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Abstract 

The treatment of hyperacute ischaemic stroke has been revolutionised by the 

concept of potentially salvageable tissue – the ‘ischaemic penumbra’. However, 

current therapeutic practice is to administer thrombolytic therapy with 

recombinant tissue plasminogen activator after exclusion of intra-cerebral 

haemorrhage, with ‘time since onset’ used as a surrogate marker for the 

presence or absence of the ischaemic penumbra. The ability to identify the 

penumbra on an individual basis would enable bespoke treatment plans on the 

basis of underlying pathophysiology. The most commonly employed penumbral 

image technique is multi-modal magnetic resonance imaging (MRI) to identify a 

region of perfusion-diffusion mismatch. However, this approach remains to be 

validated. Moreover, a systematic review presented as an appendix to this thesis 

highlights the marked heterogeneity for its application.  

This thesis focusses on the development of a novel MRI technique (Oxygen 

Challenge) and is the first to report findings from human acute ischaemic stroke. 

The rationale for this technique is that it is sensitive to deoxyhaemoglobin, 

which is produced as a consequence of oxidative metabolism. It therefore has 

the potential to discriminate tissue compartments based on metabolic activity. 

For this study, 35 subjects with acute ischaemic stroke were imaged with 

transient hyperoxia (Oxygen Challenge) applied during continuous T2*-weighted 

MRI. Exploratory analyses suggested the following; 

• Oxygen Challenge precipitates a T2*-weighted signal increase in healthy 

tissue 

• This signal increase is partly dependent on the underlying cerebral blood 

volume, as suggested by univariate and multivariate analyses 

• In general, higher concentrations of oxygen precipitate greater T2*-

weighted signal increases,  but oxygen may influence T2*-weighted signal 

intensity in a bi-modal manner 



3 
 

• The signal changes in operationally defined infarct core are attenuated, 

suggesting a metabolic influence on Oxygen Challenge results 

• Signal increases in the hyperacute perfusion-diffusion mismatch region 

were sometimes exaggerated, consistent with increased oxygen 

extraction fraction. However, small volumes of tissue acquired from only 

a few subjects limited definitive conclusions in this study 

• Oxygen Challenge may detect regions of crossed cerebellar diaschsis, 

although further confirmation is required 

• Maps of ‘percentage signal change’ allowed rapid evaluation of whole 

brain  Oxygen Challenge data 

• Improvements in signal-to-noise ratio are required before this technique 

can be applied in clinical practice. 

On the basis of these data it is concluded that the technique is encouraging and 

further validation is warranted. 
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1 Introduction 

Stroke is a potentially catastrophic disease. Not only is it the second leading 

cause of death worldwide(1) but it also imposes substantial morbidity – 6% of the 

total budget of the United Kingdom’s  National Health Service is consumed by 

stroke care. Approximately 80% of stroke is ischaemic in nature (2), the subtype 

which will be considered in this thesis. The remainder of strokes are accounted 

for by primary intracerebral haemorrhage (ICH) and subarachnoid haemorrhage. 

Data from stroke registries (3) indicate that most ischaemic strokes are within 

the anterior circulation (carotid territory) and most of these are within the 

territory supplied by large (proximal) arteries. Such strokes manifest as 

significant, often devastating, neurological deficit. This, coupled with the large 

volume of tissue amenable to study, has lead to a focus on such anterior 

circulation strokes due to proximal arterial occlusion by many acute imaging 

based studies.  Moreover, advances in our understanding of the pathophysiology 

of ischemic stroke have fuelled developments in stroke imaging. This chapter 

will commence with a brief review of the pathophysiology of stroke before 

describing the current status of stroke imaging, with particular focus on 

Magnetic Resonance Imaging (MRI) of large vessel ischaemic stroke.  

 

1.1 Events Leading to Cell Death 

Large vessel strokes are usually due to vessel occlusion by thrombus. Potential 

sources of thrombus include embolism from plaques on atheromatous large 

vessels such as the carotid artery or aorta, or from a cardiac source. The site of 

arterial occlusion depends, in part, on the size of the thrombus, since it will 

lodge in an artery of comparable size. This occlusion impedes the passage of 

blood, thus reducing cerebral blood flow (CBF) to the brain territories distal to 

the clot. There might either be complete occlusion of the vessel, or 

alternatively some residual flow may be detected around the clot - a good 

prognostic sign with respect to therapy (4). The magnitude of reduction in CBF 

not only depends on this residual flow but also on the anatomical compensatory 

mechanisms which may be able to divert blood flow to hypoperfused regions– the 
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collateral vessels(5). Reversal of flow in the ophthalmic or anterior 

communicating arteries(6, 7), from the posterior communicating artery, or from 

retrograde flow through leptomeningeal anastomoses(5) may provide this 

collateral support. However, if CBF drops below a critical threshold, a cascade 

of events is set in train which may ultimately result in cell death, which may 

occur by five major mechanisms, each of which with its own temporal course. 

These events, which have been extensively reviewed and conceptualized(8, 9) 

are 1) excitotoxity, 2) peri-infarct depolarisation, 3) oxidative stress, 4) 

inflammation and 5) apoptosis, and are illustrated below(Figure 1-1).  

 

 

Figure 1-1 Mechanisms of Cell Death after Stroke. 
Illustrated by Dirnagl and colleagues. Reproduced from 'Dirnagl U, Iadecola C, Moskowitz MA. 
Pathobiology of ischaemic stroke: an integrated view. Trends in Neurosciences. 1999;22:391-397'   
with permission from Elsevier.  

Excitotoxity may occur after a few minutes of glucose and oxygen deprivation 

due to severely reduced CBF. Failure of the energy dependent Na+-K+-ATPase 

pumps precipitates a shift of K+ ions from the intra- to extra-cellular space, with 

a movement of  Na+, Ca++ and Cl- ions in the opposite direction. The extra-

cellular K+ precipitates neuronal depolarization, stimulating glutamate release 

into the synaptic cleft thereby activating N-methyl-D-aspartate (NMDA) and 2-

amino-3-(3-hydroxy-5-methylisoxazol-4-yl) proprionate (AMPA) receptors, 

precipitating an influx of Ca++  to cells, and stimulation of potentially lethal 

intracellular phospholipases and proteases. The increase in Na+ ions leads to 

cellular swelling, lysis, and necrotic cell death. Peri-infarct depolarisations, 



Chapter 1  20 
 
which also occur within minutes after stroke, have been described in animal 

models where the propagation of depolarisations is observed beyond the infarct. 

The duration of these depolarisations is correlated to infarct size(10). Tissue 

acidosis occurring after anaerobic glycolysis may also lead to cell death by a 

number of mechanisms. The next process, ‘oxidative stress’, describes the 

imbalance between potentially toxic oxygen free radicals and the physiological 

defence mechanisms against them –antioxidants. Ischemia and reperfusion 

contribute to the generation of reactive oxygen species through a number of 

mechanisms including the generation of a mitochondrial transition pore (MTP) 

which can subsequently release free radicals. Whilst the processes described so 

far start after a matter of minutes, inflammatory and apoptotic cascades evolve 

over hours to days and also contribute to infarct expansion. Inflammatory 

changes include the infiltration of leukocytes, activation of microglia, and 

expression of potentially detrimental inflammatory cytokines. Apoptotic 

pathways occur in the peri-infarct region and involve the generation of caspases 

which can cleave DNA repair enzymes such as poly-(ADP-ribose_-polymerase 

(PARP), ultimately leading to programmed cell death. 

In summary, cellular death may occur through a number of different mechanisms 

operating over different time scales. This has lead to the concept that patients 

with stroke may still have salvageable tissue at the time they present to 

hospital, and therefore some of these patients may be treated. This concept will 

be expanded in the following sections.  

 

1.2 The Ischaemic Penumbra 

1.2.1 The Concept of the Ischaemic Penumbra 

The observation of different cascades each with their own time course is 

reflected by other observations that following arterial occlusion, all of the 

‘tissue at risk’ may not become infarcted immediately, and also not at the same 

time. Many of these pivotal observations were made in the 1970’s by Symon and 

his group, who used the hydrogen clearance technique to measure cerebral 
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blood flow (CBF) in a baboon model of middle cerebral artery (MCA) 

occlusion(11). It became apparent that a number of CBF thresholds could be 

defined. Firstly, blood flow could be lowered to a ‘benign’ level without 

electrical function becoming affected (oligaemia). Secondly, the threshold for 

complete electrical failure (as measured by the obliteration of somatosensory 

evoked responses) was higher than that for the disturbance of ion homeostasis 

(defined as a massive increase in extracellular potassium [K+] and used a 

surrogate marker for cell death). Furthermore, a pharmacologically induced 

increase in mean arterial blood pressure restored electrical function, suggesting 

the potentially salvageable nature of the ischaemic tissue. Not only did these 

observations lead to the concept of flow thresholds, but the concept of the 

‘ischaemic penumbra’ was born(12). In an analogy to the ‘almost shadow’ state 

seen during a solar eclipse, this term describes a state of functionally inactive 

but structurally intact neurons, which can be salvaged by restoring cerebral 

blood flow.  This is distinct from the region of tissue which will inevitably 

proceed to infarction (core) and the hypoperfused region which will never 

proceed to infarction, benign oligaemia. Although the original definition was 

based upon the mismatch between the state of electrical dysfunction and 

perturbed ion homeostasis, the concept has since been variously defined 

depending of the nature of the scientific study. A more clinically relevant 

definition is that stated by Baron in 1999 which emphasizes its potentially 

salvageable nature(13).  

“a severely ischaemic, functionally impaired tissue at risk of infarction, that will 

be saved if reperfused before it is irreversibly damaged, but that otherwise will 

be progressively recruited into the core until maximum infarct extension is 

reached”.  

Given that this tissue compartment represents a genuine potential therapeutic 

target, the last 30 years has seen vigorous research into further defining and 

identifying this tissue state, and into targeting therapies towards salvaging it. 
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1.2.2 Key Principles of the Ischaemic Penumbra 

A large number of observations have generated some important principles 

underlying the definition of the penumbra, which will be discussed here.  

 

1.2.2.1 The Penumbra is Biologically Compromised 

Although the penumbra is potentially viable, it exists in a compromised state 

and the cascade of ischaemic events which creates the core is also applicable to 

the penumbra. It has been hypothesised(14) however, that in the penumbra peri-

infarct depolarisations may be central to these events and contribute to energy 

depletion, lactic acidosis, differential gene expression and selective neuronal 

loss. Proof of compromised penumbral tissue comes from animal histology 

studies which have shown a clear zone of neuronal damage within a few 

millimetres of the infarct(15). Others have shown neuronal damage in a 

scattered or microfocal pattern(16) within the presumed penumbral region. 

Gene expression in the penumbra is also different from that in normal tissue and 

infarct core (17). In particular, denatured proteins appear to stimulate the 

synthesis of a heat shock protein known as HSP70, and such expression is noted 

to coincide with regions of penumbra(18). Therefore, there is good evidence 

that the penumbra is biologically compromised.  

 

1.2.2.2 Flow Thresholds are Specific for Different Pathophysiological Processes 

Much attention has been focussed on identifying the thresholds which distinguish 

oligaemia from penumbra, and penumbra from core. However, the large body of 

studies of the ‘penumbra’ has used various surrogate markers for the penumbral 

and infarction threshold. Despite a range of methodologies to study a range of 

different biological processes, Hossman(14) concluded a rank order of CBF 

thresholds for the disruption of different processed could still be established 

(Figure 1-2). 
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Figure 1-2 Flow Thresholds as Described by Hossman 
Numerical values indicate CBF in ml/100g/min. CMRG=cerebral metabolic rate of glucose. 
PCr=phosphocreatine depletion. ATP = adenosine triphosphate depletion. K+=potassium ions. Ca++ 
= calcium ions. Reproduced from ' Hossmann KA. Viability thresholds and the penumbra of focal 
ischemia.[see comment]. Ann.Neurol. 1994;36:557-565' with permission from John Wiley and 
Sons. 

In particular, protein synthesis is disturbed well above the threshold for the 

penumbra / oligaemic border and that for electrical failure.  As might be 

expected, when CBF falls further there is electrical failure (15-25ml/100g/min), 

and disturbance of glucose metabolism and anaerobic glycolysis. With more 

severe hypoperfusion there is energy failure, disturbance of ion homeostasis and 

infarction.  

 

1.2.2.3 The Cerebral Blood Flow Threshold for Tissue Infarction is Dynamic and 

Increases with Time 

The CBF threshold which distinguishes infarct core from penumbra is dynamic. 

Jones and colleagues(19) performed MCA occlusion in unanaesthetised monkeys 

for variable periods of time (15-30 minutes, 2-3 hours, or permanently) with 
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concomitant measures of CBF. The study demonstrated that infarction 

thresholds depended not only on the degree of hypoperfusion, but also the 

duration. For example the CBF infarction threshold was 10-12ml/100g/min after 

2-3 hours of occlusion, but rose to 18ml/100g/min after permanent occlusion 

(Figure 1-3). In man, the volume of penumbra has been shown to progressively 

decline with time(20) but in a minority of human strokes may be present as long 

as 48 hours post ictus(21). 

 

Figure 1-3. CBF thresholds for Infarction Increase with Time.  
The x-axis denotes time in hours, and the y-axis denotes locally measured CBF in ml/100g/min. 
Reproduced from an adaptation of  'Jones TH, Morawetz RB, Crowell RM et al. Thresholds of focal 
cerebral ischemia in awake monkeys. J.Neurosurg. 1981;54:773', courtesy of the American 
College of Chest Physicians. 

 

1.2.2.4 Assessment of Haemodynamic Status Solely Using Measures of CBF is 

Inaccurate 

CBF measurements alone do not provide a full description of the haemodynamic 

status of the tissue.  Under normal circumstances CBF is dependent on the 

interaction between the cerebral perfusion pressure (CPP) and the 

cerebrovascular resistance (CVR) which is dependent, in part, on the diameter of 

local vasculature diameter. Lassen(22) described a range of mean arterial 

pressures between which the local vasculature could, by changes in vessel 

diameter, respond to changes in systemic arterial pressure in order to maintain a 

constant cerebral blood flow - a phenomenon termed ‘autoregulation’. However, 

beyond the extremes of this range (typically less than 60mmHg or greater than 

160mmHg) autoregulation can no longer be maintained. The sequence of 

haemodynamic events following hypoperfusion has been reviewed by Markus and 

is summarised as follows (Figure 1-4). 
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Figure 1-4. Sequence of Haemodynamic Perturbations after Ischaemia.  
After arterial occlusion there is a reduction in cerebral perfusion pressure. CBF is maintained by a 
increase in cerebral blood volume (CBV) and when maximal dilatation has been achieved there is 
an increase in oxygen extraction fraction. The line diagrams illustrate the relative changes for each 
parameter. Reproduced from 'Markus. Cerebral Perfusion and Stroke. Journal of Neurology, 
Neurosurgery and Psychiatry. 75(3);' with permission from BMJ Publishing Group Ltd.' 

The first response to severe hypoperfusion is the dilatation of pre-capillary 

arterioles with its associated increase in cerebral blood volume (CBV). 

Thereafter, oxygen action fraction from the blood to the tissue (normally 30-

40%) increases – a phenomenon coined ‘misery perfusion’(23). If this is 

insufficient for metabolic demands then neurological symptoms ensue. If 

perfusion is not restored and the cerebral metabolic rate for oxygen (CMRO2) 

falls, so too does the CBV(24). This implies that penumbral tissue should have 

preserved or increased CBV. These data indicate that knowledge of the CBF 

alone cannot distinguish penumbra from core, and that additional assessment of 

CBV, OEF, and CMRO2  provides a more comprehensive description of the 

haemodynamic and viability state of the tissue. Modern imaging techniques have 

sought to image some or all of these modalities. 

 

1.2.2.5 Timely Restoration of Cerebral Blood Flow Salvages the Penumbra 

In concert with the results suggesting that the threshold for infarction is time 

dependent, Jones and colleagues(19) also reported results for functional 

recovery. After release of an MCA occlusion after 15 minutes, all monkeys made 

a rapid and full recovery. Release of occlusion at later time points, when the 

volume of penumbra was likely to have diminished, led to the clinical 
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improvement in only a proportion of the animals, and an overall lesser degree of 

clinical improvement. Consistent with this, the volume of penumbra in man 

which escapes infarction due to reperfusion is highly correlated with 

neurological recovery(25, 26). These observations, and others like them, mean 

that the penumbra is not just an academic curiosity, but a genuine therapeutic 

target. 

 

1.2.2.6 Clinical Operational Criteria Have Been Devised to Define the Penumbra 

In order to be clear that studies are really investigating what is genuinely 

penumbral tissue, a number of generally accepted criteria have been 

developed(27). These include 1) Hypoperfusion <20ml/100g/min, 2) the 

presence of a neurological deficit, 3) perturbation of normal physiology / 

biochemistry, 4) uncertain fate, and finally 5) evidence that salvage of the 

compartment defined by the criteria for penumbra is associated with improved 

outcome. Novel penumbral imaging techniques should ideally be assessed against 

this standard. 

 

1.3 Recombinant Tissue Plasminogen Activator for Ac ute 

Ischemic Stroke 

The concept of the penumbra has led to the development of a number of 

different reperfusion strategies. Intra-venous recombinant tissue plasminogen 

activator (rtPA) is the only proven reperfusion therapy for use in acute ischemic 

stroke. The rationale is to aid clot lysis, leading to reperfusion, penumbral 

salvage and improved clinical outcome.  

Tissue plasminogen activator (tPA) is a naturally occurring serine protease which 

activates plasminogen to form plasmin, which subsequently breaks down fibrin. 

This achieves lysis of the clots, which are composed of fibrin meshes and 

activated platelets. The therapeutic attractiveness of ‘tPA’ is that it targets 

fibrin bound plasminogen specifically, therefore targeting plasminogen in the 
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clot rather than in plasma(28), potentially reducing bleeding side effects. 

Recombinant DNA technology has allowed the production of rtPA(29) which has 

facilitated modifications of ‘tPA’ such as reduction of half life, and an increase 

in fibrin specificity. Although it is effective for clot lysis, it has side effects 

which include intra-cranial haemorrhage due to a direct effect of proteases on 

haemostatic plugs, and is potentially neurotoxic(30-33).  

The first blinded randomised controlled clinical trial showing efficacy was the 

report from the National Institute of Neurological Disorders and Stroke rtPA 

Stroke Study Group (NINDS trial) in 1995(34). This trial was actually two trials; 

Part 1 (phase IIb trial, 291 patients) and Part 2 (Phase III trial). Both trials used 

the same protocol; after exclusion of haemorrhage by non contrast CT of the 

brain (NCCT) rtPA was administered within 3h using the now approved dosing 

regimen. Although part 1 was negative(p=0.06), part 2 was positive for its end 

point; there was a 12% absolute increase in the number of subjects with minimal 

or no disability at 3 months in the rtPA arm. This corresponded to an odds ratio 

(OR) for a favourable outcome of 1.7 (95% confidence interval (CI) 1.2-2.4). 

Rates of symptomatic intracranial haemorrhage were acceptable, (~7%). A 

recent re-analysis of the data showed that the number needed to treat (NNT) to 

have 1 patient experiencing a better outcome (at least 1 grade improvement on 

the mRS) was ‘3.1’ and the NNT to have a normal or near normal outcome was 

‘8’(35). A separate study also showed that all subgroups of stroke benefited from 

this therapy(36). Reassuringly, results from the Safe Implementation of 

Thrombolysis in Stroke-Monitoring Study (SITS-MOST) registry(37) showed that in 

clinical practice, outcomes pertaining to symptomatic haemorrhage, mortality, 

and functional outcome in clinical practice were comparable (and sometimes 

better) to those achieved in the trials.  

These results were followed up by the European Stroke Study (ECASS) III(38) 

which was a prospective double blind randomised controlled trial which 

administered rtPA or placebo to subjects in the 3 - 4.5h time window. A NCCT 

was obtained to exclude patients with primary intracerebral haemorrhage (ICH) 

or major established infarction. This study showed that the proportion of 

subjects with a mRS score of 0-1 at 90d was greater with rtPA compared to 

placebo (52.4% vs 45.2%). Again, the rates of symptomatic intra-cerebral 

haemorrhage (any bleeding associated with an increase of 4 or more NIHSS 
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points) were acceptable in this study (2.4% with rtPA vs 0.2% in placebo). Again, 

‘real world’ results reported in the Safe Implementation of Treatments in Stroke 

– International Stroke Thrombolysis Registry (SITS-ISTR)(39) suggest that this 

approach is safe; results from 664 patients who had rtPA between 3 - 4.5h 

(median 195 minutes) did not differ from those obtained from 11864 patients 

who had rtPA below 3h (median 140 minutes) with respect to symptomatic intra-

cerebral haemorrhage at 24h, and mortality and independence at 3 months. 

Recently, updated NNT estimates based on the 6 rtPA trials were published(40). 

The NNTB (number need to treat to gain any benefit) and NNTH (number needed 

to treat to harm) for 90 minute intervals up to 6 h were reported. At all points 

up to 4.5h the NNTB outweighed the NNTH. At 4.5-6h, the NNTH outweighed the 

NNTB. The NNTB at 0-90mins, 91-180mins, 181-270mins, and 271-360mins were 

3.6, 4.3, 5.9, and 19.3 respectively. Therefore, all studies seem to point towards 

an upper limit of 4.5h for rtPA administration, in the context of studies which 

used only NCCT to select subjects for rtPA. Other potential reperfusion 

strategies such as intra-arterial thrombolysis(41, 42) and mechanical 

retrieval(43) offer promise but direct randomised evidence showing superiority 

to intravenous rtPA is lacking, and in certain situations may be harmful(44). 

In summary, rtPA is a selective fibrinolytic which is proven to be of benefit in 

patients with acute ischaemic stroke. However, although the penumbra may 

exist up to 48h(21), strategies using NCCT are only effective up to 4.5h. The 

next sections discuss the currently employed imaging strategies to better 

identify subjects who may benefit from rtPA.  

 

1.4 Principles of Magnetic Resonance Imaging 

1.4.1 Signal Generation 

A comprehensive description of the principles of Magnetic Resonance Imaging   

(MRI) is beyond the scope of this introduction. However, basic principles will be 

briefly considered. MRI is based on the concept of Nuclear Magnetic Resonance 

(NMR) which describes the properties of nuclear spins. Atoms which contain an 

uneven nuclear mass such as hydrogen (1H), spin about their own axes – they 
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precess. This gyroscopic motion is analogous to the movement of a spinning top. 

Clinical MRI measures the spins from protons (1H) since water (H2O) is abundant 

in the brain. During scanning a subject is placed in the MR scanner and is 

subjected to an external magnetic field (B0) which causes spins to align with the 

magnetic field (z direction). Spins will align either in a direction parallel to the 

magnetic field (the lower energy state) or anti-parallel (the higher energy 

state). There are always slightly more spins in the lower energy parallel state 

and the difference can be estimated at 0.003% per Tesla. This difference creates 

a magnetisation parallel to the magnetic field – longitudinal magnetisation. 

However, precession is still asynchronous; the protons do not rotate in phase and 

therefore there is no magnetisation in the transverse (x-y) plane (Figure 1-5). 

 

Figure 1-5. Demonstration of the Parallel and Anti- parallel States.  
When protons are subjected to an external magnetic field (B0) they align in the plane of the 
magnetic field (Z-direction). They align either parallel (spinning tops pointing down) or anti-parallel 
(spinning tops pointing up) to this field. Slightly more protons align in the parallel state thus creating 
magnetisation. However the protons are precessing out of phase (note different position of the 
black spots on the spinning tops) and hence there is no transverse magnetisation, hence the MR 
signal cannot be measured without further changes. 

 

The magnetisation in this phase is static and therefore cannot be measured. 

Therefore magnetisation is tipped into the transverse plane by excitation. This is 

achieved by applying electromagnetic radiation (B1) at the same frequency as 

that of the precessing spins - the Larmor frequency. In response, some spins 

move from a low energy (parallel) state to a high energy (anti-parallel) state, 

and thus longitudinal magnetisation decreases. Secondly, the protons start to 
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precess in a synchronous manner; they become ‘in phase’ with each other. This 

means that there is now net magnetisation in the transverse (x-y) direction since 

the different directions of precession by individual protons no longer cancel each 

other out. After the radiofrequency pulse is over and spins re-establish 

equilibrium and move from a high energy anti-parallel state to the more stable 

parallel state, longitudinal magnetisation recovers by a time constant T1 (Figure 

1-6). Given that total magnetisation remains constant, the increase in 

longitudinal magnetisation is offset by a decrease in transverse magnetisation. 

This results from spins interacting with one another and gradually becoming out 

of phase, and is therefore also known as spin-spin relaxation. This occurs at a 

time constant T2. Spins can also become out of phase because of external 

magnetic field inhomogeneities according to the time constant T2’. The time 

constant which describes signal decay due to the combined effects of spin-spin 

interactions and magnetic field inhomogeneities is known as T2* and will be 

exploited in some of the studies described later. This can be defined as 

1/T2*=1/T2 + 1/T2’. The signal changes described above are measured by 

receiver coils which ultimately allow image formation. Image acquisition 

parameters can be adjusted to weight tissue contrast to highlight differences in 

longitudinal or transverse relaxation between tissues. The T1 and T2 curves are 

shown below (Figure 1-6). 

 

Figure 1-6. T1 and T2 Relaxation Curves.  

After B1 is applied at time = 0, longitudinal magnetisation starts to recover (see T1 curve - left) and 
transverse magnetisation starts to decay (see T2 curve  right). 
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1.4.2 MR Sequences 

In order to achieve contrast between different types of tissue, a variety of pulse 

sequences may be applied. The figure below (Figure 1-7) illustrates a 

classification of different types of contrast.  

 

Figure 1-7. Classification of MR Sequences. 

These contrasts may be produced by a number of different pulse sequences; 

over one hundred different types exist. In this section some basic sequences will 

be discussed. These are denoted by a number of different acronyms which vary 

between scanner manufacturers. Work forming this thesis was conducted with a 

General Electric (GE) scanner and therefore notation by this manufacturer will 

be adopted unless otherwise specified. 

 

1.4.2.1 Spin Echo Sequences (SE) 

The ‘spin echo’ (SE) sequence consists of a 90º radiofrequency pulse, followed 

by a pulse at 180º, and is the ‘classic’ MR pulse sequences. The first pulse tips 

the longitudinal magnetisation into the x-y plane. When protons start to dephase 

the 180 º pulse refocuses the spins and thus reduces the dephasing from external 

field inhomogeneities. Therefore any signal decay will be due to spin-spin 

effects rather than magnetic field homogeneities i.e. T2 rather than T2*.  
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1.4.2.2 Gradient Echo Sequences (GRE) 

Gradient echo (GRE) sequences rephase the dephasing spins not by using a 180º 

pulse, as in SE sequences, but by using magnetic gradients, Firstly a magnetic 

gradient is briefly switched on, thereby introducing large magnetic field 

inhomogeneities and thus causing significant signal decay. This is then switched 

off and then back on again, but in the opposite direction. This latter action has a 

similar effect to the 180º refocusing pulse used in SE sequences. A gradient echo 

is thus produced. These gradient echoes can be achieved in a shorter time than 

the comparatively lengthy application of a 180º. GRE sequences are sensitive to 

magnetic field inhomogeneities and therefore produce contrast which is T2*-

weighted.  

 

1.5 Imaging Techniques 

1.5.1 Diffusion Weighted Imaging 

1.5.1.1 Theoretical Background 

Diffusion weighted imaging (DWI) is now an essential part of any acute stroke MR 

imaging protocol. Such sequences measure the motion of water molecules in the 

brain and are modifications of the basic SE sequence. Not only is there a 90° 

radiofrequency pulse followed by a 180° pulse, as with the SE sequence, but 

there are two gradient pulses, one on each side of the 180° pulse i.e. 90° pulse – 

gradient pulse - 180° pulse – gradient pulse – echo, the sequence often being 

referred to as the Stejskal-Tanner sequence(45). The gradient pulses are equal 

in magnitude but opposite in direction to each other. The first pulse has the 

effect of increasing the dephasing of spins which subsequently increases signal 

decay. In tissues where spins are not moving (i.e. they are static) the equal and 

opposite second gradient pulse will reverse this action ensuring that there is no 

net dephasing. An echo can be produced and a strong signal can therefore be 

acquired. Where spins are moving however, the phase change following the 
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second gradient pulse will be less, owing to spins being in a different spatial 

location from the position they were in during the first pulse. This means the 

resulting echo and subsequent signal will be less. In what situations do spins 

move? Blood vessels containing flowing blood is an obvious example. However 

the natural tendency of molecules at temperatures above absolute zero is a 

continuous random motion, often termed Brownian motion or diffusion. In this 

situation the signal decay is even greater than in the example of blood flow as 

not only will all spins within a particular voxel be in a different position during 

the second gradient echo compared to the first, but the position of each spin 

will change in a random direction. The refocusing pulse of the SE sequence does 

not reverse the loss of phase coherence as the motion is random. Therefore in 

tissues with restricted diffusion there is strong signal intensity, and in those with 

greater (e.g. normal) molecular motion the signal intensity is weaker. A standard 

stroke protocol ‘diffusion weighted image’ can be produced by averaging the 

diffusion weighted images performed in three orthogonal directions - x, y and z 

directions. 

Images from DWI are typically reviewed qualitatively but provide little 

quantitative information because of their dependence of gradient characteristics 

and the influence of T1 and T2 weighting. The quantification of diffusion is 

instead expressed as an apparent diffusion coefficient (ADC) which is calculated 

when a number of diffusion weighted images are acquired (at least two) for a 

given direction at different b values, and signal intensity is fitted to the 

diffusion equation by linear regression on a voxel-wise basis – the slope of the 

line is the ADC. 

 

1.5.1.2 Changes on DWI in Stroke 

So how does the theory discussed above relate to acute stroke? The diffusion of 

molecules in a gas or liquid is totally random – it is isotropic. In tissues with 

normal physiology, however, there is always a baseline degree of anisotropy, 

where molecules exhibit a directional preference for diffusion owing to tissue 

structures. The first studies using DWI in acute stroke were performed in 1990 by 

Moseley et al who, using an MCA occlusion model in the cat, demonstrated acute 
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hyperintense lesions on DWI which appeared rapidly and preceded changes on 

conventional T2 weighted images(46) i.e. there was restricted diffusion of 

water. Such changes were associated with metabolic abnormalities 

demonstrated by concomitant MR spectroscopy(47). Therefore in acute stroke 

there is restricted diffusion. The cause of these changes has still not been fully 

elucidated and is likely to be multifactorial. The explanation given by the 

authors was that this represented cytotoxic oedema which has been 

experimentally confirmed(48). The cell swelling in acute stroke is likely to be 

due to dysfunction of Na+/K+ATPase pumps(49) which not only reduces 

extracellular water but may cause mechanical impediment of diffusion in the 

extra-cellular space. Breakdown of intracellular structures may create a similar 

impediment intra-cellular diffusion of water.  

In summary, acute stroke can manifest as hyperintense lesions appearing within 

minutes after vessel occlusion and is likely to be due, at least in part, to 

cytotoxic oedema. The time course of changes on DWI and ADC maps will be 

discussed in a later section. 

 

1.5.1.3 Significance of DWI Lesions 

The findings of DWI hyperintensity and ADC hypointensity have been confirmed 

in human studies, most of which now employ echo-planar imaging (EPI) in order 

to image the whole brain and improve insensitivity to patient motion(50). In 

human studies it is often concluded that such lesions represent irreversibly 

infarcted tissue(51) and this is indeed a premise upon which the PWI-DWI 

mismatch concept(52) is based (this will be discussed later). However, a number 

of both animal and human studies have shown reversal of the DWI lesion, 

particularly when reperfusion therapy has been instituted(53), consistent with 

the finding that parts of the DWI lesion fit the PET criteria for penumbra(54). 

Therefore, at early time points, parts of the DWI lesion, although highly 

compromised, may represent potentially salvageable tissue. At present there is 

no reliable mechanism to predict which parts of the DWI lesion are 

reversible(55) although some studies have shown an intermediate value of ADC 

in tissue which is potentially salvageable compared to infarct core(56, 57). 
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Nonetheless, despite the potential for reversibility, a number of studies, many 

of which were performed at later time points, indicate that the lesion on DWI is 

a good predictor of final infarct size(58, 59). Therefore DWI should be viewed as 

an invaluable tool which can detect either ischaemia or infarction at early time 

points.  

 

1.5.1.4 Reliability of Detection of Lesions on DWI 

Reported sensitivities and specificities for stroke vary, but sensitivities are 

usually greater than 80-85% with specificities greater than 90%(60-62). In 

particular diagnostic accuracy has been demonstrated to be superior to CT in the 

first 12 hours(60). Figure 1-8 illustrates an axial DWI slice from a subject who 

presented with a right hemisphere stroke and imaged at 18h.  

 

Figure 1-8.  Example of a Stroke on Diffusion Weigh ted Imaging.  
A slice from DWI of a subject presenting to the Institute of Neurological Sciences, Glasgow, with a 
right hemisphere stroke. The image shows that the area of restricted diffusion in the right 
hemisphere MCA and ACA territories is illustrated with high contrast to noise ratio. 

The areas of high signal are readily apparent and DWI is easily interpretable; 

even studies from hyperacute acute stroke patients (<6h) show excellent 

interobserver reliability superior to CT(63). DWI is also superior to CT for making 

a positive diagnosis of stroke. Chalela et al(64) prospectively compared DWI (in 

combination with GRE which reliably detected haemorrhage) to CT in 356 

subjects who presented acutely with a possible diagnosis of stroke(217 had a 

final diagnosis of stroke) and showed the sensitivity of MRI and CT was 83% and 

26% respectively for any diagnosis of stroke. Nonetheless, Barber et al(65) argue 

that if a scoring system known as ASPECTS is used to detect stroke, the 
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difference in sensitivity between the two modalities is small and is outweighed 

by the more rapid acquisition and superior tolerability of CT of CT.   

1.5.1.5 Predictive Value of DWI 

DWI may be predictive in 3 domains; prediction of outcome after stroke, 

prediction of haemorrhagic transformation after rtPA, and the prediction of 

stroke after TIA. Acute DWI lesion volumes are predictive of the results yielded 

by acute stroke scale scores, chronic stroke scale scores and chronic lesion 

volumes(66). However, acute neurological deficit is likely to represent the DWI 

lesion plus the penumbra (estimated by the perfusion lesion); studies in the 

hyperacute phase have shown a better correlation of final infarct volume with 

perfusion rather than DWI lesion volumes(67) and that it is at time points beyond 

4 hours when DWI best predicts final infarct volume(59). It has also been 

suggested that a clinical-diffusion mismatch (CDM – neurological deficit out of 

proportion to the size of the DWI lesion) may identify subjects with ‘tissue’ at 

risk. Although early results have been encouraging(68) with subjects with CDM 

showing a high rate of neurological deterioration, there are a number of 

limitations to the concept. These include lack of specificity(69, 70)and bias 

against subjects with right hemisphere strokes.  

The volume of the DWI lesion can also predict the likelihood of haemorrhagic 

transformation.  A small study investigating the value of a number of clinical and 

radiological parameters in the prediction of haemorrhagic transformation after 

rtPA showed that only the volume of the ADC lesion was an independent 

predictor. These findings were also supported by the DEFUSE study(71). The 

severity of restriction of diffusion, as measured by the ADC, is also likely to be 

important, with lesions of lower ADC being more likely to experience 

haemorrhagic transformation(72). 

DWI may also have value as an investigation performed after TIA. Kidwell et 

al(73) showed that in a cohort of TIA patients nearly half had lesions on DWI, and 

it is thought such lesions predict a higher risk of future stroke(74, 75), although 

whether such lesions are truly independent predictors of future stroke remains 

unclear. Nonetheless it is clear that DWI has the potential to predict a number 

of clinically relevant end points. 
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In conclusion, DWI is a rapid and sensitive technique giving an insight into the 

pathophysiological processes underlying stroke related symptoms, namely 

bioenergetic failure, which aids the treating clinician to make diagnoses, 

decisions, and estimates of prognosis.  

 

1.5.2 FLAIR Imaging 

The FLAIR sequences used in acute stroke protocols are usually heavily T2 

weighted and are often used in preference to standard T2 weighted sequences 

because the nulling of CSF allows better visualisation of  hyperintense lesions, 

particularly in periventricular regions(76). This may also allow for more accurate 

volumetric measurements in a research setting.   

The most widely assessed stroke sign on FLAIR is the detection of ischaemic 

changes which appear as parenchymal hyperintensity suggesting vasogenic 

oedema. Initial investigations suggested that less than a third of cases of 

unselected stroke show such parenchymal changes within the first 6h following 

stroke(77). Any lesions which do appear during this time window are generally 

subtle. Thomalla and colleagues(78) assessed FLAIR images from 120 strokes 

within 6h and showed that the absence of FLAIR changes with a positive DWI 

lesion (DWI-FLAIR mismatch) had a high specificity (0.94) for an onset time <3h, 

albeit with lower sensitivity. A follow up study from Ebinger and colleagues(79) 

suggested that the specificity was only 0.79 for allocation to the <4.5h time 

window, but this increased to 0.90 when excluding lesion less than 0.5ml from 

analysis. The assessment is therefore the subject of ongoing study into ‘wake up’ 

stroke in studies such as the ‘ Multi-Center Safety Trial of IV rt-PA in Patients 

With Unwitnessed Stroke Onset’ (MR WITNESS).  

The detection of the leukaraiosis may be important in the assessment of the risk 

of intra-cerebral haemorrhage after thrombolytic therapy(80). The severity of 

such changes can be graded using rating scales such as the Fazekas scale(81). 

However at present no data exist as to a precise threshold of the volume or 

grading of leukoaraiosis which is acceptable in the context of the administration 

of thrombolytic therapy.  
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Other early ischaemic signs include the hyperintense vessel sign (HVS) which 

describes arterial hyperintensity in vessels seen both proximally (e.g. within and 

proximal to the sylvian fissure) and distally, and is seen in the presence of acute 

ischemia due to large artery occlusion. Proximal HVS is likely to represent to 

represent thrombus, whilst distal HVS is likely to reflect either slow flow, static 

flow, or retrograde flow distal to the site of the thrombus(82-84). Patients 

presenting with distal HVS have lower NIHSS scores and a trend towards lower 

subacute infarct volumes(85), suggesting this may be a marker for collateral 

flow. Interobserver reliability for the detection of HVS has been demonstrated to 

be very good(86). The HVS sign is shown below (Figure 1-9). 

 

Figure 1-9. Demonstration of the Distal Hyperintens e Vessel Sign.  
Arrows demonstrate this sign.  

FLAIR imaging may also be of use in the assessment of the permeability of the 

blood brain barrier (BBB). The hyperintense acute reperfusion marker (HARM) 

reported by Warach and Latour(87, 88) describes enhancement of the CSF with 

gadolinium, causing the CSF to appear bright. (Figure 1-10). It is hypothesised to 

occur in those subjects with breakdown of the BBB and is associated with 

reperfusion and haemorrhagic transformation. It has also been shown to be 

associated with thrombolytic therapy distinct from other reperfusion strategies, 

suggesting a direct toxic effect of rtPA(89). Further investigation of this sign is 

required in order to determine its influence on treatment strategies. 
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Figure 1-10. The Hyperintense Acute Reperfusion Mar ker.  
Diagram showing HARM on FLAIR (b) which is associated with acute stroke shown on DWI (a). 
Figure produced from ' Warach S, Latour LL, Warach S, Latour LL. Evidence of reperfusion injury, 
exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker 
of early blood-brain barrier disruption. Stroke. 2004;35:2659-2661' with permission from  Wolters 
Kluwer Health. 

 

In summary, although FLAIR images are not sensitive for the detection of 

ischaemia in the first hours of stroke, the detection of other signs such as DWI-

FLAIR mismatch, HVS and HARM provide potentially useful information regarding 

individual pathophysiological status.  

1.5.3 Gradient Echo Sequences 

The Gradient Echo T2* weighted sequence (GRE) forms an integral part of the 

acute stroke MR protocol, primarily on the basis of its ability to detect 

haemorrhage. T2*-weighted sequences are sensitive to paramagnetic compounds 

which precipitate signal dephasing, and subsequent signal loss. Most 

conventional GRE sequences produce images which use data concerning the 

magnitude of signal change but newer alternative post processing algorithms 

also exploit phase information and offer enhanced tissue contrast over 

conventional methods(90).  

After intracranial haemorrhage (ICH) the blood oxyhaemoglobin converts to 

deoxyhaemoglobin which is then auto-oxidised to methaemoglobin. At later 

stages, activation of reticuloendothelial cells results in the scavenging of 

methaemoglobin and its storage of haemosiderin in macrophages and astrocytes. 

All of these breakdown products of oxyhemoglobin are paramagnetic and can 
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therefore be detected on GRE images. The sensitivity for haemorrhage on GRE 

was tested by Fiebach and colleagues(91) who conducted a prospective multi-

centre study by recruiting 62 subjects with, and 62 subjects without primary ICH 

(<6h) and compared the detection of ICH on GRE to the gold standard of CT. The 

group showed that for experienced stroke physicians the sensitivity and accuracy 

was 100%. Even for inexperienced observers (medical students) the sensitivity 

was over 95%. Any fears that GRE cannot detect ICH as early as CT have been 

allayed by findings that ICH has been detected as early as 23 minutes in one 

study(92). Subsequently, a single centre prospective comparison of CT and MR in 

the acute setting has shown that the detection of haemorrhage between the two 

modalities was approximately the same. GRE sequences have also been 

compared to other MR sequences. In the absence of a GRE image the B=0 image 

from the DWI acquisition performs reasonably well in the detection of large 

haematomas(93) but will not detect small haemorrhages or small cortical 

microbleeds. 

Unlike CT, GRE sequences are also able to detect chronic haemorrhage 

(haemosiderin). In particular GRE can detect cerebral microbleeds (CMBs) which 

are variably defined small round regions of signal loss which represent 

perivascular haemosiderin accumulation and are a marker of underlying 

microangiopathy. In particular they have been associated with hypertensive 

microangiopathy when seen in deep structures and cerebral amyloid angiopathy 

in lobar locations. Accurate stratification of risk for post thrombolytic 

haemorrhage in those with CMBs is not yet possible. Small studies have reported 

conflicting results regarding the risk of post-rtPA haemorrhage(94, 95). The 

Bleeding Risk Analysis in Stroke Imaging Before ThromboLysis (BRASIL)(96) study 

included 86 subjects with microbleeds who were treated with intravenous rtPA 

within 6 hours. Although there was a trend towards an increased risk of 

haemorrhage after rtPA in those with CMBs compared to those without (5.8% vs 

2.7%), this did not reach statistical significance. However only 6 subjects had 

more than 5 CMBs and therefore no conclusions can be made on how to treat 

subjects with multiple CMBs. 

GRE sequences also have the ability to detect intra-arterial thrombus, which also 

causes signal dephasing and appears dark on GRE images. This finding has been 

termed the hypodense MCA sign(97) and is more commonly found in strokes of 
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cardioembolic aetiology compared to those from large vessels. Such occlusions 

were also noted to be a positive predictor of recanalisation. However, a recent 

small cohort study suggested that if this sign was seen in the M1 segment of the 

MCA, this was a poor predictor of recanalization(98).  

Finally, as with all MR sequences, the possibility of imaging of potentially 

salvageable tissue has been raised. Morita and colleagues(99) hypothesised that 

the hypodense appearance of dilated cortical vessels, the presence of dilated 

veins in deep white matter (termed the ‘brush’ sign) and a generalised 

hypodensity of the ischaemic hemisphere all reflect an increased oxygen 

extraction fraction in the affected hemisphere. Consistent with this, visual 

correlation was good between regions of dilated vessels and regions of 

hypoperfusion. This suggests the possibility of being able to detect potentially 

salvageable tissue on routine stroke MR sequences but issues such as the 

sensitivity and specificity and the prognostic significance of such findings 

requires to be investigated further. The signs are illustrated below (Figure 1-11) 

 

Figure 1-11. Early Ischemic Findings on GRE.  
GRE image following acute stroke showing the ‘brush’ sign (rightwards of the bracket [{] sign).  

In conclusion, GRE sequences have become an indispensable part of the MR 

acute stroke imaging protocol. Not only can they detect acute and chronic 

haemorrhage but early ischemic signs also provide a wealth of information 

regarding pathophysiology. Further research on GRE sequences is likely to focus 

on improved sensitivity with susceptibility weighted imaging, and on the 

detection of early ischemic signs. 
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1.5.4 Magnetic Resonance Angiography (MRA) 

Magnetic resonance angiography (MRA) may be acquired without contrast (time-

of-flight [TOF] and phase contrast [PC[ MRA) or with gadolinium based contrast. 

The main function of MRA in the assessment of acute stroke is identification of 

occlusion. The degree of occlusion can be rated using numerous scales.  

Although the TIMI scale (Thrombolysis in Myocardial infarction){, 1985 #288} has 

attracted popularity in stroke studies it has been suggested that the TICI 

(thrombolysis in cerebral infarction) scale(100), which incorporates additional 

measures of perfusion, is more appropriate. Can angiographic assessment 

provide a surrogate marker of penumbra? Support comes from the demonstration 

of occlusion on MRA of acute stroke has been strongly associated with the 

presence of a PWI-DWI mismatch(101). More proximal occlusions are associated 

with larger DWI, PWI and mismatch lesions on pretreatment MRI and are more 

common when mismatch is detected beyond 9h(102). Moreover, results from the 

DIAS-2(103) trial, which randomised subjects to either desmoteplase 

thrombolytic therapy or placebo in patients  presenting with stroke between 3 

and 9h noted that 57% of placebo treated subjects who had no occlusion 

demonstrated clinical improvement, compared to only 18% of subjects who had 

occlusion. The premise that arterial occlusion on either MRA or CTA may help to 

increase the specificity of imaging definitions of ‘tissue at risk’ is being 

employed in the follow up DIAS 3 and 4 studies. A similar concept is that a 

discrepancy between the location of occlusion and the size of the DWI lesion 

may indicate the presence of penumbra and therefore predict the response to 

thrombolytic therapy – the MRA-DWI mismatch hypothesis. Although yet to be 

validated in a large data set, preliminary analysis(104) using the DEFUSE data set 

suggests the presence of partial or complete occlusion in the presence of a small 

lesion on DWI (<15ml) is highly predictive of a favourable response to 

thrombolysis.  
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1.5.5 Perfusion Weighted Imaging (PWI) 

The term ‘perfusion’ refers to the haemodynamic state of the microcirculation, 

the very circulation which serves as the final common pathway for nutrient and 

oxygen delivery to cerebral parenchyma. Therefore, imaging this component of 

the circulation in acute stroke patients with perfusion weighted imaging (PWI) is 

highly relevant 

 

1.5.5.1 Procedure and Theory of Susceptibility Weighted Contrast 

Modern PWI utilises high power injector pumps to assist the rapid delivery of 

gadolinium ion based contrast agents to peripheral veins in the antecubital 

fossa. MR scanning of the brain at consecutive time points detects changes in 

signal intensity – a marker of changes in gadolinium concentration - from vessels. 

The MR sequences employ Susceptibility Weighed Imaging(105) which relies on 

the paramagnetic gadolinium based contrast causing spin dephasing of adjacent 

protons, thereby leading to a reduction in T2 and T2*. EPI is usually employed 

with either SE or GRE sequences to detect T2 and T2* changes respectively.  

 

1.5.5.2 Determining Cerebral Blood Volume and Blood Flow Measurements 

Raw data from PWI will demonstrate the changes in signal intensity within 

tissue. In vivo studies have shown a linear relationship between the 

concentration of the contrast agent within the tissue and ∆R2, the change in T2 

relaxation rate (1/T2)(106). However, this relationship may vary depending upon 

the properties of the contrast agent and the architecture of the 

microcirculation(107). The relationship between ∆R2 and measured signal 

intensity, however, is exponential. By knowing this, and assuming that the 

concentration of contrast agent is distributed uniformly throughout the cerebral 

vasculature, the CBV can be calculated by integrating the area under the 

concentration-time curve. A number of subtly different methods do exist but the 
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resulting volume of CBV lesion has been shown not to be significantly 

affected(108).  

The relationship between CBF and tissue concentration is rather more complex. 

For the theoretical case where the injection of contrast agent is instantaneous 

and the concentration of contrast agent within the cerebral arteries is maximal 

from the outset, the concentration of contrast agent within tissue (Ct[t])  may 

be defined as the product of arterial concentration of contrast (C[a]), the rate of 

its delivery to the tissue (CBF), and the fraction of  contrast agent that remains 

within the tissue at any given time (residue function  - (R[t])), as described 

below: 

(Ct[t])  =  C[a]   x CBF  x R[t] 

However, the injection of contrast agent is usually delivered over the course of 

approximately 4 seconds(s), and therefore the (C[a]) becomes dispersed in time; 

this phenomenon is represented by the concentration-time curve within a 

particular cerebral artery and described as the arterial input function (AIF). For 

the purposes of calculation this can be thought of as a series of measurements of 

instantaneous boluses, occurring throughout the time period of the injection. 

Therefore at any particular time point the concentration within tissue is equal to 

the product of CBF and the arterial concentration and residue function measured 

at that time point, as described by the equation above. Therefore the total 

concentration of contrast agent within the tissue can be calculated as the sum 

(integral) of all of these contributions i.e. the AIF curve becomes 

mathematically convolved with the residue function as represented by 

Ct[t])  =  CBF  x AIF(t)*R[t]   where * denotes convolution 

Therefore, a measure of CBF may be derived if the concentration curves from 

the feeding artery and the tissue are measured, and assumptions are made 

regarding the residue function – this process of ‘deconvolution’ is now discussed. 

Deconvolution methods can be broadly classified as model dependent and 

independent. In the former, an assumption is made about the microvascular 

architecture which is used to predict the residue function. However, the 
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accuracy of model dependent approaches may suffer when applied to stroke 

patients since the residue function may not be uniform throughout the brain. 

Model independent measures assume that both the residue function and CBF are 

unknown. Approaches using transforms (e.g. Fourier Transforms) and algebraic 

methods using matrices solved by either regularization or singular value 

decomposition, have been used. Singular value decomposition was shown to be 

superior when an accurate reproduction of values of flow is required. The 

desirable quality of insensitivity to vascular structure or blood volume was 

demonstrated through simulations. Model-dependent approaches were shown to 

be susceptible to producing large errors, particularly when areas of disturbed 

blood flow exist(109, 110). In light of these results SVD has become the most 

widespread technique used in the clinical literature. Its drawback in terms of 

being sensitive to the effects of tracer delay and dispersion will be discussed. 

Once CBV and CBF have been determined, mean transit time (MTT - time taken 

to transit through the tissues by the contrast agent) can be determined using the 

central volume theorem; MTT = CBV / CBF 

 

1.5.5.3 Determining Other Haemodynamic Parameters 

As discussed, measurements of CBF and MTT depend on the accurate 

measurement of an AIF and subsequent deconvolution. A further parameter TMAX 

defines the time to the peak of the residue function, and therefore also relies on 

the analysis of the deconvolved curve. However, the identification of an AIF and 

deconvolution are processes which are time consuming and could in theory lead 

to a delay in the administration of rtPA. Therefore a number of summary 

measures of cerebral haemodynamics have been produced; time to peak of the 

tissue concentration-time curve (TTP), bolus arrival time (BAT), first moment 

MTT, and the measurement of the full width of the curve at half the maximum 

signal change (FWHM). The disadvantage of these parameters is that accurate 

physiological correlates are hard or impossible to define, and they can be 

affected by other factors such as poor cardiac output. Furthermore, parameters 

such as TTP can, in theory, be affected by both delay and dispersion, and 

therefore a prolonged value may theoretically be derived in the context of a 

normal CBF. 
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1.5.5.4 Limitations of Current Methodologies – Relaxivity 

As discussed both Ct[t] and C[a] are not measured directly, but are inferred from 

the relaxivity. van Osch et al showed that the relationship between 

concentration of contrast agent and relaxivity is entirely different in tissues and 

in blood, being linear in the former and exponential in the 

latter(111).Therefore, assumptions that relaxivity is the same in all tissues may 

lead to overestimation of blood flow. 

 

1.5.5.5 Limitations of Current Methodologies – AIF 

The selection of an AIF may be from the internal carotid artery (ICA), the 

proximal or distal middle cerebral artery (MCA), and from the ipsilateral or 

contralateral hemisphere. The AIF derived from each of these locations is 

different(112). During AIF selection a ‘partial volume’ effect almost inevitably 

occurs since voxels selected for the AIF often contain signal from both tissue and 

vessel. This problem may lead to underestimation or overestimation of the 

concentration of the contrast agent(113). Although these effects can be 

corrected(113) such algorithms require the AIF to be measured from the ICA 

(parallel to the magnetic field), and measurement at such a proximal vessel  will 

only increase the problems of tracer arrival delay and dispersion (see next 

section). In the setting of acute stroke the selection of AIF in the contralateral 

MCA yields hypoperfusion lesions which most closely match the final infarct 

volume(114). When considering the use of the contralateral MCA as the AIF, a 

further study(115) showed that the highest variability of perfusion maps 

occurred if the M1 division was used, and recommended that the M3 division be 

used preferentially on the basis of having the highest SNR. 

1.5.5.6 Limitations of Current Methodologies - Delay and Dispersion 

Finally, a further complicating issue in the accurate assessment of CBF is the 

effect of tracer delay and dispersion. The following equation assumes that the 

measured AIF is identical to the input to the tissue of interest. 
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Ct[t])  =  CBF  x AIF(t)*R[t]   where * denotes convolution 

However, the AIF is measured in a large artery, usually the MCA or ICA, which is 

not always in close proximity to the tissue of interest, and therefore when 

compared to the AIF the input to the tissue may be delayed, or dispersed across 

time, as compared to the ‘true’ AIF. Delay may be particularly problematic in 

the presence of ICA stenosis(116). The widely used deconvolution technique, 

SVD, is susceptible to the effects of both delay and dispersion which precipitate 

underestimation of CBF(117). This may be in the order of 50%. Such 

miscalculation will lead to an overestimation of any PWI-DWI mismatch. The 

problem of delay may be theoretically circumvented by the selection of an AIF in 

closer proximity to the tissue of interest. However, as discussed, selection of an 

AIF from such smaller arteries increases the problem of partial volume effects 

and consequently still requires to be validated. However, other techniques such 

as circular SVD(118) have been shown to be relatively insensitive to tracer delay. 

In any case, where delays do occur, their effects can be corrected by taking into 

account the ‘bolus arrival time’, but only when the SNR is sufficient to allow 

this. Dispersion of the tracer on the other hand is more difficult to correct for, 

although, as discussed, model dependent techniques have shown potential(119). 

 

1.5.6 Perfusion-Diffusion Mismatch -  A Potentially  Viable Option 

for Penumbral Imaging? 

Of the MR defined surrogate markers of the penumbra, the PWI-DWI mismatch 

hypothesis (the difference between the larger PWI lesion and smaller DWI 

lesion)(52) has been the most extensively studied. Five different trials have 

tested this hypothesis in a population receiving either standard alteplase or 

desmoteplase, an alternative thrombolytic. 

Trials using desmoteplase were the phase II DIAS (Desmoteplase In Acute 

Ischemic Stroke)(120) and DEDAS(121) (Dose Escalation of Desmoteplase For 

Acute Ischemic Stroke) trials and the Phase III DIAS 2 trial(103). The DIAS trial 

recruited subjects with a PWI-DWI mismatch of at least 20% and 2cm diameter at 

3-9h post ictus. It had a randomised controlled design and initially used high 



Chapter 1  48 
 
fixed doses of desmoteplase which caused excessive rates of ICH. However a 

modified dose of 125µg/kg of desmoteplase administered to 15 patients showed 

a beneficial effect on reperfusion and clinical outcome when compared to all 

patients who received placebo. In addition, the rates of symptomatic ICH were 

low (2.2% in those who received any 62.5-125µ/kg of desmoteplase). The DEDAS 

trial had a similar design and confirmed the safety profile of desmoteplase which 

was demonstrated by DIAS.  The follow on phase III DIAS-2 used a similar design, 

again recruiting subjects 3-9h and randomising them to placebo, 90 µg/kg 

desmoteplase and 125 µg/kg desmoteplase. The inclusion criteria differed from 

DIAS and DEDAS in that CT perfusion could also be used to include subjects, and 

mismatch definitions were based on visual assessment concordant with local 

practices. The DIAS-2 trial failed to show benefit of desmoteplase in mismatch 

patients at 3-9h post ictus with respect to a composite clinical endpoint. In 

addition there was a high mortality rate in treated patients. Possible 

explanations of the negative end point have been the low rate of visible arterial 

occlusion in this cohort, the relatively small absolute volumes of core and 

penumbra observed in this study, and the relatively mild stroke in the placebo 

group(122).  

Two phase II trials have tested PWI-DWI mismatch imaging in the context of 

alteplase. The DEFUSE (Diffusion and Perfusion Imaging Evaluation for 

Understanding Stroke Evolution) Study(71) was a single arm study of 74 subjects 

who all received alteplase between 3 and 6h post ictus. A post-hoc analysis of  

subjects who had a PWI-DWI mismatch defined by a threshold of TMAX plus 2s 

(54% of the cohort) reperfusion was associated with an improved clinical 

outcome compared to subjects in whom there was absence of reperfusion. 

Although strengthening the concept of PWI-DWI mismatch, this was a single arm 

study and therefore could not assess the efficacy of rtPA. On the other hand, 

EPITHET (Echoplanar Imaging Thrombolytic Evaluation Trial) was a randomised 

trial (between alteplase and placebo) and using similar mismatch criteria to 

DEFUSE, also recruited subjects 3-6h post ictus. Although it was negative for its 

end point of attenuation of geometric infarct growth in the alteplase group, 

there was an increased rate of reperfusion in the alteplase group and 

reperfusion was in turn associated with less infarct growth and better clinical 
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outcome compared to those subjects who had no reperfusion. These signals of 

efficacy have prompted a follow up phase III study in this regard (EXTEND).  

The disappointing failure of EPITHET and DIAS 2 to provide statistically positive 

results may be due to the nature of definitions of mismatch. For example, In 

EPITHET a TMAX threshold of only ‘plus 2s’ was employed, which is much less 

stringent than that suggested by back to back MR and PET studies(123). Indeed 

there is still controversy as to which modality and its subsequent threshold best 

identifies penumbra(124). The DIAS 2 definitions of penumbra are likely to have 

varied between centres, and the physiology of tissue compartments may have 

been different in those subjects recruited by MR compared to CT. In the trials 

which specified a minimum mismatch ratio, this was 20% (1.2). Recent 

observations from the DEFUSE study using receiver operator curves to predict 

favourable clinical response with reperfusion on the basis of mismatch ratio, 

suggest that far larger mismatch ratios may be required – 2.6 was the optimal 

mismatch ratio in this data set(125). In addition the methods by which ratios are 

calculated may be important. Both DEFUSE and EPITHET used a simple 

subtraction of the DWI volume from PWI volume to calculate mismatch; it has 

been suggested that co-registration of PWI and DWI images may provide a more 

clinically relevant measure for mismatch(122). Indeed, re-analysis of the 

EPITHET data using a co-registration technique yielded a positive result(126). 

Recently, a meta-analysis of the five clinical trials discussed here failed to 

demonstrate a higher rate of favourable clinical outcome after mismatch based 

delayed thrombolysis, although it was noted that all of the studies apart from 

DIAS II showed a non-significant trend towards an improved outcome(127). 

However, reperfusion/recanalization was more common in thrombolysed 

patients, and in those who reperfused/recanalised, favourable outcomes were 

more common. 

Despite the lack of clear validation of the PWI-DWI mismatch hypothesis, it is 

also important to note that the presence of a perfusion deficit per se may 

provide valuable information. For example, a study using CT perfusion suggested 

that reperfusion rather than recanalization is the better predictor of infarct 

growth and penumbral salvage(128). Some centres use the absence of a 

perfusion deficit as a contra-indication to thrombolysis. The DEFUSE study 
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identified a ‘malignant profile’ of stroke which is unlikely to benefit from the 

thrombolysis, which included a PWI deficit of 100ml or more and a TMAX > 

8s(71). In a similar fashion, it has also been suggested that ‘very low cerebral 

blood volume’ is a better predictor of haemorrhagic transformation than DWI 

lesion volume (129). Therefore, even without using the PWI-DWI mismatch 

concept, PWI provides data which may be used for clinical decision making. 

In summary, the signals of efficacy in phase II studies of thrombolysis for 

patients with PWI-DWI mismatch beyond 3h have not yet been observed in phase 

III studies. Whilst this could theoretically reflect the inefficacy of thrombolysis 

after 4.5h, it perhaps more likely represents the currently heterogeneous and 

perhaps inadequate definitions of PWI-DWI mismatch. 

 

1.5.7 Arterial Spin Labelling 

Although not used routinely in MR stroke protocols, Arterial spin labelling (ASL) 

constitutes the main non-invasive MR technique used in stroke cerebral blood 

flow studies. The absence of exogenous contrast media means that it can be 

performed repeatedly without technical or clinical detriment. The basic 

principle of ASL involves the labelling of arterial blood by inverting its 

magnetization upstream of a predefined region of interest (ROI). Signal 

acquisition is then performed in the region of interest. The magnitude of change 

in magnetisation in the region of interest is dependent on blood flow, and 

therefore measures of CBF expressed in units of ‘ml/100g/min’ may be derived 

from the difference between signal acquisition from labelled blood, and from 

unlabelled blood during a reference scan. ASL sequence designs include pulsed 

arterial spin labelling (PASL)(130) and continuous arterial spin labelling 

(CASL)(131). 

How well do CBF measurements by ASL compare with other techniques? Although 

this issue has not been studied extensively, in general values compare well 

between different modalities. A human volunteer study comparing CASL and 

PET(132) showed a non-significant overestimation of CBF by ASL compared to 

PET in grey matter.  In white matter, however, ASL significantly underestimated 
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CBF by 30%. This was hypothesized to be due to failure to account for 

differences between arterial transit times between gray and white matter. A 

study of ischaemic stroke patients(133) showed good agreement between PASL 

(EPISTAR) and dynamic susceptibility (DSC) PWI with regards to the quantitative 

comparison of the degree of hypoperfusion in the DWI lesion compared to the 

contralateral side. However qualitative analysis showed that in 4 of 18 patients 

with hypoperfusion shown on DSC PWI images, ASL erroneously showed no flow, 

thus highlighting the need for an inversion time (TI) sufficiently long to be able 

to image collateral flow; a longer TI of 2400ms was able to do this(133). A 

further study demonstrated that CASL was effective in demonstrating regions of 

hypoperfusion in acute stroke patients including regions of PWI-DWI 

mismatch(134).  

In summary, until now there has been relatively little investigation of ASL in 

acute stroke patients. Rather, the emphasis has been on technical improvements 

in sequence developments. However, with ever improving sequence design ASL 

offers potential as a clinical and research tool in human acute ischemic stroke, 

with the ability to measure CBF non-invasively, and repeatedly. Further 

validation in stroke patients is needed. In the mean time, DSC PWI predominates 

in both clinical and research settings. 

 

1.5.8 Non-contrast CT 

Despite extensive research activity into the potential role of multi-modal MR, 

NCCT remains the ‘work horse’ of acute stroke imaging in many centres world 

wide. This reflects its ease of access, relatively short imaging times, and its 

relatively modest cost. 

CT gives anatomical rather than functional information with signal intensity 

values reflecting the density of tissues which is expressed in Hounsfield units 

(HU). The first role of CT is to exclude ICH, which appears as parenchymal 

hyperintensity. It is likely that the signs of ICH are evident instantaneously(135). 

Unlike GRE however, CT is poor at distinguishing old ICH from old infarct, and 

cannot demonstrate microbleeds. The focus of attention in acute stroke, 



Chapter 1  52 
 
however, has been the identification of early ischaemic signs. Many of these are 

illustrated in (Figure 1-12) and include tissue hypoattenuation which may 

manifest as obscuration of the caudate and lentiform nuclei, or frank 

parenchymal hypoattenuation. 

 

Figure 1-12. Early Ischaemic Signs of MCA Stroke.  
Adapted from images shown by 'Vahedi et al. Sequential-Design, Multicenter, Randomized, 
Controlled Trial of Early Decompressive Craniectomy in Malignant Middle Cerebral Artery Infarction 
(DECIMAL Trial). Stroke 38 (9); 2506-17' with permission from Wolters Kluwer Health.  Vertical 
open arrow illustrates the hyperdense MCA sign, ‡ indicates sulcal effacement and hypodensity, • 
illustrates the disappearing basal ganglia, ☼ shows hypodensity and sulcal effacement at higher 
slices. 

 

The disappearing ‘basal ganglia’(136) suggests MCA occlusion at a location 

proximal to the branching of the lenticulostriate arteries, causing a reduction in 

the signal intensity in the basal ganglia. Both basal ganglia and other 

parenchymal hypodensity is likely to reflect cytotoxic oedema, and therefore be 

predictive of infarct core, an assertion supported by PET studies(137). In 

contrast, sulcal effacement represents swelling, and in the absence of 

hypodensity may represent ‘penumbral’ tissue. Muir and colleagues(138) showed 

that the CBV measured in regions of ‘isodense’ swelling by CT perfusion was 

elevated, consistent with penumbral tissue. This reflects the understanding that 

elevated CBV in acute stroke occurs in the context of vasodilatation in viable 

tissue(24). In contrast, regions of hypodensity were associated with a ‘core’ 

perfusion pattern. The authors noted that although these signs were specific, 

they were not sensitive. Therefore it is unlikely that non-contrast CT can ever be 

used to accurately identify penumbra. Hyperdense vessels are also frequently 

reported and typically reflect the thrombus location(139) as demonstrated on 

angiography. The values of Hounsfield Units in thrombus are higher with 

increasing haematocrit(140) making it more likely to see erythrocyte rich ‘red’ 
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thrombi than fibrin rich ‘white’ thrombi which may explain why sensitivity is 

poor at around 30%(139) for proximal MCA occlusion. For MCA stroke, vessel 

hyperdensity may manifest as the hyperdense MCA sign (HMCAS) of the proximal 

MCA, the sylvian ‘dot’ sign within the sylvian fissure (M2 or M3 occlusion)(141), 

or the recently reported hyperintense internal carotid artery sign  (HICAS)(142). 

The HMCAS is associated with severe strokes and a poor functional outcome. 

Leys and colleagues(139) demonstrated a prevalence of 30.5% in MCA stroke 

scanned within 12h. Although this sign provided a gain in the prediction of death 

or bad outcome, multivariate regression analysis did not reveal it as an 

independent factor of death or recovery. Indeed, patients with this sign still 

benefit from rtPA(143). Disappearance of this sign after rtPA is associated with 

hemorrhagic transformation but a higher rate of functional outcome and 

improved mortality(144), consistent with reperfusion. It has been suggested that 

its persistence of this sign after rtPA may be an indication for more aggressive 

interventional therapeutic strategies(144). The sylvian dot sign is generally 

associated with severe strokes but with a high rate of functional independence 

measured at 3 months, in those who receive rtPA(141). The HICAS is also 

associated with severe strokes but also with poor outcome.  

A systematic review of the reporting of early ischemic signs showed a widely 

reported range of interobserver reliability, sensitivity and specificity(145). The 

number of years of observer experience was thought to influence performance. 

Many of these studies however were based on imaging with early generation CT 

scanners which had a poorer performance compared to modern day scanners. A 

comparison of different types of doctor suggests neuroradiologists are better 

able to detect subtle signs compared to clinicians in other stroke related 

specialties(146). In view of the variability of interpretation of early ischemic 

signs a rating scale known as the Alberta Stroke Programme Early CT Score 

(ASPECTS)(147) has been proposed. This scale identified early ischaemic signs in 

75% of subjects presenting within 3h of stroke onset.   

Finally, it is important to note that prognostic data is also available from 

unenhanced CT. The significance of proximal artery hyperdensity has already 

been discussed. In addition, a re-analysis of the CT scans acquired as part of the 

ECASS-1 trial demonstrated that in those subjects who had hypodensity greater 

than a visually estimated ‘one third’ of the MCA territory volume, or who had 
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diffuse swelling, rtPA had no beneficial effect but had a detrimental effect with 

regards to intracerebral haemorrhage(148). The increased haemorrhagic risk in 

those with strokes more than one third of the MCA territory has been 

replicated(147). However Patel and colleagues(149) re-examined data from the 

NINDS trial and after adjusting for baseline variables and assessing interaction 

between early ischaemic signs and treatment, found different findings with 

respect to functional outcome; rtPA was found to be beneficial even in those 

with early ischaemic findings greater than one third of the MCA territory. Other 

prognostic information may be derived from an ASPECTS rating. A score of 7 or 

less discriminated outcome defined by death or dependence in a cohort of 

subjects who received rtPA. The rate of post-rtPA ICH for those with a score of 7 

or less is predicted to be 14 times that of a subject with an ASPECTS score 

greater than 7. In addition, in those who receive rtPA, higher ASPECTS scores are 

shown to have a higher rate of complete recanalisation(150).The use of ASPECTS 

in selecting and excluding subjects from thrombolytic therapy remains to be 

prospectively tested. 

In conclusion, unenhanced CT imaging in acute stroke is fast and accessible. It 

can reliably exclude ICH and can variably define early ischemic signs which help 

to establish a positive diagnosis and give some prognostic information. It is 

unlikely, however, to reliably distinguish normal tissue from penumbra and 

infarct within the first few hours after stroke onset. 

 

1.5.9 CT Angiography 

Unlike MRA which can provide flow information, CT angiography (CTA) provides 

predominantly anatomical information regarding the cerebral vasculature. 

Modern multi-slice CT scanning can image both extra-cranial and intra-cranial 

vasculature, whereby multi-detector row CT acquires a large number of thin 

slices; data can be viewed as either reformatted thick slice source images, or as 

reconstructed images such as maximum intensity projection (MIPs). 

The value of detection of intracranial occlusions has also been discussed. 

Reassuringly studies comparing CTA and digital subtraction angiography (DSA) 
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yield excellent sensitivity and specificity for the detection of intracranial 

occlusion(151, 152). Stenosis of the internal carotid artery can also be assessed 

in the same examination. Although the literature suggests CTA is a sensitive and 

specific technique for the diagnosis of carotid artery stenosis(153) two 

systematic reviews suggest that CTA is not as sensitive as contrast enhanced 

MRA(154, 155). However, these reviews included relatively old studies of CTA. 

Although CTA yields primarily anatomical information – the presence or absence 

of contrast within vessels – some information regarding collateral circulation 

may be obtained. For example, the presence of contrast within lepto-meningeal 

vessels, despite the presence of an internal carotid artery occlusion, suggests 

lepto-meningeal collateral circulation(5, 152). Poor collateralisation 

demonstrated by CTA can predict a worse clinical outcome and more lesion 

growth compared to those with good collateral circulation(156). 

Knauth and colleagues(152) also demonstrated that regions of tissue without 

parenchymal enhancement on CTA source images always became hypodense on 

follow up CT, suggesting that such regions represented reduced CBV and 

therefore infarct core. Further studies have shown good correlation between 

DWI volume, and the volume of lesion of CTA source images, although DWI is 

more sensitive(156, 157). However caution in the interpretation of CTA source 

images is advised by a back-to-back study of CTA and PET which suggested that 

the CTA source images are inaccurate in determining the size of critical cortical 

perfusion. 

 

1.5.10 CT Perfusion 

Just as stroke MR examinations employ the use of PWI, CT perfusion (CTp) can 

also image the circulation at the tissue level. Whilst some studies(158) have used 

a slow injection of contrast to produce maps of ‘total perfusion’, the majority of 

studies have focussed on the assessment of the first pass bolus of contrast 

delivered using a rapid injection, in a manner analogous to PWI in MR imaging. 

These studies typically inject 40-50ml of iodinated non-ionic contrast material at 

a rate of 4-5ml/s using a power injector, with assessment of the first pass of 

contrast. The spatial coverage of the brain is more limited than with PWI, and is 
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dependent on scanner technology; most current scanners image 1-4 slices of the 

brain. In an effort to increase coverage of the brain, some acute stroke protocols 

have either performed two rounds of CT perfusion examinations, each at 

different anatomical levels(159) or have used a ‘jog mode’ whereby two 

different sections of the brain are scanned during the same examination as a 

result of the scanner table moving back and forward(160). Although the 

temporal resolution is decreased to the order of about 5s using the latter 

technique, the acquired data is still sufficient to produce meaningful maps of 

perfusion relative to the contra-lateral side. 

Unlike MR however, there is a linear relationship between the change in signal 

intensity on CT and the concentration of contrast material within the imaged 

circulation, making quantification more straightforward(161). As with PWI, CTp 

processing can involve both non-deconvolution and deconvolution techniques. 

Non-deconvolution techniques use the maximum slope method where TTP is 

calculated as the time difference between the peaks of the arterial and tissue 

time-concentration curves.  The predominant deconvolution technique is SVD. 

The CBV may be calculated as the integral of the residue function but may 

alternatively be derived by comparing tissue to a region of interest in the 

superior sagittal sinus. Given that MTT can also be derived from the curves 

directly, CBF can be calculated by the central volume theorem (CBV/MTT). Many 

commercial software packages therefore require the user to define both arterial 

input and venous outflow functions. Unlike in MR, the choice of AIF is not 

critical, and the default ACA AIF is therefore sufficient(162). The AIF should 

however, be orthogonal to the plane of imaging. In a similar fashion to MR PWI, 

CTp programs usually produce maps of CBV, CBF, MTT and TTP. 

Given the relative infancy of CTp compared to PWI, justification of its use must 

include demonstration of its accuracy and reliability. Firstly, after elimination of 

vascular pixels, CBF values from CT perfusion in normal volunteers are accurate 

as compared to PET(163). Although the accuracy compared to PET values has 

also been validated in subjects with chronic carotid occlusion(164), such 

validation in stroke patients is yet to be performed. Findings on CTp also 

correlate well with PWI. In particular, regions of low CBV correlate well with 

DWI lesions and suggest infarct core, and there is a good correlation between 

CTp and PWI defined penumbra(165). In addition, when values for the same 
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parameter derived from both modalities are compared there is also a significant 

correlation(166). 

Given that there is good correlation between CTp derived CBV lesions and MR 

derived DWI lesions, CTp studies have assessed the mismatch between either 

CBF or MTT and CBV in order to image penumbra (Figure 1-13) in a manner 

analogous to the PWI-DWI mismatch. The largest study which aimed to derive a 

threshold was reported by Wintermark and colleagues in 2006(159). This group 

recruited 130 patients presenting within 12h of acute ischemic stroke and 

compared baseline CTp findings to baseline DWI when available, and to follow up 

MR scans performed in the first week in all subjects. Rigorous analysis identified 

that the optimal penumbral threshold was MTT of >145% of the contralateral 

side. For the core, the threshold was a CBV of 2.0ml/100g (if DWI was used to 

define core, or if final infarct in those who recanalised with a small infarct was 

used) or 2.3ml/100g (if final infarct in those who recanalised with large lesions 

was used to define core). Of note however, this study did not analyse 

differential thresholds for GM and WM, and did not analyse whether threshold in 

those stroke patients with carotid stenosis need to be adjusted.  

 

Figure 1-13. Illustration of CT Perfusion Maps.  
CT perfusion maps form a subject with MCA territory stroke within 6h of onset scanned as part of a 
separate study at the Institute of Neurological Sciences Glasgow. CBV = cerebral blood volume 
map (units in ml/100g), CBF = cerebral blood flow map (units in ml/100g/min), MTT = mean transit 
time map (units in seconds). There is hypoperfusion (darker blue in CBF and MTT maps) and a 
smaller area of decreased CBV. The difference between these regions is theoretically the 
‘penumbra’. 

The advantages of CTp include the fact that it can be performed in 

approximately 5 mins, and can be combined with CT and CTA in a ‘multi-modal’ 

stroke assessment(167). It is also useful when subjects cannot tolerate the 
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longer imaging times of MR or when there is an absolute contraindication to MR.  

Disadvantages include the limited brain coverage although this is likely to 

change with improving technology. In addition, although there is a risk of 

contrast induced nephropathy, ‘real life’ studies suggest this is rarely a problem 

if contrast is given to acute stroke patients, particularly if intravenous fluid is 

adminisered and those with a history or renal disease are excluded(168-170). 

Finally, radiation exposure is a concern; a multi-modal CT examination for acute 

stroke is approximately 10 milli-sieverts on a 64 slice scanner(171); when 

compared to an annual environmental exposure of 3mSv a year this may be 

deemed acceptable as an isolated acute investigation. 

In conclusion, CT perfusion can identify regions of tissue which are at risk of 

infarction. The procedure is rapid and straightforward to perform in the acute 

setting. However, the clinical utility of this technique remains to be rigorously 

tested in randomised controlled trials.  

 

1.5.11 15 O Positron Emission Tomography 

 Positron Emission Tomography derives data by measuring pairs of photons 

emitted after the annihilation of a positron emitted from a decaying radioligand, 

with an electron.  15O multitracer PET can measure oxygen consumption 

(cerebral metabolic rate of oxygen - CMRO2 ) and oxygen extraction fraction 

(OEF) as well as provide quantitative measures of CBF and CBV. Therefore it 

remains the gold standard imaging technique for the ischaemic penumbra. 

Although logistic limitations such as arterial puncture, relatively long imaging 

time (about 1 hour) and scarce PET scanner availability have precluded its use as 

the standard acute stroke imaging technique, the insights provided from PET 

have been invaluable. Early PET studies suffered from a number of technical 

limitations, including low resolution PET scanners(172, 173), patients imaged 

moderately late after stroke(172) and lack of exact topographical correlation 

with structural imaging(21). Nonetheless it was appreciated that if a pattern of 

extensive irreversible damage was identified, the outcome was poor, if there 

was reperfusion of still metabolising tissue the outcome was good, and if there 

was continued ischemia the outcome was variable(174). The latter observation 
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suggested that this pattern may represent the target population for therapies. 

Moreover, potentially viable tissue could be detected up to 48h post ictus(21).  

In a rigorous study, Marchal and colleagues(175) performed a voxel-by-voxel 

analysis of subjects within 17h after onset, with follow up PET scanning and 

structural CT. In the eight subjects included, CMRO2 declined between the acute 

and chronic PET scan. The authors also confirmed a CMRO2 threshold for 

infarction (approximately 1.4ml/100g/min), and that a substantial proportion of 

tissue (10-52%) which ultimately infarcted had a CMRO2 above this threshold in 

the acute phase even when imaged far later than the current reperfusion 

window. In these penumbral voxels the CBF was in the accepted penumbral 

range as suggested by previous studies, and the OEF was between 0.7 and 1.0 in 

all but one subject. A study by the same group strengthened the notion that this 

tissue could be genuinely salvaged with clinical benefit, by showing that the 

volume of salvaged penumbral tissue was correlated to clinical 

improvement(25). These findings are consistent with other observations that the 

pattern of pathophysiology identified by PET helps to predict neurological 

evolution independent of baseline neurological status(175). Therefore, PET 

studies not only confirmed that penumbra could be detected in man, but 

suggested that reperfusion therapies may offer a clinical benefit in human acute 

stroke. Moreover, they shaped currently accepted PET criteria for penumbra 

which include a preserved CMRO2, OEF >0.7 and CBF in the penumbra range of 

approximately 7-22ml/100g/min(27).  

Not only has PET given us insights regarding stroke pathophysiology but it has 

also proved useful in the validation of other acute stroke imaging techniques, 

such as the identification of PWI-DWI mismatch. For example, it has identified 

some penumbral tissue in the DWI lesion (previously hypothesised to be infarct 

core) and has suggested that TTP-DWI mismatch represents a variable metabolic 

state(176). In summary 15 O multitracer PET imaging in acute stroke has to date 

exclusively been a research tool and has offered invaluable insight into stroke 

pathophysiology. 
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1.5.12 Other Techniques 

Although not directly relevant to this project, there are a number of techniques 

which should be mentioned in brief. MR spectroscopy exploits the principle of 

‘chemical shift’ in order to ascertain the chemical composition of the 

environment of interest. Although changes in metabolites have been well 

characterised in the subacute and chronic phase after stroke (177-181) there is 

very little data to describe the acute phase. Based on their data from subjects 

imaged less than 7h Nicoli et al(182) hypothesised that areas of PWI-DWI 

mismatch correlated with areas where there was hypoperfusion, subnormal or 

normal ADC, normal NAA,  and elevated lactate. Indeed such findings have been 

proposed to represent the penumbra(181). Singhal et al(183) showed lactate 

levels were present, but in a lesser concentration, in PWI-DWI mismatch areas 

compared with DWI bright areas. The precise penumbral signature on MRS, 

however, remains to be elucidated. In particular there is no data for the 

threshold of the core/penumbral and penumbra/oligaemic borders.  

Transcranial Doppler ultrasound (TCD) can image cerebral vasculature by 

directing an ultrasound probe through the temporal ‘window’ in the skull. 

Identification of arterial occlusion is performed with reasonable accuracy as 

compared to MRA or DSA(184).  However, the real advantage of the technique is 

the ability to monitor vessel status in real time and the ability to determine 

parameters such as the speed(185, 186) and timing(187) of recanalisation. In a 

manner analogous to the TIMI scale(188) for myocardial infarction, the 

Thrombolysis In Brain Ischemia (TIBI) (189) scale can be used to document the 

degree of recanalisation.  

Single Photon Emission Tomography (SPECT) involves the injection of a 

radioactive tracer and subsequent detection of the gamma emissions by a 

gamma camera, in an examination which takes 20 to 30 minutes. Since it can 

measure blood flow it has been suggested to have the potential to identify 

stroke(190), monitor reperfusion therapies(191), identify subjects at risk of post-

thrombolytic haemorrhage(192) and even identify intact viable neurons(193). 

However, it is unlikely that SPECT imaging will become routine in acute ischemic 
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stroke. Not only are imaging times relatively long, but examinations are not 

easily combined with other modalities such as in multi-modal CT or MR. 

 

1.5.13 Emerging Techniques for Metabolic Imaging 

Owing the complex nature of 15 O PET, a number of other PET techniques have 

been developed which are potentially less burdensome. One of these is 18F-

fluormisonidazole (FMISO) PET imaging. FMISO is a nitroimidazole and it is 

proposed that it is trapped intracellularly exclusively by hypoxic, yet still 

metabolising tissue. It is retained in tissue with continuing hypoxia, but binding 

does not occur after effective reperfusion(194). Animal studies suggest that 

FMISO binding is greatest in the early hours after stroke and declines with 

time(195), consistent with the concept of the penumbra. Human studies have 

given support to these findings, as binding can be detected in the first 48h but 

not after 1 week(196). Other studies have confirmed a changing topography of 

such tissue with time(197), and that spontaneous survival of hypoxic tissue is 

associated with improved neurological outcome(198). Recent attempts to 

validate this technique in animals have proven encouraging. In a small pilot 

rodent study using 18F-FMISO tracer uptake was only seen early after stroke, and 

not when either early reperfusion or tissue necrosis had(199) developed. 

However, issues remain as to the optimal threshold with respect to timing of 

imaging; a recent study suggested that imaging at less than 90 mins would 

underestimate tissue at risk, and at 24h after permanent ischaemia would 

overestimate final infarction(200). Indeed, given that tracer needs to circulate 

in the presence of ischaemia for 2h negates this technique as a useful pre-rtPA 

scan. Nonetheless, this technique remains an attractive candidate for penumbral 

imaging. 

Just as FMISO may image hypoxic tissue at risk, PET imaging with radiolabelled 

flumazenil (FMZ), which binds central benzodiazepine receptor, proposes to 

identify infarct core. Indeed, data from a small cohort suggests that it appears 

to predict final infarct volume with similar accuracy as DWI, but with a lower 

false positive rate(201). In a study by Heiss and colleagues(202) the 95% 

confidence intervals for cortical infarction were calculated for FMZ binding and 
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CBF, and in a manner analogous to the PWI-DWI mismatch, tissue with low blood 

flow (<14ml/100g/min) and preserved FMZ binding could be identified, tissue 

which the authors proposed as penumbra. It has been suggested that if 

reperfusion of tissue without decreased FMZ binding occurs, the tissue will be 

salvaged. Although data from a small cohort supports this(203), it requires to be 

validated by a larger data set. Additional limitations to this technique include 

long imaging time and imaging of grey matter only. 

 

1.6 Which Modality to Image Acute Stroke? 

Previous discussions have considered the use of NCCT, multimodal CT and multi-

modal MR. To date there has not been a head-to-head study comparing clinical 

outcomes of patients with acute ischaemic stroke who were evaluated with all 

three of these modalities. However, in a head-to-head study of NCCT to multi-

modal MR in patients receiving rtPA(204), the rates of ICH and mortality were 

worse in the NCCT arm compared to the MR arm. In addition, time-to-treatment 

was not a significant predictor of outcome in univariate or multi-variate 

analyses, prompting the authors to conclude that patient selection is more 

important than time to treatment when administering rtPA. In a separate 

comparison of NCCT to MRI (DWI and GRE), the MR sequences yielded a 

significantly greater sensitivity for a  positive diagnosis of acute ischaemic stroke 

(83% vs 26%) and the detection of chronic haemorrhage was more frequent with 

MRI(64). In addition, as discussed previously, it has been shown that GRE is as 

sensitive as CT for the detection of acute haemorrhage(91). However, whilst the 

argument for MR over CT in acute stroke is building, these issues have to be 

countered by the high rate of intolerance of MR in acute stroke patients and the 

longer time to imaging(65) in a scenario where ‘time is brain’. In addition, when 

using the ASPECTS scoring system the differences in stroke detection become 

much less(65) than observed in studies not employing this system(64). In 

conclusion, controversy still remains as to which modality is best in acute stroke.  
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2  Oxygen Challenge MRI: Evaluation of 

Signal Changes in Different Tissue 

Compartments 

2.1 Introduction 

In Chapter 1, the need for a clinically applicable penumbral imaging technique 

was discussed. The perfusion-diffusion (PWI-DWI) mismatch concept is 

potentially useful, although studies to date have proven disappointing. Although 

refinements to the PWI-DWI mismatch hypothesis are promising, there may still 

be an additional role for alternative imaging techniques. The ‘gold standard’ 

imaging modality for the penumbra is Positron Emission Tomography, on the 

basis that it measures tissue perfusion and metabolic activity. Operational 

criteria for the penumbra defined by PET include reduced blood flow, preserved 

cerebral metabolic rate for oxygen (CMRO2) and also, relevant to this Chapter, 

an increased oxygen extraction fraction (OEF) - more oxygen extracted from the 

blood and therefore a decreased ratio of oxyhaemoglobin : deoxyhaemoglobin. 

Therefore, although PET is logistically unfeasible for acute stroke imaging, it 

hints at potential future directions for other imaging techniques. Given that 

perfusion can be measured on MRI, the additional ability to measure metabolic 

indices such as CMRO2, OEF, or deoxyhemoglobin, may prove invaluable. This 

chapter and those which follow consider a novel application of an MRI sequence 

which is sensitive to a phenomenon termed the ‘Blood Oxygenation Level 

Dependent’ (‘BOLD’) effect, and is thus in turn sensitive to changes in 

deoxyhemoglobin, and therefore metabolic activity.  

 

2.1.1 T2-, T2’-, T2*-Weighted MRI and the ‘BOLD’ Ef fect 

To understand the BOLD effect it is useful to review the basic principle behind 

magnetic resonance. Chapter 1 considered the decay in transverse magnetisation 

as an influence on MRI signal. The relaxation of transverse magnetisation occurs 
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in part due to the effects from other spins (spin-spin relaxation) with a time 

constant T2. However, magnetic field inhomogeneities also contribute to the 

decay of the transverse magnetisation, according to the time constant T2’. The 

additive effects of T2 and T2’ contribute to the constant T2* according to the 

equation;  

1/T2* = 1/T2 + 1/T2’.  

Although T2 weighted contrast may be detected by a standard spin echo 

sequences, T2* weighted contrast may be obtained using a ‘gradient echo’ 

sequence(205) which is sensitive to magnetic field inhomogeneities. The 

influences of magnetic field inhomogeneities on transverse magnetisation decay 

have been described as ‘macroscopic, ‘mesoscopic’ or ‘microscopic’(206, 207). 

The macroscopic effects of background field variation, which occur over 

distances larger than the imaging voxel, are related to local scanning conditions 

and not physiological processes. Such effects may be seen around the nasal 

sinuses for example and generally present a ‘nuisance’ factor.  ‘Microscopic’ 

fluctuating magnetic field inhomogeneities which occur on a molecular level 

contribute to the T1 and T2 effects, as previously discussed. Of additional 

interest, however, is the mesoscopic effect (larger than microscopic but smaller 

than the resolution of the imaging voxel) of the microcirculation which also 

influences the relaxation of transverse magnetisation which can be measured by 

T2’ and T2*–weighted MRI sequences – the BOLD effect.  

The BOLD effect was first described by Ogawa and colleagues in 1990(208) who 

observed veins in the mouse and rat brain as dark lines on gradient-echo images. 

Whilst such delineation of veins was striking when animals were breathing only 

20% oxygen, the contrast disappeared when the oxygen concentration was 

increased to 100%. Ogawa and colleagues subsequently showed that increased 

oxygenation due to an increase in cerebral blood flow also increased signal 

(209). After concluding that the effect was entirely due to blood oxygenation, 

the term ‘Blood Oxygen Dependent’ (BOLD) MRI was coined. Although the 

discovery of BOLD gave birth to a new form of investigation -  functional 

magnetic resonance imaging (fMRI)(210)- which will not be considered further, 

the principles behind BOLD may be relevant for a variety of imaging 

purposes(211). 
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The signal changes observed by Ogawa and colleagues are explained by a change 

in the balance between oxyhemoglobin and deoxyhemoglobin within the 

vasculature. Deoxyhemoglobin molecules, with their unpaired electrons, are 

paramagnetic(212) and therefore generate magnetisation (susceptibility) when 

placed in a static magnetic field, such as that of an MRI scanner. Oxyhemoglobin 

on the other hand, is diamagnetic, and therefore does not exert such a 

susceptibility effect. Intra-vascular deoxyhaemoglobin therefore creates a 

magnetic susceptibility difference between blood and tissue parenchyma. 

Increases in deoxyhaemoglobin will therefore increase magnetic susceptibility 

between vessels and tissue, which may in turn be detected as a reduction in 

signal intensity on SE or GRE MRI sequences measuring T2 or T2* respectively. 

Although less common, multi-echo sequences sensitive to T2’ may also be 

employed. Signal changes due to paramagnetic deoxyhaemoglobin are detected 

by T2 and T2*/T2’ by separate mechanisms (213, 214). The T2 effect 

predominates in the intra-vascular compartment and is partly diffusion 

dependent; the high intra-vascular rate of diffusion of water past 

deoxyhaemoglobin molecules leads to loss of phase coherence (spin-spin effects) 

which can be detected by changes in T2 as measured using a SE sequence. 

However, dense packing of haemoglobin molecules in the intravascular 

compartment means that the magnetic field inhomogeneities of individual 

erythrocytes, on average, cancel each other out (there is no net phase shift) and 

therefore changes in T2*-weighted signal are not apparent. On the other hand, 

when local field inhomogeneities are relatively large compared to the rate of 

diffusion, such as in the proximity of a large vessel, T2*/T2’ would be influenced 

to a greater degree than T2, a phenomenon which can be measured by GRE 

sequences. For example, in tissue surrounding capillaries both T2 and T2*/T2’ 

effects may be elicited. In tissue surrounding larger venules and veins the phase 

shift between blood and tissue due to deoxyhaemoglobin induced magnetic field 

inhomogeneities is even greater compared to the diffusional effects, and 

therefore the T2*/T2’ effect predominates. Therefore deoxyhaemoglobin causes 

dephasing of spins and a reduction in T2/T2* weighted signal - the BOLD effect. 

The magnitude of signal is larger on T2*- compared to T2-weighted images(215). 

Does the enhancement of transverse relaxation by the BOLD effect, predict 

deoxyhemoglobin concentration? In 1981, Thulborn and colleagues(216) 
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conducted a test tube study and demonstrated a quadratic relationship between 

the fraction of deoxygenated blood in a sample, and the T2, while also 

demonstrating a dependence on haematocrit. The dependence of transverse 

relaxation on deoxyhemoglobin concentration has since been replicated(216, 

217) including in volunteers and swine models(218) using T2*-weighted signal, 

again confirming the quadratic relationship, although a linear fit seems to offer 

a reasonable alternative at deoxyhemoglobin fractions greater than ‘0.2’.   

In summary, as the fraction of deoxyhemoglobin increases, the T2*-weighted 

signal intensity (and to a lesser extent T2-weighted signal intensity) decreases, 

an effect due to magnetic susceptibility differences(213) which is dependent on 

deoxyhaemoglobin concentration. 

 

2.1.2 The BOLD Effect for Detection of Potentially Salvageable 

Tissue 

The observations that MR sequences which are sensitive to the BOLD effect can 

detect changes in deoxyhemoglobin, a metabolic by-product of oxidative 

metabolism, give rise to the attractive possibility that they may potentially aid 

detection of the ischemic penumbra. This could be achieved by 1) qualitative 

assessment of MR sequences which provide static measurements of the BOLD 

effect, 2) modelling BOLD MR data to derive quantitative measures of metabolic 

activity, or 3) deriving semi-quantitative measures of metabolic activity based 

on induced dynamic changes in the BOLD effect. These three approaches will be 

considered in the following sections 

 

2.1.2.1 Assessment of Static BOLD Signal Intensity; Animal Studies 

The most intuitive method to detect the BOLD effect after stroke is to approach 

BOLD-sensitive sequences in a manner analogous to the conventional evaluation 

of other stroke MR sequences such as DWI and Fluid Attenuated Inversion 
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Recovery (FLAIR) – to perform a simple, often visual assessment, of signal 

intensity. 

Animal studies have thus far proven encouraging in this regard.  In 1991, Turner 

and colleagues demonstrated a reduction in T2*-weighted signal intensity in the 

feline brain after applying a short period of anoxia. Furthermore, after 

restoration of normoxia they noted a subsequent rise in signal intensity with a 

temporary overshoot(219). A year later, de Crespigny and colleagues(220) 

demonstrated a similar reduction in T2*-weighted signal in a feline model of 

transient focal middle cerebral artery occlusion (MCAO) model. Although the 

decline in signal intensity plateaued after approximately 60 seconds, the 

magnitude of the decrease was greater following longer periods of focal 

ischemia, consistent with the known dependence of transverse relaxation on 

deoxyhemoglobin concentration. A temporary overshoot in T2*-weighted signal 

increase after reperfusion was also seen in this study and tended to be larger 

following longer periods of ischemia. Consistent with these findings, Roussel and 

colleagues(221) noted that following MCAO in the rat, there was an acute 

reduction in T2*-weighted signal intensity which extended beyond the limits of 

the lesion seen on Diffusion Weighted Imaging (DWI) and which could therefore 

represent increased OEF. A recent study(222) of further validation using seven 

rodents to assess T2’-weighted signal in the DWI lesion 90 mins after reperfusion 

after MCAO yielded varying degrees of success of reperfusion. However, in the 

single rat with hyperperfused DWI lesion, the T2’-weighted signal was 

significantly increased, rather than decreased. Therefore, the available animal 

data suggest that BOLD sensitive sequences may distinguish between misery 

perfusion and luxury perfusion. 

However, despite the simplistic concept, animal studies have also highlighted 

potential complexities in interpretation of findings. For example, Dunn and 

colleagues demonstrated regional heterogeneity of the BOLD response to anoxia 

of the rat brain(223). In particular the change in T2*-weighted signal intensity 

was less in the CA1 region of the hippocampus compared to cortical regions 

during the same period of anoxia. The authors reasoned that such differences 

could be accounted for by a higher baseline oxygen extraction fraction (and 

therefore less capacity for change), differences in baseline blood volume 

between regions, differences in blood flow changes due to anoxia, or even 
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differences in the local architecture of the vasculature. Similarly, clear 

differences in BOLD response to hypoxia have been consistently observed 

between grey and white matter(219, 224) which could also confound 

interpretation of the BOLD response unless tissue segmentation is performed. 

Therefore, qualitative interpretation of BOLD changes may not be 

straightforward. 

2.1.2.2 Assessment of Static BOLD Signal Intensity; Human Studies  

The encouragement from the animal studies of signal intensity has been broadly 

reflected by findings in human stroke. In 2002 Tamura and colleagues(225) 

examined the pre-contrast images from the T2*-weighted series of dynamic 

susceptibility weighted perfusion images in subjects with large vessel occlusion 

imaged less than 4 hours post ictus. Qualitative analysis showed reduced signal 

intensity in the ipsilateral compared to the contralateral hemisphere. Although 

the images were of insufficient quality for accurate volumetric analysis, this 

study validated the principle of using deoxyhaemoglobin-weighted imaging in 

acute stroke. Using a T2*-weighted sequence, Wardlaw and von Heijne(226) 

reported a case of a subject imaged less than two hours post stroke onset where 

the region of hypointensity could be clearly delineated in the ischaemic regions, 

and which was substantially larger than the lesion on DWI. Although such 

findings were not consistently detected in the cohort from which the case 

reported was derived, subsequent analyses of  Gradient Echo (GRE) images 

acquired from hyperacute subjects, primarily for the purpose of excluding 

intracerebral haemorrhage (ICH) have demonstrated more consistent 

findings(99, 227, 228). Using a cohort of 48 subjects imaged less than 6 hours on 

a 1.5T scanner, Hermier(227) showed that subjects with hypointense 

leptomeningeal vessels presented with smaller acute DWI lesions compared to 

those without, suggesting that such findings represent a marker of collateral 

circulation. Hypointensity on GRE has been shown to manifest only in those who 

have large vessel occlusion and has been subdivided into hypointensity of 

cortical vessels, hypointensity of the deep white matter vessels (brush sign), and 

hypointensity of the parenchyma(99). In one cohort of 24 subjects with large 

vessel occlusion imaged less than 6 hours by a 3.0T scanner these findings were 

frequently detected; cortical vessels (100%), brush sign (92%) and hypointense 

parenchyma (58%)(99) and such findings disappeared after reperfusion. 
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Geisler and colleagues (229) focussed on the T2’ parameter. Thirty-two subjects 

were imaged less than 6 hours on a 1.5T scanner, and signal intensities from the 

lesion on Apparent Diffusion Coefficient (ADC), ultimately salvaged PWI-DWI 

mismatch, and the region of lesion growth were measured. Reassuringly, 

hypointense regions were observed and differences in signal intensity between 

tissue compartments were noted. However, wide confidence intervals precluded 

the determination of thresholds for tissue compartments. Interestingly, the 

lowest signal intensity was observed in the ‘infarct’ region defined by the lesion 

on ADC images. Possible explanations for this were the persistence of penumbral 

activity within the ADC lesion, and reduced washout of deoxyhaemoglobin under 

conditions of low CBF. This study gave rise to a larger systematic analysis of 100 

stroke subjects (< 6 hours) who were evaluated for the presence of  a T2’-ADC 

mismatch, in a manner analogous to the PWI-DWI mismatch concept(230). For 

the prediction of infarct growth, the T2’-ADC mismatch was sensitive (0.78/0.87 

for two readers) and more specific than the PWI-DWI mismatch (0.42/0.46) when 

perfusion was measured using ‘time-to-peak’. In subjects without recanalization 

the positive predictive value of infarct growth was good (0.63/0.80). The 

agreement for detecting T2’-ADC mismatch was moderate (kappa=0.53). Again, 

these results were encouraging, but the T2’-ADC mismatch has yet to find a 

precise clinical role.  

Finally, a word of caution regarding the evaluation of static T2*-weighted signal 

intensities. In a back-to-back study of MR and PET imaging in 5 subjects imaged 

7-21 hours after stroke Donswijk and colleagues(231) found no correlation 

between static T2*-weighted signal intensity and oxygen extraction fraction. 

Whilst these findings require serious consideration, they do not spell the end of 

deoxyhaemoglobin sensitive imaging techniques. Firstly the population studied 

was imaged later than the time window in which rtPA has shown to be effective. 

In addition, at these late time points, the T2*-weighted signal intensity will be 

affected by the inevitable rise in T2-weighted signal due to oedema occurring 

after about 6 hours, a phenomenon unrelated to deoxyhaemoglobin. Finally 

prospectively acquired BOLD sensitive imaging techniques may provide better 

results compared to the pre-contrast images from PWI used in this study. These 

data do, however, raise an important question; perhaps what is needed is more 
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formally modelled data, or assessment of dynamic signal changes in order to 

reduce other influences on the T2*-weighted signal? 

 

2.1.2.3 Modelling the BOLD Effect; Exploiting T2*  

A theory of proton dephasing in the presence of magnetic field homogeneities 

has been comprehensively described by Yablonskiy and Haake(232). They refer 

to the ‘static dephasing regime’ to describe proton dephasing due to local 

variations in spin frequencies which predominate over the effects from diffusion 

of water. The Yablonskiy and Haake(206) theory states that below a particular 

echo time (TE) the T2’ decay is a linear function of the TE. In contrast, when TE 

exceeds this particular ‘characteristic time’ of TE, the R2’ relaxation rate (with 

time constant T2’) instead becomes a linear function of the volume of the signal 

perturbers (e.g. deoxyhaemoglobin), susceptibility differences between tissues, 

and static magnetic field. Therefore for modelling a randomly orientated vessel 

network the extravascular T2’ signal intensity may be expressed as dependent 

on oxygen extraction fraction, the magnetic susceptibility of blood, venous CBV, 

haematocrit and static magnetic field (see equation below).  

)1(***)3/4(**'2 0 CBOSHctR −∆Χ= γλ  

where R2’ = 1/T2’, λ  = venous CBV, assuming arterial blood is fully saturated, γ = gyromagnetic 

ratio (2.68 x 108 rad/s/Tesla), ∆X0 is the difference in magnetic susceptibility between fully 

oxygenated and fully deoxygenated blood (0.18ppm per unit Hct(233), Hct = haematocrit and 

CBOS  = cerebral blood oxygen saturation and thus (1-CBOS)  = oxygen extraction fraction. 

The investigators Hongyu An and Weili Lin who are based in research groups in St 

Louis and North Carolina have exploited this model in order to provide estimates 

of MR derived cerebral oxygen saturation, oxygen extraction fraction (OEF) and 

ultimately the cerebral metabolic rate of oxygen (CMRO2). An and Lin(234) 

employed a type of MR sequence which combined features of gradient echo and 

spin echo sequences and has been termed a multi-echo gradient and spin echo 

sequence (MEGESE). In this sequence a spin echo was acquired between 10 

gradient echoes on either side. Given that signal intensity measured using 

different TEs varies and may be dependent on different factors, as stipulated by 
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Yablonskiy and Haake(232), differences between the MR signal measured at spin 

echoes and gradient echoes were used to provide estimates of R2
’ and  λ (venous 

CBV), and therefore CBOS (venous oxygen saturation) and OEF. The authors used 

asymptotic signal behaviour by extrapolating signal intensity measured at the 

spin echo, by using a logarithmic scale. MR signal data which was measured at 

long periods before or after the spin echo can measure R2’ and data collected at 

shorter time scales with respect to the spin echo was used to distinguish effects 

of venous CBV and OEF. In their seminal study using this technique the authors 

estimated a normal OEF of 41.6%(234). Despite being highly encouraging a 

number of limitations were acknowledged. Firstly, venous CBV was calculated to 

be 16% which was much larger than expected (usually <5%).  In addition, a large 

inter-subject variability was noted and this was attributed to noise. A number of 

assumptions were also acknowledged. For example, only extravascular effects 

are measured and therefore assumptions may be violated under conditions of 

increased CBV, such as in the ischaemic penumbra. Other potential errors may 

be introduced by local magnetic field variations and by the assumption that the 

model does not take into account effects of intravascular diffusion.  

The authors developed the original concept by exploring the surprisingly (and 

erroneously) large venous CBV value attained by the first study.  Variation in 

non-physiological macroscopic magnetic field inhomogeneities was investigated. 

Field maps were acquired from 12 healthy subjects so that variations in local 

magnetic field attributed to non-physiological effects could be modelled and 

their effects eliminated(235). Correction of such variations reduced the 

estimates of venous CBV down to just below 3%, a value which is in good 

agreement with the literature. A further investigation in human volunteers 

reported a ratio of the ‘venous’ CBV measured by this technique to total CBV as 

being  ‘0.77’ a value broadly similar to those from PET studies. 

After the original report in rodents, their next task was to validate the technique 

in human volunteers(236). In doing so, measurements of OEF were combined 

with CBF measurements generated from conventional PWI using the standard 

SVD technique to produced a measure of MR derived CMRO2 (which they have 

since termed ‘cerebral metabolic oxygen index  - MR-COMI), according to the 

following equation: 
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MR CMRO2 (COMI) = CBF * OEF 

The group claimed to demonstrate a uniform OEF across hemispheres, which 

would be expected from PET literature and therefore in keeping with current 

physiological understanding. Moreover, MR-COMI was greater in grey versus white 

matter, again a reassuring finding.  Although the ratio of MR-COMI in  grey versus 

white matter was 2.37, a higher value than quoted in the PET literature 

(~2.0(237)), differences were explained on the basis of higher CBF 

measurements systematically measured by MR compared to PET.  

Since then, MRI COMI has been tested under different oxygen saturations and in 

both animal and human stroke. A study of healthy rats(238) has confirmed an 

increase in MRI derived cerebral oxygen saturation values after hyperoxia, and 

moderate and severe decreases after moderate and severe hypoxia respectively.  

Moreover there was excellent correlation between the oxygen saturation directly 

measured from the jugular vein and MR derived oxygen saturation in the superior 

saggital sinus. Application of MR COMI to rodents with MCA occlusion revealed 

lowest values in the MR defined infarct core compared to any other region. Over 

time there was a shift in the number of ipsilateral voxels with  MR COMI values 

within the inter-quartile range (38-70% of normal) to those in the lowest quartile 

(<38% of normal), suggesting MR COMI is capable to detecting the metabolic 

evolution of tissue after stroke. 

In 2003(239), the group produced the first report of the application of their 

technique in human acute stroke subjects. Measurements of MR-COMI were made 

in seven patients imaged at an average of 7.5h post ictus. As expected, values 

for MR-COMI were lower in operationally defined infarct ‘core’ compared to the 

PWI-DWI mismatch region, thus helping to validate results. Interestingly, a 

gradient of MR-COMI deficit was observed in a region of matched PWI-DWI 

abnormality, a region which, by conventional MRI parameters, would be 

considered as homogeneous. These preliminary results were encouraging 

although it was acknowledged that haematocrit levels may not remain stable 

under ischaemic conditions, thus introducing potential errors in the estimations. 

Further work in human acute stroke was presented at the International Stroke 

Conference 2010(240). Nine acute ischaemic stroke patients were imaged at an 

average of 2.9 hours post ictus. It was found that measures for MR COMI 
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predicted grey matter infarction better than MTT or ADC. However, such an 

effect could not be demonstrated for white matter. 

He and Yablonskiy(206) have argued that modelling should also incorporate 

signal from intra-vascular compartments and should also account for the fact 

that the brain is composed of multiple tissue compartments (grey matter, white 

matter, CSF). The group called their ‘model-based multivariable curve-fitting 

approach’ quantitative BOLD (qBOLD), and applied it to nine healthy volunteers 

scanned on a 3T MR scanner. The group measured deoxygenated blood volume 

(DBV – a term coined to acknowledge that the relevant blood volume is not just 

from venous compartments but also from part of the capillary bed) as being 

1.56% and 0.62% from grey matter and white matter. OEF was calculated to be 

32.9% and 33.1% from grey and white matter respectively. Deoxyhaemoglobin 

concentration was 12.4 µM  and 4.4µM for grey and white matter respectively. A 

further validation study(241) in rodents demonstrated an excellent correlation 

(R2 = 0.92 ) between MR measured venous oxygen saturation and directly 

measured oxygenation of venous blood drawn from the superior saggital sinus.  

Finally, a noteworthy concept from Peter Jezzard and colleagues(242) from the 

University of Oxford should be discussed. BOLD data were collected from six 

healthy volunteers who were imaged on a 3T MR scanner. A method using 

hyperoxic contrast was employed whereby T2* signal intensity was measured 

from the saggital sinus (pure blood compartment) and the tissue (CBV  = 

unknown variable) under normoxic and hyperoxic conditions. By assuming the 

venous oxygen saturation was constant between tissue and saggital sinus venous 

blood, the change in signal intensity in the tissue parenchyma was used to 

calculate tissue CBV by using the change in saggital sinus signal intensity as a 

reference. This is another example of the T2* effect being exploited to derive 

physiological information, although in this case it was not strictly a metabolic 

parameter.     
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2.1.2.4 Modelling the BOLD Effect; Exploiting T2        

Other groups have argued that because the T2*-weighted signal intensity may be 

affected by a wide variety of  influences which include sources other than 

deoxyhemoglobin such as regional field variations and perturbation at air-tissue 

interfaces, analysis of the T2 effect may provide more reproducible results. An 

advantage of using T2 is that there is generally little inter-individual variation. 

Peter van Zijl and colleagues(243) from Johns Hopkins University produced maps 

of CBV by  developing a theoretical model of the physiological contributions to 

signal loss (T2) within the vessel (c.f. An and colleagues(234) who examined the 

extra-vascular signal loss of T2*). The group modelled the contributions of 

different deoxyhaemoglobin containing tissue compartments and applied their 

theory to data acquired using a spin echo sequence in the context of hypoxic 

hypoxia in cats. It was shown that the predominant contribution to intra-vascular 

signal was intra-vascular water exchange between tissue with different magnetic 

susceptibilities (erythrocytes and plasma) and the contribution to signal from 

water diffusion through field gradients and from water exchange between 

tissues and capillaries was small. Building on the theory proposed by van 

Zijl(243), magnetic properties of different vascular compartments were 

modelled with respect to haematocrit, gas exchange properties and transit 

time(244). The major influences on T2 were reported to be CBV and OEF. 

Simulations demonstrated that at 1.5T there appeared to be a linear relationship 

between OEF and T2. However, at 4.7T, venous T2 was decreased at higher 

OEFs, and therefore total venous signal contributed very little to the total T2 

signal at such OEFs i.e. the relationship between T2 and OEF is not linear at 

higher field strengths. In experimental hypoperfusion using absolute single spin 

echo images acquired at 4.7T the reduction in T2 was U-shaped with respect to 

CBF reduction and a maximal reduction in T2 was seen at 15-60% of normal. It 

was postulated that the partial reversal of the reduction in T2 at very low blood 

flows may have reflected the inhibition of CMRO2. Using a model of transient 

forebrain ischaemia in the rodent, the group went on to show that T2 reduction 

could also be demonstrated at 1.5T(245). Moreover, with restoration of 

perfusion a transient overshoot in the T2 increase was observed. Simulations 

have suggested that increases in CBF and CBV only partially explain the increase 

in T2 seen with luxury perfusion, with reductions in OER and depressed CMRO2 
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also contributing(246). A recent clinical application of this technique was 

demonstrated on subjects with carotid artery steno-occlusive disease where it 

was shown that OEF was elevated in 8/22 subjects, not all of whom had elevated 

CBV(247). 

An alternative method of exploiting the BOLD effect to give measures of CMRO2 

was proposed by Davis and colleagues(248). They used a spin echo sequence to 

detect the BOLD effect, and combined it with arterial spin labelling (ASL) to 

derive the additional measure of blood flow. By applying hypercapnia as a 

calibration tool, the group exploited the Fick principle to derive measures of 

CMRO2.  Using the application of CO2 which was theorised to increase blood flow 

but not change CMRO2, the expected increase in the BOLD signal was calculated 

for a given change in CBF. After next performing photic stimulation with 

concomitant measures of BOLD and CBF, the contribution of the change in 

CMRO2  to the BOLD signal was calculated on the basis of the change in CBF. The 

group expressed the ‘calibration factor’ as ‘M’ which represented the ceiling of 

BOLD change which could be achieved due to metabolic activity and represented 

the baseline BOLD signal, a function of deoxyhaemoglobin. Image maps of ‘M’ 

allowed the definition of three tissue compartments; M = large, where large 

veins were included in the voxel and these areas were excluded; M= medium, 

where the parenchyma was termed ‘reactive’ and ; M=small, where parenchyma 

was termed ‘non reactive’. The differences in these three areas were postulated 

to represent differences in microvessel density and according to the ‘M’ maps 

shown, appeared to show the grey matter as more ‘reactive’ than the white 

matter. Although exciting, this technique may be inappropriate for application 

to acute stroke patients, owing to the side effects associated with CO2. Of 

perhaps greater suitability, however, would be calibration of the BOLD signal not 

by CO2 but by O2, as recently proposed(249). 

 

2.1.3 Oxygen; a Naturally Occurring Contrast Agent 

It has been suggested that oxygen may be used as a natural intravascular 

contrast agent. Its potential benefits and limitations include having relatively 

few contra-indications, ease of access, and rapid washout times allowing 
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repeated investigations(250). From the very first seminal paper on the BOLD 

effect (208), oxygen has been used to alter the balance of oxyhaemoglobin : 

deoxyhaemoglobin  ratio and thereby derive physiological information. The use 

of hyperoxia to probe cerebral blood volume has already been discussed. Rostrup 

and colleagues(251) precipitated hypoxia and hyperoxia by varying the degrees 

of inspired oxygen in  healthy volunteers. Increases in T2*-weighted signal 

intensity were observed after hyperoxia. It was speculated that this observation 

could be explained by increased venous oxygen saturation, which increased the 

venous oxyhaemoglobin : deoxyhaemoglobin ratio thereby altering intra-vascular 

magnetic susceptibilities. It was also concluded that hyperoxia induced 

haemodynamic changes could not have explained the signal changes. Such 

increases in T2*-weighted signal intensity after hyperoxia in normally 

metabolising tissue have been replicated(252, 253). Kennan and colleagues(253) 

developed this theme in rodents at 2.0T. After administration of an iron based 

contrast agent to probe blood volume, the influence of CBV to the total T2*-

weighted signal was assessed at varying oxygen concentrations. Reassuringly, it 

was found that, at most, 12% of the T2*-weighted signal change noted with 

varying oxygenation was due to changes in CBV, with the major influence being 

the change in magnetic susceptibility. Moreover, the authors also concluded that 

very large changes in CBV, unlike those typically seen with respiratory 

challenges, would be needed to dominate the influence of change in T2*-

weighted signal intensity.  However, regional heterogeneity has been 

noted(254). 

In summary these findings are encouraging and suggest that the application of 

hyperoxia during BOLD sensitive imaging may probe local tissue oxygenation 

without a major influence from hyperoxia induced haemodynamic changes. 

2.1.4 Proposed Technique 

The hypothesis of the proposed technique is that it is sensitive to 

deoxyhaemoglobin and therefore OEF. Deoxyhaemoglobin sensitive imaging, if 

successfully implemented, may help to differentiate tissue compartments 

following acute ischaemic stroke. It is based on the following key aspects which 

have been previously discussed and referenced in this thesis. 
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1) OEF (and therefore vascular deoxyhaemoglobin) increases in misery 

perfusion, a condition which has been associated with potentially salvageable 

tissue. OEF is reduced or absent in infarct ‘core’ and increased in the penumbra 

(please see Discussion section for exceptions to this rule). Vascular 

deoxyhaemoglobin will therefore vary between tissue compartments following 

acute ischaemic stroke 

2) ‘Blood Oxygenation Dependent’ (BOLD) MRI is sensitive to 

deoxyhaemoglobin concentration, which possesses paramagnetic properties. 

BOLD sensitive sequences include T2, T2’ and T2*-weighted imaging. T2*-

weighted imaging provides the greatest signal-to-noise ratio. 

3) Hyperoxia has shown potential to serve as a contrast agent. Application of 

hyperoxia during T2*-weighted imaging precipitates a signal increase in healthy 

volunteers. This has been attributed to increased venous oxygen saturation and 

therefore altered magnetic susceptibilities; extra administered oxygen combines 

with paramagnetic deoxyhaemoglobin, a by-product of oxidative metabolism, to 

form oxyhaemoglobin. Therefore the oxyhaemoglobin : deoxyhaemoglobin ratio 

increases, precipitating a signal increase, thus indicating metabolising tissue. 

The proposed technique involves the application of hyperoxia as a contrast agent 

during T2*-weighted imaging in order to probe relative deoxyhaemoglobin 

concentrations and therefore tissue metabolism. The rationale for using this 

approach is to provide a simpler technique with less assumptions than the other 

approaches which use complex modelling to derive quantitative physiological 

values, but which have still not been completely validated. T2* rather than T2-

weighted imaging was chosen for its greater signal to noise ratio. 

Hypothesis for the Technique: It is hypothesised here that following acute 

ischaemic stroke, the application of hyperoxia during T2*-weighted imaging will 

produce different changes in T2*-weighted signal intensity in different MRI-

defined tissue compartments. It is hypothesised that in penumbral tissue, where 

CMRO2 is maintained and OEF is high, the signal increase will be greater than in 

normal tissue, indicating a large deoxyhaemoglobin pool. In hypoperfused infarct 

core, it is hypothesised that signal intensity increases will be diminished or 

absent. In perfused infarct core where there is an excess of paramagnetic 
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oxygen dissolved in plasma, signal decreases may be seen. These hypotheses are 

summarised in . 

 
 

Figure 2-1. Hypotheses for the Oxygen Challenge Tec hnique.   
This figure has been adapted from a more simplified diagram received from Dr David Brennan, Institute of Neurological 
Sciences, Glasgow (Personal Communication). The cartoons on the left and right show the state of oxygen extraction from 
the blood under normoxic (i) and hyperoxic (ii) conditions, respectively, in the stroke brain. In normal tissue (top) the Oxygen 
Extraction Fraction (OEF) is ~0.3-0.40. Therefore after oxygen administration the paramagnetic deoxyhaemoglobin in the 
capillary and venous beds will be replenished with oxygen, reducing magnetic susceptibility, and leading to an overall signal 
increase. Distal to blood vessel occlusion, where there is no perfusion (2nd top), no such change will occur. If there is 
reperfusion into a region of little or no remaining metabolism (e.g. luxury perfusion, 3rd top), the OEF will be low and there 
will be little dynamic contribution of supplementary oxygen to the deoxy/oxyhaemoglobin ratio. Administered molecular 
oxygen will simply remain dissolved in the plasma, exerting its paramagnetic effect and causing a decrease in T2*-weighted 
signal intensity. In penumbra where the OEF is high, there will be an abundance of deoxyhaemoglobin to combine with 
oxygen (bottom). Therefore we would expect a large signal increase, greater than in ‘normal’ tissue.  The legend at the 
bottom right of the diagram illustrates the effect of each relevant blood component on the direction of signal change. 
 
 
This technique as been tested in rodents as part of an ‘animal pilot study’ by the 

Brain Ischaemia group, University of Glasgow(255). The hypotheses above were 

partially validated; signal increases in the PWI-DWI mismatch region, 

contralateral ‘normal’ region, and operationally defined infarct ‘core’ were 

3.7%, 1.8%, and 0.24% respectively. The aim of this current study was to apply 

the new technique (termed Oxygen Challenge MRI) to subjects with acute 

ischaemic stroke. 
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2.2  Methods 

The following figure illustrates the main methodological steps pertaining to this 

part of the study (Figure 2-2). These steps are described in further detail in the 

following sections. 

 

Figure 2-2. Summary of Main Methodological Steps 
NIHSS = National Institutes of Health Stroke Scale, DWI= diffusion weighted Imaging, PWI= 
perfusion weighted imaging, FLAIR = Fluid attenuated inversion recovery, ROI = region of interest, 
GIC = gradient of the incline of the curve, TMS = time to maximum signal, PSC = percentage signal 
change. Reproduced with permission John Wiley and Sons from ‘T2*-weighted magnetic 
resonance imaging with hyperoxia in acute ischemic stroke: Annals of Neurology: 2010’. 
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2.2.1 Ethical Approval  

Ethical approval for this single centre study was granted by the Multi-centre 

Research Ethics Committee for Scotland A (MREC A); project reference 

05/MRE00/37. 

 

2.2.2 Subject Recruitment 

Recruitment of subjects to the study was performed between 1st August 2006 

and 1st June 2008. Patients who were admitted to the Acute Stroke Unit at the 

Institute of Neurological Sciences Glasgow, and fulfilled the inclusion criteria for 

the study, were considered.  Institutional scanning hours were between 8am and 

8pm on weekdays.  

Subjects were recruited by direct informed consent or, if incapacitated by 

written assent from the nearest available family member. Assessment of 

capacity to consent was made using clinical judgement, in addition to discussion 

with the receiving clinical stroke team.  

 

2.2.2.1 Inclusion Criteria 

Inclusion Criteria for subjects were as follows: 

• Clinical diagnosis of acute ischaemic hemispheric stroke <24h after onset 

• Clinical evidence of cortical involvement i.e. evidence of a partial 

anterior circulation syndrome (PACS) or total anterior circulation 

syndrome (TACS) as defined by the Oxford Community Stroke Project 

(OCSP)(2) 

•  Exclusion of primary intra-cerebral haemorrhage by baseline scanning 

(usually Computed Tomography [CT]) requested for clinical purposes 

• Informed consent from patient or assent from relatives 
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2.2.2.2 Exclusion Criteria 

Exclusion Criteria were as follows; 

• Incompatibility with 3 Tesla  (3.0T) MR scanners (e.g. cardiac pacemaker, 

metallic implants, some coronary stents) 

• Coma or other concomitant condition making survival to one week 

unlikely 

• Known type II respiratory failure  

• Patients requiring continuous oxygen support 

• Pregnancy 

• Evidence of acute non-cortical stroke on prior imaging 

• MRI scanner unavailable 

 

2.2.3 Imaging Protocol 

2.2.3.1 Standard of Care 

All subjects received baseline brain scans (usually CT) requested for clinical 

reasons prior to study specific scanning procedures. Most patients also had intra-

cranial and extra-cranial vessel imaging by CT angiography at some point during 

their clinical course. Clinical management decisions e.g. administration of 

thrombolytic therapy, were also made and implemented prior to study 

procedures. Therefore clinical management was unaffected by this study.  

 

2.2.3.2 Clinical Observation 

A supervising clinician was present in the MR magnet room throughout the 

duration of scanning. Subjects were monitored with a combination of visual 

inspection and continuous heart rate and oxygen saturation monitoring (Schiller 

MagLife C. Plus). 
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2.2.3.3 Scanning Protocol 

Scanning was performed at baseline (as soon as possible after consent and within 

24 hours of ictus) and at follow up - as near to 72 hours as practically possible. 

The following table (Table 1) gives details of the MRI sequences which were 

performed on a 3.0 Tesla (3T) scanner (General Electric Signa® Excite™) at 

baseline and at follow up. 

 

 

Table 1 Parameters of the MR Protocols 
Acquisition Parameters are shown for the baseline and follow up protocols in Tables a) and b) 
respectively. Abbreviations; TR= repetition time, TE = Echo time, FOV = field of view, ms = 
milliseconds, cm =  centimetres, mm = millimetres, FLAIR = fluid attenuated inversion recovery, 
DWI = diffusion weighted imaging, PWI = perfusion weighted imaging, SE = spin echo, EPI = 
echoplanar imaging, GRE = gradient echo, NEX = number of excitations, s = seconds 

 

Baseline imaging comprised of DWI, PWI, and T2*-weighted sequences with 

transient hyperoxia. At follow up a DWI and T2-weighted Fluid Attenuated 

Inversion Recovery (FLAIR) sequence was performed. DWI was performed with 

diffusion gradient b values of 0 and 1000 s/mm2 (to give b0 and b1000 maps). For 

PWI a Medrad Spectris Solaris® injection system delivered 0.1mmol/kg of the 

gadolinium based contrast agent Magnevist® through an intravenous catheter (18 
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gauge) to an antecubital vein at a rate of 5ml/s, with a 10s delay after the 

initiation of the sequence. This was followed by a 20ml saline flush. Preceding 

the T2*-weighted acquisition there were 12 seconds of lead in scans to allow for 

stabilisation of magnetisation and T1 equilibrium, followed by 220 volumes, each 

with a duration of 3s. Oxygen was transiently administered during the T2*-

weighted scanning as detailed in the section entitled ‘Oxygen administration’. A 

second T2*-weighted MR sequence with transient hyperoxia was acquired in 

cases where it was practically possible (i.e. when there was no pressing time 

issue for the scanning staff and the subject was stable and settled in the 

scanner). The DWI at follow up was acquired with an ultrafast sequence using a 

commercial modification of sensitivity encoding (SENSE)(256) known as ASSET 

(GE, Milwaukee, USA). Clinical examination at baseline and at day 7, when 

possible, was performed using the National Institutes of Health Stroke Scale 

(NIHSS)(257). 

 

2.2.4 Oxygen Challenge 

Oxygen was administered via a standard ‘Hudson’ face mask (Lifecare Clear View 

Adult Mask) at a rate of 15 litres per minute (l/min) for a period of 5 minutes 

during the middle segment of the T2*-weighted EPI sequence, which lasted for 

11 minutes in total, as demonstrated graphically below (Figure 2-3). In subjects 

who were scanned with a second T2*-weighted MR sequence, the oxygen was 

administered at 7l/min. This application of oxygen will be referred to as an 

‘Oxygen Challenge’ throughout the remainder of the text. 
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Figure 2-3. Graphical Representation of the Timing of the Oxygen Challenge during the T2*-
weighted  EPI Sequence.  
The Oxygen Challenge was administered during the middle segment of the T2*-weighted EPI 
sequence. Medical air was administered at other times ie no oxygen = no additional oxygen = FiO2 

= 0.21 

At all times when oxygen was not being administered, air was delivered at the 

same rate as the Oxygen Challenge (i.e. 15l/min). Both oxygen and air were 

sourced from a gas point located within the MR magnet room (Ohmeda 

Flowometer, Columbia, USA). Both gases were administered through a common 

tubing system in order avoid a change of mask or tubing during the sequence. 

The total length of the tubing (gas point to mask) was 6m for each subject. 

 

2.2.5 Image Processing  

Image data were processed on a PC workstation (assembled ‘in house’) which 

used a  ‘Windows™’ platform, with a Intel Pentium 4 processor and on a 

‘Windows™’ based laptop computer (Dell Precision M6300,  Intel Centrino 

processor). 

 

2.2.5.1 Processing of Diffusion Weighted Imaging 

Delineation of the DWI lesion was performed in ‘Stroketool’ (Version 2.3, Digital 

Image Solutions, Germany). Firstly, manual tracing around the hyperintense 

lesion on the b=1000 image was made. The resulting DWI lesion ‘mask’ was 

coregistered to the T2*-weighted EPI data and saved as an ‘object map’ which 
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could then be overlaid onto the T2*-weighted EPI, to define the DWI lesion. This 

process is depicted below (Figure 2-4). When assessing both PWI and DWI data, 

lesions less than 1cm3 were excluded from analysis in order to minimise the 

impact of potential measurement errors and coregistration errors. In addition, in 

order to avoid susceptibility artefact from the nasal sinuses, segments of lesions 

which were found anterior to the lateral ventricles at the level of the nasal 

sinuses were excluded from analysis. 

 

 

Figure 2-4. Post Processing of the DWI Lesion.  
Firstly the raw DWI image (a) was manually segmented (b) and the resulting image was saved as a 
map, interpolated to the structural space of the T2*-weighted EPI, and overlaid on the EPI (c) so 
that Oxygen Challenge data for the DWI lesion region could be derived. 

 

2.2.5.2 Processing of Perfusion Weighted Imaging 

Thresholded perfusion maps were generated using ‘Stroketool’ (Version 2.3, 

Digital Image Solutions, Germany). This package uses the  standard Singular 

Value Decomposition  (SVD) methods suggested by Ostergaard(109). An arterial 

input function (AIF) was selected by identifying multiple voxels from the M1 

segment of the contralateral middle cerebral artery (MCA) which exhibited an 

early and steep decrease in signal intensity. Spatial smoothing using a 3x3 

Gaussian kernel was applied, and maps showing delays in TMAX  - the peak of the 

deconvolved tissue concentration curve - were subsequently created on a pixel-
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by-pixel basis. Thresholded TMAX maps showing regions with a TMAX of ≥4s were 

then produced. TMAX values were chosen because of the widespread use in 

ongoing clinical trials. 

 

2.2.5.3 Processing of T2*-weighted Echo Planar Imaging 

Realignment to correct for head motion was performed using SPM2 software 

(Statistical Parametric Mapping version 2, Wellcome Trust Centre for 

Neuroimaging, University College London, UK) which was run using the Matlab 

suite (Version 6.5.1, The MathWorks, Inc. Natick, MA, USA).  Firstly, for each 

image, 6 realignment parameters – in x-, y-, and z-translations and x-y, x-z, and 

y-z rotations -were determined using ‘rigid body transformation’. In SPM2, the 

highest density of voxel sampling was chosen (‘1.00 – Slowest and most 

accurate’). The original data were then resampled to give true signal changes, 

corrected for motion, using Fourier interpolation.  

 

2.2.6 Determination of Tissue Compartments 

2.2.6.1 Determination of PWI-DWI Mismatch Compartments 

The software package ‘Analyze’ (Version 8.1, Mayo Clinic, and Rochester, USA) 

was used in order to define tissue compartments and subsequently generate data 

describing time courses of signal intensity from each predefined compartment.  

Four classes of tissue compartment were defined; 1) The DWI lesion, 2) the PWI-

DWI Mismatch region, 3) the DWI expansion region and 4) the contralateral 

‘mirror’ region. Definition of the ‘DWI lesion’ was straightforward and was 

described in the previous ‘Processing of Diffusion Weighted Imaging’ section.  

Subjects with PWI-DWI mismatch were identified by first reviewing the PWI and 

DWI together, side by side, and excluding cases where a PWI-DWI mismatch 

clearly did not exist. For the remaining cases, definition of the PWI-DWI 
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mismatch tissue compartment required the PWI and DWI data to be in the same 

structural space. Therefore, coregistration of the raw PWI data to the raw DWI 

data was performed using ‘windowed sinc’ interpolation and application of 

additional manual refinement in the coronal, transverse or saggital directions 

was performed if necessary. The transformation matrix derived from this step 

was applied to the thresholded TMAX maps so that they too were transformed 

into DWI structural space. Next, the thresholded TMAX and DWI maps were 

reviewed together, in the same structural space.  If the deficit on TMAX was 

greater than on DWI, a mismatch existed, and this was manually delineated to 

create a map which defined the PWI-DWI mismatch region.  

 

 

2.2.6.2 Determination of DWI Expansion Compartments 

In order to determine areas which were initially normal on DWI, but which 

subsequently became abnormal on the 72h examination, an identical approach 

was used to that described above but this time the follow up DWI data was co-

registered to the baseline DWI data.  

 

2.2.6.3 Determination of ‘Penumbral’ Compartments 

Tissue compartments representing the ‘ischaemic penumbra’ were defined as 

the PWI-DWI mismatch regions, or, if these were unavailable, regions of DWI 

expansion. 

 

2.2.6.4 Determination of the Contra-lateral ‘Mirror’ Region 

The contralateral T2*-weighted signal intensity-time curve was used as internal 

control. Using ‘Analyze’, the object map delineating the region of interest was 

reflected 180◦, and manually placed on the contra lateral hemisphere in the T2*-

weighted image in a symmetrical region.  
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2.2.7 Generation of Signal Intensity Time Series 

Next, it was necessary to produce a time series of signal intensity measurements 

(which we will call the ‘T2*-weighted signal intensity-time curve’) from the 

specific tissue compartments detailed above  

To do this the ‘map’ representing the tissue compartment of interest e.g. PWI-

DWI mismatch area identified in the previous steps, was co-registered onto the 

realigned T2*-weighted EPI data. The coregistration method used was identical 

to that used to coregister PWI to baseline DWI data,  and follow up DWI to 

baseline DWI data, and is detailed in section entitled  ‘Determination of Tissue 

Compartments’. After the co-registration step, the tissue compartment of 

interest was saved as an ‘object map’ and overlaid onto the T2*-weighted EPI 

(Figure 2-4). Analyze software then produced a time series for the T2*-weighted 

signal intensity from regions defined by the object map (i.e. the tissue 

compartment). These were then saved into a Microsoft Excel™ spreadsheet 

(Microsoft Office 2003).  

 

2.2.8 Derivation of Measurements 

Graphical illustration of the measurement of the curve parameters is illustrated 

below (Figure 2-6). Measurements were performed on data smoothed using the 

previously determined wavelet transform scale. Only ‘good quality’ curves were 

assessed. The criterion for quality of a T2*-weighted signal intensity-time curve 

for any given region of interest was that at least a 1% T2*-weighted signal 

change after Oxygen Challenge should have been observed in the contra-lateral 

‘mirror’ region. 

 

2.2.8.1 Area Under the Curve (AUC) 

In order to measure the magnitude of signal change induced by the oxygen 

challenge, measurements of the area under the T2*-weighted signal intensity-
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time curve were made using the software package ‘GraphPad Prism version 5.00 

for Windows’ (GraphPad Software, San Diego California USA, 

www.graphpad.com). Each individual time series was normalised to its own 

baseline, so that any signal change was expressed as a percentage change from 

baseline (100*[value-baseline]/baseline) [Graphpad v5.00].The baseline was 

defined as the mean signal intensity of the first 60 time points (180s) (i.e pre-

oxygen challenge).  The trapezoid rule was used for the AUC calculation 

(Graphpad v5.00). The time points for which AUC measurements were made 

were those corresponding to oxygen challenge i.e. 181s to 480s.  

The overall ‘direction’ of change in T2*-weighted-signal intensity after oxygen 

challenge was classified by identifying a clear predilection for a change in one 

particular direction while accounting for the possibility that there may have 

been minor fluctuations in the opposite direction due to noise. Therefore, the 

direction was classified as ‘positive’ if the combined AUC value for the negative 

peaks was <25% of the combined AUC value for the positive peaks during the 

period of the OC, and vice versa for a ‘negative’ direction. Curves fulfilling 

neither of these definitions were classified as ‘flat’. 

 

2.2.8.2 Gradient of Incline of the Curve (GIC) 

Graphpad Prism was also used for this analysis. The gradient of the incline of the 

curve (GIC) was measured to derive a measure of the rate of increase of signal 

intensity. In order to determine which section of the incline of the curve to 

measure, the first time point of measurement was chosen by the calculation of 

the hypothetical time of first arrival (FAT) of hyperoxic blood to the brain.  

Determination of this point was calculated as 21 seconds by the following 

method based on values quoted for the standard adult male. 
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Time Taken to flow through oxygen tubing = 1.90s 

 

 Rate of oxygen flow 

 ________________ 

 

 Area of tubing 

 

 

 

 15l/min        

 

 ______ 

= 

  r2 * h 

 

 

=  250cm/s 

 _______ 

 

 3.146 * 0.5*0.5*600 

 

=  1.9 seconds  

 

where   = Pi, r= radius of tubing, h = length of tubing, cm =centimetres, s=seconds 

 

Time from oxygen mask to small airways = 1.85s 

- derived from values suggested by Gast et al(258), with the upper limits 

reference ranges  

 

Time for oxygen to diffuse across alveolus  = negligible = rounded to 0s  

 

Time taken from lungs to left ventricle = 3.25s 

 

 

= Pulmonary circulation time(259) * 0.5 

 

 

 

=  volume of  blood in pulmonary circulation * 0.5 

 ________________________________ 

 

 Cardiac output 
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=    0.83l  

 _______ 

 

 2 * 6.48l/min 

 

=  3.25s 

 

 

 

Time Taken from Left Ventricle to Carotid artery = 1.5s(259) 

 

Time to Traverse Cerebral Circulation = 8.5s(259, 260) (artery to vein) 

 

Perfusion Delay typically seen in Stroke Subjects = 4s 

 

Total Time = 21s 

  

Next, the second point was defined arbitrarily as the duration of 2 FATs i.e. 42 

seconds, equivalent to 14 measured time points. This broadly coincided with the 

plateau point of the averaged T2*-weighted signal intensity curve from the 

contralateral hemisphere of included subjects.  Linear regression analysis of the 

data values between the two defined points was performed to derive a value for 

the ‘slope’ (Graphpad) which was termed the ‘gradient of the incline’ (GIC). An 

assessment of other final time points was made in order to ensure that results of 

comparative statistical tests did not vary with a change of final time point. 

 

2.2.8.3 Time to Maximum Signal (TMS) 

The time taken between the onset of the oxygen challenge and the time at 

which maximum signal was derived was measured. 
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2.2.8.4 Percentage Signal Change (PSC) 

Percentage signal change (PSC) was calculated using the data normalised to the 

individual baseline as described in the section entitled ‘Area Under the Curve). 

This was defined as the maximum value of signal measured after the onset of 

oxygen.  

 

2.2.9 Data Smoothing 

Data  smoothing using wavelet transforms was performed on the premise that 

high frequency noise may impair the ability to accurately measure certain 

components of the T2*-weighted signal intensity-time curve. Wavelet transforms 

aim to reduce meaningless noise in data whilst retaining genuine physiological 

information. They simultaneously assess not only the frequency of signals 

forming the time series, as is done by the Fast Fourier Transform, but also the 

temporal location within the time series where such signals are present.  

The statistical package ‘R: A Language and Environment for Statistical 

Computing, Austria’ (version 2.6.1) was used to run ‘Waveslim’ (version, 1 .6.1, 

Brandon Whitcher, UK) and a code written ‘in house’ (supplied by Martin Shaw, 

University of Glasgow, see Acknowledgements), in order to apply basic discrete 

wavelet transforms. This package allows 5 degrees of smoothing (scales of 

wavelet transform) to be implemented.  

The particular scale of wavelet transform to be used in this study was 

determined. The ideal degree of wavelet smoothing was pre-specified to be one 

which allowed measurement of parameters which may otherwise be affected by 

high frequency noise, whilst having minimal effect on parameters which should 

be less sensitive to high frequency noise. We used the gradient of the incline of 

the T2*-weighted signal intensity-time curve as the ‘noise sensitive’ parameter, 

and the area under the T2*-weighted signal intensity-time curve (AUC) as the 

‘noise insensitive’ parameter (see the following ‘Derivations of Measurements’ 

section for definitions of these parameters). Therefore, the ideal scale was 

defined as the one which demonstrated the gradient of incline of all curves to be 
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different from zero, but with no statistical differences between the measured 

AUC values on smoothed and unsmoothed data.  

To determine the scale, the T2*-weighted signal intensity-time curves from the 

‘mirror’ regions contralateral to the DWI lesion region were assessed (n=17). 

Analysis was performed in two phases (Figure 2-5).  
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Figure 2-5. Determination of the Wavelet Scale to b e Used.  
AUC = area under the curve 
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1) Which wavelet scales smooth sufficiently to demonstrate a signal 

increase? Firstly, it was assumed that there would be an increase in T2*-

weighted signal intensity after Oxygen Challenge in all ‘mirror’ regions.  

Therefore, the scale which gave rise to the most number of T2*-weighted 

signal intensity-time curves which had gradient of incline statistically 

different from zero, was identified. Statistical significance of linearity 

was determined by the application of linear regression (‘GraphPad Prism 

version 5.00 for Windows’ ,GraphPad Software, San Diego California USA, 

www.graphpad.com), with statistical significance denoted by p<0.05.  

 

2) Which wavelet scales do not alter ‘Area Under the Curve’ 

measurements? Next, using the wavelet scales identified from step 1, the 

AUCs from smoothed curves were compared to the AUCs from the 

unsmoothed curves using a  one way analysis of variance ( ANOVA) with 

post hoc testing using a Dunnet’s analysis(StatsDirect Ltd. StatsDirect 

statistical software. http://www.statsdirect.com. England: StatsDirect 

Ltd. 2008.  Assessment of normality was performed using a Shapiro-Wilk 

analysis. 

 

 

Figure 2-6. Definition of Measured Parameters.  
A hypothetical signal-time curve illustrating the measurement of the parameters previously 
discussed. Broken line = hypothetical T2* signal-time curve, arrows = annotation, *=time to peak 
signal. AUC = area under the curve 
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2.2.10 Statistical Analysis 

Statistical testing was performed using Statsdirect (StatsDirect Ltd. StatsDirect 

statistical software. http://www.statsdirect.com. England: StatsDirect Ltd. 

2008).  Statistical significance was set at p<0.05. The parameters measured from 

the signal-time curves generated from the tissue compartments of interest were 

compared to those from normal tissue using paired t-tests if data was of normal 

Gaussian distribution, or using the Wilcoxon signed ranks test if data was non-

parametric. Non-normality was determined using a Shapiro-Wilk test. 

 

2.3 Results 

2.3.1 Data Acquisition and Completeness 

Thirty three subjects with a provisional clinical diagnosis of acute ischaemic 

stroke were recruited by KD (thesis author) in the 23 month time period 

previously specified. An additional 2 subjects (Subjects 1 and 2) were recruited 

by the preceding Research Fellow giving a total of 35 subjects (Table 2). Subject 

1 also participated in a separate clinical trial(261) with imaging end points.  

Baseline clinical data were available for all subjects at the time of recruitment. 

T2*-weighted Oxygen Challenge data were acquired in 32/35 subjects. The 

remaining three subjects (9%) did not tolerate the MRI procedure for reasons 

unrelated to the Oxygen Challenge (subjects 3, 7, 15). Twenty five subjects 

underwent PWI successfully. Reasons for not performing PWI were those of 

technical or logistical problems (subjects 8, 11, 21, 27), non completion of the 

T2* weighted oxygen challenge scan (subjects 3, 7 and 15), and impaired renal 

function of subjects (subjects 17, 23, 30). Follow up imaging was performed in 

26 subjects as near as possible to 72h (Days 2-4).  Nine subjects did not achieve 

this for the following reasons; non-completion of the baseline oxygen challenge 

T2*-weighted scan (Subjects 3, 7, 15), death prior to the follow period (Subject 

9), access to the scanner (Subjects 11, 24), non stroke diagnosis being made 

between baseline and follow up periods (Subject 27) and transfer to a 

geographically distinct treatment facility prior to the follow up period (Subject 
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29, 34). Follow up NIHSS for subject 1 was not performed at day 7, but a day 3 

NIHSS was collected for this subject for another study. Three subjects died 

before the day 7 NIHSS clinical assessment (Subjects 3, 7, 9), one subject did not 

complete baseline oxygen challenge T2* weighted scan (Subject 15), and one 

subject was subsequently judged to have a non-stroke diagnosis (Subject 27). Six 

other subjects did not under go NIHSS follow up for reasons of geographical 

inaccessibility, owing to either hospital discharge or transfer to the referring 

district hospital. One of these (Subject 29) however had an NIHSS of 0 on Day 1. 

Therefore NIHSS assessment at follow up (at some point) was performed for 25 

subjects.  
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Table 2 Basic Clinical and Demographic Data for All  Recruited Subjects 
OCSP = Oxfordshire Community Stroke Project (2) classification. TACS = total anterior circulation 
stroke, PACS = partial anterior circulation stroke. LACS =lacunar stroke syndrome. NIHSS = 
National Institutes of Health Stroke Scale(257), rtPA = recombinant tissue plasminogen activator, 
PWI = perfusion weighted imaging. * indicated subjects in whom the entire imaging protocol was 
completed. 

 

2.3.2 Basic Clinical and Radiological Data 

There were 23 males and 12 females, whose mean age was 70yrs (range 52-95 

years).  A ‘Total Anterior Circulation Syndrome’ (TACS) was seen in 19 subjects 

and a ‘Partial Anterior Circulation Syndrome’ (PACS) in 16 subjects. Median time 

to imaging was 18h (interquartile range [IQR] 6.5-23h) with 13 subjects imaged 

at less than 9 hours post ictus. Five subjects (Subjects 1,6,7,10 and 22) were 
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imaged marginally beyond 24h; although these subjects were consented in 

anticipation of scanning before 24h there were practical difficulties associated 

with access to the scanner. rtPA was administered in 18 (51%) of subjects (all 

prior to study specific procedures). Median NIHSS on admission and at the time 

of scanning was 13 (IQR 5-20, n=35) and 8 (IQR; 2-18, n=31) respectively. Of the 

23 subjects for whom NIHSS was measured at both the time of the baseline scan 

and at 7 days, 15 demonstrated an improvement, 5 were static, and 3 

deteriorated. Of those who improved, 9 subjects improved by 4 or more units on 

the NIHSS.  When DWI lesion volume was assessed, it was too small to attempt 

measurement in 2 subjects, and did not represent stroke in one subject (subject 

27). When the remaining 32 subjects were considered, the median lesion volume 

was 12cc (IQR 3.4 – 280cc). Basic clinical data are summarised (Table 2). 

Of the 35 subjects recruited, data from 25 were analysed. A summary for these 

twenty five subjects is presented separately in Appendix E. Cases which were 

not analysed were those where there was stroke related patient agitation 

necessitating scan termination (Subjects 3,7,15), lack of a confluent lesion >1ml 

(Subjects 4,10,13,14,20,25), and final non-stroke diagnosis (Subject 27). Based 

on the thresholded TMAX maps, 7 of these 25 subjects had PWI-DWI mismatch, 

3/25 had no demonstrable perfusion deficit, even on unthresholded maps 

(Subjects 24,28, and 31), and the remainder had matched PWI-DWI deficits. 

Eighteen out of 25 subjects provided baseline data which met the stipulated 

quality criteria. The proportion of ROIs included was 17/25 for DWI lesions, 6/7 

for mismatch regions, and 3/4 for DWI expansion regions. Evaluable possible 

regions of penumbra (PWI-DWI mismatch or, if unavailable, regions of DWI 

expansion) were detected in 8 subjects (subjects 1,5,16,18,22,30,33,35).  

 

2.3.3 Determination of Optimal Wavelet Scale to be Used 

An illustration of data smoothing with different wavelet scales is shown below 

(Figure 2-7) using the T2* signal intensity curve in normal tissue from subject 11 

as an example. It is clear that the time series become smoother as the scale of 

wavelet transform is increased. 
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Figure 2-7. Illustration of Smoothing of T2*-Weight ed Signal Intensity-Time Curves by 
Wavelet Transforms  
Graphs a) through f) demonstrate progressively increasing degrees of smoothing by wavelet 
transforms (unsmoothed, and wavelet scales 1-5). The signal time curves are derived from normal 
tissue in Subject 11. The Y-axis of the graphs represents signal intensity in scanner units, and the 
X-axis denotes time. The time points of the application of hyperoxia are not illustrated in this 
example. 

 

2.3.3.1 Gradient of Incline Assessment 

At wavelet scale 3 and greater, all subjects demonstrated a GIC of the T2* signal 

intensity curve in normal tissue which was statistically different from zero 

(Table Y). Therefore wavelet scales 3, 4, and 5 were considered further. 
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Wavelet Scale  No. of Subjects 
with a GIC with 
no statistical 

difference from 
zero 

 No smoothing 6 
First scale 3 

Second Scale 3 
Third Scale 0 

Fourth Scale 0 
Fifth Scale 0 

 

Table 3 Effect of Smoothing by Wavelet Transform on  Gradient of Incline Assessment 
GIC = gradient of the incline of the time –signal curve 

 

2.3.3.2 Area Under the Curve Assessment 

Calculation of the AUC was performed for T2* signal intensity curves smoothed 

with wavelet scales 3, 4, and 5. One way ANOVA and post hoc testing with 

Dunnet’s analysis, comparing smoothed to unsmoothed data, did not reveal any 

statistical difference between the AUC from data smoothed with any of the 

wavelet scales used, from the AUC from unsmoothed data (p≥0.99 for each of 

scales 3, 4, and 5). 

 

2.3.3.3 Optimal Wavelet Scale for This Study 

Given that data sets smoothed with wavelet scales 3, 4, and 5 showed a 

significant GIC for all subjects, and AUC was not significantly different from that 

from the unsmoothed data sets, all 3 of these scales could be used, according to 

the predefined criteria for selection. In order to use the scale with least 

attenuation of the data, a third scale wavelet was chosen as the preferred 

wavelet scale in this study. 
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2.3.4 Assessment of the Optimal Length of Curve for  

Measurement of GIC 

Analysis by one way ANOVA with post hoc testing using a Tukey’s test for 

multiple comparisons did not reveal any statistical differences between the 

values for the GIC when measured for a duration of 21s, 31s and 42s (equivalent 

to 1, 1.5 and 2 FATs). These results were applicable for each wavelet scale. 

Therefore the longest duration was arbitrarily chosen [a duration of 42s (2 

FATs)] was used to measure GIC in this study. 

 

2.3.5 T2*-weighted Signal Intensity Curves in DWI L esions 

2.3.5.1 Direction of T2*-weighted Signal Intensity Time Curves from the DWI 

Lesion 

According to the arbitrary definitions of ‘positive’, ‘flat’ and ‘negative’ curves 

which were stipulated in the ‘Methods’ section, T2* signal intensity curve AUC 

values were ‘positive’ from the DWI lesions of 10 subjects, ‘negative’ in 3 

subjects, and ‘flat’ in 4 subjects. The AUC of T2* signal intensity curves from 

normal tissue was positive in all subjects. The figure below (Figure 2-8) shows 

the AUC for curves in areas of normal tissue and DWI lesions. The AUC is stated 

as a vertical vector to indicate the predominant direction of change, where the 

value of the AUC given is that of the ‘positive’ value minus that of the ‘negative’ 

value compared to the baseline. The AUC value of the T2*-weighted signal 

intensity curve from the DWI lesion was greater than that from normal tissue in 

one case (Subject 28).  In every other case the AUC was substantially greater in 

normal tissue compared to that in the DWI lesion. 
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Figure 2-8. Direction of the T2*-weighted Signal In tensity-time Curve from DWI Lesions.  
Individual subjects are described on the x-axis, and the AUC is described on the Y axis. The AUC 
value given is that of the ‘AUC of the positive curve’ minus ‘AUC of the negative curve’ in order to 
give a summary of the vertical vector of the direction of change. Maroon bars represent the AUC 
with regards to signal intensity curves in normal tissue, and the blue bars correspond to the DWI 
lesion. Bars above the x axis indicate that the predominant direction of signal change with oxygen 
was positive (i.e. an increase), and those below the x-axis a negative change  (i.e. a decrease). 
The 'positive' curves were seen from Subjects 11,12,16,22,23,24,28,31,33,35. The 'negative' 
curves were seen in subjects 1,9, and 30. The 'flat' curves were seen from subjects 5,6, 8, and 21. 

 

2.3.5.2 Measurement of Parameters of the T2*-weighted Signal Intensity Time 

Curves from the DWI Lesion 

Individual T2*-weighted signal intensity-time curves from the DWI lesion are 

illustrated in  and summary averaged curves presented in . Raw data for T2*-

weighted signal intensity PSC and for GIC/AUC/TMS are given in  and  

respectively. 

Compared with contralateral tissue, the T2*-weighted signal intensity-time 

curves from DWI lesions of 17 subjects exhibited smaller AUC (p=0.0001, 

Wilcoxon), less steep GIC (p=0.0032, Wilcoxon), later time to maximum signal 

(TMS; p=0.04, Wilcoxon) and smaller percentage signal change (PSC; p=0.0008, 

Paired t-test). From this group there were 3 evaluable ROIs with no 

demonstrable perfusion deficit (subjects 24, 28, 31); the curve from two of 

these small DWI lesion regions (subjects 24 and 31) also had this pattern of 

lesser AUC, lesser GIC, longer TMS and smaller PSC. 
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When only curves with non-negative AUC were analyzed, these differences 

remained significant for all but TMS (p=0.1). When only positive curves were 

analysed, there were still differences between hemispheres for AUC (p=0.003, 

paired t-test) and TMS (p=0.008 Wilcoxon).  However such differences did not 

reach significance for PSC (p=0.08, Wilcoxon, less in 9/10 cases) and GIC 

(p=0.08, paired t-test, less in 9/10 cases). 
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Figure 2-9. T2*-Weighted Signal Intensity-Time Curv es from the DWI Lesion of Individual 
Subjects 
The x-axis represents time (seconds) and the y-axis represents % T2*-signal change from the 
baseline. Vertical broken lines represent the onset and cessation of the oxygen challenge. The 
solid and broken lines represent the T2*-weighted signal intensity-time curve from the contra-lateral 
mirror region and the DWI lesion respectively. Reproduced with permission John Wiley and Sons 
from ‘T2*-weighted magnetic resonance imaging with hyperoxia in acute ischemic stroke: Annals of 
Neurology: 2010. 
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 (cont.) 
The x-axis represents time (seconds) and the y-axis represents % T2*-signal change from the 
baseline. Vertical broken lines represent the onset and cessation of the oxygen challenge. The 
solid and broken lines represent the T2*-weighted signal intensity-time curve from the contra-lateral 
mirror region and the DWI lesion respectively. 
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Figure 2-10. T2*-weighted Signal Intensity-Time Cur ves from DWI Lesions without 
Demonstrable Perfusion Deficit. 
Images on the left hand side are from Diffusion Weighted Imaging (DWI). For the graphs, the x-axis 
represents time (seconds) and the y-axis represents % T2*-signal change from the baseline. 
Vertical broken lines represent the onset and cessation of the oxygen challenge. The solid and 
broken lines represent the T2*-weighted signal intensity-time curve from the contra-lateral mirror 
region and the DWI lesion respectively. 

 

2.3.5.3 Measurement of Parameters of the T2*-weighted Signal Intensity Time 

Curves from the ‘Penumbral’ Region 

Whole group analysis revealed no statistical differences between hemispheres 

with respect to AUC, GIC, TMS and PSC for ‘penumbral’ ROIs. However, when 

considering only the ROIs from subjects imaged in the hyperacute phase (<8h), 1 

curve had a negative AUC (subject 30, lesion-growth ROI), and 3 had positive 

AUCs (subject 18 lesion-growth ROI, subject 33 and 35 mismatch ROIs). Positive 
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signal change was greater in the mismatch region compared to the contralateral 

side in all 3 of these hyperacute, positive AUC subjects: (Subject 18 Lesion 

Growth ROI; 1.8 vs 1.1%, Subject 33 Mismatch ROI; 2.6 vs 2.1%, Subject 35 

Mismatch ROI; 5.1 vs 1.8%). Individual T2*-weighted signal intensity-time curves 

are illustrated in  and summary curves in . Raw data for T2*-weighted signal 

intensity PSC and for GIC/AUC/TMS are given in  and  respectively. 

 

Figure 2-11. T2*-weighted Signal Intensity-Time Cur ves from the ‘Penumbral’ Region of 
Individual Subjects 
The ‘penumbra’ region was that of DWI expansion for Subjects 18 and 30 (bottom row) and was 
‘PWI-DWI’ mismatch for the remainder. The x-axis represents time (seconds) and the y-axis 
represents % T2*-signal change from the baseline. Vertical broken lines represent the onset and 
cessation of the oxygen challenge. The solid and broken lines represent the T2*-weighted signal 
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intensity-time curve from the contra-lateral mirror region and the DWI lesion respectively. 
Reproduced with permission John Wiley and Sons from ‘T2*-weighted magnetic resonance 
imaging with hyperoxia in acute ischemic stroke: Annals of Neurology: 2010. 
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Figure 2-12. Summary T2*-Weighted Signal Intensity Time Curves Categorised by 
Predominant Direction of Signal Change and by tissu e Compartment. 

In Panels (a), (b), and (d) the solid line represents the T2*-signal intensity-time curve and the 
broken lines represent the error (standard deviation) bars. The x-axis represents time (seconds) 
and the y-axis represents % T2*-signal change from the baseline. Vertical broken lines represent 
the onset and cessation of the oxygen challenge. Reproduced with permission John Wiley and 
Sons from ‘T2*-weighted magnetic resonance imaging with hyperoxia in acute ischemic stroke: 
Dani et al Annals of Neurology: 2010. 
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Table 4 Raw Data for T2* Percentage Signal Change f or Each Tissue Compartment 
Negative values indicate a signal decrease. PSC = percentage signal change, ipsi = ipsilateral 
hemisphere, contra = contra-lateral hemisphere, Vol. = volume, DWI = diffusion weighted imaging, 
ml = millilitres, SD = standard deviation, u/e = unevaluable. Reproduced with permission John 
Wiley and Sons from ‘T2*-weighted magnetic resonance imaging with hyperoxia in acute ischemic 
stroke: Annals of Neurology: 2010. 
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Table 5 Raw Data for Gradient of Incline / Area Und er Curve / Time to Maximum Signal for Each Tissue C ompartment. 
Negative values indicate a signal decrease. PSC = percentage signal change, ipsi = ipsilateral hemisphere, contra = contra-lateral hemisphere, Vol. = volume, DWI = 
diffusion weighted imaging, ml = millilitres, SD = standard deviation, u/e = unevaluable. Reproduced with permission John Wiley and Sons from ‘T2*-weighted magnetic 
resonance imaging with hyperoxia in acute ischemic stroke: Annals of Neurology: 2010.
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2.4 Discussion 

2.4.1 Findings 

To the author’s knowledge, this study is the first to report the use of oxygen as a 

dynamic contrast agent during BOLD sensitive T2*-weighted MRI in acute human 

ischaemic stroke. Evaluation of static BOLD sensitive sequences has previously 

suggested an increased deoxyhaemoglobin concentration in potentially 

salvageable tissue which may be reversed with reperfusion. Other groups have 

reported T2*-weighted signal increases after respiratory challenge in healthy 

volunteers and have postulated such changes to be dependent on baseline 

deoxyhaemoglobin concentration in the context of ongoing metabolic activity. 

However, this is the first study to combine the application of transient hyperoxia 

(Oxygen Challenge) during BOLD sensitive (T2*-weighted) MRI in the context of 

acute human stroke. 

In the contra-lesional ‘mirror’ region which was assumed to represent ‘healthy’ 

tissue, a signal increase after Oxygen Challenge was consistently observed. In 

the operationally defined infarct core (DWI lesion) the response was more 

varied. On the basis of the observed morphology of the T2*-weighted signal 

intensity-time curves, three different categories of direction of change were 

observed; single increases from baseline (‘positive’ curve), very little overall 

change (‘flat’) and signal decreases after Oxygen Challenge (‘negative’ curve). 

Overall, measurements for each parameter were attenuated in the DWI lesion, 

with a lesser magnitude of signal increase being observed compared to the 

contra-lesional hemisphere. Even when signal increases were observed to give 

‘positive’ T2*-weighted signal intensity-time curves from the DWI lesions, the 

magnitude of signal increase (as measured by ‘area under the curve’) was still 

diminished compared to the contra-lateral side. Finally, the time to achieve 

maximum signal was longer, and the gradient of incline of signal increase was 

less in the DWI lesion compared to the contra-lesional side. The exact 

physiological significance of these parameters is, at present, unclear. The 

gradient of incline of signal increase may reflect the rate of contribution of 

deoxyhemoglobin to the total pool, but the influence of impaired perfusion 

requires to be examined. The latter factor is likely to have played a large role in 
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determining the ‘time to maximum signal’. In addition, it should be noted that 

in subject 28, the response in the DWI lesion was greater than in the mirror 

region. However, whilst this could theoretically be due to a greater OEF, this 

cannot be established until maps of CBV are evaluated. This case is considered 

further in Chapter 6. 

The number of subjects with regions of possible’ penumbra’ was small in this 

cohort – only eight subjects from thirty five patients initially recruited. Of the 

penumbral regions examined in this study, six had PWI-DWI mismatch and 2 had 

DWI expansion. The regions of interest for these ‘penumbral’ tissues were also 

generally small and many of these subjects were imaged late. Therefore, when 

taken as a whole group, the hypothesised increase in T2*-weighted signal after 

Oxygen Challenge was not observed with any statistical effect. However, closer 

consideration of the subjects who were imaged <8h showed that the three 

‘positive’ curves from ‘penumbral’ regions were all of greater magnitude than 

those form the contra-lesional side. Although these numbers are not large 

enough for statistical analysis, it is reassuring that a dramatically large signal 

increase of 5.1% above baseline was seen from one mismatch region. 

2.4.2 Interpretation of Results / Context in Litera ture 

2.4.2.1 Comparison to Animal Pilot Study 

The results of this current study broadly reflect the pilot animal study(255). In 

the preceding animal study which used a rodent model of permanent MCA 

occlusion, the increase in T2*-weighted signal after Oxygen Challenge was less in 

the DWI defined core compared to the ‘normal’ tissue (0.24% vs 1.8%), which is 

consistent with the results of this study. However, in the pilot animal study the 

signal changes seen in the infarct core were universally negligible; although a 

signal increase of 0.24% was reported, it is generally accepted that signal 

changes below an arbitrary value of 0.5% are not reliably detected by fMRI 

studies, and thus the same would be expected here. Examination of the animal 

pilot study T2*-weighted signal intensity-time curves shows very little change in 

the infarct (Figure 2-13). 
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Figure 2-13. T2*-Weighted Signal Intensity-Time Cur ves from Operationally Defined Infarct 
Core from the Animal Pilot Study(255) 
The x-axis denotes time and the y-axis denotes normalised signal intensity. The vertical grey bar 
indicated the duration of the Oxygen Challenge. Very little signal change is observed with Oxygen 
Challenge in the infarct core in this study. Reprinted by permission from Macmillan Publishers Ltd:  
‘Santosh C, Brennan D, McCabe C et al. Potential use of oxygen as a metabolic biosensor in 
combination with T2(*)-weighted MRI to define the ischemic penumbra. J Cereb Blood Flow Metab. 
2008’. 

Although broadly similar, those results do differ from the results from this 

current study. Firstly, although in this study there were cases where very little 

signal change was seen (panel [b] in ), there were also cases from within the DWI 

lesion where clear signal increases were observed (in one case this was even 

greater than the signal increase seen in the contra-lesional ‘mirror’ region). 

Such signal increases are, however, not surprising. Firstly the operational 

definitions varied between studies. The animal study defined infarct core as the 

‘center of the zone of the ADC abnormality’(255) after permanent MCA occlusion 

using an intra-luminal filament technique. This study considered the mean signal 

change from the whole of the DWI lesion. In fact, using the DWI lesion as a 

surrogate of core is inaccurate – the DWI lesion can represent a heterogeneous 

tissue region with areas of both core and penumbra scattered throughout(54) 

and all patients in this study were scanned within a time window where 

penumbral tissue may exist(21). Secondly, although not consistently measured, 

the occlusion status of the cohort from this study is likely to have been variable 

with respect to occlusion site, recanalisation status and collateral blood flow. 

Even in critically hypoperfused tissue, some residual flow is usually seen in 

human stroke MR examinations. On the other hand, the intra-luminal filament 

technique used in the animal pilot study is effective in generating a marked 

reduction in CBF with little residual blood flow. Therefore differences in residual 

CBV and therefore the residual deoxyhaemoglobin pool may explain the reduced 
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but persistent signal increases in the DWI lesion after oxygen challenge. This 

hypothesis is in keeping with results from a human stroke study using T2’-

weighted imaging which suggested a large deoxyhaemoglobin pool exists within 

the acute DWI lesion(229). 

The second difference from the animal study is the observation of signal 

decreases after Oxygen Challenge (panel C, ) which were seen in three subjects. 

Given the small number of cases from which this phenomenon was seen, it is 

useful to examine whether this effect is genuine. In Subject 9 there was indeed 

a decrease in T2*-weighted signal intensity which had a good temporal 

association to the Oxygen Challenge. Although only a single case, it is tempting 

to speculate that this is a genuine reduction in T2*-weighted signal intensity due 

to Oxygen Challenge. If so, this may be explained by, 1) haemodynamic changes 

or, 2) changes in magnetic susceptibilities directly related to the Oxygen 

Challenge. Haemodynamic changes will be considered in more detail later in this 

Discussion. However, it should be noted that to cause decreases in T2*-weighted 

signal intensity due to haemodynamic changes, one would expect Oxygen 

Challenge to cause a decrease in CBF.  Although this is possible and is the 

response seen in healthy tissue(262), such changes would need to be extremely 

large to override the overall effects of changes in magnetic susceptibilities 

related to changes in oxyhaemoglobin : deoxyhaemoglobin ratio(253). In 

addition, unlike healthy tissue, decreases in CBF in ‘core’ after hyperoxia are 

not generally expected(263, 264). A pure haemodynamic effect as an 

explanation for signal decreases after Oxygen Challenge is therefore not 

particularly attractive.  Another possibility is that the effect may be explained 

by molecular oxygen dissolved in plasma, which is paramagnetic on the basis of 

having two unpaired electrons(265). Under physiological conditions hyperoxia 

causes only a modest increase in venous oxygen tension(266) and therefore this 

is unlikely to contribute significantly to MRI signal in the absence of physiological 

disturbance. However, using an ocular model, Berkowitz(267) showed that when 

arterial oxygen tension is elevated after hyperoxia (PO2 of >350 mmHg), the 

venous haemoglobin can no longer buffer excess haemoglobin and the excess 

oxygen is dissolved in plasma and may affect MRI signal (T1-weighted signal was 

evaluated in their case). It is possible that under conditions of low or absent 

oxygen extraction fraction, the venous side of the vasculature has less capacity 
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to buffer the excess oxygen (less deoxhaemoglobin available to buffer) and 

therefore oxygen is offloaded more readily. The threshold to affect MRI signal 

may be reached more easily and therefore a decrease in signal intensity may be 

seen as a result of molecular oxygen dissolved in plasma. To the author’s 

knowledge there are no precise data describing the effects of molecular oxygen 

dissolved in plasma on T2* at 3.0T under conditions of low oxygen extraction 

fraction, and therefore the precise magnitude of these effects is uncertain and 

this hypothesis remains speculative.  

In other cases the ‘negative’ signal change may have been due to ‘non-

physiological’ causes. For Subject 30 the apparent decrease in signal intensity 

after Oxygen Challenge may have simply been due to a variable baseline. In 

Subject 1 there appears to be a downward drift starting approximately half way 

through the pre-Oxygen Challenge baseline and continues to a nadir (indicated 

by * in ). After this nadir, which is approximately half way through the Oxygen 

Challenge, T2*-weighted signal intensity starts to increase. Therefore, in this 

case it is difficult to conclude that the true effect of the Oxygen Challenge is to 

precipitate a decrease in T2*-weighted signal intensity in this case. Rather, 

Oxygen Challenge may simply have reversed a downward drift. The cause of the 

decrease in T2*-weighted signal intensity is unclear but may be due to scanner 

drift or physiological factors such as ‘low frequency fluctuations’ due to 

vasomotion(268). 
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Figure 2-14. ‘Negative’ Signal Change - T2*-Weighte d Signal Intensity-Time Curve Derived 
from the DWI Lesion of Subject 1  
The x-axis represents time (seconds) and the Y axis represents percentage change from baseline. 
The broken line represents the T2* signal curve from the region defined by the DWI lesion, and the 
continuous line represents the respective curve from normal tissue. The broken vertical lines show 
the time of onset and cessation of hyperoxia. The time point at which signal intensity increases in 
the curve from the DWI lesion is denoted by *. 
 

Finally, the animal study observed large increases in T2*-weighted signal in 

operationally defined ‘penumbra’ regions compared to normal tissue(255). That 

study defined penumbra in two ways; 1) PWI-DWI mismatch, and 2) a 

histologically defined border zone (55% normal neuronal morphology from a 

region at the ADC lesion boundary). The observation in this study that, at least 

in some cases, a large signal increase compared to normal tissue was seen in the 

‘penumbral’ regions is consistent with this. It should be noted that the 

penumbral regions in this current study were generally small and imaged late 

and therefore may not all be genuinely ‘penumbral’. The limitations of 

comparing Oxygen Challenge to a technique (PWI-DWI mismatch) which is not 

the gold standard are therefore clearly highlighted.  

 

2.4.2.2 Comparison to Other Studies – ‘Normal’ Tissue 

The magnitude of observed signal changes in this study was consistent with the 

results from previous studies. In this study the mean percentage signal change 
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from the contra-lateral hemisphere in the ‘mirror’ regions of the DWI lesion was 

2.2% (range 1.25-3.14). The variability may be explained by 1) variability in the 

actual FiO2 administered and 2) the variable anatomical locations of the regions 

of interest. Interestingly, however, the mean percentage signal change in 

‘normal’ tissue reported by the pilot animal study(255) was 1.8% - remarkably 

similar given the differences in magnetic field (pilot animal study performed at 

7.0T) and the inevitably larger proportion of grey matter in rodents. Results 

from other studies reported average signal changes 1.29-3.17%(249, 252, 269) in 

healthy tissue and have also highlighted the importance of underlying tissue type 

on results, with differences in percentage signal change reported between basal 

ganglia, cortical grey matter, and white matter. Again, the use of the mirror 

region for comparison to the pathological regions of interest will have eliminated 

most of the confounding effect of variation of tissue type in the current study. 

 

2.4.2.3 Comparison to Other Studies – ‘Penumbral’ Tissue 

The limited data for penumbral tissue in this study limits discussion of this 

aspect. However, the occasionally observed exaggerated T2*-weighted signal 

increase after Oxygen Challenge is consistent with an increased oxygen 

extraction fraction. The penumbral correlate for studies of static signal intensity 

is a decrease in BOLD sensitive signal intensity and, as previously mentioned 

numerous studies have demonstrated this phenomenon in tissue likely to be 

‘penumbral’(99, 219-221, 225-229, 270, 271). 

The only comparison of changes in T2*-weighted signal intensity to PET data 

after acute stroke was made by Donswijk and colleagues(231). In 5 subjects 

imaged 7-21h post ictus the pre-contrast T2*-weighted images from PWI were 

compared to OEF data from PET data acquired immediately following PWI. There 

was no correlation between T2*-weighted signal intensity (relative to the contra-

lesional side) and OEF. There are two explanations for this. The first is that 

BOLD signal intensity simply bears no relationship to oxygen extraction fraction. 

This, however, is contrary to the evidence previously discussed. The second is 

that refinements of the measurement of the BOLD effect are required before 

inferences of the OEF can be made. Firstly, the study by Donswijk and 
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colleagues examined patients who were 7-21h post ictus. However, the T2-

weighted signal intensity has been shown to increase as a result of oedema after 

3h post ictus(78) and therefore these subjects almost certainly had a rise in T2 

independent of the BOLD effect, thus confounding results. This phenomenon is 

not an issue in this current study as the normalised change in T2*-weighted 

signal intensity was examined, thus ignoring the absolute baseline signal 

intensity value. Secondly, assessment of static T2*-weighted signal intensity 

needs to account for the cerebral blood volume as well as OEF(206). Finally, the 

T2*-weighted sequences used in this study were not optimised for the detection 

of OEF and were designed to collect PWI data. Therefore, it is very possible that 

these limitations alone may explain the failure for correlated the T2*-weighted 

MRI findings with PET data.  

2.4.2.4 Comparison to Other Studies – ‘Infarct Core’ 

Geisler and colleagues specifically examined T2’ –weighted signal intensity from 

within the infarct core, as defined by the ADC lesion. They specifically found 

that the lowest T2’-weighted value (and by implication the highest 

deoxyhaemoglobin concentration) was found in the infarct core. This was in 

contrast to this current study’s observation that the lowest Oxygen Challenge 

induced signal increase was from the DWI lesion. Potential explanations are 

multiple. Firstly, the DWI lesion was examined at less than 6h post ictus by 

Geisler and colleagues, and could well have had penumbral tissue(54) within it. 

This would be less likely in this current study’s cohort which was imaged at a 

median of 18h post ictus. Secondly, in the early hours OEF may still be 

elevated(272) in infarct core, again potentially explaining results from the 

Geisler study. Finally, the group hypothesised that there may be reduction in the 

wash out of deoxyhaemoglobin from tissue under conditions of low CBF, and 

therefore the increase in deoxyhaemoglobin may be a remnant of previously 

metabolic activity(229). If this last hypothesis is true, the Oxygen Challenge 

technique may detect this as failure of the T2*-weighted signal intensity to 

return to baseline at the same rate as ‘healthy tissue after oxygen cessation. In 

summary, therefore, the differences in signal intensity observed in operationally 

defined infarct core between this and the Geisler study may reflect both 

methodological and biological differences between studies. 
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2.4.3 Evaluation of the Theory of the Technique 

2.4.3.1 General Considerations 

Although the rationale of the technique has been stated, it is useful to consider 

the mechanisms behind the T2*-weighted signal changes after Oxygen Challenge. 

Firstly, oxygen was delivered at 15l/min using a simple face mask. Under 

physiological conditions arterial haemoglobin is almost (≥95%) completely 

saturated with oxygen, and therefore hyperoxia generally has little effect on 

arterial haemoglobin saturation and the magnetic susceptibilities thereof. Even 

under hyperoxic conditions, haemoglobin will remain the majority oxygen carrier 

but there will also be a small increase in plasma dissolved oxygen. The increase 

in the arterial partial pressure leads to an increase in cerebral venous 

haemoglobin saturation. Under normal conditions cerebral tissue extracts 30-40% 

(OEF =0.3-0.4) of oxygen content in the blood(273). Extraction occurs by 

diffusion, predominantly along the first third of the capillary bed although some 

extraction proximal to this does occur across arterioloes(274). The oxygen is 

extracted by diffusion(275) along a gradient from high capillary oxygen tension 

to low tissue oxygen tension(276). The majority of oxygen which is extracted is 

dissolved in the plasma, with only a negligible amount being extracted directly 

from haemoglobin(277). Very little unmetabolised tissue oxygen re-enters the 

blood from tissue after the initial extraction(278). Therefore, with a normal OEF 

(~30%) the cerebral venous oxygen saturation will be approximately 70%. This 

represents a potential for a much larger change in venous haemoglobin 

saturation compared to arterial saturation after hyperoxia is given (~30% vs 

~5%). Administered oxygen will combine with venous deoxyhaemoglobin, 

increasing venous oxygen saturation(266, 279). The increase in cerebral venous 

oxygen saturation occurring as a result of increased oxyhaemoglobin : 

deoxyhaemoglobin ratio will thereby increase T2*-weighted signal intensity(253). 

The effect of oxygen challenge is therefore weighted towards capillaries and 

veins rather than arteries and arterioles. The basis for this technique is that in 

regions where the deoxyhaemoglobin pool is increased as a result of increased 

oxygen extraction fraction, there will be more deoxyhaemoglobin to combine 

with the extra administered oxygen and therefore larger signal changes will be 

produced after Oxygen Challenge.  



Chapter 2  122 

In the DWI lesion therefore, where OEF may be expected to be low, T2*-

weighted signal increases were small or absent. In contrast, contra-lesional 

tissue (assumed OEF = 0.3-0.4) consistently gave rise to T2*-weighted signal 

increases. In some regions of PWI-DWI mismatch (where OEF was assumed to be 

elevated) there were T2*-weighted signal increases greater than in contra-

lesional tissue. However, an immediate conclusion that the results are a direct 

effect of underlying CMRO2 and OEF would be premature and other influences on 

the capacity of increase in T2*-weighted signal intensity must be evaluated. It is 

therefore useful to return to the following equation original derived from 

Yablonskiy and Haake(232) which was also stated in an earlier section. 

)1(***)3/4(**'2 0 CBOSHctR −∆Χ= γλ  

where R2’ = 1/T2’, λ  = venous CBV, assuming arterial blood is fully saturated, γ = gyromagnetic 

ratio (2.68 x 108 rad/s/Tesla), ∆X0 is the difference in magnetic susceptibility between fully 

oxygenated and fully deoxygenated blood (0.18ppm per unit Hct(233), Hct = haematocrit and 

CBOS  = cerebral blood oxygen saturation and thus (1-CBOS)  = oxygen extraction fraction. 

After excluding static variables which will not change with oxygenation, we are 

left with a number of variables; venous CBV, haematocrit, and haemoglobin 

saturation for oxygen. The hypothesis for the Oxygen Challenge Technique 

explicitly acknowledges the effect of hyperoxia on haemoglobin saturation for 

oxygen (CBOS). It does not however, deal directly with influences from 

haematocrit (Hct) and cerebral blood volume. Each of these influences will be 

considered in turn in the following sections. Finally, when evaluating results 

from this technique, it should be remembered that OEF may be high in core and 

in oligemia as well as in penumbra, and this may confound results. 

 

2.4.3.2 Cerebral Venous Oxygen Saturation 

Firstly the effect of hyperoxia on cerebral venous oxygenation should be 

considered. Oxygen was administered via a simple face mask which may be 

considered ‘variable’ performance. Therefore the inspired concentration of 

oxygen is likely to have been variable between subjects(280). It is often 

erroneously assumed that such delivery of high flow oxygen via a standard face 
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mask delivers ‘100%’ oxygen. In fact, as applied in this study, it is unlikely that 

inspired oxygen extraction fractions (FiO2) would have exceeded much more 

than 50-60% (FiO2 = 0.5-0.6) at most (281). What effect do such oxygen 

concentrations have on cerebral venous oxygen saturations?  Chiarrelli(249) and 

colleagues applied simple equations defined by Severinghaus(282) which were 

based on theoretical analyses of oxygen exchange between tissues. They showed 

that in six volunteers, even a FiO2 of 1.0 (100% O2) only gave rise to an 

approximately 10% increase in cerebral venous oxygen saturation. Applied FiO2s 

of 0.4 and 0.6 (assumed to be in the range of the applied hyperoxia in this study) 

gave rise to increases in cerebral venous oxygen saturation of 3-4% and 6-7% 

respectively. Such small increases in cerebral venous oxygen saturation mean 

that there is equal scope between blood volume compartments associated with 

healthy tissue (venous saturation 60-70%) and penumbral tissue (venous 

saturation <30%) for such a magnitude of increase in venous saturation. If these 

data are applicable to the cohort examined in this study, they argue against a 

dependence of the Oxygen Challenge induced signal increases on OEF, when the 

OEF is normal or increased i.e. 6-7% increases in cerebral venous oxygen 

saturation could occur in both penumbra and normal tissue, meaning the change 

in magnetic susceptibility would be no different in either tissue compartment. 

However, a counter argument to this is that the venous oxygen saturation 

increase described by Chiarelli and colleagues(249) referred to a measure of 

global venous oxygen saturation. The actual increase in regional venous oxygen 

saturation is likely to depend to the underlying CBV and rate of delivery of 

oxygen to the tissue. The signal change detected in one voxel is related to the 

absolute quantity of deoxyhaemoglobin within that voxel, rather than the venous 

oxygen saturation per se. Therefore results for healthy ‘whole brain’ from 

Chiarelli and colleagues(249) are not directly applicable to stroke tissue 

compartments such as the ‘DWI lesion’ and the ‘PWI-DWI mismatch’ region. 

Furthermore, under conditions of high OEF, the relationship between T2*-

weighted signal intensity and deoxhaemoglobin concentration becomes non-

linear, thereby complicating interpretation(218). Nonetheless, it is necessary to 

consider other influences. 
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2.4.3.3 Cerebral Blood Flow (CBF) and Cerebral Blood Volume (CBV) 

The previous equation acknowledges CBV as an undoubtedly large influence on 

the magnitude of T2*-weighted signal intensity increases after Oxygen 

Challenge. In particular, it is venous CBV which is influential on T2*-weighted 

signal intensity and this entity contributes approximately 70-80% of total 

CBV(207, 283). One issue is whether haemodynamic changes due to hyperoxia, 

including those relating to CBF and CBV, occur with a sufficient magnitude to 

influence the signal change. This is important as increases in CBV are 

proportional to increases in CBF(284) and both affect T2*-weighted signal(285). 

Indeed, hyperoxia precipitates a plethora of haemodynamic effects including  a 

reduction in heart rate, cardiac index and an increase in mean arterial blood 

pressure, systemic vascular resistance and baroreflex sensitivity(286, 287). A 

multitude of human volunteer studies have investigated the CBF response to 

hyperoxia and these are summarised in Appendix F(251, 262, 288-295). Early 

studies using the N20 technique in young healthy volunteers(262, 288) 

demonstrated a 12-15% reduction in CBF in response to hyperoxia. More recent 

studies using MRI have shown a reduction in CBF of up to 32%(295) and the effect 

is perhaps more pronounced in younger subjects(292). Most studies have also 

demonstrated a concomitant reduction in arterial CO2 which is often statistically 

significant and can be explained by the Haldane effect. Although induced 

hypocapnia could theoretically account for all of the reduction in CBF, it has 

been demonstrated that hyperoxia has a statistically independent effect(295). 

Changes in CBF after the application of hyperoxia occur fairly rapidly. A 

reduction within 2-4 minutes of hyperoxia, with restoration of flow within 6 

minutes of subsequent normoxia is typical of time courses quoted in the 

literature(292). Could these changes have affected results? The direct effect of 

the reduction in CBF seen in healthy tissue would lead to a decrease in T2*-

weighted signal intensity, if any effects were indeed present. This would have 

only served to attenuate the positive signal increase observed in the contra-

lesional hemisphere. Therefore, such changes cannot be explained by 

haemodynamic effects. Moreover, any influence of CBV changes after respiratory 

challenge on the T2*-weighted signal has been shown to be, if present, relatively 

small(253). Therefore haemodynamic changes are unlikely to significantly 

confound results from this technique in normal tissue. 
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What about stroke regions? In an animal study, Shin and colleagues(264) showed 

an increase in CBF after hyperoxia applied to isofluorane anaesthetised mice. 

Animals were subjected to permanent middle cerebral artery occlusion and 

blood flow was monitored continuously with laser doppler flowmetry. In a human 

study using the xenon inhalation technique Nakajima and colleagues(263) 

examined patients recruited both less than, and more than, 15 days after non-

lacunar anterior circulation stroke acute stroke.  CBF in the ipsilateral 

hemisphere and in some areas of contra-lateral hemisphere was increased after 

hyperoxia in the <15 day group, despite a concomitant decrease in pCO2.  

Although precise values were not given in this study CBF increases of >30% were 

seen in some areas on the hemisphere ipsilateral to the lesion. However, this 

study was performed at late time points and therefore could not assess 

penumbra. Nonetheless it suggests that the loss of autoregulation in stroke 

influences the effect of hyperoxia on CBF. The mechanisms of CBF increases are 

unclear and may relate to an increase in systemic mean arterial blood pressure 

(MAP) or could even be due to an ‘inverse steal’ effect whereby the reduction of 

CBF in adjacent normal tissue which demonstrates vasoconstriction in response 

to hyperoxia allows a compensatory increase in CBF where in the stroke regions 

with autoregulatory vasoconstriction is abolished. With respect to Oxygen 

Challenge results, positive signal increases observed from within the DWI lesion 

could have in theory been due to increases in CBF. Only concomitant CBF 

monitoring, such as with ASL, can resolve this issue. 

Importantly, in addition to the effect of a change in haemodynamic parameters 

after Oxygen Challenge, it is also vital to consider the effect of such parameter 

at baseline. The total quantity of deoxyhaemoglobin in the measured pool is not 

only dependent on the underlying metabolic activity and oxygen extraction 

fraction, but also the total volume of the pool itself – venous cerebral blood 

volume. In this study the differential effects of baseline CBV and OEF were not 

distinguished. This will be required before inferences about underlying 

metabolic activity can be made and should be the subject of further 

investigation. The influence of baseline CBV is likely to be of far greater 

importance than any minor changes in T2*-weighted signal occurring as a result 

of hyperoxia induced haemodynamic change. 
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2.4.3.4 Haematocrit 

The haematocrit (fractional volume of erythrocytes of the total blood volume) 

will clearly influence the absolute concentration of deoxyhaemoglobin within a 

given volume of vessel, and therefore T2*-weighted signal intensity. Although 

the haematocrit varies according to the size of the cerebral vessel(296) the use 

of a ‘mirror’ region from the contra-lesional hemisphere should minimise the 

influence of this variation between individual regions of interest. However, the 

haematocrit may decrease after cerebral ischaemia(297), particularly under 

conditions of decreased blood flow and increased oxygen extraction fraction. 

Therefore the use of mirror regions in this situation may introduce minor errors. 

 

2.4.4 Limitations of the Technique 

2.4.4.1 Theory 

The limitations of the theory of the technique have previously been discussed. 

2.4.4.2 Application of the Technique 

There are a number of additional limitations imposed by the manner in which 

the technique was applied. Firstly a T2*-weighted sequence was chosen, in order 

to provide a superior signal-to-noise ratio compared to T2-weighted sequences. 

Limitations imposed by this sequence include vulnerability to susceptibility 

artefacts. These are typically most pronounced at tissue interfaces. In this 

study, the circulation of administered oxygen in the nasal sinuses created a large 

signal artefact with pronounced signal drop out observed around the nasal 

sinuses. For this reason, all tissue which was anterior to the lateral ventricles 

was discarded from analysis. Although uncommon, a stroke lesion predominantly 

affecting the frontal lobes around the paranasal sinuses would be not be reliably 

analysed using this technique. Secondly, the sequence was employed in a 

continuous fashion, in a similar manner to that employed in fMRI studies. While 

this allowed novel analyses of the T2*-weighted signal intensity-time curve such 

as ‘Area Under the Curve’ and ‘Gradient of Incline’, it rendered the data 
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susceptible to low and high frequency ‘noise’ and thus the signal-to-noise ratio, 

as judged by inspection of the T2*-weighted signal intensity-time curves, was 

generally poor in this study. As a result, additional smoothing was required as a 

post-processing step. The acquisition of two BOLD sensitive images for 

approximately 5 minutes each (one pre- and the other peri-Oxygen Challenge) 

may have provided better signal-to-noise ratios than those seen in this study. 

It is also important to appreciate that as a result of using a sequence used in 

fMRI studies, signal changes during the Oxygen Challenge sequence may have 

occurred due to sensory stimuli. For example, the change in sound of the T2*-

weighted sequence which followed other sequences potentially introduced an 

auditory stimulus, despite the application of ear plugs. The use of a glass mirror 

system to allow subjects to see out of the scanner into the control room was 

employed to reduce claustrophobia, but potentially introduced visual stimuli. 

Finally, medical air was administered either side of the Oxygen Challenge so that 

the sensation of Oxygen Challenge administration was limited. However, the 

possibility that subjects ‘sensed’ the change of gas administration cannot be 

excluded and this again could have provided a stimulus. The full effect of these 

potential stimuli on the acquired data is unclear but is unlikely to have produced 

any systematic bias. Only the change in gas mixture was correlated to the 

Oxygen Challenge and could potentially confound comparisons of baseline to 

Oxygen Challenge, and even this effect is unlikely to have lasted the entire 

duration of Oxygen Challenge (5 minutes). 

There are a number of issues pertaining to the application of hyperoxia in this 

study. Firstly, a variable performance simple ‘Hudson’ mask was used. Whilst 

the use of such masks reflected their low cost and availability, it is likely that 

the FiO2 administered during both a single Oxygen Challenge and also between 

patients was variable. Measurement of inspired oxygen concentration would 

have been helpful. However, this limitation is somewhat overcome by 

comparison of the data to the contra-lesional hemisphere. Therefore comparison 

between subjects is still possible by normalising data to the contra-lesional 

hemisphere. In addition, the recording of the end tidal CO2 and repeated blood 

pressure measurements would have been helpful for calibration of the T2*-

weighted signal intensity and determining the likely effect of Oxygen Challenge 

on haemodynamic parameters. These data could also potentially be applied as 



Chapter 2  128 

regressors to the T2*-weighted data in an effort to improve signal-to-noise ratio. 

Similarly, continuous monitoring of SaO2 was not performed. This will be 

important in future studies since if baseline oxygen saturations are low, there 

may be a signal change due to c xvhanges in arterial oxygen saturation, which is 

separate from the effect from venous oxygen saturation. Finally, it should be 

noted that it takes at least 1 minute for measurements of oxygenation to 

equilibrate after the onset of hyperoxia(252) and may take as long as 3 minutes 

for full denitrogenation of the alveoli. The analysis of the T2*-weighted signal 

intensity curves could therefore have been performed using only the last minute 

(5th minute) of Oxygen Challenge data when equilibrium had been reached. 

However, given that all subjects had the same protocol applied, it is unlikely 

that any systematic bias was introduced by using the data acquired throughout 

the whole period of the Oxygen Challenge. 

Finally, limitations of this technique also relate to the direct use of oxygen. 

Firstly, a small proportion of stroke subjects inevitably have type II respiratory 

failure due to other co-morbid conditions such as chronic obstructive pulmonary 

disease (COPD). In such subjects the application of hyperoxia is relatively 

contra-indicated. Secondly, concern has been raised about the potential toxicity 

of oxygen with respect to free radical generation(298). Such an occurrence in 

the brain after acute stroke could theoretically exacerbate ischaemic damage. 

However, this is not generally considered to be an issue for short periods of 

hyperoxia, and studies suggesting detriment have studied prolonged 

hyperoxia(298). In fact, in the acute phase of acute stroke, hyperoxia may 

prolong the duration of existence of the penumbra(299, 300) and has therefore 

been suggested as a potential neuroprotectant(301). Indeed, clinical trials are 

currently investigating oxygen as stroke therapy(302). The next issue pertaining 

to the use of oxygen as a contrast agent is its biological activity. An ideal 

contrast agent should highlight biological features of interest without altering 

the very function which is purports to measure. In healthy tissue, hyperoxia has 

been shown not to affect CMRO2. However, in stroke tissue, hyperoxia may 

precipitate a shift from anaerobic to aerobic metabolism as suggested by a 

reduction in lactate concentration(183). This suggests that oxygen is not a purely 

inert contrast agent by affects metabolic activity – the very parameter we are 

using it to measure. This constitutes a minor limitation of this technique. 
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2.4.4.3 Post –Processing 

Fairly extensive post-processing was necessary for this study. Firstly, owing to 

the relatively low signal-to-noise ratio of this technique, the data was 

temporally smoothed using wavelet transforms. This reduced the influence of 

high frequency noise on measurement of parameters of the T2*-weighted signal 

intensity-time curves. Although wavelet transforms are designed to reduce 

meaningless noise whilst preserving physiological data,  demonstrates that with 

progressive smoothing the T2*-weighted signal intensity-time curve changes 

morphology, especially using a fifth scale wavelet. In this study a third scale 

wavelet was used since this was the least amount of smoothing required to allow 

distinction of a gradient of signal increase in normal tissue without significantly 

changing the area under the curve. However, it should be noted that no 

particular wavelet transform scale is accepted and validated as optimal, 

particularly for the application in this study. Further work to improve signal-to-

noise ratio may eliminate the need for such smoothing. 

Secondly, there are limitations to the measurement of parameters on the T2*-

weighted signal intensity-time curves. Measurement of area under the curve 

(AUC) is likely to be fairly robust and insensitive to high frequency noise. 

Therefore, this parameter is likely to be a reproducible measure of the 

magnitude of signal change. Percentage signal change on the other hand may be 

more susceptible to high frequency noise if artefacts manifest as ‘spikes’ on the 

T2*-weighted signal intensity-time curve. The same issue will therefore apply to 

the ‘time to maximum signal’ parameter. Despite this potential problem, 

however, the percentage signal changes reported by this study are remarkably 

consistent with other work, as previously discussed. The measurement of the 

‘gradient of incline’ is likely to be the least reproducible parameter. In order to 

avoid biased ‘data driven’ analyses the same segment of the T2*-weighted signal 

intensity-time curve was measured for ‘gradient of incline’ in each patient. 

However, there were inevitably variations between individuals as to when the 

signal intensity increase occurred and therefore it is possible that the true 

gradient of incline of signal increase was not captured for all T2*-weighted signal 
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intensity-time curves. Therefore data for this parameter should be interpreted 

with caution. 

Next, it should be noted that the parameters of the T2*-weighted signal 

intensity-time curves were made with reference to the baseline signal. This was 

calculated as the mean of all pre-Oxygen Challenge measurements. Therefore 

the measurement of baseline was made over 3 minutes, during which time signal 

baseline variation could have occurred due to physiological(268) or artefactual 

processes. The quality selection criteria most likely excluded those T2*-weighted 

signal intensity-time curves with significant variation since a 1% signal increase 

compared to baseline in contra-lesional tissue was required. However, baseline 

variations have the potential for two problems. Firstly, if there is substantial 

change in the baseline over time, then the ability to produce accurate 

measurements of magnitude of change is limited. Secondly, if baseline variation 

for T2*-weighted signal intensity-time curves derived from the stroke and 

‘normal’ tissue are inherently different, then the same actual magnitude of 

change between regions will produce different measured magnitudes of change, 

potentially introducing an inherent bias. This issue requires further 

investigation. 

Thirdly, it should be noted that contra-lesional ‘mirror’ regions were used as an 

internal reference. This had the advantage of limiting the confounding effect of 

variations between subjects for factors such FiO2 and anatomical location. 

However, due to brain asymmetries the contra-lesional region of interest will 

never have been an exact mirror. However, any errors due to this are likely to 

have been minor and unbiased. 

Fourth, there were potential limitations in the definition of tissue 

compartments. The gold standard imaging technique to define penumbra and 

infarct core is PET. However, because this modality was unavailable, other MRI 

parameters (PWI-DWI), which are acknowledged to be inaccurate for defining 

the physiological tissue compartments(303), were used. For example, the DWI 

lesion does not represent pure infarct core but may include penumbra(54). In 

addition, PWI-DWI mismatch is of limited accuracy in defining the penumbra. In 

this study a TMAX threshold of 4s was chosen to define the outer border of the 

penumbra. While not unreasonable, more recent studies have suggested a more 
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conservative threshold may be more appropriate(123, 304), while other studies 

suggest that no threshold can accurately define the penumbra(305). Finally, the 

standard SVD method of deconvolution was chosen for this study due to the 

availability of software, but it is now acknowledged that the circular SVD 

method of deconvolution is more accurate(123). In addition, while the concept 

of retrospectively defining DWI expansion as representing the penumbra is 

robust, accurate delineation of this region at day 3 (when there is significant 

swelling) means that it is difficult to distinguish between regions of genuine DWI 

expansion and regions which have simply swollen. Following up imaging after a 

longer interval would help to circumvent this problem in future studies. 

 

2.4.4.4 Recruited Cohort 

A limitation of this study is that treatment decisions were made on the basis of 

non-contrast CT scan and these were made prior to study specific MR 

procedures. This resulted in a substantial proportion of subjects receiving rtPA 

prior to MR scanning. This, combined with the relatively late imaging time 

(median time = 18h post ictus), meant that the number of subjects with possible 

penumbra was small, and the volumes of such regions of interest tended to be 

small when present. The late imaging time resulted from access issues to MRI 

and constitutes a challenge for MR imaging studies of acute stroke throughout 

the UK. 

 

2.4.5 Conclusions 

This study reports different magnitudes of Oxygen Challenge induced T2*-

weighted signal change in different tissue compartments after acute ischaemic 

stroke. The results are consistent with differences in oxygen extraction fraction 

between tissue compartments, although results from the PWI-DWI mismatch 

region are dissappointing. Further work should investigate more subjects with 

larger volumes of tissue which is likely to be penumbral and which proceeds to 

infarction as this would help define thresholds for predicting tissue viability. 



Chapter 2  132 

Further work is required to determine the influence of baseline CBV on the 

Oxygen Challenge results. Until these issues have been resolved this technique 

remains promising but not ready for clinical use. 
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3 Results from Oxygen Challenge Depend on 

Tissue Type 

3.1 Introduction 

In order to understand the results of a cerebral imaging technique, an 

understanding of the ‘normal response’ of tissue unaffected by the pathology of 

interest is required to fully understand and quantify changes in pathological 

regions. However, it is important to appreciate that there is widespread regional 

heterogeneity for a number of physiological parameters, even in normal tissue, 

which inevitably influences results of cerebral imaging. For example, despite the 

observation that OEF is relatively constant, there are substantial differences 

between cortical grey matter and subcortical white matter with respect to 

CMRO2, CBF, and CBV(273); the values in grey matter are approximately double 

those in white matter for these three parameters. Moreover, of especial 

relevance to imaging techniques such as PWI and Oxygen Challenge which are 

dependent on vascularity, large vessel and capillary density varies between 

normal tissue types(306). In addition, there are differences in the mechanisms of 

infarction between grey and white matter(307, 308) which result in different 

thresholds for infarction determined by both MR-PWI(309) and CT perfusion(310, 

311). 

Only a limited number of studies have compared the results of hyperoxia 

induced T2*-weighted signal changes in different normal tissue compartments 

such as grey and white matter(242, 248, 249, 251, 252, 269). Davis and 

colleagues(248) suggested that the greatest ‘BOLD sensitivity’, a term which 

may be translated to having the ‘largest capacity of signal increase after Oxygen 

Challenge’, was seen in voxels with the highest cerebral blood volume such as 

the venous sinuses, and cortical grey matter. Other studies(242, 249, 251, 252, 

269) have confirmed that the largest signal increases may be in the venous 

sinuses, followed by cortical grey matter, and then white matter. Although very 

helpful, such studies may not be completely generalised to results from the 

brain of an older subject, for example a patient with stroke. These studies have 

exclusively assessed volunteers and, where reported(242, 249, 251, 252), have 
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examined subjects with a mean age of no more than 29yrs. However, a number 

of changes in the brain occur with aging. These include a decline in CMRO2, CBF 

and CBV of about 0.5% per year(273), deposition of iron within the basal 

ganglia(312), and possibly some degree of volume loss and atrophy(313). These 

data suggest that validation of novel imaging techniques should not be limited to 

healthy volunteers, but should also target the population for which the 

technique is likely to be applied.  

In this study, results for the Oxygen Challenge were investigated in tissue types 

with different haemodynamic and metabolic properties.  Data from the 

segmented contra-lesional brain of stroke subjects, and also within the DWI 

lesion segmented into grey and white matter were examined, since these tissue 

types have inherently different metabolic rates. Therefore, distinction of these 

tissue types by Oxygen Challenge would help to validate the technique. This 

approach also allowed comparison of the Oxygen Challenge data set to studies 

from the literature (grey and white matter data from healthy tissue), another 

necessary step in the validation of this technique. 

3.2 Methods 

Firstly, the T2*-weighted signal responses in contra-lesional cortical grey matter 

and white matter were compared. Next, the results from contra-lesional cortical 

grey matter were compared to those from subcortical grey matter (lentiform 

nucleus). In order to validate the hypothesis that the magnitude of T2*-weighted 

signal intensity changes is dependent on deoxyhaemoglobin concentration in a 

given region of interest, the signal from the saggital sinus, which represents a 

pure ‘blood’ pool, was also assessed. Finally, differences between T2*-weighted 

signal intensity changes from grey and white matter within large DWI lesions was 

investigated. 

3.2.1 Subjects 

The standard Oxygen Challenge data set which was used in Chapter 2 was used 

for these analyses. All Oxygen Challenge data which were analysed were 

acquired using oxygen flow rates of 15l/min. In order to include the maximum 
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possible number of subjects, there was no quality threshold for inclusion of 

scans to this part of this study. The contra-lesional hemisphere was used for 

most of the following analyses. Therefore all acute ischaemic stroke subjects 

from whom Oxygen Challenge data were acquired were used for these analyses, 

regardless of lesion size (i.e. n=31; Subjects 1, 2, 4, 5, 6, 8, 9,10, 11, 12, 13, 14, 

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35). All 

subjects were used for analysis of the region of interest from superior saggital 

sinus, and contra-lesional grey matter, white matter, and subcortical grey 

matter. For analysis of the regions of interest from grey and white matter from 

within the DWI lesion, only subjects with large (≥80ml) DWI lesions were 

considered, in order to minimise the effects of segmentation errors (n=7; 

subjects 1,5,6,9,16,21,33).  

3.2.2 Segmentation Procedure 

3.2.2.1 Contra-lesional Grey and White Matter 

The software package SPM8 (Functional Imaging Laboratory, Wellcome Trust 

Centre for Neuroimaging, UCL, UK) was used for these analysis. Traditional 

segmentation techniques have used one of two methods(314). The first involves 

registering the brain images of study subjects to a template and the second 

involves tissue classification based on signal intensity. SPM8 uses a method 

developed by Ashburner and Friston(314) which combines both elements to form 

a ‘unified segmentation’ procedure in a ‘single probabilistic framework’. This 

incorporates both co-registration to a tissue probabilistic map (based on 452 

subjects International Consortium for Brain Mapping {ICBM 452, 

www.loni.ucla.ed, Figure 3-1) and secondly on voxel intensity.  
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Figure 3-1 Example of the International Consortium for Brain Mapping (ICBM) probabilistic 
tissue maps.  
Grey matter and white matter maps are shown on the left and right respectively. These maps have 
been thresholded to indicate probabilities of ≥70% of being the tissue class represented by the 
map. 

The requirement for voxel intensity differences between tissue compartments 

emphasises the need to use images with obvious contrast between grey and 

white matter. This may typically be a T1 weighted image. However, the 

standard Oxygen Challenge data set acquired from acute stroke patients set did 

not include a T1 weighted image. Therefore, the T2*-weighted EPI data, which 

did demonstrate tissue contrast between the tissue types, were used for these 

analyses and provided reasonable results.  

Firstly, the series of T2*-weighted MR images were realigned to the mean image 

in order to correct for head motion, using the algorithms described in Chapter 2. 

Next, segmentation was performed using SPM8.  In the modelling, the number of 

Gaussians chosen to represent the intensity distribution of grey matter: white 

matter : cerebrospinal fluid (CSF) : other tissues was 2:2:2:4. This accounts for 

the fact that, in practice, any given individual voxel may not be solely comprised 

of only one tissue type e.g. may be comprised of both grey and white matter. 

Other SPM default settings were used. After segmentation, SPM8 produced tissue 

probability maps for grey and white matter. These were manually inspected. 

Occasional there were minor errors in distinguishing grey matter from CSF in the 

ventricles. In the event that CSF was misclassified as grey matter, CSF regions 
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were manually edited out of the grey matter map. After the generation of an 

optimal grey matter tissue probability map, regions of subcortical grey matter 

were also manually edited out, to create a map of cortical grey matter. Editing 

of this fashion was not required for the white matter map. For both grey and 

white matter maps, regions from anterior to the lateral ventricles were 

manually edited out in order to avoid susceptibility artefact from the nasal 

sinuses. 

The following steps were performed using Analyze (Version 8.0, Mayo Clinic 

Rochester, MT). Firstly, the grey and white matter tissue probability maps were 

thresholded using a fairly stringent value of ‘0.7’. The maps were then binarised 

so that any ‘positive’ voxel (assigned a value of 1.0) had at least a 70% 

probability of being from the tissue type indicated by the respective map. Next, 

a ‘mask’ of the contra-lesional hemisphere was generated manually. This mask 

was also binarised, with voxels within the mask being assigned a value of ‘1.0’. 

This allowed the use of an image calculator to identify the regions in the contra-

lesional hemisphere which were of grey matter and which were white matter 

(i.e. voxels with the value ‘2.0’ in the image produced by the addition of the 

contra-lesional hemisphere mask and the grey matter or white matter tissue 

map). The resulting image was saved as a region of interest (termed ‘object 

map’ in the Analyze software) and applied to the original realigned T2*-weighted 

EPI. These object maps delineated the region of interest from which the time 

series data were acquired.  

 

3.2.2.2 Contra-lesional Lentiform Nucleus 

In order to create a region of interest map to indicate the lentiform nucleus (to 

generate a map representing subcortical grey matter which could be compared 

to cortical grey matter), the unthresholded grey matter map was overlaid onto 

the T2*-weighted EPI data. The use of an unthresholded map allowed better 

delineation of this region compared to the use of a thresholded map. The 

lentiform nucleus was then manually segmented. The resulting image was also 

saved as a region of interest ‘object map’. 
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3.2.2.3 Superior Saggital Sinus 

In order to derive measures signal changes from within the saggital sinus, this 

region was manually segmented. The region of interest was selected from the 

superior saggital sinus, using the lateral ventricles as an anatomical guide. 

Examples of segmentation of the aforementioned tissue compartments are given 

in Figure 3-2. 

 

Figure 3-2 Example of Segmented Regions of Interest  
a) segmented contra-lesional grey matter, b) segmented contra-lesional white matter, c) 
segmented contra-lesional lentiform nucleus, and d) segmented superior saggital sinus. The 
example was taken from Subject 9 but is typical of the results from all other subjects. All regions of 
interest spanned across multiple slices. Red voxels indicate brain, green voxels indicate the 
segmented regions of interest. Regions anterior to the lateral ventricles were manually edited out. 

3.2.2.4 Intra-lesional Grey and White Matter 

Next, the grey matter and white matter from within the lesion was segmented. 

Routine application of the ‘unified segmentation’ algorithm may result in 

misclassification errors if applied to lesioned areas where the voxel intensity is 

changed{Seghier, 2008 #37}. Visual evaluation suggested that these errors were 

indeed present when the algorithm was applied to the standard Oxygen 

Challenge data set. In particular, lesioned white matter was occasionally 

misclassified as grey matter, owing the bright signal seen on the images which 

was caused by the stroke. Attempts to circumvent this problem by adjusting the 

number of Gaussians prior to segmentation did not provide satisfactory results. 

For example modelling the grey matter with only one Gaussian and the white 

matter with 3 Gaussians led, in some cases, to overestimation of the white 

matter, as judged by qualitative visual inspection. Therefore, for segmentation 
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of lesional grey and white matter, the unified segmentation technique was not 

applied. 

Instead the grey and white matter maps generated for the normal hemisphere 

were reflected onto the lesioned hemisphere. This was achieved by applying a 

transformation matrix in ‘Analyze’ software package, which corrected for 

asymmetries introduced by a rotated head position within the scanner. Next, the 

binarised map of the DWI lesion generated for the Chapter 2 study was added to 

the new ipsi-lesional tissue probability map, again using an image calculator, to 

create maps of grey matter and white matter within the DWI lesion. 

 

3.2.3 Generation of T2*-weighted Signal Intensity-T ime Curves 

Using Analyze in a similar manner to Chapter 2, the ‘object maps’ representing 

the regions of interest for the above named tissue compartments were overlaid 

onto the EPI data to derive time series data. The resulting time series data 

representing the T2*-weighted signal intensity-time curves were smoothed by 

Wavelet Transforms using the algorithm described in Chapter 2. Calculation of 

the following parameters was also performed using the previously described 

procedure; ‘Area Under the Curve’ (AUC), ‘Percentage Signal Change’ (PSC), 

‘Time to Maximum Signal’ (TMS) and Gradient of Incline’ (GIC) of the signal 

increase. Curves were classified as ‘positive’, ‘negative’ and ‘flat’, as 

previously. 

3.2.4 Statistical Analysis 

Values for the parameters measured from the T2*-weighted signal intensity-time 

curves derived from the various tissue compartments were compared. Firstly, 

the distribution of the data was assessed using the Shapiro Wilk test 

(StatsDirect). If there was no evidence of non-normality and no evidence of 

unequal variances detected by the application of an Analysis of Variance 

(ANOVA), a paired t-test was applied. If the statistical assumptions were not 

met, data were compared using a Wilcoxon Signed Ranks test. Statistical 

significance was considered at p<0.05. 
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3.3 Results  

3.3.1 Contra-lesional Grey and White Matter 

T2*-weighted signal intensity-time curves from contra-lesional cortical grey 

matter were classified as being in the ‘positive’ direction in all 31 cases. In 

those from white matter, 2 cases were ‘negative’ and 2 cases were ‘flat’, and 27 

were ‘positive’. Fifteen curves from the lentiform nucleus were ‘positive’, 8 

were ‘negative’ and 8 were ‘flat’. Signal differences in T2*-weighted signal 

intensity-time curves were noted between tissue types (please see Figure 3-3 

and Table 6).  

When results from cortical grey matter were compared to white matter the 

following were noted; AUC in grey matter was larger (p<0.0001), PSC in grey 

matter was larger (p<0.0001) and the GIC in grey matter was steeper (p<0.0001). 

There was no difference between tissue types with respect to TMS. The 

magnitude of signal changes was therefore larger in cortical grey matter 

compared to white matter. 

When results from cortical grey matter were compared to subcortical grey 

matter (lentiform nucleus) the following were noted; AUC in cortical grey matter 

was larger (p<0.0001), PSC in cortical grey matter was larger (p<0.0001) and the 

GIC in cortical grey matter was steeper (p<0.0001). There was no difference in 

between tissue types with respect to TMS. The magnitude of signal changes was 

therefore larger in cortical grey matter compared to lentiform nucleus. 

When results from lentiform nucleus were compared to white matter the 

following were noted; AUC in white matter was larger (p=0.001), there was no 

statistically significant difference in PSC (p=0.6), TMS (p=0.07), or GIC (p=0.6).  

The signal from the lentiform nucleus appeared to be noisy. Although no 

significant differences in the variance of the baseline (pre Oxygen Challenge) 

data were noted between cortical and subcortical grey matter (p=0.3), the 
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variance of baseline data was considerably smaller in white matter compared to 

cortical grey matter (p<0.0001) and lentiform nucleus (p=0.0005). 

 

Figure 3-3 T2*-weighted signal intensity-time curve s from different tissue compartments 
from the contra-lesional hemisphere (n=31) 
In panel (a) the mean (n=31) signal from each tissue compartment is shown on the same graph. 
Each curve is shown with error bars in panels (b), (c) and (d). In these panels the solid line 
represents the T2*-signal intensity-time curve and the broken lines represent the error (standard 
deviation) bars. The x-axis represents time (seconds) and the y-axis represents % T2*-signal 
change from the baseline. Vertical broken lines represent the onset and cessation of the oxygen 
challenge. 
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Table 6 Values for parameters from the T2*-weighted  signal intensity-time curves derived 
form contra-lesional tissue compartments. 
The arbitrary values for Area Under Curve was calculated using units of % signal change on the y-
axis of the T2*-weighted signal intensity-time curve plots. s.d. = standard deviation. s = seconds. 

 

3.3.2 Superior Saggital Sinus 

The direction of the T2*-weighted signal intensity-time curves from the superior 

saggital sinus was ‘positive’ in all but two cases (Subjects 10 and 23). The 

respective curve from Subject 10 showed very little signal change and was 

classified as ‘negative’ according to the ‘direction’ criteria stipulated in Chapter 

2. The curve from Subject 23 did show a signal increase but owing to a variable 

(pre oxygen challenge) baseline (standard deviation = 6.7%) the curve was 

classified as ‘flat. 

The magnitude of signal changes from within the superior saggital sinus was 

substantially larger compared to those from tissue parenchyma. Median 

percentage signal change was 24.26% (range 1.6-113.7%) and median area under 

curve was 5054 (range 30.4-15357). 

3.3.3 Intra-lesional Grey and White Matter 

Segmentation of cortical grey and white matter was performed for 7 subjects 

with DWI lesion volumes ≥80mls (Subjects 1,5,6,9,16,21,33). The T2*-weighted 

signal intensity-time curves from cortical grey and white matter are shown in 

Figure 3-4. There was no statistical difference for AUC (p=0.06, Wilcoxon) or PSC 

(p=0.94, Wilcoxon) between intralesional grey matter and intralesional white 

matter. Results from qualitative analysis are as follows. The T2*-weighted signal 

intensity-time curves from the DWI lesion demonstrated varied morphology. The 

curves from Subject 1 and Subject 6 were similar when derived from grey and 

white matter. In both cases there was a downward drift until approximately half 

way though the Oxygen Challenge and both curves were ‘negative’.  The T2*-
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weighted signal intensity-time curve from white matter DWI lesion showed very 

little response to Oxygen Challenge in Subject 5. The respective curve from grey 

matter DWI lesion demonstrated a small and slow signal increase corresponding 

to the duration of Oxygen Challenge. Unlike the typical morphology of the T2*-

weighted signal intensity-time curves from ‘normal’ contra-lesional regions, the 

signal intensity did not fall after cessation of Oxygen Challenge. A similar 

response was observed in grey matter for Subject 9, but in this case the mean 

signal from the white matter DWI lesion demonstrated a signal decrease. The 

curves from grey matter and white matter were both ‘positive’ in Subjects 16 

and 33, and in both cases the magnitude of signal increase was marginally 

greater in grey matter. In Subject 21 there was very little signal change in 

response to Oxygen Challenge in grey matter and white matter. 
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Figure 3-4    Segmented T2*-weighted signal intensi ty-time curves from grey and white 
matter within the DWI lesion. 
The x-axis represents time (seconds) and the y-axis represents % T2*-signal change from the 
baseline. Vertical broken lines represent the onset and cessation of the oxygen challenge. 
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3.4 Discussion 

This is the first study to assess hyperoxia as a MRI contrast agent in subjects 

older than those in their third decade, and secondly, to assess findings within 

the DWI lesion segmented for grey and white matter. In this study there was a 

marked difference in the magnitude of signal increase in grey matter compared 

to white matter. The signal in the basal ganglia was noted to be noisy, with a 

large standard deviation relative to the observed signal increase. Therefore, the 

calculated signal changes in this tissue were small. Conversely, the signal 

increases in the saggital sinus were extremely large. In addition to the 

assessment of the contra-lesional hemisphere, the DWI lesion was also 

segmented for grey and white matter. Whilst the T2*-weighted signal intensity-

time curves from DWI lesion grey and white matter were concordant with 

respect to the direction of signal change in most cases (e.g. when the DWI lesion 

grey matter curve was ‘positive’, so too was the DWI lesion white matter curve), 

data from DWI lesional grey and white matter were discordant in one case 

(subject 9). This case was interesting for two reasons. Firstly, whilst there was a 

small positive increase in DWI lesion grey matter, there was a small signal 

decrease in DWI lesion white matter. Secondly, the signal in DWI lesion grey 

matter did not fall back to baseline after the cessation of Oxygen Challenge, 

suggesting failure to replenish the deoxyhaemoglobin to the measured tissue 

compartment. 

These results were generally consistent with the literature. Firstly, responses 

from the saggital sinus were greater than those from contra-lesional grey matter 

which were in turn where greater than those from contra-lesional white matter, 

a pattern which has previously been reported. Berthezene and colleagues(269) 

reported signal increases of 14.7% / 4.23% / 1.92% in the longitudinal sinus / 

grey matter / white matter respectively, after administering 10l/min of Oxygen 

to healthy volunteers. Similarly, Losert and colleagues(252) reported  signal 

increases of >30% /3.41% / 0.82% in the superior saggital sinus / grey matter / 

white matter respectively, after administering 22l/min oxygen to healthy 

volunteers. The pattern of change in R2* reported by Rostrup and 

colleagues(251) was consistent with these findings. Similarly, Bulte and 

colleagues(242) reported an approximately 2.5% signal increase in grey matter 
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compared to a 120% increase in the saggital sinus. In this study, the 24% /2%/ 

0.6% signal increases in superior saggital sinus / grey matter / white matter 

were consistent with these findings. The small disparities in exact values 

between studies is likely to be due to the combination of disparities in the 

following factors; method used to calculate percentage signal change, FiO2, 

respiratory function of subjects, cerebral blood flow / cerebral blood volume of 

subjects, inherent noise, and MRI sequence parameters including ‘flip angle’. 

Given these potential confounds it is not surprising that the subjects in this 

cohort, who were older and more likely to have impaired respiratory function, 

had a slightly smaller PSC in grey matter compared to the respective values for 

volunteers reported in the literature. 

The most significant disparity between findings from this study and the other 

studies comes from data from the basal ganglia. Other studies reported the 

signal increase from basal ganglia to be midway between that of white matter 

and grey matter(251, 252). In this study, although there was no statistical 

difference between the PSC for white matter and basal ganglia, there was a 

highly statistically significant difference between the AUC from the two regions. 

In addition, the signal responses from the basal ganglia were noisy with large 

standard deviations. The reason for this is unclear. However, a possible 

explanation comes from the differences in clinical characteristics between 

cohorts. There is a iron deposit related susceptibility induced decline in T2*-

weighted signal of the basal ganglia with increasing age(312). Therefore, 

subjects in this cohort are likely to have had greater iron content in the basal 

ganglia compared to the volunteers in their third decade from other studies. 

Therefore the hyperoxia induced dynamic susceptibility differences between 

blood and surrounding basal ganglia tissue are likely to be different between 

cohorts, thus potentially explaining the disparities between studies. This 

highlights the importance of validating novel imaging techniques, such as Oxygen 

Challenge, in subjects who are representative of the patient group of interest.  

What is the explanation for the difference between white matter and grey 

matter? Are the differences due to metabolic or haemodynamic factors? It has 

previously been discussed that there are differences between grey and white 

matter with respect to CMRO2, cerebral blood flow and cerebral blood volume. It 

is well established that under physiological conditions there is coupling between 
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CBF and CMRO2 which allows OEF to stay constant(315). Therefore, given that 

the contra-lesional regions of interest are unaffected by the stroke, one would 

expect the CBF and CMRO2 to be coupled in both contra-lesional grey and white 

matter, providing a similar OEF in both tissue types(273). It thus follows that for 

a given unit of cerebral blood volume, the amount of oxygen extracted from 

haemoglobin should be the same in grey and white matter. Therefore, assuming 

a constant OEF, the concentration of deoxyhaemoglobin in a given imaging voxel 

is therefore dependent predominantly on cerebral blood volume. This is 

consistent with findings by Davis and colleagues which showed that the greatest 

capacity for BOLD signal changes was in the venous sinuses, and also the cortical 

grey matter(248). In this study, the largest signal increase was seen in the 

saggital sinus, a ‘pure’ blood compartment where the CBV is 100%. Therefore, 

differences between saggital sinus, grey matter, and white matter, can be 

attributed to differences in CBV. 

What is the explanation for the divergent response of T2*-weighted signal from 

grey and white matter from the DWI lesion in subject 9? Whilst differential blood 

flow changes between tissue compartments could explain results, the negative 

signal seen in white matter could reflect the lesser amount of deoxyhaemoglobin 

to combine with oxygen in white matter compared to grey matter, thus forcing 

oxygen to dissolve in plasma. This issue is discussed in greater detail in Chapter 

4 (section 4.4). A further interesting observation was that in this case, where 

there was a small positive increase in T2*-weighted signal intensity in grey 

matter, the signal did not return to baseline. This could suggest that there was 

little or no ongoing oxygen extraction in this region to contribute 

deoxyhaemoglobin pool, and therefore the usual decline in T2*-weighted signal 

intensity was not seen. 

What are the implications of this study? The first is that when assessing a stroke 

lesion for signal changes, a contra-lesional mirror region should be used as a 

reference. Although this cannot provide an exact representation of the 

proportion of grey and white matter and sulcal veins from within the lesion, it 

still provides the best available estimate. The second conclusion is that for 

accurate thresholds to be determined for the distinction of stroke tissue 

compartments, particularly in white matter, an improvement in signal-to-noise 

ratio will be required. The standard deviations reported by this study are 
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relatively large compared to the magnitude of signal changes seen. Next, 

caution should be exercised when assessing the signal changes from the basal 

ganglia form older subjects, and the artefacts seen in this study constitute a 

limitation of the technique. Finally, it should be noted that this study serves as a 

demonstration of how novel techniques should not simply be tested in young 

healthy volunteers, but the cohort used for validation must be clinically 

relevant. 

A number of limitations should be acknowledged. Firstly, in future studies the 

segmentation procedure could be improved by the use of a high quality T1-

weighted structural scan. It should be acknowledged that errors of spatial 

normalisation due to distortions on the T2*-weighted imaging were inevitable in 

this study, and these likely led to some errors in segmentation.Unfortunately, 

for reasons of scan duration, T1-weighted imaging was not acquired in this study 

at the time of imaging. Although this could also have been performed at a follow 

up visit, geographical and practical constraints mitigated against this. 

Nonetheless, the segmentation procedure provided by the SPM 8 software 

provided a reasonable result, as shown in Figure 3-2. One potential approach to 

validating the technique adopted could be to apply the same technique to 

volunteers from whom T1-weighted images were acquired. However, there was 

no specific ethical approval or funding available to do this. Next, for the 

thresholding of grey and white matter maps, a probability of ‘0.7’ was applied. 

Therefore the tissue maps used in this study only had a specificity for the 

purported tissue type of 70%. For the calculation of grey matter signal changes, 

for example, this may have resulted in a slight attenuation of percentage signal 

change. A threshold of value of ‘0.7’ may be viewed as fairly stringent. This 

inevitably led to a substantial number of voxels being exluded from analysis. 

Next, it should be noted that there is no ideal method to segment DWI lesions 

for grey and white matter. Although changing the parameters of the ‘unified 

segmentation’ procedure was attempted, this did not provide a satisfactory 

result in the absence of a T1-weighted image. A limitation of simply flipping 

contra-lesional regions of interest in the mid-saggital plane is that the effects of 

tissue oedema are unaccounted for. In addition, brains are never symmetrical 

and therefore the mix of grey and white matter will never be exactly matched in 

the homologous contra-lateral region. Next, accurate and consistent definition 
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of the superior saggital sinus using the T2*-weighted EPI data was limited by the 

nature of the data. One problem was that artefact on T2*-weighted images is 

seen at tissue interfaces. Secondly, such regions of interest are inevitably very 

small and therefore susceptible to errors imposed by measurement error and 

partial volume effects. Nonetheless, in order to derive an estimate of the data 

from within the saggital sinus, this region was manually segmented. Finally, it 

should be acknowledged that this study was limited by small numbers, especially 

for the segmentation of grey and white matter from within the DWI lesion. 

In summary, this study demonstrated differences between grey and white matter 

with respect to Oxygen Challenge results. These differences are likely to be 

mediated by a difference in cerebral blood volume. The influence of cerebral 

blood volume on signal from the DWI lesion should be investigated. Finally, an 

age related artefact from the basal ganglia has been demonstrated. 
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4 Results from Oxygen Challenge Depend on 

Flow Rate of Applied Hyperoxia 

4.1 Introduction 

When considering the use of a tracer in any medical imaging technique, 

attention should be paid to optimising the administered concentration of the 

tracer. For example, for perfusion MRI the optimal concentration of gadolinium 

based contrast has been investigated(316) and there is now a consensus as to 

which dose of gadolinium to use in stroke(317, 318). The optimal tracer 

concentration may be considered as the one which safely and effectively 

provides the largest signal-to-noise ratio, for the signal of interest. 

For the Oxygen Challenge technique, the optimal concentration (or flow rate) of 

administered oxygen has yet to be determined. However, it is proposed here 

that it may be the one which maximally increases venous oxygen saturation, but 

at the same time the one which minimises the ‘spill over’ of paramagnetic 

molecular oxygen to plasma, as has been observed beyond a particular tissue 

specific threshold(267).  

Studies investigating hyperoxia as a contrast agent for MRI(242, 249, 250, 252, 

269) have inevitably used different concentrations  or and flow rates of oxygen 

but most have aimed to administer concentrations of ‘100%’. However, studies 

to date have been performed using healthy volunteers and the interplay 

between different tissue compartments (e.g. normal grey matter, normal white 

matter, stroke lesions) with different concentrations or flow rates of oxygen has 

not been investigated. This is important to appreciate since the change in R2* 

(the relaxivity component describing T2*) is dependent on underlying tissue 

characteristics such as cerebral blood volume (CBV), oxygen extraction fraction 

and venous oxygen saturation(232, 238, 249, 319). What is clear, however, is 

that for cortical grey matter, despite a decrease in cerebral perfusion(250), 

there is a linear relationship between T2*-weighted signal intensity and 

concentration of administered hyperoxia(249).  
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In studies aiming to determine the optimal concentration or flow rate of oxygen 

for Oxygen Challenge, the tissue type of interest needs to be considered. The 

optimal oxygen concentration or flow rate to distinguish a specific tissue type / 

tissue compartment from the remainder of the brain may not be the same for all 

tissue types. An appreciation of the magnitude and direction of the signal 

changes after different concentrations or flow rates of hyperoxia is important in 

moving towards determining the optimal concentration or flow rate of hyperoxia 

from the Oxygen Challenge. In this study, the effect of two flow rates of Oxygen 

Challenge is considered in different contra-lesional and stroke tissue 

compartments. 

4.2 Methods 

The influence of oxygen flow rate was investigated, primarily by analysing the 

T2*-weighted signal intensity time-curves in the contralateral hemisphere. 

Changes within the DWI lesion were also investigated where possible. 

4.2.1 Subjects 

In a subgroup of subjects included in the standard Oxygen Challenge data set, 

two Oxygen Challenge data acquisitions were performed, each using a different 

flow rate of oxygen. Performance of two Oxygen Challenges was considered 

after the first 2 subjects were scanned (recruited by a previous Research 

Fellow). After patient 20 was recruited, dual oxygen challenges were no longer 

considered following a decision to minimise scanning time in an effort to reduce 

head motion artefacts. In subjects 3-20, dual Oxygen Challenge was performed if 

the subject was deemed to be able to tolerate the additional scanning time 

required. This decision was taken jointly by the supervising radiologist and KD 

(thesis author). In these cases, the first Oxygen Challenge acquisition was always 

performed using an oxygen flow rate of 15l/min. The second was always 

performed using an oxygen flow rate of 7l/min. Apart from oxygen flow rate, all 

aspects of data acquisition were the same between Oxygen Challenges. The 

duration between the first and second applications of hyperoxia was a minimum 

of 4 minutes.  
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Dual oxygen challenges were performed in the following subjects (n=7); Subjects 

4, 6, 8, 10, 13, 14, 17. The T2*-weighted signal intensity-time curves were 

analysed from the contra-lesional hemisphere in all these cases. Curves were 

also analysed from the DWI lesion where this was large enough (≥1ml, as 

determined in Chapter 2; n=3, subject 6, 8, and 17).  

4.2.2 Post Processing 

T2*-weighted signal intensity-time curves were generated for the following 

regions of interest for the higher and lower flows of oxygen; contra-lesional grey 

matter, contra-lesional white matter, and contra-lesional lentiform nucleus. The 

segmentation procedures were described in detail in Chapter 3 (3.2.2.1), and all 

other aspects in Chapter 2. 

4.2.3 Statistical Analysis 

In a similar manner to the previous description, AUC, PSC, TMS, and GIC from 

contra-lesional grey matter and white matter were compared. Again, the 

Wilcoxon signed ranks test was employed for this purpose after failure to suggest 

normal distribution. Qualitative comparisons were also performed. For data from 

the DWI lesion, only qualitative analysis was performed owing to small numbers. 

 

4.3 Results 

4.3.1 Qualitative comparisons of T2*-weighted signa l intensity-

time curves from contra-lesional grey and white mat ter for 

different oxygen flow rates 

Figure 4-1 and Figure 4-2 (overleaf) show the T2*-weighted signal intensity-time 

curves associated with both flow rates of oxygen from grey matter and white 

matter respectively. A signal increase was generally observed throughout the 

duration of the Oxygen Challenge. However, very little change was seen in 

Subject 10, and the T2*-weighted signal intensity-time curves derived from 
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Subject 17 appeared noisy. Inspection of the graphs in Figure 4-1 (grey matter) 

shows that the area under the curve was generally greater with the use of 

15l/min Oxygen Challenge compared with the use of 7l/min Oxygen Challenge. 

In one case this difference was marked (Subject 6) whilst in others the 

differences were more subtle (e.g. subject 13). 

For white matter (Figure 4-2), there were three cases where there was a larger 

signal increase after the higher flow rate of oxygen compared to the lower 

oxygen flow rate, consistent with the responses seen in grey matter (Figure 4-1). 

However, in Subjects 4, 8, and 13, there was a larger signal increase (albeit 

sometimes subtle) after the lower flow rate of Oxygen Challenge. In Subjects 4 

and 8 this difference was fairly marked. 
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Figure 4-1 Grey matter T2*-weighted signal intensit y-time curve s acquired from Oxygen 
Challenges administered using 15l/min and 7l/min ox ygen 
The x-axis represents time (seconds) and the y-axis represents % T2*-signal change from the 
baseline. Vertical broken lines represent the onset and cessation of the oxygen challenge. 
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Figure 4-2 White matter T2*-weighted signal intensi ty-time curve s acquired from Oxygen 
Challenges administered using 15l/min and 7l/min ox ygen 
The x-axis represents time (seconds) and the y-axis represents % T2*-signal change from the 
baseline. Vertical broken lines represent the onset and cessation of the oxygen challenge. 
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4.3.2 Statistical comparisons of T2*-weighted signa l intensity-

time curves from contra-lesional grey and white mat ter for 

different oxygen flow rates 

4.3.2.1 Grey Matter 

The AUC of the T2*-weighted signal intensity-time curve derived from contra-

lesional grey matter with 15l/min Oxygen Challenge was significantly larger than 

that derived by 7l/min Oxygen Challenge (p=0.020, n=7). The differences in 

‘percentage signal change’ did not reach statistical significance in this small 

cohort (2.4% [15l/min] vs 2.0% [7l/min], p=0.2). Similarly there were no 

significant differences in the ‘gradient of incline’ (p=0.2) of signal increase or 

the ‘time to maximum signal’ (p=0.2).   

4.3.2.2 White matter 

No differences in the curves from white matter between the two oxygen flow 

rates were seen with respect to ‘area under curve’ (p=0.6), ‘percentage signal 

change’ (p=0.12), ‘gradient of incline’ (p=0.44) and ‘time to maximum signal’ 

(p=0.7). In a similar fashion, no differences between oxygen flow rates were 

seen in the lentiform nucleus.  

4.3.3 Qualitative comparisons of T2*-weighted signa l intensity-

time curves from DWI lesion grey and white matter f or 

different oxygen flow rates 

Figure 4-3 shows the T2*-weighted signal intensity-time curves from the DWI 

lesion from the 3 subjects who had a measurable DWI lesion (>1ml) and Oxygen 

Challenge acquired with two flow rates of oxygen. Owing to the small number of 

subjects available in this subgroup, no formal statistical analysis was performed. 

 

The baseline data from Subject 6 was variable but there appeared to be a 

decrease in the T2*-weighted signal intensity after the application of the 
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hyperoxia. This decrease appeared to be more pronounced after the higher 

(15l/min) than the lower (7l/min) flow rate of oxygen. In Subject 8, there was a 

positive increase in T2*-weighted signal intensity after the 15l/min Oxygen 

Challenge, but very little change was observed after the 7l/min Oxygen 

Challenge. In subject 17, the application of the 15l/min Oxygen Challenge was 

associated with a transient decrease in T2*-weighted signal intensity, but no 

such change was seen after the 7l/min Oxygen Challenge. 
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Figure 4-3 DWI Lesion T2*-weighted signal intensity -time curves acquired from Oxygen 
Challenges administered using 15l/min and 7l/min ox ygen 
The x-axis represents time (seconds) and the y-axis represents % T2*-signal change from the 
baseline. Vertical broken lines represent the onset and cessation of the oxygen challenge. 

 

4.4 Discussion 

This study not only examined two different flow rates of oxygen, but also 

considered multiple tissue types. In contra-lesional grey matter there was a 

larger T2*-weighted signal increase after Oxygen Challenge with 15l/min 

hyperoxia compared to 7l/min hyperoxia. In the white matter there was no 

statistical difference in the magnitude of signal change between 15l/min and 
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7l/min Oxygen Challenge. However, this may simply be a result of small numbers 

since it was observed that in 3/7 cases the signal increase was paradoxically 

greater after 7l/min Oxygen Challenge compared to 15l/min Oxygen Challenge. 

Of the subjects who had separate Oxygen Challenges (15 and 7l/min), three had 

a measurable DWI lesion (>1ml).  Two of these subjects showed a decrease in 

signal in the DWI lesion after Oxygen Challenge, and in these cases the 

magnitude of the decrease was greater with the higher (15l/min) compared to 

the lower (7l/min) Oxygen Challenge flow rate. For the case with the positive 

signal increase in the DWI lesion, the magnitude of signal increase was larger 

with the higher flow rate of Oxygen Challenge. Taking these data together, it 

appears that in contra-lesional grey matter, which has relatively high CBV(242), 

low (~70%) venous oxygen saturation(249), and thus high deoxyhaemoglobin 

pool,  the higher flow rate of oxygen produced the largest signal increases. This 

is consistent with the possibility that the higher flow rate of hyperoxia used in 

Oxygen Challenge produces the largest increase in venous oxygen saturation. In 

tissues which would be expected to have a lower total deoxyhaemoglobin pool 

due to either a lower CBV (white matter) or higher venous oxygen saturation 

(DWI lesion), this response was not seen. In fact, in many cases the converse was 

true.  

Results from this study are consistent with previous studies. Firstly, as discussed 

in the previous chapter, the magnitude of signal increase of 2-3%  in healthy 

cortical grey matter is similar to that reported in the literature(242, 249, 250, 

252). Secondly, in cortical grey matter, the higher oxygen flow rate produced 

the largest increase in T2*-weighted signal intensity. It has previously been 

shown from group averaged data that there is an approximately linear increase 

of BOLD signal with increasing concentrations of oxygen(249). In the same study 

it was shown that an FiO2 of 0.4 / 0.6/ 0.8 /1.0 was associated with  increases in 

venous oxygen saturation of approximately 5% / 7% / 9%/ 10%(249). A similar 

study of oxygen enhanced MRI in volunteers(269) investigated oxygen delivered 

at 5l/min and 10l/min during T2*-weighted MRI, and showed a global signal 

increase of 2.12% and 3.17%, consistent with the findings from Chiarelli and 

colleagues(249). Despite often noisy signal, this current study confirms these 

previous findings from cortical grey matter. The explanation for these findings is 

simple, and has been outlined in Chapter 2. In brief, an increase in FiO2 
 allows 
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extra administered oxygen to combine with venous deoxyhaemoglobin, 

increasing venous oxygen saturation and at the same time reducing the 

paramagnetic effect of deoxyhaemoglobin of T2*-weighted signal. Based on 

previous data(249), it is likely that, even despite hyperoxia, the venous 

haemoglobin is still incompletely saturated with oxygen.  It should be noted that 

in addition to human studies, oxygen concentration has been investigated in 

animal models of Oxygen Challenge. Baskerville et al(320) compared 40% oxygen 

to 100% oxygen concentration Oxygen Challenge in a rodent model of stroke. 

Consistent with this study, it was also found that the higher concentration of 

oxygen gave rise to the largest changes in T2*-weighted signal. Interesting this 

phenomenon was seen in the penumbra (4.56% vs 8.65% in FiO2 0.4 vs 0.6) but 

not for contra-lateral cortex. The differences in penumbra were also 

accompanied by differences in CBF and pO2 and systemic blood pressure. 

Although the haemodynamic changes in penumbra could explain the differences 

between oxygen concentrations in this tissue compartment, changes in these 

parameters are unlikely to explain the differences precipated by different 

oxygen flow rates in T2*-weighted signal in this study, since autoregulation was 

likely to have been intact in healthy tissue. 

Next, why was the response in contra-lesional white matter, and in DWI lesions, 

not always consistent with this?  To the best of the author’s knowledge, no study 

has focussed the investigation of varying oxygen concentrations or flow rates in 

these tissue compartments. One possible explanation for the findings in this 

study is that this is a chance finding due to small numbers of subjects analysed 

combined with noisy data (unlike the analyses reported in Chapter 2, there were 

no quality inclusion criteria for this study, owing to small numbers). However, 

compared to cortical grey matter regions, contra-lesional white matter and the 

DWI lesions were likely to have been associated with a smaller 

deoxyhaemoglobin pool. Both the contra-lesional white matter and the DWI 

lesions in this study were likely to have had an intrinsically lower CMRO2 and 

cerebral blood volume(242) compared to  grey matter. In addition, the OEF in 

the DWI lesion was likely to have been lower than in grey matter. Therefore the 

absolute quantity of oxygen molecules required to increase venous haemoglobin 

to full saturation was likely to have been less in these regions compared to grey 

matter. Therefore, it is possible that at higher concentrations of oxygen, a 
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greater concentration of paramagnetic oxygen was dissolved in plasma 

associated with these regions, a factor which would have attenuated the usual 

increase in T2*-weighted signal intensity, or even precipitated a decrease in 

signal intensity. 

The results of this study suggest that the optimal concentration or flow rate of 

oxygen may vary between tissue types. For example, to distinguish regions of 

penumbra (where the venous oxygen saturation may be less than 10%) from 

‘healthy’ tissue (where venous oxygen saturation is ~70%), one should administer 

sufficient oxygen to increase the venous oxygen saturation by greater than 30%. 

By doing this, one may precipitate differences in signal increase based on 

differences in venous oxygen saturation in the respective tissue compartment. 

Conversely, to distinguish infarct core (where venous haemoglobin may be near 

fully saturated) from healthy tissue, one will need to administer very little extra 

oxygen to achieve a difference in percentage signal change between tissue 

compartments. However, in this case, administering too much oxygen could blur 

the distinction between white matter and infarct core. It should be noted that 

these examples are intentionally simplistic in order to demonstrate the issues, 

and elsewhere in this thesis the issue of baseline cerebral blood volume (Chapter 

6 and Chapter 8), which potentially confounds the interpretation of signal 

changes, is discussed.   

How should ‘dose’ findings be performed? Firstly, the ideal scenario would be to 

perform such studies for subjects with acute stroke (both penumbra and infarct 

core) and also analyse changes in contra-lesional grey and white matter. Whilst 

varying the levels of administered hyperoxia within the same sequence is a 

logical approach, and one which could potentially be fairly time efficient, 

studies have suggested that such paradigms produce different results, at least 

with respect to perfusion changes, than would be obtained by performing 

separate, temporally distinct, Oxygen Challenges(250). Therefore, another 

possibility would be to evaluate different concentrations or flow rates of oxygen 

in different subjects using a latin square design in order to reduce the number of 

subjects required. 

Whilst the responses in grey matter were fairly clear, it should be noted that 

conclusion made for the effects of hyperoxia in tissue compartments of low 
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metabolism remain tentative owing to the limitations associated with this study. 

Such limitations include small numbers and, probably most importantly, often 

noisy data. In addition, oxygen administered at the two flow rates used in this 

study was ‘uncontrolled’; it has previously been discussed that oxygen flow rates 

through standard oxygen masks do not directly translate into precise values for 

FiO2 . In addition, it has been previously acknowledged that end tidal CO2 was 

neither measured nor corrected for. Finally, it has been shown that the duration 

of administered oxygen is also important in determining the percentage signal 

change(252). Although this has been observed in healthy tissue, this 

phenomenon is likely to be even more of an issue in stroke tissue where it has 

been demonstrated that there is a longer time to maximum signal (Chapter 2), 

possibly due to hypoperfusion. The duration of administered oxygen was 

constant in this study, but differed from other previous studies. 

In summary, the higher oxygen flow rate produced a greater signal increase in 

cortical grey matter, compared to the lower oxygen flow rate investigated. 

However, such findings were not consistently observed in the white matter, or 

the DWI lesion. Further investigation to investigate the optimal flow rate to 

delineate different tissue compartments would be valuable. 
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5 The Oxygen Challenge Technique May 

Detect Crossed Cerebellar Diaschisis  

5.1 Introduction 

In previous chapters, the Oxygen Challenge technique was applied to subjects 

with acute ischaemic stroke. In order to validate the technique, regions where 

substantial metabolic derangements were likely to exist were examined on a 

‘regions of interest’ basis. Such regions included the ‘DWI lesion’, the ‘PWI-DWI 

mismatch’ region, and regions of ‘DWI expansion’. Characteristics of these 

regions determine, at least in part, the potential relative benefit and harm from 

reperfusion therapies. However, there are other potential metabolic 

consequences from stroke. The term ‘diaschisis’ describes loss of excitation (and 

consequent hypometabolism) in regions anatomically remote from areas of 

damage. Although this phenomenon has been reported as being caused by non-

stroke aetiologies such as cerebral tumours(321), much of the emphasis on the 

literature has been on stroke disease. Crossed cerebellar diaschisis (CCD) is one 

such form of diaschisis, and describes hypometabolism of a cerebellar 

hemisphere secondary to a lesion in the contra-lateral cerebral hemisphere, and 

is thought to be due to the destruction of the corticopontocerebellar tract. It 

was first described by Baron and colleagues in an abstract to the American 

Neurological Association. Using steady state 15O-labelled PET, a matched 

reduction in blood flow and metabolism was seen in the contra-lesional 

cerebellar hemisphere when subjects were imaged within 2 months of 

stroke(322)(323). Further results suggested that findings tended to be more 

pronounced in those subjects with large cortical stroke or lesions affecting the 

internal capsule(324). More recently it has been shown that those subjects 

without CCD tend to have a good outcome(325).  

Studies of CCD have conventionally used steady state PET (assessing cerebral 

metabolic rate for oxgen(322) or glucose metabolism(321)), Xenon CT(326) or 

other nuclear medicine techniques(327) and have usually imaged subjects 

predominantly beyond the hyperacute phase of stroke. These studies have 

suggested that the incidence of CCD after stroke is approximately 50%(328). 
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However, there are only a few studies which have focussed on acute stroke(329-

332)(325) and only three which have used MRI to demonstrate the 

phenomenon(332, 333)(334). The MRI studies have only imaged haemodynamic 

changes and not the metabolic changes. 

Given that the ‘Oxygen Challenge’ technique aims to provide an index of 

metabolic activity, the ability to demonstrate asymmetry of response between 

cerebellar hemispheres could potentially achieve two things. The first would be 

to provide further validation of the Oxygen Challenge technique itself, 

demonstrating that Oxygen Challenge has the required sensitivity to changes in 

metabolic activity, which are less dramatic than those changes seen between 

infarct core and healthy tissue. The second gain to be had is the introduction of 

a rapidly available technique for the further investigation of CCD in future 

studies.  

In this study, the potential for the Oxygen Challenge technique to detect CCD 

was examined by comparing the asymmetries between cerebellar hemispheres 

using the Oxygen Challenge technique and maps of ‘cerebral blood volume 

generated from conventional DSC-MRI data. 

5.2 Methods 

5.2.1.1 Subjects 

In order to target a population likely to have CCD, only subjects with DWI lesions 

≥50ml were considered for this part of the study. These were Subjects 

1,5,6,8,9,12,16,21,22,30,32,33 (n=12). All of these subjects had suffered strokes 

within the middle cerebral artery territory. There were no T2*-weighted data 

quality inclusion criteria for this part of the study. 

5.2.1.2 Post Processing 

Using the software package ‘Analyze’ (Version 8.0, Mayo Clinic, Rochester, MT), 

regions of interest were manually delineated in the ipsi and contra-lateral 

cerebellar hemisphere. Regions were drawn to define a volume as large as 

possible, which spanned multiple slices (Figure 5-1). Different parts of the 
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cerebellar hemisphere were not distinguished. Regions from each hemisphere 

were drawn separately, but were drawn to match the ‘region of interest’ from 

the other hemisphere as close as possible.  Values for the ‘Percentage Signal 

Change’ (PSC) and ‘Area Under the Curve’ (AUC) were from the defined regions 

of interest, as described in Chapter 2. 

 

Figure 5-1 Example of manually defined regions of i nterest from the ipislateral and 
contralateral cerebellar hemisphere. 
The example was taken from Subject 9 but is typical of the results from all other subjects. All 
regions of interest spanned across multiple slices. Red voxels indicate brain, yellow voxels indicate 
the segmented regions of interest. 

 

5.2.1.3 Perfusion Imaging 

The perfusion imaging was analysed for subjects included in this study. This was 

available from Subjects 1,5,6,9,12,16,22,32,33 (n=9). The software package 

‘Stroketool’ (Digital Image Solutions, University of Dusseldorf) was used to 

generate images for ‘relative cerebral blood volume’ (relative CBV). Maps were 

generated automatically by the software, and were then smoothed using a 3x3 

Gaussian kernel. The regions of interest for the ipsilateral and contralateral 

cerebellar hemispheres which were applied to the T2*-weighed imaging data 

were then co-registered to the relative CBV maps in ‘Analyze’. Values for the 

ipsilateral and contralateral relative CBV in cerebellar hemispheres were 

recorded.  
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5.2.1.4 Statistical Analysis 

Values for relative CBV were compared between cerebellar hemispheres using a 

‘Wilcoxon Signed Ranks Test (StatsDirect).. Values for the ‘percentage signal 

change’ and ‘area under the curve’ parameters were also compared between 

cerebellar hemispheres using the non-parametric Wilcoxon signed ranks test. 

5.3 Results 

5.3.1 T2*-weighted Data 

A graphical representation of the T2*-weighted signal intensity-time curves from 

each subject is presented in Figure 5-2. This illustration shows that the 

magnitude of signal change was clearly greater in the ipsilateral cerebellar 

hemisphere, compared to the contralateral cerebellar hemisphere in Subjects 

1,8,9,16, 22,30 and 33. An example of the percentage signal change map seen in 

Subject 8 is given in Figure 7-7. The T2*-weighted signal intensity-time curves 

from each cerebellar hemispheres appeared very similar to each other in 

Subjects 5,6,12, 21 and 32. In no case was the PSC or AUC greater in the contra-

lateral hemisphere compared to the ipsilateral hemisphere. Interestingly, after 

Oxygen Challenge cessation, the T2*-weighted signal intensity increased in the 

cerebellar hemispheres of Subject 16 and Subject 32. 

When considering the whole cohort for this study, the mean percentage signal 

change in the ipsilateral cerebellar hemisphere (5.1%, standard deviation = 2.7%) 

was significantly greater (p=0.027) than the corresponding value in the 

contralateral cerebellar hemisphere (3.7%, standard deviation = 3.1%). Again, 

when considering the whole cohort, the area under curve was significantly 

greater in the ipsilateral cerebellar hemisphere than the contralateral cerebellar 

hemisphere (p=0.0015). 
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Figure 5-2 T2*-weighted signal intensity-time curve s from ipsilateral and contralateral 
cerebellar hemispheres from subjects with large str oke lesions 
The x-axis represents time (seconds) and the y-axis represents % T2*-signal change from the 
baseline. Vertical broken lines represent the onset and cessation of the oxygen challenge. 
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5.3.2 Perfusion Data 

Values for relative CBV were less in the contralateral cerebellar hemisphere 

compared to the ipsilateral hemisphere (p=0.039, n=9). A greater than 10% 

reduction in CBV in the contralateral hemisphere was seen in subjects 

1,5,9,16,22,33 (i.e. 6/9 CBV scans). 

 

5.4 Discussion 

This study examined the potential for the ‘Oxygen Challenge’ technique to 

detect crossed cerebellar diaschisis (CCD). In this cohort of subjects who had a 

large DWI lesion within the middle cerebral artery territory within the first day 

after stroke, PWI data were available in 9/12 (75%) of cases. Consistent with 

results from previous studies of CCD using MR-PWI after acute stroke(332, 333), 

a reduction in perfusion values (CBV in this study) was seen in the contralateral 

cerebellar hemisphere. A greater than 10% reduction in CBV was seen in 6/9 

subjects with PWI data available. In addition, in 58% of cases (7/12), the 

magnitude of T2*-weighted signal intensity response to Oxygen Challenge was 

diminished in the contra-lesional cerebellar hemisphere compared to the 

ipsilesional hemisphere. This proportion is consistent with the oft quoted 

incidence of CCD as detected by PET studies(328). In all 6 cases with 

significantly reduced CBV (subjects 1,5,9,16, 22,33), there was also a clear 

reduction in T2*-weighted signal intensity in the contralateral cerebellar 

hemisphere.  

How should these results be interpreted? Firstly, there are several potential 

explanations for the observation of significant differences between cerebellar 

hemispheres demonstrated by Oxygen Challenge. These include 1) that the 

Oxygen Challenge results were a chance finding, 2) that the Oxygen Challenge 

results were a manifestation of a stroke related phenomenon unrelated to 

metabolic activity and 3), the changes were due to CCD. Firstly, it is possible 

that the results from the Oxygen Challenge are a chance finding. This study used 

a relatively small group of subjects from the recruited cohort which was 
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presented in Chapter 2 in order to target a population most likely to manifest 

CCD. Twelve subjects with large strokes were considered and the use of such 

small numbers inevitably increases the chances of producing statistically 

significant chance findings. In addition, visual assessment of the T2*-weighted 

signal intensity-time curves shows that the signal derived from the cerebellar 

hemispheres was often noisy. For example, there appeared to be a drift in the 

signal in some subjects (e.g. subjects 16 and 30) which may have been due to 

scanner drift. Some subjects demonstrated T2*-weighted signal intensity-time 

curves which did not conform to the standard ‘box-car’ morphology expected 

from time series data generated from healthy tissue. For example, in the T2*-

weighted signal intensity-time curve derived from subject 9, an initial rise in 

signal intensity was apparent after the onset of Oxygen Challenge, but this was 

not maintained throughout the duration of the Oxygen Challenge. This may have 

been due to noise artefacts which may be particularly prominent at the skull 

base due to air in the paranasal sinuses and mastoid air cells. Therefore there is 

a chance that the combination of small numbers and noisy signal led to a chance 

finding of a statistically significant positive result. However, it should be noted 

that in no case was the magnitude of the T2*-weighted signal intensity response 

greater in the contra-lateral cerebellar hemisphere, a finding in favour of the 

observed response being a genuine finding.  

The second aspect to consider is the possibility of a technical confound. It is 

appreciated that subjects with large stroke exhibit a predilection for head tilt. 

One potential problem introduced by this phenomenon is the unequal proximity 

to the MRI radiofrequency coils for the two cerebellar hemispheres. A head tilt 

could potentially reduce the magnitude of signal detected from one hemisphere 

compared to the other. If this was the case, one would expect a similar 

morphology between the T2*-weighted signal intensity-time curves for the two 

cerebellar hemispheres, with only differences in absolute signal change being 

apparent. In five of the six cases where differences were detected, such findings 

were indeed seen. However, data from subject 8 does show two very different 

curve morphologies derived from ipsi- and contra-lesional hemispheres. In this 

case at least, the differences were unlikely to due simply to head tilt. In 

addition, in this study the potential for head tilt was reduced by secure foam 

padding surrounding the cranium within the MRI coil.  
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The final, most likely possibility, is that the observed changes were indeed 

genuine. Indeed, studies which have reported metabolic changes of CCD have 

also reported concurrent haemodynamic changes, and previous studies using 

perfusion weighted MRI have examined and reported haemodynamic 

changes(332, 333)(334). In this study there was a statistically significant 

reduction in T2*-weighted signal intensity and CBV in the contralateral 

cerebellar hemisphere. Moreover, the cases with reduced CBV in the contra-

lesional hemisphere were those with the reduced T2*-weighted signal change in 

the same region. These findings, taken together, are strongly supportive of the 

possibility that the changes are due to hypometabolism due to CCD.  The 

reduction in contralateral cerebellar T2*-weighted signal intensity can be 

explained by haemodynamic changes, since the hypometabolism in CCD is 

associated with decreased CBF and CBV with constant OEF. This means that CCD 

could be used to further understand the effect of baseline CBF and CBV on 

Oxygen Challenge result, without the confounding effect of changes in OEF. 

Further validation of this observation could be performed using steady state 15O-

labelled PET which may provide the definitive diagnosis of CCD and back-to-back 

Oxygen Challenge 

This study is only the fourth MRI study to report changes consistent with CCD, 

and the only one to do so not using PWI. Yamada and colleagues(116) used a T2-

weighted PWI sequence with a temporal resolution of one second to examine a 

cohort of 10 stroke subjects (both ischaemic and haemorrhagic stroke) from 

between 6 and 120 days since onset. In all ten cases, there was a reduced 

cerebral blood volume in the contra-lesional hemisphere. In addition to the 

cohort examined, differences between studies include a greater temporal 

resolution and less sensitivity to susceptibility artefacts (use of T2- weighted 

rather than T2*-weighted sequence) in the study by Yamada and colleagues 

compared to this study. Next, Lin and colleagues(332) studied 301 subjects 

within 5 days of anterior circulation ischaemic stroke. They showed that 15.6% of 

subjects had a delay TTP in the contra-lesional compared to the ipsi-lesional 

cerebellar hemisphere. The median delay in TTP was 1.6s, with differences of as 

little as 0.38s being reported. More recently, in a PET and MR study, Madai and 

colleagues showed that the degree of hypometabolism in CCD is poorly predicted 

by all perfusion parameters when applied at 1.5T(334). 
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A number of limitations of this study should be acknowledged. Firstly, the 

Oxygen Challenge measurements from the cerebellar hemispheres were 

potentially vulnerable to susceptibility artefacts from the paranasal sinuses and 

mastoid air cells. In addition, there was no T1-weighted image available for 

precise anatomical delineation of regions of interest. Therefore, it is clear that 

the regions of interest used in this study were suboptimal. Next, as previously 

acknowledged, only small numbers of subjects were considered in these 

analyses, potentially allowing statistically significant chance observations to be 

made. There is no measure available to guide how much inter-hemispheric 

variation may be expected in the cerebellum. A study of Oxygen Challenge in 

healthy volunteers could easily answer this question. In addition, this study 

focussed on all subjects with at least moderately large (>50mls) stroke. A larger 

number of subjects would allow more an even more homogenous cohort e.g. 

large lesions affecting both the internal capsule and the frontal lobes may 

identify subjects most likely to have CCD(335).  

In conclusion, the observation that there is diminished Oxygen Challenge 

response in the contralateral cerebellar hemisphere, and that this is associated 

with decreased CBV, further validates the Oxygen Challenge technique. In this 

case Oxygen Challenge likely detected changes in CMRO2 associated with 

haemodynamic changes only, since OEF is constant in CCD.  
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6 Oxygen Challenge Results are Dependant 

on Tissue Cerebral Blood Volume 

6.1 Introduction 

In earlier sections of this thesis it has been suggested that evaluation of cerebral 

blood volume may be important when interpreting Oxygen Challenge results 

from a stroke lesion compared to the contra-lesional side. There are a number of 

theoretical and practical reasons for believing why this may be important. To 

briefly recap, the signal model termed the ‘static dephasing regime’ which was 

described by Yablonskiy and Haake(232)  and which modelled the BOLD signal 

intensity, emphasised venous cerebral blood volume as one of the key 

components in influencing the BOLD signal intensity. Considered simplistically, 

one can think of the total BOLD signal from a given voxel as dependent on the 

total measured pool of deoxyhaemoglobin. Two determinants for the absolute 

amount of deoxyhaemoglobin in this pool are the amount of deoxyhaemoglobin 

which enters the pool (OEF) and the volume of the pool at baseline (intrinsic 

CBV). Therefore, interpreting the total signal as dependent on OEF without 

considering CBV is likely to be incorrect. This is all the more pertinent when 

considering the sequence of patho-physiological events which is illustrated in 

Chapter 1 (Figure 1-4), and emphasises that in penumbral regions the rise of OEF 

is associated with a rise in CBV. Similarly, in the regions of infarct core, low OEF 

may be associated with a low CBV. However, although these parameters may be 

associated with each other, and often move In the same direction, they are 

independent in their influence on /the amount of deoxyhaemoglobin within the 

measured pool, and therefore both should be accounted for.    

  

Data presented in this thesis thus far have also suggested that CBV is critical in 

determining T2*-weighted PSC. For example, selection of a region of interest 

from the saggital sinus (where the CBV is ‘100%’) provided the greatest signal 

increase. Moreoever, signal increases were greater in cortical grey matter 

compared to subcortical white matter. This is reflected by findings from 

Davis(248) which suggested that the regions with the greatest capacity for T2*-
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weighted signal increases after hyperoxia (a parameter they termed ‘BOLD 

sensitivity’) had the highest CBV. In addition, when Chiarelli and colleagues(249) 

gradually ramped up the concentration of administered oxygen, the first regions 

to be ‘activated’ on statistical maps were the venous sinuses (greatest cerebral 

blood volume), followed by grey matter in the cortex (intermediate cerebral 

blood volume) and followed thereafter by subcortical white matter (lowest 

cerebral blood volume). 

With respect to investigating the influence of cerebral blood volume on the 

Oxygen Challenge results, the data from the animal pilot study cannot be 

interrogated since no measure of cerebral blood volume is provided by the ASL 

sequence used. However, measures of cerebral blood volume may be derived 

from MR-PWI. Therefore this study investigated the relationship between 

relative cerebral blood volume and the observed T2*-weighted signal changes in 

the stroke compartments for those subjects for whom PWI data were acquired. 

 

6.2 Methods 

6.2.1 Subjects 

Analysis of the relationship between CBV and Oxygen Challenge results from grey 

and white matter was performed using data from the contra-lesional hemisphere 

of subjects for whom both PWI and T2*-weighted data were available, regardless 

of stroke lesion volume.  After exclusion of PWI data from one subject owing to 

excessive noise artefact precluding accurate quantitative measurements (subject 

34) and another owing to a highly anomalous intra-cranial circulation which 

would have yielded AIF selection inconsistent with other subjects (subject 19), 

data from 23 subjects were considered for this analysis. 

Assessment of CBV in stroke tissue compartments was performed for subjects in 

whom PWI data were acquired and who had a measurable lesion (≥1ml) on DWI 

or PWI (for DWI lesion, n=12; subjects 1,5,6,9,12,16,22,24,28,31,33,35; for PWI-

DWI mismatch region, n=7, subjects 1,5,16,18,22,33,35). 
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6.2.2 Image post-processing 

6.2.2.1 Generation of Perfusion Maps 

Maps of whole brain quantitative cerebral blood volume (CBV, ml/100g) were 

calculated using Stroketool (version 2.4, Digital Image Solutions, University of 

Dusseldorf). The arterial input function was defined using the contra-lateral 

proximal MCA. Deconvolution was performed using the standard singular value 

decomposition (sSVD)(109, 110). In addition to the generation of perfusion maps 

using an AIF, maps of relative cerebral blood volume were also generated using 

‘Stroketool’ for comparison to the quantitative CBV maps. In a similar fashion, 

maps of unthresholded TMAX were also produced. Stroketool software allowed 

the specification of the time window for analysis. This was specified to start 

from the point of deflection of the AIF curve, and the last point being 2-5 

volumes after the return to baseline.  

6.2.2.2 Definition of Regions of Interest 

Regions of interest from which values for CBV were derived were 1) the DWI 

lesion (n=12) and its mirror region from the contra-lesional side, 2) the PWI-DWI 

mismatch region (n=6) and its associated mirror region, and 3) the contra-

lesional grey and white matter (n=23). A ratio of CBV values was subsequently 

expressed for each region ([DWI lesion : mirror], [PWI-DWI mismatch region : 

mirror], [contra-lateral grey-matter : contra-lateral white-matter]).  

The ‘regions of interest’ maps defining DWI lesions and PWI-DWI mismatch 

regions were the same as used for the analyses stated in Chapter 2. The regions 

of interest maps used for contra-lateral grey and white matter delineation were 

the same as used in Chapter 3 (section 3.2.2), where a detailed description of 

their generation was provided. 
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6.2.2.3 Derivation of values for CBV for each tissue compartment 

Using Analyze software (version 8.0, Mayo Clinic, Rochester, USA), maps of CBV 

were co-registered to the T2*-weighted EPI data using ‘windowed sinc’ 

interpolation. Next, maps of previously defined regions were overlaid on the 

transformed CBV maps and values for CBV for the different tissue compartments 

were subsequently derived automatically by the software.  

The values for the Oxygen Challenge results (AUC, PSC, TMS, and GIC) from the 

DWI lesion and PWI-DWI mismatch regions, and from contra-lesional grey/white 

matter were the same as those generated from the analyses stated in Chapters 2 

and 3 respectively. 

 

6.2.3 Statistical analysis 

All statistical analyses were performed using the software ‘StatsDirect’ (version 

2.7.8. www.statsdirect.com). Statistical significance was set at p<0.05. Owing to 

the predominantly non-normal distribution of the data, non-parametric tests 

were used unless otherwise stated. 

Firstly, in order to determine which CBV data were to be used, data from 

‘relative CBV’ and deconvolved ‘quantitative CBV’ maps were compared using a 

Wilcoxon signed ranks test and a Spearman’s rank correlation. To do this, the 

[DWI lesion : mirror region] CBV ratios were compared, since it was assumed 

that this would allow a range of CBV values to be assessed.  

Next, the relationships of perfusion parameters (CBV and TMAX) to Oxygen 

Challenge results (PSC and AUC of of the T2*-weighted signal intensity curves) 

were assessed. To do this the correlation of the ratio of perfusion parameters in 

a region of interest : reference region was correlated with a ratio of Oxygen 

Challenge results in the region of interest : reference region i.e. data were 

‘normalised’ with respect to a reference region. These [regions of interest : 

reference regions] were 1) [DWI lesion : mirror], 2) [PWI-DWI mismatch region : 

mirror] and 3) [grey matter : white matter]. Correlations between CBV values 
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(DWI lesion : mirror region) with values for T2*-percentage signal change (T2*-

PSC)  and area under the curve of the T2*-weighted signal (T2*-AUC) (DWI lesion 

: mirror region) were assessed using a test of Spearman’s rank correlation. 

Similar analyses were performed to assess the relationship between TMAX and 

T2*-weighted data. In addition, these same analyses were performed for values 

derived from PWI-DWI mismatch regions (ratio of mismatch : mirror region) and 

grey and white matter (data expressed as ‘grey matter : white matter’ ratios). 

In order to quantify the percentage variance of T2*-weighted signal changes as 

dependent on CBV a simple regression analysis was performed for CBV (DWI 

lesion : mirror) and T2*-PSC data (DWI lesion : mirror). Where data were not 

normally distributed they were transformed using a ‘natural logarithmic’ 

function to achieve normal distribution as defined by the ‘Shapiro Wilk’ test. 

Finally, the CBV ratio (DWI lesion : mirror region) was assessed in the three cases 

of ‘reperfused DWI lesion’ in order to seek any relationship between CBV and the 

observed T2*-PSC in these regions. 

 

6.3 Results 

6.3.1 Comparison of ‘relative’  to ‘quantitative’ C BV values 

There was a strong correlation (Rho=0.92, p=0.0001), between relative CBV (DWI 

lesion : mirror region) and quantitative CBV (DWI lesion : mirror region). 

However, the quantitative CBV ratio (median =0.29) was lower than the ratio 

derived using relative cerebral blood volume (median =0.53) by a difference 

which was statistically significant (p=0.005). Figure 6-1 shows an example from 

subject 22, where the CBV in the region of the DWI lesion was lower (relative to 

the contra-lesional side) on the quantitative CBV map compared to the relative 

CBV map. This example also shows that under conditions of low flow, there 

appears to be reduced CBV in the region of the PWI-DWI mismatch on the CBV 

map derived using deconvolution. This was due to some voxels being assigned a 

‘zero’ value where flow was very low. Therefore, due to concerns about 

inaccurate quantification due to poor modelling of the arterial input function 
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(AIF) for the deconvolved quantitative CBV maps, relative CBV maps were used 

for subsequent analyses. Maps of relative cerebral blood volume are simpler to 

perform and compute, require lesser assumptions, and are more automated 

requiring less user input. 

 

Figure 6-1 Demonstration of the difference in CBV m aps which show ‘relative’ values and 
those which are ‘quantitative’ 
a) shows the lesion on diffusion weighted imaging, b) shows the perfusion lesion as defined by the 
unthresholded TMAX parameter, c) shows the map of relative cerebral blood volume, and d) shows 
the map of cerebral blood volume derived with deconvolution. All images are from subject 22. The 
deconvolved CBV map shows a lower CBV relative to the contra-lateral side compared to the 
relative CBV map. This difference is also apparent in the region of PWI-DWI mismatch (*). 

 

6.3.2 Perfusion parameters in the stroke tissue com partments : 

influence on Oxygen Challenge results 

6.3.2.1 DWI lesion 

A statistically significant correlation between CBV ratio (DWI lesion : mirror 

region) and the percentage T2*-weighted signal change (DWI lesion : mirror 

region) was noted (Ρ=0.68, p=0.01, Spearman’s rank correlation). Next, a simple 

linear regression was performed in order to determine how much of the variance 

of the T2* percentage signal change was explained by the CBV. Although the 

data for T2*-weighted PSC were likely to be normally distributed (p=0.35, 

Shapiro-Wilk test), normal distribution for the CBV ratio for DWI lesion : mirror 

data could not be definitively proven (p=0.06, Shapiro-Wilk). Data for CBV were 

therefore transformed using a natural logarithmic function to achieve a 

distribution likely to be normal (p=0.7). As expected, there was a positive 
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correlation between PSC ratio (DWI lesion : mirror) and transformed CBV ratio 

(DWI lesion : mirror) (Ρ=0.62, p=0.03, r2=0.39, Figure 6-2). These results suggest 

that 39% of the variance of PSC ratio (DWI lesion : mirror) is explained by the 

CBV ratio (DWI lesion : mirror). A similar result was attained when assessing data 

for AUC for the T2*-weighted signal data (DWI:mirror), which were also log 

transformed,  for a correlation with CBV ratio (Rho =0.64, p=0.03, r2=0.40).  

There was a negative correlation between the TMAX value derived from the DWI 

lesion and the T2*-PSC (DWI lesion : mirror) which was statistically significant 

(Ρ=-0.61, p=0.04). The correlation was stronger when the absolute T2*-PSC value 

was considered, rather than being normalised to the contralateral hemisphere 

((Ρ=-0.74, p=0.008). Similarly, correlations with TMAX were observed when the 

AUC of T2*-weighted signal was considered (Ρ=-0.87, p=0.003 for AUC ratio 

[DWI:mirror]; Ρ=-0.9, p<0.0001 for non-normalised (absolute) AUC).  

Finally, there was no correlation between either CBV or TMAX values and the 

gradient of incline or time to maximum signal (P>0.05 for all analyses). 
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Figure 6-2 Scatter plot of CBV and percentage signa l change 
The x-axis shows the CBV ratio (DWI lesion : mirror) and the y-axis shows the percent signal 
change ratio (DWI lesion : mirror) . The open circles show individual data points. The solid line 
shows the regression line. PSC = percent signal change, CBV = cerebral blood volume, DWI = 
diffusion weighted images. 

Results from Chapter 2 showed that in regions of reperfused DWI lesion, one 

case had an elevated T2*-PSC compared to the contra-lesional side. In two other 

cases the T2*-PSC response was diminished in regions of reperfused DWI lesion. 

The figure has been adapted to show the CBV ratios in these regions. The case 

where the response of the reperfused DWI lesion was exaggerated had the higher 

relative CBV value (ratio = 1.56). 
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Figure 6-3 CBV in regions of reperfused DWI lesion 
Figure adapted from Chapter 2. CBV = cerebral blood volume. DWI = diffusion weighted imaging 

 

6.3.2.2 PWI-DWI mismatch region 

There was no statistically significant correlation between T2*-PSC ratio 

(mismatch region : mirror)  or AUC ratio (mismatch : mirror) and CBV 

ratio(mismatch : mirror) (p>0.05 in each case). No region of PWI-DWI mismatch 

was found to have an elevated CBV ratio (mismatch : mirror) and in some cases 

there appeared to be a reduction in CBV in the mismatch region compared to the 

contralateral side . Despite this, PSC was increased in mismatch region 

compared to the contra-lateral side, for 3 cases. 
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Table 7 Percentage signal change and cerebral blood  volume in regions of PWI-DWI 
mismatch. 
CBV = cerebral blood volume, PSC  = percentage signal change, MM = mismatch 

 

6.3.3 Cerebral blood volume in contra-lesional grey  and white 

matter : influence on Oxygen Challenge results 

There was no correlation between CBV (grey : white matter ratio) and T2*-

weighted percentage signal change (grey : white matter ratio) (Ρ=-0.018, 

p=0.93) and area under curve (Ρ=-0.1, p=0.65). There was also no correlation 

between the percentage difference in CBV between grey and white matter, with 

either the PSC ratio (p=0.92) or percentage difference in PSC between grey and 

white matter (p=0.67). Figure 6-4 shows that the CBV ratio in grey : white 

matter was clustered around 2.0 and within this narrow range of CBV ratio 

values there was substantial variation in the percentage signal change ratio. 
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Figure 6-4 Scatter plot showing of CBV versus perce ntage signal change 
Values are expressed as a ratio between grey and white matter. PSC = percentage T2*-weighted 
signal intensity. CBV = cerebral blood volume. Please note that one outlier was excluded from this 
graph; the PSC ratio for this subject was ‘878 owing to a negligible signal change in white matter.  

 

6.4 Discussion  

This study was performed on the background of theoretical and ‘results driven’ 

suggestions that CBV is likely to play a major influence in the determination of 

the magnitude of T2*-weighted signal change after hyperoxia. Maps of relative 

CBV were used in preference to deconvolved maps due to concerns regarding 

lack of inaccurate quantification. Within the DWI lesion, a moderate positive 

correlation between ‘normalised’ CBV and ‘normalised’ PSC was observed, 

suggesting an association between the two parameters. Interestingly, when 

considering cases of reperfused DWI lesions, the case which showed an 

exaggerated T2*-weighted signal increase after hyperoxia compared to the 

contra-lesional side showed an elevated CBV (ratio = 1.56). Although it is 

possible that this DWI lesion did represent a penumbral region at 24h post 

ictus(21, 54), a more plausible explanation is that the marked T2*-weighted 
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signal increase was due to the elevated CBV in this region. The association 

between CBV and magnitude of signal change was not seen when normalising 

grey matter data to white matter data, or data from the mismatch region to the 

contralateral side. Finally, it was demonstrated that there was a negative 

correlation between TMAX, a perfusion parameter measured in units of 

‘seconds’, and PSC. 

There are three possible explanations for why CBV and PSC values were 

correlated with each other when expressed as [DWI lesion : mirror] but not when 

expressed as [PWI-DWI mismatch region : mirror] or [contra-lateral grey matter : 

contra-lateral white matter]. The first possible explanation is that the positive 

findings from data derived from the DWI lesion are a chance finding. These data 

were derived from only 12 subjects; correlations for such few data points may 

be easily influenced by a small number of outliers. However, although possible, 

this explanation is at odds with the currently accepted theory of the BOLD 

signal(206) and observations from this thesis which predict a significant 

influence from baseline CBV. The second explanation is that the observation is 

genuine, but that the CBV is simply a surrogate marker for metabolic activity 

and there is no independent influence from CBV. The plausibility of this 

argument is supported by findings showing a good correlation between low CBV 

and prediction of infarction(165). The third possible explanation, and in the 

opinion of the author the one which is most plausible, is that the correlation 

observed with data from the DWI lesion is genuine, and it represents an 

independent contribution of CBV to total BOLD signal. This is consistent with 

other studies which have suggested CBV plays a critical role in determining the 

‘ceiling’ of potential BOLD signal change after hyperoxia(248, 252). It is likely 

that the large range of normalised CBV in the DWI region (0.26-1.6) enabled the 

association between CBV and PSC to be demonstrated by a positive correlation. 

Conversely, the relatively tight range for grey : white matter CBV ratio, which 

was clustered around a value of approximately 2.0, gave rise to a much more 

limited spread of data than compared to the DWI lesion, and thus a genuine 

association may have been masked when simply assessing correlations. Another 

likely source of potential error comes from the calculation of PSC from white 

matter. It has previously been shown that there is a relatively low signal-to-

noise ratio from this region and thus small errors in the determination of PSC in 
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this region may have had a strong influence on the grey : white matter PSC 

ratio. 

It should be noted that hyperoxia during BOLD sensitive MRI has been used 

specifically to calculate CBV. Bulte and colleagues(242) employed a modification 

of the equation proposed by Newman and colleagues(336) which suggested that 

CBV was proportional to the ratio of the relative change in signal intensity in 

tissue compared to the relative signal change from the saggital sinus, the latter 

representing a voxel of pure blood (CBV = 100%). Whilst this approach is not 

suitable for use in stroke subjects due to non-uniform OEF through the brain, it 

highlights the dependence of the signal change on baseline CBV, and does not 

consider CMRO2. The findings from Bulte and colleagues(242) which were 

generated using this method were comparable to other studies reporting grey 

matter : white matter ratios for CBV. 

However, in addition to the likely influence of CBV on the observed results, the 

data also support an argument for an independent influence from metabolic 

activity. For example, Figure 6-3 shows there is a diminished Oxygen Challenge 

response from within the DWI lesion despite a CBV which is likely to be within 

normal limits. In addition, Table 7 demonstrates that an elevated PSC may be 

observed in the mismatch region in the absence of elevated CBV in this region. 

The major implication of this study is that the percentage signal change after 

Oxygen Challenge should be interpreted with knowledge of baseline cerebral 

blood volume. This argues the case for using DSC-PWI rather than ASL, as was 

used by the pilot animal study to measure CBF(255), since the latter only 

provides a measure of CBF. Secondly, there are two approaches to Oxygen 

Challenge which may be taken in the future. The first is to assess the Oxygen 

Challenge using the uncorrected percentage signal change, as was done in this 

study. Even given the aforementioned dependence on CBV, this is still a 

potentially viable approach, since the results provide a measure of the total 

deoxyhaemoglobin pool, which is a combined marker of metabolic and 

haemodynamic activity and therefore potentially clinically useful. The second 

potential approach is to correct the percentage signal change for baseline CBV, 

in order to provide an index which represents OEF in a more specific manner. To 

do this one could use the CBV ratio and PSC ratio from contra-lesional grey 
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matter : white matter, to generate a correction factor. However, as was seen in 

this study, a greater signal-to-noise ratio, particularly for white matter would be 

required for accurate results. Moreover, such as correction constant would vary 

according to magnetic strength. In addition, this approach strays from the 

underlying philosophy of the Oxygen Challenge technique, which should be 

simple and free from as many assumptions as possible. Perhaps a more 

appropriate approach is simply to view Oxygen Challenge data side by side to 

other sequences such as CBV and TMAX, in a manner analogous to the 

conventional approach to stroke MRI. 

A number of limitations of the study should be acknowledged. Firstly, the 

limitations of small numbers of subjects and poor signal-to-noise ratio have 

already been mentioned. Secondly, measurement of relative cerebral blood 

volume using the maps generated in this study may be associated with some 

inaccuracies. In this study the relative maps of cerebral blood volume were used 

as they were associated with less signal drop out compared to those maps 

generated by standard SVD(109). Maps of CBV are not sensitive to the potentially 

detrimental effects of delay and dispersion since only the peak, but not the area 

under the curve from which CBV is calculated, is attenuated due to such 

effects(117). However, it has been shown that after the stipulation of a fixed 

time window for calculation of the area under the curve, which was performed 

to limit the effects of tracer recirculation performed for both relative and 

absolute CBV maps in this study, CBV values may be underestimated since the 

whole curve may not be analysed in hypoperfused tissue where there is 

delay(117, 337). This may explain the marked signal drop out on the absolute 

CBV maps and could explain the surprising low CBV ratio observed in the PWI-

DWI mismatch region. It has been suggested that using all data after the arrival 

of contrast may provide more accurate results(108). This approach may have 

provided slightly different results. Finally, this study only considered the 

influence of baseline cerebral volume on T2*-weighted signal. In fact, with 

changes in CBF which are seen during hyperoxia(262), the CBV may also change 

dynamically(284). However, at the level inspired FiO2 which was likely to have 

occurred in this study (probably no more than ‘0.6’), perfusion changes are 

likely to have been minimal(250). Finally, when interpreting the results of this 

study, it should be remembered that the positive correlations demonstrated 
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here suggest only associations between correlated parameters, rather than 

causations. 

A number of approaches may be adopted by further studies aiming to further 

investigate the haemodynamic and metabolic influences on Oxygen Challenge 

results. The ideal method would be to compare Oxygen Challenge data to 15O 

PET, which could provide measures of OEF and CBV. Using this current data set a 

voxel based multiple linear regression analysis could be performed using data 

from across multiple subjects to determine if factors such as CBV, TMAX and ADC 

provide an independent prediction of PSC from Oxygen Challenge. This is 

particularly important as both TMAX and CBV correlated with PSC in DWI lesions 

in this study.  To do such an analysis, one would need to generate a map of 

percentage signal change. Both voxel based and regions of interest analyses may 

be performed on future data sets similar data sets to this one, but ideally with 

improvements to signal-to-noise ratio and imaging of a more acute population. In 

addition, a critical factor in determining the relative influence of baseline CBV 

and OEF will be the measurement of venous oxygen saturation. Although this 

could be done from blood sampling from the internal jugular vein, this approach 

cannot inform with respect to regional heterogeneity. More localised data may 

be derived from novel emerging MRI techniques such as the multi-echo gradient 

echo / spin echo sequence which may measure blood oxygen saturation within a 

region of interest(234). 

In conclusion, ‘normalised’ CBV was correlated to ‘normalised’ PSC, from data 

collected from DWI lesion regions. This suggests CBV influences results from 

Oxygen Challenge. Therefore CBV maps should be viewed along side the Oxygen 

Challenge data for accurate interpretation of results. In addition, the results 

raise the possibility that for interpretation of the metabolic contribution to PSC, 

results could be corrected for CBV.                       
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7  Oxygen Challenge Results May Be 

Interpreted as a Brain Image 

7.1 Introduction 

The work presented in Chapters 2-5 showed that there were differences in the 

T2*-weighted signal intensity-time curves between different tissue 

compartments following acute ischaemic stroke. However, the nature of the 

analysis, which was to assess the T2*-weighted signal intensity-time curves of 

the mean signal from tissue compartments defined by DWI and PWI, was 

insensitive to the potential spatial heterogeneity of the Oxygen Challenge data. 

There was no indication of the spatial correlation of the Oxygen Challenge 

results to findings from other MRI sequences, there was no evaluation of how 

Oxygen Challenge results varied throughout the ipsi-lesional and contra-lesional 

hemispheres, and no appreciation given for how much or little variation there 

was within tissue compartments defined by conventional MRI sequences. The 

generation of an image representing the Oxygen Challenge data may help to 

address these issues. 

The importance of image generation for the evaluation of acute ischaemic stroke 

was discussed to in Chapter 1. The evaluation of images for clinical purposes is 

primarily qualitative; clinicians make inferences of the underlying patho-

physiological state based on morphological appearances(52), before making a 

dichotomous decision; to administer, or not to administer, thrombolytic therapy. 

Image generation therefore allows evaluation of all the data across the whole 

brain for any given sequence, as well as allowing comparison to other sequences; 

crucially these qualitative evaluations can be performed rapidly before 

treatment decisions are made. Quantitative thresholding may also be applied to 

images to allow for further more detailed analyses(123, 159). 

Image generation has also proven invaluable in the research setting. For 

example, co-registration of PET and MR images has allowed comparisons of 

spatially correlated data and thus enabled new insights into results from MR 

techniques based on the gold standard PET data(54, 176). From the perspective 
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of clinical trials, evaluation of the morphology of lesions on MRI has formed the 

basis of trial end points(26, 338-340) and it is believed that such an approach has 

the potential to reduce the number of subjects required for adequate power in 

clinical trials(341). Similarly, imaging based inclusion criteria may also increase 

the efficiency of clinical trial design(342, 343). 

The ability to produce an image of the Oxygen Challenge results would be 

invaluable for a number of reasons. Firstly it would allow qualitative spatial 

correlation of whole brain Oxygen Challenge results to other MR imaging 

modalities such as DWI and PWI, thus complementing the analyses presented in 

Chapter 2. Secondly, it would allow co-registration of Oxygen Challenge maps to 

DWI and PWI, thus allowing voxel based analyses to be performed -  a natural 

extension of the evaluation of regions of interest which as presented in Chapters 

2-5. Finally, if the Oxygen Challenge technique becomes ready for clinical use, 

image generation will be essential for making clinical decisions. 

Although a number of parameters of the Oxygen Challenge data have been 

evaluated (percentage signal change, area under the curve, time to maximum 

signal, and gradient of incline of the signal increase), it is perhaps percentage 

signal change (PSC) which is most relevant to the initial hypotheses, which 

considered the magnitude of signal changes in various tissue compartments. 

Therefore, work presented in this chapter considers the generation of PSC maps. 

Owing to the limitations imposed by low signal-to-noise ratio, the use of simple 

‘difference’ images, where the baseline data could be simply subtracted from 

the Oxygen Challenge data to produce maps of percentage signal change, was 

not possible. Instead, in a manner analogous to the evaluation of functional MRI 

(fMRI) studies, the data from each voxel was fitted to a pre-specified model 

using the General Linear Model. This powerful approach, which is commonly 

employed in studies of psychology, allowed a voxel based mass univariate 

analysis of the Oxygen challenge data.  

7.2 Methods 

All percentage signal change (PSC) maps were created using FEAT (FMRI Expert 

Analysis Tool, version 5.98, part of FSL FMRIB’s Software Library, 
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www.fmrib.ox.ac.uk). The following pre-processing steps were applied by the 

software: motion correction (MC-FLIRT, FMRIB Centre, Oxford, UK), non-brain 

removal (brain extraction tool: BET), and spatial smoothing. For the latter, a 

gaussian kernel of full width at half maximum (FWHM) of 10mm was applied in 

this study in order to clearly highlight anatomical regions of interest. The usual 

temporal filtering method applied to fMRI studies is ‘high pass filtering’, which 

removes low frequency noise such as that induced by scanner drifts. However, 

fMRI studies usually examine short lived events, and events of 300s duration, 

such as the Oxygen Challenge, would be unusual in their length for fMRI. Given 

the design and duration of the Oxygen Challenge sequence, high pass filtering 

was therefore not applied for this study. However, a previously acknowledged 

problem associated with the Oxygen Challenge data was high frequency noise. 

For the analysis of the T2*-weighted signal intensity-time curves derived from 

defined regions of interest, much of this high frequency  noise was filtered out 

using wavelet transforms. In order to filter out this high frequency noise in the 

images, low pass filtering was applied. 

After pre-processing, the data were then modelled by the FSL software using the 

general linear model (GLM). The general principle of GLM is to fit the actual 

data to a user defined model, on a voxel by voxel basis. The parameter 

estimates (also termed ‘Betas’) provide a measure of how well the data fit the 

model. In order to derive a measure of percentage change, a simple calculation 

was performed. The parameter estimates generated from the GLM which fitted 

the Oxygen Challenge data to the pre-specified model were multiplied by 

baseline / maximum range of the design (in this study these values were equal 

to ‘1’). This value was then divided by the mean image of the pre-oxygen time 

points using an image calculator in ‘FSL maths’, provided by the FSL software. 

Although FSL employed the technique of ‘grand mean scaling’ to enable 

comparisons between subjects, all images (e.g. parameter estimate and mean 

images) used in these calculations were scaled by the same value. This 

procedure provided percentage change maps. 

Data were modelled in two fashions. The first approach (Model 1) was simple, 

used all of the data acquired, and made few assumptions. The model used 

simply reflected the sequence of gas administration as shown below. It was 

specified that from 0-180s there was a ‘rest’/baseline period, from 181 to 480s 
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there was ‘activation’ (in this case the Oxygen Challenge) and from 481 to 660s 

seconds there was a ‘rest’ / baseline period. The second model (Model 2) 

focussed on data which was deemed to be of highest potential ‘yield’ for the 

generation of percentage signal change maps. Given the possibility of signal 

drifts and physiological low frequency fluctuations(268), assignment of the mean 

of all pre-Oxygen Challenge time points acquired over three minutes as being 

baseline, may potentially give rise to an inaccurate calculation for percentage 

signal change. Therefore , in the second model, only the final minute of the pre- 

Oxygen Challenge time points was used to define the baseline. For the 

‘activation time points’, the mean T2*-weighted signal acquired in the final 

minute of the Oxygen Challenge was used to calculate the maximum signal. This 

corresponded to the eighth minute of the entire Oxygen Challenge sequence. 

This allowed time for physiological equilibration after the onset of Oxygen 

Challenge which may have varied between subjects and therefore introduced 

potential confounds into Model 1. Finally, the time points following Oxygen 

Challenge cessation were not considered by Model 2. This removed any 

confounds of variability between subjects with respect to the decline in T2*-

weighted signal seen post Oxygen Challenge. Therefore, Model 1 used all 

available time points, whilst Model 2 used only 2 minutes of the 11 minutes 

worth of data acquired. 

 



Chapter 7  191 

 

Figure 7-1 Depiction of two models used for the gen eration of ‘percentage change maps’  
In both sections, the solid lines represent a theoretical T2*-weighted signal intensity-time curve. 
The lower level of each curve represents the time points where air was administered, and the 
upper level represents the Oxygen Challenge time points.  a) shows Model 1. Here all data from all 
time points were used. All pre-oxygen time points were operationally considered to represent the 
baseline signal, and all time points during Oxygen Challenge were used to calculate percentage 
signal change. b) shows Model 2. Here only the last minute of the pre Oxygen Challenge time 
points were used to define the baseline, and only data acquired during the last minute of Oxygen 
Challenge were used to calculate the maximum percentage signal change. 

Finally, generation of colour maps was performed using MRIcron (v. July 2009, 

www.mricro.com), using the ‘NIH’ colour scale. Qualitative comparison of maps 

of percentage signal change generated by Model 1 and Model 2 was made, with 

the T2*-weighted signal intensity-time curve for each subject being available for 

additional comparison. The regions of interest which were assessed for each 

subject were 1) the DWI lesion, and 2) the PWI-DWI mismatch. These subjects 

with these regions of interest were the same as those used in Chapter 2; 

therefore for the DWI lesion, images of 17 subjects were assessed, and for the 

PWI-DWI mismatch region, images from 6 subjects were assessed. Finally, the 
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ability to image the phenomenon of crossed cerebellar diaschisis was also 

investigated. 

7.3 Results 

The figures below demonstrate percentage signal change (PSC) maps generated 

using Models 1 and 2, for both PWI-DWI mismatch (Figure 7-2) and DWI regions 

(Figure 7-3, Figure 7-4, Figure 7-5, Figure 7-6). Corresponding maps of CBV are 

given in Appendix C(Figure 13-1 and Figure 13-2). Both models successfully 

generated PSC maps which were in agreement with the T2*-weighted signal 

intensity-time curves. In the contra-lesional hemisphere there was a 

demarcation between grey and white matter regions, with the PSC in grey 

matter being greater. In the ipsi-lesional hemisphere, regions of ‘abnormality’ 

on the Oxygen Challenge PSC maps were not seen beyond the outer limit of the 

PWI or DWI deficit. However,  for some cases there appeared to be a 

heterogeneous PSC response from Oxygen Challenge in regions conventionally 

considered by MRI criteria to be a single compartment (DWI lesion - for an 

example see Figure 7-6q [subject 35]; PWI-DWI mismatch region – for an example 

see Figure 7-2c [subject 16]). 

Two subjects with PWI-DWI mismatch had a PSC which was clearly greater in the 

mismatch region compared to the contra-lesional mirror regions (see Figure 7-2c 

Figure 7-2f for subjects 16 and 35 respectively). For subject 16, this region of 

exaggerated PSC was visible as a small region intense PSC (indicated by the 

colours of yellow and red) in the PWI-DWI mismatch region. This was seen in 

maps generated by both models. For subject 35, the region of increased PSC in 

the mismatch region was detected by the PSC map generated by Model 2, but 

not by that generated using Model 1. In subject 33 (Figure 7-2e), where there 

was little difference in percentage signal change derived from T2*-weighted 

signal intensity time curves between PWI-DWI mismatch and mirror regions, the 

mismatch region was not clearly delineated by the PSC maps generated by Model 

1 or Model 2. 

DWI lesions were generally detected by the PSC maps generated using both 

models, and were apparent as a region of attenuated percentage signal increase. 
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However, for those subjects with small DWI lesions (Subjects 24, 28, and 31 

shown in Figure 7-5 l/m/o), these regions were not readily detected by the maps 

generated by this study.  Finally, regions where the magnitude of signal change 

in the contra-lateral cerebellar hemisphere was less than in the ipsi-lateral 

hemisphere (presumed crossed cerebellar diaschisis; CCD) could be visualised 

using percentage change maps produced by both models. 

In general, PSC maps generated by Models 1 and 2 were very similar in 

appearance. However, there were some important differences which likely 

contributed to the differences in observed quantitative values. For cases where 

there was a slow rise in signal intensity throughout the course of the Oxygen 

Challenge, but where the ultimate increase if signal intensity was similar to the 

mirror region (e.g. in the DWI lesion of subject 33, Figure 7-6p), Model 1 maps 

highlighted these regions more clearly than the PSC maps from Model 2. 

Conversely, in cases where the morphology of the curves from the DWI lesion 

and mirror regions were very similar, but where there was a marked difference 

in the magnitude of PSC (e.g. DWI lesion of subject 22, Figure 7-4j), then the 

DWI lesion region was more clearly delineated by the Model 2 PSC maps. 
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Figure 7-2 Percentage change maps for regions of Pe rfusion-Diffusion mismatch 
The first column shows the diffusion weighted image (DWI), the second column shows maps of 
unthresholded TMAX, the third column shows images of percentage signal change generated 
using Model 1, the fourth column shows images of percentage signal change generated using 
Model 2, and the fifth column shows the T2*-weighted signal intensity-time curves for the regions of 
perfusion-diffusion mismatch. For the percentage signal change maps, the colour bar above each 
image is scaled in units of ‘%’. For the T2*-weighted signal intensity-time curves, the x-axis 
represents time (seconds) and the y-axis represents % T2*-signal change from the baseline. 
Vertical broken lines represent the onset and cessation of the oxygen challenge. The solid and 
broken lines represent the T2*-weighted signal intensity-time curve from the contra-lateral mirror 
region and the mismatch region respectively. Each row represents data for a separate subject as 
follows; a = subject 1, b = subject 5, c = subject 16, d = subject 22, e = subject 33, and f = subject 
35. 
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Figure 7-3 Percentage change maps for the DWI lesio n 
The first column shows the diffusion weighted image (DWI), the second column shows images of 
percentage signal change generated using Model 1, the third column shows images of percentage 
signal change generated using Model 2, and the fourth column shows the T2*-weighted signal 
intensity-time curves for the DWI lesion. For the percentage signal change maps, the colour bar 
above each image is scaled in units of ‘%’. For the T2*-weighted signal intensity-time curves, the x-
axis represents time (seconds) and the y-axis represents % T2*-signal change from the baseline. 
Vertical broken lines represent the onset and cessation of the oxygen challenge. The solid and 
broken lines represent the T2*-weighted signal intensity-time curve from the contra-lateral mirror 
region and the DWI lesion respectively. Each row represents data for a separate subject as follows; 
a = subject 1, b = subject 5, c = subject 6, d = subject 8 and e = subject 9.  
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Figure 7-4 Percentage change maps for the DWI lesio n (continued, 1) 
The first column shows the diffusion weighted image (DWI), the second column shows images of 
percentage signal change generated using Model 1, the third column shows images of percentage 
signal change generated using Model 2, and the fourth column shows the T2*-weighted signal 
intensity-time curves for the DWI lesion. For the percentage signal change maps, the colour bar 
above each image is scaled in units of ‘%’. For the T2*-weighted signal intensity-time curves, the x-
axis represents time (seconds) and the y-axis represents % T2*-signal change from the baseline. 
Vertical broken lines represent the onset and cessation of the oxygen challenge. The solid and 
broken lines represent the T2*-weighted signal intensity-time curve from the contra-lateral mirror 
region and the DWI lesion respectively. Each row represents data for a separate subject as follows; 
f = subject 11, g = subject 12, h = subject 16, i = subject 21, and j = subject 22. 
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Figure 7-5 Percentage change maps for the DWI lesio n (continued, 2) 
The first column shows the diffusion weighted image (DWI), the second column shows images of 
percentage signal change generated using Model 1, the third column shows images of percentage 
signal change generated using Model 2, and the fourth column shows the T2*-weighted signal 
intensity-time curves for the DWI lesion. For the percentage signal change maps, the colour bar 
above each image is scaled in units of ‘%’. For the T2*-weighted signal intensity-time curves, the x-
axis represents time (seconds) and the y-axis represents % T2*-signal change from the baseline. 
Vertical broken lines represent the onset and cessation of the oxygen challenge. The solid and 
broken lines represent the T2*-weighted signal intensity-time curve from the contra-lateral mirror 
region and the DWI lesion respectively. Each row represents data for a separate subject as follows; 
k = subject 23, l  = subject 24, m = subject 28, n = subject 30, and  o = subject 31.  

 

 

 

 



Chapter 7  198 

 

Figure 7-6 Percentage change maps for the DWI lesio n (continued, 3) 
The first column shows the diffusion weighted image (DWI), the second column shows images of 
percentage signal change generated using Model 1, the third column shows images of percentage 
signal change generated using Model 2, and the fourth column shows the T2*-weighted signal 
intensity-time curves for the DWI lesion. For the percentage signal change maps, the colour bar 
above each image is scaled in units of ‘%’. For the T2*-weighted signal intensity-time curves, the x-
axis represents time (seconds) and the y-axis represents % T2*-signal change from the baseline. 
Vertical broken lines represent the onset and cessation of the oxygen challenge. The solid and 
broken lines represent the T2*-weighted signal intensity-time curve from the contra-lateral mirror 
region and the DWI lesion respectively. Each row represents data for a separate subject as follows; 
p = subject 33, and q = subject 35. 

 

 

Figure 7-7 Attenuated Oxygen Challenge Response in the Contra-lesional Cerebellar 
Hemisphere 
Images are from Subject 8. a) Diffusion weighted imaging of the stroke lesion, b) normal diffusion 
weighted imaging in the cerebellum and c) attenuated response in the contra-lesional cerebellar 
hemisphere on Oxygen Challenge Percentage Change Scan (model 2). The colour scale is in units 
of percentage signal change. 
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7.4 Discussion 

In this study, the feasibility of producing Oxygen Challenge percentage change 

maps was demonstrated. Such maps were produced using freely available 

software and utilised standard image processing techniques. The PSC maps 

allowed rapid qualitative evaluation of whole brain Oxygen Challenge data. The 

maps produced in this study showed differences between grey and white matter 

in the contra-lesional hemisphere, whilst successfully demarcating moderately 

large DWI lesions in the ipsilateral hemisphere. Regions of exaggerated PSC in 

PWI-DWI mismatch regions were also demonstrated on the PSC maps. In 

addition, regions of proposed crossed cerebellar diaschisis were detected by the 

PSC maps. Finally, the PSC maps appeared to provide additional information to 

current MRI techniques by showing heterogeneity within the DWI lesion and PWI-

DWI mismatch regions in some subjects. This suggests potential additional utility 

of PSC maps in comparison to PWI-DWI mismatch maps alone. A further aspect of 

this study was the demonstration of two types of model. Model 1, which used all 

available data, demonstrated percentage signal change best for the voxels 

where the T2*-weighted signal intensity-time curve adhered most rigidly to the 

square wave morphology of a ‘box car’ design.  Model 2, which used only 2/11 of 

the data sequence, appeared to be more successful in demonstrating a purer 

measure of absolute percentage signal change. 

How does this study inform the validation process for Oxygen Challenge? Firstly, 

conclusions from this qualitative analysis, based upon visual evaluation of all 

data voxels from the whole brain, were consistent with the conclusions from the 

analysis of ‘regions of interest’ which were reported in Chapter 2 and Chapter 3. 

Secondly, the generation of PSC maps, which may ultimately be co-registered to 

DWI and PWI, potentially allows for more detailed quantitative voxel based 

analyses in future studies. Finally, the feasibility of producing such maps has 

been demonstrated, suggesting potential clinical utility. 

How does the process of map generation in this study compare with other 

potential methods? In the author’s opinion, the simplest, most accurate, and 

most reliable method, would be to acquire baseline data over a short period of 

time, subsequently administer the Oxygen Challenge and then, after a delay to 
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allow for physiological equilibrium, one could acquire more data to define the 

peak signal. A simple subtraction of the baseline from the peak data would then 

provide a value for percentage signal change. Unfortunately, owing to a 

relatively low signal-to-noise ratio, this approach was not deemed to be feasible 

and therefore modelling techniques were employed. The animal pilot study for 

Oxygen Challenge(255) employed similar modelling techniques, but instead of 

expressing data as percentage signal change, data were presented as statistical 

image maps, which indicated the likelihood of the data from a given voxel fitting 

the pre-specified model. This approach was not employed in this study for two 

reasons. The first is that while statistical maps which express t-statistics or z-

statistics incorporate measures of ‘error’ and are therefore potentially more 

accurate than the approach adopted here, the physiological and clinical meaning 

of such maps is hard to define. The concept of ‘percentage signal change’ is 

simpler and more intuitive. Secondly, and more importantly, there is no ideal 

model to which the data should be fitted. Specification of a ‘square wave’ 

model would have been inaccurate for the Oxygen Challenge data as the 

morphology of the T2*-weighted signal intensity-time curves did not always 

adhere to this design. Another possibility was to use the T2*-weighted signal 

intensity-time curve from the contra-lesional hemisphere as the pre-defined 

model. However, this would have only been relevant to the anatomical region 

selected and ignores the possibility of spatial heterogeneity for the morphology 

of the T2*-weighted signal intensity time curve. Moreover, it assumes that the 

morphology of the curve, rather than simply the magnitude of signal change, is 

the most important indicator of metabolic activity. However, this is not certain, 

and if the only parameter which represents deoxyhaemoglobin concentration is 

PSC, as was originally hypothesised, then this approach would be less relevant. 

Finally, it has been suggested that the T2*-weighted signal intensity from the 

saggital sinus may be used to generate the model (252). Whilst this may work 

well in healthy subjects(252) where the global OEF should be constant, it would 

be inherently flawed for use in stroke subjects. This is because the venous 

oxygen saturation in the saggital sinus, which is likely to influence the T2*-

weighted signal intensity-time curve, is dependent not only on the OEF in 

healthy tissue but also OEF in stroke lesion tissue. The absolute 

deoxyhaemoglobin concentration in the saggital sinus is therefore dependent on 

whether there has been a stroke, the overall oxygen extraction fraction within 
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the stroke lesion, and the volume of the stroke lesion. Since all of these vary 

between subjects with stroke, and between stroke and healthy subjects, the use 

of the T2*-weighted signal intensity-time curve to define the ‘normal’ model 

may be inaccurate. Therefore, in this study, modelling was not based on data 

from individual subjects. Instead, the same model (either Model 1 or Model 2) 

was applied to all subjects, accepting their limitations. 

Limitations to the models should be discussed. Two approaches were adopted in 

this study. Model 1 used data from all time points. Whilst this avoided any bias 

in analysis, this approach is associated with a number of limitations. Firstly, it 

assumed no delay in T2*-weighted signal change after the administration of 

hyperoxia, which is clearly not the case. Next, the baseline was defined as the 

mean signal from time points for which Oxygen Challenge was not being 

administered. However, in some cases the pre-Oxygen Challenge baseline was 

not stable and there appeared to be a sustained drift in the baseline of some 

T2*-weighted signal intensity-time curves. As an example, consider the case of a 

sustained downward drift in signal during baseline scanning. In this scenario the 

actual percentage signal increase after Oxygen Challenge would be greater than 

the measured percentage signal increase owing to a ‘mean’ baseline value that 

may be substantially higher than the signal intensity immediately preceding the 

Oxygen Challenge. Model 1 is insensitive to such baseline drifts for the 

calculation of simple ‘percentage signal change’. Secondly, all data acquired 

during Oxygen Challenge time points contributed to the evaluation of peak 

signal, for PSC calculation.  However, in reality, the T2*-weighted signal 

intensity-time curves did not precisely mirror a ‘square wave’.  Moreover, the 

morphology of the T2*-weighted signal intensity-time curves varied between 

tissue compartments. For example, in the DWI lesion, if a positive signal 

increase was indeed observed, there tended to be a slow rise in the T2*-

weighted signal intensity. This was in contrast to the sharper increase in T2*-

weighted signal intensity in the contra-lesional hemisphere. Therefore, even if 

the same absolute PSC was achieved in both tissue compartments, the T2*-

weighted signal intensity-time curve from ‘normal tissue’ would fit the square 

wave model better that the curve from the DWI lesion, leading to different 

parameter estimates and thus different calculated percentage changes. This 

issue is not only relevant for comparison of different tissue compartments from 
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the same subjects, but for comparisons between subjects, since inter-subject 

variations will inevitably exist for physiological equilibration after Oxygen 

Challenge. As in other studies(252), Model 1 may have benefitted from a fixed 

delay for this equilibration to occur, but this was not implemented owing to the 

variations between subjects. Another source of potential ‘noise’ in Model 1 

comes from the post-Oxygen Challenge time points. Since the post-Oxygen 

Challenge data points were also defined as ‘baseline’ by Model 1, the inevitable 

variations in decline in the T2*-weighted signal intensity would again lead to 

differences in the parameter estimates and therefore the measurement 

percentage signal change. Considering all of these points, it is clear that if there 

is a slow increase and decline in T2*-weighted signal intensity before and after 

Oxygen Challenge respectively, the parameter estimates will be poor and this 

will affect the measurement of percentage signal change. Therefore Model 1 has 

the ability to highlight voxels with a T2*-weighted signal intensity-time curve 

which conforms to the square wave model. Whilst this is potentially 

advantageous if one is interested in conformance to the model, such assessment 

could more accurately be achieved using statistical maps which also take into 

account the ‘error’ in the data fitting. Nonetheless, the advantage of Model 1 os 

that it is simple, uses all available data, makes very few assumptions, and is 

applied in the same manner to all subjects. 

In view of the potential limitations of Model 1, a second model was assessed. 

Model 2 defined only the immediate pre-Oxygen Challenge time points as 

‘baseline’, and examined only the final minute of Oxygen Challenge for 

calculation of peak signal. Whilst this model should be less sensitive to the issues 

associated with Model 1, these will not have been entirely eliminated. 

Nonetheless, despite these theoretical limitations, and some examples of where 

different results were produced by the different models, the maps produced by 

the two methods were generally very similar. However, for future voxel based 

quantitative studies where one may be most interested in absolute signal 

change, Model 2 is likely to be more accurate. 

A final limitation should be discussed. Owing to low signal-to-noise ratio, a heavy 

smoothing kernel of 10mm FWHM was applied in this study. This was chosen in 

order to maximise the ability of the maps to highlight ‘abnormal’ regions. With 

future refinements to the Oxygen Challenge protocol to address the issue of low 



Chapter 7  203 

signal-to-noise ratio, the degree of smoothing should be reduced. With a voxel 

height and width of 1.875mm, the ideal smoothing kernel would be no more than 

approximately 3-4mm FWHM for clinical use. Future refinements to signal-to-

noise ratio may also improve the ability to detect small lesions, which were not 

detected by this study. In future studies, other approaches to image processing 

could also be considered to reduce artefact, such as applying independent 

component analyses which have previously been applied to epilepsy fMRI data 

sets(344). 

In summary, despite data with relatively low signal-to-noise ratio and limitations 

to the approaches used, the feasibility of producing PSC maps has been 

demonstrated. These maps showed findings which were consistent with the 

results produced from the analysis of ‘regions of interest’ which were presented 

in Chapter 2. For future studies of voxel based analyses, Model 2 is likely to 

produce more accurate measures of percentage signal change. 
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8 A Voxel Based Analysis of the Oxygen 

Challenge Results 

8.1 Introduction 

Previous chapters have evaluated the Oxygen Challenge response from within 

predefined regions of interest. These have included contra-lesional grey and 

white matter, DWI lesions, and PWI-DWI mismatch regions. These analyses have 

shown differing responses to oxygen challenge within tissue compartments which 

have different levels of metabolic activity and cerebral blood volume. Results 

presented thus far have suggested that the response is dependent on underlying 

CBV, as indicated by differences in grey and white matter. Results also suggest a 

potential influence from underlying OEF, as suggested by a diminished or 

‘negative’ T2*-weighted signal change from within the DWI lesion. However, 

associated with the advantages that the ‘region of interest’ approach delivered, 

a number of limitations were also apparent. Firstly, only the mean signal from 

the different regions of interest was considered. While this allowed general 

conclusions to be made, there was no account for spatial heterogeneity within 

lesions. Secondly, the regions of interest / tissue compartments have been 

defined by other imaging techniques such as DWI and PWI. Whilst these tissue 

compartments are generally those which have been of interest to other 

investigators, this approach has limited the volume of data which has been 

evaluated, and has assumed that tissue not defined by regions of interest 

provides no valuable information. For example, tissue with mild hypoperfusion 

(TMAX ≥2-4s) has not been considered thus far. A further limitation of the 

‘regions of interest’ approach, which has been applied to relatively few numbers 

of subjects, is that although assessment for univariate correlations has been 

performed, it was not possible to ascertain which variables were independently 

predictive of the parameter of interest. For example, whilst there were 

statistically significant positive / negative correlations between PSC and CBV  / 

TMAX respectively, it was not clear whether TMAX was a predictor of PSC 

independently from CBV.  
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Therefore, in addition to the ‘regions if interest’ method, a potential 

complementary approach method is to consider each voxel as being independent 

from every other voxel, and examine data from each voxel separately. Such 

voxel-based analyses have previously proven powerful for the interrogation of 

data from stroke imaging studies. These have informed with respect to stroke 

pathophysiology(54, 175) and thresholds for the distinction between tissue 

compartments(345). The adoption of a voxel-based approach may help to 

address some of the aforementioned limitations to the previous analyses of the 

Oxygen Challenge data. 

In this study, a voxel based approach was adopted. The aims were to apply 

univariate and multivariate regression analyses to determine how much the data 

derived from other MRI sequences predict percentage signal change after Oxygen 

Challenge. This is important when considering the potential additional utility of 

PSC to current MR stroke protocols – can PSC already be predicted from 

sequences which are already used in clinical practice?  Similarly, the ability of 

PSC to discriminate DWI lesions from normal tissue (the former being likely to 

have a lower OEF) and grey from white matter (tissues which have different 

CBV) was investigated. Finally, in a similar approach to Chapter 2, the ability of 

PSC to discriminate regions of PWI-DWI mismatch from mirror regions was 

investigated, this time on a voxel-wise basis. 

 

8.2 Methods 

8.2.1 Image post-processing 

Maps of apparent diffusion coefficient (ADC) were generated using the software 

package MIStar® (Appollo Medical Imaging Technology, www.appollomit.com). 

The B1000 and B0 maps from DWI were loaded to the software and ADC maps 

were generated automatically. Next, non-brain voxels were removed using a 

skull stripping technique (Brain Extraction Tool, BET(346)). BET is part of the 

‘FSL’ software package which is part of the FMRIB software library, University of 

Oxford. This stage was essential to ensure that only voxels corresponding to 
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tissue parenchyma were included in these analyses. Next, regions anterior to the 

lateral ventricles were manually removed owing to artefact from the nasal 

sinuses. In addition, owing to iron deposits in the basal ganglia, signal drop out 

was seen in these regions giving an artificially low ADC(312). Therefore the basal 

ganglia regions were also manually removed for all subjects. Next, CSF was 

removed from the ADC maps. This ensured that voxels from sulci or ventricles 

were not included in the analyses. To do this, ADC maps were loaded into the 

software package ‘Medical Image Processing, Analysis and Visualisation’ (MIPAV, 

National Institutes of Health, Bethesda, MD, USA). CSF was removed using a 

simple thresholding algorithm, using an intensity threshold 1.0X10-3 mm2/s. All 

voxels with an ADC value above this threshold were assigned a value zero. Such 

suppression of CSF leads to lesion ADC values which are more homogeneous and 

accurate(347). Therefore, in addition to providing physiological data, the ADC 

maps also served as a tissue mask – all voxels with a zero value corresponded 

with non-brain material or CSF and were excluded from the statistical analyses 

in the next stage. Next, maps of TMAX were generated using a method 

previously discussed in Chapter 2, using Stroketool (v.2.4, Digital Image 

Solutions, University of Dusseldorf).  In brief, an arterial input function (AIF) was 

selected from the contra-lesional proximal middle cerebral artery, and maps of 

unthresholded TMAX were generated using standard singular value 

decomposition(109). These TMAX maps allowed quantitative measures of 

perfusion. Owing to concerns about the use of standard singular value 

decomposition(109) as applied in the Stroketool package for the generation of 

precise CBV measurements, as discussed previously (section 6.4), maps of 

relative CBV were used for these analyses. These maps were also generated 

using the Stroketool package. Finally, the ‘modified’ percentage change (PSC) 

maps from the Oxygen Challenge were used in these analyses. These maps 

employed ‘Model 2’ (Chapter 7) which uses the final minute of pre-Oxygen 

Challenge data to define the baseline and the final minute of Oxygen Challenge 

data to define the peak. The degree of smoothing employed for maps used in 

these analyses was set at 3mm FWHM, in order to match the smoothing kernel 

applied to the perfusion maps. 

Next, the TMAX, CBV and ADC maps were coregistered to the T2*-weighted EPI 

data so that all maps were aligned with the PSC maps. This procedure was 
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achieved using ‘Analyze’ software (version 8.0, Mayo Clinic, Rochester, USA). To 

achieve the best anatomical resolution while doing this, co-registration was 

initially performed using the raw images (DWI, PWI, T2*-EPI). In a second step 

the subsequent transformation matrices which were generated from the first 

step were applied to the derived maps (i.e ADC/TMAX/CBV/PSC) to ensure that 

these derived maps were also co-registered to each other. Given that imaging 

data were already roughly aligned, a non-linear ‘windowed sinc’ interpolation 

method was used. Following this, coregistered images were inspected in axial, 

coronal and saggital planes and very fine manual adjustments were made to the 

co-registration if required. This meant that all voxels from all of the imaging 

modalities were of equal dimension, and matched the PSC maps. Therefore the 

standard voxels dimensions were as follows; depth = 5mm, width = 1.875mm, 

height = 1.875mm and corresponding voxels from any given anatomical region 

were aligned between imaging modalities. Only after all of these procedures 

were followed could voxel based comparisons be performed.  

Next, a programming script written using the ‘MATLAB’  programming 

envionment(MATLAB 2009b; The Mathwoks, www.mathworks.com) was supplied 

by Dr Rosario Lopez-Gonzalez, Clinical Physicist, University of Glasgow. This 

script allowed automated export of values from each imaging modality for each 

voxel, to a spreadsheet. This could be performed for two consecutive slices. 

Therefore, visual inspection was performed for each image data set for each 

subject to determine the two slices with the largest lesions. If a subject had 

previously been determined to have a region of PWI-DWI mismatch, slices 

incorporating this region were also included. The voxel-based script was then 

applied to all included subjects. This generated data for ADC, TMAX, relative 

CBV and PSC for parenchymal voxels on two axial slices from all subjects. Using 

previously generated maps for ‘regions of interest’ (Chapter 2 and 3), individual 

voxels belonging to the following tissue compartments were labelled: DWI lesion, 

DWI mirror region, contra-lesional grey matter, contra-lesional white matter, 

grey matter within the DWI lesion and finally PWI-DWI mismatch and 

corresponding mirror regions. 

Before data could be compared between subjects, some data had to first be 

‘normalised’ for comparison. The TMAX and ADC data are fully quantitative by 

nature and were therefore not normalised. The values from relative CBV were 
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normalised to the contra-lesional white matter, using a manually defined ‘region 

of interest’ which was applied to the same white matter anatomical region, 

superior to the lateral ventricle, in each case. Therefore, voxel CBV values were 

expressed as ‘CBV voxel value / mean CBV values from contra-lesional WM 

voxels). Normalisation to contra-lesional white matter is a commonly applied 

technique in the field of perfusion weighted imaging. Finally, although PSC 

values were ‘quantitative’ they were dependent on technical and physiological 

values (e.g. FiO2, baseline venous oxygen saturation) which may have varied 

between patients. Therefore these values were also normalised to the contra-

lateral hemisphere. Since grey matter provided the best signal-to-noise ratio for 

PSC data, PSC values were normalised to the mean of the contra-lesional grey 

matter PSC. This value was attained by applying a grey matter region of interest 

(described in Chapter 3) to each PSC map, and deriving the mean signal intensity 

in each region of interest, again using ‘Analyze’ software. 

 

8.2.2 Statistical Analysis 

Subjects who had both PWI and Oxygen Challenge data acquired, and for whom 

there was a measurable lesion (as determined in Chapter 2) were included in 

these analyses. 

Voxel based data for the following parameters from all subjects were entered 

into a single spreadsheet; normalised PSC, normalised CBV, TMAX, and ADC. 

Next, values which appeared to be artefactual were excluded. These were as 

follows; 1) a CBV ratio (voxel : contralateral mean white matter CBV) of >10.0 

(557 voxels excluded), 2) PSC >10% or < -10% (1674 voxels), 3) TMAX >25s (896 

voxels) and 4) ADC values <20% of normal (0.7 x 10-3 mm2/s) ie 0.14 x 10-3 

mm2/s, based on previous data(348). By thresholding the ADC values in this way, 

all ‘zero’ value voxels were automatically excluded, thereby eliminating CSF, 

ventricles, areas of artefact and non brain from all subsequent analyses. After 

exclusion of outlier voxels, data for each imaging parameter were assessed for 

normality. Rather than using statistical tests for normality (e.g. Shapiro Wilk 

etc), visual inspection of data using histograms was performed using Minitab 

software 9v. 15.1). This approach was adopted since, owing to the very large 
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numbers of voxels examined, data may have been statistically non-normal 

despite close adherence to ‘bell shaped curve’ histogram morphology. 

Therefore, the decision to use a histogram for assessment of normality was a 

pragmatic one. If data were positively skewed, transformations using square 

root, natural logarithmic, and reciprocal functions were assessed for the best 

data transformation.  

StatsDirect Software (v2.7.8, www.statsdirect.com) was used for all subsequent 

analyses. Firstly, univariate assessments for the correlation between normalised 

PSC and untransformed TMAX / ADC / normalised CBV were performed using the 

Spearman statistic. Next, after optimal data transformation was achieved, 

TMAX, CBV and ADC data were entered into a multiple linear regression model to 

predict PSC. This analysis was performed for all voxels from all included 

subjects, and subsequently only for voxels which were included in the DWI 

lesion. Next, the same analysis was performed but this time for each individual 

subject, using all available voxels.  

Finally, the discriminatory utility of PSC maps was assessed using receiver 

operating characteristic (ROC) curves using voxels from all subjects. The ability 

of PSC and CBV to differentiate DWI lesion and DWI mirror regions and also grey 

versus white matter using the ‘area under the curve’ as measured by the 

Wilcoxon method (a non-parametric method analogous to the Wilcoxon signed 

ranks test and Mann-Whitney-U test) was compared. Values for AUC of 0.5-0.69 

were considered poor to fair, values of 0.7-0.79 were considered acceptable, 

and values of 0.8 and above were considered excellent. The decision to 

investigate the difference between grey and white matter and between DWI 

lesion and mirror regions was made on the background of previous findings which 

showed statistically significant differences between these tissue compartments 

for Oxygen Challenge  PSC(Chapter 2 and 3). Finally, although no clear 

differences between likely penumbral regions and normal tissue were found 

using region of interest analyses (Chapter 2), these regions were examined by 

using ROC curves to assess the ability of PSC to discriminate between voxels 

from the ‘mismatch’ region from those in the respective mirror region. This time 

data were not pooled and this was done for individual subjects separately owing 

to the variable responses to Oxygen Challenge between patients (PSC variably 
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increased or decreased after Oxygen Challenge in the mismatch regions of this 

cohort). 

8.3 Results 

8.3.1 Data characteristics 

Data from subjects for whom there was a measurable lesion detectable by 

imaging and who had PWI and Oxygen challenge acquired were analysed (n=12). 

These subjects were; subjects 1,5,6,9,12,16,22,24,28,31,33,35. As discussed in 

Chapter 2, these data incorporated unaffected tissue (all subjects, in both ipsi-

lesional and contra-lesional hemisphere), hypoperfused DWI lesion (subjects 

1,5,6,9,12,16,22,33,35), reperfused DWI lesion (subjects 24,28,31), and PWI-DWI 

mismatch tissue (subjects 1,5,16,22,33,35). These data yielded 53 955 separate 

voxels, all of which were considered in these analyses. 

Given that multiple linear regression analyses require that data are normally 

distributed, the distribution of data was assessed. Data for absolute and 

normalised PSC satisfied requirements of the appearance of a ‘bell shaped 

curve’ (Figure 8-1 [a]), consistent with a normal Gaussian distribution. Data for 

normalised cerebral blood volume and TMAX were positively skewed (Figure 8-1 

[c] and [e]).  The application of a ‘natural logarithmic’ function transformed the 

data for cerebral blood volume towards a normal distribution (Figure 8-1 [d]). A 

reciprocal transformation reduced the positive skew of the TMAX data and 

although it was superior compared to the use of square root and natural 

logarithmic function, transformation of the data was suboptimal (Figure 8-1 [f]). 

Data for ADC was bimodal (Figure 8-1 [b]), consistent with the two predominant 

tissue compartments examined in this data set (unaffected tissue and DWI 

lesion). The bimodal distribution of the ADC data rendered them resistant to 

transformation towards a normal Gaussian distribution, and therefore these data 

were left unaltered. Therefore, multivariate regression analysis considered the 

‘natural logarithm of cerebral blood volume’, reciprocal of TMAX data, and 

absolute ADC as predictors of absolute PSC. Owing to the failure of the ADC data 

to satisfy assumptions of the model, further analyses were performed using only 

transformed CBV and TMAX data. Finally, both absolute and normalised PSC, and 
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normalised cerebral blood volume, were entered into the ROC curve analyses for 

prediction of the presence of a lesion on DWI. 

 

Figure 8-1 Histogram representation of the distribu tion of data. 
The x-axis described the parameter being assessed. The y-axis describes the frequency. The data 
finally included in the analyses were ‘percentage signal change’ (a), ADC (b), transformed CBV (d), 
TMAX (e), and transformed TMAX (f). 

8.3.2 MR predictors of Oxygen Challenge induced ‘pe rcentage 

signal change’ 

8.3.2.1 All voxels 

Univariate analyses showed that all three predictors were significantly 

correlated with normalised PSC (transformed CBV, Rho=0.3, p<0.0001; reciprocal 
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TMAX, Rho = 0.15, p<0.0001; ADC, Rho=0.19, P<0.0001). When transformed CBV, 

transformed TMAX, and ADC were entered into a multiple linear regression 

model to predict normalised PSC, transformed CBV (r=0.2, p<0.0001) and ADC 

(r=0.1, p<0.0001) were independently predictive (n= 53 955 voxels). However, 

transformed TMAX was not an independent predictor when considering all voxels 

(r=-0.003, p=0.44). The R2 for the model was 7.2%. When only transformed TMAX 

and CBV were entered into the model, again CBV was significantly predictive 

(r=0.26, p<0.0001), unlike reciprocal TMAX (p=0.61). However, the predictors for 

these models did not satisfy the requirement for equality of variance (p<0.0001, 

Kruskal Wallis). 

When individual subjects were considered, only transformed CBV was 

consistently shown to be an independent predictor of normalised PSC. 

Transformed TMAX and ADC were variably statistically predictive. Data for 

individual subjects are given below (Table 8). 
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Table 8 Results from multiple linear regression ana lyses from individual subjects 
Only CBV consistently contributed to the prediction of PSC. CBV = cerebral blood volume, ADC = 
apparent diffusion coefficient. Values for the strength of regression are expressed as the ‘r’ value 
but no value is given if there is not statistically significant result. 

 

8.3.2.2 Voxels from within the DWI lesion 

A multiple linear regression analysis using only voxels from within the DWI lesion 

(n=8280) demonstrated that all three predictors which were entered were 

statistically significant (transformed CBV, r=0.19, p<0.0001; reciprocal TMAX, r = 

0.02, p=0.047; ADC, r=0.12, P<0.0001; R2=8.0%). Both transformed TMAX and 

CBV remained significant when only these two parameters were entered into the 
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model, although the correlation with TMAX was very weak (transformed CBV, 

r=0.25, p<0.0001; reciprocal TMAX, r= 0.03, p=0.006). 

8.3.3 Utility of cerebral blood volume and ‘Oxygen Challenge’  for 

the prediction of DWI lesion and contra-lateral gre y matter 

8.3.3.1 Identification of DWI lesion 

The ROC curve AUC of normalised PSC for the prediction of the presence of a 

DWI lesion was ‘0.70’ when considering both grey and white matter voxels (n=13 

420 voxels). As an example, a ratio of DWI tissue PSC : to non-DWI lesion tissue 

PSC of ‘0.008 : 1.0’ predicted the presence of a DWI lesion with a sensitivity of 

63% and a specificity of 70%. When considering only grey matter voxels (DWI 

lesion in the grey matter vs contra-lesional grey matter, n=4851 voxels) the 

predictive properties of PSC did not improve (AUC=0.68). Normalised CBV was a 

better predictor of the DWI lesion (AUC=0.85). The ROC curves for normalised 

PSC and CBV are shown below (Figure 8-2). 
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Figure 8-2 ROC curve for CBV and PSC for the predic tion of DWI lesion 
Data points plotted in black represent values for normalised CBV. Data points plotted in red 
represent values for normalised PSC.  CBV = cerebral blood volume. PSC = percentage signal 
change 

8.3.3.2 Identification of grey matter 

In a similar fashion to the prediction of the DWI lesion above, normalised CBV 

was a better predictor of the presence of grey matter (AUC=0.79) than was 

normalised PSC (AUC=0.62) (Figure 8-3, n=16 475 voxels). 

 

Figure 8-3 ROC curve for CBV and PSC for the predic tion of grey matter 
 Data points plotted in black represent values for normalised CBV. Data points plotted in red 
represent values for normalised PSC.  GM = grey matter, WM = white matter 

8.3.3.3 Discrimination of the perfusion-diffusion mismatch from mirror regions 

Of the six subjects with PWI-DWI mismatch, ROC curve analyses of all voxels 

(grey and white matter) revealed a ‘cut off’ value which discriminated between 

a lower mismatch voxel PSC value and a higher mirror region voxel PSC value in 

2 subjects (subjects 1 and 22). In subject 1 the PSC demonstrated a ‘negative’ 

change and in subject 22 the PSC demonstrated a ‘positive’ but diminished 

change compared to the mirror region. In the remaining four cases, the ROC 
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curve discriminated between a higher ‘mismatch’ voxel PSC value and a lower 

‘mirror’ voxel PSC value, as per the original hypothesis. However, in only one of 

these subjects was there ‘acceptable discrimination’ as judged by an AUC of ≥ 

0.7 (subject 35; AUC 0.8). Table 9 Table showing ability of PSC to discriminate 

between mismatch and mirror voxels in individual subjects using the AUC from 

the ROC analyses. shows that a more homogenous analysis of only white matter 

voxels did not substantially improve the discriminatory values. 

 

Figure 8-4 Receiver operating characteristic (ROC) curves for individual subjects with 
perfusion-diffusion mismatch.   
X axis = sensitivity, y-axis = 1-specificity. The AUCs show the ability of PSC to discriminate 
between voxels in the mismatch and associated mirror regions. AUC = area under the curve. ‘≥’ 
shows cases where the ROC curve distinguishes voxels with higher PSC value in the mismatch 
region from a lower PSC value in the mirror region, and vice versa for ‘≤’. Subject 1 = a), Subject 2 
= b), Subject 16 = c), Subject 22 = d), Subject 33 = e), Subject 35 = f). 
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Table 9 Table showing ability of PSC to discriminat e between mismatch and mirror voxels in 
individual subjects using the AUC from the ROC anal yses. 
Column 1 = individual subjects, Column 2 shows the AUC derived from both grey and white matter 
voxels, and Column 3 shows whether the ROC analyses discriminated a higher (≥) or lower (≤) 
PSC value in the mismatch regions from the mirror region.  

8.4 Discussion 

This study, which analysed data from individual voxels, follows on from the 

analyses of ‘regions of interest’ which have been presented in previous chapters. 

In order to assess influences on the PSC from Oxygen Challenge, data which 

would usually be available from stroke MRI protocols  (CBV, TMAX, and ADC), 

were modelled in univariate and multivariate analyses as predictors of PSC from 

the Oxygen Challenge. In addition, ROC curves were used to assess the 

predictive capacity of PSC for conventionally defined tissue compartments. 

These approaches allowed: 1) the potential validation of the Oxygen Challenge 

technique by showing that PSC is correlated with variables of biological interest; 

2) a logical follow on from the ‘regions of interest analysis’ to confirm results 

from Chapters 2 and 6 in a manner which is sensitive to spatial heterogeneity; 3) 

the investigation of factors which may influence the PSC so that these may be 

accounted for in future studies; 4) to determine the potential for PSC from 

Oxygen Challenge to discriminate DWI lesions and regions of PWI-DWI mismatch 

and finally; 5) evaluation of how much existing stroke MRI protocols could 

predict the response from Oxygen Challenge - if existing protocols can predict 

the PSC with reasonable accuracy, Oxygen Challenge sequences may provide no 

additional clinical utility, and vice-versa.  
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When all voxels from all included patients were considered, there were 

significant univariate correlations between ADC, CBV and TMAX to PSC data. 

However, in the multivariate analysis, TMAX became insignificant, suggesting 

that TMAX was not an independent predictor of PSC. It should be noted that ADC 

and CBV only accounted for 7.2% of the total variance in PSC. When considering 

voxels derived only from the DWI lesion, all three parameters predicted the PSC 

response in multivariate analyses. It should be noted that for all significant 

correlations, the strength of the correlations was generally weak, with ‘r’ values 

of usually no more than ‘0.3’. Next, it was seen that PSC provided only fair 

predictive properties for the identification of DWI lesion and grey matter, and in 

both cases CBV was superior. Finally, it was seen that only one case from six had 

an ROC curve which showed good discriminatory ability by the hypothesised 

‘exaggerated’ PSC respect to mismatch vs mirror regions. 

 

How may these results be explained and interpreted? Firstly, both univariate and 

multivariate voxel based analyses have confirmed that CBV has an independent 

influence of the PSC from Oxygen Challenge. These data are consistent with 

work presented in this thesis (Chapter 6) which employed univariate analyses of 

data from ‘regions on interest’, and also with data from the literature(206, 248). 

The strengths of the correlations presented in this study were weaker than those 

presented after analysis of regions of interest. This may be explained, at least 

partly, due to the combined noise from the standard MR stroke protocol 

sequences and, in particular, from the PSC maps. Nonetheless, CBV was the only 

predictor of PSC which was statistically significant in all subjects. Based on these 

data, those from previous chapters in this thesis, and those from the 

literature(206, 248), the evidence that CBV influences the Oxygen Challenge 

result is irrefutable. Therefore, when interpreting the results of PSC Oxygen 

Challenge, CBV maps should also be acquired and accounted for. Results from 

these analyses also suggest that other factors also influenced the observed PSC; 

these were ADC when all voxels were considered, and both ADC and TMAX when 

only voxels from within the DWI lesion were considered. This is reassuring, and 

argues the case that other factors, not just CBV, influence the PSC – an 

argument which underpins the hypothesis of the technique. The precise 

explanation of how TMAX and ADC influenced PSC is not clear. However, 
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although suboptimal for this purpose, both may serve as surrogate markers for 

metabolic activity and tissue viability. For example, ADC values are higher in 

those with completely reversible DWI lesions, intermediate in those with 

temporarily reversible DWI lesions, and lowest in DWI lesions which are static 

and permanent(57). Similarly, it has been shown beyond doubt that the depth of 

hypoperfusion is related to metabolic activity(19). Although penumbral tissue 

may theoretically be associated with an infinite TMAX, it has been shown that 

severe delays in TMAX are predictive of tissue infarction(349) suggesting that, at 

least in some cases, TMAX may also be a marker of tissue viability, albeit one 

which is suboptimal. These associations with metabolic activity may explain how 

TMAX and ADC are predictive of the PSC, independently of CBV. 

In the multivariate analysis, only a small proportion of the variance in PSC was 

accounted for by CBV, TMAX, and ADC. It is unclear what accounted for the 

remaining 92% of the variance. Noise inherent to the PSC maps is likely to have 

contributed much of this variance. The stronger correlation between CBV and 

PSC derived from the ‘regions of interest’ analysis is consistent with this. 

However, it is not possible to determine if or how much of the variance is 

independently explained by the OEF of the underlying tissue, as per the 

hypothesis underlying the technique.  

The next part of the analysis showed that, although moderately predictive, PSC 

maps are inferior to CBV for prediction of the presence of the DWI lesion (and 

also grey matter). The CBV maps performed well since most of the DWI lesions 

were hypoperfused, but it is likely they would have performed less well on a 

data set with patients who had a range of reperfusion statuses. Nonetheless, the 

PSC maps failed to improve on the predictive properties offered by the CBV 

data. It could be that the ‘inferiority’ of the PSC maps reflected their greater 

sensitivity to the variations in metabolic activity within the DWI lesion. It is well 

established that the DWI lesion is a heterogenous(54) region and although it was 

considered a distinct imaging tissue compartment it is not a distinct 

physiological compartment. Given that PSC from Oxygen Challenge is proposed 

to measure a physiological parameter, with potential advantages over current 

imaging techniques, one would not expect it to predict a DWI lesion exactly. 

Indeed, it has been shown that metabolic activity can vary widely within a 

relatively narrow range of ADC values(182). In addition, signal noise likely also 
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confounded results (a detailed assessment of the issues related to noise is 

included elsewhere within this thesis [Chapter 9]).  For both of these reasons, 

there should not be too much emphasis placed on these AUC curves. 

Nonetheless, encouragement can be taken from the fact that despite these 

issues, an acceptable area under the ROC curve of ‘0.7’ for prediction of the 

DWI lesion can still be achieved.  

Finally, it was seen that an exaggerated PSC did not robustly predict the PWI-

DWI mismatch compartment in all patients. However these findings were 

expected, since they reflected the results from the ‘regions of interest’ analysis 

and are likely to reflect the physiologically heterogenous nature of the PWI-DWI 

mismatch regions, as has been discussed previously. Nonetheless, it was highly 

reassuring that in Subject 35, who was imaged in the hyperacute period and who 

demonstrated a large PSC in the mismatch region on the ‘regions of interest’ 

analysis, the capacity of PSC to discriminate the mismatch region from the 

mirror region voxels was ‘excellent’. This result is encouraging and suggests that 

if noise issues can be minimised and subjects with mismatch can be scanned 

hyper-acutely, the discriminative capacity of Oxygen Challenge may be clinically 

acceptable. 

 

This study has a number of limitations which should be acknowledged. Firstly, 

analysis was restricted to two slices from each included subject. This approach 

was adopted owing to restriction by the software used, and also the potential 

size of the spreadsheet used (the maximum number of potential rows is 65 000 

in Microsoft Excel 2003.) As was discussed in a previous chapter, relationships 

between parameters were assumed to be linear for the purposes of the multiple 

regression analysis, but this may not always be the case(218). Secondly, 

normalisation of the data was difficult to achieve with these data. The bimodal 

distribution of ADC rendered these data resistant to transformation, and 

therefore ADC data should be interpreted with caution. This was the purpose of 

performing separate analyses without the inclusion of ADC. In addition, it should 

be noted that the predictors for the multi-variate analyses did not show equality 

of variance, an assumption of the model, and therefore should be interpreted 

with caution. Thirdly, the limitations of the PSC maps have previously been 
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discussed. Next, the multivariate regression analyses assume each voxel to be 

independent. This assumption cannot be completely satisfied with the current 

data set. Although there were a large number of voxels analysed, these were 

derived from only 12 subjects. A larger number of subjects would have been 

ideal. Moreover, owing to partial volume effects, adjacent voxels may be 

inherently related to each other. These effects are likely to have been 

compounded by the smoothing kernel which was applied to the perfusion and 

Oxygen Challenge data, albeit one which was relatively ‘mild’. In addition, it 

should be noted that the voxel size used was relatively small. The use of a larger 

voxel size may have reduced the noise associated with these data. Next, the 

analyses assumed precise co-registration of all images, a procedure for which 

small errors may have occurred. However, despite these limitations, the large 

number of voxels assessed is likely to have overcome many of these potential 

problems. Next, it would have been useful to have investigated thresholds which 

define the outer border of the penumbra. This could have been achieved by 

analysing the ROC curve for data from hypoperfused but uninfarcted voxels 

which subsequently developed infarction and hypoperfused voxels which 

ultimately escaped infarction at follow up. Although unavailable in this data set, 

the reperfusion status at follow up would improve the predictive power of such 

analysis. Such analyses would require more subjects to be scanned at very early 

hyperacute time points and also at follow up. Finally, it should be noted that an 

assumption of the multi-variate regression analyses is that data points are 

independent of each other. Although each voxel was considered as independent 

for the purpose of these analyses, in reality that intensity value in each voxel is 

dependent on the adjacent voxels. 

 

In conclusion, this study has a number of implications. Firstly, it confirms the 

results from Chapter 6 and it is clear that CBV is an independent predictor of 

PSC, as would be expected from first principles. Therefore CBV should be 

accounted for when interpreting the PSC, consistent with previous conclusions. 

Secondly, this study showed that CBV was not the only independent predictor of 

PSC, and ADC and TMAX were also independent predictors, especially when 

considering voxels from within the DWI lesions. Given that first principles do not 

predict an independent influence on T2*-PSC form oxygen challenge, it is likely 
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that these factors represent surrogate markers of metabolic activity and this is 

what the technique is ultimately sensitive to – a reassuring suggestion.  Finally, 

in a case with hyperacute mismatch, PSC was shown to be an ‘excellent’ 

discriminator between mismatch and mirror regions. Although further good 

quality imaging from hyperacute cases is required to confirm this, this finding 

does provide encouragement that this technique may be clinically useful.  
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9 Oxygen Challenge Results: an Evaluation 

of Detrimental Influences on Signal 

9.1 Introduction 

It has previously been discussed that the current series of Oxygen Challenge 

studies employed a type of MRI sequence commonly used in functional MRI (fMRI) 

studies. The absolute changes in signal intensity in such studies are usually very 

small. Results presented in this thesis suggest that the Oxygen Challenge 

technique is no different. Even in grey matter, increases in T2*-weighted signal 

intensity were not usually greater than 3-4%. Unfortunately, a number of 

subjects assessed in the studies reported in Chapter 2 and subsequent chapters 

were excluded after a failure to observe a 1% increase in T2*-weighted signal in 

the DWI ‘mirror’ region after Oxygen Challenge.  This led to potentially valuable 

data being discarded from some of the analyses presented in this thesis. Whilst 

in some cases the reason for the negligible signal increase in the DWI mirror 

region was its location predominantly in the white matter, in most cases data 

were excluded due to excessive noise relative to the signal change. Such 

exclusion of data is a major issue; study subjects are a scarce resource and the 

number of subjects available to recruit and scan is always limited. Moreover, the 

data were acquired by scanning medically unwell stroke patients and by using 

valuable scanner time.  

The strength of signal derived from an MRI scan is termed signal-to-noise ratio 

(SNR). This term describes the balance between the meaningful signal and the 

meaningless background signal (noise). Formal calculations of SNR can be made 

by dividing the mean signal by the standard deviation of noise. A low SNR may 

occur due to scanning a phenomenon with an inherently weak signal, excessive 

noise contaminating the images, or a combination of both. For functional MRI 

studies, if there is a particularly low SNR due to noise then genuine effects may 

be not be detected(350). Noise may be introduced by a variety of sources 

including the scanner itself, subject motion(351, 352) and physiological(353) 

influences resulting from brain pulsation secondary to cardiac(354) and 

respiratory motion(355).  
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For the Oxygen Challenge data, an understanding of the nature of noise and the 

factors which contributed to it may be helpful for two reasons. The first relates 

to how the data were analysed. For studies presented in this thesis, percentage 

signal change has generally been calculated by defining the mean of all the pre-

Oxygen Challenge time points as being ‘baseline’. However, if variability of the 

baseline data is systematically different between stroke tissue compartments, 

defining the baseline as the mean of all pre-Oxygen Challenge time points may 

be problematic. For example, if large drifts in baseline signal intensity were to 

be seen consistently within the DWI lesion, but baseline signal from normal 

tissue was found to be stable with very little data variability, comparisons 

between the DWI lesion and normal tissue with respect to the difference 

between the baseline and peak signal may not be accurate. When considering 

whether baseline variability could theoretically be different between stroke 

tissue compartments and the contra-lesional mirror regions, it is unlikely that 

factors such as patient motion or scanner related factors will differentially 

affect tissue compartments compared to their homologous regions in the contra-

lesional hemisphere. However, the effect of certain physiological factors may 

well differ between tissue compartments. In 1995, Biswal and colleagues(268) 

reported the presence of low frequency fluctuations occurring with a frequency 

of <0.08Hz (lower than for cardiac and respiratory noise) and which were 

correlated with other low frequency fluctuations in anatomically distinct regions 

of the resting brain. This paper supported the concept of functional connectivity 

and ‘resting state’ networks. The cause of these low frequency fluctuations is 

still uncertain but it has been proposed that they represent spontaneous neural 

activity(356), but cerebral vasomotion(357) may also play a role. Given previous 

observations that ischaemia alters normal oscillatory activity associated with 

neuronal metabolism(358) and MRI measured low frequency fluctuations are 

altered by a variety of neurological disorders, it is possible that these low 

frequency oscillations are selectively altered in stroke tissue. If this is the case, 

the baseline T2*-weighted signal intensity in, for example the DWI lesion, may 

be systematically different from the baseline in the mirror regions, thus 

potentially confounding results. 

The second reason for investigating noise in the Oxygen Challenge data is to gain 

an understanding of what influences data variability for this technique. This 
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could potentially highlight patient characteristics which predict noisy data, and 

even provide an insight into which parameters should be targeted in order to 

improve SNR in future studies and thereby minimise the exclusion of poor quality 

data. 

In this study, both the amplitude of low frequency fluctuations (ALFF) and the 

overall variability of the data in the DWI lesion were compared to that from the 

mirror region in order to ascertain any systematic difference which may prevent 

the mean of the oxygen time points from being used as the baseline. In addition, 

the influence of clinico-radiological factors on patient motion, and in turn on 

overall data variability was also investigated. 

 

9.2 Methods 

9.2.1 Quantification of movement 

The realignment procedure has already been detailed in Chapter 2. In brief, this 

was performed using the software package SPM2. Using rigid body 

transformation, data for six realignment parameters were derived. These were 

translation in x, y, and z directions (mm) and rotation in pitch, roll and yaw 

orientations (radians). Movement parameters based on translation were 

calculated using a procedure previously detailed in the literature(359, 360). In 

order to derive a measure of the degree of movement with respect to translation 

from the initial position, a displacement vector (d) was calculated as follows 

  222 zyxd ++=  

Where d = displacement vector, x, y, and z are realignment parameters for x, y, 

and z translations. This was calculated for each of the baseline time points 

separately and the mean and maximum displacement vectors (d) were expressed 

for each subject. Next the ‘interscan displacement’ was calculated by expressing 

the first derivative of the displacement vectors for each interscan interval (d’) 

according to the following equation; 
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  (dx+1 – dx) / (tx+1 – tx) 

where d= displacement vector and t=time between two successive time points 

([x] and [x+1]). Given that each interscan interval was fixed this was assigned a 

value of ‘1’.  Therefore the interscan displacement (d’) was simply calculated as 

the difference in (d) between scans (dx+1 – dx). Again, this was calculated for 

each of the baseline (pre- Oxygen Challenge) time points separately and the 

mean and maximum (d’) were expressed. 

The following movement parameters for each subject were considered in the 

analyses; mean displacement vector across all baseline time points (mean d), 

maximum displacement vector across all baseline time points (maximum d), 

mean inter-scan displacement across all baseline time points (mean d’), 

maximum inter-scan displacement across all baseline time points (maximum d’), 

number of ‘jerks’ [number of times d’ was >0.1mm or >0.2mm] and maximum 

movement in the x-, y-, or z- translations. 

 

9.2.2 Determination of the amplitude of low frequen cy 

fluctuations (ALFF) 

Again, the pre-Oxygen Challenge baseline data (first 60 time points) were used 

for this analysis. Data were pre-processed using ‘SPM 8.0’ software (UCL, UK). 

Data were realigned to correct for head motion and smoothed using a smoothing 

kernel of [8,8,8]mm for the full width at half maximum of the Gaussian 

smoothing kernel in the x,y, and z directions. The software package ‘Rest 2007’ 

(http://resting-fmri.sourceforge.net, Beijing Normal University, China) which 

was run on a ‘MATLAB’ platform (MATLAB v 7.9.0.529 [R2009b], Mathworks), was 

used for computation of the ALFF on a voxel by voxel basis. Firstly data were 

filtered in the range of 0.01-0.08Hz and transformed from the time domain to 

the frequency domain using a fast Fourier transform (FFT).  This yielded a power 

spectrum, a typical example of which is shown below (Figure 9-1). 
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Figure 9-1 Power spectrum from baseline data 
Power spectrum, with filtered range indicated by vertical broken lines. The x-axis indicates the 
frequency scale (Hz) and the is amplitude indicated on the y-axis. This power spectrum was 
generated from the T2*-weighted signal intensity time series of a representative subject. It 
suggests two major wave forms between 0.01-0.08Hz; one with a frequency of approximately 
0.03Hz and the other with a frequency of approximately 0.06Hz. 

On the basis that the power at any given frequency is proportional to the square 

of the amplitude, the square root of the power was calculated for each 

frequency value and the average square root across the filtered range was 

generated by ‘REST’ software. This was termed the ‘ALFF’. Maps of ALFF were 

subsequently produced by the software on a voxel by voxel basis. The regions of 

interest which defined the ‘DWI lesion’, ‘PWI-DWI mismatch’, ‘DWI expansion’ 

and contra-lesional ‘mirror’ regions and which were employed in Chapter 2 were 

applied to the ALFF maps and values for the ‘mean’ ALFF in each tissue 

compartment were recorded. 

 

9.2.3 Determination of variability of baseline data  

The variability of the pre- Oxygen Challenge ‘baseline’ data (i.e. the first 60 

time points) was assessed for the regions of DWI lesion and the ‘mirror’ region of 

the DWI lesion. All calculations were performed on ‘baseline’ data which were 

normalised to the mean value. As an alternative to assessing data variability 

using methods based on standard deviation, a method which recognises the 

‘time series’ nature of the data was employed. This method has been adopted 

by other studies of biological time series(361, 362). The difference between 

each successive measurement of T2*-weighted signal intensity (i.e. each ‘TR’) 

was calculated. This value was then ‘squared’ and the mean of the ‘squared’ 

values derived from each data point was calculated. The square root of this 
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mean was then expressed as the value for variability as per the following 

equation; 
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9.2.4  Statistical analysis 

Non-parametric statistical tests were used for all analyses owing to the non-

normal distribution of data.  Results from statistical evaluations were considered 

statistically significant at p<0.05. In order to address the issue of the effect of 

stroke on baseline data variability, the data for subjects for whom there was a 

measurable DWI or PWI lesion (>1ml) were considered for analyses of ALFF and 

variability of data (n=25), whilst analysis of the movement parameters was 

considered for the complete data set (n=31). 

9.2.4.1 ALFF 

The ALFF in stroke tissue compartments was compared to the ALFF from the 

mirror regions using a Wilcoxon’s signed ranks test. This analysis was performed 

for all subjects and then separately for subjects with large strokes (defined 

arbitrarily as strokes >50mls), with small strokes (<50ml), and for those with left 

hemisphere strokes and with right hemisphere strokes. Assessment for a 

correlation between the ipsilateral : contralateral hemisphere ALFF ratio and  

DWI lesion volume, NIHSS and the movement parameters was performed using a 

Spearman’s rank correlation analysis. In addition, the correlation between ‘time 

to scan’ and ALFF ratio was assessed. 

 

9.2.4.2 Movement parameters 

Potential influences on the degree of movement experienced by subjects within 

the MRI scanner were determined. Univariate correlations between each 

movement parameter and both DWI lesion volume and NIHSS were evaluated 
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using a Spearman’s Rank Correlation test. Differences in movement parameters 

were compared between left and right hemisphere strokes and between small 

and large strokes using a Mann-Whitney U test.  

A comparison of the movement parameters from this study with those from a 

study(360) of volunteers with focal epilepsy was made. The epilepsy study 

scanned subjects electively using the same MRI ‘TR’ duration as was used by this 

study. However, scanning was performed for a longer duration in the epilepsy 

study and therefore the number of jerks >2mm was normalised by expressing the 

value ‘per 100 scans’. Mann-Whitney U tests were employed to compare 

movement parameters between this current study and from the epilepsy data. 

 

9.2.4.3 Variablity of Data 

Finally, the variability of baseline data was evaluated. Assessment for a 

correlation between the variability of baseline data from the contra-lesional 

hemisphere and admission DWI lesion volume, admission NIHSS, movement 

parameters, and ALFF ratio was performed was again using Spearman’s rank 

correlation analysis. In addition, a Mann-Whitney U test was performed to 

compare the variability of the baseline data in the contra-lesional hemisphere 

between those subjects with small and those with large strokes (arbitrarily 

dichotomised at 50mls) and with left and right hemisphere strokes. Finally, it 

was determined if there was a difference in the variance of data generated from 

the DWI lesion and PWI-DWI mismatch region and the contra-lesional hemisphere 

9.3 Results 

9.3.1 ALFF 

An example of an ALFF map is demonstrated by Figure 9-2. Note the differences 

between grey and white matter in the contra-lesional hemisphere. This 

distinction is still apparent within the hemisphere ipsi-lateral to the stroke. The 

signal from within the lateral ventricles also appears to be bright suggesting that 

the ALFF within this region is large. 
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Figure 9-2 Example of an ALFF map 
ALFF = amplitude of low frequency fluctuation. a) shows the ALFF map from subject 8 who had a 
large lesion on Diffusion Weighted Imaging (DWI) as shown in b). On the ALFF map, brighter 
signal indicates a larger ALFF. 

Subjects with a measurable DWI lesion volume (>1ml, n=25) were considered for 

these analyses. No difference could be detected between the ALFF in the DWI 

lesion and the contra-lateral mirror region (p=0.49, n=25), suggesting that low 

frequency fluctuations persist from within the DWI lesion and that their 

amplitude is maintained. This finding was also found when such comparisons 

were made using only subjects with large stroke (>50ml, n=10, p=0.32) and with 

small stroke (<50ml, n=15, p=0.15). Similarly, no ALFF differences could be 

detected between ipsilateral and contralateral hemisphere when considering 

only left hemisphere strokes (p=0.23, n=15) and right hemisphere strokes 

(p=0.62, n=10). There was no correlation between ALFF ratio (ALFF in the DWI 

lesion normalised to the contra-lesional side) and baseline NIHSS (p=0.56, n=25), 

baseline DWI lesion volume (p=0.12, n=25), or time since onset (p=0.20, n=25). 

For subjects with PWI-DWI mismatch, there was no statistically significant 

difference between the mismatch and contra-lesional hemisphere with respect 

to ALFF (p=0.81, n=7). There were only four regions of DWI expansion and 

therefore no statistical analyses were performed. However, no pattern of 

differences was apparent from the data. 

 

9.3.2 Movement parameters 

A summary of the movement parameters is presented in Table 10. Given that the 

DWI lesion was not the focus of investigation in this case, the contra-lesional 
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hemisphere for all scans, regardless of DWI lesion volume, was considered in 

these analyses. 

 

Table 10 Summary of movement parameters 
Data from subjects in whom T2*-weighted EPI data was acquired are presented. DWI =diffusion 
weighted imaging.  NIHSS = National Institutes of Health Stroke Scale(257). Mm = millimetres, ml 
= millilitres. 

The median number of head jerks which were greater than 2mm and 1mm was 3 

and 18 respectively. Nine subjects had no jerks >2mm and the maximum number 

of jerks which were >2mm was 20. When jerks of smaller magnitude were 

considered, only one subject had no jerks greater than 1mm and the maximum 

number of jerks >1mm was 37. The largest d’ max seen was 1.77mm (subject 26) 

and when considering all subjects, the median d’ max was 0.3mm. When 

considering all subjects, the median “d’ mean” was 0.07mm. The comparison of 

the movement parameters from this study to previously reported subjects with 

epilepsy(360) is reported below (Table 11).  
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Table 11 Comparison of movement parameters derived from this study to literature based 
values from elective scanning.  
Literature based values derived from a study of electively scanned subjects with focal epilepsy by 
Lemieux et al(360). 

After excluding repeat data which was derived from the same patients in the 

epilepsy data set(360), there was no statistically significant difference between 

the number of ‘jerks’ in the epilepsy data set and this current data set (p=0.35). 

The mean magnitude of inter-scan displacement (mean d’) from this study was 

not statistically different from that of the epilepsy study (p=0.052), although 

there was a non-significant trend towards a marginally greater inter-scan 

displacement in this data set. However,  the maximum size of jerk (inter-scan 

displacement, max d’) for all subjects was conversely larger in the epilepsy data 

set compared to this current stroke data set (p<0.0001). There were four clear 

outliers in the epilepsy data set with respect to maximum d’ (subjects 7, 14, 16 

and 21, all had a maximum d’>10mm). When data from these subjects were 

excluded, the greater mean d’ in this current data set compared to the epilepsy 

data set became statistically significant (p=0.005), but there was no change in 

the outcome of statistical evaluation from maximum d’ and the number of jerks. 

There was no correlation between admission NIHSS or DWI lesion volume with 

any movement parameter evaluated (mean displacement vector [mean d], 

maximum displacement vector [maximum d], mean inter-scan displacement 

[mean d’], maximum inter-scan displacement [maximum d’], number of ‘jerks’ 

[0.1mm or 0.2mm] or maximum movement in the x-, y-, or z- translations, or 

pitch, roll, and yaw rotations); p>0.05 in each case. In addition, when left 

(n=20) and right hemisphere strokes (n=11) were compared, there was no 

difference demonstrated between groups for any movement parameter (p>0.05 

in each case). When DWI lesion volume was dichotomised to large and small 

strokes, there was no difference between groups with respect to any movement 

parameter (p>0.05 in each case). 
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9.3.3 Variability of Data 

These analyses focussed on subjects with scans where there was a measurable 

DWI lesion (n=25). There was no difference in the variability of the data 

between the DWI lesion and the contra-lesional mirror region (p=0.44, n=25). 

When the variability of data from the contra-lesional hemisphere was 

considered, there was no correlation with admission DWI lesion volume, 

admission NIHSS, or any movement parameter (p>0.05 in each case). When DWI 

lesion size was dichotomised at 50ml, there was no difference in the variability 

of the data between large and small strokes (p=0.43). There was no difference in 

the variability of the contra-lesional data between left (n=15) and right (n=10) 

hemisphere strokes (p=0.98). When both ALFF data and variability data from the 

DWI lesion were normalised to the contra-lesional side (i.e. ratio of DWI lesion : 

mirror), there was a significant positive correlation (r=0.43, p=0.03).  

 

Figure 9-3 Correlation between data variability and  amplitude of low frequency fluctuations. 
The x-axis shows the ratio of the data variability between the left and right hemispheres and the y-
axis shows the ratio of the amplitude of the low frequency fluctuations between ipsilateral and 
contra-lateral hemispheres. There was a positive correlation between ALFF ratio and ratio of data 
variability as determined by Spearman’s rank correlation coefficient (r=0.43, p=0.03). 
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9.4 Discussion 

9.4.1.1 Findings 

This study assessed factors with the potential to degrade the quality of the 

Oxygen Challenge signal. It was seen that the amplitude of low frequency 

fluctuations (ALFF) within the DWI lesion was correlated to the overall variability 

of the baseline data from this region. However, there did not appear to be a 

significant systematic difference in ALFF between stroke tissue compartments 

and their mirror regions in the contra-lesional hemispheres. This finding was 

maintained when only large strokes were considered. Moreover, there was no 

significant difference between the baseline data variability from within the DWI 

lesion and the mirror regions on the contra-lesional hemisphere. When other 

potential influences on the Oxygen Challenge signal were considered, there was 

no clear impact on data variability from the severity of the stroke (defined by 

either NIHSS or DWI lesion volume), lateralisation of the stroke, or subject 

motion. When motion parameters were considered in more detail, there was no 

association of DWI lesion volume or NIHSS to the degree of subject motion, and 

there did not appear to be a difference between subjects with left and right 

hemisphere strokes in this data set.  Reassuringly, the movement parameters 

measured in this study of acutely unwell stroke subjects did not show a 

significant difference in the degree of motion compared to subjects with a 

diagnosis of epilepsy who were scanned on an elective basis. 

 

9.4.1.2 Interpretation of Findings 

Data Variability and ALFF: How should the finding of a lack of statistical 

difference in ALFF between the DWI lesion (and indeed other stroke tissue 

compartments) and the mirror region be interpreted? One potential 

interpretation is that the phenomenon of the resting state network is preserved 

in acute stroke. However, such a conclusion should not be made definitively 

from these data. The amplitude of low frequency fluctuations (ALFF) has 

recently been used to provide a marker of the low frequency fluctuations which 

contribute to the ‘resting state’ activity(363). Changes in ALFF have been 
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demonstrated in other neurological disorders such as epilepsy, multiple 

sclerosis(364), attention deficit hyperactivity disorder (ADHD)(363) and 

Alzheimer’s disease(365). However, although the positive identification of 

changes in ALFF may be genuine in other studies, the failure to identify 

differences in ALFF between stroke tissue and mirror regions does not 

necessarily signify preserved resting state networks. The purpose of this study 

was to ascertain potential differences in the baseline signal between tissue 

compartments for the purposes of evaluating the previously implemented 

technique of examining the T2*-weighted signal intensity-time curves. In this 

regard, this study has provided a greater confidence for the use of the mean 

signal of the pre-Oxygen Challenge time points to represent baseline, since there 

was no difference in ALFF and in overall data variability between stroke tissue 

and DWI mirror regions.  However, resting state networks were not the focus of 

investigation. For investigation of the effect of ischaemia on resting state 

networks one would ideally examine a cohort of subjects with a stroke lesion in 

the same anatomical territory, of the same duration since onset, and perform 

post processing using analyses such as seed based correlation analysis or 

independent component analysis(366). Results could then be compared to an age 

and risk factor matched control data set. In this study, there were a number of 

limitations of the analysis of the low frequency fluctuations. Firstly, the stroke 

lesions of subjects varied. This had the effect of restricting analyses of 

individual subjects separately; group analysis using SPM software was not 

performed owing to the differences in size and location of the lesions. The next 

limitation of the clinical variability was that the stroke tissue compartments 

examined were likely to have been heterogeneous with respect to their 

pathophysiology, both within regions from individual subjects and between 

subjects. Within 24h, the DWI lesions were likely to have comprised of a mix of 

penumbral and core tissue(54) and the mismatch regions were unlikely to have 

all represented penumbra. Therefore, the responses within a given tissue 

compartment (e.g. DWI lesion) may not have been consistent - the ALFF may 

have been pathologically increased in some and decreased in other, thereby 

limiting the ability of simple statistical tests to detect differences. The second 

limitation relates to the technique used to examine the low frequency 

fluctuations. Although the use of ALFF has been successfully employed in a 

number of studies(363, 367), there are also a number of associated limitations. 
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The ALFF is the value of the low frequency fluctuation measured in the 

frequency domain. Therefore, the assessment of low frequency fluctuations for a 

given region of interest  / tissue compartment was summarised into a single 

value, an approach which is felt by some to eliminate useful physiological data 

owing to the simplistic mathematical processing(366). In addition, it is now 

appreciated that ALFF maps are inherently susceptible to noise induced by 

vascular and respiratory artefacts(368). This is likely to have played a role in the 

Oxygen Challenge data set. Figure 9-2 shows an example of an ALFF map used in 

this study. Although it shows the expected appearance of a larger (brighter) 

ALFF in the grey compared to the white matter(268), the ventricles shows a very 

large (bright ALFF), which would not be expected if the signal was a pure 

representation of neuronal activity. This is likely to have represented the 

artefact from the aforementioned physiological noise. It has been proposed that 

the use of fractional ALFF(368) may help to eliminate much of this noise; this 

involves calculating the sum of the amplitudes within the range expected to 

show low frequency fluctuations ( 0.01-0.08Hz) and dividing this value by that 

calculated using a wider frequency range. Although this method has shown 

promise, it has not been completely validated.  A further limitation of this study 

is that the repetition time of the sequence (‘TR’) of 3 seconds increases the 

chances of genuine low frequency fluctuations becoming aliased with cardiac 

and respiratory noise compared with lower ‘TRs’. A final limitation which should 

be noted is that although the pre-Oxygen Challenge time points were analysed, 

subjects were not truly ‘resting’. For example, a mirror was placed on the head 

coil in order to allow the patient to see out of the scanner, thus potentially 

stimulating visual cortex. Subjects may have felt uncomfortable due to stroke 

related factors, some subjects required verbal reassurance throughout the 

scanning session and some patients may have been asleep. Although these 

factors were not routinely recorded, it is likely subjects were heterogeneous in 

this regard. Therefore they may have been variable cortical activity due to 

stimuli not been accounted for by this study. 

It should be noted that, despite the inherent limitations of the application of 

ALFF in this study, Liu and colleagues(369) used a very similar method to 

demonstrate clear changes in the low frequency fluctuations after stroke. These 

investigators similarly produced maps of peak amplitude in the frequency 
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domain and showed increased amplitude of low frequency fluctuations in peri-

infract tissue. However, that study differed from the current study in that it 

used a model of experimental stroke in baboons, and examined stroke lesions 

which were of the same ‘age’ since onset. As discussed, the Oxygen Challenge 

data set provided a much more heterogeneous cohort of stroke subjects. 

Nonetheless, it was still possible to show that the ALFF within the DWI lesion 

contributes to the overall variability of the data. 

 

Subject Motion: The next observation to consider is that stroke lesion severity 

(as measured by neurological deficit [NIHSS] or DWI lesion volume) did not seem 

to be associated with movement parameters. Therefore, in this cohort it could 

not be shown that subjects with large stroke moved more than subjects with 

small stroke. Given the large number of factors which may contribute to patient 

related motion such as impaired cognition, language disorder, individual 

personality and anxiety state, headache and undetected urinary retention, it is 

perhaps not surprising that stroke size was not associated with patient motion 

within the scanner. However, intuitively one may expect this not to be the case. 

For example, although subjects with large strokes may be agitated, subjects 

with smaller strokes and in whom cognition is not impaired, may have a greater 

capacity to appreciate the potentially anxious scenario of MRI scanning. The 

other point to acknowledge is that this study did not consider subjects who did 

not have a stroke. It is possible that having had any stroke, regardless of size, is 

sufficient to cause a different response compared to healthy volunteers. 

Reassuringly, however, subjects in this cohort did not move to any greater 

degrees than subjects from an electively scanned cohort published in the 

literature(360). 

Next, it should be noted that part of the reason that movement parameters did 

not have an effect on data variability is likely to have been due to the 

realignment procedures. However, it should also be noted that subject motion is 

likely to have had an effect on a number of parameters which were not 

considered by this study. For example, motion related factors which are not 

corrected by realignment include anatomical distortions(352), edge artefacts, 

and failure of the realignment procedures to realign brain of host artefacts 
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accurately. Therefore, conclusions about the effect of motion of data refer 

specifically to the variability of baseline data. 

Finally, it should be noted that there are limitations to the description of 

subject motion. This study examined movement in 6 directions separately and 

also calculated a vector for the translation. However, there is no standardised 

technique to express both the degree of translation and rotation as a single 

value, even though this would be the most representative value. 

 

9.4.1.3 Implications of findings and conclusions 

A number of conclusions may be drawn from the data. The first is that low 

frequency fluctuations, which may represent a combination of vasomotion, 

neurological activity associated with the resting ‘default’ state, and aliased 

physiological noise, are likely to have an impact on the variability of baseline 

signal, at least within the DWI lesion. Therefore, for future calculations of the 

‘baseline’ one could consider using the immediate pre-Oxygen Challenge time 

points (e.g. final minute of baseline) rather than a longer preceding period. The 

second conclusion is that, based on results from this study, the use of the mean 

of pre-Oxygen Challenge time points is not likely to introduce any systemic bias 

into the calculation of parameters such as percentage signal change in the DWI 

lesion and mirror regions. Finally, it can be suggested that subjects with larger 

strokes with more significant neurological deficit do not necessarily exhibit 

greater motion within the scanner, and therefore judgements regarding 

tolerability of MRI should not simply be made on the basis of stroke severity. In 

fact, in our cohort, the patient motion was similar to that seen in elective 

studies.
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10 Summary and Conclusions 

10.1 General considerations 

In the work presented here, both existing and novel techniques for the imaging 

evaluation of hyperacute stroke have been considered. This thesis presented 

early validation studies derived from the first implementation of the ‘Oxygen 

Challenge’ technique in acute ischaemic stroke in humans. This method involved 

the application of transient hyperoxia during continuous T2*-weighted magnetic 

resonance imaging which, by exploiting the BOLD effect(208, 209, 370), provides 

a measure of deoxyhaemoglobin concentration. Since venous deoxyhaemoglobin 

is dependant on the oxygen extraction fraction, which is in turn dependent of 

the interplay between CMRO2 and CBF, this technique may be of value in 

distinguishing tissue compartments following hyperacute ischaemic stroke, on 

the basis of underlying metabolic activity. 

The aims of this thesis were as follows: 

1) To implement the Oxygen Challenge technique for the evaluation of acute 

ischaemic stroke 

2) To determine the physiological and pathophysiological influences on Oxygen 

Challenge results 

A summary of findings is presented here. 

 

10.2 Implementation of Oxygen Challenge is feasible  

This study showed that implementation of the Oxygen Challenge technique as 

part of a stroke MR protocol is clinically feasible. Results from this technique can 

be presented as maps of percentage signal change and viewed along side maps 

from other MR sequences (Chapter 7). From 35 subjects recruited, Oxygen 

Challenge data were acquired from 33 subjects. Considering that such scans 
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were acquired in the context of a medical emergency, a drop out rate of 2/35 

may be considered very reasonable. Although some subjects did not have the 

correct tissue substrate for evaluation, data from 25 subjects were analysed. 

However, after rigorous quality criteria were applied, data from only 18/25 

subjects were analysed, emphasising the need for improvement in the signal-to-

noise ratio. A critical analysis of factors potentially detrimental to signal quality 

did not clearly identify any clinical characteristics which predisposed to a poor 

signal. However, the amplitude of low frequency fluctuations (ALFF) of the T2*-

weighted signal within the DWI lesion was correlated to the variability of data 

derived from this region. Although changes in ALFF may be due to physiological 

disturbance due to ischaemia(369), such changes may also be caused by aliasing 

of physiological T2*-weighted signal to artefacts caused by cardiac and 

respiriatory motion(368). These results suggested that due attention should be 

paid to minimising these factors in future studies. Reassuringly there was no 

difference in baseline variability between the DWI lesion and the ‘mirror’ 

regions, suggesting that using the pre-Oxygen Challenge ‘baseline’ signal for 

calculations of percentage signal change will not introduce any bias between 

values for DWI lesions and normal tissue. 

 

10.3 Oxygen Challenge produces a signal increase in  

healthy tissue 

Consistent with the initial hypothesis, application of Oxygen Challenge 

precipitated increases in T2*-weighed signal intensity in the contra-lesional 

‘normal’ hemisphere (Chapter 2 and Chapter 3). The magnitude of such changes 

was approximately 2% when considering the ‘mirror’ regions to the DWI lesion. 

Such findings are consistent with those found in the literature(242, 249, 251, 

252, 269). In addition to the observed signal increase, T2*-weighted signal was 

seen to return to baseline after cessation of the Oxygen Challenge. This may be 

explained by the continued extraction of oxygen from the tissue, with 

replenishment of deoxyhaemoglobin to the measured pool. 
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10.4 Signal response to Oxygen Challenge is attenua ted 

in the DWI lesion 

This study was the first to report changes in T2*-weighted signal intensity after 

Oxygen Challenge from within a stroke lesion. Results from 17 subjects with DWI 

lesions >1ml showed that the response to Oxygen Challenge was attenuated in 

the DWI lesion. This was consistent with reduced extraction of oxygen from the 

tissue microcirculation by hypometabolic stroke tissue. Although a reduction in 

cerebral blood volume could also potentially explain these findings, the T2*-

weighted signal intensity-time curve remained diminished in two subjects for 

whom non-nutritional reperfusion was observed, suggesting that the observed 

changes were indeed due to a metabolic effect. Unlike the pilot animal 

study(255), regions of signal decrease were also observed within DWI lesions. 

Although this may have been due to signal drift independent of the Oxygen 

Challenge, it is possible that owing to the high baseline venous oxygen saturation 

in these tissue regions, paramagnetic oxygen was offloaded in to the 

plasma(267). If this explanation is indeed correct, it underlines the potential 

complexity for the use of hyperoxia as an MRI ‘tracer’. 

 

10.5 Signal response to Oxygen Challenge may be 

exaggerated in the hyperacute region of perfusion-

diffusion weighted imaging 

Unlike the animal pilot study(255) where an exaggerated signal increase was 

seen in regions likely to be penumbral, there was no statistically significant 

effect seen in this study. However, focussing on the subjects with PWI-DWI 

mismatch who were imaged <9h, there was a trend towards an exaggerated 

increase in T2*-weighted signal intensity.  A possible explanation for the failure 

to replicate the findings of the animal studies is likely due to the nature of the 

tissue studied; regions of ‘likely penumbra’ in this study were small, often 

imaged late, and derived from very few subjects. Therefore, no definitive 

conclusions can be made regarding ‘penumbral’ imaging by this study.  
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Although the animal pilot study(255) showed an exaggerated signal increase in 

the borderzone, there was no correction for baseline CBV. Therefore, it remains 

uncertain if regions of high OEF can be detected by the Oxygen Challenge 

technique, independent of the influence from cerebral blood volume. The 

potential ability for the technique to do this hinges on whether enough oxygen 

can be administered to completely saturate deoxyhaemoglobin in normal tissue. 

Although increases in venous oxygen saturation of only 10% have been reported 

after hyperoxia(249), these measurements were insensitive to regional 

heterogeneity. In this study, the finding of an exaggerated T2*-weighted signal 

increase in the mismatch region where the CBV was not elevated supports the 

concept of the Oxygen Challenge technique being partially dependent on 

underlying OEF. 

 

10.6 Oxygen Challenge may be altered in other regio ns of 

metabolic upset 

Following the evaluation of the DWI lesion and regions of potential penumbra 

(PWI-DWI mismatch regions and regions of DWI expansion), it was considered 

whether other metabolically defined tissue compartments could be evaluated 

for the purposes of additional validation. Therefore, attention turned towards 

the phenomenon of crossed cerebellar diaschisis (CCD)(322) which describes 

contra-lateral hypometabolism of a cerebellar hemisphere secondary to 

ipsilateral stroke. Given that approximately 50% of stroke subjects have been 

reported to manifest this phenomenon(328), the potential of Oxygen Challenge 

to detect this was evaluated. This was only the fourth MRI study to ever evaluate 

subjects for crossed cerebellar diaschisis, and the only one to use a technique 

other than PWI. In this study there was a statistically significant reduction in the 

magnitude of signal increase in the contra-lesional cerebellum for those subjects 

with large strokes, consistent with hypometabolism. This finding was 

accompanied by decreased CBV, as expected.  
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10.7 A number of factors influence the Oxygen Chall enge 

response 

Throughout this thesis there was extensive discussion with respect to the 

influences on T2*-weighted signal intensity. There is a strong body of 

theoretical(232) and practical evidence(242, 248) that the percentage signal 

change after hyperoxia is dependent on baseline cerebral blood volume. Results 

from this study supported this notion. For example, the largest T2*-weighted 

signal increases were seen in the saggital sinus (a pure blood compartment), 

followed by cortical grey matter, and least of all white matter (Chapter 3). 

Moreover, following analysis of regions of interest there was a correlation 

between CBV and percentage signal change in DWI lesions (Chapter 6). A voxel 

based analysis for all subjects was consistent with this (Chapter 8), and showed 

that CBV and ADC were independently predictive of percentage signal change, 

whereas TMAX was not. However, when only voxels from within the DWI lesion 

were evaluated, all three parameters were significantly correlated with 

percentage signal change. This finding is reassuring in that it has been shown 

that CBV is not wholly predictive of the Oxygen Challenge results. The ADC may 

be a surrogate marker of underlying metabolic activity(57), albeit one which is 

suboptimal, supporting the concept that Oxygen Challenge may provide 

‘metabolic’ information. Nonetheless, these results suggest that CBV needs to be 

considered when interpreting the results of Oxygen Challenge. It should also be 

noted that the concentration of oxygen influences the magnitude of signal 

change. In regions of grey matter, higher concentrations of oxygen give rise to 

larger signal increases, but in regions of low deoxyhaemoglobin concentration, it 

is possible the reverse may true, due to dissolution of oxygen within the 

plasma(267). Therefore, results should also be interpreted with knowledge of 

the administered FiO2. 

10.8 Further work to validate the Oxygen Challenge is 

warranted 

There are two complementary approaches which must be taken for the 

successful validation of this technique. The first approach must be to improve 
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the application of the technique in order to achieve the highest quality signal 

possible. The second approach is to improve understanding of the influence of 

Oxygen Challenge on the BOLD effect in different tissue compartments. 

Investigation of both approaches may be performed in tandem. 

Firstly, signal-to-noise ratio must be improved. Although subject motion was not 

shown to be a significant factor in determining the variability of baseline data, 

due attention to this factor is always necessary. Therefore, comfort of the 

subjects is critical. For patient studies, where oxygen administration using a 

‘controlled’ system may not be practical, one approach would be to design nasal 

cannulae specifically to administer high flow oxygen within the MR scanner. This 

is likely to improve patient comfort since the standard face mask used in this 

study often fitted tightly between the subject’s face and the head coil. 

Increased space between the head and the coil would also allow additional 

comfortable padding to be applied in an effort to further limit head motion. 

Another potential approach to improve signal-to-noise is to apply dielectric pads 

to the subject’s cranium, a technique which has been shown to improve signal 

and image quality(371, 372). 

 Next, one should consider the properties of the sequence used. The use of 

continuous T2*-weighted MRI in this study was similar to typical fMRI studies, and 

has been invaluable in describing the dynamics of the T2*-weighted signal 

increase after Oxygen Challenge. However, whilst these sequences may be used 

further for validation of the technique, such an approach renders the data 

susceptible to noise. In addition, it requires long scanning times in order to 

achieve the maximum signal increase, which may not have even always been 

achieved in data from the hypoperfused regions in this study. Thirdly, the use of 

the T2*-weighted sequence renders the data very susceptible to artefact from 

the paranasal sinuses. An alternative approach is to use a sequence similar to 

that used by An and colleagues(207, 234-236, 238). The multiecho sequence 

used by this group allows quantitative determination of T2 and T2’. Alternatively 

one could employ susceptibility weighted images. Such sequences could be 

acquired at the start and then towards the end of a typical MR stroke protocol, 

with other images acquired between the two sequences. An interval of at least 

10 minutes would be reasonable to allow for equilibration in even the most 

hypoperfused tissue. Such an approach would allow the acquisition of a single 
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good quality baseline image and a single good quality Oxygen Challenge image. A 

difference map could then be used to provide a measure of absolute signal 

change. This approach may also be more convenient to fit into typical MR stroke 

protocols. 

Next, investigation of a number of different concentrations of oxygen should be 

investigated with respect to differentiating infarct core, ischaemic penumbra 

and healthy tissue. This could be achieved using a closed face mask integral to a 

circuit capable of delivering a fixed concentration of oxygen.  

In addition, a detailed examination of the relationship between hyperoxia, 

venous oxygen saturation and BOLD signal intensity would aid the understanding 

of the true meaning of signal changes with respect to the differential 

contributions of cerebral blood volume and venous oxygen saturation. Such 

evaluation of venous oxygen saturation may be achieved with multiecho MRI 

sequences(234).  

Finally, after sequence optimisation, validation with 15O labelled PET would be 

ideal.  

For all of the analyses described, the most informative patient population should 

be targeted. Subjects should ideally have persistent arterial occlusion within the 

first 6h after onset, and should have large regions of PWI-DWI mismatch. For the 

purposes of validation, a few ‘high yield’ research subjects are likely to be more 

informative than a larger number of subjects recruited beyond the hyperacute 

stage. 

10.9 Closing remarks 

Presented here are the first studies of the application of Oxygen Challenge 

technique to subjects with acute ischaemic stroke. Although others have 

encouraged the use of oxygen as an MRI tracer, no studies to date have 

examined the potential use in stroke subjects. In this study, differences between 

tissue compartments have been demonstrated, with attenuation in percentage 

signal change observed within the DWI lesion. The cohort examined in this study 

did not provide a suitable substrate to examine the response in the penumbra 
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but there were signals of efficacy. Current limitations of the technique as 

applied in this study include the relatively low signal-to-noise ratio, and 

artefacts from paranasal sinuses and iron deposits in the basal ganglia. The 

technique is also complicated by the potentially bi-modal behaviour of oxygen 

with respect to T2*-weighted signal, and the ability of oxygen to influence 

metabolic activity within penumbral tissue. Further investigation is required as 

to how oxygen influences venous oxygen saturation in stroke tissue 

compartments, and how such changes in turn influence the Oxygen Challenge 

results. This study has contributed data to allow a useful insight into the effect 

of oxygen on T2*-weighted signal intensity in acute ischaemic stroke, and may 

be the first step towards full validation of this technique for clinical use
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11 Appendix A:  Acquisition Parameters and 

Post-processing Algorithms for Current 

Perfusion Studies Are Heterogeneous 

11.1 Introduction 

Although much of this thesis is dedicated to the application of novel imaging 

techniques, it is important to appreciate the current status of penumbral 

imaging. Chapter 1 discussed the potential of Computed Tomography perfusion 

(CTp) imaging and Magnetic Resonance (MR) derived Perfusion Weighted Imaging 

(PWI) to identify ‘tissue at risk’ after stroke, thereby potentially extending the 

currently restrictive time windows(38) for treatment and improving safety of 

treatments within the time window. The latest guidelines from the European 

Stroke Organisation(373) and American Stroke Association(374) both suggest 

consideration of perfusion imaging, particularly if patients present beyond the 

conventional time window and reperfusion therapies are still being considered. 

However, despite being based on attractive hypotheses these techniques have 

still not been proven by large randomised controlled trials(103). Improvements 

may simply require refinements to the operational criteria for ‘tissue at risk’ 

(for example specific thresholds for any given perfusion parameter(123, 159, 

304) and consideration of lesion volumes of tissue(125, 375, 376). Moreover, 

subtle differences in post processing of perfusion imaging can lead to 

significantly different results (124). Therefore, it is tempting to speculate that a 

validated and well defined criterion for the penumbra derived from a 

consistently applied post-processing technique may more accurately define 

penumbra than present techniques, whilst increasing generalisability between 

studies. However, an often neglected consideration for perfusion imaging studies 

is the potential impact of the acquisition parameters on the definition of the 

penumbra. At present it is not clear if heterogeneity reduces generalisability 

between studies. Acknowledging that it may be important, however, a consensus 

statement (317, 318) (the Acute Stroke Research Imaging Roadmap) has recently 

been published which, amongst other recommendations, proposed optimal 
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imaging protocol parameters. Adherence to such protocols may promote 

homogeneity of imaging based stroke studies and therefore clinical applicability 

of results. In this study the heterogeneity of current perfusion based stroke 

studies was assessed in order to evaluate current practice and variation within 

the literature. Moreover, an assessment of the variation of key post processing 

techniques is made. 

 

11.2 Methods 

11.2.1 Search Strategy 

This study is based on a search strategy which was developed and implemented 

as part of a wider series of Systematic Reviews, in collaboration with the 

Division of Clinical Neurosciences, University of Edinburgh. Three reviewers were 

involved with the search strategy; KD (thesis author), RT (Clinical Research 

Fellow, University of Edinburgh) and JW (Consultant Neuroradiologist, University 

of Edinburgh).Two reviewers (KD and RT) performed the search and 

disagreements were resolved by a third reviewer (JW). The databases MEDLINE 

and EMBASE were searched through the Ovid portal from inception to week 4 

July 2008 using the search strategy attached in Appendix D. Separate search 

strategies were performed for MEDLINE and EMBASE databases. The titles / 

abstracts for all papers retrieved using the specified database search strategy 

were separately reviewed by both KD and RT. Papers meeting the Inclusion and 

Exclusion Criteria (stipulated below) were selected. In particular, focus was on 

the papers which were felt to have contributed to the understanding of the 

quantitative values derived from perfusion imaging, whilst excluding the papers 

which simply used perfusion imaging to answer a question unrelated to perfusion 

imaging itself. To this end, focus was on papers which reported either 1) values 

for perfusion thresholds, 2) mean perfusion values for tissue compartments or 3) 

correlation of perfusion deficit volumes with other parameters (see Inclusion 

Criteria below). In addition, in order to ensure comprehensive coverage of the 

literature, both KD and RT searched review articles which discussed any aspect 

of perfusion imaging in human acute stroke subjects (<24h) which were 

identified by the database search. These articles were searched in reverse 

chronological order and search was stopped after 10 consecutive review articles 
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revealed only 1 additional paper (not found by the original search) which 

evaluated CTp or PWI regardless of purpose. The ‘Clinical Trials Registry’ in The 

Internet Stroke Center (www.strokecenter.org) was searched in order to identify 

additional studies. Abstracts of conference proceedings were not reviewed since 

it was felt that the restrictive word count would limit the information obtained 

from them. In order to validate the search strategy, hand searching of  two 

relevant journals (Stroke [KD] and American Journal of Neuroradiology [RT)]) 

was performed from August 2003 to July 2008 to determine the number of 

papers ‘undetected’ by the original search, thereby giving an estimate of its 

coverage of the literature. A targeted updated search of MEDLINE and EMBASE 

was performed from July 2008 to week 4 August 2009 by one reviewer (KD). This 

update also identified papers meeting the Inclusion and Exclusion Criteria below.  

illustrates the search strategy. The lists of papers generated by two authors (KD 

and RT) were compared and any discrepancies were discussed with a third 

reviewer (JW) who arbitrated the decision for final inclusion. 

 

11.2.1.1 Manuscript Inclusion Criteria 

1) English Language (owing to the high cost of translation of foreign language 

articles) 

2) Stroke patients <24h assessed and data from whom were distinguishable 

from other patients 

3) Adult patients (≥18 yrs) 

4) Papers which reported perfusion characteristics from studies using either 

first pass CTp or MR derived PWI for the following: 

a. Threshold values for tissue compartments 

b. Mean perfusion values in different tissue compartments 

c. Correlation of deficit volumes on perfusion imaging with lesions on 

other imaging modalities 

11.2.1.2 Manuscript Exclusion Criteria 

1) Subjects with hemorrhagic stroke, venous infarction or chronic occlusive 

cerebrovascular disease 
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2) Studies of perfusion techniques other than first pass bolus tracking CTp or 

MR-PWI e.g. arterial spin labelling, CTp from triphasic helical technique 

or other steady state techniques 

3) Studies of technical development / optimisation of imaging parameters 

for CT or PWI techniques 

4) Studies using both duplicate data and analyses from other larger included 

studies 

 

11.2.2 Data Extraction 

Acquisition and post-processing parameters were extracted to standardised data 

extraction form in Microsoft Excel format (see Appendix D for an excerpt from 

the form relevant to this study). Two authors (KD and RT) performed this 

extraction. There was a limited overlap of citations from which the two 

reviewers extracted data, in order to ensure consistency. A third reviewer (JW) 

again arbitrated on any inconsistencies. 

 

11.2.3 Comparison to Road Map Criteria 

Perfusion acquisition parameters from CTp and PWI studies were compared 

against those stated by the ‘Acute Stroke Imaging Research Road Map’(317, 318). 

These ‘Roadmap’ protocols suggest acquisition parameters in different domains. 

The ‘Roadmap’ suggests 9 and 10 main categories of acquisition parameters for 

MR and CT based studies respectively. These are as follows for MR PWI: sequence 

/ image acquisition parameters / image acquisition duration / coverage and slice 

thickness / slice orientation / contrast material / contrast volume / injection 

rate / iv access and miscellaneous. For the CT perfusion studies they are; image 

acquisition rate / gantry rotation / image acquisition parameters / coverage and 

slice thickness / slice orientation / contrast material / contrast volume / 

injection rate / iv access and miscellaneous. Different parameters within these 

categories are specified by the ‘Roadmap’. Determination of consistency with 

the ‘Roadmap’ was straightforward for parameters which were fixed and easily 

definable (e.g. single shot gradient echo EPI sequence to be used for PWI). 

However, consistency with some other parameters was harder to determine. For 
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example, for PWI, 20ml of gadolinium based contrast was advised for a 100kg 

patient, but patient weight is not routinely reported in manuscripts.  Similarly, 

although an ‘interslice gap’ of 0-1mm was recommended and with a matrix of 

‘128x128’, the ‘Roadmap’ allows for adjustment of these parameters to allow 

for extension of spatial coverage if required. Therefore, a pragmatic comparison 

of ‘Roadmap’ parameters to those study parameters within each category which 

could reasonably be determined from manuscripts was performed (Table 12). 

Given this, adjustments in approach were as follows; for PWI assessment of 

‘whole brain coverage with ≥ 12 slices’ was substituted for ‘brain coverage with 

≥ 12 slices’; interslice gap and matrix was not considered since flexibility in 

these parameters is allowed by the ‘Roadmap’; ‘phase encoding along the AP 

direction’ was not considered as this is not conventionally reported by clinical 

manuscripts.; the volume of gadolinium contrast was not considered as the 

‘Roadmap’ suggests a value for a 100kg person and patient weights are not 

routinely reported in manuscripts. For CTp, adjustments in approach from the 

‘Roadmap’ were as follows; the issue of image duration of each of the 2 phases 

of the ideal acquisition was simplified to whether 2 phase acquisition was 

performed. In addition, the ‘Roadmap’ specified that images should be acquired 

through the proximal middle/anterior cerebral artery so that acquisition is above 

the orbits. Since the reporting of data in this fashion would require prior 

knowledge of this specification (and most papers were published prior to the 

‘Roadmap’) these data were determined by first ensuring coverage of the 

proximal/middle cerebral artery territories and the basal ganglia, and secondly 

by determining if there was specific mention of avoidance of the orbits or 

lenses. Finally, the type of iodinated contrast was not considered as the 

‘Roadmap’ simply gave a ‘preference’. 

If acquisition parameters were both reported and consistent with the 

‘Roadmap’, they were reported as ‘consistent’. If a given acquisition parameter 

was reported but was performed in a manner inconsistent with the ‘Roadmap’ 

they were graded as ‘inconsistent’. If the precise acquisition parameter could 

not be determined we graded them as ‘Not reported’. A table illustrating the 

parameters which were compared is presented (Table 12). Please see the legend 

for further details. 
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11.2.4 Consideration of Post Processing Parameters 

Finally several post processing parameters were considered. For CT studies these 

were as follows:  1) arterial input function (AIF) selection methods; 2) AIF 

selection site; 3) AIF selection lateralisation; 4) venous output function site, and 

finally; 5) use of deconvolution. For MR studies the parameters considered were: 

1) arterial input function (AIF) selection methods; 2) AIF selection site; 3) AIF 

selection lateralisation; 4) use of deconvolution and, if used; 5) the type of 

deconvolution. 

 

 

 

 

 

Table 12 Acquisition and post –processing parameter s which were considered in this study. 
The upper part of the table shows the acquisition parameters considered by the ‘Roadmap’. The 
middle and right most column suggest the values considered consistent with recommendations for 
CT and MR studies respectively. The lower part of the table shows the post-processing parameters 
considered in this study. b/a = not applicable; EPI = echo-planar imaging; ms = milli-seconds; kvp = 
peak kilo-voltage; T = Tesla; mA = milli-amp; mm = milli-metre; cm = centi-metre; ml = milli-metres; 
s = seconds; G = gauge, 
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11.3 Results 

11.3.1 Search Results 

The titles and / or abstracts of 7152 papers (6449 and 653 from initial and 

updated searches respectively) derived from database searching were screened. 

From these 48 PWI and 20 CTp papers we identified. Hand searching of review 

articles revealed one additional PWI study and no CTp studies. No additional 

studies were identified by hand searching Stroke and American Journal of 

Neuroradiology publications spanning 5 years. This gave a final count of 49 PWI 

papers and 20 CTp papers which reported perfusion thresholds / average 

perfusion values / correlations using perfusion deficit volumes. These results are 

illustrated (Figure 11-1). For the PWI and CTp data, 20/49 and 10/20 papers 

contributed data for perfusion thresholds for tissue compartments. The PWI 

studies were conducted between 1998 and 2009 and contributed data from 1810 

stroke subjects. The CTp studies were conducted between 1996 and 2009 and 

contributed data from 840 subjects. The manuscripts of all but 3 studies were 

received by the publishing journal prior to the publication of the ‘Roadmap’. A 

list of studies fulfilling the inclusion and exclusion criteria is tabulated (Table 

13). 
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Figure 11-1. Search Strategy 
This flow chart details the numbers of citations detected from the initial (top) and updated (bottom) 
search strategies. Boxes bounded by the broken lines (left) indicate the number of citations 
screened, whilst boxes with dotted lines indicate the number of citations excluded. 
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Table 13 Table of Studies Fulfilling Inclusion Crit eria 
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11.3.2 Comparison to the ‘Acute Stroke Imaging Rese arch 

Roadmap’ Parameters 

The results from comparison of image acquisition parameters from derived 

studies against key features from the ‘Roadmap’ is presented (Table 14).  

For CTp studies several parameters were both reported and consistent with the 

‘Roadmap’. These included details on anatomical coverage (in >80% of studies), 

and the volume (70%) and method (75%) of contrast injection. A number of other 

parameters, however, were frequently reported but not consistent with the 

‘Roadmap’. For example, only 15% of studies were performed using the 

recommended ‘2 phase’ acquisition, and the contrast concentration (50%) and 

injection rate (60%) were frequently performed in a manner other than the 

method recommended by the ‘Road map’. The parameters which were 

frequently unreported included ‘field of view’ (85%), acquisition of images from 

above the orbits / lenses (80%), precise orientation of the image acquisition 

(90%), and side of injection of contrast (100%). Acquisition parameters were 

heterogeneous with a large range noted for certain parameters; number of slices 

(range 1-4), rate of injection (2-20ml/s), electrical parameters (9 different 

combinations of peak kilovoltage and milliamperes reported), and volume of 

iodine in contrast (8 combinations in 10 papers which reported this; range 10.5-

18.5g) 

For MR studies, 92% were reported to have been performed on a scanner with 

appropriate magnet strength and with appropriate contrast agent. However, the 

duration of scanning was frequently inconsistent with the ‘Roadmap’ (63%), and 

acquisition parameters such as repetition time, echo time, and flip angle, and 

contrast injection details were also frequently inconsistent or not reported. The 

acquisition parameters were also noted to be heterogeneous. For example, 

17/49 studies used a spin echo sequence, there were 24 combinations of TE/TR, 

the number of phases of acquisition ranged from 20 to 60 phases, and the 

number of slices ranged from 7 to 40 slice.
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Table 14 Comparison of Study Acquisition Parameters  to the 'Roadmap'. 
The left and right hand side of the table decribes the study acquisition parameters stipulated by the roadmap for MR and CT studies respectively. Values for the 
percentage (%) of papers consistent with the roadmap guidance are reported. TE = echo time. TR = repetition time. Kv = kilovoltage. 
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11.3.3 Post-processing Parameters 

For the CT papers deconvolution was employed in 8/20 (40%) cases, was not 

employed in 6/20 cases (30%) and was unclear in 6/20 cases (30%).  The specific 

deconvolution technique was specified in two cases (box-modulation transfer 

function and closed form non-iterative deconvolution) although the use of a 

specific commercial software package was described in 14 other cases.  The AIF 

was selected from the internal carotid artery (ICA) in 1/20(5%), from the 

anterior cerebral artery in 6/20 (30%), from a combination of ICA / MCA in 1/20 

(5%), and was not discussed in 12/20 (60%). The AIF was selected from the 

contra-lateral hemisphere in 4/20 (20%), from either hemisphere in 1/20 (5%) 

and from a hemisphere not specified in 15/20 (75%). The venous output function 

was selected from the saggital sinus in 6/20 cases (30%), from dual sites in 2/20 

(10%), automatically in 2/20 (10%), and was not discussed in 10/20 (50%). 

For MR papers, the use of a deconvolution technique was stated in 31/49 (63%) 

papers. Twenty three of these 31 papers (74%) used standard singular value 

decomposition (sSVD), 2/31 (6%) evaluated more than one method which 

included circular SVD, 2/31 (6%) used standard SVD with bolus delay correction, 

1/31 (3%) used Fourier Transform, and in 3/31 (10%) cases deconvolution was 

employed but the technique was unspecified. The site of the AIF was specified in 

23/31 (74%) cases (ICA=3, MCA=19, dual sites=1). The hemisphere used for AIF 

selection was specified in 19/31 (61%) cases (contralateral in hemisphere in 15 

cases, ipsilateral hemisphere in 2 cases, in either hemisphere in 1 case and 

bilaterally in 1 case).  

 

11.4 Discussion 

This systematic review identified 69 papers published up to August 2009 which 

have contributed to our understanding of perfusion values derived from CT and 

MRI based studies. Such studies provided data on perfusion thresholds, average 

perfusion values in certain tissue compartments, and correlation of volumes for 
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perfusion deficits against other relevant parameters. When compared to the 

‘Acute Stroke Imaging Research Roadmap’ many acquisition parameters were 

frequently unreported, and when reporting of parameters did occur they were 

frequently inconsistent with the ‘Roadmap’ proposals. Acquisition parameters 

were frequently heterogeneous. Moreover, the selection of AIF and its 

employment in deconvolution was varied. 

There has been systematic investigation of post-processing parameters(124) such 

as arterial input function(114), deconvolution(110), perfusion thresholds(123, 

159) and operational definitions of the penumbra(52, 125, 375, 376) and these 

do impact results from perfusion imaging. In this study we observed a variety of 

AIF selection techniques and a number of different post-processing software 

packages and deconvolution techniques employed. This is likely to have reduced 

generalisability of results between studies.  

The precise effect of the observed heterogeneity of acquisition parameters on 

perfusion imaging results is at present unclear since the impact of such 

heterogeneity has not been systematically investigated. Other than ‘avoidance 

of lenses’ during CTp studies, which is necessary for safety reasons, all other 

parameters may theoretically affect perfusion results. Therefore, even if 

optimal post processing and analysis algorithms are used in future studies, 

heterogeneity of acquisition parameters between studies has the potential to 

restrict the generalisability of results and to limit comparison of results between 

studies. The effect of heterogeneous acquisition parameters combined with 

heterogeneous post processing (which was also observed here with respect to AIF 

selection and deconvolution) and variable operational definitions for the 

penumbra may have a very complex effect on imaging results. This may explain, 

at least in part, the unanticipated poor performance of CTp and PWI in clinical 

trials(103). Therefore improved homogeneity of studies with respect to 

acquisition parameters, in addition to other aspects of perfusion imaging, may 

be required. 

In addition to the frequent heterogeneous reporting of acquisition parameters, 

some parameters were frequently unreported. The most frequently unreported 

acquisition parameters included ‘field of view’, description of saline chaser, 

cannula gauge, side of contrast injection, and MRI flip angle. Such parameters 
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may be considered less essential to reproducing the study than the more 

frequently reported parameters such as anatomical coverage and temporal 

resolution, and therefore the impact of this underreporting may be limited. 

Nonetheless, the ‘Roadmap’ proposals now give future authors the opportunity 

to state, at least in a generic manner, that such acquisition parameters have 

been performed to an agreed standard even if some acquisition parameters are 

deliberately omitted. 

Limitations of this study include a restricted coverage of the literature. Inclusion 

of potential manuscripts was limited to those which have helped develop 

understanding of perfusion values (e.g. those reporting perfusion thresholds) 

rather than studies which have used perfusion imaging as a tool to answer other 

scientific questions. However, it is likely that the 69 papers included in this 

study serve as a reasonable representation of the use of perfusion imaging in the 

wider literature. Other limitations include the use of the ‘Acute Stroke Imaging 

Research Roadmap’ as a reference. Although this has not been rigorously 

validated and therefore is arguably not a true ‘gold standard’, it is a consensus 

statement from leading experts in the field and represents a commonly agreed 

standard. Therefore it provided a useful reference standard for this study. 

Finally, it should be noted that the included studies in this review were 

predominantly performed before the publication of the ‘Roadmap’ and thus a 

retrospective comparison of published studies to the ‘Roadmap’ meant that 

precise comparison of the ‘Roadmap’ protocol to the study acquisition 

parameters was some times difficult for all components. For example, we would 

not expect a study published prior to the ‘Roadmap’ to explain that the 

‘optimal’ interslice gap was sacrificed in order to afford whole brain coverage, 

since this stipulation by the ‘Roadmap’ was published after the study in 

question. Therefore a prospectively defined pragmatic comparison was 

performed for parameters which would be reasonably expected to be reported.  

In conclusion, current studies of CT and MRI based perfusion are often 

heterogeneous and often inconsistent with the recent proposals by the Acute 

Stroke Imaging Research Roadmap. Moreover, there is variation within the 

literature with respect to post-processing. This review highlights the areas of 

such inconsistencies and allows authors of future studies to determine which 

domains of reporting of acquisition parameters could be strengthened in future 
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studies. This study emphasises that perfusion imaging is complex and that there 

is still scope for improvement and development of these techniques. 

Homogeneous performance and reporting of acquisition parameters in addition 

to the often discussed post-processing algorithms and operational criteria for the 

penumbra may help to build consistency and generalisability of future results 

from perfusion imaging studies. However, given the inherent variability in these 

techniques, there may still be scope for other imaging techniques to help refine 

penumbral identification. In the absence of a gold standard MR penumbral 

imaging technique, development of other novel imaging techniques should be 

considered. 
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12 Appendix B: Continued Recruitment to 

Stroke Studies by Assent Is Critical; A 

Study of Lesion Volume 

12.1 Introduction 

Chapter 1 focussed on the application of imaging techniques, predominantly 

with MRI, which may be routinely implemented for the clinical evaluation of 

patients. This chapter, however, considers the application of imaging techniques 

from a research perspective. A typical validation pathway for a novel imaging 

technique is to test the modality in animal models, then in human volunteers (or 

control ‘healthy’ tissue as an alternative) and subsequently in patients with the 

disease of interest. In this thesis, the validation of a novel MRI technique in 

stroke patients is presented (Chapter 2 onwards). When testing a new technique 

in patients, the most relevant data will be generated if the technique is applied 

to a cohort of subjects who have the biological substrate of interest. Therefore, 

when testing a technique which may be of use in the evaluation of hyperacute 

stroke, subjects should be evaluated in the early stages after stroke onset when 

the likelihood of persistence of ‘penumbral’ tissue is high. This element can be 

easily dealt with by stipulating an upper time limit for inclusion. Secondly, 

recruitment of subjects with adequate lesion volume is important. For example, 

tissue compartments should be large enough to facilitate accurate measurement 

of volume without significant errors(342). The minimum volume which is 

sufficient is likely to depend on the nature and resolution of the modality being 

tested. Moreover, lesion volume is likely to be important with respect to the 

pathophysiology of the stroke. For example, subjects with larger DWI lesions are 

more likely to experience haemorrhagic transformation after intravenous 

rtPA(377) and those with lesions on DWI of >145ml are likely to develop 

‘malignant MCA’ syndrome(378). The neurological deficit as measured by the 

NIHSS is correlated with lesion size(379), and an upper limit for the NIHSS is 

often employed by licences and protocols for rtPA administration. Similarly, 

subjects with only very minor stroke (and by inference those with small lesions) 

are often excluded from treatment by thrombolytic therapy. Therefore, findings 
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from stroke studies recruiting only subjects with small stroke lesions cannot 

necessarily be generalised to subjects with larger strokes. 

For these reasons, in order to recruit subjects with sufficient lesion volume, 

written assent from relatives was permitted as a method of recruitment of 

stroke subjects for studies discussed in this thesis (Chapter 2 onwards). This 

approach is supported by data from the third International Stroke Trial (IST3) 

which suggested that subjects with more severe stroke were more likely to have 

been recruited by assent(380). Furthermore, the capacity to consent to trials 

diminishes with increasing baseline neurological deficit(381). However, an 

overriding principle of clinical research is that subjects should not be included in 

studies unless a potential benefit (to the patient or to society) can be 

demonstrated. In addition, using ‘assent’ from relatives as a recruitment 

modality should only be employed if it offers an additional potential benefit 

compared to restricting recruitment to direct consent. These principles are 

clearly stated by the Declaration of Helsinki(382) and the European Clinical 

Trials Directive (ECTD)(383). Additional legislation has been implemented in 

Scotland (Adults with Incapacity Scotland)(384) which states that research after 

‘assent’ must provide “real and direct benefit to the adult or to other persons 

having the same incapacity”. 

Therefore, in order to justify continued recruitment by assent to stroke studies, 

specific differences between stroke subjects recruited by assent and those 

recruited by consent should be demonstrated. In addition, cohorts recruited by 

assent should have qualities which are desirable for study and which are not 

present in cohorts recruited by direct consent. Thus, it was investigated whether 

there was a ‘biological’ difference between those stroke subjects recruited by 

assent and those by direct consent, to MR imaging based studies at the Institute 

of Neurological Sciences, Glasgow. In this study, lesion volume was used as the 

marker of ‘biology’. 
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12.2 Methods 

12.2.1  Studies 

Clinical stroke studies using MRI at the Institute of Neurological Sciences, for 

which either digital MRI data or recorded lesion volume data were available, 

were identified. Data from 3 studies which had previously recruited subjects via 

both consent and assent were analysed. All studies were approved by relevant 

ethical committees. Studies 1 and 2 were performed after the introduction of 

the European Clinical Trials Directive and the Scottish ‘Adults with Incapacity’ 

legislation. Study 3 was performed prior to their introduction. The first study 

(called ‘Study 1’ for the purposes of description in this chapter) is reported in 

Chapter 2 of this thesis. This study had no specific minimum neurological deficit 

required for inclusion but did require clinical evidence of a cortical stroke within 

24h of ictus. At the time of data analysis this study was ongoing and therefore 

only the first 16 subjects with available DWI were included. Images for Study 1 

were acquired using a 3.0T scanner. The second study (Study 2) was the 

Randomized, Controlled Trial of Insulin for Acute Poststroke Hyperglycemia 

(SELESTIAL) Study(261) which was performed at the Institute of Neurological 

Sciences, Glasgow.  After exclusion of ICH by NCCT, this study required a clinical 

diagnosis of cortical stroke within 24h. Images for Study 2 were acquired using a 

1.5T scanner. Study 3 used data from the subjects recruited at the Institute of 

Neurological Sciences (Glasgow) for the MRI Substudy of the Intravenous 

Magnesium Efficacy in Stroke Trial(340). These data contributed to a larger 

multi-centre study which recruited subjects within 12h after the onset of stroke. 

This study required a minimum DWI lesion volume of 3ml associated with a 

clinical diagnosis of stroke and a limb weakness which lasted for at least 1h (and 

thereby included ‘lacunar strokes’(2).  Images for Study 3 were acquired using a 

1.5T scanner. 

It should be noted that treatment decisions were made prior to including 

subjects in these MR based studies. Therefore, rtPA was administered prior to 

the images considered in this study. 
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12.2.2  Consent 

All three studies permitted recruitment by written consent or written assent 

from relatives. There were no definite criteria for recruitment method in any 

study. In all studies, the decision to recruit a patient using either route was 

made using clinical judgement. In Study 1, where KD (thesis author) recruited 

the majority of subjects, this decision was made by KD in close collaboration 

with the treating physicians. For Studies 2 and 3, the recruiting investigator was 

either a Stroke Research Fellow or an experienced Consultant Neurologist or 

Physician. For each subject, the most senior clinical investigator involved in 

recruitment was recorded 

12.2.3 Selection of Subjects 

The following selection criteria were applied: 

• Inclusion criteria 

o Digital MRI data or recorded lesion volume data available 

o Recruitment into one of the 3 aforementioned studies 

o No specific DWI or PWI lesion volume required 

• Exclusion criteria 

o Method of recruitment into the trial unclear 

 

12.2.4 Clinical Data 

The databases for each respective study were interrogated for the following 

data; 1) age, 2) gender, 3) hemisphere affected (stroke lateralisation), 4) 

clinical classification according to the Oxfordshire Community Stroke Project 

(OSCP)(2)), 5) treatment status with respect to recombinant tissue plasminogen 
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activator (rtPA) and 6) neurological deficit as defined by the National Institutes 

of Health Stroke Scale(257). If clinical data were not available from the 

respective clinical databases, clinical case records were retrieved and examined. 

In a proportion of subjects, a CT angiogram was performed for clinical purposes. 

Clinical radiology reports were attained for such cases and the site of arterial 

occlusion was noted. All clinical reports were made by experienced Consultant 

Neuroradiologists. 

 

12.2.5 Lesion Volume Data 

Study specific MR imaging was acquired after screening with NCCT and 

subsequent implementation of clinical treatment decisions. Lesion volumes were 

made using the baseline Diffusion Weighted Imaging (DWI) data for each subject. 

The DWI acquisition parameters for Study 1 are documented in Chapter 2. All 

DWI examinations were acquired using B0 and B1000 diffusion gradients. The 

DWI B1000 data were used for lesion volume measurement. All lesion volumes 

were measured using the software package ‘Cheshire’ (Perceptive Informatics, 

PAREXCEL). The ‘autosegmentation’ tool was employed in this study. This 

allowed the delineation of tissue compartments based on local signal intensity 

and allowed manual refinement according the investigator’s discretion. 

Therefore, in this study, the ultimate lesion volume was based on the 

investigator’s visualisation of the DWI lesion.  

KD (thesis author) generated all lesion volume data for Study 1. For Studies 2 

and 3 the lesion volume data were attained from the respective clinical 

databases for each study. These lesion volumes were originally measured by the 

Clinical Research Fellow who was involved in these respective studies (MTM). 
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12.2.6 Statistical Analyses 

Comparative statistical analyses were performed using Minitab (Version 14.0) 

software unless otherwise stated. Assessments of the distribution of data were 

performed using the ‘Kolmogorov Smirnov’ test and non-parametric statistical 

tests were employed where normality of the data could not be demonstrated. 

The Mann-Whitney test was used to compare continuous data from subjects 

recruited by consent to those by recruited by assent. Data for ‘proportions’ were 

compared using the Chi-squared test unless an outcome event had a frequency 

<5, in which case a Fisher’s Exact test was employed.  For categorical data of 

proportions (‘clinical syndrome’ and ‘site of occlusion’) the Fisher-Freeman-

Halton Exact test was used to compare multiple proportions between groups 

(StatsDirect v 2.6.2).  

Differences in subjects recruited by each of the 3 main investigators were also 

compared; the Kruskal Wallis statistic was used to compare continuous variables 

and the Fisher-Freeman-Halton Exact test was again used to compare multiple 

proportions between groups (StatsDirect v 2.6.2). The Spearman statistic was 

used to assess the correlation between lesion volume and NIHSS. Lastly NIHSS, 

lesion volume, age and stroke lateralisation were entered into a binary logistic 

regression to determine potential predictors for the capacity to consent. 

 

12.3 Results 

12.3.1 Recruitment Modality of Subjects 

Fifty six subjects were identified in total; 16, 29, and 12 subjects from studies 1, 

2, and 3 respectively (one subject was recruited into both Study 1 and Study 2). 

Thirty eight subjects (68%) were recruited by assent and 18 (32%) by consent. 

The proportion recruited by consent was 33%, 21% and 58% for studies 1, 2, and 3 

respectively.  
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12.3.2 Influence of Investigator 

Three investigators contributed to the majority of the recruitment -  KD (thesis 

author) recruited 14 subjects, KWM (Consultant Neurologist) recruited 13 

subjects, and MTM (Clinical Research Fellow) recruited 25 subjects. One other 

identifiable investigator recruited a single subject to Study 3. There were 3 

subjects in Study 3 for whom the recruiting investigator could not be 

determined. There were no statistically significant differences between the 

subjects recruited by each investigator with respect to the following variables; 

baseline NIHSS (n=39, p=0.9), proportion of subjects with left hemisphere stroke 

(n=56, p=0.5), lesion volume (n=56, p=0.15). There were no statistically 

significant differences between investigators with respect to the rate of 

recruitment by assent; 71% (10/14) vs 46% (6/13) vs vs 80% (20/25),[p=0.118]. 

 

12.3.3 Differences between Subjects Recruited by As sent 

versus Consent 

 states the clinico-radiological variables for subjects in the ‘Assent’ and 

‘Consent’ groups. There were no differences with respect to the following 

demographic variables; age, time to imaging, treatment status. There were 

however, differences in the ‘biological’ variables of the subjects. There was a 

significant difference in the clinical stroke classification between subjects 

(p=0.02) with a much larger proportion of subjects with ‘Total Anterior 

Circulation Stroke’ syndromes in the ‘Assent’ group. The median DWI lesion 

volume of those were recruited by assent was 18.35 cubic centimetres (cc) 

(inter-quartile range [IQR] 8.27 – 110.31 cc) and the mean (± Standard Deviation 

[SD]) was 63.7cc (± 78.5). In the consenting group, the median lesion volume 

was 2.79 cc (IQR 1.31 – 12.33cc) with a mean (± SD) of 12.1cc (± 23.1). The 

differences between groups were highly statistically significant (two tailed Mann 

Whitney test, p=0.0008). A further analysis was performed after excluding the 14 

patients treated with rtPA order to ensure that there was no confounding effect 

of treatment. For this group, the mean, median and IQR volumes were 66cc, 

16.9cc and 8.6-118cc for the assenting group and 7.9cc, 3.6cc, and 1.8-9.9cc for 
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the consenting group, and differences remained significant (p=0.004; n=42). 

Importantly, there was a dramatic difference between groups for the proportion 

of subjects who had a lesion volume less than the accepted error implicit for 

lesion volume measurements. The proportion of subjects in the ‘Assent’ and 

‘Consent’ groups for whom the DWI lesion was <5cc was 18.4% vs 61% (p=0.002). 

There was no significant difference in the site of arterial occlusion between 

‘Assent’ and ‘Consent’ group when the small subgroup of subjects for whom 

angiographic data were available were analysed (p=0.594). However, there were 

3 cases of occlusion of the Internal Cerebral Artery (ICA) in the ‘Assent’ group 

and no cases in the ‘Consent’ group, thereby suggesting a potential difference 

between groups. 

 

Table 15 Baseline Data in Assenting and Consenting Groups 
TACS = Total Anterior Circulation Stroke, PACS = Partial Anterior Circulation Stroke, LACS = 
Lacunar stroke, POCS = Posterior circulation stroke. ICA = Internal Carotid Artery MCA = Middle 
Cerebral Artery, PCA = Posterior Cerebral Artery, cc = cubic centimetres. Note one patient in the 
Assent group had bilateral lesions. .*= statistically significance, p <0.05. 

 

12.3.4 Prediction of Capacity to Consent 

There was a positive correlation between DWI lesion volume and baseline NIHSS 

(r=0.58, P<0.0001). This relationship means that if, hypothetically, only consent 

was permitted for subject recruitment, the majority of subjects recruited by 

consent in this cohort would have been ineligible for most previous stroke 

studies which have used a minimum NIHSS threshold for study inclusion .  
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Figure 12-1. Relationship Between Lesion Volume and  Baseline NIHSS and the Implication 
for Clinical Trial Recruitment 
The x-axis shows the clinical deficit as measured by the National Institutes of 

Health Stroke Scale(257) and the y-axis shows the DWI lesion volume on the 

baseline MR image. The thick vertical line shows a typical ‘cut off’ NIHSS 

severity for inclusion into clinical trials(71). The open circles represent subjects 

recruited by consent and the closed black circles represent subjects recruited by 

assent. It is clear that the subjects recruited by consent had a much milder 

(lesser) NIHSS. If, hypothetically, only consent was permitted for this study and 

a typical NIHSS threshold for study inclusion of NIHSS=6  was implemented, very 

few of these subjects would have been ultimately recruited into studies. Figure 

reproduced from When stroke lateralisation, baseline NIHSS, age, and DWI lesion 

volume were entered into a binary logistic model as predictors for the capacity 

to consent, baseline NIHSS (p=0.007) and DWI lesion volume were significant 

(p=0.038). Age was not a significant predictor (p=0.187). Stroke lateralisation 

was of borderline significance ([p=0.08) but when age was removed from the 

model the significance level did not improve (p=0.1) whilst NIHSS (p=0.002) and 

lesion volume (p=0.03) remained significant. When only DWI lesion volume and 

NIHSS were entered into the model, only NIHSS retained a significant predictive 

value (p=0.001) whilst DWI lesion volume was borderline non-significant 

(p=0.054).  
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12.4 Discussion 

This study demonstrates that there are differences between subjects recruited 

to stroke studies by direct consent compared to those recruited by assent from 

relatives. There were differences with respect to DWI lesion volume and clinical 

syndrome.  

Why do these differences matter for stroke trials? Firstly, there is good evidence 

that the severity of stroke as determined by clinical syndrome influences 

prognosis(2), with subjects with very large established strokes generally having a 

poor prognosis. Recruiting subjects only by consent would yield a cohort of 

subjects with mild stroke, many of whom may improve spontaneously, thus 

potentially limiting the ability of randomised controlled trials to detect 

differences in end points. Conversely, recruiting subjects with severe strokes 

and high NIHSS would yield a cohort of subjects with a large ceiling for 

improvement, thus potentially increasing the ability of trials to detect 

differences between treatment groups. Secondly, the behaviour of large strokes 

is different to that of small strokes. For example, there is a high rate of rtPA 

induced haemorrhagic transformation in subjects with large lesions on DWI(377). 

Lesions greater than approximately 100ml and which have a marked perfusion 

deficit are termed to have a ‘malignant’ profile with respect to the response to  

thrombolysis(71). Moreover, large lesions greater than 145ml are more likely to 

develop significant oedema sufficient to cause cerebral herniation(378, 385). 

Consideration of the volume of imaging ‘lesions’ (particularly salvageable tissue) 

is also important when refining the PWI-DWI mismatch hypothesis(125, 376). 

Parsons and colleagues considered the effects of PWI and DWI lesion volume on 

the response to rtPA. Excellent outcome was generally seen when DWI lesions 

were <18ml and benefit from rtPA was seen with lesion up to 25ml, in contrast 

to lesions >25ml.  Therefore, cohorts of subjects with clinically mild strokes 

associated with small lesion volumes will not provide an adequate substrate for 

evaluation of the behaviour of larger strokes. Finally, although not statistically 

significant, proximal occlusions were seen almost exclusively in those recruited 

by assent. Proximal occlusions are a requirement for some thrombolytic trials 

such as the follow up studies to DIAS 2 (termed DIAS 3/4). It is unlikely that 
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many, if any subjects, will be successfully screened for DIAS 3/4 by direct 

consent. 

Next, it was considered if recruitment of subjects purely by consent could have 

yielded any subjects of interest. Firstly, in the consented group, the third 

quartile of lesion volume was 12ml, well within the threshold of 18ml suggested 

by Parsons et al to predict an excellent response to rtPA(376). This suggests if 

the consented patients were recruited to clinical trials, many would have a good 

prognosis, regardless of being in a treatment or placebo arm. Differences 

between groups would be hard to demonstrate. Secondly, even if some subjects 

within the consented group do provide valuable information,  suggests that the 

absolute number of these subjects would be small. If typical inclusion criteria 

for imaging based studies such as minimum NIHSS score of 6 (as used in 

DEFUSE(71)) and minimum lesion volume of 5cc (a threshold suggested by one 

author’s opinion to reduce measurement error(342)) were applied to our 

population, recruitment by consent alone would have resulted in only 4 patients 

(7%) being included, all of whom still had relatively small lesions (<20cc). Of the 

remaining 28 patients where NIHSS data was available, 25 of these could also be 

included if assent was allowed. Therefore recruiting such valuable subjects to 

trials by consent only may take an unfeasibly length of time. 

In addition to the methodological issues requiring the need for assented 

subjects, there are also patient-related issues. Recruitment to hyperacute stroke 

trials occurs in the context of a sudden catastrophic event which often impairs 

cognitive function. Can valid informed consent really be obtained form patients 

under such circumstances? It has been demonstrated that even subjects with 

mild stroke and who recover rapidly may not remember all aspects of the 

event(386). In addition, Schats and colleagues used sub-arachnoid haemorrhage 

as an example of a neurological emergency and showed that only 28% of subjects 

recruited to trials felt retrospectively they had been capable of making a 

decision for themselves. Therefore, even when consent is taken, it may not be 

truly valid in all cases. 

There are a number of limitations to this study. Firstly, this was a single centre 

study with a limited number of investigators all practising in the same 

environment. The decision for recruitment modality was made using clinical 
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judgement and no specific protocol was used. It is possible, therefore, that the 

results cannot be generalised to other sites and other countries. The results, 

however, are consistent with other studies which have suggested a relationship 

between baseline NIHSS and modality of recruitment, and therefore differences 

between sites, if present, are likely to be subtle(380). Secondly, recruitment for 

these studies was made within 12h or 24h of onset after stroke. Acute treatment 

decisions and implementation, including the administration of rtPA, were made 

prior to imaging by MR.  This may have led to attenuation of lesion volume by 

previously implemented treatment. Therefore, the recruitment and imaging 

environment in these studies did not exactly mirror the scenario which would 

arise if subjects were recruited prior to treatment decisions, such as in 

thrombolytic trials. Thirdly, the DWI lesion volume was used as the surrogate 

marker of biological activity of the stroke. The PWI lesion volume was not 

considered. For a hypothetical hyperacute study where the DWI lesion had not 

evolved fully this would have led to underestimation of the true extent of the 

lesion. In this study, no subject had a PWI-DWI mismatch (accordingly to the 

standard definition of ‘120%’) and therefore simply using the DWI lesion is likely 

to have provided an accurate measure of lesion extent. Nonetheless, follow up 

lesions were not considered and therefore, there may have been some DWI 

lesion expansion after initial imaging. Fourth, two different investigators 

measured the DWI lesions as different studies were considered by this analysis 

and no measures of inter-observer reliability were available. In addition, there 

was no systematic evaluation of intra-observer reliability prior to this study, and 

these factors constitute a significant limitation.However, to ensure consistency 

with between raters, the same software package was used and a consensus 

method of lesion volume measurement was agreed upon prior to the second 

rater (KD) performing measurements. Moreover, the inter-observer reliability for 

DWI lesion volume measurement using this package has been shown to be highly 

reliable (387). Next, there were no power calculations performed for this study. 

Finally, it should be acknowledged that there is a circularity of argument in this 

study: subjects recruited by assent were deliberately retrospectively included in 

order to derive a lesion volume from such subjects, and this was not a 

prospective study. 
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In conclusion, this study provides support to the principle that assent of 

individuals should be permitted in order to allow meaningful results to be 

generated by stroke studies. Future studies which require subjects with at least 

moderate neurological deficit should continue to offer the option to recruit by 

assent. Failure to offer the option of assent of individuals to stroke studies may 

be ethically unjustified when a moderate neurological deficit is required. 
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13 Appendix C 
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Figure 13-1 Maps of cerebral blood volume (CBV) for  subjects with a perfusion-diffusion 
mismatch.  

Lettered labelling and slice position corresponds to those in Figure 7-2. Subjects are a) subject 1, 
b) subject 5, c) subject 16, d) subject 22, e) subject 33, and f) subject 35. CBV maps were 
generated using standard SVD deconvolution. The scale bar is given at the bottom of the figure. 
Higher values for CBV are given towards the right of the scale bar and vice versa. Black regions 
indicate regions of low CBV where a colour scale could not be assigned. Absolute values are not 
stated given the limitations of absolute CBV maps previously discussed in the thesis. 
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Figure 13-2 Maps of cerebral blood volume (CBV) for  subjects with a diffusion lesion. 

Lettered labelling and slice position corresponds to those in Figure  7-4. Subjects are a) subject 1, 
b) subject 5, c) subject 6, d) subject 8, e) subject 9, f) subject 11, g) subject 12, h) subject 16, i) 
subject 21, j) subject 22, k) subject 23, l) subject 24, m) subject 28, n) subject 30, o) subject 31, p) 
subject 33, and q) subject 35. CBV maps were generated using standard SVD deconvolution. The 
scale bar is given at the bottom right hand side of the figure (r). Higher values for CBV are given 
towards the right of the scale bar and vice versa. Black regions indicate regions of low CBV where 
a colour scale could not be assigned. Absolute values are not stated given the limitations of 
absolute CBV maps previously discussed in the thesis. 
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14 Appendix D 

14.1 Medline Search Strategy for Systematic Review of 

Perfusion Imaging 

1. cerebrovascular disorders/ or basal ganglia cerebrovascular disease/ or exp brain ischemia/ or carotid 

artery diseases/ or carotid artery thrombosis/ or intracranial arterial diseases/ or cerebral arterial 

diseases/ or exp "intracranial embolism and thrombosis"/ or exp stroke/ 

2. (isch?emi$ adj6 (stroke$ or apoplex$ or cerebral vasc$ or cerebrovasc$ or cva or attack$)).tw. 

3. ((brain or cerebr$ or cerebell$ or vertebrobasil$ or hemispher$ or intracran$ or intracerebral or 

infratentorial or supratentorial or middle cerebr$ or mca$ or anterior circulation) adj5 (isch?emi$ or 

infarct$ or thrombo$ or emboli$ or occlus$ or hypoxi$)).tw. 

4. tia$1.tw. 

5. 1 or 2 or 3 or 4 

6. Magnetic Resonance Angiography/ 

7. (magnetic resonance angiograph$ or mri angiograph$ or perfusion magnetic resonance imaging or 

perfusion mri).tw. 

8. (perfusion adj3 (tomography or ct or cat or pet)).tw. 

9. 6 or 7 or 8 

10. 5 and 9 

11. magnetic resonance imaging/ or diffusion magnetic resonance imaging/ or echo-planar imaging/ or 

magnetic resonance imaging, cine/ or magnetic resonance imaging, interventional/ 

12. Positron-Emission Tomography/ 

13. Tomography, X-Ray Computed/ 

14. ((magnetic resonance or mr or nmr) adj3 (imaging or tomography)).tw. 

15. (mri or positron emission tomography or pet scan$ or diffusion scan$ or diffusion weighted imag$).tw. 

16. (computed adj3 tomography).tw. 

17. ((ct or cat) adj scan$).tw. 

18. radionuclide imaging.fs. 

19. 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 

20. Perfusion/ 

21. cerebral angiography/ or radionuclide imaging/ or radionuclide angiography/ 

22. exp contrast media/ 

23. Differential Threshold/ 

24. (perfusion adj3 (imag$ or parameter$ or differen$ or value$ or threshold$)).tw. 

25. (mean transit time or mtt or time to peak or ttp or tmax or t-max).tw. 

26. 20 or 21 or 22 or 23 or 24 or 25 

27. 5 and 19 and 26 

28. 10 or 27 
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29. limit 28 to humans 

30. (haemorrhag$ or  

 

14.2 Embase Search Strategy for Chapter 11’s System atic 

Review of Perfusion Imaging 

1. cerebrovascular disease/ 

2. cerebrovascular accident/ 

3. stroke/ 

4. vertebasilar insufficiency/ 

5. carotid artery disease/ 

6. exp carotid artery obstruction/ 

7. brain infarction/ 

8. brain stem infarction/ 

9. cerebellum infarction/ 

10. brain ischaemia/ 

11. transient ischemic attack/ 

12. exp occlusive cerebrovascular disease/ 

13. (stroke$ or apoplex$ or cerebral vasc$ or cerebrovasc$ or cva or transient isch$ or tia$).tw. 

14. (brain or cerebr$ or cerebell$ vertebasilar$ or hemispher$ or intracran$ or intracerebral or 

infratentorial or supratentorial or middle cerebr$ or mca$ or anterior circulation).tw. 

15. (isch?emi$ or infarct$ or thrombo$ emboli$ or occlus$ or hypoxi$).tw. 

16. 14 and 15 

17. or/1-13,16 

18. PET.mp. or Positron Emission Tomography/ 

19. CT.mp. or Computer Assisted Tomography/ 

20. Image Analysis.mp. or Image Analysis/ 

21. computer analysis.mp. or Computer Analysis/ 

22. MRI.mp. or Nuclear Magnetic Resonance Imaging/ 

23. magnetic resonance imaging.mp. 

24. Diagnostic Imaging/ or Central Nervous System/ or brain imaging.mp. or Neuroimaging/ 

25. Magnetic Resonance Angiography/ or magnetic resonance angiography.mp. 

26. Diffusion Weighted Imaging/ or DWI.mp. 

27. PWI-DWI.mp. 

28. magnetic resonance imaging/ or diffusion magnetic resonance imaging/ or echo-planar imaging/ or 

magnetic resonance imaging, cine/ or magnetic resonance imaging, interventional/ 

29. ((magnetic resonance or mr or nmr) adj3 (imaging or tomography)).mp. [mp=title, abstract, subject 

headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] 
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30. (mri or positron emission tomography or pet scan$ or diffusion scan$ or diffusion weighted imag$).mp. 

[mp=title, abstract, subject headings, heading word, drug trade name, original title, device manufacturer, 

drug manufacturer name] 

31. (computed adj3 tomography).mp. [mp=title, abstract, subject headings, heading word, drug trade 

name, original title, device manufacturer, drug manufacturer name] 

32. ((ct or cat) adj scan$).mp. [mp=title, abstract, subject headings, heading word, drug trade name, 

original title, device manufacturer, drug manufacturer name] 

33. exp BRAIN PERFUSION/ or PERFUSION/ 

34. cerebral angiography.mp. or Brain Angiography/ 

35. Contrast Medium/ct, ce, rp [Clinical Trial, Intracerebral Drug Administration, Regional perfusion] 

36. Differential Threshold/ 

37. (perfusion adj3 (imag$ or parameter$ or differen$ or value$ or threshold$)).mp. [mp=title, abstract, 

subject headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer 

name] 

38. (mean transit time or mtt or time to peak or ttp or tmax or t-max).mp. [mp=title, abstract, subject 

headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] 

39. (mean transit time or mtt or time to peak or ttp or tmax or t-max).mp. [mp=title, abstract, subject 

headings, heading word, drug trade name, original title, device manufacturer, drug manufacturer name] 

40. perfusion weighted imaging.mp. [mp=title, abstract, subject headings, heading word, drug trade name, 

original title, device manufacturer, drug manufacturer name] 

41. PWI.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device 

manufacturer, drug manufacturer name] 

42. mismatch.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer name] 

43. perfusion.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer name] 

44. perfusion/ 

45. AIF.mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device 

manufacturer, drug manufacturer name] 

46. AIF.mp. 

47. Contrast Medium/ or Brain Perfusion/ or Brain Blood Flow/ or Contrast Enhancement/ or Nuclear 

Magnetic Resonance Imaging Agent/ or arterial input function.mp. or Gadolinium Pentetate/ 

48. or/18-32 

49. or/33-43 

50. 16 and 48 and 49 

51. (haemorrhag$ or hemorrhag$ or alzheimer$ or dementia or glioma or mening$ or aneurysm$ or 

coronary).mp. [mp=title, abstract, subject headings, heading word, drug trade name, original title, device 

manufacturer, drug manufacturer name] 

52. 50 not 51 

53. limit 52 to human 

54. limit 53 to english language 
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55. limit 54 to "review" 

56. 54 not 55 
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14.3 Modified Excerpt From Excel Data Extraction Sh eet; 

Acquisition Parameters 

Please see next page. 
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MR Data Extraction 
Parameter Response

CT Data Extraction 
Parameter Response

Scanner Manufacturer Free Text Entry Scanner Manufacturer Free Text Entry
Magnet Strength (Tesla) Free Text Entry Jog mode Yes / No 

Sequence
Spin Echo / Gradient 

Echo kvp Free Text Entry
Echo Time (TE) (ms) Free Text Entry mA Free Text Entry

Repetition Time (TR) (ms) Free Text Entry Gantry Rotation time (s) Free Text Entry

Flip Angle Free Text Entry
Time Resolution (images per 

second) Free Text Entry
Number of phases Free Text Entry Orientation Stated Yes /No

Orientation Stated Yes /No Number of slices per series Free Text Entry
Matrix Free Text Entry Number of series Free Text Entry

Field of View (FOV) (mm) Free Text Entry
Section / Slice thickness 

(mm) Free Text Entry
Number of Slices Free Text Entry Avoidance of Lenses? Yes/No/Unclear

Duration of Scanning (s) Free Text Entry Duration of Scanning (s) Free Text Entry
Slice thickness (mm) Free Text Entry Contrast Agent Used Free Text Entry

Interslice gap (mm) Free Text Entry
Concentration of contrast 

agent Free Text Entry
Contrast Agent Used Free Text Entry Volume of agent (ml) Free Text Entry

Concentration of contrast 
agent (mmol/kg) Free Text Entry Rate of injection (ml/s) Free Text Entry

Volume of agent (ml) Free Text Entry Delay before injection (s) Free Text Entry
Rate of injection (ml/s) Free Text Entry Saline Chaser Used Yes/No/Unclear

Delay before injection (s) Free Text Entry Power Injector Used? Yes/No/Unclear
Saline Chaser Used? Yes/No/Unclear Side of Injection (r/l) Left/Right/Unclear
Power Injector Used? Yes/No/Unclear Antecubital vein used? Yes/No/Unclear
Side of Injection (r/l) Left/Right/Unclear Gauge of Cannula Free Text Entry

Antecubital vein used? Yes/No/Unclear

Lowest level Z direction: 
Coverage of  MCA / basal 

ganglia Yes/No/Unclear

Gauge of Cannula Free Text Entry Deconvolution?
Yes /No/ Not 

described or unclear
Deconvolution? Yes/No/Unclear If so, which technique? Free Text Entry

If so, which technique? Free Text Entry AIF Selection Site
ICA/MCA/ACA/PCA/n

ot specified

AIF Selection Site
ICA/MCA/ACA/PCA/Uncl

ear AIF Selection Side Left/Right

AIF Selection Side Left/Right/unclear Venous Output Function

Saggital sinus / 
straight sinus / 

transverse sinus/ not 
specified

Coregistration Method
Algorithmic / Visual / Not 

Done/Unclear Coregistration Method
Algorithmic / Visual / 

Not Done/unclear

Definition of ROI

Threshold / Manual / 
Semi-automatic / 

Automatic / Unclear Definition of ROI

Threshold / Manual / 
Semi-automatic / 

Automatic / Unclear
Minumum Lesion Size if 

Applicable Free Text Entry
Minumum Lesion Size if 

Applicable Free Text Entry
Minimum Mismatch Size if 

applicable Free Text Entry
Minimum Mismatch Size if 

applicable Free Text Entry
Software Package Used Free Text Entry Software Package Used Free Text Entry  
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15 Appendix E 

 

Figure 15-1. Summary Data for Subjects 25 Subjects with an Acute Ischaemic Stroke Lesion 
>1ml and Who Were Therefore Considered in the Final  Analysis 
Subjects are numbered in the order in which they were recruited. OCSP = Clinical Classification by 
the Oxford Community Stroke Project(2).  PACS = partial anterior circulation syndrome, TACS = 
total anterior circulation syndrome, NIHSS = National Institutes of Health Stroke Scale, rtPA = 
recombinant tissue plasminogen activator, PWI = perfusion weighted imaging, n/a = not applicable, 
subject withdrawn from the study, *= missing data. 
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16  Appendix F 

 
Study Subjects Method 

Measurement 
of CBF 

Induction of 
Hyperoxia 

O2 Level CO2 
level 

CBF Comments 

Kety and 
Schmidt 
(1947)(26
2) 

6 young 
male 
volunteers 

N2O 
technique 

Variation in 
Gas 
Mixtures 

↑ 
FiO2 0.85-
1.00 
Arterial O2 
content 
16.6 → 
18.0% 

↔ 
Blood CO2 
content 
50.2 → 
50% 

 

↓ 
52 → 45 
cc/100g/mi
n 
13% 
decrease in 
mean 

Also noted was 
an increase in 
cerebrovascular 
resistance 
(vasoconstriction
) and an increase 
in MAP 

Lamberts
en et al 
(1953)(28
8) 

8 male 
volunteers 

N2O 
technique 

 

 
Variation in 
Gas 
Mixtures 

↑ 
Arterial O2 
content 
19→21% 

↔ 
5.3→5.1 

kPa 

 

↓ 
55 →47 

cc/100g/mi
n 
15% 

decrease 

 

Ellingsen 
et al 
(1987) 
(289) 

4 healthy 
humans 25-
45yrs 

Doppler US; 
average 
blood 
velocities 

Variation of 
Gas 
Mixtures 

↑ 
13.3 → 
33.3 kPa 

↔↓ 
PaCO2 3.3, 
4.4, 5.3 

kPa 
 

↑ 
PaCO2 6.7 

kPa 
 

↔ 

 
 
↓ 

Reduction 
by 12.9% 

 

Blood velocities 
did not change 
with hyperoxia 
unless there was 
a concomitant 
increase in 
CO2;different 
CO2 levels were 
assessed 

Rostrup 
et al 
(1995)(25
1) 

6 healthy 
volunteers 
(24-28yrs) 

Phase 
contrast MR 

Varying gas 
mixtures 

FiO2 1.0  ↓ 
Reduction 
in CBF by 
27% 

 

Omae et 
al 
(1998)(29
0) 

8 healthy 
volunteers 

TCD – MCA 
velocity 

 

Varying gas 
mixtures 

↑ 
20l O2  

Tc PO2 
10.3 +- 2.0 
(SD)  kPa 
→ 55.1 +- 
16.5 (SD) 

kPa 

↔ 
tcPCO2 

5.1 +- 0.5 
→ 4.9 +- 
0.5 (SD) 

kPa 

↓ 
65 +-15 → 
52 +- 16 
cm/s 
20% 

decrease 

This study also 
looked at 
hyperbaric 
oxygen therapy; 
hyperoxaemia 
caused by HBO 
reduced CBF but 
high atmospheric 
pressure per se 
did not reduce 
the CBF in this 
study 

Berre et 
al 
(1999)(29
1) 

20 healthy 
volunteers, 
7 subjects 
with 
previous 
high 
altitude 
pulmonary 
oedema(HE
PE), 6 
unaffected 

TCD – mean 
velocity 
MCA 

Varying gas 
mixtures 

↑ 
FiO2 1.0 
Mean 
(SEM) 
Healthy 
volunteer 
SaO2: 96.4 
(0.4) → 
98.8 (0.2) 
%  

↓ 
Healthy 
volunteers 
PETCO2 
5.0(0.1) → 
4.7 (0.1) 
(SEM) kPa 
 
 

↔ 

↓ 
Healthy 
volunteers 
69(3) →  
60(3) 

↓ 
Previous 
HAPO 
63(3) →  
53(3) 

Decreased heart 
rate observed 
with hyperoxia 
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high 
altitude 
climbers 

 
Previous 
HAPO 
SaO2:  
96.6 (0.7) 
→ 98.1 
(0.4)% 
 
Tolerant 
Climbers 
97 (0.4) → 
99.2 (0.3) 

Previous 
HAPO 
PETCO2 

4.8 (0.2) 
→ 4.8 
(0.3) kPa 
 

↓ 
Tolerant 
Climbers 
PETCO2 

5.6(0.1) → 
5.1(0.1) 
kPa 

↓ 
Tolerant 
Climbers 
58(4) →  
49(3) 
 
Overall 12-
15% 
decrease 

Watson 
et al 
(2000)(29
2) 

5 normal 
male 
volunteers 
32-42 
(median 
34yrs) 

Magnetic 
resonance 
phase 
contrast 
angiograph
y of carotid 
and basilar 
arteries 

 

Varying gas 
mixtures 

↑ 
FiO2 1.0; 
15l/min 

96.6%→10
0%  

↓ 
PETCO2 

Decrease 
3.7-7.1% 

(mean 5.2) 

↓ 
Decreases 

of 
8.99%→26.
7% (mean 
16.2%) 
were 

observed  

A second sub 
study showed 
decreases in 
cerebral blood 
flow were 
greater in 
younger 
subjects. CBF 
decreased after 
2-4 min of O2; 
levels rose to 
original levels  6 
mins after 
withdrawal 

Kolbitsch 
et al 
(2002)(29
3) 

39 non-
smoking 
volunteers 
(TCD n=20, 
MRI n=19) 

TCD – 
velocity 
MCA 
MRI –
contrast 
enhanced 
perfusion 

Varying Gas 
Mixtures 

↑ 
FiO2  1.0 

 SaO2  98+-
2 →100 +- 

1 

↔ 
MRI cohort 
40 (+- 0.6) 
→ 40 (+- 
0.5) 
TCD cohort 
40 (+- 0.1) 
→ 40 (+- 
0.1) 
CO2  was 
maintaine
d at a 
constant 
levels 

↓ 
 

MRI cohort  
Hyperoxia 
diminished 
rCBF in all 
regions 
except in 
parietal and 
left frontal 
gray matter  
(68.08 +- 
0.38 to 
199.58 +- 
1.58 
ml/100g/mi
n vs 58.63 
+- 0.32 to 
175.16 +- 
1.51 
ml/100g/mi
n 
 

↔ 
TCD cohort  
62 +- 9  →  
64 +- 8 cm/s 

Changes in 
velocity as 
detected by TCD 
not expected as 
no changes in 
parietal and left 
frontal gray 
matter on MRI 

Johnston
e et al 
(2003)(29
4) 

9 healthy 
volunteers 
(6M 3F) age 
30-45yrs 
(mean 
33yrs) 

TCD – 
velocity 
MCA 

Varying gas 
mixtures 

FiO2 1.0 ↓ 
?significan
ce level. 
Baseline 

flow 

↔ 
57.1 +- 

11.8cm/s →  
55.0 +- 
7.6cm/s  

This study 
showed that 
cerebral 
haemodynamic 
responses to a 
fall in PETCO2 are 
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velocities 
measured 
prior to 

manipulati
on of 

PETCO2  in 
separate 
normoxia 
(baseline 

PETCO2 4.85 
+- 0.4 kPa) 

and 
hyperoxia 
(baseline 
PETCO2 4.62 
+-0.4kPa) 
experimen

ts 

modulated by 
hyperoxia. 

Floyd et 
al 
(2003)(29
5) 

7 healthy 
men 21-
62yrs. 
Mean 39 +- 
14 (SE) yrs 

ASL 

Varying gas 
mixtures 

FiO2 1.0 
 

PO2. 12.2 
+- 0.9 kPa 
→76.9 +-
2.5 kPa 

PCO2 
5.8 +- 0.2 
→ 5.4 +- 
0.4 kPa 

↓ 
32.6% 

decrease 
53.6+-

6.8→36.1 +-
4.9 kPa 

Reduction of CBF 
in grey and 
white matter 
was 32% and 30% 
respectively. 
Analysis of data 
suggests an 
effect of 
hyperoxia 
independent of 
CO2 

 

 

Table 16 Table showing response of CBF to hyperoxia . 
Column 1 indicates the manuscript. Column 2 indicates the subject population. Column 3 shows 
the methods used t. The horizontal solid line separates the methods used to measure cerebral 
blood flow (upper) and methods used to change inspired oxygen concentration ( lower). The fourth, 
fifth, and sixth columns show  the direction of change in arterial oxugen tension, carbon dioxide 
tension, and cerebrak blood flow respectively, as shown by the arrows, and values which follow. 
Search Conducted May 2007. CBF – cerebral blood flow; O2  - oxygen; CO2  - carbon dioxide; 
HAPA – high altitude pulmonary oedema kPA – kilopascals; PETCO2 – end tidal CO2; PETO2 – end 
tidal O2; N2O – nitric oxide; A-VO2 – aterial-venous oxygen difference; MCA – middle cerebral 
artery; TCD – Transcranial doppler ultrasound; HEPEcc – cubic centimetres; ml – millilitres; s – 
second; SE – standard error; SE – standard error of the mean; yrs – years; M – male; F – female; 
pts - patients 
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