
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Graham, Derek (2011) The impact of soft errors in logic and its
commercialisation in ARM IP. EngD thesis.

http://theses.gla.ac.uk/2663/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given.

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/2663/

The Impact of Soft Errors in Logic and its

Commercialisation in ARM IP

Derek Graham

A thesis submitted to
the Universities of

Edinburgh
Glasgow

Heriot-Watt
Strathclyde

For the Degree of
Doctor of Engineering in System Level Integration

c©Derek Graham, 2011

Abstract

The significance of soft errors in logic has grown because of reduced memory
vulnerability and the shrinking dimensions of semiconductor technology coupled
with the increasing amount of logic integrated into a chip. Consequently, some
of ARM’s customers are concerned about how soft errors on the bus interconnect
will affect the dependability of their systems, since the interconnect is a critical
hub of communication in a SoC and represents a substantial and growing amount
of logic. With the rising complexity of their systems, the interconnect will
become larger and more complex in the future, adding to their concern. In this
work the impact of soft errors on the bus interconnect logic was investigated
and a product was developed to ameliorate the effects of such errors on ARM’s
customers’ products.

Methods to measure the SER of ARM IP were investigated by focusing on
logical masking, which is a component in the calculation of the SER. The effect
that the topology of a combinatorial logic circuit has on its logical masking rate
was considered by performing gate-level statistical fault injection on different
implementations of adder circuits. Significant variation in logical masking was
found ranging from a factor of 3.1 at a synthesis frequency of 100 MHz to a factor
of 2.1 at 900 MHz. This difference is explained in an original way by correlating
logical masking with the circuit’s path length and fan-out. These properties
could be used to create a static method of measuring the logical masking rather
than the current time-consuming method of dynamic simulation. Additionally,
nearly 30% of faults injected cause more than one error, which means that the
combinational SER will be underestimated if research does not take gate fan-out
into consideration. Using this methodology a circuit designer can now base his
choice or development of a circuit on its reliability as well as its performance,
power, and area. Studying the variation in the factors that affect the SER is
important to ensure accuracy in addressing customer requirements.

Although it is important to consider the rate of soft error occurrence, in this
work the impact of errors is demonstrated to be critical. Using protocol-level
fault injection it is shown that faults on the ARM AXI bus interconnect can have
a serious effect on the reliability of the entire SoC such as deadlock, memory
corruption, or undefined behaviour. Using a fault-path traversal algorithm,
it is demonstrated that traditional error detection codes are not sufficient at
preventing these failures when faults occur on certain AXI bus signals. This led
to the development of novel fault tolerant methods that provide protection for
these identified signals. Based on these developments, a product was proposed for
an add-on to the AXI bus interconnect that can detect, correct, and report logic
soft errors without changing the AMBA standard or the customer’s connecting
IP. With agreement from internal stakeholders and interest from automotive
and storage networking customers, this proposal was successfully transferred out
of ARM R&D and could be available as a commercial offering in the next two
years.

Acknowledgements

I would like to thank my industrial supervisors Per Strid and Daryl Bradley
and academic supervisors Scott Roy and Fernando Rodriguez for their support
and feedback; my friends in ARM R&D in Cambridge for advice, reading my
thesis, and for helping to expand my knowledge; colleagues around ARM for
enabling the advancement of the product proposal; Siân Williams at the ISLI for
guiding me through the EngD process; my friends in Cambridge for providing
distractions; my family for their encouragement; and finally to Mariken Schipper
for her care and support.

1

Contents

1 Introduction 6

2 Technical Background 11
2.1 Definitions . 11
2.2 The Physical Mechanics of a Soft Error 14
2.3 Importance of Soft Errors . 16
2.4 Trends in the Soft Error Rate with Technology Scaling 18

2.4.1 DRAM . 18
2.4.2 SRAM . 19
2.4.3 Sequential and Combinational Logic 20

2.5 Attaining Dependability . 22
2.6 Measuring the Soft Error Rate 22
2.7 Conclusion . 24

3 Commercial Background 25
3.1 About ARM . 25
3.2 Trends . 26

3.2.1 Background . 26
3.2.2 Automotive . 26
3.2.3 Storage Networking . 28

3.3 Markets . 28
3.3.1 Automotive . 29
3.3.2 Storage Networking . 30

4 Soft Errors in Logic 32
4.1 Method . 33
4.2 Results . 35
4.3 Discussion . 38
4.4 Related Work . 40
4.5 Conclusion . 43

5 The Impact of an Unreliable IP Interconnect 45
5.1 Background . 46

5.1.1 Overview of the AMBA AXI Protocol 46
5.1.2 Inside the NIC-301 Bus Matrix 47
5.1.3 The Inherent Fault Tolerance of the AXI Bus Matrix . . . 48

5.2 The Effect of Logic Soft Errors on the Interconnect 49
5.2.1 LEN . 50

2

5.2.2 VALID . 50
5.3 Commercialising the Fault Tolerance of AXI 50
5.4 Error Detection and Correction Codes are not Sufficient 54
5.5 Techniques for the Fault Tolerance of Non-Payload Signal Logic . 58

5.5.1 Solutions for Incorrect Destination (INDE) Errors 59
5.5.2 Solutions for Disallowed Transaction (DISD) Errors . . . 61

5.6 An Add-On for AXI to Improve its Reliability 64
5.7 Conclusion . 65

6 Conclusion 67
6.1 Future Work . 68

Bibliography 71

A Acronyms 78

B SELSE Paper 82

C DSN Paper 87

3

List of Figures

2.1 Fault classes (from [1]) . 13
2.2 Charge generation and collection phases in a reverse-biased junc-

tion and the resultant current pulse caused by the passage of a
high-energy ion (From [2]) . 16

4.1 Model of fault injection on a gate-level circuit. Here, the width of
the injected fault is equal to the run clock period, i.e. 1

frun
. . . . 34

4.2 Incorrect result error rate per gate for each 32-bit adder imple-
mentation (normalised to ’pparch’) 36

4.3 Data from SFI . 37

5.1 A block diagram of the NIC-301 bus matrix with two AXI masters
(M0 and M1) and two AXI slaves (S0 and S1) connected to it. MI
= Master Interface. SI = Slave Interface. Top right is a block
diagram of a SI. Bottom right is a block diagram of a MI. Certain
logic such as multiplexers are not shown for simplicity. See Table
5.1 for an explanation of the abbreviations used. 47

5.2 Block diagram of the NIC-301 bus matrix with end-to-end EDAC 54
5.3 Example circuit depicting a PL signal (in[1]) and an NPL signal

(in[0]) . 55
5.4 An example of a fault that disrupts a locked access on a NIC-301

bus matrix . 57
5.5 A fault-to-failure diagram for the ADDR signal 58
5.6 The address split into the n bits which specify which region and

the m bits which address within a region 61
5.7 The memory map for two slaves split into smaller regions and

then remapped to be separated by a Hamming distance of two . 61
5.8 Maximum synthesis frequency (fmax) and area overhead of the

HAD-2 scheme (Hamming distance of 2) compared with parity
across the 32-bit ADDR signal. The bus matrix had two masters
and two slaves and each slave had half the entire 232 memory space. 62

5.9 Placement of the DAC in scheme to detect INDE errors 62
5.10 A micro-architecture monitor to detect unintended changes in the

atomicity of a transaction . 63

4

List of Tables

4.1 Size and error rates for each 32-bit adder implementation. Impl =
Implementation; Area in synthesis units; MFO = Mean Fan-out;
MPL = Mean Path Length. 36

4.2 Statistics on the errors per fault for each adder implementation.
* Mean errors per fault. ** Percentage of faults that cause more
than one error. 36

5.1 Explanation of the components in Figure 5.1 48
5.2 Source: M = Master, S = Slave. Impact: DL = Deadlock, MC =

Memory Corruption, UB = Undefined Behaviour. Those signals
types with a * suffix are referred to as the control signals. . . . 51

5.3 Taxonomy of AXI Signals with Impact. Impact: DL = Deadlock,
MC = Memory Corruption, UB = Undefined Behaviour. 57

5.4 Fault effect taxonomy of AXI signals at different layers of ab-
straction. L2 effects: INDE = incorrect destination and DISD =
disallowed behaviour. L3 effects: DL= deadlock, MC = memory
corruption, and UB = undefined behaviour. 59

5

Chapter 1

Introduction

It’s ridiculous. I’ve got a $300 000 server that doesn’t work. The
thing should be bulletproof.

— Company president whose Sun Microsystems server repeatably
crashed due to soft errors in 2000 [3]

Since the inception of computers, building them to operate reliably has been
paramount. Changes in the underlying technology, from vacuum tubes through
to Complementary Metal-Oxide-Semiconductor (CMOS), has brought ever de-
creasing manufacturing defect rates [4, 5, 6] and ever increasing complexity that
has meant that the design of reliable systems has surpassed local computational
hardware to encompass networks, software, and the user interface [7]. Faults
induced by natural interference originating from the varied and sometimes hostile
environment in which technology has permeated have grown in importance to
the semiconductor industry [8, 9, 10, 11]. There are several reasons for this:
manufacturing defect rates have fallen so that the relative importance of these
less controllable fault sources has grown1; it is in the commercial interest of
business to minimise the blame, and thus the cost, attributable to themselves
due to their customers’ problems; and the occurrence of these natural faults is
not as amenable to control as, for instance, design and manufacturing faults are.
Transient faults induced by radiation, commonly called soft errors [12], were
traditionally a problem for the aerospace industry [13, 14, 9] but are of growing
concern at ground level [15, 16]. At a terrestrial altitude the primary causes
are alpha particles from computer chip packaging and high-energy atmospheric
neutrons from cosmic rays [9]. These particles can strike sensitive areas of the
chip and cause the value held by memory elements to flip or the output value of
logic elements to experience a momentary glitch [2]. Although these events are
rare2, their random nature skews their perceived risk. Rare events still matter
because the enormous volumes of computer chips sold around the world amplifies
the total failure rate. For some companies, such as those who build data centres
that provide business critical services, the impact that soft errors have on the

1Along with other sources, such as software.
2For instance from laboratory experiments, a megabit of SRAM manufactured in 65 nm

technology (the cutting-edge a few years ago) could experience about a thousand bit-flips
during an operating period of approximately 100 000 years.

6

reliable operation of their systems is important. Moreover, with shrinking device
geometries and the increasing integration that technology scaling brings, the
rate of occurrence of soft errors is predicted to rise [17, 2, 18], which will mean
that more users of technology will be affected.

For ARM, automotive and networking customers are particularly concerned
with the adverse impact that soft errors can have on reliability because it
affects the safety and availability, respectively, of their computer systems. These
systems will typically already feature memory error protection, which increases
the importance of the reliability of the other components embedded in their
electronic chips. In the embedded Intellectual Property (IP) that ARM sells
to those customers who build the Systems-on-a-Chip (SoCs) that are used in
automotive and networking hardware equipment, it is important to consider the
effect of soft errors on the on-chip communications bus that connects the IP
blocks together. ARM’s Advanced Microcontroller Bus Architecture (AMBA)
standard features in many embedded SoCs, it can occupy a large area comparable
to the microprocessor3, and faults that happen in this communication bus can
have severe consequences, such as deadlocking the whole system.

Based on the analysis above, the objectives and contributions of this work
are:

1. Add knowledge and capabilities to ARM in the area of reliability and soft
errors. ARM’s current offering is found wanting by some of its customer
base. This work seeks to understand whether soft errors are an issue
for ARM’s partners such that some form of action is required. And in
course, to find out what action should be taken. The case that soft errors
are a current concern for some customers is made, namely those in the
automotive and storage networking markets. We identify trends from the
existing literature which indicate that the Soft Error Rate (SER) may
increase in the future with shrinking transistor process dimensions, which
means it will become more important for those already highlighted and
may become a concern for other markets. Chapters two and three, the
technical and commercial background, capture some of this knowledge.

2. Investigate and develop methods to measure the SER of ARM IP. It
is important to quantify the SER of a product to determine whether
it meets customer requirements and, if improvement is needed, where
to target effort and to allow the effectiveness of such modifications to
be assessed. Externally, such information is valuable for customers to
compare with other offerings, however the SER is regarded as commercially
sensitive meaning that this comparison is rarely possible. ARM has not
comprehensively measured the SER of its IP before and lacks the relevant
expertise, therefore, there is a need to evaluate whether there is sufficient
value in doing so and this requires investigating the benefits and costs of
different approaches. This work focuses on part of the process of calculating
the SER in combinational logic because this type of logic forms a notable
part of ARM IP such as processors and bus interconnects and combinational
logic is predicted to become a major contributor to the overall SER [17].
We look at the variation of one of the factors that affect the SER of a

3From an internal test-chip the bus interconnect logic was about 70% of the processor’s
logic area (excluding the floating-point unit and cache memory)

7

combinational logic circuit, logical masking, in a novel way by exploiting
the control that an IP designer has over circuit synthesis. The aim is to
allow the designer to explore the trade-off between SER and performance,
power, and area. We find that there can be significant difference across
circuit implementations, which is important as it effects the calculation
of the total error rate. Additionally, we correlate characteristics of the
circuit topology with the logical masking rate to help explain the observed
variation. Focusing on one part keeps the investment small while exploring
the whole SER measurement process.

3. Investigate the impact of soft errors on the bus interconnect logic and
develop novel methods to improve its reliability. The AMBA IP bus
interconnect is an important ARM product that serves as the hub of
communication in an embedded SoC. It is a significant piece of logic
that is comparable in area to some embedded ARM processors and which
will increase in size with the rising complexity of the surrounding system.
It is demonstrated that soft errors on the logic of the bus interconnect
can have serious consequences and presents a high enough risk to be of
a concern to those customers who care about dependability. While it is
shown that for certain circumstances known parity and Error Correcting
Code (ECC) techniques are sufficient, there are some cases where they do
not provide adequate protection. In the former case, these techniques add
extra latency onto the transfer of data across the bus, which is contrary to
the requirements of automotive customers, therefore novel ways of applying
these techniques were developed to avoid extra latency overhead. In the
latter case, new methods were developed to detect faults on the bus logic
that techniques such as ECC cannot detect.

4. Develop a product to enable ARM’s partners to cost effectively mitigate the
consequences of soft errors on their ARM based bus interconnect. Automo-
tive and storage networking customers are concerned about the safety and
data integrity, respectively, of their Advanced eXtensible Interface (AXI)
based bus interconnects to soft errors. Trends indicate that their inter-
connects will grow in size, complexity, speed, and data transferred, thus
their concern will continue in the future. Existing customers of AXI look
to ARM to provide error protection as another feature because this is seen
as cheaper than implementing it on their own or switching to a competitor
(although it is believed that no other competitors offer such protection).
Some potential customers in the storage networking market have their own
interconnect that features ECC on the data payload, but want to use AXI
because it is no longer cost effective to develop their own interconnect. A
lack of error protection on AXI presents a barrier for them to adopt this
protocol. Therefore, the proposed product is an add-on to the AXI bus to
improve its fault tolerance to transient faults that occur on the bus logic
during communication. Two revisions of the product are advocated to lower
the barrier for adoption. The first revision will include ECC protection of
most of the AXI signals, while the second revision will include mechanisms
to detect faults that occur on the signals that cannot be fully covered
by ECC. It will integrate with an existing product to allow information
on those transactions where correctable and uncorrectable errors have
occurred to be logged and the response action to be programmable. This

8

proposed solution minimises the barrier for adoption as the techniques
are encapsulated in the bus implementation and its functionality exposed
through a programmable interface for software. Thus, it does not require
changes to the widely used AMBA standard nor does it require customers
to change their existing IP. This is important for customers as it minimises
the extra usage costs involved. This has resulted in the successful transfer
of a product proposal out of Research and Development (R&D), which
could be available as a commercial product in the next two years.

The following papers were published in support of the above contributions:

1. D. Graham, D. Bradley, S. Roy, P. Strid, and F. Rodriguez (2008). Design
For Reliability: An Analysis of Logical Masking on Transient Faults. In
Workshop on System Effects of Logic Soft Errors (SELSE).

2. D. Graham, S. Roy, P. Strid, and F. Rodriguez (2009). A Low-tech Solution
to Avoid the Severe Impact of Transient Errors on the IP Interconnect. In
International Conference on Dependable Systems and Networks (DSN).

The first paper (see Appendix B on page 82) presents the work on logical masking
variation and the correlation with circuit topology as outlined in the second
objective above. The second paper (see Appendix C on page 87) covers the third
objective by presenting some of the work on the impact of faults on the AXI bus
and the fault tolerant techniques that avoid adding extra communications latency.
The methods to detect faults on the bus matrix logic that Error Correction or
Detection Codes (EDACs) cannot detect are presently considered important
enough to ARM that they are under publication embargo. A patent covering
these methods is currently before the ARM patent review committee. Within
ARM, a product proposal requires two key documents: the Product Requirement
Specification (PRS) and the Engineering Requirement Specification (ERS),
which represent why the product should be developed and what should be
implemented. An additional report was written which describes the reasons
why certain choices were made, which is an important record of decision making
for the implementation team. These three documents support the first and
fourth objectives. They are the culmination of a substantial effort to construct a
credible business case and the technical knowledge of what to build and how it
integrates with other products. Crucial to this was attaining the commitment
of key personnel: a product manager who represents the interface between
engineering and customers, the lead technical engineer of the bus interconnect
product that this project is to be integrated into, and the authority on the
AMBA standard. These strategic relationships were formed and consolidated
over many presentations and discussions.

The outline of the rest of the EngD thesis portfolio is as follows:

• Chapter 2 provides direct and indirect evidence of the importance of soft
errors in the design of dependable computer systems; some important
definitions; how soft errors are manifested; trends in the SER of different
elements with technology scaling; approaches in which dependability can
be achieved; and the main methods to measure the rate of soft errors.

• Chapter 3 presents the commercial motivation for a product that improves
the fault tolerance of the AMBA AXI bus interconnect by examining

9

the trends that affect the semiconductor industry and target markets.
Additionally, it explains more about the customers in the target markets
and why they care about reliability.

• Chapter 4 explains the method for measuring the logical masking of a
combinational circuit using Statistical Fault Injection (SFI) and the results
are linked to measurable graph properties of the the circuit.

• Chapter 5 continues the investigation of soft errors in logic by examining
the impact they have on the AXI bus interconnect. The workings of the
AXI protocol and the innards of the bus interconnect which implements
the protocol are explained. This is followed by the requirements which
narrow the solution space based upon the needs of target customers. After
which the argument is put forward as to why ECC is not sufficient to
protect against all the consequences of faults on the AXI bus and potential
solutions based upon the fault effect are explained. The chapter concludes
with a description of the add-on product to the AXI bus that improves its
fault tolerance.

• The final chapter summarises the work and contributions for the achieve-
ment of the Engineer Doctorate award and outlines future directions of
research.

10

Chapter 2

Technical Background

Soft errors were initially a key problem for the aerospace industry due to elevated
levels of radiation at high altitudes and stringent requirements on the reliability
of avionics systems. After Intel discovered in the late 70s that contamination of
the water supply used in one of their fabrication facilities had caused soft errors
in their memory products [12], concern mounted that soft errors could be a
problem in the terrestrial environment. Intel’s discovery was the first report that
alpha particles from the packaging of a computer chip could cause these types
of errors. Since then standards were created to limit alpha particle emissions
from packaging and most fabrication plants cleaned up their processes [2]. Not
long after the publication of Intel’s results, Ziegler and Landford from IBM [15]
were the first to publish data that showed cosmic rays could also cause soft
errors in electronics at sea-level. Later, a field study in the mid-90s of computer
servers and corroboration with accelerated testing determined that high-energy
atmospheric neutrons, a product of cosmic radiation, were the main cause of
soft errors in Dynamic Random Access Memory (DRAM) and Static Random
Access Memory (SRAM) at ground level [16]. A third cause was discovered
by Baumann et al. [19] in 1995, due to the interaction of low-energy atmospheric
neutrons with boron, which is used as a dopant in silicon and is found as a
diffused impurity in gate dielectrics. As a result, this was removed from the
manufacturing process for virtually all advanced technologies [2]. In 2001, an
internationally agreed standard on the measurement and reporting of soft errors,
induced by alpha particles and atmospheric neutrons, was published [20].

Soft errors are one of many sources of failure in modern computer systems.
This chapter seeks to assess their importance now, by examining direct and
indirect evidence, and in the future as it is predicted that their occurrence will
increase with semiconductor technology scaling. Before doing so, the standard
definitions needed to aid understanding are described and an explanation of a
soft error is provided.

2.1 Definitions

The following definitions are taken from Avizienis et al. [1], a culmination of work
that dates back to 1980, which “aims to give precise definitions characterising
the various concepts that come into play when addressing the dependability

11

and security of computing and communication systems”. The dependability of a
system is defined as “the ability to avoid service failures that are more frequent
and more severe than is acceptable” and integrates the following attributes:

• availability: readiness for correct service

• reliability: continuity of correct service

• safety: absence of catastrophic consequences on the user(s) and the envi-
ronment

• integrity: absence of improper system alterations

• maintainability: ability to undergo modifications and repairs

Correct service is delivered when the service implements what the system is
intended to do and a failure is an event that occurs when the delivered service
deviates from correct service. An error is the part of the system’s total state
that deviates from the correct service state which may lead to its subsequent
failure. The cause of the error is called a fault. It is importance to note that an
error does not necessary lead to a failure nor a fault to an error. For example,
an error in a memory location that holds a value that is never used during the
operation of a software program will not result in failure.

The eight basic perspectives that are used to classify all faults that may
affect a system during its life are given in Figure 2.1a and the combinations
that, according to the authors, are likely are given in Figure 2.1b. This work
considers transient physical faults that affect the hardware during operation,
caused by natural phenomena from inside the Integrated Chip (IC) or from the
environment. Transient means that the fault’s presence is bounded in time.

There are a number of terms different than those set out by Avizienis et al.,
which are used primarily within the confines of this research area. It will not be
attempted to normalise these terms into his taxonomy, however, they are given
because they have arisen from historical usage in this field or they represent a
refinement of some of the concepts.

The natural phenomena considered are due to radiation, which has two
principal effects on microelectronic systems: total radiation dose effects and
Single Event Effects (SEEs).

Total radiation dose is concerned with the accumulated effect of radiation
impinging on a device, resulting in permanent changes in its electrical behaviour.
Radiation impact can damage the silicon substrate and gate oxide of transistors,
and can also cause an accumulation of charged particles within the device.
Total radiation dose primarily affects a device’s electrical behaviour and long-
term reliability. Total radiation dose effects are primarily a concern in adverse
operating environments, such as space and military applications [2].

SEEs are the result of a single radioactive particle strike in a sensitive area
of a transistor that can cause the logical value of the circuit to change. An SEE
is also often referred to as a soft error because no permanent damage to the
device is caused, unlike a hard error. Although a soft error does not permanently
damage the system, its consequences may do. The conditions in which a soft
error is created are explained in more detail in Section 2.2. SEEs are classified
into a number of categories depending on where or how they occur [2]:

12

(a) Elementary

(b) Combined

Figure 2.1: Fault classes (from [1])
13

• Single Event Transient (SET): an SEE occurs in combinational logic which
creates a transient current/voltage pulse and may propagate through the
circuit

• Single Event Upset (SEU): either an SEE directly occurs in a storage
element, such as an SRAM cell or latch, which flips the value held or an
SET propagates and is captured by a storage element

• Single Event Latch-up (SEL): an SEE activates a parasitic junction between
the transistor’s well and substrate, leading to a potentially destructive
path between the power rails, which causes the transistor to be ‘stuck’ at
a particular value. Powering down the chip will remove this condition, as
long as no physical damage has occurred to the circuit

Nguyen et al. [21] define the outcome of a soft error into four types according to
the system’s response, or lack thereof:

• Masked error: the corrupted bit disappears before being noticed because
it is not used in a computation, is overwritten, or is deleted; therefore it
does not cause failure

• Correctable error: detected and corrected by hardware or software mecha-
nisms

• Detected Uncorrectable Error (DUE): detected but not correctable by the
mechanisms and can cause failure, but since it is known to have occurred
remedial action can be taken, for instance, if it occurred in a clean cache
memory line, then the line could be marked as dirty since the datum exists
in main memory.

• Silent Data Corruption (SDC): undetected and are therefore regarded as
the most serious

There are also a number of error classifications that are used in the context of
soft errors in memory:

• Single-Bit Upset (SBU): one bit of a memory word is corrupt

• Multi-Bit Upset (MBU): when more than one bit of the same memory
word is corrupted

• Multi-Cell Upset (MCU): when more than one bit of different memory
words are corrupted. This distinction between MBU and MCU is made
since ECCs have a bound on the number of errors that can be detected
and corrected, so that a MBU may exceed the capabilities of the ECC that
protects it while a MCU with the same magnitude may invoke multiple
ECCs but not exceed any of their capability of detection or correction.

2.2 The Physical Mechanics of a Soft Error

Soft errors in the terrestrial environment, i.e. around sea-level, are predominately
caused by high-energy1 cosmic neutrons or alpha particles, which interact with

1Usually considered to be above 1 MeV.

14

the silicon material of the victim transistor to generate energetic ions2. Ionisation
of silicon atoms or the further ionisation of dopant atoms in a transistor will
create one or more electron-hole pairs in the physical location of the radiation
strike. If the electric field near the p-n junction is large enough, then it can
prevent any electron-hole pairs created in the wake of the incident particle near
to the p-n junction from recombining and possibly lead them to the transistor’s
contacts where they can change the logic value of the output signal [22]. Alpha
particles originate from radioactive impurities in the packaging of a chip and
neutrons from cosmic rays. Baumann in the mid-90s [19] discovered that the
interaction of thermal neutrons3 with Boron-10 that was used for doping the
silicon could cause soft errors, which has helped its removal as the default doping
material.

The neutrons are the result of the interaction of cosmic rays, which is a
term used to encompass unknown energetic particles from outer space either of
galactic origin or from the sun [9], with the atmosphere that produce complex
cascades of particles. Those particles that hit the Earth’s surface number only
1% of the original amount of cosmic ray particles and neutrons make up the
vast majority (97%). The spectrum of neutron energy conventionally considered
at sea-level spans 10 MeV to 1 GeV and has a flux of about 14 neutrons per
cm2-hour [23]. However, the neutron flux varies with the solar cycle4, altitude5,
and location on Earth6. Ziegler et al. [9] provide a quick estimate that only 1 in
40 000 neutrons will hit a silicon nucleus within 10 µm of the surface of a Large
Scale Integration (LSI) circuit7, which at sea-level equates to 2.5 silicon-neutron
hits per year for every cubic centimetre of active volume.

Neutrons and alpha particles interact with the lattice of the silicon in different
ways: neutrons have no charge so their interaction is purely kinetic while alpha
particles interact with both kinetic and Coulomb forces. This means alpha
particles interact directly with electrons, while it has been shown that the
majority of soft errors due to neutrons are caused by the inelastic collisions
that create secondary particles [25]. Although most neutrons do not interact
with silicon, they tend to generate more charge than alpha particles because the
secondary particles created from a neutron hit have higher energies [2].

The mass and energy of the primary or secondary particle and the material in
which it is travelling determines the magnitude of the disturbance the ion creates,
called the Linear Energy Transfer (LET). The LET influences the amount of
charge collected (Qcoll) typically within a few microns of the junction and can
range between one to several hundred femtocoulombs [2]. Figure 2.2 shows
the charge generation and collection processes for a reversed biased junction
and the waveform of the resultant current pulse. Qcoll depends upon many
factors including size of the device, biasing of the various circuit nodes, substrate
structure, device doping, the type of ion, its energy, its trajectory, the initial
position of the event within the device, and the state of the device.

The minimum charge required to alter the logic state of an element, such as

2An atom where the total number of electrons is not equal to the total number of protons.
3Neutrons that are very slow with an energy of a fraction of an eV
4Accounted for a 30% reduction in terrestrial cosmic ray flux during two years of the most

intense solar activity recorded in the period between 1954 and 1990 [24].
5For example, from New York at sea-level to Denver, Colorado at 5 280 ft neutron flux

increases by 3.4× [9].
6About a 2×variation.
7Considered to contain tens of thousands of transistors per chip.

15

Figure 2.2: Charge generation and collection phases in a reverse-biased junction
and the resultant current pulse caused by the passage of a high-energy ion (From
[2])

a memory cell or combinatorial gate, is called the critical charge, Qcrit. This
value is mainly dependent on the node capacitance, operating voltage, and the
strength of feedback transistors. This value is normally found from injecting
current pulses into a circuit model and is further explained in section 2.6 on
page 22.

2.3 Importance of Soft Errors

To assess the importance of soft errors we look at: real life reports that high-
light their industrial relevance; direct evidence in terms of failure data and
trends in that data; and indirectly through public industry assertions, and more
importantly, industry action directly related to soft errors.

Firstly, we highlight three examples of the impact of soft errors that have
been publicly disclosed. A study in 1998 of nearly 600 people with implanted
cardiac defibrillators recorded the occurrence of 22 soft errors, some of which
were multiple bit errors and could not be corrected [26]. This caused alarm since
a cardiac defibrillator can deliver a 30 J shock direct to the heart. In another
example, in 2000, Sun Microsystems found that soft errors in the level two caches,
which had defective error protection, had caused it’s flagship servers to crash [3].
In a third example, Cyprus Semiconductor reported in 2004 that a single soft
error brought a billion-dollar automotive factory to a halt once a month [27].

Unfortunately, detailed data on soft error failure rates are sparse, which
makes it difficult to compare the magnitude of the problem to other fault sources.
The first reason for the paucity of this data is that companies, who have the
hardware and resources to perform the required testing, view the data as highly
confidential, so normally only report normalised figures. Secondly, the soft error
rate is dependent on many factors, ranging from the manufacturing process to
the running software application, which makes a fair comparison difficult. A
third aspect arises due to the unspecified type of errors or failures reported
because the severity may differ, e.g. application crash or system hang.

Accelerated neutron testing8 by Normand [16] in 1996 found in the region

8Irradiating an IC with much more particles than in the normal environment — explained

16

of 1 000 to 2 000 FIT/Mbit9 for a group of nine SRAM and DRAM chips of
sizes 256 Kbit and 4 Mbit. However, this can vary significantly depending on
the vendor and underlying memory technology as Dodd et al. [28] reported
that the SER of SRAM ranged from 10 to 1 400 FIT/Mbit. This was based
on the accelerated neutron testing of SRAM chips from 250 nm to 140 nm,
6T CMOS to 4T poly resistive memory cells, and test voltages from 4.5 V to
1.4 V. For example, for 250 nm 6T CMOS SRAM at 1.5V the author recorded
approximately 1 400 FIT/Mbit while the same vendor’s 140 nm memory recorded
approximately 1 000 FIT/Mbit .

For sequential logic, it was agreed in 2006 at the Workshop on Silicon Errors
in Logic - System Effect (SELSE), where academia and industry that are actively
concerned about soft errors meet, that 1 milli-FIT per flip-flop is representative
in bulk CMOS technology, which is comparable to the above memory per bit
SERs. There has been less research in measuring or calculating predictions of the
contribution of combinational logic because memory has been at the forefront of
shrinking and tends to occupy the majority of the chip area in modern SoCs, so it
has been the focus of soft error analysis. However, Shivakumar et al. [17] in 2002
made the prediction that the SER attributable to all combinational logic found
on their model of a microprocessor would be comparable to that of unprotected
memory by the 50 nm technology generation because the scaling of combinational
logic would catch-up with memory. More recent data from Intel [29], based
upon accelerated testing, disputes Shivakumar’s claim by reporting that the
contribution is only 30% of the total SER of a modern microprocessor. How the
SER varies with technology scaling is discussed in detail in Section 2.4.

Thirdly, if businesses have no desire to publicise data on soft errors, we can
instead acquire indirect evidence of the importance of soft errors by examining
what is openly stated and, more importantly, what experiments are performed
and what level of protection their products feature. The International Technology
Roadmap for Semiconductors (ITRS), which is a set of documents produced by
the international industry, to promote pre-competitive research, has identified an
urgent need to address the issue of soft errors since the 2005 edition [30]. Cisco
have said that soft errors are their number one issue from customers regarding
reliability. The down-time caused by these type of failures can cost customers up
to $1 million per minute and quoted 0.2 soft errors/year/unit (40 000 soft errors
per year with an average shipment of 200 000 units per year)10. Baumann [2],
from Texas Instruments, who is well known within the soft error community
states that the total permanent failure rate is typically in the range of 50 to
200 FIT, while “advanced processors with large multimegabit-embedded SRAM
can easily have soft failure rates in excess of 50 000 FIT per chip”. Based on
his ”typical” rate of 1 600 FIT/Mbit (which is in the range of the figures quoted
above), this would imply that the processor chip has an equivalent error rate of
approximately 30 Mbit of SRAM. Around 2005 when that paper was published
the 65 nm Intel Pentium 4 had 16 Mbit of level two cache memory[31]; which
from a budget of 50 000 FIT gives about an even split in SER between the level
two cache and the processor (including its own internal memory structures).

further in Section 2.6
91 FIT means one failure every billion hours that the device is in operation; thus 1 000

FIT/Mbit is one thousand failures every billion operating hours for every million bits of memory.
The SER is normally given in FITs.

10Data from a panel talk given by a Cisco engineer at the SELSE 3 workshop in 2007

17

In terms of what is done, the UK’s Department for Business, Innovation
and Skills11 has co-funded two projects since 2004 specifically looking at SEEs
with a total funding of about £5 million over six years. A study of a fault-
tolerant microprocessor examined the impact on availability of transient faults
over an error rate of 2 000 000 FIT to 10 000 000 FIT [32]. The most significant
indicator of the concern over soft errors is the ubiquity of error detection and
correction codes (ECCs) for memory. This has become a standard feature not
only in high-end severs, but can be found in desktop and mobile processors,
for example, ARM’s Cortex-R4 supports either parity or ECC on its level
one internal memories [33] . Intel’s latest Itanium microprocessor released
early 2010, codenamed Tukwila, apparently has similar per chip SER as its
predecessor, but with almost three times the number of logic circuits [11]. It
features Double Error Correction (DEC) ECC covering the 30 MB of on-die cache,
SER-hardened circuits, background memory scrubbing, and a new point-to-point
system interconnect called QuickPath with Cyclic Redundancy Checks (CRCs)
on the data, transaction retry, self-healing links, and clock fail-over. The change
to DEC ECC indicates the number of errors that they need to protect against
has increased. These features are targeted particularly to reduce the SER rather
than other sources of faults, such as power rail or supply noise.

2.4 Trends in the Soft Error Rate with Technol-
ogy Scaling

A modern computer system normally consists of external DRAM, possibly on-chip
SRAM (in the form of cache memory), sequential logic (latches and flip-flops),
and combinatorial logic (e.g. NAND gates, multiplexers, etc). Differences in
circuit structure require separate calculation of the SER for each of these elements.
This section presents how the per element (e.g. bit, latch, gate) SER and the
per system SER due to all those elements varies with technology shrinking. The
SER of each element is calculated using [21]:

Element SER = Nominal SER× Timing Derating × Logical Derating

Unless stated otherwise, the SER data only represents the nominal value. For
DRAM and SRAM, timing derating is close to one [34]. Methods for estimating
the timing derating of other elements can be found in Nguyen et al. [21]. Logical
derating is usually not calculated because it depends on how the elements are
used by the software under the instruction of the user.

2.4.1 DRAM

Baumann [35, 2] reports that the Single-Bit Upset (SBU) SER per bit of DRAM
is exponentially decreasing, but the number of DRAM bits per system is ex-
ponentially increasing at about the same rate to give a roughly constant SER
contribution from DRAM per system.

11Known as the Department of Trade and Industry (DTI) at the time

18

2.4.2 SRAM

Seifert et al. [18], from Intel, reported that in 2006 there seemed to be agreement
between academia and industry that the SBU SER per bit of SRAM is decreasing.
This was based on their own accelerated neutron testing and alpha particle
simulations and on data from five other sources, which are based on a mix of
accelerated testing or simulations of neutrons and/or alpha particles. These
other sources include work from Baumann [2] who finds that with recent SRAM
technology no longer using Borophosphosilicate Glass (BPSG) the SBU SER
per bit has saturated and is possibly decreasing. Additionally, from accelerated
testing data of SRAM test chips at geometries from 350 nm to 130 nm, Hareland
et al. [36] find that from 250 nm the inverse dependence between SER and
voltage begins to weaken and beyond 130 nm, where stored node charge is less
than 10 fC, the SER per bit will decrease because the number of particles that
can cause upsets will saturate as the bit area decreases. However, Hazucha et al.
[37] find that this per bit rate increases: from accelerated neutron testing of a
90 nm SRAM and using data from other references the SER per bit of SRAM
from 250 nm to 90 nm increased by 8% per generation at nominal voltage (VDD

decreased by 14% per node).
Dodd et al. [28] found that the SER of SRAM from several vendors at the same

technology generation varied substantially. They performed neutron accelerated
testing of SRAM from different vendors to find the SER ranged widely from
10 FIT/Mbit to 1 400 FIT/Mbit . They tested memory manufactured at 250 nm
to 140 nm, using 6T Full CMOS to 4T Poly R, and test voltages from 4.5V
to 1.4V. This substantial variation highlights the impact that the design and
process methodology has on the failure rate. Additionally, Hazucha et al. [37]
measured a 22% difference in SRAM SER when they rotated the chip 180◦ with
it still normal to the beam.

Despite whether the per bit SER has saturated or is decreasing, the total
SRAM SER will increase given that the amount of SRAM bits in a system
continues to rise and occupy a greater die area [2, 6]. Although Shivakumar et al.
[17] suggest that the SBU SER per bit of SRAM is falling in deep submicron
technologies, they predict that the SER of the total SRAM in a system has
already saturated at the 180 nm node. They base their findings on Hazucha
and Svensson’s semi-empirical equation [38] and scale an Alpha processor by
quadratically increasing the number of transistors, so their prediction does not
take into account further SRAM memory (such as higher levels of cache) that
may be found on the whole chip.

Seifert et al. [18] additionally found that the rate of MBUs (due to soft errors)
per bit of SRAM is increasing, due to decreasing cell pitch and Qcrit. Two
years later, based on accelerated testing of a 45 nm High-κ-Metal Gate (Hκ-MG)
SRAM process, Seifert et al. [39] reported that SRAM neutron SBU and MBU
Soft Error Rates (SERs) per memory bit were unchanged. Neutron SRAM SER
per bit still decreases approximately 2× with technology generation. MCU upset
rates remain unchanged despite a 2× increase in SRAM integration density,
which keeps MCU rates less than or equal to 10% of SBU rates according to the
authors.

19

2.4.3 Sequential and Combinational Logic

Although similar in design to SRAM, flip-flops and latches (sequential logic)
tend to be more robust because they are constructed with larger transistors so
that the charge needed to upset, Qcrit, is larger. However, it is expected that
they will become more sensitive to soft errors as technology shrinks. Mitra et al.
[34] believe that although there is evidence that the SER per bit of SRAM is
saturating or decreasing, there is less consistency in the literature for latches
and flip-flops.

From simulation and experimental data of flip-flops between 180 nm and
65 nm, Baumann [35, 40, 2] found a linear increase in the per bit nominal
sequential SER with scaling, which would reach the SER per bit of unprotected
SRAM by 65 nm. Thus, he believes that sequential logic will be the dominating
factor in measuring the system failure rate once SRAM is sufficiently protected
with ECC. To assess the validity of this belief, the vulnerability factors of the
sequential logic need to be calculated and the system SER would need to be
calculated accounting for the fact that there is usually much less logic than
SRAM on a SoC. From accelerated neutron testing of a 90 nm test chip of
latches, Hazucha et al. [37] find, on average, an 18% increase in SER per latch for
every 10% reduction in supply voltage. Cohen et al. [41] performed accelerated
alpha testing of latches in a 250 nm process to show that the SER per latch
increases exponentially with decreasing voltage — about 2.1 decades per volt.
Scaling an Alpha microprocessor from 350 nm to 250 nm, the corresponding
drop in nominal voltage accounted for approximately 75% of the decrease in
Qcrit, thus voltage scaling is seen as the primary concern for the increase in soft
errors. Using the projections from the Semiconductor Industry Association (SIA)
when the paper was published in 1999, the authors forecast that the latch SER
could increase 100× from 1997 (250 nm) to 2012 (50 nm). Although the revised
projections (from the 2009 ITRS [10]) put the 2012 DRAM half-pitch smaller
than thought (36 nm instead of 50 nm), the increase in latch SER will not be as
much as Cohen et al. thought because most of the dependence is on VDD, which
has not scaled as much (0.9 V instead of 0.6 V).

Contrary to the above data, Seifert et al. [18] found that using Intel’s process
technology the average SER per latch is fairly constant from the 130 nm to 65 nm
nodes. This is in agreement with the simulations performed by Shivakumar et al.
[17]. Additionally, Karnik et al. [42] carried out accelerated neutron experiments
of a 180 nm flip-flop test chip to find that the SER per flip-flop would likely
be constant if VDD scales by 0.8×. According to the ITRS roadmaps [43, 10],
the supply voltage (“VDD high-performance”) has scaled from 1.1 V in 2001 to
1 V in 2009 — a reduction of only 0.9×, suggesting that the SER per latch has
slightly decreased.

The study of combinational logic has in the past received less attention
because it has been seen as the least important contributor to the system SER
because: there is less of it on a chip than other element types, it tends not to use
as aggressive feature dimensions, and there are several masking processes that
lessen the error rate. Mitra et al. [34], also from Intel at the time, state that
the system SER trend is dominated by SRAM and sequential elements, and the
contribution of combinational logic is considerably smaller. The contributions
to the system SER are reported to be 40% from unprotected SRAM, 49% from
sequential logic, and 11% from static combinational logic. However, there is no

20

further discussion or reference to how these figures were calculated.
In 2002, based upon neutron simulation Shivakumar et al. [17] predicted

that “the SER per chip of [combinatorial] logic circuits will increase nine orders
of magnitude from 1992 [600 nm] to 2011 [50 nm] and at that point will be
comparable to the SER per chip of unprotected memory elements [SRAM bits
and latches]”. The author’s model takes into account electrical masking and
latch-window masking, but not logical masking. Since ECC is employed to
reduce the memory SER, this would mean that soft errors from logic dominate.
Therefore, this has provided evidence for some to focus on further analysis and
mitigation techniques. Such a rapid increase is attributed to a quadratic decrease
in the Qcrit of combinational logic, which has scaled more rapidly than that of
memory and is estimated to converge on memory around 50 nm. In their model,
this capacitance reduction results in a 106increase in SER per combinational
logic chain and coupled with a 100 times increase in logic chains per chip gives
a nine orders of magnitude rise. Their focus is on combinational logic chains
between processor pipeline stages, so the SER is based on those SETs that are
subsequently stored by the latch at the end of the chain. Shivakumar et al. predict
that the SER of a combinational logic chain (ranging from six to sixteen fan-out
of four gates long) would be comparable to that of an unprotected SRAM bit
and latch by the 50 nm technology generation. They base their chip-level results
on quadratically increasing the number of transistors that make up an Alpha
processor for each subsequent technology node. The transistors are allocated to
20% combinational logic and to 80% memory (SRAM cache and latches) based
on an examination of the die photos of a 350 nm Alpha processor. It is unclear if
these proportions hold for each new processor design rather than a straight scale
of the same design. Based upon simulation too, the results from Seifert et al.
[18] show that for combinational logic the SER per pipeline stage is flat for some
simple test circuits and decreasing for an adder test circuit. The most recent
empirical data from Intel refutes Shivakumar’s prediction. Gill et al. [29] find
that the SER of one single logic chain is less than 10% of a nominal (without
taking masking into account) unhardened latch SER at 1 GHz in Intel’s 32 nm
process. In this calculation they assume a latch’s SER is half of a flip-flop’s
SER and that the P/N ratios of the gates are balanced to give similar low and
high transition times (a skewed P/N ratio increases the SER, e.g. a 4× ratio
gives 10× higher SER). Using a figure-of-merit based on “typical clock speeds
and fan-in statistics for modern microprocessors”, Gill et al. calculate an upper
bound on the contribution of total combinational logic SER to be about 30% of
the total nominal latch SER on a chip.

Although there is some consistency in the literature as to the nominal per
bit SER of DRAM and SRAM, there is fewer coherent experimental evidence
on which to form an agreement on logic SER trends. However, the continued
integration of more transistors in advancing technology will result in a higher chip-
level SER. The SER contribution from DRAM and SRAM can be substantially
lowered through the use of ECC, which has meant that logic soft errors have
increased, relatively, in importance. Therefore it is considerably valuable to
investigate the effect of soft errors in logic and suitable methods for mitigating
their impact.

21

2.5 Attaining Dependability

Avizienis et al. [1] group the means to attain dependability into four major
categories:

• Fault prevention means to prevent the occurrence or introduction of faults

• Fault tolerance means to avoid service failures in the presence of faults

• Fault removal means to reduce the number and severity of faults

• Fault forecasting means to estimate the present number, the future inci-
dence, and the likely consequences of faults

The authors explain that the difference is that fault prevention and tolerance
aim to provide a dependable service, while fault removal and forecasting aim
to provide confidence in that ability. An example method of fault removal is
verification during development and fault injection on a circuit model is an
example of fault forecasting.

Fault prevention methods specific to soft errors include reducing alpha particle
emissions by purification of the materials and equipment used in the semicon-
ductor manufacturing process. Baumann [2] states that through contamination
reduction, alpha particles emissions have reduced from levels as high as 100 par-
ticles per hour per cm2 to below 0.001. However, this is not a guarantee because
certain byproducts of the original contamination may regrow, so emissions from
materials must be monitored over several months. While it is possible to shield
against alpha particles12 by adding extra material between sensitive areas and
likely locations such as solder joints, it is not cost effective to shield against
cosmic neutrons (it has been found that a foot of concrete lowers the intensity
of cosmic neutrons by 1.4× [44]). Radiation hardening is normally used for
electronics that are used in aerospace applications and is done by modifications
to the process, such as using different materials or substrate structures (e.g.
Silicon on Insulator (SOI)), or by altering the design, such as using larger drive
transistors in SRAM cells or different transistor layouts which can reduce the
charge collection efficiency. Baumann [2] says “the majority of process solutions
seldom reduce SER by more than five times so their use does not justify the
expense of additional process complexity, yield loss, and substrate cost”.

The most commonly employed technique in memory is the use of ECC, which
is a fault tolerant method since it does not attempt to prevent the occurrence of
the fault in the first place, but when a fault does happen there is a guarantee
that a certain number of incorrect bits can be masked or at least detected. ECC
that allows two errors to be detected and a single error to be corrected typically
results in a greater than 10 000×reduction in error rates [2].

Since ARM provides hardware IP, it has little control over the implementation
and manufacture, therefore the focus has been on fault tolerant methods.

2.6 Measuring the Soft Error Rate

The SER of electronic devices can be evaluated in four complementary ways [45]:
modelling, accelerated testing, life testing, and from field reports of reliability.

12In silicon, a 10 MeV alpha particle can travel up to 100µm — typical impurities can emit
alphas with energies between 4 and 9 MeV

22

Life testing — where hundreds of chips are evaluated over a long time period under
normal radiation conditions — and reports from customers are not favourable
methods. The former is prohibitively expensive due to the large amount of chips
required and the long time needed to gather statistically significant results. For
instance, a batch of 500 SRAM chips with a typical failure rate of modern SRAM
chip (5 000 FIT) would cost over $200 000 for the hardware alone and would
take about nine months to produce decisive results [45]. Although failure data
from customers is valuable in providing tangible evidence and is an impetus for
research in this area, it is difficult to find root causes from customer data, or
infer from this data the SER of other chips.

Accelerated testing involves the irradiation of ICs with hadrons (particles
with a strong nuclear force) that have a substantially larger flux than present
at sea-level, to artificially induce errors over a short period of time. This is
the preferred route to generate a “real” failure rate figure because it is based
upon actual hardware and is cheaper than life testing, for example a popular
laboratory costs in the region of $10 000 per day. Although protons comprise
less than 5% of the total flux at sea-level — nearly all the rest are neutrons —
they are more readily available than neutron sources and have near equivalent
behaviour at energies above 30 Mega electron Volt (MeV). Thus below this
energy neutron beams are used and above this proton beams are commonly
used. The JEDEC Solid State Technology Association JESD89 standard [20] was
introduced to ensure best practise and comparable reporting between the results
of accelerated testing. This method is valuable to both industry and academia
because of the credibility of the results, but requires fabricated technology which
is difficult for academia and companies like ARM to access and is not helpful
when input is needed to lower the SER at an early stage in a design. However,
it is helpful in calibrating and validating models.

Computing the SER of a chip requires analysis in two areas [22, p48]: first,
the calculation of the intrinsic failure rate of the elements that comprise the chip
and, second, the calculation of the vulnerability factors which reduce the intrinsic
failure rate, often called the ‘derating’ or masking effects. Modelling the intrinsic
SER is comprised of modelling the radiation sources, their geometry and charge
track production, the charge transport and collection, and circuit failure [46].
This is a two step process where the critical charge, Qcrit, is computed for the
element and then this is mapped to a corresponding FIT rate. Determining Qcrit

is usually achieved using a circuit level simulator, such as SPICE, to inject current
pulses that mimic a particle strike into sensitive nodes of the circuit so that the
smallest charge that changes the state is the critical charge. See Freeman [47]
for a description of this for a bipolar SRAM circuit. Qcrit is different for DRAM
and SRAM and varies with pulse shape, circuit parameters, and variation in
technology parameters, temperature, power supply voltage, etc [25]. Srinivasan
[25] describes three approaches to accomplishing the mapping of Qcrit to FIT
rate in increasing order of sophistication: semi-empirical, device or circuit level,
and chip level. The semi-empirical models are commonly based upon data
from accelerated testing and have to be re-calibrated for each new technology
generation. Popular models are the Burst Generation Rate (BGR) method from
Ziegler and Landford [15], the Neutron Cross Section (NCS) method from Taber
and Normand [14], and Hazucha and Svensson’s model [38]. IBM’s Soft Error
Monte carlo Modeling (SEMM) tool is a chip-level predictive simulation method
that does not require parameter fitting from empirical testing as it models from

23

first principles [48] taking all device, process, and layout aspects into account.
However, SEMM is targeted towards memory and sequential logic elements.

Measuring the SER is an expensive and time consuming process, because
to gain credibility models must be based on empirical data from accelerated
testing — which requires access to testing facilities, hardware, and people with
the right skills — or be based upon nuclear particle reactions, like SEMM, which
has taken many physicists many years to develop. This makes measuring the
SER prohibitive for ARM.

2.7 Conclusion

Data on the occurrence of soft errors in the terrestrial environment are rare —
because their transient nature makes it difficult to record and because companies
are reluctant to release information on problems with their products. Since
there are many sources of failure within modern computer systems, it is unlikely
that soft errors dominate. However, it is a major concern of computer hardware
manufacturers since faults caused by the environment have increased relatively in
importance as permanent faults from production has fallen. With the continuing
trend in technology scaling — shrinking device sizes and higher integration
of components — it is predicted that the vulnerability of a computer system
to failure from soft errors will rise. Although this will not be of substantial
concern in the use of some technology devices, such as mobile phones, the
increasing ubiquity of technology means that it is important for those companies
that use computer devices in applications that have stringent requirements on
dependability, as will be explored in the next chapter.

24

Chapter 3

Commercial Background

The purpose of business is to create and keep a customer

— Peter F. Drucker

A primary objective of this EngD is to develop an argument to support the
commercialisation of research, which has at its core the target customer or
market. Therefore, this chapter explores the macro and micro environment that
predisposes an investigation into the impact of an unreliable IP interconnect. It
represents information gathered from internal and external sources, including
internal marketing, customers, and external publications. Before this examina-
tion, we give an overview of ARM in terms of what it produces and its business
model. The second section examines the trends which effect the semiconductor
industry and specifically at where the target markets — automotive and storage
networking — sit on that line. The third section outlines what these target
markets do, why they care about reliability, and examples of related current
customer activity with ARM.

3.1 About ARM

Spun out from Acorn Computer Group in 1990 as a joint venture with Apple
Computer to develop Reduced Instruction-Set Computer (RISC) microprocessors,
the company now describes itself as the world’s leading semiconductor IP supplier.
From the ARM website [49]:

The ARM business model involves the designing and licensing of
IP rather than the manufacturing and selling of actual semiconduc-
tor chips. We licence IP to a network of Partners, which includes
the world’s leading semiconductor and systems companies. These
Partners utilize ARM IP designs to create and manufacture system-
on-chip designs, paying ARM a license fee for the original IP and a
royalty on every chip or wafer produced. In addition to processor
IP, we provide a range of tools, physical and systems IP to enable
optimized system-on-chip designs.

25

To date, over fifteen billion ARM based chips have been shipped. More than
660 licences of IP have been sold; 87 of them in 2009 and of that amount, 30 of
them for mobile applications. The rest are split across ARM’s three other main
markets: embedded (e.g. white goods, smart cards, and automotive), enterprise
(e.g. WiFi routers and hard disks), and home (e.g. digital TV, digital cameras,
and games consoles). The company reported a revenue of about $490 million in
2009, of which about 50% is from royalty, 34% from licensing, and the rest from
activities like support services [50]. In the same year, 63% of unit shipments
made it into the mobile end-market, while 15% of units went into enterprise
applications, 16% into the embedded end-market, and 6% into home applications.
While ARM is seeing growth in smartphones and other mobile computers, it
is beginning to see non-mobile usage increase as a proportion of its technology
shipped and end-market diversity will be critical to its long term success.

3.2 Trends

3.2.1 Background

As of the third quarter of 2009, Intel’s Atom processor represents the state-of-
the-art in widely commercially available CMOS logic manufacturing at 45nm. By
the end of 2009, Intel plans to release the first processors from their “Westmere”
family which will be based on their second generation 32 nm high-κ metal gate
process technology [51]. ARM’s partners predominately use either TSMC or
Common Platform technology who offer logic processes down to 45 nm as well,
and are developing the capabilities for 32 nm and 28 nm, with the latter offered
as a high-κ metal gate or silicon oxynitride process [52]. From 1999 to 2010, the
electronics industry has seen the physical gate length of CMOS transistors used
in micro-processor units fall from 120 nm to 27 nm [53, 10]. From then on, the
2009 edition of the ITRS projects that the gate length will half every seven to
eight years.

Technology scaling had resulted in an exponential growth in the number
of transistors and, in combination with further competition, has driven more
product features. This has led to escalating design, verification, and imple-
mentation complexity and cost. While desktops and laptops have shifted to
multiple processors in the last few years, many embedded computer systems have
incorporated multiple heterogeneous processors for longer. In these embedded
systems, the complexity and number of processor cores and other IP blocks has
risen. Consequently, this has increased the complexity and size of the system
that is responsible for the management of data transfer between these IP blocks,
referred to as the IP interconnect. In 2003, ARM introduced the AXI protocol
in the third edition of the AMBA IP interconnect standard to meet the higher
performance required of future SoCs.

3.2.2 Automotive

There are many different electronic systems, commonly called Electronic Con-
trol Units (ECUs), within an automobile that vary not only in function but in
semiconductor process, geometry, and complexity. Current mid-range automo-
biles contain more than seventy ECUs and this rises to over one hundred on

26

higher-end vehicles. An ECU typically contains a micro-controller unit and a
Application Specific Standard Product (ASSP) along with a number of power
and signal converter devices to interface with the sensors and actuators. The
micro-controller unit and ASSP will contain one or more processors while the
other converter devices will tend not to. ARM IP is used in these micro-controller
unit and ASSPs in nearly every system of a vehicle, e.g. airbags, chassis stability,
brakes, dashboard, body (communications systems, energy management), smart
sensors, adaptive cruise control, and infotainment. Examples of commercial
products include: a Bosch airbag chip that provides an interface for the micro-
controller unit to the sensors and can induce the firing of the airbags, which uses
a 350 nm Bipolar CMOS DMOS (BCD) process technology [54]; while a 32-bit
micro-controller unit from ST [55] designed for engine management and chassis
control is on 90 nm. In this work, we consider those embedded systems that
are responsible for safety critical functionality and are subject to international
safety standards (described in Section 3.3.1). This includes the braking system
(i.e. Anti-lock Braking System (ABS)), engine control, chassis stability control
(i.e. Electronic Stability Control (ESC)), and airbags.

Automotive semiconductor suppliers tend to use a geometry several nodes
behind the cutting edge because the design cycle is longer than other consumer
products, safety requirements mean they tend to be more risk adverse to using
the latest technology, but above all it is because automotive products need to be
Automotive Electronics Council (AEC) Q100 certified [56]. This certification
stipulates electric and electronic stress tests that must be met and requirements
such as operating temperature (-40 C to +125 C for systems under the bonnet
as opposed to 0 C to +70 C for standard commercial grade products), lifetime
expectations of over ten years, protection from high loads, and long retention
embedded flash memory. This extra cost to automotive semiconductor suppliers
means they tend not to certify every process node and use an older one as long
as possible.

The automotive industry has seen an increasing use of electronic components,
not only to substitute for more expensive and less reliable mechanical counter-
parts, but in an effort to obtain higher performance, more efficient, and safer
vehicles such as through the use of ABS for braking and ESC for the prevention
of skidding, which will be mandatory by 2011 according to European Union (EU)
legislation [57]. This trend is set to continue in the future with research into so
called “x-by-wire” systems such as steer-by-wire and brake-by-wire where there is
no longer a mechanical connection between the driver’s controls and the system
under control. A related trend is that of consolidation throughout the vehicle of
electronic devices to reduce overall costs, whereby functionality from separate
chips is conflated. An important development to help manage the growing
electric and electronic complexity is Automotive Open System Architecture (AU-
TOSAR) [58] — a standardised automotive software architecture. The use of
hybrid vehicles requires more complex engine control software, which will require
higher performance processors. The increasing use of electronic systems and
consolidation of those will lead to more complex SoCs and therefore larger and
more complex IP interconnects.

27

3.2.3 Storage Networking

The storage networking market refers to the set of technologies that allow
computers, such as servers, to access high capacity shared storage across a
network, as apposed to storage directly attached to a computer. A Storage
Area Network (SAN) is the most common remote storage architecture for large
corporations and data centres. It comprises the network itself which is made
up of switches, routers, and hubs and the computer and storage systems at the
periphery. The devices within the network will incorporate a control processor,
such as a PowerPC, and application specific hardware for the data path because
throughput must be maximised. The network itself will either be Fibre Channel

— can run on both twisted pair copper wire and fibre-optic cabling — or gigabit
Ethernet. The storage system incorporates hundreds of Intel x86 or PowerPC
processors that manage the transfer of data between the network and the storage
array, i.e. hard disks, typically Redundant Array of Independent Disks (RAID)
based, or tape drives. ARM IP is found in the network interface cards of the
computer servers and storage servers, within the switches that connect the
storage server to the storage array, and within the hard disks.

Storage network systems tend to lag a node behind the latest manufacturing
processes available for SoCs because some elements such as the network interface
cards contain analogue electronics for the optical I/O which does not scale easily,
some devices incorporate a lot of IP which takes a significant amount of effort to
design and verify, and the profit margins are high enough that the incentive to
cut costs through scaling is not as strong as it is for companies such as Intel or
AMD.

Most of the drive to increasing complexity is occurring at the periphery
of the network. For instance, the network interface supports more protocols
and there is convergence of protocols, the main one being Fibre Channel over
Ethernet — an encapsulation of Fibre Channel frames over Ethernet networks.
Moreover, the continual growth in storage capacity drives more complex storage
switches and more complex and numerous processors for the software which
manages data transferred between the network and storage array. The growth in
complexity to increase performance will again result in larger and more complex
IP interconnects.

Although slowing, the drive to continue shrinking manufacturing geometries
has not diminished, and neither has the vigour of the semiconductor industry to
produce higher performance and more functionality to remain competitive. The
storage networking market is near the forefront of technology scaling and has seen
growth in storage capacity, compute performance, and supported protocols. The
automotive industry will face the challenges of scaling later and are consolidating
an increasing amount of electronics. Both shrinking and increasing complexity
for each market segment will increase the number of transistors susceptible to
transient faults and potentially adversely impact the reliability of a device.

3.3 Markets

Set against the trends of reducing feature size and rising complexity, the following
section will outline some background information on each target market and why
both are concerned about reliability. This will include examples of important

28

customers in contact with ARM who are developing products due for release
within the next couple of years that specifically require techniques to detect and
correct errors on their AXI bus.

3.3.1 Automotive

According to market analysts, automotive semiconductor sales peaked in 2007
at $20 billion, but fell in 2009 to $15.8 billion1 and are forecast to rise 16% by
the end of 2010 to $18.4 billion [60]. Automotive semiconductor revenue tracks
light vehicle production, which from the same source peaked in 2007 at around
67 million units, but fell to 54 million in 2009. Based on growth in vehicle sales
from India, Brazil, and China, the authors estimate automotive semiconductor
revenue to reach $35 billion by 2017. From the earliest year that they present
data (1997), the compound annual growth rate of automotive semiconductor
revenue has been 5.9%, while it is 1.88% for light vehicle production2, which
indicates the increased use of electronics.

From this and other data we can gather some clues as to the cost of electronics
in automobiles. A crude estimate would be to divide automotive semiconductor
sales by light vehicle production, which from the previous source for 2009 would
be $300 per unit3. Gartner [61], another market research company, report that
the power electronics module controller which manages the transfer of electric
power to the motor to be worth about $400 of semiconductor electronics, however,
the cost of the vehicle is not given to put this in context. On top of this $400,
there would be the cost of the rest of the motor control, the safety systems, and
infotainment. Gartner [62] provide further clues from estimate of the breakdown
of automotive semiconductor revenue by end application equipment: 18% of
revenue on airbag and ABS modules, 14% on engine control electronics, and 20%
on satellite navigation.

Although it is difficult to acquire information on the proportion of revenue
that ARM attributes to the automotive and storage networking markets, from
the figures in Section 3.1 it will not be a major part of overall revenue. However,
it is expected to increase and growth in non-mobile markets is being actively
pursued. This works seeks to accelerate the growth in market share and revenue
in automotive applications; chassis systems in particular.

The most important requirement for ARM’s automotive customers is safety
because the failure of their systems can result in injury or death, repair costs,
legal action, and the damaging publicity. A recent example is from Toyota, where
two problems surfaced this year: one with the ABS in which a software upgrade
was needed and the other was a “stuck” accelerator pedal. Toyota announced
that the former problem will result in around 360 000 cars to be recalled in the
US, UK, and Japan alone [63]. The company estimate that it will loose about
$2 billion on warranty expenses and lost future sales, but this does not include
potential litigation expenses [64]. For comparison, Toyota’s net income for the
financial year ending 2010 was $2.5 billion [65].

Safety is difficult for end users to measure and compare when purchasing

1For comparison, total worldwide semiconductor revenue reached $226 billion in 2009, down
about 10% from 2008 [59].

2These figures take the 2009 data to be the average of the 2007 peak value and the 2008
trough.

3Using the short scale where one billion equals 109.

29

an automobile and because of the nature of this property there is an inherent
minimum level expected. The automotive industry has to adhere to international
standards on electronic safety such as IEC61508 and more recently ISO22626,
which is specific to this sector. These standards specify targets for failure rates
that companies have to meet for the different types of safety functions that their
systems implement. In IEC61508, these are called Safety Integrity Levels (SILs)
and there are four of them. The higher the SIL, the lower the acceptable failure
rate. For example, the ABS in a car has to be implemented to SIL 3. SILs are
used to determine what techniques should be used in order to meet the required
failure rate. ARM does not certify its products to these standards, but rather
provides the infrastructure in their IP to enable its partners to develop physical
devices that will have to be certified.

Latency is the most important performance requirement from these customers,
while they are much less sensitive to clock frequency and area overhead. The
electronic safety systems embedded with the automobile, such as those that
control the engine or brakes, are hard real-time systems, which means that they
must complete their tasks within a certain time frame otherwise failure can result.
These systems have a complex schedule of tasks and have to process many events
activated by interrupts, so the hardware needs to minimise the time taken to
react to an interrupt otherwise valuable time for controlling the actuator is lost.

A recent study by Allgemeiner Deutscher Automobil-Club e.V. (ADAC) (the
German equivalent of the The Automobile Association (AA)) found electronics
account for 40% of the breakdowns it attended [66]. Soft errors are one source
of electronic failure among many and automobile manufacturers expect that the
issue be addressed by it’s semiconductor suppliers.

A specific customer request has helped to drive interest in ARM as to the
value of increasing the reliability of the IP interconnect. They require protection
of the data transported on the on-chip bus between the processor and main
memory for their automotive platform, which is to be used for engine control.
The main memory in their system will already have ECC protection and the new
ARM processor to be used will support ECC on the internal Tightly Coupled
Memories (TCMs) and caches. They now require similar ECC protection for the
instructions and data read from and written to main memory by the processor
while it is transported across the on-chip bus interconnect. This customer has
asked ARM to implement the ECC logic in their new processor core to minimise
the extra latency incurred and because a different bus protocol is used. It is
hoped that the additional functionality offered by the product proposed in this
work will strengthen ARM’s case for this customer to switch to AXI. Until then
the development of these features for this new processor core must be aligned
with this work to ensure compatibility.

3.3.2 Storage Networking

Data about the storage networking market is more difficult to ascertain. This
is due to the many different devices that the market encompasses: hard disks,
network switches, and network interface adaptors. It was estimated for 2009 that
the total number of hard disk drives shipped to be around 560 million units and
for total industry revenue to be about $30 billion [67]. By 2013, it is expected
that total shipments will rise to 900 million units and revenue to increase to
$40 billion. Examining enterprise disks specifically, market research shows that

30

24 million units were shipped and produced nearly $3 billion in revenue, which
gives an average selling price of $120 [68]. Enterprise disks account for about
3 to 4% of total hard disk shipments and about 10% of total revenue, which
Gartner forecast to remain constant in the future. Their most likely scenario
from 2009 to 2013 is a compound annual growth rate of 4% for shipments and
3% for revenue. Moving onto enterprise Ethernet switches, it was estimated that
this industry took in about $3 billion in 2009 (a 22% fall from the previous year)
and shipped about 70 million units (a 16% fall) with mid to large companies
making up nearly all of the customer base [69]. Finally, it was calculated that
the SAN switch and adaptor market revenue was about $2 billion in 2009 and is
expected to rise to $6.5 billion in 2014 [70]. Summing the enterprise figures, this
gives about an $8 billion industry, but does not include all appropriate devices.
Although this is less than half of the automotive semiconductor industry, it is
still a valuable market and growth area for ARM: it has seen its market share in
storage grow from 19% in 2007 to 65% in 2009 while its networking market share
has remained constant at 20%. This work seeks to accelerate market share in
the storage networking market, thus it is important to understand the market’s
needs.

Availability and data integrity are very important issues for ARM’s storage
networking customers. Down time can cause the end customer, such as the
financial sector, large sums of money. Availability is the fraction of time that a
computer system is ready to complete work, while data integrity is to ensure that
no bits of information are lost. These properties are used to differentiate between
competitors. Performance, in terms of throughput, is also a major requirement.

In contrast to automotive manufacturers, these customers use semiconductor
processes that are closer to the forefront of SoC technology. Soft errors have
attracted the attention of storage networking companies because there is a
body of research that finds soft errors to be a significant and growing reliability
problem, which will adversely affect the availability and data integrity of their
systems. Since these companies differentiate themselves from competitors on
these metrics, they are interested in mitigating the impact of soft errors.

Several important customers have expressed an interest in adding features
to the interconnect to improve data integrity. For instance, one of the world’s
largest hard disk drive manufacturers is currently engaged with ARM in the
design of their new hard disk controller. This customer requires protection of
the data transported between processor and storage because they are concerned
about soft errors. Since they use ARM’s interconnect fabric, they have requested
ARM to implement this feature. Interest from these large companies provides
credibility of the value in developing a product to improve the reliability of the
IP interconnect.

31

Chapter 4

Soft Errors in Logic

The SER is an important metric for quantifying the reliability of a system. It
allows comparison between different devices and with competitors’ offerings,
which can lead to a more informed choice by a customer and drive improvement in
the device’s reliability. It was envisaged that the SER of current or future ARM
IP — at least the IP which is used by customers who care about reliability — is
measured and would complement information already given on the performance,
power, and area of a product.

Calculating the SER of a chip requires computing the intrinsic error rate
of all elements of a chip — memory, sequential logic, and combinational logic

— and the vulnerability factors for each different element, which reduce the
intrinsic error rate since not all faults produce errors. Historically, the focus has
been on calculating the SER of DRAM and SRAM because they were at the
forefront of technology shrinking, memory composed most of the chip, and an
error in memory is more likely to cause system failure. However, the impact
of soft errors manifested in combinational and sequential logic on the system
failure rate is predicted to become more important than those in memory [17, 2]
because these elements are becoming more susceptible to soft errors and the
failure rate of memory can be reduced several magnitudes with the use of ECCs.
In combinational logic, three phenomena act to mask the SET before realising
an SEU: Logical Masking (LM), Electrical Masking (EM), and Latch-Window
Masking (LWM). The logical masking of a circuit is a function of the type of
gates used, how they are connected, and their input values. The former two
factors are controlled by the design of the component and the logic synthesis
tool, which maps the design to a gate-level representation. Recent work found
that LM had an equal or greater impact than EM and LWM combined on
reducing the SER [71]. The influence of the gate-level design of a circuit on the
logical masking of SETs was explored by performing SFI on different synthesised
adder designs. Considering only LM provides an upper bound on the SER of a
combinatorial circuit. Used in conjunction with other metrics, such as power,
performance, and area, knowledge of the SER would help a designer to weigh
the benefit between choosing a different implementation based on the error rate
or applying a mitigation technique to the existing implementation.

This work makes the following contributions:

• linking measurable features of a gate-level representation of a circuit to

32

the logical masking of soft errors in combinational logic

• identifying that SER of combinational logic may be underestimated if only
a single chain of gates into a storage element is considered and not its
fan-in logic cone

• exploration of the feasibility and value of techniques to measure the SER
for ARM IP

• the development of a gate-level statistical fault injection methodology,
which garnered interest within ARM and we believe is valuable as part of
a future fault analysis methodology

The primary reasons for using adders are: their circuit complexity is a good
balance between simulation time and meaningful analysis; there are many known
different ways of implementing the same function; and that the synthesis tool
can easily generate the different implementations. Thus providing a relatively
inexpensive method of exploring the relationship between circuit design and
LM. The adder has additional relevance because it a crucial unit of a micro-
processor’s pipeline, which is utilised for many operations other than explicit
add instructions, such as in the computation of the address for the next instruc-
tion. Therefore, if the adder were to experience a fault and cause an incorrect
result, the severity would be great. This study used statistical fault injection
by simulation rather than accelerated testing because it benefits from higher
controllability, observability, cost efficiency, and increases confidence by enabling
testing before implementation.

The next section describes the method in which logical masking is measured.
The results are presented in Section 4.2, where we find that the largest difference
in error rate between the 32-bit adder implementations is 3.1× and that the
error rate decreases with higher synthesis frequency1. We also find that across
all adders approximately 1.5 errors are caused on average for every fault and
that nearly 30% of all faults cause more than one error. This is followed by a
discussion on the relation between the circuit topology and logical masking, and
then finally the conclusion.

4.1 Method

The SER of a circuit due to particle strikes can be calculated as [72]:

SER = RPH · α · P (SE) (4.1)

Where RPH is the particle hit rate, α is the fraction of hits that result in
an SET and P (SE) is the probability of that SET becoming a SEU or soft
error. Neutron cross section [14, 73] and burst generation rate [15, 74] are two
commonly used methods to calculate the effective particle hit rate (RPH · α).

It is assumed that every particle hit is effective, i.e. α = 1, which is modelled
as a fault injection. In combinational logic, P (SE) encapsulates the three

1For synchronous digital circuits, the synthesis frequency specifies to the synthesis tool the
maximum delay that all paths of combinatorial gates between registers must meet, such that
the delay of the slowest path is less than the target clock period minus the setup time of the
register. The run frequency of a circuit specifies the frequency of the clock signal fed into the
registers that determines the rate at which they store their next value.

33

Figure 4.1: Model of fault injection on a gate-level circuit. Here, the width of
the injected fault is equal to the run clock period, i.e. 1

frun
.

masking phenomena. To only consider LM, the width of the SET pulse is set to
the same time as the run clock period, i.e. the reciprocal of the run frequency, to
discount LWM and EM is not inherently taken into account in a digital gate-level
simulation (it requires additional modeling).

Faults are injected into a post-synthesised gate-level representation, which
will have a strong correlation with the corresponding physical circuit. The adder
implementation will influence the types of gates selected and the way that they
are connected. The statistical fault injection tool injects the same amount of
faults into each circuit and the location of an injection is uniformly random. This
ensures that we only take into account the logical composition of the circuit.

A non-trivial software tool was created to perform fault injection on gate-
level circuits, detect errors, and store the results. In a Verilog testbench the
synthesised circuit is instantiated twice, one is the golden reference design and
the other is subjected to fault injection. State elements in each circuit are
compared to detect mismatches, i.e. errors in the circuit under injection. This
software framework is written in the C programming language and interacts
with a state-of-the-art Verilog simulator using the IEEE standardised Verilog
Procedural Interface (VPI). The framework exposes a number of functions that
can be called from the Verilog testbench to setup and control the fault injection.
A fault is modelled as shown in Figure 4.1 by selecting the output net of the
gate or register of the chosen target, inverting its value and holding it for the
specified duration before releasing it. Faults are not injected on input wires,
including the clock, because this would mean the fault was generated from an
element outside the circuit.

A script was created to synthesise a given circuit and generate a file containing
all potential target elements, which the software tool reads in. Another couple
of scripts run the fault injection simulation and parse the error log report to
store it in a database which allows quick and easy analysis of the results.

The input values have a uniform random distribution and change every
clock cycle, which serves to discount its influence on the error rate. Each adder

34

implementation completes the operation in one clock period. The system waits
for long enough after a fault injection before performing another to ensure that
the effects of a fault do not overlap. The software tool was designed to be as
generic as feasible so that it can be used on any gate-level circuit, which allows
it to be used by others within the company. The tool amounts to about twelve
hundred source lines of C code and the scripts amount to about a thousand lines
of source code. The software was tested by scheduling a number of faults at both
a random and predetermined time and location, then examining debug messages
and all relevant signals in the waveform output from the Verilog simulator.

Logical masking will be measured in terms of Incorrect Results (IRs), which
is defined as the number of wrong results from the addition, no matter how
many output bits are in error, i.e. if a fault corrupted three output bits, then
this is counted as one incorrect result. The IR rate is normalised by the number
of target gates, not area, because an injection site is randomly chosen from the
set of gates rather than being influenced by sensitive area. Of course, α will be
proportionate to sensitive area, but this work only analyses the effect of logical
masking on P (SE).

The adder implementations are created by Synopsys’s Design Compiler
synthesis tool with a TSMC 130 nm process. Using the Synopsys Design
Ware IP Library, Design Compiler is forced to select an implementation during
synthesis. The following seven adder implementations were compared:

• Ripple-carry (rpl)

• Carry-look-ahead (cla)

• Fast carry-look-ahead (clf)

• Brent-Kung (bk)

• Conditional sum (csm)

• Ripple-carry-select (rpcs)

• Delay-optimised flexible parallel-prefix (pparch)

4.2 Results

The results for the adders are based upon 100 000 samples, so that with a
confidence level of 99%, this gives an estimation error of 0.816%. The results
show the rate of errors that appear at the clock cycle immediately following
the one in which the fault was injected because this is when the result would
be forwarded onto the next stage in processing. Since the time at which the
fault is injected is random and the width of the fault is 1

frun
, a small number

of errors show up in the next clock cycle. All the circuits within this section
were synthesised at a frequency of 100 MHz. Later, we will analyse the effect of
synthesis frequency on the error rate.

Figure 4.2 shows the variation of logical masking with each adder implementa-
tion. They have been sorted in descending order by the number of incorrect results
per gate from left to right and have been normalised to ‘pparch’, i.e.‘pparch’
has the most number of wrong answers while ‘csm’ has the least. There is a
3.1× difference in the number of incorrect results per gate between the largest

35

Table 4.1: Size and error rates for each 32-bit adder implementation. Impl =
Implementation; Area in synthesis units; MFO = Mean Fan-out; MPL = Mean
Path Length.

Impl Area Gates MFO MPL IR (%) IR (%)/Gate

pparch 1249 160 1.39 23.96 88.36 0.55
rpl 1467 192 1.32 23.96 77.67 0.40
bk 1562 235 1.60 14.31 81.06 0.34
clf 1626 246 1.67 13.97 81.26 0.33

rpcs 1669 224 1.42 20.16 73.46 0.33
cla 1702 268 1.64 14.62 72.68 0.27
csm 3166 345 1.99 7.19 60.98 0.18

Table 4.2: Statistics on the errors per fault for each adder implementation.
* Mean errors per fault. ** Percentage of faults that cause more than one error.

Impl Mean EPF* > 1**

pparch 1.67 35%
rpl 1.54 28%
bk 1.53 28%
clf 1.50 26%

rpcs 1.51 26%
cla 1.51 29%
csm 1.39 21%

Mean 1.52 28%

Figure 4.2: Incorrect result error rate per gate for each 32-bit adder implementa-
tion (normalised to ’pparch’)

36

(a) Correlation between the product of the mean (shortest) path length and
mean fan-out with the incorrect results for each 32-bit adder

(b) Shortest path length distribution for ’pparch’ synthesised at different
frequencies

(c) Variation in incorrect results with synthesis and run frequency for the
‘pparch’ adder

Figure 4.3: Data from SFI
37

implementation, ‘csm’, and the smallest ‘pparch’. The largest difference between
the remaining implementations is about half of that. From Table 4.1, ‘csm’ is
about 2.5× larger than ‘pparch’ (because it is composed mostly of multiplexers).

The mean number of errors that result from each fault is given in Table 4.2
for each adder implementation. From this data we can see that every fault causes
approximately 1.5 errors across all adders. Moreover, nearly 30% of all faults
cause more than one error. This data is important because it shows that the
combinational logic SER will be higher than some previous research estimates if
that work only takes into account single chains of gates leading into flip-flops
or latches and does not consider the impact of the fan-out logic cone. This is
somewhat analogous to MBUs that occur in memory in that a single soft error
in combinational logic can cause multi-bit upsets in sequential logic.

4.3 Discussion

Across all seven 32-bit adder circuits logical masking eliminates between 12% and
40% of all faults injected. These results show that LM accounts for a significant
reduction in the SER but there is a wide range in impact. We can see from
Table 4.1 that as the size, both area and gate count, of the adder implementation
increases the IR rate decreases. However, normalising the IRs by the gate count
reveals that there are other factors that influence the IR rate since if it were only
number of gates that mattered, then it would be expected that the normalised
IR rates would be similar.

Logical masking will be influenced by signal propagation probabilities (i.e.
if a fault appears at the input of a gate then how likely is it to change the
value of the output) and input values. We explore the influence that a circuit’s
complexity or composition may have on its logical masking by viewing a circuit as
a directed acyclic graph where the gates are the vertexes and the interconnecting
wires are edges. Then we can characterise the composition of a circuit using
common measures of graph topology, such as the degree distribution and mean
path length. In circuit terms, the degree distribution corresponds to the fan-in
and fan-out distributions while we define the mean path length as the shortest
distance (in terms of number of gates) between a target cell and an output
register.

The fan-in distribution of a circuit will show the number of inputs a gate
is likely to have. As the gates of all circuits under consideration are nearly all
of two inputs this information does not help to reveal a relation with logical
masking.

The majority, about 70%, of the gates in the most resilient circuit, ‘csm’, have
a fan-out greater than or equal to two, while for the rest of the implementations
the majority of gates have a fan-out of one. Counter intuitively, this would
suggest that an increase in the mean fan-out of a circuit would give a lower error
rate. To explain this, we need to look at the association of path length with the
error rate.

Figure 4.3a shows that there is a fairly strong positive correlation between
the product of mean fan-out and mean path length with the error rate. This
would suggest that a lower mean fan-out and shorter distances between gates
and outputs will result in higher masking. So although ‘csm’ has a higher mean
fan-out than all other implementations, its effect on the error rate is outweighed

38

by its low mean path length. Convergence of paths is likely to have an impact
and is naturally taken into account because we are using circuit simulation,
however it is not considered in the analysis.

At a synthesised frequency, fsynth, of 100 MHz, the distribution of path
lengths is rather flat and wide for all implementations except ‘csm’. To meet the
target fsynth the synthesis tool only needs to ensure that the slowest path — the
path with the greatest delay — meets the target maximum delay. At a synthesis
frequency much lower that the maximum possible for the given circuit, the tool
does not have to spend much effort optimising the paths for timing, which results
in a wide distribution of path lengths. As the frequency at which the adders
are synthesised is increased up until the maximum permissible more paths will
have to be optimised to meet the target delay, therefore the distribution of
path lengths will narrow and the mean path length reduces to meet the target
delay. Figure 4.3b shows this for the implementation with the highest error rate,
‘pparch’. Since the mean path length reduces with increasing fsynth the error
rate decreases and the largest difference in error rate decreases too, such that
at 900 MHz the difference between ‘csm’ and ‘pparch’ is 2.1×. The solid line
in Figure 4.3c shows this change in error rate with synthesis frequency for the
‘pparch’ implementation with the run frequency, frun, equal to fsynth.

If we consider that the objectives of a designer within this context are to
maximise the performance of the circuit, minimise the area, and minimise the
soft error rate, then the designer can control these constraints by varying fsynth
and frun, which reveals the following dependencies:

1. increasing fsynth increases the potential performance and lowers the mean
path length and thus LM, but increases the area (which will make the
circuit more likely to be hit by a particle)

2. increasing frun improves the performance, but may decrease the latch-
window masking effect, which will increase the error rate

If we synthesise ‘pparch’ at the maximum frequency of 900 MHz, but run
it at various lower frequencies, we find that the error rate is less than the
circuits where fsynth = frun (compare both lines in Figure 4.3c) due to the
advantageous changes in circuit composition made by the synthesis tool at the
higher speed. This benefit diminishes as frun approaches fsynth. It was expected
that the IR rate should decrease as frun increases due to a rise in LWM. When
frun � fsynth the width of the injected fault pulse will be significantly greater
than the maximum delay between input and output registers such that nearly
all fault injections located anywhere in the circuit and at any time during the
clock period will be latched at the output register. As frun approaches fsynth
the delay through the circuit becomes comparable to the fault width, so the
location and timing of the fault should have a greater influence on the probability
of an error, that is LWM should increase. We can see from the dashed line in
Figure 4.3c that the middle data point does not follow from this reasoning and
thus further analysis of the impact of LWM is required.

It may be of benefit to a designer targeting a lower performance to run the
circuit at a lower speed than that synthesised for, but at the cost of an increase
in sensitive area. The overall gain will depend on the corresponding increase
in the effective particle hit rate. This will also be important to designs that

39

employ dynamic frequency scaling as the variation in run frequency will impact
the logical masking of errors.

4.4 Related Work

Approaches to measuring the SER in combinational logic aim to determine the
factors α and P (SE) (Equation 4.1) for different circuits and technology nodes.
The approaches can be categorised into dynamic and static methods, although
some use a mixture of both.

Dynamic methods include SFI using circuit simulation tools such as SPICE
or gate-level simulation and acceleration irradiation testing. Liden et al. [75]
used heavy ions to induce SETs in a custom circuit using 1 µm technology to
measure the proportion that cause soft errors, which was estimated to be between
0.7 × 10−3 and 2 × 10−3. The circuit was of low complexity with about 2 400
transistors and 40 flip-flops and was clocked at 5 MHz. This testing constituted
early work into the effect of EM and LWM and demonstrates that on an old
process the probability was low, although not negligible. Using a laser and
heavy ion source to perform accelerated testing of two inverter chains in 1 µm
process at 5 V, electrical masking was observed to have a noticeable effect on the
output error rate even in a circuit designed for minimum pulse attenuation [76].
Although not large enough to merit the calculation of the masking factor, the
authors claim that the attenuation may have a significant effect when “slower”
gates are used such as four-input NORs. In a separate paper, the same authors
investigated the variation of LWM with clock frequency to find that the error rate
in sequential logic was independent of frequency — although this was only tested
up to 1 MHz — but was linearly dependent in combinational logic, which was
tested up to 20 MHz [77]. The test circuit was a string of sixteen inverters that
has a gate length of 0.7µm. In another investigation on the scaling of LWM with
clock frequency, Gadlage et al. [78] claim to corroborate the work of Buchner et al.
[77]. This was conducted using two test chips manufactured on 180 nm CMOS
irradiated with heavy ions to mimic alpha particles and protons to approximate
neutrons and with the clock frequency varied from 1 MHz to 300 MHz. In the
former case with alpha particles, there was a 10× increase in the cross-section
of combinatorial logic for an equivalent rise in frequency. At the maximum
frequency, the cross-section of the sequential logic was approximately an order
of magnitude greater than combinatorial logic. Using linear extrapolation, the
authors estimate the frequency cross-over point, i.e. where the cross-sections
meet, to be 800 MHz. In the latter case for proton testing, they found the
same relationship for sequential logic, but did not observe enough errors from
combinatorial logic to be statistically significant. While there is convincing
evidence that the SER of combinatorial logic increases dramatically with clock
frequency, the evidence for sequential logic hides some important details, for
instance, Buchner et al. only tested up to 1 MHz after which the error rate tailed
off, but claimed the test chip was not well suited and Gadlage et al. performed
their tests with the clock to the flip-flops turned off, thus only measuring the
static error rate.

While dynamic techniques are used to calculate both α and P (SE), static
methods predominately focus on P (SE), taking into account all three constituent
masking factors or concentrating on a subset. Rao et al. [79] describe an algorithm

40

that propagates descriptions of current pulses across a circuit to model SETs
that takes into account all masking. Their algorithm was tested on 22 circuits
from the MCNC [80] and ISCAS-85 [81] benchmarks2 and the SER was averaged
over 1 000 random inputs vectors. They report that the SER ranged from
1.4 × 10−6FIT for a small circuit with 222 gates and 1 output to 4.6 × 10−4FIT
for a 32x32 multiplier with approximately 25 500 gates and 64 outputs. Their
work found that the number of outputs had a more significant effect than the
number of gates, e.g. a circuit with 3 379 gates and 224 outputs has an SER
comparable to that multiplier with 4.53 × 10−4FIT. A major benefit of static
techniques is the short run-times; their algorithm displays linear run-time with
circuit size. To illustrate, the afore mentioned 32x32 multiplier took 200 seconds
to calculate the SER over the 1 000 inputs values, however, the SFI framework
developed in this work took several days on the same size multiplier. The authors
claim that their method of characterising the shape of the current pulse using a
Weibull probability density function is more accurate than a single parameter
pulse width or simple trapezoidal shape. Although after traversing several gates
a trapezoidal would be accurate, the authors claim that the accuracy of the
initial strike requires the resolution their method provides. The large number
of pulse shapes that result from their analysis of an entire cell library across a
range of incident particle energies is reduced to a tractable amount by selecting
some representative samples.

Another static probabilistic method is proposed by Miskov-Zivanov and
Marculescu [82] who use Binary Decision Diagrams (BDDs) and Algebraic
Decision Diagrams (ADDs) to perform an exhaustive symbolic analysis that
avoids the repeated execution over a range of inputs values and the extensive
cell library characterisation of Rao et al. [79]. Based on given input values
probabilities, pulse duration, and pulse amplitude their framework can calculate
the probability of error for each output, the impact of individual gates, and
overall circuit error rate. The authors claim that the accuracy of their method
is improved through joint treatment of the three masking effects, in contrast to
other work that treats the phenomena independently and find that a separate
treatment gives a measurement error between 4.5% to 40% (averaged across
different input value distributions and for a pulse width of 80 to 125 ps, i.e. 33%
to 50% of the clock period). The execution time is in the same order as Rao et al.
In agreement with the results presented here, Miskov-Zivanov and Marculescu
find that the output error probability decreases with greater circuit complexity
and attribute this to more significant electrical and logical masking. From the
testing of 22 different circuits from the same benchmarks as above, the authors
report that the output error probability “can vary from less than 0.1%, for large
circuits [560 gates and 8 outputs] and short glitches (20% of cycle time), to about
30% for very small circuits [45 gates and 4 outputs] and long enough glitches
(50% of cycle time)”. Both Rao et al. and Miskov-Zivanov and Marculescu have
two test circuits in common, however the they do not provide enough parameters
required to compare their SERs or derive P (SE) to compare the level of masking
to our results.

Miskov-Zivanov and Marculescu’s work is further developed to include se-
quential logic [83] and to consider Multiple Event Transients (METs) [84], which
occur when a single particle strike causes an SET in more than one combinatorial

2A number of circuits whose composition has been described to allow comparison

41

gate.
Some examples of work that use a combination of dynamic and static methods

include Massengill et al. [85] who present an analytical technique that determines
the shape of the current glitch based on collected charge and dynamic simulation
of a gate-level representation of a circuit to measure the masking across input
values. This is used to calculate the error cross-section of a circuit, which is the
fraction of the circuit area that upon a particle strike will cause an observable
error. This metric is given instead of the SER to allow comparison at different
altitudes and locations, which affects the particle fluence. The authors tested
their tool on a 4-bit bit-slice microprocessor circuit synthesised using a 250 nm
technology library, whose layout area vulnerable to soft errors (the drain areas
of the transistors) was determined to be about 8% of the total combinatorial
layout area (6 500µm2). Varying the collected charge up to 1 pC, the error
cross-section peaked at about 0.4 pC to be between 0.08% and 0.12% of the total
combinatorial layout area, depending on the processor opcodes ran. If we use a
neutron particle flux at sea level of 56.5m−2s−1 [38], then the peak SER of the
processor is 0.0012 × 6500 × 56.5 ≈ 440 FIT. Nieuwland et al. [86] propose a
method that uses simulations to calculate Qcrit for different gates and different
input values (they found that the failure rate of a NAND-2 gate varies up to
12× with input combination) and then input this into an analytical model to
support the SER reduction that their mitigation technique provides. However,
they do not take LWM into account and do not show results for comparison.
A similar concept, but accompanied by more extensive analysis is carried out
by Ramanarayanan et al. [87], who describe a methodology that pre-characterises
transistors for SET sensitivity at the device level and then feeds that into an
analytical method at the gate-level that calculates the SER of a comb circuit
taking into all masking. Across five small circuits (less than ten gates) and
eight larger circuits (92 to 1 200 gates), the level of masking ranged from 86% to
99.9%.

Assessing the relative importance of the masking effects, Miskov-Zivanov
and Marculescu [71] found that in three of the four circuits tested the LM had
approximately the same effect as EM, while the remaining circuit showed a 3.5×
difference. The error probability due to only LM varied between 26% and 88%
across three different input value distributions for two circuits tested. Varying
the setup and hold times of the output flip-flops from 6 to 16 ps (2.4% to 6.4%
of the clock period), the LWM did not significantly affect the error probability
for three of the four circuits; for the other it doubles. Using a probabilistic
method to purely consider LM, Kim et al. [88] find that for the carry output of
a full-adder the relative probability of error varied up to nearly 3× for all input
values, however, for an even smaller circuit (two inputs, one output, three gates)
this was nearly 220×. This could suggest that the variation with input values
decreases with greater circuit complexity, although the difference in complexity
was small.

The greater complexity of some of the static methods outlined here creates
a barrier for their adoption, while industry seems to prefer the credibility that
accelerated testing affords. SFI is essentially simulated accelerated testing that
offers a trade-off between these two. The methodology developed would need to
incorporate models for the other masking phenomena and have some performance
improvements to be able to comprehensively measure the SER of combinational
logic circuits more complex than the adders used in this work.

42

4.5 Conclusion

It was found that the implementation of the circuit has a significant impact
on logical masking in combinational logic as the largest difference between the
32-bit adders was 3.1×. Logical masking is only one component that determines
whether an SET becomes a soft error in combinational logic and so presents the
theoretical worst case. The sensitive area, which is used to calculate the effective
particle hit rate, must also be taken into consideration by the designer when
choosing an implementation based on the SER.

Measures of the circuit’s topology were explored to relate its composition to
logical masking. The data suggests that a lower mean path length and lower
mean fan-out results in a higher amount of logical masking. As highlighted in
the case of the ‘csm’ implementation, which had the highest masking, the effect
of a lower mean path length dominates an increase in mean fan-out. It was found
that increasing the synthesis frequency results in a lower mean path length and
therefore lower error rate.

Additionally, we find that nearly 30% of faults injected cause more than
one error and on average about 1.5 errors per fault. Research that does not
consider the fan-out of combinational logic will considerably underestimate its
SER relative to sequential logic and memory cells.

The logical masking, and thus the soft error rate, would help a designer to
gauge the benefit between choosing a different implementation or applying a
mitigation technique to the existing one, such as altering the composition of the
circuit. It is worth noting that it may be possible to lower the SER by using
Dual Modular Redundancy (DMR) or Triple Modular Redundancy (TMR) on a
smaller adder which has a lower LM rate rather than using a larger adder with a
higher LM rate. Using SFI is a time consuming method to calculate the logical
masking, but using the properties of the circuit structure identified here and
possibly others a static analysis method could be developed, which would be
much quicker than fault simulation.

We have developed a methodology to estimate the logical masking for any
digital circuit and applied it to a non-trivial and industrially relevant issue of
logical masking variation and its causes, the results of which was published in
a highly relevant and leading workshop on soft errors in logic (SELSE). This a
first step in developing a comprehensive methodology for measuring the SER of
any digital IP; the next steps would be to account for the other combinatorial
masking, sequential logic, and memory. Doing so could use some of the masking
models mentioned in the previous section as well as other known modelling
frameworks, but would require additional resources to complete. Based upon
the knowledge and capabilities gained from this work and from interaction with
relevant people in the company, it was proposed and agreed that developing a
comprehensive method for measuring the SER of ARM IP did not present a
high enough return on investment for ARM for a number of reasons:

• ARM does not produce the hardware required to accurately measure the
SER of its IP, such as a processor, using accelerated testing so it would
be costly to assign the required labour for a significant period of time, to
purchase a small batch of the chips, and access the testing facilities. There
is also a lack of experience to design the necessary experiments.

• It would be difficult to test ARM IP using existing products from its

43

partners because there would not be adequate observability. Additionally,
existing products contain older ARM products, but there would be more
incentive for ARM to quantify the reliability of new IP to encourage uptake.

• Although modelling is not as valuable, it would still require significant
time and effort to develop a comprehensive methodology that encompassed
the many parameters of the process, memory, processor, and layout, which
this work represents a part of.

• Ultimately, there was not a strong enough requirement from those customers
who care about reliability that provides the financial incentive to do so.

Building upon the knowledge and capabilities gained, the subsequent research
does present a high enough return as validated by significant customer interest in
a product derived from the work. As described in the next chapter, the research
continued to examine transient faults in combinatorial logic, but focused onto an
investigation of the fault tolerance of a widespread ARM product: the AMBA
on-chip bus communications system.

44

Chapter 5

The Impact of an
Unreliable IP Interconnect

The work in this chapter continues to look at the impact of soft errors in logic,
but focuses on an important ARM product, the AMBA IP interconnect, to
create more commercial value for the company and relevance for the EngD. The
AMBA IP interconnect is important to ARM because it provides leverage to
get customers to use its other IP in conjunction, including processors and other
peripherals, and it is present in the vast majority of SoCs in the embedded
devices that ARM targets. It occupies a significant portion of the logic area,
comparable to that of ARM’s embedded series of processors, and is set to grow
with the increasingly complex systems that it inhabits. As will be shown, the
consequences of faults on the IP interconnect can be severe and warrant enough
risk to be of a concern to those customers who care about dependability. This
work seeks to examine the effect of decreasing reliability on current or future
ARM interconnects and low-cost mitigation schemes to, at least, maintain levels
of reliability.

This work makes the following contributions:

• demonstrates that the risk of faults on the IP interconnect is a concern
because the impact on the reliability of the SoC can be severe

• argues that end-to-end EDAC codes cannot be employed for certain AXI
signals and therefore other techniques are required

• development of several novel techniques that detect or correct faults arising
on the logic path of certain AXI signals that would escape detection by
end-to-end EDAC

• composition of a proposal for a product that increases the fault tolerance
of the AXI bus matrix, which was successfully transferred out of the R&D
department and could be commercially available in two years

This chapter is arranged as follows: Section 5.1 gives a technical overview of
ARM’s IP interconnect technology; Section 5.2 provides an explanation of why
the fault tolerance of the interconnect is important; and Section 5.3 goes in to
detail on why it is not straightforward to employ known techniques such as ECC
and presents the features of the proposed product.

45

5.1 Background

ARM Fabric IP is a portfolio of products that consists of on-chip communication
interconnects1, memory controllers, Direct Memory Access (DMA) controllers,
cache and interrupt controllers, and the software used to design and verify a SoC
with the afore mentioned hardware IP. AMBA is an open on-chip communication
standard, currently in its third version, that is an umbrella for four interface
protocols: AXI, Advanced High-performance Bus (AHB), Advanced Peripheral
Bus (APB), and Advanced Trace Bus (ATB). The ATB interface specification
allows data to be traced for debug purposes. APB is a low bandwidth interface
primarily designed to configure registers in a peripheral. AXI and AHB are
protocols designed to allow on-chip components, such as a processor and memory
controller, to communicate with each other. AXI is newer, more complex, and
supports higher data traffic throughput than AHB. Since the AMBA standard
is publicly available, it is possible for other companies to implement their own
IP that adheres to it. ARM implements the AMBA 3 standard via it’s NIC-
301 product, which allows for a component that uses any of the four interface
protocols to communicate with any other. ARM’s AMBA Designer software tool
provides a Graphical User Interface (GUI) to configure, connect, and generate
the Verilog Register Transfer Level (RTL) for all Fabric IP.

We target the AXI protocol and it’s implementation, NIC-301, because it is
designed to replace AHB and so ARM wants to migrate customers to the newer
protocol. AXI is described briefly in the next section.

5.1.1 Overview of the AMBA AXI Protocol

The AXI bus protocol is burst based and has five independent unidirectional
channels – three for writing and two for reading – that carry the address/control
and data phases. Every transaction has address and control information on
the address channel (AW for the write channel and AR for the read channel)
that describes the nature of the data to be transferred. The data is transferred
between master and slave using a write data channel (W) to the slave or a read
data channel (R) to the master. In write transactions, in which all the data flows
from the master to the slave, the AXI protocol has an additional write response
channel (B) to allow the slave to signal to the master the completion of the write
transaction or an error. A burst is made up of a number of transfers, which is a
unit of data whose width is specified on the AW or AR channel. See Table 5.2
for a description of signals on each channel. The signals have been grouped into
types as they may feature on more than one channel, e.g. the signal type is
prefixed with the channel abbreviation so ID features on all channels: AWID,
ARID, WID, BID, and RID. Those signals types with a * suffix are referred to
as the “control signals”.

AXI uses a two wire handshake, using the VALID and READY signals, to
exchange information between the sender and receiver. VALID is used to indicate
when valid data or control information is available and the destination uses the
READY signal to indicate when it can accept the data. Both the read data
channel and the write data channel also include a LAST signal to indicate when
the transfer of the final data item within a transaction takes place.

1“interconnect” is used to refer to the component that allows IP blocks to communicate,
not to metal wires

46

M0

MI

SI0 SI1

MI0 MI1

A
WWA
RRB

M1

MI

S0

SI

S1

SI

AR AWWRB

F

I

F

O

WRB

F

I

F

O

TC LK

QF AB

TC LK

QF AB

AD

CB

AD

CB

AR AW

SI

MI

NIC-301 Bus Matrix

Figure 5.1: A block diagram of the NIC-301 bus matrix with two AXI masters
(M0 and M1) and two AXI slaves (S0 and S1) connected to it. MI = Master
Interface. SI = Slave Interface. Top right is a block diagram of a SI. Bottom
right is a block diagram of a MI. Certain logic such as multiplexers are not shown
for simplicity. See Table 5.1 for an explanation of the abbreviations used.

The standard also features a sideband signal, USER, up to 32 bits on each
channel that allows the SoC designer to extend the protocol to carry implemen-
tation specific information, such as parity or ECC bits.

5.1.2 Inside the NIC-301 Bus Matrix

The NIC-301, commonly referred to as a bus matrix, is an ARM product that
allows components using different AMBA interface protocols to communicate
with each other. The left-hand block diagram in Figure 5.1 gives an example
of two masters and two slaves connected to the NIC-301 bus matrix. A master
could be another ARM product such as a Central Processing Unit (CPU) or
Direct Memory Access Controller (DMAC), while a slave could be a customer’s
memory controller or a peripheral like a Universal Serial Bus (USB) controller.
These masters or slaves need to implement one of the AMBA protocols — shown
in the figure as a master interface (MI) or a slave interface (SI) — and can be
verified against the available AMBA compliance tests. These protocol interfaces
then are attached to the opposite interface on the bus matrix, for example a
Master Interface (MI) connects to a Slave Interface (SI). The two diagrams on
the right-hand side of the same figure give the main sub-components of the SI,
top, and MI, bottom, of the bus matrix. Table 5.1 explains the abbreviations
used and the function of each sub-component. It is important to get an overview
of the construction of the bus matrix because it helps to understand some of the
mitigation techniques described in Section 5.5.

47

Table 5.1: Explanation of the components in Figure 5.1

Abbreviation Name Function

MI Master
Interface

The logic that implements the master side of
the protocol used. Connects to a SI.

SI Slave Interface The logic that implements the slave side of the
protocol used. Connects to a MI.

AD Address
Decoder

The logic that maps the input address to an
output destination. The memory map is
specified during design time.

CB Content
addressable
Buffer

A special memory unit that is used to store
information about a transaction so that the
protocol rules are adhered to.

FIFO First-In
First-Out

A queue that holds the write data when needed.

TC Transaction
Counter

Counts the transfers in a transaction which is
used to control LK, QF, and the handshake.

LK LocK logic Implements the functionality of the AXI
protocol that allows atomic access to a slave.

QF Quality-of-
service
Filter

Allows some basic management of
communication flow.

AB Arbiter The logic that controls which master can access
which slave.

5.1.3 The Inherent Fault Tolerance of the AXI Bus Matrix

Before a transient fault progresses to an error it has to avoid being masked
by the bus logic – either logically, electrically, or from the latch-window effect.
Logical masking takes effect in various ways: the fault has to occur when the
bus is being utilised, it has to occur at certain locations in the logic, and at
certain times during a transaction. For instance, an erroneous AWLEN value
received by a slave occurs only when there is a AW transaction in progress,
i.e. AWVALID from the master is high and AWREADY from the slave is high,
when a fault has occurred in the logic path of the AWLEN signal, and at such
a place that ensures the glitch reaches the slave during the latching time of a
register. During this window of vulnerability, the fault could cause an error to
change the data value in one of two ways: to an invalid or incorrect value. An
invalid value is not defined as possible or meaningful in the protocol specification,
while an incorrect value is one that is valid but not what the sender intended.
For example, AWBURST is a two bit signal where only three of its values are
meaningful, so an error that results in a change to the unused value would
be invalid. Invalid errors violate the protocol and are normally checked for at
simulation using protocol checks to verify the correctness of the implementation
against the specification. It is also possible to synthesise these protocol checks
into hardware and have them active while the system is running to either catch
errors due to incorrect implementation or for fault tolerance. Alternatively, if
AWLEN were to change from zero to one, then this would still be valid, but
is obviously incorrect and protocol checkers therefore cannot detect this error.

48

Finally, it is possible for a fault to occur on a VALID signal when the bus is not
utilised, but this would only cause unknown data to be sampled if the receiver is
waiting for a transaction, i.e. has READY high.

The inherent logical masking of the protocol and bus matrix further reduces
the chance that a fault will manifest as an error and complicates the calculation
of its probability since the type and pattern of traffic is dependent upon what
components are connected to the bus matrix and how the software utilises the
bus.

5.2 The Effect of Logic Soft Errors on the Inter-
connect

At a high level, the risk that a fault can induce failure is the product of the
frequency or probability of occurrence and the severity of such an event. The
complexity of robustly calculating the absolute SER of electronic devices was
highlighted in the previous chapter. In that work, netlist-level SFI was used to
measure the fault masking to compare the circuits, i.e. if a fault were to happen,
then this data provides the likelihood of it propagating to an output where it is
manifested as an error. Applying the same method to different configurations of
bus matrices would yield how likely errors are and how they were manifested,
which would be used to inform the creation of mitigation techniques. Performing
SFI at the netlist level here was not achievable because the size of netlist is
too large to simulate within a reasonable amount of time, there are numerous
configuration options that affect the design, and the netlist is dependent upon
its placement on a chip and thus on the placement and types of the other IP
blocks present.

Instead, moving to a higher level of abstraction, errors were injected into
the RTL of the bus interconnect, but only on the signals which appear in the
AXI protocol standard, which we shall call protocol-level error injection. This
is error, not fault, injection because it does not concern the implementation as
the input and output signals between the bus interconnect and master or slaves
are directly changed. This method allows a quicker discovery of the impact that
errors originating from the interconnect have on the reliability of the system.

The protocol-level error injection framework was developed using the Spec-
man/e language and software, which allows for a quick way to change the values
of the AXI signals in Verilog during simulation, to monitor signals or events,
and to interpret the results in a waveform of the traced signals. A simple AXI
interconnect system was created and during simulation of standard tests an AXI
input signal to a master or slave was inverted for a clock period to ensure an
incorrect value was registered. Deadlock of the system was assumed if the test
did not complete by its known time length, then on termination the system could
be inspected for other effects of abnormal operation. The analysis shows that
the impact of an error on an AXI signal can be severe, possibly Deadlock (DL),
Memory Corruption (MC), or Undefined Behaviour (UB), which is a classifica-
tion for when failure is dependent on the application. Memory corruption could
cause failure later in time as it depends on how and if the data is subsequently
used. For example, if the data is used to control an actuator in an automobile’s
brake system. Table 5.2 shows the impact for each signal and two examples are

49

explained below.

5.2.1 LEN

The LEN signal specifies the number of transfers (i.e. data chunks) within a
burst. We have to consider the effect of an error changing LEN to a higher value
or a lower value. In the former case, it will cause deadlock because the slave
expects more transfers than the master will send so the slave blocks which causes
the master to block as it is waiting on a write response on the B channel. This
prevents any other master from accessing that slave and thus blocks itself, which
can cause the whole bus to deadlock. In the latter case, the slave uses the LAST
signal to determine how many transfers to consume so it still receives the correct
amount.

5.2.2 VALID

The VALID signal is one part of the two-way handshake, which informs the
receiver that data is available. An error on VALID can cause deadlock if it
transitions from high to low. For example, if the slave has AWREADY high (i.e.
the slave is ready to accept information on the address write channel) and the
master drives valid data, but an error causes the slave to miss AWVALID high
on the following clock cycle then the master thinks there has been a handshake
and de-asserts AWVALID so that the slave never realises there was a transfer.
The master blocks because it does not get a write completion response.

If an error causes a transition on VALID from low to high and the slave is
waiting on a handshake then it will sample garbage from the bus which could
corrupt memory or lead to undefined behaviour.

5.3 Commercialising the Fault Tolerance of AXI

Although the chance of a fault is rare, the previous section has highlighted that
the consequences may be severe, which can be enough of a concern to particular
customers to warrant serious consideration of mitigation. The risk of failure from
these types of faults is set to increase because technology scaling increases the
likelihood of a fault and as other parts of the chip are protected, such as memory
and the CPU, then protecting the bus interconnect will increase, relatively, in
importance.

The number of possible mitigation schemes are vast. They can use temporal,
information, or spatial redundancy and can be developed at many different layers
of abstraction, for example, from circuits to software. Different parts a system can
use different techniques and many different techniques can be employed to cover
the same component. It is common for techniques that improve dependability to
overlap in their coverage as to increase effectiveness. How the solution space is
narrowed and the chance that a set of schemes are implemented into a product
is dependent on factors internal and external to ARM. It is based upon what
ARM provides now and in the future. And it is based on what customers think
that they want and what they expect from ARM. Since most of ARM’s revenue
comes from selling semiconductor IP that are integrated by a customer onto SoC,
a software solution or a change to the semiconductor manufacturing process has

50

Table 5.2: Source: M = Master, S = Slave. Impact: DL = Deadlock, MC =
Memory Corruption, UB = Undefined Behaviour. Those signals types with a *
suffix are referred to as the control signals.

AXI Signal Type On Channel Source Description Impact
ID* All M, S The identification tag for

the master
DL

ADDR AW, AR M The read or write address All
LEN* AW, AR M The number of transfers

within a burst
DL, MC

SIZE* AW, AR M The width of each transfer
in the burst

MC

BURST* AW, AR M Specifies how the address
for each transfer is calcu-
lated

MC

LOCK* AW, AR M Additional information
about the atomic charac-
teristics of the transfer

DL, UB

CACHE* AW, AR M Additional information
about the cache-able
characteristics of the
transfer

UB, MC

PROT* AW, AR M Protection unit informa-
tion for the transaction

UB, MC

VALID* All M, S Whether information is
available from the sender

All

READY* All M, S Indicates that the recipient
is ready to accept the in-
formation

DL

DATA W, R M, S The actual read or write
payload data

MC, UB

STRB* W M Which byte lanes to up-
date in memory

MC

LAST* W, R M, S Indicates the last transfer
within a burst

All

RESP B, R S Indicates the status of the
write or read transaction

UB

51

less chance of adoption by ARM because this is not within the bounds of the
level of abstraction the company is positioned at and so ARM does not have
those capabilities nor do customers expect this from ARM.

The cost-effectiveness of a scheme can be quantified in terms of the decrease
in the FIT rate or increase in the Mean Time Between Failure (MTBF) gained
against the performance, power, and area overhead and the time and resources
needed to implement and verify. This will vary with the level of abstraction at
which the scheme is developed, for example multi-bit error correction of memory
can be implemented in software rather than hardware because it does not require
complex dedicated circuitry. However, performing accelerated irradiation testing
or developing a comprehensive modelling program to quantify the improvement
in reliability was prohibitively expensive for ARM. Instead, using known fault
tolerance techniques like ECC seems to have meant interested customers have
not required this qualification.

The following constraints that narrow the solution space were based upon
information from engineers with experience of ARM Fabric products, mar-
keters experienced with the target customers, and from requirements from those
customers directly. The two target markets outlined previously place different pri-
ority on performance and area requirements. Storage networking customers are
far more concerned about the adverse impact on clock frequency and throughput
than automotive customers, who care more about latency overhead. Additionally,
automotive customers are less sensitive to an increase in area than storage net-
working customers. Although methods were created that avoided extra latency,
the cost of a drop in clock frequency and a rise in area, as detailed later, was
deemed too high that it would not be acceptable for the storage networking mar-
ket. Therefore, after careful analysis of the cost of some competing requirements,
the following constraints apply:

• We will focus on methods that aim to tolerate transient faults, rather than
avoid them because the control of manufacture is outwith ARM’s influence
(e.g. to lower the incidence of alpha particle strikes) and faults due to
neutron strikes cannot be avoided.

• We will only consider online techniques, i.e. techniques that operate on
the device while it is “in the field” because of the nature of the fault source:
soft errors occur in the natural environment during device use and not
only at the time of manufacture.

• We will focus on concurrent online methods, i.e. these methods are active
while the device operates normally rather than having to temporarily
suspend operation for testing to be performed because: it is expensive,
often impractical, and the faults are transient in nature so that their effects
may not be observable in an offline state.

• Hardware rather than software schemes are favoured as they present a
lower barrier for adoption at ARM and its customers.

• Interfaces for software will be required to manage the hardware schemes.

• We cannot change the AMBA standard. Senior management does not
yet consider the problem serious enough compared to the overwhelming
commercial and organisational difficulties involved in changing the AMBA

52

standard (more than fifty companies were part of consultation process for
the latest version of the standard).

• We cannot change the master or slave IP that connects to the bus matrix
because they can come from any other company and we want to minimise
the cost to remain compatible with the AMBA standard. These last two
constraints restrict us to changing the bus matrix that implements the
AXI protocol.

• We naturally want to minimise the frequency, area, and power overhead
of any solution. A common empirical rule in ARM, is that the maximum
overhead for each property should be no more than 20%. A side-effect of
an increase in area is an increase in the probability of a fault.

• The focus should be on information redundant techniques because they
represent a good trade-off between performance and area. The two other
ways of increasing reliability through redundancy are spacial and temporal.
The former employs physical duplication, from the transistor level up to the
bus matrix, and therefore adversely increases area, which has to outweigh
the consequent rise in the probability of a fault. Methods generally come
under DMR, which duplicates the circuit to detect a fault, and TMR,
which uses three instantiations of a circuit and majority voting to detect
two faults or correct one. To avoid the respective 100% and 200% increase
in area, only selective components can be duplicated based on sensitivity.
The interconnect is not amenable to sensitivity analysis because of the
wide variability in the manufactured circuity due to many configurable
options and dependence on placement. Duplicating the logic between
certain masters and slaves is rejected because it presents an open choice to
customers to determine what traffic is more critical (they may be unable
to make this choice) and a fault in the non-duplicated logic could still
cause the whole bus to deadlock. Duplicating the control logic only is not
affordable because it makes up most of the logic area. Temporal redundancy
tends to infer repetition of work done, such as repeating a computation
or sending a transaction across the interconnect again. Generally, these
techniques reduce performance, which means it is unattractive for storage
networking customers since it affects their need for high throughput and
for automotive customers because it affects the requirement for low latency.

These high-level constraints were influenced from ARM sources who have experi-
ence and knowledge of the AMBA interconnect and the targeted customers. The
solution space can be summarised as online and concurrent hardware techniques
to detect or correct errors resulting from transient faults that employ informa-
tion redundancy and which affects only the implementation of the interconnect.
EDAC codes, specifically parity or ECC, are a group of information redundant
methods that encode a set of data bits into a number of extra bits, sometimes
called check bits, that are sent along with the original data. If the data are
corrupted by the transmission medium, then the specific implementation guar-
antees that a certain number of erroneous bits can be detected or corrected.
For example, a Hamming code is one which can detect up to two errors in the
covered data and correct single bit errors and so is categorised as a Single Error
Correcting-Double Error Detecting (SEC-DED) code. EDAC codes are proposed

53

M0

MI

SI0 SI1

MI0 MI1

M1

MI

S0

SI

S1

SI

EDAC

Encoder &

Decoder

Figure 5.2: Block diagram of the NIC-301 bus matrix with end-to-end EDAC

to detect or correct errors resulting from transient faults because the techniques
are familiar and straightforward to understand, which helps to lower the barrier
for adoption. Depending on the specific implementation, EDAC codes benefit
from low area and performance overheads, compared with spatial or temporal
redundancy techniques. As shown in Figure 5.2, the encoding and decoding
implementation logic for the EDAC codes are placed at the input and output
ports of the interconnect, that is outside the logic of the bus interconnect and
before the sender or destination, which is referred to as end-to-end EDAC. This
means that no changes to the connecting IP is required, it minimises changes to
the bus matrix logic, and simplifies verification and integration because the logic
is modular. However, there are some signals for which end-to-end EDAC cannot
detect faults.

5.4 Error Detection and Correction Codes are
not Sufficient

The following analysis will show how end-to-end EDAC codes cannot be used on
some AXI signals and therefore other methods are required. The premise was
based on the possibility that a fault may affect the operation of the interconnect
in such a way that the code is either not received by the destination to detect the
problem or the fault does not manifest itself as an error in the data covered by
the code. To find out in which logic a fault may induce this result, the following
analysis was performed. For each AXI input signal, a graph was created with

54

Figure 5.3: Example circuit depicting a PL signal (in[1]) and an NPL signal
(in[0])

the input as the root vertex using a depth-first search algorithm. The input
signal can be in either direction, i.e. from master to slave or slave to master.
The number of output signals reachable in this graph, RO, are counted. If RO
is equal to the number of destinations, D, that either the slave or master is
connected to2, then we classify the signal as a Payload (PL) signal. Otherwise,
RO must be higher and is classified as a Non-Payload (NPL) signal. PL signals
are those that can be encoded using end-to-end EDAC, while NPL signals cannot.
A fault on the logic path of a PL signal can become at most a single-bit error
at the output of the interconnect because the fault cannot deviate from that
logic path and can only propagate to the same output signal. However, a fault
on the logic path of an NPL signal, where RO > D, can fan-out to other logic
not just on a path from its input to its corresponding output. Propagation of
a fault on NPL logic may cause more disruption than a single bit error at an
output signal and could potentially cause multiple errors at the outputs. For
example, a fault on the select signal of a multiplexer can momentarily switch
the outputs to the other data inputs, which would then propagate onwards and
render a single error correcting ECC ineffective. This distinction between PL
and NPL signals is illustrated in Figure 5.3. The input signal in[1] has only
one reachable output, out[1], and is therefore a PL signal. The logic circuitry
on the path of in[1] is termed PL logic. On the other hand, the input signal
in[0] has two reachable outputs and so is a NPL signal. The wire Z separates
the PL logic from the NPL logic. The NPL logic area is calculated as the total
logic area minus the area of the logic on the PL signal paths. The AND-gate
at the end of wire Z is part of the PL logic because a fault there only affects
out[1]. The example highlights that only a fault on the logic upstream from Z
can propagate into the PL path.

An example specific to the AXI bus matrix will help to further illustrate
this premise. The AXI LOCK signal, which is found on both address channels
AW and AR, enables the implementation of atomic access in AXI: either locked
access or exclusive access. From the AXI specification [89], an exclusive access

2A master or slave may not necessarily be connected to every slave or master, so D can
vary.

55

is defined as:

The exclusive access mechanism enables the implementation of
semaphore type operations without requiring the bus to remain
locked to a particular master for the duration of the operation. The
advantage of exclusive access is that semaphore type operations do
not impact either the critical bus access latency or the maximum
achievable bandwidth.

While for a locked access:

the interconnect must ensure that only that master is allowed
access to the slave ... until an unlocked transfer from the same master
completes. The arbiter within the interconnect is used to enforce
this restriction. ... Locked accesses require that the interconnect
prevents any other transactions occurring while the locked sequence
is in progress and can therefore have an impact on the interconnect
performance.

The slave must implement the functionality required to support the exclusive
access, while the interconnect implements the locked access functionality. There-
fore, this example will focus on faults that disrupt the operation of a locked
access.

The lock logic within the interconnect (the LK block in Figure 5.1) makes
this decision and an arbiter is used to enforce this restriction. The system could
deadlock or perform undefined behaviour if a fault were to occur that breaks the
atomicity of the access. Take the example system in Figure 5.4 of a bus matrix
with two masters, M0 and M1, and one slave S0. At time zero, i.e. t = 0, M0
issues a write transaction to S0 with no intention of locking the slave to itself,
so it sets LOCK = 0. Before the transaction has reached its destination, S0, a
fault occurs in any of the logic that causes the interconnect to change its state
to locked, i.e. LKST = 1. Because the fault did not occur on the logic path
of the LOCK signal, S0 still receives the write transaction with LOCK = 0 at
t = 1. The EDAC code does not detect the error because it has not occurred
on the data it covers. Some time later (t > 1), M1 issues a write transaction to
S0, but it cannot access it because the fault has caused the interconnect to only
allow access to S0 from M0. Since M0 did not intend to lock the bus, it does not
realise it has to unlock it, which can then cause M1 to deadlock as it waits for
access to S0. The system can recover when M0 makes another write to S0 with
LOCK = 0, which resets the lock logic, however it may be unknown when this
will occur.

The ability to provide atomic access is part of a contract between masters
and the interconnect, the breach of which due to faults does not represent illegal
behaviour but a violation of the sender’s intention. The lock state, LKST, is
a property of the interconnect normally changed via the value of the LOCK
signal on the AW or AR channel. The EDAC code covers the PL logic of the
LOCK signal from master to slave, but not the NPL logic that controls the
LKST property. Therefore other mechanisms are required and are described in
the next section.

Iterating the above method for each AXI signal reveals the classification
given in Table 5.3. Note that PROT is the only NPL signal not to cause

56

M0 S0

M1

t = 0:

T(W0)

LOCK = 0

0 < t < 1:

LKST: 0 → 1

t > 1:

T(W1)

t > 1

LK

t = 1:

R(W0)

LOCK = 0

Figure 5.4: An example of a fault that disrupts a locked access on a NIC-301
bus matrix

the interconnect to deadlock because the protection level of the transaction
is interpreted by the destination, therefore it is not immediately apparent if
deadlock can result since it depends on the application. Also, LEN is the only
PL signal that causes deadlock3, but the difference is that an error on LEN
causes the slave to deadlock not the interconnect as in the case with the other
NPL signals.

This analysis presents two strands for investigation: firstly, end-to-end EDAC
can be employed for PL signals, however, as explained later in Section 5.6,
developing a proposal for a product for this is not straightforward and secondly,
different methods of fault tolerance are required for NPL signals as described in
the following section.

3When an error changes LEN to a higher value, as explained in Section 5.2.1 on page 50

Table 5.3: Taxonomy of AXI Signals with Impact. Impact: DL = Deadlock, MC
= Memory Corruption, UB = Undefined Behaviour.

(a) AXI NPL Signals

AXI Signal Type Impact

VALID DL, MC, UB
READY DL

ID DL
ADDR[31:12] DL, MC, UB

LOCK DL, UB
LAST DL, MC, UB
PROT UB, MC

(b) AXI PL Signals

AXI Signal Type Impact

ADDR[11:0] MC, UB
LEN DL, MC
SIZE MC

BURST MC
CACHE MC, UB
DATA MC, UB
STRB MC
RESP UB

57

ADDR

L1

L2

L3

FAILURE

INDE

DL MC

abstraction

a
c
c
u

ra
c
y

c
o

v
e

ra
g

e

Figure 5.5: A fault-to-failure diagram for the ADDR signal

5.5 Techniques for the Fault Tolerance of Non-
Payload Signal Logic

Methods for increasing the fault tolerance can be made at various levels of
abstraction within the bounds of the constraints given previously. The concept
of a fault-to-failure diagram is introduced to help visualise the manifestation
of a fault at different layers of abstraction and thus aid the decision on the
most cost-effective mitigation scheme. Using Figure 5.5 as an example, it has
at its heart the fault location under consideration (on the logic path of the
address, ADDR, signal) at layer one (L1). The level of abstraction at which
we view the effect increases per layer until the final result: failure. As we
increase the level of abstraction, we trade-off accurate knowledge of the fault
source against fault coverage. We can see in layer three (L3) that these effects

— DL, MC, and UB — were identified from the protocol-level fault injection
analysis. Layer two (L2) effects encompass Incorrect Destination (INDE) and
Disallowed behaviour (DISD). INDE means that a transaction is routed to the
wrong destination. The DISD effect means that the fault has not broken the
protocol, but the interconnect has performed some action that was not intended,
such as blocking a secure transaction to a slave because a fault has changed its
protection level to unsecure. The L2 effects were discovered from analysing the
implementation code (Verilog RTL) and schematics to trace the path of the NPL
signals and therefore determine what could happen due to a fault. Repeating
this procedure for all the NPL signals, the impact taxonomy can be expanded to
include L2 effects as shown in Table 5.4.

A fault can occur on any of the logic on the path of the NPL signal in
question; its propagation to failure can be sliced into a finer granularity to create
boundaries, or layers, in which to view its effect. The aim is to determine at
which layer is the most cost-effective to mitigate its eventual consequence. The
protocol-level error injection, described in Section 5.2, revealed three effects
which have been assigned to L3. Mitigation at a hardware level is too late when
the outcome is MC or UB, as there is not enough information at this level to
detect and recover — this would have to be done in software if possible. The
usual way to detect DL in hardware is to use a timer, often called a watchdog
timer, that is periodically refreshed by a software task before it expires. Thus, it
is assumed on its expiration that the software has deadlocked and recovery is
normally enacted by resetting the system. This has two disadvantages: firstly, the

58

Table 5.4: Fault effect taxonomy of AXI signals at different layers of abstraction.
L2 effects: INDE = incorrect destination and DISD = disallowed behaviour.
L3 effects: DL= deadlock, MC = memory corruption, and UB = undefined
behaviour.

AXI Signal Type Layer 2 Effect Layer 3 Effect

VALID INDE, DISD DL, MC, UB
READY – DL

ID INDE DL
ADDR[31:12] INDE DL, MC, UB

LOCK DISD DL, UB
LAST DISD DL, MC, UB
PROT DISD UB, MC

value of the timer has to be set with accurate knowledge of worst case execution
times, which can be difficult to obtain, so the timer is usually set to a very high
value which means there is a long duration to detect deadlock; and secondly,
the whole system has to be reset because it is not known which components
have been affected. Clearly, it would be more beneficial for performance to
detect deadlock earlier and only recover those components which were affected.
This motivates moving to a lower layer of abstraction. At the lowest layer
considered, L1, the fault is viewed as a transient glitch propagating through logic
gates. Solutions here would involve duplicating the logic paths or using delayed
sampling registers (which sample a logic signal at different times to detect a
glitch). In the former method, these NPL signals span most of the logic of the
interconnect, which would make duplication too expensive in silicon resource.
The latter method would involve changing the technology cell library and would
introduce extra latency by adding these registers throughout the logic of the
bus matrix4. Therefore, a layer inbetween is introduced (L2), the effects here
analysed, and solutions proposed. The Double Address Check (DAC) scheme for
INDE and the scheme for DISD are built on the same idea of using a monitoring
circuit to check that the bus matrix correctly carries out the task which the
sender has instructed using the AXI protocol.

5.5.1 Solutions for Incorrect Destination (INDE) Errors

An erroneous value on the address signal can cause a transaction to address
a different location within the same slave (when a fault occurs in the bottom
part of the address — bits m in Figure 5.6 that specify the size of each memory
region as 2m) or re-route it to a different slave (when a fault occurs in the top
part of the address — bits n in Figure 5.6 that specify the number of regions as
2n), thus causing memory corruption and possibly further severe consequences
later. Since the top part of the address is classed as an NPL signal, a fault on
its logic path will not appear as an error in the address value that reaches the
destination, so end-to-end EDAC will not detect this. Therefore, two different
methods are required: one to detect for an incorrect destination and the other

4Only using these type of registers at the outputs of the bus matrix would suffer the same
problems as end-to-end EDAC, i.e. that the fault could have an effect that is unnoticeable at
the output.

59

to detect or correct an erroneous access to the correct destination. Two schemes
are described here for the former effect, while for the latter we can use an EDAC
code.

The address decoder is a significant part of the logic chain on the address signal
and it determines the destination of a transaction. A fault on this logic could
therefore incorrectly re-route it to the wrong place. Instead of duplicating the
address decoder, the first mitigation technique proposed modifies its structure
to make it an information redundant decoder, called the Hamming Address
Decoder (HAD), that takes advantage of a clause in the AXI protocol. The
memory map is re-arranged so that an error in the most significant bits, which
specify the destination, causes the transaction to be routed to an unmapped
region, which according to the AXI protocol will cause an error response to
be returned to the master, thus providing detection of a fault that causes an
INDE error. The following scheme is used to determine which regions to use. In
Figure 5.7 the memory map for a system with two slaves is split into eight regions,
so the top three bits of the address, n, index them. The remaining bits, m, are
protected with an EDAC code such as parity or ECC. Only those region indexes
separated by a Hamming distance of two are mapped, which means that a 1-bit
error in any of the top three bits will cause the master to address an unmapped
region, which will automatically induce an error response to the sender. This
technique can be expanded to use a Hamming distance of three, so that 1-bit
errors are corrected, but at the cost of quartering the available memory space.
Consequently, this scheme requires a minimal change to the software to alter
the header file to use the new memory map and at worst a re-compile, but not
any change to the functionality. Thus, 1-bit errors on the address signal can be
detected without adding extra latency, but at the cost of halving the addressable
memory and a re-compile of the software. A computer program was developed
that the user provides with information on the memory map and it outputs the
Verilog code that implements the HAD. This code replaces the existing address
decoder and the whole bus matrix is simulated to ensure correct operation and
synthesised to obtain the area and frequency overheads as shown in Figure 5.8.
The overheads for 1-bit parity across the address signal and the HAD-2 scheme
(a Hamming distance of two provides 1-bit error detection) are shown. The
x-axis gives the size of m, which is the number of bits allocated to region size,
while the y-axis gives the maximum synthesis frequency or area overhead at that
value of m relative to a bus matrix without either scheme. Using 1-bit of parity
to cover the entire 32-bits of the address signal (i.e. m = 32) results in half the
maximum synthesis frequency and a 10% increase in area. The large frequency
overhead arises because the top bits of the address are on the critical path. This
frequency penalty prevents the use of parity to detect an INDE error by placing
the parity checker after the logic that determines the destination. At m = 24
(i.e. n = 8, meaning that there are 28 regions each of a size of 224) the HAD-2
scheme incurs less than a 20% drop in fmax and an area increase of 15%. Since
the rest of the signal has to be protected with parity, fmax is limited by that
of the parity scheme, which is a approximately 40% drop. Synthesis at m = 16
was not possible because the code generated by the computer program was too
complex for the synthesis tool (there would be 216 region addresses to check).
This complexity is a result of the configuration used: more slaves and using less
of the available memory space would reduce the number of regions to check in
one Verilog statement. Extrapolating this worst case configuration the optimum

60

Intra-region

Extra-region

n m

Figure 5.6: The address split into
the n bits which specify which region
and the m bits which address within
a region

Slave 0

Slave 1

0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

Figure 5.7: The memory map for two
slaves split into smaller regions and then
remapped to be separated by a Hamming
distance of two

point to use both the HAD-2 and parity schemes is at m = 18 (where the two
fmax lines intersect), which gives a frequency drop less than 30%. This linear
extrapolation is a reasonable approximation as it is based on the ˜15% drop in
fmax from the same increase in the number of regions from m = 32 to m = 24.
Using a more realistic configuration or using a Hamming distance of three would
reduce the frequency penalty and area overhead further. The HAD scheme was
originally developed under the requirement from the automotive market that no
extra latency should be added, but since this requires changes to the software,
albeit very minimal, it was decided within ARM that this requirement could
be relaxed and therefore schemes could be developed that introduced minimal
latency overhead.

An alternative which only allows the INDE effect to be detected, but with
changes only made to the implementation of the bus matrix, is to perform a
second address check at the the receiver — called the DAC. This is placed in
the MI block (see Figure 5.9) and compares the top bits of the address to what
is expected by the slave, which is set in the DAC when the memory map is
specifed at design time. This has the added advantage over the HAD scheme
that it can detect an INDE error due to a fault on any logic that can cause this
effect, which is more than the address decoder logic. A full address decode is not
needed because at design-time the range of addresses for each slave is known, so
the circuit which compares the received address with that expected will be much
smaller. An error is flagged when these addresses do not match. This will incur
extra latency because the transaction will have to be repeated, but only on the
occurrence of such a mismatch, which may be acceptable since faults are rare.

5.5.2 Solutions for Disallowed Transaction (DISD) Errors

DISD effects arise from faults that occur on the logic path of the NPL signals
LOCK, LAST, and PROT. LAST is included because its outputs affect the LK
logic block, therefore a solution for LOCK will also cover faults on the LAST logic
path that cause DISD errors. PROT is included because a fault can inadvertently
change the secured nature of the transaction or recipient. The solution proposed
here for both LOCK and PROT is to compare the corresponding property of
the bus matrix, i.e. secure or lock state, with that which was intended via the

61

Figure 5.8: Maximum synthesis frequency (fmax) and area overhead of the
HAD-2 scheme (Hamming distance of 2) compared with parity across the 32-bit
ADDR signal. The bus matrix had two masters and two slaves and each slave
had half the entire 232 memory space.

AD

SI MI

M0

M1 AD

SI

S0

S1

MI

DAC

Figure 5.9: Placement of the DAC in scheme to detect INDE errors

62

S0
lock_state

error

.

.

. c

LOCK

Logic

error_type

a

b

LOCK

d

Figure 5.10: A micro-architecture monitor to detect unintended changes in the
atomicity of a transaction

protocol. Since the scheme is the same for each signal, it is only described for
the LOCK signal. The scheme is an online and concurrent hardware monitor
embedded in the bus interconnect and is similar in concept to an assertion
checker, but instead of asserting conditions on the protocol this makes assertions
about the correct behaviour of the bus matrix.

As shown in Figure 5.10, the scheme uses circuitry c that monitors the state
of the bus interconnect, in this case the lock_state, and compares it against
the master’s intention (the LOCK signal). This will then detect an unintended
change in the lock state due to faults that occur in logic a and b (the rest of the
logic that affects the lock state). The error can then be flagged to some other
system component or software, where an appropriate recovery procedure can be
initiated. Extra information on what type of error occurred (e.g. an unintended
lock error) is provided using the error_type signal, which is useful for logging
purposes and because the recovery procedure can be tailored to the type of error,
e.g. a soft reset of the bus and/or master instead of a full system reset. The
scheme is different from known spatial redundancy techniques such as DMR
or TMR because no logic has to be duplicated since the checker component c
compares the signals of different logic that already exist, thus taking advantange
of the inherent redundancy in the NIC-301.

This analysis has only covered those faults on the NPL signals that affect
its reliability and not its performance, for example, a fault on the LAST signal
can also affect the Quality of Service (QoS) and arbiter blocks, which may block
a transaction or release a transaction earlier than programmed. It is proposed
that these schemes be verified using RTL error injection.

The final step to commercialising the enhancement of the fault tolerance of
the AXI bus matrix is combining all the techniques into a proposal for a product
that ARM can make a significant return-on-investment (ROI) — the significance
is based upon the ROIs of other product proposals that require competing
resources. The product takes the form of a separate extension, called an “add-
on”, to NIC-301 AXI bus matrix, so that the techniques are only incorporated if
the customer requires it. This proposal is described in the following section.

63

5.6 An Add-On for AXI to Improve its Reliabil-
ity

To create value for ARM and commercial relevance for the EngD, a significant
part of this work has consisted of composing an analysis for the viability of a
product that will improve the fault tolerance of the AXI bus matrix. A summary
of the recommended features for the proposed product are:

• The product will be an add-on to NIC-301 that will provide SEC-DED
ECC protection for most of the AXI signals to correct transient faults
that occur on the logic of the bus matrix during communication between
masters and slaves.

• In the first revision of the add-on, ECC will cover all signals in which it
is feasible, which excludes VALID, READY, LAST, LOCK, and PROT.
Mechanisms for these will be introduced in the second revision.

• It will support frequency and data width conversion, but not protocol
conversion.

• The product will form a super-set of the functionality of IDM-3015, to allow
information on the transactions where correctable and uncorrectable errors
have occurred to be logged and the response action to be programmable –
either reported via the AXI error response code Slave Error (SLVERR),
an interrupt, accessed through a set of registers, or the destination can be
soft reset.

Within ARM, a product proposal requires two key documents: the Product Re-
quirement Specification (PRS) and Engineering Requirement Specification (ERS).
Both these documents record the functional and non-functional requirements
of the product, but are aimed at different audiences. The PRS is primarily for
external presentation — at initial discussions with customers to convey and
review the high-level features. The ERS elaborates in more detail, where needed,
on the requirements specified in the PRS and is mainly for internal consumption.
Combined, they should provide all that is necessary to implement the product.
The product discussion document explains the reason why options were chosen
over their alternatives, which is important when the product is implemented by
other engineers as it will increase confidence in the chosen features so that work
is not duplicated.

It is proposed that there are two revisions of the product whereby ECC
for the PL signals is implemented in the first and techniques for the NPL are
introduced in the second revision. A two-step approach is advocated to lower
the barrier to product adoption. Automotive customers currently do not have
any functionality to tolerate errors due to faults on the interconnect and the
storage networking customers that have this functionality use parity or ECC
on the data signals, so the risk of adversely affecting their deadlines is lowered
by having known and straightforward features. Lower complexity reduces the
risk and cost for ARM to implement it, which raises the return on investment
and therefore increases the likelihood that it will be made into a product. The

5An existing add-on to the AXI bus matrix, which already provides the ability to log and
report bus transaction errors, but does not specify how these errors are generated.

64

step up to revision two that includes techniques for the NPL signals, which is
probably more difficult for customers to accept, is now easier to take than one
larger step encompassing all the functionality, where the entire product could be
dismissed because of the unfamiliarity and complexity of certain features.

IDM-301 is an existing ARM product that includes the functionality to
record an erroneous transaction and to allow the customer to configure how this
information is reported. An erroneous transaction is produced by a slave sending
the standard AXI error response SLVERR to the master — the reason for the
slave generating an error is specific to customer’s implementation of the slave.
Ramen6 re-uses IDM-301 to form a super set of its functionality, so that there
are two product offerings: IDM-301 on its own or Ramen with IDM-301. Using
the same engineering resources will mean less risk of incompatibility.

The PRS and ERS contain the requirements for revision one of Ramen, but
some of the details are not entirely straightforward. For example, AXI has the
ability to interface between components with different data widths, referred to
above as data width conversion, through the use of “upsizers” and “downsizers”.
This creates a problem of how to choose how many data bits an ECC code covers.
Depending on what width conversion is used, this choice may inadvertently add
extra latency as the ECC code has to be regenerated at the interface or add more
area because more ECC codes are used than is necessary. This issue is covered
in product discussion document. We note in detail which combinations of data
width, converter type, and number of ECCs per data transfer require additional
area or latency, and argue that the best option is to present this information to
the user of the product so that they can make informed design decisions based
on their own circumstances.

5.7 Conclusion

The impact that transient faults on the AMBA AXI bus matrix can have
was examined and it was found that the consequences can be severe, possibly
leading to deadlock, memory corruption, or undefined behaviour. The AMBA
interconnect is an important ARM product that is present in a large majority of
SoCs. It can occupy a significant part of the logic area on a SoC, comparable
to an accompanying processor where the focus of improving the fault tolerance
of electronic computer hardware has traditionally been. With the susceptibility
to soft errors likely to increase with the shrinking of semiconductor technology,
the rise in the complexity of the IP interconnect on a SoC, and the severe
consequences that result make it a growing concern for some ARM customers,
such as automotive and storage networking.

Based on requirements gathered from internal and external sources, a proposal
for an add-on product to the AXI bus matrix, NIC-301, was made that increases
its fault tolerance using ECC and other techniques. Some ARM customers have
already expressed a desire to incorporate some of the techniques into their design
to increase the robustness of their interconnect. This has helped the successful
transfer of the proposal out of the R&D department and could be available as a
product in the next couple of years. The current economic climate for business
and the re-prioritisation of resources in ARM towards the recent competition
from Intel has meant that the product will likely not be brought to market

6The codename of this product.

65

sooner. However, the work still has potential commercial value for ARM and
met one of the chief aims of the EngD to develop research of direct relevance to
industry.

66

Chapter 6

Conclusion

The erroneous perturbation of the logical values in current CMOS based ICs from
naturally occurring phenomena, especially those from radioactive particle strikes,
called soft errors, are of a concern to semiconductor hardware manufacturers
due to the adverse impact on the reliability of their products. This is especially
important to their customers who build dependable systems where the cost of
failure is high, such as business critical data centres or the safety devices in
automotive applications. With technology scaling and the increasing ubiquity of
embedded computer devices, soft errors represent another source of failure that
some of ARM’s customers have to address. This is significant for automotive and
networking customers, who have to achieve high levels of safety and availability,
respectively.

At sea-level, the effect of soft errors on memory has been dramatically lowered
by design changes and by using ECC. Consequently, the contribution of the
remaining logic to the overall SER of a chip has grown and is predicted to rise
due to the shrinking dimensions of devices and the increasing number of them
integrated onto an chip. To evaluate the SER of combinational logic circuitry,
one must not only calculate the intrinsic error rate but also the magnitude of
the three mechanisms that reduce it. Part of this work looked at the variation
of one of these processes, logical masking, with the construction of the circuit
and developed a new methodology to carry out this analysis. It was found that
the logical masking varied significantly between the different implementations
of adder circuits under consideration, from 3.1× at a synthesis frequency of
100 MHz to 2.1× at 900 MHz. The results also reveal that every fault injected
causes on average about 1.5 errors and nearly 30% of all faults cause more
than one error. This has important ramifications on measuring the SER of
combinational logic because the fan-in cone of storage elements has to be taken
into account. In conjunction with modelling the other two masking mechanisms,
this methodology can then be used to calculate the sensitivity of a circuit to
soft errors. This methodology will be of particular importance during the design
phase, along with other performance metrics, to evaluate different circuits and
guide the development of mitigation techniques. Properties of mathematical
graph theory were used to correlate the composition of the circuit with logical
masking, which could be used in the development of a static analysis rather than
the time consuming dynamic simulation.

It was envisaged that the SER of current or future ARM IP could be measured,

67

however, from knowledge gathered during this investigation, developing the
comprehensive methodology needed did not presently constitute a high enough
return on investment for ARM. Although it would be costly to perform accelerated
testing of hardware, which ARM does not produce, and construct a modelling
framework, there was not a strong enough immediate financial incentive from
customers to provide this data. However, customers will need such a tool in
the future according to the trends identified in this work, and the first steps in
providing such a facility have been made, and published, for when it becomes
financially viable.

The second part of this work continued to investigate soft errors in logic, but
with more immediate commercial value, to show that faults on the ARM AMBA
AXI bus interconnect can have a serious impact on the reliability of an entire
SoC. Protocol-level error injection was performed on the AXI bus, which found
that errors could cause deadlock, memory corruption, and undefined behaviour.
Moreover, the AMBA bus standard features in a vast array of embedded devices
and can occupy an area comparable to typical ARM processors that it is connected
to. With an increase in the complexity and number of components in an IC, the
interconnect will become a more complex and important part of the SoC. Interest
from automotive and storage networking customers helped solidify the motivation
to develop a product proposal for an add-on to the AXI bus interconnect that
incorporates ECC to detect, correct, and report transient faults in the bus logic
without changing the AMBA standard or the connecting customer IP. Within
industry, a solution that uses proven techniques and limits the subsequent changes
a customer has to make to their system lowers the cost and risk for adoption.
However, it is argued that there are faults that cannot be detected by ECC and
yet can have severe consequences; thus several novel techniques are proposed
that are needed in addition to ECC. The appropriate requirement specification
documents were created with approval from the internal stakeholders, which
signifies the successful transition of a research idea out of ARM R&D. With
a robust foundation established by this work, the product can be brought to
market within the next two years.

6.1 Future Work

In the next twelve months, ARM customers need to understand how the function-
ality of the proposed product will be implemented and verified. Critical to the
verification is to quantify the improvement in the error rate that the proposed
fault tolerant techniques bring. This would be done using the SFI methodology
developed, but would need some performance improvements to make simulation
computationally tractable for a bus interconnect netlist. The first step would be
to ensure the number of faults injected is the minimum needed for the confidence
level, which could be lowered too. The second step would extract sub-circuits or
sub-graphs, using the same graph traversal algorithm for identifying fault paths,
which are smaller and can be processed in parallel. Indeed this approach can be
applied to larger circuits, such as ARM processors, by extracting combinatorial
circuits between registers and simulating them individually before combining
the error rates. If the computation time is still too large, then a static approach
may be required, such as those identified in Section 4.4 on page 40 potentially
incorporating the topology properties of the circuit for calculating logical mask-

68

ing. For both dynamic and static approaches the methodology would have to be
augmented with models for electrical and latch-window masking. There needs to
be more investigation into the accuracy of the two graph metrics identified and
whether other metrics need to be incorporated, which would involve performing
experiments with other circuits.

As shown in this work the variation of one of the factors in calculating the
SER can be significant, therefore, it is crucial to examine the sensitivity of the
SER to variation of other terms. Industry requires knowledge of which factors
have most influence to allow them to work out the most cost-effective way to
reduce the error rate to the desired level.

Over the next five years, it will be important to research energy-efficient
dependability, the reliability of wires with technology scaling, and the interaction
of manufacturing process variation with reliability.

ARM is particularly known for designing IP which are used in systems with
small power budgets, relative to desktop or server computers. The combination
of the concepts of low power and reliability reveals two avenues of interest: how
to design and test low power fault tolerance techniques and how does the use of
methods to reduce power affect the SER? When companies such as Intel test
the dependability of their high-end servers there is an expectation that these
computers will be in continuous operation for their life-time, but the systems
in which ARM IP is present will likely employ various levels of sleep modes to
reduce active power dissipation. Given the same length of life-time, one might
expect fewer failures in the latter case because the system is not performing as
much useful work. However, how does the use of clock gating, power gating, or
varying the voltage to memory cells impact the SER? The contribution of the
clock tree was found to be about 10% to 20% of the total SER of non-hardened
latches and dominates the hardened latch SER [90]1. How often do memory
elements have to be off to mitigate the increase in susceptibility of the extra
logic that clock gating adds? One would expect that using power gating to
turn off elements would reduce the error rate. However, if a flip-flop or memory
cell is put into a retention or sleep state by lowering the voltage, then this
could make the elements much more susceptible to soft errors, since voltage
scaling is seen as the primary concern for the increase in soft errors as technology
shrinks [41]. Additionally, the use of different voltage domains may mean that
some memory is more susceptible than others. The effect of techniques to lower
energy consumption on dependability could become more important in the future
when computer designers, which includes those designing servers, look to reduce
the energy usage for cost and environmental reasons.

With the bus interconnect increasing in size and complexity along with the
systems it inhabits, the length and the number of metal wires will rise. It will
be important for ARM to consider the particular faults that affect these metal
wires, such as electromigration, cross-talk, substrate coupling, etc.

An area that requires further investigation is the link between manufactur-
ing process variation and reliability. Chip-to-chip process variation from IBM
manufacturing introduced a spread in the SER of about 2× while measurements
of chips from other companies showed this to be greater than 200× [91]. More
recent data found that the spread in the SER of SRAM increased from 3× to

1For comparison, the same author reports four years later that the total contribution of
combinational logic in a microprocessor chip is no more than 30% of the total unhardened
latch SER[29].

69

4.3× between 180 nm to 130 nm, which indicates it is likely that the SER spread
will widen in the future because controlling variation is ever more challenging and
expensive [10]. This source of uncertainty in the SER alone is enough to warrant
mechanisms to reduce at least the spread. Since reducing process variation
increases cost, would it be cheaper at some point to allow greater variation, but
to deal with the consequences with fault tolerant mechanisms? Does this change
the character of the fault sources such that different mechanisms are required?
A second aspect to this link is: do effects such as device ageing change the SER
of the system over time? If it does, then the SER will be a dynamic property of
the system rather than the static property as it is currently viewed. This would
introduce a further source of uncertainty that would require examination. Whilst
it may be that ageing effects have a negligible impact on the SER of previous
technology (such as IBM’s 65 nm SOI process [92]), indications of increasing
variation at future technology nodes [93], especially in threshold voltage, would
suggest further research is needed.

70

Bibliography

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan. 2004.

[2] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” IEEE Transactions on Device and Materials Reliability, vol. 5,
no. 3, pp. 305–316, 2005.

[3] D. Lyons. (2000) Sun Screen. Last accessed: 26/02/10. [Online]. Available:
http://www.forbes.com/forbes/2000/1113/6613068a.html

[4] L. Spainhower and T. A. Gregg, “IBM S/390 Parallel Enterprise Server G5
fault tolerance: A historical perspective,” IBM Journal of Research and
Development, vol. 43, no. 5.6, pp. 863–873, 1999.

[5] ICKnowledge. (2002) Defect Density Trends. Last accessed: 22/03/10.
[Online]. Available: http://www.icknowledge.com/trends/defects.pdf

[6] C. Constantinescu, “Impact of deep submicron technology on dependability
of VLSI circuits,” in Proceedings International Conference on Dependable
Systems and Networks, 2002, pp. 205–209.

[7] D. Siewiorek, R. Chillarege, and Z. Kalbarczyk, “Reflections on industry
trends and experimental research in dependability,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 2, pp. 109–127, 2004.

[8] C. Constantinescu, “Neutron SER Characterization of Microprocessors,” in
International Conference on Dependable Systems and Networks. IEEE,
2005, pp. 754–759.

[9] J. F. Ziegler, H. Curtis, H. Muhlfeld, C. Montrose, B. Chin, M. Nicewicz,
C. Russell, W. Wang, L. Freeman, P. Hosier, and Others, “IBM experiments
in soft fails in computer electronics (1978-1994),” IBM Journal of Research
and Development, vol. 40, no. 1, pp. 3–18, 1996.

[10] ITRS, “International Technology Roadmap for Semiconductors 2009.”

[11] B. Stackhouse, S. Bhimji, C. Bostak, D. Bradley, B. Cherkauer, J. Desai,
E. Francom, M. Gowan, P. Gronowski, D. Krueger, C. Morganti, and
S. Troyer, “A 65 nm 2-Billion Transistor Quad-Core Itanium Processor,”
IEEE Journal of Solid-State Circuits, vol. 44, no. 1, pp. 18–31, 2009.

71

http://www.forbes.com/forbes/2000/1113/6613068a.html
http://www.icknowledge.com/trends/defects.pdf

[12] T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic
memories,” IEEE Transactions on Electron Devices, vol. 26, no. 1, pp. 2–9,
1979.

[13] R. Silberberg, C. H. Tsao, and J. R. Letaw, “Neutron Generated Single-
Event Upsets in the Atmosphere,” IEEE Transactions on Nuclear Science,
vol. 31, no. 6, pp. 1183–1185, 1984.

[14] A. Taber and E. Normand, “Single event upset in avionics,” IEEE
Transactions on Nuclear Science, vol. 40, no. 2, pp. 120–126, 1993.

[15] J. F. Ziegler and W. A. Lanford, “Effect of Cosmic Rays on Computer
Memories,” vol. 206, no. 4420, 1979, pp. 776–788.

[16] E. Normand, “Single event upset at ground level,” IEEE Transactions on
Nuclear Science, vol. 43, no. 6, pp. 2742–2750, 1996.

[17] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Modeling
the effect of technology trends on the soft error rate of combinational logic,”
in International Conference on Dependable Systems and Networks. IEEE
Comput. Soc, 2002, pp. 389–398.

[18] N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V. Zia, C. Brookreson,
A. Vo, S. Mitra, B. Gill, and J. Maiz, “Radiation-induced soft error rates of
advanced CMOS bulk devices,” in IEEE International Reliability Physics
Symposium Proceedings, vol. 44, 2006, pp. 217–225.

[19] R. Baumann, T. Hossain, E. Smith, S. Murata, and H. Kitagawa, “Boron as
a primary source of radiation in high density DRAMs,” in IEEE Symposium
on VLSI Technology, 1995, pp. 81–82.

[20] “JEDEC JESD89 Standard - Measurement and Reporting of Alpha Particles
and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices,”
2001.

[21] H. Nguyen, Y. Yagil, N. Seifert, and M. Reitsma, “Chip-level soft error
estimation method,” in IEEE Transactions on Device and Materials
Reliability, vol. 5, no. 3. IEEE, Sep. 2005, pp. 365–381.

[22] S. Mukherjee, Architectural Design for Soft Errors. Morgan Kaufmann,
2008.

[23] M. Gordon, P. Goldhagen, K. Rodbell, T. Zabel, H. Tang, J. Clem, and
P. Bailey, “Measurement of the Flux and Energy Spectrum of Cosmic-Ray
Induced Neutrons on the Ground,” IEEE Transactions on Nuclear Science,
vol. 51, no. 6, pp. 3427–3434, 2004.

[24] J. F. Ziegler, “Terrestrial cosmic ray intensities,” IBM Journal of Research
and Development, vol. 42, no. 1, pp. 117–139, 1998.

[25] G. R. Srinivasan, “Modeling the cosmic-ray-induced soft-error rate in inte-
grated circuits: An overview,” IBM Journal of Research and Development,
vol. 40, no. 1, pp. 77–89, 1996.

72

[26] P. Bradley and E. Normand, “Single event upsets in implantable cardioverter
defibrillators,” IEEE Transactions on Nuclear Science, vol. 45, no. 6, pp.
2929–2940, 1998.

[27] J. Ziegler and H. Puchner, SER – History, Trends and Challenges. Cypress
Semiconductor, 2004.

[28] P. Dodd, M. Shaneyfelt, J. Schwank, and G. Hash, “Neutron-induced
soft errors, latchup, and comparison of SER test methods for SRAM
technologies,” in International Electron Devices Meeting. IEEE, 2002, pp.
333–336.

[29] B. Gill, N. Seifert, and V. Zia, “Comparison of alpha-particle and
neutron-induced combinational and sequential logic error rates at the 32nm
technology node,” in International Reliability Physics Symposium. IEEE,
2009, pp. 199–205.

[30] ITRS, “International Technology Roadmap for Semiconductors 2005.”

[31] Intel. (2010) Intel Pentium 4 Processor 670. Last accessed: 29/09/10. [On-
line]. Available: http://ark.intel.com/Product.aspx?id=27487&processor=
670&spec-codes=SL7Z3,SL8PY,SL8Q9

[32] C. Constantinescu, “Dependability analysis of a fault-tolerant processor,”
in Proceedings of Pacific Rim International Symposium on Dependable
Computing, 2001, pp. 63–67.

[33] C. Tuner. (2010) Cortex-R4 Whitepaper. Last accessed: 28/09/10. [Online].
Available: http://www.arm.com/files/pdf/Cortex-R4-white-paper.pdf

[34] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. Kim, “Robust system design
with built-in soft-error resilience,” Computer, vol. 38, no. 2, pp. 43–52, Feb.
2005.

[35] R. Baumann, “The impact of technology scaling on soft error rate
performance and limits to the efficacy of error correction,” International
Electron Devices Meeting, pp. 329–332, 2002.

[36] S. Hareland, J. Maiz, M. Alavi, K. Mistry, and S. Walsta, “Impact of
CMOS process scaling and SOI on the soft error rates of logic processes,” in
Symposium on VLSI Technology. Japan Soc. Appl. Phys, 2001, pp. 73–74.

[37] P. Hazucha, T. Karnik, J. Maiz, S. Walstra, B. Bloechel, J. Tschanz,
G. Dermer, S. Hareland, P. Armstrong, and S. Borkar, “Neutron soft error
rate measurements in a 90-nm CMOS process and scaling trends in SRAM
from 0.25-m to 90-nm generation,” in IEEE International Electron Devices
Meeting. IEEE, 2003, pp. 21.5.1–21.5.4.

[38] P. Hazucha and C. Svensson, “Impact of CMOS technology scaling on the
atmospheric neutron soft error rate,” IEEE Transactions on Nuclear Science,
vol. 47, no. 6, pp. 2586–2594, 2000.

73

http://ark.intel.com/Product.aspx?id=27487&processor=670&spec-codes=SL7Z3,SL8PY,SL8Q9
http://ark.intel.com/Product.aspx?id=27487&processor=670&spec-codes=SL7Z3,SL8PY,SL8Q9
http://www.arm.com/files/pdf/Cortex-R4-white-paper.pdf

[39] N. Seifert, B. Gill, K. Foley, and P. Relangi, “Multi-cell upset probabilities
of 45nm high-k + metal gate SRAM devices in terrestrial and space
environments,” in International Reliability Physics Symposium. IEEE,
2008, pp. 181–186.

[40] R. Baumann, “Soft Errors in Advanced Computer Systems,” IEEE Design
and Test of Computers, vol. 22, no. 3, pp. 258–266, 2005.

[41] N. Cohen, T. Sriram, N. Leland, D. Moyer, S. Butler, and R. Flatley, “Soft
error considerations for deep-submicron CMOS circuit applications,” in
International Electron Devices Meeting. IEEE, 1999, pp. 315–318.

[42] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and S. Borkar, “Scaling
trends of cosmic ray induced soft errors in static latches beyond 0.18 µ,”
Symposium on VLSI Circuits, pp. 61–62, 2001.

[43] ITRS, “International Technology Roadmap for Semiconductors 2001.”

[44] J. F. Ziegler, “Terrestrial cosmic rays,” IBM Journal of Research and Devel-
opment, vol. 40, no. 1, pp. 19–40, 1996.

[45] J. Ziegler, “Review of Accelerated Testing of SRAMs,” Annual Topical
Research Conference On Reliability, 2000.

[46] G. Srinivasan, P. Murley, and H. Tang, “Accurate, predictive modeling of
soft error rate due to cosmic rays and chip alpha radiation,” in International
Reliability Physics Symposium. IEEE, 1994, pp. 12–16.

[47] L. B. Freeman, “Critical charge calculations for a bipolar SRAM array,”
IBM Journal of Research and Development, vol. 40, no. 1, pp. 119–129,
1996.

[48] P. C. Murley and G. R. Srinivasan, “Soft-error Monte Carlo modeling
program, SEMM,” IBM Journal of Research and Development, vol. 40,
no. 1, pp. 109–118, 1996.

[49] ARM. (2010) Company Profile. Last accessed: 09/11/10. [Online]. Available:
http://www.arm.com/about/company-profile/index.php

[50] ARM. (2009) Annual Report. Last accessed: 09/11/10. [Online]. Available:
http://www.arm.com/annualreport09

[51] Intel. Whitepaper: Introduction to Intel’s 32nm Process Technology.
[Online]. Available: http://download.intel.com/pressroom/kits/32nm/
westmere/Intel 32nm Overview.pdf

[52] (2009) TSMC sees Q3 demand as it solidifies roadmap. Last accessed:
21/10/09. [Online]. Available: http://www.eetimes.com/news/semi/
showArticle.jhtml?articleID=219501118

[53] ITRS, “International Technology Roadmap for Semiconductors 2000.”

[54] Bosch. Product Information Airbag Chip Set 4th Generation CG101,
CG102, CG103. Last accessed: 21/10/09. [Online]. Available: http:
//www.semiconductors.bosch.de/pdf/CG10x Product Info 2007 06.pdf

74

http://www.arm.com/about/company-profile/index.php
http://www.arm.com/annualreport09
http://download.intel.com/pressroom/kits/32nm/westmere/Intel_32nm_Overview.pdf
http://download.intel.com/pressroom/kits/32nm/westmere/Intel_32nm_Overview.pdf
http://www.eetimes.com/news/semi/showArticle.jhtml?articleID=219501118
http://www.eetimes.com/news/semi/showArticle.jhtml?articleID=219501118
http://www.semiconductors.bosch.de/pdf/CG10x_Product_Info_2007_06.pdf
http://www.semiconductors.bosch.de/pdf/CG10x_Product_Info_2007_06.pdf

[55] STMicro. ST Microelectronics 32-bit Microcontrollers for Automotive.
Last accessed: 21/10/09. [Online]. Available: http://www.st.com/stonline/
products/families/automotive/microcontrollers/32bit micro.htm

[56] The Automotive Electronics Council (AEC). [Online]. Available:
http://www.aecouncil.com

[57] (2009) Electronic stability control to be mandatory from 2011. Last
accessed: 21/10/09. [Online]. Available: http://www.profeng.com/archive/
archive+2009/2206/22060027.htm

[58] AUTOSAR homepage. [Online]. Available: http://www.autosar.org

[59] Gartner,“Market Share Analysis: Preliminary Total Semiconductor Revenue,
Worldwide, 2009,” 2009.

[60] Semicast Research Ltd, “Automotive Semiconductor Market Forecast to
Recoverin 2010,” 2010.

[61] (Gartner), “Competitive Landscape: Automotive Semiconductors,” 2009.

[62] Gartner, “Forecast Analysis: Automotive Semiconductors, 2Q09,” 2009.

[63] BBC. (2010) Q&A: Toyota recalls. Last accessed: 06/11/10. [Online].
Available: http://news.bbc.co.uk/1/hi/business/8496902.stm

[64] Businessweek. (2010) Toyota Recall Cost to Exceed $2 Bil-
lion, Lawyers Say (Update2). Last accessed: 06/11/10. [On-
line]. Available: http://www.businessweek.com/news/2010-02-09/
toyota-recall-cost-to-exceed-2-billion-lawyers-say-update2-.html

[65] Toyota. (2010) Toyota Finanical Results. Last accessed: 06/11/10. [Online].
Available: http://www.toyota.co.jp/en/ir/financial results/2010/year end/
summary.pdf

[66] ADAC, “ADAC Pannenstatistik 2008,” 2008.

[67] (Gartner), “Forecast Analysis: Hard-Disk Drives, Worldwide, 2004- 2013,
December 2009 Update,” 2010.

[68] Gartner, “Dataquest Insight: Global Hard-Disk Drive Forecast Scenarios,
2009-2013, 3Q09 Update,” 2009.

[69] (Gartner), “Market Share: Enterprise Ethernet Switches, Worldwide, 2Q09,”
2009.

[70] Infonetics. (2010) SAN switch and adapter market forecast to hit $6.5 billion
in 2014. Last accessed: 06/11/10. [Online]. Available: http://www.infonetics.
com/pr/2010/1Q10-Storage-Network-Equipment-Market-Highlights.asp

[71] N. Miskov-Zivanov and D. Marculescu, “Modeling and Analysis of SER in
Combinational Circuits,” in SELSE, no. 1, 2010.

[72] M. Zhang and N. Shanbhag, “A soft error rate analysis (SERA)
methodology,” in Proceedings of the 2004 IEEE/ACM International
conference on Computer-aided design. IEEE Computer Society, 2004, p.
118.

75

http://www.st.com/stonline/products/families/automotive/microcontrollers/32bit_micro.htm
http://www.st.com/stonline/products/families/automotive/microcontrollers/32bit_micro.htm
http://www.aecouncil.com
http://www.profeng.com/archive/archive+2009/2206/22060027.htm
http://www.profeng.com/archive/archive+2009/2206/22060027.htm
http://www.autosar.org
http://news.bbc.co.uk/1/hi/business/8496902.stm
http://www.businessweek.com/news/2010-02-09/toyota-recall-cost-to-exceed-2-billion-lawyers-say-update2-.html
http://www.businessweek.com/news/2010-02-09/toyota-recall-cost-to-exceed-2-billion-lawyers-say-update2-.html
http://www.toyota.co.jp/en/ir/financial_results/2010/year_end/summary.pdf
http://www.toyota.co.jp/en/ir/financial_results/2010/year_end/summary.pdf
http://www.infonetics.com/pr/2010/1Q10-Storage-Network-Equipment-Market-Highlights.asp
http://www.infonetics.com/pr/2010/1Q10-Storage-Network-Equipment-Market-Highlights.asp

[73] P. Hazucha, C. Svensson, and S. Wender, “Cosmic-ray soft error rate
characterization of a standard 0.6-& CMOS process,” Solid-State Circuits,
IEEE Journal of, vol. 35, no. 10, pp. 1422–1429, 2000.

[74] Y. Tosaka, H. Kanata, S. Satoh, and T. Itakura, “Simple method for
estimating neutron-induced soft error rates based on modified BGR model,”
Electron Device Letters, IEEE, vol. 20, no. 2, pp. 89–91, 1999.

[75] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson, “On latching
probability of particle induced transients in combinational networks,” in
Fault-Tolerant Computing Symposium, 1994, pp. 340–349.

[76] M. Baze and S. Buchner, “Attenuation of single event induced pulses
in CMOS combinational logic,” IEEE Transactions on Nuclear Science,
vol. 44, no. 6, pp. 2217–2223, 1997.

[77] S. Buchner, M. Baze, D. Brown, D. McMorrow, and J. Melinger,
“Comparison of error rates in combinational and sequential logic,” IEEE
Transactions on Nuclear Science, vol. 44, no. 6, pp. 2209–2216, 1997.

[78] M. Gadlage, P. Eaton, J. Benedetto, and T. Turflinger, “Comparison of
heavy ion and proton induced combinatorial and sequential logic error rates
in a deep submicron process,” IEEE Transactions on Nuclear Science,
vol. 52, no. 6, pp. 2120–2124, Dec. 2005.

[79] R. R. Rao, K. Chopra, D. Blaauw, and D. Sylvester, “An efficient static
algorithm for computing the soft error rates of combinational circuits,” in
Design, Automation, and Test in Europe, 2006, pp. 164–169.

[80] S. Yang, “Logic synthesis and optimization benchmarks user guide,” 1991.

[81] F. Brglez and H. Fujiwara, “A neural netlist of ten combinational benchmark
circuits and translator in Fortran,” in ISCAS, 1985.

[82] N. Miskov-Zivanov and D. Marculescu, “Circuit Reliability Analysis Using
Symbolic Techniques,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 12, pp. 2638–2649, 2006.

[83] Miskov-Zivanov, N. and Marculescu, D., “Modeling and Optimization
for Soft-Error Reliability of Sequential Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 5,
pp. 803–816, 2008.

[84] ——, “A systematic approach to modeling and analysis of transient faults
in logic circuits,” in 2009 10th International Symposium on Quality of
Electronic Design. Ieee, Mar. 2009, pp. 408–413.

[85] L. Massengill, A. Baranski, D. Van Nort, J. Meng, and B. Bhuva, “Analysis
of single-event effects in combinational logic-simulation of the AM2901
bitslice processor,” Nuclear Science, IEEE Transactions on, vol. 47, no. 6,
pp. 2609–2615, 2000.

[86] A. Nieuwland, S. Jasarevic, and G. Jerin, “Combinational Logic Soft
Error Analysis and Protection,” in IEEE International On-Line Testing
Symposium. IEEE, 2006, pp. 99–104.

76

[87] R. Ramanarayanan, V. S. Degalahal, R. Krishnan, J. Kim, V. Narayanan,
Y. Xie, M. J. Irwin, and K. Unlu, “Modeling Soft Errors at the Device and
Logic Levels for Combinational Circuits,” IEEE Transactions on Dependable
and Secure Computing, vol. 6, no. 3, pp. 202–216, 2009.

[88] J. S. Kim, C. Nicopoulos, N. Vijaykrishnan, Y. Xie, and E. Lattanzi,
“A Probabilistic Model for Soft-Error Rate Estimation in Combinational
Logic,” 1st International Workshop on Probabilistic Analysis Techniques
For Real Time And Embedded Systems (PARTES), 2004.

[89] “ARM AMBA 3 AXI Specification (available at
http://www.arm.com/products/solutions/axi spec.html).”

[90] N. Seifert, P. Shipley, M. Pant, V. Ambrose, and B. GiII, “Radiation-induced
clock jitter and race,” in IEEE International Reliability Physics Symposium.
IEEE, 2005, pp. 215–222.

[91] J. F. Ziegler, H. P. Muhlfeld, C. Montrose, H. Curtis, T. O’Gorman, and
J. Ross, “Accelerated testing for cosmic soft-error rate,” IBM Journal of
Research and Development, vol. 40, no. 1, pp. 51–72, 1996.

[92] E. H. Cannon, A. J. Kleinosowski, R. Kanj, D. D. Reinhardt, and R. V.
Joshi, “The Impact of Aging Effects and Manufacturing Variation on SRAM
Soft-Error Rate,” IEEE Transactions on Device and Materials Reliability,
vol. 8, no. 1, pp. 145–152, 2008.

[93] M. Bukhori, A. Brown, S. Roy, and A. Asenov, “Simulation of statistical
aspects of reliability in nano CMOS transistors,” in International Integrated
Reliability Workshop, 2009, pp. 82–85.

77

Appendix A

Acronyms

AA The Automobile Association

ABS Anti-lock Braking System

ADD Algebraic Decision Diagram

ADAC Allgemeiner Deutscher Automobil-Club e.V.

AEC Automotive Electronics Council

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ASSP Application Specific Standard Product

ATB Advanced Trace Bus

AUTOSAR Automotive Open System Architecture

AXI Advanced eXtensible Interface

BCD Bipolar CMOS DMOS

BDD Binary Decision Diagram

BGR Burst Generation Rate

BPSG Borophosphosilicate Glass

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DAC Double Address Check

DEC Double Error Correction

78

DISD Disallowed behaviour

DL Deadlock

DMA Direct Memory Access

DMAC Direct Memory Access Controller

DMOS Doublediffused MetalOxideSemiconductor

DMR Dual Modular Redundancy

DRAM Dynamic Random Access Memory

DUE Detected Uncorrectable Error

ECC Error Correcting Code

ECU Electronic Control Unit

EDAC Error Correction or Detection Code

EM Electrical Masking

ERS Engineering Requirement Specification

ESC Electronic Stability Control

EU European Union

FIT Failures In Time (number of failures per billion hours in which a
device is in operation)

GeV Giga electron Volt

GUI Graphical User Interface

HAD Hamming Address Decoder

Hκ-MG High-κ-Metal Gate

IC Integrated Chip

IEC International Electrotechnical Commission

INDE Incorrect Destination

IP Intellectual Property

IR Incorrect Result

ISO International Organization for Standardization

ITRS International Technology Roadmap for Semiconductors

JEDEC JEDEC Solid State Technology Association

LET Linear Energy Transfer

LM Logical Masking

79

LSI Large Scale Integration

LWM Latch-Window Masking

Mbit Mega-bit (one million bits)

MBU Multi-Bit Upset

MC Memory Corruption

MCU Multi-Cell Upset

MET Multiple Event Transient

MeV Mega electron Volt

MI Master Interface

MPU Microprocessor Unit

MTBF Mean Time Between Failure

NCS Neutron Cross Section

NPL Non-Payload

OCP Open Core Protocol

PL Payload

PRS Product Requirement Specification

QoS Quality of Service

RAID Redundant Array of Independent Disks

RAM Random Access Memory

R&D Research and Development

RISC Reduced Instruction-Set Computer

ROI Return On Investment

RTL Register Transfer Level

SAN Storage Area Network

SBU Single-Bit Upset

SDC Silent Data Corruption

SEC-DED Single Error Correcting-Double Error Detecting

SEE Single Event Effect

SEL Single Event Latch-up

SELSE Workshop on Silicon Errors in Logic - System Effect

80

SEMM Soft Error Monte carlo Modeling

SER Soft Error Rate

SET Single Event Transient

SEU Single Event Upset

SFI Statistical Fault Injection

SI Slave Interface

SIA Semiconductor Industry Association

SIL Safety Integrity Level

SLVERR Slave Error

SoC System-on-a-Chip

SOI Silicon on Insulator

SPICE Simulation Program with Integrated Circuit Emphasis

SRAM Static Random Access Memory

TCM Tightly Coupled Memory

TMR Triple Modular Redundancy

UB Undefined Behaviour

USB Universal Serial Bus

VPI Verilog Procedural Interface

81

Appendix B

SELSE Paper

82

Design For Reliability: An Analysis of Logical
Masking on Transient Faults

Derek Graham
�
, Daryl Bradley

�
, Scott Roy

�
, Per Strid

�
, Fernando Rodriguez

�
�
Institute for System Level Integration

(Universities of Edinburgh, Glasgow, Heriot-Watt and Strathclyde)�
ARM Ltd�

University of Glasgow

Abstract—The propagation of transient faults within a building
block of a microprocessor was studied to ascertain the influence
its design may have on its reliability. Statistical fault injection
was performed on various implementations of adders to study
the effect that the micro-architecture has on the logical masking
of the circuit. This provides an upper bound on the likelihood of
a fault appearing at the output of a component because the two
other masking phenomena within combinational logic - electrical
masking and latch-window masking - are not considered. The soft
error rate, which includes logical masking, used in conjunction
with other metrics, such as power, performance, and area, would
help a designer to weigh the benefit between choosing a different
implementation based on the error rate or applying a mitigation
technique to the existing implementation. We find that the largest
difference in error rate between the 32-bit adder implementations
is 3.1X and that the error rate decreases with higher synthesis
frequency. We then relate this to measures of circuit composition,
such as fan-out and mean path length.

I. INTRODUCTION

Compared to physical experimentation, performing statisti-
cal fault injection by simulation to analyse the impact of errors
on a system benefits from higher controllability, observability,
cost efficiency, and increases confidence by enabling testing
before implementation. This work uses this method to model
the effect of transient faults, which can occur due to a
number of reasons, including power supply and interconnect
noise, electromagnetic interference, and particle strikes due
to radiation from the packaging materials and the atmosphere
[1], [2]. The impact of single-event upsets (SEUs) on sys-
tem reliability due to particle strikes has been predicted to
increase with shrinking process feature size [3]–[5] and those
originating from non-memory logic areas (i.e. combinational
and sequential logic) are envisaged to become more important
than those from memory [6], [7].

The adder is a crucial unit of a microprocessor’s pipeline,
that is utilised for many operations other than explicit add
instructions, such as in the computation of the address for the
next instruction. Therefore, if the adder were to experience a
fault and cause an incorrect result, the severity would be great.

Various implementations of an adder at widths of 8 to 64
bits were used to explore the effect that the composition of
the circuit has on logical masking.

This paper is organised as follows: the next section describes
the method in which logical masking is measured, then the
results are presented for various adder implementations at

different widths in section III, followed by a discussion on
the relation between the circuit topology and logical masking,
and then finally the conclusion.

II. METHOD

The soft error rate (SER) of a circuit due to particle strikes
can be calculated as [8]:

�����	�
����
���������������

Where
����

is the particle hit rate,
�

is the fraction of hits
that result in a single-event transient (SET) and

���������
is the

probability of that SET becoming a SEU or soft error. Neutron
cross section [9], [10] and burst generation rate [11], [12] are
two commonly used methods to calculate the effective particle
hit rate (

� �� ���
).

In this report we assume that every particle hit is effective,
which is modelled as a fault injection. In combinational logic,���������

encapsulates three phenomena that act to mask the
SET before realising a SEU: logical masking, electrical mask-
ing and latch-window masking. We consider the factors that
effect the logical masking properties of a circuit. The width
of the SET pulse is set to the same size as the clock period to
discount latch-window masking. These factors provide a worst
case analysis of the impact of the propagation of transient
faults.

Faults are injected into a post-synthesised gate-level rep-
resentation, which will have a strong correlation with the
corresponding physical circuit. The implementation will in-
fluence the types of gates selected and the way that they
are connected. The statistical fault injection tool injects the
same amount of faults into each circuit and the location of a
injection is uniformly random. Only gates are targeted and
not the input or output registers, which would be part of
the pipeline. This ensures that we only take into account the
logical composition of the circuit. In reality, of course, the
probability of a fault would vary due to environmental and
technology process factors.

Logical masking will be measured in terms of incorrect
results (IR), which is defined as the number of wrong results
from the addition, no matter how many output bits are in error,
i.e. if a fault corrupted three output bits, then this is counted as
one incorrect result. The rate of incorrect results, or just simply
the error rate for this paper, is normalised by the number of

TABLE I
SIZE AND ERROR RATES FOR EACH 32-BIT ADDER IMPLEMENTATION

Implementation Area (synthesis
units)

Gates IR (%) IR (%)/Gate

pparch 1249 160 88.36 0.55
rpl 1467 192 77.67 0.40
bk 1562 235 81.06 0.34
clf 1626 246 81.26 0.33

rpcs 1669 224 73.46 0.33
cla 1702 268 72.68 0.27
csm 3166 345 60.98 0.18

target gates, not area, because an injection site is randomly
chosen from the set of gates rather than being influenced by
sensitive area. Of course,

�
will be proportion to sensitive

area, but this work only analyses the effect of logical masking
on

���������
.

The adder implementations are created by Synopsys’ Design
Compiler synthesis tool with a TSMC 130nm process. Using
the Synopsys Design Ware IP Library, Design Compiler is
forced to select an implementation during synthesis. The
following seven adder implementations were compared:
� Ripple-carry (rpl)� Carry-look-ahead (cla)� Fast carry-look-ahead (clf)� Brent-Kung (bk)� Conditional sum (csm)� Ripple-carry-select (rpcs)� Delay-optimised flexible parallel-prefix (pparch)
The input values have a uniform random distribution and

change every clock cycle. Each adder implementation com-
pletes the operation in one clock period. The system waits for
long enough after a fault injection before performing another
to ensure that the effects of a fault do not overlap.

III. RESULTS

The results for the adders are based upon 100,000 samples,
so that with a confidence level of 99%, this gives an estimation
error of 0.816%.

The results show the rate of errors that appear at the clock
cycle immediately following the one in which the fault was
injected because this is when the result would be forwarded
onto the next stage in processing. Since the time at which the
fault is injected is random, a small number of errors show
up in the next clock cycle. All the circuits within this section
were synthesised at a frequency of 100MHz. Later, we will
analyse the effect of synthesis frequency on the error rate.

Figure 1 shows the variation of logical masking with each
adder implementation. They have been sorted in descending
order by the number of incorrect results per gate from left
to right and have been normalised to ’pparch’, i.e. ’pparch’
has the most number of wrong answers while ’csm’ has the
least. There is a 3.1X difference in the number of incorrect
results per gate between the largest implementation, ’csm’,
and the smallest ’pparch’. The largest difference between the
remaining implementations is about half of that. From Table

Fig. 1. Incorrect result error rate per gate for each 32-bit adder implemen-
tation (normalised to ’pparch’)

I, ’csm’ is about 2.5 times larger than ’pparch’ (because it is
composed mostly of multiplexers).

The error rate per gate decreases for all implementations
with increasing width. Across all the widths tested, ’pparch’
has the largest error rate while ’csm’ retains the smallest and
the difference between them increases.

IV. DISCUSSION

From Figure 1, we can see that the implementation does
have a significant impact on logical masking and is not just
due to the number of gates (and thus the size). Logical masking
will be influenced by signal propagation probabilities (i.e. if
a fault that appears at the input of a gate, how likely is it
to change the value of the output) and input values. Other
measures of a circuit’s complexity or composition may influ-
ence logical masking. If we view a circuit as a directed acyclic
graph where the gates are the vertexes and the interconnecting
wires are edges, then we can characterise the composition of
a circuit using common measures of graph topology, such
as the degree distribution and mean path length. In circuit
terms, the degree distribution corresponds to the fan-in and
fan-out distributions while we define the mean path length as
the shortest distance (in terms of number of gates) between a
target cell and an output register.

The fan-in distribution of a circuit will show the number of
inputs a gate is likely to have. As the gates of all circuits under
consideration are nearly all of two inputs this information does
not help to reveal a relation with logical masking.

The majority, about 70%, of the gates in ’csm’ have a fan-
out greater than or equal to two, while for the rest the majority
of gates have a fan-out of one. Counter intuitively, this would
suggest that an increase in the mean fan-out of a circuit would
give a lower error rate. To explain this, we need to look at the
association of path length with the error rate.

Figure 2 shows that there is a fairly strong positive corre-
lation between the product of mean fan-out and mean path
length with the error rate. A circuit with a larger mean path
length will imply that a fault can propagate to more outputs
and therefore would be more likely to cause an incorrect

Fig. 2. Correlation between the product of the mean (shortest) path length
and mean fan-out with the incorrect results for each 32-bit adder

Fig. 3. Shortest path length distribution for ’pparch’ synthesised at different
frequencies

result. This would suggest that a lower mean fan-out and
shorter distances between gates and outputs will result in
higher masking. So although ’csm’ has a higher mean fan-
out than all other implementations, its affect on the error rate
is outweighed by its low mean path length. Convergence of
the paths is likely to have an impact, but is not taken into
account in this work.

At a synthesised frequency of 100MHz, the distribution
of path length frequency is rather flat and wide for all
implementations except ’csm’. As the frequency at which the
adders are synthesised is increased up until the maximum
permissible, the distribution of path lengths normalises and
the mean path length reduces. Figure 3 shows this for the
implementation with the highest error rate, ’pparch’.

Therefore the error rate decreases with increasing synthesis
frequency and the largest difference in error rate decreases
too, such that at 900MHz the difference between ’csm’ and
’pparch’ is 2.1X. The bold line in Figure 4 shows this
change in error rate with synthesis frequency for the ’pparch’
implementation (with equal run frequency).

This increase in synthesis frequency, however, leads to
more errors appearing in the cycle after the adder operation

Fig. 4. Variation in incorrect results with synthesis and run frequency

completes, i.e. two cycles after the one in which the fault was
injected. This can have serious consequences as errors will
spill over into other operations that utilise the adder, which
is clearly undesirable. For ’pparch’ synthesised and ran at
100MHz, the number of errors that appear in the second cycle
total only 1% of those in the first, although this increases to
12% at 900MHz.

The designer then has to trade-off how much the synthesis
frequency is increased since this decreases the error rate for
that operation (by lowering the mean path length), but in-
creases the likelihood that an error will affect other operations.

If we consider that the objectives of a designer within
this context are to maximise the performance of the circuit,
minimise the area, and minimise the soft error rate, then the
designer can control these constraints by varying the synthesis
frequency ("!$#&%('*)) and the run frequency ("+-,.%), which reveals
the following dependencies:

1) increasing !/#&%('*) increases the potential performance
and lowers the mean path length and thus the error rate,
but increases the area

2) increasing 0+1,.% improves the performance, but increases
the likelihood of errors in subsequent operations

If we synthesise ’pparch’ at the maximum frequency of
900MHz, but run it at various lower frequencies, we find
that the error rates over time are less than the circuits where
 !$#�%('*) � +1,�% (compare both lines in Figure 4) due to the
advantageous changes in circuit composition made by the
synthesis tool at the higher speed. This benefit diminishes as
 +1,.% approaches !$#&%0'*) .

It may be of benefit to a designer targeting for a lower
performance to run the circuit at a lower speed than that
synthesised for, but at the cost of an increase in sensitive area.
The overall gain will depend on the corresponding increase in
the effective particle hit rate. This will also be important to
designs that employ dynamic frequency scaling as the variation
in run frequency will impact the logical masking of errors.

V. CONCLUSIONS

The effect that the micro-architecture of a circuit has on the
logical masking was studied by using statistical fault injection
on various adders.

It was shown that the implementation of the circuit has a
significant impact on logical masking as the largest difference
between the 32-bit adders was 3.1X. Logical masking is only
one component that determines whether a SET becomes a soft
error in combinational logic and so presents the theoretical
worst case. The sensitive area, which is used to calculate the
effective particle hit rate, must also be taken into consideration
by the designer when choosing an implementation based on
the SER.

Measures of the circuit’s topology were explored to relate
the composition to logical masking. The data suggests that a
lower mean path length and lower mean fan-out results in a
higher amount of logical masking. As highlighted in the case
of the ’csm’ implementation, which had the highest masking,
the effect of a lower mean path length dominates an increase
in mean fan-out. It was found that increasing the synthesis
frequency results in a lower mean path length and error rate,
but has the repercussion that more errors could materialise in
subsequent operations that utilise the adder and thus increase
the chance of system failure. It is proposed that the circuit be
ran at a lower frequency than synthesised for to lower the error
rate, which has implications for systems that employ dynamic
frequency scaling.

The logical masking, and thus the soft error rate, of a
crucial part of a microprocessor would help a designer - along
with other metrics - to gauge the benefit between choosing a
different implementation or applying a mitigation technique
to the existing one, such as altering the composition of the
circuit.

REFERENCES

[1] J. Ziegler, “Terrestrial cosmic rays,” in IBM Journal of Research and
Development, vol. 40, no. 1, January 1996, pp. 19–39.

[2] C. Constantinescu, “Impact of deep submicron technology on depend-
ability of vlsi circuits,” in Dependable Systems and Networks, 2002.
Proceedings. International Conference on, 23-26 June 2002, pp. 205–
209.

[3] R. Baumann, “The impact of technology scaling on soft error rate
performance and limits to the efficacy of error correction,” in Electron
Devices Meeting, 2002. IEDM ’02. Digest. International, 8-11 Dec.
2002, pp. 329–332.

[4] P. Hazucha et al., “Neutron soft error rate measurements in a 90-
nm cmos process and scaling trends in sram from 0.25-um to 90-nm
generation,” in Electron Devices Meeting, 2003. IEDM ’03 Technical
Digest. IEEE International, 8-10 Dec. 2003, pp. 21.5.1–21.5.4.

[5] ITRS, “International technology roadmap for semiconductors 2005,”
ITRS. [Online]. Available: http://www.itrs.net/

[6] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Dependable Systems and Networks, 2002.
Proceedings. International Conference on, 23-26 June 2002, pp. 389–
398.

[7] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” Device and Materials Reliability, IEEE Transactions on,
vol. 5, no. 3, pp. 305–316, Sept. 2005.

[8] M. Zhang and N. Shanbhag, “A soft error rate analysis (sera) method-
ology,” in Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM
International Conference on, 7-11 Nov. 2004, pp. 111–118.

[9] A. Taber and E. Normand, “Single event upset in avionics,” Nuclear
Science, IEEE Transactions on, vol. 40, no. 2, pp. 120–126, 1993.

[10] P. Hazucha, C. Svensson, and S. Wender, “Cosmic-ray soft error rate
characterization of a standard 0.6-& cmos process,” Solid-State Circuits,
IEEE Journal of, vol. 35, no. 10, pp. 1422–1429, Oct. 2000.

[11] J. F. Ziegler and W. A. Lanford, “Effect of cosmic rays on computer
memories,” in Science, vol. 206, no. 4420, November 1979, pp. 776–
788.

[12] Y. Tosaka, H. Kanata, S. Satoh, and T. Itakura, “Simple method for
estimating neutron-induced soft error rates based on modified bgr
model,” Electron Device Letters, IEEE, vol. 20, no. 2, pp. 89–91, Feb.
1999.

Appendix C

DSN Paper

87

A low-tech solution to avoid the severe impact of transient errors on the IP
interconnect

Derek Graham
Institute for System Level Integration

Derek.Graham@sli-institute.ac.uk

Per Strid
ARM Ltd

Scott Roy and Fernando Rodriguez
University of Glasgow

Abstract

There are many sources of failure within a System-on-
Chip (SoC), so it is important to look beyond the processor
core at other components that affect the reliable operation
of the SoC, such as the fabric included in every one that
connects the IP together. We use ARM’s AMBA 3 AXI bus
matrix to demonstrate that the impact of errors on the IP
interconnect can be severe: possibly causing deadlock or
memory corruption. We consider the detection of 1-bit tran-
sient faults without changing the IP that connects to the bus
matrix or the AMBA 3 standard and without adding extra
latency while keeping the performance and area overhead
low. We explore what can be done under these constraints
and propose a combination of techniques for a low-tech so-
lution to detect these rare events.

1 Introduction

Extensive work has been invested in the design [8, 2]
and verification [11, 1] of dependable computers for high
RAS (Reliability, Availability and Serviceability) applica-
tions, however, these techniques are not likely to be suit-
able or required for embedded SoCs, where dependability
requirements vary widely with market segments – from mo-
bile to automotive. Much work in embedded systems has
focussed on the protection of microprocessors, with ARM
offering processors with support for ECC on various types
of memory and support for a redundant processor [5]. How-
ever, these only form part of a complete SoC, so it is im-
portant to look at other components that affect its reliable
operation.

This paper examines the impact that transient faults can
have on ARM’s AMBA 3 AXI fabric – the standard bus
based IP interconnect in embedded SoCs. When qualify-
ing the reliability of a device, it is important to realise that
we cannot just consider the overall failure rate, we need to
know the severity because the consequence of each failure
may not be the same. Although the chances of such an error

occurring are small, the risk of not considering the intercon-
nect fabric is still high due to the severity of the impact.

There are many sources that can induce transient faults,
such as electromagnetic interference, electrostatic discharge
[9], power supply noise and crosstalk [14], radioactive parti-
cle strikes (soft errors) [10, 15], and aging (e.g. NBTI [12]).
However, before it progresses to an error it has to avoid be-
ing masked by bus logic – either logically, electrically, or
from the latch-window effect. Logical masking takes effect
in various ways: the fault has to occur when the bus is being
utilised, it has to occur at certain locations in the logic, and
at certain times during a transaction. These type of events
are random, rare, and depend on many factors including the
surrounding environment, process technology, and circuit
layout. This uncertainty makes estimating the probability
of these errors difficult, but as their occurance is thought to
be increasing with further integration (e.g. [4, 13] for soft
errors) and as their impact can be high they warrent enough
concern in certain applications to design systems so that the
time between failure is at least maintained.

It is not uncommon in a SoC for the AXI bus matrix to
constitute around 20-30% of the die area, which with in-
creasing bus matrix sizes mean that a significant amount of
logic is susceptible to the types of faults mentioned above.

2 Context

Within this work we make the following assumptions:

• we consider transient faults only

• 1-bit error

• can’t change the master and slave IP that connects to
the bus matrix

• can’t change the AMBA 3 standard

• no extra latency

• low frequency overhead

• minimal area overhead

We explore what can be done under these constraints and
aim for a low-tech solution to detect these rare events be-
cause low overheads will decrease the friction for adoption
and a highly complex scheme may actually make the device
more unreliable.

We believe that the automotive and networking, specif-
ically storage networking, will be most likely interested in
this work as they both care about dependability, but in dif-
ferent ways: safety and availability, respectively. This af-
fects their requirements where automotive are sensitive to
latency but less so to performance and area and as exem-
plified in ISO26262, the automotive version of IEC61508
[6] in development, error detection is satisfactory. For net-
working, performance is critical and can have extra register
stages to keep throughput high, but are likely to require er-
ror correction.

3 AXI Overview

The AXI bus protocol [3] is burst based and has five in-
dependent unidirectional channels – three for writing and
two for reading – that carry the address/control and data
phases. Every transaction has address and control informa-
tion on the address channel (AW for the write channel and
AR for the read channel) that describes the nature of the
data to be transferred. The data is transferred between mas-
ter and slave using a write data channel (W) to the slave or
a read data channel (R) to the master. In write transactions,
in which all the data flows from the master to the slave, the
AXI protocol has an additional write response channel (B)
to allow the slave to signal to the master the completion of
the write transaction or an error. A burst is made up of a
number of transfers, which is a unit of data whose width is
specified on the AW or AR channel. See Table 1 for a de-
scription of signals on each channel. The signals have been
grouped into types as they may feature on more than one
channel, e.g. the signal type is prefixed with the channel
abbreviation so ID features on all channels: AWID, ARID,
WID, BID, and RID. Those signals types with a * suffix are
referred to as the “control signals”.

AXI uses a two wire handshake, using the VALID
and READY signals, to exchange information between the
sender and receiver. VALID is used to show when valid
data or control information is available and the destination
uses the READY signal to show when it can accept the data.
Both the read data channel and the write data channel also
include a LAST signal to indicate when the transfer of the
final data item within a transaction takes place.

The standard also features a sideband signal, USER, up
to 32 bits on each channel that allows the SoC designer to
extend the protocol to carry implementation specific infor-
mation.

4 Impact of Errors on the AXI Bus Matrix

We can classify the impact of an error on each AXI sig-
nal into those that cause deadlock (DL), memory corruption
(MC), and undefined behaviour (UB) (so failure may result
depending on the application). Memory corruption could
cause failure later in time, if the data is used at some point
or if it incorrectly controls an actuator. This was tested by
injecting faults at the RTL and observing the consequences.
Lin et al. [7] perform fault injection on the AMBA AHB
protocol (targeted for lower performance) and similarly cat-
egorised errors. They also invented a scheme to predict the
effect of a single bit error on a signal for any application
with high accuracy.

Table 1 shows the impact for each signal and two exam-
ples are given below. These cases were tested by injecting
faults into the RTL of the bus matrix.

4.1 LEN

The LEN signal specifies the number of transfers (i.e.
data chunks) within a burst. We have to consider the ef-
fect of an error changing LEN to a higher value or a lower
value. In the former case, it will cause deadlock because
the slave expects more transfers than the master will send
so the slave blocks which causes the master to block as it
is waiting on a write response on the B channel. This pre-
vents any other master from accessing that slave and thus
blocks itself, which can cause the whole bus to deadlock.
In the latter case, the slave uses the LAST signal to deter-
mine how many transfers to consume so it still receives the
correct amount. However, the slave uses LEN to calculate
the address (which is only sampled once at the begining of
a transaction) so can cause memory corruption. In the test
setup, we wrote two 32-bit transfers to a 64-bit wide mem-
ory and changed LEN from two to one, which did not cor-
rupt memory because of the size of the transfer and memory
alignment. This highlights the subtle masking that depends
on the properties of the transfer and configuration of the bus
matrix.

4.2 VALID

The VALID signal is one part of the two-way handshake,
which informs the receiver that data is available. An error
on VALID can cause deadlock if it transitions from high
to low. For example, if the slave has AWREADY high
(i.e. the slave is ready to accept information on the address
write channel) and the master drives valid data, but an error
causes the slave to miss AWVALID high on the following
clock cycle then the master thinks there has been a hand-
shake and de-asserts AWVALID so that the slave never re-
alises there was a transfer. The master blocks because it

Table 1. Source: M = Master, S = Slave. Impact: DL = Deadlock, MC = Memory Corruption, UB =
Undefined Behaviour. Those signals types with a * suffix are referred to as the control signals.

AXI Signal Type On Channel Source Description Impact
ID* All M, S The identification tag for the

master
DL

ADDR AW, AR M The read or write address All
LEN* AW, AR M The number of transfers

within a burst
DL, MC

SIZE* AW, AR M The width of each transfer in
the burst

MC

BURST* AW, AR M Specifies how the address
for each transfer is calcu-
lated

MC

LOCK* AW, AR M Additional information
about the atomic character-
istics of the transfer

DL, UB

CACHE* AW, AR M Additional information
about the cacheable charac-
teristics of the transfer

UB, MC

PROT* AW, AR M Protection unit information
for the transaction

UB, MC

VALID* All M, S Whether information is
available from the sender

All

READY* All M, S Indicates that the recipient is
ready to accept the informa-
tion

DL

DATA W, R M, S The actual read or write pay-
load data

MC, UB

STRB* W M Which byte lanes to update
in memory

MC

LAST* W, R M, S Indicates the last transfer
within a burst

All

RESP B, R S Indicates the status of the
write or read transaction

UB

doesn’t get a write completion response.
If an error causes a transition on VALID from low to high

and the slave is waiting on a handshake then it will sample
garbage from the bus which could corrupt memory or lead
to undefined behaviour.

5 Proposal

Addressing reliability issues can be tackled using redun-
dancy in three main ways: space, time, and information re-
dundancy. Time redundancy is disregarded because of the
no extra latency and low performance overhead constraints.
Looking for the simplest techniques, we first see how space
redundancy can’t be used and then how we conclude with a
mix of information redundancy through three techniques.

Since we primarily care about detection, in the simplest
case for space redundancy we can’t duplicate the entire bus
matrix as this obviously doubles the area and will increase
the chance of an error occurring in the first place. If a cus-
tomer believes that only the traffic between certain master
and slave IP is important, then we can save area by dupli-
cating those communications by instantiating another ma-
trix connected to only those IP. However, there is a limit
on the size of this smaller duplicated bus matrix relative to
the original to ensure that area overhead requirements are
met and, more importantly, an error that occurs between
the other IP – whose traffic is not duplicated – can cause
the whole bus matrix to deadlock. Another approach would
be to duplicate only the control signals on which an error
can cause deadlock, however, the area increase is too much:
using the sideband signals of the AMBA standard to carry
these duplicated signals – which has a maximum width of
32 bits – increases the area of a realistically sized bus ma-
trix with eight masters and six slaves by 42%, so it’s not
scalable.

Three techniques are proposed, 1) for the control signals,
2) address signals, and 3) the data payloads. These different
approaches come about because placing the parity encoders
inline reduces the maximum frequency too far for the wide
address (32 bits) and data (up to 1024 bits) signals. Even
though the likelihood of failure in some of these cases is
rare, the severity is still high and the proposal is that parity
and ECC can detect them at a low cost.

5.1 Control Scheme

These measurements are made on bus matrix with two
masters and two slaves with both masters able to access both
slaves. This is intentionally small because if the overheads
are acceptable on this, then they will be acceptable on larger
matrices since the growth in area due to the size will domi-
nate the growth in area needed for covering more channels
with parity.

Figure 1. Address split into the n bits which
specify which region and the m bits which ad-
dress within a region

Figure 2. The memory map for two slaves
split into smaller regions and then remapped
to be separated by a Hamming distance of
two

1-bit inline parity on the control signals (14 on the AW
channel) results in a negligible area overhead and no fre-
quency drop. However, applied on the 32-bit address signal
there is drop in the maximum synthesisable frequency of
60%, which is clearly too high. If four bits of parity are used
the maximum frequency halves with a 25% increase in area
mainly due to the extra sideband signals that are needed to
accommodate the extra wires needed for each parity bit.

5.2 Address Scheme

An erroneous value on the address signal can cause the
transaction to address a different location within the same
slave or re-route it to a different one, thus causing memory
corruption and possibly further severe consequences later.
This requires that the error code to detect an error must be
sent with the address. Since the overheads for protecting
the entire address width with inline parity is too great, it
is proposed that only a portion of the least significant bits
are parity protected (which defines the memory region size
- bits ’m’ in Figure 1) and the memory map is rearranged so
that a bit error in the most significant bits (which specifies
the region - bits ’n’ in Figure 1) causes the transaction to be
routed to an unmapped region, which according to the AXI
protocol will cause an error response to be returned to the

master. Although this limits the SoC to half of the original
memory, in real automotive safety systems more than half
is rarely used. This will likely not be the case in networking
systems, but then the extra cycle of latency introduced with
a register slice can be tolerated, therefore this technique is
not needed.

The following scheme is used to determine which re-
gions to use. In Figure 2 we have split the memory map
for two slaves into eight regions, so the top three bits of the
address, n, index them. The remaining bits, m, are protected
with parity. Only those region indexes separated by a Ham-
ming distance of two are mapped, which means that a 1-bit
error in any of the top three bits will cause the master to
address an unmapped region, which will automatically in-
duce an error response to the sender. This technique can be
expanded to use a Hamming distance of three, so that 1-bit
errors are corrected, but at the cost of quartering the avail-
able memory space. Consequently, this scheme requires a
minimal change to the software to alter the header file to
use the new memory map and at worst a re-compile, but
not any change to the functionality. The area and frequency
overheads are acceptable on realistically sized bus matri-
ces. Thus, 1-bit errors on the address signal can be detected
without adding extra latency, but at the cost of halving the
addressable memory and a re-compile of the software.

5.3 Data Payload Scheme

The constraint on the address was that the error had to be
detected before it reached its destination. With the data pay-
load it is proposed that this is relaxed so that the data is al-
lowed to pass through without being checked immediately.
An ECC is sent on the sideband signals in the subsequent
cycle so that it can correct the value if there was an error,
which is then re-written. It is sent on the following cycle
because the ECC takes some time to decode and check and
we don’t want to introduce latency.

In some cases, the payload will be checked by the des-
tination, for example when it is transmitted across an ex-
ternal transmission line to another processor, however there
are cases where it won’t be as it is not expected that an error
can occur on the data when sent across the bus. Although
memory may have ECC, it is only to protect errors that oc-
cur while that value is held there. An incorrect data payload
can incorrectly configure a peripheral, such as a brake con-
troller, or send it a wrong command. The assumption here
is that the erroneous data value written will not have an im-
mediate impact. The reason we can make this assumption
is that some peripherals operate far slower, so there is time
to correct either by re-writing the value or by simply reset-
ting the peripheral. This may not be applicable to all types
of memory, e.g. a FIFO, but at least resetting the device
allows the failure to be controlled.

Figure 3. Data payload scheme timing with no
error. The address is only sent at the start so
A1 (address one) in a dotted outline is only
for illustration purposes. The tuple at the bot-
tom of the diagram shows what information
the slave has received, i.e. the data and the
checksum (φ for null)

Figure 4. Data payload scheme timing with an
error on D1 (data value 1) indicated by the *
suffix

Figure 3 shows an example of the timing in the case of no
error, while Figure 4 highlights what happens when there is
an error. There needs to be an extra transfer at the end of the
transaction for the last ECC, but this extra cycle will only
impact the latency of the subsequent transaction if it occurs
immediately after the last. When an error is detected the
master is simply stalled by one cycle to allow for correct, so
that latency is only introduced when there is an error.

The address of the unchecked payload is buffered un-
til the ECC check is made. If it passes then the value is
cleared from the buffer, but if it doesn’t then the master is
stalled, and the correct data is written to the stored address
before it is cleared. The area overhead is small since it in-
cludes the ECC decode and a buffer which needs to store
two 32-bit addresses at most (one for the address of the new
unchecked payload and the other for last payload whose ad-
dress is needed to re-write the data value if there was an
error). Thus an error can be corrected on the data pay-
load with low cost and without introducing extra latency,
but only where it is deemed safe that the error will not have
an immediate impact.

6 Conclusion

The impact that 1-bit transient faults on the AMBA AXI
bus matrix can have was examined and it was found that the
consequences can be severe, possibly leading to deadlock,
memory corruption, or undefined behaviour. Under the con-
straints that the master and slave IP that connect to the bus
matrix can’t be changed nor the AMBA standard, that no
extra latency should be introduced, and the frequency and
area overheads minimised, a combination of three low-tech
schemes were proposed: parity on the control signals, re-
arranging the memory map using a Hamming distance of
two, and delayed ECC on the data payload. This a first step
in improving the reliability of the AXI interconnect which
represents an attractive choice now for the target markets,
automotive and networking, and with increasing silicon un-
reliability due to shrinking may lead to further techniques
in the future.

References

[1] H. Ando, K. Seki, S. Sakashita, M. Aihara, R. Kan., and
K. Imada. Accelerated testing of a 90nm sparc64 v micro-
processor for neutron ser. IEEE Workshop on Silicon Errors
in Logic - System Effects (SELSE), 2007.

[2] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa,
K. Morita, T. Muta, T. Motokurumada, S. Okada, H. Ya-
mashita, Y. Satsukawa, A. Konmoto, R. Yamashita, and
H. Sugiyama. A 1.3-ghz fifth-generation sparc64 micro-
processor. IEEE Journal Solid State Circuits, 38(11):1896–
1905, 2003.

[3] ARM. Amba 3 axi specification. (http://tinyurl.com/dfxt62).
[4] R. Baumann. Radiation-induced soft errors in advanced

semiconductor technologies. Device and Materials Relia-
bility, IEEE Transactions on, 5(3):305–316, Sept. 2005.

[5] D. Bradley and J. Penton. A perspective on developing ip
for embedded reliability. IEEE Workshop on Silicon Errors
in Logic - System Effects (SELSE), 2007.

[6] IEC. Functional safety and iec 61508.
[7] I. Lin, S. Srinivasan, and N. Vijaykrishnan. Transaction level

error susceptibility model for bus based soc architectures. In
Quality Electronic Design, 2006. ISQED ’06. 7th Interna-
tional Symposium on, pages 6pp.–780, 27-29 March 2006.

[8] M. Mack, W. Sauer, S. Swaney, and B. Mealey. IBM
POWER6 reliability. IBM Journal of Research and Devel-
opment, 51(6):763–774, 2007.

[9] D. Marsh. Silicon safeguards automotive circuits. EDN Eu-
rope, http://tinyurl.com/d3bl5c (retrieved 2008/12/15).

[10] T. May and M. Woods. Alpha-particle-induced soft errors
in dynamic memories. Electron Devices, IEEE Transactions
on, 26(1):2–9, Jan 1979.

[11] P. Sanda, J. Kellington, P. Kudva, R. Kalla, R. McBeth,
J. Ackaret, R. Lockwood, J. Schumann, and C. Jones. Soft-
error resilience of the ibm power6 processor. IBM JOUR-
NAL OF RESEARCH AND DEVELOPMENT, 52(3):275,
2008.

[12] D. Schroder and J. Babcock. Negative bias temperature in-
stability: Road to cross in deep submicron silicon semicon-
ductor manufacturing. Journal of Applied Physics, 94:1,
2003.

[13] N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V. Zia,
C. Brookreson, A. Vo, S. Mitra, B. Gill, and J. Maiz.
Radiation-induced soft error rates of advanced cmos bulk
devices. In IEEE International Reliability Physics Sympo-
sium Proceedings, 2006, pages 217–225, March 2006.

[14] K. L. Shepard and V. Narayanan. Noise in deep submicron
digital design. In Proc. IEEE/ACM International Confer-
ence on Computer-Aided Design ICCAD-96. Digest of Tech-
nical Papers, pages 524–531, 1996.

[15] J. Ziegler. Terrestrial cosmic rays. In IBM Journal of Re-
search and Development, volume 40, pages 19–39, January
1996.

	Introduction
	Technical Background
	Definitions
	The Physical Mechanics of a Soft Error
	Importance of Soft Errors
	Trends in the Soft Error Rate with Technology Scaling
	DRAM
	SRAM
	Sequential and Combinational Logic

	Attaining Dependability
	Measuring the Soft Error Rate
	Conclusion

	Commercial Background
	About ARM
	Trends
	Background
	Automotive
	Storage Networking

	Markets
	Automotive
	Storage Networking

	Soft Errors in Logic
	Method
	Results
	Discussion
	Related Work
	Conclusion

	The Impact of an Unreliable IP Interconnect
	Background
	Overview of the AMBA AXI Protocol
	Inside the NIC-301 Bus Matrix
	The Inherent Fault Tolerance of the AXI Bus Matrix

	The Effect of Logic Soft Errors on the Interconnect
	LEN
	VALID

	Commercialising the Fault Tolerance of AXI
	Error Detection and Correction Codes are not Sufficient
	Techniques for the Fault Tolerance of Non-Payload Signal Logic
	Solutions for Incorrect Destination (INDE) Errors
	Solutions for Disallowed Transaction (DISD) Errors

	An Add-On for AXI to Improve its Reliability
	Conclusion

	Conclusion
	Future Work

	Bibliography
	Acronyms
	SELSE Paper
	DSN Paper

