

0.8

1.8

2.8

3.8

4.8

5.8

6.8
2 2 2 2 2 2 3 3 x1 x2 x2 x2 x2 x2 x2 x2 x3 x3 x3

Delay Chain Length

Data Path Delay Chain

Figure 4.73: Delay Chain Accuracy of 444 to RGB Circuit

4.6.1.2 Clock Skew

Perhaps the most di�cult timing issue to solve is the variation in delay(Tsk in Figure 4.74) across

the nets that drive the clock pins of each register group. Synchronous FPGAs have a few low skew

dedicated clock trees to ensure that the rising edge of the clock propagates to all registers in the circuit

within a certain time. Since the granularity of the conversion is at the datapath level, the number of

registers clocked by di�erent nets means that using the dedicated clock tree is impractical. There are

two ways in which we minimise clock skew between the registers:

1. Secondary registers are locked very close to the primary registers, this ensures that the divergence

of the clock net is limited between single bit register pairs.

2. Secondly, any remaining skew is absorbed within the controller itself where an internal delay

(LUT1_L component shown in Figure 4.69) can ensure that the secondary register never receives

a rising edge until all of the primary registers have received theirs.

Figure 4.74 shows the main contributors that a�ect the position of data relative to rising edge on

the clock pin. In order to guarantee successful operation the Rm + Tdp must be equal or less than

Rs + Tcd assuming the switching delay of the register [86] is negligible. Synchronous FPGA designs

that approach the timing limitations of the device often su�er from setup and hold violations, i.e.

situations where stable data and a clock edge do not align resulting in a register capturing �uctuating

data and entering a metastable state.

4.6. Analysis and Results Page 124

R sR m

D atapath

D elay (T dp)

R i

A oA i

R o
C ontroller D elay (T cd)

T sk

Figure 4.74: Balancing Data Path and Controller Delay

In order to evaluate the potential risks of timing violations, static timing analysis tools were also

used to determine the propagation delays through the critical paths. In a similar manner to delay

chain measurement, nets were grouped into timing groups which could then be probed to extract the

critical timing information to assess timing violations. Figures 4.75 and 4.76 show the di�erence in

delay between Rm and Rs signals for each controller in each circuit. Hold violations occur when the

delay through the controller from Rm+ to Rs+ is smaller than the time it takes for the data to reach

the input of the secondary register. Ideally we would prefer a negative di�erence between the times.

There are two observations from the data presented in each Figure. In the smaller 422 to 444

circuit where there was a lesser contention for resources, we are more likely to have a delay imbalance

in favour of the secondary registers mitigating setup and hold issues. Where there are less routing

resources available, there is a higher chance of setup and hold problems as shown by the predominantly

positive di�erences in Figure 4.76. The highest di�erence between Rm and Rs is 0.662 ns. The internal

delay within the controller consists of 3 look-up tables and 2 latches, which including routing is more

than su�cient to re-balance Rs +Tcd to match Rm + Tdp (from Figure 4.74) assuming the data path

delay is minimal due to the mapping constraints.

4.6. Analysis and Results Page 125

Rm - Rs

-0 .700

-0.600

-0.500

-0.400

-0.300

-0.200

-0.100

0.000

0.100

0.200

0.300

0.400

A B C D E F G H I J K L M

Re g is te r Gr o u p

D
if

fe
re

n
c

e
 (

n
s

)

Figure 4.75: Matching Clock Nets of 422 to 444 Circuit

R m - R s

-0 .8 0 0

-0 .7 0 0

-0 .6 0 0

-0 .5 0 0

-0 .4 0 0

-0 .3 0 0

-0 .2 0 0

-0 .1 0 0

0 .0 0 0

0 .1 0 0

0 .2 0 0

0 .3 0 0

0 .4 0 0

0 .5 0 0

0 .6 0 0

0 .7 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7

R e giste r G roup

D
if

fe
re

n
c

e
 (

n
s

)

Figure 4.76: Matching Clock Nets of 444 to RGB Circuit

4.6.1.3 Controller Propagation Delays

The next big performance inhibitor on the control network is the delay through the register control-

lers. Place and route tools have no guidance on how to arrange con�gurable logic block components

optimally for multiple paths and so the consequence of this is that the delays through the critical

paths in the controller can be excessive. With the STG shown in Figure 4.70 in context, there are two

key parameters to monitor that:

1. Response Time (Rt): The time from the input request line going high Rin+ till the output

request goes high Rout+

2. Acknowledge Time (At): The time from the input request line going high Rin+ till the input

acknowledge goes high Ain+

4.6. Analysis and Results Page 126

The propagation delay from the primary register capturing data (Rm+) to the secondary register

capturing data (Rs+) is vitally important. If the routing delay between the two registers is excessive

then data could be lost or setup and hold issues could occur as the delay from Rm+ to Rs+ could

be less than datapath delay for that stage. To resolve these potential issues the controllers have an

explicit implementation so that look-up tables are con�ned to a speci�ed area. The look-up tables

and latches of each controller have mapping constraints embedded within their EDIF declarations.

This means the contributions that the response and acknowledge time make to Tcd are prioritised and

minimised.

The back annotation process was used to verify the propagation delay through each controller.

This allows an accurate timing measure of the performance on the intended device. In Tables 4.10

and 4.11 we compare the constrained controllers8 in their �rst iteration of Rt and At (subscript i)

against their �nal iteration (subscript f). These measurements were recorded from back annotated

simulations. Here we can detect the edge transitions and record accurate times between them.

Ctrl Ati(ns) Atf (ns) 4At Rti(ns) Rtf (ns) 4RT

A 0.555 0.516 -7.% 2.562 2.886 12.7%

B 0.966 0.516 -46.6% 5.085 2.242 -55.9%

C 1.004 0.516 -48.6% 22.872 20.179 -11.8%

D 1.306 0.977 -25.2% 3.691 2.832 -23.3%

E 1.459 1.073 -26.5% 3.457 3.107 -10.1%

F 1.391 0.99 -28.8% 3.459 3.318 -4.%

G 0.823 0.712 -13.5% 3.411 2.866 -16%

H 0.756 0.536 -29.1% 2.701 2.112 -21.8%

I 1.561 0.734 -53% 19.37 19.638 1.4%

J 0.7 0.653 -6.7% 2.512 2.357 -6.2%

Table 4.10: Controller Delays of the 422 to 444 circuit

Incremental compilation allows the optimal controller placement in relation to the registers and

delay chains because it retains all the place and routing information for parts of the circuit that are

unchanged. During the last iterative cycle the constraints are relaxed to allow the routing process to

have more freedom in optimising net delays. In both tables, columns4At and4Rt indicate the change

in Acknowledge time and Response time respectively. For the majority of controllers, the negative

percentages indicate that the time has been improved, in some cases as much as 55.9% however there

are controllers where timing has increased by as much as 41.7%.

8Note: there are three less controllers listed than Section 4.6.1.2 because controllers that duplicate clock enable
functionality have multiple input requests making timing measurement dependant on multiple arbitrary sources

4.6. Analysis and Results Page 127

Ctrl Ati(ns) Atf (ns) 4At Rti(ns) Rtf (ns) 4RT

1 1.394 1.09 -21.8% 3.684 4.831 31.13%

2 0.798 0.749 -6.2% 2.975 3.136 5.4%

3 0.802 0.684 -14.7% 3.212 3.41 6.2%

4 0.763 0.798 4.6% 3.031 3.022 -0.3%

5 0.7 0.798 14% 3.096 3.693 19.3%

6 1.101 0.615 -44.1% 3.32 2.836 -14.6%

7 1.519 0.712 -53.1% 3.896 2.968 -23.8%

8 0.776 1.012 30.4% 3.471 3.375 -2.8%

9 1.188 1.06 -10.8% 3.906 3.888 -0.5%

10 0.719 0.719 0.00% 3.126 3.126 0.00%

11 0.702 0.555 -20.9% 3.461 2.943 -15%

12 0.779 0.817 4.9% 3.388 3.648 7.7%

13 0.823 0.711 -13.6% 3.13 3.283 4.9%

14 0.634 0.705 11.2% 3.018 3.109 3%

15 0.761 0.884 16.2% 3.345 3.244 -3%

16 0.802 0.802 0.00% 3.063 3.182 3.9%

17 1.055 1.119 6.1% 3.546 3.454 -2.6%

18 0.659 0.616 -6.5% 3.478 2.864 -17.7%

19 1.151 1.027 -10.8% 4.823 4.48 -7.1%

20 1.485 1.015 -31.7% 4.358 3.519 -19.3%

21 1.383 1.183 -14.5% 3.644 3.365 -7.7%

22 0.659 0.78 18.4% 2.87 4.067 41.7%

23 0.821 0.821 0.00% 2.998 3.214 7.2%

24 1.001 0.781 -22% 3.251 2.988 -8.1%

25 0.567 0.567 0.00% 2.917 2.781 -4.7%

26 0.749 0.543 -27.5% 3.136 2.822 -10%

27 0.719 0.821 14.2% 3.109 3.239 4.2%

Table 4.11: Controller Delays of the 444 to RGB circuit

4.6.2 Utilisation Results

FPGA resource utilisation is a key factor in the ability of a device to meet the performance require-

ments of a particular circuit. A FPGA which does not have su�cient capacity will su�er from resource

contention. Since the slowest part of a synchronous circuit governs the throughput of a circuit, re-

source contention can drammatically a�ect the performance of circuit purely by poor allocation of

resources. Resource utilisation is worthwhile avenue which demonstrates the resource e�ciency of this

conversion tool, and an indirect performance measurement.

Historical asynchronous ASIC designs have always su�ered from increased silicon usage than their

synchronous counterparts. In recent times Handshake solutions [89] and Desynchronisation [66] have

shown comparable silicon use to synchronous circuits, however in the FPGA environment this dif-

ference is expected to widen further. The optimisation of FPGAs (with the exception of Achronix

[88]) for synchronous circuits means that asynchronous implementations will always be inferior to

synchronous circuit in terms of resource utilisation.

4.6. Analysis and Results Page 128

Resource Summary for 422 To 444

Logic Utilisation HASTE AACIF Sync
Total Number of Slice Registers 83 145 9
Number used as Slice �ip �ops 83 86 9
Number used as Slice latches 0 59 0

Total number of 4 input LUTS 216 255 26
Number used as logic 216 251 26

Number used as route-thru 0 4 0

(a) 422 to 444 Resource Comparison

Resource Summary for 444 To RGB

Logic Utilisation HASTE AACIF Sync
Total Number of Slice Registers 261 453 104
Number used as Slice �ip �ops 261 338 104
Number used as Slice latches 0 115 0

Total number of 4 input LUTS 491 369 120
Number used as logic 485 277 120

Number used as route-thru 6 92 0

(b) 444 to RGB Resource Comparison

Table 4.12: Resource Utilisation Comparison

A useful comparison however is in the resources consumed by di�erent asynchronous circuit styles

on FPGAs. In this situation Haste from Handshake solutions has been used to provide a valid

benchmark on the resource e�ciency of the conversion process. Table 4.12 shows the resource results

of the same functionality synthesised from synchronous VHDL, the Haste FPGA prototype �ow and

the proposed conversion process. The synchronous utilisation has only been added as a reference for

the asynchronous results, as mentioned earlier, there is signi�cantly more overhead in the asynchronous

implementations. The results have been extracted from the reports produced by the mapping stage

that forms a signi�cant part of the place and routing of a circuit design.

In the context of the asynchronous resource utilisation there is an interesting trade-o� between the

number of look-up tables used and the number of registers used between the Haste implementation and

the AACIF implementation. In the case of smaller circuits as demonstrated with the 422 to 444 circuit

the Haste implementation has more e�cient resource use with approximately 3% less register use and

13% less look-up tables used as logic. This is due to the increased complexity of the asynchronous

controllers used in the asynchronous conversion. With larger circuits as shown in Table 4.12b the

larger computational requirements override the increased register use. Where the AACIF version uses

42% less look up tables as logic, it uses 29% more registers that the Haste implementation. Here we

begin to see the bene�ts of maintaining the logic optimisation performed during synthesis.

We conclude that there is more computational space available in the AACIF process, the Haste

process uses more look-up tables in its resource allocation, limiting the combinatorial depth available.

The AACIF implementation uses more registers but provides greater combinatorial �exibility.

4.6. Analysis and Results Page 129

4.6.3 Power Spectrum Analysis and Core Voltage Stability

Most large, dense IC's are designed to implement speci�c tasks. As a result their power supply

requirements are within a certain range. Since FPGAs can recon�gure to any given application, their

transient switch currents can vary dramatically. This �exibility means that distributing power to

an FPGA must be based on a worst cast scenario [65]. The power supply decoupling network must

be tuned to the speci�c transient current needs; otherwise ground bounce and power supply noise

will exceed the limits that allow the devices to operate. In most case this is ±5% of the nominal

Vcc. Excess on the power rails leads to jitter on all signals in and around the device, leading to

inconsistent operation. The transient switching currents in synchronous designs are mostly focused

around components at the printed circuit board (PCB) level and the clock tree internal to the FPGA.

Being able to remove the switching currents or reduce the switching currents can have an e�ect on

PCB design and component usage.

This section discusses the impact of implementing AACIF circuits on FPGAs with respect to the

transient currents that are required from the core voltage rails of the FPGA.[74]

4.6.3.1 Power Supply Network Background

Low frequency variations in power consumption are normally the result of large portions of a device

being enabled or disabled. These variations are normally in the millisecond range. High frequency

variations are the the result of switching events internal to the FPGA and usually happen on the

scale of the clock frequency and the �rst few harmonics [67]. This has been observed with great e�ect

on microprocessors where asynchronous devices show a lower average noise and less spikes than their

synchronous counter parts performing the same operations [72] [77].

Since Vcc is �xed, changing power demands results in a changing current demand. When the cur-

rent draw changes, the power distribution system cannot respond instantaneously due to its inherent

inductance. Although resistance is a factor, inductance is dominant impedance. For a short time

before the power supply can adapt, the voltage at the device changes. This is where power supply

noise appears. Voltage regulators can only maintain a constant voltage for events at frequencies from

DC to a few kilohertz. For all transient events that occur above this range, decoupling capacitors

are required to provide the transient current at particular frequencies. This has the e�ect of reducing

the size of the transient currents in the power supply network. Ideally one capacitor should be suf-

�cient however real capacitors have lead inductance and equivalent series resistance that limit their

useful frequency range. If the impedance of the power supply network is to remain constant multiple

decoupling capacitors are required to reduce the impedance at the desired switching frequencies.

4.6. Analysis and Results Page 130

Figure 4.77: Scope Probe with Decoupling Capacitors Removed

4.6.3.2 Measurement and Setup

The aim of this series of measurements is to determine how much noise is introduced to the power

supply network by the transient switching currents from the core voltage lines of the FPGA. In this

context decoupling capacitors hinder the accuracy of our measurements. To alleviate this and gain

a clear reading from the core voltage lines, all of the decoupling capacitors were removed and the

oscilloscope probe attached to the pads closest the FPGA to minimise the inductance loop. The

removed capacitors are shown in Figure 4.77 along with the soldered probe. A high bandwidth 1 GHz

Le Croy oscilloscope [87] was used along with a passive probe (shown in Figure 4.77) which it was

assumed had su�cient bandwidth for the measurement with a 50W cable and a minimal ground loop.

A picture of the developement board from the other side with the connection to the oscilloscope is

shown in Appendix C.3. The oscilloscope is capable of performing Fourier analysis in real-time and

so it was preferential to use this method to capture the noise spectrum rather than using a spectrum

analyser.

Within the FPGA two test benches were constructed to feed the circuits with su�cient data to

exercise their full functionality. For simplicity and minimal footprint, the synchronous circuits were

driven by a ROM containing video patterns. The asynchronous circuits, although utilising the same

ROM required an additional wrapper to push data through the circuit. Before measurements were

obtained, a testbench spectrum was captured and subsequently subtracted from the main measure-

ments. An additional background measurement was taken to eliminate any induced voltages. The

background noise spectrum is shown in Figure 4.78 where we can see a number of noise spikes or

induced voltages in the core voltage lines without any power to the board. The highest 83.335 MHz

spike can be attributed to the oscilloscope used. As this scope has a PC based architecture the front

side bus is likely to be running at this frequency. The additional spikes are of unknown origin.

4.6. Analysis and Results Page 131

0 20 40 60 80 100 120
−60

−55

−50

−45

−40

−35

−30

−25

−20

−15
Background Noise Spectrum

Frequency (MHz)

dB
m

83.335MHz

64.497MHz

41.66MHz

Figure 4.78: Noise Spectrum of the Background

4.6.3.3 Results

The �rst spectra shown in Figure 4.79 is the synchronous implementation of the 444 to RGB circuit.

A similar spectra for the the 422 to 444 circuit was also produced and can be found in Appendix C.4.

The background noise has been removed leaving only the perturbations caused by transient currents

in the core voltage lines. In both circuits we can identify the 610kHz spike as switching currents from

the board regulator on the PCB. The next substantial spike is the clock used in the circuit at 12.5MHz,

along with harmonics at 25 MHz and beyond, The largest negative spike is the result of increased

background noise at 83.335 MHz as discussed previously. The remainder of the spectrum is the result

of individual circuit events around the clock requiring current to transition. These characterise the

operation of the circuit from a power consumption perspective.

4.6. Analysis and Results Page 132

0 20 40 60 80 100 120
−15

−10

−5

0

5

10

15

20

25

Frequency (MHz)

dB
m

Synchronous 444 to RGB Spectrum

25MHz

12.5MHz

610kHz

Figure 4.79: 444 to RGB Circuit Noise

On their own the spectra do not reveal too much, however, overlaying the synchronous spectra on

top of the same measurements from the asynchronous implementations reveal the bene�ts from AACIF

circuits. The asynchronous measurements have also had the background perturbations removed.

Figure 4.80 has the AACIF implementation spectra in pink. Almost every spike in both �gures

from the AACIF implementation is less than the synchronous implementation, especially the clock

harmonics. We still see the board level spikes from the switch regulator, however the maximum spike

after the regulator is around 6dBm for the AACIF implementation and 13dBM for the synchronous

implementations.

What we see is the extent to which the AACIF circuits a�ect the power supply network. The clock

spikes and their harmonics are not present, meaning there is no need for the board level decoupling

capacitors to provide additional charge9. This has implications for the number of components used in

the board assembly and the overall cost of manufacture, a signi�cant di�erence from the synchronous

implementations.

9there is on-chip decoupling that could also have an impact here

4.6. Analysis and Results Page 133

0 20 40 60 80 100 120
−15

−10

−5

0

5

10

15

20

25

Frequency (MHz)

d
B
m

Spectra Overlay of 444 to RGB circuits

AACIF

Spectrum

Synchronous

Spectrum

Figure 4.80: 444 to RGB Circuits Noise Spectrum Overlay

4.7. Conclusions and Future work Page 134

4.7 Conclusions and Future work

The work presented in this document provides a complete picture on how to automate the implemen-

tation of asynchronous circuits on FPGAs. The revised design �ow builds upon e�cient, industry

proven synthesis tools to optimise datapaths. An iterative approach allows the asynchronous control

network to be tuned and optimised to complement the already optimised datapath. The design �ow

provides an additional implementation option for synchronous designs.

The synchronous conversion algorithm provides a consistent repeatable process to implement asyn-

chronous circuits on FPGAs. The conversion algorithm starts from a synchronous EDIF circuit des-

cription and rebuilds a datapath abstraction from its low level primitive description. The clock tree

is then removed and an asynchronous control network is inserted. Due to its abstraction approach

in mapping circuits, the algorithm has su�cient �exibility to function with multiple synthesis tools

that produce EDIF netlists. Basing the conversion on an open industry standard has been key to its

success. Although targeted to a speci�c FPGA device vendor, the use of custom libraries mean that

the conversion algorithm can be targeted to many other vendors. The key to the performance of this

conversation is the integration of constraints into the asynchronous EDIF netlists.

Using a library of pre-routed components to implement circuits asynchronously is the cornerstone

of this work. It means that downstream place and route tools treat the asynchronous control network

in the same way as embedded components such as ethernet controllers or embedded memory blocks.

The library contains numerous delay chain and controller implementations, designed with di�erent

priorities and properties. Along with the novel constraint managment, a new asynchronous controller

was added to the library. This controller demonstrated signi�cant performance whilst using minimal

resources and maintaining data equivalence to the synchronous design. The library allows designer

�exibility in tailoring the control network to resource utilisation or timing performance. Using a

common library and merging the used components into the source EDIF netlist provides compatibility

with existing place and route tools.

The results of these e�orts summarise to timing, utilisation and noise spectrum bene�ts. The

analysis of proven industrial video circuits indicate that the conversion has the ability to �nd the

optimal timing performance for the crucial asynchronous control network. The relevant sections

have demonstrated the timing bene�ts of embedded constraints through delay chain accuracy and

controller propagation delay improvements. Device utilisation, although greater than the synchronous

equivalent has shown greater �exibility and e�ectiveness in comparison to the only other asynchronous

tool capable of implementing asynchronous circuits on FPGAs. The most signi�cant result was the

reduction in the noise spectrum from the FPGA. Removing the clock from the system has reduced

the noise on the core voltage lines, reducing the number of compensatory components in the power

distribution system of the PCB.

4.7. Conclusions and Future work Page 135

4.7.1 Further Considerations

There have been points where other avenues of research have been assigned a lower priority in the

context of achieving the overall goal. This section discusses the viable continuations and improve-

ments on the work presented here. Firstly, the accuracy of delays could be improved further with

investigations into utilisation of programmable interconnect points. These provide the �exibility to

control the paths that the nets take through the routing matrices of FPGAs. The algorithms used

by synchronous tools to balance routing delays are not applicable to asynchronous circuits, and in-

vestigation into utilising these points could result in further timing bene�ts for asynchronous control

networks. Another avenue of interest was the granularity of pipelining. The clock trees within FPGA

devices have very low skew paths throughout the entire device. Large datapath widths would bene�t

from using these clock trees rather than the local routing resources. Restricting this work to 4-input

look-up table based devices was an imposed constant in developing the conversion algorithm. Since

that decision was made new devices have emerged with 6-input look-up tables. Developing a library

to suit these devices would provide a useful insight into the e�ect on overheads for the asynchro-

nous control network. Finally, the overheads associated with an asynchronous control network in an

FPGA should be investigated further.This work should establish if introducing timing assumptions or

designing a generic controller structure based on look-up tables can tackle synthesis overheads.

4.8. References Page 136

4.8 References

[65] M. Alexander. (2005, February) Power Distribtuion System(PDS) Design: Using Bypass/De-

coupling Capacitors (XAPP623). Xilinx Ltd. Last Accessed: March 2011. [Online]. Available:

http://www.xilinx.com/support/documentation/application_notes/xapp623.pdf

[66] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, �Desynchronization: Synthesis of

Asynchronous Circuits From Synchronous Speci�cations,� IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 25, no. 10, pp. 1904�1921, October 2006.

[67] R. M. Easson, �Analytical Edge: Essential High-Speed PCB Design For Signal Integrity,� lasts

Accessed: November 2011 http://www.analytical-edge.com.

[68] A. Efthymiou and J. Garside, �Adaptive Pipeline Structures for Speculation Control,� in Procee-

dingsof the 9th International Symposium on Asynchronous Circuits and Systems, May 2003, pp.

46 � 55.

[69] Elgris Technologies. (2005) Edif overview. Last Accessed: March 2011. [Online]. Available:

http://www.elgris.com/content/edif_overview.html

[70] D. Flanagan, Java in a Nutshell - A Desktop Quick Reference: Covers Java 5.0, 5th ed. O'Reilly,

2005.

[71] S. Furber and P. Day, �Four-phase Micropipeline Latch Control Circuits,� IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 4, no. 2, pp. 247�253, June 1996.

[72] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor, and G. Stegmann, �An

Asynchronous Low-Power 80C51 Microcontroller,� in Proceedingsof the 4th International Sympo-

sium on Advanced Research in Asynchronous Circuits and Systems, April 1998, pp. 96 �107.

[73] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann, �Polychrony for system design,� Journal for

Circuits, Systems and Computers, vol. 12, pp. 261�304, 2002.

[74] H. Johnson and M. Graham, High-Speed Digital Design. Prentice Hall, 1993.

[75] H. J. Kahn and R. F. Goldman, �The Electronic Design interchange Format EDIF: Present

and Future,� in Proceedings of the 29th ACM/IEEE Design Automation Conference, 1992, pp.

666�671.

[76] M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-a-Chip Designs, 3rd ed.

Springer Publishing Company, Incorporated, 2007.

[77] J. Kessels and A. Peeters, �The Tangram Framework: Asynchronous Circuits for Low Power,� in

Proceedings of the Asia and South Paci�c Design Automation Conference, 2001, pp. 255 �260.

http://www.xilinx.com/support/documentation/application_notes/xapp623.pdf
http://www.elgris.com/content/edif_overview.html

References Page 137

[78] D. E. Knuth, The Art of Computer Programming: Sorting and Searching, 2nd ed. Addison

Wesley Longman Publishing Co., Inc., 1998, vol. 3.

[79] J. Lui, �Arithmetic and Control Components for an Asynchronous System,� Ph.D. dissertation,

University Of Manchester, 1998.

[80] C. Poynton, Digital Video and HDTV Algorithms and Interfaces. Morgan Kaufmann Publishers

Inc., 2003.

[81] P. Seibel, Practical Common Lisp. APress, 2004.

[82] M. Singh and S. Nowick, �MOUSETRAP: High-Speed Transition-Signaling Asynchronous Pipe-

lines,� IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 6, pp.

684 �698, June 2007.

[83] J. Sparso and S. Furber, Principles of Asynchronous Circuit Design - A Systems Perspective.

Kluwer Academic Publishers, 2001.

[84] I. E. Sutherland, �Micropipelines,� Communications of the ACM, vol. 32, pp. 720�738, June 1989.

[85] M. Wirthlin, B. Pratt, and J. Johnson. BYU EDIF Tools. Brigham Young University. Last

Accessed: March 2011. [Online]. Available: http://reliability.ee.byu.edu/edif/

[86] Virtex-II Datasheet. Xilinx Inc. Last Accessed: March 2011. [Online]. Available: http:

//www.xilinx.com/support/documentation/virtex-ii_data_sheets.htm

[87] 6100A Oscilloscope, LeCroy, 2007. [Online]. Available: http://www.lecroy.com

[88] (2006) Speedster Asychronous FPGAs. Achronix Semiconductor. [Online]. Available: www.

achronix.com

[89] (2001) HT80C51 Microcontroller. Handshake Solutions. [Online]. Available: www.

handshakesolutions.com

http://reliability.ee.byu.edu/edif/
http://www.xilinx.com/support/documentation/virtex-ii_data_sheets.htm
http://www.xilinx.com/support/documentation/virtex-ii_data_sheets.htm
http://www.lecroy.com
www.achronix.com
www.achronix.com
www.handshakesolutions.com
www.handshakesolutions.com

Part III

Conclusions

138

5.1. Thesis Summary Page 139

5.1 Thesis Summary

In this �nal section, there is a summary of the core technical reports that make up this thesis and

a summary of the main contributions from this work. The outcomes of the work in each technical

report are discussed in relation to the industrial motivations and objectives of each body of work.

This portfolio thesis starts with a technical report on region based contrast enhancement on a

FPGA platform. This addresses a topic of research which is of interest and debate from academic

communities and of considerable interest to industrial bodies. From an EngD programme perspective

this is an excellent opportunity to analyse the topic from two viewpoints. Contrast enhancement

algorithms are key to many of the products produced by Thales Optronics Ltd. Field programmable

gate arrays are also key to many platforms and embedded systems produced by the company. The

results of the investigation returned an implementation strategy and the key contributing factors in im-

plementing Contrast Limited Adaptive Equalisation(CLAHE) on FPGA image processing platforms.

Previous implementations were either not region based, non-comparable or targeted for alternative

platforms that were not optimal for implementing CLAHE. The implementation is veri�ed as being

acceptable and accurate in terms of the golden reference model used and showed very little com-

putational delay that would potential impact the latency of an imaging system. The design factors

are de�ned to be the ratio of image to region size and the amount of memory allocated for both.

It is acknowledged that there are potential optimisations that could be investigated further, howe-

ver these optimisations would be generic to development of most region based contrast enhancement

implementations on an FPGA platform.

With a change of supervision and direction, the project progressed onto technical report 2. Follo-

wing up on the other aspect of the initial brief, research focused on establishing asynchronous circuits

on FPGA devices. The main motivation for this work is to establish if any of the bene�ts which have

been demonstrated for ASIC devices can be applied/transformed to FPGA devices. The investigation

surmised that 4-phase bundled data is the most suitable asynchronous design style for FPGAs. This is

primarily due to the ability of this asynchronous design style to utilise the industry standard synchro-

nous synthesis tools which are highly optimised for FPGA architectures. This decision provoked the

creation of a new FPGA design �ow that allowed asynchronous circuits to be formed from two HDL

circuit descriptions, one for the datapath and another for the control path. Asynchronous components

can now be created using FPGA primitives and collected to form the contents of an asynchronous

library. Novel delay chain and asynchronous controller design strategies provide the consistent and

repeatable implementations that make up the contents of the library . A simple pipeline was presented

which demonstrated the veri�cation methodology of the handshake protocols. The key challenge was

to �nd the common ground between asynchronous design theory and a practical FPGA implemen-

tation. The result of this work is an established route to implement circuits asynchronously in an

5.2. Thesis Contributions Page 140

FPGA. This provided the impetus to proceed with an automated approach which could be used to

investigate the potential asynchronous design advantages on an FPGA device.

The third body of work drew upon the success of establishing the correct operation of asynchro-

nous control network components on FPGA devices. An automated design �ow is presented (AACIF)

which performs a conversion of synchronous FPGA circuits, allowing them to operate asynchronously.

This approach was primarily focused on the lower level conversion, presenting a novel methodology

which abstracts an RTL datapath from FPGA primitive netlist descriptions. At this stage there are a

number of circuit manipulations, including removal of the clock tree, which allow the original circuit to

operate asynchronously. In doing so a new asynchronous controller designed speci�cally with FPGA

primitive components was compared against other controller implementations. The results of this

work are covered under timing, resource utilisation and noise spectrum bene�ts. The conversion �ow

demonstrated that it is able to �nd the optimal timing performace of the delay chain and asynchro-

nously controllers contained within the library of components. It also demonstrated a more �exible

utilisation of primitive FPGA resources. The most signi�cant change is the reduction in noise and

harmonics on the voltage rails of the core FPGA logic. This reduction has a direct cost saving for

design e�ort and manufacturing costs of a printed circuit board. There were a number of topics that

can be derived from this work, including reducing resource overheads and improved delay matching

capabilities, as well as applications for optimising current design �ows for an FPGA platform.

In conclusion, this thesis has made a number of contributions to the implementation of imaging

algorithms and asynchronous circuits on FPGA devices. This has advanced the capabilities of the

sponsoring company, Thales Optronics Ltd, and provided new insights into the implementation capa-

bilities of modern FPGA devices.

5.2 Thesis Contributions

There are number of contributions that this thesis and the work undertaken during the research period

have made. The industrial nature of the EngD programme means that the contributions extend wider

than the technical elements. The following points summarise the contributions this work has made

across the technical and industrial environments.

� Image algorithms research is a continuous task within Thales Optronics Ltd. Many algorithms

described at high levels of abstraction are evaluated to assess their suitability and quality in

addressing the needs of the products and ultimately the needs of the customer. It is seldom that

there is an opportunity to extend the evaluation of an algorithm down to the implementation

stages. The e�ort and expertise required to do so is often allocated onto other tasks, whereas

the implementation knowledge is often crucial in assessing if an imaging algorithm will suit a

particular product or function. Implementing region based contrast enhancement outside the

5.2. Thesis Contributions Page 141

limitations of project timescales allowed valuable implementation knowledge to be passed up to

those that were evaluating imaging algorithms, making a direct impact and contribution to the

e�ectiveness of those engineering teams.

� Although not contributing to the technical element of this thesis, the business modules were al-

ways assessed and considered within the context of the day-to-day running of Thales Optronics

Ltd. One class in particular contributed to the internal decision on a crucial piece of software

that was key to the company processes. The assignment from the Making Decisions module,

primarily used to demonstrate the knowledge of multi-criteria decision analysis, contributed a

methodical and thorough solution to the discussion on this particular problem. The recom-

mendation provided transparency for the trade-o�s in this decision and decision visibility to

management that was not present before.

� The technical contributions being with the low level implementation of Muller C-elements with

primitive FPGA components. Isolating the key parameters and embedded constraints to ensure

the implementation was consistent and repeatable lead the foundations for further developments

in asynchronous controllers. A internal intellectual disclosure application was submitted within

Thales Optronics Ltd to protect this work, recognising the novelty and contribution this work

has made to asynchronous circuits on FPGA devices.

� Accurate delay chains are fundamental to the operation and performance of bundled data cir-

cuits. This work contributed new methods used to create delay chains speci�cally for FPGA de-

vices adds a unique degree of �exibility, consistency and interchangeability that was not present

in previous published works.

� There has been no published mention of techniques used to verify asynchronous handshake

protocols on FPGA devices. The approach taken in this work contributes simple on-chip veri�-

cation of event dependencies and validity regions which are crucial to the operating assumptions

of asynchronous handshake protocols.. This ability is outwith the current capability of on-chip

logic analysers which are the established veri�cation methods for synchronous circuits.

� One of the key elements in constructing the conversion tools was the EDIF Tools API by the

EDIF Team at Brigham Young University. As this work added and challenged the use of this

API, a number of bug �xes and design discussions were fedback to the authors providing a

modest contribution to the future development and reliability of the API.

� This work has provided a contribution to the implementation possibilities of asynchronous cir-

cuits on FPGA devices. This is the only approach that used the EDIF netlist to construct

asynchronous control networks out of FPGA primitive components. This asynchronous library

5.2. Thesis Contributions Page 142

contains circuits that are now part of the FPGA design libraries within Thales Optronics Ltd.

This approach to constructing circuits has optimisation applications for other design �ows.

� The primary contribution of this work to both the sponsoring company and the wider community

is the only conversion tool which targets the implementation of circuits asynchronously on FPGA

devices. There have been a few approaches that have demonstrated asynchronous circuits on

FPGAs, however none have proposed or developed tools speci�cally targeted to implementing

asynchronous circuits on FPGA devices. The novelty of this work is emphasised with the lack

of comparative tools for this technology platform.

Part IV

Additional Material

143

Appendix A

CLAHE Implementation and Analysis

Supplements

A.1 CLAHE Design Tools

The work on CLAHE followed the standard tool �ow set out by Mentor Graphics and Thales Optronics.

This is essentially the standard tool �ow set out by EDA companies but with an accompanying tool

suite called FPGA workbench. This suite adds a number of important functions that are lacking from

the standard FPGA design �ow. The main aim is to contain the EDA tool version and the design

code in one manageable location. This approach builds in version management in the form of CVS

or subversion for the behavioural design, synthesis constraints, place and route constraints, and all

embedded primitive components. Couple this with the encapsulated tool environment of :

1. Mentor graphics HDL Designer 2005.3

2. Mentor Graphics Precision Synthesis 2005.128c

3. Mentor Graphics Modelsim

4. Xilinx ISE m8.2i

allows the entire designer to be repeatable and easily managed for future projects. HDL design is

the primary design entry tool, this interface with all other aspects of the design �ow and can be used

primarily on its own with the help of TCL scripts to setup the various simulation types, synthesis

priorities and place and route settings. This was particularly e�ective when integrating with Chipscope

pro in order to verify the correct operation and using the place and route tools to produce the timing

information required for back annotated simulations.

144

A.2. Critical Path Synthesis View Page 145

A.2 Critical Path Synthesis View

The critical path through the redistribution block has been deliberately simpli�ed in the main text

for the bene�ts of a succinct discussion. The synthesis and place and route tools have calculated that

the critical path in the design is within the redistribution block. Figure A.1 shows the critical path

spanning the logical histogram bin update calculation and the various surrounding parameters. The

primary reason for this path being long is due to the interface to the block RAM, pipelining this

calculation to reduce the critical path length would signi�cantly alter the memory interface.

Figure A.1: Critical Path through Redistribution Block

A.3. Histogram Pipeline Power Consumption Page 146

A.3 Histogram Pipeline Power Consumption

This section details the oscilloscope traces from the power consumption investigation on the histogram

pipeline. Figures A.2 and A.3 show the impact in the core voltage rails when the algorithm is running

on the FPGA and when it is not. The plots show the direct measurements of current and voltage with

a selection of statistical measures. The cursors have been placed to isolated the change in current for

each histogram option. The power consumption traces have been created by a mathematical function

on the oscilloscope.

(a) Option 1

(b) Option 2

Figure A.2: Current Traces of Options 1 & 2

A.3. Histogram Pipeline Power Consumption Page 147

(a) Option 3

(b) Option 4

Figure A.3: Current Traces of Options 3 & 4

Appendix B

Implementations of Asynchronous

Components

B.1 Delay Chains

Fundamental to asynchronous bundled-data circuits are the delay chains that maintain the validity

regions between data and handshake signal transitions. The following sections provide a brief summary

of the VHDL code used to create the FPGA primitive based implementations. The �nal section

comments on the asynchronous wrappers used to interface to primitive embedded memory blocks.

B.1.1 XOR Carry Chains

The following VHDL code is primarily split into three for-generate statements. These act to daisy

chain a number of XOR gates (XORCY) contained within each slice. Each primitive component is

assigned a regional location constraint based on the optimal routing within the FPGA. The formulae

for these constraints are held in constants and re-calculated on every iteration of the main loop. There

are two conditions for the �rst XOR gate which alter the routing depending on if only one XOR gate

delay is required. If there is more than more gate delay required there are a number of conditions for

the middle and end gates- if there are more than four gate delays required a delay needs to allocated

from gates in neighbouring CLBs , and the correct �nal gate assigned.

148

B.1. Delay Chains Page 149

entity de laycha in i s

generic (

NUM_gates : p o s i t i v e :=2) ;

port (

input : in s td_log i c ;

output : out s td_log i c) ;

end de laycha in ;

ARCHITECTURE chain_arch OF de laycha in IS

signal gnd_p : s td_log i c := '0 ' ;

signal vdd_p : s td_log i c := '1 ' ;

signal intercon_g : unsigned (NUM_gates−1 downto 0) ;

signal intercon_m : unsigned (NUM_gates−1 downto 0) ;

signal i n t racon : unsigned (NUM_gates−1 downto 0) ;

attribute r l o c : s t r i n g ;

begin

i n t racon (0)<=input ;

gate_struct : for i in 0 to (NUM_gates−1) generate

constant xcoord : natura l := ((i mod 4) / 2) ;

constant ycoord : natura l := (i mod 2)+ ((i / 4)*2) ;

constant r l o c s t r : s t r i n g := "X" & intege r ' image (xcoord) & "Y" & intege r ' image (ycoord) ;

−− the numerical sequence for the required x va lues i s simple , 00110011

−− however the y va lues need to be 0101232334344545 which i s s a t i s f i e d b

−− y (i mod 2)+(1/4)*2

−− need to create 4 generate condi t ions . One where there i s only 1 delay

−− required , one where there i s 2 de lays required , one where there i s

−− +3 de lays required , and one where there i s +5 de lays required .

begin

f i r s tga t e_un : i f (i=0 and NUM_gates = 1) generate

−− covers 1 delay , ass ign ing input and output

attribute RLOC of instm_f : label i s r l o c s t r ;

attribute RLOC of ins tg1_f : label i s r l o c s t r ;

attribute RLOC of ins tg2_f : label i s r l o c s t r ;

begin

instm_f : MUXCY −−in ser t ed with intracon

port map (DI => gnd_p , CI => gnd_p , S => vdd_p , O => intercon_m (i)) ;

ins tg1_f : XORCY

port map(LI=>int racon (i) , CI=>gnd_p ,O=>intercon_g (i)) ;

ins tg2_f : XORCY

port map(LI=>intercon_g (i) , CI=>intercon_m (i) ,O=>output) ;

end generate f i r s tga t e_un ;

f i r s t g a t e_ a l l : i f (i=0 and NUM_gates>1) generate

−− covers i n i t i a l de lay for a l l other numbers

B.1. Delay Chains Page 150

attribute RLOC of instm_f : label i s r l o c s t r ;

attribute RLOC of ins tg1_f : label i s r l o c s t r ;

attribute RLOC of ins tg2_f : label i s r l o c s t r ;

begin

instm_f : MUXCY −−in ser t ed with intracon

port map (DI => gnd_p , CI => gnd_p , S => vdd_p , O => intercon_m (i)) ;

ins tg1_f : XORCY

port map(LI=>int racon (i) , CI=>gnd_p ,O=>intercon_g (i)) ;

ins tg2_f : XORCY

port map(LI=>intercon_g (i) , CI=>intercon_m (i) ,O=>int racon (i +1)) ;

end generate f i r s t g a t e_ a l l ;

midgates_f_all : i f (i >0 and i <4 and NUM_gates>4) generate

−− covers de lays 5+ where there i s an add i t i ona l de lay covered by endgate

attribute RLOC of instm_mid : label i s r l o c s t r ;

attribute RLOC of instg1_mid : label i s r l o c s t r ;

attribute RLOC of instg2_mid : label i s r l o c s t r ;

begin

instm_mid : MUXCY

port map (DI => gnd_p , CI => gnd_p , S => vdd_p , O => intercon_m (i)) ;

instg1_mid : XORCY

port map(LI=>int racon (i) , CI=>gnd_p ,O=>intercon_g (i)) ;

instg2_mid : XORCY

port map(LI=>intercon_g (i) , CI=>intercon_m (i) ,O=>int racon (i +1)) ;

end generate midgates_f_all ;

midgates_ft : i f (i >0 and i <(NUM_gates−1) and NUM_gates<5) generate

−− i f de lays −4 then only need mid gate for RLOCS to stay in in i range

attribute RLOC of instm_mid : label i s r l o c s t r ;

attribute RLOC of instg1_mid : label i s r l o c s t r ;

attribute RLOC of instg2_mid : label i s r l o c s t r ;

begin

instm_mid : MUXCY

port map (DI => gnd_p , CI => gnd_p , S => vdd_p , O => intercon_m (i)) ;

instg1_mid : XORCY

port map(LI=>int racon (i) , CI=>gnd_p ,O=>intercon_g (i)) ;

instg2_mid : XORCY

port map(LI=>intercon_g (i) , CI=>intercon_m (i) ,O=>int racon (i +1)) ;

end generate midgates_ft ;

midgates_e : i f (i >3 and i <(NUM_gates−1)and NUM_gates>4) generate

−− only app l i c a b l e for more than 4 de lays

attribute RLOC of instm_mid : label i s r l o c s t r ;

attribute RLOC of instg1_mid : label i s r l o c s t r ;

attribute RLOC of instg2_mid : label i s r l o c s t r ;

begin

instm_mid : MUXCY

port map (DI => gnd_p , CI => gnd_p , S => vdd_p , O => intercon_m (i)) ;

instg1_mid : XORCY

port map(LI=>int racon (i) , CI=>gnd_p ,O=>intercon_g (i)) ;

instg2_mid : XORCY

port map(LI=>intercon_g (i) , CI=>intercon_m (i) ,O=>int racon (i +1)) ;

end generate midgates_e ;

B.1. Delay Chains Page 151

endgate_al l : i f (i =(NUM_gates−1) and NUM_gates /=1 and NUM_gates >4) generate

attribute RLOC of instm_e : label i s r l o c s t r ;

attribute RLOC of instg1_e : label i s r l o c s t r ;

attribute RLOC of instg2_e : label i s r l o c s t r ;

begin

instm_e : MUXCY −−in ser t ed with intracon

port map (DI => gnd_p , CI => gnd_p , S => vdd_p , O => intercon_m (i)) ;

instg1_e : XORCY

port map(LI=>int racon (i) , CI=>gnd_p ,O=>intercon_g (i)) ;

instg2_e : XORCY

port map(LI=>intercon_g (i) , CI=>intercon_m (i) ,O=>output) ;

end generate endgate_al l ;

endgate_lr : i f (i =(NUM_gates−1) and NUM_gates /=1 and NUM_gates <5) generate

−− w i l l have the wrong RLOC i f 5+ de lays

attribute RLOC of instm_e : label i s r l o c s t r ;

attribute RLOC of instg1_e : label i s r l o c s t r ;

attribute RLOC of instg2_e : label i s r l o c s t r ;

begin

instm_e : MUXCY

port map (DI => gnd_p , CI => gnd_p , S => vdd_p , O => intercon_m (i)) ;

instg1_e : XORCY

port map(LI=>int racon (i) , CI=>gnd_p ,O=>intercon_g (i)) ;

instg2_e : XORCY

port map(LI=>intercon_g (i) , CI=>intercon_m (i) ,O=>output) ;

end generate endgate_lr ;

end generate gate_struct ;

END ARCHITECTURE chain_arch ;

B.1. Delay Chains Page 152

B.1.2 Look Up Table Carry Chains

The following VHDL code implements a delay chain using look-up table primitives instead of XOR

gates. The fundamental structure of the code is very similar to the previous implementation splitting

the look-up tables into the �rst, middle and last sections.. The location constraint constants are

slightly di�erent due to the increase number of look-up tables within a slice.

ENTITY delaychain_lut IS

generic (

NUM_gates : p o s i t i v e :=3) ;

port (

input : in s td_log i c ;

output : out s td_log i c) ;

END ENTITY delaychain_lut ;

ARCHITECTURE arch OF delaychain_lut IS

signal gnd_p : s td_log i c := '0 ' ;

signal vdd_p : s td_log i c := '1 ' ;

signal i n t e r con : unsigned (NUM_gates−1 downto 0) ;

attribute r l o c : s t r i n g ;

BEGIN

i n t e r con (0)<=input ;

gate_struct : for i in 0 to (NUM_gates−1) generate

constant xcoord : natura l := ((i mod 8) / 4) ;

constant ycoord : natura l := ((i mod 4)/2)+ ((i / 8)*2) ;

constant r l o c s t r : s t r i n g := "X" & intege r ' image (xcoord) & "Y" & intege r ' image (ycoord) ;

−− the numerical sequence for the required x va lues i s simple , 0000111100001111

−− however the y va lues need to be 00110011223322334455 which i s s a t i s f i e d by

−− ((i mod 4)/2)+(i /8)*2

−− need to create 4 generate condi t ions . One where there i s only 1 delay required , one

−− where there i s 2 de lays required , one where there i s +3 de lays required , and one

−− where there i s +5 de lays required .

begin

f i r s tga t e_un : i f (i=0 and NUM_gates = 1) generate

−− covers 1 delay , ass ign ing input and output

attribute RLOC of i n s t l_s : label i s r l o c s t r ;

begin

i n s t l_s : LUT1_L

generic map (INIT => x"2")

port map (LO => output , I0 => in t e r con (i)) ;

end generate f i r s tga t e_un ;

B.1. Delay Chains Page 153

f i r s t g a t e_ a l l : i f (i=0 and NUM_gates>1) generate

−− covers i n i t i a l de lay for a l l other numbers

attribute RLOC of i n s t l_s : label i s r l o c s t r ;

begin

i n s t l_s : LUT1_L

generic map (INIT => x"2")

port map (LO => int e r con (i +1) , I0 => in t e r con (i)) ;

end generate f i r s t g a t e_ a l l ;

midgates_al l : i f (i >0 and NUM_gates>1 and i /=(NUM_gates−1)) generate

attribute RLOC of instl_m : label i s r l o c s t r ;

begin

instl_m : LUT1_L

generic map (INIT => x"2")

port map (LO => int e r con (i +1) , I0 => in t e r con (i)) ;

end generate midgates_al l ;

endgate_al l : i f (i =(NUM_gates−1) and NUM_gates /=1) generate

−− t h i s i s an AND gate so the delay chain i s asymmetric

attribute RLOC of i n s t l_e : label i s r l o c s t r ;

begin

i n s t l_e : LUT2_L

generic map (INIT => x"8")

port map (LO => output ,

I0 => in t e r con (0) , I1 => in t e r con (i)) ;

end generate endgate_al l ;

end generate gate_struct ;

END ARCHITECTURE arch ;

B.2. Muller C-element Implementations Page 154

B.2 Muller C-element Implementations

During the initial investigations into simple asynchronous components, multiple implementations of

a Muller C-element were trialled. The primary aim of these trials was to minimise the resource usage

and the timing uncertainty by reducing the routing options. Figure B.1 shows the VHDL architecture

of a two input Muller C-element using only one look-up table. The routing of the feedback net is

locked via the BEL constraint on the output pin of the slice. The input pin routing is locked by

specifying the exact look-up table input to use.

ARCHITECTURE arch OF cmul ler2 IS

attribute BEL : s t r i n g ;
attribute BEL of c_mull : label i s "F" ;

signal a_int : s td_log i c ;
signal b_int : s td_log i c ;
signal c_int : s td_log i c ;

BEGIN

−− implements c= (rst ') (ab '+ c (a+b ')) in one LUT
c_mull : LUT4_L
generic map (
INIT => x"00d4") −− 212 modified from 232 for inver t e r at input b
port map (LO => c_int ,
I0 => b_int , −− Altered to su i t rout ing
I1 => a_int ,
I2 => c_int ,
I3 => RESET) ;

Rout<=c_int ;
Ain<=c_int ;
Lt<=c_int ;
a_int<=Rin ;
b_int<=Aout ;
b_int<=Aout ;

END ARCHITECTURE arch ;

Figure B.1: VHDL Implementation of a Muller C-element

If the Muller C-element is being used in a pipeline inverters can be added to each input and

output with a simple re-coding of the look-up table vector. The EDIF implementation in �gure

B.2, although much more di�cult to read, contains the same information as described in the VHDL

implementation. This EDIF cell is included in the Asynchronous component library, bypassing the

synthesis of asynchronous components by synchronous tools.

B.2. Muller C-element Implementations Page 155

(c e l l cmul ler2 (ce l lType GENERIC)
(view arch_unfold_1 (viewType NETLIST)
(i n t e r f a c e
(port Rin (d i r e c t i o n INPUT))
(port Aout (d i r e c t i o n INPUT))
(port Rout (d i r e c t i o n OUTPUT))
(port Ain (d i r e c t i o n OUTPUT))
(port Lt (d i r e c t i o n OUTPUT))
(port RESET (d i r e c t i o n INPUT)))

(property AREA (s t r i n g "1 .000000"))
(property KEEP_HIERARCHY (s t r i n g "TRUE"))
(contents
(i n s t ance c_mull (viewRef NETLIST(c e l lR e f LUT4_L(l i b r a r yRe f xcv2p)))
(property EQN (s t r i n g "((~ I0 * I1*~I2*~I3)+(~ I0*~I1 * I2*~I3)

+(~I0 * I1 * I2*~I3)+(I0 * I1 * I2*~I3)) "))
(property BEL (s t r i n g "F"))
(property NOOPT (s t r i n g "TRUE"))
(property INIT (s t r i n g "00D4")))

(net Rin
(j o in ed
(portRef Rin)
(portRef I1 (in s tanceRe f c_mull))))

(net Aout
(j o in ed
(portRef Aout)
(portRef I0 (in s tanceRe f c_mull))))

(net Ain
(j o in ed
(portRef Rout)
(portRef Ain)
(portRef LO (ins tanceRe f c_mull))
(portRef I2 (in s tanceRe f c_mull))))

(net RESET
(jo ined
(portRef RESET)
(portRef I3 (in s tanceRe f c_mull)))))))

Figure B.2: EDIF Implementation of a Muller C-element

B.3. Asynchronous Wrapper Implementation Page 156

B.3 Asynchronous Wrapper Implementation

Most of the embedded components on an FPGA; BRAMs, multipliers, accumulators are silicon op-

timised implementations that have been designed to run synchronously. An wrapper is therefore

required to adjust their interface to operate asynchronously. This is an unavoidable overhead. In

the case of arithmetic functions, there is su�cient �exibility in their construction that allowing them

to operate asynchronously means disabling the pipelining registers within. Block RAMs required a

custom wrapper to allow them to operate with an asynchronous circuit. Figure B.3 shows the VHDL

description of the wrapper that was used to coordinate data between a synchronous block RAM and

an asynchronous circuit.

ENTITY async_wrap IS

generic (
NUM_BITS : p o s i t i v e :=19) ;

port (
c l k : in s td_log i c ;
en_CE : out s td_log i c ;
Req : out s td_log i c ;
Ack : in s td_log i c ;
data_in : in unsigned (NUM_BITS−1 downto 0) ;
data_out : out unsigned (NUM_BITS−1 downto 0) ;
RESET : in s td_log i c

) ;
END ENTITY async_wrap ;

ARCHITECTURE arch OF async_wrap IS

signal int_req : s td_log i c ;

BEGIN

Req<= int_req ;

req_process : process (c lk , Ack , int_req , Reset)
begin

i f (RESET = '0 ') then

i f (r i s ing_edge (c l k) and Ack= '0 ' and int_req = '0 ') then

data_out<=data_in ;
int_req <= '1 ';

end i f ;

i f (Ack= '1 ') then

int_req <= '0 ';
end i f ;

en_CE<=((not (Ack)) and (not (int_req))) ;
else

int_req <= '0 ';
data_out<=data_in ;
en_CE<= '0 ';
end i f ;

end process ;

END ARCHITECTURE arch ;

Figure B.3: VHDL Wrapper Implementation

Once out of reset this piece of code synchronise handshakes with the enabling of the BRAM output

via the chip enable (CE) pin. When there is no activity on the control network, the chip enable will

go high, on the following rising edge of the clock, data will be passed out of the wrapper along with

a handshake request. At this point the BRAM is disable whilst the handshake is concluded. When

the transaction has completed the cycle will enable again. This approach allows asynchronous access

to the memory but only at the speed of the clock input to the wrapper.

Appendix C

AACIF Supplementary Material

C.1 EDIF Muller C-Element

This section discusses �gure C.1, a Muller C-element implemented within an EDIF �le from

(e d i f example_f i l e
(ed i fVe r s i on 2 0 0)
(e d i f L ev e l 0)
(keywordMap (keywordLevel 0))
(s t a tu s
(wr i t t en
(timestamp 2009 04 21 13 21 53)))

(l i b r a r y example_library
(ed i f L ev e l 0)
(technology (numberDef in it ion))
(c e l l part1 (ce l lType GENERIC)
(view arch (viewType NETLIST)
(i n t e r f a c e
(port a (d i r e c t i o n INPUT))
(port b (d i r e c t i o n INPUT))
(port r s t (d i r e c t i o n INPUT))
(port o (d i r e c t i o n OUTPUT)))

(contents
(i n s t ance comp2(viewRef NETLIST (c e l lR e f LUT3_L (l i b r a r yRe f xcv2p)))
(property EQN (string " ((I0 * I1*~I2)+(I0*~I1 * I2)+(~ I0 * I1 * I2)+(I0 * I1 * I2)) "))
(property RLOC (string "X0Y0"))
(property NOOPT (string "TRUE"))
(property INIT (string "E8")))

(net a
(j o in ed
(portRef a)
(portRef I1 (in s tanceRe f comp2))))

(net b
(j o in ed
(portRef b)
(portRef I0 (in s tanceRe f comp2))))

(net r s t
(j o in ed
(portRef r s t)
(portRef CLR (ins tanceRe f comp3))))

(net o
(j o in ed
(portRef o)
(portRef Q (ins tanceRe f comp3))
(portRef I2 (in s tanceRe f comp2))))

(net PWR
(jo ined
(portRef P (ins tanceRe f PWR))
(portRef G (ins tanceRe f comp3)))))))

)
(des ign part1 (c e l lR e f comp1 (l i b r a r yRe f example_library)))
)

Figure C.1: EDIF Muller C-element Description

157

C.2. Controller Comparisons Page 158

FPGA primitive components . Figure C.1 provides a full EDIF description of a Muller C-element

and demonstrates the EDIF libraries that contain the EDIF cell components that contain the in-

terconnected primitive components. Here the look-up table initialisation values are explicitly stated

along with any constraints.

C.2 Controller Comparisons

This section covers the testbench procedure and methodology used to compare the performance of

the latch controllers. All of the controllers were subject to the same 4-phase tester with the exception

of the Mousetrap controller because it is a transition sensitive component and required a 2-phase

handshake.

C.2.1 Comparison TestBench Files

The testbench instantiates an adaptable Muller pipeline. The length, width, controller type and

delay chain length are all customisable via a set of generic values that are passed through to the

simulation environment. The tester is adaptable via a VHDL con�guration which speci�es a di�erence

architecture dependent on the controller being used in the simulation. Both the 4-phase and 2-phase

architectures simulate immediate responses from the output environment of the pipeline and simulate

delays on the input environment responses. This allows the throughput of the controllers to be

evaluated in a controlled environment.

C.2.1.1 Controller TestBench

ENTITY control ler_bench_tb IS

−− Declarat ions

END control ler_bench_tb ;

ARCHITECTURE s t r u c t OF control ler_bench_tb IS

−− In terna l s i gna l dec lara t ions

SIGNAL RESET : s td_log i c ;

SIGNAL ack_l : s td_log i c ;

SIGNAL ack_r : s td_log i c ;

SIGNAL input_num : unsigned (7 DOWNTO 0) ;

SIGNAL output_num : unsigned (7 DOWNTO 0) ;

SIGNAL req_l : s td_log i c ;

SIGNAL req_r : s td_log i c ;

−− Component Declarat ions

COMPONENT contro l l e r_bench

GENERIC (

CONTROLLER : l a t ch_con t r o l l e r ;

NUM_BITS : p o s i t i v e ;

C.2. Controller Comparisons Page 159

LENGTH : p o s i t i v e ;

STAGE_DEL : p o s i t i v e

) ;

PORT (

RESET : IN s td_log i c ;

ack_r : IN s td_log i c ;

input_num : IN unsigned ((NUM_BITS−1) DOWNTO 0) ;

req_l : IN s td_log i c ;

ack_l : OUT s td_log i c ;

output_num : OUT unsigned ((NUM_BITS−1) DOWNTO 0) ;

req_r : OUT s td_log i c

) ;

ENDCOMPONENT;

COMPONENT cont ro l l e r_bench_tes te r

PORT (

ack_l : IN s td_log i c ;

output_num : IN unsigned (7 DOWNTO 0) ;

req_r : IN s td_log i c ;

RESET : OUT s td_log i c ;

ack_r : OUT s td_log i c ;

input_num : OUT unsigned (7 DOWNTO 0) ;

req_l : OUT s td_log i c

) ;

ENDCOMPONENT;

−− embedded conf i gura t ions

FOR ALL : contro l l e r_bench USE ENTITY Async_FPGA_lib . contro l l e r_bench ;

FOR ALL : cont ro l l e r_bench_tes te r USE ENTITY Async_FPGA_lib

. cont ro l l e r_bench_tes te r (archt_4ph) ;

BEGIN

−− Instance port mappings .

U_0 : contro l l e r_bench

GENERICMAP (

CONTROLLER => semi_dec ,

NUM_BITS => 8 ,

LENGTH => 4 ,

STAGE_DEL => 4

)

PORTMAP (

input_num => input_num ,

req_l => req_l ,

req_r => req_r ,

RESET => RESET,

ack_l => ack_l ,

ack_r => ack_r ,

output_num => output_num

) ;

U_1 : cont ro l l e r_bench_tes te r

PORTMAP (

ack_l => ack_l ,

output_num => output_num ,

C.2. Controller Comparisons Page 160

req_r => req_r ,

RESET => RESET,

ack_r => ack_r ,

input_num => input_num ,

req_l => req_l

) ;

END s t r u c t ;

C.2.1.2 Controller Tester

ENTITY cont ro l l e r_bench_tes te r IS

PORT(

ack_l : IN s td_log i c ;

output_num : IN unsigned (7 DOWNTO 0) ;

req_r : IN s td_log i c ;

RESET : OUT s td_log i c ;

ack_r : OUT s td_log i c ;

input_num : OUT unsigned (7 DOWNTO 0) ;

req_l : OUT s td_log i c

) ;

END cont ro l l e r_bench_tes te r ;

ARCHITECTURE archt_4ph OF cont ro l l e r_bench_tes te r IS

−− t h i s a rch i t e c ture i s for the l e v e l s e n s i t i v e l a t ch con t r o l l e r s

signal r s t_int : s td_log i c ;

signal input_num_int : unsigned (7 DOWNTO 0) := (others=> '0 ');

BEGIN

RESET<=rst_int ;

input_num<=input_num_int ;

i n i t : process

begin

rst_int <= '1 ';

wait for 20 ns ;

rst_int <= '0 ';

wait ;

end process ;

l e f t s i d e : process (ack_l , r s t_int)

begin

i f r s t_int = '1 ' then

req_l <= '0 ';

end i f ;

i f (ack_l= '1 ') then

req_l <='0' after 5 ns ;

end i f ;

i f (ack_l= '0 ') and (r s t_int = '0 ') then

input_num_int<= input_num_int + 1 ;

C.2. Controller Comparisons Page 161

req_l <='1' after 10 ns ;

end i f ;

end process l e f t s i d e ;

r i g h t s i d e : process (req_r , r s t_int)

begin

i f r s t_int = '1 ' then

ack_r<= '0 ';

end i f ;

i f (req_r= '1 ') then

ack_r<= '1 ';

end i f ;

i f (req_r= '0 ') then

ack_r<= '0 ';

end i f ;

end process r i g h t s i d e ;

END ARCHITECTURE archt_4ph ;

ARCHITECTURE archt_2ph OF cont ro l l e r_bench_tes te r IS

−− t h i s a rch i t e c ture i s for the t r an s i s t i on s en s i t i v e l a t ch con t r o l l e r s

signal r s t_int : s td_log i c ;

signal input_num_int : unsigned (7 DOWNTO 0) := (others=> '0 ');

BEGIN

RESET<=rst_int ;

input_num<=input_num_int ;

i n i t : process

begin

rst_int <= '1 ';

wait for 20 ns ;

rst_int <= '0 ';

wait ;

end process ;

l e f t s i d e : process (ack_l , r s t_int)

begin

i f r s t_int = '1 ' then

req_l <= '0 ';

end i f ;

i f r i s ing_edge (ack_l) then

input_num_int<= input_num_int+1;

req_l <='0' after 5 ns ;

end i f ;

i f f a l l i ng_edge (ack_l) or f a l l i ng_edge (r s t_int) then

input_num_int<= input_num_int + 1 ;

req_l <='1' after 10 ns ;

C.2. Controller Comparisons Page 162

end i f ;

end process l e f t s i d e ;

r i g h t s i d e : process (req_r , r s t_int)

begin

i f r s t_int = '1 ' then

ack_r<= '0 ';

end i f ;

i f r i s ing_edge (req_r) then

ack_r<= '1 ';

end i f ;

i f f a l l i ng_edge (req_r) then

ack_r<= '0 ';

end i f ;

end process r i g h t s i d e ;

END ARCHITECTURE archt_2ph ;

C.2. Controller Comparisons Page 163

C.2.2 Expanded Waveforms

Figure C.2 shows the expanded waveforms from the Mousetrap and AACIF controllers.

(a) Mousetrap Expanded Waveform (b) AACIF Expanded Waveform

Figure C.2: Expanded Waveforms

C.3. Power Spectrum Setup Page 164

C.3 Power Spectrum Setup

Figure C.3 shows the front of the Virtex 2 pro development board used to measure the power spectrum.

The only hardware modi�cations are to the decoupling capacitors on the other side of the board. The

passive probe is connected to the oscilloscope via a SMA connector.

Figure C.3: Board Setup

C.4. Power spectrum for the 422 to 444 circuit Page 165

C.4 Power spectrum for the 422 to 444 circuit

Figure C.4 shows the power spectrum from the 422 to 444 video format conversion circuit. The points

on this spectrum are very similar to the 444 to RGB circuit found in the main text. The blue spectrum

is from the synchronous implementation and the red spectrum is from the AACIF implemenation.

The overlay shows the background spike from the oscilloscope and the voltage regulator spike also

present. A similar reduction on clock harmonics can also be seen as well as an average reduction in

spikes where individual circuit events are occurring.

0 20 40 60 80 100 120
−15

−10

−5

0

5

10

15

20

25

Frequency (MHz)

d
B
m

Spectra Overlay of 422 to 444 Circuits

AACIF

Spectrum

Synchronous

Spectrum

Figure C.4: 422 to 444 Circuits Noise Spectrum Overlay

	Abstract
	Acknowledgements
	Declaration of Originality
	I Portfolio Introduction
	1.1 Executive Summary
	1.2 Portfolio Organisation
	1.3 Commercial Relevance
	1.4 External Events
	1.4.1 Academic and Industrial Events
	1.4.2 Conference Publications

	1.5 Taught Modules and Training
	1.5.1 Technical Modules
	1.5.2 Business Modules
	1.5.3 Handshake Solutions TiDE Training

	II Technical Reports
	Region-Based Contrast Enhancement
	2.1 Aims and Introduction
	2.2 Contrast Enhancement Background
	2.2.1 Algorithm Developments
	2.2.2 Platform Developments

	2.3 Contrast Limited Adaptive Histogram Equalisation
	2.3.1 Histogram Creation
	2.3.2 Clipping and Redistribution
	2.3.3 Forming the re-mapping function and smoothing artifacts

	2.4 CLAHE Implementation
	2.4.1 Implementation Tool Flow
	2.4.2 Top Level Overview
	2.4.3 Memory Management
	2.4.4 Pixel feeder
	2.4.5 Weight Generator
	2.4.6 Bilinear sequencer
	2.4.7 Histogram Pipeline
	2.4.8 Smoothing Contextual Regions
	2.4.9 Top Level FSM

	2.5 Analysis and Results
	2.5.1 Image Correctness
	2.5.2 Resource Utilisation Results
	2.5.3 Timing Results
	2.5.4 Power consumption

	2.6 Conclusions and Future Work
	2.7 References

	Establishing Asynchronous Circuits on FPGAs
	3.1 Aims and Introduction
	3.2 Challenges and Motivation
	3.2.1 Previous Contributions
	3.2.2 Fundamental Issues

	3.3 Technical Background
	3.3.1 Synchronous Logic
	3.3.2 Self-timed Logic

	3.4 FPGA Implementation Considerations
	3.4.1 Asynchronous Component Challenges
	3.4.2 Design Tool Considerations

	3.5 Design Flow Proposal
	3.5.1 Standard FPGA Design Flow Modification
	3.5.2 Component Construction

	3.6 Verification and Results
	3.6.1 Back Annotation
	3.6.2 In-circuit Verification
	3.6.3 Delay Chain Matching

	3.7 Conclusions and Future Work
	3.8 References

	Automated Asynchronous Circuits Implemented in FPGAs(AACIF)
	4.1 Aims and Introduction
	4.2 FPGA Design Flow Proposal
	4.3 EDIF Circuit Representations
	4.3.1 Mapping EDIF Files to Object Orientated Structures

	4.4 Conversion Algorithm/Process
	4.4.1 Parsing Input Files and Grouping Data Path registers
	4.4.2 Graphing Structures
	4.4.3 Register Duplication and Controller Insertion
	4.4.4 Register Mapping and Tracing Interconnections
	4.4.5 Connecting Controllers and Inserting Delay chains
	4.4.6 Constraint Insertion

	4.5 Creating a Device Dependent Asynchronous library
	4.5.1 Delay Chains
	4.5.2 Asynchronous Controllers

	4.6 Analysis and Results
	4.6.1 Timing Results
	4.6.2 Utilisation Results
	4.6.3 Power Spectrum Analysis and Core Voltage Stability

	4.7 Conclusions and Future work
	4.7.1 Further Considerations

	4.8 References

	III Conclusions
	5.1 Thesis Summary
	5.2 Thesis Contributions

	IV Additional Material
	A CLAHE Implementation and Analysis Supplements
	A.1 CLAHE Design Tools
	A.2 Critical Path Synthesis View
	A.3 Histogram Pipeline Power Consumption

	B Implementations of Asynchronous Components
	B.1 Delay Chains
	B.1.1 XOR Carry Chains
	B.1.2 Look Up Table Carry Chains

	B.2 Muller C-element Implementations
	B.3 Asynchronous Wrapper Implementation

	C AACIF Supplementary Material
	C.1 EDIF Muller C-Element
	C.2 Controller Comparisons
	C.2.1 Comparison TestBench Files
	C.2.2 Expanded Waveforms

	C.3 Power Spectrum Setup
	C.4 Power spectrum for the 422 to 444 circuit

