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Abstract

Atlas-Based Segmentation of medical images is an image analysis task which involves labelling
a desired anatomy or set of anatomy from images generated by medical imaging modalities. The
overall goal of atlas-based segmentation is to assist radiologists in the detection and diagnosis
of diseases. By extracting the relevant anatomy from medical images and presenting it in an
appropriate view, their work-flow can be optimised.

This portfolio-style thesis discusses the research projects carried out in order to evaluate
the applicability of atlas-based methods to a variety of medical imaging problems. The thesis
describes how atlas-based methods have been applied to heart segmentation, to extract the heart
for further cardiac analysis from cardiac CT images, to kidney segmentation, to prepare the
kidney for automated perfusion measurements, and to coronary vessel tracking, in order to
improve on the quality of tracking algorithms.

This thesis demonstrates how state of the art atlas-based segmentation techniques can be
applied successfully to a range of clinical problems in different imaging modalities. Each
application has been tested using not only standard experimentation principles, but also by
clinically-trained personnel to evaluate its efficacy. The success of these methods is such that
some of the described applications have since been deployed in commercial products.

While exploring these applications, several techniques based on published literature were
explored and tailored to suit each individual application. This thesis describes in detail the
methods used for each application in turn, recognising the state of the art, and outlines the
author’s contribution in every application.
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Chapter 1

Portfolio Overview

1.1 Introduction

1.1.1 Medical Imaging: A brief introduction

Medical imaging is defined as: "the techniques and processes used to create images of the human
body (or parts thereof) for clinical purposes (i.e. medical procedures seeking to reveal, diagnose
or examine disease) or medical science (including the study of normal anatomy and physiology)".

Over the years, several modalities have been invented and adopted for various tasks in
medical imaging, however the most prevalent of these in use today are Projection Radiography
(X-rays), Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound (US)
and Positron Emission Tomography (PET).

Projection Radiography X-rays are transmitted through the body, understanding that different
parts of the anatomy have different absorption properties, with bones being the highest. This
makes projection radiography most suitable for determining the type or extent of fractures,
dislocations, and arthritis. It is also used to visualise both benign and malignant tumours, and
finds some use in chest pathology.

While conventional use of projection radiography is in planar x-ray, x-rays are also used in
fluoroscopy and CT. Fluoroscopy makes use of low-dose x-rays to provide real-time imagery of
moving structures usually during surgery. The risks associated with frequent use of this method
come from repeated exposure to ionising radiation from the x-rays.

Computed Tomography The CT scanner consists of a patient table; a rotating x-ray source
and rotating detectors enclosed in a gantry. The emitted x-ray beams are attenuated by the internal
organs and the level of attenuation measured by the ring of detectors. Several mathematical
methods, such as filtered back projection and iterative reconstruction techniques are used to
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reconstruct the image from these attenuated signals. Modifications of this basic underlying
technology have led to the development of helical CT, in which the patient table is moved
through the gantry as the x-ray tubes rotate, thus producing a volume of contiguous slice
data. Multi-slice/multi-detector CT (MDCT) scanners are now common; these utilise the same
principles of the helical scanner, but contain multiple rows of detector rings. This allows the
scanner to capture multiple slices per rotation; thus increasing the anatomical area imaged in
a fixed time. Toshiba’s Aquilion ONE 320-slice CT scanner can cover a 16cm vertical range,
capable of imaging an entire organ, in one gantry rotation.

CT imaging is readily available in most hospitals due to its high image resolution (isotropic
pixel sizes high-end CT scanners are typically less than 0.5mm3), which makes it applicable
to a wide range of clinical procedures such as head and neck, cardiac, functional, pulmonary,
abdominal and pelvic imaging. The use of short wavelength x-rays cause ionisation in body
tissues, damaging cells over constant exposure. A single abdominal CT scan delivers up to
10mSv to the patient, compared with ≈ 3mSv average yearly background radiation dose in the
United States [1].

Magnetic Resonance Imaging Magnetic Resonance Imaging (MRI) applies a magnetic field
to force hydrogen nuclei in the body into alignment. Hydrogen is chosen because it is abundant
in the human body in form of water and fat. The hydrogen nucleus possesses the ‘spin’ property
which causes it to precess at a known frequency (termed the Larmor frequency) when an external
magnetic field is applied, and all the nuclei produce a net magnetisation vector pointing in the
direction of this external magnetic field. The Larmor frequency depends on the strength of the
applied magnetic field, and is ≈ 42.58MHz/Tesla [2].

An RF pulse is applied at the Larmor frequency, following magnetisation until no component
of the net magnetisation vector exists parallel to the magnetic field (saturation). Once this pulse is
switched off, relaxation occurs emitting waves which are picked up by an RF receiver. Hydrogen
protons in different tissues relax at different rates. The relaxation process is divided into T1
(longitudinal) and T2 (transverse); the point at which detection of the emitted wave occurs, along
with the strength of the magnetic field is what distinguishes several MR imaging sequences that
exist. An image signal is obtained from this RF wave by localisation to a particular slice and 2D
co-ordinates using three gradient fields.

The main advantage of MRI over x-rays and CT imaging is that the RF pulses applied to
the body are not of high enough frequency to cause ionisation, and hence the risks of tissue
damage associated with the other two methods are not applicable. MRI is used for both structural
and functional imaging, it provides better contrast between soft tissues than CT. It is used in
functional brain imaging, muscle imaging, liver, kidney, and lung imaging. The main downside
is that it is a very expensive modality to acquire.
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Ultrasound The underlying principle of ultrasound is the piezo-electric effect, which trans-
forms an electrical voltage to high frequency sound waves and vice-versa. An ultrasound scanner
consists of a transducer, normally on a hand-held probe. The sound frequencies produced by
this transducer are transmitted into the body; the same transducer (or a separate one on the same
probe) is used to detect the reflected sound, or echo. The time taken for the echo to be received
provides information about the depth of the reflecting anatomy.

Frequencies used in medical ultrasound are in the range of 1 - 10 MHz [3]. High frequency
ultrasound has the advantage of producing better resolution due to the magnitude of the reflected
signal, but more of the signal energy is absorbed by tissues, reducing its penetration potential.
On the other hand, low frequencies produce relatively coarse resolutions, but are capable of
imaging deeper tissues within the body. Varying the frequency of the ultrasound waves allows
this modality to be used for a wide range of imaging applications such as obstetrics, vascular,
abdominal and testicular imaging [4, 5, 6, 7]. Application of the doppler effect to ultrasound
also allows it to be used for arterial imaging.

Ultrasound is the cheapest of the cross-sectional imaging modalities around at the moment,
making it very efficient as a technology for initial evaluation. Ultrasound scanners are also
portable, allowing them to be used in cases where the patient cannot be prepared for a CT or MR
scan. Unlike CT, the signals emitted into the body in ultrasound imaging are non-ionising, and
so there are no known risks attached to this modality. The low resolution of images compared
with other cross-sectional modalities, like CT and MR, is the main disadvantage of ultrasound.

Positron Emission Tomography PET uses positron emitters, attached to pharmaceuticals in
order to detect the uptake sites within the body. In PET, the positrons emitted combine with the
electrons in the surrounding tissue briefly; and then annihilation occurs, releasing two photons in
opposite directions. These photons are measured to reconstruct the image. The most common
use of PET is in oncology, and so the most commonly used pharmaceutical is fluorodeoxyglucose
(FDG). FDG is a glucose analogue, and the theory here is that cancerous cells are highly energetic,
requiring a lot of glucose for metastases. FDG is labelled with fluorine-18 to produce 18F-FDG.
This radionuclide has a half-life of 110 minutes [8], therefore it needs to be produced on-site to
be clinically useful. Cancers currently investigated by PET are head & neck tumours, thyroid
carcinomas, pulmonary nodules, lung cancer, breast cancer, pancreatic cancer, colorectal cancer,
ovarian cancer, testicular tumours, Hodgkin’s disease, and brain tumours [8].

PET scanners are the most expensive of all the mentioned modalities, and require a cyclotron
on site, which is also costly.

The wide range of medical imaging applications targetted by these modalities is good reason
for their popularity. A more detailed description of these and other modalities is provided in
section 7.3.
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Visualisation Cross-sectional modalities like CT, X-Ray, MRI, and PET are all capable of pro-
ducing multiple 2D image slices along the axis of acquisition; the latest CT scanners can produce
320 slices in one gantry rotation. Rendering techniques have made it common practice to provide
orthogonal and oblique multi-planar reconstructions (MPR), making it convenient for clinicians
to read scans (figure 1.3). 3D volume rendering is also commonplace in most visualisation
software, making it possible to perform non-invasive surgical planning. Advanced visualisation
software provide user-interfaces that target the clinicians’ workflow, making common protocols
more efficient (figure 1.4).

The Digital Imaging and Communication in Medicine (DICOM) format for medical image
storage and transmission has been widely adopted as the standard. It defines the way images
are stored, allowing JPEG, JPEG 2000 and lossless JPEG codecs. DICOM contains predefined
tags specifying demographic information such as age, sex, and the name of the attending health
institution. It also defines a TCP/IP protocol for communicating images between systems.

The current state of the art in radiology labs is by far more technologically advanced than it
was 20 years ago. Today, the presence of Picture Archival and Communications Systems (PACS)
networks in hospitals means that scans in various modalities can be performed in the imaging
centre and transferred to a database as DICOM images, where they can be pre-processed by a
server running image analysis software to extract useful information for display and analysis
and made accessible to radiologists, radiographers and other authorised medical personnel (see
figure 1.1).

Figure 1.1: A typical PACS Network
The scans can be performed in a lab and the relevant information accessed at any location

connected to the network.
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1.1.2 Motivation

The increasing importance of large 3D and 4D medical datasets from ultrasound, MRI, and
particularly MDCT are placing an increasing load on clinicians. There is therefore a growing
need for automation to arrive quickly at the particular view or measurements they need to make
their diagnosis.

1.1.3 Automatic Segmentation

Automatic segmentation is the process of delineating known structures of interest from these
images. Such structures could be gross anatomy, such as the heart, kidneys, liver, and the brain,
or sub-anatomical structures like the myocardium, coronary arteries and tumours. The aim of
automatic segmentation is to be 1) robust, capable of dealing with varying image quality, 2)
accurate, such that automatic measurements can be carried out based on the results, 3) fast
enough to ease clinicians’ workflow, and 4) reproducible, such that segmentations from an image
can be re-generated precisely.

1.1.4 What is an Atlas?

The term atlas conventionally refers to a labelled map, used as a navigation aid to find the
location of places relative to other points or within a geographical region. These atlases can be
precise, providing one to one correspondence between points on the map and the actual locations.
An atlas can therefore be generalised as a set of descriptors for a particular structure in relation
to a set of structures. In medicine, the atlas of human anatomy is a fully labelled diagram of a
human being, allowing its students to locate specific anatomical or sub-anatomical areas.

In the literature associated with this thesis, an atlas is considered as a means of uniquely
describing specific structures within the body. It may be as simple as a conventional human
atlas, consisting of a modality-specific medical image with regions labelled by clinical experts
[9, 10, 11, 12, 13]. This is extended by aligning several labelled images, representing the atlas
by the mean and variance images [14]. Other definitions maintain a single image as reference,
and propagate the labelled structures from other images to obtain a probabilistic estimate of the
true anatomy [15, 16]. Another concept of an atlas represents an anatomical structure by a set of
parameters governing its shape, hence making such an atlas modality-agnostic. An example of
this concept is in active shape models [17, 18, 19, 20], whereby anatomical variability is encoded
by modelling its mean shape and principal component modes collected from several examples.
An atlas could also be less physically comprehensible, existing as a set of semantic rules defining
the characteristics of certain structures within the body [21]. Figure 1.2 shows some examples of
how atlases can be represented.
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Figure 1.2: Atlases in Medical Image Analysis
Top Row (Left to right): An abdominal 3D CT scan with manually labelled kidneys and liver, a

modality-agnostic mesh representation of the kidneys and liver from a single image, graph
representing relative positions of anatomical structures. Middle Row: A mesh representation of

sub-structures within the heart(visible are the ventricles and descending aorta), volume of
interest from a 3D thoracic CT scan with a manually labelled heart, Mean and covariance
matrices of MR intensity images for grey matter, white matter and CSF. Bottom Row: Tree

representation of the topology of the coronary arteries, coronary artery centrelines from 42
images aligned to a reference space, labelled aorta and left ventricle blood pool from a single

3D thoracic CT scan.
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1.1.5 Why Atlas-Based Segmentation?

The concept of using manually labelled medical images to segment relevant anatomical structures
from a novel image becomes feasible due to advances in alignment technology, particularly
registration. Registration is the process of aligning images on a voxel-based level, with advanced
methods capable of providing sub-voxel accuracy through interpolation. Once an atlas image
is accurately aligned to a novel image, segmentation is simply the process of propagating the
relevant labelled voxels onto the novel image. Labelled anatomy within a scan is a source of
positional, topological and shape information about the structures of interest. It provides this
information in a physically conceivable framework, making it easy for clinicians to construct
atlases as required. The extra benefit of this framework is that subtle features pertaining to
anatomy, which may have been overlooked by conventional feature detection methods are
implicitly described.

Anatomical variations naturally exist, and atlases can capture these variations in a number of
ways provided enough data is available in the training/atlas-creation stages. Statistical atlases,
modelling population variance are a good example of such means. Atlas-based segmentation
therefore provides a fast, simple, elegant framework that the clinician as the end-user can place
confidence in.

1.1.6 Chronology

The projects carried out over the past four years investigate the efficacy of atlas-based methods
in solving clinical problems presented to Toshiba Medical Visualisation Systems (TMVS) for
incorporation in advanced visualisation software. Five major pieces of work were carried out
during the period of research, each focusing on a specific problem.

Coronary Artery Labelling

The first piece of work was aimed at automatically assigning the correct anatomical labels to
pre-segmented coronary arteries. This work was targetted at an existing cardiac analysis software
suite, capable of evaluating stenoses in coronary arteries as a means of assessing the risk of
coronary artery disease (CAD). This work is somewhat disconnected from the other pieces of
work, in that it does not apply the same definition of an atlas as the rest due to the nature of
the task. The concept of an atlas is presented as a set of rules governing the physical, spatial
and topological properties of each coronary artery. A feature-based Maximum a-Posteriori
(MAP)classifier is applied in this and subsequent chapters.
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Coronary Artery Atlas Creation

The second piece of work was aimed at detecting for removal, structures incorrectly identified as
coronary arteries following automatic coronary artery centreline tracking. This work was also
targetted at the cardiac analysis software suite, as a means of increasing the specificity of the
existing artery centreline tracking algorithm. A coronary artery centreline atlas is created from a
set of labelled cardiac CT angiography (CCTA) images, and used to detect non-arterial structures
in the input centrelines. This is the first piece of work in the portfolio that addresses the concept
of an atlas as it is used throughout the rest of the research.

Whole Heart Segmentation

The third piece of work was aimed at automatically segmenting the whole heart from 3D CCTA
images to provide uninterrupted volume-rendered views for clinicians and to seed the other
segmentation algorithms in the cardiac analysis package, such as aortic root segmentation and
coronary ostia finding for arterial centreline tracking. Variation in cardiac anatomy proved to be
an issue when using an atlas image pre-selected from a database of images, particularly when
faced with patient images from different continents. This work therefore presents a novel method
of selecting the most similar atlas image to the patient image following registration in order to
increase the accuracy of the segmentation. The method for optimal atlas selection is used in
subsequent pieces of work.

Kidney and Renal Cortex Segmentation

The fourth piece of work was aimed at automatically segmenting the kidneys and their renal
cortices from 3D dynamic contrast-enhanced abdominal CT (DCE-CT) images in order to
facilitate automatic measurements of perfusion within the kidneys. DCE-CT images are normally
noisy because radiographers aim to reduce the overall radiation dose exposed to the patient by
limiting the x-ray beam current. To add to this challenge, kidney structure varies widely among
individuals, not only by shape, but also by their positioning within the abdomen. This work relied
heavily on the optimal atlas selection procedure introduced previously, and also incorporated
intensity-based classification as a refinement stage by using an semi-supervised MAP classifier.
The concept of an atlas containing multiple labelled structures was introduced in this work.

Multi-Compartment Heart Segmentation

The fifth and final piece of work was aimed at increasing the granularity of the whole heart
segmentation by identifying sub-compartments within the heart. In this work, the atlas contained
up to eight labelled structures of interest with similar intensities. This posed problems for the

20



CHAPTER 1. PORTFOLIO OVERVIEW

MAP classifier used in the previous work, and led to development of a generic framework for
MAP classification based on a spatially-aware expectation maximisation (EM) algorithm.

1.2 Contributions

1.2.1 Commercial

Figure 1.3: Advanced Coronary Artery Application: Toshiba’s Aquilion R©ONE Console
The advanced coronary artery application within Toshiba’s Aquilion ONE CT scanner console
performs coronary plaque assessment. The application performs automatic heart segmentation,
coronary centreline tracking, coronary centreline labelling, coronary vessel segmentation and

lumen analysis, allowing the clinician to validate and edit results.

• Whole Heart Segmentation and Coronary Artery Labelling: The automatic heart segmenta-
tion and coronary artery labelling algorithms are incorporated in Toshiba’s Aquilion ONE
console PC within an application performing advanced coronary artery analysis. Figure
1.3 shows screen-shots of this application.

• Kidney and Renal Cortex Segmentation: Toshiba’s Aquilion ONE console PC contains an
application for abdominal analysis. This application performs polyp-detection in the colon
and perfusion analysis within the liver and kidneys. In order to carry out the latter function,
it performs automatic segmentation of the kidney and renal cortex in each scan and the
computed volumes are used to measure the glomerular filtration rate (GFR). Figure 1.4
shows screen-shots of the application.
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Figure 1.4: Abdomen Application: Toshiba’s Aquilion R©ONE Console
The abdomen application within Toshiba’s Aquilion ONE CT scanner console performs colon
analysis and blood-flow analysis within the abdominal organs. It measures kidney perfusion

rates by carrying out automatic segmentation of the kidney and renal cortex and measuring the
change in contrast-intensity over time.

1.2.2 Intellectual Property

Patents Pending

• A. Akinyemi, S. Murphy and I. Poole, "Method and Apparatus for Classification of

Coronary Artery Image Data,". United States Patent Application 20100082692, filing date:
24/09/2008

• A. Akinyemi, C. Plakas, J. Piper and I. Poole, "Image Segmentation,". United States Patent
Application 12/847372, filing date: 27/08/2010

1.2.3 Publications

• A. Akinyemi, S. Murphy, C. Roberts and I. Poole, "Automatic Labelling of Coronary

Arteries," in 17th European Signal Processing Conference (EUSIPCO 2009). Pages
1562-1566. Available: http://www.eurasip.org/proceedings/eusipco/
eusipco2009/contents/papers/1569187117.pdf

Draft Ready: Awaiting Dataset Permissions

• A. Akinyemi, C. Plakas, J. Piper, C. Roberts and I. Poole, "Optimal Atlas Selection Using

Image Similarities in a Trained Regression Model to Predict Performance," in IEEE

Transactions on Medical Imaging. Drafted: September 2010
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1.3 Portfolio Organisation

The entire period of research was spread out over four years, during which individual projects
were carried out, all following the same underlying theme of atlas-based segmentation. The EngD
programme requires research engineers to carry out a business orientated project in addition
to the themed projects, this work is presented in chapter 7. This report represents a portfolio
containing a description of each individual project. The projects are categorised into technical or
business projects, figure 1.5 shows layout of the chapters and their relationships.

Introduction

TR1: 
Automatic Labelling of 

Coronary Arteries in 3D CT 
Images 

TR3: 
Optimal Atlas Selection 

BR1: 
Feasibility Study of Medical 

Imaging in Nigeria 

TR2: 
Creation of a Coronary 

Artery Atlas to Guide the 
Tracking of Coronary 

TR4: 
A Combined Multi-
Unsupervised Classification 

Technique for Automatic 

Appendix A 

TR5: 
Robust Segmentation using 

Atlas-
Algorithm 

Figure 1.5: Portfolio Organisation (Reading Guide)
TR => Technical Report, BR => Business Report
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Chapter 2

Automatic Labelling of Coronary Arteries
in 3D CT Images

Abstract Automatically assigning the correct anatomical labels to coronary arteries is an

important task that would speed up work flow times of radiographers, radiologists and cardiol-

ogists, and also aid the standard assessment of coronary artery disease. However, automatic

labelling faces challenges resulting from structures as complex and widely varied as coronary

anatomy.

A supervised classifier has been implemented which addresses this requirement and is

capable of automatically assigning correct anatomical labels to pre-segmented coronary artery

centrelines in CCTA images with 84% accuracy.

The system consists of two major phases: 1) training a multivariate Gaussian classifier

with labelled anatomies to estimate mean feature vectors for each anatomical class and a

covariance matrix pooled over all classes, based on a set of features; 2) generating all plausible

label combinations per novel anatomy based on a set of topological and geometric rules, and

returning the most likely based on the parameters generated in 1).

2.1 Introduction

2.1.1 Motivation

Heart disease is a major life-threatening disease in Europe and America at the moment; the rate
of heart disease increasing in continents such as Africa and Asia every year almost at the same
rate of development of these countries [1].

Cardiac CT angiography is becoming an important procedure for detecting stenoses and
other pathology in coronary arteries, which are the main causes of heart attacks. In cardiac
analysis, the radiologist/cardiologist is required to perform functional and structural analysis on
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the coronary arteries. Advanced visualisation tools (figure 2.1) make this process more efficient
by highlighting the areas of interest and even automating the necessary measurements.

Figure 2.1: Coronary Vessel Analysis
This demonstrates the extent of clarity by which a computed tomography (CT) scan of the heart
can be visualised using image analysis software incorporated in PACS. The image on the left is a
volume-rendering of the CCTA image data, highlighting the segmented coronary arteries, while
the image on the right demonstrates how automatic vessel analysis tools can measure stenoses

in any of the arteries.

The application is intended for use by radiologists, therefore, being able to automatically
locate specific arteries for analysis will assist in the reading of cardiac images, enabling automatic
generation of reports containing standard locations for the measured stenoses, thus speeding-up
their workflow and reducing the time to detect and diagnose coronary artery diseases. The
availability standardised reports for coronary analysis can aid further data-mining applications
for epidemiological studies. Human error is still very much present even in medicine, therefore
an accurate automatic coronary artery labelling system can eventually reduce the risk of this type
of errors in misclassification.

2.1.2 The Problem

The aim of this project is to create a system which automatically assigns the correct anatomical
labels, as specified by the American Heart Association’s (AHA) 17-segment model [2], to the
coronary arteries. The algorithm takes as input, a pre-segmented coronary arterial tree and
outputs the label for each vessel segment as shown in figure 2.2.

This report is structured as follows:
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Figure 2.2: Labelled Coronary Arteries
The label assigned to each artery conforms to the AHA 17-segment model[2]. The labels are

listed in section 2.2.2

• Section 2.2 introduces and discusses the algorithm in detail, describing all the components
of the system used.

• Section 2.3 presents the results of the algorithm, discussing the validation method em-
ployed.

• Section 2.4 concludes and proposes further work which could be carried out to address
issues relating to accuracy.

2.1.3 State of the Art

This problem has been tackled as a combined image analysis and classification task. Previous
work has been carried out in attempts to solve the same problem, with some attempts aimed
at different imaging modalities. In [3, 4], [5], [6], [7] and [8] the problem of coronary artery
labelling in X-ray angiograms is addressed using graph-matching, while in [9, 10, 11, 12] it is
tackled using rule-based approaches exploiting knowledge of the coronary anatomy.

The method introduced in [5] addresses the challenges posed by the presence of noise,
artefacts, and competing structures. In this system, a model graph of a generic coronary
vasculature is used as a reference, incoming datasets are then matched to this using physical
features collected in [13] as extra matching criteria. In this graph, a node represents a segment of
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an artery between bifurcations, and the arcs represent parent-child relationships. The method
assumes that segments of a vessel between bifurcations can still possess characteristic features
of the entire vessel, and hence use vessel length, lumen diameter and branch angle as similarity
features in the cost function; although this may not be the case, as the individual segments do not
accurately represent the entire vessel especially in terms of length and branch angles.

The method in [8] creates multiple 2-D projections of a 3-D model graph, representing a
general topology of the coronary vasculature, with nodes representing bifurcations and arcs
representing vessel segments. A novel arterial tree from an X-Ray angiogram is matched against
these projected graphs to find the best match based on the inertia axis orientation, the inertia
and the eccentricity of the nodes and arcs, after which a finer matching based on number of
input/output arcs at each node is performed to assign the labels.

Rule-based approaches, such as in [10] encode coronary artery attributes and inter-segment
relationships as binary constraints to eliminate label assignments.

2.1.4 Contribution

The cost functions used in the above methods do not take into account the multivariate nature of
the physical features of the vessels, which is why the method proposed in this chapter uses a
multivariate Gaussian classifier in order to exploit this property. Furthermore,the graph-matching
approaches as used above assume a generic vasculature, but in clinical datasets, anomalies do
exist that will lead to inaccuracies in such methods; hence this chapter proposes a less strict
model-based approach to the problem.

The method proposed in this chapter takes into account the topological (tree) and geometric
structure of the coronary vasculature and encodes such properties as binary priors. Analogous to
the graphs used in [5] and [8], the input vasculature is represented as a polyline tree (2.1), which
easily describes its spatial and topological properties. It exploits knowledge of the topology
to generate a set of plausible labelling candidates, and then exploits knowledge of the spatial
properties of each anatomical vessel class to reduce the number of candidate labelled trees. These
are then scored using the physical features of each vessel in a trained classifier to find the most
likely labelling.

In this chapter, the individual segments of a vessel in-between bifurcations are referred to
as topological segments; the concatenation of such contiguous topological segments make up a
vessel segment as shown in figure 2.4.
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2.2 The Method

2.2.1 Introduction

The input to the algorithm is a CCTA dataset and adjoining automatically segmented coronary
arteries, represented as two polyline trees (left and right) (figure 2.4), and the output is a mapping
of each polyline to an anatomical label. A system flow diagram is shown in figure 2.3. The
components of the algorithm are discussed throughout the rest of this chapter.

Offline Training

Feature 
Extraction Train Classifier

Classification

Geometry 
Checker

Topology 
Checker

Label Generator

Label Pool

Labelled Polylines

Raw Data

training data Classifier parameters

Topologically-feasible labelled trees

Geometrically-feasible 
labelled trees

Labelled 
Polyline Tree

Raw Data

Un-labelled
 Polyline Tree

Figure 2.3: Automatic Coronary Artery Labelling
The components of the labelling algorithm and their connections within the system.

2.2.2 Label Pool

The label pool is a list of all the classes (labels) to be considered, i.e.

• LM (Left Main)

• LAD (Left Anterior Descending)

• LCX (Left Circumflex)

• LMG (Left Obtuse Marginal)

• LRI (Left Ramus-Intermedius)

• LD (Left Diagonal)

• LINSIG, RINSIG (All segments not required in specification, left and right prefixes)
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• RCA (Right Coronary Artery)

• RPD (Posterior Descending Artery)*

• RPLA (Right Postero-lateral Artery)

• RAM (Right Acute Marginal Artery)

These labels are used to supply the Label Generator.
* At present this is only detected if it is present on the right coronary artery.

2.2.3 Training Data

The training data is collected by manually segmenting individual vessels from CCTA data of 42
patients, using manual vessel-tracking functionality in the VesselMetrix package from Toshiba’s
Voxar 3D advanced visualisation software to track their centrelines (skeletons). The vessel
segments are stored as polylines:

polyline = {x0, x1, · · · , xn−1|xi ∈ <3} (2.1)

In this context, a polyline is an ordered list of points along the centreline of a single coro-
nary artery. The entire coronary artery vasculature follows a tree structure and therefore it is
represented as a polyline-tree, see figure 2.4.

Figure 2.4: Ground-Truth format for the left coronary
The LAD for instance, is stored as a single vessel rather than as three individual segments.The

image on the left shows a curved planar reconstruction of a CCTA dataset with the points
making up the centreline of a coronary artery.

2.2.4 Feature Extraction

This step takes in labelled coronary vessel segments as polylines, and with the raw data in context,
up to 11 features are measured and saved. Tables 2.1 and 2.2 list all the features used.
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Feature Name Formula Description
Length(v)

∑N−1
i=0 length(ti) where N is the number of

topological segments, t
making up the vessel v.

LogLengthProportion(v) Log( Length(v)∑V−1
i=0 Length(vi)

) Where there are V vessel
segments in the tree.

BranchAngle(v)(degrees) 180− cos−1(
−→u (vi)−→u (vi−1)

) Where −→u (vi) is the unit
vector in the direction of
vessel vi. This is the angle
made between a vessel
segment and it’s parent
segment, belonging to another
vessel class.

LogTortuosity(v) Log Length(v)
v(P−1)−v(0)

Where P points make up a
vessel segment v. This is a
measure of curvature of the
vessel segment; other
measures exist [14].

Diameter(t)
√

V olume(t)
π∗Length(t) Approximate diameter of a

topological segment, t.
AvgDiameter(v) 1

N

∑N−1
i=0 Diameter(ti) Approximate average

diameter of a vessel segment,
v.

V olume(v)
∑N−1

i=0 V olume(ti),
where
V olume(ti) = |{p ∈
<3|I(p) ≥ T} ∩Di|,
where
Di = {p ∈ <3|∃k ∈
ti, |p− k| ≤ r}

The measured volume of the
cylinder, D created by
dilating the topological
segment t within the data
context using a spherical
structuring element with
radius, r greater than the
maximum radius of a
coronary artery, and
thresholding at the mean
intensity, T along the
segment.

LogVolumeProportion(v) Log( V olume(v)∑V−1
i=0 V olume(v)

)

Table 2.1: Coronary Artery Features
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Feature Name Formula Description
DistanceToStart(v) |v(0)− v0(0)| The Euclidean distance

from the root of the
vessel tree (ostium) to
the start of the vessel.

DistanceToEnd(v) |v(P − 1)− v0(0)| The Euclidean distance
from the root of the
vessel tree (ostium) to
the end of the vessel.

DirectionWRTVesselStart(v) v(P−1)−v(0)
|v(P−1)−v(0)| X, y, and z-

co-ordinates of the unit
vector running from the
start of the vessel to its
end.

DirectionWRTOstium(v) v(P−1)−v0(0)
|v(P−1)−v0(0)| X, y, and z-

co-ordinates of the unit
vector running from the
ostium to the vessel
end.

Table 2.2: Coronary Artery Features Continued

These features, collected from manually labelled coronary vessel segments, are used to train
the multivariate Gaussian classifier; in the application, these features when measured on novel
vessel segments, form the measured feature vector for each candidate.

2.2.5 Label Generator

The label generator is a recursive function which attempts to assign to the topological segments
of the coronary centreline tree all possible label combinations from the label pool. For any
function of this sort, the implied computational cost is apparent, especially for trees as seen in
figure 2.4, where 1211 different trees would be produced for scoring.

For efficiency, only topologically legal candidates (section 2.2.6) are generated. Furthermore,
only geometrically plausible labelled candidates (section 2.2.7) are allowed to be scored by the
classifier. It works on each level/segment of the tree as follows:

For each vessel class in the label pool

• assign the class to the current tree level

• if the assignment is topologically legal (section 2.2.6)

– if all levels of the tree have been labelled

� if the labelled tree is geometrically legal (section 2.2.7)
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· score configuration using classifier (section 2.2.8)

· record best scoring labelled tree

– else

� Proceed to next level (recursive call)

2.2.6 Topology Checker

The label generator generates a sequence of ‘legal’ labelled trees. The topology checker is a
rule-based system, applying certain rules pertinent to the syntax of the coronary anatomy to
generate ‘legal’ candidates based on the topology of the un-labelled coronary tree. For the left
coronary tree, the rules are as follows:

• The root segment of the Left coronary artery is the LM;

• An LM segment can not have any siblings;

• Segments labelled RCA, RPD, RAM, RPLA and RINSIG are not permitted;

• An LAD segment can only be a child of LM or an extension of itself;

• An LCX segment can only be a child of LM or an extension of itself;

• An LD segment can only be a child of LAD or an extension of itself;

• An LMG segment can only be a child of LCX or an extension of itself.

• An LRI segment can only be a child of LM or an extension of itself.

• An LRI segment can only be a child of LM.

For the right coronary tree, the rules are as follows:

• Only RCA, RAM, RPLA, RPD, and RINSIG classes are permitted;

• The root segment must be RCA;

• An RCA segment can only be a child of RCA or an extension of itself;

• An RPD segment can only be a child of RCA or an extension of itself;

• An RAM segment can only be a child of RCA or an extension of itself;

• An RPLA segment can only be a child of RCA or an extension of itself;

Rules common to both sides are as follows:
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• Sibling branches can not be in the same class, except for LINSIG, RINSIG and RPLA;

• All RCA, RPD, LAD, LCX and LM segments must be contiguous;

• Any child branch of a LINSIG or RINSIG segment must be LINSIG or RINSIG, respec-
tively.

The above rules are incorporated in a function which is accessed by the label generator and
enables it to ignore ‘illegal’ label assignments straight-away for the sake of optimisation. For the
simple 11 segment tree in figure 2.4, and taking into account the number of labels in the label
pool; the number of possible label assignments is 1211, but applying the above rules reduces this
number to 511! These rules do not need information about the physical structure of the tree, but
instead need only to consider a topological representation of the tree and the labels assigned to a
single segment and its parent.

2.2.7 Geometric Checker

Vessel geometry in this case refers to the physical and spatial characteristics of the coronary
vessel tree. In this algorithm, only the attributes pertaining to the centrelines of the vessels are
considered here (i.e. diameter is not considered for instance), and therefore the polyline-tree
representation is sufficient. The geometry checker takes in a fully-labelled polyline-tree as input
and exploits certain spatial geometric rules unique to individual classes and other rules pertaining
to fully-labelled trees, resulting in the elimination of more candidates. An example labelled
coronary vasculature is shown in figure 2.5. The rules applied are as follows: For the LAD,

• Looking in the direction going down the vessel, all LD segments must exist on the right
side of the vessel, while LINSIG segments (actually called ‘Septal’) must be on the left.

For the LCX,

• The vessel must traverse a direction posterior to its initial sibling (normally the LAD);

• Looking down the LCX vessel; all LMG vessels must be on the left side, and any vessels
coming off the right side must be LINSIG;

• The LCX always starts within an average distance from the root of the left coronary tree.

For the LRI,

• LRI vessels can only be present when the LAD and LCX are present;

• LRI vessels must be in-between the LAD and LCX proximal segments.

• LRI vessels only occur at a trifurcation.
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For the RCA,

• RCA segments can only begin within an average distance from the root of the right
coronary tree.

For the RPD,

• RPD can only have RPLA or RINSIG as siblings.

• When RPLA segments are present, the RPD segment must be to the right of them, when
looking down the RCA.

For the RPLA,

• RCA can never be a sibling.

• If it is an extension of an RPLA segment, then its sibling must be RINSIG.

This step in the algorithm is able to reduce the number of candidate labelled trees in the
11-segment tree (figure 2.4) from 511 to as low as 71 in some cases. The main differences
between the geometry checker and the topology checker are as follows:

• Geometric checker takes in a fully-labelled polyline-tree as input, while the topology
checker takes in a topological representation as input;

• Geometric checker filters based on spatial rules, while the topology checker filters based
on syntactic rules.

2.2.8 Multivariate Gaussian (MVG) Classifier

In this section, L refers to a set of all geometrically legal labelled polyline trees, and Z is the set
of measured feature vectors for each element of L.

L = {l0, l1, ..., lN−1}

Z = {z0, z1, ..., zM−1},

for M vessel segments in li.

Assuming the features measured in section 2.2.4 are normally distributed and follow a multi-
variate normal distribution, then a MVG classifier[15] may be used to score each li accordingly.
Using Bayes’ theorem (equation 2.2), the posterior probability, i.e. the probability of a vessel
being a particular anatomical label ωk, given its measurement vector z is given by:
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Figure 2.5: Spatial Properties of Vessel Classes
An example labelled coronary vasculature showing spatial properties of each vessel class.
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P (ωk|z) =
P (ωk)P (z|ωk)

P (z)
, (2.2)

where P (ωk) is the prior probability of observing the label ωk. Empirical priors are estimated
based on the relative occurrences in the training data, and

P (z|ωk) =
1√

|C|(2π)N
exp(

−(z− µk)TC−1(z− µk)

2
), (2.3)

where N is the number of features used. The unconditional probability of observing the feature
vector, z, does not depend on k by definition, and is therefore constant across all label classes.
The posterior probability can then be simplified to:

P (ωk|z) ∝ P (ωk)P (z|ωk),

and ∑

k

P (ωk|z) = 1

The MVG model parameters µk and C, the mean vector for each label class and the pooled
covariance matrix respectively are estimated from measurement vectors for each class computed
by the feature extractor on training data (see section 2.2.3). The use of a pooled (rather than
per class) covariance matrix leads to linear discriminant surfaces, while reducing the number
of parameters to be estimated, thereby reducing the required number of training sets to achieve
maximum accuracy based on the rule of thumb proposed in [16].

A merit score can then be assigned to a labelled polyline tree containing V vessel segments
using equation 2.2, by summing the posterior probability over all segments:

Merit =
V−1∑

v=0

P (ωk|zv) (2.4)

The quantity computed in equation 2.4 is biased towards tree configurations with more vessel
segments, this can be normalised by instead summing the posterior probability per unit length of
each vessel. Equation 2.4 becomes:

P (li|Zi) =
V−1∑

v=0

P (ωk|zv) ∗ 10LogLengthProportionv (2.5)

The labelling configuration with the highest merit is chosen:

l∗ = argmax
li

P (li|Zi)
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2.2.9 Summary

The method described above takes advantage of syntactic approaches to pattern recognition;
while exploiting the spatial and physical features of the various classes by using a multivariate
Gaussian classifier to score the labelled candidates. The steps comprising the entire algorithm
are shown in figure 2.1. In the training phase of the algorithm, the feature extractor measures
a list of features of manually-labelled trees; the classifier uses these features to generate mean
vectors and covariance matrices for each class. The label generator, along with the topology
checker and geometry checker, generates a set of plausible labelled trees; the classifier uses its
generated parameters to compute the merit for each labelled candidate and returns the highest
scoring.

2.3 Results and Discussion

2.3.1 Introduction

The labelling algorithm described in Chapter 2.2 was tested on CCTA images from several
modality vendors. The MVG parameters were estimated using vessel feature data from 42
datasets. This chapter describes the validation metrics used and the results obtained. Several
issues were encountered due to anatomical anomalies present in few of the test data; this chapter
discusses these issues and describes the impact on labelling performance.

2.3.2 Validation Metrics

Leave-one-out (LOO) validation was carried out on the 42 training datasets by excluding the
test dataset during classifier training. The performance of the labelling algorithm was assessed
on a topological segment basis. The generated label of each segment was compared against its
corresponding ground-truth label and assigned a binary value based on the agreement between
the two labels.

The results are presented in a confusion matrix (figures 2.6 and 2.7), therefore the accuracy
can be defined as:

Accuracy =

∑N−1
i=0 Cii∑N−1

i=0

∑N−1
j=0 Cij

,

for N columns in the square matrix C.

Subjective validation was also carried out by a radiologist using previously unseen data.

2.3.3 Ground-Truth

For validation, two sets of ground-truth were used, derived from the 42 datasets.
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The first set comprised of manually segmented coronary artery centrelines labelled by
medically qualified personnel (as described in section 2.2.3). The second set comprised of
output from an in-house automatic coronary centreline tracking algorithm with labels transferred
automatically from the first set.

2.3.4 Results

The confusion matrix in figure 2.6 shows the overall accuracy of the algorithm using manually-
segmented polyline trees as input and validating against their manually-labelled counterparts.

True Class Assigned Class
LM LAD LCX LRI LD LMG Linsig RCA RAM Rinsig RPD RPLA Total Accuracy (%)

LM 42 0 0 0 0 0 0 0 0 0 0 0 42 100
LAD 0 111 0 0 1 0 2 0 0 0 0 0 114 97.37
LCX 0 0 55 0 0 1 4 0 0 0 0 0 60 91.67
LRI 0 0 0 5 3 0 0 0 0 0 0 0 8 62.5
LD 0 1 4 6 60 0 4 0 0 0 0 0 75 80
LMG 0 0 0 1 0 15 2 0 0 0 0 0 19 78.95
Linsig 0 2 3 1 7 3 28 0 0 0 0 0 44 63.64
RCA 0 0 0 0 0 0 0 90 0 0 0 1 91 98.9
RAM 0 0 0 0 0 0 0 0 25 12 0 0 37 67.57
Rinsig 0 0 0 0 0 0 0 1 7 34 1 14 57 59.65
RPD 0 0 0 0 0 0 0 0 0 3 13 4 20 65
RPLA 0 0 0 0 0 0 0 0 0 2 3 32 37 86.49
Overall accuracy: 84.44%

Figure 2.6: Confusion Matrix: Manually Segmented Input
Confusion matrix showing overall accuracy for 42 datasets. The accuracy is measured per

topological segment, i.e. each vessel is split up at bifurcations. The green coloured cells show
the accuracy for the major vessels of interest.

It is now clear from this figure, that 111 of 114 LAD segments were correctly classified;
hence the accuracy for the LAD segments is 97.3%. It should be noted however, that the accuracy
presented here shows the objectively calculated performance of the algorithm. For clinical use,
certain misclassifications are tolerated. For instance, misclassifying LINSIG as LD (see (Linsig,
LD)) in 7 of the 44 LINSIG segments is permissible because distal LD segments may have been
classified as insignificant while the ground-truth was collected; same goes for the LMG segments.
The inverse is also permissible for distal LD segments; thus the need for subjective validation. It
can also be seen that the RCA segments have been correctly classified in 90 of the 91 cases, with
a terminal segment being misclassified as the RPLA.

Figure 2.7 shows the results of the algorithm run using automatically segmented vessels
as input. In this case, a label-transfer algorithm is used to automatically transfer labels from
the manually-labelled/manually segmented vessels to the automatically segmented ones using
the overlapping volume as criteria. This results in more LINSIG and RINSIG segments, as
non-overlapping segments were labelled as such. The pink cells show a popular source of
error; the LRI segments being misclassified as LD or LMG. This is because the topological rule
which states that the LRI has to occur at a trifurcation had to be relaxed for this experiment
configuration because the tree-tracking algorithm used is unable to detect trifurcations. Without
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Assigned Class
LM LAD LCX LRI LD LMG Linsig RCA RAM Rinsig RPD RPLA Total Accuracy (%)

LM 41 2 0 0 0 0 1 0 0 0 0 0 44 93.18
LAD 0 88 0 0 1 0 7 0 0 0 0 0 96 91.67
LCX 0 0 32 0 8 2 9 0 0 0 0 0 51 62.75
LRI 0 0 1 2 1 2 1 0 0 0 0 0 7 28.57
LD 0 3 0 1 40 0 2 0 0 0 0 0 46 86.96
LMG 0 0 2 0 2 4 0 0 0 0 0 0 8 50
Linsig 0 6 11 2 7 5 40 0 0 0 0 0 71 56.34
RCA 0 0 0 0 0 0 0 86 0 10 1 2 99 86.87
RAM 0 0 0 0 0 0 0 1 7 11 0 0 19 36.84
Rinsig 0 0 0 0 0 0 0 7 5 92 1 8 113 81.4
RPD 0 0 0 0 0 0 0 0 0 8 5 2 15 33.33
RPLA 0 0 0 0 0 0 0 0 0 7 1 18 26 69.23
Overall accuracy: 76.47%

Figure 2.7: Confusion Matrix: Automatically Segmented Input
Confusion matrix showing overall accuracy for the algorithm using automatically segmented
vessels as input. The labels were transferred automatically from the manual segmentations to

the automatic segmentations and are prone to error.

this constraint, the LRI and the LD are easily confused. The results are summarised in table 2.3.

Vessel
Class

Accuracy
Mode 1(%)

Accuracy
Mode 2(%)

LM 100.0 93.2
LAD 97.4 91.7
LCX 91.7 62.7
LRI 62.5 28.6
LD 80 87.0
LMG 78.9 50.0
LINSIG 63.6 53.3
RCA 98.9 86.7
RAM 67.56 36.8
RPD 65.0 33.3
RPLA 86.5 69.2
RINSIG 59.7 81.4
Overall 84.4 76.5

Table 2.3: Results for both modes of validation
A summary of the per-class accuracy computed from the confusion matrix.

Subjective validation of the algorithm was carried out by a clinically trained person, whose
requirement was that the algorithm met functional requirements for clinical use. This lowers the
cost of the following misclassifications:

• Distal LAD segments labelled as LINSIG

• LMG segments labelled as LINSIG

• Distal LD segments labelled as LINSIG

• Certain LINSIG segments labelled as LD and LMG
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• Certain RINSIG segments labelled as RAM, RPLA, RPD

• RAM segments labelled as RINSIG

2.3.5 Dealing with Anatomical Variation

A particularly interesting case supporting the variability of coronary anatomy has been presented
to the labelling algorithm. A congenital anomaly exists in ≈ 1% of human beings [17, 18]
whereby the circumflex artery does not emerge from the left main coronary artery (LM), but
instead emerges near the root of the right coronary artery and follows a retro-aortic course to
supply the postero-lateral left ventricle(LV) (which is always supplied by the circumflex artery).
This is demonstrated in figure 2.8.

Figure 2.8: Retro-Aortic Circumflex Artery
MPR views showing anomalous case of a retro-aortic circumflex artery. On the left artery (right

image), the first artery to come off the LM is the LD instead of the LCX in this case.

In this case, features such as distance from the root, average diameter and branch angle are
quite similar for the LD and the LCX. The test data contains two incidents of this retro-aortic
circumflex artery, but in both cases the algorithm incorrectly labels the first diagonal (LD) artery
emerging from the left main (LM) artery as the left circumflex (LCX) artery.

2.3.6 Summary

The automatic labelling algorithm performs at an average accuracy of 84% when labelling
vessels segmented manually; whilst performing at 76.47% when labelling vessels segmented
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automatically with the labels transferred from the ground-truth segmentations, but this mode
is subject to errors existent in the tree-tracker. In the case of subtle anomalous anatomies, for
example, in the presence of a retro-aortic circumflex artery, it is still incapable of accurate
classification. It will require heuristic post-processing and more training examples to tackle that
particular issue.

2.4 Conclusion and Further Work

2.4.1 Conclusion

A method has been developed for labelling segmented coronary vessels in CCTA images. The
approach can be seen as a two-step process: 1) knowledge-based assignment, whereby all
plausible labelled trees are generated and 2) statistical classification, whereby the most likely
labelling is chosen based on closeness to parameters modelled by a multivariate Gaussian
classifier. Due to the paucity of training data compared to the relatively large feature set, a pooled
covariance matrix was used as the model to reduce the number of estimated parameters in the
classifier.

The method is tested on 42 CCTA datasets of varying coronary anatomy using two different
sources as input: 1) manually-segmented vessels 2) automatically-segmented vessels, and yields
an overall level of agreement of 84% in case 1 between the labels assigned by the human expert
and those assigned by the algorithm. In case 2, the system yields an overall level of agreement of
76% between the labels automatically transferred to the tracked vessels and those assigned by
the algorithm.

Further subjective validation is carried out by a radiologist, applying clinical requirements to
the assessment, and in this case the algorithm is deemed useful due to high accuracy for proximal
segments of the major arteries, provided the user-interface is set-up in such a way that the user is
able to validate and change the automatic labelling.

2.4.2 Further Work

Further tasks to be carried out on this algorithm to improve its accuracy are as follows:

• As a supervised classifier relying on multi-variate properties of the features used, the
system requires more training data to reduce the possibility of over-fitting and to allow for
more accurate covariance estimates.

• Add more vessel classes to reduce variance of LINSIG and RINSIG classes:

– At present the distributions of measured features of these classes are falsely wide,
because various anatomical classes are labelled as such in the training data.
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• Implementation of ‘Reject’ class for label assignments with likelihoods not ‘close’ to any
of the defined classes..

• Train the classifier separately for the left and right sides:

– This would reduce the number of classes required by the classifier, hence theoretically
increasing its accuracy.

• Addition of positioning features to improve the accuracy of the classifier:

– This could potentially reduce the misclassification of LD and LCX especially in the
anomalous cases as vessel path is a strong discriminator for these two vessels.

• Normalisation of features to a common space:

– The polyline trees (both training and novel) should be warped to the space of a
reference dataset, before measuring feature vectors.
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Chapter 3

Creation of a Coronary Artery Atlas to
Guide the Tracking of Coronary Vessels

Abstract Coronary anatomy varies from person to person, although general patterns of this

anatomy co-exist alongside anomalous patterns among individuals. This paper proposes a

method to represent these anatomical patterns using a coronary artery centreline atlas, and

demonstrates how this atlas can be applied to an existing coronary centreline tracking algorithm

to reduce the occurrence of non-arterial vessels from 8.4% to 5.0%, thus improving the specificity

of the algorithm.

The atlas is created by registering a set of CCTA datasets, each with manually-segmented

coronary artery centrelines to a reference CCTA dataset, with a manually segmented heart, and

warping these centrelines onto the reference heart. Statistical features relating to density and

direction are then extracted from this atlas and used through a coronary vessel classifier to

assess the probability of a tracked centreline being that of a true coronary artery centreline. The

unlikely candidates are pruned leaving only true coronary arteries.

3.1 Introduction

Close to 17 million people worldwide die annually from heart disease; it is essential to have
the ability to detect and diagnose the symptoms of these diseases as early and as accurately as
possible. CT angiography is becoming an increasingly important diagnostic tool for this purpose.

Automatic identification of coronary arteries from medical images provides a quick and
efficient way for cardiologists to assess the risk of coronary artery disease in patients; although
these segmentation algorithms are subject to error and may produce additional incorrect vessels,
which could end up being misleading.
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3.1.1 Motivation

Automatically delineating the coronary arteries and presenting them to the radiologist, for
example by curved MPR, allows them to make measurements of stenoses within the arteries and
assess the risk of CAD (figure3.1) quicker than it would take if they had to manually segment
the arteries [1, 2, 3]. Accurate segmentation of the coronary arteries, therefore can reduce the
time taken to assess the risk of CAD.

Figure 3.1: Automatic Coronary Analysis
The image on the left shows a cross-sectional view of a stenosed section of a segmented coronary

artery from a CCTA dataset. In the straightened vessel view on the right, the artery is
automatically analysed for stenosis.

A coronary centreline tracking algorithm is required in order to provide this functionality
in automatic cardiac analysis software. Such algorithms, are qualified by the level of accuracy
with which they segment the coronary arteries. This accuracy is defined in terms of sensitivity
and specificity. Sensitivity, in this case is defined as the proportion of coronary arteries that
are correctly identified, while specificity refers to the proportion of non-arterial vessels that are
correctly ignored (Equation 3.2). Figure 3.2 shows two cases where the specificity of the applied
centreline tracking algorithm is reduced.
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sensitivity =
Volume of correctly identified arterial vessels

Total volume of segmented vessels
(3.1)

specificity =
Volume of correctly identified non-arterial vessels

Total volume of non-arterial vessels
(3.2)

Figure 3.2: Specificity Errors in Coronary Artery Segmentation
The Volume Rendered (VR) image on the left shows an error whereby a coronary vein is

identified as a branch of the left anterior descending artery. In the image on the right, a section
of the right ventricle has been identified as part of the right coronary tree.

The aim of this work is to demonstrate that knowledge of coronary anatomy applied through
an atlas can improve the specificity of automatic coronary artery centreline tracking algorithms
by identifying non-arterial vessels in the tracked output. This report discusses a method for the
creation of a coronary artery centreline atlas and its application to a system for tracking coronary
artery centrelines from cardiac angiograms. The chapters are arranged as follows:

• Section 3.1.2 reveals the state of the art in vessel atlas creation.

• Section 3.2 presents the proposed method, module by module.

• Section 3.3 presents results, describing the validation method adopted.

• Section 3.4 concludes by discussing further work proposed.

3.1.2 State of The Art

Segmentation of coronary artery centrelines from medical imaging modalities falls under the
general problem of vessel segmentation. This problem has been adequately categorised by
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[4] into pattern recognition, model-based, tracking-based, artificial intelligence-based, neural
network-based, and miscellaneous tube-like object detection approaches.

The problem of creating a vessel atlas to represent anatomical a priori knowledge for
application to vessel segmentation algorithms has been addressed in [5], [6], [7], and [8] as a
process requiring registration of mutliple datasets to a reference dataset. In [5] and [6], a method
whereby a vascular image volume is picked as a template and other segmented vascular images
are mapped onto it using a vascular-model to image affine registration method is proposed. Here,
the model is represented as a set of points in the centreline of the vessels with their radii and
medialness [9] and it is used to detect anomalous and pathogenic blood vessels in liver and brain.
The use of affine transformation as the only form of registration for elongated structures such
as vessels, which vary widely in tortuosity, can lead to sub-optimal mappings. In [7] and [8],
an atlas of the brain vasculature, which contains information about vessel size, orientation of
individual vessels, and the probability of finding vascular structures at a given position is created
from Magnetic Resonance Angiograms (MRA). The atlas is created using rigid and non-rigid
registration on automatically segmented vascular image datasets, using one dataset as a reference
whilst registering the others to it. The method used to construct the atlas relies on automatically
segmented vessels which in turn exposes the atlas to errors from the segmentation such as false
branches, which should be detected by the vascular atlas in the first place.

3.1.3 Contribution

This report is not concerned with vessel tracking algorithms per se, rather it concerns the
construction and application of a vessel atlas to improve the specificity of such algorithms.

The method proposed in this paper builds on [7], but instead uses manually delineated
coronary artery centrelines provided by medical trained personnel; this ensures that the entire
centreline database contains only coronary artery centrelines, providing a suitable basis for build-
ing a model. The method selects a reference CCTA dataset and warps the remaining centrelines
onto it following registration of the raw volume-pairs to consider the entire context. The proba-
bility atlas described in [7] tends to produce sparse data from limited training sets, therefore this
paper proposes a probability density atlas created by a union of the transformed centreline-trees
with smoothing performed using an adaptive anisotropic kernel density estimation method in
order to maintain the shape of the vasculature. The orientation atlas provided in [7] is replaced
with the direction of centreline points in each vessel represented as unit vectors to provide more
useful information.
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3.2 Method

3.2.1 Introduction

This chapter describes the implementation of atlas-guided tracking of coronary artery centrelines.
A flow diagram of the overall method is provided in figure 3.3, and the rest of the chapter
discusses in greater detail the components of this diagram.

Coronary Vessel Classifier

Coronary Artery 
Centreline 

Tracking Algorithm

Warp Centrelines 
to Reference 

Dataset
Compute Features Classification/

Pruning

Coronary Artery 
Atlas Creation

CCTA datasets with 
manually segmented 

vessel centrelines
(from database)

Novel Cardiac
CTA dataset

vessel
centrelines

coronary artery atlas

True
Coronary

Artery 
Centrelines

Figure 3.3: Atlas-Guided Coronary Artery Centreline Tracking
The input is a CCTA image, and the final output are the artery centrelines having fewer non

arterial vessels.

3.2.2 Training Data

The training data consists of CCTA image datasets collected from 42 patients. In each of these
datasets, the coronary artery centrelines are manually segmented by medically-trained personnel
using commercially available advanced visualisation software. Each vessel is stored as a polyline
(see equation 3.3), with the entire arterial tree represented by a polyline-tree.

polyline = {x0, x1, · · · , xn−1|xi ∈ <3} (3.3)

In this context, a polyline is an ordered list of points along the centreline of a single coronary
artery. The entire coronary artery vasculature is represented as a polyline-tree, see figure 3.4.

3.2.3 Coronary Artery Atlas Creation

The intent of the coronary artery atlas is to provide statistical information about the arterial
vasculatures present in the training data, and in the presence of a large amount of training data,
information about the vasculature of a specific population. Its construction takes place in two
phases; the first phase involves warping all the training data onto a reference space, while the
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Figure 3.4: Training Data
The image on the left shows a curved planar reconstruction of a CCTA dataset with the points
making the centreline of a coronary artery. The sketch on the right is an example of an entire

artery vasculature represented as a polyline-tree.

second phase computes quantitative information about the atlas, which can be used to classify
novel vessels.

Representing the Training Data in a Reference Space

From a database, D, of CCTA datasets containing manually segmented coronary arteries, a
dataset is arbitrarily selected as a reference dref .

D = {{d0, {p0}}, · · · , {dN−1, {pN−1}}},

where di is volume data, di ∈ <3 → <, {pi} is a polyline tree, and {pi} ⊂ di.
Each of the remaining N − 1 datasets are registered with dref , using a multi-scale affine

registration algorithm τ that produces the best matching between the two volumes based on 3-D
translation, anisotropic scaling and rotation.

τ : (<3 → <)× (<3 → <)→ (<3 → <3)

τ(di, dref ) = Ti

In the above definition, T is an affine transformation matrix representing the best linear
transformation required to map di onto dref .

T = [ti,j]3×4

∀x ∈ di(x), di(x)(Tx) ≈ dref (x)

The affinely transformedN−1 datasets are non-linearly registered with dref using multi-scale
non-rigid registration, which aims to find the warp field which maximises mutual information
within fluid and elastic constraints[10], to take account for changes in shape across the different
datasets. This produces a warp-field Wi mapping the dataset di to dref , with the initial warp-field
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derived from di(x)(Tx).

∀x ∈ di(x), di(x)Wi(x) ≈ dref (x)

The segmented polyline trees, {pi} are warped onto the space of dref using Wi.

The above procedure (figure 3.5) produces N-1 coronary trees mapped into the space of one
heart, and this is referred to as the coronary artery atlas (figure 3.6).

A =
N−1⋃

i=1

{pi}(Wi) (3.4)

Extracting Statistical Features from the Atlas

The images in figure 3.6 show the coronary artery atlas, which can be perceived as a source of
anatomical information about the coronary arteries present in the training set. In order to exploit
this information, statistically descriptive features need to be defined from the atlas. In [7], the
density, orientation, and vessel thickness are used to describe vessels in the brain; in our method,
the probability density and direction are used to describe the coronary arteries.

Probability Density The probability density of the atlas can be visualised as a 3D image, with
values being the probability of finding a coronary artery centreline at any point within it. In
order to compute a probability density function (PDF) from the coronary atlas, each centreline
point is regarded as a random variable, and kernel density estimation is used to approximate the
distribution of this random variable. The conventional Parzen estimator proposes that the value
of the p.d.f at a point x is the average of all kernels centred at each training sample:

f̂(x) =
1

N

N∑

i=1

Kh(x, xi), x ∈ <3, (3.5)

where Kh(x, xi) is an isotropic, usually Gaussian kernel [11], with fixed width h.

Kh(x, x
′) = (

1

2πh2
)

1
2 exp(−‖x− x

′‖2
2h2

) (3.6)

The Parzen method using an isotropic kernel implies that the distribution will be spread
equally in all 3 dimensions (x, y, z) at every training point; this is not desirable in the case of
coronary anatomy, as the coronary vasculature is known to have a curved surface, therefore
isotropic kernel density estimation will lead to inaccurate probabilities in directions normal
to this surface. In order to avoid this situation, the Parzen estimator is used with an adaptive
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Figure 3.5: Artery Atlas Creation
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Figure 3.6: The Coronary Artery Atlas
The figure on the left shows N coronary trees registered to the space of a heart. The black dots

indicate the centre of gravity of the combined (left and right) vasculature for each pair of
coronary trees, while the different colours indicate the anatomical label of each vessel. The
image on the right shows a volume-rendering of the registered centrelines overlayed on the

contrast-enhanced blood in the reference heart.

anisotropic kernel as proposed in [11].

f̂(x) =
1

N

N∑

i=1

Ki(x, xi) (3.7)

In equation 3.7, Ki(x, xi) is the adaptive anisotropic kernel centred at a training sample point,
xi and is computed from the distribution, Σi at the point xi.

Ki(x, xi) =
1

|2πΣi|
1
2

exp(−1

2
(x− xi)TΣ−1

i (x− xi)) (3.8)

Σi = α1 +
N∑

j=1

Kh(xi, xj)(xi − xj)(xi − xj)T , (3.9)

where α is a regularisation parameter that controls the magnitude of the probability in directions
orthogonal to the principal direction of the distribution (see figure 3.7). It is not necessary to
compute the distribution Σi exactly as described above, which considers the influence of all the
training points, as this is not only computationally intensive, but may fail to capture regional
shape characteristics, therefore we use a local neighbourhood approach.

Si is a spherical neighbourhood of fixed radius, r centred at sample point xi:

Si = {x||x− xi| ≤ r, x ∈ Atlas}.
The distribution is now calculated within Si as:

Σi = α1 +
∑

x∈Si

Kh(xi, x)(xi − x)(xi − x)T , (3.10)
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Figure 3.7: Adaptive Anisotropic Kernel Density Estimation
The example images are generated by applying the adaptive anisotropic kernel to two helical
lines parallel to each other along their entire lengths. The image on the left shows α set at 1.0,

while the image on the right shows α set at 0.02.

Figure 3.8 shows the created density atlas.

Figure 3.8: Probability Density and Directional Features of the Atlas
The image on the right represents the probability of a coronary artery being at any position

within the atlas space, while the one on the left shows the direction of each artery at each point
within the space.

Direction The directional information can be visualised as a 3D vector image representing
the directions of each point within each coronary artery centreline contained in the atlas. The
direction is the unit vector at point xi in the direction of point xi+1 in the centreline of an artery,
pi. The direction at the last point is computed by extrapolation.

x̂i =
xi+1 − xi
|xi+1 − xi|

(3.11)

These two feature images contain the relevant information that can be used to identify a
coronary vessel as an artery (see figure 3.8).
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3.2.4 Coronary Vessel Classifier

The computed features discussed in the previous section are used to classify candidate centrelines
representing vessel segments. In order to do this, the output polyline tree from the coronary
artery centreline tracking algorithm is warped onto dref , using the same affine and non-rigid
registration strategy described in section 3.2.3.

Two quantities are computed in this case:

• Density-based probability of a vessel-centreline (PDV).

• Congruence of the direction of a vessel centreline and the directional atlas (CDV).

Density-based probability of a vessel-centreline

This is computed from the PDF, (equation 3.7), using a neighbourhood strategy.

p(xi ∈ Ri) ≈
∑

x∈Ri

f̂(x), (3.12)

where Ri is a spherical neighbourhood of fixed radius, r centred at xi, such that

Ri = {x||x− xi| ≤ r, x ∈ Z3} (3.13)

The probability of a candidate polyline being a coronary artery segment, i.e. belonging to the
atlas can be described as:

PDV =
1

N

N−1∑

i=0

p(xi ∈ Ri), (3.14)

for N points in the polyline.

Directional Congruence

This is computed from the directional information (equation 3.11), using a similar neighbourhood
strategy.

CDV =
1

N

N−1∑

i=0

∑

x∈Ri

x̂i.x̂, (3.15)

where Ri = {x||x− xi| ≤ r, x ∈ Atlas}.
This gives a measure of agreement with the neighbouring atlas points based on direction.

A CDV < 0 implies that the candidate polyline is anti-parallel to the arterial centrelines in a
local neighbourhood within the atlas. Such polylines would naturally be classified as non-arterial
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vessels; therefore the dot-product is clipped at 0, in order to make the CDV lie between 0 and 1,
representing a pseudo-probability.

Classification

The probability of a vessel being a true coronary artery can be obtained in a number of ways
based on each of the measured features discussed in the previous section. The simplest approach
is to use the computed PDV and CDV values directly, as they scale between 0 and 1. PDV
represents the probability of a candidate vessel being part of a coronary artery, given its spatial
co-ordinates within the atlas, while CDV is treated as the probability of a candidate vessel being
part of a coronary artery given its average direction within the atlas.

In order to detect the non-arterial vessel-segments produced by the vessel tracking algorithm,
thresholding based on the chosen quantity is used. The output of the tracking algorithm is warped
onto the reference space prior to classification. Pruning is performed recursively by removing
child nodes of the polyline tree with the chosen quantity (PDV or CDV) less than a trained
threshold K.

The output is a polyline tree containing all centrelines that have a CDV or PDV above K,
indicating that they are true coronary artery centrelines based on the atlas.

3.2.5 Summary

This chapter has described the method used to detect and remove non-arterial vessels from
automatically tracked coronary vessels using a statistical coronary artery atlas. The process of
atlas creation uses affine and non-rigid registration to warp a set of manually segmented coronary
artery centreline-trees to a reference; the candidate vessels are also warped to this reference and
classified as being arterial or non-arterial coronary vessels.

3.3 Results and Discussion

3.3.1 Introduction

This chapter discusses the results obtained from the method described in chapter 3.2. Various
approaches to coronary vessel classification are proposed in section 3.3.4, although none have
been validated at this point, and so only the results from the applied methods are discussed.

3.3.2 Validation Method

20 CCTA datasets with manually segmented coronary artery centrelines are selected to be used as
validation data. The ground-truth obtained from these datasets are collected by medically-trained
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personnel in a manner such that all coronary arteries (including small arteries) present in the
dataset, are included. This allows for accurate assessment of the proposed method in dealing
with non-arterial branches.

The metrics used for validation of the coronary artery tracking algorithm are:

• False Positive Ratio (FPR): This is the volume ratio of false vessels to ground-truth vessels.
False vessels in this case refer to vessels that are included in the generated output, but
absent in the ground-truth.

FPR =
| ⊕d {T ′GEN} \ ⊕d{T ′GT}|

⊕d{T ′GT}
,

where T ′ is a connected binary image representing points in the polyline tree, and d is the
size of a spherical structuring element used for dilation. False positive ratio is inversely
proportional to the specificity of the overall system.

• False Negative Ratio (FNR): This is the volume ratio of missing vessels to ground-truth
vessels. Missing vessels in this case are the vessels which are not present in the generated
output, but present in ground-truth. this measure is inversely proportional to the sensitivity
of the overall system.

FNR =
| ⊕d {T ′GT} \ ⊕d{T ′GEN}|

| ⊕d {T ′GT}|

For the purpose of this work, false vessels, in the context of FPR, are treated as non-arterial
vessels, therefore the above metrics are still meaningful.

3.3.3 Results

The aim of any classification algorithm employed here is to reduce FPR as much as possible,
leaving FNR unchanged.

Results using Measured Quantities Directly

The CDV and PDV (equations 3.15 and 3.14, respectively) computed in chapter 3.2 can be used
directly as probabilities of a candidate vessel centreline belonging to a coronary artery as they
both represent relationships between candidate centrelines and the coronary artery centrelines via
the atlas. In this approach, a threshold is selected based on Leave One Out (LOO) experiments
on the 20 datasets selected for validation. Receiver Operating Characteristic Curves based on
FPR and FNR are shown in figure 3.9.

It can be seen from figure 3.9 that applying CDV directly is more radical at detecting false
vessels, whilst still maintaining the true vessels. From figure 3.9 , applying a threshold of 0.1
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Figure 3.9: Receiver Operating Characteristic using CDV and PDV directly.
The thresholds are increased as the curves move from left to right; the left-uppermost point

indicating the results when no pruning is carried out.
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reduces reduces FPR from 8.39% to 5.02%, while increasing FNR from 16.5% to 16.67%.
Thresholding based on the PDV however, produces a reduction in FPR from 8.39% to 6.92%,
while increasing FNR from 16.39% to 16.4%.

3.3.4 Discussion

The classification method employed in section 3.2.4 could be regarded as a trivial approach out
of many possible classification techniques using the data available.

The histograms in figures 3.10 and 3.11 indicate that the training data is almost normally
distributed based on CDV and PDV. Assuming a normal distribution in both cases, the probability
of a candidate coronary vessel centreline being part of a coronary artery can be computed
given its CDV or PDV, z, and its normalised distance to the mean, µ, of any of these quantities
measured on training data.

Figure 3.10: PDV Distribution
Distribution of Probability Density of a coronary vessel. This is computed on the vessel

centrelines of the coronary vessel atlas.

P (z|ωk) =
1

σ
√

2π
exp(−(z − µk)2

2σ2
k

) (3.16)

In the above equation, the quantity P (z|ωk), also known as likelihood [12] refers to the
probability of observing the measured feature z, given a vessel of class ωk (coronary artery, in
this case). The quantity required here is the posterior probability; i.e. the probability of a vessel
being a true coronary artery ωk, given a measured quantity z, and this is computed using Bayes’
theorem:

P (ωk|z) =
P (ωk)P (z|ωk)

P (z)
(3.17)

The prior probability of observing an arterial vessel, P (ωk) is rather difficult to estimate ac-
curately, even if a record of non-arterial vessels generated by the tracker is available. Hence,
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Figure 3.11: CDV Distribution
Distribution of Directional Congruency of the points within each vessel. This figure is computed

for the vessel centrelines in the coronary vessel atlas.

if equal priors are assumed for both arterial and non-arterial vessels, then cancelling the prior
probability quantity P (ωk) and the normalizing constant P (z), and leaving P (z|ωk) indicates
that the likelihood in equation 3.16 can be used to correctly classify the coronary vessels.

The two quantities (CDV and PDV) can also be combined exploiting any multi-variate
behaviour, revising equation 3.16 as follows:

P (z|ωk) =
1√
|Ck|2π

exp(
−(z− µk)

TC−1
k (z− µk)

2
) (3.18)

In the above equation, z now represents the measured feature vector, µk represents the
mean vector for the class ωk (coronary artery) and Ck is the covariance matrix. If µ and
σ were both estimated for non-arterial vessels, then the classification can be expressed as a
maximum-likelihood problem, whereby the class assigned to a candidate vessel is described as
such:

arg max
ωk

P (z|ωk) (3.19)

In the absense of these parameters, iterative approaches to segmentation, such as the EM
algorithm [13] can be used to perform the classification based on the measured CDV and PDV
alone. The EM algorithm iterates over two steps until convergence. The E step computes the
expected log-likelihood based on the current estimates of the mean and standard deviation for
arterial and non-arterial vessels, while the M step computes the values for these parameters,
which maximise the log-likelihood computed in the E step.
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3.4 Conclusion and Further Work

3.4.1 Conclusion

The work presented in this paper demonstrates that an atlas, representing knowledge of the
coronary anatomy can be constructed using a registration strategy. Sections 3.2.4 and 3.3.3
demonstrate one possible means by which such an atlas can be applied to the output of a coronary
vessel tracking algorithm and improve its specificity by identifying and removing non-arterial
vessels.

3.4.2 Further Work

The main focus of this work was to create a coronary artery atlas capable of providing information
about coronary anatomy of the represented population. In this regard, 42 datasets is a starting
point, although much more data is needed in order to arrive at the intended goal.

Coronary anatomy is divided into 3 main circulation patterns, namely, left dominant, right
dominant and balanced circulation anatomies. Approximately 70% of the general population are
right-dominant, 20% are balanced, while 10% are left-dominant. As an extension to this work, it
would be beneficial to separate the atlas into three, one representing each anatomical category.

The results presented in figure 3.9 were obtained by applying various thresholds to the
measured CDV and PDV; this exposes the algorithm to over-fitting errors, which can be avoided
by a larger validation set and a more sophisticated classification algorithm like the EM algorithm
as suggested in section 3.3.4.

The direction and density features express useful information about the coronary vessel
centrelines, but the classification procedure used in this chapter has not exploited both features
simultaneously. Future work would also aim to combine these in a suitable framework, for
example, using the multivariate Gaussian approach discussed in section 3.3.4.
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Chapter 4

Optimal Atlas Selection Using Image
Similarities in a Trained Regression Model
to Predict Performance.

Abstract An atlas in the context of atlas-based segmentation refers to a pre-selected image

with labelled anatomical regions of interest. Atlas-based segmentation is the propagation of these

labels to a novel image, usually after both images have been registered. In such applications,

the choice of image to use as the atlas is very important. The overall goal of an atlas is to

be as typical as possible to an anatomical category, but in practice there exists variability in

human anatomy. One solution to maintain consistent segmentation accuracies is to have multiple

atlases, representing several categories of anatomical variation, with a system for selecting the

most appropriate atlas at the time of segmentation. This paper describes a method for selecting

an atlas using a linear regression model to predict the segmentation accuracy based on image

similarity metrics. It goes further to present an offline method for automatically selecting a set of

atlases, representative of the training set to be used during segmentation; all of this illustrated

by segmentation of the heart in 3D CT images.

4.1 Introduction

4.1.1 Clinical Motivation

The problem of selecting the best atlas for segmentation of a particular novel image dataset out of
a database of potential atlases arises because of the variability that exists within human anatomy.
This variation in structure of an organ across different patients may be due to pathology, for
instance patients suffering from heart failure usually have enlarged hearts relative to the thoracic
cavity. It may also be due to subject’s lifestyle, e.g. athletes have relatively large hearts, size and
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demographics.
Anatomical variation in the thoracic cavity is a good example of general differences that

exist among patients. Cardio-thoracic ratio (CTR) is a measure of the diameter of the heart with
respect to the diameter of the thoracic cavity defined for chest X-Ray images(See figure 4.1); this
measure has been found to be a good indicator of heart pathology [1]. It has also been reported
in [1], [2] and [3], that this ratio not only varies based on pathology, but also varies with age,
body size and ethnicity. Figure 4.2 demonstrates how this variability in CTR manifests itself in
cross-sectional imaging modalities; in this case, chest CT. This poses a problem to atlas-based
segmentation approaches that rely on a single atlas (figure 4.3), and so a segmentation approach
which takes these differences into account is required.

Figure 4.1: Cardiac Thoracic Ratio [4]
MRD = maximum transverse diameter of the right side of the heart, which is a line drawn from
the midline of the spine to the most distant point of the right cardiac margin. ML= mid-line of

the spine. MLD = maximum transverse diameter of the left side of the heart, which is a line
drawn from the mid-line of the spine to the most distant point of the left cardiac margin. ID=
greatest internal diameter of the thorax. TD = MRD + MLD. Cardiothoracic ratio = TD/ID

Figure 4.2: Heart-Shape Variability
The images show axial projections of CT angiograms taken from two patients. In the image on

the left, there is a relatively large cavity in between the pericardium and the rib-wall as
compared to the image on the right.

4.1.2 The Problem

A system is required which is capable of selecting the most similar atlas image to a novel image
from a set at the time of segmentation. A system is also required for selecting an optimal set of
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Figure 4.3: Single-Atlas Errors due to Variation in CTR
In this example, the image on the left is used as an atlas to segment the heart in the image on the
right, which has a higher CTR than the atlas image. The result is a gross over-segmentation into

the ribs.

atlases capable of representing a wide range of anatomical variations.

4.1.3 State of The Art

The evaluation of selection strategies in [5] demonstrates that selecting the atlas which produces
the highest normalised mutual information after non-rigid registration to the novel dataset, results
in higher average segmentation accuracy on the experiment set than the highest average accuracy
obtained by using any atlas in the set on its own. Subsequent approaches in [6] extend this
method by computing the similarity metric in a region of interest; this is particularly useful
in situations where certain sub-anatomies are likely to vary across subjects, such as the right
anterior cingulate cortex and right amygdala in the brain.

Other similarity metrics can be used. In [7], the magnitude of the deformations from the
non-rigid registration warp field, which transforms each atlas dataset to the novel dataset is used
to select an atlas, with the assumption that the most similar dataset will require the least amount
of deformation.

An alternative approach to multi-atlas based segmentation is decision-fusion from multiple
classifiers as reported in [8], [9], [10], [5] and [11], where each atlas is treated as a separate
classifier and each pixel in the novel image assigned a class label following registration. The
problem is to find a combination of the individual segmentations that produces the most accurate
overall segmentation. In [10], the vote rule, whereby the final class assigned to each pixel is the
modal class from all the individual segmentations, is compared with the sum rule, whereby the
final class assigned to each pixel is the class that maximises the probability of the pixel belonging
to it, averaged over all the atlases. The method of combining atlases using either the vote or sum
rule is reported in [5] to produce better segmentation results than by simply selecting the most
similar atlas.

A problem with vote counting strategies arises in cases where multiple anatomical categories
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exist, and the category represented by the novel dataset has minority representation amongst the
group of atlases used. In [8], this issue is addressed by limiting the set of atlases to those that are
most similar to the novel dataset using image similarity and meta-information, such as patient’s
age, gender and clinical status. In [12], selection of the set is addressed as a clustering issue, and
the mean-shift algorithm is used to categorise a large atlas database. This implies that a novel
dataset will be best segmented using atlases within its category.

4.1.4 Contribution

The method proposed in this paper draws upon the findings reported in [8], [13] and [5], stating
that an atlas selected on the basis of image similarity produces better results than is possible
with a single atlas used across all novel datasets. This paper extends this idea by acknowledging
that image similarity measures such as mutual information and cross-correlation can be used to
predict the segmentation accuracy. However, it is possible that the mutual information between
one atlas and the novel dataset may be less than that computed using a second atlas, but the
first atlas nevertheless generates a more accurate segmentation. What is needed is a measure
that is comparable across the entire set of possible segmentations. Here, instead of using image
similarity measures directly to compare segmentations, they are used to predict the accuracy
of the segmentation. This predicted accuracy is then directly comparable across the set of
segmentations. The system is based on a linear regression predictor model, developed from
training data.

By applying this system to whole heart segmentation in CT and using the correlation
coefficient within a region around the boundary of the heart as a predictor, it was observed
that a set of four atlases, covering different categories available in the training set, was able to
produce a higher segmentation accuracy than using any single atlas.

4.2 The Method

4.2.1 Introduction

This section describes all aspects involved in the selection of an optimal atlas during multi-atlas
based segmentation. A description of multi-atlas based segmentation (figure 4.4), which uses the
optimal atlas selection is provided first. The remaining sections describe the process of selecting
an optimal set of atlases from a training set.
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Figure 4.4: Multi-Atlas Based Segmentation
The atlases in use in the application are selected offline from a database of image atlases. Each
of the chosen atlases produces a segmentation when aligned with the novel image, therefore a

mechanism is required, which is capable of predicting the best segmentation.

4.2.2 Multi-Atlas Based Segmentation

Assuming a setA = {a0, ..., aM−1} ofM atlases has been provided, segmentation of the required
anatomical region in a novel image T begins by registering each ai(i = 0, ...,M − 1) with the
novel image in order to produce a set of warp-fields W = {W0, ...,WM−1}, where Wi maps Ai
onto T .

The registration process is a multi-scale approach, performing 2 passes of rigid registration
in order to find the transformation that maximises the mutual information between the pair of
images. The transformation parameters used here are 3D translation, anisotropic scaling, and
3-dimensional rotation (roll, pitch and yaw). Once this initial alignment is achieved, 2 passes
of non-rigid registration are carried out in order to find a deformation field which maximises
mutual information, within fluid and elastic constraints[14].

Using the warp-field Wi, the cross-correlation between Wi(ai) and T can be measured. The
cross-correlation between any Wi(ai) and T is not used directly to determine the segmentation
accuracy, because this measure by itself is not directly comparable across all possible pairs of
Wi(ai) and T . In order to get a more standard measure for selecting the best out of M possible
segmentations, a linear regression model specific to each atlas is used. The function is of the
form y = mx+c, where x is the value of the cross-correlation and y is then the predicted Jaccard
overlap (equation 4.1); m and c are stored as part of the atlas.

Jaccard(A,B) =
V ol.(A ∩B)

V ol.(A ∪B)
, (4.1)

where A and B are the generated and ground-truth segmentations, respectively.

The labelled anatomical region from the ai that predicts the highest segmentation accuracy,
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is propagated onto T using Wi, resulting in a segmentation.

a∗ = argmax
ai

{mai
corr(Wi(ai), T ) + cai

}

Section 4.2.4 describes how these regression functions are obtained, while section 4.2.7
describes a method for selecting an appropriate atlas set A based on available training data.

4.2.3 Materials

Cardiac CT angiography (CCTA) datasets obtained from hospitals in Japan, U.S.A, and the U.K.
were used in this experiment. The patients therefore varied not only in ethnicity, but also in age,
sex and pathology, although demographic information was not present in the DICOM meta-data.

Each scan was captured as part of a cardiac perfusion protocol, from the 65% phase of the
cardiac cycle. Different scanners were used depending on the source of data, but all images were
captured following administration of a contrast agent. The resultant images were 3-D volumes
containing at least 300 slices with 512x512 pixels per slice, and a slice thickness of 0.5mm with
typical intra-slice pixel spacing of 0.4mm. Each image therefore contained the entire heart and
thoracic cavity.

Whole heart segmentations, represented as masks containing the entire heart as one fully-
connected domain, were collected by a clinically qualified individual on 21 of these datasets.
In each dataset, the distance along the long axis between the apex of the heart and the rib-wall
was measured (figure 4.5) as well as the CTR. The CTR was measured by dividing the longest
diameter of the heart by the longest diameter of the chest cavity. It was observed that in datasets
14-21, the distance between the apex and the rib-wall was close to zero, while the other datasets
generally demonstrated greater distances. The CTR on the other hand was less discriminating,
although the highest values for this measure were observed on this set. Demographics are
unknown for these datasets, however datasets 14-21 were received from hospitals in Japan while
the rest were received from hospitals in U.S.A and the U.K.

Atlases were created from each image and mask combination by constraining the image to a
region of interest containing the heart mask morphologically dilated by 6mm to contain a degree
of context.

4.2.4 Training Parameters

Each dataset in turn is used as an atlas to segment the heart in all the other datasets using the
registration method outlined in section 4.2.2. The final mutual information between the atlas
dataset and the novel dataset, along with the cross-correlation between the two aligned volumes,
the cross-correlation between the two volumes measured on a region of interest about the apex
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Figure 4.5: Cardiac-Thoracic Ratio and Apex to Rib-Wall Distance for Patient Data
Datasets 14-21 were received from hospitals in Japan. The distance between the heart’s apex
and the rib-wall is generally much lower in this set than on the remaining data. CTR is not a

clear discriminant between the two sets of data, although the highest values are observed within
datasets 14-21.

of the heart, and the final segmentation accuracy measured using the Jaccard overlap (4.1) are
collected from each segmentation.

These measurements make up the training parameters and they are presented in seperate
cross-segmentation matrices, J and CC(figure 4.6), where J(i, j) is the Jaccard overlap produced
when atlas aj is used to segment the heart in dataset ti, and CC(i, j) is the cross-correlation
measured at the optimal alignment between atlas dataset aj and novel dataset ti. The diagonal
elements represent parameters collected from self-segmentation.

1688_001
0.966 0.887 0.915 0.86 0.914 0.903
0.864 0.951 0.875 0.887 0.833 0.844
0.901 0.889 0.959 0.925 0.859 0.867
0.863 0.905 0.929 0.954 0.885 0.885
0.898 0.846 0.899 0.913 0.956 0.878
0.934 0.9 0.937 0.933 0.922 0.961

1688_001
0.928 0.855 0.911 0.794 0.878 0.911
0.822 0.92 0.901 0.85 0.846 0.874
0.838 0.795 0.927 0.804 0.842 0.854
0.882 0.829 0.907 0.934 0.879 0.869
0.816 0.754 0.855 0.828 0.918 0.817
0.863 0.786 0.854 0.8 0.821 0.917

Jaccard Overlap Matrix Cross-Correlation Matrix

Figure 4.6: Training Parameter Matrices
The datasets names are displayed as row and column headers in the matrix. The columns

represent the atlas datasets, while the rows represent the novel datasets; therefore, the diagonal
elements are self-segmentation parameters. The blue and red coloured cells show cases where
CC is higher between one atlas and a novel dataset, but the resulting Jaccard overlap is lower.

4.2.5 Regression Model

The parameter model used in this system is a univariate least-squares regression function
measured on each similarity measure for each atlas in the form ŷ = β̂1x + β̂0, correlating
mutual information or correlation coefficient with segmentation accuracy (figure 4.7). Equation
4.2 therefore predicts the segmentation accuracy obtained if using atlas dataset aj to segment
the heart in dataset ti based on the measured correlation coefficient between the two at the
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region-of-interest.
J∗aj

(t) = CC(i, j) ∗ β̂1aj
+ β̂0aj

(4.2)

Jaccard Overlap vs. Cross-Correlation
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Figure 4.7: Segmentation Overlap vs. Similarity Metric
This regression model is built up for each atlas based on values collected from the relevant

column in the cross-segmentation matrix. Both images show regression functions for the same
atlas using different similarity metrics as predictors; the slope is greater using CC, assuming
similar residuals implies that CC is a better predictor. It is arguable that a linear regression

model is the best line fitting technique for the observed data, but this model was chosen purely
for its simplicity and because of the small size of the training set.

4.2.6 Atlas Statistics

Using the per atlas regression functions, J∗a and the Jaccard overlap matrix J, this stage uses the
regression functions to predict the segmentation overlap and compares the predicted value J∗aj

(ti),
to the actual value collected during training J(i, j). The following information is obtained (figure
4.8):

• Correlation:
ρ(J∗aj

(ti), J(i, j))

A value close to +1 indicates strong prediction power.

• Mean absolute error:
1

N

N−1∑

i=0

|J∗aj
(ti)− J(i, j)|

This is the average of the discrepancy between the predicted overlap and the actual overlap
produced by the particular atlas over all the datasets. The best single atlas is generally the
atlas with the lowest mean error.
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• Standard deviation of the error:

σ(J∗aj
(ti)− J(i, j))

This is a measure of the distribution of the discrepancy between the predicted overlap and
the actual overlap produced by the particular atlas over all the datasets. A low value of this
statistic indicates a stable atlas.

• Max absolute error:
max
i
|J∗aj

(ti)− J(i, j)|

The maximum discrepancy between the predicted overlap and the actual overlap produced
by the particular atlas over all the datasets.

• Best-segmentation atlases:
argmax

aj

J(i, j)

For each novel dataset, the atlases which performed in the top three in terms of segmenta-
tion accuracy are highlighted. This is intended to provide information about which datasets
are better suited for certain categories (figure 4.9).

4.2.7 Offline Multi-Atlas Selection

The aim of this step is to select the set of M atlases from a set of N training datasets that
produces the highest overall average segmentation accuracy, while using the regression function
to decide on which atlas to use on each novel dataset. The end goal is to find out whether this
combination represents all categories present in the training population, and whether it is capable
of producing a more accurate segmentation than using only one atlas.

In this case, M is increased sequentially from 1, leading to
(
N
M

)
combinations of atlases in

each iteration. The procedure is as follows:

For each combination A where A = {a0, ..., aM−1},

• For each ti of the remaining N-M training datasets,

– Compute the regression parameters β̂1SIMam
and β̂0SIMam

for each atlas am in A
(see equation 4.2), excluding ti from the observations.

– Predict the overlap for dataset ti:

J∗am
(ti) = β̂1SIMam

SIM(index(ti), index(am)) + β̂0SIMam

72



CHAPTER 4. OPTIMAL ATLAS SELECTION

Actual Overlaps vs. Regression Predicted Overlaps
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Figure 4.8: Atlas Statistics: Correlation and Error
Atlas number 19 appears to be a good predictor because it has both high correlation and low

mean absolute error between its predicted overlaps and actual overlaps produced.
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Figure 4.9: Best Segmentation Matrix
Datasets 9, 12, and 16-21 all belong to the group with high CTRs. The cluster in the top-right
corner indicates that atlases from this category, particularly atlas 19 are the best for segmenting
hearts within this group. Atlas number 4 generates the best segmentation accuracy over datasets

[2-14].

SIM is the cross-segmentation matrix containing the image similarity measure used
to predict overlap.

– Select am with the highest predicted overlap:

a∗m = argmax
am

J∗am
(ti)

– Collect the actual overlap produced by a∗m on ti from the overlap matrix:
J(index(ti), index(a∗m))

• Compute the average segmentation overlap:

JA =
1

N −M
N−M−1∑

i=0

J(index(ti), index(a∗m))

The combination with the highest overlap is chosen.

A∗ = argmax
A

JA (4.3)

4.3 Results and Discussion

The entire system described in section 4.2 was implemented in Matlab, and all the required
information made available offline in the cross-segmentation matrices (figure 4.6).
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The best set of 2 atlases consists of atlas numbers 4 and 19; these datasets are significantly
different in terms of heart shape and CTR (see figure 4.10), representing the 2 categories
identified. From figure 4.9, it is evident that atlas number 4 is more suitable for segmenting
datasets 2 to 14, while atlas number 19 is more suitable for segmenting datasets 16 to 21. These
datasets have already been identified as separate groups based on distance of the apex to the
rib-wall in each case. When M is increased to 3, atlas 13 joins the set; and from figure 4.9 it can
be seen that this dataset is suitable for segmenting datasets 1 to 4.

Figure 4.10: Best Combination of 2 Atlases for Heart Segmentation
left, right: 4, 19. The size of the hearts with respect to the thoracic cavity in each of these

datasets is significantly different, and is easily seen from the distance between the apex of the
heart and the rib-wall.

The multi-atlas segmentation simulator (section 4.2.7) produced a set of 4 atlases which
generated an overall average segmentation accuracy of 92.8% compared to the best single atlas,
which generated an average accuracy of 91.5%. This performance was achieved by using the
cross-correlation at a region containing the heart apex and the rib-wall (figure 4.11).

Figure 4.11: ROI over which image similarity is used to predict segmentation performance.
The image similarity metric is computed between the atlas and the novel datasets over the region

specified in blue.

Figure 4.12 shows the average segmentation overlap generated by the simulation for M
ranging from 1 to 5 inclusive. The uppermost line shows the best possible segmentation overlaps
that can be generated if the most suitable atlas was selected from the set of M in every case. This
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chart suggests that the Region of Interest (ROI) based measures, particularly cross-correlation
are better predictors than the same similarity metrics measured on the entire volumes.

Average Heart Segmentation Overlap Generated by Multiple Atlases
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Figure 4.12: Average Heart Segmentation Overlap Generated by Multiple Atlases
The topmost line shows the average heart segmentation accuracy generated if the atlases were
selected based on the known actual overlaps, rather than predicted overlaps. The chart suggests
that ROI computed metrics are better predictors than the same metrics computed on the entire

image volume.

4.4 Conclusion and Further Work

This chapter presents a method for optimal atlas selection from a set of candidate atlas images.
The underlying method is applied at two stages in multi-atlas based segmentation. In the first
stage, it is used offline to select an optimal multi-atlas set from a database of atlas images, while
in the second stage it is used during application to select an optimal atlas from within the set.

Each atlas contains an image, a mask containing the labelled heart and a pair of linear regres-
sion parameters. The parameters are obtained from a training set of images by co-registering
each pair of images and recording the resulting similarity measures and Jaccard overlaps of
the generated segmentation. The optimal atlas from a set is selected following registration by
measuring the cross-correlation between each atlas image and the novel image and applying the
respective linear regression slopes and intercepts to predict the Jaccard overlap. The atlas image
that predicts the highest segmentation accuracy is selected.

The results described in section 4.3 demonstrate that a multi-atlas approach performs better
on average than a single atlas method, given the same registration method. The multi-atlas set
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selected based on the data demonstrates that this method is capable of identifying categories of
anatomic variation present in the training set.

Further work is required however, for instance the current system uses cross-correlation,
measured over a specific region, as the predictor for segmentation overlap. It is sufficient to
solve the problem posed at the start of this paper, but the particular ROI used is ad-hoc and
therefore may not be the best predictor for selecting atlases. This can be seen in figure 4.12 by
the increasing divergence between the Overlap_CC_ROI and Overlap_Best_Possible curves; a
better predictor is required to reduce this distance. A shell-region around the heart (figure 4.13)
may be worth trying as a potentially more general ROI.

The current method uses a linear least-squares regression model to fit the data, however
figure 4.7 indicates that this may not be the best model for the data. Prediction capabilities of
other parametric functions need to be investigated, but this requires more training data in order
to avoid over-fitting errors.

Figure 4.13: Shell Region Around the Heart
The image similarity metrics discussed may be measured on the region in blue to gain more

general information about the quality of the final segmentation.

Time considerations also exist: if the system is to be applied in practice, it would require
multiple registrations. This will most certainly increase the time taken to segment a single case,
although it could be made more efficient in a number of ways, e.g. measuring the similarity after
rigid registration, and performing the registrations in parallel.
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Chapter 5

A Combined Multi-Atlas and
Unsupervised Classification Technique for
Automatic Segmentation of the Kidney
and Renal Cortex in Low-Dose CT Data.

Abstract Automatic segmentation of the kidney and renal cortex in low-dose CT scans can

serve as a useful aid to nephrologists during kidney transplant planning and can also be a

prerequisite to automating renal perfusion measurements, in order to quantify kidney function.

There are various published methods for successfully segmenting the kidney and other

abdominal organs from MRI, and non-contrast enhanced CT images. This paper describes a

method for segmenting the kidneys and renal cortices from low-dose CT images, which tend to

have a low signal to noise ratio.

The method proposed in this paper makes use of multi-atlas based segmentation, selecting

the most suitable atlas to the subject from a set during run-time. A refinement step estimates

tissue parameters for the renal cortex and medulla using the expectation maximisation algorithm

and combined with the spatial probabilities produced by the registered atlas in a maximum

a-posteriori framework, each pixel is classified. The classification framework also takes into

account the hierarchical relationship between the kidney and renal cortex and exploits this

property to increase segmentation accuracy.

The proposed method runs in 10 seconds and has been tested on 22 datasets, demonstrating

an average voxel overlap between the automatic segmentations and ground-truth segmentations

of 85% and 72% for the kidneys and renal cortices respectively.
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5.1 Introduction

5.1.1 Clinical Motivation

Organ segmentation from medical images is an important first step for further medical analyses,
usually a pre-processing step for automatic measurements. For clinicians interested in VR
views, providing automatic segmentations of the organs can provide a visualisation aid, allowing
un-distracted views of the organs, saving the time required to perform manual delineation.

In the year 2008-2009, nearly 3,000 kidney transplants were performed in the UK and 12,000
in the United States[1, 2]. Transplant planning aims at matching the recipient to a donor and
carrying out steps to ensure successful surgery. Medical imaging can be used to non-invasively
assess the kidney volumes, the number of renal arteries in both kidneys, the extent of damage
of kidneys from living donors, amongst other important issues [3]. An accurate automatic
segmentation tool can assist radiologists with this task by increasing visibility of the kidneys and
aiding automatic measurements.

Renal perfusion is a common procedure in nuclear medicine, used to detect abnormalities in
kidney function, which are usually indicators of renal artery stenosis, tumours, or acute rejection
as a result of a failed transplant. This procedure is becoming increasingly popular in MR using
Dynamic Contrast Enhanced (DCE-MR) imaging, where the glomerular filtration rate (GFR) is
well correlated with the injected Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA)
clearance rate [4, 5].

The prevalence of CT scanners, due to lower cost compared to MR scanners is motivation
for implementing renal perfusion procedures in CT. It is now possible due to availability of wide
detector scanners with increased spatial resoultion, such as Toshiba’s Aquilion ONE. Whole
organs can be scanned in one gantry rotation (0.3 seconds), thereby limiting the dangers of
over-exposure of patients to ionising radiation.

Carrying out this procedure in CT requires a series of scans, following injection of contrast
agent into the patient. In order to capture multiple phases without posing more danger to the
patient from ionizing radiation, the scans are taken with just enough X-Ray dose to guarantee a
diagnostic image. This results in an effective total radiation dose of ≈ 10− 15mSv per exam
[6](compared to ≈ 0.7mSv for a single pelvic X-Ray scan) and affects the resultant image by
increasing its level of noise as shown in figure 5.1.

The ability to quantify kidney perfusion in CT is equivalent to measuring the GFR. This flow
can be measured fairly accurately in CT angiography by the contrast media clearance rate, and
relies on accurate measurements of kidney and renal cortex volumes [7, 8], which can easily be
provided given accurate segmentations of both anatomies.
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Figure 5.1: Normal vs. Low Dose CT
The image on the left was captured from a scan taken at 380mA, while the one on the right was

from a renal perfusion series, taken at 100mA.

5.1.2 The Problem

Low-dose CT poses a problem for automatic segmentation algorithms due to the images having
lower signal to noise ratio than regular-dose CT data. The kidneys and other abdominal organs
are structurally and spatially variable across patients; this also poses a challenge to atlas-based
segmentation techniques.

Minimising the radiation dose while scanning a patient is advantageous however, there-
fore developing an algorithm which can successfully segment anatomy of interest under these
conditions is necessary.

A method is required, which deals with both the noise generated by low-dose CT and the
anatomical variation that exists within abdominal organs across individuals, to produce accurate
segmentations of the kidneys and renal cortices (figure 5.3).

5.1.3 State of the Art

The problem is essentially a segmentation task, hence there are a lot of published segmentation
methods targeted at other organs and modalities, although several attempts at kidney segmentation
have been made; for instance [9, 10, 11] perform kidney segmentation on Dynamic Contrast
Enhanced Magnetic Resonance Images (DCE-MRI). Kidney segmentation was carried out as
part of multiple abdominal organ segmentation on non-contrast enhanced CT images in [12],
and on CT images in [13, 14].
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Figure 5.2: Kidney Anatomy
Kidney anatomy highlighting the medulla, renal cortex and pelvis. Image courtesy of glycoforum

(www.glycoforum.gr.jp).

Figure 5.3: Kidney and Cortex Segmentation
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Atlas-Based Methods

Atlas based segmentation is the process of mapping a set of labelled anatomical regions from a
representative image, termed the atlas, onto a novel image following an initial alignment process,
usually involving volume registration. Atlas-based methods have been used to segment various
anatomical regions, and are either used alone or to initialise other voxel-based classification
methods. These methods are increasingly popular because they provide segmentation algorithms
with prior anatomical knowledge about the anatomy of interest in a simpler way than popular
segmentation algorithms such as level-set methods.

Average Atlas In [15], an average bee brain atlas is created by registering a set of images to an
iteratively created reference image. It demonstrates that the average atlas approach accounts for
variation across subjects and so produces a higher segmentation accuracy than the single atlas
approach. In [12], a probabilistic abdominal multi-organ atlas is created by registering multiple
images to a reference image and propagating their labels onto a common space. This produces a
vector-valued atlas mask, providing a probability for each registered novel pixel belonging to
each of the abdominal organs given its spatial location.

Optimal Atlas Selection The comparison of various atlas-based methods in [16] demonstrates
that a multi-atlas approach, whereby the most suitable atlas is selected following non-rigid regis-
tration of candidate atlases with the novel images, is capable of producing higher segmentation
accuracy than methods that rely on a single or averaged atlas. In [17], this multi-atlas approach
is used, and for each structure in the brain, the candidate atlas image with the highest normalised
mutual information is selected.

Atlas Combination Multi-atlas approaches that combine the segmentations produced by each
individual atlas to produce a final segmentation have also been reported to produce accurate
segmentations [18, 19, 20, 21, 22, 23, 24]. In [18], the set of atlases to use for segmentation is
limited to the set of images that are most similar to the novel image, with similarity based on
image and meta-data (e.g. gender and age) similarity. In [20], the individual heart segmentations
are combined using a majority vote rule, whereby the label assigned to a pixel is the modal
label from all candidate labellings. Shape-based averaging of candidate segmentations, using
signed Euclidean distance transforms [25, 26], or the Poisson transform [27] have also been
demonstrated to produce smoother and more accurate segmentations than voting-based com-
binations. Assuming each candidate atlas performs differently depending on the novel image,
then these segmentation performances may be iteratively estimated and used to weight each
candidate segmentation as shown in [23, 24]. A similar approach by [19] demonstrates that local
combination strategies outperform global methods, particularly in brain tissue segmentation. In
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[21, 22], the labels from each segmentation are combined to provide a prior probability mask
which is then used in voxel classification.

Combined Atlas-Based and Classification Methods

The atlas provides prior anatomical information about the organs of interest, even more so in the
average and multi-atlas cases, where the warped atlas represents a spatial probability distribution
of the anatomy of interest. Methods exploit this extra information by using the output after
registration of the atlas to initialise supervised or un-supervised classification algorithms.

Bayesian Methods In [12], the probabilistic atlas provides the prior probabilities required
for MAP classification, while the tissue means and variances are obtained from voxels with
high probabilities of belonging to the respective tissues. In [28, 21] however, the tissue model
parameters are iteratively modified using the Expectation Maximisation (EM) algorithm. Both
methods employ a regularisation stage to ensure smoothness and connectivity of the resulting
segmentations.

Markov Random Fields Markov Random Fields (MRF) are a popular choice for regularisa-
tion as they enforce smoothness by penalising dissimilar adjacent labels. In [12], the MRF is
modelled by a Gibbs distribution and multiplied by the posterior probability function to form an
energy functional which is then iteratively maximised.

Graph-cuts have been reported in [29] to be useful for minimising energy functionals, and
so in [30, 21], a graph-cuts algorithm is used to minimise a MRF energy functional following
non-rigid registration using a multi-atlas. The energy functional[31] consists of a data-term
equivalent to the negative logarithm of the posterior probability, and a smoothness term taking the
neighbourhood of each voxel into account. The data-term effectively defines the voxel-terminal
node edge (t-link) weights, while the smoothness term defines the voxel-voxel node edge (n-link)
weights of the graph.

In [10], automatic kidney segmentation in DCE-MRI is performed using a graph-cuts ap-
proach, following registration, to minimise an energy functional which takes into account shape
in addition to intensity and neighbourhood information. Training shapes are aligned using
registration, and the variability modelled using a distance probabilistic model estimated by a
Poisson distribution. The intensity term is modelled by a Gaussian distribution, with parameters
estimated using the EM algorithm, and the neighbourhood term is modelled by a MRF.

Non-Bayesian Methods Non-Bayesian approaches have also been used in conjunction with
atlas-based methods. For instance in [14], fuzzy connectedness segmentation is initialised by
the atlas-based registration for abdominal organs. In [32], the EM algorithm is extended with
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level-set evolution to allow for tumours which are not necessarily present in the atlas. Kidney
segmentation in DCE-MR images is performed in [9, 11] using an atlas-based approach followed
by level-set evolution. The atlas in [11] is averaged from a set of images and represented as a
binary image containing the kidney and a signed distance map density function. The energy
functional to be minimised penalises deviations from intensity and distance map distributions,
both estimated using a modified EM algorithm.

Features other than raw intensity can be used in the classification phase of segmentation;
gradient and scale-space Gaussian derivatives are used with a k-Nearest Neighbour (kNN)
classifier in [22] to segment the liver from CT data.

Active-Shape Models Active shape models (ASM) have also been used in [25, 33, 27] fol-
lowing atlas-based procedures. In [25], the training shapes are initially aligned using atlas
registration, but the final segmentation is carried out using ASM. A combined segmentation
algorithm, which combines atlas-based segmentation and ASM is proposed in [33]. The method
takes into account the hierarchical relationship between the liver, vena-cava and gall bladder
when creating the atlas and multi-organ ASM, also using the ASM to refine the atlas-based seg-
mentations in an iterative framework. A similar approach was proposed in [13]; in this method,
the point-correspondence required to create the ASM is achieved using non-rigid registration
to a reference image, while the actual segmentation involves fitting an associated gray-level
appearance model to the novel image with regularisation by the ASM.

5.1.4 Contribution

The above segmentation methods have all been shown to be successful on various areas of
anatomy and modalities. Our method focuses atlas-based segmentation combined with voxel-
based classification on kidney and renal cortex segmentation, specifically in low-dose contrast-
enhanced CT images.

The average atlas approach, when applied to organs with a lot of relative motion, such as
the kidney, produces a blurred intensity atlas image, which loses vital intra-organ and boundary
information. Our method makes use of a multi-atlas, adopting an optimal atlas selection strategy
which uses cross-correlation between each atlas and the novel image to predict the segmentation
performance via an atlas-specific linear regression model [34].

We then use the atlas-based segmentation to provide spatial priors for a MAP classification
phase, obtaining Gaussian model parameters for the kidney and renal cortex voxel intensities
using the EM algorithm.

The method described in [33] encodes inter-organ relationships in a probabilistic atlas and
statistical shape model; our method also takes into account this constraint and uses a multi-organ
atlas, consisting of the kidney and renal cortex. The renal cortex is wholly contained in the entire
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kidney; this relationship is enforced using a diffeomorphic registration algorithm and also during
an extended MAP classification phase by using the resulting renal cortex segmentation to refine
the whole kidney segmentation. We are able to demonstrate that gross kidney segmentation is
improved by applying inter-organ constraints in this manner.

Methods which have been successful in segmenting the kidney, such as [12, 13], require
a degree of user-interaction. We present a fully-automatic method, with an initial coarse
rigid registration phase to transform the atlas to the centre of the kidney in the novel image.
Furthermore, our implementation has been optimised for multi-core CPUs and takes only 10
seconds to segment a pair of kidney and renal cortex on a DELL Precision T5500 machine, thus
increasing its usability.

5.2 Method

5.2.1 Introduction

This chapter describes the method in detail, breaking the system up into components as shown in
figure 5.4.

Multi-Atlas Based
Segmentation

Extended MAP
Classification

Atlases

warped
Atlas

segmented kidney and renal cortex

Novel Abdominal CT scan

Figure 5.4: Method for Automatic Kidney and Renal Cortex Segmentation

5.2.2 Materials

Abdominal contrast-enhanced 4D CT studies from 24 subjects are used in this work, each study
containing 20 phases. The scans were taken using Toshiba’s Aquilion ONE 320-slice scanner,
which covers a vertical range of 16cm, hence both kidneys in one gantry rotation.

The patients were scanned in the Feet-First-Supine (FFS) position following administration
of an Iodine-based contrast agent, with an average X-ray beam intensity of 60mA. Different
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acquisition protocols were used however; 14 studies were acquired using a breath-hold protocol,
while the remaining 10 were acquired using a shallow-breathing protocol.

Manual segmentations of each kidney and its renal cortex were collected on the early arterial
phase for all 24 studies by clinically trained persons using the MPR manual shape selection tool
in Toshiba’s Voxar 3D advanced visualisation software, therefore four separate segmentations
exist for each dataset. These are used as ground-truth to quantify the segmentation accuracy of
the algorithm described below and as masks constituting the atlas.

5.2.3 Pre-processing

The algorithm is designed to segment the left kidney and its renal cortex independent of the right
and vice-versa, therefore a few preparatory steps can be performed. Assuming the algorithm is
to be run mainly on the type of data described in section 5.2.2, i.e. abdominal CT scans from the
Aquilion ONE scanner, then it becomes straightforward to consistently split the images into two
halves, each containing one kidney. This increases the speed and robustness of registration by
limiting the search space.

The dynamic range of the images is also reduced prior to registration, and our experiments
have demonstrated that clamping the intensities of each image to the range [0, 300]HU improves
the segmentation accuracy. This reduction in dynamic range has the effect of increasing the
saliency of the organs particularly in this sort of noisy data.

5.2.4 Multi-Atlas Based Segmentation

An atlas in the context of atlas-based segmentation refers to a pre-selected image with labelled
anatomical regions of interest. Multi atlas-based segmentation requires a set of atlases. Each
atlas in this case consists of a downscaled 3D intensity image constrained to the region containing
either the left or right kidney with a little extra context, controlled by a dilation parameter d
(set to 2mm) applied to the kidney mask. The intensity images are iteratively smoothed by a
Gaussian filter and down-sampled to reduce noise and eliminate aliasing, while allowing for
quicker registration. Two masks are held in each atlas, one representing the entire kidney, and
the other representing the renal cortex. Figure 5.6 shows a typical right kidney atlas.

Assuming a set A = {A0, ..., AM−1} of M atlases has been provided, segmentation of the
required anatomical region in a novel image T begins by registering each Ai(i = 0, ...,M − 1)

with T in order to produce a set of warp-fields W = {W0, ...,WM−1}, where Wi maps Ai onto
T . The registration process used is explained in section 5.2.4.

Using the warp-field Wi, the cross-correlation between Wi(Ai) and T can be measured. The
image similarity between any Wi(Ai) and T is not used directly to determine the segmentation
accuracy, because this measure by itself is not directly comparable across all possible pairs of
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Select

Registration

  Novel 
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Offline Atlas
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Selected
Atlases Segmentations
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Figure 5.5: Multi Atlas-Based Kidney Segmentation

Figure 5.6: Right Kidney Atlas
Left to right: Constrained CT image, renal cortex mask, entire right kidney mask in sagittal

MPR.
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Wi(Ai) and T . In order to get a more standard measure for selecting the best out of M possible
segmentations, a linear regression model specific to each atlas is used. The function is of the
form y = mx+c, where x is the value of the cross-correlation and y is then the predicted Jaccard
overlap (equation 5.1); m and c are stored as part of the atlas.

The labelled anatomical region from the Ai that predicts the highest segmentation accuracy,
is propagated onto T using Wi, resulting in a segmentation.

The set A is selected offline from all training data using the multi-atlas selection procedure
described in [34].

Jaccard(A,B) =
V ol.(A ∩B)

V ol.(A ∪B)
(5.1)

This value ranges between 0 and 1, with 1 representing a perfect segmentation.

Registration

The aim of registration is to find a mapping W between a reference R and a target image T ,
that minimises a pre-defined cost function. The registration process used here is a multi-scale
approach, performing 2 passes of rigid registration, followed by 2 passes of non-rigid registration.

The rigid registration finds the best 3D translation, anisotropic scaling and roll, pitch and yaw
components to transform the atlas image R onto the novel image T . The similarity metric chosen
to drive the registration is normalised mutual information (NMI). Assuming image intensities are
normally distributed, the joint entropy can be estimated from the determinant of the covariance
matrix between the two overlapping image pairs [35], and a variance-based approach can be
used to compute NMI.

NMI(R, T ) =
h(R) + h(T )

h(R, T )
,

where

h(R) =
1

2
ln(2πeσ2

R),

h(T ) =
1

2
ln(2πeσ2

T ),

h(R, T ) =
1

2
ln{(2πe)2|Σ|},

and

Σ =

(
σ2
R σ2

R,T

σ2
R,T σ2

T

)

Powell’s optimisation method [36] is used to find the affine transformation matrix A that
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maximises NMI between the transformed R and T .

A∗ = argmax
A
{NMI(A.R, T )}

A rapid initial search phase is performed in order to align the atlas and novel images such
that the centre of the atlas image, which is also the centre of the kidney, is aligned with the centre
of the kidney in the novel image. It works by initialising the Powell search algorithm at evenly
spaced points along the anterior-posterior direction in the novel volume (Figure 5.7), and returns
the best transform resulting from all starting points.

Figure 5.7: Rapid Initial Search
Powell’s optimisation algorithm is initialised at each of the blue points in the image on the left.
The best resulting transforms are shown on the image on the right. These points are used as the

starting points for the full rigid registration.

This phase is designed to be fast rather than accurate, and so a number of compromises are
made. The full rigid registration operates on images downscaled by a factor of 8 and then by a
factor of 4, while the rapid initial search phase operates on images downscaled by a factor of 8
only. In the full rigid registration, 5000 voxel samples are taken from the overlapping region
between R and T and used to compute NMI, but in the rapid initial search case, only 1000 voxel
samples are taken. The affine components in the full rigid registration include anisotropic scaling,
while the rapid initial search uses isotropic scaling, reducing the number of search dimensions
by 2.

The non-rigid phase aims to find the warp-field W that maximises mutual information
MI between T and the transformed reference R′. Non-rigid registration allows non-linear
deformation of the image, making it an ill-posed problem, therefore some form of regularisation
is required. Our method finds the W that maximises MI between R′ and T within fluid and
elastic constraints.

The warp-field is initialised from the final affine transformation in the rigid phase and evolved
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until convergence is achieved, with the warp-field at iteration i given by:

Wi = E ⊗ (Wi−1 + kV ⊗ Fi−1),

where Fi is the current force-field, i.e. the derivative of MI at each point in R computed from a
joint intensity histogram using the method described in [37]. V is the viscous fluid constraint,
modelled by a Gaussian filter, and E is the elastic constraint also modelled by a Gaussian filter.

5.2.5 Maximum a-Posteriori Classification

As indicated in figure 5.4, following the multi-atlas based segmentation, the atlas masks (whole
kidney and cortex) are now available in the spatial domain of the novel image. The goal of this
step is further refinement of these segmentations. An outline of the process is shown in figure
5.8.

Intersect, dilate 
and smooth

K-Means 
Clustering

Expectation 
Maximisation

MAP 
Classification

Morphological 
Cleaning

Gaussian 
Smoothing

warped atlas masks

Novel Dataset
uncertainty VOI µ,σ (x3)

uncertainty VOI

uncertainty VOI µ,σ (x3)

Smoothed Priors
Warped Atlas 

(3 binary masks)

Kidney,
renal cortex,
background 

Kidney,
renal cortex,
background 

Figure 5.8: Voxel-Based Classification

Notations The label or segmentation field is denoted by L = {l0, ..., lN−1}, the observed novel
data by I = {i0, ..., iN−1}, and the warped atlas by A = {a0, ..., aN−1}, where N is the total
number of voxels. Elements of L, I, and A are arranged by spatial position within a 3-D grid,
and denoted by x ∈ <3. The sample space of L is denoted by Ωl = {l : lx ∈ {1, 2, 3}, ∀x}.
Labels 1, 2, and 3 are cortex, medulla, and background, respectively.
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The warped atlas masks should provide spatial probabilities for the relevant tissues, indicating
P (lx = k|x), for k = 1, 2, 3. The atlas contains renal cortex and whole kidney masks however,
and so the medulla mask can be obtained by a simple set difference.

medulla = wholekidney \ cortex

The warped atlas A can now be interpreted as vector-valued, with ax = {ax1, ax2, ax3} and
the information as

P (lx = k) = axk,

ax3 = 1−
k=2∑

k=1

axk

The selection of the optimal atlas in the atlas-based segmentation phase implies binary spatial
priors, i.e. P (lx = k) ∈ {0, 1}. To account for segmentation errors in the registration stage
and provide a range of probabilities between 0 and 1, L is extended spatially by morphological
dilation of A by a spherical structuring element of radius rmm (set to 2mm) and A is smoothed
accordingly by a Gaussian filter with a standard deviation of r.

Estimating Tissue Model Parameters The elements of I are smoothed with a 1.5 pixel s.d.
Gaussian kernel and k-means clustering is applied to find 3 cluster means corresponding to the
named tissue types. These tissue mean intensities are used to initialise a standard EM algorithm,
which in this case assumes normally distributed intensities and models the Gaussian class-specific
intensity distributions for 3 tissue types as shown in figure 5.9. This assumption is based on the
renal cortex and medulla having almost homogeneous intensities in contrast-enhanced CT.

Right Kidney Left Kidney

Figure 5.9: Gaussian-modelled Intensity Distributions
The underlying intensity histogram is shown above in white, while the coloured curves refer to

the Gaussian-modelled intensity distributions of each of the 3 tissues types. Left to right:
Background, Medulla, Renal Cortex. Multiple graphs in the background are for each iteration of

the EM algorithm.
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Bayesian Framework Assuming the observed random variable I , i.e. i0, i1, ..., iN−1 are
conditionally independent given the true segmentation L and that the probability distribution of
each ii given L depends only on li, then Bayes’ theorem can be applied to find the probability of
an element of L truly belonging to a tissue type k, given the observed data I.

P (lx = k|ix) =
P (ix|lx = k)P (lx = k)

P (ix)
, (5.2)

where P (ix|lx = k) is provided by the EM algorithm, using its estimated means, µk and variances,
σ2
k of the assumed Gaussian intensity distributions for each tissue class.

P (ix|lx = k) =
1√

2πσ2
k

exp(
−(ix − µk)2

2σ2
k

) (5.3)

The unconditional probability of observing the data, P (ix) is independent of k by definition,
thus the term becomes absorbed into the constant of proportionality, and equation 5.2 becomes:

P (lx = k|ix) ∝ P (ix|lx = k)P (lx = k), (5.4)

and ∑

k

P (lx = k|ix) = 1

Voxel Classification Equation 5.4 can be applied to every voxel within the dilated warped
atlas domain to compute the posterior probability of its true label being either cortex, medulla, or
background given its value and position within the image. In order to enforce the hierarchical
relationships and hence segment the entire kidney and the renal cortex, a new segmentation field
L’ is required, with sample space Ωl′ = {l′ : l′x ∈ {1, 2, 3},∀x}. Labels 1, 2, and 3 in this case
are cortex, kidney, and background, respectively. Labels are assigned to L’ as follows:

• Kidney:
l′x = 2 if (P (lx = 1|ix) + P (lx = 2|ix) + α ≥ 0.5)

• Cortex ⊂ Kidney:

l′x = 1 if ((l′x = 2) and P (lx = 1|ix) + β > P (lx = 2|ix)),

where α and β are user-specified to control the inner and outer extent of the cortex and kidney
respectively.

Post-processing The steps taken during the voxel classification phase, described above, pro-
duce segmentations of the entire kidney and of the renal cortex. These segmentations may
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contain spikes and holes and need to be cleaned.
Applying a morphological opening, followed by a fill to the whole kidney segmentation,

reduces spikes and fills any holes that may have arisen as a result of the voxel classification. The
renal cortex is normally a rather thin domain, and so a morphological closing followed by a fill
is applied to the segmentation instead. Connected component analysis is then carried out on both
segmentations to obtain the largest connected component, and the cortex is further refined to
remove spikes by

cortex = cortex ∩ kidney

This ensures that the cortex is wholly contained within the kidney as naturally dictated by the
anatomy.

5.3 Results and Discussion

5.3.1 Introduction

The method described in the previous section was implemented in C++ and deployed on a Dell
Precision T5500 windows machine containing a 2GHz quad-core Intel E5504 Xeon CPU and
6GB of RAM.

This section describes the validation method employed and the results obtained.

5.3.2 Segmentation of the Kidney and Renal Cortex from CT Data

Both the left and right kidneys with renal cortices were segmented in 22 cases. The segmentations
were performed on the study phase that captured the early arterial phase of contrast perfusion.
This phase was chosen because it sufficiently highlights the renal cortex relative to the medulla.

The best set of 2 atlas images from 24 images was selected using the method described in
[34], while the remaining 22 images made up the validation set. The accuracy was quantified by
measuring the overlap between the generated segmentation and the manual segmentation, using
the Jaccard overlap (equation 5.1). The sensitivity and specificity were also quantified using the
true positive fraction (TPF) and positive predictive value (PPV) respectively:

TPF =
|A ∩B|
|B| (5.5)

PPV =
|A ∩B|
|A| , (5.6)

where A is the generated segmentation and B is the ground-truth segmentation.
Subjective evaluation was also carried out by a clinical associate in order to assess its

usefulness in a hospital setting. This evaluation was performed on 12 unseen cases, where no
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ground-truth segmentation had previously been collected. An opinion score, ranging from 0 to
10 (10 being perfect) was assigned to each segmentation (left kidney, right kidney, left renal
cortex, right renal cortex). The mean opinion scores (MOS) are shown in figure 5.10.

Figure 5.10 shows the objective test results averaged across 22 datasets. Ground-truth kidney
segmentations are available for all 22 cases, but renal cortex ground-truth is only available for 8
of these cases. The cortex accuracy is lower than that of the entire kidney in both left and right
cases, and the definition of the ground-truth accounts somewhat for this. The cortex ground-truth
segmentation does not include any of the cortical columns, but the segmentation algorithm by
design includes an extent of the cortical columns, controllable by a parameter α as described in
section 5.2.5.

Kidney and Cortex Segmentation Results
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Figure 5.10: Kidney And Cortex Segmentation Results, α = 0
Run-time for cortex segmentation is not available, as cortex segmentation is an integral part of

the entire kidney segmentation. The results are shown for the inclusion and exclusion of the
voxel classification phase.
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5.3.3 Effect of Atlas Selection

The offline atlas selection method proposed in [34] is used to select an optimal set of atlases,
A = {a0, ..., aM−1} based on the training data D available.

Aopt = argmax
A∈DM

1

N −M
n∑

i=1,di /∈A
J ′(di, A), (5.7)

where N = |D| is the number of training images available,

J ′(di, A) = J(di, argmax
a∈A

J∗(di, a)), and (5.8)

J∗(di, a) = ma.CC(di, a) + ca (5.9)

J(x, y) in this case is the resulting Jaccard overlap between the segmented kidney in image x
and its ground-truth, while using atlas image y to perform the segmentation. ma and ca are the
linear regression parameters stored as part of the atlas. CC(x, y) is the cross-correlation between
the atlas image y and novel image x after transformation to the same spatial frame. Figure
5.10 shows segmentation performance while using the optimal set of 2 atlases in the multi-atlas
framework.
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Figure 5.11: Effect of the Number of Atlases on Kidney Segmentation
The upper line shows the Jaccard overlap averaged over all validation data when selecting the

optimal atlases for each set size (equation 5.7), while the lower line shows the mean of the
Jaccard overlap averaged over all training data for all possible random selections of atlases

(equation 5.10).

Figure 5.11 demonstrates that the segmentation accuracy of the entire kidney increases as the
number of atlases in the multi-atlas set increases. The figures also demonstrate the added benefit
of using the offline atlas selection to select the set of atlases (equation 5.7), as indicated by the
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upper lines. The lower line refers to the expectation E of the overlaps averaged over all training
datasets for a multi-atlas set selected at random:

E =
1( |D|
|M |
)
∑

A∈DM

[
1

N −M
N∑

i=1,di /∈A
J ′(di, A)] (5.10)

What the figures do not show, is the impact on run-time caused by adding an extra atlas to
the set. In this implementation, the atlas-novel image registrations are performed sequentially;
this sets a trade-off between potential accuracy and practicality of the application. In our case:

Runtime ≈ 7 + 2M

The choice of 2 atlases arose as a compromise for the execution time of the segmentation, as
≈ 10 seconds has been deemed acceptable by our clinical acceptance team.

5.4 Conclusion and Further Work

5.4.1 Conclusion

This paper has proposed an atlas-based method of segmenting the kidneys and renal cortices
from low-dose contrast enhanced abdominal CT scans with average accuracies of 85.3% and
74.3% respectively.

The results in figure 5.10 show an average increase in accuracy of 4.3% for the kidneys
and 7.3% for the renal cortices gained by using the unsupervised voxel-based classification
technique following registration. Figure 5.11 points out clear advantages to using our optimal
atlas selection approach (equation 5.7); both at the offline stages, where it is used to select a set
of atlases to be used for registration, and during the actual application, where it is used to select
the best segmentation from a list of candidates.

The proposed method is fully automatic, requiring no user interaction; hence it has potential
to be deployed on scanner workstations as part of pre-processing software for kidney analysis.
Furthermore, its current implementation takes only 10 seconds to segment each kidney/renal
cortex pair, making it an acceptable alternative to manual segmentation or at the very least, a
starting-off point which can be adjusted by the radiologist as required.

Limitations of this method lie mainly in its overall accuracy. As shown by the mean opinion
scores in figure 5.10, the left kidney and left cortex scored 5.5 and 6.0 out of 10 respectively.
Higher scores on unseen data is desirable for an application intended for clinical setting. In order
to achieve this using the current approach, the registration phase has to be improved upon.
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5.4.2 Further Work

One possible avenue for improvement is in the rapid initial search phase of the registration,
whereby the atlas is placed at the centre of the kidney as a starting point for full multi-scale
rigid registration. The current method searches from positions along the anterior-posterior line
in the middle of each half-image, as shown in figure 5.7. This can be extended to include
search points evenly spaced within a cuboid centred at the middle of the half-image. Another
approach involves making use of the available training data and sampling search points within
the distribution of points marking the centre of the kidney in each training image.

The atlas-supplied spatial priors are representative of the more similar atlas image to the
novel image at the moment. For this reason, we apply a Gaussian smoothing to the domain
represented by the atlas and obtain fuzzy prior probabilities in the process. This smoothing
step can be avoided if the atlas mask was indeed a probability mask made up from several
organ masks spatially normalised to the atlas image. It has the added advantage of being more
representative of anatomical variations than our current mask.

The voxel-based classification step applies k-means clustering to estimate the initial means,
after which the expectation maximisation algorithm is employed to discover the optimal parame-
ters of each distribution by optimising the likelihood (equation 5.3). A more elegant and possibly
accurate solution to this problem would be to eliminate the dependency on k-means clustering
by obtaining the initial means of each tissue type from the warped atlas masks and feed the EM
algorithm with prior probabilities of observing each tissue type at a particular voxel position,
thereby optimising the expectation of the posterior probability instead[38].

The algorithm currently takes 10 seconds when using 2 atlases and rises by ≈ 2secs for
every extra atlas added to the multi-atlas set. However, there is no reason why the registrations
are not performed in parallel; performing each atlas-novel image registration concurrently will
reduce the execution-time costs associated with extra atlases.
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Chapter 6

Robust Segmentation using Atlas-Based
Priors in the EM Algorithm.

Abstract This chapter presents a segmentation method combining registration and intensity

based classification within an atlas framework. The registration makes use of a multi-atlas,

with the most similar atlas to the subject data selected after registration to provide an initial

segmentation. The Expectation Maximisation algorithm is used to perform intensity-based

classification in order to fine-tune the detail of the initial segmentation. This modified EM algo-

rithm is equipped with spatial priors derived from the initial segmentation to give it anatomical

information necessary for segmenting multiple structures in the subject data.

Evaluation of this combined approach to segmentation demonstrates that the method is

indeed robust, as results from applying the method to kidney and renal cortex segmentation

from CT data with low SNR imply. The method was also applied to the segmentation of seven

sub-structures within the heart on CCTA data to demonstrate its effectiveness at segmenting

multiple structures displaying similar intensities. The main advantage of this method lies in its

versatility; the algorithm was able to tackle both presented problems with only a change of atlas

required.

The results presented in this paper demonstrate that using the atlas-based priors in the

EM algorithm not only improves segmentation accuracy over methods using registration only

or the conventional EM algorithm, but it also provides an elegant and general framework for

performing segmentation.
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6.1 Introduction

6.1.1 Motivation

The task of segmenting anatomical structures from medical images is a challenging one, with
a few categories of methods designed to tackle particular anatomical structures from specified
imaging modalities. Atlas-based registration methods are popular because atlases provide specific
anatomical knowledge to the segmentation process in a straightforward manner, making them
widely applicable to many large structures within the human anatomy.

Intensity-based classification methods are used to fine-tune the segmentations provided by the
atlas-based registration. A robust method to achieve this goal is the Expectation Maximisation
(EM) algorithm [1, 2]. Being an unsupervised classifier, it relies purely on the subject data and is
proven to converge on a segmentation that maximises the likelihood of observing the subject
data given a set of tissue models [3]. Furthermore, it requires no training, making it unbiased to
a particular population demographic.

The limitations of the EM classification arise when the task involves segmentation of a large
number of anatomical structures of varying sizes. The challenge here is that, with a large number
of structures to segment, the chances of each structure exhibiting similar intensity distributions is
increased. It becomes impossible for any automatic segmentation algorithm to correctly identify
all of these structures without any prior anatomical information.

6.1.2 Aim

The aim of this paper is to present a method for supplying the EM algorithm with prior anatomical
information through the use of an atlas. It demonstrates the versatility of a combined segmentation
algorithm that employs this tactic by segmenting the kidneys and renal cortices from low-dose
abdominal CT data, and a set of sub-structures within the heart from cardiac CT angiography
data.

6.1.3 State of the Art

This paper is based on work done in [4]. In [4], the EM algorithm is fed with spatial priors
provided by a probabilistic atlas made up by registering a set of candidate atlases onto a template
atlas. In the expectation phase of the EM algorithm, the tissue likelihood at each voxel is weighted
by the prior probability of observing the tissue at that point, obtained from the probabilistic atlas.
This extended algorithm was used to segment up to eleven sub-structures in the brain from MRI
data, and was reported to be more accurate than both purely registration-based segmentation and
EM-based segmentation without anatomical priors.
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Our method applies this principle to both noisy abdominal CT and cardiac CT angiography
data. In our paper, we achieve fast robust atlas-based registration by using a multi-atlas followed
by optimal atlas selection based on image similarity [5] rather than combining candidate seg-
mentations as performed in [4, 6]. The optimal atlas selection ensures that the anatomical priors
provided to the EM algorithm are biased towards the subject data.

6.2 Method

6.2.1 Applying Prior Information to EM

The aim of EM-based segmentation is to assign to each voxel in the observed data, a tissue
label that maximises the probability of observing its intensity given estimated tissue distribution
models, measured by the total log-likelihood.

ln p(X|p,µ,σ) =
N−1∑

i=0

ln
K−1∑

k=0

pkp(xi|µk, σk) (6.1)

It performs this in an iterative manner, estimating the tissue model parameters and computing
the resultant overall log-likelihood at each step.

The process is split into two phases, and expectation (E-) step and a maximisation (M-) step.
Assuming intensity homogeneity within the respective tissues, which is mostly the case in human
anatomy, then the tissue intensity distributions can be modelled as Gaussian distributions with
parameters σ and µ (standard deviation and mean, respectively).

The probability of a voxel, vi in image X, belonging to a tissue k as described by (σk, µk)

at iteration n is p(k|xi)(n). Therefore, given initial estimates of σ(0)
k , µ

(0)
k for all K tissues, the

E-step at iteration n computes the posterior probability p(k|xi) for each pixel given σ(n)
k , µ

(n)
k as

follows:

E-Step:

p(k|xi)(n) =
p(xi|σ(n)

k , µ
(n)
k )p

(n)
k∑K−1

k=0 p(xi|σ
(n)
k , µ

(n)
k )p

(n)
k

(6.2)

The M-step computes the parameters σ(n+1)
k , p(n+1)

k and µ(n+1)
k that maximise equation 6.1,

setting the first derivative of ln p(X|p,µ,σ) with respect to each of these terms to zero.

M-Step:

µ
(n+1)
k =

∑N−1
i=0 p(n)(k|xi)xi∑N−1
i=0 p(n)(k|xi)

(6.3)

σ
(n+1)
k =

√√√√
∑N−1

i=0 p(n)(k|xi)(xi − µ(n+1)
k )2

∑N−1
i=0 p(n)(k|xi)

(6.4)
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p
(n+1)
k =

1

N

N−1∑

i=0

p(n)(k|xi) (6.5)

The E- and M-step are then iterated until convergence, i.e.

ln p(n+1)(X|p,µ,σ)− ln p(n)(X|p,µ,σ)

ln p(n)(X|p,µ,σ)
> T,

where T is a user-defined threshold.

In equation 6.1, the term pk is the prior probability of observing the tissue type k or the
mixing probability. The conventional EM algorithm defines it as equivalent to the proportion
of the entire data assigned to k (equation 6.5). This is rephrased for our purposes as the prior
probability of observing the tissue type k at voxel vi. This term can be appropriately substituted
for the output of atlas-based segmentation, patlas

ik , following propagation of the atlas masks onto
the subject data and can be held as constant over all iterations, biasing the classification of the
data towards anatomical structures demarcated by the atlas.

6.2.2 Combination with Multi-Atlas Based Segmentation

An atlas, in the context of atlas-based segmentation, is an image (or image volume in the 3D
case) with an associated set of manually delineated structures of interest. A multi-atlas is a set
A = {a0, ..., aM−1} of such atlases.

Figure 6.1 depicts the multi-atlas based segmentation approach as described in detail in [7].

Select

Best

Registration

Novel
Dataset

Segmentations
Selected
Atlases

Atlas Image
Database

Offline Atlas Selection

Figure 6.1: Multi-Atlas Based Segmentation
The atlases in use in the application are selected offline from a database of image atlases. Each
of the chosen atlases produces a segmentation when aligned with the novel image, therefore a

mechanism is required, which is capable of selecting the best segmentation.

The best segmentation is obtained from the registered atlas image, a∗ which predicts the
highest Jaccard overlap using an image similarity metric in a linear regression framework.
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a∗ = argmax
a
{ma.SIM(X, a) + ca},

where X is the novel image; ma and ca are atlas specific linear regression slope and intercept
respectively, obtained through an offline training process [5].

The end result of this step is a set of binary mask overlays on the novel image for each
anatomical structure of interest. To account for inaccuracies in the registration, these binary
masks are Gaussian smoothed over an expanded area to obtain soft probabilities patlas

ik , where
0 ≤ pik ≤ 1 and

∑K−1
k=0 pik = 1.

patlas
ik is the atlas-based probability of observing tissue type k at spatial position i within X .

This softening of the segmentation allows the EM classifier to refine the detail of the segmented
structures, particularly close to the edge voxels. The initial Gaussian parameters µ(0)

k and σ(0)
k

are obtained from any voxel in X with patlas
ik ≥ 0.8.

6.3 Experiments

6.3.1 Introduction

The combined multi-atlas segmentation and EM classification algorithm discussed in chapter 6.2
was used to segment anatomical structures from CT data in two different scenarios. This chapter
describes both segmentation tasks and the results are presented in chapter 6.4.

6.3.2 Kidney and Renal Cortex Segmentation

The aim of this task is to segment the kidneys and their renal cortices from low-dose abdominal
perfusion CT scans (figure 6.2).

Abdominal contrast-enhanced 4-D CT studies from 24 subjects were used in this work, each
study containing 20 phases. The scans were taken using Toshiba’s Aquilion ONE 320-slice
scanner, which covers a vertical range of 16cm, hence both kidneys in one gantry rotation.

The patients were scanned in the FFS position following administration of an Iodine-based
contrast agent, with an average X-ray beam intensity of 60mA. Different acquisition protocols
were used however; 14 studies were acquired using a breath-hold protocol, while the remaining
10 were acquired using a shallow-breathing protocol.

Manual segmentations of each kidney and its renal cortex were collected on the early arterial
phase for all 24 studies by clinically trained persons using the MPR manual shape selection tool
in Toshiba’s Voxar 3D advanced visualisation software, implying four separate segmentations per
dataset. These were used as ground-truth to quantify the segmentation accuracy of the algorithm
and as masks constituting the atlas. The multi-atlas used in this experiment was made up of two
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Figure 6.2: Kidney and Cortex Segmentation
Kidney anatomy image courtesy of glycoforum (www.glycoforum.gr.jp).
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of these cases.

For the EM classification phase, three tissue classes were to be identified: renal cortex, renal
medulla and background. The renal medulla was obtained from the set difference between the
atlas-segmented whole kidney and renal cortex, based on the assumption that the cortex is wholly
contained within the kidney. The background was derived by subtracting the whole kidney
domain from the bounding box containing the whole kidney, dilated by 4mm.

6.3.3 Multi-Compartment Heart Segmentation

The aim of this task is to segment the whole heart and the following sub-structures from 3D CT
cardiac perfusion scans (figure 6.3):

• Aortic Root

• Left Atrium

• Right Atrium

• Left Ventricle Endocardium

• Left Ventricle Myocardium

• Right Ventricle Endocardium

• Right Ventricle Myocardium

The multi-atlas in this case contains only one image due to the amount of work required
to manually segment the above regions. The atlas image in use is a scan captured from the
60% phase of the cardiac cycle of a male patient, following administration of iopramol (Bayer
Schering Pharma, UK) contrast agent. The phase was selected which contained enough contrast
within the right ventricle and atrium. The scans were taken with X-Ray beam current of 360mA
using Toshiba’s Aquilion helical CT scanner, with 396 slices captured at 0.5mm per slice resulting
in a 512x512x396 volume.

The whole heart and the above structures were manually segmented in the atlas image by
a clinically trained individual using the MPR manual shape selection tool in Toshiba’s Voxar
3D advanced visualisation software. The left and right ventricles were segmented instead of the
myocardia as they could be derived from the set difference between the respective ventricles and
endocardia following registration.

Each mask of the segmented structures after registration was smoothed using a Gaussian
filter of kernel size σ = 3mm to account for the inaccuracies in the registration and to allow
more weight to the intensity-based classification. The background domain presented to the EM
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Figure 6.3: Cardiac Sub-Structures

classification phase is derived by subtracting the above listed structures of interest from the
whole heart domain.

Thirty-five similar cardiac perfusion datasets were available as test data, although no ground-
truth was collected on these images. Subjective validation was therefore performed by clinically
trained personnel on 5 of these images selected at random.

6.4 Results and Discussion

6.4.1 Kidney and Renal Cortex Segmentation

Figure 6.4 compares the discussed method to atlas-based segmentation with and without EM-
based classification. The validation data consists of 22 abdominal CT datasets as described in
6.3.2, of which left and right kidney ground-truth are available for all 22, and renal cortices
available for 8. The performance metrics used are the Jaccard overlap (equation 6.6), the true-
positive fraction (as a measure of under-segmentation) and the positive-predictive value (as a
measure of over-segmentation).

Jaccard(A,B) =
V ol.(A ∩B)

V ol.(A ∪B)
(6.6)
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The segmentation results for the whole kidney do not report any significant differences, and
while there appears to be an increase in the Jaccard overlap for the renal cortex segmentation,
these are not statistically significant (using a student t-test with a significance level α = 0.05).

The clearest benefit of using the atlas-supplied priors in the EM algorithm is indicated in
the bottom right-hand figure in figure 6.4. The parameters for the tissue intensity distributions
are measured on the respective ground-truth segmentations and compared against the estimated
parameters. It demonstrates that the use of spatial priors in the EM algorithm leads to better
estimates of the parameters, particularly of the renal medulla. This improvement in the estimation
of the renal medulla leads to greater confidence in segmenting the inner boundary of the renal
cortex (see kidney anatomy in figure 6.2), and hence an improvement in the renal cortex
segmentation accuracy.

Figure 6.5 shows the estimated distributions of the kidney and renal cortex obtained by
including the spatial priors in the EM algorithm.

6.4.2 Multi-Compartment Heart Segmentation

The advantage of this method is displayed in this particular application, whereby different tissue
types share similar intensities (aortic root and left ventricular blood-pool, for instance). Figure
6.8 shows the estimated Gaussian components for each tissue class in question. The top row
was obtained using the discussed method, while the bottom row was obtained by a ‘blind’ run
of the EM algorithm without any spatial priors following registration. Without any anatomical
constraints, the distributions are then assigned almost randomly. This can be avoided with some
set of constraints on the expected ordering of intensities, but the method becomes more ad-hoc
and has to be re-implemented for each application case.

The estimated background distribution naturally has a much larger variance than the others.
This is because it does not follow the same assumption of intensity homogeneity as the other
structures of interest. The definition of the background domain in section 6.3.3, implies that
it contains high intensity structures such as the pulmonary veins and coronary arteries as well
as low intensity features like fat. Highlighting more structures within the atlas would reduce
background to fat and other low-intensity tissues, thereby increasing the segmentation accuracy
on the whole. The segmentation results are shown in figures 6.6 and 6.7.

Subjective validation was carried out by a clinically trained individual on 5 datasets selected
at random; the results are shown in figure 6.9. It is clear from figures 6.9 and 6.7 that the
segmentation of the right myocardium is suboptimal. This points to a weakness in the way the
atlas-based priors were presented to the EM classification phase. As described in section 6.3.3,
the myocardium segmentation is the domain difference between the segmented ventricle and
endocardium. This is sufficient for the left side of the heart, as the left ventricle myocardium is a
much thicker structure than the right and highly discernible from the blood pool (as seen in figure
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Figure 6.4: Kidney and Renal Cortex Segmentation Results
The results demonstrate a clear benefit of using EM-based classification; based on a validation

set of 22 datasets for the kidney segmentation, the difference in segmentation accuracy when
using priors is not statistically significant (based on a students t-test with α = 0.05). There is an
improvement in the absolute error between the estimated tissue parameters and the expected
parameters gained when using spatial priors in the EM algorithm. The improvement in the

estimation of the renal medulla is statistically significant and has led to increased segmentation
accuracy of the renal cortices.
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Right Kidney Left Kidney

Figure 6.5: Estimated Abdominal Tissue Distributions
The heights of each component corresponds to its proportional composition within the data,

estimated using maximum posterior probabilities. The white plot is the underlying histogram of
the data, and the grey line is the sum of all individual components. Multiple plots in the

background show the estimated distributions at each iteration.

Figure 6.6: Segmented Sub-Structures of the Heart (Left View)
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Figure 6.7: Segmented Sub-Structures of the Heart (Right View)
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Figure 6.8: Estimated Heart Tissue Distributions
The left column shows the estimated distributions obtained using the discussed method, while the

right column was obtained by running the EM algorithm without priors. The heights of each
component corresponds to its proportional composition within the data, estimated using

maximum posterior probabilities. The white plot is the underlying histogram of the data, and the
grey line is the sum of all individual components. Multiple plots in the background show the

estimated distributions at each iteration. The mix-up of distributions in the bottom image can be
avoided by ad-hoc methods, but applying spatial priors achieves this in a much simpler manner.
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6.3). On the right side however, this section is much thinner and except in exceptional cases,
the contrast difference between it and the blood-pool is obscure. This leads to a disconnected
domain for the right myocardium post-registration, implying misleading priors, and this affects
the segmentation. Constraints could be added to enforce connectedness and further anatomical
knowledge about the expected thickness of the right myocardium, but that is beyond the scope of
this work.
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Figure 6.9: Heart Sub-Structures: Subjective Validation Results
Subjective evaluation carried out by a clinically-trained individual on 5 datasets selected at

random. The right myocardium is the poorest segmented structure.

6.5 Conclusion

This paper presents a robust method for segmentation, combining atlas-based registration and
voxel-based classification using the EM algorithm. The method allows spatial information,
provided by the atlas to be incorporated in the EM algorithm. This extra information allows the
EM algorithm to distinguish between different tissues with similar intensity distributions. The
method employs multi-atlas based segmentation, registering multiple atlases to the subject image
and selecting the segmentation from the atlas image that is most similar to the subject image.

The paper demonstrates the versatility of this method by applying it to two different segmen-
tation applications. The first application, kidney and renal cortex segmentation from low-dose
abdominal CT data, tests the robustness of the algorithm by applying it to noisy data. The sec-
ond application, cardiac sub-structure segmentation, applies the algorithm to segment multiple
structures within the heart without encoding any extra prior information except that provided by
the atlas.

Both experiments demonstrate that there is an advantage to be gained by incorporating spatial
priors in the EM algorithm. Tests carried out on kidney segmentation indicate that the estimated
distribution models are more accurate when this information is applied, and this led to better
segmentation of the renal cortex. Subjective validation was performed in the case of the cardiac
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sub-structures. In this scenario, the various structures of interest share similar intensity values;
this caused problems for the naive EM implementation, but upon addition of spatial priors, the
correct models were estimated.
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Chapter 7

Feasibility Study of Medical Imaging in
Nigeria

Abstract Medical imaging is defined as the techniques and processes used to create images

of the human body (or parts thereof) for clinical purposes (i.e. medical procedures seeking to

reveal, diagnose or examine disease) or medical science (including the study of normal anatomy

and physiology).

Medical imaging has proven to be a useful tool in diagnosing and treating some of the

world’s deadliest diseases, but its presence in Africa is much lower than its prevalence in Europe,

America and Asia. This report examines this issue, indicating that medical imaging technology

can be used to diagnose and control some the most burdensome diseases facing Nigeria.

Adoption of medical imaging equipment requires a large amount of capital, and countries

such as the United Kingdom are able to support the industry by providing reimbursements

to institutions involved in radiology. This report examines the business of radiology as it is

practiced in Nigeria. The Nigerian market is developing, with opportunities in the near future

for any company, local or international, with the necessary investment capital. The report

outlines some of the key measures proposed by the Nigerian government to enhance the growth

of medical imaging and the development of the healthcare industry; some of these measures

include partnerships with private corporations and grant-funding for certain projects.
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7.2 Introduction

The aim of this report is to present Nigeria as a possible market for medical imaging technology.
This involves taking a look at the burden of disease in the country and evaluating the efficacy
of the established imaging modalities in diagnosing and monitoring these diseases. The report
discusses the macroeconomic factors of the Nigerian market, in order to provide insight on the
general business climate of the country. It then hones in on the healthcare system and the medical
imaging industry in particular, to present some of the key metrics such as healthcare funding,
which can stimulate further research required to pursue an actual opportunity.

The structure of the report is as follows:

• Section two discusses the prominent medical imaging modalities, outlining their principles
of operation, application areas and limitations.

• Section three presents an epidemiology study of Nigeria, matching the most burdensome
diseases to the modalities discussed.

• Section four discusses the different business models for radiology, as practiced in developed
markets.

• Section five presents a market analysis of Nigeria, touching on macroeconomic factors
and focusing on the healthcare industry.

• Section six summarises the whole report, outlining suggestions for further work.

7.3 Medical Imaging Technology

7.3.1 Introduction

The aim of this section is to expose the various medical imaging modalities available for
diagnostics. The major modalities and some historical/less prevalent technologies are discussed,
outlining the underlying principles related to each method and their most efficient application
areas. The section summary provides a table summarising the documented information.

7.3.2 Imaging Modalities

The various diagnostic medical imaging modalities available are as follows:
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Electron Microscopy

This modality uses electrons as the source of illumination and provides up to x2M magnification.
It is used mainly in anatomic pathology to identify organelles within their cells; it is also used in
diagnosis of kidney disease.

Projection Radiography (X-rays)

For a while, this has been the most prevalent imaging modality due to price and ease of use. It
works by transmitting x-rays through the body, understanding that different parts of the anatomy
have different absorption properties, with bones being the highest. This makes projection
radiography most suitable for determining the type or extent of fractures, dislocations, and
arthritis. It is also used (much less so now) to visualise both benign and malignant tumours, and
finds some use in chest pathology.

The risks associated with frequent use of this method come from repeated exposure to
ionising radiation from the x-rays.

Fluoroscopy

This modality provides real-time images of internal structures by employing a constant input of
x-rays at a relatively low dose rate, using contrast agents such as barium and iodine. As a result
of this, it is mainly used for image-guided procedures.

Computed Tomography

The first CT scanner was developed in 1972 by Sir Godfrey Hounsfield. Since then, it has
become one of the most essential medical imaging techniques through its applicability to a range
of clinical situations.

Principles of Operation The CT scanner in figure 7.1 consists of a patient table; a rotating x-
ray source and rotating detectors enclosed in a gantry. The emitted x-ray beams are attenuated by
the internal organs and the level of attenuation measured by the ring of detectors. Modifications
of this basic underlying technology have led to the development of helical CT, in which the
patient table is moved through the gantry as the x-ray tubes rotate, thus producing a volume
of contiguous slice data. Multi-slice/multi-detector CT scanners are now quite common; these
utilise the same principles of the helical scanner, but contain multiple rows of detector rings.
This allows the scanner to capture multiple slices per rotation; thus increasing the anatomical
area imaged in a fixed time. Toshiba’s Aquilion ONE 320-slice CT scanner can cover a 16cm
vertical range, capable of imaging an entire organ, in one gantry rotation.
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Figure 7.1: Computed Tomography Scanner
The image on the right shows a CT scanner [1]. The image on the left is a diagrammatic

representation of the components in the gantry; the CT scanner is basically composed of x-ray
sources and x-ray detectors [2].

Each pixel in the reconstructed image is a measure of the average attenuation of the x-rays
at that particular point in the anatomy, as measured by the detectors; this is referred to as the
Hounsfield Unit (HU). Hounsfield units are relative to the attenuation rate for water; therefore
water has a value of 0 HU. Examples of HU values for various tissue-types are shown in figure
7.2.

Figure 7.2: The HU Range of Values
Air has a value of -1000 Hounsfield Units [3].

The entire range of HU values is not visible at a particular instant by the human eye, and so
it is possible to map a specific range of HU values to the range of the display equipment. This is
known as windowing, and the window-level is the HU value at the centre of this window. For
example, in a CT examination of the chest, a window level of +40 and a window-width of 350
are chosen to image the soft-tissue.

Visualisation software packages have made it possible to reconstruct the CT images in various
ways suited to the particular clinical application. Multi-planar reformatting (MPR) and 3-D
volumetric data are the two basic forms of visualisation, allowing users to view the anatomy
as a series of contiguous slices for internal tissue analysis, or for surface and texture analysis,
respectively.

In order to visualise blood vessels clearly, contrast agents which increase the attenuation rate
of the blood are applied to the patient, either orally or intravenously. This is particularly useful
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for vessel analysis. The procedure is termed CT Angiography, and the most commonly used of
these contrast agents are iodine-based solutions.

Applications of CT CT imaging is readily available in most hospitals due to its excellent
image resolution, which makes it applicable to a wide range of clinical procedures. Advances
in visualisation technology have made it more convenient to use; for instance, orthogonal and
oblique planes can be viewed with ease. Computer-aided detection tools have been developed
for CT to speed up reading and analysis of the images. Some applications of CT are in:

• Head and Neck Imaging: This is typically performed using intravenous contrast, and is
used to evaluate patients with neck masses, and head and neck cancer.

• Cardiac Imaging: CT angiography is commonly used with 64 slice CT scanners to detect
plaque in coronary arteries. This makes it suitable for general vascular imaging.

• Pulmonary Imaging: High resolution CT images can be used to evaluate lung disease and
lung cancer.

• Functional Imaging: CT images are superimposed on PET images to add structural
information to the functional information provided by PET.

• Abdominal and Pelvic Imaging: CT is the most widely used modality for imaging the
liver, kidneys, bowels and pelvis; although ultrasound is preferred for imaging the fe-
male reproductive system. Most of these scans are performed with intravenous contrast
agents[4].

Limitations of CT

• Radiation: The use of short wavelength x-rays cause ionisation in body tissues, damaging
cells over constant exposure. A single abdominal CT scan delivers up to 10mSv to the
patient, compared with ≈ 3mSv average yearly background radiation dose in the United
States [5].

• Brain imaging: MR has proved to be a more sensitive imaging technology for evaluating
early ischemic strokes and grey/white matter atrophy.

• A multi-slice CT scanner with high enough resolution to perform most of the applications
will cost at least US$700k, making it more expensive than safer and more portable
technologies such as ultrasound.

• 5% of patients experience mild allergic reactions to contrast agents [4]. One potentially
severe complication in the application of intravenous contrast is acute renal failure.
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Magnetic Resonance Imaging

Figure 7.3 is a cut-out view of a typical MRI scanner showing its components.

Figure 7.3: Components of an MRI scanner
The coils are used to control temporal and spatial localisation [6].

Principles of Operation In MRI, a magnetic field is applied to align the hydrogen nuclei in
the body. Hydrogen is chosen because it is abundant in the human body in form of water and
fat. The hydrogen nucleus possesses the ‘spin’ property which causes it to precess at a known
frequency (termed the Larmor frequency) when an external magnetic field is applied, and all the
nuclei produce a net magnetisation vector pointing in the direction of this external magnetic field
[7].

In order to produce an image signal, an RF pulse is applied at the Larmor frequency, so the
precessing nuclei absorb the energy from this pulse until no component of the net magnetisation
vector exists parallel to the magnetic field; this is known as saturation. Once this pulse is switched
off, the relaxation process emits a wave that is picked up by an RF receiver. Relaxation is divided
into longitudinal (or T1) and transverse (or T2) relaxation, and the time taken for each of these
are unique to the type of tissue. This produces a signal for the entire body; this signal is localised
to a particular slice and 2-D co-ordinates by using three gradient magnetic fields.

The gradient coils apply three gradient fields in orthogonal directions that interact with the
main magnetic field:

• The slice-selection field, to localise the signal to a 2-D plane;

• Frequency encoding field, to localise the signal to a column in the 2-D plane;

• Phase-encoding field, to localise the signal to a row within a column.
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The RF receiver detects a signal at a time during T2-relaxation; and various sequences for
this image acquisition stage exist. In the spin-echo (SE) sequence, for instance, the RF pulse is
applied a second-time at time TR during the T1 relaxation time, and the T2 relaxation signal
measured after a set time TE. The choice of TR and TE controls the contrast of the captured
image, and is referred to as T1- T2-weighting [7]. Controlling TR and TE and varying magnetic
field strength, makes MRI an art-form in itself, capable of imaging all kinds of anatomy for both
structural and functional imaging.

Applications of MR The main advantage of MRI over x-rays and CT imaging is that the RF
pulses applied to the body are not of high enough frequency to cause ionisation, and hence the
risks of tissue damage associated with the other two methods are not applicable.

MRI is used for both structural and functional imaging. It is used in functional brain imaging,
muscle imaging, liver, kidney, and lung imaging [8]. Angiographies are also performed in MRI
making it useful for cardiac analysis and perfusion studies. The structural information obtained
from MRI can also be overlaid with functional information from PET (Positron Emission
Tomography) images to provide more useful information, especially in oncology.

MRI is useful for all the above forms of imaging because the quality of the image produced,
i.e. contrast levels for anatomy of interest, image resolution, etc, are all controlled by physical
parameters on the machine. It is therefore an active area of research in imaging at the moment.

Limitations of MRI The major downside to this technology is its cost; MRI scanners are by
far the most expensive of the structural medical imaging scanners, with an average price of
US$1.5M for the basic 1.5 Tesla scanner. For the patient, switching the gradient fields on and off
constantly can create a very noisy experience. In cases of trauma, it is very difficult to prepare
the patient for a scan, with preparation along the lines of checking for replaced hips, pace-makers
and other items that will disrupt the magnetic field.

Medical Ultrasonography (Ultrasound)

Principles of Operation The underlying principle of ultrasound is the piezo-electric effect,
which transforms an electrical voltage to high frequency sound waves and vice-versa.

An ultrasound scanner consists of a transducer, normally on a hand-held probe. The sound
frequencies produced by this transducer are transmitted into the body; the same transducer (or a
separate one on the same probe) is used to detect the reflected sound, or echo. The time taken
for the echo to be received provides information about the depth of the reflecting anatomy (see
figure 7.4).

Tissues have unique acoustic impedance, and the relative acoustic impedance between
adjacent tissues determine the proportion of the signal that will be reflected. For example, air
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Figure 7.4: The principles of ultrasound
The image on the left shows transmitting and receiving ultrasound transducers at the ends of

hand-held probes. The image on the right shows the scanning procedure being carried out; the
image is obtained in real-time [9].

has an acoustic impedance of 0.0004 Rayls, and muscle is about 1.70 Rayls [10]; this implies
that the muscle-air interface will reflect practically the entire signal. This is why transducers are
tightly coupled to the patient with water-based gel to allow the signal to travel into the body.

Frequencies used in medical ultrasound are in the range of 1 - 10 MHz [10]. High frequency
ultrasound has the advantage of producing better resolution due to the magnitude of the reflected
signal, but more of the signal energy is absorbed by tissues, reducing its penetration potential.
On the other hand, low frequencies produce relatively coarse resolutions, but are capable of
imaging deeper tissues within the body.

The application of the Doppler effect to ultrasound makes it possible to measure blood-flow
within arteries. The Doppler effect is essentially what makes the sirens of fire-engines appear
to change in pitch as they get closer to the listener [10]. Doppler ultrasound is applied as
continuous-Doppler or pulsed-Doppler. The basic idea is that a known frequency is applied,
targeted at the artery of interest, and the received frequency is measured, with the difference in
frequency relating to the velocity of the red blood cells in the blood within the artery.

Visualisation in ultrasound has evolved from seeing frequency spikes to visualising the entire
scan in 3-D in real-time; this is one of the main advantages of ultrasound.

Applications of ultrasound Ultrasound is the cheapest of the cross-sectional imaging modal-
ities around at the moment, making it very efficient as a technology for initial evaluation.
Ultrasound scanners are also portable, allowing it to be used in cases where the patient cannot
be prepared for a CT or MR scan. Unlike CT, the signals emitted into the body in ultrasound
imaging are non-ionising, and so there are no known risks attached to this modality.

Some of the applications of ultrasound are as follows:

• Obstetrics: By far the most popular use of ultrasound today. It is used for a number of

126



CHAPTER 7. MEDICAL IMAGING IN NIGERIA

purposes such as; imaging the foetus, in order to rule out abnormalities; evaluating the
female pelvic organs during pregnancy; and general monitoring of the pregnancy.

• Vascular ultrasound: This combines Doppler ultrasound with real-time imaging to assess
blood flow in the arteries. It is used to detect abdominal aneurysms, arterial stenoses,
carotid occlusive disease [4], and renal vascular diseases. High frequency continuous-
Doppler is applied to superficial arteries like the carotids and arteries in the limbs, whilst
pulsed-Doppler is applied to the heart. Vascular ultrasound is used in echo-cardiography
to assess coronary and left-ventricle functionality.

• Testicular ultrasound: Ultrasound is the most favourable technology for testicular imaging.
High frequency ultrasound is used to assess testicular abnormalities.

• Abdominal ultrasound: Ultrasound is popular in imaging the liver, gall bladder, spleen,
pancreas, and kidney. Although it is being replaced by CT and MRI now, it is still a
popular tool for initial assessments.

Limitations of ultrasound

• Relatively poor resolution compared to other cross-sectional imaging modalities like CT
and MRI.

• It is highly operator-dependant; the quality of the image depends not only on the quality of
the transducer used, but also the technologist, and the interpreting physician.

Nuclear Imaging

Principles of Operation Nuclear imaging has been around since before CT or MRI; a number
of people from as far back as 1903 [11] have contributed to its development.

The underlying assumption in nuclear imaging is that tissues in the body exhibit characteristic
absorption rates for substances (primarily nutrients). In order to exploit this assumption, the
specific nutrients, in the form of pharmaceuticals, are attached to radionuclides to make up
radiotracers, or radiopharmaceuticals. These radiotracers accumulate in the organ of interest and
start to decay, emitting gamma rays. The emitted gamma rays are detected to form an image
displaying the relative absorption rates of the radiotracer in the body. A common radionuclide
used in nuclear imaging is Technetium-99m [12]; when this is attached to a pharmaceutical like
Sestambi, it accumulates in the myocardium, enabling myocardial imaging.

The radionuclides are produced in cyclotrons, preferably close to the imaging lab. This is
an important consideration in the planning of nuclear imaging centres, because of the decays
associated with radioactive substances.
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Figure 7.5: Nuclear imaging procedure
PET is shown here, whereby the tracer is injected into the patient, and the photons are used to

reconstruct the image [13].

In order to form an image, gamma cameras are placed around the area of interest to detect
the emitted radiation. These cameras contain fluorescent crystals, which change the gamma rays
to light photons. The light photons react with a photo-electrode to generate electrons. Therefore,
an image is the geographical location of the radiopharmaceutical within the body [14]. Figure
7.5 depicts the nuclear imaging procedure.

Applications of Nuclear Imaging Nuclear imaging is used as a diagnostic imaging technique
for certain conditions that otherwise would require exploratory surgery. The main advantage of
nuclear imaging is that it provides unique information that cannot be obtained by other imaging
techniques. Some of its application areas include:

• Detection of brain abnormalities

• Measuring thyroid function

• Analysing kidney function

• Evaluating bones

• Detecting the presence/spread of cancer [12]

The most popular branch of nuclear medicine in use in oncology imaging is Positron Emission
Tomography (PET).
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Positron Emission Tomography PET uses Positron emitters, such as Fluorine, attached to
pharmaceuticals, in order to detect the uptake sites within the body. In PET, the positrons
emitted combine with the electrons in the surrounding tissue briefly; and then a process called
annihilation occurs, releasing two photons in opposite directions. These photons are measured to
reconstruct the image. The most common use of PET is in oncology, and so the most commonly
used pharmaceutical is fluorodeoxyglucose (FDG). FDG is a glucose analogue, and the theory
here is that cancerous cells are highly energetic, requiring a lot of glucose for metastases. FDG is
labelled with fluorine-18 to produce 18F-FDG. This radionuclide has a half-life of 110 minutes
[15], therefore it needs to be produced on-site to be clinically useful. PET is used in oncology
for the following tasks:

• Distinguishing between benign and malignant tumours

• Establishing the site of the cancer

• Measuring response to therapy

• Identifying the primary site for a tumour for biopsy.

• Cancers currently investigated by PET: Head & neck tumours, thyroid carcinomas, pul-
monary nodules, lung cancer, breast cancer, pancreatic cancer, colorectal cancer, ovarian
cancer, testicular tumours, Hodgkin’s disease, and brain tumours [15].

Limitations of PET/Nuclear Imaging Some of the limitations associated with PET/Nuclear
imaging are as follows:

• The radiotracers could take anywhere between a few seconds and a few days to accumulate
at the tissue of interest; this could lead to a time-consuming process.

• Although the radiation dose associated with the radionuclides is quite low (10mSv for
Fluorine-18[15]), the risk of dying from radiation-induced disease is estimated at 5-6 per
10,000 [15].

• The procedure is not normally performed during pregnancy, to prevent complications.

• PET images provide functional information only, and so need to be combined with CT or
MR images to present structural information to the reader.

• A PET scanner costs about US$2M [16], and the cyclotron an additional US$2.4M; making
PET a very expensive imaging technology to consider.
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7.3.3 Summary

The available diagnostic medical imaging modalities have been described in this section; table
7.1 summarises their relative features.

Imaging Modality General
Principles

Application
Areas

Associated
Shortcom-
ings/Risks

Electron Microscopy Electrons used to
provide
illumination

Virology,
anatomic
pathology, 3D
tissue imaging

Expensive to
maintain, cannot
image internal
organs

Fluoroscopy X-ray source and
fluorescent screen

Image-guided
procedures (some
surgery)

Exposure to
ionising radiation
through x-rays

Positron Emission Tomography Detect photons
emitted by
positron-emitting
radionuclides

Cancer detection,
and monitoring
response to
therapy

High cost of
cyclotron to
create
radionuclides

Projectional Radiography X-rays attenuated
differently by
parts of anatomy

Detect bony
anomalies,
soft-tissue
anomalies (not
very efficient)

Ionising radiation
through x-rays,
limited to bones

Computed Tomography Rotating x-rays to
form image slice.

Chest, pulmonary,
cardiac,
abdominal

Ionising radiation
through x-rays

Magnetic Resonance Imaging Uses magnets to
polarise hydrogen
nuclei in tissues

Neurological,
musculoskeletal,
cardiovascular
and oncology
imaging

The magnet is
very expensive;
equipment is
large.

Ultrasound High frequency
sound waves are
reflected by
anatomy

Foetal imaging in
pregnant women,
abdominal organs,
breast, muscles

Limited depth
penetration,
operator-
dependent
quality

Table 7.1: Medical Imaging Modalities
Summarising general principles of operation, major application areas, shortcomings/associated

risks.
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7.4 Epidemiology

7.4.1 Introduction

The overall aim of this section is to express understanding of the burden of disease in Nigeria,
and to provide evidence of how medical imaging technology can address the issue, potentially
improving the general state of health in the country.

Global epidemiology surveys are carried out periodically by a host of organisations, and
these provide documented data indicating the relative burden of a specific disease or group of
diseases amongst the different countries involved. From this sort of data, it is possible to deduce
patterns that account for the difference in disease burdens across countries, and ascertain the
impact of medical imaging technology on the state of health in a community.

This section begins by considering the type of measurements that need to be performed on
the population in order to understand the real burden of diseases. It goes on to discuss the actual
data collected based on the relevant measurements, and any interesting observations. Based on
the data collected, the following section attempts to match up the key diseases to diagnostic
imaging modalities, providing information on the benefits of medical imaging technology in
controlling the diseases that are affecting Nigeria.

7.4.2 Measures of Disease Burden within a Population

Diseases have different characteristics based on the way they affect human beings; some diseases
are life-threatening, whilst others although not being fatal, cause long-periods of inactivity or
even permanent disability.

In order to assess the burden of disease within a population, it is necessary to consider not
only the mortality rate of the particular disease, but also the equivalent years lost due to affliction
caused by the disease, the morbidity rate, and the financial costs associated with the disease.

The World Health Organisation (WHO), in the Global Burden of Disease book [17], uses
two metrics capable of capturing the pertinent information. The Disability Adjusted Life Year
(DALY) sums the Years of Life Lost due to premature mortality (YLL) and the Years Lost due to
Disability (YLD) for incident cases of the health condition.

By the definition provided in [17],

Y LL = N × L∗

* N is the number of deaths and L is the standard life expectancy at age of death in years.
This measure gains credibility because in its computation, the life-expectancy of the different
age-groups within the population have been considered, therefore Years of Life Lost accurately
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represents the mortality associated with a given health condition.

Y LD = I ×DW × L∗

* I is the number of incident cases, DW is the disability weight, and L is the average duration
of the case until remission or death in years.

The disability weight is a number between 0 and 1 inclusive, indicating the level of severity
of a particular health condition; 0 indicates perfect health and 1 indicates death.

It is worth noting that none of these measures take into account social preferences, and are
therefore recorded as per observation. It has also been argued in [18] that DALY does not account
for broader aspects of burden, for example, deterioration in quality of life, and the emotional
and physical impacts on families. Research is still being carried out to determine more accurate
measures of the burden of disease, but the DALY is so far the most acceptable measure and is
used in the rest of this section.

7.4.3 The Burden of Disease in Nigeria

The World Health Organisation (WHO) carries out a periodical epidemiological survey, funded
by the Bill and Melinda Gates Foundation. The survey covers each of the United Nations (UN)
member states, and the data is recorded in the book titled: “The Global Burden of Disease”.
The survey creates 20 categories for health conditions, with categories for intentional and
unintentional injuries; the measures used here are Deaths, Death rates per 100,000, DALY, and
DALY rates per 100,000.

Based on the GBD 2002 reports, Nigeria has the 7th highest morbidity rate in West Africa.
Communicable, maternal, perinatal and nutritional conditions account for the highest mortal-
ity/morbidity rates, of which infectious and parasitic diseases are the highest sub-group, with
HIV/AIDS, malaria and measles causing the greatest burden in this category. Under communica-
ble diseases, lower respiratory infections hold the second highest DALY rate, with maternal and
perinatal conditions, such as low-birth weight and birth trauma closely following.

Non-communicable diseases account for about a fifth of the total DALY rate; of these,
neuropsychiatric conditions are the highest, followed by cardiovascular diseases, sense-organ
diseases (particularly cataracts), respiratory diseases and cancers. Of all cancers, breast cancer
ranks the highest in terms of morbidity, followed by liver cancer and then prostate cancer; with
colon cancer, stomach cancer and leukaemia closely following. On the other-hand, in terms
of mortality rates, prostate cancer ranks the highest, followed by breast cancer, and then liver
cancer. Under this same measure, cardiovascular diseases are the deadliest non-communicable
disease-group in Nigeria. These figures are represented in figures 7.6 and 7.7.

The full tables containing the figures are available in figures A.1 and A.2 in appendix A.
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Death Rate (per 100,000)

Infectious and parasitic diseases

Respiratory infections

Cardiovascular diseases

Unintentional injuries

Perinatal conditions (h)

Malignant neoplasms

Respiratory diseases

Maternal conditions

Intentional injuries

Digestive diseases

Genitourinary diseases

Neuropsychiatric conditions

Nutritional deficiencies

Diabetes mellitus

Congenital anomalies

Figure 7.6: Death Rates per 100,000 people in Nigeria
The ranking still remains the same, except for Neuropsychiatric conditions not being as high up
in death-rate ranking as it is in the DALY-rate ranking. Cardiovascular diseases are the third

deadliest disease group in Nigeria.

DALY Rate (per 100,000)

Infectious and parasitic diseases

Respiratory infections

Unintentional injuries

Neuropsychiatric conditions

Perinatal conditions (h)

Cardiovascular diseases

Maternal conditions

Sense organ diseases

Intentional injuries

Nutritional deficiencies

Respiratory diseases

Digestive diseases

Malignant neoplasms

Congenital anomalies

Musculoskeletal diseases

Genitourinary diseases

Endocrine disorders

Figure 7.7: DALY Rates per 100,000 people in population for Nigeria
The ranking still remains the same, except for Neuropsychiatric conditions not being as high up
in death-rate ranking as it is in the DALY-rate ranking. Cardiovascular diseases are the third

deadliest disease group in Nigeria.
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7.4.4 Medical Imaging and the Burden of Disease in Nigeria

Tables A.1 and A.2 in appendix A provide information matching the top 6 disease categories
(based on both DALY and Death rates) to the imaging modalities discussed in section 7.3. Table
7.8 summarises this table, showing the applicability of the major imaging modalities to these
disease categories.

Ultrasound

Figure 7.8: Applicability of medical imaging modalities to the major disease categories in
Nigeria

Red implies inapplicability, while green implies applicability. Inf: Infectious and parasitic
Diseases; RI: Respiratory Infections; MC: Maternal Conditions; MN: Malignant Neoplasms;
NC: Neuropsychiatric Conditions; CV: Cardiovascular Diseases; UI: Unintentional Injuries;

PC: Perinatal Conditions.

It is worth noting from figures 7.6 and 7.7, that infectious and parasitic diseases carry the
greatest burden. Within this category are HIV AIDS, malaria, measles, diarrhoea and tuberculosis.
At present the detection rate for TB is 27% compared to the global goal of 80%, placing Nigeria
in fourth place among the 22 high-TB-burden countries worldwide. Malaria accounts for 60%
of all outpatient visits and 30% of childhood deaths, costing the country an estimated US$88M
annually.

The data provided in the appendix points out that medical imaging modalities do not offer
much in the way of diagnosing or monitoring AIDS, malaria, diarrhoea and measles, which hold
the highest burden under this category, and in fact if excluded, will bring this category on par
with respiratory infections. Diagnosis and monitoring of HIV, malaria, diarrhoea and measles
are beyond the scope of this report, and therefore are not discussed here, although the two latter
diseases are negatively correlated with the levels of hygiene and nutrition in the country.

Figure 7.8 and table 7.2 show the applicability of the imaging modalities discussed in section
7.3 to the most deadly conditions in Nigeria. These figures show that x-ray is the only modality
useful to target tuberculosis. For all the other disease groups, CT and MR seem to be equally
applicable except in the case of obstetrics, in which ultrasound is globally preferred.

In order to target all the diseases listed in table 7.2, the following equipment is at least
required:

• Tuberculosis:
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Disease
Category

Specific Disease Diagnostic
Modality

Infectious
diseases

Tuberculosis X-Ray and CT

Respiratory
infections

Pneumonia All modalities
except PET

Cardiovascular
diseases

Ischaemic heart
disease

All modalities
except X-ray

Unintentional
injuries

Road traffic
accident (trauma)

All modalities
except PET

Perinatal
conditions

Low birth weight
and birth trauma
(obstetrics)

Ultrasound and
MRI

Malignant
Neoplasms

Breast cancer,
Prostate cancer

Mammography,
All modalities

Table 7.2: The top 6 deadly diseases in Nigeria (2006).
The ranking is based on data collected by WHO; more diseases are prevalent under these

sub-categories, but the table only shows those which are easily diagnosed by the major imaging
modalities.

– X-Ray: Fixed digital(computed radiography or direct radiography) or plain-film
x-ray scanner.

• Ischaemic heart disease:

– CT: Requires 64+ -slice multi-detector helical CT with visualisation workstation[19].

– Ultrasound: Echocardiography and Doppler capabilities for arterial imaging.

• Trauma:

– CT: Requires multi-detector CT with at least 16-slice resolution[20][21] and visuali-
sation equipment (PACS), as angiography is recommended.

– Ultrasound: Ultrasound is suitable for unstable patients with abdominal trauma[20].
It requires real-time scanners with Doppler capabilities, using sector or linear trans-
ducers with mean frequencies between 2 and 5 MHz (for adults)[22].

– X-Ray: Requires portable x-ray scanner, which could be digital or plain-film.

• Obstetrics:

– Ultrasound: Requires real-time sonography, using 3-5MHz abdominal transducer or
5-10MHz vaginal transducer[23].

• Breast cancer:
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– X-Ray: Mammography could be plain-film, digital with viewing resolution of at least
5MP, or tele-mammography[24].

– Ultrasound: Follow-up findings from mammography requires real-time linear array
scanner operating at 10MHz or higher[25].

• Prostate cancer:

– Ultrasound: Used as follow-up to prostate screening requires a real-time transrectal
transducer with a frequency of at least 6MHz[26].

The above list ignores MRI and PET modalities although they are capable of detecting some
of the diseases listed above. This is just because of the high cost of these two modalities, and so
proving that they are not explicitly required to reduce the burden of disease in Nigeria.

7.4.5 Summary

This section begins by describing one of many possible methods to measure the burden of
diseases within a population. Epidemiological data provided by WHO is used to describe the
state of health in Nigeria. It can be seen that the most burdensome diseases are on-going areas of
research, which may or may not be involved with the field of medical imaging. The last section
points out the applicability of the medical imaging modalities discussed in section 7.3 to the
diagnosis and monitoring of the major disease categories; more data is provided in appendix A.

7.5 The Business of Radiology

7.5.1 Introduction

Following discussions about the technology available for radiology and the diseases that could be
addressed by these pieces of technology, this section provides an insight into the way radiology
practices are run as businesses. The section outlines the various business categories as practiced
in the UK and the USA, as both countries have suitably mature healthcare industies.

7.5.2 Business Models for Radiology

Imaging centres are very expensive to equip and run; for this reason, medical institutions need to
meticulously consider the need for this service.

The business of radiology is driven by the demands of the customer who are in this case, the
referring physicians. They are therefore structured based on a few driving factors, such as:
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• Capacity management: Due to the high capital cost of imaging equipment, health institu-
tions need to ensure maximum utilisation in order to balance out this fixed cost.

• Convenience: Referring physicians and patients need to have convenient access to the
radiology service.

• Turn-around time: Referring physicians measure quality by a number of factors including
fast delivery of results. Other factors such as the diagnostic quality of images, succinctness
of reports, and the boasted level of technology are very important driving factors.

• Breadth of Service: It may be an advantage to the referring physicians to have a one-stop-
shop for all imaging modalities. With this set-up, scans can be carried out on different
modalities to increase the quality of diagnosis.

Therefore, in all healthcare systems, ranging from private to public systems, there are four
classes of radiology solutions that exist to address these issues.

Tele-radiology

Tele-radiology involves the distribution of radiological patient images of various modalities from
one location, usually the scanning centre, to another for reading. This service comes about due
to shortage of trained or specialised radiologists, e.g. MRI, neuro, paediatric, etc, in the scanning
centres. It provides operating leverage to institutions concerned. Tele-radiology practices make
use of PACS as an integral component of their business, as it allows the scans to be transported
from/to the referring physicians with ease.

These practices are mostly called upon at times when health institutions have a back-log of
scans, they are efficient at reducing turn-around-time for the referring institutions in this case.

Tele-radiology practices can be further divided into categories, based on the level of service
provided.

• Stand-Alone Tele-Radiology[27]: These are radiology organisations that own their own
distributed imaging centres with a centralised reading centre. These organisations tend to
focus on a radiology sub-specialty, and provide primary diagnosis. Examples of companies
that run this structure in the United States are “Proscan imaging”, “MedTel International”,
“Centre of Diagnostic Imaging”, and “American Radiology Services”.

• On-Call Coverage (a.k.a. Night-Hawk): These are organisations that provide extended
coverage for radiology departments. They are essentially in place to tackle variable capacity
in customers’ institutions. It may be quite expensive to have a full-time radiologist on the
staff during off-peak hours (over-night, for instance) in a hospital, and so such “Night-
hawks” come in handy to perform reading during these hours. These could be practiced by
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individual radiologists or by organisations with staff of accredited radiologists. Common
services provided by such structures are preliminary reads, but sub-specialty and final
interpretation services are also common, depending on the service supplier. Examples
of organisations practising on-call radiology are “NightHawk Radiology Services” and
“Virtual Radiologic Consultants”.

This form of tele-radiology lends itself naturally to international radiology, whereby
practitioners can take advantage of the differences in time-zones.

Tele-radiology organisations make their revenue by charging the referring institutions directly.

Outpatient Imaging Centres

This scenario usually involves a group of radiologists coming together to start a business
providing a complete package, e.g. scanning, reading, reporting and sometimes diagnosis, as
a service to hospitals and other medical institutions. This is usually a dedicated business, and
usually provides no other service. In order to achieve their independence, outpatient imaging
centres need to have their own imaging equipment, i.e. modalities and PACS, to support their
intended capacity.

These organisations could be either small businesses or large international chains, and usually
provide their services to multiple hospitals, thus alleviating the problem of under-utilisation of
medical imaging equipment. This saves their clients the need to hire full-time technologists and
radiologists, while still maintaining good quality of diagnostic imaging. Outpatient imaging
centres need to cater to all the needs of their clients. To do this, they normally have to boast the
latest in imaging technology, support multiple modalities, as well as target the most burdensome
diseases affecting their areas of operation. In some cases, these companies also provide laboratory
and clinical services as part of their product portfolio. Examples of outpatient imaging companies
are “Center for Diagnostic Imaging” and “Austin Radiological Associates” in the United States;
“Union Diagnostic and Clinical Services”, and “Image Diagnostics” in Nigeria.

Out-patient imaging centres make their revenue by charging the clients directly. Clients in
this case may be individuals, insurance companies, or other health institutions. In the case of the
United States, these organisations charge Medicare or patients’ insurance companies for each
scan carried out. In the UK, the same procedure applies with the NHS for authorised practices.

Hospital-Adjoined Imaging Centres

The imaging centre may be part of the hospital in terms of administration, but exist in a separate
location and act as an independent entity, providing services not only to the parent hospital, but
to other medical institutions.
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This set-up is typical in situations where the hospital is able to procure the huge funds
required to set up one of these centres, but can not guarantee the required capacity to utilise the
equipment optimally. It is therefore most convenient for the parent hospital, as these centres are
in close proximity.

In this case, the revenue model is split into two parts. The clients can be charged directly, in
which case, the revenue model is similar to that of an out-patient imaging centre. The parent
hospital may be charged outright for scans carried out at the centre, but a budget may already be
allocated to the centre from the overall running costs of the parent hospital.

Fully Incorporated Imaging Centres

This is typical in general and teaching hospitals, whereby the radiology department exists for
this purpose. In this set-up, the revenue model is tied directly to the revenue model of the entire
hospital.

7.5.3 Summary

This section has split the practice of radiology into four major classes: tele-radiology, out-patient
radiology, hospital-adjoined radiology, and fully-incorporated radiology practices. These classes
differ mainly by the way they provide their services, and the extent of radiology work-flow
provided. The classes are all driven by the needs of the referring physician, who is the primary
customer of the radiology business. Each class has a different revenue model, although these
models tend to cross over.

7.6 Market Analysis

7.6.1 Introduction

This section introduces Nigeria, providing information on key factors that describe the country;
this description is based on a PEST (Political, Economical, Social, and Technological) analysis.
The section goes on to present an overview of the healthcare industry, highlighting key market
metrics, in order to provide information on the current state of the market.

Nigeria, or the Federal Republic of Nigeria, is a federal constitutional republic comprising
thirty-six states and one Federal Capital Territory, Abuja. The country is located in West Africa,
and shares borders with Niger in the north, Benin Republic in the west, Cameroon in the east,
and Chad in the north-east. Its coast lies in the Gulf of Guinea, which is part of the Atlantic
Ocean (see figure 7.9). Nigeria is the most populous country in Africa with a population of
144,720,000; it is followed by Ethiopia, with a population of 79,221,000.
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Figure 7.9: Map of Nigeria. [28][29]

Nigeria has the 9th largest income disparity in Africa, with a GINI index of 50.6; ranking
lower than South Africa, but much higher than Ghana, which has a GINI index of 30.0. The
GDP of Nigeria as of 2008 is US$214Bn, with the per-capita GDP being US$1,450. This ranks
Nigeria just below South Africa as the African country with the second largest economic output,
although inequitable income distribution results in a rank of 16th highest based on per-capita
GDP. Despite this ranking, the World Bank ranks Nigeria as 118/181 in terms of the ease of
doing business. The standard currency of Nigeria is the Naira, symbol (N= ), and as of April 2009
exchanges for 145 US Dollars.

Nigeria received its independence from the United Kingdom in 1960, it is a member of
the Commonwealth of Nations; although there was a ban in place from 1995 to 1999, Nigeria
has since been a majority-rule democracy. The current ruling political party is the Peoples’
Democratic Party (PDP); the current president is Umaru Yar’Adua, and the vice president is
Goodluck Jonathan.

Table 7.3 shows an overview of Nigeria’s demographic and healthcare data.

7.6.2 PEST Analysis

The PEST analysis allows for thorough investigation of macro-environmental factors that indicate
the issues faced when conducting business in Nigeria.

• Political factors: These indicate the impact of the Nigerian government on the healthcare
industry.

• Economic factors: These indicate the economic status of Nigeria, with particular focus on
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Total Population (million) 144.7
GDP ($ Billion) 214

Total Fertility rate (births/woman) 5.5
Life Expectancy at Birth Males 48

Life Expectancy at Birth Females 49
Under 5 mortality rate (per 1000 live births) 97.1

Deaths due to HIV/AIDS 311
HIV Prevalence among adults aged 15+ years (%) 5.1

Physicians (% of Population) 0.023842
Nurses (% of Population) 0.145197

Total Expenditure on Health ($ Billion) 3.2
Total Expenditure on Health (% of GDP) 6.941432

State Expenditure on Health (% of Total Expenditure on Health) 25

Table 7.3: Nigeria: Demographics and Healthcare Data.

healthcare spending and other key economic indicators.

• Social factors: These provide information on the culture and habits of Nigerians, as well
as demographics; focus is placed on Health indicators.

• Technology factors: These indicate the readiness of the Healthcare industry to incorporate
new technology.

Political Factors

Nigeria went under military rule from 1966 up until 1999; during this time, there were high
levels of unrest in the nation, with corruption deemed at an all time high towards the end of the
regime. The current president, Umaru Yar’Adua came into power in 2007 and since then radical
development plans have been proposed in form of a 7-point plan focusing on energy, security,
wealth creation, education, land reform, mass transit, and the Niger delta conflict.

Nigeria is also witnessing the re-emergence of a middle-class[30], which indicates more
employment opportunities for individuals, creating more levels of income. Poverty and illiteracy
levels are still high in rural areas of the country, where access to communications and other
infrastructure is lacking.

In 2005, Nigeria received a US$18 billion write-off, constituting 60% of its international
debt by the Paris Club. The savings from that are accounted for in the budget as being utilised
for achieving millennium development goals (MDGs) in the country and as such, an extra
US$750 million is allocated yearly to health, energy, education and agriculture projects as capital
expenditure.

The 2009 proposed budget estimates US$1.37 billion will be spent on public service reform
and the state pension service. Spending on government departments, ministries and agencies
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is totalled at US$15 billion. 40% of this sum is allocated to capital expenses, while the rest is
allocated to recurrent expenses such as personnel costs. Table 7.4 shows the sectors that obtained
the largest allocation of capital expenditure.

Department Amount N(Billion) Amount US$(Billion)
Transportation 114.2 0.787

Energy 110.3 0.76
Agriculture and Water 80.9 0.56

Health 34.5 0.24
Federal Capital Territory 30.6 0.21

Military 27.7 0.19
Interior 25.6 0.17

Education 23.8 0.16

Table 7.4: Capital Expenditure Rankings (Nigeria 2009 budget).
Capital Expenditure on health is ranked 4th below agriculture, energy and transportation, which

are also industries in states of emergency.

The figures in Table 7.5 give the political indicators for Nigeria. The figures on public
expenditure were obtained from the 2009 budget. These figures are low compared to benchmark
African nations like South Africa, who spend 3.2% of their GDP on health and 5.2% on education.

Human Development Index 154/179
Public Health Expenditure (% GDP) 0.5

Public Education Expenditure (% GDP) 0.7
Military Expenditure (% GDP) 0.7

Debt Service (% GDP) 2.0

Table 7.5: Political Indicators
The Human Development Index is collected from the United Nations Development Program
reports on HDI. The public spending figures are derived from the Nigerian national budget

archive[31][32].

The Human Development Index (HDI) measures the average progress of a country in human
development. It takes into account the life expectancy at birth, the adult literacy rate, and the
per-capita GDP (measured by purchasing power parity) among other factors.

Economic Factors

Since the oil boom in the late 1960’s, Nigeria has grown to be almost solely reliant on oil
revenues to feed the country’s budget. As oil prices start to drop, from a high of over $100 to
a current price of $48, Nigeria has seen its revenue deplete drastically. This has led to moves
in the budget to raise revenue by issuing government bonds, and a move towards restoring the
once-great agricultural output of the nation. Agricultural produce such as cocoa, ground-nut and
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cotton were once major exports before the oil boom; it is now the case that the finished products
of these raw materials are being imported.

The nation is faced with a crippling power production problem. The National grid is operated
by the Power Holding Company of Nigeria (PHCN), although smaller supply companies exist
since the deregulation of the power sector in 2005. The main source of electricity to the grid is
hydro-electric power supplied from Kainji dam and Kurra Falls. The bulk of power plants and
transmission facilities were built in the 1950s and 1960s. Little investment and maintenance has
left the infrastructure in a state of emergency, leaving the plants operating at as low as one-third
of their installed capacity. The government plans to double the power output to 6000 Mega-watts
by the end of 2009, although other sources of energy such as bio-fuels, solar and wind are being
invested in through public-private-partnerships (PPPs).

The Nigerian banking industry witnessed a boom during the last three years, after a recapital-
isation legislation passed during the term of former president Olusegun Obasanjo, which forced
consolidation of smaller banks forming more reliable banking institutions. This led to abnormal
increases in the Nigerian stock exchange index during that period, although the global recession
is affecting the industry now because international investors are withdrawing money from the
country.

Table 7.6 provides an overview of the economic indicators for Nigeria. The GDP figures
rank Nigeria as Africa’s second largest economy next to South Africa.

Gross Domestic Product (GDP) (International $Billion) 315
GDP per capita annual growth rate (%) 0.8

Average annual change in CPI 11.24
GDP per Head (US$) - poorest 20% (% of GDP) 4.4
GDP per Head (US$) - richest 20% (% of GDP) 55.7

GINI index 50.6

Table 7.6: Economic Indicators
The figures are normalised by purchasing power parity (PPP). An international dollar has the

same purchasing power in a given country as a US dollar in the USA.

Social Factors

Nigeria has been a source of international concern in recent years; this is due to an inefficient
social system within the country, despite its huge oil revenues. The GDP has been growing at a
steady rate since the oil boom in the 1970’s, but the social sector, particularly the health sector
has witnessed a decrease in the proportion of the government’s budget allocated to it (as seen in
figure 7.10).

The key health indicators in table 7.8 show that private expenditure on health is over twice
the government’s expenditure on health, and that 90% of this expense is paid for outwith any
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Trends in GDP over time, overlaid with key Social Indicators
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Figure 7.10: Trends in GDP growth over-time.
Government expenditure on health as a percentage of total government expenditure has been

reducing, although the GDP has been increasing.

health plans. This naturally implies great disparities in primary health as available to different
income levels of the society.

Per capita Total Expenditure on Health at average exchange rate (US$) 32
Per capita State Expenditure on Health at average exchange rate (US$) 10

Hospital Beds (% population) 0.05
Population annual growth rate (%) 2.4

Total Fertility Rate (per woman) 5.5
Adult literacy rate (%) 69

Table 7.7: Key Social Indicators
Data obtained from the World Health Organisation.

The fertility rate in Nigeria is high relative to other developing countries, for instance in
South Africa, the fertility rate per woman is 2.7, compared to 5.5 in Nigeria. Moreover, the
per-capita state expenditure on health in South Africa is US$157 compared to US$10 in Nigeria
as shown by the social indicators in table 7.7. The fertility rate is geographically variable within
Nigeria, with the North having a higher fertility rate per woman than the south. This variability
is also present between rural and urban areas.

In terms of education, Nigeria, despite having the second largest economic output in terms
of GDP, is ranked 18th in Africa, based on the adult literacy rate. Senegal is ranked first in this
category.
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At the current growth rate of the population, it is clear that the social system is in need of
drastic reform if the welfare of the Nigerian populace is to improve.

Total Expenditure on Health (% GDP) 4.1
Government Expenditure on Health (% Total Expenditure on Health) 30.5

Private Expenditure on Health (% Total Expenditure on Health) 69.9
General Government Expenditure on Health (% Total State Expenditure) 3.5

External Resources for health (% Total Health Expenditure) 5.6
Social Security Expenditure on Health (% Total State Health Expenditure) 0

Out-of-Pocket Expenditure (% Private Expenditure on Health) 90.4
Private Pre-paid Plans (% Private Expenditure on Health) 6.7

Table 7.8: Key Health Indicators
Data obtained from the World Health Organisation, based on 2005 records.

Technological Factors

In recent years, there has been a sharp growth in the use of mobile phone technology in Nigeria
(figure 7.11). This has evolved from simple phone-call only usage, to the adoption of data inten-
sive tasks such as, 3G web-browsing and Blackberry/general push-email technology. This has
seen the communications sector strengthen, with emergence of local mobile telecommunications
companies. Initially, the only companies involved in the market in Nigeria were South Africa’s
MTN and ECONET, and Nigeria’s fixed line operator NITEL. Since then, there are now six
locally operating mobile providers in the country, with Globacom Limited and MTel being the
only two indigenous companies in the sector.

To promote equitability in the use of mobile telephones, other companies offering cheaper
mobile telecommunications technology have sprung up. Multilinks Limited is a company
offering SIM-free CDMA mobile phones for a fixed price of US$10; this has led to a nationwide
adoption of mobile telephony.

The internet situation is increasing at a much slower rate, one reason for this being the
relatively low internet services available for residential purposes. Mobile telecommunications
companies have exploited the inefficiency and low prevalence of fixed-line telephony by provid-
ing 3G and GPRS internet packages for laptop and desktop users, although the rates charged
monthly for this service are much higher than broadband internet rates in Europe and America;
generally about US$68 per month for unlimited access. Fixed-line dial-up services are still being
provided at a much cheaper rate, although the bandwidth offered is below 28kb per second.
Broadband internet is becoming increasingly popular. This service uses satellite technology,
VSAT, mainly because the telephone lines cannot support the high-speeds which are character-
istic of broadband internet. This is the prevalent form of internet amongst business and other
corporate bodies. In all, there are over twenty companies providing internet in Nigeria; but the
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Mobile phone users per 100 inhabitants
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Figure 7.11: The growth in users of mobile phones in Nigeria.
The sharp rise from 2004 was as a result of huge drops in the prices of mobile phones and SIM

cards. The relatively poor quality of fixed-line telephony is also an aid to this rise.

low rate of adoption is predicated by poverty, implying an inequitable distribution of computers
across the nation. The Nigerian government has been involved in some of the schemes put in
place by international organisations to provide personal computers to children at an early age.
The government has invested in schemes such as One Laptop per Child (OLPC) and Intel’s
Classmate programme, with an aim to tackle computer illiteracy in Nigerians from a young age.

The banking sector, following their recent boom, have advanced sufficiently on the technology
front; allowing for much easier transactions with international banks. This change has resulted
in the emergence of automatic teller machines nationwide, provision of ‘plastic’ as a new means
of payment, and internet/mobile-telephone banking.

Network Readiness Index (rank) 3.45 (rank = 90/133)
Main Telephone lines per 100 inhabitants 0.7

Mobile phone subscribers per 100 12.9%
Cost of a 3-minute mobile phone call (US$) 0.22

Personal Computers per 1000 6.02%
Internet users per 1000 6%

Table 7.9: Technology Indicators

The network readiness index measures the propensity of a country to exploit the opportunities
offered by information and communications technology. It is a term developed by the World
Economic Forum, as a means to rank countries in terms of technological advancement. This and
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other technological indicators are presented in table 7.9.

7.6.3 Healthcare Industry Overview

The state of healthcare in Nigeria is beginning to recover from an all-time low, when in 2000 it
was ranked 187th out of the 191 member states of the WHO. The healthcare system, as in most
countries, is primarily the responsibility of the government; although private organisations still
play a major role in the system. Nigeria maintains three tiers of healthcare:

• Primary healthcare: This provides essential healthcare as a community-wide service, and
is mainly supplied by the local government and private health centres.

• Secondary healthcare: Handles referrals from the primary healthcare centres, normally
dealing with more specialised cases and emergency cases. This tier is provided by the state
government and private health institutions.

• Tertiary healthcare: Handles highly specialised treatments. This tier is provided by
specialist private hospitals and federal government teaching hospitals.

The Federal Ministry of Health is the arm of government which deals with affairs of health in
the country. The minister for health has pointed out that the primary healthcare sector currently
caters for 20% of its potential load due to a number of factors including loss of confidence by
its customers, inefficient facilities, and a lack of health management information systems. The
ministry has since put in place a National health investment plan aimed at improving health
infrastructure and providing suitable medical equipment to state-owned health institutions. At a
meeting of African leaders in 2001, all governments agreed a target of 15% of total government
allocations to the healthcare system; in order to achieve this, a number of instruments have
been set up. The National Health Insurance Scheme (NHIS) kicked-off properly in 2005, and
since then has achieved 60% coverage for government employees, which accounts for 30% of
Nigerians. A conditional grant scheme has also been put in place, funding private companies
willing to pursue healthcare development in rural areas.

The government, in a move towards wealth creation, has also endorsed public-private part-
nerships in the healthcare sector; they are mostly targeted at capacity-building schemes that aim
to provide measurable output.

The burden of disease as seen in Nigeria is predicated on the degree of poverty, therefore
special policies need to be put in place to target the population living in rural areas with poor
communication and transportation infrastructure. This has spawned several pro-poor schemes
giving free ante-natal, newborn and child healthcare services. This, in particular is aimed at
achieving the millennium development goal, which states a mortality rate of 74 per 100,000
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live births by 2015(this figure is currently 800 per 100,000 live births, one of the highest in the
world).

Public Healthcare

The public healthcare system constitutes the health institutions and health management organ-
isations (HMOs) funded solely by the government. In Nigeria, the three tiers of government
are:

• Local Government: Catering for the sub-state constituencies. These are usually small
communities, and each state could have about 20 such local government areas.

• State Government: On the state level; these are headed by the governor, and each state can
function independent of the Federal Government to an extent. Nigeria has 36 states.

• Federal Government: The top tier of government, which oversees the affairs of the entire
country.

As of 2008, there were over 9000 public health institutions in Nigeria with a majority run by
the local governments (figure 7.12).

Ownership of Public Healthcare Institutions in Nigeria (2008)
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Figure 7.12: Ownership distribution of public health institutions in Nigeria (2008)
Local governments run the majority of health institutions. Source: The National Bureau of

Statistics.

Public health bodies are fully funded by the government as part of the yearly budget. This
funding accounts for personnel, equipment, and all other logistical processes. There are 48
teaching hospitals nationwide, with 15 major teaching hospitals on the state-level. These
hospitals were targeted as vital to the state of health in the country, and the government pledged
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a revitalisation package which saw amongst other things, the acquisition of MRI scanners in 6 of
these teaching hospitals in 2005.

Private Healthcare

The private healthcare system in Nigeria consists of all health institutions and HMOs which are
neither funded nor controlled by the government. These exist as independent entities, and unlike
South Africa, there are no “super” institutions that have majority shares of the market. As of
2008, there were over 7000 of these institutions in operation in the country, among these are
several specialist institutions (figure 7.13).

A class of private healthcare institutions commonly known as non-government organisations
(NGO) also exists. These institutions do not necessarily fit into the three tiers of healthcare as
defined, but mostly engage in research activities tailored to the general health of the popula-
tion. Activities such as HIV/TB research and monitoring, and a lot of these organisations are
internationally funded.

Distribution of Hospitals in Nigeria by Sub-specialty (2008)
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Figure 7.13: Distribution of Hospitals in Nigeria by Sub-specialty (2008)
Clinics are still the most prevalent form of private health centres, although maternity hospitals

are the second most popular specialtist institutions.

Private health institutions in Nigeria are financially responsible for their personnel and
equipment, but they gain revenue through reimbursements by the NHIS and other private health
insurance schemes, as well as out-of-pocket fees paid by non-registered patients. In order to be
registered as a health provider in Nigeria, private institutions need to obtain a license to practice
from the state’s health board; this licence is renewed yearly to maintain standards and up-to-date
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records.

Figures 7.14 and 7.15 show the ratio of publicly owned to privately owned healthcare
institutions around the country.

Public and Private Health-centres in Nigeria

9365

7703

Public

Private

Figure 7.14: Distribution of Ownership of health establishments in Nigeria. Source: The National
Bureau of Statistics.

National Health Insurance Scheme

The NHIS is a body set up by the Federal Government of Nigeria to provide healthcare to the
general population in a cost-effective and efficient way, providing room for private healthcare
providers to earn revenue and compete in a healthy manner.

The NHIS act was passed in 1999, but it officially kicked off in 2005. The first phase of
operation was to cater for core civil servants, i.e. staff of public corporations, police, military
personnel and uniformed paramilitary personnel. To date, it has achieved 60% coverage of this
population sector.

The NHIS has since created several packages tailored to the various sectors of the economy.
For the organised private sector, it is a mandatory requirement that all participants contribute 15%
of their basic salaries to the scheme; 10% paid by the employer and the rest paid by the employee.
This covers registrants for out-patient care, diagnostic tests, drugs, maternity care, immunisation,
dental, and eye examinations. For the rural areas, the scheme works on a community basis,
whereby a group of at least 500 individuals come together and contribute a monthly flat-fee
according to healthcare requirements.

Health Management Organisations (HMOs) function as brokers in this system. Private and
public health institutions register with these bodies as healthcare providers, and a list is made
available to every registered patient member of the NHIS to choose their provider. This allows
healthy competition amongst providers, as reputation is the driving force behind client choices.
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Distribution of Hospitals in Nigeria by Region (2008)
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Figure 7.15: Distribution of hospitals in Nigeria by ownership
The north-centre region of Nigeria contains more public hospitals than any other region of the
country. This is also the region where the capital, Abuja is located (See map in figure 7.9). The

south-south region is the oil producing region of Nigeria. Source: The National Bureau of
Statistics.

The providers receive remunerations per head from the NHIS via the HMO; other services such
as prescriptions and diagnostic tests are classed as fee-for-service, and reimbursements are paid
for such services.

7.6.4 Medical Imaging Market

The X-Ray and CT imaging activities in Nigeria are regulated by Nigeria Nuclear Regulatory
Agency (NNRA). They require a registration fee of about US$450 a year for every X-Ray and
CT scanner in operation in the country. Importation of all medical equipment is regulated by the
National Agency for Food and Drug Administration and Control (NAFDAC). This is equivalent
to the Food and Drug Administration (FDA) in the United States.

Medical Imaging activities are spread across both private and public sectors. In the public
sector, it mainly takes the form of radiology departments in the general and teaching hospitals.
In the private sector, several hospitals and clinics run radiology departments, and operate through
referrals from public and other private institutions. Outpatient imaging centres do exist however,
and these operate strictly by referrals, offering general laboratory services as part of their product
portfolio.
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Revenue models for imaging centres in Nigeria

Of all the radiology models presented in section 7.5, the most prevalent forms of the business in
Nigeria are fully incorporated imaging centres, hospital-adjoined imaging centres, and outpatient
imaging centres. The sources of revenue for these practices are as follows:

• Fully incorporated imaging centres: An example of this model is seen in the National
hospital, Abuja and other teaching hospitals across the country. This is a government-
owned hospital, and so all its funding is provided by the state. This allows it to offer
services at a relatively lower price than private institutions. These institutions are also on
the NHIS list of registered health providers, and so receive fee-for-service reimbursements
for all diagnostic imaging performed. Services provided to non-NHIS patients warrant
out-of-pocket payments from these patients. Although normally these institutions would
only provide radiology services to their own patients, there are a lot of primary-care clinics
without these facilities, and so they frequently receive referrals for diagnostic imaging.

• Hospital-adjoined imaging centres: This model is prevalent in the private sector, mainly
among the bigger hospitals. Examples of this model can be seen in Kolstaf medical centre
and Zankli medical centre, both located in Abuja. These are primary-care providers that
also provide radiology and laboratory services. As accredited NHIS health providers, they
receive fee-for-service reimbursement for each scan performed. Due to the premature
stage of the NHIS, a bulk of revenue comes in from private health insurance companies
and out-of-patient payments by uninsured patients. In order to maximise capacity, such
institutions tend to actively seek referrals from other hospitals, as well as the national
hospitals (in times of equipment failure, etc).

• Outpatient imaging centres: An increasingly popular model in large cities in Nigeria.
Examples of such institutions are Union Diagnostic and Clinical Services in Lagos, and
Image Diagnostics in Port-Harcourt. These institutions operate a strictly referral-based
service, and their niche allows them to provide a wide range of imaging modalities. Their
revenue comes mainly in form of reimbursements from the referring institutions, because
they are able to make special arrangements for patient referrals. Outpatient imaging centres
located in cities with foreign companies and thus high expatriate population, normally
make arrangements with such companies to act as health providers for their employees,
hence receiving reimbursements from these firms.

7.6.5 Summary

Nigeria is categorised on most standards as a developing economy; with most of its income
generated from oil revenues, the government is actively pursuing diversification in the wake
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of falling oil prices. The government of Nigeria is now ten years into democracy, and already
improvements and stability are visible. The Federal ministry of health, which is the arm of
government responsible for healthcare, is aware of the developmental problems with the system
and is implementing policies to improve healthcare infrastructure within the country. Poverty is
the underlying problem crippling the market at the moment; preventing healthcare from being
efficient in the rural areas. There are now growing numbers of health insurance bodies, including
the NHIS, which is run by the government. These bodies are not only providing guaranteed
healthcare to participants across all income levels, but also provide health providers with a source
of income and an incentive to keep developing their services. The medical imaging market is
still growing in Nigeria, with all of the equipment being imported from outside Africa.

7.6.6 Data Sources

World Health Organization (WHO), United Nations (UN), International Monetary Fund (IMF),
World Bank, African Development Bank, Nigerian National Bureau of Statistics, Central Intelli-
gence Agency (CIA) factbook.

7.7 Summary

Medical imaging is defined as the techniques and processes used to create images of the human
body, and it is used in modern medicine as a means of diagnosing, monitoring and treating
diseases. The medical imaging modalities of interest in this study are x-ray, CT, ultrasound, MRI
and PET. Picture Archival and Communication Systems (PACS) are used to display and share
image data of patients; these were not discussed in this report due to time constraints.

Epidemiology studies on Nigeria as provided by WHO, show that the seven most burden-
some disease categories are infectious diseases, respiratory infections, unintentional injuries,
neuropsychiatric conditions, perinatal conditions and cardiovascular diseases. Studies show
that the imaging modalities presented here are efficient at diagnosing specific conditions from
each of these categories. The report shows that if all these conditions are to be targetted in
a cost-effective manner, a medical imaging centre would require x-ray, CT, and ultrasound.
Providing the scanners alone for these modalities would cost about US$2 million making a
capital-intensive enterprise, especially once building and running costs are factored in.

Medical imaging centres can be run as any of four different business models namely; tele-
radiology, outpatient, fully integrated, and hospital-adjoined. The most popular forms of the
business in Nigeria are the three latter models; the lack of tele-radiology practices may be due to
a shortage of modality equipment in the first place, or a general inefficiency of the underlying
communications infrastructure.
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The population of Nigeria is about 140 million, spread across thirty-six states. There is a
large income disparity between people living in the urban areas and those living in the rural areas,
this goes as far as to affect the quality of health available in both settings. The government of
Nigeria has been under democratic rule for ten years now, and growth in the economy is visible.
This has resulted in more funds being allocated to improving public healthcare, and making it
affordable to the low-income population. A national health insurance scheme is now in place,
along with other private health insurance schemes. These guarantee income for private medical
practitioners, with full reimbursements paid for radiology services performed.

As a result of the stability in the political environment and the improving economy, in-
ternational organisations like the International Finance Corporation (IFC), the World Health
Organization (WHO) and Africa Development Bank (AFDB) have provided finance for com-
mercial healthcare projects in Nigeria. The government is also engaging in PPPs to enhance
healthcare, especially in rural areas.

Most of the data used in this report was provided by international organisations. The
epidemiology data was provided by the World Health Organization by estimating national data
from data collected from few parts of the country. This data was used regardless, because there
is no such data available publicly from local sources, making it difficult to conduct such a study
from outside the country. This points to a desperate need for healthcare information records to
be held at a central location and made available for such research if the state of health is to be
improved.

In order to take this report closer to being a complete feasibility study from which implemen-
tation ideas can be derived, more information is required. Information concerning the modality
distribution across the country is not presented here due to difficulty in obtaining the data. Other
information regarding the average prices per scan have also not been presented, as this varies
across the country. Certainly, for this particular case, i.e. Nigeria, local data gathering has to be
performed.
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Chapter 8

Conclusions and Further Work

The technical reports in this thesis describe implemented solutions to all of the projects tasked
with over the course of the EngD programme. Each chapter presents the results obtained from
both the objective validation, using known experimental techniques and subjective evaluation
by clinical personnel. The layout of this thesis shows the evolution of atlas-based techniques
to match the problem at hand. The proposed methods show promising results with clear room
for improvement. Suggested avenues for improvement are outlined in the individual chapters.
This thesis demonstrates that atlas-based techniques are suitable for solving a range of clinical
segmentation problems.

This chapter presents the conclusions from each chapter, summarising the methods to show a
progression of the methods applied. The further work suggested in the chapters of this thesis
share common themes, and these are discussed at the end of the chapter.

8.1 Conclusions

Automatic Labelling of Coronary Arteries in 3D CT Images Chapter 2 describes a method
for labelling segmented coronary vessels in CCTA images. The method is a two-step process: 1)
knowledge-based assignment, whereby all plausible labelled trees are generated and 2) statistical
classification, whereby the most likely labelling is chosen based on closeness to parameters
modelled by a multivariate Gaussian classifier.

This was the first piece of work undertaken within the EngD programme, and as such the
concept of an atlas is less explicit. The atlas in this case is a syntactic model, representing the
topological and geometric relationships between arterial segments (see figure 8.1).

The method was validated against ground-truth on a set of CCTA datasets of varying coronary
anatomy. Further subjective validation was carried out by a radiologist, based on clinical
requirements. The algorithm was deemed useful due to high accuracy for proximal segments
of the major arteries, providing the user-interface allowed the user to validate and change the
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automatic labelling in bad cases.

Figure 8.1: Syntactic Atlas Used for Assigning Labels
Only combinations of labelled polyline trees conforming to this topology were generated and

assigned to the classifier for scoring.

Creation of a Coronary Artery Atlas to Guide the Tracking of Coronary Vessels The
work presented in chapter 3 demonstrates that an atlas, representing knowledge of the coronary
anatomy can be constructed using a registration strategy. The chapter presents one possible
means by which such an atlas can be applied to the output of a coronary vessel tracking algorithm
and improve its specificity by identifying and removing non-arterial vessels.

This was the first piece of work in the thesis to address anatomical variability within a group
using a structural atlas. A reference CT image was selected from a set, while manually segmented
arterial centrelines from the remaining images within the set were transformed to this reference
space following registration. An adaptive anisotropic smoothing step was included to mitigate
the impact of over-fitting caused by using limited number of training datasets (see figure 8.2).

Optimal Atlas Selection Using Image Similarities in a Trained Regression Model to Predict
Performance Chapter 4 presents a method for optimal atlas selection from a set of candidate
atlas images. The aim of a multi-atlas is to target variations in anatomy by building a set of
atlases representative of the variability in the training set. Atlas selection arises in two contexts;
firstly there is the offline selection of the datasets to include in the multi-atlas set; and secondly
during application to a novel image, the best fitting atlas from the set is selected.

Each atlas contains an image, a mask containing the labelled heart and a pair of linear
regression parameters (see figure 8.3). The latter parameters are obtained from a training set of
images by co-registering each pair of images and recording the resulting similarity measures and
Jaccard overlaps of the generated segmentation. The regression parameters represent a linear
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Figure 8.2: Addressing Anatomical Variability Using an Atlas of the Coronary Vasculature
The atlas was constructed by registering manually segmented coronary trees from 42 datasets

onto a reference dataset.

relationship between image cross correlation (an internal measure not requiring a mask) and the
Jaccard overlap of true and computed masks, thus the latter can be predicted from the former.

The optimal atlas from a set is selected following registration by measuring the cross-
correlation between each atlas image and the novel image and applying the respective linear
regression slopes and intercepts to predict the Jaccard overlap. The atlas image that predicts the
highest segmentation accuracy is selected.

Figure 8.3: Modality Specific Atlas
The atlas is a CT volume with a manually labelled mask of the whole heart.

The results demonstrate that a multi-atlas approach performs better on average than a single
atlas method, given the same registration method. This was tested on a set of cardiac CT images
with visible variations in the cardiac anatomy, and the multi-atlas set selected contained images
from each of the pre-identified categories. The next chapter applies this method to segmenting
the kidney and renal cortex from noisy CT data with positive results.
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A Combined Multi-Atlas and Unsupervised Classification Technique for Automatic Seg-
mentation of the Kidney and Renal Cortex in Low-Dose CT Data Chapter 5 describes
an atlas-based method of segmenting the kidneys and renal cortices from low-dose contrast
enhanced abdominal CT scans using a multi-atlas with the optimal atlas selection procedure
described in chapter 4.
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Figure 8.4: Benefits of Optimal Multi-Atlas Selection Strategy
The upper line shows the Jaccard overlap averaged over all validation data when selecting the

optimal atlases for each set size (equation 5.7), while the lower line shows the mean of the
Jaccard overlap averaged over all training data for all possible random selections of atlases

(equation 5.10).

Figure 8.4 demonstrates the advantage of using the optimal atlas selection approach; both at
the offline stages, where it is used to select a set of atlases to be used for registration, and during
the actual application, where it is used to select the best segmentation from a list of candidates.
This was the first piece of work in the thesis that incorporated multiple structures in the atlas, the
whole kidney and the renal cortex in this case (see figure 8.5).

Figure 8.5: Multi-Object Atlas
The atlas is still a CT volume (left), but in this case contains 2 labelled structures, the whole

kidney (middle) and the renal cortex (right).

This chapter discusses an unsupervised voxel-based classification as a post-processing step,
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using the expectation-maximisation (EM) algorithm to estimate the intensity distributions of
each structure. The results show an increase in accuracy for both structures gained due to the
post-processing.

Robust Segmentation using Atlas-Based Priors in the EM Algorithm Chapter 5 exposed
an important limitation to the post-processing step. The method relied on prior knowledge of
the relative intensities of the renal cortex and the medulla, therefore the intensity distributions
estimated by the EM algorithm were assigned to the respective structures following a specific
order. Chapter 6 describes a robust method for segmentation, which incorporates spatial infor-
mation from the atlas in the EM algorithm. The extra information allows the EM algorithm to
distinguish between different tissues with similar intensity distributions.

The versatility of this method is demonstrated by applying it to two different segmentation
applications. The first, kidney and renal cortex segmentation from low-dose abdominal CT data,
demonstrated the robustness of the algorithm by applying it to noisy data. The second, cardiac
sub-structure segmentation, uses the method to segment multiple structures within the heart with
no explicit encoding of anatomical prior information other than that provided by the atlas.

Both experiments demonstrate that there are advantages to be gained by incorporating
spatial priors in the EM algorithm. Experiments carried out on kidney segmentation produced
more accurate estimates of the distribution models, and this led to better segmentation of the
renal cortex. Due to difficulty in obtaining a suitable quantity of ground-truth for cardiac sub-
structures, only subjective validation was performed in the second case. In this scenario, the
various structures of interest shared similar intensity values, this led to random assignment of
classes to distributions with the naive EM implementation. Upon inclusion of spatial priors, the
correct assignment was made.

8.2 Further Work

Expansion of training and validation sets Each algorithm described in this thesis relies on a
training phase to either select an atlas (as in chapters 4, 5 and 6), or to train a statistical classifier
(as in chapters 2 and 3). In chapter 4 for instance, selection of an optimal multi-atlas set assumes
that all anatomical variations are present in the training set. Chapter 2 estimates per-class
covariance matrices of a set of features, the accuracy of this estimate is directly proportional to
the number of training data available.

Chapter 3 aims to create a statistical domain capable of providing information about coronary
anatomy of a population subset, but coronary anatomy is divided into three main circulation
patterns, namely left dominant, right dominant and balanced circulation anatomies. It is therefore
desirable to have an atlas for each circulation pattern, and this requires a lot more training data
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for each category to reduce over-fitting.
The datasets used in validation were drawn from a small number of institutions, biasing the

results towards several factors such as the scanning protocols used, ethnicity of the patients and
the predominant pathology at these institutions. The largest validation set in this thesis contained
42 datasets, others contained as few as 20 datasets. This paucity of validation data led to high
variance in the accuracy figures reported. Further work will be to evaluate these methods on a
wider variety of real world data.

Enrichment of class set Every chapter in this thesis attempts to solve a segmentation problem,
whereby voxels in the image are assigned a label from a pool of possible classes. The pool is
chosen as the set of classes relevant to the end-user, as a result several possible classes with
varying properties are bundled into one class. Examples are the LINSIG and RINSIG classes in
chapter 2, ‘non coronary artery’ vessels in chapter 3, and ‘background’ in chapters 5 and 6. This
creates feature distributions with falsely large variances, diminishing the overall quality of the
segmentation.

This effect can be reduced by identifying more classes in the training data; for example,
the background class in the heart segmentation in chapter 6 can be split further into auricles,
pulmonary veins, superior vena-cava and pulmonary artery. The aim is to arrive at classes
with homogeneous properties, implying tighter feature distributions and thence more accurate
classification.

Improved Alignment Atlas-based segmentation fundamentally relies on the automatic align-
ment of a novel image to the atlas. In this thesis, alignment is achieved using registration.

Chapters 5 and 6 discuss a method for refinement of the registration-based segmentation by
combining intensity information with the spatial priors provided by the registration. The warped
atlas masks, represented as binary images are smoothed by an isotropic Gaussian kernel to provide
a soft segmentation which aims to address any inaccuracies in the registration. This assumes the
error is evenly distributed across the structure; but this is not always true as demonstrated by the
over-segmentation errors at the apex-rib wall boundary of the heart in chapter 4, and hence the
use of a multi-atlas. This approach can be extended by pre-aligning several manually-segmented
masks to the atlas image and storing a probabilistic mask as part of each atlas. This mask
will provide the soft segmentation needed in a form possibly capable of addressing anatomical
variability at a more granular level especially in sub-structure segmentation.

Several publications reviewed in this thesis attempt multi-compartmental segmentation by
using local affine registration, whereby each sub-structure is registered independently, following
a global affine registration step. These publications have already demonstrated that this approach
produces a more accurate final alignment. Further work will be to incorporate a local rigid
registration phase in the multi-compartment heart segmentation.
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In chapter 5, the rapid initial search phase of the registration is a critical step, which aims
at placing the atlas at the centre of the kidney in the novel image as a starting point for full
multi-scale registration. The current implementation initialises a constrained powell search
at evenly spaced positions along the anterior-posterior axis at the centre of each half-volume.
Initialising these searches at points placed evenly within a 3-D grid about the centre of each
half-volume will be more robust to variations in the scan field of view.

Majority of the execution time of each algorithm discussed in the thesis is spent during
registration, thus any speed-up in registration will improve the usability of the algorithms,
particularly multi-atlas based approaches. The multi-atlas based approach described in chapters
4 and 5 perform sequential registrations of each atlas to the novel image. These registrations
are completely independent and should be performed in parallel, taking advantage of multi-core
processors to provide a speed-up.

Investigation of more powerful features for classification Classification of voxel data relies
on measurable features that best describe the properties of each label, therefore feature selection
is very important.

Chapter 2 uses 14 features to assign each arterial centreline to its anatomical label. These
features were chosen by observing the data and discerning the physical features that best
described each vessel type, but there were still several predominant misclassifications appearing
during the evaluation of the algorithm. One of these was the classification of an LD branch as an
LCX artery, specifically in cases where the left circumflex artery was absent. This source of error
may be diminished by using stronger positional features. The path followed by the vessel with
respect to the heart chambers, is an example. Such a feature will clearly distinguish between
these two vessel types in the absence of an LCX artery.

In chapters 5 and 6, the voxel intensity was the only feature used to classify the data in the
post-processing step. These features seemed to work well, and were also easily available from
the raw data. It would be worthwhile investigating texture-based features in multi-dimensional
analysis. In chapter 3, the direction and density features express useful information about the
coronary vessel centrelines, but the classification procedure used in this chapter did not exploit
both features simultaneously. Further work would be to combine these in a suitable framework,
for example, using a multivariate Gaussian approach.

8.3 Future Prospects

Each chapter of this thesis presents a list of further work that can be carried out to improve upon
the piece of work concerned, however each project presents atlas-based methods as applied to a
specific segmentation problem.
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All the work carried out in this thesis was performed on CT data, due to product requirements
at the time. A more complete solution will be geared towards a modality-agnostic atlas-based
segmentation product. Modality-agnostic implying that any created atlas can work in any
modality, and more desirable is an atlas image expunged of any modality-specific information.

Appropriate productisation of the entire atlas-based package is desirable. The culmination of
the years of research in atlas-based segmentation hints at a generic framework for atlas-based seg-
mentation, as indicated by its application to segmentation of multiple sub-anatomical structures
within the heart. Being able to build a single or multi-atlas of any set of anatomical structures
and use the created atlas to carry out segmentations in novel images without programmatic
intervention will be a valuable asset to clinicians and particularly clinical researchers.
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1
HIV/AIDS 257.56
Malaria 180.96
Measles 91.52
Tuberculosis 62.11

2
Lower respiratory infections 181.26

3
Cerebrovascular disease 57.84
Ischaemic heart disease 53.57

4
5

Low birth weight 31.88
6

Prostate cancer 11.36
Breast cancer 8.78

7
Chronic obstructive pulmonary disease 17.79

8
9

10
Cirrhosis of the liver 9.04

11
Nephritis and nephrosis 18.61

12
13
14
15
16
17
18
19
20
21

Figure A.1: Death-Rate Ranking in Nigeria
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1
HIV/AIDS 7614.27
Malaria 6505.25
Diarrhoeal diseases 3623.95
Measles 3206.64
Tuberculosis 1626.00

2
Lower respiratory infections 5980.13

3
4

Unipolar depressive disorders 635.15
5

Birth asphyxia and birth trauma 1284.43
6

Cerebrovascular disease 589.50
7
8

Cataracts 782.10
9

10
Protein-energy malnutrition 799.77

11
12

Cirrhosis of the liver 160.00
13

Breast cancer 109.67
Liver cancer 72.85

14
15
16
17
18
19
20
21

Figure A.2: DALY-Rate Ranking in Nigeria
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Infectious and
parasitic
diseases

Respiratory
infections

Maternal
conditions

Ultrasound Lung ultrasound
for early
detection of
pneumonia[1],
monitoring lung
disease[2]

Obstetric
ultrasound for
pregnancy
monitoring and
fetus imaging

MRI Pulmonary
imaging for lung
diseases[3]

Obstetric MRI[4]
provides high
resolution for
pelvic and foetal
imaging[5].

CT Chest CT less
popular than
x-rays for
tuberculosis.

Pulmonary CT
for diagnosis of
pneumonia[6].

Not popular due
to ionizing
radiation.

PET
X-Ray Chest x-ray for

tuberculosis
Chest x-ray for
pneumonia

Table A.1: Medical Imaging Modalities and the Burden of Disease in Nigeria
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Neuropsychiatric
conditions

Cardiovascular
diseases

Unintentional
Injuries

Ultrasound Detection of germinal
matrix haemorrhages in
neonatal brains[7]

Echocardiography for
diagnosis and prognosis
[8], myocardial contrast
echocardiography,
duplex ultrasound for
vascular imaging[7]

Trauma ultrasound for
detecting
haemorrhages in the
abdomen, pericardium
and pelvis[9].

MRI Brain imaging studies
are now increasingly
carried out with
functional MRI[10].
Spinal cord evaluation.

MRI angiography to
assess blood flow in
coronary arteries.
Assess progress of heart
disease, and measure
heart function.
Head/Neck MRI to
analyse carotid arteries.

MRI is excellent for
soft-tissue imaging, and
is used extensively in
musculoskeletal injuries

CT Brain imaging studies
are less sensitive in CT
than MR [10].

Brain CT for early
ischemic strokes; CT
angiography for
stenosis assessment in
coronaries. Chest CT to
evaluate heart function.
Head and neck CT[10].

Multi-detector CT
popular for spine
imaging and
musculoskeletal
imaging[11]. CT for
detecting brain
haemorrhage in head
trauma[12].

PET Functional brain
imaging carried out
with PET and PET/MR
to detect brain
abnormalities.

Functional imaging of
the heart with structural
info provided by CT.

X-Ray Detecting fractures and
muscle injuries.

Table A.2: Medical Imaging Modalities and the Burden of Disease in Nigeria continued
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Malignant neoplasms Perinatal Conditions
Ultrasound Breast cancer

detection/monitoring, low
frequency US for cysts and
tumours

Obstetric ultrasound.
Detection of germinal matrix
haemorrhages in neonatal
brains [7]

MRI MRI combined with PET for
oncology imaging. MRI
angiography to visualise
tumours. MRI becoming
increasingly popular for
mammography[13].

Obstetric MRI[4] provides
high resolution for foetal
imaging.

CT CT combined with PET to
provide structural information
in oncology imaging. CT
mammography for detecting
smaller tumours[14].
Visualisation of lung, liver
and lymph node lesions[15].

Not popular due to ionizing
radiation.

PET The most popular modality
for oncology imaging[16].

X-Ray Screening and diagnostic
breast mammography

Table A.3: Medical Imaging Modalities and the Burden of Disease in Nigeria
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