

Goikoetxea Yanci, Asier (2012) Smart card security. EngD thesis.

http://theses.gla.ac.uk/3091/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior
permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author

The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/3091/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk

������������	AB�C�D

EF�B�	�����F�����

���������	��AB�C�DCEF�

����	�	���F���F�CF��B��C��	���F

��	���C�	��C�C	��F�

�����F

!�C��B���

������A�D�	

"	�CF��#���

$F����	�%	��		�F�

%FA�F��F��!��C�		�C���C���D��	��&	�	�����	����CF�

����C	���FC'F	�(��)��AC

*+,,-$	��B��D

���������	ABC

���A������F�E�FC�������A��CE�������FCA��E��

�	A��CA���.	�F���/��	 �F�	� 0��	�

��C�A������A'�����0F 	������D�C���C�B���CF��!��C�F��	�� ����E ��F�! ,-1,

�FB��	���C�B���CF��.	�B��� ����E ��F�" 1*-,,+

������F��	��-A�C��+,23� �C�����F�! ,,,-,45

��C�A��%	�	A�F��.	�F�� ���AF���F�! ,46-,57

�.�8�8	�F�D�0���C�CF�C����F��&	�'��	�.	�BA�CF� ��#��C	C$���F�!

,6+-**+

0B��CA��CF�� 0��	�

���AF����! �FC'F	�(��)��AC9��:;�0CA'�	�9��:;�������9��:9�<%	�	A�C���EF����	���C�A��

����A'��F���	AB�	�%	�CA	�9<�DE�F�	�B�������	��	������������	��������	���	F���������� 	

�B�����	���	�������B	���F��	��� 9���:54-6+9�=-1��B�:�*++6:

%&��C$��'

���AF����" �FC'F	�(��)��AC9��:;�0CA'�	�9��:;�������9��:9�<�����A�	�C>��CF��F����EF����	�

��C�A������A'�%	�	A�F���F���	AB�	�%	�CA	�9<�DE�F�	�B�������	��	������������	��������	

���	F����������	�B�����	���	�������B	���F��	��! 9���:7,-719�*+-*,��B�:�*++7:

%&��C$��'

���AF����(�FC'F	�(��)��AC9��:�?%	�	A�C���EF����	���C�A�	�@9�F������������	"����� 	

"�A��������	#��A��9�#2�*++6A+BB5,*��*:

%"&��C$��'

Engineering Doctorate

Glitch Attack and Power Analysis Simulation
Environment

Author: Asier Goikoetxea Yanci

Date: 2007-05-15

Sponsored by:

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 2

Table of Contents

1 Introduction___3

2 Attacks Background __4

2.1 Glitch attacks ___ 4

2.2 Power analysis __ 5

3 Literature review ___8

4 Simulation environment approach and implementation ___________9

4.1 General description __ 9

4.2 Normal simulation___ 12

4.3 Glitch attack simulation ______________________________________ 14

4.4 Power analysis simulation ____________________________________ 19

4.4.1 Power trace generation with GAPASE _______________________________ 20

4.4.2 Power trace analysis in Matlab _____________________________________ 26

5 Simulation environment validation and results _________________28

5.1 Glitch attack validation_______________________________________ 28

5.1.1 Silicon test___ 29

5.1.2 Glitch attack simulations __ 32

5.2 Power analysis validation ____________________________________ 34

5.3 Discussion on Validation Results ______________________________ 44

6 Conclusion __50

7 Future work __51

Appendix A ___52

Appendix B ___55

References ___61

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 3

1 Introduction

During the development process of an ASIC, the design goes through several test steps to

make sure its behaviour and performance (e.g. area, power and speed) matches that

intended in the initial specification. These tests happen at different stages or levels of the

development (e.g. RTL, gate netlist and post-layout) and they are made considering the

normal operating conditions the circuit has been designed for. However, devices such as

Smart Cards can be deliberately forced to work under abnormal conditions in order to extract

otherwise inaccessible information. Doing so is considered an attack.

Some attack examples include applying noise and or glitches to the power supply rails,

external clocks and or any other external signal, such as communication lines. These could

result on injecting faults by corrupting data and or skipping CPU instructions. Laser attacks

(a.k.a. light attacks) can also be employed to inject faults into the design and/or locate

functions on the die. Current consumption could be monitored for levels that indicate the use

of certain features or operations (e.g. usage of crypto-block or writing to the NVM).

Furthermore, monitoring the current consumption is the basis for techniques such as

differential power analysis (DPA) to disclose the encryption key of a cryptographic block.

Atmel’s design flow included some limited glitch attack, laser attack and DPA tests on silicon.

Testing devices for these kinds of threads at this development stage can be very expensive,

as any weakness identified at this stage could imply the need to develop new masks. Hence

the need to develop a test environment that could test the designs’ robustness against these

attacks.

In order to fill this gap, a simulation environment was designed aimed at testing designs

against glitch attacks and encryption engines against power analysis. This report covers the

work carried out on this subject and the results obtained from it. The next sections are divided

as follows: section two provides a background of the two different attacks targeted by the

simulation environment. Section three covers how the simulation environment has been

structured and implemented. Section four covers the simulation environment validation

process and the results obtained. Section five presents the conclusions drawn by this work.

And, finally, section six, propose a few possible future development lines for this simulation

environment.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 4

2 Attacks Background

This section is divided in two sections which will cover the two different attacks targeted by

the simulation environment. Firstly glitch attacks will be introduced and, afterwards,

differential power analysis (DPA) will be covered.

2.1 Glitch attacks

The voltage that digital systems should be powered to is limited by the technology it has been

developed with, which sets both the upper and lower limits. If a device is powered to a voltage

level below the lower limit, transistors might not go into the saturation state, thus, its correct

behaviour in this circumstance is by no means warranted. On the other hand, powering the

device to a voltage level above the upper limit might damage the device permanently. As long

as the power supply is relatively constant and within the above mentioned limits, the device

should behave correctly.

A noisy supply voltage (e.g. with a ripple and/or spikes) can inject faults into a device (e.g.

errors, data corruption and/or alter the program execution flow), making it misbehave.

Glitches can produce similar or worse effects. They can be applied to different places of a

design, on its power or input pins. Applying the same pulse on different places and at different

times may result on injecting different faults.

Smart Card devices are designed with a built-in voltage regulator, which can filter some of the

noise present on the external power supply and regulate the voltage level to the level required

by the Smart Card’s internal circuitry. For slow voltage level changes on the Vcc pin, the

voltage regulator would correct itself so that the output voltage is kept constant. However, for

fast or sudden voltage level changes on the Vcc pin (glitch), the voltage regulator could reflect

that change on its output. Figure 1 shows the effects on internal power voltage when a glitch

is applied to external power line. Obviously, internal glitch’s waveform may vary depending on

the circuit load at the time the glitch is applied and on the voltage regulator.

When a glitch is applied to an input pin, however, power voltage could be raised via electro

static discharge (ESD) protection diodes in the input pads. This is shown on figure 2, where

for Vpin > Vdd, Vdd = Vpin – Vdiode; and for Vpin < GND, GND = Vpin + Vdiode.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 5

Figure 1 Example of resulting internal power waveform to an external pulse

Vdd

GND

pin
pad

to design

I

Figure 2 Input pin to Vdd connection under glitch attack

Temporal internal supply level changes do not propagate equally across the whole device due

to parasitic resistors and capacitors on the power rails. In addition to over and under

saturating transistors, the uneven propagation of the voltage level results on adjacent circuit

blocks being powered at different voltage levels, which can also inject faults into the design.

As covered in the report ‘Simulation results of pulses applied to a counter’s power signal’,

glitches are more effective when applied close to the clock’s positive edge, as it helps latching

or registering any error injected in the combinational logic.

2.2 Power analysis

The dynamic power consumed by a CMOS circuit is related to the data processed by this

circuitry. This phenomenon is commonly known as side-channel leakage, and enables

guessing the processed data by analysing the power consumption waveform. One kind of

power analysis is simple power analysis (SPA), which consists of visually monitoring the

power consumption to identify data. SPA could be use to identify the operand value of an

instruction executed by a CPU. Also, due to the power consumption patterns of an EEPROM

write/erase cycles, SPA could also be used to identify these.

Another kind of analysis possible on the consumed power is differential power analysis

(DPA). DPA is an analysis technique originally proposed by Krocher [1] to guess the

encryption key used by a cryptographic algorithm. This is achieved by exploiting the side-

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 6

channel information leaked by the cryptographic algorithm implementations when processing

a plaintext.

Figure 3 shows graphically the factors involved in a power analysis. Here, the aim is guessing

the encryption key, which is secret. The attacker must know the cryptographic algorithm used

during the encryption/decryption process, although the actual implementation might be

unknown. The attacker must also have control over the data sent for encryption or know

which data is being processed on encryption operations.

Two typical encryption algorithms used by Smart Cards are data encryption standard (DES)

and advanced encryption standard (AES). These algorithms have a few common features:

• they are symmetric, i.e. they use the same key for encrypting and decrypting;

• the substitution box (S-box) is their basic building block;

• the input of these S-boxes is a combination of the encryption key and input data;

• the encrypted/decrypted data is generated after processing the input data several

times (or rounds) through these S-boxes.

���������	A�B�C	DEF�

��B��EAD�����B������

��F��	AE�������

���������

��CE�A��A

�������

�E	D��

�������

�E���FDC�������C�CB��

���B��	�����F�� ��	AE���

Figure 3 Factors involved in a power analysis

By controlling the input data of the cryptographic algorithm (e.g. plaintext when performing an

encryption operation), the attacker can control the input of individual S-boxes in the first

encryption/decryption round. Every encryption/decryption operation results in a power

consumption waveform, here referred to as a power trace. The attacker would repeat this

operation until all the S-box input combinations are covered several times, producing enough

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 7

power traces to perform the analysis and to guess the encryption key bits associated to the

target S-box.

Different analysis methods have been proposed since differential power analysis was

introduced. In its original version, DPA used a statistical difference-of-means technique to

guess the encryption key. The other common technique for guessing the encryption key is

correlating the sampled power traces with an estimation of power consumption. Another

development of the DPA is differential electromagnetic analysis (DEMA).

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 8

3 Literature review

For the literature review, please refer to the simulation environment literature review section in

the first Volume of this portfolio, 3.1.1 Literature Review for Fault Injection and Side-channel.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 9

4 Simulation environment approach and
implementation

Designs can be simulated at different levels, behavioural level, RTL level, gate level and

transistor level. High level simulations are used to validate the design’s functional model,

whereas low level simulations are used to validate the signals’ timing and value.

The first feature to be implemented in this simulation environment was the glitch attack

capability. Because glitch attack simulations require a tool capable of simulating how changes

in the supply voltage affect the design, it was decided to develop the simulation environment

around a transistor level simulation tool, such HSPICE or Nanosim (a SPICE-like simulation

tool). The simulation environment was later updated to also perform DPA on DES

cryptographic blocks.

In synthesis, the simulation environment is a set of Perl scripts and a configuration file. It

creates a set of input files to be used by the simulation tool. These files depend on the

targeted attack. The following sub-sections describe the simulation environment in more detail

and the configuration specific to each attack.

4.1 General description

This simulation environment is a set of Perl scripts developed around the Nanosim simulation

tool. The Perl scripts, totalling around 2,300 lines of code, are used to automate and ease the

glitch attacks and power analysis simulations by:

• generating the required stimulus for the design under test (DUT)

• generating the configuration files for the simulation tool

• launching the simulation tool

• doing any required post-simulation analysis

The simulation configuration is defined in the file simulation.cfg (see Appendix A in the

Volume I of this portfolio), and currently only the Nanosim simulation tool is supported. Figure

4 shows a high level diagram of the simulation environment.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 10

Figure 4 Diagram of the GAPASE simulation environment

Three kinds of simulations are possible: normal; glitch attack; and power analysis. Normal

simulations are those where the designs are simulated under normal circumstances and no

attack or analysis is aimed at them. This kind of simulation can be used to ensure the DUT’s

correct behaviour before being subjected to attacks or analysis. Glitch attack simulations are

those where the DUT is targeted by a glitch in the power supply and/or noise is applied to

other input signals. Power analysis simulations are those where a cryptographic block’s

implementation is tested against side-channel leakage.

All three simulation types need the same basic input files to run a simulation: the simulation

configuration file, simulation.cfg, whose contents are covered in the next sub-sections;

the HSPICE netlist(s) of the DUT (parasitic information can optionally be included on a

different file and format); the DUT’s input stimulus, which are specific to the simulation type

and DUT; and the technology’s SPICE model. In addition to these input files, GAPASE also

creates the Nanosim configuration file to meet each simulation’s requirements,

epic_pow.cfg. Figure 5 shows the GAPASE’s simulation diagram flow.

Finally, GAPASE has been written in a modular approach using Object-oriented Perl (OOP).

This design decision enables adding features in the future, such as targeting additional

cryptographic algorithms, e.g. AES, or including the power trace analysis currently done in

Matlab. Figure 6 shows a modular diagram of the current state of GAPASE.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 11

�C�C� ��!�"

#�C��C���FD�F��

B����C��

	C�C��A��

�D�F�� E���CAE���

 	�FE$EF�

	C�C��A��

���CA��B����EF�

$E��

���CA�� E���CAE���

 	�FE$EF�$E��

%��� E���CAE��

������

��C�� E "

��A�CFA��C&�$���

#�B������ �C���

��EA

' ���

�C��FD� �

(�����

��EA

)�

*�

)�

*�

BC	C ��	�

F����	�

����C��	�

B�EAFD�	�

	C�	�

BC	C ��	�

F����	�

����C��	�

B�EAFD�	�

	C�	�

BC	C ��	�

�C&���	�

BC	C ��	�

Figure 5 Diagram of the simulation flow

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 12

Figure 6 Modular diagram of GAPASE

4.2 Normal simulation

A normal simulation exercises the DUT with the stimulus and supply voltage defined in the

simulation.cfg file. Here are the mandatory parameters for a normal simulation:

SIMULATION_NAME=

DESIGN_NETLIST=

VOLTAGE=

VOLTAGE_NODE=

STIMULUS=

SIMULATION_TIME=

TEMPERATURE=

MODEL_LIB=

MODEL_LIB_CALLS=

SIMULATION_TYPE=

DETACH=

These are optional simulation parameters:

LOG_LEVEL=

DESIGN_RC_NETLIST=

DESIGN_RC_TYPE=

The SIMULATION_NAME parameter defines the name assigned to the simulation and to the

simulation’s output file. It also defines the name of the directory where the simulation output

and the configuration file will be stored. If a directory with the same name exists, the

simulation environment would allow overwriting the old directory (effectively deleting it and

creating a new one) or aborting the simulation. This last option would generate an error log

message.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 13

The parameter DESIGN_NETLIST points to the test circuit’s HSPICE netlist file. If the file referred

to by this parameter does not exist, the simulation is aborted and an error message

generated.

The parameter VOLTAGE defines the voltage level to which the test circuit will be powered for

the simulation. This voltage level will be applied to the node defined by VOLTAGE_NODE.

The parameter VOLTAGE_NODE defines the name of the circuit’s power supply node, e.g.

‘mixvdd!’ or ‘vdd!’.

The parameter STIMULUS points to the PWL file with the circuit’s input stimulus information. If

the file referred to by this parameter does not exist, the simulation is aborted and an error

message generated.

The input stimulus waveforms defined in STIMULUS must be normalised to the voltage level

defined in VOLTAGE. An amplitude value of 0 in a waveform meaning that 0V are applied to that

particular input port; an amplitude value of 1 in a waveform meaning that VOLTAGE is applied to

that particular input port.

The parameter SIMULATION_TIME defines the simulation time. Time unit must be specified,

where ‘n’ means nanosecond, ‘u’ means microsecond, ‘m’ means millisecond and ‘s’ means

second.

The parameter SIMULATION_TYPE defines which kind of simulation is going to be performed.

Possible values are: NORMAL, GLITCH or PA. For this case it should be set to NORMAL. When set to

NORMAL, any glitch and DPA related parameter is ignored.

The parameter TEMPERATURE defines the simulation temperature in degrees Celsius.

The parameter MODEL_LIB points at the SPICE model library to be used in the simulation. If the

file referred to by this parameter does not exist, the simulation is aborted and an error

message generated.

The parameter MODEL_LIB_CALLS lists the model calls to fine tune the simulation.

The parameter LOG_LEVEL defines the log level to be used in the current simulation. It can be

set to HIGH or LOW. If not defined, it is defaulted to LOW.

The parameter DETACH determines whether the simulation is detached from the console

terminal or not. Two values can be defined for this parameter: YES or NO. Detaching the

simulation allows closing the console terminal the simulation was launched from even when

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 14

the simulation is still running without interrupting it. This allows logging out the session after

launching the simulation. Not defining this parameter or giving it a wrong value would have

the same effect as setting it to NO.

The parameter DESIGN_RC_NETLIST points to the circuit’s parasitic information file. If this

parameter is empty, the parameter DESIGN_RC_TYPE is also ignored. If the file referred to by this

parameter does not exist, the simulation is aborted and an error message generated.

The parameter DESIGN_RC_TYPE defines the circuit´s parasitic file´s format. This parameter is

linked to DESIGN_RC_NETLIST,and its value only checked if the parent parameter is defined.

Two are the options, SPEF or HSPICE. If the netlist is in the SPEF format, it is parsed to modify

the instance and bus naming convention to suit that of HSPICE.

All the parameters associated to normal simulations also apply to glitch and power analysis

simulations. Not defining a mandatory parameter would result on aborting the simulation and

generating error messages.

4.3 Glitch attack simulation

A glitch attack simulation enables applying glitches and/or noisy power sources to the DUT’s

VOLTAGE_NODE and/or the GND. It also allows applying noise to the DUT’s input stimulus

signals. Noisy power sources and input stimulus signals can be applied with the use of SPICE

PWL waveforms. Glitches can be defined with a simulation environment built-in glitch

generation function or with SPICE PWL waveforms.

In addition to the parameters associated to a normal simulation, a glitch attack simulation also

has the following parameters associated:

POWER=

POWER_START=

DELAY_FOR_PULSE=

PULSE_START_TIME=

PULSE_START_VALUE=

PULSE_P1_TIME=

PULSE_P1_VALUE=

PULSE_P2_TIME=

PULSE_P2_VALUE=

PULSE_END_TIME=

PULSE_END_VALUE=

GND=

GND_START=

GND_DELAY_FOR_PULSE=

GND_PULSE_START_TIME=

GND_PULSE_START_VALUE=

GND_PULSE_P1_TIME=

GND_PULSE_P1_VALUE=

GND_PULSE_P2_TIME=

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 15

GND_PULSE_P2_VALUE=

GND_PULSE_END_TIME=

GND_PULSE_END_VALUE=

STIMULUS_NOISE=

STIMULUS_NOISE_START=

Parameters POWER and POWER_START are used to define a noisy power source or glitch on the

DUT’s VOLTAGE_NODE. The parameter POWER points at a SPICE PWL file containing the power

source’s behaviour. This is an optional parameter, but once defined, it has to point at a valid

file. Otherwise the simulation environment will exit with an error message. The parameter

POWER_START states the time at which the waveform described in POWER should be applied to the

VOLTAGE_NODE. This parameter is optional and checked only if POWER is defined. If this

parameter is not defined, it is defaulted to 0n.

The POWER waveform must be defined as a normalised offset to the continuous supply voltage

level defined in VOLTAGE. An amplitude value of 0 in the waveform meaning there is no change

on the supply voltage level applied to the VOLTAGE_NODE; an amplitude value of 1 in the

waveform meaning that the supply voltage level is increased by VOLTAGE; and an amplitude

value of -1 in the waveform meaning that the supply voltage level is decreased by VOLTAGE. It

is mandatory to name this waveform with vpower_waveform.

Parameters GND and GND_START are used to define a noisy power source or glitch on the DUT’s

ground power rail or GND. The parameter GND points at a SPICE PWL file containing the

GND’s behaviour. This is an optional parameter, but once defined, it has to point at a valid

file. Otherwise the simulation environment will exit with an error message. The parameter

GND_START states the time at which the waveform described in GND should be applied to the

DUT’s GND. This parameter is optional and checked only if GND is defined. If this parameter is

not defined, it is defaulted to 0n. The GND waveform must also be defined as a normalised

offset to the continuous voltage level applied to GND, i.e. 0V. This waveform must be named

with vgnd_waveform.

Noise can also be applied to a DUT’s input signal with parameters STIMULUS_NOISE and

STIMULUS_NOISE_START. Again, the parameter STIMULUS_NOISE points at a SPICE PWL file

containing the noisy behaviour of the input stimulus signals. This is an optional parameter, but

once defined, it has to point at a valid file. Otherwise the simulation environment will exit with

an error message. The parameter STIMULUS_NOISE_START states the time at which the

waveform described in STIMULUS_NOISE should be applied to the DUT’s input signals defined in

STIMULUS. This parameter is optional and checked only if STIMULUS_NOISE is defined. If this

parameter is not defined, it is defaulted to 0n. The STIMULUS_NOISE waveform must also be

defined as a normalised offset to the stimulus signals defined in the file pointed at by the

parameter STIMULUS. It is recommended to prefix the name of the noise signals. Prefixes ‘org_’

and ‘nom_’ are already used by the simulation environment.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 16

In addition to the waveforms, the simulation environment can also apply glitches to both

power rails with its built-in glitch generator function. This function allows applying any glitch

definable by up to 4 points, see Figure 7. Figure 8 shows the glitches that can be defined with

this function.

Point 1

Point 2 Point 3

Point 4

Figure 7 Four point definable glitch

Figure 8 Example of applicable glitches on the simulation environment

The built-in glitch generation function can be used to apply glitch to both power supply nodes,

VOLTAGE_NODE and GND. Nine parameters are used for each case, two parameters to define

the time and normalised amplitude offset of each point in Figure 7 and one parameter to

define a reference time point before the glitch is applied.

For glitches to be applied in VOLTAGE_NODE, the time reference parameter is named as

DELAY_FOR_PULSE. The parameters associated to each point are named as follows:

• point 1: PULSE_START_TIME, and PULSE_START_VALUE,

• point 2: PULSE_P1_TIME and PULSE_P1_VALUE,

• point 3: PULSE_P2_TIME and PULSE_P2_VALUE,

• point 4: PULSE_END_TIME and PULSE_END_VALUE.

All four time parameters must be defined when applying a glitch. The time values defined in

these parameters must be an incremental offset from the DELAY_FOR_PULSE parameter so that

the following condition is met:

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 17

0<= PULSE_START_TIME < PULSE_P1_TIME < PULSE_P2_TIME < PULSE_END_TIME

All four value parameters take normalised offset values. Parameters PULSE_P1_VALUE and

PULSE_P2_VALUE are mandatory. Parameters PULSE_START_VALUE and PULSE_END_VALUE are

optional. When these optional parameters are not defined, they are defaulted to 0, which is

the recommended value. Not defining any mandatory parameter would result in logging an

error message an exiting the simulation environment.

The same applies to the parameters for GND glitches. On this case, the time reference

parameter is named as GND_DELAY_FOR_PULSE. The parameters associated to each point are

named as follows:

• point 1: GND_PULSE_START_TIME, and GND_PULSE_START_VALUE,

• point 2: GND_PULSE_P1_TIME and GND_PULSE_P1_VALUE,

• point 3: GND_PULSE_P2_TIME and GND_PULSE_P2_VALUE,

• point 4: GND_PULSE_END_TIME and GND_PULSE_END_VALUE.

As explained in the report ‘Counter Simulation Results’, the closer a glitch happens to a clock

edge, the more effective it is. The following set of formulas can be used to calculate the value

of parameters DELAY_FOR_PULSE or GND_DELAY_FOR_PULSE in relation to clock edges.

For referring to the beginning of a negative-edge:

periodclocksn ×_ (1)

For referring to midway of a negative-edge:

()
2

_
fallt

periodclocksn +× (2)

For referring to the beginning of a positive-edge:

()
2

_
period

periodclocksn +× (3)

and for referring to midway of a positive-edge:

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 18

()
22

_
risetperiod

periodclocksn ++× (4)

where period represents clock period time, i.e. 1/frequency, n_clocks is the clock cycle

number to act as a reference for the glitch, tfall represents clock signal’s fall time and trise

represents clock signal’s rise time. The values of tfall and trise are defined by the variables

tfall and trise in the file nanosim/nanosim_deck/vtran_setup.

The parameter DELAY_FOR_PULSE is the parent parameter for glitches on VOLTAGE_NODE. If this

parameter is defined, all remaining 8 parameters are taken into account. Otherwise they are

ignored. Equally, the parameter GND_DELAY_FOR_PULSE is the parent parameter for glitches on

GND. All remaining 8 parameters are considered only if this is defined.

The simulation environment allows applying in a simulation any of the noise sources already

mentioned or a combination of them. SPICE vector operations are used to apply any of the

noise sources defined above. Figure 9 and Figure 10 show the DUT’s supply waveforms are

generated and the name of each vector as used in the simulation environment.

SPICE

Vector addition

(+)

SPICE
Vector constant

Multiplication

(*)

Glitch vector
vpulse

Power waveform
vpower_waveform

Normal supply
1

Supply voltage level
VOLTAGE

Device supply waveform
VOLTAGE_NODE

Supply Waveform Generation for

VOLTAGE_NODE

Figure 9 The DUT's supply waveform generation

SPICE

Vector addition
(+)

SPICE

Vector constant

Multiplication
(*)

GND glitch vector
vgndpulse

GND waveform
vgnd_waveform

Normal supply
0

Supply voltage level
VOLTAGE

Device supply waveform
vgnd_net!

Supply Waveform Generation for

GND

Figure 10 The DUT's GND supply generation

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 19

HSPICE design netlist files define GND as ‘0’ instead of giving it a node name. In order to

apply glitches and noise on the GND, its default definition needs to be changed with a net

name. The simulation environment parses the HSPICE netlist file to replace all the ‘0’ related

to GND with the node name vgnd_net!. This is done only the first time a design netlist file is

used within the simulation environment.

4.4 Power analysis simulation

The power analysis feature of the simulation environment is divided into two steps. The first

one is power trace generation, which is achieved by simulating the data encryption process in

Nanosim. The second step is power trace analysis, which is achieved by running a Matlab

analysis script. Figure 11 shows a diagram of the files and steps involved on performing

power analysis with the current environment. The following sub-sections discuss these steps

in more detail.

GAPASE

Nanosim

.cfg .mod.sp

GAPASE

Output

GAPASE

configuration

DUT

stimulus file

DUT HSPICE

netlist file(s)

Technology

SPICE model

Create Simulation

Files

Post-simulation for
DPA

.out

Power trace

Matrix

Matlab

.txt

Plaintexts
Key guess

partition

.txt

DOM

or
CPA

.xls

Key guess

output data

.tiff

Key guess

result

.tiff

Key guess

result 2

Figure 11 Diagram of the key guessing process

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 20

4.4.1 Power trace generation with GAPASE

The following parameters are used to configure a power analysis simulation:

CRYPT=

CLOCK=

ROUNDS=

SAMPLES=

CPU_NUMBER=

CLOCK_IN_NAME=

CRYPT_RESET=

FULL_RESET=

FORCE_NETS=

LOAD_RUN_CYCLES=

START_CRYPT=

KEY=

TARGET_KEY_BITS=

KEYREG=

DATAREG=

KEY_NET=

DATA_NET=

The parameter CRYPT defines the target cryptographic algorithm. Currently, the simulation can

only target DES modules, but this parameter allows defining future target algorithms such as

AES.

The parameter CLOCK defines the clock frequency in kHz that the target cryptographic module

will be exercised at.

The parameter ROUNDS defines the number of rounds to be simulated. Theoretically, the power

trace generated on the first (or last) round is enough to carry a DPA on a DES module. More

complex power analysis methods (e.g. second order DPA) need the power trace generated

on the first two rounds. This parameter lets you configure the amount of rounds to be

simulated and extracted.

The parameter SAMPLES defines the number of times the 64 basic plaintexts should be

encrypted. A standard implementation will need fewer samples than a secured one.

The parameter CPU_NUMBER indicates how many CPUs of the server or PC will be used to run

the simulation.

The parameter CLOCK_IN_NAME defines the cryptographic module’s clock input pin name where

the simulation environment will apply the frequency defined by the parameter CLOCK.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 21

The parameter CRYPT_RESET defines the cryptographic module’s reset input pin. The simulation

environment will create automatically the required stimulus signal for this input.

The parameter FULL_RESET defines whether the cryptographic module should be fully or

partially reset after computing a plaintext and before computing the next one. Full reset

implies forcing all registers and nets to a reset status. Partial reset implies forcing only

registers to a reset status. KEY and DATA registers are excluded from this later case. If this

parameter is left blank or a wrong value is entered, the parameter would be defaulted to YES

and a warning message will be logged.

The parameter FORCE_NETS defines whether the input or output of KEY, DATA and START_CRYPT

registers should be forced at the beginning of each plaintext encryption. If this parameter is

left blank or a wrong value is entered, the parameter would be defaulted to INPUT and a

warning message will be logged.

The parameter LOAD_RUN_CYCLES determines whether KEY and DATA load operation should

happen in the same clock cycle the encryption is launched or not. If the same cycle is used,

KEY, DATA and START_CRYPT registers are forced to their right value within the same clock

cycle. If different cycles are used, KEY and DATA registers are forced to their right value

within one same clock cycle, and the register START_CRYPT is forced on the next clock cycle. If

this parameter is left blank or a wrong value is entered, the parameter would be defaulted to

DIFFERENT and a warning message will be logged.

The parameter START_CRYPT defines the name of the register that triggers the encryption

process. This register is forced to logic 1 by the simulation environment at the beginning of

each encryption.

The parameter KEY defines the encryption key value to be used in the current simulations. The

key is introduced in hexadecimal, 8 bytes long for DES cryptographic modules.

The parameter TARGET_KEY_BITS identifies the target SBOX. The simulation environment uses

this parameter to identify the position of the DATA and KEY bits associated to each SBOX.

Currently only SBOX_1 can be targeted.

The parameter KEYREG indicates the name given to the register set used to store the key. The

simulation environment will parse the DUT’s SPICE netlist to look for these registers to

identify their input/output net names. Alternatively, the parameter KEY_NET can be filled with

each key registers' input and output nets' name.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 22

The parameter DATAREG indicates the name given to the register set used to store the data

(plaintext or cipher). Again, the simulation environment will parse the DUT’s SPICE netlist to

look for these registers to identify their input/output net names. Alternatively, the parameter

DATA_NET can be filled with each key registers' input and output nets' name.

Unless otherwise specified, all parameters are mandatory. Missing any mandatory parameter

will result on logging an error and aborting the simulation.

4.4.1.1 Issues and solutions to a DES module’s simulation

A common approach on some power analysis setups is to simulate only the required

minimum block to perform power analysis, see Figure 12. The GAPASE’s power analysis

feature, however, has been designed to simulate the whole cryptographic module. The main

benefit of simulating the required minimum block is the simulation performance, as power

traces will be generated faster than simulating the whole module. Simulating the whole

module, however, brings other benefits, such as testing the cryptographic module as it is,

without taking away any of its components. It also enables easily targeting any SBOX or

testing countermeasures other than those applied to the SBOXes. For example dummy

cycles.

+

Plain text

Cipher

Key

SBOX-1

Figure 12 The minimum required circuitry to test a DES cryptographic block’s
sensitivity to power analysis

The main drawback of simulating the whole cryptographic module is performance. The

performance suffers not only due to the need of simulating the whole cryptographic module’s

behaviour, but also by the need to initialise the DES module for each encryption with the right

set of key and plaintext values.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 23

Since only the first or first two rounds are needed to perform a power analysis, GAPASE only

simulates the first few rounds (defined in ROUNDS). After simulating the defined amount of

rounds, the cryptographic module is reset before moving onto the next plaintext encryption.

As a result of halting the encryption process, the value left on the key register is no longer

valid and needs to be updated.

Since the DES modules to be used in GAPASE have an 8-bit I/O interface, setting the key

and plaintext for each encryption requires 16 clock cycles, 8 for setting the key and 8 for

setting the plaintext. Launching the encryption would require an additional clock cycle. In

other words, generating a 2-round (i.e. clock cycle) power trace requires the simulation of 19

clock cycles, of which only the last two produce valid data. This represents 10.52% of the

whole simulation. This is even worse for the case of generating only a 1-round power trace,

as only 1 out of 18 clock cycles produces valid data, 5.55% of the whole simulation.

GAPASE cuts short the simulation time required to initialise the DES module for each

encryption by forcing the input or output nets of key and plaintext registers as well as the

register that launches the encryption process to the desired value. For this purpose, Nanosim

force and release commands are used. As described above, the parameter FORCE_NETS

defines whether the input or output nets will be forced. Key and plaintext register input or

output nets are forced at the same time and released at the same time too. The inputs or

output of the register that launches the encryption, START_CRYPT, can be forced and released

together with key and plaintext registers or on the next clock cycle to these registers. This is

specified by the parameter LOAD_RUN_CYCLES. Figure 13 shows, in relation to the clock signal,

the case where the input nets of plaintext, key and START_CRYPT registers are forced and

released on the same cycle on a 2-round simulation. Figure 14 shows the case where the

output nets are forced.

With this approach, the DES module could be initialised and an encryption launched within

the same clock cycle. As a result, 100% of the simulation time would produce a valid power

trace. Alternatively, the key and plaintext registers could be initialised one clock cycle before

the encryption process is launched. In this case, between 66% and 50% of the simulation

time would produce a valid power trace depending on the amount of simulated rounds, two or

one.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 24

�#�

��+�

��*

�����������

$��F�

E�	�A���A

����C �

E�	�A���A

%!')��, %!')��-

Figure 13 Plaintext and key input nets force release times on a 2-round simulation

�#�

����C �

��A	�A���A

$��F�

��A	�A���A

%!')��, %!')��-

��+�

��*

�����������

Figure 14 Plaintext and key output nets force and release times on a 2-round
simulation

4.4.1.2 Power analysis simulation process

Once the simulation is configured by filling in the simulation.cfg file and launched, the

simulation environment follows the next process. As shown in Figure 6, the simulation

environment checks first that all mandatory parameters are defined. If any of these is missing

or wrong, GAPASE would abort the simulation. If all parameters are OK, GAPASE would

follow into creating the required files for the simulation.

All three simulation types create two stimulus and a Nanosim simulation configuration files:

• stimulis_nom.spi: this is the parent Nanosim configuration file. It defines the

model library and the library calls to be used in the current simulation. It also points at

the DUT netlist file and its stimulus file, var_stim.sp, see Appendix A for an

example. The contents of this file are independent from the target simulation.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 25

• var_stim.sp: this is a simulation type dependant stimulus file. This file holds the

DUT’s input stimulus and power information. On a glitch attack, glitch parameters and

power supply waveforms are written into this file. On a power analysis simulation, this

file holds the DUT’s power supply definition and the clock signal generated based on

the parameters CLOCK_IN_NAME, CLOCK and SIMULATION_TIME. A vector named

‘not_connected_vector_only_used_for_sampling_at_tres_time_units‘

is also defined in this file. More on this vector below. See Appendix A for a sample

file.

• epic_pow.cfg: this is also a simulation type dependant stimulus file. This file

configures Nanosim for the target simulation. It defines the simulation time and print

resolutions and the sub-circuit current amplitude resolution. It also states SPICE

model accuracy to be used during the simulation. Higher accuracy models take

longer to simulate. These configuration parameters are coded within the Perl scripts

and are a common requirement to all simulation types. The power analysis simulation

also fills this file with a set of force-release statements to initialise the target DES

modules and reset them before each new encryption. More on the force-release

statements below. Again, see Appendix A for a sample Nanosim configuration file.

The DES module is reset after simulating the amount of rounds stated in the ROUNDS

parameter. Resetting the DES module using the ‘reset’ input would cost precious simulation

time as all nets and registers are set to their right voltage levels. In normal conditions, this

process would take a whole clock cycle. Repeating this process over and over throughout the

whole simulation process would have a severe impact on the simulation environment’s

performance.

Again, GAPASE cuts this time short by running first a short reset simulation of the DES

module and reporting each node’s value once it has been reset. This information is later used

by GAPASE to quickly reset the whole DES module, or part of it (depending on the parameter

FULL_RESET), with Nanosim force-release statements. These force-release statements are also

included in the epic_pow.cfg file.

There is one last aspect that needs to be considered before launching the Nanosim

simulation. Nanosim is an event driven simulation tool, and hence it only prints to the output

file the value of a net when it changes instead of its value at every sampling time. This output

approach might well be more time efficient than writing the net value for every sampling time

and will result on smaller output files.

The power analysis process in Matlab, on the other hand, needs the current consumption

value at every sample time, plus all power traces should be of the same length, i.e. same

amount of samples. There are two possible ways of achieving this objective. One alternative

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 26

is letting Nanosim run as normal and converting at the post-simulation stage the event driven

output into a time driven one. This alternative might produce a better simulation performance

at the expense of making the post-simulation step more complex.

The other alternative, and the one used by GAPASE is creating an unconnected SPICE

vector that changes its value on every sampling time. This alternative makes the post-

simulation step easier by providing a time stamp at which a current value should be provided.

If at any given time stamp or sample time the current consumption value is not provided, the

previous value is copied. The unconnected net name used by GAPASE is

not_connected_vector_only_used_for_sampling_at_tres_time_units and it is

located in the var_stim.sp file.

Once all the required files are created, the Nanosim simulation is launched. After finishing the

simulation, the post-simulation step is started. Here the simulation output file(s) is parsed to

extract only the power trace related to each encryption. All the information is then formatted

as a matrix and stored into a file, where each row represents a power trace and each column

represents a current sample.

4.4.2 Power trace analysis in Matlab

The power trace analysis step takes the output file generated on the simulation step, the key

guess partitioning data and the plaintexts used in the simulation step. Two analyses can be

carried on the generated power traces, difference-of-means (DOM) and correlation power

analysis (CPA). Each analysis technique needs its own key guess partition data. The

plaintexts must be in the same order as they were encrypted in the simulation step. Currently,

GAPASE only targets the SBOX_1; hence, the power traces can only leak the 6 key bits

associated to this SBOX.

DOM guesses a single key-bit at a time. Guessing all 6 key bits implies generating the key

guess partition data and analysing the power traces for each target key bit. The DOM analysis

script used in this environment is based on the Matlab script written by Andrew Burnside for

his research.

CPA guesses multiple key bits at a time, typically all the input bits of the target SBOX. The

CPA analysis script used in this environment has been written by me from scratch.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 27

On either analysis, the analysis results are stored into an Excel file and two image files. One

image shows the key with highest probability of a correct guess. The other image shows

where in time it happens with the highest probability.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 28

5 Simulation environment validation and results

This simulation environment needed to be validated before being used as a part of the design

flow. The validation was divided into two parts, glitch and DPA. Glitch attack validation was

achieved by testing the same design with the simulation environment and on silicon. DPA

validation was achieved by testing two different DES modules with GAPASE; one a standard

implementation with no countermeasures and the other one using countermeasures.

5.1 Glitch attack validation

The same counter circuit tested in SimEnvTech2 was used to validate the glitch attack feature

of GAPASE. This counter was instantiated in the Tartalo (01OKA) test chip, covered in

LaserTech1, and tested for a range of glitches of different amplitude and widths. The circuit’s

response to some of these glitches was also simulated on an updated version of GAPASE.

Figure 15 shows a diagram of the test counter.

Figure 15 Counter

For test simplicity, in both cases (simulation and silicon test), the counter circuit was powered

through a voltage regulator subjected to a load, as shown in Figure 16. The voltage regulator

used in the validation process is the low security one used in the glitch detector

characterisation process, GlitchTech1. The voltage regulator was subjected to a fixed 80

ohms resistive load and a 2.2nF capacitive load.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 29

Voltage regulator

Counter

Variable

load

Vcc (external

supply)

Vdd (internal supply)

Load

control

Control

signals
Output

Figure 16 Setup for Glitch Attack validation

5.1.1 Silicon test

The glitch detector characterisation setup covered in the report GlitchTech1 was also used in

the glitch attack validation process. Figure 17 shows a diagram of the setup used for the

silicon test. The test environment was also configured and controlled by the same application,

VGlitch nenagi 4.14. Figure 18 shows this application set to test the counter circuit (Tartalo

test type option), which allows defining different load and glitch parameters.

The counter used in the validation was instantiated in the test-chip 01OKA (a.k.a. Tartalo) and

the voltage regulator and load were instantiated in the test-chip 01VGA (a.k.a. Arrano). The

voltage regulator in 01VGA powered both, the load and the counter as shown in Figure 17.

The pulse generator HP81110A was connected to the voltage regulator’s Vcc input and used

to power and apply glitches to both test-chips.

The front-end application configured the pulse generator to apply glitches of different

amplitudes and widths. Once the pulse generator was setup, the test control was transferred

to the ‘Test control IP’ instantiated in the Smart Card Emulation Board. This IP set the load

and controlled the counter’s stimulus. After triggering a glitch attack, the ‘Test control IP’

monitored the counter’s output and recorded the errors, which were later logged by the front-

end application. Refer to the GlitchTech1 report for more details on the front-end application,

the HP 81110A pulse generator, the MP300 device, the Voyager System (Smart Card

Emulation Board) and the test board.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 30

Figure 17 Counter circuit's silicon test setup

Figure 18 Silicon test front-end

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 31

Sixteen different glitch configurations were applied to the test board over a base supply power

of 3V, all positive square glitches. Each glitch configuration was repeated 20 times whilst the

counter was holding data (i.e. not counting) and whilst counting. The voltage regulator was

subjected to a constant high load. This test was repeated with 4 different 01OKA test-chips.

Test results whilst counting are shown in Table 1. Test results whilst holding data are shown

in Table 2.

Table 1 Number of error injections whilst counting

Glitch width (ns) Test-chip Glitch

amplitude (V) 20 100 200 300

17 0 2 2 2

15 0 4 2 2

12 0 0 0 1

oka01

9 0 0 0 0

17 20 20 20 20

15 20 20 20 20

12 20 20 20 20

oka04

9 20 20 20 20

17 0 2 0 2

15 0 0 0 0

12 0 0 0 0

oka07

9 0 0 0 0

17 0 4 3 6

15 0 2 3 3

12 0 7 2 0

oka08

9 0 0 0 0

The most common kind of error injection whilst counting was temporarily stopping the

increment process. The oka04 showed an unusual amount of errors that could be explained

by a faulty device or test setup. No glitch attack injected errors whilst holding data.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 32

Table 2 Number of error injections whilst holding

Glitch width (ns) Test-chip Glitch

amplitude (V) 20 100 200 300

17 0 0 0 0

15 0 0 0 0

12 0 0 0 0

oka01

9 0 0 0 0

17 0 0 0 0

15 0 0 0 0

12 0 0 0 0

oka04

9 0 0 0 0

17 0 0 0 0

15 0 0 0 0

12 0 0 0 0

oka07

9 0 0 0 0

17 0 0 0 0

15 0 0 0 0

12 0 0 0 0

oka08

9 0 0 0 0

5.1.2 Glitch attack simulations

For the simulation case, the latest simulation environment version was used, which enables

higher accuracy simulations and solves the leakage simulation issue highlighted in the report

SimEnvTech1.

Five different glitches were simulated:

• -1V amplitude and 100ns wide (not used with silicon test);

• -1V amplitude and 200ns wide (not used with silicon test);

• 12V amplitude and 20ns wide;

• 15V amplitude and 100ns wide; and

• 15V amplitude and 200ns wide

For each of these glitch configurations, the following simulations were run:

• Holding data

• Counting data:

o When counter value was 0x03

o When counter value was 0x10

o When counter value was 0x3E

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 33

These simulations were run by applying a glitch to the Vcc pin of the validation setup shown

in Figure 16 and by applying a glitch waveform to the Vdd pin of the validation setup. In the

latter case, the applied Vdd waveform was a previously simulated response of the voltage

regulator to the same or similar glitch.

For most cases, all simulations run fine. Only few simulations failed when a glitch was applied

to Vcc due to a simulated malfunction of the voltage regulator’s band-gap. The simulation

results, Table 3, show that simulated glitch attacks have a similar response to silicon attack

whilst holding a data. For glitch attacks whilst counting, the simulated attacks also produce a

similar behaviour, indicating the need of a big pulse to inject any error to the test circuit in

question. Other circuits might need less severe glitches to be affected by a glitch.

Table 3 Results of the glitch attack validation simulations

Glitch Simulation type Injected error

holding No error injection

counting – 0x03 No error injection

counting – 0x10 No error injection
-1V, 100ns

counting – 0x3E No error injection

holding No error injection

counting – 0x03 No error injection

counting – 0x10 No error injection
-1V, 200ns

counting – 0x3E No error injection

holding No error injection

counting – 0x03 No error injection

counting – 0x10 Counter reset
12V, 20ns

counting – 0x3E Counter reset

holding No error injection

counting – 0x03 Count delayed by 1 clock cycle

counting – 0x10 Count delayed by 1 clock cycle
15V, 100ns

counting – 0x3E Counter reset

holding No error injection

counting – 0x03 Count delayed by 2 clock cycles

counting – 0x10 Count delayed by 2 clock cycles
15V, 200ns

counting – 0x3E Count delayed by 2 clock cycles

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 34

5.2 Power analysis validation

For validation purposes, two different DES modules were tested with the simulation

environment:

• DES-A, a standard implementation of a DES module without countermeasures; and

• DES-B, a DES implementation with S-BOXes protected against power analysis.

Several power analysis simulations were run on both DES implementations. Common

simulation parameters were:

• Full DES implementation

• HSPICE CMOS netlist

• No parasitic netlist

• 0.18um technology node SPICE model

• Target SBOX-1

• Two rounds simulated per power trace

• DES module fully reset between plaintext encryptions

• Force the registers’ input nets

• Different load and run cycles

Simulation variables were:

• encryption key, randomly chosen

• simulation accuracy

• plaintexts, set manually and randomly

All power traces were analysed with DOM and CPA analysis methods, see Appendix C for the

Matlab power analysis scripts. Table 4 shows the results for each simulation case and Figure

19 to Figure 32 show the graphical results of few of these power analyses.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 35

Table 4 DES validation simulation parameters and results

Simulation
ID

DES
module

Key
Full
key

Plaintexts
DES clock

(MHz)
Simulation accuracy settings

Samples
per trace

Simulation
time

DOM CPA

desa_64_1 50

set_print_tres 0.001ns
set_sim_tres 0.001ns
set_ckt_subi 0.0001nA
set_sim_ires 0.0001nA
set_sim_eou sim=2 model=2 net=2

30000 13h12m37s � �

desa_64_2 10

set_print_tres 2ns
set_sim_tres 2ns
set_ckt_subi 0.1nA
set_sim_ires 0.1nA
set_sim_eou sim=2 model=2 net=2

75 26m43s � �

desa_64_3 50

set_print_tres 0.01ns
set_sim_tres 0.01ns
set_ckt_subi 0.001nA
set_sim_ires 0.001nA
set_sim_eou sim=2 model=2 net=2

3000 6h12m44s � �

desa_64_4

2E3A44BB4248D774 YES 64
1

50

set_print_tres 0.4ns
set_sim_tres 0.4ns
set_ckt_subi 0.1nA
set_sim_ires 0.1nA
set_sim_eou sim=2 model=2 net=2

75 16m09s � �

desa_64_5 940AEBA0604CF479 YES 64
1
 50

set_print_tres 0.01ns
set_sim_tres 0.01ns
set_ckt_subi 0.001nA
set_sim_ires 0.001nA
set_sim_eou sim=2 model=2 net=2

3000 4h58m31s � �

desa_64_6

DES-A

83373F5D2CF55BC8 YES 64
1
 50

set_print_tres 0.01ns
set_sim_tres 0.01ns
set_ckt_subi 0.001nA
set_sim_ires 0.001nA
set_sim_eou sim=2 model=2 net=2

3000 5h29m12s � �

desb_64_1 DES-B 2E3A44BB4248D774 YES 64
1
 50

set_print_tres 0.01ns
set_sim_tres 0.01ns
set_ckt_subi 0.001nA
set_sim_ires 0.001nA
set_sim_eou sim=2 model=2 net=2

3000 14h10m57s � �

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 36

Simulation
ID

DES
module

Key
Full
key

Plaintexts
DES clock

(MHz)
Simulation accuracy settings

Samples
per trace

Simulation
time

DOM CPA

desb_256_1 256
2
 50

set_print_tres 0.01ns
set_sim_tres 0.01ns
set_ckt_subi 0.001nA
set_sim_ires 0.001nA

3000
2d1h15m11

s

desb_256_2 256
2
 50

set_print_tres 0.01ns
set_sim_tres 0.01ns
set_ckt_subi 0.001nA
set_sim_ires 0.001nA

3000
2d1h11m49

s

desb_256_3 256
2
 50

set_print_tres 0.01ns
set_sim_tres 0.01ns
set_ckt_subi 0.001nA
set_sim_ires 0.001nA

3000
2d2h53m44

s

desb_256_4

2E3A44BB4248D774 YES

256
2
 50

set_print_tres 0.01ns
set_sim_tres 0.01ns
set_ckt_subi 0.001nA
set_sim_ires 0.001nA

3000
2d1h28m57

s

�3 �3

desb_250_1 250
4
 50

set_print_tres 0.01ns
set_sim_tres 0.01ns
set_ckt_subi 0.001nA
set_sim_ires 0.001nA

3000
2d2h32m17

s

desb_256_2 250
4
 50

set_print_tres 0.01ns
set_sim_tres 0.01ns
set_ckt_subi 0.001nA
set_sim_ires 0.001nA

3000
2d0h25m49

s

desb_256_3 250
4
 50

set_print_tres 0.01ns
set_sim_tres 0.01ns
set_ckt_subi 0.001nA
set_sim_ires 0.001nA

3000
2d0h39m48

s

desb_256_4

DES-B

0000000040008010 NO

250
4
 50

set_print_tres 0.01ns
set_sim_tres 0.01ns
set_ckt_subi 0.001nA
set_sim_ires 0.001nA

3000
2d0h12m26

s

�5 �5

Note 1: Manually selected plaintexts to exercise only the target SBOX
Note 2: Randomly generated 1024 plaintexts split in four simulations
Note 3: Power analysis run over the 1024 power traces
Note 4: Randomly generated 1000 plaintexts split in four simulations
Note 5: Power trace analysis run over the 1000 power traces

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 37

Figure 19 CPA results for simulation desa_64_1. Right key 14, correlation value 0.6204

Figure 20 DPA results for simulation desa_64_1. Right key 14, correlation value 0.9404

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 38

Figure 21 CPA results for simulation desa_64_3. Right key 14, correlation value 0.5972

Figure 22 DPA results for simulation desa_64_3. Right key 14, correlation value 0.8695

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 39

Figure 23 CPA results for simulation desa_64_4. Right key 14, correlation value 0.0901

Figure 24 DPA results for simulation desa_64_4. Right key 14, correlation value -0.2112

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 40

Figure 25 CPA results for simulation desa_64_5. Right key 32, correlation value 0.6168

Figure 26 DPA results for simulation desa_64_5. Right key 32, correlation value 2.016

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 41

Figure 27 CPA results for simulations desb_256_1 to desb_256_4. Right key 14,
correlation value 0.1484

Figure 28 DPA results for simulations desb_256_1 to desb_256_4. Right key 14,
correlation value 0.1567

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 42

Figure 29 CPA results for simulations desb_256_1 to desb_250_4, 2048 plaintexts

Figure 30 The right key's power trace correlation in time (blue) with the wrong keys’
power trace correlation boundaries (black)

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 43

Figure 31 CPA results for simulation desa_64_5. Power traces down sampled from
3000 samples to 50 samples. Right key 32, correlation value 0.5418

Figure 32 CPA results for simulation desa_64_5. Power traces down sampled from
3000 samples to 25 samples. Right key 32, correlation value 0.5418

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 44

5.3 Discussion on Validation Results

They key difference between the former, SimEnvTech2, and current glitch attack simulations

is the simulation accuracy defined by GAPASE. Prior glitch attack simulations were run with

lower simulation accuracy and on an older GAPASE version than the ones run during the

validation process. Low simulation accuracy resulted on a poor model of the transistor’s

leakage behaviour and the need for glitches far more aggressive than real ones, to actually

inject a fault.

With the current GAPASE, simulation results are more in tune with real glitch attacks. In fact,

comparing them with silicon tests, simulated glitch attacks are shown to be even more

sensitive, which could be in part due to the higher controllability on simulations. 15V glitches

were capable of injecting similar errors with simulation and two of the silicon devices. One of

the other two devices, oka07, withstood the 15V glitch attacks, whereas the other one, oka04,

failed all tests, which could be due to test setup errors.

Silicon and simulation tests also proved that a glitch affects combinational blocks directly but

not non-combinational or storage blocks. Furthermore, they also show that a clock’s

positive/negative-edges are the better point to apply these glitches.

GAPASE is also capable of simulating negative glitches and glitches on GND. These glitches

were not tested with silicon devices due to setup limitations. However, by extrapolating the

positive glitch results, a -1V glitch attacks on the Vcc is likely not inject any error.

Focusing on the simulations in more detail, simulating the voltage regulator’s behaviour is as

important as setting the right simulation accuracy. However, simulating the voltage regulator’s

response to a glitch attack is not only time consuming, but under certain circumstances

simulations can also fail to converge. GAPASE works around these two issues by defining

waveforms vpower_waveform and vgnd_waveform and applying them to Vdd! (instead of Vcc)

and GND respectively. These waveforms might be a previously simulated Vdd! and/or GND

response to a glitch. This feature allows reducing the simulation time from around 6 and a half

minutes down to just over 1 minute (about 16.5% of the original simulation time). Bigger

circuitry simulations could yield similar time savings, although this extreme has not been

tested.

Regarding the DPA feature, GAPASE is a valid tool for guessing the encryption key of DES

implementations with no countermeasures, a.k.a. vanilla implementations. The theoretical

minimum 64 plaintexts were enough to guess the key bits associated to the SBOX1 on two

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 45

cases (encryption keys 2E3A44BB4248D774 and 940AEBA0604CF479), but failed on a third

case (encryption keys 83373F5D2CF55BC8). The failed case needs further research to

understand why. One significant aspect of the later key is that the key bits associated to the

SBOX1 in the first round are logic zero. This could be a particular case where the analysis

fails, or just a coincidence.

Other reasons that could explain the failed guess might be related to:

• the need for more plaintext encryptions for these special cases. On such case, the

recommended minimum amount of plaintexts would be higher than the theoretical 64

ones;

• the need for a higher simulation time resolution and/or higher SPICE model accuracy;

or

• improvements needed on the power analysis algorithm.

Nanosim parameters ‘set_sim_tres’ and ‘set_print_tres’ define a simulation’s time and

print resolutions respectively, and the parameter ‘set_sim_eou’ defines the Nanosim

simulation engine’s and SPICE model’s accuracy. GAPASE sets the first two parameters to

the same value; the later one is set to the default value. Setting it to a higher value (e.g.

‘set_sim_eou sim=3 model=3 net=2’) would yield more accurate simulations but it would

also take longer to simulate.

With the current accuracy setting, Nanosim is capable of running the encryption process with

a simulation time resolution of 2ns (desa_64_2); however, this resolution is not enough to

carry a successful power analysis with GAPASE. The same applies when defining a

simulation time resolution of 0.4ns (desa_64_4).

Analysing the power traces of desa_64_3, computing a round takes around 5ns. With a

simulation and print resolution of 1ps, ‘desa_64_1’ defined these critical 5ns with 5000

sample points. With a simulation and print resolution of 10ps, ‘desa_64_3’ defined 500

sample points. With a simulation and print resolution of 400ps, ‘desa_64_4’ defined 12

sample points. Finally, with a simulation and print resolution 2ns, ‘desa_64_2’ defined only 2

sample points. Only the former two simulations guessed the encryption key correctly.

Figure 33 shows the power traces of the simulations ‘desa_64_2’, ‘desa_64_3’ and

‘desa_64_4’. While ‘desa_64_3’ yields power traces with enough differences to guess the

encryption key, simulation ‘desa_64_4’ yields mostly identical power traces, except for few

ones, and simulation ‘desa_64_2’ yields 64 identical power traces, this is the reason why the

power analysis failed.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 46

Figure 33 Power traces of desa_64_2, desa_64_3 and des1_64_4

Figure 34 Power traces desa_64_5 down sampled to 300, 75 and 25 samples per trace

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 47

These power traces and power analysis results indicate that there is a minimum simulation

time resolution to succeed with the power analysis, any resolution lower than that would

minimise the chances of success. Although not tested, a simulation time resolution of 0.1ns or

0.05ns could be enough to achieve power analysis, yielding 50 and 100 samples respectively

for the meaningful 5ns. Reducing the simulation time resolution from 10ps to 50ps or 100ps

will improve on the simulation performance.

On the other hand, the power traces can be down sampled and yet guess the key correctly.

This is the case shown in Figure 31 and Figure 32, where the power traces of the simulation

‘desa_64_5’ have been down sampled from 3000 samples to 50 and 25 samples respectively

and yet the right key was guessed. Down sampling the power traces reduces the correlation

coefficient of all key guesses, so down sampling should be used with care. Figure 34 shows

the actual power traces when ‘desa_64_5’ is down sampled to 300, 50 and 25 samples. On

each case, an encryption round is identified with 50, 8 and 4 samples, not far from the amount

of samples defined by ‘desa_64_2’ and ‘desa_64_4’ yet with significantly different results.

This means that the simulation time resolution parameter, ‘set_sim_tres’, has tighter

restrictions than the print time resolution parameter, ‘set_print_tres’, so that

‘set_sim_tres’ > ‘set_print_tres’. Furthermore a lower ‘set_print_tres’ implies fewer

write accesses to the hard drive, and hence, less time to simulate.

As for the DES-B module, the power analysis was run over 64, 1000, 1024 and 2024

plaintexts without any success. Some reasons that could explain the failure could be:

• the need to simulate parasitic information with certain countermeasures, such as this

one;

• the need for a higher amount of plaintexts; and or

• DES-B being secure against DPA/CPA analysis and requiring a different analysis

algorithm or method, e.g. electromagnetic analysis (EMA).

Simulating the parasitic information decreases the simulation performance severely, plus it

would need setting the parameter ‘set_sim_eou’ to ‘set_sim_eou sim=3 model=3 net=2’,

which would further decrease the simulation’s performance. Considering that simulating 1024

plaintexts took 2 days using 4 CPU cores, simulating the parasitic information might not be

feasible. Simulating more plaintexts might also not be feasible, as simulating, say, 10000

plaintexts using 4 CPU cores could take around 20 days, a long wait in the design flow.

The practicality of a power analysis simulation tool is measured by the combination of

simulation accuracy and the time required for performing the power analysis. So much so that

it can be a key factor when determining its feasibility as a production power analysis tool.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 48

Encrypting 64 plaintexts with a silicon implementation of a DES module running at 50MHz

takes under a second, and running enough encryptions to guess the SBOX1 key bits of a

vanilla DES would take few a minutes. Running the same operation on a DES module within

a Smart Card takes longer due to the communication overhead and the noise generated by

the additional logic switching.

Simulating the DES module in GAPASE does not have the Smart Card communication

overhead. Still, simulating the first two rounds of 64 plaintext encryption took around 5 hours

on a vanilla DES implementation (DES-A) and around 14 hours on a DES with a

countermeasure (DES-B). This amount of time is excessive, as a successful power analysis

on a DES with countermeasures needs the simulation of a higher number of plaintexts, which

increases the required simulation time. Furthermore, the circuit complexity of some

countermeasures could result in increasing the simulation time per round.

Here, the limitation factor of the simulation speed is given by the simulation tool, Nanosim,

and/or its configuration. As previously discussed, one approach to improve the simulation’s

performance is reducing the simulation time resolution (set_sim_tres), setting the simulation

print time (set_print_tres) to a lower number can improve it further. However, these

changes are unlikely to be enough.

A recently published work that also uses Nanosim to perform power analysis on AES, [2], also

uses high resolution settings for the simulation and current values. This work does not make

any reference to the simulation time, although it can be deduced that simulation times are

manageable. The key difference between the resolutions used by GAPASE and [2] is the

resolution of the current consumption, as both define the same simulation time resolution,

10ps.

Where GAPASE defines a current resolution of 1pA, the simulation environment in [2] defines

a 1uA, a 10
6
 times less accurate unit. This clearly indicates that the current settings of the

parameters ‘set_ckt_subi’ and ‘set_sim_ires’ are overkill for the performance of Nanosim.

Reducing the current consumption resolution will boost the simulation performance and, with

peak consumptions between 12 and 20mA and meaningful power consumption areas being

around 5mA, a current consumption setting of 1uA would yield current consumption values of

up to 4 digits, in principle enough to carry out successful power analysis. However, the gain in

performance by GAPASE needs to be quantified to determine whether this measure is

enough or further improvements are required.

GAPASE simulates the whole DES module, which is the easiest way to test several

countermeasures such as dummy cycles. The downside of this approach is the time spent

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 49

simulating circuit blocks that are not targeted by the power analysis. There are three other

approaches to speed up the simulation process within Nanosim:

• Nanosim allows setting different simulation configuration parameters to different sub-

circuits. Currently the whole design shares the same configuration parameters,

setting lower Nanosim simulation engine accuracy and, if possible, simulation time

resolution for the not targeted circuit blocks will improve the simulation performance.

• Nanosim is an RTL to transistor level simulation tool, allowing the co-simulation of

RTL and SPICE netlist. Simulating part of the DES module as a SPICE netlist (e.g.

SBOX1) and the rest of the design in RTL could dramatically shorten the simulation

time, however, this feature requires an additional license. This license was not

available when developing GAPASE; hence, it does not take advantage of this

feature.

• Simulating only the targeted SBOX. This approach might be the faster one, but it is

also the most limited one in terms of testable countermeasures and can set higher

requirements on the test environment itself.

Another possible line of action could be using alternative simulation tools such as

PrimePower, which is capable of generating dynamic and static power consumption

waveforms of simulations at gate and RTL levels. PrimePower would result in faster

simulation than Nanosim, although losing some accuracy, which could be balanced out with

additional plaintext simulations.

Furthermore, simulating with PrimePower would avoid the current step of generating the

SPICE netlist needed by GAPASE, making the flow simpler. Also, it would allow using simple

RTL testbenches or even the ones used during the development process as a source of

stimulus to generate the power traces for the power analysis.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 50

6 Conclusion

GAPASE provides Atmel designers with means of testing their designs against two common

attack techniques, glitch attacks and power analysis. The glitch attack feature is functional for

small and medium size circuits, and simulation results can provide clues as to how a circuit

responds to glitch attacks. Simulating big circuits could be time consuming.

Power analysis is possible with GAPASE for vanilla DES implementations but guessing the

encryption key of DES implementations with countermeasures still might not be feasible. The

power analysis feature needs improvements to boost the simulation performance to make it

more usable. The main lines of action should focus on the simulation accuracy and co-

simulating or using alternative simulation tools. These improvements and others are covered

in the next section.

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 51

7 Future work

The simulation environment needs improvements to its power analysis feature in order to be

usable within Atmel’s design flow. The changes should focus on three main fronts:

• Improve simulation performance: As previously discussed, one option of improving

the simulation speed could be setting lower current consumption simulation accuracy

for the whole design. Further performance boost can also be achieved by lowering

the simulation accuracy of non targeted circuit blocks. A higher performance

improvement could be achieved through co-simulation or using other simulation tools

such as PrimePower.

• Add new features: Two main feature implementations can be suggested. On the one

hand extending the target SBOX from the current one, SBOX1, to any one. On the

other hand enabling testing AES cryptographic algorithm implementations. This would

make the whole simulation environment more useful to Atmel for their current and

future needs.

• Improve the post-simulation analysis step: The analysis stage is currently run in

Matlab, which is limited to a single computer and license. Integrating the analysis

stage into the GAPASE script set would ease the designer’s or tester’s job.

Alternatively, the post-simulation step could format the power traces to be readable

and analysed by readily available third party power analysis tools such as RisCure
TM

.

This would allow running more complex analyses than currently available in GAPASE

and avoid instantiating analyses already available on software tools licensed to

Atmel.

No further work is planed for the glitch attack feature, although it could still benefit from the

proposed work for the power analysis feature. For example, co-simulating RTL and SPICE

netlists could enable studying how an error injected in the SPICE netlist can propagate to

other parts of the design, as well as simulating bigger designs.

�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 52

Appendix A

stimulis_nom.spi

* Define libraries

.lib './hl49at58.8kr400.mod' nonmatching

.lib './hl49at58.8kr400.mod' model_58K8

.lib './hl49at58.8kr400.mod' process_tolerances

.lib './hl49at58.8kr400.mod' techno

.lib './hl49at58.8kr400.mod' nonmc

.lib './hl49at58.8kr400.mod' mos_nom

* Include design (and design_rc if defined) netlist

.include './input/netlist/extracted/hspiceFinal'

* Include design stimulus file

.include './input/stimulus/var_stim.sp'

.end

var_stim.sp

* Define parameters

.param sup=1.6

.param temp=25

* Setup power supply

EP1 vdd! 0 poly(2) vpower_voltage 0 0 0 0 1 1

vgnd! gnd! 0 0

vvpower_voltage vpower_voltage 0 sup

ESV1 clkCpu 0 poly(2) vdd! 0 org_clkCpu 0 0 0 0 0 1

* Define input stimulus

V1 org_clkCpu 0 PWL (

+ 0.1n 0.00

+ 10n 0.00

+ 10.1n 1.00

+ 20n 1.00

+ 20.1n 0.00

+ 30n 0.00

+ 30.1n 1.00

+ 40n 1.00

+ 40.1n 0.00

+ 50n 0.00

+ 50.1n 1.00

...

+ 2470.1n 1.00

+ 2480n 1.00

+ 2480.1n 0.00

+ 2490n 0.00

+ 2490.1n 1.00

+ 2500n 1.00

+ 2500.1n 0.00

+ 2510n 0.00

+ 2510.1n 1.00

+ 2520n 1.00

+ 2520.1n 0.00

�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 53

+ 2530n 0.00

+ 2530.1n 1.00

+ 2540n 1.00

+ 2540.1n 0.00

+ 2550n 0.00

+ 2550.1n 1.00

+ 2560n 1.00

+)

V2 not_connected_vector_only_used_for_sampling_at_tres_time_units 0 PWL (

+ 0n 0.00

+ 0.01n 1.00

+ 0.02n 0.00

+ 0.03n 1.00

+ 0.04n 0.00

+ 0.05n 1.00

+ 0.06n 0.00

+ 0.07n 1.00

+ 0.08n 0.00

+ 0.09n 1.00

+ 0.1n 0.00

+ 0.11n 1.00

+ 0.12n 0.00

+ 0.13n 1.00

+ 0.14n 0.00

+ 0.15n 1.00

+ 0.16n 0.00

+ 0.17n 1.00

+ 0.18n 0.00

+ 0.19n 1.00

+ 0.2n 0.00

...

+ 2559.8n 0.00

+ 2559.81n 1.00

+ 2559.82n 0.00

+ 2559.83n 1.00

+ 2559.84n 0.00

+ 2559.85n 1.00

+ 2559.86n 0.00

+ 2559.87n 1.00

+ 2559.88n 0.00

+ 2559.89n 1.00

+ 2559.9n 0.00

+ 2559.91n 1.00

+ 2559.92n 0.00

+ 2559.93n 1.00

+ 2559.94n 0.00

+ 2559.95n 1.00

+ 2559.96n 0.00

+ 2559.97n 1.00

+ 2559.98n 0.00

+ 2559.99n 1.00

+)

epic_pow.cfg

set_print_tres 0.001ns

set_sim_tres 0.001ns

set_ckt_subi 0.0001nA

set_sim_ires 0.0001nA

set_sim_eou sim=2 model=2 net=2

print_node_i vddv16!

print_node_v clkCpu

print_node_v xkeyschedule_call.desrun

print_node_v not_connected_vector_only_used_for_sampling_at_tres_time_units

�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 54

; Force-release statements for the reset input signal

force_node_v v=0 ti=0.1n no=reset

rel_node_v no=reset ti=3840n

; Force-release statements for the data number 0

; -- Force-release statements for initialising the crypto block

force_node_v v=0.0000V ti=5n no=xcipher_call.xu87.net24

rel_node_v no=xcipher_call.xu87.net24 ti=5.1n

force_node_v v=1.6000V ti=5n no=xcipher_call.xu87.net27

rel_node_v no=xcipher_call.xu87.net27 ti=5.1n

force_node_v v=0.0000V ti=5n no=xcipher_call.xu87.net18

rel_node_v no=xcipher_call.xu87.net18 ti=5.1n

force_node_v v=1.6000V ti=5n no=xcipher_call.xu87.net26

rel_node_v no=xcipher_call.xu87.net26 ti=5.1n

force_node_v v=0.0000V ti=5n no=xcipher_call.xu85.net21

rel_node_v no=xcipher_call.xu85.net21 ti=5.1n

...

; -- 'xdesrun' force-release statements

force_node_v v=1.6 ti=25.2n no=xkeyschedule_call.n2470

force_node_v v=0 ti=25.2n no=xkeyschedule_call.n13

rel_node_v no=xkeyschedule_call.n2470 no=xkeyschedule_call.n13 ti=30.2n

; -- 'xdesreg' force-release statements

force_node_v v=0 ti=5.2n no=xcipher_call.n860

force_node_v v=0 ti=5.2n no=xcipher_call.n10

rel_node_v no=xcipher_call.n860 no=xcipher_call.n10 ti=10.1n

force_node_v v=0 ti=5.2n no=xcipher_call.n870

force_node_v v=0 ti=5.2n no=xcipher_call.n10

rel_node_v no=xcipher_call.n870 no=xcipher_call.n10 ti=10.1n

force_node_v v=0 ti=5.2n no=xcipher_call.n880

force_node_v v=0 ti=5.2n no=xcipher_call.n10

rel_node_v no=xcipher_call.n880 no=xcipher_call.n10 ti=10.1n

force_node_v v=0 ti=5.2n no=xcipher_call.n890

force_node_v v=0 ti=5.2n no=xcipher_call.n10

...

; -- 'xkeyreg' force-release statements. Target bits are 'SBOX_1'

force_node_v v=0 ti=5.2n no=xkeyschedule_call.n2070

force_node_v v=0 ti=5.2n no=xkeyschedule_call.n9

rel_node_v no=xkeyschedule_call.n2070 no=xkeyschedule_call.n9 ti=10.1n

force_node_v v=0 ti=5.2n no=xkeyschedule_call.n2080

force_node_v v=0 ti=5.2n no=xkeyschedule_call.n70

rel_node_v no=xkeyschedule_call.n2080 no=xkeyschedule_call.n70 ti=10.1n

force_node_v v=1.6 ti=5.2n no=xkeyschedule_call.n2090

force_node_v v=0 ti=5.2n no=xkeyschedule_call.n70

rel_node_v no=xkeyschedule_call.n2090 no=xkeyschedule_call.n70 ti=10.1n

...

; Force-release statements for the reset input signal

force_node_v v=0 ti=0.1n no=reset

rel_node_v no=reset ti=3840n

; Force-release statements for the data number 1

; -- Force-release statements for initialising the crypto block

force_node_v v=0.0000V ti=65n no=xcipher_call.xu87.net24

rel_node_v no=xcipher_call.xu87.net24 ti=65.1n

force_node_v v=1.6000V ti=65n no=xcipher_call.xu87.net27

rel_node_v no=xcipher_call.xu87.net27 ti=65.1n

force_node_v v=0.0000V ti=65n no=xcipher_call.xu87.net18

rel_node_v no=xcipher_call.xu87.net18 ti=65.1n

...

�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 55

Appendix B

cpa_asier.m

function cpa_asier(steam)

filename1=[steam '.out'];

message=['Running CPA on ' filename1];

disp(message)

clear message;

disp('Reading trace file')

data=load(filename1);

data_mat=size(data);

num_plaintexts = data_mat(1);

num_samples = data_mat(2);

data=data';

% Load D-function files

disp('Loading partition files')

dfnc=zeros(64,data_mat(1));

for i=1:64,

 dfncf=sprintf('Dfnc_cpa_sbox_1_k_%d.txt',i-1);

 dfnc(i,:)=dlmread(dfncf);

end

% For each key guess, correlate

correlation=zeros(64,data_mat(1));

disp('Calculating trace correlation')

for i=1:64,

 for j=1:num_samples,

 correlation_matrix= corrcoef(dfnc(i,:), data(j,:));

 key_guess(i,j) = correlation_matrix(1,2);

 end

end

% Plot and save key guess results

figure(1)

plot(key_guess)

grid on

xlabel('Key guesses')

ylabel('Power consumption correlation coefficient')

figure_title=regexprep(steam,'_',' ');

�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 56

title([figure_title ' CPA'])

print('-f1','-dtiff','-r600',[steam '_correlation_guess.tiff'])

figure(2)

plot(key_guess')

grid on

xlabel('Time samples')

ylabel('Correlation coefficient')

title([figure_title ' CPA 2'])

print('-f2','-dtiff','-r600',[steam '_correlation_guess_2.tiff'])

save([steam '_key_guess.mat'], 'key_guess', '-mat');

disp('Storing results an Excel file')

xlswrite([steam '_correlation.xls'],key_guess')

disp('finished');

dpa_asier.m

function dpa_asier(steam)

filename1=[steam '.out'];

message=['Running DPA on ' filename1];

disp(message)

clear message;

disp('Reading trace file...')

tic;

data=load(filename1);

data_mat=size(data);

num_plaintexts = data_mat(1);

num_samples = data_mat(2);

t=toc;

total_time=t;

message=sprintf('... trace loaded in %d seconds',t);

disp(message)

clear message;

% For each key

for i=1:64,

 message=sprintf('Generating key guess %d',i);

 disp(message)

�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 57

 clear message;

 tic;

 numZero=zeros(1,64);

 numOnes=zeros(1,64);

 % Load the D function of the current key

 dfnc=zeros(1,num_plaintexts);

 dfncf=sprintf('Dfnc_dom_bit_1_sbox_1_k_%d.txt',i-1);

 dfnc(1,:)=dlmread(dfncf);

 % Group each input data's trace into zeros or ones

 for j=1:num_plaintexts,

 if(dfnc(1,j)==0)

 numZero(i)=numZero(i)+1;

 tempzeros(numZero(i),:)=data(j,:);

 else

 numOnes(i)=numOnes(i)+1;

 tempones(numOnes(i),:)=data(j,:);

 end

 end

 % Prepare the data for the DPA

 mean_ones = mean(tempones);

 mean_zeros = mean(tempzeros);

 % var (X,1) already normalises by N so don't do that again

here/numZero(i);

 varzero_norm=var(tempzeros,1);

 varones_norm=var(tempones,1);% see above comment /numOnes(i);

 normDPA=zeros(1,num_samples);

 BevanDPA=zeros(1,num_samples);

 GoubinDPA=zeros(1,num_samples);

 % Free some memory

 clear tempones;

 clear tempzeros;

 clear numOnes;

 clear numZero;

 % Do normal DPA

 normDPA = mean_ones - mean_zeros;

 % Do Bevan DPA

 temp_numerator=mean_ones-mean_zeros;

 temp_denominator=(varones_norm+varzero_norm).^0.5;

�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 58

 BevanDPA=temp_numerator./temp_denominator;

 % Free some memory

 clear varzero_norm;

 clear varones_norm;

 clear temp_numerator;

 clear temp_denominator;

 clear mean_ones;

 clear mean_zeros;

 % Save current key guess results

 file_name=sprintf('%s_normDPA_%d.mat',steam,i);

 save(file_name, 'normDPA', '-mat');

 file_name=sprintf('%s_BevanDPA_%d.mat',steam,i);

 save(file_name, 'BevanDPA', '-mat');

 % Free some memory

 clear normDPA;

 clear BevanDPA;

 clear j;

 t=toc;

 total_time=total_time + t;

 message=sprintf('... key guess %d calculated in %d seconds',i,t);

 disp(message)

 clear message;

end

% Perform a statistical difference between the recently calculated waveforms

% and the general mean waveform. Store the results.

% Save and plot the results.

%normDPA

disp('Saving normal DPA data')

tic;

normDPA=zeros(64,data_mat(2));

for i=1:64,

 file_name=sprintf('%s_normDPA_%d.mat',steam,i)

 load(file_name);

 normDPA_final(i,:)=normDPA;

 clear normDPA;

�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 59

end

figure(1)

plot(normDPA_final)

grid on

xlabel('Key guesses')

ylabel('Means difference')

figure_title=regexprep(steam,'_',' ');

title([figure_title ' Normal DPA'])

print('-f1','-dtiff','-r600',[steam '_DOM_normal_guess.tiff'])

figure(2)

plot(normDPA_final')

grid on

xlabel('Time samples')

ylabel('Normalised power consumption')

figure_title=regexprep(steam,'_',' ');

title([figure_title ' Normal DPA 2'])

print('-f2','-dtiff','-r600',[steam '_DOM_normal_guess_2.tiff'])

file_name=sprintf('%s_DOM_normal_guess.mat',steam)

save(file_name, 'normDPA_final', '-mat');

xlswrite([filename1 '_normDPA.xls'],normDPA_final')

clear normDPA_final;

%modifiedDPA

disp('Saving Bevan DPA data')

BevanDPA=zeros(64,data_mat(2));

for i=1:64,

 file_name=sprintf('%s_BevanDPA_%d.mat',steam,i)

 load(file_name);

 BevanDPA_final(i,:)=BevanDPA;

 clear BevanDPA;

end

figure(3)

plot(BevanDPA_final)

grid on

xlabel('Key guesses')

ylabel('Means difference')

figure_title=regexprep(steam,'_',' ');

title([figure_title ' Bevan DPA'])

print('-f3','-dtiff','-r600',[steam '_DOM_Bevan_guess.tiff'])

�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 60

figure(3)

plot(-BevanDPA_final,'black')

grid on

xlabel('Key guesses')

ylabel('Means difference')

%axis([1 64 -1 1])

figure_title=regexprep(steam,'_',' ');

title([figure_title ' Bevan DPA'])

print('-f3','-dtiff','-r600',[steam '_DOM_Bevan_guess_bw.tiff'])

figure(4)

plot(BevanDPA_final')

grid on

xlabel('Time samples')

ylabel('Normalised power consumption')

figure_title=regexprep(steam,'_',' ');

title([figure_title ' Bevan DPA 2'])

print('-f4','-dtiff','-r600',[steam '_DOM_Bevan_guess_2.tiff'])

file_name=sprintf('%s_DOM_Bevan_guess.mat',steam)

save(file_name, 'BevanDPA_final', '-mat');

xlswrite([filename1 '_BevanDPA.xls'],BevanDPA_final')

clear BevanDPA_final;

t=toc;

total_time=total_time + t;

message=sprintf('Running DPA on %s took %d seconds',filename1,total_time);

disp(message)

clear message;

disp('finished');

�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech1 61

References

1. Kocher, P., J. Jaffe, and B. Jun. Differential Power Analysis. in CRYPTO. 1999:
LNCS 1666.

2. F. Regazzoni et al., “Evaluating Resistance of MCML Technology to Power Analysis

Attacks” in Transaction on Computational Science IV, LNCS 5430, Springer-Verlag,

pp. 230-243, 2009

Engineering Doctorate

Simulation results of pulses applied to a counter’s
power signal

Author: Asier Goikoetxea Yanci

Date: January 2005

Sponsored by:

���������	�AB�ABC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 63

Table of Contents

Chapter 1 – Introduction ___64

Chapter 2 – Effects of a pulse ___66

What is the expected behaviour/effect of applying a pulse on the power supply? ___________66

When should this attack be applied? When is it most effective?_________________________68

Chapter 3 – Simulation results___69

Pulses used for the simulation __69

Simulation outputs__69

Normal behaviour ___70

Pulse 1 __70

Analysis ___71

Pulse 2 __77

Analysis ___78

Pulse 3 __83

Analysis ___84

Pulse 4 __86

Analysis ___87

Pulse 5 __90

Analysis ___91

Pulse 6 __93

Analysis ___94

Pulse 7 __99

Analysis __100

Pulse 8 ___103

Chapter 4 – Conclusions __106

Future work __107

Appendix A ___110

	D�EB�F������ABF����B��A�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 64

Chapter 1 – Introduction

An ASIC design flow covers several tests that need to be performed during a chip’s design to make

sure the final product’s behaviour matches the RTL model’s behaviour and that it meets timing, power

and area constraints. This will provide developers with a high degree of confidence that the product’s

behaviour is correct under normal circumstances, or those circumstances taken into account when

developing the product. These tests, however, usually do not provide any assurance of the design’s

behaviour under abnormal circumstances, whether they are intentional or unintentional (e.g. an attack

or an external device’s failure).

A product can be attacked in several ways. It can be attacked by altering voltage levels on the power

source, it can be attacked by altering the clock frequency, it can be attacked by applying a laser to a

cell/device to make it more leaky, taking the device to extreme temperatures, etc. Some can be more

intrusive than others and some may require physical access to the silicon. Although some designs

include additional circuitry to make sure that the design is working in a “safe” environment, if access to

the silicon is gained these security measures may be circumvented, leaving the product more vulnerable

to attack.

In order to test what could happen to a design when subjected to such attacks, a simulation

environment has been constructed, which is capable of simulating power source voltage change and

clock frequency change attacks.

This section of the report covers a simulation of a product’s response to a power source voltage change

attack (i.e. an attack that applies a pulse or glitch on the power line). The chosen design for this

simulation is a simple counter shown in Figure 1, the Verilog code of which can be found in Appendix

A. This design is simulated with Nanosim, which is provided with the design’s netlist and a stimulus

file to provide both a normal stimulus to design’s inputs and to attack the design.

Figure 1 Counter

	D�EB�F������ABF����B��A�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 65

This document has been divided into four sections. This first section serves as an introduction to the

rest of the document. Section 2 covers a design’s expected response to pulses on its power line, what

the considerations are when simulating a design’s response and when pulses should be applied (i.e.

when is a design more vulnerable to these attacks). Section 3 covers eight simulations of different

pulses and the design’s response to each of them, analysing what happens on the internal nodes of the

design. Finally, Section 4 draws some conclusions from these simulations and proposes additional ones

and future work.

	D�EB�F����������BC������E��C��

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 66

Chapter 2 – Effects of a pulse

A design can be attacked using different pulses in different places of the design. They can be applied

on a product’s power pins or on the silicon’s power lines. Applying the same pulse at different places

in the circuit may produce a different response, as some designs have an embedded power regulator

that would filter any power fluctuation. Figure 2 shows an example of pulses that can be applied with

this simulation environment and Figure 3 shows an example of the differences between the pulse that is

applied to the designs power pin and the power waveform that could be generated internally by an

embedded regulator.

Figure 2 Example of applied pulses in the simulation environment

Figure 3 Example of resulting internal power waveforms to an external pulse

What is the expected behaviour/effect of applying a pulse on
the power supply?

When a design is powered with a power supply that changes its voltage value, internal transistor and

cell parameters may be affected by this. Some of these parameters are voh, vol, vih and vil. Applying a

pulse has exactly the same effect.

In an ideal design/silicon, (e.g. Figure 4), when there is a fluctuation on the power line, it is reflected

identically all over the design immediately and with no delay, thereby changing all cells’ voh, vol, vih

	D�EB�F����������BC������E��C��

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 67

and vil parameters at the same time. Hence, a pulse on an ideal circuit would have a minimum or no

effect on a design’s overall behaviour.

Figure 4 Example of ideal silicon

However, real design/silicon, Figure 5, has parasitic resistors and capacitors, not only on the signal

lines, but also on the power lines. Because of this, a fluctuation on the power source, is not reflected

identically on the whole design. In this case, the closer a cell is sitting to the power source, the more

closely aligned the cell’s power fluctuation will be to fluctuations on the power line.

Figure 5 Example of ideal silicon

When the pulse has the optimum width and height, it can happen that, for an instant, two contiguous

cells are being powered with different values. This would cause both devices to have different voh, vol,

vih and vil parameters. If the difference is large enough, it could result in a cell reading the wrong logic

value from another cell’s output (i.e., a logic 0 output could be interpreted as a logic 1 input and vice

versa). This is the main target when applying an attack of this nature.

	D�EB�F����������BC������E��C��

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 68

When should this attack be applied? When is it most
effective?

Different designs can be more or less sensitive to certain attacks. Designs can be divided into at least

three different groups: combinatorial design, non-combinatorial synchronous design, and non-

combinatorial asynchronous design. A combinatorial circuit’s output depends only on the circuit’s

inputs (e.g. an OR gate); it cannot remember what happened previously, it has no memory. A non-

combinatorial circuit’s output depends both on input values and the design’s internal register values

(e.g. a FSM); thus it remembers what happened previously. Registers represent the memory feature.

Register values in a non-combinatorial design can be updated synchronously (with a synchronous

clock) or asynchronously (without a clock).

A pulse applied to a combinatorial circuit’s power supply could affect the circuit’s output during the

time the pulse is applied. When the pulse is finished, assuming the inputs are kept at the same logic

values as before the pulse, as there is no memory effect, after a transitory time the circuit’s output

should revert to its original value. The transitory time would vary depending on the circuit’s

complexity and how far from the output the value switch happened. In this type of design, the time the

pulse is applied is not important; the effect will be the same.

A non-combinational/hierarchical design is usually composed of several combinational blocks and

registers. As explained above, the effects of a pulse applied to a combinational block are transitory.

However, the effects of a pulse applied to a register may be different: the memory effect of the register

may result in the output changing due to the glitch being latched, resulting in a permanent change

rather than a temporary one. In this case a change/corruption of a register’s value could affect the

circuit’s outputs and force it to behave differently to the way it would under normal circumstances.

As on a synchronous design, registers are updated at a clock’s edge (positive and/or negative), a design

can be more vulnerable to this attack when it happens just before or while the register is being updated.

Additionally, on these designs, the clock tends to be periodic and deterministic, making it easier to find

out when a pulse may be applied to have the best chance of disrupting the circuit’s behaviour.

At the time of writing this document, asynchronous designs have not been analysed. As they are used

much less frequently than synchronous designs their study may have less immediate relevance for us.

There are different forms of asynchronous design style, each of which could be analysed, and which

may have very different properties. It is possible that certain types of asynchronous design may be well

suited to detecting glitch attacks that corrupt their circuit’s performance as these circuits may lock up.

However, detailed analysis of the lock up conditions would need to be undertaken to assess the

protection these circuits may provide. This is for a later study.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 69

Chapter 3 – Simulation results

In order to simulate a counter’s behaviour to a pulse attack, it was necessary to create a circuit netlist.

This netlist has been edited to add a resistor in parallel to each transistor, so transistor leakage can be

simulated. However, power line parasitics have not been added, as the addition of these parasitic values

would result in a very slow simulation (although more precise). The next two sections describe the

pulse used in these simulations and an analysis of the simulations’ outputs.

Pulses used for the simulation

Eight different simulations have been performed, where all applied pulses had waveform i) shown in

Figure 2. The simulations start at different times, have different lengths and reach different high and/or

low voltage values.

This waveform has been chosen over other waveforms because it matches a voltage regulator’s

possible output waveform when it suffers a pulse on its input. Additionally, both initial voltage rise and

subsequent voltage fall can cause the desired register’s value to switch. All pulses have been referenced

to simulation time 140ns. Pulses start after an offset time from this.

Before starting to analyse the circuit’s response to different pulses, it should be noted that, due to

design model inaccuracies (not modelling power lines’ parasitic resistor and capacitors), pulses used in

this simulation are more severe than those applied on real silicon. If a silicon device suffers any of the

pulses used in this simulation, it may be permanently damaged.

Simulation outputs

This section shows the circuit’s response to each pulse and analyses it. For those cases where the

circuit is affected, a deeper understanding is achieved by going down a design level. First, the circuit’s

normal behaviour is shown, followed by the circuit’s response to each pulse.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 70

Normal behaviour

In order to find out when the circuit misbehaves, its response to different pulses should be compared

against the design’s normal behaviour, which is shown in Figure 6.

Figure 6 The design's normal behaviour

At 140ns, the circuit’s output is 0x08. At 150ns, the circuit’s output becomes 0x09 and by 170ns it is

0x0A. These are the output values that should be present if the circuit is operating correctly.

Pulse 1

At 140ns, this pulse starts to rise from 1.6v to 6.4v, which is reached at 142ns. It falls down to -3.2v at

149ns, rising to 1.6V at 154ns. Figure 7 depicts the counter’s response to this pulse. These are the

parameters to create this pulse:

VOLTAGE=1.6

DELAY_FOR_PULSE=140.0n

PULSE_START_TIME=0n

PULSE_START_VALUE=0

PULSE_P1_TIME=2n

PULSE_P1_VALUE=3

PULSE_P2_TIME=9n

PULSE_P2_VALUE=-3

PULSE_END_TIME=14n

PULSE_END_VALUE=0

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 71

Figure 7 Design response to Pulse 1

Comparing Figure 6 and Figure 7, it is obvious that this pulse affects the circuit’s behaviour; in fact,

this pulse sets all outputs to high. At 135ns, the circuit’s output is 0x08; at 150ns, when VDD is -

2.22V, is should be 0x09 but instead, the real voltage at the outputs is between -1.02V and -1.24V. At

152ns, just after the pulse, the circuit’s output is set to 0xFF, instead of 0x09. Finally, at 165ns, when

the design’s output should be 0x0A, the real output is 0x00.

If this circuit works as an iteration counter, indicating the end of iterations when it reaches 0xFF with

an OR gate, at about 152ns it would indicate the end of iterations. This corruption could have

consequences for other circuits depending on this value or for the overall system of which this circuit is

a part.

Analysis

All outputs have been set to high, no matter what their previous state. Let’s understand why. Q7, which

was low before the pulse, is set to high after the pulse. Figure 8 shows the register Q7, and another cell

whose output is the Q7 register’s input. This structure applies to registers on this design.

Net N30 is the data that is stored into register Q7 on a clock positive edge if the register is enabled.

N30 is the result of an OR operation of, the AND between data_7 (a1) and n13 (a2), and the AND

between N42 (b1) and n12 (b2). As the design is counting and not loading a number, n13 is 0, so

data_7 AND n13 results in 0. Therefore, N30 will be the result of N42 AND n12, as shown in Figure 9.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 72

Figure 8 Structure of Q7 and input cell

n12 is the result of a combinational block, which is shown in Figure 19, page 80. As shown in Figure 9,

as soon as the pulse has finished, n12 recovers its original value. N42, which is also the result of a

combinational block, however, does not recover its original value until nearly 1ns after the pulse is

finished. This is because N42 is the MSB of a combinational block, whose inputs are other registers’

outputs. As registers’ outputs have changed, it makes sense that N42 is also different. In this particular

case, when VDD is recovered, all registers are set to logic 1. As the combinational block to which N42

is MSB output is an incremental counter, 1ns is the time that is needed to calculate 0xFF + 1. If the

registers’ output was set to 0xFE, N42 would not become logic 0 until the next clock cycle. Let’s see

what happens inside the register then.

Figure 9 Signals of Q7's input combinational cell

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 73

The register used in this design has three inputs (data, enable and clock) and one output (q). Figure 10

shows the register’s internal circuitry and Figure 11 shows the register’s behaviour when the pulse is

applied.

Figure 10 Register internal schematic

Figure 11 Register's internal signals

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 74

The first impression looking at Figure 11, is that when a pulse is applied, the voltage changes on all

nets at logic 1, according to voltage variations on VDD; and that the voltage on all logic 0 nets remain

unchanged until VDD goes below 0.8V. At this point logic 0 nets also follow VDD’s change trend.

When VDD reaches -0.8V, all nets stop following VDD and start to change in a way which results in

setting the register’s output to high. In addition to this, net n2 shows singularities, which affect nets

net154 and net243 and may also affect other internal nets. Further analysis shows a late clock positive-

edge detection (net48 going high while net16 stays low when VDD goes over the threshold voltage).

Checking on the register’s behaviour when the n2 input goes high, it shows that it connects net171 with

net109, disconnecting net94 from net171 (i.e. holding the register’s value instead of updating it with

the value present at its input). In this case, both data, N30, and output, Q7, values are logic 0, so this

singularity has no effect on the register’s behaviour. This can be probed by checking nets net94, net109

and net171. They all show a very similar waveform when this singularity happens and always

following changes on VDD. If net94 and net109 have different logic values, net171 will change its

logic value for as long as the first singularity on net n2 is present. Therefore, other internal nets will

also be affected, as shown in Figure 12.

Figure 12 Register Q3 internal nets' voltage values

Continuing with Figure 11 and as stated before, all nets follow VDD’s trend between the points where

VDD is 0.8V (@146.14ns) and about -0.75V (@151.62ns). During these points, all nets’ voltages

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 75

decrease, initially, due to the leakage of the transistors. When the voltage difference between VDD and

different nets’ voltages are over a threshold voltage, PMOS transistors start to be polarised and start to

conduct, setting the nets’ voltage values to negative.

When VDD rises over -0.75v until it reaches 0.39V, all nets’ voltages values gradually go to 0v, still

following VDD’s trend. It is at this point when n2’s second singularity starts to happen and the Q7

register’s internal nets start to evolve in a different manner to the trend they have shown until now.

Nets net94, net24 and net8 are the fastest ones to rise.

When VDD rises, nets net94, net24, net8 and Q3 show a tendency to rise faster than other nets. At

about VDD=0.72V, the register’s internal circuitry starts to look like Figure 13 (Figure 14 is an

equivalent circuit for Block A and B). When VDD rises to 0.88V, a late clock positive edge is starting

to be detected and a second singularity on n2 continues to raise its voltage, although internally it

happens more slowly. At this time N30 is starting to rise and to induce a change on net94, whose

tendency was to rise. Net24 has just become 0.8V, which forces net108 to stay at logic 0, and net50

remains logic 0, which does not affect net24’s logical value. Net8 is also rising and starting to influence

Q7’s voltage value.

By the time VDD reaches 0.94V, the register’s internal circuitry looks like Figure 15. At this point

net50 and net108 are still logic 0, and net24 still is logic 1. net153 is approximately 0.21V and net8 has

just become logic 1.

As it can be seen on Figure 15, net24 depends solely on net50 and net108, which are both logic 0. This

enables a stable logic value at net24. Because of this, net24 induces a logic value change on net8, from

logic 1 to logic 0, and Q7 starts to be set to a logic 1 again.

This analysis can be applied qually to all registers in this simulation. Therefore, there is no need to

analyse all individual cases.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 76

Figure 13 Register's internal circuit @ VDD = 0.72v

Figure 14 Block equivalent circuit

Figure 15 Register’s internal circuit @ VDD = 0.94v

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 77

Pulse 2

This pulse, at 140ns starts to rise from 1.6v to 6.4v, which is reached at 142ns. At this point it falls

down to 0V at 149ns, rising to 1.6v at 154ns. It is, therefore, very similar to Pulse 1. These are the

parameters to create this pulse:

VOLTAGE=1.6

DELAY_FOR_PULSE=140.0n

PULSE_START_TIME=0n

PULSE_START_VALUE=0

PULSE_P1_TIME=2n

PULSE_P1_VALUE=3

PULSE_P2_TIME=9n

PULSE_P2_VALUE=-1

PULSE_END_TIME=14n

PULSE_END_VALUE=0

Although Pulse 1 and Pulse 2 are very similar, Figure 16 shows different behaviour from the one seen

in Figure 7. Although all the registers’ outputs show a tendency to be set to logic 1, this tendency is

interrupted in most registers, and the design shows normal behaviour after the pulse and keeps counting

as if nothing had happened.

Figure 16 Design's response to Pulse 2

When the tendency to set all registers to logic 1 is interrupted, all registers that were logic 0 before the

pulse was applied reach a maximum voltage on their output of 0.24V, except for Q7, which is 0.29V,

and for Q0, which is 0.26V. The only register that was logic 1 before the pulse, Q3, has a voltage of

0.53V when the rise tendency is interrupted in other registers.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 78

There are three registers to be analysed in this simulation, Q7, which keeps its logic 0 value after the

pulse, Q3, which keeps its logic 1 value after the pulse and Q0, which changes its logic value from 0 to

1 after the pulse. The following section explains what happens internally in each case.

Analysis

Figure 17 shows the Q7 register’s internal behaviour for this pulse. As shown with the previous pulse,

register behaviour is primarily affected when VDD goes under 0.8V, so that is going to be the starting

point for this pulse’s analysis.

Figure 17 Q7 register's internal signals for Pulse 2

When VDD goes below 0.8v, all signals follow VDD’s trend. When VDD becomes 0V, all nets that

were supposed to be logic 1 keep a voltage of about a transistor threshold voltage (around 0.5V), and

all nets that were supposed to be logic 0 have a negative voltage. As soon as VDD increases, those nets

that where supposed to be logic 0, start to follow VDD and increase their nets’ voltage values, and

those nets that were suppose to be logic 1, remain around the threshold voltage until VDD rises above

0.8V.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 79

When VDD is 0.64V, nets net94, net171, net109, net50, net108 and net8 are around 0.4V, and nets

net24, net153 and Q7 are around 0.1V. This seems to indicate a tendency on Q7 to become a very low

voltage, i.e. logic 0.

As VDD rises to 0.82V all nets increase their voltage by approximately the same amount, 0.11V. The

voltage increase of low voltage nets can be explained by parasitic capacitors. This increase of voltage

does not induce a behaviour change on a register’s internal nets, which would by now look like Figure

15. In fact, from this point on, it shows a clear tendency to set the register’s output to logic 0.

Figure 18 shows register Q3’s internal behaviour, where the output remains logic 1 and unchanged

after the pulse. During the pulse, this register shows behaviour not seen so far. The register’s input net

drops from logic 1 to logic 0 when VDD is over a voltage of approximately 3V. A voltage drop on the

input net produces a cascade effect that is stopped with net24. This cascade effect does not affect the

register’s output because it only happens when the clock is logic 0. In the event that a clock positive

edge happens while the input shows this voltage drop, the register’s output would be affected and

therefore so would the design’s behaviour.

Figure 18 Q3 register's internal signals for Pulse 2

Figure 19 shows register Q3’s data input circuit. As the input to U8’s a2 input is always logic 0, all

circuits prior to this point have been omitted in Figure 19. Additionally, clock and enable circuits have

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 80

been omitted. N38 is the counter’s output, which indicates the next logic value to be stored in register

Q3. Net n12, U8’s b2 input, indicates that counting is enabled.

Figure 19 Register Q3 with combinational block

Figure 20 shows how n12, and all related input nets, evolve when the pulse is applied. Inputs count,

enable and nreset do not change their voltage level during the pulse, keeping it at 1.6V, whereas load

keeps its voltage level at 0V. Under normal circumstances, i.e. no pulse, the outputs of gates U27 and

U28 (n8 and n10 in Figure 20) would be logic 0. However, as VDD rises, they are set to logic 1. This

can be explained with the help of Figure 21, where the NAND gate’s internals are shown. Analysing

the device U27 on Figure 19, under normal circumstances, transistors U2 and U4 in Figure 21 would be

closed, while transistors U1 and U3 would be open. But when VDD rises over 1.6V + Vthreshold,

transistors U1 and U3 would also be correctly polarised, closing them, which causes the gate’s output

to rise to a logic 1. This also applies to device U28. It is enough to induce a change on one of these

devices’ output to change register Q3’s input logic value.

Figure 20 Combinational block's signals

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 81

Figure 21 NAND gate's internals

Back on Figure 18, after the pulse has reached its lowest point and starts to recover, most signals’

voltage value starts to rise too. As parasitic capacitors did not have time to discharge through transistor

leakage, when VDD starts to rise, nets that were high before the pulse keep a higher voltage that nets

where the logical value was 0. When VDD reaches 0.82V it would look like the circuit in Figure 15,

enabling the register’s output recovery. Therefore, when VDD recovers for this pulse, Q3 continues

with its previous value unchanged.

Register Q0 is going to be analysed next. This register’s nets’ voltage values, while the pulse is

applied, are shown in Figure 22. The first thing to mention for these waveforms is the pulse that

appears on net24 on the clock’s negative-edge. At this clock’s negative-edge, net24 should be set to

logic 1, which initially happens, but, because of the same phenomenon that happened on Q3’s input,

Q0’s input goes from logic 1 to logic 0, switching net24’s logic value back to 0. Hence the pulse on

net24. Before the next clock’s positive edge net24 is set to logic 1 while VDD is still higher than the

nominal voltage. When VDD is 0.91V, before reaching 0V, the register’s internals represent the circuit

in Figure 14. net50 and net108 are logic 0 and net24 is logic 1, which induces net153 to become logic

1, net8 to become logic 0 and net117 to become logic 1. As VDD continues to decrease, all net

voltages decreas too, net8 being the slowest one, keeping 0.62V when VDD is 0v. When VDD starts to

recover, net8 and net109 are again the slowest ones. When VDD goes over 0.64V, net50 has 0.21V,

net108v, net24 0.47v, net153 has 0.37v and net8 has 0.6V. As VDD rises over 0.8V, net24 reaches the

threshold voltage faster than net50, determining the logic value to which the register is going to be set,

which is logic 1.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 82

Figure 22 Register Q0's response to Pulse 2

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 83

Pulse 3

This pulse starts to rise at 140ns from 1.6V to 6.4V, which is reached at 142ns. At this point it falls

down to 0V at 146.7ns, rising to 1.6V at 148.5ns, it is, therefore, similar to Pulse 2, but faster. Figure

23 depicts the counter’s response to this pulse. These are the parameters to create this pulse:

VOLTAGE=1.6

DELAY_FOR_PULSE=140.0n

PULSE_START_TIME=0n

PULSE_START_VALUE=0

PULSE_P1_TIME=2n

PULSE_P1_VALUE=3

PULSE_P2_TIME=6.7n

PULSE_P2_VALUE=-1

PULSE_END_TIME=8.5n

PULSE_END_VALUE=0

Figure 23 Design's response to Pulse 3

As can be seen from Figure 23, of the nets that are logic 0, Q7 reaches the highest peak when VDD is

rising back to 1.6V. This pulse also delays Q0’s output a little, which ends up being set to logic 1, as it

should be. For this pulse, which looks very similar to the response of previous pulses, Q0 and Q7 could

be analysed.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 84

Analysis

Figure 24 shows register Q7’s behaviour with this pulse, which is very similar to its reaction to the

previous pulse. Figure 25, Q0’s response to this pulse, also shows a similar behaviour to the previous

pulse. As everything explained for the previous pulse applies to this pulse as well, no further analysis

has been made.

Figure 24 Register Q7's response to Pulse 3

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 85

Figure 25 Register Q0's response to Pulse 3

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 86

Pulse 4

This pulse starts to rise at 145.7ns from 1.6v to 6.4v, which is reached at 147.6ns. At this point it falls

down to 0V at 152.3ns, rising to 1.6V at 154ns. This is a slightly faster pulse (0.2ns) than Pulse 3 and is

applied 5.7ns later than Pulse 3. Figure 26 depicts the counter’s response to this pulse. These are the

parameters to create this pulse:

VOLTAGE=1.6

DELAY_FOR_PULSE=140.0n

PULSE_START_TIME=5.7n

PULSE_START_VALUE=0

PULSE_P1_TIME=7.6n

PULSE_P1_VALUE=3

PULSE_P2_TIME=12.3n

PULSE_P2_VALUE=-1

PULSE_END_TIME=14n

PULSE_END_VALUE=0

Figure 26 Design's response to Pulse 4

So far, the design’s response to applied pulses has been:

• setting all registers’ outputs to logic 1 and

• no change in the design’s behaviour or counting sequence.

This pulse shows a different behaviour to those seen until now; the design’s output is set to logic 0. In

Figure 26 it is interesting to note that register Q3’s output is set to logic 0 when VDD is 3.23V and

while decreasing, and that all register outputs show a tendency to rise when VDD is rising from 0V to

1.6V. Again, the main registers to be analysed in order to understand the effects of this pulse are, Q7,

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 87

as it is the one which rises higher than any other register; Q3, as its output value is suddenly cut from

logic 1 to logic 0; and Q0 which should be logic 1 when the pulse is rising.

Analysis

Register Q7’s behaviour in Figure 27 shows a well-known behaviour, while only clock related internal

signals show new behaviour. Nets net16 and net48 do not change their logic values when the clock

positive edge happens, but do change later. This is explained because, before the clock starts to rise,

M16 and M15 are conducting. When the clock signal starts to rise, VDD is higher than the nominal

value and still rising, which means that M16 keeps conducting. When the clock signal reaches its

maximum value, VDD is starting to decrease but is still well over the nominal value, whichforces M16

to conduct. At this point, M17 is also conducting but net16 keeps its logic 1 value, forcing net48 to be

logic 0. When VDD decreases to below 1.6V + Vthreshold, M16 stops conducting. net16 is set to logic 0,

and net48 is set to logic 1. It is at this point when a positive edge is detected. As data on N30 has not

changed and net109 has the same logical value as net94, this distortion on clock positive edge detection

has no effect on this register’s behaviour.

Figure 27 Register Q7's response to Pulse 4

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 88

Q7 shows a tendency to set its output to logic 1 when VDD is recovering, but this tendency is stopped.

As seen with previous pulses, nets which have negative voltages, start to raise their voltage level when

VDD starts to rise over 0v, whereas nets that have positive voltages will start to show this tendency

when VDD becomes higher than them.

At the time that Q7’s output is rising, the clock is logic 1 and the register’s output value depends on

nets net50, net108 and net24, which follow a tendency to recover their correct logic values. Q7’s output

rises only as a side effect of parasitic capacitors of transistors M38 and M39 as Q7’s output is forced to

logic 0 as soon as net8 goes over 0.8V.

Register Q3, however, shows a different behaviour. In Figure 28, while the clock signal is logic 0,

net24 has the same value as the register input, which is logic 1, and net153, also logic 1, is not affected

by net24. When VDD starts to rise, the input signal voltage drops until it becomes logic 0, as per the

phenomenon explained in Figure 19. This causes a logic value change on net24, which now is logic 0.

Additionally, before the input signal can be recovered to its original value, a clock positive edge is

“detected”, which forwards net24’s logic 0 value further into the register until its output switches from

logic 1 to logic 0. From this point on, VDD continues to decrease until it reaches 0v, when it rises again

to 1.6V. As nets net50, net108 and net24 do not change their logic values, the register’s output remains

at logic 0 instead of its original value.

Figure 28 Register Q3's response to Pulse 4

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 89

The next register to be analysed is Q0. When the pulse is happening, it should be set to logic 1, instead

it remains at logic 0. Figure 29 shows this register’s internal signals. For the Q0 case, as well as for Q3,

the input signal switches from high to low as a result of a voltage rise on VDD, hence, when the

positive edge on clock’s signal is “detected”, the register’s input is logic 0, which is forwarded

throughout the registers’ internal nets, setting it to logic 0. As can be seen, once the clocks positive

edge is detected, Q3 and Q0 have the same evolution.

Figure 29 Register Q0's response to Pulse 4

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 90

Pulse 5

This pulse starts to rise at 142.3ns from 1.6V to 6.4V, which is reached at 144.2ns. At this point it falls

down to 0V at 148.9ns, rising to 1.6V at 150.6ns. This is, therefore, the same pulse as Pulse 4 but

applied 3.4ns earlier than Pulse 4. Figure 30 depicts the counter’s response to this pulse. These are the

parameters to create this pulse:

VOLTAGE=1.6

DELAY_FOR_PULSE=140.0n

PULSE_START_TIME=2.3n

PULSE_START_VALUE=0

PULSE_P1_TIME=4.2n

PULSE_P1_VALUE=3

PULSE_P2_TIME=8.9n

PULSE_P2_VALUE=-1

PULSE_END_TIME=10.6n

PULSE_END_VALUE=0

Figure 30 Design's response to Pulse 5

Comparing Figure 30 and Figure 26, we see that a small shift on the pulse induces different behaviour

on the circuit. In this case, the same pulse used on Figure 26 has been applied slightly earlie r resulting

in no effect on the circuit’s behaviour. Referring to the registers analysed in the previous case, only

affected registers will be analysed, i.e. Q3 and Q0.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 91

Analysis

Figure 31 shows how the register’s input value drops to 0v when VDD goes over 3.54V and does not

recover until VDD decreases back to 2V. The clock positive edge is detected just 0.3ns after the input

value has recovered its original value. At this time net24 is logic 1, as before the pulse. This causes the

register to keep its previous value and to continue as if nothing had happened. This has been possible

because of the timinh of nets n2 and n22. If the first singularity on n2 ended earlier than n22 restores its

value, there would be a chance to change the registers’ output value if, and only if, the clock positive

edge happened in between n2’s fall and n22’s rise.

Figure 31 Register Q3's response to Pulse 5

Reading Figure 32 it can be seen that in this case too, the register’s input is affected by VDD’s rise,

which is also recovered just before the clock’s positive edge is detected. This results in setting the

register’s output to logic 1, as it should be. It can also be seen that if the clock’s positive edge had been

detected about 0.3ns earlier, this register’s output would not have changed from logic 0 to logic 1,

whereas in the case of register Q3, 0.3ns early detection of clock positive edge would not affect its

output, with an overall result of delaying/dephasing the count by one compared to the original

behaviour.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 92

Figure 32 Register Q0's response to Pulse 5

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 93

Pulse 6

This pulse starts to rise at 142.33ns from 1.6V to 6.4V, which is reached at 144.2ns. At this point it

falls down to 0v at 144.6ns, rising to 1.6V at 150.6s. This therefore starts at the same time and has the

same length as Pulse 5 but VDD’s fall is much faster and its recovery is much slower than Pulse 5.

These are the parameters to create this pulse:

VOLTAGE=1.6

DELAY_FOR_PULSE=140.0n

PULSE_START_TIME=2.3n

PULSE_START_VALUE=0

PULSE_P1_TIME=4.2n

PULSE_P1_VALUE=3

PULSE_P2_TIME=4.6n

PULSE_P2_VALUE=-1

PULSE_END_TIME=10.6n

PULSE_END_VALUE=0

The design’s response to Pulse 6 can be seen in Figure 33. It is clear that this pulse resets the registers’

outputs to logic 0. Also, Q3, which was high before and during the pulse, needs longer than other

registers to set its output to logic 0. Again there are three registers to be analysed, Q7, Q3 and Q0.

Figure 33 Design's response to Pulse 6

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 94

Analysis

Figure 34 shows the impact of this glitch in the Q7 register’s internal nets. While VDD rises, Q7’s

logic 1 nets increase their voltage too, while logic 0 nets remain almost unchanged. VDD’s fast fall

induces a fast reaction on the registers’ nets, and in general, the design’s nets. Nets that were logic 0

would reduce their voltage, reaching as low as -0.28V on some register’s internal nets and as low as -

0.99V on the register’s enable input. From this point, VDD starts to rise very slowly. At VDD=0.03V,

we have the following voltage on different data nets: N30 has -0.16V; net94 has 0.83V; net171 has

0.91V; net50 has 1.03V; net108 has 0.69V; net24 has -0.01V; net153 has -0.25V; net109 has 0.72V;

net117 has -0.24; net8 has 0.5V; and Q7 has -0.2V. Control nets’ voltage values are: net16 has 0.69V;

net48 has -0.1V; n2 has -0.89V; net154 has 0.01V; and net243 has -0.52V. At this point it could be said

that, so far, the register has a tendency to keep its value.

Figure 34 Register Q7's response to Pulse 6

While VDD continues increasing, all data related nets decrease their voltage a little more before

starting to rise again at VDD=0.26V. As previous logic 0 nets’ voltage values are still negative,

whereas previous logic 1 nets’ voltage values are still over VDD, previous logic 0 nets’ voltages rise

faster than previous logic 1 nets (due to the parasitic capacitance on transistors). Despite this, logic 0

nets do not rise fast enough to switch or induce a switch on the register’s logic value and, when VDD

rises over 0.67V, logic 1 nets start to increase their voltage values too.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 95

Q7 to N30 feedback slows down the recovery of logic 1 nets, but this feedback is stopped when a

positive edge is detected on the clock, after which all nets tend to stabilise on the same logic value as

before the pulse.

After analysing Figure 35, it can be said that the rise on VDD induces a logic value switch on the data

input net, which is forwarded to net24, which is passed to net153 on the clock’s positive edge, resulting

in setting the register’s output value to logic 0. A more careful analysis shows that, after the clock’s

positive edge, net153 requires more time than usual to be set to net24’s value. But let’s see what is

happening with this pulse.

As VDD rises over 3.54V, it induces a logic value switch on input n22 from 1 to 0. This also induces

some changes inside some register nets’ logic values. Affected nets are net94, net171, net50 and

net108, which change from logic 0 to logic 1, and net24 which changes from logic 1 to logic 0 and not

affecting any other net. As VDD falls, net22 should recover its original value, i.e. logic 1, however, it

remains at logic 0 and it reaches -0.06V with a tendency to continue decreasing when VDD is 0V.

Analysing register Q3’s input combinational block’s signals should show the reason why n22 did not

recover its original value. Figure 36 show these signals’ waveform.

As VDD rises over 2.61V, nets n8 and n10 start to switch their values from logic 0 to logic 1. When

VDD starts to fall, both nets start a process to return back to logic 0. However, VDD falls with the

same slope as both nets, which only became logic 0 when VDD is nearly 0V. This causes n6 and n8 to

remain at logic 0 when they should change to logic 1 and, as a side effect, n6, n7 and n12 get negative

voltage values until VDD gets over 0.54V for n8, over 0.69v for n7 and over 0.75V for n12, which

does not became logic 1 again until VDD reaches 1V.

Returning to Figure 35, as VDD starts to rise again, all nets decrease for a limited period of time and

then start to follow VDD’s tendency. Those nets whose value during the pulse’s rise was logic 0 rise

faster than those whose logic value was 1, for same reasons as before. As VDD rises, but while it is less

than threshold voltage, M58 is the only transistor that is conducting (Figure 9). While VDD is rising,

all internal nets, whose voltage is less than VDD, follow VDD’s tendency to rise. When VDD reaches

0.8V, the register’s internal structure is the circuit shown in Figure 12, with the exception of net109’s

feedback to net171. n22 has 0.27V, net94 has 0.46V, net171 has 0.46V, net50 has 0.47V, net108 has

0.42V, net24 has 0.39V, net153 has 0.49V, net109 has 0.4V, net117 has 0.5V, net8 has 0.22V and Q3

has 0.47V. All of them have very similar values and, at first, it seems that the register’s final logic

value could be either 1 or 0. As soon as VDD goes over 0.9V and net48 takes a logic 1 value, the

register’s internal structure switches to Figure 14, where Block A’s output is inverted and is used to

feed its own input and Block A’s output is used to feed transistor pair M48-M49, their output feeds

transistor pair M38-M39, the register’s output. At this time, net50 has 0.55V, net108 has 0.49V and

net24 has 0.47V; net153 has 0.56V, net8 has 0.3V and Q3 has 0.55V. Block A’s nets’ voltages are very

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 96

close each other and if net24 rises faster than net50, it may balance the register’s output towards logic

1, otherwise it could be balanced towards logic 0.

Figure 35 Register Q3's response to Pulse 6

Figure 36 Register Q3's combinational input's signals

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 97

As VDD continues rising (at VDD=1.13V), net50 is 0.65V and starts to induce a change on net24’s

voltage, which has risen to 0.54V,. net108 is 0.58V. From this point on, net50 and net108 start to

increase their voltages faster than before. While this is happening, net153 has 0.63V and net8 has

0.42V and the register’s output has reached 0.8V.

As net50’s voltage increases, net24 starts to decrease its voltage and starts to induce the same tendency

on net153, and this to net8. However, as net8 is still lower than the threshold voltage, i.e. 0.55V, net8

has little or no effect over Q3’s output, which continues increasing its voltage value as VDD rises.

This, in turn increases the register’s input voltage so it is considered a logic 1 again. But, as the register

has already detected a positive edge on the clock, its input’s logic value cannot be forwarded to net50

and net24. This way, net24 follows the new tendency towards logic 0, as net50 is becoming logic 1. As

M63’s vgs rises, net24 and net153 become logic 0 faster. Only when net153 decreases enough to

polarise transistor M48 does net8 boost its voltage to become logic 1 and start to influence Q3’s output

to become logic 0, which happens as fast as net8 rises.

Finally, the register’s output is stabilised with a logic 0 value when VDD is 1.36V. The register’s input

still shows a logic 1 value but due to feedback, it becomes logic 0 before the clock’s negative edge.

Register Q0’s behaviour is also affected by Pulse 6 (Figure 37). In this case the register’s output should

be set to logic 1, instead, it remains logic 0. Again, with a quick look, the reason why this happens can

easily be discovered. As with the previous case, Q0’s input switches from logic 1 to logic 0 because of

the rise of VDD. Due to the fast fall on VDD, the register’s input has no time to recover, so by the time

VDD falls below the threshold voltage, the input’s new value has been propagated to net24. From this

point on, the explaination for Q3 applies to Q0 with the difference that net50, net108 and net24 are

more defined/separated in this case than on the former one, thus, stabilising Q0’s output faster than

Q3’s output.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 98

Figure 37 Register Q0's response to Pulse 6

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 99

Pulse 7

This pulse starts to rise at 142.3ns from 1.6V to 6.4V, which is reached at 144.2ns. At this point it falls

down to 0v at 146.6ns, rising to 1.6V at 150.6ns. This therefore starts at the same time and has the

same length as Pulses 5 and 6. With this pulse, VDD falls faster than Pulse 5 but more slowly than

Pulse 6. VDD’s recovery is, on the other hand, slower than Pulse 5 but faster than Pulse 6. These are

the parameters to create this pulse:

VOLTAGE=1.6

DELAY_FOR_PULSE=140.0n

PULSE_START_TIME=2.3n

PULSE_START_VALUE=0

PULSE_P1_TIME=4.2n

PULSE_P1_VALUE=3

PULSE_P2_TIME=6.6n

PULSE_P2_VALUE=-1

PULSE_END_TIME=10.6n

PULSE_END_VALUE=0

This pulse affects the circuit’s behaviour in a new way compared to previous pulses. It dephases, by

one clock cycle, the circuit’s output when comparing it against the original output (Figure 5). The

circuit’s response to Pulse 7 is represented in Figure 38.

Figure 38 Design's response to Pulse 7

Just before the pulse, the circuit’s output is 0x08. After the pulse it should be 0x09, however, it remains

0x08. This could be interpreted as Q0 being the only affected output, however checking the circuit’s

previous responses to other pulses, it seems more likely that all registers keep the same value after the

pulse as they had before it.

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 100

Analysis

Looking at Figure 39 it can be seen that register Q3’s initial state is logic 1 and that the register’s input

is also logic 1 before and after the pulse. While the pulse is happening, however, the register’s input

becomes logic 0. This phenomenon has been previously explained. When the register’s input becomes

logic 0, this change is forwarded up to net24 and net108, which take logic 0 and logic 1 values

respectively. When VDD is falling, n2 has its first singularity, which disables the register’s input N22

and takes the register’s output as its input. This results in net24 and net108 changing their logic values

again, to logic 1 and logic 0.

Figure 39 Register Q3's response to Pulse 7

When n2’s first singularity disappears, N22 again becomes the register’s input and as such it would be

expected that the internal nets would change according to this new input. However, net171 and net50

only change slightly and this change is not affected on net24 or net108. Checking the speed with which

net94, net171 and net50 change their logic values from 0 to high (when input N22 falls from logic 1 to

logic 0), it can be seen that net94 is the fastest and net50 the slowest. This happens because net94 is

driving net171 and net50 through parasitic capacitors on transistor pairs M52-M53 and M27-M26.

These same capacitors slow down the voltage rise on net171 and net50. Despite n2’s first singularity

finishing when VDD is still 1.62V and net94 has 1.22V, both are falling and cannot increase the

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 101

voltage on net171 and net50 fast enough. Finally, by the time VDD goes under 0.96V, net171 has

reached only 0.83V and net50 0.49V, which is not enough to trigger a change on net24’s value, which

remains at logic 1 when it should have changed. As VDD decreases, net171 and net 50 also decrease

their voltages.

By the time VDD becomes 0V, net94 has 0.55V, net171 0.53V, net50 0.39V, net24 0.87V and net108

0V. net153 has 0.72V, net8 -0.05V, net117 0.67V and Q3 0.54V. As explained previously, as VDD

starts to rise, those nets whose voltage is lower than VDD start to raise their voltage, while those nets

whose voltage is higher than VDD follow a trend to reduce their voltage. net24 has 0.84V, which

polarises M50 and keeps net108 to 0V for as long as net24 does not go below this voltage and delays

VDD’s increase effecting these two nets.

When VDD reaches 0.64V, no transistor is conducting and all nets increase their voltage only as an

effect of VDD rising. It is not until VDD has 0.9V that switch transistor pairs start to conduct and

transistors in general start to be polarised. At this point the register’s internal circuit starts to be the

circuit shown in Figure 14. The register’s input no longer has an effect on net24, which from this point

on evolves depending only on the values of net50, net108 and net24, which are 0.36V, 0.31v and

0.64V.

As VDD rises over 1V, net117 rises over 0.85V, polarising transistor M61 and forcing net109 to 0V,

and both net50 and net24, raise their voltage values, net24 being the one that reaches the threshold

voltage first. As soon as net24’s voltage goes over 0.75V, net108 starts to decrease its voltage and this

starts to pull net50 down; in return, net24 is pulled up faster. As net24 rises, net153 also rises. Again,

when net153 goes over 0.75V, net8 starts to decrease, ensuring that Q3 and net117 are kept at logic 1.

From this point on, all signals follow the trend to set the register’s output to logic 1.

Q0’s response to Pulse 7, Figure 40, as well as for Q3, is to keep the same logic value before and after

the pulse. In this case, the register’s input just before the pulse is logic 1 (i.e. the logic value to which

the register would have been set on the next clocks positive edge if no pulse had been applied) also

falls to logic 0 as VDD rises over 3.59V. When the input falls to logic 0, it affects nets net94, net171,

net50, net24 and net108 and they also change their logic values. At this point the register’s input and

output have the same logical value, so when n2’s first singularity happens, it has no effect on previous

nets and so they all keep the same logic values.

While VDD is decreasing, all logic 1 nets follow this trend more or less as fast as VDD, until VDD

becomes less than 0.8V, where the nets’ voltages decrease until the nets’ voltages go under 0.8V too,

where their rate of voltage decrease becomes even slower.

Again, when VDD starts to rise, all nets whose voltages are lower than VDD also start to rise. Those

nets whose voltage is higher than VDD continue to decrease. And when VDD is higher than all nets’

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 102

voltages, all nets increase their voltage. When net8 goes over 0.73V (at VDD 0.83V), Q0 and net117

change their tendency to rise with VDD and start to decrease their voltages. As VDD continues to rise

and the clock’s positive edge is detected, the register’s internal circuit looks like Figure 14, net50 and

net108 continue to rise, going over the threshold voltage and stopping net24’s and net153’s voltage

rise, starting to decrease their voltage values and ensuring the register’s output is set to logic 0.

This way, this register too, keeps the same logic value as it had before the pulse.

Figure 40 Register Q0's response to Pulse 7

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 103

Pulse 8

This is the last pulse that has been applied to this design. It starts, at 143.35ns, to rise from 1.6V to

3.2V, which is reached at 145.2ns. At this point it falls down to 0.8V at 147.6ns, rising to 1.6V at

151.6ns. This pulse is the same as Pulse 7 only it starts 1 nanosecond later and VDD reaches a

maximum of 3.2V and a minimum of 0.8V, instead of 6.4V and 0V. These are the parameters to create

this pulse:

VOLTAGE=1.6

DELAY_FOR_PULSE=140.0n

PULSE_START_TIME=3.35n

PULSE_START_VALUE=0

PULSE_P1_TIME=5.2n

PULSE_P1_VALUE=1

PULSE_P2_TIME=7.6n

PULSE_P2_VALUE=-0.5

PULSE_END_TIME=11.6n

PULSE_END_VALUE=0

As can be seen in Figure 41, this pulse has no effect on the circuit’s overall behaviour. Although

register Q0 needs about a nanosecond to start to set its output. Registers Q0 and Q3 could provide

interesting reading, therefore these are the only ones to be analysed with regard to this pulse.

Figure 41 Design's response to Pulse 8

Analysing Figure 42, it can be seen that register Q3’s input falls to logic 0 when VDD rises over a

certain value. This time, however, n2’s singularity happens at the same time. So, when n22 falls to

logic 0, net94 rises to logic 1, starting to induce a voltage rise on net171 and net50. But as n2’s

singularity happens, the register’s input is quickly feedback with its own output, i.e. net109 gets

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 104

connected to net171, instead of n22. As net109 is logic 0, net171 and net50 stop increasing their

voltages and are set as logic 0 again. Just when n2’s singularity disappears, input n22 starts to recover

its original value, i.e. logic 1, and the register works normally again. These changes are minimally

reflected on net24, and net108 is not affected at all. The result of all this are the pulses found on

net171, net50, net24 and net109.

When VDD reaches its minimum, i.e. 0.8V, all logic 1 nets keep a voltage of around 0.8V, whereas all

logic 0 nets have a voltage of around 0v. As VDD starts to recover, logic 1 nets rise with VDD and

logic 0 nets remain at logic 0. Additionally, during VDD’s rise, the clock’s positive edge is detected,

reasserting the register’s output to a logic 1 value.

This pulse, then, has no effect on this register’s behaviour. The register’s output would be affected only

if net24’s logic value is inverted at the same time that a clock positive edge is detected. The minimum

voltage on net24 during n2’s singularity is 1.1V, which is still high enough to be considered logic 1,

making it difficult to affect the register’s behaviour.

Figure 42 Register Q3's response to Pulse 8

Figure 43 shows a very similar waveform for the Q0 register’s input, n16, and the n2 input. However in

this case, when the n2 singularity happens, the register’s input is feed with its own output and since

both net109 and net94 are logic 1. This does not reverse the n16 falls’ effect on nets net171, net50,

	D�EB�F�����������B��A�F�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 105

net24 and net108. When n2’s singularity disappears and the register’s input recovers to its original

value, VDD is still higher than the nominal value, giving enough time for internal signals to be set to

the new input conditions.

When VDD rises, a positive edge is detected on the clock, connecting net24 (logic 1) with net153

(logic 0) and inducing a change to net153 to become logic 1. When it reaches over 0.8V, it is translated

by switching net8, net117, net109 and Q0’s logic values; thus setting the register to the new value,

logic 1.

Figure 43 Register Q0's response to Pulse 8

	D�EB�F�����	�A���C��AC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 106

Chapter 4 – Conclusions

Before starting to draw any conclusion, a few parameters or settings of these simulations should be

remembered. At the time of making these simulations, Nanosim’s feature to model the transistor’s

leakage was unknown. Leakage was modelled by putting resistors in parallel to each transistor (i.e.

between drain and source pins). This leakage feature depends on several factors, among them on W/L

parameters. However, as calculating an individual leakage equivalent resistor for each transistor would

require a huge effort, all resistors are of the same value.

Something else to consider when setting up the simulation environment, is that real silicon designs do

not distribute their power supply equally throughout the whole design, because power lines are not

ideal, they have resistivity. This is a feature not simulated here because mathematically the design

would become far more complex and it would take far longer to simulate.

Because of this, pulses applied to these simulations are far more aggressive or extreme than those

applied on real attacks. In fact, the pulses applied to the simulations could physically damage the

device.

On real devices, pulses can be applied to either only the power pins or the power pins and the I/O

signals. Both attack approaches have potentially different effects on the I/O pins’ internal nets and the

logic connected to them. Either way, both would impact the on-chip I/O level shifters that convert off-

chip voltage levels to on-chip voltage levels. In the worst case scenario, when the I/O signals are not

altered, the level shifter might interpret a logic high as a logic low.

Here, the simulation of level shifters has been avoided and, hence, the pulse has been applied only to

VDD, leaving input signals unaffected by the pulse. Despite the input signals not being affected by the

pulse, these simulations help us gain a better understanding of what happens inside when a pulse is

applied.

These simulations show that, as mentioned in Chapter 2, a pulse affects combinational blocks only

temporarily, whereas non-combinational blocks could be affected more permanently. They also show

that a clock’s positive/negative edges are the best points to apply these pulses.

When analysing register internals, it can be seen that registers work on both clock edges, one to load

the input data and the other to update the register’s output. These simulations have shown that a

register’s output can be more easily corrupted if the input data is modified/corrupted just before the

register updates its output. Registers used in these simulations load the input data on clock negative

edges and update their outputs on clock positive-edges, making them, therefore, more vulnerable if the

	D�EB�F�����	�A���C��AC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 107

pulse happens close to the positive edge. Obviously, when a register’s output is corrupted, devices that

make use of that output are going to be affected.

Before starting the simulation it was expected that with the same pulse, different behaviours on

different registers would be observed. However, in each simulation, all registers responded equally. In

one case all registers were set to logic 1, in some cases all registers were set to logic 0, in another case,

after the pulse, all registers kept the same logic value as before the pulse, and in some cases, pulses did

not affect the circuit’s behaviour. The fact that all registers follow the same pattern can be explained

with three factors: one the factors that would help to get this outcome is not modelling the power line’s

parasitics; another factor would be the fact that all registers are symmetrical, where their inputs depend

on the same combinational cell, although it is true that an input of these cells is different from one to

another; and the last factor would be fact that design’s input voltages do not change with VDD.

If power parasitics had been modelled and simulated, different cells (e.g. registers) would be powered

at different voltages and therefore not all registers would be affected in the same way. It also would

help to prove the statement made in Chapter 2, which says that VDD changes could affect different

cells’ voh, vol, vih and vil parameters in different ways.

In these simulations, transistors have been switching their working regions from saturation to linear and

cut-off regions. When VDD goes below 0.8V (inverter threshold voltage), the transistors’ parasitic

parameters can play an important role by keeping the nets’ voltages stable for longer and minimising

the pulse’s effect. Nets net50, net24, net153 and net8 are the nets that have a major role in the register’s

final value. Parasitic parameters should help keeping these nets and feedback nets with the correct

value at all times.

Finally, it has been proved that little differences between two pulses can have two totally different

outcomes on the design’s behaviour. An example of this can be pulses 5, 6 and 7. Dropping the glitch

point P1’s voltage value (parameter PULSE_P1_VALUE) by 8V at a rate of 1.7 V/ns (pulse 5) or 20 V/ns

(pulse 6) is the difference between not affecting the design’s behaviour and resetting the design’s

output to 0x00. Dropping P1’s voltage value by 8V at a rate of 3.3 V/ns, on the other hand, results in

skipping one count operation.

Future work

This simulation environment is work still in progress, where several things can be improved. The first

thing to improve is using Nanosim’s leakage model and avoiding using resistors in parallel with

transistors. In order to do this, simulation accuracy should be increased, which could mean slowing

	D�EB�F�����	�A���C��AC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 108

down the simulation. This change should not affect the design’s behaviour when applying the same

pulses.

It could be interesting to analyse the design’s behaviour when input voltages change with VDD. This

change may affect the design’s behaviour when applying some of the pulses, particularly those where

the design’s behaviour changes as result of a singularity on one of the signals. Applying the same to the

clock signal should also be studied. Although these two settings have not been used in these

simulations, the simulation environment is enabled to vary all input/stimulus signals (including clock)

as VDD changes.

All pulses in these simulations have been applied to the VDD signal. Designs can also be attacked on

the GND signal, particularly those with an embedded regulator where this kind of attack makes more

sense. A design without a regulator is powered directly by the voltage applied to the VDD pin. A

design with an embedded regulator is powered by the regulator’s output voltage, and the regulator is

powered by the voltage applied to the VDD pin. In the first case, a pulse applied on the VDD pin is

going to be transmitted to the whole design (parasitic parameters may affect the waveform). In the

second case, however, the regulator works as a filter between the VDD pin and the design itself. The

regulator’s response to a pulse applied on VDD would be the waveform that the design is powered

with. An example of a regulator’s response to a pulse is shown in Figure 3.

When a pulse is applied on GND, however, it would be transmitted throughout the whole circuit. For

the case where there is not an embedded regulator, this pulse may affect the design’s response in a

similar way to when it is applied on VDD. But for the case where there is an embedded regulator, the

same pulse on VDD and GND would have different effects on the design’s behaviour. For the latter

case, as the regulator has a capacitor on its output, unless this capacitor is disconnected, VDD! will

tend to follow changes on GND. In the case where the capacitor is disconnected, VDD! will remain

unchanged during the pulse. Hence, applying a pulse on GND to a design with an embedded regulator

may have one or more effect depending on whether the regulator’s output capacitor is connected or not.

In order to allow simulating all these cases, applying a pulse on GND should be enabled.

Simulating a design where power line parasitic resistors and capacitors are taken into account could be

interesting to compare against simulations where they have not been considered. As simulating a

design with these parameters can take much longer than simulating without them, modelling only part

of the power line’s parasitic parameters could also be considered to reduce the simulation time.

Equally, creating a netlist from an extracted view instead of from a schematic view (the one used on

these simulations) should also be tested, as the former one has additional parasitic information, such as

parasitic capacitors between different nets, that are not taken into account by the latter case. This may

add more accuracy to the design’s response to a pulse, although probably at the cost of adding extra

simulation time.

	D�EB�F�����	�A���C��AC�

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 109

The design used in these simulations has a feedback feature, as the register’s inputs are dependent on

their outputs. It would be desirable to simulate a design without such feature so it is clear that any

behavioural change on the design is not a result of the feedback. Also, the register’s internal

organisation of parameters could be changed to see the effect of a pulse on a register with these

changes.

A study of asynchronous circuits would also be merited to see if they could provide protection against

glitch attacks through a lock-up mechanism, which is a characteristic of the design style, and an

estimate of the area penalty resulting from this approach.

�EE�A������

EngD portfolio – Volume II, A. Goikoetxea Yanci SimEnvTech2 110

Appendix A

Design’s RTL code.

module counter (input [7:0] data,

 input clk, enable, count, load, nreset,

 output reg [7:0] q);

 always @ (posedge clk)

 begin

 if (~nreset)

 q <= 0;

 else if (enable)

 begin

 if (load)

 q <= data;

 else if (count)

 q <= q+1;

 end

 end

endmodule

Engineering Doctorate

Tartalo test-chip documentation

Author: Asier Goikoetxea Yanci

Date: February 2006

Sponsored by:

���������	�AB�ABC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 112

Table of contents

Glossary of terms __113

Chapter 1 – Introduction __114

Chapter 2 –Laser and glitch test chip (tartalo/01OKA)___________________________________115

2.2.- Designs implemented on tartalo/01OKA test-chip _______________________________115
2.2.1.- Glitch attack simulation environment design validation _________________________115
2.2.2.- Laser target circuits ___116
2.2.3.- Test chip construction ___122

2.3.- Test-chip pin names ___126

2.4.- Test methodology__128
2.4.1.- Test board___128
2.4.2.- Glitch attacks __130
2.4.3.- Laser attacks___130

2.5.- Test results ___133

Chapter 3 – Discussion__136

Chapter 4 – Conclusion ___139

Chapter 5 – Future work __140

Appendix A Extended Test Results __141

References__157

D��CC�EF����B�E�C�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 113

Glossary of terms

DICE Dual interlocked storage cell

ELT Enclosed layout transistor

EMA Electromagnetic analysis

ESD Electro static discharge

RHBD Radiation hardening by design

SEE Single event effect

SERT Single event resistive topology

SET Single event transient

SEU Single event upset

SPA/DPA Single/differential power analysis

����B�E������ABE���	B��A�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 114

Chapter 1 – Introduction

Over the years, a wide range of attack techniques have been developed to crack secure systems or ICs.

These attacks can be grouped as intrusive, non-intrusive, destructive, non-destructive, etc. The list

below names some of the primary attack methods:

• Glitch attack (applied to power, ground or data signal)

• Simple/Differential Power Analysis (SPA/DPA)

• Electromagnetic Analysis (EMA)

• Laser/Light attacks

• Back-side emissions

Designs on this test chip will be tested against either glitch or laser attacks, which are both non-

intrusive and, if correctly applied, non-destructive. The main purpose of performing glitch attacks on

this test chip is to validate a previously developed glitch attack simulation environment, which

simulates how a glitch in power, ground or other signals affects the device under test. The purpose of

performing laser attacks is to have a better understanding of how attacking different parts of a design

affects the designs’ overall behaviour, and to study the effectiveness of different radiation hardening

techniques or countermeasures when being targeted with a laser beam. It will also test how error

detection techniques and layout rules can minimise a device’s sensitivity to light attacks.

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 115

Chapter 2 –Laser and glitch test chip (tartalo/01OKA)

The following sections discuss the test-chip design, the package I/Os and test methodology.

2.2.- Designs implemented on tartalo/01OKA test-chip

The test chip is divided into two circuits: one will be used for glitch attacks, the other for laser attacks.

To help with the simulation environment validation, the same design as the one previously used in the

simulation environment is implemented on this test chip. This will allow comparing the behaviour in

the simulation environment with the test-chip’s behaviour.

As the target of laser tests is not only to understand how it affects the design but also to test different

countermeasures used against radiation induced effects, several circuits with different countermeasures

are implemented. These circuits will be referred to as laser test circuits (LTC).

2.2.1.- Glitch attack simulation environment design validation

The counter used in the simulation environment and implemented in the test-chip is a simple 8-bit

incremental counter. Inputs to this counter are data, clock, enable, reset, load and count; and the only

outputs of this counter are the values stored in the registers, q. This is the counter’s Verilog RTL code:

module counter (input [7:0] data,

 input clk, enable, count, load, nreset,

 output reg [7:0] q);

 always @ (posedge clk)

 begin

 if (~nreset)

 q <= 0;

 else if (enable)

 begin

 if (load)

 q <= data;

 else if (count)

 q <= q+1;

 end

 end

endmodule

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 116

Figure 1 shows the counter’s design implemented in Atmel standard cells, as it has been used during

simulations and implemented on this test chip. Figure 2 shows counter’s symbol as used at the top level

of the test chip.

Figure 1 Schematic of the counter to be used on glitch tests

Figure 2 Counter's symbol

To better understand the circuit’s behaviour when a glitch is applied and, improve the simulation

environment, having access to some internal nets is desirable. However, none of the internal nets have

been routed to a physical pin on the test-chip due to the limited amount of pins available in the test-chip

package. Instead, if monitoring an internal net is desired, that net should be probed with the appropriate

micro-probing equipment.

2.2.2.- Laser target circuits

The report “Laser and silicon” (now the laser attack literature review in Volume I) covers effects that

radiation and lasers can induce on a device, and some countermeasures against radiation are described.

However, no evidence has been found of any of these countermeasures being used to protect devices

against laser attacks. Some of these radiation countermeasures are implemented on the instantiated

LTCs so that their effectiveness against laser attacks can be tested.

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 117

A laser can only induce single event transient (SET) and single event upset (SEU) events on silicon.

Since SEU events can have worse effects on a circuit’s behaviour than SET, implemented

countermeasures focus on tackling SEU events. More precisely, the implemented countermeasures are:

• Radiation hardened by design (RHBD)

• combinational SEU mitigation

• parity error detection

• covering the design with a metal layer

In addition to the above countermeasures, different register cell layouts were instantiated to observe

how the layout affects the circuit’s response.

All these countermeasures are implemented on different instantiations of the same simple test circuit,

which includes combinational blocks and registers. This basic test circuit, shown in figure 3, is a

registered two 4-bit input adder.

Figure 3 Basic light attack test circuit

2.2.2.1.- Different techniques to be tested on this test chip

2.2.2.1.1.- RHBD

Radiation hardening by design is being used to mitigate radiation induced upsets and is based on

specific design techniques to achieve it[1]. Some of these techniques involve: using voting logic; dual

interlocked storage cell (DICE)[2] latch; enclosed layout transistors[1]; or single event resistant

topology (SERT) SEU immune memory cells[3].

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 118

The voting logic circuitry monitors the output of several identical blocks and chooses the more

common output among them. Using this approach to make a design immune to radiation or laser

implies instantiating the same design at least three times (increasing the overall area and power

consumption) and designing a voting circuit to decide the final output. This is illustrated in figure 4. If

this technique is used to make a block or function immune to such attack, the voting logic circuitry

should still be designed to be immune against laser attacks, otherwise an attacker could target it and by-

pass all benefits provided by this technique. Due to the area and power penalties resulting from this

technique, it has been discarded from the scope of the research.

Function

instance_0

Function
instance_1

Function
instance_2

Voting
circuit

Input to function

Function

Function output

Figure 4 Voting circuit example

In normal transistor operation, the current should flow from the source to the drain, however, a

transistor under radiation effects leaks current through the edges[1]. Enclosed layout transistors (ELTs),

figure 5, are edgeless transistors that, together with a guard ring, minimise or eliminate the leakage

current introduced by radiation. This layout style means, these transistors are bigger and more power

hungry than normal ones. This technique is being tested on this test chip to check how they perform

under a light attack, whether it is in sequential or combinational logic.

DICE and SERT SEU radiation hardened registers have been designed with SEU immunity in mind.

Since SERT SEU, figure 6, has been designed for low power, as no nodes are going to be driven to

high and low at the same time, this is the implementation chosen for this test chip.

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 119

Drain

Source

Gate

Figure 5 Example of an enclosed layout transistor (ELT)

Figure 6 Radiation hardened register

2.2.2.1.2.- Combinational SEU mitigation

All instances will include a technique proposed in [4] to mitigate SEU on combinational blocks. This

technique, shown in figure 7, compares a combinational block’s output value with a delayed version of

itself. As long as both are the same logical value, the comparison circuit’s output takes the correct

value. When an SEU is induced on the combinational circuit, inputs on the SEU mitigation circuit’s

comparator will initially differ. In this case, the comparison circuit’s output is not driven, holding its

output value due to the parasitic capacitance at its output. If the SEU lasts longer than the delay time,

both the targeted output and its delayed version will be corrupted and the comparison circuit will

propagate this error.. As with the voting technique circuit, the output circuitry in this approach is also

sensitive, and an attack to this part of the design might propagate an error straight away. Furthermore, a

simultaneous attack on the combinational block and delay circuit could reduce the mitigation time.

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 120

delay

Vdd

GND

data input from

combinational
block

output data

Figure 7 Combinational block SEU mitigation approach

An SEU mitigation combinational block is located between the adder circuit’s output and registers’

inputs, as shown in figure 8.

delay

Vdd

GND

+
reg

m
u
x

a[n]

b[n]
co[n]

o[n]

clk
on/off

register
output

Figure 8 Combinational block SEU mitigation implementation

2.2.2.1.3.- Parity

Several error detection techniques (parity, CRC, etc.) can be used to detect an error or corruption of

data being transmitted between two nodes, such as two computers or a CPU and a peripheral. Each

technique has a different degree of accuracy and is therefore able to detect more or less errors.

When a node or peripheral unit is used to store information, storing not only the information but also

the error detection code might be desired, so errors on stored information can be detected. By taking

this same approach at a lower level, data stored into a set of registers could be accompanied by error

detecting code with the aim of detecting any corruption of the stored information, be it a human

induced error or not. An error detection circuit at the registers’ output could analyse their contents and

trigger an alarm when an error is detected.

For this case of study a simple error detection technique has been chosen, a parity scheme, which is

shown in figure 9. Despite its limitations for error detection, its low storage overhead and the simplicity

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 121

of the implementation makes it easier to test. The XNOR gate generates the parity value of the 4-bit

adder and it is stored into a register together with the adder’s output. An additional XOR gate checks

the values stored in the registers. Under normal circumstances an odd number of ones will be stored in

the registers and the XOR gate’s output will be high. However, if for any reason the registers hold an

even number of ones, the XOR gate’s output will change to low, indicating an error.

+ 4-bit
reg

1-bit
reg

a[3:0]

b[3:0]

addition result

addition parity

global parity

Figure 9 Error detection with parity scheme

This technique is included in all instances of the circuit on the test chip.

2.2.2.1.4.- Cover with a metal layer

Since a laser beam that is set to induce an SEU on a transistor without permanently damaging it cannot

pass through metal layers, one of the circuit instances will be covered with a metal layer to measure the

effectiveness of the metal layer at blocking the laser.

2.2.2.1.5.- Different layouts

A laser attack’s success depends not only on the timing, i.e. when a specific transistor is exposed to

light, but also on which transistors can be targeted individually or as a group. This is highly affected by

the physical layout. Registers in different instantiations will be arranged in different ways to analyse

how the laser affects different arrangements. Figure 10 shows three different layouts used, where the

dot is used to indicate a register’s orientation

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 122

Figure 10 Different layouts used on the test-chip

2.2.3.- Test chip construction

In order to help analyse what happens within a register when it is exposed to a laser, some internal nets

will be monitored, by taking them outside of the chip. Figure 11 shows a schematic where all the

previously mentioned measures are in place. Since there are not enough available pins on the chip to

route out each register’s internal nets, they are multiplexed so only information related to one register

can be accessed at a time.

Taking the design in figure 3 as a basis for each instantiation, 6 different flavours of this design have

been implemented. Three different instances are implemented with different register layouts. The three

modules designed using standard cells are named ltc_std_cell_lyt_a_0, ltc_std_cell_lyt_b, and

ltc_std_cell_lyt_c, where letters a, b and c represent the register layout implemented from figure 10. In

addition to these, a copy of module ltc_std_cell_lyt_a_0, named ltc_std_cell_lyt_a_1, is implemented

with a metal layer on top of it. One module is instantiated with ELT transistors instead of standard

ones. This module is named ltc_elt_cell_lyt_a. The last laser test circuit, ltc_rh_cell_lyt_a, uses

standard cells except for the registers, which are SERT SEU immune.

The standard and ELT cells laser test circuits’ symbol is shown in figure 12. The laser module with

SERT SEU immune registers needs more visibility of internal nets compared to standard cell circuits.

Its symbol is shown in figure 13.

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 123

Figure 11 Schematic of a laser test circuit

Figure 12 Standard and ELT laser test circuit module symbol

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 124

Figure 13 SERT SEU laser test circuit module symbol

Again, as all these modules require more pins than allowed by the test-chip package, all modules’

outputs are multiplexed. Hence, only one laser test circuit can be tested at a time. For the same reason,

the outputs from the XOR gates have not been forwarded to a pin on the chip.

The 8 bit counter inputs/outputs are also limited by pin restrictions. Data input bus and the control

input load have been grounded, control inputs enable and count have been set to Vdd.

Different Vdd pins for the laser circuits and the simulation validation circuit have been put in place, so

when testing the counter against glitch attacks, the laser circuit will not affect the results.

Finally, the test-chip’s top level schematic is shown in figure 14.

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 125

Figure 14 Testchip top level schematic

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 126

2.3.- Test-chip pin names

The test-chip 01OKA targeted two projects, the glitch and laser circuits covered in this report and

another project not related to this research. This test-chip was assembled on a PLCC84 package. Out of

the 84 available pins, 38 were allocated to this project. The remaining 46 pins were allocated to the

other project. The pin out for this project is listed in table 1.

Table 1 Test-chip pin out

Pin number Pin name Type Design Description

33 clk_ctp input counter Clock signal

34 nreset_ctp input counter Reset signal

44 q_ct_7p output counter Counter’s MSB output

41 q_ct_6p output counter Counter’s output

40 q_ct_5p output counter Counter’s output

39 q_ct_4p output counter Counter’s output

38 q_ct_3p output counter Counter’s output

37 q_ct_2p output counter Counter’s output

36 q_ct_1p output counter Counter’s output

35 q_ct_0p output counter Counter’s LSB output

42 vdd_ct power counter Counter design’s Vdd pin

48 a_ls_3p input laser test MSB input to the adder

47 a_ls_2p input laser test input to the adder

46 a_ls_1p input laser test input to the adder

45 a_ls_0p input laser test LSB input to the adder

52 b_ls_3p input laser test MSB input to the adder

51 b_ls_2p input laser test input to the adder

50 b_ls_1p input laser test input to the adder

49 b_ls_0p input laser test LSB input to the adder

56 sel_register_2p input laser test MSB to select a register within each module

55 sel_register_1p input laser test select a register within each module

53 sel_register_0p input laser test LSB to select a register within each module

57 sel_delayp input laser test Adder to register delay selector

58 clk_lsp input laser test Laser modules’ clock signal

61 sel_module_2p input laser test MSB to select laser module

60 sel_module_1p input laser test select laser module

59 sel_module_0p input laser test LSB to select laser module

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 127

27 sel_net_3p input laser test MSB to select an internal net to monitor

26 sel_net_2p input laser test select an internal net to monitor

25 sel_net_1p input laser test select an internal net to monitor

24 sel_net_0p input laser test LSB to select an internal net to monitor

62 Internal_netp output laser test Internal nets’ output

63 parity_bitp output laser test reg_out[3:0]’s odd parity (xnor)

31 reg_3p output laser test MSB register’s output

30 reg_2p output laser test register’s output

29 reg_1p output laser test register’s output

28 reg_0p output laser test LSB register’s output

43 vdd_ls power laser test Laser test module’s Vdd pin

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 128

2.4.- Test methodology

This test-chip has a total of seven circuits, one to be tested against glitch attacks and the remaining six

to be tested against light attacks. Only one circuit will be tested at a time and only circuit(s) targeted for

attack will be powered, i.e. when applying glitch attacks, only the counter circuit will be powered,

keeping all laser test circuits not powered.

A test board has been developed so circuits in the test-chip can be tested against the attacks mentioned

in this document. This board allows stimulus signals to be provided and monitoring outputs to analyse

the effects of a particular attack on them.

2.4.1.- Test board

A test board has been designed to test the test-chip. It is connected to a megaAVR-starter kit, which can

control laser modules as well as the counter circuit for glitch attack. As the AVR and test-chip will be

working at different voltage levels, the test board includes some simple level shifters. Several jumpers

allow the AVR to be connected to laser circuits or the counter. It is also possible to monitor the test-

chip’s outputs with an oscilloscope while still reading them with the AVR. Figure 15 shows a diagram

of the test board connected to the AVR board.

Two pins are not connected to the AVR: input sel_delayp, which can only be set with a jumper on the

test board, and output internal_netp, which can be monitored with an oscilloscope. All remaining pins

are connected to the AVR as shown in Table 2.

Every circuit in the Tartalo test-chip was powered with the voltage regulator embedded in the arrano

test-chip (01VGA).

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 129

AVR
board

Test

chip
board

test
chip

Level-
shifter

Level-
shifter

laser
I/Os

glitch
I/Os

Figure 15 Test board diagram

Table 2 AVR ports functions

AVR ports Function laser Function counter

A:7 sel_module_2p q_ct_7p

A:6 sel_module_1p q_ct_6p

A:5 sel_module_0p q_ct_5p

A:4 parity_bitp q_ct_4p

A:3 reg_3p q_ct_3p

A:2 reg_2p q_ct_2p

A:1 reg_1p q_ct_1p

A:0 reg_0p q_ct_0p

B:7 LED LED

B:6 LED LED

B:5 LED LED

B:4 LED LED

B:3 LED LED

B:2 LED LED

B:1 LED LED

B:0 LED LED

C:7 a_ls_3p -

C:6 a_ls_2p -

C:5 a_ls_1p -

C:4 a_ls_0p -

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 130

C:3 b_ls_3p -

C:2 b_ls_2p -

C:1 b_ls_1p -

C:0 b_ls_0p -

D:7 switch switch

D:6 switch switch

D:5 switch switch

D:4 switch switch

D:3 switch switch

D:2 switch switch

D:1 switch switch

D:0 switch switch

E:7 sel_net_3p -

E:6 sel_net_2p -

E:5 sel_net_1p -

E:4 sel_net_0p -

E:3 sel_register_2p -

E:2 sel_register_1p -

E:1 sel_register_0p nreset_ctp

E:0 clk_lsp clk_ctp

2.4.2.- Glitch attacks

The current report focuses on laser countermeasures. Please refer to the “Glitch Attack Simulation

Environment” for details on the glitch attack silicon test methodology.

2.4.3.- Laser attacks

The laser test circuits will be tested to check how the implemented countermeasures respond to a light

attack. All circuits or modules will be simultaneously stimulated by the microcontroller, however only

one module will be targeted at a time and its outputs monitored. The module to be tested will be

selected with input pins sel_module_0p, sel_module_1p and sel_module_2p. Table 3 shows the module

selection values.

The initial aim was to target individual transistors and groups of transistors in the combinational area

and registers. The fibre glass coating the test-chip was finished with covers all transistors and does not

allow carrying out the tests as intended, see Figure 16. Instead, the whole combinational logic will be

targeted at once. Registers will be tested in two ways:

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 131

• all registers belonging to the same LTC will be targeted together, and

• all registers belonging to all LTCs will be targeted together .

Table 3 Module selection

sel_module_2p sel_module_1p sel_module_0p selected laser module

0 0 0 ltc_std_cell_lyt_a_1

0 0 1 ltc_rh_cell_lyt_a

0 1 0 ltc_std_cell_lyt_a_1

0 1 1 ltc_rh_cell_lyt_a

1 0 0 ltc_std_cell_lyt_a_0

1 0 1 ltc_std_cell_lyt_b

1 1 0 ltc_std_cell_lyt_c

1 1 1 ltc_elt_cell_lyt_a

Figure 16 Top view of the laser test circuits' area

The test procedure sets the designs to continuously perform addition operations and monitoring of the

results. Initially, and in order to confirm that all designs were operational, they will be tested on their

own. After this initial verification, the countermeasures’ effectiveness will be tested by targeting the

designs with a laser. The laser will be directed at the combinational logic and registers of each design

and the spot size set so that the laser will hit the whole area covered by the target block, i.e. the whole

combinational block, and all the registers of the target LTC.

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 132

Combinational block tests will be carried out by applying laser pulses to them while performing

addition operations, and tests on the registers carried out by applying laser pulses to them when they

are holding data.

For as long as no errors are detected, the target LTC will continue to be exercised. When an erroneous

output is detected, the AVR will freeze the LTC stimulus and show an error code with LEDs. Laser

attacks will be triggered manually while the target LTC is being stimulated.

Only ELT transistors and the LTC with metal layer are expected to pass the tests. The SERT SEU

registers are expected to fail when the laser targets more than one transistor. Any attack on the

combinational block or its countermeasures is expected to produce an SEU after a given amount of

time.

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 133

2.5.- Test results

The laser test results are presented here. For glitch attack results, please check the report SimEnvTech1

(Glitch Attack and Power Analysis Simulation Environment). Two laser spot sizes were applied: spot 1

(or spt1) targeting all LTCs’ registers, and spot 2 (or spt2) targeting all registers of the target LTC.

Table 4 shows the actual laser spot sizes. Table 5 to Table 10 show the test results per LTC. Two test-

chips were tested and two energy levels applied, 75 and 150. AB represents the LTC’s input parameter

(e.g. 0x20 is a=2, b=0, where ‘a’ and ‘b’ are the adder inputs). Up to 200 laser attacks were applied per

test. The tables below indicate how many laser attacks were needed to inject up to 6 errors (e.g. 6 in 17

means that 17 attacks were required to inject 6 errors, 0 in 200 means that no errors were detected after

200 attacks). In addition to this information, the tables below also show the energy threshold level to

inject a fault. Appendix A shows the injected error values for each case. Attacks on the combinational

logic always resulted in error injections.

Table 4 Laser spot sizes

Spot X (um) Y (um) Description

1 307 97 targets all registers at once

2 105 105 targets the interested registers only

Table 5 Test results of the Metal module

Energy

75 150

Energy threshold

for error injection Module Chip AB

spt 1 spt 2 spt 1 spt 2 spt 1 spt 2

0x00 6 in 7 0 in 200 6 in 6 0 in 200

0x10 6 in 21 0 in 200 6 in 7 0 in 200

0x20 6 in 17 0 in 200 6 in 6 0 in 200

0x40 6 in 6 0 in 200 6 in 6 0 in 200

6

0x80 6 in 8 0 in 200 6 in 6 0 in 200

45 500+

0x00 6 in 6 0 in 200 6 in 6 0 in 200

0x10 6 in 6 0 in 200 6 in 6 0 in 200

0x20 6 in 6 0 in 200 6 in 6 0 in 200

0x40 6 in 6 0 in 200 6 in 6 0 in 200

Metal

7

0x80 6 in 6 0 in 200 6 in 6 0 in 200

48 500+

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 134

Table 6 Test results of the RH medule

Energy

75 150

Energy threshold

for error injection Module Chip AB

spt 1 spt 2 spt 1 spt 2 spt 1 spt 2

0x00 6 in 8 0 in 200 6 in 6 0 in 200

0x10 6 in 6 0 in 200 6 in 6 0 in 200

0x20 6 in 6 0 in 200 6 in 6 0 in 200

0x40 6 in 6 0 in 200 6 in 6 0 in 200

6

0x80 6 in 6 0 in 200 6 in 6 0 in 200

43 500+

0x00 6 in 6 0 in 200 6 in 6 0 in 200

0x10 6 in 6 0 in 200 6 in 6 0 in 200

0x20 6 in 6 0 in 200 6 in 6 0 in 200

0x40 6 in 6 0 in 200 6 in 6 0 in 200

RH

7

0x80 6 in 6 0 in 200 6 in 6 0 in 200

51 500+

Table 7 std_a test results

Energy

75 150

Energy threshold

for error injection Module Chip AB

spt 1 spt 2 spt 1 spt 2 spt 1 spt 2

0x00 0 in 100 0 in 200 6 in 6 6 in 6

0x10 6 in 19 0 in 200 6 in 6 6 in 6

0x20 6 in 10 0 in 200 6 in 6 6 in 6

0x40 6 in 14 0 in 200 6 in 6 6 in 6

6

0x80 6 in 24 0 in 200 6 in 6 6 in 6

54 100

0x00 6 in 6 0 in 200 6 in 6 6 in 6

0x10 6 in 6 0 in 200 6 in 6 6 in 6

0x20 6 in 6 0 in 200 6 in 6 6 in 6

0x40 6 in 6 0 in 200 6 in 6 6 in 6

std_a

7

0x80 6 in 6 0 in 200 6 in 6 6 in 6

51 105

Table 8 std_b test results

Energy

75 150

Energy threshold

for error injection Module Chip AB

spt 1 spt 2 spt 1 spt 2 spt 1 spt 2

0x00 6 in 6 6 in 139 6 in 6 6 in 6

0x10 6 in 6 0 in 200 6 in 6 6 in 6

0x20 6 in 6 0 in 200 6 in 6 6 in 6

0x40 6 in 6 1 in 201 6 in 6 6 in 6

6

0x80 6 in 6 6 in 189 6 in 7 6 in 6

49 94

0x00 6 in 6 0 in 200 6 in 6 6 in 6

0x10 6 in 6 0 in 200 6 in 6 6 in 6

0x20 6 in 6 0 in 200 6 in 6 6 in 6

0x40 6 in 6 0 in 200 6 in 6 6 in 6

std_b

7

0x80 6 in 6 0 in 200 6 in 6 6 in 6

54 94

����B�E�������C�E��A�����B	��B�CB�	�������� �!�"#"�"�B�EB���$�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 135

Table 9 std_c test results

Energy

75 150

Energy threshold

for error injection Module Chip AB

spt 1 spt 2 spt 1 spt 2 spt 1 spt 2

0x00 6 in 7 3 in 200 6 in 10 6 in 6

0x10 6 in 7 0 in 200 6 in 6 6 in 6

0x20 6 in 6 1 in 200 6 in 6 6 in 6

0x40 6 in 6 1 in 200 6 in 12 6 in 6

6

0x80 6 in 6 6 in 10 6 in 7 6 in 6

58 94

0x00 6 in 6 0 in 200 6 in 6 6 in 6

0x10 6 in 6 0 in 200 6 in 6 6 in 6

0x20 6 in 6 0 in 200 6 in 6 6 in 6

0x40 6 in 6 0 in 200 6 in 12 6 in 6

std_c

7

0x80 6 in 6 0 in 200 6 in 6 6 in 6

54 87

Table 10 ELT test results

Energy

75 150

Energy threshold

for error injection Module Chip AB

spt 1 spt 2 spt 1 spt 2 spt 1 spt 2

0x00 6 in 35 0 in 200 6 in 6 0 in 200

0x10 6 in 6 3 in 200 6 in 6 6 in 6

0x20 6 in 6 0 in 200 6 in 6 6 in 6

0x40 6 in 6 6 in 35 6 in 6 6 in 6

6

0x80 6 in 6 0 in 200 6 in 6 6 in 6

65 82

0x00 6 in 24 0 in 200 6 in 6 0 in 200

0x10 6 in 6 6 in 139 6 in 6 6 in 6

0x20 6 in 6 0 in 200 6 in 6 6 in 6

0x40 6 in 6 6 in 210 6 in 6 6 in 6

ELT

7

0x80 6 in 6 6 in 15 6 in 6 6 in 6

48 79

����B�E�%���&�C	�CC��A�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 136

Chapter 3 – Discussion

Metal layer and SERT SEU registers were the only techniques that were successful in protecting the

whole circuit and the registers, respectively, against direct laser attacks limited to the target LTC. Parity

error detection could detect only errors injected in the registers limited to one bit flips. All other

countermeasures failed to protect the design.

The ELT devices’ failure to protect the circuit was unexpected as, based on their effectiveness against

radiation, they were expected to be robust against laser attacks too. However, these transistors failed,

both at combinational level, and at register level. No explanation was found for this failure, although

several factors could have contributed to this result. One factor could be that the laser affects the silicon

in a different way to radiation, yet with similar outcomes. In this case, it would explain how even with

the absence of edges, these transistors failed when the laser targeted them. It could also be due to

design and or process faults, which resulted in a weaker device. Equally, the absence of guard-rings

around each transistor might be the source of leakage.

The D type flip-flop based on this ELT transistor was about 5 times bigger than a D-type FF based on

standard ones. This area penalty is far too high, even for the benefits it could bring.

The combinational SEU mitigation block’s failure was expected, as it only protects the combinational

block if radiation, or the laser in our case, targets the combinational block for less than tdelay. The tdelay

parameter is design dependant and it can be incremented or reduced as desired. Long tdelay might be

desired to protect combinational blocks against lasers, as these can be present longer than a particle hit.

However, the longer the delay, the higher will be its impact on the circuit’s performance, as any change

at this countermeasure’s input, even a genuine one, would require tdelay to be propagated to its output.

The laser setup available at Atmel allows two operation modes; fixed-width pulses of 5ns or a

continuous laser beam. A continuous laser beam could be used to bypass this countermeasure and inject

faults into the circuit by targeting the combinational block. For this particular design, however, fixed-

width pulses were enough to inject these faults. Another weakness of this countermeasure is that if the

output four transistors are hit by the laser, the countermeasure will instantly fail to avoid a fault

injection into the next part of the circuit. Hence the use of this countermeasure does not enhance the

design’s robustness against laser attack and instead can result in a performance penalty.

Layout techniques in combination with parity error detection did not provide any significant robustness

improvement either, as a laser spot big enough to target all the registers would inject faults to all layout

approaches. All of the detected attacks relied solely on the parity error detector.

����B�E�%���&�C	�CC��A�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 137

Regarding the effectiveness of the parity error detection technique, this approach could only protect the

registers’ content in a limited way, as any fault injected at the combinational logic would go unnoticed.

Unitary bit flips could easily be detected and it could be used to detect register level attacks. But when

it comes to targeting all the registers, this approach failed to detect some of these attacks. Initially it

was expected that when targeting all registers, they would always be set to the same value, let’s say

logic 0. This would mean that the result of the addition, as well as the parity, would have been forced to

logic 0. By encoding the addition’s output with odd parity, such laser attack would have been detected

by the global parity as an invalid number. However, the registers’ were forced into different states or

values each time the laser was applied to them. Only the error injections on ELT based registers were

the more consistent; especially with high energy laser attacks. The injected error value would almost

always be 0x1F when all registers were targeted at once, and 0x10 when only ELT registers were

targeted.

This lack of fault injection consistency made it difficult to detect some of the attacks. However, by

understanding how the output of an XOR cell is affected when it is targeted by a laser, a global parity

scheme that, under normal circumstances provides the opposite value, could be set. This way the global

parity signal would indicate that either the registers or the XOR itself have been targeted by a laser.

This result could not be tested as, due to the lack of I/O pins in the test-chip, the global parity signal

was not taken out of the chip, but calculated by the AVR board.

The metal layer over the design avoided the injection of any fault into the circuit when attacked from

the top-side when it was the sole target. This is exclusively due to the fact that the laser cannot

penetrate metal layers without causing permanent damage. ICs with a high number of layers and

routing could be enough to avoid fault injections with lasers to some of the silicon parts. But using a

metal plate also has its drawbacks. The metal plate cannot be left floating, as it could be charged with

static electricity and eventually damage the device. It needs to be set to a certain voltage. A metal plate

also adds to the parasitic capacitances with neighbouring tracks, potentially impacting the tracks’

performance, i.e. device’s performance, and increasing the dynamic power consumption.

Another important drawback of covering the circuit with a metal layer is that, either an additional metal

layer is required for this plane or that a routing layer is partially used for protecting the device

underneath. Taking into account the cost implications of adding an additional layer, this approach

might not be an option. Furthermore, the back-side laser attack technique would defeat this

countermeasure, making it useless.

SERT SEU registers were the only other technique to successfully protect the registers against laser

attacks when they were the only target. Hardening all registers within a Smart Card with SERT SEU

registers is not practical, however, it could be considered as a valid option for certain critical registers,

such as I/O registers, e.g. DES related registers. To do so, a license should be applied for, as the SERT

SEU register used in this test-chip is patented. Optionally, an alternative custom SERT SEU register

����B�E�%���&�C	�CC��A�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 138

design could be developed. Developing a custom SERT SEU register could also be beneficial for

hardening SRAM memories.

Finally, an interesting behaviour was noticed when targeting all LTCs’ registers. In such case, all LTC

designs would fail, including SERT SEU registers and registers underneath the metal plate. Later tests

achieved error injection on SERT SEU registers even without targeting them but targeting a large

enough number of transistors, including ELT ones.

Laser, as well as radiation, makes transistors leaky. When the laser hits the PMOS and the NMOS

transistors on an inverter, it might result in a small, temporal, shortcut between Vdd and Ground. As a

result, when targeting a large enough area (or high number of transistors) a localised or global shortcut

could be generated. This is what might have happened when targeting all LTCs’ registers.

The mere size of ELT transistors seems to have played a key role. This is perhaps due to the resulting

higher contact area than normal transistors when they become leaky, hence, being leakier than normal

transistors. In fact, despite the higher number of transistors, when targeting all the combinational logic

made of normal transistors, it did not inject any error on the metal layer LTC.

Two conclusions can be drawn from these results. A circuit robust against direct laser attacks could be

affected by its neighbouring logic. Hence, care should also be taken with the neighbouring logic’s

robustness. The second conclusion is that ELT transistors could be located around a laser sensor, such

as a flip-flop to increase its sensitivity to laser attack.

����B�E�'�����A	��C��A�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 139

Chapter 4 – Conclusion

All countermeasures except for the metal plate and the ELT transistors were expected to fail in

protecting the circuits against laser attacks. However, ELT transistors failed to protect the design whilst

SERT SEU registers performed much better on this task. The metal plate would not protect the designs

against new attack techniques, such as back-side attacks. SERT SEU registers, on the other hand,

should still be useful for back-side attacks. Using these or similar techniques should be considered for

critical parts of the Smart Card.

Despite ELT transistors failing in their task, they can still be useful as light detectors. From the

remaining countermeasures, only the parity detection approach could still be used if the effects of a

laser attack on an XOR gate can be determined.

����B�E�(���)�B�E��*�E#�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 140

Chapter 5 – Future work

This research line was stopped with the tests mentioned here. An additional test-chip was developed

instantiating several standard and custom cells used on Atmel devices. This device was not tested due

to a change of interest by Atmel. Details about the instantiated cells can be found in the report “Lamia

Test-chip documentation”. Since the Lamia test-chip report does not contribute to the laser

attack/countermeasure knowledge, this report is not included in the submitted portfolio.

There is no plan to further develop this topic. However, in the case of doing so, using SERT SEU

registers or alternative designs for sensitive registers should be considered. ELT transistors could also

be used as part of the light detector scheme embedded in the Smart Card device.

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 141

Appendix A Extended Test Results

Test-chip 6:

Energy

75 150

spt 1 spt 2 spt 1 spt 2

Energy threshold
for error injection

Module AB

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

spt 1 spt 2

0x14 1 - N/A 0x1B 1 - N/A

0x14 2 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x00

0x14 1 - N/A 0x1F 1 - N/A

0x05 1 - N/A 0x1F 1 - N/A

0x05 2 - N/A 0x15 1 - N/A

0x05 6 - N/A 0x1F 1 - N/A

0x05 4 - N/A 0x1F 1 - N/A

0x05 5 - N/A 0x1F 2 - N/A

0x10

0x05 3 - N/A 0x1F 1 - N/A

0x06 4 - N/A 0x1F 1 - N/A

0x06 1 - N/A 0x0F 1 - N/A

0x06 1 - N/A 0x1F 1 - N/A

0x06 1 - N/A 0x1F 1 - N/A

Metal

0x20

0x06 6 - N/A 0x1F 1 - N/A

45 500+

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 142

0x06 4 - N/A 0x1F 1 - N/A

0x1D 1 - N/A 0x0F 1 - N/A

0x1D 1 - N/A 0x1F 1 - N/A

0x1D 1 - N/A 0x0F 1 - N/A

0x1F 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x40

0x1F 1 - N/A 0x16 1 - N/A

0x1B 1 - N/A 0x1F 1 - N/A

0x1B 1 - N/A 0x1F 1 - N/A

0x0E 1 - N/A 0x1F 1 - N/A

0x1C 1 - N/A 0x1F 1 - N/A

0x1C 2 - N/A 0x1F 1 - N/A

0x80

0x1C 2 - N/A 0x1F 1 - N/A

Energy

75 150

spt 1 spt 2 spt 1 spt 2

Energy threshold
for error injection

Module AB

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

spt 1 spt 2

0x11 2 - N/A 0x1F 1 - N/A

0x11 1 - N/A 0x1F 1 - N/A

0x11 1 - N/A 0x1F 1 - N/A

0x11 1 - N/A 0x10 1 - N/A

0x11 1 - N/A 0x1F 1 - N/A

0x00

0x11 2 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

RH

0x10

0x10 1 - N/A 0x1F 1 - N/A

43 500+

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 143

0x10 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x11 1 - N/A 0x1F 1 - N/A

0x20

0x10 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x15 1 - N/A 0x1F 1 - N/A

0x15 1 - N/A 0x1F 1 - N/A

0x15 1 - N/A 0x1F 1 - N/A

0x11 1 - N/A 0x1F 1 - N/A

0x40

0x11 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x01 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x80

0x10 1 - N/A 0x1F 1 - N/A

Energy

75 150

spt 1 spt 2 spt 1 spt 2

Energy
threshold
for error
injection Module AB

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

spt
1

spt
2

- N/A - N/A 0x1F 1 0x17 1
0x00/E=75/spt1 -> 100 shots in
total

- N/A - N/A 0x1F 1 0x17 1

- N/A - N/A 0x1F 1 0x16 1

- N/A - N/A 0x1B 1 0x17 1

std_a 0x00

- N/A - N/A 0x1F 1 0x16 1

54 100

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 144

- N/A - N/A 0x1F 1 0x16 1

0x07 9 - N/A 0x1F 1 0x07 1

0x13 1 - N/A 0x1F 1 0x07 1

0x17 3 - N/A 0x1F 1 0x07 1

0x07 1 - N/A 0x1F 1 0x07 1

0x07 3 - N/A 0x1F 1 0x07 1

0x10

0x07 2 - N/A 0x1F 1 0x07 1

0x07 1 - N/A 0x0F 1 0x06 1

0x07 1 - N/A 0x0F 1 0x06 1

0x06 3 - N/A 0x1F 1 0x06 1

0x07 1 - N/A 0x1F 1 0x06 1

0x12 1 - N/A 0x1F 1 0x06 1

0x20

0x16 3 - N/A 0x1F 1 0x06 1

0x10 1 - N/A 0x0F 1 0x07 1

0x10 3 - N/A 0x0F 1 0x07 1

0x05 3 - N/A 0x1F 1 0x06 1

0x10 1 - N/A 0x1F 1 0x06 1

0x07 5 - N/A 0x1F 1 0x07 1

0x40

0x10 1 - N/A 0x1F 1 0x06 1

0x0E 4 - N/A 0x1F 1 0x06 1

0x1F 6 - N/A 0x0F 1 0x06 1

0x09 2 - N/A 0x1F 1 0x06 1

0x0B 5 - N/A 0x1F 1 0x0E 1

0x0E 3 - N/A 0x1F 1 0x06 1

0x80

0x0B 4 - N/A 0x1F 1 0x0E 1

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 145

Energy

75 150

spt 1 spt 2 spt 1 spt 2

Energy
threshold
for error
injection Module AB

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

spt
1

spt
2

0x1B 1 0x19 24 0x17 1 0x07 1

0x1B 1 0x14 85 0x17 1 0x07 1

0x1F 1 0x14 16 0x13 1 0x07 1

0x1F 1 0x18 2 0x17 1 0x07 1

0x1F 1 0x18 3 0x17 1 0x17 1

0x00

0x1F 1 0x19 9 0x13 1 0x07 1

0x1B 1 - N/A 0x17 1 0x07 1

0x15 1 - N/A 0x17 1 0x07 1

0x1B 1 - N/A 0x1F 1 0x17 1

0x13 1 - N/A 0x17 1 0x07 1

0x05 1 - N/A 0x13 1 0x07 1

0x10

0x05 1 - N/A 0x17 1 0x07 1

0x05 1 - N/A 0x12 1 0x17 1

0x05 1 - N/A 0x12 1 0x17 1

0x03 1 - N/A 0x1B 1 0x07 1

0x05 1 - N/A 0x1B 1 0x07 1

0x03 1 - N/A 0x1B 1 0x17 1

0x20

0x03 1 - N/A 0x1B 1 0x17 1

0x05 1 0x05 1 0x16 1 0x17 1

0x07 1 - N/A 0x16 1 0x17 1
0x40/E=75/spt2 -> 201 shots in
total

0x07 1 - N/A 0x1E 1 0x07 1

0x07 1 - N/A 0x17 1 0x07 1

0x05 1 - N/A 0x1F 1 0x07 1

0x40

0x07 1 - N/A 0x1F 1 0x07 1

std_b

0x80 0x09 1 0x05 7 0x1B 1 0x0F 1

49 94

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 146

0x09 1 0x09 10 0x1B 1 0x0F 1

0x09 1 0x15 113 0x1A 1 0x0F 1

0x09 1 0x0D 5 0x1B 2 0x0F 1

0x09 1 0x01 11 0x1B 1 0x0F 1

0x09 1 0x0C 43 0x1F 1 0x0F 1

Energy

75 150

spt 1 spt 2 spt 1 spt 2

Energy threshold
for error injection

Module AB

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

spt 1 spt 2

0x02 1 0x05 1 0x0C 1 0x1E 1

0x1F 1 0x05 1 0x1E 1 0x1E 1

0x06 1 0x05 2 0x1F 1 0x1E 1

0x02 1 0x05 6 0x0D 2 0x1E 1

0x04 2 - N/A 0x16 1 0x1E 1

0x00

0x16 1 - N/A 0x16 4 0x1E 1

0x07 1 - N/A 0x1F 1 0x1E 1

0x07 1 - N/A 0x0F 1 0x1F 1

0x1B 2 - N/A 0x1F 1 0x1E 1

0x15 1 - N/A 0x0F 1 0x0E 1

0x07 1 - N/A 0x15 1 0x1E 1

0x10

0x10 1 - N/A 0x15 1 0x1E 1

0x16 1 0x03 7 0x16 1 0x1E 1

0x16 1 - N/A 0x1D 1 0x1E 1

0x1F 1 - N/A 0x1F 1 0x0E 1

0x1F 1 - N/A 0x16 1 0x0E 1

0x1F 1 - N/A 0x16 1 0x1E 1

0x20

0x1F 1 - N/A 0x16 1 0x1E 1

0x16 1 0x11 18 0x1F 1 0x1E 1

std_c

0x40

0x1F 1 - N/A 0x1F 1 0x1E 1

58 94

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 147

0x1F 1 - N/A 0x16 2 0x1E 1

0x1F 1 - N/A 0x1F 2 0x1E 1

0x16 1 - N/A 0x1F 2 0x1E 1

0x1F 1 - N/A 0x16 4 0x1E 1

0x0E 1 0x09 2 0x1C 1 0x1E 1

0x1F 1 0x09 2 0x0B 1 0x1E 1

0x1F 1 0x09 3 0x0B 1 0x1E 1

0x1D 1 0x09 2 0x1C 1 0x1E 1

0x1D 1 0x09 1 0x0E 2 0x0E 1

0x80

0x1F 1 0x09 1 0x1C 1 0x1E 1

Energy

75 150

spt 1 spt 2 spt 1 spt 2

Energy
threshold
for error
injection Module AB

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

spt
1

spt
2

0x18 8 - N/A 0x1F 1 - N/A

0x18 11 - N/A 0x1F 1 - N/A

0x18 6 - N/A 0x1F 1 - N/A

0x18 2 - N/A 0x1F 1 - N/A

0x18 6 - N/A 0x1F 1 - N/A

0x00

0x18 2 - N/A 0x1F 1 - N/A

0x19 1 0x11 5 0x1F 1 0x10 1

0x19 1 0x10 23 0x1F 1 0x10 1
0x10/E=75/spt2 -> 245 shots in
total

0x19 1 0x11 17 0x1F 1 0x10 1

0x10 1 - N/A 0x1F 1 0x10 1

0x18 1 - N/A 0x1F 1 0x10 1

0x10

0x10 1 - N/A 0x1F 1 0x10 1

ELT

0x20 0x10 1 - N/A 0x1F 1 0x10 1

65 82

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 148

0x10 1 - N/A 0x1F 1 0x10 1

0x10 1 - N/A 0x1F 1 0x10 1

0x10 1 - N/A 0x1F 1 0x10 1

0x10 1 - N/A 0x1F 1 0x10 1

0x10 1 - N/A 0x1F 1 0x10 1

0x10 1 0x14 1 0x1F 1 0x10 1

0x10 1 0x14 2 0x1F 1 0x10 1

0x10 1 0x14 1 0x1F 1 0x10 1

0x10 1 0x14 2 0x1F 1 0x10 1

0x1C 1 0x14 22 0x1F 1 0x10 1

0x40

0x10 1 0x14 7 0x1F 1 0x10 1

0x10 1 - N/A 0x1F 1 0x10 1

0x10 1 - N/A 0x1F 1 0x10 1

0x10 1 - N/A 0x1F 1 0x10 1

0x10 1 - N/A 0x1F 1 0x10 1

0x10 1 - N/A 0x1F 1 0x10 1

0x80

0x10 1 - N/A 0x1F 1 0x10 1

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 149

Test-chip 7:

Energy

75 150

spt 1 spt 2 spt 1 spt 2

Energy threshold
for error injection

Module AB

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

spt 1 spt 2

0x04 1 - N/A 0x1C 1 - N/A

0x04 1 - N/A 0x1F 1 - N/A

0x1F 1 - N/A 0x1D 1 - N/A

0x04 1 - N/A 0x0E 1 - N/A

0x1F 1 - N/A 0x1C 1 - N/A

0x00

0x1F 1 - N/A 0x1F 1 - N/A

0x1F 1 - N/A 0x1F 1 - N/A

0x0F 1 - N/A 0x1F 1 - N/A

0x1F 1 - N/A 0x0F 1 - N/A

0x1F 1 - N/A 0x15 1 - N/A

0x1F 1 - N/A 0x1D 1 - N/A

0x10

0x0D 1 - N/A 0x1D 1 - N/A

0x1D 1 - N/A 0x16 1 - N/A

0x1D 1 - N/A 0x16 1 - N/A

0x1F 1 - N/A 0x16 1 - N/A

0x1F 1 - N/A 0x1F 1 - N/A

0x1F 1 - N/A 0x1F 1 - N/A

0x20

0x1F 1 - N/A 0x16 1 - N/A

0x1F 1 - N/A 0x1F 1 - N/A

0x1F 1 - N/A 0x1F 1 - N/A

0x1D 1 - N/A 0x0F 1 - N/A

0x1F 1 - N/A 0x1F 1 - N/A

Metal

0x40

0x1F 1 - N/A 0x1F 1 - N/A

48 500+

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 150

0x1F 1 - N/A 0x1F 1 - N/A

0x0F 1 - N/A 0x1F 1 - N/A

0x1F 1 - N/A 0x1F 1 - N/A

0x1F 1 - N/A 0x0E 1 - N/A

0x1F 1 - N/A 0x0F 1 - N/A

0x1F 1 - N/A 0x1F 1 - N/A

0x80

0x1F 1 - N/A 0x1F 1 - N/A

Energy

75 150

spt 1 spt 2 spt 1 spt 2

Energy threshold
for error injection

Module AB

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

spt 1 spt 2

0x04 1 - N/A 0x1F 1 - N/A

0x04 1 - N/A 0x1F 1 - N/A

0x04 1 - N/A 0x1F 1 - N/A

0x04 1 - N/A 0x1F 1 - N/A

0x04 1 - N/A 0x1F 1 - N/A

0x00

0x04 1 - N/A 0x1F 1 - N/A

0x04 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x10

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

RH

0x20

0x14 1 - N/A 0x1F 1 - N/A

51 500+

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 151

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x40

0x14 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x14 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x10 1 - N/A 0x1F 1 - N/A

0x80

0x10 1 - N/A 0x1D 1 - N/A

Energy

75 150

spt 1 spt 2 spt 1 spt 2

Energy threshold
for error injection

Module AB

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

spt 1 spt 2

0x1E 1 - N/A 0x1F 1 0x1F 1

0x1E 1 - N/A 0x1F 1 0x1F 1

0x1F 1 - N/A 0x0C 1 0x1F 1

0x1F 1 - N/A 0x1D 1 0x1B 1

0x0F 1 - N/A 0x1D 1 0x1F 1

0x00

0x1C 1 - N/A 0x0C 1 0x1A 1

0x0F 1 - N/A 0x1F 1 0x0F 1

0x0F 1 - N/A 0x1F 1 0x0F 1

0x0F 1 - N/A 0x1F 1 0x0F 1

0x0F 1 - N/A 0x0F 1 0x0C 1

0x0F 1 - N/A 0x1D 1 0x0F 1

0x10

0x1F 1 - N/A 0x1D 1 0x1F 1

std_a

0x20 0x0F 1 - N/A 0x0F 1 0x03 1

51 105

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 152

0x0F 1 - N/A 0x0F 1 0x0B 1

0x0F 1 - N/A 0x1F 1 0x0B 1

0x1F 1 - N/A 0x1E 1 0x0F 1

0x1F 1 - N/A 0x0F 1 0x0F 1

0x0E 1 - N/A 0x0F 1 0x0B 1

0x1E 1 - N/A 0x1C 1 0x0F 1

0x0F 1 - N/A 0x1C 1 0x0B 1

0x0F 1 - N/A 0x0D 1 0x0B 1

0x1F 1 - N/A 0x1E 1 0x0B 1

0x1F 1 - N/A 0x0E 1 0x0B 1

0x40

0x1F 1 - N/A 0x0F 1 0x0B 1

0x1F 1 - N/A 0x0C 1 0x0B 1

0x1F 1 - N/A 0x0C 1 0x0B 1

0x1F 1 - N/A 0x1F 1 0x0B 1

0x1F 1 - N/A 0x1E 1 0x0B 1

0x0E 1 - N/A 0x1E 1 0x0F 1

0x80

0x0F 1 - N/A 0x0E 1 0x0F 1

Energy

75 150

spt 1 spt 2 spt 1 spt 2

Energy threshold
for error injection

Module AB

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

spt 1 spt 2

0x1F 1 - N/A 0x0A 1 0x1B 1

0x1F 1 - N/A 0x02 1 0x1B 1

0x1F 1 - N/A 0x02 1 0x1B 1

0x1F 1 - N/A 0x1E 1 0x1B 1

0x1E 1 - N/A 0x1A 1 0x1B 1

0x00

0x1B 1 - N/A 0x0E 1 0x1B 1

0x1F 1 - N/A 0x1F 1 0x0B 1

std_b

0x10

0x1F 1 - N/A 0x1F 1 0x0B 1

54 94

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 153

0x1F 1 - N/A 0x1F 1 0x0B 1

0x1F 1 - N/A 0x0F 1 0x0B 1

0x1F 1 - N/A 0x17 1 0x0B 1

0x1F 1 - N/A 0x0F 1 0x0B 1

0x1F 1 - N/A 0x17 1 0x0F 1

0x1F 1 - N/A 0x0E 1 0x0B 1

0x1F 1 - N/A 0x0E 1 0x0B 1

0x1F 1 - N/A 0x0A 1 0x0B 1

0x1F 1 - N/A 0x0A 1 0x0B 1

0x20

0x1F 1 - N/A 0x0A 1 0x0B 1

0x1F 1 - N/A 0x06 1 0x0F 1

0x1F 1 - N/A 0x06 1 0x0F 1

0x1F 1 - N/A 0x16 1 0x0F 1

0x1D 1 - N/A 0x0E 1 0x0F 1

0x1D 1 - N/A 0x0E 1 0x0F 1

0x40

0x1E 1 - N/A 0x0E 1 0x0F 1

0x1F 1 - N/A 0x0A 1 0x0B 1

0x1F 1 - N/A 0x0A 1 0x0B 1

0x1F 1 - N/A 0x0E 1 0x0B 1

0x1F 1 - N/A 0x0E 1 0x0B 1

0x1E 1 - N/A 0x06 1 0x0B 1

0x80

0x1F 1 - N/A 0x0E 1 0x0B 1

Energy

75 150

spt 1 spt 2 spt 1 spt 2

Energy threshold
for error injection

Module AB

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

spt 1 spt 2

0x1F 1 - N/A 0x41 1 0x0B 1

0x1F 1 - N/A 0x41 1 0x0B 1

std_c 0x00

0x1F 1 - N/A 0x1F 1 0x0B 1

54 94

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 154

0x1F 1 - N/A 0x41 1 0x0B 1

0x1F 1 - N/A 0x1F 1 0x0B 1

0x1F 1 - N/A 0x0B 1 0x0B 1

0x1F 1 - N/A 0x07 1 0x11 1

0x1F 1 - N/A 0x0F 1 0x1B 1

0x1D 1 - N/A 0x0F 1 0x1B 1

0x1F 1 - N/A 0x0F 1 0x1B 1

0x1D 1 - N/A 0x15 1 0x1B 1

0x10

0x1D 1 - N/A 0x15 1 0x1B 1

0x1F 1 - N/A 0x16 1 0x0B 1

0x1F 1 - N/A 0x1F 1 0x0B 1

0x1F 1 - N/A 0x1F 1 0x0B 1

0x1D 1 - N/A 0x0E 1 0x1B 1

0x1D 1 - N/A 0x0F 1 0x0B 1

0x20

0x1E 1 - N/A 0x0F 1 0x0B 1

0x1D 1 - N/A 0x0F 2 0x1F 1

0x1D 1 - N/A 0x0C 4 0x0D 1

0x1D 1 - N/A 0x1F 1 0x0F 1

0x1F 1 - N/A 0x0F 3 0x0F 1

0x1D 1 - N/A 0x1C 1 0x0F 1

0x40

0x1F 1 - N/A 0x0F 1 0x0F 1

0x1F 1 - N/A 0x1C 1 0x1F 1

0x1D 1 - N/A 0x1C 1 0x1F 1

0x1D 1 - N/A 0x0F 1 0x1B 1

0x0E 1 - N/A 0x0F 1 0x0B 1

0x1D 1 - N/A 0x0F 1 0x09 1

0x80

0x0F 1 - N/A 0x0F 1 0x1B 1

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 155

Energy

75 150

spt 1 spt 2 spt 1 spt 2

Energy threshold
for error injection

Module AB

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

injected
value

shots
to error

spt 1 spt 2

0x18 4 - N/A 0x1F 1 - N/A

0x18 4 - N/A 0x1F 1 - N/A

0x18 12 - N/A 0x1F 1 - N/A

0x18 11 - N/A 0x1F 1 - N/A

0x18 1 - N/A 0x1F 1 - N/A

0x00

0x18 1 - N/A 0x1F 1 - N/A

0x18 1 0x11 120 0x1F 1 0x10 1

0x18 1 0x11 3 0x1F 1 0x10 1

0x1C 1 0x11 12 0x1F 1 0x10 1

0x18 1 0x11 2 0x1F 1 0x10 1

0x18 1 0x11 1 0x1F 1 0x10 1

0x10

0x18 1 0x11 1 0x1F 1 0x10 1

0x1C 1 - N/A 0x1F 1 0x10 1

0x18 1 - N/A 0x1F 1 0x10 1

0x1C 1 - N/A 0x1F 1 0x10 1

0x1C 1 - N/A 0x1F 1 0x10 1

0x18 1 - N/A 0x1F 1 0x10 1

0x20

0x1C 1 - N/A 0x1F 1 0x10 1

0x1C 1 0x14 163 0x1F 1 0x10 1

0x14 1 0x14 24 0x1F 1 0x10 1

0x14 1 0x14 7 0x1F 1 0x10 1

0x1C 1 0x14 1 0x19 1 0x10 1

0x14 1 0x14 11 0x1D 1 0x10 1

0x40

0x14 1 0x14 4 0x1F 1 0x10 1

0x10 1 0x10 1 0x1D 1 0x10 1

ELT

0x80

0x10 1 0x10 3 0x1F 1 0x10 1

65 82

 ���A��+� �,+B�A������CB�-�C��BC�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 156

0x10 1 0x10 1 0x1F 1 0x10 1

0x10 1 0x10 3 0x1D 1 0x10 1

0x10 1 0x10 6 0x1F 1 0x10 1

0x14 1 0x10 1 0x19 1 0x10 1

-���E�A	�C�

EngD portfolio – Volume II, A. Goikoetxea Yanci LaserTech1 157

References

1. Donald C. Mayer, R.C.L. Designing Integrated Circuits to Withstand Sapce Radiation. 2003

[cited; Available from: www.aero.org/publications/crosslink/summer2003/06.html.

2. Calin, T., M. Nicolaidis, and R. Velazco, Upset Hardened Memory Design for Submicron

CMOS Technology. IEEE Transactions on Nuclear Science, 1996. 43(6): p. 2874-8.

3. J. Gambles, K.H.a.S.W., Radiation Hardness of Ultra Low Power CMOS VLSI.

4. P. Mongkolkachit, B.B., Design Technique for Mitigation of Alpha-Particle-Induced Single-

Event Transients in Combinational Logic. IEEE Transactions on Device and Materials

Reliability, 2003. 3(3): p. 89-92.

Engineering Doctorate

The glitch detector design parameters and the SPICE
simulation environment and its detection

characterisation in silicon with the 01VGA test-chip
(codename Arrano)

Author: Asier Goikoetxea Yanci

Date: November 2010

Sponsored by:

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 159

Acknowledgements

This work was possible only thanks to the input, help and/or support of several Atmel groups and

employees. Thanks to David Dougan and Louis Frew, both from the Analog Group for helping to

fine tune the operational amplifier used in the new glitch detector and providing me with the

voltage regulators used on Smart Cards to test the glitch detector.

I want to thank the Layout Group for the work they did with the test-chip 01VGA (Arrano), as the

power source requirements of this device where substantially different to those they encounter on

a normal device. Thanks also to the System Development Group for letting me use one of their

Orcad licenses to develop the test-board, their support with the Voyager System (used as a

motherboard to test several test-chips) and for their help on sourcing different components

needed on the test-board.

I also would like to thank Jalib Ahmed for providing me with the Cratis RTL and program code to

instantiate it in the Voyager System, as well as for his help with setting the FPGA constraints. The

use of Cratis shortened the test setup development time and provided me with a standard

communication channel to setup and launch tests on the test-board.

Last but not least, I also thank John Connor and Nigel Davenport, both from the security group.

Nigel for giving me to access the Security Evaluation Lab when I needed it and for providing me

with the glitch attack setup (only after a health and safety chat). John, for providing me with the

source code of the front-end glitch attack control application, which fast-tracked the test setup

development and provided me with an automated means to carry out glitch attacks.

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 160

Table of Contents

Acknowledgements __ 159

1 Introduction ___ 161

2 The new glitch detector design __ 162

3 The glitch detector simulation setup __ 163

3.1 Simulated Glitch Detector Designs __ 166

4 The glitch detector silicon characterisation setup ________________________________ 167

4.1 The Arrano/01VGA test-chip design _______________________________________ 167

4.2 Tools and equipment used in the test environment____________________________ 170

4.2.1 Voyager System __ 174

4.2.2 The FPGA design ___ 174

4.2.3 The arrano test board __ 177

4.2.4 The front-end application (VGlitch nenagi 4.14) __________________________ 178

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 161

1 Introduction

Smart Cards can be subjected to a series of threats and attacks to exploit design weaknesses

and to gain access or knowledge of otherwise secured information or data. Applying glitches on

the Smart Card’s power rails (Vcc and/or GND) is a commonly used attack technique which can

inject faults into the Smart Card making it misbehave.

Smart Cards include a built-in voltage regulator which can filter out some noise and glitches

present on the Smart Card’s power rails, but other noise and glitches might still pass through it

and can affect the circuit’s behaviour. Glitch detectors are used to monitor for abnormal variations

and voltage values on the power supply at the voltage regulator’s input (Vcc) and output (Vdd).

As with any other detector, glitch detectors have an operational detection range, and any glitch

outside that range might not be detected. Some fast glitches (short width) are out of the detection

range of commonly used detectors and are capable of injecting faults into the Smart Card without

being detected.

A line of work of this research resulted in a new glitch detector capable of detecting certain fast

glitches current detectors miss. This detector, whose patent is available in GlitchPub3, has a

slower response time than current ones, so it was concluded that it could only be use in

conjunction with current detectors to improve the overall detection range. Papers GlitchPub1 and

GlitchPub2 cover the detector and its simulation and silicon performance. Volume I of this

portfolio covers this same information in more detail.

This report covers the simulation setup, test-chip design and the test environment used in the

process of this research line. Chapter 2 provides a quick review of the glitch detector design.

Chapter 3 covers the simulation environment, parameters and the different designs used in the

simulation process. Chapter 4 concludes this report with a description of the test-chip and test

environment, including test equipment and a custom built board.

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 162

2 The new glitch detector design

The proposed glitch detector, shown in Figure 1, is a glitch sensitive mono-stable circuit, prone to

fault injection through glitches. The inverter and operational amplifier make up a mono-stable

circuit which, under normal operation circumstances, produces a logic low output.

diff_out

Vdd

gnd

inv_out

P1

N1

reset

alarm

D1

OP_AMP1

NOR2

NOR1

Figure 1 Preferred embodiment

The presence of a positive glitch on Vdd can force the operational amplifier’s output to logic high,

thus indicating the detection of the glitch event in the power supply. As covered in the paper

GlitchPub1 and the section 3.2.2 Design in the Volume I of this portfolio, the effect of a glitch on

the operational amplifier’s output is temporal, and hence, its output will eventually revert to a logic

low. Since the glitch attack and its detection are asynchronous events, the RS latch registers the

glitch detection so that it can be processed by the CPU when it is ready.

The reset input can be used to reset the RS latch and to force the mono-stable circuit’s normal

state. Correct dimensioning of devices D1, P1 and N1 is the key for correct operation of this glitch

detector. Chapters 3 and 4 of this report indicate the dimensions used for the simulations and

silicon tests respectively.

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 163

3 The glitch detector simulation setup

Two different versions of the new glitch detector were simulated to check their behaviour under

glitch attacks and to test their validity as glitch detectors. This chapter explains the simulation

environment used in this process and the design parameters of the tested glitch detectors.

The proposed glitch detector was designed to detect glitches on the Smart Card’s internal power

supply, i.e. Vdd. In other words, it was designed to detect abnormal voltage fluctuations at the

voltage regulator’s output. A voltage regulator’s response to a glitch depends on: the glitch itself,

the voltage regulator design and the load the voltage regulator is subjected to when the glitch is

applied. Hence, the glitch detector validation simulation environment had to include simulation of

the voltage regulator that powered the glitch detector as well as modelling the load to which a

Smart Card voltage regulator may be subjected. Figure 2 shows a diagram of the simulated

environment.

Voltage regulator

Glitch

detector

Variable

load

Vcc (external

supply)

Vdd (internal supply)

Load

control

Detector
reset

Alarm

Figure 2 Glitch detector test diagram

The voltage regulator chosen to test the proposed glitch detector is a voltage regulator used with

certain Smart Cards for GSM applications, as these tend to have a lower security requirement

and, hence, tend to be less robust than voltage regulators used in Smart Cards targeting other

applications. Built-in voltage regulators power both capacitive and resistive loads. For simplicity

reasons, fixed capacitive and resistive loads were simulated. The capacitive load was constant on

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 164

all simulations and set to 2.2nF. The capacitive load represented the voltage regulator’s output

capacitance and the digital device’s equivalent capacitive load. Three resistive loads were

considered for three different load scenarios: high load (80 Ohms), medium load (1K6 Ohms) and

low load (3K2 Ohms). Resistive loads were fixed to one of these values on each simulation. All

load values were chosen by Louis Frew based on prior experience.

Regarding the simulation tool, in principle, GAPASE could have been used to simulate the

circuitry in Figure 2. However, HSPICE was preferred for the following reason: GAPASE is a

simulation environment based on Nanosim, which is more focused toward simulating digital

circuits and although Nanosim’s analogue circuit simulation accuracy can be increased, the

performance versus accuracy penalty of HSPICE was considered affordable for this kind of

simulation.

The circuitry in Figure 2 was simulated for several standard power supply scenarios and SPICE

model cases, all of which are covered in section 3.2.3.1 Simulation Test and Results of Volume I

of this portfolio. Power supply scenarios include clean and noisy external Vcc supplies of 3V and

5V and two glitches not detected by the detectors included in the voltage regulator used in the

simulations. These glitches were: a) raising Vcc from 2.7V to 7V then back to 2.7V within 100ns;

and b) raising Vcc from 3V to 15V then back to 3V within 10ns. These glitches were defined by

three point waveforms as shown in the sample main SPICE simulation file below.

Due to the amount of possible different power and load scenarios to be simulated for each design

(18 in total), it was decided to simulate only extreme SPICE model cases, i.e. worst-case and

best-case. Worst-case model include the following parameters: mos_wcs, rlow, clow,

temp=125. Best-case model include: mos_bcs, rhigh, chigh, temp=-40.

.lib '../../hl49at58.85kr140.mod' process_tolerances

.lib '../../hl49at58.85kr140.mod' mos_wcs

.lib '../../hl49at58.85kr140.mod' techno

.lib '../../hl49at58.85kr140.mod' nonmc

.lib '../../hl49at58.85kr140.mod' nonmatching

.lib '../../hl49at58.85kr140.mod' model_58k85

.lib '../../hl49at58.85kr140.mod' rlow

.lib '../../hl49at58.85kr140.mod' clow

***** read in the netlist. *****

** power supply design

*** attach high load

 .include './glue_high'

*** attach medium load

*.include './glue_medium'

*** attach low load

*.include './glue_low'

*** voltage regulator

.include '../../ascpf41s/hspices/cmos.sch_simu/netlist/hspicefinal'

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 165

** glitch detector design

.include './hspicefinal'

** circuits initial status

.include './hvt_inv_hvt_opamp_high_load_deck_wcs_trans.ic'

* options

**

* speed options **

**

*.options nomod ingold=2 method=trap fast numdgt=6 post probe

**

**

* accuracy options ***

**

.options nomod ingold=2 method=gear numdgt=6 post probe

**

* include op points

* parameter statements

.param vdd=1.6v

.param vcc=3v

.param vee=0v

.param toler_bias=1.0

.param toler_c=1.0

.param delay=7us

.param trise=0.1us

.param torise=0.05us

.param tprise=100ns

.param tfall=0.1us

.param pwidth=9.9us

.param period=20us

.temp 125

.op 5us

* stimulus

*** when using voltage regulator uncomment these ***

vpower_noise power_noise 0 pwl (0 1 1000u 1 1000.002u 5 1000.098u 5 1000.1u 1)

ep2 mixvdd! 0 poly(2) power_noise 0 vcc_voltage 0 0 0 0 0 1

vvcc_voltage vcc_voltage 0 vcc

*** signals

vpower_on_reset por 0 pwl(0 0 1000n vdd 1500n vdd 1500.1n 0)

* tran analysis

.tran 1n 3m uic

* probe nodes

.probe tran v(vdd!)

.probe tran i(vvdd!)

.probe tran v(ground_net)

.probe tran i(vground_net)

.probe tran v(mixvdd!)

.probe tran i(ep")

.probe tran v(alarm)

.probe tran v(alarm_set)

.probe tran v(loop_reset)

.probe tran v(loop_out)

.probe tran v(net61)

.probe tran v(por)

.probe tran v(xi28.net18)

.probe tran v(xi28.net9)

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 166

.probe tran v(xi27.a)

.probe tran v(xi27.b)

.probe tran v(xi27.c)

.probe tran v(xi27.d)

.probe tran v(xi27.e)

.probe tran v(xi27.f)

.probe tran v(xi27.g)

.probe tran v(xi27.h)

.probe tran v(xi27.net027)

.probe tran v(xi27.su)

.end

3.1 Simulated Glitch Detector Designs

Two designs were simulated in this environment and referred to as Design A and Design B in

paper GlitchPub1 and Volume I of this Portfolio. Design A had its diode and RS latch made of low

leakage transistors and the inverter and operational amplifier made of high voltage transistors.

Design B was made entirely of low leakage transistors. Low leakage transistors are designed with

a higher voltage threshold (V
th
) than their normal counterparts. Increasing the V

th
helps reducing

the leakage current, an increasing issue with deep-submicron technologies; however, it also

reduces the transistor performance when comparing to transistors with lower V
th

In both cases, the modified inverter was made of transistors with identical width and length (W/L)

dimensions. D1: 400/400 nm (W/L); P1: 73/1.2 um (W/L) and; N1: 7.3/1.5 um (W/L). The

operational amplifiers in both designs were also of similar dimensions, whereas the RS latches

were made with Atmel standard cells of 0.18um. These designs are confidential and only

available to Atmel in the following location:

/home/asierg/derivable/research_data/01_fault_tolerant/01_03_giltch_det

ector/02_chip_design/ultimate_detector

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 167

4 The glitch detector silicon characterisation setup

In order to validate the proposed detector, its behaviour in silicon needed to be characterised. A

test-chip was designed for this purpose with four versions of the new glitch detector, and a few

test-chip dice were characterised in a purpose built test environment. The following two sections

of this chapter explain different aspects related to the glitch detector characterisation.

The first section covers the test-chip in more detail than has been covered before in Volume I of

this portfolio. The second section covers the different tools and equipment used in the test

environment and how are they connected.

4.1 The Arrano/01VGA test-chip design

A test-chip was designed to characterise the glitch detection range of different glitch detector

versions. Four versions of the proposed glitch detector were instantiated and powered by two

different voltage regulators in a similar setup to that used in the simulation environment, Figure 2.

Figure 3 shows a diagram of the Arrano test-chip, where GD_0, GD_1, GD_2 and GD_3

represent the different glitch detector versions and VR1 and VR2 represent the two different

voltage regulators. The test-chip also included four SRAM cells with different structures to test

each structure’s robustness against glitch attacks. The tests on the SRAMs were not carried out

due to a lack of time; hence, these SRAMs are not covered in this report.

The instantiated glitch detector versions differ as follows:

Glitch detectors GD_1, GD_2 and GD_3 instantiate identical modified inverters with the following

parameters: D1 low leakage transistor with dimensions 4/4 um (W/L), P1 high voltage transistor

with dimensions 1.8/11 um (W/L) and N1 high voltage transistor with dimensions 1.8/5.5 um

(W/L). They also instantiated identical low leakage RS latches. The OpAmp instantiated with the

GD_1 is identical to the one used in the simulation process, although made of low leakage

transistors. The OpAmps instantiated with GD_2 and GD_3 are both made of high voltage

transistors, GD_3’s being slightly faster than GD_2.

The glitch detector GD_0 instantiated a modified inverter with the following parameters: D1 low

leakage transistor with dimensions 4/4 um (W/L), P1 low leakage transistor with dimensions

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 168

1.8/11 um (W/L) and N1 low leakage transistor with dimensions 1.8/5.5 um (W/L). This glitch

detector also instantiates an RS latch identical to that of GD_1, GD_2 and GD_3. The OpAmp is,

again, identical to that of GD_1.

Voltage regulator

VR1

GD_0
Variable

load

Vdd (internal supply)

Load

control

Detector

reset

GD_0 alarm

GD_1

GD_2

GD_3

GD_1 alarm

GD_2 alarm

GD_3 alarm

VR1 alarm

Vcc

(external

supply)

Voltage regulator

VR2

GD_0
Variable

load

Vdd (internal supply)

Load

control

Detector

reset

GD_0 alarm

GD_1

GD_2

GD_3

GD_1 alarm

GD_2 alarm

GD_3 alarm

VR2 alarm

Vcc

(external

supply)

VR1 Vdd

VR2 Vdd

Row

Column

Vdd

Vdd

Vdd

Vdd

SRAM
std

SRAM
cus1

SRAM
cus2

SRAM
cus3

Figure 3 Diagram of the Arrano/01VGA test-chip

Regarding the voltage regulators, VR1 is the same voltage regulator as the one used in the

simulation environment and designed for products with low security requirements. VR2 is a

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 169

voltage regulator designed for products with higher security requirements than the former one.

These voltage regulators have different responses to a glitch attack, as shown in Figures 3-15

and 3-16 of the Volume I of this Portfolio.

For each glitch attack case, the output of all glitch detectors connected to the targeted voltage

regulator are monitored for detection and detection time, e.g. GD_0, GD_1, GD_2, GD_3 and

VR1_alarm. All glitch detector outputs are buffered and connected to output pads in the silicon

die. Buffering the glitch output might delay the glitch detection signal reaching the monitoring

device. However, this delay should be equal, or similar, for all detectors. Including those built into

the voltage regulators.

The test-chip was assembled into an 84-pin PLCC package. The pin list of the Arrano/01VGA

test-chip is shown in Table 1. Pins not shown in the table are not connected to the Arrano die.

Table 1 Pinout of the Arrano test-chip

Pin Name Description Directi
on

Level
shifter

ESD Pad type

12 Vcc_b Power supply for VR1 (5.5v to 2.7v) Power No Yes ascvcc

3 Vdd!_b VR1’s internal vdd! (1.6v) Power No No metal

9 high_b Input to force high load to VR1 I Yes
1
 Yes ascio

7 medium_b Input to force medium load to VR1 I Yes
1
 Yes ascio

5 low_b Input to force low load to VR1s I Yes
1
 Yes ascio

11 rst_glitch_b Reset signal for all VR1 glitch
detectors

I Yes
1
 Yes ascio

23 bgo_1 VR1 glitch detector 1’s output O No Yes esd_pad

22 bgo_2 VR1 glitch detector 2’s output O No Yes esd_pad

20 bgo_3 VR1 glitch detector 3’s output O No Yes esd_pad

18 bgo_4 VR1 glitch detector 4’s output O No Yes esd_pad

17 balarm VR1’s embedded alarm signal O No Yes esd_pad

1 GND Ground connector for all circuits Power No Yes ascgnd

74 Vcc_r Power supply for VR2 (5.5v to 2.7v) Power No Yes ascvcc

83 Vdd!_r VR2’s internal vdd! (1.6v) Power No No metal

77 high_r Input to force high load to VR2 I Yes
2
 Yes ascio

79 medium_r Input to force medium load to VR2 I Yes
2
 Yes ascio

81 low_r Input to force low load to VR2 I Yes
2
 Yes ascio

75 rst_glitgh_r Reset signal for all VR2 glitch
detectors

I Yes
2
 Yes ascio

63 rgo_1 VR2 glitch detector 1’s output O No Yes esd_pad

64 rgo_2 VR2 glitch detector 2’s output O No Yes esd_pad

66 rgo_3 VR2 glitch detector 3’s output O No Yes esd_pad

68 rgo_4 VR2 glitch detector 4’s output O No Yes esd_pad

69 ralarm VR2’s embedded alarm signal O No Yes esd_pad

16 Vram_std Power supply for standard RAM Power No Yes vdd

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 170

(1.6v)

14 Vram_cus_
1

Power supply for customised RAM
1 (1.6v)

Power No Yes vdd

72 Vram_cus_
2

Power supply for customised RAM
2 (1.6v)

Power No Yes vdd

70 Vram_cus_
3

Power supply for customised RAM
2 (1.6v)

Power No Yes vdd

39 data_0 RAM bit line 0 input output I/O No Yes esd_pad

38 data_0b RAM bit line 0# input output I/O No Yes esd_pad

43 data_1 RAM bit line 1 input output I/O No Yes esd_pad

41 data_1b RAM bit line 1# input output I/O No Yes esd_pad

47 data_2 RAM bit line 2 input output I/O No Yes esd_pad

49 data_2b RAM bit line 2# input output I/O No Yes esd_pad

44 data_3 RAM bit line 3 input output I/O No Yes esd_pad

45 data_3b RAM bit line 3# input output I/O No Yes esd_pad

51 data_4 RAM bit line 4 input output I/O No Yes esd_pad

50 data_4b RAM bit line 4# input output I/O No Yes esd_pad

56 data_5 RAM bit line 5 input output I/O No Yes esd_pad

54 data_5b RAM bit line 5# input output I/O No Yes esd_pad

60 data_6 RAM bit line 6 input output I/O No Yes esd_pad

62 data_6b RAM bit line 6# input output I/O No Yes esd_pad

57 data_7 RAM bit line 7 input output I/O No Yes esd_pad

58 data_7b RAM bit line 7# input output I/O No Yes esd_pad

37 row_0 Row 0 select I No Yes esd_pad

35 row_1 Row 1 select I No Yes esd_pad

32 row_2 Row 2 select I No Yes esd_pad

30 row_3 Row 3 select I No Yes esd_pad

29 row_4 Row 4 select I No Yes esd_pad

28 row_5 Row 5 select I No Yes esd_pad

26 row_6 Row 6 select I No Yes esd_pad

24 row_7 Row 7 select I No Yes esd_pad

33 Vcc_LS Power supply for high voltage
devices on esd_pad (must be
externally regulated)

Power No Yes ascvcc

53 Vdd_LS Power supply for low voltage
devices on esd_pad (must be
externally regulated)

Power No No metal

Note 1: Pad’s logic powered with VR1’s Vcc and Vdd.
Note 2: Pad’s logic powered with VR2’s Vcc and Vdd.

4.2 Tools and equipment used in the test environment

The different glitch detector versions were tested and characterised in a test environment similar

to the one used by the Atmel Smart Card ICs Security Group, which is shown in the Figure 4.

Here, the front-end software application, VGlitch, runs and controls the test process. VGlitch

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 171

configures the Smart Card for each test via the Micropross MP300 TC2 (MP300 for short

reference), which acts as an advanced Smart Card Reader. VGlitch also sets up the pulse

generator HP81110A to power the Smart Card and to apply different glitches when signalled by a

trigger signal. When ready, VGlitch commands the MP300 to generate a trigger signal for the

pulse generator, which then applies a burst of glitches to the Smart Card. VGlitch then queries

the Smart Card status and records it for later inspection by the test engineer.

VGlitch is a glitch attack characterisation application developed in-house by John Connor, an

employee of Atmel. This application connects over the Ethernet network to the MP300 device

with the targeted Smart Card attached to it. VGlitch can communicate with the target Smart Card

by sending and receiving APDU commands through the MP300. VGlitch also connects to the

pulse generator over a proprietary GPIO port to configure the supply and glitch parameters.

The Micropross MP300 TC2 is a versatile Smart Card testing device. Amongst other features, it

enables injection of perturbations into the Smart Card pins, such as glitches in the power supply

and forcing individual Smart Card pins to a given voltage value. It can also generate trigger

signals. Despite its glitch generation capabilities, the HP81110A pulse generator is preferred for

its wider pulse amplitude range.

The HP81110A is a Hewlett-Packard/Agilent pulse pattern generator that can generate a pulse in

steps of +/-1V over the base output voltage, which is user definable. The signal amplitude limits

ranges from 100mV up to 20V. It can generate variable pulse widths ranging from 3.03ns to

999.5s. In the Security Group’s setup, pulses are applied in a burst mode after the trigger signal

is set high, although a single pulse can also be generated.

The test environment used in this work to test and characterise the new glitch detector is based

on this same setup. There are, however, two main differences between both test environments:

• The target device. The test-chip has no embedded Smart Card functionality and the

targeted glitch detectors can only be accessed directly through the test-chip’s I/O ports.

The solution was to use the Voyager System, a Smart Card Emulator, to interface

between the MP300 and the test-chip. The Voyager System communicates with the

MP300 via the standard Smart Card I/O port. The Voyager System’s configurable I/O

ports interface to the Arrano test board where several test-chips are assembled, including

the Arrano/01VGA test-chip. The Voyager System and the Arrano test board are covered

in sections 4.2.1 to 4.2.3.

• The front-end test application. The Smart Card emulated to test the glitch detectors

communicated using different APDU commands than in the Security Group’s original

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 172

setup. Also, the new test setup was designed to test several test-chips against glitch

attacks, hence requiring VGlitch to configure more test parameters than the Security

Group’s original setup. VGlitch was modified to fit the new requirements. More details on

the VGlitch application are provided in section 4.2.4.

Figure 4 The Security Group's glitch test setup

Figure 5 shows a high level diagram of the test environment used in this work. Figure 6 shows a

picture of the actual setup and equipment.

In addition to the front-end application and the target device, with the new test setup, the trigger

signal is generated by the target device instead of the MP300. The next few sections cover the

target device and the front-end application in more detail. Section 4.2.1 provides a broad

overview of the Voyager System and why it has been chosen as part of the test environment.

Section 4.2.2 covers the design instantiated into the Voyager System’s FPGA that carries the

intended tests. The specific APDU commands used by the Voyager System are also covered in

this section. Section 4.2.3 provides a high level overview of the Arrano test board, including the

different test-chips it targets. The last section, 4.2.4, provides an insight to the changes made to

the original VGlitch application.

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 173

 Smart Card
 Emulator

Test-chip

Trigger

Vreg 1

Vreg 2

Vdd 1

Vdd 2

Vcc (glitch source)

Load circuitry

Load 1

Load 2

Glitch Detectors

GD set 1

GD set 2

Pulse Generator
HP 81110AGlitch configuration

PC

Front-end
Test application
(Vglitch nenagi)

Micropass
MP300 TC2

TCP/IP

 Smart Card

Figure 5 The Security Group's test environment adapted to test Arrano test-chip

Figure 6 The test setup with used the equipment

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 174

4.2.1 Voyager System

The Voyager System is a Smart Card Emulation Platform manufactured by Atmel. It is capable of

emulating Atmel’s ARM, AVR and HC05 based Smart Cards and provides customers with means

to prototype, develop and debug their software code before committing it to Smart Card devices.

The main reasons why the Voyager System is suitable for this test environment are the

XC2V3000 Xilinx FPGA which can communicate with the MP300 through a standard Smart Card

I/O port and a large set of I/O ports connected to the FPGA, with which test-chips can be

configured, controlled and monitored. Furthermore, the availability of instantiating into the FPGA

an already designed Smart Card device helps shorten the test environment design time.

4.2.2 The FPGA design

For this test environment, the FPGA in the Voyager System instantiates a version of the Cratis

device as used by Jalib to perform DPA on an FPGA emulating a Smart Card that runs encryption

operations. The original Cratis design and the one instantiated in this test environment share the

following IPs: the AVR3 CPU core, an SRAM memory, a timer and an I/O module. The Cratis

version used in this test environment also includes the periphery_top module, see detailed

diagram of the test environment in Figure 7, which interfaces with the different test-chips in the

Arrano test board; see next the section for more information on the Arrano test board.

The module periphery_top was purposely designed for this test environment and can carry tests

on different test-chips assembled in the Arrano test board. It is placed at the Cratis logical

memory address 0x1100 and it can be configured by accessing its registers. Check the

periphery_top module’s code for more details. This code is confidential and only available by

Atmel in the following location:

/home/asierg/derivable/research_data/04_appendix_test_chips/04_03_arran

o/code/periphery_top.svn.dump.zip

Both Cratis implementations run a basic OS developed by the Applications Group. This code

enables Cratis to communicate with APDU commands through the standard Smart Card I/O port.

Two APDU operations are possible with this OS, write and read data to and from the Data

Memory. The APDU commands have the following fields:

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 175

The ‘command’ field indicates whether this is a read (command = 0x0010) or a write (command =

0x0012) APDU command. The ‘address’ field indicates the base logical address to write to or

read from. The ‘size’ field indicates the number of bytes to write or read. Finally, the ‘data’ field is

only used with write commands. This field holds the data to be written to the memory address

pointed at by the ‘address’ field. In the case of a read command, the data field forms part of the

reply sent by Cratis to the MP300. Two APDU command examples are:

• 0012 1102 01 02 � Set a resistive load of 1K6 ohms

• 0010 111F 01 � Read the glitch detection register

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 176

I/O
AVR

CPU

RAM

periphery_top

Flash

(OS)

In
s
tr

u
c
ti
o

n

Voyager Board

(Smart Card Emulation)

Data Bus

P
ro

g
ra

m
A

d
d

re
s
s

Address Bus

Load Control

Glitch Detectors

Tartalo Control

SRAM Control

Sylvain SRAM Control

Arrano Board

FPGA

3.3 V

Trigger

Vreg 1

Vreg 2

Vdd 1

Vdd 2

Vcc (glitch source)

Load circuitry

Load 1

Load 2

Cratis

Load

Glitch Detectors

GD set 1

GD set 2

Sim. env. validation

Tartalo

Custom & Sylvain

SRAMs

Custom

SRAM

Sylvain

SRAM

Pulse Generator

HP 81110AGlitch configuration

PC

Front-end

Test application

(Vglitch nenagi)

Micropass

MP300 TC2

TCP/IP

Figure 7 Detailed test environment diagram

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 177

4.2.3 The arrano test board

A PCB board with 4 layers (2 signal and 2 power) was designed to test Arrano (01VGA), Tartalo

(01OKA) and the 01HLB memory test-chips when subjected to glitch attacks, see Figure 8. The

Arrano test-chip is covered in the section 4.1. The Tartalo test-chip is covered in the report

LaserTech1. It was assembled into the Arrano test board to characterise the behaviour of its built-

in counter, which was powered by the VReg1 instantiated in the Arrano test-chip. For more

information about the tests carried on the Tartalo test-chip’s counter and the result, check the

report SimEnvTech1, section 5.

The 01HLB memory test-chip instantiates six 64KByte memory modules designed with different

memory leakage techniques. This test-chip was assembled into this board to test the memory

instances’ robustness against glitch attacks. However, unsolved issues with the memory access

prevented carrying out the desired tests.

In addition to these test-chips, the Arrano test board also allows assembling a silicon instantiation

of Cratis, to operate as a load to the voltage regulators instantiated into the Arrano test-chip. The

Cratis chip can be configured to run cyclic AES, DES or AES and DES operations.

Figure 8 Top view of the Arrano test board

The schematics of this board are confidential and only available to Atmel in the following location:

/home/asierg/derivable/research_data/04_appendix_test_chips/04_03_arran

o/schematics/orcad.zip

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 178

4.2.4 The front-end application (VGlitch nenagi 4.14)

The front-end application used to launch and control the tests is ‘VGlitch nenagi’, which is based

on ‘VGlitch 4.12’ developed by John Connor. As previously explained, this application

communicates with the Pulse Generator HP 81110A to set glitch parameters such as amplitude,

width, amount of glitches in burst mode and delay between glitches. The pulse generator powers

the Smart Card under test and injects glitches on receipt of a trigger signal. The application also

communicates with the Micropross MP300 TC2 to send and receive APDU commands to and

from the Smart Card under test.

VGlitch nennagi 4.14, the front-end application used on this research line, re-used many of the

features of the original application, including the used equipment as well as a similar test flow.

However, the change and addition of around 1900 lines of code of the original application was

needed to adapt it to the test requirements of this research.

The user interface (UI) of VGlitch nenagi 4.14 is shown in Figure 9. The application allows

selecting between 4 different target tests:

• Glitch, to characterise the glitch detectors’ detection range;

• Memory, to test different memory cells instantiated in the Arrano test-chip;

• Sylvain, to test the robustness of the different memory modules instantiated into the

01HLB test-chip; and

• Tartalo, to test the behaviour of the counter in the Tartalo test-chip to validate the

simulation environment.

On each test case, the pulse generator can apply a set of glitches and noise over a base supply

of 3V or 5V that powers one of the voltage regulators embed in the Arrano test-chip. The load

these voltage regulators are subjected to is defined in the Load Settings field, see Figure 9. Low,

Medium, High and LFSR loads are achieved with the resistive loads build into the Arrano test-

chip. DES and both DES+AES loads are achieved by running encryption/decryption operations

on the Cratis load device powered by one of the voltage regulators embed into the Arrano test-

chip.

The normal operation of VGlitch nennagi 4.14 is as follows: lock the access to the MP300 and the

pulse generator; for each base supply case, for each load scenario and for each glitch, apply a

number of glitches and check back the target device’s status. For each supply case and for each

load scenario, create a CSV file with the device status after each glitch attack.

EngD portfolio – Volume II, A. Goikoetxea Yanci GlitchTech1 179

Figure 9 VGlitch nenagi 4.14 user interface

The source code of VGlitch nenagi 4.14 is also confidential and only available to Atmel in:

/home/asierg/derivable/research_data/04_appendix_test_chips/04_03_arran

o/code/vglitch_nenagi.svn.dump.zip

Engineering Doctorate

SRAM Memory Partitioning for Leakage Reduction

Author: Asier Goikoetxea Yanci

Date: 2007-09-27

Sponsored by:

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 181

Table of contents

Abbreviations __182

1 Introduction___183

1.1 This works’ scope__ 184

2 Related work __186

3 Determining factors of the memory’s usage __________________187

3.1 Operating Systems and Applications __________________________ 187

3.1.1 General overview __ 187

3.1.2 Smart Card Operating Systems and Applications _____________________ 189

3.2 Compilers __ 190

3.3 Scrambler __ 190

3.4 CPU architecture___ 192

3.5 Summary ___ 192

4 SRAM usage case study: SCD-A running SCOS _______________193

4.1 About SCD-A __ 193

4.1.1 Data memory map ___ 193

4.2 About SCOS __ 195

4.3 Data gathering environment setup ____________________________ 196

4.4 Test results ___ 198

5 Discussion__202

6 Conclusions __207

7 Future work ___208

Reference ___209

Appendix A Test-bench Update________________________________210

Appendix B Analysis Script ___________________________________213

Appendix C Usage Analysis Results____________________________215

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 182

Abbreviations

APDU Application Protocol Data Unit

API Application Protocol Interface

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DES Data Encryption Standard

DRAM Dynamic RAM

DRV Data Retention Voltage

EEPROM Electronic Erasable Programmable Read Only Memory

IP Intellectual Property

ISO International Standards Organisation

MMU Memory Management Unit

NVM Non-Volatile Memory

OS Operating System

RAM Random Access Memory

RNG Random Number Generator

SC Smart Card

SCD-A Smart Card Device A

SCOS Smart Card Operating System

SoC System on Chip

SPI Serial Peripheral Interface

SPM Scratch-pad Memory

SRAM Static RAM

TDES Triple-DES

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 183

1 Introduction

Newer technology processes result on smaller devices, higher integration capacity and an

increase in performance. However, these benefits are also acompained by other undesirable

features, such as process variations across the wafer and between different wafers, and an

increase of leakage current – source of the static power, specially undesirable in portable and

contactless applications, as it wastes the battery’s life. As an illustration, when the

cryptographic module is performing an encryption or decryption operation, the rest of the

device goes to idle mode in order to save on dynamic and static power consumption, specially

from SRAM. Hence, adopting newer technology should be made by minimising its impact on

the leakage current.

The two main sources of leakage are: a) sub-threshold leakage; and b) gate tunnelling.

Reducing transistor geometries forces a reduction on the supply voltage (Vdd) for two

reasons; the first one in order to avoid damaging the device, the second one in order to

reduce the dynamic power. Reducing Vdd, on the other hand, has a negative impact on the

gate’s performance, as it gets poorer with it. The performance of a gate can be boosted by

reducing its threshold voltage (Vt). However, doing so would result on not fully turning the

device off, i.e. going into weak inversion, and making the device leaky. This creates, then, the

paradigma of sacrificing power for performance or vice versa.

Gate tunnelling, in the other hand, has a more direct link with the geometry than the sub-

threshold leakage. As devices get smaller and Vdd reduced, the devices’ gate oxide also gets

thinner. Thinner gate oxides are needed to induce the electric field or channel for the current

to flow through from the source to the drain. The side effect of thinner gate oxides, however,

is an increase of the gate leakage due to the proximity of the gate and bulk.

Plenty of effort has been made toward minimising the leakage, ranging from foundry level to

the software or application level. SOI wafers are said to be less leaky than CMOS ones [1].

Transistor design improvements such as fin FET transistors [2] or high dielectric (high-k) gate

oxides [3] have also been suggested. Design wise, high-Vt and low-Vt transistors can be

mixed so that, low-Vt ones (more leaky) are used for critical paths, and high-Vt ones (less

leaky) are used for the rest of the logic [4].

Higher level leakage reduction techniques involve system level techniques that can be

transparent to or exploited by the software. Dynamic voltage scaling (DVS) and dynamic

frequency scaling (DFS) are popular techniques that allow reducing the dynamic and static

power consumption by dynamically setting the device’s maximum performance [5]. Reducing

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 184

the frequency reduces the performance and dynamic power consumption. Reducing the

voltage reduces the performance, dynamic and static power consumptions.

SRAMs are compact intellectual properties (IP) with a high transistor density and, in small

system-on-chip (SoC) devices, they often account for more transistors than the rest of the

logic design. This makes them the highest source of leakage current on these SoCs, which is

set to worsen in the future with the moving to newer technology nodes and an increasing

amount of SRAM within the SoC.

Several techniques, other than those already mentioned, have been developed to reduce the

leakage contribution of on-chip memories such as changing the cell bit structure [6, 7].

Another popular technique is combining memory partitioning (replacing a monolithic memory

with smaller sized ones) with power management techniques [8, 9], which allows saving

power via hardware techniques and clever memory usage by the software applications. This

technique has extensively been used in cache and scratch-pad memories (SPMs) for

reducing both dynamic and static power consumptions and usually impacts the compilers, as

they need to be aware of the memory partitions.

The dynamic power consumed by a circuit is defined by its effective capacitive load, the

supply voltage and the frequency the circuit is exercised at, just as defined in (1). Smaller

memory arrays have a smaller capacitive load for read/write operations than bigger ones,

hence, partitioning or dividing a monolithic memory into smaller size memories results in

reducing the dynamic power consumption [8]. The static power consumed by a circuitry, on

the other hand, depends on the supply voltage and its leakage current. This technique

typically reduces the static power by lowering the supply voltage level of the partitions not

being accessed [9, 10]. The reduced supply voltage needs to be above the data retention

voltage (DRV) if the contect of these partitions is not to be lost [10, 11].

clockeffdynamic FVddCP ⋅⋅=
2

 (1)

1.1 This works’ scope

In the particular case of Smart Cards, SRAMs are also the single highest source of leakage.

The high leakage restriction imposed on Smart Cards used in mobile and contactless

applications, the tendency to increase the amount of SRAM in newer Smart Card products

and the increase of leakage current with newer technologies, drove the need to reducing the

power consumed by SRAMs.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 185

The Atmel Memory Group proposed partitioning the system memory and powering the

partitions according to their use. The power policy proposed by the Memory Group include the

following:

• In-use: A partiton is in-use when any data held within this partition is being accessed

either for a read or write operation. On this circumstance, the partition should be fully

powered to avoid any performance penalty.

• Data retention: When a partition holds valid data but is not being accessed, it is said

to be in data retention mode. While on this mode, supply voltage should be reduced

so that leakage is minimised, but always above the DRV, to avoid loosing any data.

• Not used: A partition is not used when it does not hold any valid data. In this case,

the partition's supply can be turned off to avoid any contribution towards the system’s

leakage current.

This work looks at the applicability of above techniques to the SRAMs built into Smart Cards.

The remaining of this report is divided as follows; Section 2 provides with an overview of

previous works. Section 3 covers the different aspects that can determine the usage of the

data memory on a small embedded system, such as Smart Cards. Section 4 focuses on the

case study of the Smart Card Device A (SCD-A) running the Smart Card OS (SCOS). Section

5 includes a discussion on what benefits could be obtained on both, SCOS and other OS and

application cases, by using a partitioned memory. Section 6 draws the conclusion obtained

from this research line and, Section 7, proposes some future line of action in this topic.

The outcome of this work is the report ‘Proposed Memory Partitioning Approach for SRAMs in

Smart Card Devices’, which focuses on determining the partitioning approach, partition size,

powering policy, impact on the scrambler and other aspects that need to be considered when

applying memory partitioning.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 186

2 Related work

Please refer to sections 4.1 Literature Review and 4.2.1 Literature Review in the Volume I of

this Portfolio for details on related works.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 187

3 Determining factors of the memory’s usage

The data memory usage of an embedded system depends on several factors, one of the main

factors is the embedded system’s target application. This includes whether the embedded

system is a single- or multi-application and, in the later case, the number of applications that

can be run concurrently at any one time. This factor is, in great measure, tightly coupled to

the OS running on it.

Other factors that also influence the memory usage are shown in Figure 3-1. This section

descrives how some of these factors can determine the memory usage.

Memory usageOperating System Compiler

ScramblerCPU architecture

Memory distribution Application(s)

Figure 3-1 Factors that influence on the memory usage

3.1 Operating Systems and Applications

3.1.1 General overview

An OS is software that interfaces between the application programs and the hardware,

abstracting the application from the underlying hardware and providing a common interface

and description for different hardware. A typical computer system structure is depicted in

Figure 3-2, where the OS is divided into three different layers: device drivers; hardware

abstraction layer (HAL); and the core of the operating system.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 188

HAL

Operating System Core

App_1 App_2 App_3

Operating
System

Device
Driver

Device
Driver

Device
Driver

Device
Driver

Hardware

Figure 3-2 Typical structure of a computer system

The device drivers provides some call routines or application program interfaces (APIs) so

that the layers above can mask the particular implementation of the hardware feature that is

accessed via the device driver. Device drivers could be used to control and/or access I/O

devices, memory and other hardware functions via these routines.

The HAL further abstracts the hardware from the operating system, providing a common

platform on which the OS is run. This layer’s function is to mask, from the operating system

core, as many hardware specific features as possible, hence, making the OS as hardware

independent as possible. In turn, this facilitates porting the core OS to a different hardware by

minimising or avoiding the impact in the core OS. If a particular OS does not implement this

layer, the OS core would be affected on each port to a higher or lower degree, depending on

how the hardware architectures differ.

The operating system core implements all the different rules and policies under which the

system is controlled or managed. These rules and policies can include application scheduling,

hardware management, I/O management, memory management and many more. The

particular implementation and features can vary from one OS to another. The next sub-

section covers the particularities of different OSs used on Smart Card applications.

The OS core also provides the applications with a standardised API, so that they can use the

general functions that are provided by the OS. For example, allow access to files and

directories, or hardware specific functions, such as using a co-processor or a communication

port.

When the previous layers are well defined, the OS can run applications developed by different

parties, as is the case with modern computers. These applications do not need to know the

hardware’s ins and outs, but instead, use the OS to exploit them when necessary. How the

applications use the hardware will greatly depend on the application being run. Take for

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 189

instance a computer system with a multimedia co-processor. A video player application could

be using this co-processor to boost the playback performance. Such an application could,

perhaps playback media from different sources, e.g. locally stored, broadcasted or streamed.

For each media source, different hardware will be required. A plain text editor, on the other

hand, will have much lower hardware requirements.

The memory usage of different applications can also vary. For example, the memory required

by a plain text editor application is obviously much lower than that required by a video player

application.

Generally, these concepts also apply to Smart Cards. The following sub-section shows how

these concepts are applied to Smart Cards, and how these and a given set of particulars of

the Smart Card applications can effect on the usage of the memory.

3.1.2 Smart Card Operating Systems and Applications

Operating systems running on Smart Cards are a scaled down version of the OSs described

above, adapted to the limited resources and target applications of Smart Cards. These OSs

can be divided in two groups: native and non-native OSs. Native OSs are usually developed

by Smart Card vendors and are tightly coupled to the hardware they run on. These tend to be

proprietary operating systems, where running a third party application is extremely costly and

difficult.

Non-native OSs, such as STARCOS and MULTOS, on the other hand, are not fixed to any

particular hardware. These are commercial off-the-shelf (COTS) OSs that can be used on a

wide range of Smart Cards, partially independently from the Smart Card manufacturer and

vendors. Partially, because not all non-native OSs have been ported to all Smart Cards and

also because the use of a given OS is decided by the vendor depending on the Smart Card’s

target application. Unlike native OSs, non-native OSs potentially allow third party applications

to be run on the Smart Card. They also can facilitate the installation of new applications once

the Smart Card has been deployed.

There are different reasons why a vendor will be more inclined to use a native or a non-native

operating system. The main reasons are the target application and the costs of scale. Smart

Card devices can be classified as single-application or multi-application. Single application

Smart Cards are usually programmed to target a single, particular application through its life-

time, whereas multi-applications tend to target several applications. Multi-application ready

OSs can also enable executing the applications either one at a time or several applications

concurrently.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 190

In general terms, native OSs are primarily single-application whereas non-native OSs are

primarily multi-applications, and just as with PCs, different applications will result in different

memory usage and even different footprints. However, unlike native OSs, vendors need to

pay royalties for using non-native OSs, and this might increase the product cost.

Again, similar to PC OSs, Smart Card OSs should and do differentiate between OS and

application memory. For security reasons, multi-application OSs should define application

level memory data access boundaries. Hence, not allowing a given application to access

another application’s data.

The OS of small devices can be identified by yet another parameter – the data linkage –

which can be variable or static. A variable data OS allows size-variable data or allocating data

or memory dynamically, e.g. a variable array or buffer. These devices need a memory

management unit (MMU), which could be instantiated in hardware and/or software. A static

data OS only allows fixed variable data, which is fixed to a defined memory location at

compile or execution time. Both OS types will also yield different memory usage patterns.

3.2 Compilers

The programming language, and hence the compiler, impacts where the variables are located

in the memory. When programing for a MMU-less CPU/OS, i.e. a data static OS, the data is

allocated to certain memory areas defined by pragma directives in the source code. This

allows, for example, the targeting of specific memory sections to run certain functions. The

variables defined within the pragma directives could be considered as C static variables. C

compilers also use the C-Stack to store all other variables that are not defined within pragma

directives. This could be considered as C volatile variables. For the case of data variable

OSs, C compilers use the heap to store variable-size data when invoking the malloc function

or similar.

Other programing languages can use different polices to store variables. For instance, Java

compilers place all variables in the heap.

3.3 Scrambler

Among other security features, Smart Cards include a memory scrambling unit. This unit’s

function is to scatter the memory’s logical addresses in the physical domain, as well as the

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 191

data bit order. The result is that continuous addresses in the logical domain may no longer be

continuous in the physical domain. A visual example of this scattering is shown in Figure 3-3.

The memory scrambling differs every time the Smart Card is powered up or reset. This

means, the scattering is unpredictable. Hence, even if the same application is run several

times, each time accessing the same logical addresses, the physical addresses accessed

may differ for each different run.

It must be noted, however, that the scrambler only alters the spatial domain of the memory.

The temporal domain is not affected by the scrambler, therefore, the amount and duration of

IDLE states remain unchanged every time a given piece of code is run.

variable_2

variable_1

variable_2

variable_1

Logical Memory Scrambler Physical Memory

variable_3

variable_3

Figure 3-3 Example of how a scrambler could scatter logical addresses in the physical
domain

Memory scrambling is another issue to be solved in order to efficiently use a partitioned

system memory, as using the current scrambling approach does not take partitions into

account. This means, memory addresses belonging to a given logical partition could be

scattered across different physical partitions, decreasing the effectiveness of this leakage

reduction technique.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 192

3.4 CPU architecture

Different CPU architectures might also have an impact on the memory usage. Current CPUs

used by Atmel Smart Cards mainly focus on 8-bit architectures, although a few 32-bit CPUs

have also been introduced. In the 8-bit domain, the CPU accesses the SRAM data directly,

usually within a clock cycle, and without any intermediary. This means that if a particular

variable (other than those stored in the internal general purpose registers) is to be read or

written to, the system SRAM will always be accessed.

In the 32-bit domain, on the other hand, two options are possible regarding the system

memory and its usage; a CPU with cache or a CPU without cache (or SPM). 32-bit CPUs

without cache memory (or SPM) will behave in the same fashion as the 8-bit CPUs, where the

system RAM is directly access when a variable is required.

CPUs with cache memories will have a different usage of the system memory, it will only be

accessed in the event that the variable the CPU is looking for is not in the cache memory.

Furthermore, SoC using such a CPU could embed a slower system RAM, be it SRAM or

DRAM. This implies the need for wait states when accessing the system memory.

Although at the time of writing this report there is no knowledge of any Smart Card using a

CPU with cache memory, this sort of CPU might be used in the future with the introduction of

Smart Cards with a higher memory capacity and with higher performance (e.g. USIM).

Because the Smart Cards developed at Atmel are based on 8-bit CPUs and 32-bit CPUs

without cache memory, the memory use of these types of CPUs is only considered in this

report.

3.5 Summary

This section has shown how the memory usage is affected by the different decisions taken at

different levels. Due to the wide range of applications where a given Smart Card can be used,

and due to the lack of in-depth knowledge (and the possibility of gaining this knowledge) of

the different OS and applications that run on Smart Cards, their memory usage must be

determined based on information available in house. This is covered in the next section.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 193

4 SRAM usage case study: SCD-A running SCOS

A case study was setup to gather knowledge of the actual memory usage pattern of Smart

Cards. Since Smart Card manufacturers do not have access to their customers’ native OSs

and even less so to their applications, nor in this case was there access to a non-native OS,

this case study was run using an Smart Card OS (SCOS) developed by Atmel’s Applications

division in Rousset, France. This SCOS was developed for Smart Cards to be used as

cryptographic co-processors in embedded systems. This OS was developed for the Smart

Card Device A (SCD-A), hence, this was the one used in this case study.

Due to confidentiality issues, the OS used in this work will be referred to as SCOS, and the

Smart Card will be referred to as SCD-A. The following subsections contain a description of

the SCD-A and SCOS. This is followed by a description of the data gathering environment

and the obtained results.

4.1 About SCD-A

The SCD-A is a Smart Card developed to target several applications, including GSM, banking

and government applications. These are its relevant features:

• High-performance, Low-power, secure AVR RISC architecture microcontroller

• Compliant with GSM, 3CGG and EMV2000 Specifications

• 144 Kbytes Flash

• 144 Kbytes EEPROM

• 8 Kbytes SRAM

• Two ISO7816-3 compliant I/O ports

• SPI interface

• RNG (Random Number Generator)

• Hardware DES/TDES

• 32-bit Cryptographic Accelerator for Public Key Operations

• CRC

4.1.1 Data memory map

Figure 4-1 shows a diagram of the SCD-A’s data memory. The data memory is divided in two

main sections: volatile and non-volatile memory. The EEPROM represents the non-volatile

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 194

memory section of the memory map, whereas the SRAMs and registers represent the volatile

memory. Focusing on the SRAMs, Standard and Shared memories make up the 8-Kbyte

mentioned in the specification.

These SRAMs have a very distinctive function. The Standard Memory (6-Kbyte) is the system

memory, which will be used exclusively by the CPU. The Standard Memory is in fact a

combination of two 3-Kbyte memories. Built in 0.18µm technology and powered at 1.8V, each

memory has a leakage current of 2.1µA and a dynamic power consumption of 17µW/MHz. On

the other hand, the Shared Memory (2-Kbyte) is shared between the CPU and the advanced

multiplier (AdvX).

The Shared Memory is a single-port SRAM, so only one processing unit can access it at a

time, either the CPU or the AdvX. When the AdvX starts its execution, the CPU cannot

access this memory until the AdvX computation has finished. Despite this, nothing stops a

software engineer from writing code that uses this SRAM as a scratchpad, i.e. storing

temporal system data into it. For example, executing the application protocol data unit

(APDU) command does not involve running the AdvX. However, this is not considered to be

the normal procedure by Atmel customers, as doing so would introduce further complexity

into the OS and the memory management.

As a result, the use of the Shared Memory is not considered in this case study. Despite

omitting this SRAM in this analysis, the same leakage reduction techniques could be applied

and are recommended for this memory too.

Data Memory

Volatile
Memory

Non-Volatile
Memory

$000000

$aaaaaa

$bbbbbb

$cccccc

Figure 4-1 SCD-A's Data Memory Map

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 195

4.2 About SCOS

The SCOS is an operating system developed by Atmel to run on its Smart Card products.

This OS has been ported to a series of devices and it was used for this case study as the only

available OS for a Smart Card. The characteristics of this OS are described below.

Data static OS: Every data is of a fixed size. There is not dynamic data allocation nor

variable size arrays. The size and location of each data is designated either at programming

or compile time. Once the software has been compiled, the data size and logical address will

not be altered.

Application data is stored in a size limited C-Stack. The amount of stack to be used by the

application is determined by the application itself. Again, this data will be defined at

programming or compile time. Dynamic allocation of memory is not allowed, however,

memory addresses of local variables belonging to finished or expired functions might be used

as local variables by other functions.

Application static OS: Once the Smart Card has been personalised, the OS does not allow

more applications to be loaded or deleted.

The communication with the external world is carried out via an SPI interface, rather than

the standard ISO I/O interface of the ISO 7813 Smart Cards.

Figure 4-2 shows how the SCOS divides the SCD-A system memory. Seven main sections

can be identified: an unnamed section; DATAVOL_LIB; DATAVOL_OS;

DATAVOL_APP_AUTH; a not used section; RSTACK and CSTACK. The last section,

CSTACK, is where the application stores its variables. The RSTACK is used by the software’s

flow. All other sections are used by the OS layer and/or any other software layer below the

OS. As it can be seen from this figure, all in all, the SCOS only defines sections that take in

total slightly less than half the whole system memory. By powering off the non-used segments

of the SRAM, the leakage consumption could be almost halved.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 196

SCOS Fragmentation of the SCD-A System Memory

Unnamed

DATAVOL_LIB

DATAVOL_OS

OS_COMMS

DATAVOL_APP_Authentication

RSTACK

CSTACK

Not Used

Figure 4-2 SCOS System Memory Map

4.3 Data gathering environment setup

In order to decide the best memory partitioning approach, the SRAM utilisation needs to be

studied in the following terms: the accessed SRAM addresses; the access times; and the

IDLE times. The best way to gather the required information for this research is to execute

applications on a Smart Card and monitor the SRAM usage. In order to have full access to

the SRAM address bus, this data gathering process needs to be based on simulations.

Hence, a Smart Card model; an OS with applications; and a test setup or environment

capable of simulating real transactions and monitoring the SRAMs were needed.

Atmel already had a simulation environment for testing the Smart Cards at system level. This

environment, Figure 4-3, instantiates an RTL/HDL Smart Card and can operate in either

tester or reader mode. Atmel carries out all their tests by running the test environment in

tester mode. The tester module communicates with the Smart Card through the ISO I/O port

to perform behavioural tests on the Smart Card.

The test environment for the data gathering process should simulate the Smart Card in a real

environment. The Smart Card should carry or execute transactions sent by an external

application through a Smart Card Reader. The reader test mode in Atmel’s test environment

was not operational and only the top level instantiation of this operation mode was

implemented. Development of the reader test module was required for this experiment.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 197

Furthermore, Atmel’s test environment does not collect any information on the use of any of

the IPs in the Smart Card, hence, implementation of the SRAM usage monitoring feature was

also required.

Figure 4-3 Diagram of Atmel’s standard test environment for Smart Cards

In addition to defining the Smart Card device to be used, the SCOS also restricts which

communication channel between the Smart Card and the Smart Card Reader can be used.

Instead of the standard ISO I/O port used by Smart Cards, the SCOS communicates with the

external world via the SPI port. This has no impact on the Smart Card itself, but it does effect

the test environment. Another implication of using this OS is the communication protocol. It

uses the Block Protocol Stack, which is a proprietary wrapper protocol for the standard APDU

commands and was developed by Atmel

In summary, Atmel’s test environment needed to be updated so that it could work as a reader,

running applications and communicating with the Smart Card through the SPI port as well as

using the Block Protocol Stack. An update to monitoring the I/Os of the SRAM IP was also

required. Finally a Perl script was developed to generate the statistical information of the

memory’s usage. Figure 4-4 shows the block diagram of the resulting reader mode. Figure

4-5 shows the final test setup used for these tests.

Appendix A provides a more in depth knowledge of the test environment. Appendix B lists the

features of the SRAM analysis Perl script.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 198

Figure 4-4 Reader's block diagram

Figure 4-5 Block diagram of the used test setup

4.4 Test results

Tests were performed by running three different applications on the Smart Card:

• Smart Card personalisation

• random number generation

• some basic APDU commands

The Smart Card personalisation test consisted of the reader sending data (i.e. applications) to

be stored in the non-volatile memory and to change the Smart Card IC’s life cycle status.

Smart Cards are personalised with the applications and data to be used during their life cycle.

The random number generation test generated a series of random numbers, from 1-byte to

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 199

256-bytes long. The APDU command test consisted of selecting a test application and

sending four test APDU commands. The statistical logical SRAM usage for each of these

tests is shown in Table 4-1. For each application the data generated by the SRAM analysis

script was too large to be shown in this report, therefore, Appendix C shows only the SRAM

usage data that was generated when running the RNG application.

Table 4-1 Logical SRAM usage simulation results

 APDU RNG Personalisation

Simulation time
12,545,825ns

(88,618 cycles)

3,205,569,757ns

(19,774,170 cycles)

750,729,977ns

(5,592,126 cycles)

read
10.97%

(9,718 cycles)

4.52%

(894,201 cycles)

8.67%

(484,817 cycles)Total access

time
write

10.51%

(9,316 cycles)

3.56%

(703,342 cycles)

6.58%

(367,998 cycles)

20400 ps 28.49% 1.16% 63.32%
142800 ps 71.42% 98.84% 36.67%

Read access

times
202560 ps 0.09% 0.00% 0.00%

20400 ps 24.95% 1.30% 63.84%
142800 ps 74.81% 98.70% 36.15%

Write access

times
202560 ps 0.25% 0.00% 0.01%

read 1.95% 8.08% 6.23%% of accessed

addresses write 7.72% 9.89% 8.11%

1 7,319 990,299 388,442
2 - 1 -Block sizes

3 3,905 202,414 154,791

Total amount 11,224 1,192,714 543,234

Mean 7 16 9IDLE states

Deviation 29 61 47

This table shows the total simulation time for each of the test cases, which depends on the

test itself. The total amount of time spent on read and write operations are also presented,

this time is shown as a percentage of the total simulation time.

Another piece of information shown in this table is the different read and write access times

and the percentage of occurrences for each of these access times. These are a percentage of

the total read and write times. Note that few of the read/write access times show a 0.00%

value. This is due to the small amount of memory accesses at these access times.

The total amount of the addresses accessed for read and write are also presented. These are

presented as a percentage of the total SRAM addresses accessed. Finally, block size

occurrences are shown. Block size represents the amount of consecutive memory address

accesses.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 200

The logical and physical memory use distributions are shown in the figures below. The logical

addresses in Figure 4-6 and the physical addresses in Figure 4-7. The colours indicate the

activity of each address for each application, where blue indicates a low activity, at least one

access, and red indicates a high activity. APP. 1 shows the memory usage for the simple

APDU command. APP. 2 shows the memory usage for the Personalisation commands. APP.

3 shows the memory usage for the RNG commands.

Figure 4-6 Accessed logical addresses for each application

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 201

Figure 4-7 Accessed physical addresses for each application

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 202

5 Discussion

As expected, different applications have different memory requirements in terms of the

amount of memory needed and the spatial and temporal domain accesses. The scrambler

also plays an important role in the memory’s spatial usage. In fact, the data is more scattered

in the physical memory than in the logical one, which is relatively compact, Figure 4-6 vs.

Figure 4-7.

Different customers will use different OSs and applications, which will result in a considerably

broader memory usage pattern. These usage patterns are made worse by the scrambler. This

means that it is not possible to have a partitioning approach that is optimal for all cases or

customers. Certainly not with the data available in the current research. Nevertheless, some

general conclusions can be drawn that could help to reduce the power consumption for all or

most of the cases or customers.

Out of the total available system memory in the SCD-A, the Standard SRAM in Figure 4-1, the

SCOS uses or allocates slightly less than half of it, see Figure 4-2. All memory areas defined

in Figure 4-2 could be combined easily into one memory unit, allowing the other memory unit

to power off in order to save on dynamic and static power. Static for obvious reasons.

Dynamic as currently, by design, both memory units are accessed concurrently for read

operations, producing a higher power consumption that what is actually needed.

As long as all applications are limited to define their variables within the C-Stack area, the

second memory unit could remain powered off. This shows that small hardware changes and

software decisions could help in reducing the power consumption. According to [12], the

leakage current of the gated memory could be cut by up to 86% – from 2.1 µA to 0.29 µA –

with no impact on the area or performance. Also, it would no longer contribute toward the

dynamic power consumption.

Despite the SCOS defining an overall memory size of nearly 3-Kbyte, none of the applications

accessed more than 8.08% and 9.89% of the 6-Kbyte memory for read and write operations

respectively. Furthermore, the memory is only accessed for between 15% and 21% of the run

time, remaining IDLE for 79% to 85% of the time. This clearly indicates that there is room for

further power savings should the 3-Kbyte memories be partitioned and a powering policy

applied depending on the partition access and content.

The simulations show three specific memory usage patterns. The first is that all applications

perform more SRAM write operations than read operations. This can be explained by the

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 203

initialisation of variables, a common behaviour when entering functions, and the use of

software loops and/or counter variables, where it is likely that a given variable will be updated

several times before that same variable is read.

The second pattern is that single addresses are accessed approximately 10 times more often

than three consecutive addresses. No information was generated regarding which addresses

were accessed individually or consecutively. However, accessing three logical addresses in a

row could be explained by the use of the memory stack to store or recover the program

counter (which in the CPU of this Smart Card is three bytes long) when entering and leaving

software routines. In fact, the R-Stack usage suggests this behaviour. Figure 5-1 shows the

number of accesses to several consecutive logical addresses in the R-Stack section, the

actual addresses are not shown for confidentiality reasons.

Number of access to the R-Stack

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

R
STAC

K_b
as

e

R
STAC

K_b
as

e
+

1

R
STAC

K_b
as

e
+ 2

R
STAC

K_b
as

e
+

3

R
STAC

K_b
as

e
+ 4

R
STAC

K_b
as

e
+ 5

R
STAC

K_b
as

e
+

6

R
STAC

K_b
as

e
+

7

R
STAC

K_b
as

e
+ 8

R
STAC

K_b
as

e
+

9

R
STAC

K_b
as

e
+ 1

0

R
STAC

K_b
as

e
+ 1

1

R
STAC

K_b
as

e
+

12

R
STAC

K_b
as

e
+ 1

3

R
STAC

K_b
as

e
+ 1

4

R
STAC

K_b
as

e
+

15

R
STAC

K_b
as

e
+ 1

6

R
STAC

K_b
as

e
+ 1

7

R
STAC

K_b
as

e
+

18

R
STAC

K_b
as

e
+ 1

9

R
STAC

K_b
as

e
+ 2

0

R
STAC

K_b
as

e
+ 2

1

R
STAC

K_b
as

e
+

22

R
STAC

K_b
as

e
+ 2

3

R
STAC

K_b
as

e
+

24

R
STAC

K_b
as

e
+ 2

5

R
STAC

K_b
as

e
+ 2

6

Logical addresses

N
u

m
b

e
r

o
f

ti
m

e
s
 a

c
c
e
s
s
e
d

Figure 5-1 Consecutive accesses to the R-Stack

Two consecutive address accesses, on the other hand, show a very particular behaviour, as

this addressing mode is used only once in two of the simulations and twice in the third

simulation. Other than storing the program counter value, the stack is also typically used to

store the value of general purpose registers before or after calling a routine, but there is no

evidence of this kind of access in the R-Stack.

Something else could explain accessing two concurrent addresses, using two consecutive

data indirect addressing mode instructions with pre-increment or post-increment of a pointer.

This is, consecutive read-write, write-read, read-read or write-write memory accesses.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 204

Despite the intended logical block size, the actual physical block size is 1 for all cases. This

means that, regardless of how the logical memory is accessed, no consecutive physical

memory addresses were accessed. To make matters worse, the address scrambling can

change each time the Smart Card is powered up.

A solution to the scrambler issue could be to apply individual scramblers to each partition, just

as though each partition was a small individual SRAM with its own built-in scrambler. This

way all the addresses in a logical partition would be scrambled into the addresses for an

equivalent physical partition. Furthermore, if all partitions are the same size, then an

additional scrambling tier could be added so that the different partitions could also be

scrambled. The benefit of a two tier scrambling approach is that any partitions that are

powered off could be re-scrambled the next time they are powered on.

The third pattern that can be highlighted in the table is the memory access time and its

distribution. Three different access times are used in all three simulations. These access

times represent the period of the system clock cycle when the memory was being accessed

and not the amount of time that it took for the data to be written to the SRAM array, nor the

amount of time that it took for the data to be present at the SRAM's output data bus. These

variations in the access time are the result of the system clock speed changes. It must be

noted that the system clock may be partially controlled by the OS depending on the

performance required by the operation or the command to be carried out.

The possibility of powering different partitions individually immediately suggests the need for

an embedded memory power management unit and/or powering mechanisms within the

memory. A power management unit also implies the need for some sort of intelligence, so

that segments can be enabled in time for the next access. Furthermore, there is a time delay

associated with the supply voltage changes from DRV to fully on and vice versa. These

changes are not immediate. This penalty will worsen when powering partitions on and off, as

in this case, the delay is greater.

When looking at how each of the above usage patterns impact the powering strategy initially

proposed in this research, the fastest memory access times should be considered as the

worst case scenario as they force the segments' powering mechanism to rise and lower the

supply voltage level at faster speeds. This requirement can be particularly demanding when

several individual accesses are separated by only one idle (no access) cycle each.

The stress imposed on the powering mechanism can be relaxed if a switching policy is

implemented in the memory power management unit. This policy could enable partitions to be

powered on and off by software, even if it is through a lite-MMU, as this is the easiest way to

determine the validity of the data held within a particular partition. This policy could also use

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 205

hardware to control each partition’s power supply value according to the partitions’ access

rate. Partitions could be fully powered as soon as an access to them is detected and then

powered to a DRV level a given amount of idle cycles after the partition was accessed for the

last time. This technique will not avoid the cases where the powering mechanisms are asked

to lower and raise the voltage in consecutive clock cycles, but it could minimise this event.

The memory access delay generated from changing the partitions’ supply voltage level could,

in some cases, be dismissed due to the Smart Card application requirements, but this is not

warrantied to be always the case. Hence, this powering policy should be used with care.

Other than that, the data generated in this research focuses purely on memory access

parameters, which is only part of a bigger picture and not enough on its own to suggest the

best memory partitioning approach. Valuable information is lost by ignoring the meaning of

each access and/or their association to different parts of the code. For example,

differentiating static and volatile data and their validity period could help determine which

partitions can be powered off.

Software can define variables at different points in the code. These variables can be classified

as global or static (static) or, temporal or volatile (volatile). From a memory usage point of

view, static variables should be present in the memory for as long as that particular software

is running. Volatile variables, on the other hand, are only valid within the code-block where

they were defined. These variables are discarded once the code-block that defined them has

been executed. For example, the variables defined within a function will disappear from the

memory when this function has finished its task.

When analysing variables’ behaviour at a system level, the software should be divided into

two main layers, the OS and the application. The OS is the piece of code that will be running

continuously. For the case of the OS, every static variable is valid and should be kept for the

period that the Smart Card is powered on. Volatile variables, on the other hand, will be

created and destroyed as they are only needed by the OS in order to perform certain

operations.

When it comes to the applications, these are pieces of code executed in an ad-hoc mode, that

is, they are launched depending on the job to be performed. Applications can have variables

that need to be present for as long as it is running and variables that can be generated or

destroyed on the fly. However, from the system's perspective, when the application is finished

most or all of the variables related to the application are no longer valid. From this

perspective, most or all application variables are volatile variables.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 206

Taking this perspective into account, one or more partitions could be assigned to store all

application variables, power these partitions on when a given application is selected (i.e.

running) and power them off when no application is selected (i.e. only the OS is running).

Another option to fill the knowledge gap and propose a partitioning approach is to analyse the

SRAM usage at system level, i.e. understand how different software layers use the SRAM.

The results shown in this work represent the memory usage made by the communication

channel, the application and the OS. From this data, it is not possible to determine when the

SRAM is accessed in order to perform OS specific operations or when it is accessed to

execute the requested command. This also applies to the accessed memory addresses and

the memory requirements for the OS and the applications. A finer analysis could be obtained

if memory accesses are classified as follows:

• on the Smart Card power up, any memory usage is related to the OS;

• memory usage while commands are being transmitted could be related to

communication;

• memory usage between a command sent by the reader and a response sent by the

Smart Card can be related to the application; and

• any other memory access is related, again, to the OS

This memory usage classification can result in a memory partitioning approach easily

applicable to other applications and OSs. One result of this analysis could be defining an ISO

I/O buffer sized partition. This partition could be powered off while the Smart Card is awaiting

a command. Upon the ISO I/O IP detecting an incoming APDU command, it could

automatically power up the partition associated with the communication buffer. Once the

command has been executed and the result or reply forwarded, the OS could power off the

communication buffer.

This partitioning approach might not result in the highest power savings. However, it has the

potential to minimise the impact on the compiler. This is of special interest to Atmel, as

Atmel’s customers use C compilers designed by third party companies, such as IAR.

Finally, it must be assumed that not all customers would be interested in a partitioned SRAM,

also, porting their OS might be too costly for them to exploit this feature. Hence, the

partitioned SRAM should be as transparent as possible in the CPU’s, the system’s, the

operating system’s and the programmers’ eyes. If backwards compatibility between

partitioned and non-partitioned architectures is not provided, it might result in difficulties with

marketing the Smart Card.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 207

6 Conclusions

It has been shown that memory usage is highly application specific. The effectiveness of

memory partitioning as a leakage reduction technique depends on the thorough study of the

memory usage by these and other applications, as well as understanding how variables are

used by the OS and applications. Techniques to improve the data gathering have been

presented to help with this matter.

The pros and cons of this technique have been argued, and possible solutions to the different

issues here discussed have also been presented. Partitioning a Smart Card memory will have

an impact on the whole system and process, starting with the SRAM module itself, to the

Smart Card system and even the programming approach. The impact on the compiler must

be minimised. The success of this approach is tied to the success at each of these levels.

With time, OSs developed for Smart Cards and small ICs should take this or any other power

reduction techniques into account.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 208

7 Future work

The next step for this research line is to decide its applicability or determine if there is any

interest in this topic from the memory group in France, who are responsible for taking this

topic forward. Additional applications could be simulated for them if necessary, in which case

the test setup should be updated to differentiate between OS and application SRAM

accesses. If this topic is to be followed up, specific design alternatives or improvements to the

scrambler should be investigated and tested.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 209

Reference

1. M. R. Casu and P. Flatresse, “Converting an Embedded Low-Power SRAM from Bulk

to PD-SOI”, in Proceedings of the International Workshop on MTDT. 2002

2. X. Wu, F. Wang, Y. Xie, “Analysis of Subthreshold Finfet Circuits for Ultra-Low Power

Design” in IEEE Int. SOC Conference, September 2006, pp. 91-92

3. S. Datta, G. Dewey, M. Doczy, B.S. Doyle, B. Jin, J. Kavalieros, R. Kotlyar, “High

Mobility Si/SiGe Strained Channel MOS Transistors with HfO/sub 2/TiN Gate Stack”

in IEEE Int. Electron Devices Meeting, Dec. 2003, pp. 28.1.1-28.1.3

4. M. Ashouei, A. Chatterjee, A. D. Singh and V. De, “A Dual-Vt Layout Approach for

Statistical Leakage Variability Minimization in Nanometer CMOS”, in Proceedings of

the ICCD. 2005

5. T. D. Burd, T. A. Pering, A. J. Stratakos and R. W. Brodersen, “A Dynamic Voltage

Scaled Microprocessor System”, in IEEE Journal of Solid-State Circuits, November

2000, Vol. 35, n 11, p 1571-1580

6. K. Roy, S. Mukhopadhyay and H. Mahmoodi-Meimand, “Leakage Current

Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS

Circuits”, in Proceedings of the IEEE, February 2003, Vol. 91, n. 2, p 305-327

7. L. Benini, A. Macii and M. Poncino, “Energy-Aware Design of Embedded Memories:

A Survey of Technologies, Architectures, and Optimization Techniques”, ACM

Transactions on ECS, p5-32, February 2003, Vol. 2, No. 1

8. O. Oztruk and M. Kandemir, “Nonuniform Banking for Reducing Memory Energy

Consumption” , in Proceedings of the conference on DATE. 2005

9. O. Golubeva, M. Loghi, M. Poncino and E. Macii, “Architectural Leakage-Aware

Management of Partitioned Scratchpad Memories”, in Proceedings of the conference

on DATE. 2007

10. H.Qin, Y. Cao, D. Markovic, A. Vladimirescu and J. Rabaey, “SRAM Leakage

Suppression by Minimizing Standby Supply Voltage”, 5th ISQED. 2004, IEEE

Computer Society.

11. K.Flautner, N.S. Kim, S. Martin, D. Blaauw and T. Mudge, “Drowsy Caches: Simple

Techniques for Reducing Leakage Power”, in Proceedings of ISAC, 2002

12. M. Powell, S.H. Yang, B. Falsafi, K. Roy and T.N. Vijaykumar, “Gated-Vdd: A Circuit

Technique to Reduce Leakage in Deep-Submicron Cache Memories” in Proceedings

of ISLPED, 2000.

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 210

Appendix A Test-bench Update

Atmel’s original Smart Card test-bench focused on carrying out some behavioural tests on the

Smart Card’s RTL model. This is achieved by loading a test program or firmware into the

Smart Card and running a series of pre-defined tests. This firmware would respond to

commands received via the I/O port, execute a given tests such as a DES encryption or

decryption, and reply with whether the test passed or failed. A high level diagram of this setup

is shown in Figure 7-1

 Test bench

 SmartCard

CPU Test
OS/Firmware

Test
Stimulus

ISO I/O

Figure 7-1 Atmel's typical HDL Smart Card test environment

This case study needed to exercise the Smart Card like a real application. Figure 7-2 shows a

typical example of a real application. Here, the Smart Card communicates with the Smart

Card Reader through the I/O port, while the Smart Card Reader works as an interface

between the application run on the computer and the Smart Card.

 SmartCard

CPU SCOS
ISO I/OSmart

Card
Reader

USB

Figure 7-2 Smart Card connection example

For this case study, the Smart Card Reader function of Atmel’s original Smart Card test-

bench was not functional, this was developed as part of this research. Furthermore, since

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 211

SCOS uses the SPI port to communicate instead of the I/O port, this also needed to changed.

Follow the next steps to patch Atmel’s Smart Card test-bench.

Create a directory where the analysis environment will be placed:

Assumption: In this example assume that the directory name is ‘/projects/test’. This,

of course, can be changed to something else.

$ mkdir /projects/test

Move into this directory and checkout the ‘Longbow’ test environment. This will result in

creating a directory named ‘longbow’; this directory needs to be renamed to ‘sc’:

$ cd /projects/test

$ cvs checkout longbow

$ mv longbow sc

Get the latest usage environment patch file from

‘/projects/ram_leakage/release/usage_setup_v1_0.patch’ and apply it.

$ cp /projects/ram_leakage/release/usage_setup_v1_0.patch.tgz .

$ tar –xzf usage_setup_v1_0.patch.tgz

$ patch -p1 < usage_setup_v1_0.patch

$ rm usage_setup_v1_0.patch*

Run the ‘run_me_first’ script so it finishes setup of the environment. This script will give

execution permission to those scripts that need it and it will update the local ~/.cshrc and

~/.aliases files with IPUSE_LOCAL and ‘ipusim’ definitions respectively. This script also

creates the simulation output directory. Since simulation results might take a lot of space, this

script can generate a symbolic link from the ‘sc/sim/rtl/out’ directory to any desired directory.

This is done by passing the full path to the target directory as a parameter when running the

script ‘run_me_first’. If no parameter is passed an ‘sc/sim/rtl/out’ directory will be created in

the user’s environment tree. When defining a target directory, this directory must exist before

calling the script. Finally, this script will erase itself after being run.

Assumption: In this example the simulation outputs will be stored in

‘/net_temp13/test/out’.

$ mkdir /net_temp13/test

$ mkdir /net_temp13/test/out

$ chmod +x run_me_first

$ run_me_first /net_temp13/test/out

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 212

Open a new console for the environment variables to take effect. Test if the setup is working

by running the following command, which can be found in the file ‘sc/run_ipusim’:

Note: this simulation takes about 12 minutes to run.

$ ipusim ROM144144_2_base_release_at98_asier.s19 -mode user -

sawed -xaf1 0x0600 -fill 0xff -tsp 0x374d45575451534b -romkey

0x3bba -kwf 0x3f3456

Now the environment should be updated. Figure 7-3 should a diagram of the resulting test-

bench.

 SmartCard

CPU

SCOS

Smart Card Reader

SPI
SPI

App. 3App. 1

Application interface stack

Rx buffer

Block Protocol Stack (BPS)
(FSM)

Tx buffer

SPI

App. 2 App. 4

Figure 7-3 Atmel's HDL Smart Card test environment updated for this research

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 213

Appendix B Analysis Script

The data generated by the simulations was analysed using the Perl script analysis.pl. This

script has 1955 lines of code. Here is a description of the script:

Which version is covered here?

• 0.5.2

What does it do?

• Generate an analysis on IP usage

• Currently it focuses on SRAM usage

How does it do it?

• Opens VCD file generated in a from a previous simulation

• Gets the signals’ indexes

• For each time-stamp, gets the value for the signals of interest

• Generate partial usage information of when the target IP is being accessed

• When the whole simulation has been processed, generate a statistical analysis based

on the generated information

• Stores the statistical information and the action carried at each clock cycle

How is data managed?

• Each targeted signal is stored in a hash variable where the following aspects can be

defined:

• Function

• I/O name

• VCD index value

• Width

• Current value

• Each VCD index value is a hash to the following parameters:

• Index name

• Index position

• Index value

• Targeted signals can be referenced by:

• Function name

• Signal name

• Index

• Other data is stored as follows:

• Read and write access

• Size of contiguous accesses

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 214

• Selected and unselected cycles

• Cycle-wise action

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 215

Appendix C Usage Analysis Results

Memory usage for random number generation. Due to confidentiality reasons, the accessed

logical and physical addresses are not shown in the analysis results below.

Statistical analysis of the SCD-A's ram module's usage.

Statistical analysis version: 0.5.2

Atmel Confidential DO NOT copy. For internal use only

Date: Mon Oct 1 16:37:53 2007

ram usage is as follows:

==================================

Simulation run information

==========================

Simulation time = 3205569757000ps

Simulated clock cycles = 19774170

Average clock frequency = 6.16869121528838 MHz

Maximum clock frequency = 24.5098039215686 MHz

Minimum clock frequency = 6.0909055471095 KHz

Access in percentages (clock cycles)

====================================

 access mode | (%) | number of cycles |

-------------+----------+------------------+

 por | 0.00 | 134 |

 clear | 0.00 | 513 |

 read | 4.52 | 894201 |

 write | 3.56 | 703342 |

 total usage | 8.08 | 1598190 |

Access times are divided as follows:

====================================

Read:

 time(ps) | (%) | ocurrences |

------------+-----------+------------+

 20400 | 1.16 | 10353 |

 142800 | 98.84 | 883838 |

 202560 | 0.00 | 9 |

Write:

 time(ps) | (%) | ocurrences |

------------+-----------+------------+

 20400 | 1.30 | 9153 |

 142800 | 98.70 | 694166 |

 202560 | 0.00 | 23 |

Accesses addresses are as follows:

==================================

Read: 8.08% of the addresses where accessed in this mode

---------------------------+----------+

 Address | times |

 Logical | Physical | accessed |

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 216

-------------+-------------+----------+

 | | |

 | | |

 |

 Data removed due to confidentiality |

 reasons |

 | | |

 | | |

Write: 9.89% of the addresses where accessed in this mode

---------------------------+----------+

 Address | times |

 Logical | Physical | accessed |

-------------+-------------+----------+

 | | |

 | | |

 |

 Data removed due to confidentiality |

 reasons |

 | | |

 | | |

Sequential blocks accesses are as follows:

==

 Logical | |

 block size | occurrences |

-------------+---------------+

 1 | 990299 |

 2 | 1 |

 3 | 202414 |

 Physical | |

 block size | occurrences |

-------------+---------------+

 1 | 1597543 |

Active distribution is as follows:

==================================

Note: If the minimum required amount of unselected clock cycles to consider the

 IP block IDLE is 1, this section will provide the same information as the

 Logical block sizes shown at "Sequential blocks accesses are as follows:".

 Active cycles | occurrences |

---------------+---------------+

 1 | 990299 |

 2 | 1 |

 3 | 202414 |

IDLE distribution is as follows:

================================

 IDLE cycles | occurrences |

-------------+---------------+

 1 | 497609 |

 2 | 171856 |

 3 | 101852 |

 4 | 74883 |

 5 | 39721 |

 6 | 47316 |

 7 | 30642 |

 8 | 45586 |

 9 | 24791 |

 10 | 11587 |

 11 | 55713 |

 12 | 12659 |

 13 | 834 |

 14 | 1029 |

 15 | 1865 |

 16 | 209 |

 17 | 127 |

 18 | 104 |

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 217

 19 | 110 |

 20 | 191 |

 21 | 218 |

 22 | 1065 |

 23 | 844 |

 24 | 380 |

 25 | 612 |

 26 | 21 |

 27 | 6 |

 28 | 1 |

 29 | 3 |

 30 | 4 |

 31 | 3 |

 32 | 2 |

 33 | 4 |

 34 | 4 |

 35 | 4 |

 36 | 1 |

 37 | 6 |

 38 | 2 |

 39 | 1 |

 40 | 3 |

 41 | 1 |

 42 | 86 |

 43 | 19782 |

 44 | 12671 |

 45 | 286 |

 46 | 3 |

 47 | 376 |

 48 | 157 |

 49 | 6 |

 50 | 3 |

 51 | 4 |

 52 | 2 |

 53 | 1 |

 54 | 1 |

 55 | 1 |

 56 | 7 |

 57 | 1 |

 58 | 3 |

 59 | 1 |

 60 | 2 |

 61 | 1 |

 63 | 8 |

 64 | 2 |

 65 | 2 |

 66 | 1 |

 67 | 3 |

 68 | 1 |

 69 | 4 |

 70 | 4 |

 71 | 1 |

 72 | 2 |

 74 | 2 |

 75 | 1 |

 76 | 1 |

 77 | 6 |

 79 | 3 |

 80 | 2 |

 81 | 2 |

 82 | 4 |

 83 | 4 |

 84 | 10 |

 86 | 1 |

 87 | 2 |

 88 | 3 |

 89 | 1 |

 90 | 4 |

 91 | 3 |

 94 | 2 |

 95 | 3 |

 96 | 2 |

 97 | 2 |

 98 | 6 |

 100 | 4 |

 101 | 2 |

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 218

 102 | 1 |

 103 | 1 |

 104 | 3 |

 105 | 3 |

 106 | 1 |

 107 | 4 |

 108 | 2 |

 109 | 4 |

 110 | 2 |

 111 | 1 |

 112 | 5 |

 113 | 4 |

 114 | 2 |

 115 | 1 |

 116 | 4 |

 117 | 1 |

 118 | 3 |

 119 | 13 |

 120 | 1 |

 122 | 2 |

 123 | 4 |

 124 | 3 |

 126 | 6 |

 127 | 1 |

 128 | 3 |

 129 | 3 |

 130 | 4 |

 131 | 1 |

 132 | 2 |

 133 | 5 |

 134 | 4 |

 135 | 3 |

 137 | 2 |

 138 | 3 |

 140 | 3 |

 141 | 2 |

 142 | 2 |

 143 | 1 |

 144 | 4 |

 145 | 2 |

 147 | 6 |

 148 | 1 |

 149 | 2 |

 150 | 4 |

 151 | 3 |

 152 | 2 |

 153 | 2 |

 154 | 7 |

 157 | 5 |

 158 | 1 |

 159 | 4 |

 160 | 5 |

 161 | 3 |

 162 | 1 |

 164 | 1 |

 165 | 3 |

 166 | 1 |

 167 | 2 |

 168 | 10 |

 169 | 3 |

 170 | 1 |

 171 | 2 |

 173 | 3 |

 174 | 2 |

 175 | 6 |

 176 | 2 |

 177 | 2 |

 178 | 1 |

 179 | 1 |

 180 | 5 |

 182 | 3 |

 183 | 2 |

 184 | 4 |

 186 | 1 |

 187 | 2 |

 188 | 2 |

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 219

 189 | 6 |

 190 | 2 |

 191 | 4 |

 192 | 1 |

 193 | 2 |

 195 | 1 |

 196 | 10 |

 197 | 5 |

 198 | 5 |

 199 | 1 |

 200 | 2 |

 201 | 2 |

 202 | 1 |

 203 | 11 |

 204 | 2 |

 205 | 4 |

 206 | 3 |

 207 | 3 |

 208 | 1 |

 209 | 3 |

 210 | 7 |

 211 | 8 |

 212 | 2 |

 213 | 2 |

 214 | 4 |

 215 | 1 |

 216 | 1 |

 217 | 9 |

 218 | 3 |

 219 | 3 |

 220 | 1 |

 221 | 2 |

 222 | 4 |

 223 | 2 |

 224 | 11 |

 225 | 2 |

 227 | 2 |

 228 | 1 |

 229 | 1 |

 230 | 4 |

 231 | 8 |

 232 | 3 |

 235 | 1 |

 236 | 2 |

 237 | 1 |

 238 | 4 |

 239 | 3 |

 240 | 3 |

 241 | 3 |

 242 | 3 |

 244 | 3 |

 245 | 3 |

 246 | 4 |

 247 | 1 |

 248 | 2 |

 249 | 3 |

 250 | 3 |

 251 | 1 |

 252 | 8 |

 253 | 2 |

 254 | 6 |

 255 | 4 |

 256 | 3 |

 258 | 4 |

 259 | 5 |

 260 | 1 |

 261 | 2 |

 262 | 2 |

 263 | 2 |

 264 | 6 |

 265 | 112 |

 266 | 8 |

 267 | 2 |

 269 | 2 |

 270 | 3 |

 272 | 146 |

EngD portfolio – Volume II, A. Goikoetxea Yanci LowLeakageTech1 220

 273 | 6 |

 274 | 3 |

 276 | 4 |

 277 | 1 |

 279 | 3 |

 280 | 5 |

 281 | 3 |

 282 | 3 |

 287 | 5 |

 290 | 91 |

 294 | 6 |

 297 | 167 |

 301 | 4 |

 308 | 5 |

 315 | 2 |

 321 | 1 |

 322 | 8 |

 329 | 5 |

 336 | 3 |

 342 | 13 |

 343 | 1 |

 346 | 18612 |

 349 | 238 |

 350 | 5 |

 353 | 15273 |

 356 | 1308 |

 357 | 6 |

 363 | 528 |

 364 | 5 |

 371 | 5 |

 378 | 2 |

 385 | 4 |

 391 | 77 |

 392 | 5 |

 396 | 174 |

 399 | 5 |

 401 | 7 |

 406 | 7 |

 413 | 5 |

 420 | 7 |

 427 | 3 |

 517 | 1 |

 1074 | 1 |

 1075 | 2 |

 1076 | 1 |

 1077 | 1 |

 1078 | 1 |

 1080 | 1 |

 1083 | 1 |

IDLE statistical data:

======================

Number of IDLE states: 1192714

Mean IDLE cycles: 15.2391772042585

Standard deviation: 60.2692807586774

Detecting Voltage Glitch Attacks on Secure Devices

Asier GOIKOETXEA YANCI

Institute for System Level Integration

asier.goikoetxea@sli-institute.ac.uk

Stephen PICKLES

Atmel

stephen.pickles@ekb.atmel.com

Tughrul ARSLAN

University of Edinburgh

t.arslan@ed.ac.uk

Abstract
Secure devices are often subject to attacks and

behavioural analysis in order to inject faults on them

and/or extract otherwise secret information. Glitch

attacks, sudden changes on the power supply rails, are

a common technique used to inject faults on electronic

devices. Detectors are designed to catch these attacks.

As the detectors become more efficient, new glitches

that are harder to detect arise. Common glitch

detection approaches, such as directly monitoring the

power rails, can potentially find it hard to detect fast

glitches, as these become harder to differentiate from

noise. This paper proposes a design which, instead of

monitoring the power rails, monitors the effect of a

glitch on a sensitive circuit, hence reducing the risk of

detecting noise as glitches.

1. Introduction

Electronic devices are designed to operate

according to their specification, which defines the

operation limits for temperature, supply voltage, clock

frequency, etc. Forcing the device to operate out of

these specifications can result in injecting a fault,

either temporal or permanent, the device’s

malfunction, or even permanently damaging it. A

device can be intentionally subject to out of

specification operation in order to increase its

performance, for example over clocking a central

processing unit (CPU), or injecting a fault. An example

would be applying voltage glitches on the power rails

of a Smart Card [1].

In an aim to protect the devices against malfunction

and damage, detectors can be used to detect out of

specification operation conditions. However, detectors

have a detection range, where conditions outside their

limits can go undetected. In the case of secure devices

this detection limitation might be exploited by

attackers to subject the device to even more extreme

conditions in an aim to circumvent the detectors.

2. Background

Digital devices are designed to operate with a stable

power source. In this circumstance, transistors, the

main components of digital circuits or devices, tend to

operate in the cut-off and saturation regions (OFF/ON)

to indicate logic values of 1 and 0. Modifying the

supply voltage can have two effects. On one side,

transistors can enter the linear region. On the other

side, parasitic resistors and capacitors are present in

the power rails across the design. In the example in

Figure 1, sudden changes in the supply voltage might

not be equally spread across the whole design. As a

result, different sub-circuits might be powered at

different voltages, hence, inducing false readings of

logic one or zero. This is the process of injecting a

fault.

Figure 1. Parasitic resistors in power rails

Attackers often use glitches on the power supply in

order to inject faults on secure devices. There are four

main kinds of glitches that can be applied to the power

rails of a device: a positive glitch in Vcc, Figure 2a; a

negative glitch in Vcc, Figure 2b; a negative glitch in

ground, Figure 2c; and a positive glitch in ground,

Figure 2d.

Glitch detectors are used to detect abnormal

fluctuations and values of both rails of the power

supply, Vcc and ground. In devices with a built-in

voltage regulator, the regulator works as filter, where

the voltage level in Vdd is a filtered version of that in

Vcc. Some glitches in Vcc might be filtered out by the

voltage regulator and not appear on Vdd; however,

some others might have an impact on Vdd. Hence,

glitch detectors are used at both sides of the voltage

regulator, as shown in Figure 3.

Figure 2. Common types of glitches

Figure 3. Glitch detectors coupled to a
voltage regulator

What kind of glitches are capable of impacting the

Vdd depends on two main aspects: firstly on the

voltage regulator’s bandwidth; and secondly on the

voltage regulator’s load. The first aspect is specific to

the voltage regulator’s design. The second one

depends on the device’s operation at the time of

applying the glitch. The study/design of voltage

regulators is out of the scope of this paper, but the

load’s effect on the internal Vdd will be demonstrated

later on this paper.

The common approach used by glitch detectors to

detect abnormalities in the supply voltage, is to directly

monitor the supply rails. Furthermore, they aim at

detecting the glitch while it is happening. Often, this

poses a challenge when designing detectors capable of

detecting fast glitches; as legitimate noise could be

falsely identified as a glitch.

Due to the lack of publicly available information on

glitch detectors and their dependency on the voltage

regulators and load, the work carried in this paper

focuses on two positive glitches identified as difficult

to be detected by the glitch detectors used with a

voltage regulator here named as VR1. These glitches,

applied to the VR1’s Vcc, are defined here as G1,

Figure 4a, and G2, Figure 4b. G1 is a positive glitch on

Vcc which rises from 2.7v to 7v and falls back to 2.7v

within 100ns. G2 is a positive glitch on Vcc which

rises from 3v to 15v and falls back to 3v within 10ns.

2.7v

7v

2.7v 3v

15v

3v

100ns 10ns

a) b)
Figure 4. Target glitches: a) G1, 2.7v-7v-
2.7v @ 100ns; and b) G2, 3v-15v-3v @
10ns

2.1. Related work

In order to detect fast glitches that might be at the

limit or out of the detection range of common

detectors, a glitch detector that detects glitches by

monitoring the glitches’ effects on a sensitive circuit is

proposed. This approach is already used by detectors

[2] and [3]. The detector in [2] bases on monitoring

fault injections into single-bit registers. It also protects

static random access memory (SRAM) read operations

against glitch attacks by monitoring the memory array

and the sense amplifier. This simple design is capable

of detecting glitches on both Vcc and ground. The

primary drawback of this design is the need for a clock

signal in order to latch the effect or presence of a

glitch, which must be equal to or a multiple of the

system’s clock frequency. Since it cannot be known

when a glitch is going to be applied, a clock frequency

twice as fast as the system frequency should be used.

Detector [3] is more suited for the asynchronous

nature of glitches, as it uses operational amplifiers

(OpAmp) to continuously compare the response of

three different RC filters to glitches on the supply

power. This design is also capable of detecting glitches

in Vcc and ground. Two drawbacks can be identified

with this design. Since the RC circuits are basically

voltage dividers, they will be a continuous current

drain. This drainage can be reduced by increasing the

resistors’ sizes, which would impact negatively on the

area. The other drawback with this design is its

dependency on the correct instantiation of resistors and

capacitors, as process variations can affect their real

value.

Detector [2] is more suited to detect glitches on

Vdd rather than Vcc, whereas [3] could potentially be

used at both sides of a voltage regulator. The glitch

detector covered here will be used to detect positive

glitches on Vdd, although it could also be used to

detect them on Vcc.

3. Circuit description

The glitch detector proposed in this paper, and

shown in Figure 5, is made of three parts: a modified

inverter; a comparator; and an RS latch. In normal

supply conditions and when the circuit is disabled

(reset input is logic one), Vout is a logic zero. It results

on the OpAmp’s output being set to a logic zero and

resetting the RS latch to zero. When the circuit is

enabled (reset input is a logic zero), the modified

inverter sub-circuit provides a constant voltage at its

output, which is lower than Vdd due to the voltage

drop in the diode D1. As Vout is lower than Vdd, the

OpAmp’s output is a logic zero. As a result, the value

stored in the RS latch is unchanged.

When the detector is enabled, the inverter circuit

can be substituted by its equivalent circuit in Figure 6.

Here the inverter’s transistor P1, which is conducting,

is substituted by its equivalent RonP (in the order of

ohms). The inverter’s transistor N1, which is not

conducting, is substituted by its equivalent RoffN (in the

order of mega ohms) in parallel with CN, the parasitic

capacitance between its source and drain. In addition

to the inverter sub-circuit, Figure 6 also shows the

equivalent load seen by the inverter’s output, the

OpAmp’s input, represented by the Zin.a.o impedance

and which is in the order of mega ohms.

Figure 5. Proposed glitch detector

The proposed glitch detector’s response to a glitch

attack when the detector is enabled is shown in Figure

7 and can be described as follows. While Vdd is stable,

Vout is stable too and set to Vdd minus the voltage

drop in the diode D1, which is around the diode’s Vth.

If, as a result of a glitch, Vdd rises, the parasitic

capacitor CN is charged further, raising the voltage

level at Vout. When Vdd falls, CN starts to leak its

charge through RoffN and Zin.a.o, hence, lowering Vout.

If Vdd falls at a higher rate than CN is discharged, the

diode D1 will, eventually, become inversely polarized.

As a result, Vout will become higher than Vdd even

after the glitch’s effects on Vdd have disappeared. This

phenomenon can be detected by the comparator, which

sets its output to a logic one, setting the RS latch to a

logic one, triggering the glitch detection alarm. Upon

glitch detection, the CPU can run the appropriated

routine or procedure related to glitches on the supply

power. A typical response to a glitch would be

resetting the whole device.

Vdd

gnd

Vout

gnd

RonP

RoffN
CN

Zin.a.o

gnd

D1

Figure 6. The inverter's equivalent circuit and load

Figure 7. The modified inverter's response
to a glitch

After detecting a glitch, the glitch detector would

have to be reset in order to detect further glitches. This

is achieved by setting the reset input to a logic one and

back to logic zero. This process will discharge the

capacitor CN and reset the RS latch. If no action is

taken after detecting a glitch, CN will gradually

discharge due to the leakage current, gradually

reducing Vout to its previous level, i.e. below Vdd.

However, the RS latch would continuously indicate the

detection of a glitch, and no further glitch would be

detected.

4. Test

Two versions of the glitch detector in Figure 5 were

tested in SPICE for several supply voltage and

environmental circumstances in a test environment that

emulated their utilization on a secure/real product.

These glitch detectors were powered via a SPICE

model of the voltage regulator VR1, which also

powered a fixed resistive load that emulated the load

presented by the secure/real product. The setup

diagram can be seen in Figure 8.

The first glitch detector, Design A, had its diode

and RS latch made of low leakage transistors and the

inverter and OpAmp made of high voltage transistors.

The second glitch detector, Design B, was made

entirely of low leakage transistors. Low leakage

transistors are designed with a higher Vth than their

normal counterparts. Increasing the Vth helps reducing

the leakage current, an increasing issue with deep-

submicron technologies; however, it also reduces the

transistor performance when comparing to transistors

with lower Vth.

Figure 8. Test setup diagram

Four supply voltage scenarios where covered: two

noisy power supplies; and two fast glitches. In all

cases, these supply voltages were applied to the Vcc in

Figure 8. Noisy power sources consisted of 3v and 5v

sources with a ripple of +/-10% at 100KHz. These are

valid supply sources for VR1, and no glitches should

be detected. The applied glitches were two fast glitches

that common detectors in VR1 might struggle to

detect. Applied glitches consisted on the glitches G1

and G2 covered before.

For each glitch, three different resistive load

scenarios were tested: high load (80 ohms); mid load

(1,600 ohms); and low load (3,200 ohms). These

values were chosen based on what prior experience

showed on maximum, medium and minimum loads on

8-bit based secure devices. In addition to the resistive

loads, all tests included a 2.2nF capacitive load was

connected to the VR1. This capacitive load represented

the VR1’s output capacitance and the digital device’s

equivalent capacitive load. Finally, these tests were

repeated for worst-case and best-case SPICE models,

where worst-case included SPICE model conditions

rlow, clow and a temperature of 125 degrees Celsius;

and best-case included conditions rhigh, chigh and a

temperature of -40 degrees Celsius.

Table 1 shows each glitch detector design’s

minimum, typical and maximum detection time for all

four supply cases. Table 2 shows the detection time

broken down in design version, load and SPICE model

case for each glitch.

In addition, Figures 9 to 11 show the response of

the design A’s best-case model to the glitch G2 for

high, medium and low loads respectively. Figure 12

shows the design A’s inverter’s output when powered

with a noisy supply voltage 5v and a high resistive

load using the best-case model.

Figure 9. Glitch G2 detected by design A for
high load and bcs

Figure 10. Glitch G2 detected by design A
for medium load and bcs

Figure 11. Glitch G2 detected by design A
for low load and bcs

Table 1 Overall detection times in nanoseconds

Detection time
Design Supply

min typ max

3v noise no glitch detection

5v noise no glitch detection

G1 571 1,144 1,508
A

G2 611 1,013 1,394

3v noise no glitch detection

5v noise no glitch detection

G1 629 1,561 2,163
B

G2 1,977 12,533 25,522

Figure 12. Vdd and Vout when powered with
a noisy 5v supply with high load

Table 2 Detailed detection times

Applied glitch Design

version
Load

SPICE

model G1 G2

worst-case not detected 741ns
high

best-case 571ns 611ns

worst-case 1,375ns 1,281ns
mid

best-case 1,015ns 990ns

worst-case 1,508ns 1,394ns

A

low
best-case 1,252ns 1,062ns

worst-case 629ns 8,273ns
high

best-case not detected not detected

worst-case 2,093ns 1,947ns
mid

best-case 1,359ns 25,522ns

worst-case 2,163ns 2,170ns

B

low
best-case not detected 24,755ns

5. Discussion

As Table 1 a shows, in general terms, the glitch

detector presented in this paper is capable of detecting

fast glitches such as G1 and G2. The design A

outperforms the design B in this task at all times,

making it the best option. In a more detailed way,

Table 2 indicates that design A failed to detect a glitch

in one of the 12 tests. This is due to the capacitor CN

failing to charge enough so that the diode D1 would

stop conducting.

Taking into account the design A’s and B’s

transistor properties, A being faster than B was

expected, since low leakage transistors are slower.

What comes as a surprise is their discrepant sensitivity

to process and temperature variations. Design A

suffers an increase of detection time between 21.28%

and 35.47% when comparing worst-case scenarios

against best-case ones. Design B, on the other hand,

suffers a more severe impact, needing up to 12 times

more time to trigger the glitch detection signal. This

impact is explained by the fact that, for the design B’s

best-case scenario, glitch G2 is already on the limits of

its detection range, as Vout just manages to be over

Vdd after the glitch. This small difference between

Vout and Vdd results on a longer detection time.

Focusing on design A, despite being capable of

detecting glitches that common detectors built-in VR1

might struggle to detect, on average, the detection

takes in the order of 0.5 to 1.5 microseconds. This time

might seem excessive in computation terms; certainly,

it is not immediate. Taking a Smart Card running an 8-

bit CPU at 20MHz as an example, this CPU could

execute around 20 instructions per microsecond.

However, from a system level point of view, Smart

Cards work in the basis of data transactions. The 0.5 to

1.5 microseconds detection time are within the time

required to compute these transactions. Hence, despite

not being fast detectors, glitches can still be detected

within a transaction.

Analyzing Figures 9 to 11, the detection time can be

divided into two sections; one that goes from the

beginning of the glitch until Vout becomes higher than

Vdd, and another section that goes from the crossing

point of Vout and Vdd until the alarm is triggered. The

time width of the first section varies for the different

loads, whereas the second section has similar widths

for all loads, around 600ns. This proves the previous

statement made regarding the load’s impact on both,

the voltage regulator’s response to a glitch and the

time required to detect such glitch. Two factors

contribute to this behaviour; on one side, higher loads

subject the voltage regulator to a higher stress,

reducing its response time. On the other side, the

higher load discharges faster the VR1’s built-in

capacitor. The result is a faster drop of Vdd when the

glitch is in the falling edge.

The first section’s time width, then, is primarily

dependant on the voltage regulator and its load. The

second section’s time width, however, is primarily

determined by the OpAmp’s response time. Detection

time can be reduced by instantiating a faster OpAmp.

However, care must be taken if noise is not to be

mistaken with a glitch, as Figure 12 shows that a noisy

power supply can cause Vdd becoming lower than

Vout for a short period of time, around 152ns in this

case. Nevertheless, design A’s OpAmp has room for

improvement, response can be halved without risking

the detection of noise.

The diode D1 plays a key role on the OpAmp’s fine

tuning, as by holding Vout higher than Vdd even after

the glitch has expired, it provides the comparator with

more time to compare the signals. This means that with

the use of the diode, a comparator relatively slower

than the glitch can be used, so that noise effects on

Vdd do not trigger the glitch detector.

6. Conclusion

This paper has covered the factors around one of

the typical attack techniques on secure devices, glitch

attacks. A glitch detector capable of detecting fast

glitches that common detectors built-in VR1 might

struggle to detect has been presented. However, since

all detectors are limited to a given detection range, this

detector is not a replacement of current ones, rather, it

is a supplement.

This design, like current ones, has a degree of

sensitivity to process variations, which affects its

already slow detection time. Nevertheless, the present

design allows reducing this time by fine-tuning the

OpAmp and minimizing the risk of detecting noise as a

glitch.

7. Future work

The next step is to test this glitch detector on

silicon, so that it can be tested in a real environment.

Several versions of the detector will be instantiated and

this will be tested with a random load source.

Instantiated detectors will be characterized for both

glitch detection and detection time.

8. Acknowledgement

The authors would like to acknowledge Louis Frew

and David Dougan for their help with sourcing the

voltage regulator and fine-tuning the glitch detector.

The authors would also like to acknowledge EPSRC

and Atmel for supporting this research.

References

[1] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall,

and C. Whelan, “The Sorcerer’s Apprentice Guide to

Fault Attacks”, Proceedings of the IEEE, Vol. 92 Issue

2, Feb.2006, pp 370-382.

[2] E.S. Kim and J.H. Kim, “Voltage glitch detection

circuits and methods thereof”, US Patent Office, US

2007/0058452 A1.

[3] C.Y. Kim, S.J. Jun, and E.S. Kim, “Voltage-glitch

detection device and method for securing integrated

circuit device from voltage glitch attack”, US Patent

Office, US 7,085,979 B2.

Characterization of a Voltage Glitch Attack Detector for Secure Devices

Asier GOIKOETXEA YANCI

Institute for System Level Integration

asier.goikoetxea@sli-institute.ac.uk

Stephen PICKLES

Atmel

stephen.pickles@ekb.atmel.com

Tughrul ARSLAN

University of Edinburgh

t.arslan@ed.ac.uk

Abstract
Glitch attacks are often used to inject temporal faults

into secure devices and devices manipulating or

holding sensitive data. The main countermeasure

against these kinds of attacks involves the correct

design of a built-in voltage regulator. Another

important countermeasure is a glitch detector circuit.

Common glitch detection approaches, such as directly

monitoring the power rails, can potentially find it hard

to detect fast glitches, as these become harder to

differentiate from noise. This paper presents the silicon

test results of a voltage glitch detector circuit which,

instead of monitoring the power rails, monitors the

effect of a glitch on a sensitive circuit, hence reducing

the risk of detecting noise as glitches.

1. Introduction

Secure devices, such as Smart Cards, have a built-in

voltage regulator. Its main function is converting the

external power source level, defined by the standard

[1], into a power source level the internal technology

operates at. A side effect of having a voltage regulator

is that it can filter some of the noise present at its input

(Vcc), as well as some of the glitches a Smart Card can

be subjected to [2], and still provide a clean and steady

power source at its output (Vdd). What kind of noise

can it actually filter out and what is the impact of the

noise at the regulator’s output depends on two factors,

the regulator’s design and the load it is subjected to,

the design being the main factor.

Voltage regulators cannot filter out all noises and

glitches present at their input, so certain external noises

and glitches can also appear at the voltage regulators’

output. This voltage alterations at the output of the

voltage regulators are responsible for fault injection,

hence the need for glitch detectors.

Glitch detectors are usually built-into the voltage

regulators, and monitor the voltage fluctuations at the

input and at the output of the voltage regulator, so that

an alarm signal can be triggered in the event of a

glitch.

Detecting glitches by monitoring the power rails

posed the challenge of differentiating fast glitches from

legitimate noise. An alternative approach of detecting

glitches is monitoring the glitches’ effects on a

sensitive circuit. This alternative approach has been

used in [3-5].

The work carried out in this paper presents the

detection range characterization of four versions of the

detector proposed in [5] and are compared against the

detection range characterization of power rails

monitoring detectors.

2. Background

Digital devices are designed to operate with a stable

power source. Sudden changes in the supply voltage

might not be equally spread across the whole device

due to the parasitics in the power rails. As a result,

different sub-circuits might be powered at different

voltages, hence, enabling fault injections. Glitch

attacks are sudden changes in the power supply

generated by attackers aiming at injecting faults on

devices.

Glitch detector circuits are used to detect abnormal

fluctuations and values on the power rails that are

resulting from glitch attacks. There are four main kind

of glitches that can be applied to the power rails of a

device: a positive glitch on Vcc, Figure 1a; a negative

glitch on Vcc, Figure 1b; a negative glitch on ground,

Figure 1c; and a positive glitch on ground, Figure 1d.

In devices with a built-in voltage regulator, the

regulator works as a filter, where the voltage level in

Vdd is a filtered version of that in Vcc. Some glitches

in Vcc might be filtered out by the voltage regulator

and not appear on Vdd; however, some others might

have an impact on Vdd. Hence, glitch detectors are

used at both sides of the voltage regulator, as shown in

Figure 2.

Figure 1. Common types of glitches

Figure 2. Glitch detectors coupled to a
voltage regulator

The common approach used to detect glitches is to

directly monitor the supply rails and aim at detecting it

while it is happening [5]. The main challenge with this

approach is for the detector not to identify permissible

noise as a glitch.

Glitch detectors [3-5] aim at detecting glitches by

monitoring the impact of a glitch to a sensitive circuit.

The glitch detector [3] identifies glitch attacks by

monitoring fault injections into single-bit registers and

the sense amplifier of an SRAM. The main drawback

of this design is that it is a synchronous design,

whereas glitches are asynchronous.

The glitch detector [4] is more suited for the

asynchronous nature of glitches, as it identifies them

by monitoring RC circuits with and operational

amplifier. The drawbacks of this design are: the

continuous current drainage of the RC circuits; and the

correct instantiation of resistors and capacitors, as

process variations can affect their real value.

The glitch detector presented in [5], and shown in

Figure 3, aimed at detecting glitches by monitoring the

impact of a glitch on the output of a sensitive circuit,

the modified inverter. This detector was designed to be

used to detect positive glitches on Vdd. Although it

could also be used to detect them on Vcc, this case was

not tested.

Simulation results showed that this design was

capable of detecting two fast glitches that current

detectors built-in a given voltage regulator could not.

The results also showed that this design was far slower

than current ones when detecting glitches. This,

however, was not an issue, as the 0.5 to 1.5

microseconds detection time are within the time

required to compute command or data transactions on

devices such as Smart Cards.

Figure 3. Proposed glitch detector

The rest of this paper presents the silicon

characterization results of the glitch detector proposed

in [5].

3. Test-chip

In order to test and characterize the proposed design

for different scenarios, four versions of the proposed

glitch detector were instantiated and powered by two

different voltage regulators, as shown in Figure 4,

where GD_0, GD_1, GD_2 and GD_3 represent the

different glitch detector versions.

The instantiated versions differ in the following:

GD_0 was designed using low leakage transistors for

the diode D1 and the RS latch and high voltage

transistors for the inverter and the OpAmp; GD_1 was

designed using low leakage transistors throughout;

GD_2 was designed using high voltage transistors

throughout; and GD_3 was designed using high

voltage transistors throughout too but with a different

OpAmp design. Low leakage transistors are designed

with a higher Vth than their normal counterparts.

Increasing the Vth helps reducing the leakage current,

an increasing issue with deep-submicron technologies;

however, it also reduces the transistor performance

when comparing to transistors with lower Vth.

Voltage regulator

VR1

GD_0
Variable

load

Vdd (internal supply)

Load

control

Detector

reset

GD_0 alarm

GD_1

GD_2

GD_3

GD_1 alarm

GD_2 alarm

GD_3 alarm

VR1 alarm

Vcc

(external

supply)

Voltage regulator

VR2

GD_0
Variable

load

Vdd (internal supply)

Load

control

Detector
reset

GD_0 alarm

GD_1

GD_2

GD_3

GD_1 alarm

GD_2 alarm

GD_3 alarm

VR2 alarm

Vcc

(external
supply)

Figure 4. Block diagram of the test-chip

Two sets of the four mentioned versions were

instantiated. One set of detectors monitored the output

of the VR1 voltage regulator, designed for products

with low security requirements. The other set

monitored the output of the VR2 voltage regulator,

designed for products with higher security

requirements than the former one. These voltage

regulators have different responses to a glitch attack, as

shown in Figures 5 and 6. All the detectors within a

group shared the reset input signal and had their

outputs buffered to an output pin each.

In addition to the proposed glitch detectors, each

voltage regulator also powered a fixed capacitive load

of 2.2 nF and an independently controllable variable

resistive load, which represented the typical loads the

regulators could be subjected to. Each variable

resistive load instance could be set to any of the

following values: 80 Ohms (high load); 1K6 Ohms

(medium load); or 3K2 Ohms (low load).

Finally, each voltage regulator also had built-in

glitch detectors which input and output detector’s

combined detection range would be characterized and

compared against that of the proposed design. Only the

combined signal was monitored as the aim of these

tests was to determine the detection range

improvement provided by the proposed detector over

current detection range. A side effect of this

comparison approach is not being able to establish a

direct comparison between the proposed designs

against those built-in ones monitoring Vdd. However,

the work in [5] concluded that the proposed detector

could only be used in conjunction with existing ones,

not as a replacement. Hence, the alarm signals of the

built-in detectors of each voltage regulator were

combined into a single signal and buffered to an output

pin.

Figure 5. VR1's response to a 17V and 300ns

glitch under high load, Vcc = 3V

Figure 6. VR2's response to a 17V and 300ns

glitch under high load, Vcc = 3V

4. Test Methodology

Each glitch detector version was characterized for

detection range and detection delay using both voltage

regulators, four resistive load combinations (high,

medium, low and variable) and two base voltage

levels, 3V and 5V. Furthermore, these tests were

repeated in four different test-chips.

Glitches were applied with the HP81110A pulse

generator. This device would power one voltage

regulator at a time and apply a glitch to it when

triggered by the control board. After applying a glitch,

the output of all detectors connected to this voltage

regulator were monitored and timed. A block diagram

of the test setup is shown in Figure 7.

The applied glitch width range was between 10ns

and 500ns, using 26 different widths in total. The

glitch amplitude range was between 2V and 17V when

using a base voltage of 3V, and between 2V and 15V

when using a base voltage of 5V. In the former case 16

different amplitudes were used, whereas in the later

one just 14. This amplitude difference was due to the

fact that the pulse generator HP81110A could not

generate a pulse higher than 20V (3V + 17V; 5V +

15V). In total, 416 and 364 different glitches where

applied to characterize each glitch detector, for 3V and

5V base voltages respectively.

PC

test_board

Pulse Generator

HP81110A

Control board

Figure 7. Diagram of the test environment

5. Results

Due to the limited space and the amount of data

generated, only few representative results are shown.

Figures 8 to 11 show the detection limit of the four

different versions of the proposed detector when

powered with the VR1 for high and low loads. Figure

12 shows the combined detection limit of the VR1

voltage regulator’s built-in detectors, again for high

and low loads. Figure 13 compares the detection range

limit of the GD_3 detector and the VR1’s combined

detection range. All these figures focus on the widths

between 10ns and 150ns as this is where the most

useful information lies.

When looking at the detection range of a glitch

detector, the boundary line determines the limit

between the detected glitches (above it) and the not

detected ones (below it). It must be noted that the

patterns shown by this Figures are repeated when VR1

is powered with the base voltage of 5V. In that case,

however, the proposed designs fail to detect few of the

shorter glitches.

The detectors monitoring the VR2’s output hardly

detected any glitch at all. Hence no valid

characterization or comparison could be done for the

VR2 case.

Figure 8. GD_0 3V

Figure 9. GD_1 3V

Figure 10. GD_2 3V

Figure 11. GD_3 3V

Figure 12. VR1 3V

Figure 13. GD_3 vs VR1 3V

Finally, Table 1 presents the maximum, minimum

and average detection time for each detector when

VR1 is subject to high and low loads. The long

detection times are seen close to the detection limit,

whereas short detection times are seen far from the

detection limit.

Table 1 Overall detection times in nanoseconds

Detector Load
Detection time

min mean max

GD_0
High 870 1200 1640

Low 910 1310 2460

GD_1
High 1100 1400 2005

Low 1250 1600 2020

GD_2
High 310 420 1250

Low 320 470 1380

GD_3
High 310 440 1300

Low 310 460 1370

VR1
High 40 55 400

Low 50 60 440

6. Discussion

When comparing glitch detectors, the detection

range extension and detection speed are the main

parameters to look at. Taking this as a basis, detectors

GD_0 and GD_1 performed worse than GD_2 and

GD_3 when it comes to detection range. Their timing

performance was the poorest too. This is directly

related to the detectors’ design decisions. GD_0 and

GD_1 where mainly made with low leakage

transistors, which are characterized by their slow

speed.

Detectors GD_2 and GD_3 showed a similar

behaviour both in terms of detection range and time,

where GD_3 is slightly better at detecting whereas

GD_2 is slightly faster at times. In this work,

expanding the detection range was a priority, hence,

detector GD_3 is considered marginally better than

detector GD_2.

Looking at the effect the load has in the detection

range and time, it could be noticed that when VR1 is

subject to lower loads, all detection ranges are

expanded at the cost of speed. This phenomenon

happens even with the VR1’s built-in detectors.

The link between speed and load for a given glitch

was described in [5]. There, the detection time was

divided in two parts as shown in Figure 14: a) t1, the

time needed for Vout to become higher than Vdd; and

b) t2, the time between Vout becoming higher than

Vdd and the raise of the alarm signal. The work in [5]

showed that different loads resulted on different Vdd

responses and correction speeds, producing shorter t1

times for higher loads. Time t2 suffered no significant

variations for the different loads, as it mainly depended

on the voltage difference between Vout and Vdd and

the OpAmp’s response time.

Figure 14. Simulation of glitch attack detection
under a high load [5]

The detection range of the proposed detector is

limited to those glitches capable of raising Vout over

Vdd with a voltage difference high enough for the

OpAmp to detect it. The closer a glitch gets to the

detector’s limit, the voltage difference at the OpAmp’s

input gets smaller and, therefore, it takes longer to be

detected them. This phenomenon was also discussed in

[5]. The results obtained in these tests corroborate the

analysis made in [5].

The link between the detection range limit and the

load can be explained by a combination of the two

previous phenomenons where, a low load can produce

a Vdd evolution such that the voltage different between

Vout and Vdd becomes high enough for the glitch to

be detected; whereas a high load fails to raise Vout

over Vdd due to Vdd’s fast recovery.

Figure 13 demonstrates the improvement in the

VR1’s detection range when adding the detector

GD_3. This case is repeated across most of the tests

carried in this work. The detection times of GD_3 (and

GD_2) are, however, between 8 and 9 times slower

than those of VR1.

These detection time differences are considerably

big. However, they need to be put in the Smart Card

context. The worst possible propagations of a

successful undetected fault injection are the

modification or corruption of data in a non-volatile

memory (NVM), and replaying with false data to a

transaction initiated by a Smart Card Reader. In the

first case, the writing time required to modify an NVM

is defined by its technology, which can be in the order

of 2 milliseconds for the case of EEPROMs. In the

seconds case, despite nowadays the CPU in a Smart

Card can be running at up to 50MHz (i.e. executing

about 50 instructions within a microsecond.), data and

commands transactions are given to a lower speed,

defined in [1], and usually taking longer than these

detection times. Hence, upon the detection of a glitch,

although not immediately, the Smart Card could reset

itself to protect any data or communication corruption.

Regarding the VR2 voltage regulator, none of the

proposed glitch detector versions showed any

improvement on the detection range. This is explained

by the very distinctive responses of VR1 and VR2 to

the same glitch, just as shown in Figures 5 and 6.

While VR1 shows an extreme fluctuation as soon as

the glitch is applied, VR2 only raises its output slightly

before gradually reducing it to its original value. This

slightly rise is not high enough to raise Vout over Vdd,

which in turn enables glitch detection. Furthermore,

the proposed detector was designed with the VR1

behaviour in mind, where the regulator’s output raises

considerably and fast before falling also considerably

and fast. This last behaviour is especially important for

the detector to work.

The combined detection characterization in VR1

and VR2 hides the performance of the individual

detectors at their input and output. Whilst the

individual comparison was not the objective of this

work, having that information could have helped with

discerning the detection source provided by the built-in

detectors and any overlapping between them. Also, it

could have helped on determining the performance

improvement when comparing to glitch detectors at the

output of VR1 and VR2.

7. Conclusion

Different versions of the proposed glitch detector

were characterized for detection range and times. Two

of these versions showed a detection range capable of

complementing the current detection range of the low

security voltage regulator, while failing to provide any

additional benefit when using with a more secure one.

The voltage regulator they were powered with was

the single factor with the highest impact on their

detection capabilities. Other two factors affecting the

detection capabilities included: a) the detector design;

and b) the voltage regulator load, although this last

factor had a lower impact than the previous two.

The combined monitoring of the built-in detectors’

behaviour did not allow us making any further analysis

on how the instantiated versions compare against the

individual built-in detectors, especially the internal

ones of the more secure voltage regulator.

The results of four detector versions indicate that

there is still room for improvement. By making the

comparator even faster and more sensitive, the

detection range could be expanded and the detection

time reduced, whilst avoiding detecting noise as a

glitch.

Finally, it would be interesting adapting this design

to monitor the input of the voltage regulator and

compare against the detection range of the built-in

detectors, especially on the case of the secure voltage

regulator, VR2.

8. Acknowledgement

The authors would like to acknowledge Nigel

Davenport and John Connor, both from Atmel, for

their help and support during the test lab and with the

test equipment. The authors would also like to

acknowledge EPSRC and Atmel for supporting this

research.

References

[1] ISO/IEC 7816 Smart Card Standard.

[2] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall,

and C. Whelan, “The Sorcerer’s Apprentice Guide to

Fault Attacks”, Proceedings of the IEEE, Vol. 92 Issue

2, Feb.2006, pp 370-382.

[3] E.S. Kim and J.H. Kim, “Voltage glitch detection

circuits and methods thereof”, US Patent Office, US

2007/0058452 A1.

[4] C.Y. Kim, S.J. Jun, and E.S. Kim, “Voltage-glitch

detection device and method for securing integrated

circuit device from voltage glitch attack”, US Patent

Office, US 7,085,979 B2.

[5] Goikoetxea Yanci, A.; Pickles, S.; Arslan, T.,

"Detecting Voltage Glitch Attacks on Secure Devices,"

ECSIS Symposium on Bio-inspired Learning and

Intelligent Systems for Security (BLISS '08), pp.75-80,

4-6 Aug. 2008.

	Biblio.	(p. 1)
	Desc.	(p. 3)
	Claims	(p. 17)
	Drawings	(p. 22)

