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Abstract

The integration of multiple and possibly heterogeneous information sources

for an overall decision-making process has been an open and unresolved research

direction in computing science since its very beginning. This thesis attempts

to address parts of that direction by proposing probabilistic data integration

algorithms for multiclass decisions where an observation of interest is assigned

to one of many categories based on a plurality of information channels.

Motivation for this thesis, from an application perspective, comes from the

Automatic Currency Validation setting where the problem is to automatically

classify currency notes, deposited in an Automated Teller Machine, to one of

multiple classes while utilising information from multiple sensors. The adopted

Bayesian probabilistic framework is motivated by the requirements for assessing

decision-making costs, formal inclusion of prior knowledge and principled model

selection. Requirements that are common across many fields, such as bioinfor-

matics and robotics, where multiple sources of information are available for a

multiclass classification decision.
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There is a single light of science,

and to brighten it anywhere is

to brighten it everywhere.

Isaak Asimov
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Notation

Symbols

RD Real D - dimensional space.

RDs The real Ds - dimensional space of information source s ∈ {1, . . . , S}.
RN×D Real N ×D - dimensional space.

N The set of natural numbers (positive integers).

x Scalar ∈ R.

x Column vector ∈ RD.

X Matrix ∈ RN×D.

x(s) Column vector x ∈ RDs from the sth information source.

wc The cth column vector of matrix1 W ∈ RN×C .

xα x raised to the α power.

x∗ An “unseen” or new x.

p(z) Probability density function (p.d.f) of z.

p(z|y) Conditional p.d.f of z given y.

p(z,y) Joint p.d.f of z and y.

z ∼ p(z) z is distributed according to p(z).

O (N) The computational complexity is order N operations.

Operators and functions

AT Transpose of matrix A.

A−1 Inverse of matrix A.

Tr [A] Trace of matrix A.

|A| Determinant of matrix A.

δi Dirac delta function (impulse function).

Ep(z) (z) Expectation of the random variable z wrt. p(z).

exp(·) Exponential function.

log(·) Naperian logarithmic function (ln).

min,max Extrema with respect to an integer value.

argmax
x

The argument x that maximizes the operand.

argmin
x

The argument x that minimizes the operand.

1To simplify the notation we denote wc as an equivalent to W1:N,c and as an N dimensional
column vector. That is, every vectorial representation will be denoted by lower-case bold (vice
versa) and if an index is not appearing we are referring to all of its possible values. All vectors
are column vectors.
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Standard probability distributions

Binomial Bk(n, p)
(
n
k

)
pk(1− p)n−k

Dirichlet Dx(ρ)
Γ(
PS
i=1 ρi)QS

i=1 Γ(ρi)

∏S
i=1 x

ρi−1
i with x,ρ ∈ RS

Exponential Ex(λ) λ exp(−λx)

Gamma Gx(α, β) βα

Γ(α)
xα−1 exp(−βx)

Gaussian Nx(µ,Σ) |2πΣ|−1/2 exp
(
−1

2
(x− µ)

T
Σ−1(x− µ)

)
with x,µ ∈ RN and Σ ∈ RN×N

Inverse Gamma IG(α, β) βα

Γ(α)
x−α−1 exp(−β/x)

Abbreviations

ANN Artificial Neural Network.

ARD Automatic Relevance Determination.

CDF Cumulative Distribution Function.

CPU Central Processing Unit.

EM Expectation Maximisation.

GLM Generalized Linear Model.

GP Gaussian Process.

i.i.d Independent and Identically Distributed.

IVM Informative Vector Machine.

KLD Kullback Leibler Divergence.

MAP Maximum A Posteriori.

MCMC Markov Chain Monte Carlo.

MH Metropolis Hastings.

MKL Multiple Kernel Learning.

ML Maximum Likelihood.

p.d.f Probability Density Function.

p.s.d Positive Semi-Definite.

QP Quadratic Programming.

RBF Radial Basis Function.

RVM Relevance Vector Machine.

SVM Support Vector Machine.

Terminology

x Input sample, input variable, predictor, regressor.

t,y Response, dependent variable, output, target, label.
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Chapter 1

Introduction

We are drowning in information and starving for knowledge.

–Rutherford D. Roger (former Yale librarian)

1.1 Learning from Multiple Sources

The longstanding need to extract and create knowledge from multiple uncertain

observations of a common underlying phenomenon becomes non-trivial in the

presence of multiple observers. This additional plurality motivates the urgent

requirement for effective inference procedures in the presence of multiple and

possibly heterogeneous information sources. The purpose of this thesis is to

investigate and propose probabilistic approaches towards that end, within the

context of Bayesian inference that permits plausible reasoning whilst handling

uncertainty in a principled manner.

The particular (machine) learning scenario under investigation is classifica-

tion, where the individual uncertain observations belong to a specific class within

the unobserved phenomenon. Learning takes place on the basis of a supervisory

process which provides initial examples of observations associated with a known

class. An intuitive, but inexact, analogy is the learning process that takes place

when parents teach their children to separate things by example. After learning

has taken place, a prediction for the class of a novel observation can be obtained.

Under the classification setting, an observation or object may be represented

by a set of characteristics that depend on its realisation within a specific informa-

tion channel and its class. In the presence of multiple such channels the evidence

is now multi-modal, in the sense of multiple modalities, as there are multiple sets

22
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of characteristics with unknown discriminatory quality and information content.

For an overall classification to take place that multi-modal evidence needs to

be integrated in a formal, appropriate way such that both the discriminatory

quality and the uncertainty associated with each channel is taken into account.

Until now, most approaches to learning under this scenario proposed to frag-

ment the sources and learn individual models with individual predictions later

combined in an ad-hoc post-processing manner. This leads to an exaggeration

of the problem, multiple model fitting procedures, and the inability to formally

infer the discriminatory strength of an information channel as the resulting indi-

vidual predictions are now model dependent. Furthermore, the integration now

occurs at the model level and not on the information source level loosing sig-

nificant generality and model independent knowledge regarding the information

channels.

The present work explores information integration close to the primal source

level and in the multiclass setting where an observation may belong to one of a

multitude of classes. Uncertainty is addressed through the adopted probabilistic

Bayesian framework and formally expressed in parameter distributions and class

predictions. Finally, this thesis proposes an overall probabilistic classification

machine able to efficiently tackle multiple information sources.

The motivating application of this thesis is Automatic Currency Validation

which describes the recognition and detection of counterfeit currency notes de-

posited in an Automated Teller Machine (ATM). The plurality of sensor modali-

ties, the need for assessing the costs associated with a classification decision and

the multiple currency note categories and conditions, motivate the requirement

for probabilistic multiclass multiple kernel learning.

1.2 Contributions

The original contribution of this thesis is the proposal and investigation of prob-

abilistic Bayesian approaches for multiclass classification with multiple sources

of information. This is reflected in the following specific contributions:

Patents

• He, C., Damoulas, T. and Girolami, M. A.: 2009, Self-service terminals.

USA Patent application, Serial number 11/899,381,
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http://www.faqs.org/patents/app/20090057395.

Refereed Journal Articles

• Damoulas, T. and Girolami, M. A.: 2008, Probabilistic multi-class multi-

kernel learning: On protein fold recognition and remote homology detec-

tion, Bioinformatics 24(10), 1264− 1270.

• Damoulas, T. and Girolami, M. A.: 2009a, Combining feature spaces for

classification, Pattern Recognition 42(11), 2671− 2683.

• Damoulas, T. and Girolami, M. A.: 2009c, Pattern recognition with a

Bayesian kernel combination machine, Pattern Recognition Letters 30(1),

46− 54.

• Psorakis, Y., Damoulas, T. and Girolami, M. A.: 2010, Multiclass rel-

evance vector machines: An evaluation of sparsity and accuracy, IEEE

Transactions on Neural Networks Under Review.

Book Chapters

• Damoulas, T. and Girolami, M. A.: 2009b, Combining information with

a Bayesian multi-class multi-kernel pattern recognition machine, in R. K.

De, D. P. Mandal and A. Ghosh (eds), Machine Interpretation of Patterns:

Image Analysis, Data Mining and Bioinformatics, World Scientific Press.

In Print.

Refereed Conference Articles

• Damoulas, T., Ying, Y., Girolami, M. A. and Campbel, C.: 2008, In-

ferring sparse kernel combinations and relevant vectors: An application

to sub-cellular localisation of proteins, IEEE, International Conference on

Machine Learning and Applications (ICMLA 08), pp. 577− 582.

• Ying, Y., Campbell, C., Damoulas, T. and Girolami, M. A.: 2009, Class

prediction from disparate biological data sources using a simple multi-class

multi-kernel algorithm, Pattern Recognition in Bioinformatics (PRIB 09),

pp. 427− 438
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Confidential Reports

• Damoulas, T.: 2006, Discriminative significance identification via Markov

chain Monte Carlo on generalised linear regression models, Confidential

Internal Report Rev. B. No. 002, NCR Labs.

• Damoulas, T.: 2008a, Feature selection of diverse signals for hierarchical

Bayesian kernel machine, Confidential Internal Report Rev. B. No. 008,

NCR Labs.

• Damoulas, T.: 2008b, Learning curve investigation for multinomial probit

classifier, Confidential Internal Report Rev. B. No. 007, NCR Labs.

• Damoulas, T.: 2009, Inferring sparse kernel combinations and relevance

vectors, Confidential Internal Report Rev. B. No. 010, NCR Labs.

Websites

• pMKL Website (University of Glasgow & NCR Labs):

http://www.dcs.gla.ac.uk/inference/pMKL

1.3 Thought Process

The present thesis is underlined by a thought process which has been motivated

by the aforementioned problem of learning from multiple sources and the in-

adequacies of past approaches. The starting point of this process follows the

argument that in the presence of multiple information channels it is best to in-

formatively fuse the sources instead of learning multiple (classification) models.

This is justified on the basis of economy of computation, possible memory and

processing restrictions, and theoretical basis. However, simply concatenating

the sources, or some dimensionally reduced representation of them, is problem-

atic as it does not allow us to learn their quality and fuse them accordingly.

Furthermore, such concatenation is inefficient when the dimensionality of the

sensory information is high and when the sources are heterogeneous.

From the above argument, the thesis progresses by transforming or embed-

ding the information from individual channels to a common metric, individually

constructed from each source, hence allowing for direct and informative fusion.
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The underlying thought process and motivation then leads us to consider how

this can be pursued within a probabilistic and multiclass framework. This gives

rise to the proposed methodologies and the focus is placed on reducing the

computational complexity, developing efficient algorithmic approaches and in-

vestigating the characteristics of multiple kernel learning.

1.4 Thesis Structure

Chapter 2 provides the necessary background and literature review for the the-

sis, emphasising the methodological motivation behind this work. Chapter 3

presents the first main contribution of this thesis by setting the framework for

probabilistic multiple kernel learning and proposing kernel combination rules and

Markov chain Monte Carlo inference procedures. Chapter 4 offers approximate

inference methodology based on the variational free energy minimisation princi-

ples and explores its efficiency with respect to full Bayesian inference. Chapter

5 proposes further deterministic approximations based on point-estimators and

generalises “The Relevance Vector Machine” to the multiclass and multiple ker-

nel learning setting.

The motivating application for this thesis is presented in Chapter 6 with

accompanied literature review and extensive experimental results on detecting

counterfeit currency notes of various currencies and denominations. Further

experimental results on large-scale bioinformatics and pattern recognition prob-

lems are reported in Chapter 7 with comparisons against classifier combination

approaches and other competing heuristics. A theoretical insight on multiple

kernel learning is offered in Chapter 8 with the decomposition of the ensemble

loss and the observed flat maximum effect. Furthermore, a Fisher information

maximisation approach for the linear regression case is proposed. Finally, Chap-

ter 9 concludes and discusses future research directions that emerge from this

thesis.



Chapter 2

Introduction to Multiple Kernel

Learning

One of the main goals in machine learning, statistics and their intersection is

to learn a relationship between input samples generated from a common under-

lying phenomenon and their responses which can be continuous or categorical

variables. Consider for example as input samples the height of pine trees and as

the response their corresponding age (regression) or their specific type (classifi-

cation).

When the available information includes only input samples with their at-

tributes and there is no dependent response variable, the problem reduces to

learning an intrinsic pattern or grouping of the samples and it is defined as un-

supervised learning. On the contrary, when a response variable (continuous or

discrete) is associated with every input sample then the problem is in the do-

main of supervised learning and the goal is to predict the response variable for a

novel input sample. Finally in between scenarios, where only part of the input

samples are associated with a known response variable, belong to the category of

semi-supervised learning where the goal is again to predict the response variable

for a novel sample while this time utilising partially labelled information.

In the supervised learning scenario the typical experimental design is that a

collection of past observations exists and it is used for model fitting and model

selection. This initial observed collection is known as the training set and it

contains all the information to be extracted by the learning algorithm. Any new

or held-out set of observations that might be used for future prediction of their

unknown response variables is known as the test set. It is worth noting that

27
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a significant assumption of stationarity has taken place; both the training and

any test samples are typically assumed independently and identically distributed

(i.i.d).

This thesis addresses the problem of integrating multiple sources of informa-

tion towards an overall classification decision and as such it is firmly within the

supervised learning area of research. The specific research question addressed

is how to efficiently classify input samples that have a multitude of attribute

(feature) sets, produced from possibly heterogeneous sources or sensors. As an

example consider classifying a deposited currency note in a bank as genuine or

counterfeit based on information from light sensors, acoustic sensors and transac-

tion history. Furthermore, this thesis investigates how the above question can be

addressed within a probabilistic framework which comes with additional learning

and decision-making benefits that are introduced in this Chapter together with

the specific supervised learning problem.

Due to the connection with continuous response problems and their accom-

modating nature for inference, the introduction starts from a simple linear re-

gression case and progresses through to classification, kernel methods, inference

and the necessary background knowledge that the reader might require. It is

not an exhaustive introduction to the supervised learning field as the material

reviewed is the work that this thesis builds upon and for a more general intro-

duction the reader is referred to Bishop (2006), MacKay (2003) or Denison et al.

(2002) for machine learning, information theoretic or statistics perspectives re-

spectively. It offers however a thorough introduction and review of the specific

multiple kernel learning problem and associated research work to date.

2.1 Linear Regression and Nonlinear Responses

Consider N input predictor variables X = (x1, . . . ,xN)
T

with xi ∈ RD where D

is the number of attributes or features. The relationship between the predictors

and the continuous response variables y = (y1, . . . , yN)
T

is the point of interest in

regression. Following the most common structural assumptions, this relationship

is typically1 assumed to be described by a deterministic function g and additional

random error component ε as:

1Not taking into account unobserved predictors known as random effects and assuming
existing predictor variables are observed without error (Denison et al. 2002).
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y = g (X) + ε (2.1)

The true deterministic function g is unobserved and hence it is approximated

by an estimating function f(X) whose nature determines the type (linear or

nonlinear) of regression employed. This problem-specific choice constitutes the

main modelling assumption at this stage and it is crucial for the successful

prediction of responses.

In linear regression the modelling assumption is that the functional relation-

ship between the input predictor variables and the response variables is linear

in the parameters. For a predictor x this implies

f(x) = w
T

h(x) (2.2)

where w are the parameters (regression coefficients) and h can be a linear or

nonlinear function of the inputs. In the simplest case where h is just the input

the relationship reduces to a hyper-plane:

f(x) = w
T

x + b (2.3)

with w ∈ RD and b the bias or intercept that makes the model translation

invariant. From hereafter we will assume the bias term is included in the inner

product w
T
h(x) by a simple augmentation of the attributes with a vector of

ones.

Another common setting, analysed in depth in Denison et al. (2002) and

Hastie et al. (2001), is to assume h as a set of k basis functions B = (B1, . . . , Bk)

e.g. splines as:

f(x) =
k∑
i=1

wiBi(x) (2.4)

where now w ∈ Rk. Such modelling assumptions induce nonlinear responses

via what is still a linear regression model, which for N input predictors and

responses can be expressed as:

y = Bw + ε (2.5)

where y = (y1, . . . , yN)
T
, ε = (ε1, . . . , εN)

T
and
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B =


B1(x1) · · · Bk(x1)

...
. . .

...

B1(xN) · · · Bk(xN)


Having introduced the setting for linear regression models we turn our at-

tention to the main learning or inference methods and justify the Bayesian

framework that is adopted in this thesis.

2.2 Learning and Bayesian Inference

The typical supervised learning experimental setting (Bishop 2006) consists of

having a training set {xi, yi}Ni=1 of N predictor and response variables that are

used to learn the parameters of the assumed model (model fitting). Assuming

that the input predictors are i.i.d generated from a phenomenon and the depen-

dent responses from a supervisory process, the goal of learning, as depicted in

Figure 2.1 is to approximate the supervisory process and predict response y∗ of

novel input sample x∗.

The learning process is driven by a loss function2 L(y, ŷ) between the esti-

mated response ŷ and the true response y which measures the deviation of the

prediction with respect to the true target (evidence). At this point, the specific

loss function and learning procedure deviates to two main schools of thought

inspired from different branches of statistics and mathematics.

2.2.1 Statistical Learning Theory

In the Statistical Learning Theory (SLT) paradigm (Vapnik 1998, Hastie et al.

2001), the emphasis is on (typically convex) optimisation with respect to specific

loss functions and penalising (regularisation) terms. As an example, the simple

linear regression case can be approached with the Mean Squared Error (MSE)

Loss:

1

N

N∑
i=1

|yi − ŷi|2 (2.6)

2The term loss function is used generically here and it includes likelihood distributions.
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Figure 2.1: The supervised learning setting.

whose minimisation with respect to the parameters w and the estimating func-

tion f(x) = w
T
x leads, see Hastie et al. (2001) for first and second order deriva-

tives, to the well known global minimum solution:

ŵOLS = (X
T

X)−1X
T

y (2.7)

The MSE loss results to the ordinary least-squares method by3 Gauss (1809)

and the optimisation implicitly leads to minimising the noise error
∑N

i=1 ε
2
i for

which we have made no assumptions so far.

To control over-fitting the estimating function to the target response (fitting

the noise), regularisation via a penalising term is employed within the SLT frame-

work4. In the linear regression case a typical regularisation is the squared-weight

penalty λ
2

∑D
d=1w

2
d which leads to the penalised least squares (PLS) solution:

3Also claimed by Adrien-Marie Legendre in 1805
4In later sections we also draw the connection between regularisation and sparsity of the

resulting solution.



CHAPTER 2. INTRODUCTION TO MULTIPLE KERNEL LEARNING 32

ŵPLS = (X
T

X + λI)−1X
T

y (2.8)

where the parameter λ controls the trade-off between the smoothness of the

function and the fit to the data.

Finally, having briefly described the training or learning phase for linear

regression with a linear function within the SLT framework, prediction can

be made based on the inferred parameters (from ordinary or penalised least

squares), the novel predictor and our estimating linear function as:

y∗ = ŵ
T

x∗ (2.9)

2.2.2 Towards Bayesian Inference

In this section we revisit the linear regression setting and introduce the ba-

sic concepts behind the Bayesian paradigm and the direct connections, e.g.

(Tipping 2004), to the least squares solutions of the SLT framework.

So far we have made no modelling assumptions regarding the noise com-

ponent ε which was implicitly minimised in the SLT case and could potentially

lead to over-fitting without regularisation. In the Bayesian setting a probabilistic

model over the noise component is placed which can be assumed to be normally

distributed with σ2 variance: ε ∼ N (0, σ2I).

This directly leads to a distribution over the responses, whose negative log-

arithm resembles a typical loss function, which is the likelihood of the linear

model m:

L = p(y|X,m) = N (f(X), σ2I) = N (Xw, σ2I) =
N∏
i=1

N (w
T

xi, σ
2) (2.10)

This important distribution expresses how likely it is for the model to re-

produce or generate the evidence y.

Maximisation of the likelihood is equivalent to minimising the negative log-

arithm:
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L = − log p(y|X,m) =
N

2
log(2πσ2) +

1

2σ2

N∑
i=1

{yn −w
T

xi}2 (2.11)

which leads to the maximum likelihood (ML) estimate for the parameters w that

is equivalent to the ordinary least squares estimate from Equation 2.7:

ŵML = argmax
w

(L) = ŵOLS (2.12)

and analogously for the noise variance:

σ̂ML = argmax
σ

(L) (2.13)

However now we have resulted again in a point estimate for the parameters5

and the response despite the initial placement of a distribution over the error

component. Furthermore the ML estimate is prone to over-fitting (Ripley 1996),

especially when the training size is small, as it is solely based on the data evi-

dence.

2.2.3 Bayesian Inference

In order to retain a truly probabilistic framework we must also place distributions

over the random variables before the model sees any evidence in the form of data.

Such distributions are called prior distributions and express our a priori beliefs

about the phenomenon we are trying to infer (as prior beliefs on the model

parameters imply prior beliefs for the phenomenon). In order to update these

prior beliefs to a posteriori beliefs, having seen the evidence, we need Bayes rule

which is the foundation of Bayesian inference:

Bayes Rule : P (A|B) =
P (B|A)P (A)

P (B)
(2.14)

where

• P (A) - The prior belief for A independent of B.

• P (B) - The prior belief for B independent of A. Also defined as the

5The variance of the estimate is available but has no contribution in the final prediction.
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marginal likelihood as it is equivalent with integrating out A from the

joint likelihood which is the numerator.

• P (B|A) - The conditional probability of B given A which corresponds6 to

the likelihood of A for known B.

• P (A|B) - The posterior belief for A after observing B.

Returning back to the linear regression framework we place a zero-mean

Gaussian prior distribution over the parameters or regression coefficients w:

p(w|α) =
D∏
j=1

( α
2π

)1/2

exp
{
−α

2
w2
j

}
(2.15)

where α is a common scale or inverse variance across dimensions and the prior

distribution expresses our prior belief that the evidence are generated from a

relatively smooth phenomenon and hence smaller weights are preferred a priori.

Following Bayes rule and recalling the likelihood function in Equation 2.10

we can now update our beliefs for the parameters w to the posterior distribution

(Tipping 2004):

p(w|y,X, α, σ2) =
p(y|X,w, σ2)p(w|α)

p(y|X, α, σ2)
= N (µ,Σ) (2.16)

where

µ =
(
X

T

X + σ2αI
)−1

X
T

y (2.17)

Σ = σ2(X
T

X + σ2αI)−1 (2.18)

Hence now we have a closed form solution for the posterior over the pa-

rameters due to the accommodating nature of linear regression where both the

likelihood and the prior can be described with Gaussian distributions that give

rise to a Gaussian posterior. This unfortunately will not always be the case and

we will have to resort to either sampling techniques or deterministic approxima-

tions that are described in later sections.

It is worth noting that the prior placed on the regression coefficients has an

analogous function to the regularisation component within the SLT framework.

6When P (B|A) is treated as a function of B given A it corresponds to a probability (dis-
tribution/density) function but when is treated as a function of A given B it is a likelihood
function.
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It places a bias for smooth estimating functions and hence ensures the model is

not over-fitting the data. We can further see the analogy between the approaches

by maximising over the posterior and examining the mode of that distribution:

ŵMAP = µ = ŵPLS (2.19)

assuming λ = σ2α. Thus the maximum a posteriori (MAP) solution is equivalent

to the PLS estimate and the parameter product σ2α has a similar function to λ

of penalising complex functions and avoiding over-fitting.

This analogy is only present when we restrict our probabilistic model to

resulting point estimates such as the ML or MAP solutions. In reality we have

a posterior distribution over the regression coefficients and we can make full use

of it through the Bayesian tool of marginalisation:

p(y∗|y,X, α, σ2) =

∫
p(y∗|w, σ2)p(w|y,X, α, σ2) dw (2.20)

where we see that our final predictive function is an average over the whole of

the regression coefficients posterior. In the case where integration cannot be

performed in closed form, the Monte Carlo estimate can be employed. The

above marginalisation provides another Bayesian benefit, that of explicitly tak-

ing into account the uncertainty for the parameters in the form of the posterior

distribution (if it is concentrated or diffuse).

Finally, it is worth noting that we can place further prior distributions on the

scales and the variance, propagating uncertainty into higher levels in the model

and becoming “truly” Bayesian by marginalising over all model parameters. In

some of these cases however we loose the benefit of having a closed form posterior

distribution as the joint posterior over all parameters can become intractable.

At this point, sampling or deterministic approximations become necessary for

Bayesian inference and we will review such strategies later in this Chapter.

The Bayesian framework will be adopted for the remainder of this thesis on

the basis of its advantages, most of which we have already seen. In a summary

these are:

• Prior beliefs - Explicitly incorporate prior knowledge regarding the prob-

lem under consideration via the prior distributions placed on the model

parameters. Bayesian inference is within the so-called subjective7 probabil-

7There is a great history and interesting controversy in statistics between “Bayesians” and
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ity theory field (Good 1983) and accommodates prior knowledge and also

prior non-informative “objective” beliefs with appropriate distributions.

• Probabilistic Responses - Instead of a single point response, a distri-

bution over responses is offered via the Bayesian framework. Therefore a

direct measure of the confidence of the model’s responses is offered which

is crucial for decision making in critical applications such as health infor-

matics or security.

• Marginalisation - Model parameters can be marginalised (integrated)

out, effectively averaging over all their possible values. Very useful and

informative quantities, as we shall see and employ later on, such as the

marginal likelihood are based on marginalisation.

• Uncertainty - Posterior distributions directly express the uncertainty over

model parameters which is taken directly into account via the process of

marginalisation. Uncertainty can be encoded and propagated into higher

levels of model hierarchy through the use of priors and hyper-priors (prior

distributions over parameters from lower level prior distributions).

• Formality - Bayesian inference is firmly based on probability theory and

the corresponding axioms of plausible reasoning (Jaynes 2003) providing

a systematic and formal way of dealing with uncertainty.

2.3 The Kernel Trick and Kernel Regression

So far in this thesis we have concentrated on linear regression and how to per-

form learning through the two mainstream approaches of SLT and Bayesian

inference, highlighting the probabilistic benefits of the latter. We have seen how

non-linearity between the input predictors and the responses can be achieved

through basis function expansions while retaining the appealing nature and

identifiability of linear models. In this section we take a step further into pos-

sibly nonlinear embeddings of the original features and introduce the concept

of kernel substitution, also known as the kernel trick, which has revolutionised

“Frequentists” on exactly the subjective nature of prior distributions. The interested reader
is directed to (Jaynes 2003) and (Edwards 1992) for the Bayesian and Frequentist perspective
respectively.
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the field during the last decade (Schölkopf and Smola 2002, Shawe-Taylor and

Cristianini 2004).

Consider the basis function expansion of the linear regression model in Equa-

tions 2.4 and 2.5 and generalise it to some possible nonlinear feature expansion

Φ ∈ RN×M with the ith row given by φ(xi)
T

:

y = Φw + ε (2.21)

The likelihood and prior follow from Equations 2.10 and 2.15 after substi-

tuting the expansion Φ. Disregarding the marginal likelihood which is a con-

stant term we can express the logarithm of the posterior8 as the sum of the

log-likelihood and log-prior:

log p(w|y,X, α, σ2) ∝ − 1

2σ2

N∑
i=1

{yi −w
T

φ(xi)}2 − α

2
w

T

w (2.22)

maximising with respect to w, setting to zero and solving for w we have:

w = − 1

ασ2

N∑
i=1

{yi −w
T

φ(xi)}φ(xi) = Φ
T

a (2.23)

where the vector a has elements ai = − 1
ασ2{yi − w

T
φ(xi)}. We can now re-

formulate the logarithm of the posterior with respect to the parameter a and

obtain:

log p(w|y,X, α, σ2) = − 1

2σ2
a

T

ΦΦ
T

ΦΦ
T

a +
1

σ2
aΦΦ

T

y − 1

2σ2
y

T

y − α

2
a

T

ΦΦ
T

a

(2.24)

and we can see that the feature expansion Φ appears only as an inner product

with itself. Hence this dual representation indicates that we actually only need

inner products of the feature expansion and not the actual feature expansion per

se. Defining the N×N Gram matrix K = ΦΦ
T

as a symmetric matrix of vector

inner products in an inner product space and setting the derivative to zero with

respect to a we obtain the dual solution:

8We could directly formulate the closed form posterior as in 2.16 but we will maximise over
it to introduce the dual formulation and the kernel trick.
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a = (K + ασ2I)−1y (2.25)

which, recalling Equation 2.9, leads to the prediction for a novel sample x∗ as:

y∗ = w
T

φ(x∗) = a
T

Φφ(x∗) = k(x∗)
T

(K + ασ2I)−1y (2.26)

where k(x∗) denotes a vector of N inner products between the training set

expansion Φ and the test sample expansion φ(x∗).

This transformation of the problem leads to two main observations. First,

that we do not need to explicitly construct a feature embedding Φ of the input

samples but we only need to define a valid function that directly describes the

inner product of some feature expansion. Secondly, the transformed regression

parameters of the dual formulation are N dimensional now as they operate on

the Gram matrix and they require an O (N3) inversion for estimation. This

appears initially disadvantageous as we were operating before on a space with

dimensions equal to the number of basis functions, which are typically less than

the number of samples, but it offers the advantage that implicitly now we can

employ a very high (infinite in some cases) dimensional embedding.

Definition 2.1: [Kernel function] (Shawe-Taylor and Cristianini 2004)

A kernel is a function k that for all xi,xj ∈ X satisfies

k(xi,xj) = 〈φ(xi),φ(xj)〉

where φ is a mapping from X to an (inner product) feature space F

φ : x 7→ φ(x) ∈ F.

From Definition 2.1 we can see that the Gram matrix K is the corresponding

kernel matrix and now we can employ any valid kernel function to implicitly

produce high dimensional embeddings. The main kernel property of interest at

this stage (see (Shawe-Taylor and Cristianini 2004) for a full treatment) is that

the resulting kernels are symmetric positive semi-definite matrices.

Definition 2.2: [Positive Semi-definite Matrix]

A symmetric matrix K is positive semi-definite if its eigenvalues are all non-negative.
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Some typical kernel functions k (xi,xj) = 〈φ(xi),φ(xj)〉 that are employed

in this thesis are summarised in Table 2.3:

Kernel Type Function Characteristics

Linear (Cosine)
(
x

T

i xj

)
Cosine follows by normalisation

Polynomial
(
x

T

i xj + 1
)n

Degree n

Gaussian (RBF) exp

(
−||xi − xj||2

2σ2

)
Infinite degree polynomial

Finally, revisiting the linear regression setting we can now reformulate it into

a kernel regression problem:

y = w
T

K + ε (2.27)

and as before we obtain a closed form Gaussian posterior distribution for the

regression coefficients as p(w|y,K, α, σ2) = N (µ,Σ) with parameters defined

with respect to the kernel matrix K as:

µ =
(
K

T

K + σ2αI
)−1

K
T

y (2.28)

Σ = σ2(K
T

K + σ2αI)−1 (2.29)

The kernel trick offers a powerful and efficient way of producing high di-

mensional data embeddings that capture non-linearities of the modelling phe-

nomenon and will be of especial interest to the classification setting that we visit

next.

2.4 Classification

In classification the target or response variables9 t are discrete real values asso-

ciating input samples xi to a single specific class c ∈ {1, . . . , C}. The encoding

for the target varies depending on the classification model employed and the

number of classes. For binary classification problems where there are only two

classes it is typically represented as tn ∈ {0, 1} or tn ∈ {−1,+1} whereas for

multinomial problems it is either tn ∈ {1, . . . , C} or follows a 1−of−C encoding

scheme.

9Denoted by t to distinguish from the regression case where responses were defined as y.
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The interest lies in the joint distribution p(t,X) and there are two main

categories of classification models depending on its decomposition:

p(t,X) = p(t|X)p(X) = p(X|t)p(t) (2.30)

Following the first decomposition, we end up directly modelling the quantity

of interest p(t|X) and such models are termed discriminative. In the second case

we model the class conditional density p(X|t) and employ Bayes’ rule to obtain

again the distribution of interest:

p(t|X) =
p(X|t)p(t)

p(X)
(2.31)

Such approaches are termed generative as we are able to generate samples

from the model’s class conditional distribution. There are qualitative differences

and merits for either approach (Duda et al. 2000, Bishop 2006) and in this

thesis we concentrate on discriminative approaches which avoid the drawbacks

of density estimation in high-dimensional spaces and directly model the quantity

of interest p(t|X).

2.4.1 Logistic and Probit Regression

The standard probabilistic discriminative classification approach is to turn the

output of a regression model into a class probability by the use of a sigmoid

function10. This constrains the continuous real value output [−∞,+∞] to the

range [0,1], satisfying the requirements for a probabilistic representation of class

membership.

For example, in the linear regression case the model becomes:

t = σ
(
w

T

h(x)
)

(2.32)

where the sigmoid function σ typically takes one of the following forms:

10Also known as an activation function or inverse link function.
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Type Function Case

Logistic σ(z) =
exp(z)

1 + exp(z)
Binary

Softmax σ(zc) =
exp(zc)∑C
i=1 exp(zi)

Multinomial

Probit Φ(z) =

∫ z

−∞
Nx(0, 1)dx Binary

These approaches belong to the family of Generalised Linear Models (GLMs)

(McCullagh and Nelder 1989) and are specifically known as logistic or probit

regression, according to the likelihood function employed11.

Considering now the general probabilistic classification framework with GLMs

we have the posterior for the parameters w:

p(w|t,X, α) =
p(t|X,w)p(w|α)∫
p(t|X,w)p(w|α)dw

(2.33)

where the likelihood p(t|X,w) is given by the specific choice of link function in

Table 2.4.1.

Unfortunately the posterior cannot be obtained in closed form, in contrast

with the accommodating nature of linear regression models, and hence exact

inference is not possible. This is a typical obstacle in Bayesian inference for

which approximate methods have been proposed and developed. In the next

sections we review exactly such approximate inference techniques that will allow

us to complete inference within the classification setting.

2.5 Markov Chain Monte Carlo

The first approximate inference scheme reviewed is the sampling approaches of

Markov chain Monte Carlo (MCMC) which becomes exact in the limit of infinite

samples. For an excellent practical introduction the reader is referred to Gelman

et al. (2004). The intuition behind MCMC is to address our inability of obtaining

closed form posterior distributions by instead drawing samples from them.

In most cases we are actually interested in calculating expectations with re-

spect to the posterior distribution, such as the class predictions in classification.

11The softmax is the generalisation of the logistic link function to the multiclass setting.
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Hence, assuming we can draw samples from the (joint) posterior of parameters12

θ, these expectations can be approximated via the Monte Carlo estimate:

E{f |t,X} =

∫
f(θ)p(θ|t,X)dθ ≈ f̃ =

1

L

L∑
l=1

f(θl) (2.34)

One important observation is that the variance of the Monte Carlo estimate

is given by:

var{f̃} =
1

L
E
{

(f − E{f})2} (2.35)

and hence the accuracy of the estimate is independent of the model’s dimension-

ality.

The major hurdle of sampling from the posterior distribution has not been

addressed so far and in the next section the four sampling approaches that will

be employed in this thesis are reviewed.

2.5.1 Importance Sampling

One of the most classical, and straightforward to implement, Monte Carlo esti-

mators for a function f(θ) with θ distributed as p(θ) is given by the importance

sampling approach that utilises an easy-to-sample from distribution q(θ) in the

following way:

Ep(θ) {f(θ)} =

∫
f(θ)p(θ)dθ =

∫
f(θ)

p(θ)

q(θ)
q(θ)dθ = Eq(θ) {w(θ)f(θ)}

(2.36)

where w(θ) =
p(θ)

q(θ)
is the importance weight.

The intuition behind this approach is to sample from the importance distri-

bution q(θ) which can be conveniently chosen as long as it offers good support for

the distribution of interest, and then to weight each sample with the associated

importance weight resulting in the following estimator:

12In order to express any model parameter and not only regression coefficients w, we denote
parameters with the generic notation θ. We assume the classification setting as an example
scenario with the parameter posterior of interest p(θ|t,X).
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f̃ =
1

L

L∑
l=1

w(θl)f (θl) (2.37)

In the (common) case (Andrieu 2003) where the distribution of interest p(θ)

is only available in its unnormalized form p∗(θ) then the importance weights are

modified to:

w(θl) =

p∗
(
θl
)

q (θl)
N∑
j=1

p∗ (θj)

q (θj)

(2.38)

Finally, the main dangers of importance sampling reside in the choice of

the importance distribution. Ideally it should offer support so that the tar-

get distribution is efficiently explored and it should satisfy the condition that

p(θ) > 0 ⇒ q(θ) > 0. The advantages of importance sampling are that it’s

easy to implement, it is parallelisable, and that it can be extended to sequential

inference. Due to the latter property it is the cornerstone of sequential Monte

Carlo (particle filters) techniques (Doucet et al. 2000) and the main approach

in dealing with covariate shift (Quiñonero-Candela et al. 2009) where the i.i.d

assumption is no longer valid.

In the next sections we introduce the Markov chain Monte Carlo techniques

that construct an ergodic Markov chain that converges to a stationary distribu-

tion that is the target distribution. The following definitions introduce the basic

concepts:

Definition 2.3: [First order Markov chain]

A first order Markov chain is a sequence of random variables θ1, θ2, ..., θn that for

any t ∈ {1, . . . , n} the distribution of θt given all previous values of θ is dependent

only on the previous value θt−1:

p(θt|θt−1, θt−2, . . . , θ1) = p(θt|θt−1)

Definition 2.4: [Ergodicity]

A Markov chain converges to a unique stationary distribution if it is irreducible,

aperiodic and not transient. Such a Markov chain is called ergodic.
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Where aperiodicity and non-transiency hold for a random walk on any proper

distribution (Gelman et al. 2004) and irreducibility dictates that there is a pos-

itive probability of reaching any state from any other state, in other words the

Markov chain can reach all states from any state within a finite sequence of

steps.

2.5.2 Metropolis Sampling

The first MCMC method considered is the Metropolis algorithm (Metropolis

et al. 1953) which employs a symmetric proposal distribution (also known as

transition or jump distribution) q(θt|θt−1) = q(θt−1|θt) and accepts or rejects

generated samples from that distribution based on the following criterion known

as the acceptance ratio:

R = min

{
1,

p∗(θ
t|t,X)

p∗(θt−1|t,X)

}
(2.39)

where p∗(θ|t,X) denotes the unnormalized parameter posterior which is equal

to the product of the likelihood with the prior over the parameters.

The procedure is to draw a random number from a uniform distribution on

the unit interval and if the number is smaller or equal to mathcalR the proposed

sample is accepted, else rejected. Hence the new state is given by:

θt =

{
θt with probability R
θt−1 otherwise

(2.40)

2.5.3 Metropolis-Hastings Sampling

The straightforward generalisation of the Metropolis scheme to handle asymmet-

ric proposal distributions is known as the Metropolis-Hastings (MH) method.

The only significant difference is that the distribution q(θ) is asymmetric: q(θt|θt−1) 6=
q(θt−1|θt) and hence it is included in the acceptance ratio as:

R = min

{
1,

p∗(θ
t|t,X)q(θt−1|θt)

p∗(θt−1|t,X)q(θt|θt−1)

}
(2.41)

Both the Metropolis and the Metropolis-Hastings MCMC methods have been

proved (Hastings 1970) to converge to a stationary distribution that is the target

distribution (p(θ|t,X) here).
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The main drawback of Metropolis based MCMC methods is the need to

tune the proposal distribution in order to retain an acceptance ratio between

15 − 40% (depending on the nature of the parameter sampling scheme) which

is the recommended level to efficiently reach convergence (Gelman et al. 2004).

Adaptive proposal distributions are usually employed that take into account the

covariance structure of the posterior through initial exploratory samples that

are later discarded (Burn-in period). In general, the engineering requirements of

such methods make them less practical although more efficient sampling schemes

based on gradient information through the Fisher information matrix are a major

research topic (Girolami et al. 2009) and a promising direction.

2.5.4 Gibbs Sampling

The final MCMC approach reviewed is the Gibbs sampler (Geman and Geman

1984, Tanner and Wong 1987) also known as alternating conditional sampling

(Andrieu 2003, Gelman et al. 2004) which can be seen as a special case of the

Metropolis-Hastings method. The intuition behind it is to decompose the (un-

obtainable in closed form) posterior distribution of interest into conditional pos-

terior distributions that are easy to sample from. Consider a parameter vector θ

and the sought after posterior distribution p(θ|t,X). If we decompose the joint

posterior to conditional posterior distributions of the form:

p(θti |θt−1
−i , t,X) (2.42)

then iteratively sampling from these conditional distributions leads to sampling

from the target joint posterior distribution. The notation θt−1
−i denotes all the

elements of θ except the ith one, from the current (t− 1) sample.

This principle can be extended to sampling block variables where the joint

posterior can be decomposed to blocks of parameter sets (i.e. regression co-

efficients w and scales α in GLMs) whose conditional posterior distributions

are easy to sample from. Such a block-wise Gibbs sampling approach will be

employed in this thesis.

The advantage of Gibbs sampling is that no proposal distribution is necessary.

It can be seen as a sub-case of MH sampling with an acceptance ratio equal to

one, see e.g. Gelman et al. (2004) for proof, and this alleviates the need for tuning

acceptance ratios and adapting proposal distributions for efficient exploration of
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the stationary distribution. Further advantages of Gibbs sampling are discussed

in Chapter 3. The main drawback is that it can lead to correlated posterior

samples due to the coupling between the conditional posterior distributions.

Finally all of the MCMC methodology is computationally demanding due

to the inherent sampling nature of the methods which might require anything

from a few thousands to hundreds of thousands samples for convergence to the

stationary distribution. A very important aspect for these methods is assessing

and monitoring convergence which is described in detail in Chapter 3 together

with the appropriate measures that are typically (Gelman et al. 2004) employed.

2.6 Deterministic Approximations

In this section further approximate Bayesian inference methods are introduced:

the saddle-point or Laplace approximation and the variational Bayes method-

ology. Both approximations are deterministic in contrast with MCMC which

stochastically explores the posterior space. The need for further approxima-

tions stems from the large computational requirements of MCMC methods that

restricts their widespread application.

2.6.1 Saddle-point (Laplace) Approximation

In the previous section we went into the full length of the Bayesian problem and

constructed samplers in order to sample our posterior distribution. An alter-

native way, which is perhaps the most straightforward, is to directly assume a

specific functional form for the posterior distribution and approximate it. The

saddle-point or Laplace’s method (Duda et al. 2000, MacKay 2003) directly ap-

proximates the posterior with a Gaussian distribution which in the classification

setting of interest follows as:

p (w|t,X, α) ≈ N(ŵMAP,Σ)

where the mean ŵMAP is the maximum a posteriori estimate that we have

introduced before and Σ is the curvature of the posterior at the maximum value.

The general intuition behind the saddle-point approximation is that we ap-

proximate an unnormalized distribution f∗(θ) by a Gaussian distribution based

on the knowledge that the logarithm of a Gaussian distribution is a quadratic



CHAPTER 2. INTRODUCTION TO MULTIPLE KERNEL LEARNING 47

function of the variables. Hence we want to express the logarithm of f∗(θ) in

a quadratic form and then form back the Gaussian of interest. To do that we

Taylor expand log f∗(θ) around its mode θ̂:

log f∗(θ) ≈ log f∗(θ̂)−
c

2
(θ − θ̂)2 (2.43)

where c = − ∂2

∂θ2
log f∗(θ)

∣∣∣∣∣
θ=θ̂

and by taking the exponential we form the unnor-

malized Gaussian:

f∗(θ) ≈ f∗(θ̂) exp
{
− c

2
(θ − θ̂)2

}
(2.44)

which considering the standard form of the normalising constant leads to the

final saddle point approximation:

q(θ) =
( c

2π

)1/2

exp
{
− c

2
(θ − θ̂)2

}
(2.45)

It might seem that we ended up were we started since we are expressing

our approximation for the posterior based on parameters calculated from the

posterior, but considering that Bayes rule gives us (since the marginal likelihood

is a normalising term):

Posterior =
Likelihood× Prior

Marginal Likelihood
∝ (Likelihood× Prior) = Joint Likelihood

(2.46)

we can calculate wMAP and Σ (in analogy to x̂ and c) for the maximum of

the logarithm of the joint likelihood instead (in analogy to log f∗(x)). Hence, we

need the first and second derivatives of the (log) joint likelihood.

However, employing the typical sigmoid function for our likelihood in clas-

sification leads to a first derivative L which is a function of w and of nonlinear

terms of w. That implies that by setting it to zero we cannot retrieve its value

explicitly. Instead we can use the Newton optimisation routine13 which gives:

wi+1 ←− wi −
(

∂2L

∂w∂wT

)−1
∂L

∂w
(2.47)

Hence, since the covariance matrix Σ is also a function of derivatives of the

logarithm of the joint likelihood :

13Or other suitable optimisation methods.
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Σ = −
(

∂2L

∂w∂wT

)−1

(2.48)

we only need now to calculate the first and second derivatives of the logarithm

of the joint likelihood for each case. In the following subsections we derive the

Laplace approximation for some common classifiers employing the likelihood

functions introduced in Section 2.4.1.

Binary Logistic Regression

For the logistic binary case and an expanded feature space φn = φ(xn) ∈ RM

we have the joint likelihood as:

p(t,w|X, α) =
N∏
n=1

exp(wTφn)tn

1 + exp(wTφn)
Nw

(
0, α−1I

)
(2.49)

where tn ∈ {0, 1}, and the logarithm of the joint likelihood is:

L =
N∑
n=1

(
tnw

T

φn − log
(

1 + exp
(
w

T

φn

)))
− α

2
w

T

w − M

2
log

(
2π

α

)
(2.50)

resulting in the following derivatives:

∂L

∂w
= Φ

T

t−Φ
T

p− αw (2.51)

∂2L

∂w∂wT = −Φ
T

VΦ− αI (2.52)

where p = [P (t1 = 1|x1), · · · , P (tn = 1|xn), · · · , P (tN = 1|xN)]
T

is a N × 1

vector, Φ is a N ×M matrix defined as:

Φ =


φ1(x1) ... φM(x1)

. .

. φm(xn) .

. .

φ1(xN) ... φM(xN)


and V is a diagonal N ×N matrix with the non-zero diagonal elements defined

as [v11, · · · , vnn, · · · , vNN ]
T

where each vnn = P (tn = 1|xn)(1− P (tn = 1|xn)).
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Multinomial Logistic Regression

The extension of the binary logistic case to the multinomial softmax case follows

analogously for c = 1, .., C classes where the joint likelihood is given by :

p(t,w1, ...,wC |X, α) =
N∏
n=1

C∏
c=1

 exp
(
w

T

cφn

)
∑

c′ exp
(
w

T

c′φn
)
tcn Nwc

(
0, α−1I

)
(2.53)

tn follows now a 1− of − C encoding as a C × 1 vector in which every element

is zero, when the specific instance n does not belong to a specific class c, and

one when it does. The logarithm of the joint likelihood is given by:

L =
N∑
n=1

K∑
c=1

[
tcnw

T

cφn − log
∑
c′

exp
(
w

T

c′φn

)]
−M

2
log

(
2π

α

)
− α

2
w

T

cwc (2.54)

Taking derivatives with respect to wc :

∂L

∂wc

=
N∑
n=1

tcnφn −
exp

(
w

T

cφn

)
∑

c′ exp
(
w

T

c′φn
)φn − αwc

=
N∑
n=1

(tcn − P (tcn = 1|xn))φn − αwc (2.55)

Now considering the second order derivatives for the Hessian14 matrix:

∂2L

∂wc∂wT

c

=
N∑
n=1

P (tcn = 1|xn) [P (tcn = 1|xn)− 1]φnφ
T

n − α (2.56)

∂2L

∂wc∂w
T

d

=
N∑
n=1

P (tcn = 1|xn)P (tdn = 1|xn)φnφ
T

n (2.57)

Hence the Hessian matrix is an MC ×MC symmetric matrix. Let Π be an

NC ×N block-matrix with diagonal matrices Pc of class likelihoods:

14Hessian is the square matrix with elements given by the second order partial derivatives
of a function
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Π =



P1

...

Pc
...

PC


where the diagonal elements of Pc are:

[P (tc1 = 1|x1), · · · , P (tcn = 1|xn), · · · , P (tcN = 1|xN)]
T

Then, if we also define a Ψ matrix to be an NC×MC diagonal block-matrix

with the matrix Φ (N ×M) repeated C times:

Ψ =

 Φ

Φ

Φ

 where Φ =



φ
T

1
...

φ
T

n
...

φ
T

N


we can write in matrix format the derivatives as:

∂2L

∂w∂wT = Ψ
T
(
ΠΠ

T −Λ
)

Ψ− αI (2.58)

∂L

∂w
= Ψ

T (
t† − ξ

)
− αw† (2.59)

(2.60)

where Λ is a diagonal block instantiation of Π, i.e an NC ×NC matrix, and ξ

is the diagonal of Λ, i.e a NC× 1 column vector that contains the concatenated

diagonal elements of Pc ∀ c ∈ {1, · · · , C}. Finally, t† and w† denote the target

labels in a NC × 1 and MC × 1 column vector format in C stacks of N .

Binary Probit Regression

Again following the same approach, now with the binary probit sigmoid function

and assuming a linear model w
T
xn, the joint likelihood is given by:
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p(t,w|X, α) =
N∏
n=1

P (tn|xn,w)Nw

(
0, α−1I

)
(2.61)

and the probit likelihood for a tn ∈ {−1, 1} encoding is defined as Φ
(
tnw

T
xn

)
,

where Φ the Gaussian CDF, leading to the logarithm of the joint likelihood:

L =
N∑
n=1

{
log Φ

(
snw

T

xn

)}
− M

2
log

(
2π

α

)
− α

2
w

T

w (2.62)

Taking the first-order derivative:

∂L

∂w
=

N∑
n=1

N
(
tnw

T
xn|0, 1

)
tnxn

Φ
(
tnw

Txn
) − αw (2.63)

which can be written in matrix format as:

∂L

∂w
= t

T

ΛX− αw (2.64)

with X the N×D design matrix and Λ the N×N diagonal matrix with non-zero

elements [ψ1, · · · , ψn, · · · , ψN ]
T

where ψn:

ψn =
N
(
tnw

T
xn|0, 1

)
Φ
(
tnw

Txn
) (2.65)

The second order derivatives, using the notation yn = tnw
T
xn, are then given

by:

∂2L

∂wi∂wi
= −

N∑
n=1

ψ2
nx

2
ni −

N∑
n=1

ψnx
2
niyn − α (2.66)

∂2L

∂wi∂wj
= −

N∑
n=1

ψ2
nxnixnj −

N∑
n=1

ψnxnixnjyn (2.67)

Hence, now we can form the Hessian matrix as:

X
T

VX− αI (2.68)

where V a N × N diagonal matrix with non-zero elements vn = −ψn(ψn +

tnw
T
xn)
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2.6.2 Variational Free Energy Minimisation

The Gaussian assumption of the saddle-point approximation is strong and in

some cases significantly violated leading to poor estimates for regression and

classification when the true posterior deviates from normality and log-concavity.

Furthermore, the Laplace framework is derived on the basis of a point estimate

(the mode) of the function and hence may ignore important global characteristics

(Bishop 2006).

In this section we briefly review a further deterministic approach, variational

free energy minimisation, which adopts a global perspective on the approxima-

tion of an intractable (posterior) distribution and avoids the basis dependence

from which MAP and saddle-point approximations suffer15. Variational meth-

ods are defined as approximations (MacKay 2003) only due to the restriction of

proposed functions to belong within a certain family (e.g. Gaussian (Opper and

Archambeau 2009)) or to satisfy a structural assumption (mean field ensembles)

as we shall see in Chapter 4. The resulting approximations tend to be more com-

pact than the true distribution (MacKay 2003, Damoulas and Girolami 2009a)

as they typically underestimate the covariance structure.

The intuition behind variational free energy minimisation is simple. Assume

the distribution of interest is P (x|β) = 1
Z
P∗(x|β) where Z is the normalising

constant (partition function) that is unobtainable and we can only obtain the

unnormalized P∗(x|β) parameterised by β. The variational framework proposes

an approximating distribution Q(x, θ) parameterised by θ and minimises the

relative entropy (non-symmetric measure) between P and Q via adjusting16 θ.

The relative entropy is given by the Kullback-Leibler divergence:

Relative Entropy = DKL (Q(x, θ)||P (x|β)) (2.69)

noting that the KL divergence satisfies Gibbs’ inequality DKL (Q||P ) ≥ 0 and

that is not a metric due to the asymmetry:

DKL (P ||Q) 6= DKL (Q||P ) (2.70)

15Despite this, it has been observed by MacKay (2001) that variational methods might not
always perform better than ML or MAP point estimators due to model “pruning” of degrees
of freedom (symmetry breaking).

16The parameter θ here is used generically as it can represent different functional forms or
parameterisations within a specific family of functions or even different structural assumptions
(i.e. factorised ensembles).
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the relative entropy of interest is given by:

DKL (Q(x, θ)||P (x|β)) =

∫
Q(x, θ) log

Q(x, θ)

P (x|β)
dx (2.71)

which can be decomposed to the following terms:

DKL (Q(x, θ)||P (x|β)) =

∫
Q(x, θ) log

Q(x, θ)

P∗(x|β)
dx︸ ︷︷ ︸

Variational Free Energy

− log
1

Z︸ ︷︷ ︸
Free Energy

(2.72)

Hence, considering Gibb’s inequality we can see that the variational free

energy is an upper bound on the true free energy. The bound is minimised by

minimising the variational free energy with appropriate θ, and it is zero for the

obvious solution of Q(x, θ) = P (x|β). Hence, minimising the variational free

energy is equivalent to maximising a lower bound on the normalising constant

Z. The variational free energy can be further decomposed as follows:

∫
Q(x, θ) log

Q(x, θ)

P∗(x|β)
dx︸ ︷︷ ︸

Variational Free Energy

=

∫
Q(x, θ)P∗(x|β)︸ ︷︷ ︸
EQ{P∗(x|β)}

−
∫
Q(x, θ) log

1

Q(x, θ)︸ ︷︷ ︸
Entropy

(2.73)

where the first term is the expected value of the unnormalized density under the

approximating distribution and the second term is the entropy of the approxi-

mating distribution Q.

In the Bayesian setting the unnormalized distribution of interest is the pos-

terior distribution for which the normalising constant is the marginal likelihood

(Baye’s rule). Hence, the variational Bayes approaches follow the variational

free energy minimisation principle and lower bound Z which corresponds to the

marginal likelihood, also termed as model evidence (MacKay 1992b).

So far, no assumptions were introduced regarding the functional form, family

or nature of the approximating distributionsQ. In Chapter 4, where a variational

Bayes approximation is employed for the problem addressed in this thesis, we

will introduce the specific adoption of the variational method within the mean

field framework where a specific factorised assumption on the approximating

densities Q is employed.
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2.7 Sparsity and Shrinkage methods

In the previous sections we reviewed approaches for regression and classification

where the resulting model utilises the entire training set of past observations and

attributes (denoted by the design matrix X, the feature expansion φ (X) or the

kernel matrix K) for predicting novel responses. In many cases this is unfeasible

and undesirable, due to memory and computing restrictions, and in this section

sparse approaches that utilise a subset of observations and/or attributes are

introduced.

The main reasons for aiming at sparse solutions are:

• Scalability - Methods that utilise the whole training set become computa-

tionally unfeasible for large data collections (either in number of attributes

D or number of samples N). Kernel-based methods that are governed by

an O (N3) complexity, require sparse solutions to scale up for large appli-

cation scenarios.

• Interpretation - Identifying the significant samples or attributes for the

prediction task at hand can be crucial in some application areas such as

bioinformatics, medical informatics and all cases where information and in-

tuition about the problem’s characteristics are more important than just a

prediction output. The context in which a sample or attribute is judged as

significant for the prediction task can be statistical, e.g. marginal likelihood

(Tipping 1999, Damoulas et al. 2008) or predictive likelihood (Lawrence

et al. 2003, Girolami and Rogers 2006), information theoretic, e.g. in-

formation gain (MacKay 1992a), or geometric, e.g. decision boundary

construction (Vapnik and Chervonenkis 1964, Vapnik 1995).

• Prediction Accuracy - Sparse models can improve the prediction accu-

racy on a problem as they sacrifice bias (how well the model describes the

specific training set of the phenomenon) in order to reduce variance (how

much the resulting model will vary when trained on a different training set

of the same phenomenon). This is achieved by obtaining a sparse solution

that is based on a subset of informative observations or attributes and

hence less likely to fit the noise.

In the following subsections a brief review of the main sparsity and shrinkage

methods is offered together with the corresponding advantages and limitations.
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2.7.1 Ridge Regression and the Lasso

In statistical learning theory sparsity is achieved via appropriate regularisation

and different linear regression approaches have been developed according to the

specific penalising term used. Ridge Regression (Hastie et al. 2001) adds to the

OLS estimate a quadratic penalising term and hence it effectively minimises:

N∑
i=1

(
yi −w

T

xi

)2

+ λ

D∑
d=1

w2
d (2.74)

while the Lasso (Tibshirani 1996) employs a different nonlinear penalty term

(L1 norm) and minimises:

N∑
i=1

(
yi −w

T

xi

)2

+ λ
D∑
d=1

|wd| (2.75)

The subtle differences in the penalising terms have a significant effect on

the resulting estimates and obtained sparsity. The Lasso has better interpreta-

tion properties as it completely shrinks regression coefficients to zero and trans-

lates others (Tibshirani 1996), in contrast with ridge regression whose quadratic

penalty term only scales all of the coefficients by a constant factor.

Both approaches use the same amount of shrinkage for each regression coef-

ficient, as there is a global factor λ, and hence (coefficient) selection results can

be inconsistent. Towards that direction, recent work by Zou (2006) proposed

the adaptive Lasso, an extension that utilises individual shrinkage levels for each

coefficient:

N∑
i=1

(
yi −w

T

xi

)2

+
D∑
d=1

λd|wd| (2.76)

The shrinkage levels are generally estimated through cross-validation (multi-

ple partitions of the dataset to training and test sets) or an analytical unbiased

estimate of risk (Tibshirani 1996, Berger 1985). For further theoretical analysis,

convergence guarantees and direct connections to the standard penalised least

squares estimator see Zou (2006), Wang and Leng (2007) and references within.
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2.7.2 Sparsity in Kernel Methods

The previous section reviewed standard sparse methods on linear models with

a linear estimating function. The same analysis directly applies to basis func-

tion or other feature expansions for obtaining nonlinear responses. However,

the induced shrinkage from the penalty terms is with respect to the regression

coefficients and acts on the features of each input sample and not on the size of

the training set. Hence any sparsity is on the dimensionality of the regressors

and identifies significant and non-significant attributes based on the MSE loss

function.

In the kernel setting, similar penalising constraints on the regression coeffi-

cients results in sample-wise sparsity, i.e. a kernel-based Lasso (Roth 2004) that

will identify significant and non-significant training samples instead of attributes.

The general kernel-based lasso function to be minimised is:

N∑
i=1

(
yi −w

T

ki

)2

+ λ
N∑
i=1

|wi| (2.77)

where now the regression coefficients w ∈ RN operate on the kernel matrix and

the shrinkage effectively prunes out training samples.

One other prominent sparse kernel method is the Support Vector Machine

(SVM) (Vapnik 1995) which is a geometric method that maximises the smallest

distance between the decision boundary and the closest samples (margin). This

results in a penalising term on the regression coefficients 1
2
||w||2 which is the L2

norm. The resulting sparse solutions from SVMs retain only training samples

that are close to the decision boundary, due to the initial assumptions of the

model, and are termed as support vectors as they are responsible for defining or

“supporting” the boundary.

SVMs have the drawback of not producing probabilistic outputs as they are

“decision” machines (Bishop 2006) and the resulting sparsity levels are moderate

when compared to other alternative sparse kernel methods such as the Relevance

Vector Machine that is briefly described in the next section.

2.7.3 Sparsity in Bayesian Inference

In the Bayesian framework, the analogous sparsity-inducing role to regularisation

is performed by the prior distributions placed on the model’s variables. For
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example, the Lasso approach is equivalent to placing a Laplace prior on the

regression coefficients. Hence in this framework no ad-hoc penalising term needs

to be introduced but we can formally place appropriate prior distributions that

induce sparsity via the principle of Automatic Relevance Determination (ARD)

(MacKay 2004).

ARD describes the Bayesian process by which sparsity inducing prior distri-

butions on the parameters, such as the Laplace or the Student-t prior, effectively

determine the “relevance” of a feature (or sample in kernel-based methods) based

on the evidence from the data. The two dominant ARD approaches within the

Bayesian paradigm and the Machine Learning community are the Relevance

Vector Machines (RVMs) (Tipping 2001) and the Informative Vector Machines

(Lawrence et al. 2003).

RVMs employ a hierarchical prior formulation with a zero-mean Gaussian

distribution on the parameters and a Gamma distribution on the scales of the

Gaussian. This results (by marginalising the scales) to an implicit Student-t

distribution on the regression coefficients which, similarly to the Laplace, has

probability mass at the mean (zero) and on the tails of the distribution. This

enforces coefficients with no evidence to shrink to zero and significant ones to

be non-zero.

The main driving force behind the RVM formalism is the maximisation of

the marginal likelihood with respect to the hyper-parameters (regression):

p(y|α, σ) =

∫
p(y|w, σ)p(w|α)dw (2.78)

where as before α are the scales and σ2 is the noise term in regression. This

maximisation is known as type-II maximum likelihood (type-II ML) and it leads

to efficient and incremental ways (Tipping and Faul 2003, Faul and Tipping 2002)

to prune out and include features or samples based on their contribution to the

marginal likelihood. The resulting solutions are typically very sparse but the

scalability to multiclass classification is problematic17 due to the MC × MC

Hessian matrix required for the Laplace approximation.

A further sparse Bayesian approach was suggested by Lawrence et al. (2003)

within the context of Gaussian Processes (Rasmussen and Williams 2006) that

model directly the estimating function ŷ by placing an appropriate (data depen-

17This thesis is addressing that issue with an efficient multiclass method in Chapter 5.
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dent) zero-mean Gaussian distribution directly on the possible functions. The

sparse approximation follows an information theoretic criterion based on the en-

tropy contribution of each sample and it is competitive with SVMs in training

processing times.

The criterion proposed is the differential entropy score and in effect favours

samples that reduce the variance of the predictive distribution. Sparsity levels

are comparable to SVMs with the additional benefit of probabilistic outputs.

However, similarly to SVMs, they are binary classification methods and require

multiple dichotomy of the solution space with one versus one or other ad-hoc

procedures.

2.8 Ensemble Learning

So far we have considered the standard classification scenario where a training

set of input predictors and target responses {xi, ti}Ni=1 is available and used for

fitting a single classification model. Ensemble Learning methods18 (Dietterich

2000b, Kuncheva 2004) are approaches that propose a collection of different

models (e.g. classifiers, regressions, feature constructions or “experts”) that are

appropriately fused towards an overall response.

There are two main situations that motivate the use of ensemble learning

methods; when there is a greater need to improve performance measures over

individual models with less concern for the additional computational costs as-

sociated with multiple models, and when the input predictors have multiple

(S) and possibly heterogeneous feature (attribute) sets or information sources

{x(s)
i , ti}N,Si,s=1, which is the problem setting of this thesis.

In the following subsections we review the two main categories for ensemble

learning with discrete targets: classifier combination and multiple kernel learn-

ing methods. Both approaches can address the two motivating scenarios for

ensemble learning, offering different advantages and disadvantages in each situ-

ation. According to these, we motivate the research that has been undertaken

in this thesis and the specific research directions that have been addressed.

18The name is also used sometimes to describe variational methods that assume a factorised
ensemble of approximate posteriors, see Chapter 4.
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2.8.1 Classifier Combination

Some of the main approaches (Dietterich 2000b, Bishop 2006) in classifier com-

bination methods are boosting, bagging, stacking, Bayesian mixture of experts

and standard voting rules. They differ in their modelling assumptions and con-

struction but they all arrive to the necessity for diversity between the individual

classifiers that are used as base learners (Kuncheva and Whitaker 2003).

Boosting (Schapire 2003) manipulates the training set to generate multiple

hypotheses by applying multiple base classifiers (weak learners) sequentially and

weighing the data based on previous classification performance. In that way

misclassified data from the previous classifier gains more weight in the next

step and hence further emphasised and considered in the present classification

level. The final classifier is a weighted vote of the individual classifiers based on

their performance on the training set. Adaboost (Freund and Schapire 1996) is

the best known example of boosting methods that are best performing in large

training sets with relatively trivial classification noise (Dietterich 2000a).

Bagging (Breiman 1996) derives from bootstrap aggregation and employs the

bootstrap procedure to sample by replacement copies of the training set on

which base classifiers are trained. The main benefits of bagging are exploited

when the base classifiers are relatively unstable, with respect to small changes

in the training set, such as neural networks and decision trees.

Stacking (Wolpert 1992) is a meta-learning approach in which different base

classifiers are trained typically on the same dataset and on the second level all

the classifier outputs are used as a new feature space for further classification.

This has the benefit of learning the combination of classifiers in a data-driven

manner and avoids ad-hoc voting schemes. Stacking, like the previous methods,

is computationally intensive due to the multiple training levels and does not

always improve upon the best base learner (Džeroski and Ženko 2004).

A Bayesian approach to combining classifiers is mixture of experts (Jacobs

et al. 1991) which can be seen as a mixture model of components that are

conditioned on the input predictors and are associated to mixing coefficients

drawn by appropriate gating (sigmoid) functions. The general framework for a

mixture of experts is:

p(t|X) =
S∑
s=1

πs(X
(s))ps(t|X(s)) (2.79)
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where ps(t|X(s)) are the S “experts”, πs(X
(s)) are the gating coefficients, and

X =
{
X(1), . . . ,X(s), . . . ,X(S)

}
defines the set of all the S feature spaces. The

intuition behind this approach is that different components are better in de-

scribing different regions of the input space and the gating coefficients reflect

that by choosing an expert according to the input. The initial framework was

extended to a hierarchical scheme (Jordan and Jacobs 1994) with multi-level

gating functions that results in a mixture of mixtures and is more flexible in

describing partitions of the input space. The standard inference scheme follows

an EM procedure for maximum likelihood estimation which was extended to a

Bayesian variational procedure by Bishop and Svensen (2003).

Finally, standard voting rules can be employed for classifier fusion depending

on their output nature. For models that do not produce posterior probabilities

of class membership but crisp labels, several standard voting schemes such as

majority rules and oracles have been proposed (Kuncheva 2004) but are outside

the scope of this thesis. For probabilistic models or models that can produce

“probabilistic” outputs through post-processing (squashing functions) the fol-

lowing combination rules (Kittler et al. 1998) have been proposed:

• Summation Rule: A simple average of the posterior probabilities over

classes.

P (tn = c|X) =
1

S

S∑
s=1

Ps
(
tn = c|X(s),θ(s)

)
(2.80)

• Product Rule: A normalised product of the posteriors over classes.

P (tn = c|X) =

S∏
s=1

Ps
(
tn = c|X(s),θ(s)

)
C∑
c′=1

S∏
s′=1

P ′s

(
tn = c′|X(s′),θ(s′)

) (2.81)

• Max Rule: Select the class that has the maximum posterior probability

over the S classifiers.

tn =
S,C

max
s,c=1

Ps
(
tn = c|X(s),θ(s)

)
(2.82)

• Majority Rule: Select the class that is predicted by the majority of the
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S classifiers.

tn =
S

maj
s=1

C
max
c=1

Ps
(
tn = c|X(s),θ(s)

)
(2.83)

where Ps (tn|Xs,θs) is the class membership probability from the sth classifier

parameterised by θs and trained on the sth training set (feature set) in the case

of multiple information sources.

The theoretical justification for the product rule comes from the independence

assumption of the feature spaces, where xin,x
j
n ∀ i, j ∈ {1, . . . , S} are assumed

to be uncorrelated, and the mean combination rule is derived on the opposite

assumption of extreme correlation. The hope is that the individual errors of the

classifiers will be different (diversity) and the synergetic effect of the combination

will cancel them out and hence reduce the overall classification error.

2.8.2 Multiple Kernel Learning

In the previous subsection we reviewed classifier combination strategies that can

be applied to different partitions of the training data from a single source or can

be used to address problems with multiple feature sets generated from possibly

heterogeneous information sources. However, such approaches are computation-

ally demanding as they require multiple models and training regimes. Also, their

theoretical justification is not always clear and the assumptions (e.g. indepen-

dence of sources) employed towards that are most of the times unsupported and

unrealistic. In this section a modern alternative approach, multiple kernel learn-

ing, that tackles the scenario of multiple sources of information is introduced,

which will lead us into the problem formulation and goals of this thesis.

The intuition behind multiple kernel learning (MKL) is to create a common

metric across the possibly heterogeneous sources S by embedding them into

high-dimensional feature spaces via the kernel trick. Each source is then as-

sociated with a unique kernel matrix Ks, the base kernel, which expresses the

similarity between input samples based on the information from each source.

Hence, this common metric of all the base kernels can now be combined into

an overall composite kernel as depicted in Figure 2.2, where a single classifier

operates. The definition of the MKL setting is to learn the kernel combination

parameters associated with each base kernel and hence infer the contribution of

each information source.
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Figure 2.2: The intuition behind Multiple Kernel Learning and the differences
with Classifier Combination methods.

Various MKL approaches have been proposed in the last decade and the

great majority of them are from an optimisation and statistical learning theory

(SLT) perspective employing Support Vector Machines (SVMs). We review the

related research first and then introduce the few Bayesian exceptions in the last

section where the motivation for this thesis is defined.

One of the first directions towards MKL was explored by Joachims et al.

(2001) in the context of hypertext classification where general conditions based

on a loose generalisation bound are derived for when the fixed combination of

two base kernels is expected to improve upon any of the individual base ones.

The scope of the work was limited to the case of soft margin SVMs with two base

kernels and the drawn conclusions were that a combination is beneficial when

the base kernels achieve approximately similar performance while their Support

Vectors (SVs) are different.

The first MKL methodology was proposed by Lanckriet et al. (2002) (ex-

tended in (Lanckriet et al. 2004)) were an expensive semi-definite programming

approach (SDP), which results in a quadratically constrained quadratic program

(QCQP), with best-case complexity of O(SN3) is employed to tackle convex lin-

ear combinations of base kernels:
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K =
S∑
s=1

βsKs (2.84)

where µs the kernel combination parameters, constrained such that µs ≥ 0, and

S the number of base kernels Ks from a set of candidate kernels K.

The approach has direct connections to the work of Cristianini et al. (2001)

and the SDP approach reduces to the quadratically constrained quadratic pro-

gram described in the latter for the optimisation of the alignment between the

kernel and the target responses. In the alignment, the kernel is decomposed

to eigenvector representations of the form K =
∑N

i=1 µiuiu
T

i , where ui the ith

eigenvector of the original kernel, and their outer product can be seen as the

base kernels to be informatively combined. Sun et al. (2004) showed that when

the objective function is the target alignment proposed by Cristianini et al.

(2001) the optimal solution for the convex linear combination rule results in a

generalized eigenvalue problem.

Further work in the SLT discipline has focused on extending Lanckriet’s

approach to more efficient optimisations such as the work by Bach et al. (2004)

where the QCQP is recast as a second-order cone programming that can be

solved with sequential minimal optimisation (SMO) methods. Another approach

by Sonnenburg, Ratsch and Schafer (2006), extended in Sonnenburg, Rätsch,

Schäfer and Schölkopf (2006), recasts the same problem as a semi-infinite linear

program (SILP) that can be solved by recycling existing SVM implementations.

The above methods employ a block regularisation with a mixed L1, L2 norm on

the regression coefficients in contrast with the work by Rakotomamonjy et al.

(2007) (extended in Bach et al. (2008)) were an L2 norm is employed on the block

regularisation with a sparsity enforcing L1 norm (Lasso type regularisation) on

the kernel combination parameters. This has direct connections (Bach 2008)

to the Group Lasso (Meier et al. 2008) where the L1 regularising term that

we have seen in previous sections is now applied to groups of attributes. A

further alternative regularisation for MKL was proposed by Kloft et al. (2008)

where an L2 norm is employed for the kernel combination parameters leading to

non-sparse combinations that are shown to be more robust in certain cases.

Another approach directly related to MKL, namely hyperkernels, was pro-

posed by Ong et al. (2003) and later extended in Ong and Smola (2003) and

Ong et al. (2005). The intuition is to address the general problem of learning
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the kernel function, in contrast with the previous methods that learn the kernel

matrix, by an optimisation on the space of kernels (resulting in a solution which

defines a kernel on that space, hence the term hyperkernel). As the optimal so-

lutions are linear combinations of base kernels, this can also be seen as an MKL

problem in addition to the original goal of learning the optimal kernel within a

parameterised family (e.g Gaussian kernels). The authors offer standard optimi-

sation techniques such as QCQP and SILP in addition to ways of constructing

loss functions for these spaces (e.g. the kernel target alignment of Cristianini

et al. (2001)) that are termed as quality functionals. Further work by Kondor

and Jebara (2007) offers closed form Gaussian and Wishart hyperkernel formu-

lations and examines their use for dimensionality reduction. The hyperkernel

methods are restricted though on optimisation within parameterised families of

kernels which limits their applicability. Especially in the presence of heteroge-

neous sources that typically require very different kernel functions (Damoulas

and Girolami 2008).

The reviewed approaches so far consider stationary combinations of base ker-

nels, where the relative combination parameters of the base kernels do not vary

among input examples. Research towards non-stationary kernel combinations

was first reported by Lewis et al. (2006a) where the kernel combination param-

eters were sample-dependent within a generative latent variable model employ-

ing variational inference. The method follows a maximum entropy framework

(Jaakkola, Meila and Jebara 1999) that minimises iteratively the divergence be-

tween the prior and the posterior over the parameters using an EM procedure.

The drawback of employing sample-dependent kernel combination parameters

is the increased computational complexity which restricts the scalability of the

method.

An alternative non-stationary MKL approach by Gönen and Alpaydin (2008)

follows similar ideas to the mixture of experts methodology in classifier combina-

tion and proposes a binary classifier with a gating function that learns different

kernel combinations for regions of the input space. The model is an extension

of the SVM approach by Bach et al. (2004) and the main assumption is that

the different kernel combination regions of the input space are linearly separa-

ble. Another non-stationary approach with the SVM algorithm is followed by

Lee et al. (2007) where Gaussian kernels with different width parameters form a

“compositional” kernel matrix where the original base kernels are in the diagonal
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and the mixtures of (Gaussian) base kernels in the off-diagonal. The approach

however does not scale up as it results in an SN × SN matrix where S,N are

the number of sources and samples respectively.

Further research on learning a more complex combination than the convex

linear rule that has been employed in the above works was reported by Moguerza

et al. (2004) and very recently by Varma and Babu (2009). The first authors

employ a functional combination of kernels of the form K =
∑S

s=1 WsKs where

the matrix Ws has elements wi,j as nonlinear functions of the input samples

xi,xj. The composite kernel is not inferred during the training regime but

pre-computed and a standard SVM algorithm is trained on the resulting kernel.

The work in Varma and Babu (2009) builds directly on the previously aforemen-

tioned MKL developments within the SVM methodology and offers non linear

combinations by generalising both the objective and the regularisation steps of

SVMs. However, this comes at the cost of losing convexity and hence the ability

to descend or ascend to the global minimum or maximum.

Other approaches to MKL that have been proposed include the work of

Crammer et al. (2003) where boosting is employed for the construction of the

composite kernel (computed outside the training phase) based on optimisation

with respect to the kernel target alignment objective and the work by Fung

et al. (2004) where the kernel fisher discriminant approach (kernelized version

of standard LDA/LFD) is adopted to MKL, leading to a biconvex formulation.

So far the reviewed approaches to MKL have been developed within the SLT

framework and the SVM classification approach that has three main drawbacks.

First, such approaches are non-probabilistic and hence don’t provide uncertainty

estimates for the final predicted responses in either regression or classification

scenarios that are crucial for risk assessment and further decision making. Sec-

ondly, the SVM classifier is by definition a binary classification method and it

can only address multiclass MKL problems via additional assumptions or ad-hoc

procedures such as the use of feature maps (Zien and Ong 2007) or decompo-

sition of the problem to multiple binary ones (Ye et al. 2008). Finally, prior

knowledge cannot be taken into account and integrated in a systematic way in

either the objective function or the regularisation terms.

To that end, we now review the relatively few Bayesian approaches to MKL,

besides the ones that this thesis will propose. One of the first Bayesian ap-

proaches towards MKL is the work by Zhang et al. (2004) where a Tanner-Wong
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data augmentation algorithm is employed to learn the kernel matrix which en-

codes the test observations as “missing data”. The base kernels are Wishart-

distributed with hierarchical priors on the parameters and the method proposes

convex linear combinations of these kernels to effectively infer the complete data.

An alternative approach by Girolami and Rogers (2005) casts the problem in a

standard classification scenario with heterogeneous sources of information and

proposes a convex linear combination of base kernels with the logistic likelihood.

Approximate inference via saddle-point and variational methods is offered for

this binary classification setting.

Finally, the MKL problem has been also recently examined within the Gaus-

sian Processes field of Bayesian inference by Girolami and Zhong (2007) where

a convex linear summation of covariance functions was proposed for data in-

tegration and very recent unpublished work by Christoudias et al. (2009) fol-

lows the localised kernel combination and mixture of experts ideas and proposes

a non-stationary combination of covariance functions. The proposed method

however requires inference of S(H + N2) parameters, where H the number of

hyper-parameters for each covariance function, and hence further low-rank ap-

proximations of the covariance matrices are employed.

The methodological motivation for this thesis stems from the lack of efficient

probabilistic and multiclass MKL approaches that can easily handle heteroge-

neous sources of information, a need evidenced from the aforementioned existing

literature. The emphasis therefore is placed on proposing explicitly multiclass

approaches, alternative composite kernel construction rules and a collection of

approximate inference procedures for probabilistic multiple kernel learning.



Chapter 3

Probabilistic Multiple Kernel

Learning

3.1 Introduction

In this chapter1 a probabilistic multiple kernel learning (pMKL) framework for

multinomial classification is introduced. Alternative formulations for construct-

ing the composite kernel together with Markov chain Monte Carlo (MCMC) sam-

pling solutions are proposed, based on a hierarchical Bayesian approach that in-

troduces prior distributions over random variables. The chapter offers a compar-

ison between a Metropolis-Hastings (MH) and a Gibbs MCMC sampling scheme

regarding posterior sampling efficiency, autocorrelation and the resulting effec-

tive sampling size. Finally, an approach for model selection through marginal

likelihood estimation is presented together with the computational complexity

of the algorithms and concluding remarks.

3.2 Constructing the Composite Kernel

Inference of the kernel combination parameters β is the main objective of MKL

approaches that in most reviewed cases employ the convex linear combinatorial

rule for the construction of the composite kernel. Another level of learning

considers the kernel parameters θ(s) which, as mentioned before, control the level

of smoothness applied to each feature space s and hence can be used to identify

1Parts of this work have already appeared in (Damoulas and Girolami 2009b, Damoulas
and Girolami 2009c)

67
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the significant features within each feature space in the manner of Automatic

Relevance Determination (ARD) (Neal 1996).

In this section, besides revisiting the convex linear combinatorial approach,

alternative rules for combining kernels are introduced and theoretically justi-

fied. Selection of the appropriate combinatorial rule can be achieved via prior

knowledge, cross-validation or estimation of the marginal likelihood.

3.2.1 Fixed Combination

The baseline kernel combination rule consists of simply adding the kernels and

dispensing the need for combination parameters β and associated inference pro-

cedures. The composite kernel elements i, j for S information sources with

feature sets X =
{
X(1), . . . ,X(s), . . . ,X(S)

}
are given by:

k (xi,xj,Θ) =
1

S

S∑
s=1

ks

(
x

(s)
i ,x

(s)
j ,θ(s)

)
(3.1)

where Θ denotes all the parameters θ(s) of the s base kernel elements ks. The

advantage of this rule is the reduction of additional computation for inferring

combination parameters. It has been shown (Lewis et al. 2006b, Damoulas and

Girolami 2008) in certain cases to perform as well as parameterised combinations,

when the individual sources lead to correlated similarities. Computation of the

Frobenius inner product between kernels constructed from different sources is a

good measure of whether a parameterised combination should be expected to

improve.

3.2.2 Convex Linear Combination

This linear combination rule, which is the standard for existing MKL methods

defines the composite kernel elements as:

k (xi,xj,β,Θ) =
S∑
s=1

βsks

(
x

(s)
i ,x

(s)
j ,θ(s)

)
with

S∑
s=1

βs = 1 and βs ≥ 0 ∀ s (3.2)

Contrary to the fixed rule, an inference procedure is now required with ad-

ditional computations, but it offers the benefits of learning the significance of
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individual sources, and hence can accommodate cases where suspect or cor-

rupted feature spaces might be present. The combination parameters β are

defined over a simplex in order to ensure statistical weak identifiability and a

p.s.d kernel matrix.

3.2.3 Binary Combination

In the case of the binary combination method, β is a binary vector switching

base kernels on or off. The approach has been motivated by the work of Holmes

and Held (2006) on covariate set uncertainty which we now modify as a kernel

set uncertainty.

k (xi,xj,β,Θ) =
S∑
s=1

βsks

(
x

(s)
i ,x

(s)
j ,θ(s)

)
with βs ∈ {0, 1} ∀ s (3.3)

The binary combination rule is suitable for large multi-feature problems

where hard decisions of inclusion or dropping a specific kernel might be needed.

3.2.4 Product Combination

The product combination method is fundamentally different from the other ap-

proaches. The base kernels are no longer added together in a specific way but

instead multiplied element-wise. The composite kernel elements are given by:

k (xi,xj,Θ) =
S∏
s=1

ks

(
x

(s)
i ,x

(s)
j ,θ(s)

)
(3.4)

There is no longer the need for combinatorial weights β, which means that

the model simplifies and inference is less computationally expensive but again

the ability to infer the significance of the sources is lost.

3.2.5 Weighted Product Combination

Finally, another non-linear kernel construction is the parameterised extension of

the product rule which retains the advantages of weighted rules and the compu-

tational trade-offs by exponentiating the kernel elements to the βs power:
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k (xi,xj,β,Θ) =
S∏
s=1

kβss

(
x

(s)
i ,x

(s)
j ,θ(s)

)
with βs ≥ 0 ∀ s (3.5)

It is worth noting that all the parameterised combination strategies have the

isolation property (Rao 2001, Rao 2004) as they contain the case where only one

of the base kernels can be selected.

3.2.6 Theoretical Justification of Kernel Combinations

As discussed in Chapter 2, the main property characterising a kernel is that

it is a symmetric and positive semi-definite matrix, i.e all of its eigenvalues

are non-negative. Given a symmetric matrix K ∈ RN×N and its eigenvalue

decomposition Ku = λu, then this matrix is a valid kernel if λn ≥ 0 ∀ n ∈
{1, . . . , N}.

Constructing a valid composite kernel relies on simple operations, or closure

properties (Shawe-Taylor and Cristianini 2004), on the base kernels that lead

to a symmetric positive semi-definite matrix. The closure properties utilised for

the proposed combination strategies, given base kernels k1, k2 and input vectors

xi,xj ∈ R(D), are:

(i) k(xi,xj) = k1(xi,xj) + k2(xi,xj)

(ii) k(xi,xj) = k1(xi,xj)k2(xi,xj)

(iii) k(xi,xj) = αk1(xi,xj)

where α ∈ R is a scalar. The Fixed, Convex Linear and Binary combination

rules are justified on the basis of properties (i) and (iii), while the Product and

weighted Product rules follow properties (ii) and (iii). All the rules result in

a symmetric, positive semi-definite composite kernel matrix with corresponding

proofs given in Shawe-Taylor and Cristianini (2004).

3.3 Multinomial Probit Kernel Regression

Having described the composite kernel construction rules, this section progresses

to the proposed kernel regression model that employes the multinomial probit

likelihood and appropriate prior distributions. Emphasis is placed on the choice
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and justification of priors as well as the characteristics of the likelihood and the

role of the auxiliary variables that will be introduced into the model.

3.3.1 Multinomial Probit Likelihood

Consider a multinomial classification problem with an associated multi-feature

training set {X(s), t} where X(s) ∈ RN×Ds , s ∈ {1, . . . , S}, tn ∈ {1, . . . , C}
and S,N,D,C the N total number of sources, samples, features and classes

respectively. Embedding each feature space via the kernel trick into a base

kernel, assuming a specific combination rule and conditioning on specific kernel

parameters β,Θ for clarity, leads to the construction of the composite kernel

K ∈ RN×N .

The composite kernel allows informative integration of multiple sources via

the inferred kernel parameters and provides a high-dimensional, possibly non-

linear, embedding of the original features which can transform the problem to

be linearly separable via hyper-planes.

The interest lies in modelling p(t|K) which, assuming a generalised linear

model structure with parameters W ∈ RN×C , can be expressed as:

p(t|K) =

∫
p(t|K,W)p(W|t,K)dW (3.6)

where the first term in the integral is the likelihood of the model and the second

term the parameter posterior distribution.

Following the approach by Albert and Chib (1993) and introducing auxiliary

variables Y ∈ RN×C as regression targets results in the following reformulation:

p(t|K) =

∫∫
p(t|Y)p(Y|K,W)p(W|K)dWdY (3.7)

The introduction of the auxiliary variables leads to a closed form posterior for

the regression coefficients, as we now have a regression on Y, and to an efficient

Gibbs sampling scheme as we will see later in this Chapter. The regression on

the auxiliary variables employs a standardised noise model yc ∼ Kwc + ε with

ε ∼ N (0, I) by definition2 which results in the following products of univariate

Gaussian distributions for the prior on auxiliary variables:

2The standardised noise model is not an assumption on noise but gives rise to the multi-
nomial probit likelihood.
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p (Y|K,W) =
N∏
n=1

C∏
c=1

Nync
(
w

T

ckn,1
)

(3.8)

The probit link from the regression (continuous) target ync to the discrete

target variable of interest tn ∈ {1, . . . , C} is given by:

tn = i ⇐⇒ yni > ynj ∀ j 6= i with i, j ∈ {1, . . . , C} (3.9)

and hence we can express p(t|Y) as delta functions:

P (tn = i|Y) = δtn =

{
1 ⇐⇒ yni > ynj ∀ j 6= i

0 otherwise
(3.10)

It is worth noting that the uncertainty on the prediction is not expressed

in the link function p(t|Y) which given auxiliary variables for sample n simply

assigns a specific class. The uncertainty is described in the auxiliary variable

and regression coefficient posterior distributions which are marginalised out in

Equation 3.7. Disregarding for now the regression coefficient posterior, and

considering the auxiliary variable prior in Equation 3.8 we are led to the final

expression, in an analogous manner to Girolami and Rogers (2006), for the

multinomial probit likelihood in a GLM setting:

P (tn = i|W,kn)

=

∫
P (tn = i|yn) p (yn|kn,W) dyn

=

∫
δtn

C∏
c=1

Nync
(
w

T

ckn, 1
)
dyn

=

∫ +∞

−∞

∫ yni

−∞
Nyni

(
w

T

i kn, 1
) C∏
j 6=i

Nynj
(
w

T

jkn, 1
)
dynjdyni

setting u = yni −w
T

i kn leads to

=

∫ +∞

−∞
Nu(0, 1)

C∏
j 6=i

∫ u+w
T

i kn−w
T

j kn

−∞
Nynj(0, 1)dynjdu

= Ep(u)

{∏
j 6=i

Φ
(
u+ (wi −wj)

T

kn

)}
(3.11)

where Ep(u) is the expectation taken with respect to the standardised normal
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distribution p(u) = N (0, 1) and Φ is the cumulative density function.

The multinomial probit likelihood is conditioned on the regression coefficients

W and it will be employed accordingly to each specific inference scheme consid-

ered in this thesis. In this Chapter “fully” Bayesian sampling approaches will

be proposed that make use of the whole regression coefficient posterior distribu-

tion via Monte Carlo estimates. As such, the uncertainty over these coefficients

which is expressed by their posterior distribution is taken into account.

We now have an explicit multiclass likelihood for multiple kernel learning

that, as we shall see in this Chapter, gives rise to an efficient Gibbs sampling

inference scheme and in later Chapters allows for further deterministic approxi-

mations that reduce computational complexity and memory requirements. The

likelihood is in accordance with the motivation of this thesis for probabilistic

and multiclass multiple kernel learning.

3.3.2 Gauss-Hermite Quadrature

The Multinomial probit likelihood in Equation 3.11 can be re-expressed as:

P (tn = i|W,kn) = Ep(u)

{∏
j 6=i

Φ
(
u+ (wi −wj)

T

kn

)}

= Ep(u) {F (u)} =

∫
F (u)Nu(0, 1)du

=
1√
2π

∫
F (u)e−u

2

du (3.12)

which directly leads to the standard Gauss-Hermite quadrature approximation

with weightsW(u) = e−u
2
. Hence such an approximation offers an alternative to

the Monte Carlo estimate of the expectation that is a computationally expensive

sampling procedure.

3.3.3 Prior distributions and the graphical model

Having defined the kernel combination rules and derived the multinomial probit

likelihood, the next step is to consider hierarchical prior distributions on the

model parameters. The hierarchical approach adopted in this thesis places hyper-

prior distributions on the prior distributions to propagate model uncertainty in
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a higher and even less “subjective” manner. The justification for placing specific

prior distributions on unknown model parameters will be based on one or more

of the following reasons and conditions:

• Prior Knowledge - Prior information exists that dictates the numeri-

cal nature or scale of a parameter (i.e. the parameter is defined in R+),

imposes a constraint (i.e.
∑S

s=1 βs = 1) or specifies some expected range.

• Conjugacy - Conjugate pairs of distributions lead to closed form posteri-

ors and hence are preferred (Gelman et al. 2004, Denison et al. 2002) when

no other prior knowledge is available.

• Sparsity - When sparse solutions are encouraged based on either prior

knowledge or desired outcome, appropriate prior settings and distributions

can be employed to induce such sparsity. Such sparsity inducing prior

formulations are adopted in Chapter 5.

Before going into the details of the specific prior distributions, the full graph-

ical model is given in Figure 3.1 with variations for all the kernel combination

rules. The plates diagram depicts the conditional dependancies and the dimen-

sionality of model parameters that will be now introduced and justified.

Y
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t

WA β ρ

τ υ

μ

λ

N

NxC S

SxDs

ω φ

S χ

μ

λS

ββ

π

Convex Linear

Binary Weighted Product

X
SxNxDs

Figure 3.1: Plates diagram of the model depicting the conditional relationships
of model variables together with the dimensionality of corresponding plates. The
dotted plates depict variations for the three parametric combination rules.
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Regression coefficients W and scales A

The regression coefficients W are defined typically (Hastie et al. 2001, Deni-

son et al. 2002) as a product of zero-mean Gaussians with scales A ∈ RN×C
+

and a hyper-prior Gamma density (ensuring positive values) is placed on each

scale αnc (inverse of variance) with hyper-parameters τ and υ. This reflects the

prior independence of the regression coefficients (product) and our lack of prior

knowledge (zero mean normally distributed) regarding the sign of the regression

coefficients. Such a hierarchical prior formulation induces sparsity (zero mean)

and allows the scales of the distributions to be easily inferred from the data. As

the prior distribution of the regression coefficients is only parameterised via the

scale, which is described via the Gamma density, the only free-parameters to be

defined at this stage are τ and υ which will be discussed further on.

The corresponding distributions are:

p (W|A) =

N,C∏
n,c=1

Nwnc
(
0, α−1

nc

)
(3.13)

p (A|υ, τ) =

N,C∏
n,c=1

Gαnc(υ, τ) (3.14)

whereN and G are the Gaussian and Gamma distribution respectively as defined

in the notation.

Kernel combination parameters β

Only the parameterised combinatorial rules need to be considered as both the

Fixed combination and the Product combination can be seen as specific sub-cases

of the Convex linear and Weighted product combination rules under conditioning

on specific values (βs = 1
S

and βs = 1 respectively).

a) In the case of the Convex linear rule, the prior distribution on the combi-

natorial weights β ∈ RS is a Dirichlet distribution with parameters ρ ∈ RS and

a hyper-prior Gamma distribution is placed on ρ with hyper-parameters µ and

λ. The choice of the Dirichlet distribution, which confines our movement on a

simplex, for the combinatorial weights β is based on the need to have a resulting

positive semi-definite (p.s.d) composite kernel and weak statistical identifiability.

These constraints, expressed via the Dirichlet prior, are:
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βs ≥ 0 ∀ s ∈ {1, . . . , S}∑S

s=1 βs = 1

Previous work (Girolami and Rogers 2005, Girolami and Rogers 2006) has

shown that these conditions are necessary for avoiding unconstrained growth or

reduction of the model parameters due to inherent coupling. The prior Gamma

distribution in this case is justified on the restriction that ρ is defined on RS
+.

The corresponding distributions are:

p (β|ρ) = Dβ(ρ) (3.15)

p (ρ|λ, µ) =
S∏
s=1

Gρ(λ, µ) (3.16)

b) The Weighted product combination rule is described via the bottom right

dashed plate in Figure 3.1 and places a Gamma distribution on the combinatorial

weights β ensuring a p.s.d composite kernel and an exponential hyper-prior

distribution on each of the prior parameters π,χ that are defined in RS
+.:

p (β|π,χ) =
S∏
s=1

Gβs(πs, χs) (3.17)

p (π|µ) =
S∏
s=1

Eπs(µ) (3.18)

p (χ|λ) =
S∏
s=1

Eχs(λ) (3.19)

c) Finally, in the Binary combination rule we employ the left dashed plate in

Fig. 3.1 which places a binomial distribution on each βs with equal probability

of being 1 or zero (unless prior knowledge dictates otherwise). The small size

of the possible 2S states of the β vector allows for their explicit consideration

in the inference procedure and hence there is no need to place any hyper-prior

distributions:

p (β) =
S∏
s=1

Bβs(n, p) with p = 0.5 (3.20)
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Base kernel parameters θ(s)

The proposed model allows for inference on the base kernel parameters θ by

placing a Gamma distribution with parameters ω and φ. The kernel parameters

are specific to each base kernel that describe a source of information, e.g the

variances for the case of Gaussian kernels, and control the amount of smoothness

level applied within each feature space. The specific prior distribution employed

here reflects again the restriction in R+.

p (Θ|φ, ω) =

S,D∏
s,d=1

Gθsd(ω, φ) (3.21)

Hyper-parameters

The hyper-parameters τ, υ, ω, φ, µ, λ can be set to uninformative values (Girolami

and Rogers 2006) or can be inferred via the empirical Bayes approach of type-II

maximum likelihood (Tipping 2004). In the specific case of τ, υ that dictate

the prior form of the gamma distribution on the scales of the regression coeffi-

cients, we can induce sparsity via setting a flat prior (τ, υ → 0) as in (Damoulas

et al. 2008). This leads to the construction and generalisation of relevant vector

machines (Tipping 1999) to the multiclass multiple kernel learning setting.

3.4 Markov Chain Monte Carlo

Posterior Inference

We proceed by presenting Markov chain Monte Carlo (MCMC) sampling meth-

ods for the models that achieve exact posterior inference to the limit of infi-

nite drawn samples. The introduction of the auxiliary variables Y allows a

straightforward Gibbs sampling scheme which is compared against a standard

Metropolis-Hastings method (Metropolis et al. 1953, Hastings 1970) for sampling

characteristics and efficiency.

3.4.1 Gibbs Sampler

As we have seen in the previous chapter, Gibbs sampling exploits the re-expression

of a desired joint posterior distribution to individual conditional posterior dis-
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tributions from which is easy to draw samples. The benefits of this sampling

scheme are ease of implementation and avoidance of acceptance ratio tuning

when compared with the standard MH sampling methods (Gelman et al. 2004).

Considering now the posterior distributions of the regression coefficients and

auxiliary variables will further highlight the natural Gibbs sampler that arises.

Regressors

A closed form expression for the posterior of the regression coefficients p(W|Y,K,A) =

p(Y|W,K)p(W|A)/p(Y|K,A) is readily available3, see (Denison et al. 2002),

as:

p(W|Y,K,A) =
C∏
c=1

N (mc,Vc) (3.22)

with mc = Vc (Kyc), V−1
c = KK

T
+ Ac and Ac a diagonal matrix of the scales

αc as depicted below:

Ac =



α1c 0 0 . . . 0

0
. . . 0 . . . 0

0 0 αnc
...

...
...

. . . 0

0 0 . . . 0 αNc


Auxiliary variables & hyper-parameters

Further on, a closed form expression (Girolami and Rogers 2006) for the posterior

of the auxiliary variables p(Y|W,K, t) = p(t|Y)p(Y|W,K)/p(t|K,W) can be

derived as a product of N , C − dimensional conically truncated Gaussians:

p(Y|W,K, t) =
N∏
n=1

N tn
yn(W

T

kn, I) (3.23)

where tn indicates the dimension of truncation. Rejection sampling can be used

to sample from truncated distributions as usual.

The conditional distributions in Equations 3.22 and 3.23 give rise to Gibbs

sampling which is completed by a standard closed form expression for the poste-

3Dependence on β,Θ omitted for clarity
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rior distribution of the scales A, which is of the same form as the prior (Gamma)

with updated hyper-parameters:

p(A|W, τ, υ) =

N,C∏
n,c=1

Gαnc(τ +
1

2
, υ +

1

2
w2
nc) (3.24)

Finally, the kernel parameters Θ, combination weights β and associated

hyper-parameters ρ,π,χ do not have a closed form conditional posterior and

we resort to Metropolis-Hastings (MH) (Hastings 1970) sub-samplers which are

described in detail in Appendix A.1 and A.2. As we have seen in the previ-

ous chapter, Gibbs sampling can be viewed as a special case of MH sampling

methods and hence it is natural to introduce MH steps into the Gibbs sampler.

Furthermore, few steps (even a single one) of the sub-samplers for every Gibbs

iteration are enough to lead to overall convergence to the stationary distribution

(Neal 2003).

Predictive distribution

Having described posterior inference of model parameters via Gibbs sampling,

we return to the original task of predicting the class label t∗ of a new point x
(s)
∗

that is embedded in a composite kernel space k∗. The predictive distribution is

given by:

P (t∗ = i|k∗,K, t) =

∫
P (t∗ = i|W,β,Θ,k∗)P (W,β,Θ|K, t) dW dβ dΘ

(3.25)

where k∗ is the composite test kernel created based on x
(s)
∗ and the inferred

values for β,Θ. The training set {X(s), t} is used to infer the parameter posterior

as described in the previous sections. The Monte Carlo estimate of the predictive

distribution is used to assign the class probabilities according to L number of

drawn samples4. Hence the estimated class probability is:

P (t∗ = i|k∗,K, t) =
1

L

L∑
l=1

Ep(u)

{∏
j 6=i

Φ
(
u+

(
wl
i −wl

j

)T

k∗

)}
(3.26)

4In fact the number of samples equals the number of Gibbs steps minus some burn-in
period. This is because in every Gibbs iteration we explore the posterior space of W,Y,Θ,β
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and typically 1, 000 samples u ∼ Nu(0, 1) are enough to approximate the expec-

tation or alternatively the Gauss-Hermite Quadrature from Equation 3.3.2 can

be employed.

The pseudo-algorithm is given as:

Algorithm 1 Gibbs sampler

1: Initialise hyper-parameters τ, υ, ω, φ, µ, λ
2: Sample parameters A,ρ,β from prior
3: Create train kernels
4: for Gibbs iterations do
5: Sample from regressor posterior, Equation 3.22
6: Sample from auxiliary variable posterior, Equation 3.23
7: Sample parameters A,β,Θ and ρ,π,χ with MH sub-samplers.
8: end for
9: Discard Burn-in period samples

10: Create test kernels K∗ given β,Θ posteriors
11: Predict class from Equation 3.26

3.4.2 Metropolis Hastings Sampler

In order to assess the sampling efficiency and characteristics of the proposed

Gibbs sampler, a standard Metropolis-Hastings (MH) sampling procedure can

be readily derived for comparison. The introduction of auxiliary variables is

no longer needed, as their sole role was to lead us to a Gibbs sampler via the

posterior conditional distributions, and hence the model reduces to the graphical

form depicted in Figure 3.2.

Having dispensed with the auxiliary variables, no closed form solution for the

posterior distribution over the regression coefficients W can be offered and hence,

we resort to standard MH sampling (Metropolis et al. 1953, Hastings 1970) with

an appropriate acceptance ratio5 given by

Acceptance Ratio = min

{
1,

P (t|Wt,K)P (Wt|A)Q(Wt−1|Wt)

P (t|Wt−1,K)P (Wt−1|A)Q(Wt|Wt−1)

}
(3.27)

where t symbolises the proposed move, t−1 the current state and Q(., .) is the

proposal or jumping distribution which in this scenario is typically a symmetric

5Again conditioning on parameters Θ,β for clarity.
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Figure 3.2: Plates diagram of the reduced model depicting the conditional rela-
tionships of model variables together with the dimensionality of corresponding
plates. The dotted plates depict variations for the three parametric combination
rules.

normal proposal and hence cancels out of the ratio leading to a Metropolis

sampling scheme. As in the case with the Gibbs sampler, the kernel combination

parameters and hyper-parameters are inferred via additional MH steps given in

the Appendix A.1.

There are inherent drawbacks when adopting the Metropolis sampler instead

of the Gibbs sampling scheme. First of all, the Metropolis scheme requires tun-

ing of the jumping proposal in order to achieve the required proportion levels

of sample acceptance (20− 30% depending on dimensionality, see Gelman et al.

(2004)). Although a large body of work has been devoted in the statistics com-

munity for designing adaptive and more efficient proposals, it introduces the

need for additional computation and somewhat ad-hoc engineering procedures.

Furthermore, the posterior samples from Metropolis or MH samplers are usu-

ally highly correlated due to the nature of the random walk and the proposal

distribution. This, as we shall see, may lead to small effective sampling sizes

and hence to the requirement for typically longer Markov chains. This would

be necessary for achieving convergence to the stationary target distribution and

for effective posterior inference.

Finally, as it can be seen from the acceptance ratio in Equation 3.27, the
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Metropolis sampler is computationally more expensive per sample than the

Gibbs scheme due to the required estimation of the likelihood P (t|W,K) for

every proposed step. Recalling the definition of the multinomial likelihood in

Equation 3.11, it is straightforward to understand the additional computational

burden exerted by the required expectation.

The pseudo-algorithm is given below:

Algorithm 2 Metropolis sampler

1: Initialise hyper-parameters τ, υ, ω, φ, µ, λ
2: Sample parameters A,ρ,β from prior
3: Create train kernels
4: for Metropolis iterations do
5: Sample regression coefficients with acceptance ratio in Equation 3.27
6: Sample parameters A,β,Θ and associated hyper-parameters
7: end for
8: Discard Burn-in period samples
9: Create test kernels K∗ given β,Θ posteriors

10: Predict class from Equation 3.26

3.5 Marginal Likelihood for Model Selection

The normalising constant of the posterior density plays an important role in

Bayesian inference methods for model selection and the calculation of the so

called “Bayes factors” (Berger 1985, Kass and Raftery 1995, Vyshemirsky and

Girolami 2008). It is defined as the integral of the likelihood function with

respect to the prior parameter density, hence its name marginal likelihood.

Bayes factors, defined as the ratio of the marginal likelihood under one model

to the marginal likelihood of another model, are an elegant way to compare the

fit of competing models associated with possibly different parameters that are

marginalised out.

Due to this important role of the marginal likelihood a plethora of approaches

for estimating it have been proposed in the literature, see (Vyshemirsky 2007)

for a recent review. In this work we adopt the commonly used method developed

by Chib (1995) which is efficient and easy to implement for the proposed Gibbs

sampler and the multinomial probit model.

Chib’s method, for parameters θ and evidence or data y, makes use of Bayes

theorem and the resulting basic marginal likelihood identity (BMI) given by:
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m(y) =
f(y|θ)π(θ)

π(θ|y)
(3.28)

where m the marginal likelihood, f the likelihood function, π(θ) the prior and

π(θ|y) the posterior parameter density.

Estimation of the marginal likelihood proceeds by selecting an appropriate

high density point θ∗ (e.g. the mode or mean of the posterior Gibbs output)

and employing the Naperian logarithm of the BMI identity to give:

log m̂(y) = log f(y|θ∗) + log π(θ∗)− log π̂(θ∗|y) (3.29)

Another benefit of the marginal likelihood estimation via the BMI identity

is its use for assessing convergence by monitoring its stability during the Gibbs

sampling (Chib 1995).

3.6 Comparison of MCMC Sampling Schemes

Having introduced the model and posterior inference via competing MCMC

sampling methods, a study of their efficiency and sampling characteristics is

offered on a multinomial classification dataset first introduced by Neal (1996).

Following Holmes and Held (2006) an examination of the effective sampling size

(ESS), autocorrelation, average sample distance and classification accuracy is

performed. Multiple chains are randomly initialised for each case and conver-

gence is monitored via the BMI progression and standard R̂ values (Gelman

et al. 2004).

Neal’s dataset consists of objects xn ∈ R4 sampled from three 4-dimensional

classes tn ∈ {1, . . . , C} that form overlapping ellipses according to:

0.5 ≥ x2
n,1 + x2

n,2 > 0.1 for tn = 1 (3.30)

1.0 ≥ x2
n,1 + x2

n,2 ≥ 0.6 for tn = 2 (3.31)

(xn,1, xn,2)T ∼ N (0, σ2I) for tn = 3 (3.32)

with two extra dimensions xn,3, xn,4 as added noise. The informative dimensions

can be seen in Figure 3.3.

In order to compare the sampling characteristics of the two MCMC schemes,

100 objects from each class are used for training and 200 for testing. The
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Figure 3.3: The artificial dataset.

Gibbs sampler is run for 20,000 samples with a burn-in period of 5,000 and

the Metropolis for 100,000 samples with 20,000 burn-in period following recom-

mended settings from Gelman et al. (2004). The Metropolis employs an adaptive

proposal with a step based on the acceptance ratio to improve efficiency and the

post burn-in samples are thinned retaining samples every 10 steps. Experiments

are repeated over 10 randomly initialised runs and the comparison is performed

across three main properties, following Holmes and Held (2006):

i) Autocorrelation - ρ(k) monotone sample autocorrelations of lag k by the

initial monotone sequence estimator proposed by Geyer (1995).

ii) Distance - Dist. = 1
N−1

∑N−1
i=1 ‖W(i) −W(i+1)‖ is the average Euclidean

update distance between iterations.

iii) Effective Sampling Size - ESS = L/

(
1 + 2

k∑
j=1

ρ(k)

)
is the effective sam-

ple size for a single coefficient wnc while summing over the k monotone

sample autocorrelations over a Markov chain of length L.

In Table 3.1 averaged results are reported. Both sampling schemes achieve a

comparable classification performance of 2% ± 0.5 error rate (average percent-

age of misclassified samples) on the specific dataset but the Gibbs approach is
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shown to be superior in sampling characteristics. With an average ESS (over

both covariates and runs) close to the full length of the post-burn chain and an

average distance three orders of magnitude greater than the one from Metropolis

sampling, it is clearly a more efficient sampling scheme.

MCMC Method Dist. ESS Lag 20 ESS Lag 2
Gibbs 4, 296.5± 5.5 14, 473± 21.46 14, 757± 9.9182

Metropolis 2.59± 0.87 2, 053± 0.17 26, 668± 0.1497

Table 3.1: Comparison of Gibbs versus Metropolis sampling through sampling
Distance (mean ± std) and Effective Sampling Size (mean ± std).

In Figures 3.4 and 3.5, the typical autocorrelation progression for different

lags is presented for both sampling schemes. As it can be seen, Gibbs sampling

offers highly de-correlated samples from the posterior and hence smaller Markov

chains are needed for convergence and a large ESS. In contrast, the Metropolis

algorithm offers samples with high correlation due to the small local steps of

the proposal distribution. Hence, it requires a large Markov chain and offers

a small ESS and average Distance. Thinning the output by retaining samples

periodically is the obvious solution which was adopted but still does not alleviate

the need for a large Markov chain.
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Figure 3.4: Typical Autocorrelation from the Gibbs sampler.
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Figure 3.5: Typical Autocorrelation from the Metropolis sampler.

3.7 Toy Example Demonstration

In this section a brief demonstration for inference of kernel parameters Θ and

kernel combination parameters β is offered on the aforementioned Neal dataset

(Neal 1996). The focus is on the convex linear combination rule as it is the stan-

dard MKL approach and the dataset is augmented by considering two additional

noise kernels, with varying informational content. Inference is performed via the

MH sub-samplers for Θ and β, learning both the importance of the individual

attributes and the contribution of the kernels, the latter shown in Figure 3.6.

Results for the case of the convex linear combination rule with two noise

kernels and one informative, and the sub-cases of conditioning on either only

the prior variance of the regression coefficients, by setting all α−1
nc = 1, or on

both A and the kernel parameters Θ, are depicted in Figure 3.7 and show the

increase of the Markov chain needed for convergence as the parameter space

expands.

As we have described, the model also allows one to infer knowledge on the im-

portance of specific features (Automatic Relevance Determination (Neal 1996))

by learning the kernel parameters Θ. In Figure 3.8 the parameter values of the

informative base kernel are depicted and as it is demonstrated the model cor-

rectly disregards the two uninformative features (the corresponding x3 and x4

dimension) and identifies x1 and x2 as the most important dimensions, depicted

in Figure 3.3. Hence now, the composite kernel is successfully learned on both
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Figure 3.6: Three combined sources with varying informational content. Notice
how the the original informative kernel receives 80% of the weight, with the par-
tially informative kernel receiving the rest 20% and the non-informative kernel
being effectively discarded.

levels, identifying the important base kernel and also the important attributes.

3.8 Computational Complexity

Markov chain Monte Carlo methods have a high computational cost due to the

sampling nature of the methods. The Gibbs sampler introduced in this paper

has a O(LCN3) complexity, where L the Markov chain length, and with the

dominating term N3 arising from the typical matrix inversions in kernel settings.

However, we can tackle both the sampling and the inversion training restrictions

as efficient approximations such as MAP estimators, EM update schemes and

variational treatments (Damoulas and Girolami 2008) can be derived from this

framework and also sparse solutions such as RVMs (Tipping 1999) can be used

that lead to reduced rank matrix inversions.

3.9 Discussion

In this chapter, a novel framework for probabilistic multiple kernel learning is

presented. Different kernel combination rules are described from the well-known

convex linear combination to novel product and binary rules, and are theoreti-

cally justified. The multinomial probit likelihood is proposed within the context
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Figure 3.7: The effect of conditioning on the Neal dataset. As the parameter
space expands, the required steps of the Gibbs sampler for convergence increase.
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Figure 3.8: Inferring θi and hence learning the importance of the features. The
uninformative features, as it can be seen, receive a very low weight and are
effectively discarded.
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of Generalised Linear Models as it is an explicit multiclass likelihood giving rise

to probabilistic classification assignments and efficient inference schemes. Two

such Markov chain Monte Carlo (MCMC) solutions are derived and compared

for sampling efficiency and convergence characteristics.

The proposed Gibbs sampling scheme is shown to outperform the Metropo-

lis solution in all sampling efficiency measures and it will form the basis and

adopted MCMC solution for the remainder of this thesis. Further sampling ad-

vancements and alternative schemes such as the adoption of a collapsed Gibbs

sampling method (Liu 1994) are considered outside the scope of this thesis as the

emphasis is now placed on proposing less computationally intensive solutions.

The computational complexity of MCMC and kernel-based models is typically

very high and hence deterministic approximations, such as variational Bayes and

maximum-a-posteriori treatments, in addition to sparsity-inducing solutions will

be the focus of the following Chapters.



Chapter 4

Variational Bayes Inference

The Markov chain Monte Carlo sampling schemes introduced in the previ-

ous chapter are resource intensive as evidenced by their dominant computa-

tional complexity O (LCN3) and memory requirements O (SN2 + 3NC), where

S, L, C,N are the number of sources, drawn posterior samples (length of Markov

chain), classes and samples (objects) respectively. As we have seen, the typical

Markov chain length required for convergence in this application varies from

some thousands, in the case of the Gibbs sampler, to tens of thousands, for the

Metropolis scheme. Hence, considering that for each block sample drawn an

inversion costing O(N3) is performed, the need for approximate inference is ap-

parent in order to scale up the proposed methodology for probabilistic multiple

kernel learning.

In this chapter1 the first step towards efficient and less expensive methodol-

ogy is offered through a powerful deterministic approximation that belongs to

the class of Mean Field methods (Parisi 1988, Opper and Winther 2001) and

the sub-class of variational Bayes approaches (Jaakkola 2001, Ghahramani and

Beal 2001, Beal 2003, MacKay 2003). First a brief examination of the main

points of Mean Field methodology and specifically the “naive” variational mean

field approach for factored ensembles of approximate posteriors is offered to-

gether with the intuition behind them. Then such an approximation is derived

for the probabilistic multiple kernel learning model and it is assessed in com-

parison with the full MCMC solution previously introduced, with respect to the

resulting approximate posterior distributions and computing times. Finally, we

1Parts of this work have already appeared in (Damoulas and Girolami 2008, Damoulas and
Girolami 2009a)

90
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conclude with an illustrative experimental section on multiclass UCI datasets

comparing against published results from standard machine learning methods.

4.1 Mean Field Theory

The Mean Field (MF) theory, also known as self consistent field theory in physics,

dates back to statistical mechanics work as early as 1935 with the Bethe approx-

imation (Bethe 1935), that can be seen as an exact mean field theory on a tree,

and also on later fundamental work by Thouless et al. (1977) that provided

the TAP mean field equations for describing spin glass models in physics. The

main characteristic of the MF approximation is that interactions and mutual

influence between random variables is approximated by an effective “field” that

acts independently on each of the individual random variables. This assumption

provides us with convenient inference procedures that factorise the joint poste-

rior distribution of interest to an ensemble of independent (but weakly coupled)

approximate ones.

There are three main methodological streams of MF theory with distinct

characteristics and applicability (Opper and Winther 2001). The most com-

monly adopted one in the information theory and machine learning areas is the

variational Bayes approach because it can easily produce a lower bound on the

model evidence, which as we shall see is necessary for inference, and it offers a

better probabilistic interpretation than the field theoretic and TAP approaches

that are outside the scope of this thesis. The interested reader can consult Parisi

(1988) for a thorough exposition and review of the last methods as we will now

focus on the proposed variational approach that has been introduced in Chapter

2 and is adopted for probabilistic multiple kernel learning.

4.1.1 Variational Mean Field Theory for Classification

In the variational Bayes framework2 we seek to approximate the joint parameter

posterior distribution with an ensemble of factored approximate posteriors that

belong to a tractable family of distributions (typically the exponential family).

Considering a classifier m with a set of parameters Θ = {Θi, . . . ,ΘI} and a

dataset D = {t,X} with labels t and input samples X, the approximation can

2Also known as ensemble learning, see Bishop (2006) for a thorough treatment.



CHAPTER 4. VARIATIONAL BAYES INFERENCE 92

be expressed as:

p(Θ|t,X,m) ≈ Q (Θ) =
I∏
i=1

Qi (Θi) (4.1)

The above factorisation of approximate posteriors does neglect statistical corre-

lations between the random variables, i.e. EQ {Θi,ΘI} = EQi {Θi}EQI {ΘI},
but takes into account their inherent coupling as will be shown in the next

section.

The approximate distribution Q (Θ) =
∏I

i=1Qi (Θi) is chosen such that

it minimises an appropriate divergence measure with respect to the true joint

posterior distribution. That measure, as we have seen previously, is typically

the Kullback-Leibler (KL) divergence3 (Kullback and Leibler 1951) as it enables

tractable computations:

KL (Q (Θ) ‖ p (Θ|t,X,m)) =

∫
Q (Θ) log

Q (Θ)

p (Θ|t,X,m)
dΘ (4.2)

The main goal in variational Bayes methods is to approximate and lower bound

the marginal likelihood or model evidence (MacKay 2003, Beal 2003). In do-

ing so, the minimisation of the above KL divergence between the approximate

and true posterior distribution is implicitly achieved. Consider the following

decomposition of the marginal likelihood in our classification context:

log p (t|X,m) =∫
Q(Θ) log

{
p (t,Θ|X,m)

Q(Θ)

}
dΘ︸ ︷︷ ︸

Lower Bound

−
∫
Q(Θ) log

{
p(Θ|t,X,m)

Q(Θ)

}
dΘ︸ ︷︷ ︸

KL Divergence

(4.3)

noting that the second term is the aforementioned KL divergence, the Naperian

logarithm of the marginal likelihood can be re-expressed as:

log p (t|X,m) = L(Q (Θ)) + KL (Q (Θ) ‖ p (Θ|t,X,m)) (4.4)

where L(Q (Θ)) is a lower bound on the model evidence since the KL divergence

is always greater or equal to zero. Hence, by maximising the lower bound we

equivalently minimise the KL divergence (which appears in the decomposition

of the lower bound as we have seen in Chapter 2) and achieve the desired goals

3Also known as the relative entropy or information gain (MacKay 2003)
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of approximating the marginal likelihood and the posterior distributions.

Finally, for the factorised ensemble approximation that is adopted in this

thesis, it has been shown in Chapter 2 that optimal approximate distributions

that maximise the lower bound are of the following form:

Qi(Θi) ∝ exp (Ei 6=j {log p (t,Θ|X,m)}) (4.5)

where the expectation Ei 6=j is taken with respect to all factors Q except the jth

one.

4.2 Variational Bayes Probabilistic Multiple Ker-

nel Learning

Having introduced the ideas behind the variational methodology and its adoption

for the general classification framework, a variational treatment is now applied

to the probabilistic MKL problem under consideration. In this section the fo-

cus is on the standard convex linear kernel combination rule with appropriate

modifications given for the other previously proposed rules in previous Chapter.

Revisiting the proposed MKL model’s plates diagram in Figure 4.1, we can

define for convenience as Ψ = {Y,W,A,Θ, (β), (ρ), (π,χ)} the set of all prior

parameters and Ξ = {τ, υ, ω, φ, (µ), (λ)} the set of all hyper-prior parameters4.

Consider again the standard multinomial classification scenario on a multi-

feature dataset D =
{
t,X(s)

}
where X(s) ∈ RN×Ds , s ∈ {1, . . . , S}, tn ∈

{1, . . . , C} and S,N,D,C ∈ N the total number of sources, samples, features

and classes respectively. After embedding the feature spaces into S base kernels

Ks that will be combined into the composite kernel K, the joint likelihood of

the convex linear MKL model m is given by:

JOINT LIKELIHOOD p (t,Ψ|Ks:1...S,Ξ,m) =

p (t|Y) p (Y|W,Ks:1...S,β,Θ) p (W|A) p (A|τ, υ) p (β|ρ) p(Θ|ω, φ)p (ρ|µ, λ)

(4.6)

which is accordingly modified for the other parametric combination rules by

substituting the corresponding prior distributions. The variational mean field

approximation to the joint posterior is the factorable ensemble:

4(·) denotes a possibly undefined random variable for a given kernel combination rule.
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Figure 4.1: Plates diagram of the model depicting the conditional relationships
of model variables together with the dimensionality of corresponding plates. The
dotted plates depict variations for the three parametric combination rules.

p (Ψ|Ks:1...S,Ξ, t) ≈ Q (Ψ) = Q (Y)Q (W)Q (A)Q (β)Q (Θ)Q (ρ) (4.7)

and following the decomposition in Equation 4.3 we can lower bound the marginal

likelihood:

LOWER BOUND log p (t|Ks:1...S,Ξ,m) ≥
∫
Q(Ψ) log

{
p (t,Ψ|Ks:1...S,Ξ,m)

Q(Ψ)

}
dΨ

(4.8)

or equivalently:

log p (t|Ks:1...S,Ξ,m) ≥ EQ(Ψ) {log p (t,Ψ|Ks:1...S,Ξ,m)} − EQ(Ψ) {logQ(Ψ)}
(4.9)

and minimise it, according to Equation 4.5, with distributions of the form:

Q (Ψi) ∝ exp
(
EQ(Ψ−i){log p (t,Ψ|Ks:1...S,Ξ,m)}

)
(4.10)

where Q (Ψ−i) is the factorable ensemble with the ith component removed.

The derived closed form approximate posterior distributions for the model’s

random variables follows with full details in Appendix B.1. When a closed



CHAPTER 4. VARIATIONAL BAYES INFERENCE 95

form approximate posterior distribution is not available due to non-linear con-

tributions to the expectation we resort to importance sampling techniques as

previously employed in Lawrence et al. (2004) and Girolami and Rogers (2006).

4.2.1 Q(Y): Approximate posterior for Y

A closed form approximate posterior for the auxiliary variables can be derived

based on the multinomial probit link function tn = i ⇐⇒ yni > ynj ∀ j 6=
i with j, i ∈ {1, . . . , C}, and the associated prior distribution on Y given in

Equation 3.8. Considering the approximate posterior form in Equation 4.10,

the model’s joint likelihood in Equation 4.6 and its contributing terms to the

required expectation we have:

Q (Y) ∝ exp
{
EQ(W)Q(β)Q(Θ) {log p (t|Y) + log p (Y|W,Ks:1...S,β,Θ)}

}
(4.11)

Q (Y) ∝
N∏
n=1

δ (yni > ynj ∀ j 6= i) δ (tn = i)Nyn

(
W̃

T

k
eβ eΘ
n , I

)
(4.12)

which is a product of N C−dimensional conically truncated Gaussian distri-

butions demonstrating independence across samples as expected from our ini-

tial i.i.d assumption. The proportionality indicates the unnormalized nature

of the approximate posterior which can be corrected to account for the trun-

cation by a normalising factor Zn = P (yn ∈ C) where the cone is defined as

C = {yn : yni > ynj} ∀ j 6= i, see Appendix B.2 for full derivations, and results

in:

Q (Y) =
N∏
n=1

Z−1
n

C∏
c=1

N tn
ync

(
w̃

T

ck
eβeΘ
n , 1

)
(4.13)

where the superscript tn denotes the dimension for truncation when tn = i and

c 6= i. The normalising constant is given by:

Zn = Ep(u)

{∏
j 6=i

Φ
(
u+ w̃

T

i k
eβeΘ
n − w̃

T

jk
eβeΘ
n

)}
(4.14)
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with p (u) = Nu (0, 1) and Φ the standardised cumulative distribution function

(CDF). The shorthand tilde notation denotes posterior expectations in the usual

manner, i.e. f̃(β) = EQ(β){f(β)}, and the posterior expectations (details in

Appendix B.2) for the auxiliary variable when sample n belongs to class i ∈
{1, . . . , C} follow as:

ỹnc = w̃
T

ck
eβ eΘ
n −

Ep(u)

{
Nu
(
w̃

T

ck
eβ eΘ
n − w̃

T

i k
eβ eΘ
n , 1

)
Φn,i,c
u

}
Ep(u)

{
Φ
(
u+ w̃

T

i k
eβ eΘ
n − w̃T

ck
eβ eΘ
n

)
Φn,i,c
u

} (4.15)

ỹni = w̃
T

i k
eβ eΘ
n −

(∑
c6=i

ỹnc − w̃
T

ck
eβ eΘ
n

)
(4.16)

where Φn,i,c
u =

∏
j 6=i,c Φ

(
u+ w̃

T

i k
eβ eΘ
n − w̃

T

jk
eβ eΘ
n

)
. It is worth noting the coupling

between the approximate posterior expectations for the auxiliary variables and

the regression coefficients, which ensures that appropriate (in the sense of fol-

lowing the probit link definition) class-conditional posterior dependencies are

induced.

4.2.2 Q(W): Approximate posterior for regression coeffi-

cients W

In an analogous manner, the approximate posterior distribution for the regres-

sion coefficients following Equation 4.10 is defined as:

Q (W) ∝ exp
{
EQ(Y)Q(β)Q(A)Q(Θ){log p (Y|W,Ks:1...S,β,Θ) + log p (W|A)}

}
(4.17)

and by substituting for the model’s prior distributions, see Chapter 3, it can be

decomposed as:

Q (W) ∝ exp

{
EQ(Y)Q(β)Q(Θ)

{
log

N,C∏
n,c=1

Nync

(
w

T

ck
βΘ
n , 1

)}

+EQ(A)

{
log

N,C∏
n,c=1

Nwnc

(
0, α−1

nc

)}}
(4.18)
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which by taking the expectations and completing the square, see Appendix B.1.2

for full derivation, leads to the final closed form approximate posterior for the

regression coefficients:

Q (W) =
C∏
c=1

Nwc

(
VcK

eβ eΘỹc,Vc

)
(4.19)

where the covariance is defined as

Vc =

(
S∑
i=1

S∑
j=1

β̃iβjK
eθi
i K

eθj
j + Ãc

)−1

(4.20)

and Ãc is a diagonal matrix of the expected variances α̃i . . . α̃N for each class.

The associated posterior mean for the regression coefficients is therefore w̃c =

VcK
eβ eΘỹc and we can see again the coupling between the auxiliary variable and

regressor’s posterior expectation.

4.2.3 Q(A): Approximate posterior of scales A

The conjugacy between the Gamma prior of the scales and the Normal prior on

the regression coefficients allows a closed form posterior for the scales as it was

shown in Equation 3.24 in Chapter 3. Starting again from the same principles

as above for deriving the approximate posterior:

Q (A) ∝ exp
{
EQ(W) (log p (W|A) + log p (A|τ, υ))

}
(4.21)

which results, for a detailed derivation see Appendix B.1.3 or Denison et al.

(2002), into the previously described Gamma posterior distribution, this time

conditioned on the expected value of the regression coefficients:

Q (A) =

N,C∏
n,c=1

Gαnc
(
τ +

1

2
, υ +

1

2
w̃2
nc

)
(4.22)

and hence the approximate posterior mean for the scale is given by

ãnc =
2τ + 1

2υ + w̃2
nc

(4.23)
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4.2.4 Q (Θ): Approximate posterior for Θ

Following Equation 4.10, the approximate posterior for the kernel parameters

Θ ∈ RS×Ds , where Ds the dimensionality of each feature space s embedded into

base kernel Ks, is given by:

Q (Θ) ∝ exp
{
EQ(Y)Q(W)Q(β)Q(A){log p (Y|W,Ks:1...S,β,Θ) + log p (Θ|φ, ω)}

}
(4.24)

where the normalising constant of this approximate posterior cannot be ob-

tained in closed form. Hence the need to resort to importance sampling meth-

ods (Andrieu 2003), as previously employed within a variational framework

(Lawrence et al. 2004, Girolami and Rogers 2006), in order to obtain the re-

quired expectations.

Following standard importance sampling methodology that was reviewed in

Chapter 2, the required importance weights for the kernel parameters Θ, see

Appendix B.1.4 for details, are given by:

W
(
Θi
)

=

N,C∏
n,c=1

Neync
(
w̃

T

ck
Θi

n , 1
)

I∑
i′=1

N,C∏
n,c=1

Neync
(
w̃

T

ck
Θi′

n , 1
) (4.25)

where Θi is sampled from the Gamma prior p (Θ|φ, ω) and the resulting esti-

mator for the required expectations is:

f̃(Θ) ≈
I∑
i=1

f(Θi)W
(
Θi
)

(4.26)

with scaling per sample similar to gradient based methods that optimise the

marginal likelihood (MacKay 2003).

4.2.5 Q (β): Approximate posterior for β

Again no closed form approximate posterior distribution can be obtained for

the kernel combination parameters and in the exact same manner as above

importance sampling weights are employed to provide an unbiased estimator of

expectations. The importance weights, see Appendix B.1.4, are defined again as
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a normalised likelihood ratio:

W
(
βi
)

=

N,C∏
n,c=1

Neync
(
w̃

T

ck
βi

n , 1
)

I∑
i′=1

N,C∏
n,c=1

Neync
(
w̃

T

ck
βi
′

n , 1
) (4.27)

where βi is sampled, for the convex linear combination rule, from the Dirichlet

prior p (β|ρ) and the estimator follows Equation 4.26 substituting for the kernel

combination parameters β. In the case of the two other parametric combination

rules, the appropriate prior distribution is employed each time (Gamma for the

weighted product rule and a binomial for the binary rule) for sample proposal

with the same importance weights definition and resulting estimator.

4.2.6 Q (ρ)Q (π)Q (χ): Approximate posteriors for ρ,π,χ

Finally, inference on the hyper-parameters leads again to unnormalized approx-

imate posteriors with the normalising constant unobtainable in closed form.

Hence, we resort again to importance sampling with proposed parameters sam-

pled from the corresponding prior distributions and weights defined by nor-

malised likelihood ratios. For the convex linear kernel combination rule the

importance weights for the hyper-parameter associated to the Dirichlet distri-

bution on β are:

W
(
ρi
)

=
Deβ (ρi)

I∑
i′=1

Deβ
(
ρi
′
) (4.28)

where ρ is sampled from the prior Gamma distribution. In the case of the

weighted product kernel combination rule, the hyper-parameters associated with

the Gamma distribution on β are:

W
(
πi, χi

)
=

S∏
s=1

Geβs (πi, χi)
I∑

i′=1

S∏
s=1

Geβs
(
πi
′
, χi

′
) (4.29)

where π, χ are proposed from their corresponding prior exponential distribu-
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tions defined in Chapter 3. The unbiased estimator for the required expecta-

tions follows from Equation 4.26, for each specific random variable considered,

by making use of the associated importance weights.

4.2.7 Predictive Distribution

In the previous sections the approximate posterior distributions have been de-

rived and analytically described. The strength of variational methodology, as

previously emphasised, is the inference of (approximate) posterior distributions

over parameters in contrast with simple point-estimate deterministic approxima-

tions (Bishop 2006) such as maximum likelihood (ML) or maximum-a-posteriori

(MAP) methods. Approximate posterior inference of the model parameters dur-

ing the training phase of the variational MKL method is now complete and we

can now turn our attention to the prediction or testing phase of the algorithm.

Returning back to the goal of MKL classification scenarios, we are interested

in making class predictions t∗ for Ntest new samples that are represented by S

different information sources X
(s)
∗ embedded into Hilbert spaces as base test ker-

nels K∗s. Considering the limiting case of a single new sample x
(s)
∗ the composite

test kernel element for the standard convex linear combination rule is defined

as:

k∗
(
xi,x∗,θ

(s),β
)

=
S∑
s=1

βsk∗s

(
x

(s)
i ,x(s)

∗ ,θ
(s)
)

(4.30)

which generalises for multiple new samples to the overall composite test kernel

K∗ ∈ RN×Ntest . The class predictive distribution for a single new object x∗ is

given by:

p (t∗ = i|k∗,K, t) =

∫
p (t∗ = i|y∗) p (y∗|k∗,K, t) dy∗ =

∫
δt∗p (y∗|k∗,K, t) dy∗

(4.31)

where δt∗ = δ (y∗i > y∗j ∀ j 6= i) δ (t∗ = i) denotes the truncation induced by the

test sample for class i membership. The second term is the predictive distribu-

tion for the auxiliary variable and is given by:

p (y∗|k∗,K, t) =

∫
p (y∗|W,k∗) p (W|K, t) dW (4.32)

which, by substituting for the approximate posterior on the regression coeffi-
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cients Q (W ), gives rise (full derivation in Appendix B.3) to the final expression

for the class predictive distribution:

p (t∗ = i|k∗,K, t) = Ep(u)

{∏
j 6=i

Φ

[
1

ν̃j
(uν̃i + m̃i − m̃j)

]}
(4.33)

where, for the general case of Ntest samples the variables m̃c and Ṽc are defined

as:

m̃c = ṼcK
T

∗

(
K∗K

T

∗ + V−1
c

)−1

Kỹc (4.34)

Ṽc =
(
I + K∗

TVcK∗
)

(4.35)

with Vc the covariance of the approximate regressor posterior as defined in

Equation 4.20 and by dropping the notation for the dependence of the train K ∈
RN×N and test K∗ ∈ RN×Ntest kernels on Θ̃, β̃ for clarity. In Algorithm 3 the

variational approximation for probabilistic multiple kernel learning (VBpMKL)

is summarised in a pseudo-algorithmic fashion.

4.3 Convergence and the Lower Bound

Convergence is typically monitored via the progression of the lower bound and

its relative change. The variational lower bound, recalling Equation 4.8, can

be derived by conditioning on current values of β,Θ,A and associated hyper-

parameters and by considering the relevant components of the joint likelihood

in Equation 4.6 as follows:

Lower Bound = EQ(Y)Q(W) {log p (Y|W,Ks:1...S)}+ EQ(Y)Q(W) {log p (W|A)}

−EQ(Y) {logQ (Y)} − EQ(W) {logQ (W)} (4.36)

which results in, see Appendix B.4 for derivation, to the final expression:
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Algorithm 3 VBpMKL

1: Initialise Ξ, sample Ψ, create Ks|βs, θs and hence K|β,Θ
2: while Iterations < max & Convergence > Threshold do
3: w̃c ← VcKỹc

4: ỹnc ← w̃
T

ck
eβ eΘ
n −

Ep(u){Nu
“ewT

c k
eβ eΘ
n −ewT

i k
eβ eΘ
n ,1

”
Φn,i,cu }

Ep(u){Φ
“
u+ewT

i k
eβ eΘ
n −ewT

c k
eβ eΘ
n

”
Φn,i,cu }

5: ỹni ← w̃
T

i k
eβ eΘ
n −

(∑
j 6=i ỹnj − w̃

T

jk
eβ eΘ
n

)
6: α̃−1

nc ← 2τ+1

2υ+gw2
nc

7: ρ̃, β̃, Θ̃← ρ̃, β̃, Θ̃|w̃c, ỹn by importance sampling

8: Update K|β̃, Θ̃ and Vc

9: end while
10: Create composite test kernel K∗|β̃, Θ̃
11: Ṽc ←

(
I + K

T

∗VcK∗

)
12: m̃c ← ṼcK

T

∗

(
K∗K

T

∗ + V−1
c

)−1

Kỹc

13: for n = 1 to Ntest do
14: for i = 1 to C do
15: for l = 1 to L Samples do

16: ul ← N (0, 1), plni ←
∏

j 6=i Φ
[

1eνj
(
ulν̃i + m̃i − m̃j

)]
17: end for
18: end for
19: P (t∗ = i|k∗,K, t) = 1

L

∑L
l=1 p

l
ni

20: end for

Lower Bound =
NC

2
+

1

2

C∑
c=1

log |Vc|+
N∑
n=1

logZn −
1

2

C∑
c=1

Tr
[
A−1
c Vc

]
−1

2

C∑
c=1

w̃
T

cA
−1
c w̃c −

1

2

C∑
c=1

log |Ac| −
1

2

C∑
c=1

N∑
n=1

k
T

nVckn (4.37)

4.4 Computational Complexity

The variational methodology adopted in this Chapter aims at reducing the com-

putational complexity of the Markov chain Monte Carlo solutions of Chapter 3

while retaining similar levels of classification accuracy and performance metrics.

The reduction achieved is from a computational complexity of O (LCN3)
to→

O (TCN3) with T the number of the variational iterations and S, L, C,N are
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the number of sources, drawn posterior samples (length of Markov chain), classes

and samples (objects) respectively. Typically T << L (e.g T ≤ 100 and

L ≥ 100, 000) as the number of required iterations for convergence of the lower

bound is orders of magnitude smaller than the necessary Markov chain length.

Furthermore, although the apparent memory requirements remain the same

as O (SN2 + 3NC), the additional memory for storing the L posterior samples

when computing convergence metrics for the MCMC solutions is now made re-

dundant via the computation of the lower bound and the converged approximate

posteriors.

4.5 Variational Inference and Gibbs Sampling

This section examines the performance of the variational Bayes approximation

with respect to the full MCMC Gibbs sampling solution previously introduced

in Chapter 3. The comparison is performed between the variational approximate

posterior distribution and the Gibbs sampling posterior, classification accuracy

and computational processing time on two artificial low-dimensional datasets, a

linearly and a non-linearly separable one as introduced by (Neal 1998).

Furthermore, the convergence of the VBpMKL approximation was deter-

mined by monitoring the lower bound and the convergence occurred when there

was less than 0.1% increase in the bound or when the maximum number of vari-

ational iterations was reached. The burn-in period for the Gibbs sampler was set

to 10% of the total 100,000 of samples. Finally, all the CPU times reported in

this study are for a 1.6 GHz Intel based PC with 2Gb RAM running unoptimised

Matlab® codes.

4.5.1 Synthetic Data sets

In order to illustrate the performance of the variational approximation against

the full Gibbs sampling solution, we employ two low dimensional datasets which

enable us to visualise the decision boundaries and posterior distributions pro-

duced by either method. First we consider a linearly separable case in which

we construct the dataset by fixing our regression coefficients W ∈ RD×C , with

C = 3 and D = 3, to known values and sample two-dimensional covariates X

plus a constant term. In that way, by knowing the true values of our regression



CHAPTER 4. VARIATIONAL BAYES INFERENCE 104

coefficients, we can examine the accuracy of both the Gibbs posterior distribu-

tion and the approximate posterior distribution of the variational method. In

Figure 4.2 the dataset together with the optimal decision boundaries constructed

by the known regression coefficients values can be seen.
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Figure 4.2: Linearly separable dataset with known regression coefficients defining
the decision boundaries. Cn denotes the members of class n and Decij is the
decision boundary between classes i and j.

In Figures 4.3 and 4.4 the posterior distributions of one decision boundary’s

(Dec12) slope and intercept based on both our obtained Gibbs samples and the

approximate posterior of the regression coefficients W are plotted. As it can be

seen, the variational approximation is in agreement with the mass of the Gibbs

posterior and it successfully captures the predetermined regression coefficients

values.

However, as it can be observed the approximation is over-confident in the

prediction and produces a smaller covariance for the posterior distribution as

expected (de Freitas et al. 2001). Furthermore, the probability mass is concen-

trated in a very small area due to the very nature of variational approximations

and similar mean field methods that make extreme “judgements” as they do not

explore the posterior space by Markov chains.

CGibbs =

[
0.16 0.18

0.18 0.22

]
CVB =

[
0.015 0.015

0.015 0.018

]
(4.38)
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Figure 4.3: Gibbs posterior distribution of a decision boundary’s (Dec12) slope
and intercept for a Markov chain of 100,000 samples. The cross describes the
original decision boundary employed to sample the dataset.
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Figure 4.4: The variational approximate posterior distribution for the same case
as above. Employing 100,000 samples from the approximate posterior of the
regression coefficients W in order to estimate the approximate posterior of the
slope and intercept.
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The second synthetic dataset we employ is a 4-dimensional 3-class dataset

{t,X} with N = 400 samples, first described by (Neal 1998), which defines the

first class as points in an ellipse α > x2
1 + x2

2 > β, the second class as points

below a line αx1 +βx2 < γ and the third class as points surrounding these areas,

see Figure 4.5.

The problem is tackled by introducing a second order polynomial expansion

on the original dataset F (xn) = [1 xn1 xn2 x
2
n1 xn1xn2 x

2
n2] while disregarding the

uninformative dimensions x3, x4. Due to the aforementioned expansion which

avoids the need for embedding the features into a high dimensional Hilbert

space induced by a kernel, there is now a 2-dimensional decision plane that

can be visualised and 6-dimensional regression coefficients wc per class. In Fig.

4.5 we plot the decision boundaries produced from the full Gibbs solution by

averaging over the posterior parameters after 100,000 samples and in Fig. 4.6

the corresponding decision boundaries from the variational approximation after

a maximum of 100 iterations.
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Figure 4.5: Decision boundaries from the Gibbs sampling solution on Neal’s
dataset.

As it can be seen, both the variational approximation and the MCMC so-

lution produce similar decision boundaries leading to good classification per-

formances of 2% error for both the Gibbs and the variational approximation.

However, the Gibbs sampler produces typically tighter boundaries due to the
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Figure 4.6: Decision boundaries from the variational approximation on Neal’s
dataset.

Markov Chain exploring the parameter posterior space more efficiently than the

VB approximation.

The corresponding CPU times are given in Table 4.1

Gibbs VB
41,720 (s) 120.3 (s)

Table 4.1: CPU time (sec) comparison for 100,000 Gibbs samples versus a max-
imum of 100 variational iterations. Notice that the number of variational itera-
tions needed for the lower bound to converge is typically less than 100.

4.6 Multinomial UCI Experiments

In this final section the variational approximation is assessed on standard UCI

(Newman et al. 1998) problems and compared against previously published re-

sults (Manocha and Girolami 2007) of probabilistic and standard nearest neigh-

bour (k−nn) classifiers from the literature. It is worth noting that recent work

on the probabilistic k−nn has offered a novel MCMC inference scheme based

on perfect sampling (Cucala et al. 2009) that could potentially offer classifica-

tion improvements. The aim here is to obtain a first picture of classification

accuracy and computational processing time from the proposed variational ap-

proximation. At this stage, the problems considered have a single feature space
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or information source and hence there is no need to employ the multiple ker-

nel learning (MKL) part of the approximation. Extensive experimentation with

multiple feature spaces will be reported in Chapter 7 where the various combina-

tion rules and the full MKL variational methodology are assessed on important

bioinformatics and automatic currency validation problems.

In Table 4.2 the characteristics of the employed datasets are described. The

experiments consider three standard kernel functions and the hyper-parameters

were set to uninformative values. The Gaussian (RBF) kernel parameters were

fixed to 1/D whereD the number of attributes. We employ an RBF (VB RBF), a

2nd order polynomial (VB P) and a linear kernel (VB L) with the variational ap-

proximation and report 10-fold cross-validated (CV) error percentages, in Table

4.3, and CPU times, in Table 4.4. Bold fonts denote the overall top classification

accuracy across methods, which in most cases is not statistically significant due

to the large CV variance observed.

Data set N C D
Balance 625 3 4
Crabs 200 4 5
Glass 214 6 9
Iris 150 3 4

Soybean 48 4 35
Vehicle 846 4 18
Wine 178 3 13

Table 4.2: Multinomial UCI datasets. N , C, D are respectively the number of
samples, classes and attributes in each dataset.

4.7 Discussion

In this Chapter a variational Bayes approximation for probabilistic multiple ker-

nel learning (VBpMKL) was proposed and examined with respect to resulting

posterior distributions and decision boundaries, classification accuracy and com-

putational processing times. A direct comparison with the full MCMC Gibbs

sampling solution demonstrates the over-confidence of the approximate posteri-

ors that are typically narrower as they underestimate the covariance structure

of the true posterior distribution. Preliminary results from the variational ap-

proximation on multinomial UCI datasets demonstrate competing classification
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Data set VB RBF VB L VB P K -nn PK -nn
Balance 8.8± 3.6 12.2± 4.2 7.0± 3.3 11.5± 3.0 10.2± 3.0
Crabs 23.5± 11.3 13.5± 8.2 21.5± 9.1 15.0± 8.8 19.5± 6.8
Glass 27.9± 10.1 35.8± 11.8 28.4± 8.9 29.9± 9.2 26.7± 8.8
Iris 2.7± 5.6 11.3± 9.9 4.7± 6.3 5.3± 5.2 4.0± 5.6

Soybean 6.5± 10.5 6± 9.7 4± 8.4 14.5± 16.7 4.5± 9.6
Vehicle 25.6± 4.0 29.6± 3.3 26± 6.1 36.3± 5.2 37.2± 4.5
Wine 4.5± 5.1 2.8± 4.7 1.1± 2.3 3.9± 3.8 3.4± 2.9

Table 4.3: 10-fold cross-validated error percentages (mean±std) on standard
UCI multinomial datasets. Top performance (not always statistically significant)
in bold.

Data set Balance Crabs Glass Iris Soybean Vehicle Wine
CPU time (s) 2,285 270 380 89 19 3,420 105

Table 4.4: Running times (seconds) for computing 10-fold cross-validation results
with unoptimised Matlab® codes.

performances while retaining reasonable computational processing times when

compared with CPU times reported in (Manocha and Girolami 2007) for nearest

neighbour methods.

The main goal of reducing the computational burden of the MCMC method-

ology offered in Chapter 3 has been achieved by offering a smaller computational

complexity of O (TCN3) while retaining similar levels of classification accuracy

and resulting (approximate) posterior distributions. This will be further demon-

strated in Chapters 7 and 6 where the MCMC Gibbs sampling and the VBpMKL

methods are applied on large scale bioinformatics, hand-written numeral recogni-

tion and automatic currency validation problems. In these problems, the various

multiple kernel learning rules under the variational approximation will also be

assessed. Finally, the memory requirements remain dominated by the multiple

N2 matrices required and the algorithms still require multiple N3 inversions.

These issues will be addressed in the following Chapter where sparse determin-

istic approximate methodology based on point-estimates will now be considered.



Chapter 5

MAP Estimators and mRVMs

In the previous chapters we have described an accurate (exact inference to the

limit of infinite samples) MCMC inference methodology for multiple kernel learn-

ing which is computationally expensive in both processing and memory require-

ments. To address the processing burden, variational Bayesian methodology was

proposed as a deterministic approximation that still retains the Bayesian bene-

fits of (approximate) posterior distributions over parameters. However, despite

the much improved computational complexity, the large memory requirements

O(SN2 +3NC) and the typical dominant O(CN3) scaling of multinomial kernel

methods still present important and unsolved restrictions.

In order to address these issues and offer an efficient alternative, we resort to

further deterministic approximations and sparse solutions via sparsity inducing

prior formulations. In this chapter1, such a deterministic maximum-a-posteriori

(MAP) approximation is first introduced, which leads to a generalisation of

the Relevance Vector Machine (Tipping 1999, Tipping 2001) to the multiclass

multi-kernel setting. The MAP approximation can in principle be less accurate

than the full MCMC solution and the variational Bayes approximation as it

employes point-estimates instead of parameter distributions but the benefits are

improved processing times and memory requirements. Throughout this chapter

we concentrate on the standard kernel combination case of the convex linear

summation rule that has been previously introduced.

First, the resulting MAP estimator of the model and also associated expecta-

tion - maximisation (EM) update schemes are described in detail. Then, two new

1Parts of this work have already appeared in (Damoulas et al. 2008, Ying et al. 2009) and
have been submitted for publication (Psorakis et al. 2010)
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formulations for multiclass multi-kernel relevance vector machines (mRVMs) are

presented that explicitly lead to sparse solutions, both in samples and in number

of kernels. This enables their application to large-scale multi-feature multinomial

classification problems where there is an abundance of training samples, classes

and feature spaces. Finally, the chapter concludes with experimental studies for

convergence, performance and resulting sparsity on standard UCI datasets.

5.1 MAP Estimation and EM Update Schemes

Consider the regression nature of the multinomial probit model. In the previous

chapter we have seen how the introduction of the auxiliary variables Y offers a

closed form posterior distribution for the regression parameters W. This is not

possible with the standard softmax likelihood approach where the parameter

posterior would be directly dependent on the class labels t and further approx-

imations such as the Laplace (saddle-point approximation) are needed. Having

that closed form posterior allows for a straightforward MAP estimator of the

regression coefficients:

M-STEP Ŵ = argmax
W

p(W|Y,A,K)

where again K is the composite kernel conditioned on specific kernel parame-

ters Θ,β and A the scales of the zero-mean normally distributed parameters

W. The posterior is a multivariate Gaussian distribution and hence the MAP

estimate of the regression coefficients is the mean of the posterior distribution,

see [Appendix], given by:

ŵc =
(
KK

T

+ Ac

)−1

Kyc (5.1)

The next step is to consider the auxiliary variable posterior distribution

which, as we have seen in the previous chapter’s Equation 3.23, is a product

of N C−dimensional conically truncated Gaussians. As such, a MAP estimate

and also an expectation step can be considered as: M-STEP Ŷ = argmax
Y

p (Y|W,K, t)

E-STEP Ỹ = Ep(Y|W,K,t){Y}
(5.2)

where the MAP estimate for a sample n that belongs to class i is given by
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ŷni = ŵ
T

i kn and for c 6= i is either the mean of the right truncated univariate

normal (when the truncation is greater than the mean) or the truncation point

itself (when the truncation is less than the mean). Hence it can be described as:{
ŷnc = ŵ

T

ckn if ŷni ≥ ŵ
T

ckn

ŷnc = ŷni if ŷni ≤ ŵ
T

ckn
(5.3)

For the E-step, the posterior expectations of the auxiliary variable accord-

ing to the object’s class membership i are derived analytically in [Appendix].

The expectation of ync for all c 6= i and again conditioning on specific kernel

parameters Θ,β, is given by:

ỹnc ← knŵc −
Ep(u){Nu

(
ŵ

T

ckn − ŵ
T

i kn, 1
)

Φn,i,c
u }

Ep(u){Φ
(
u+ ŵ

T

i kn − ŵT

ckn
)

Φn,i,c
u }

(5.4)

and the expectation for the ith class as:

ỹni ← ŵ
T

i kn −

(∑
j 6=i

ỹnj − ŵ
T

jkn

)
(5.5)

where Φ is the cumulative distribution function and Φn,i,c
u is defined as:

Φn,i,c
u =

∏
j 6=i,c

Φ
(
u+ ŵ

T

i kn − ŵ
T

jkn

)
(5.6)

Having derived and described the maximisation and expectation steps for the

regression coefficients and auxiliary variables, we turn our attention to the scales

A and the kernel parameters β. Distinct M-step and E-step procedures can be

derived for the scales given that the mode and mean of a Gamma distribution

are different:  M-STEP Â = argmax
A

p (A|W, τ, υ)

E-STEP Ã = Ep(A|W,τ,υ){A}
(5.7)

As we have seen in the previous chapter and analytically in [Appendix], a closed

form posterior distribution p(A|W, τ, υ) is available for the scales:

αnc|wnc, τ, υ ∼ Gαnc(
1

2
+ τ,

w2
nc

2
+ υ) (5.8)

which results in the following updates:
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α̂nc =

2τ − 1

w2
nc + 2υ

α̃nc =
2τ + 1

w2
nc + 2υ

(5.9)

Finally, the inference schemes are completed with a MAP estimate for the

kernel combinatorial parameters β, assuming the standard case of the convex lin-

ear rule and a uniform Dirichlet prior distribution over the simplex. Considering

the log of the joint likelihood it is easy to see (Appendix C) that maximisation

with respect to β leads to the following linearly constrained quadratic program

(QP):  β̂ = arg min
β

1
2
β

T
Ωβ − βT

f

s.t βi ≥ 0 ∀ i and
∑S

s=1 βs = 1
(5.10)

where Ωij =
∑N,C

n,c wck
T

i nkjnw
T

c is an S × S matrix, fi =
∑N,C

n,c wck
T

i nỹnc and

kjn is the nth vector of the jth base kernel.

In Algorithms 4 and 5 pseudo-algorithmic formats of the resulting MAP and

EM inference schemes are given. It is worth noting that preliminary initialisa-

tion of the auxiliary variables Y can be based on following the target labels t

(remember the probit multinomial link is tn = i ⇐⇒ yni > ynj ∀ j 6= i with

j, i ∈ {1, . . . , C}).
It is worth noting that the MAP estimation is over the augmented parameter

space of both the regression coefficients and the auxiliary variables. Hence it is

different from a standard MAP estimate, that would be over only the regression

coefficients of the “reduced” model as given in Chapter 3: Figure 3.2, that does

not employ auxiliary variables. However, the MAP estimate of the reduced

model is unobtainable as there is no closed form posterior and thus inefficient

Metropolis sampling would be required.

Having described the training phase of the standard MAP and EM schemes,

attention is turned to the testing or predictive phase of the classifier. The

resulting predictive likelihood for an unseen sample xs∗ embedded into S base
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Algorithm 4 MAP estimator

1: Initialisation (τ, υ,β,Ac,W)
2: Sample Y ∈ RC×N to follow target t.
3: while Iterations < max & Convergence > Threshold do
4: M-Step for W : Equation 5.1
5: M-Step for Y : Equation 5.3
6: M-Step for Ac : Equation 5.9
7: QP program for β : Equation 5.10
8: end while

Algorithm 5 Expectation Maximisation scheme

1: Initialisation (τ, υ,β,Ac,W)
2: Sample Y ∈ RC×N to follow target t.
3: while Iterations < max & Convergence > Threshold do
4: M-Step for W : Equation 5.1
5: E-Step for Y : Equations 5.4 and 5.5
6: E-Step for Ac : Equation 5.9
7: QP program for β : Eq. 5.10
8: end while

kernels ks∗ is given by

p (t∗ = i|xs∗,X, t) =
∫
δt∗Ny∗

(
kβ̂
∗Ŵ, I

)
dy∗ (5.11)

= Ep(u)

{∏
j 6=i Φ

(
u+ kβ̂

∗ (ŵi − ŵj)
)}

. (5.12)

Here the expectation Ep(u) is taken, in the usual manner, with respect to the

standardised normal distribution p(u) = N (0, 1). Either the Monte Carlo es-

timate or the Gauss-Hermite quadrature from Chapter 3 can be employed to

approximate the likelihood.

5.2 Sparsity and Relevance Vector Machines

All the models we have considered so far utilise the whole set of training sam-

ples when predicting the class of an unknown test sample. This is typical of

many standard supervised learning algorithms such as K-nearest neighbours,

naive bayes and Gaussian classifiers, and it leads to computational and mem-

ory problems as the training size increases. To deal with that, many sparse

or sparsity-inducing models have been proposed in the past that utilise only a
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selected subset of these samples for the final regression or classification solu-

tion. Within the statistics nomenclature such models are known as shrinkage

and selection methods.

The most notable of such models are the Lasso (Tibshirani 1996), the Sup-

port Vector Machine (Vapnik and Chervonenkis 1964) and the Relevance Vector

Machine (RVM) (Tipping 1999) that have been briefly reviewed in Chapter 2.

In the following section we introduce such sparsity-inducing models based on the

MAP and EM schemes considered so far. We employ a sparsity inducing prior

or a novel fast type-II Maximum Likelihood procedure and offer a generalisation

of the RVM to multiclass and multi-kernel problems.

5.3 Multiclass Multi-kernel Relevance Vector

Machines

In the Bayesian paradigm, the functional form analogous to SVMs is the rel-

evance vector machine (RVM) (Tipping 2001) which employs sparse Bayesian

learning via an appropriate prior formulation. Maximisation of the marginal

likelihood, a type-II maximum likelihood (ML) expression, gives sparse solutions

which utilise only a subset of the basis functions: the relevance vectors. Com-

pared to an SVM, there are relatively few relevance vectors and they are typically

not close to the decision boundary but prototypical (Tipping 1999). However,

until now, the multiclass adaptation of RVMs was problematic (Tipping 2001)

due to the bad scaling of the type-II ML procedure with respect to C, the num-

ber of classes. Furthermore, although in regression problems the RVM offers a

closed form posterior distribution for the regression parameters, in classification

the employment of the softmax likelihood imposes the need for the Laplace or

other saddle-point approximations.

In this section we describe two multiclass multi-kernel RVM methods which

are able to address multi-kernel learning while producing both sample-wise and

kernel-wise sparse solutions. In contrast to SVM approaches, they utilise the

probabilistic framework of Bayesian inference, avoid pre-computation of margin

trade-off parameters or cross-validation procedures and are able to produce pos-

terior probabilities of class memberships without using ad-hoc post-processing

methods.

In contrast with the original RVM (Tipping 1999, Tipping 2001), the pro-
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posed methods employ the multinomial probit likelihood (Albert and Chib 1993)

which, as we have seen, results in multiclass classifiers via the introduction of

auxiliary variables. In one case we propose a multiclass extension of the fast

type-II ML procedure in (Tipping and Faul 2003, Faul and Tipping 2002) and

in the second case we explicitly employ a flat prior for the hyper-parameters

that control the sparsity of the resulting model. In both cases, inference on the

kernel combinatorial coefficients is enabled via a constrained QP procedure and

an efficient expectation-maximisation (EM) scheme is adopted.

The two algorithms are suitable for different application scenarios based on

the size of the initial training set and nature (streaming or not) of the data. As it

will be further discussed, the first method (mRVM1) is a “bottom-up” approach

that starts with an empty set of basis functions and sequentially builds the model

by adding or deleting such samples based on the marginal likelihood and utilising

a novel fast multiclass type-II ML procedure. The second method (mRVM2) is a

“top-down” approach where the algorithm starts with the full model and prunes

out basis functions that have insignificant contribution to model fitting. This is

enforced by the implicit sparsity-enforcing prior which, as in the original RVM,

is a Student-t distribution.

5.4 Model Formulation

Following the previously described settings we consider S feature spaces in which

a Ds-dimensional sample xsn has an associated label tn ∈ {1, . . . , C}. Kernel

substitution is applied in each feature space resulting in S base kernels Ks ∈
RN×N that are combined into our composite kernel. Conditioning on specific2

kernel parameters Θs and assuming a uniform Dirichlet prior on the combination

parameters β while adopting the multinomial probit likelihood results in the

plates diagram in Figure 5.1.

The hierarchical Bayesian framework with a conjugate and flat (τ, υ → 0)

Gamma hyper-prior on the scale of the parameters’ Gaussian prior results in an

implicit Student-t distribution on the parameters (Tipping 2001) and therefore

encourages sparsity. Together with appropriate Type-II ML inference of the

scales A, these two developments are the main focus of the RVM approaches

and play an important role in both mRVM algorithms that are now proposed.

2Joint feature and sample sparsity methods are currently under research.
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Figure 5.1: Plates diagram of the model.

5.4.1 mRVM1

The first multiclass multi-kernel RVM we consider is based on the “constructive”

variant of RVMs (Tipping and Faul 2003, Faul and Tipping 2002) which employs

a fast type-II ML procedure. The maximisation of the marginal likelihood

p(Y|K,A) =

∫
p(Y|K,W)p(W|A)dW (5.13)

with respect to A, and K conditioned on combination parameters β, results in a

criterion to either add a sample, delete or update its associated hyper-parameter

αn. Therefore, the model can start with a single sample and proceed in a con-

structive manner as detailed below. The (log) multiclass marginal likelihood is

given by

L(A) = log p(Y|K,A) = log
∫ +∞
−∞ p(Y|K,W)p(W|A)dW

=
C∑
c=1

−1

2
[N log 2π + log |C|+ y

T

cC−1yc]

where C = I + K
T
A−1K and A is defined as a diagonal matrix with non-zero

elements as (α1, . . . , αN). Here we have made the necessary assumption (allowing

a well-behaved and differentiable marginal likelihood) that a common scale αn

is shared across classes for every sample n. This allows an effective type-II

ML scheme based on the original binary scheme proposed by Tipping and Faul

(Tipping and Faul 2003, Faul and Tipping 2002) and it couples the regression

coefficients across classes to express the intuition that adding or removing a basis

should be done on the joint evidence and support from all model classes.

The idea now is to decompose the marginal likelihood into contributing terms

from each included sample (basis function). This gives the opportunity, as it will
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be shown below, for a constructive methodology by maximising the marginal

likelihood with respect to an individual sample. The decomposition of terms in

C follows exactly as in Tipping and Faul (2003) and Faul and Tipping (2002):

|C| = |C−i| |1 + α−1
i k

T

i C−1
−iki|, (5.14)

and

C−1 = C−1
−i −

C−1
−ikik

T

i C−1
−i

αi + k
T

i C−1
i ki

. (5.15)

where C−1
−i signifies the inverse of C with the ith basis removed. Hence the (log)

marginal likelihood can also be decomposed as

L(A) =
C∑
c=1

−1

2
[N log 2π + log |C−i|+ y

T

cC−1
−iyc

− logαi + log(αi + k
T

i C−1
−iki)−

(
k

T

i C−1
−iyc

)2

αi + k
T

i C−1
−iki

]

=L(A−i) +
C∑
c=1

1

2

[
logαi − log(αi + si) +

q2
ci

αi + si

]
=L(A−i) + l(αi) (5.16)

where we follow Tipping and Faul (2003) in defining the “sparsity factor” si and

also the new multiclass “quality factor” qci as:

si = k
T

i C−1
−iki and qci = k

T

i C−1
−iyc. (5.17)

It is worth noting that although the sparsity factor si can still be seen as a

measure of overlap between sample ki and the ones already included, the quality

factor qci is now class-specific and it measures how good the sample is in helping

to describe a specific class. The significant difference with the binary maximum

solution of Tipping and Faul (2003) is that the quality of a sample is now assessed

across classes through this novel multiclass formulation.

Having decomposed the marginal likelihood into sample specific contributions

we can seek the maximum with respect to an αi. The only term that is a function

of αi is l(αi) and the only difference, in that term, with its binary definition is

the extra summation over classes and the multiclass factor qci. The derivative
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is:

∂L(A)

∂αi
=
∂l(αi)

∂αi
=

C∑
c=1

1

2

[
1

αi
− 1

αi + si
− q2

ci

(αi + si)2

]
=

C∑
c=1

α−1
i s2

i − (q2
ci − si)

2(αi + si)2

(5.18)

and by setting Equation 5.18 to zero we obtain the following stationary points:

αi =
Cs2

i∑C
c=1 q

2
ci − Csi

, if
C∑
c=1

q2
ci > Csi (5.19)

αi = ∞, if
C∑
c=1

q2
ci ≤ Csi (5.20)

Following the same analysis as in (Faul and Tipping 2002) it is straightfor-

ward to show that the second derivative on the stationary point in Equation 5.19

is always negative and hence the solution is a unique maximum for the specific

condition. For the second stationarity in Equation 5.20 as αi → ∞ the sign of

the gradient is given by −(
∑C

c=1 qci − Csi) and hence when
∑C

c=1 q
2
ci ≤ Csi this

point is now the unique maximum.

Therefore, the maximisation of the marginal likelihood leads to the possible

inclusion of a sample (with associated scale αi by Equation 5.19), deletion of one

(scale αi by Equation 5.20) or updating its corresponding scale (αi by Equation

5.19). Hence a constructive way of model building is available for the multiclass

case and with little additional overhead to the original binary procedure as it

only requires an extra summation over the ’quality factors’ qci.

Furthermore, this novel multiclass formulation of the fast type-II ML pro-

cedure can be directly used for multinomial regression problems with Y as the

continuous real-valued output. Thus, generalisations of recent work that have

adopted the binomial procedure (Schmolck and Everson 2007, Tzikas et al. 2008,

Tzikas et al. 2009) can be readily derived by adopting the proposed sequential

multinomial scheme which is algorithmically described in Algorithm 6.

Returning back to our classification framework, the modified constructive M-

step for the estimate Ŵ, conditioned on an E-step estimate of Y for example,

is given by:

Ŵ◦ =
(
K◦K

T

◦ + A◦

)−1

K◦Ỹ, (5.21)
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Algorithm 6 mRVM1 and the Fast Multi-class Type-II ML procedure

1: Initialise Y to follow target labels t, set all αi =∞.

2: Initialise model with a single sample ki, setting αi = ‖ki‖2PC
c=1‖k

T
i yc‖2/C‖ki‖2−1

from Equation 5.19.
3: while Convergence Criteria Unsatisfied do
4: Select candidate sample ki.
5: if

∑C
c=1 q

2
ci > Csi and αi <∞ then

6: Update αi from Equation 5.19 (sample already in the model).
7: else if

∑C
c=1 q

2
ci > Csi and αi =∞ then

8: Set αi from Equation 5.19 (sample added in the model).
9: else if

∑C
c=1 q

2
ci ≤ Csi and αi <∞ then

10: Set αi =∞ from Equation 5.20 (sample deleted from the model).
11: end if
12: M-Step for Ŵ◦ : Equation 5.21.
13: QP program for β : Equation 5.10 for reduced row rank Ŵ◦,K◦.
14: E-Step for Y : Equation 5.3 or 5.4 and 5.5 for reduced row rank Ŵ◦,K◦.
15: end while

where K◦ ∈ RM×N and A◦ ∈ RM×M are the reduced (composite) kernel and

diagonal scale matrix respectively, which now utilise only M samples and corre-

sponding scales for model fitting, with M << N . As the algorithm progresses,

the selected samples are added to the initially empty model that upon conver-

gence describes the whole training set while utilising a typically small fraction of

it. The nature of this constructive procedure allows applications to large-scale

datasets and scenarios where utilising the whole training set is prohibitive.

The E-step or M-step of the auxiliary variables follows directly from Equa-

tions 5.3 and 5.4, 5.5 by simply accommodating the reduced rank matrices of

the regression coefficients and the composite kernel. Similarly, the kernel com-

bination parameters β follow the standard quadratic program in Equation 5.10

with the sparse representations Ŵ◦ and K◦.

5.4.2 Computational Efficiency for mRVM1

The fast multiclass type-II ML procedure is based on sequential computation of

the “sparsity” and multiclass “quality” factors described in Equation 5.17 which

in turn require the inversion of matrix C−i each time the model is updated (new

samples have been included). This inversion, together with the one in Equation

5.21 govern the computational complexity of the algorithm as O(P2M3) where
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M the number of employed samples out of total N and assuming P proposals

of samples to be considered for inclusion. Typically M << N and hence the

cubic contribution is not restricting but we note that by simple matrix identities

and manipulations, that are now given based on (Tipping and Faul 2003), this

complexity can be reduced by half to O(PM3).

Assuming M samples have been included in the model, we follow Tipping

and Faul (2003) in defining the (modified for our model) quantities Sm and Qm

as:

Sm = k
T

mC−1km and Qcm = k
T

mC−1yc (5.22)

which, if the sample km is not included in the model (hence C−1 is in fact

C−1
−m), correspond to the quantities of interest; i.e. sm = Sm and qcm = Qcm.

On the other hand if the sample is included in the current model then the true

sparsity and quality factors are given by:

sm =
αmSm
αm − Sm

and qcm =
αmQcm

αm − Sm
(5.23)

Therefore our only interest now is to maintain values for Sm and Qcm ∀ c =

{1, . . . , C}. By decomposing these quantities, bearing in mind that C = I +

K
T

◦A
−1
◦ K◦, and utilising the Woodbury identity we have:

Sm = k
T

mkm − k
T

mK
T

◦

(
K◦K

T

◦ + A◦

)−1

K◦km (5.24)

Qcm = k
T

myc − k
T

mK
T

◦

(
K◦K

T

◦ + A◦

)−1

K◦yc (5.25)

The required inversion now for computation of sparsity and quality factors is

the same inversion required for the MAP estimate of the regression coefficients

Ŵ◦ in Equation 5.21. Hence, only a single inversion is needed overall, leading

to a reduced computational complexity and an efficient algorithm.

5.4.3 Informative Sample Selection for mRVM1

One unresolved issue so far with this constructive-type sparse methodology is

how to propose new samples to be examined for possible inclusion in the model.

A random proposal can be employed but it is obviously sub-optimal and will
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lead to a slow convergence of the algorithm as the “relevance vectors” might be

proposed very late in training.

An alternative informative sample proposal strategy for mRVM1 can be de-

rived based on the binary one of Tipping and Faul (2003). Revisiting Equations

5.19, 5.20 and defining θi =
∑C

c=1 q
2
ci − Csi as the contribution value of sample

i under the current model that includes M “active” samples, leads to the crite-

rion of proposing the new sample that has the highest positive contribution value

from the I “inactive” samples that are not currently included in the model.

In the case where all the inactive samples have negative contribution value

and all the active samples have positive ones (hence the algorithm is close to con-

vergence) the proposed sample is randomly selected from the active set therefore

updating its corresponding scale. The informative selection procedure is sum-

marised below in Algorithm 7.

Algorithm 7 Informative Sample Selection: mRVM1

1: if ∃ θi > 0 with i ∈ I then
2: Select sample i with θi ≥ θj ∀ i, j ∈ I (include)
3: else if ∃ θi ≤ 0 with i ∈M then
4: Select sample i with θi ≤ θj ∀ i, j ∈M (delete)
5: else
6: Select random sample i ∈M (update αi)
7: end if

In Figure 5.2 the informative sample selection procedure on the Neal dataset

is compared against randomly selecting samples. As it can be seen, the pro-

posed procedure typically allows for faster convergence and avoids local minima

solutions with respect to sparsity whereas randomly selecting samples proves to

be less efficient, as expected.

The procedure requires storage and update of the contributing values θi for

all the samples (N = (I ∪ M)), active or inactive, and this comes to some

additional overhead (only matrix multiplication and not inversions) as the cor-

responding values for Sm and Qcm from Equations 5.24 are required for all the N

samples. The benefits of informative sample selection counterbalance the addi-

tional overhead as they lead to good classification performances and appropriate

(in the sense of stable and optimum) convergence measures (Psorakis et al. 2010)

that will be described in the next sections.
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Figure 5.2: Neal dataset. Left: Uninformative sample selection. Right: infor-
mative sample selection

5.4.4 Initialisation and Convergence for mRVM1

Because of the point-estimation nature of the algorithms introduced in this

chapter, appropriate initialisation plays an important role for efficient train-

ing, avoiding numerical problems and eventual convergence. As stated in the

pseudo-algorithmic descriptions, initialisation of the auxiliary variables should

follow the target labels and the multinomial probit link yni ≥ ynj ∀ j 6= i if

tn = i. This enforces an initialisation close to the local maximum of the joint

likelihood and speeds up convergence. This is illustrated in Figure 5.3 where

a random and an “aligned” initialisation are compared on a binary classifica-

tion problem (counterfeit detection on US50BA, Chapter 7). The recovery of

the correct alignment for the randomly initialised auxiliary variables is still very

fast for the considered binary problem but an aligned initialisation has a better

convergence behaviour especially for large multinomial problems.

In the specific case of mRVM1 where the type-II ML procedure is employed,

additional convergence criteria are proposed that were found to provide better

solutions in both sparsity and accuracy performance measures, as observed in

(Psorakis et al. 2010) and summarised in the sections of this Chapter. The main

convergence criterion is generalised from Tipping’s binary Type-II ML method

in (Tipping and Faul 2003) and together with a modified version that restricts

early convergence are:

Criterion 1 logα∗m − logαold
m ≤ threshold ∀ m ∈M and θi ≤ 0 ∀ i ∈ I

Criterion 2 logα∗m − logαold
m ≤ threshold ∀ m ∈M and θi ≤ 0 ∀ i ∈ I and

minimum of N iterations.
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Figure 5.3: Top: Random Initialisation of Y and 50 cases that initialise contrary
to the labels and probit link relation. Bottom: Aligned Initialisation of Y and
50 randomly selected cases (all follow the target labels from the start).

where the threshold is some small value, typically set to 1e−6. The convergence

criterion assesses both the change on the scales of active samples and also the

contribution value that inactive samples might still have. Intuitively, while the

model proposes new samples, it can “see” how the inclusion of these individual

samples changes the relevance of all inactive samples. Convergence occurs when

all the inactive samples are judged irrelevant and the scales of the active samples

remain unchanged to the threshold level accuracy.
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5.4.5 mRVM2

The second sparse model proposed follows directly from the MAP and EM al-

gorithms considered so far with the only modification being a sparsity-inducing

Gamma hyper-prior on the scales A and explicit pruning, while training, of in-

significant samples. Note that the assumption for common scales across classes

is not needed and A ∈ RN×C . Consider the properties of the prior Gamma

distribution Ganc(τ, υ) with shape and rate parameter τ and υ respectively:

Mean =
τ

υ
Variance =

τ

υ2
(5.26)

By setting τ, υ → 0 (for example τ = υ = 1e−5) the prior on the scales be-

comes an un-informative (flat) distribution and encourages sparsity by allowing

the data evidence to concentrate the posterior probability mass on very large

scales (leading to sharply peaked regressor posteriors centred on zero) for “irrel-

evant” samples. This well-known prior setting follows the automatic relevance

determination framework introduced by MacKay (2004).

The model now motivates a “top-down” procedure which starts with the full

set of samples and results in a sparse solution through constant discarding of non-

relevant samples via examination and thresholding of their associated scales and

regressor posteriors. The training phase exhibits a speed-up during progression

as the dominant computational complexity reduces from O(N3) to O(M3) due

to the N −M pruned out samples. A potential disadvantage of the algorithm,

given in Algorithm 8, is that removed samples cannot be re-introduced into the

model.

Algorithm 8 mRVM2

1: Initialisation
2: Sample Y ∈ RC×N to follow target t.
3: while Iterations < max & Convergence > Threshold do
4: E-Step for αnc still in the model: Eq. 5.9.
5: Prune wi, and ki when aic > 106 ∀ c
6: M-Step for Ŵ◦ : Eq. 5.21
7: QP program for β : Eq. 5.10 for reduced row rank Ŵ◦,K◦.
8: E-Step for Y : Equation 5.3 or 5.4 and 5.5 for reduced row rank Ŵ◦,K◦
9: end while

It is worth mentioning that the model is theoretically more expressive than
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mRVM1 as there is an independent scale associated with every sample and every

class. However, it is not a constructive algorithm and its application to large

datasets would require splitting the training set into folds to select sets of rel-

evance vectors within, that can be later combined for meta-learning an overall

classifier.

5.4.6 Initialisation and Convergence Criteria for mRVM2

Similar to the previous algorithms described in this Chapter, aligned initialisa-

tion of the auxiliary variables is beneficial although not necessary. The initialisa-

tion of the scales A for mRVM2 should be performed irrespectively of the sparse

prior placed upon them, by setting them to either uniformly sampled values on

the unit interval or some small constant value. This is necessary for avoiding

numerical problems when sampling from such a diffuse and improper prior.

Finally, convergence is monitored via the relative change of the auxiliary vari-

ables and regression coefficients every step, and by the progression of the loga-

rithm of the joint likelihood. When convergence measures are below a threshold

or a maximum number of iterations has been reached, the algorithm terminates.

As it will be shown in the last sections of this chapter, convergence is typically

reached within a few number of iterations for a variety of problems that are

considered.

5.5 Preliminary Experimental Evaluation

In this section a preliminary evaluation of the proposed methods is performed

on multinomial UCI (Newman et al. 1998) datasets. First, a comparison be-

tween the expectation-maximisation (EM) and the “full” maximum-a-posteriori

(MAP) non-sparse solutions is offered that investigates their relative perfor-

mance. Then, the two sparse models, mRVM1 and mRVM2, are compared

against the same datasets in order to illustrate sparsity levels, classification

accuracy and also any observed trade-off against the non-sparse estimators. Fi-

nally, further experimentation on large datasets is presented together with the

accompanied algorithmic modifications necessary for scaling up.
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5.5.1 Experimental Setup

Following the preliminary experimentation from the variational model in the pre-

vious Chapter, we employ the same UCI datasets and examine the performance

of the algorithms via 10 times 10-fold cross-validation. The characteristics of the

datasets are repeated in Table 5.1 to assist with interpretation of the results.

Dataset N C D Kernel Function
Balance 625 3 4 Polynomial (Order 2)
Crabs 200 4 5 Linear
Glass 214 6 9 Polynomial (Order 2)
Iris 150 3 4 Gaussian (scale 1/D)

Soybean 48 4 35 Linear
Vehicle 846 4 18 Polynomial (Order 2)
Wine 178 3 13 Linear

Table 5.1: Multinomial UCI datasets. N , C, D are respectively the number
of samples, classes and attributes in each dataset. The best-performing kernel
function for each problem is reported.

Before reporting the experimental results, it is worth visualising the na-

ture of the resulting Relevance Vectors (RVs). Employing the two dimensional

Neal dataset (Neal 1996), as described in the previous chapters, we plot the

typical resulting multiclass RVs from the sparse methods in Figure 5.4. Both

methods retain prototypical samples that are representative of their class condi-

tional distribution in contrast with other methods like support vector machines

(Vapnik 1995) or informative vector machines (Lawrence et al. 2003) that retain

samples, support vectors (SVs) or informative vectors (IVs) respectively, close

to the decision boundary. This contrast stems from the difference in model fit-

ting objectives. RVs are selected based on their contribution to the marginal

(mRVM1) or joint (mRVM2) likelihood whereas SVs and IVs are pre-defined as

boundary samples due to the geometric objective of maximising the margin or

having lowest predictive likelihood respectively.

5.5.2 Non-sparse Comparison

First, the results from the EM algorithm and the MAP method are given in

Table 5.2. As it can be seen the EM is clearly the best performing approach

outperforming or matching the accuracy of the fully MAP method. The main



CHAPTER 5. MAP ESTIMATORS AND MRVMS 128

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

Figure 5.4: Typical Relevance vectors

reason for this observation is the less greedy nature of the EM scheme and the

maximisation of the auxiliary variables under the truncated normal which exerts

a less stable step than when taking the expected value.

EM MAP
Dataset % Recognition Rate % Recognition Rate

Balance 95.0± 3.6 96.3± 1.4
Crabs 86.5± 7.1 69.5± 7.6
Glass 70.0± 13.5 53.8± 9.3
Iris 93.3± 5.4 87.3± 9.1

Soybean 97.5± 7.9 87.5± 17.7
Vehicle 75.9± 5.4 68.5± 1.3
Wine 95.9± 3.9 92.9± 4.6

Table 5.2: 10 times 10-fold cross-validated recognition rates (mean±std) on
standard UCI multinomial datasets with the EM scheme. Top performance
from EM or MAP (not always statistically significant) in bold.

5.5.3 Sparse Comparison

For the case of the sparse mRVM methods, the 10 fold cross-validated recognition

rates together with the resulting sparsity levels of the models are presented in

Table 5.5.3. As it can be seen, mRVM1 results in typically sparser solutions due

to its constructive nature and the type-II fast maximum likelihood procedure.
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The classification performance is not statistical different in most problems con-

sidered except the Balance and the Vehicle dataset where mRVM1 outperforms

the top-down approach of mRVM2.

mRVM1 mRVM2

Dataset % Recognition Rate RVs used % Recognition Rate RVs used
Balance 96.42 ±0.86 8 ± 0 92.44 ± 1.54 13 ± 1
Crabs 85.2 ± 3.47 5 ± 0 89.8 ± 2.42 16 ± 1
Glass 65.9 ± 8.92 10 ± 2 67.57 ± 9.85 17 ± 2
Iris 93.73 ± 5.75 6 ± 1 94.13 ± 2.31 6 ± 0

Soybean 88 ± 17.58 7 ± 3 97.75 ± 7.19 6 ± 1
Vehicle 77.52 ± 2.52 10 ± 0 76.17 ± 1.2 27 ± 0
Wine 95.82 ± 0.98 3 ± 0 95.94 ± 0.65 5 ± 0

Table 5.3: 10 times 10-fold cross-validated recognition rates (mean±std) on
standard UCI multinomial datasets with the mRVM schemes. Top performance
(not always statistically significant) in bold.

5.5.4 Convergence, Sparsity and Predictive Power

In order to offer further insight to the nature and behaviour of the sparse

algorithms we examine their characteristics during the training phase on the

aforementioned UCI datasets. The full study and conclusions are described in

(Psorakis et al. 2010). The experimental procedure adopted is to monitor four

main properties while performing multiple 10 fold cross-validation and varying

the training regime interval. These are:

• Test Recognition Rate - The (mean ± std.) percentage of correctly

classified samples from the test set.

• Predictive Likelihood - The confidence of class membership predictions

defined as
∑N∗

n∗=1 log(Pc) where Pc the probability of classifying test sample

n∗ to its correct class c∗.

• Sparsity - The number of Relevance Vectors in the model.

• Model Fitting -

{
mRVM1: Marginal Likelihood progression.

mRVM2: Joint Likelihood progression.
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Furthermore, the previously proposed convergence criteria for both algo-

rithms are recorded and their terminating point is displayed on each graph.

For mRVM1, Criterion 1 and Criterion 2 (Section 5.4.4) are denoted as “1” and

“2” respectively, whereas for mRVM2 “A” represents the point where the change

in scales A is insignificant (Section 5.4.6) and “N” represents the point where a

maximum number of iterations, equal to the training size, has been reached.
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Figure 5.5: Balance dataset. Top: mRVM1 Bottom: mRVM2
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Figure 5.8: Soybean dataset. Top: mRVM1 Bottom: mRVM2
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Figure 5.10: Wine dataset. Top: mRVM1 Bottom: mRVM2
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Both methods produce very sparse solutions while retaining competitive per-

formances with respect to both the variational approximation and other standard

classification algorithms (Manocha and Girolami 2007). In some cases, such as

for Glass and Iris, the number of relevance vectors approaches the number of

classes while still retaining good levels or recognition rate and confidence in pre-

dictions. This problem-dependent characteristic implies that such datasets do

not require overly complex decision boundaries and in fact reducing the bias

and complexity via sparsity (predictions are based only on few RVs) can result

in better generalisation to unseen novel samples. This is further supported by

the progression of the model fitting measures (marginal and joint likelihood) in

these datasets, that typically increase as the sparsity levels increase (less RVs)

indicating that the models actually describe better the data when less samples

are used.

mRVM1 typically starts by adding the most informative samples from the

inactive set and then starts pruning out the ones from the active set that are no

longer informative enough (due to the inclusion of new samples). This behaviour,

common across datasets, results in some interesting model fitting progressions

especially captured on the Vehicle dataset. In that case, during the initial “build

up” phase where informative samples are added the marginal likelihood is in-

creased. Then, as the algorithm starts pruning out samples from the active set

that are no longer judged relevant, the marginal likelihood is briefly reduced and

then increases to the maximum level which corresponds to the end of the “prune

out” period and stabilises.

mRVM2 starts with the full model and very quickly (typically within 10 iter-

ations) prunes out the majority of the training samples. The retained relevance

vectors from each dataset considered indicate that this method results in less

sparse solutions than the mRVM1. However that sparsity level is still very high

when considering competing methods such as SVMs and IVMs that are less ef-

ficient in multiclass problems due to their binary nature (which requires a set of

vectors retained from each binary sub-problem considered).

The progression of the predictive likelihood appears to be dataset dependent

but in most cases it reaches a maximum and either stabilises or declines. This

indicates that the methods may become over-confident in the predictions as the

model over-trains and possibly over-fits the data. The exception is the Soybean

problem which however is the smallest dataset in this collection and the very
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small number of training and testing points alters the expected decline of the

predictive likelihood.

5.6 Discussion

In this final methodological Chapter, novel algorithms for sparse probabilistic

MKL that are based on point-estimators were presented. Starting from a general

expectation-maximisation scheme and a maximum-a-posteriori estimator the ap-

proach led to a generalisation of the well-known Relevance Vector Machine to

the multiclass multi-kernel setting with the multinomial probit likelihood. Two

different sparsity-inducing models were derived, the first (mRVM1) being a con-

structive type that starts with an empty model and informatively selecting or

deleting samples, and the second (mRVM2) a top-down approach that starts

with the full set of samples and prunes out the “irrelevant” ones.

The computational complexity gains from the sparse methods are significant.

In the case of mRVM1 the dominant order has been reduced to O(PM3) where

P the number of iterations, P � N under the first convergence criteria, and the

memory requirements reduced to O(SNM + (N + M)C) where S,C,N,M are

the number of sources, classes, total samples and retained samples (relevance

vectors) respectively. Finally, similar computational complexity reductions are

achieved for mRVM2 with the only difference being that initially the model is still

governed by an N3 order as it starts with the full training set. As we have seen

though, within few iterations the number of utilised samples falls dramatically

and converges to the final number of relevance vectors.

An unresolved aspect of the proposed models in this Chapter is the lack

of appropriate inference procedures for the kernel parameters in the case of

parameterised kernel functions such as the Gaussian. Cross-validation is the

obvious but inefficient approach to this problem which however is adopted by

other non-probabilistic popular models such as SVMs. An alternative but still

inefficient approach is gradient-based methods as proposed in the original RVM

(Tipping 2001). The potential benefit of inferring the Gaussian kernel param-

eters, besides a better smoothing of the composite feature space, is the iden-

tification of informative features through Automatic Relevance Determination

(MacKay 2004). This will open the way for joint feature and sample selection

in mRVMs.



CHAPTER 5. MAP ESTIMATORS AND MRVMS 139

Further experimentation on the proposed probabilistic multiple kernel learn-

ing setting through the motivating application and large scale datasets is re-

ported in the following two Chapters that summarise the main experimental

results of this thesis.



Chapter 6

Automatic Currency Validation

In this Chapter, experimental results on the motivating application for this thesis

are presented together with the literature review and previous work on the area.

Some of the experimental findings from the covariate ranking approaches, the

pMKL methodology and the associated feature extraction procedures related to

sensitive banknote information will remain unpublished for confidentiality and

the self-service application of the methodology protected by US patent law (He

et al. 2009). This Chapter summarises the main technical reports (Damoulas

2006, Damoulas 2008b, Damoulas 2008a, Damoulas 2009) submitted to NCR

Labs as part of the project deliverables during the period of this thesis.

6.1 Motivation

Since the introduction of Automated Teller Machines (ATM) in the ’60s the

everyday transactions for customers of banks and financial institutions have

become conveniently fast and efficient. The world’s first cash machine was in-

troduced in the UK in 1967 and current statistics1,2 indicate that more than

58, 000 ATMs are employed in the UK alone with the corresponding figure for

the US market rising above 370, 000. Taking into account that3:

1. Nowadays deposits account for 40− 60% of all branch transactions.

2. Teller costs are 5 times higher than automatic deposition through ATMs.

1http://www.apacs.org.uk/resources publications/cash machine facts and figures.html
2http://www.atmwarehouse.com/ATMstatistics.htm
3Source: Dr. Chao He, NCR Labs
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3. Current automated deposition methods save 30− 75% of the cost.

it is straightforward to see the need for ATM automatic depositions.

As with most new technological advancements, new needs were also created

in conjunction with the development of the ATMs. One of the by-products

of the ATM’s broad use and development is the introduction of security risks

associated with such transactions. In particular, certain types of fraud such as

fake identification, counterfeit currency and even money laundering that in the

past were dealt with by human personnel are now faced by the ATMs.

In parallel, the further “development” of the quality of counterfeit notes

to the point of partially reproducing existing security features led to the re-

introduction of the human factor in the process of currency transaction. Money

deposited in ATMs have to be hand-checked by experienced personnel and the

corresponding transactions have to be recorded for security reasons. That prob-

lem alone, disregarding other security issues of ATMs such as fraud by fake

credit cards or theft of personal costumer information, is very costly in human

processing time and eventually leads to a potential profit loss.

Furthermore, the very nature of the problem created a clear separation, on

the basis of safety risks, between the two types of transactions: depositing and

withdrawing money. Nowadays the main service of ATMs is to allow costumers

to withdraw cash and not to deposit, partially due to the requirement for trust-

worthy and efficient Automatic Currency Validation (ACV) systems.

This requirement is the general motivation and application scenario for the

research undertaken in this thesis. Important aspects of the ACV problem are

the lack of availability and scarcity of counterfeit notes, the plurality of currency

types, denominations and ATM input-orientations, the plurality of sensory mea-

surements, and finally the natural fatigue and ageing process that used notes

have undergone.

This thesis is motivated by, and attempts to address, the specific ACV prob-

lem of integrating ATM sensory inputs towards an overall, possibly multinomial,

classification decision.

The Bayesian paradigm has been adopted to tackle this scenario due to

the clear benefits of probabilistic reasoning that include: 1) formal inclusion of

prior beliefs such as counterfeit scarcity or abundance, ATM location, currency-

specific security characteristics, 2) probabilistic classification decisions amenable

to further post-processing, risk assessment and decision making, 3) inference of
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feature discrimination strength (covariate ranking), sensor discrimination abil-

ity (kernel combination parameters from pMKL) and sample descriptive power

(relevance vectors from mRVMs).

In the following section I review the available past work on ACV before

describing the specific problem of integrating a plurality of ATM sensory mea-

surements for an overall decision.

6.2 ACV Literature Review

In this section we present an overview of published work related to the ACV

problem under consideration. The commercial and security sensitive nature of

the application scenario limits the available published work and hence this liter-

ature review is not necessarily representative of the actual progress in the area.

Furthermore, the scarcity of counterfeit notes together with certain legal issues

(possession and creation of counterfeits) and the expense of an ATM machine,

restricts the availability of data. In that respect, past work on the general prob-

lem of the recognition and classification of currency notes is relatively limited.

It is worth noting that as the majority of the ATM detection signals are

in fact images of the currency notes, part of the image processing literature is

very relevant. However we will not review that literature here as we attack the

problem from a statistical machine learning perspective that can in fact incor-

porate various feature extraction and construction methods (such as wavelets,

edge detection features, splines) via the kernel trick embedding on each channel

and later pMKL integration. Furthermore, the computational restrictions do not

allow for expensive feature extraction approaches as it will be further discussed

in a later section where the adopted feature extraction techniques are presented.

6.2.1 Recognition and Verification of Currency

The majority of the past work on ACV (Frosini et al. 1996, Ahmadi et al. 2003c,

Omatu et al. 2001) has the goal of correctly recognising and classifying genuine

used and new notes into classes according to their denomination value (i.e. £5 or

£10) and a single source of information. Although directly relevant, this problem

is less difficult than the general and realistic case of dealing with counterfeit

notes at the same time and multiple detection signals. One could argue that a
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counterfeit note would be rejected by such algorithms as not belonging to any

class by producing a low probability of either class membership but this becomes

less realistic when considering the quality of some counterfeits and the crudeness

of the adopted feature extraction methods.

Artificial Neural Network (ANN) methods

The work reported by Glory Co., Ltd.4 jointly with the Universities of Tokushima,

Osaka and Okayama (Ahmadi et al. 2003c, Ahmadi et al. 2003a, Ahmadi et al.

2003b, Ahmadi, Omatu, Kosaka and Fujinaka 2004, Ahmadi, Omatu, Fujinaka

and Kosaka 2004, Ahmadi, Omatu and Kosaka 2004, Kosaka and Omatu 1999,

Kosaka et al. 1999, Kosaka and Omatu 2000b, Kosaka and Omatu 2000a, Omatu

et al. 2001, Kosaka et al. 2001) presents results of different variants of a recog-

nition system which employs a Learning Vector Quantization (LVQ) (Kohonen

1990, Hastie et al. 2001) classifier at its core. The LVQ method is a supervised

learning classification method that was developed in the 90’s based on a type

of Kohonen network (Vector Quantization) and it is very similar to k-means

clustering (the difference being that LVQ uses all the classes to decide on the

positioning of the prototypes) and to the nearest-neighbour rule (both use the

Euclidean metric). The main drawback of the LVQ methods is that they are

defined by algorithms rather than optimisation of some fixed criteria and hence

it is difficult to understand their properties (Hastie et al. 2001).

The developed algorithm receives as inputs part of the note image which

in most cases is further compressed through a Principal Component Analysis

(PCA) linear reduction method (Hastie et al. 2001, Bishop 1996, Bishop 2006).

The pre-processing stage also includes operations such as shifting and rotation

of the original note image in order to account for the variability of insertion to

the ATM. Furthermore, the classifier takes into account different orientations

of the note (e.g. upside-down) using sub-class allocation. For example, the £5

class includes 4 sub-classes for all the possible orientations of a £5 note. Finally,

in certain cases the Self-Organising Map (SOM) clustering algorithm developed

by Kohonen (Kohonen 1990) is employed to partition the input space and then

apply PCA to each region instead of the whole note.

A further extension to their work is the development of axis-symmetrical

4Money handling company - Founded in 1918 in Japan and established in 1982 in the USA
market as Glory Inc. http://www.glory-jpn.com & http://www.gloryusainc.com
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“masks” that are used to extract features from the currency notes and are invari-

ant to inversion and rotation, (Takeda et al. 1993, Takeda and Nishikage 2000,

Takeda and Omatu 1995a, Takeda and Omatu 1995b, Takeda et al. 1994, Takeda

et al. 1998, Tanaka et al. 1998). The idea is based on work by Widrow et al.

(1988) in which slab values, i.e. values from a planar network configuration that

uses a majority rule, are used for a network with translational and rotational

invariance. The location of these masks are in most cases optimised by a Ge-

netic Algorithm (GA) (Mitchell 1998) and after their application on the notes

the result is passed as an input to an ANN for final classification.

In general, the work of the Glory group concentrates on specific methodolo-

gies for classification, employing ANNs and Kohonen networks for classification

together with SOM clustering techniques. Their results report rough recogni-

tion rates and classification accuracies (training in 2/3 of the data and testing on

the remaining 1/3) without reporting cross-validated errors and error variances.

Furthermore, the reported recognition rates (of 100% in most cases) are for gen-

uine notes only and imply that the system is just able to distinguish between

two different currency types. The approach adopted offers little if any insight

to the nature and characteristics of the data and the methods used are now

mostly outdated by theoretically principled machine learning techniques firmly

embedded within statistical methodologies.

A different ANN approach to the problem comes from (Frosini et al. 1996).

This work reports recognition and verification techniques used in a banknote

acceptor (BANK) that was implemented for accepting paper currency of different

countries. Their approach offers a three-way verification mechanism:

• Dimension Verification - The first operation performed when the note

is introduced in the machine, simply a measure of the note’s dimension.

Especially useful when a different dimension corresponds to a different

value for the note in which case it is easier to perform the classification.

• Verification Threshold - Employing ANNs (feed-forward networks or Mul-

tilayer Perceptrons (MLPs)) for the classification of the notes based on

a thresholding criterion. This is susceptible to misclassification errors re-

lated with the creation of open separation surfaces by MLPs, (Gori and

Scarselli 1998).

• Autoassociator-based Verification - An ANN which is trained to reproduce
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the inputs as outputs. This is used to overcome the aforementioned MLP

problems of creating open separation surfaces. It offers a better description

of the target class through the closed separation surfaces and can make use

of negative examples to restrict the class description area.

The dataset employed in this work comprised 600 genuine notes and 200 pho-

tocopies (50 colour and 150 black and white) and was split to two sets, a training

set with 300 genuine and 60 photocopies and the rest as testing set. The best

result on the test set reported is a 0% test error rate (False Positives) with a cor-

responding 5.6% test rejection rate (False Negatives). Again the error reported

is a rough test error and not a cross-validation one (or a bootstrap test error

value (Efron and Tibshirani 1993)), failing to give an idea of the error variance

and to decouple the results from the specific test set used. Most importantly,

the experimental procedure of using photocopied notes as counterfeits for both

training and testing does not simulate the quality of counterfeit notes and hence

is over-optimistic, especially if it is to be employed against real state-of-the-art

counterfeits.

Finally, an inherent problem with most of the reviewed work in this section

is that the input data used is often limited or of poor quality. That is due

to the type of sensory information which in (Frosini et al. 1996) is just two

signals from sensors covering two parallel strips of the note and in the other

cases such as (Kosaka and Omatu 1999, Kosaka et al. 1999, Kosaka and Omatu

2000b, Kosaka and Omatu 2000a, Omatu et al. 2001) is the original pixels of

an image of the note (or part of it), further compressed. In certain cases it

is almost certain that the majority of real life counterfeit notes would have no

problem in getting misclassified as genuine and hence surpassing the obstacle of

the proposed classifiers.

Statistical methods for classification of currency

A different approach to the ACV problem is offered through the perspective of

novelty detection (Markou and Singh 2003, Filippone and Sanguinetti 2009) and

classifier combination in the work of He et al. (2004). The main intuition behind

the work is that “It is difficult in the counterfeiting process to provide a uniform

quality of imitation across the whole note and certain regions of the note may be

more difficult than others to copy successfully”. Through that perspective, the
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note is being segmented into sub-regions were individual classifiers are trained

and their decision is combined into an overall classification. The optimised

segmentation of the note and the combination of classifiers is achieved through

a genetic algorithm (GA).

The one-class classifiers are built based on statistical hypothesis testing that

maximise the log-likelihood ratio of the null hypothesis (i.e. that the data un-

der consideration is drawn from the target genuine class) over the alternate

hypothesis. The D2 test (Hastie et al. 2001) is used when assuming a multivari-

ate Gaussian distribution for the target class, and a mixture of Gaussians with

bootstrap sampling (Efron and Tibshirani 1993) when assuming a non-Gaussian

distribution for the target class. The combination of classifiers in a principled

manner (Tax and Duin 2001) is achieved in this work by making use of a prod-

uct combination decision rule which corresponds to unanimous voting (a note is

classified as genuine only if all the region-specific classifiers agree). That scheme

was selected on the basis of the nature of the problem which demands a low

False Negative rate (less counterfeits being classified as genuine notes).

The work in (He et al. 2004) underlines some important concepts and char-

acteristics of the problem in hand. First of all, the notion that local information

from certain sub-regions of the note might hold specific importance and weight

for the classification task and secondly that a combination of decision-makers

may enhance the performance of the overall classification. In contrast with

(Frosini et al. 1996) where the use of autoassociator networks was deemed nec-

essary for the system to create closed separation surfaces, in (He et al. 2004)

both methods reported provide such a closed surface either in the form of a

multivariate Gaussian or a mixture of Gaussians.

The shortcomings of this work are mainly the restrictions imposed by the

use of a rectangular grid to separate the regions of the note and the use of a

GA procedure to optimise the combination of classifiers. The rectangular grid

places an unjustified assumption of a priori separation of the note that is not

based on regional information or a pixel grey-scale value correlation between

the members of each area. Furthermore, the choice of a GA to optimise the

combination of the classifiers is not a very efficient approach to the problem since

it is a stochastic optimisation method employing local random search based on

a predefined fitness function without making explicit use of problem-dependent

characteristics.
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Fatigue classification

Another aspect of the automatic currency classification problem that has been

partially addressed by the Glory group is the ageing of the bank notes. The

classification of the fatigue level of a note into one of certain number of categories

based on acoustic signals derived while the notes were passing through a part

of the ATM, has been studied in (Teranishi et al. 1999, Teranishi et al. 2000,

Teranishi et al. 2002, Teranishi et al. 2005). The tensional acoustic signal (when

the note is stretched) or the frictional one (the acoustic signal produced due to

friction) has been used as the input basis for classification of the note’s fatigue

level.

The same type of classifier as in the case of value recognition was used (or

a slight variant of it), namely LVQ (Kohonen 1990, Hastie et al. 2001), and the

feature space was created considering different manipulations of these signals:

• Fourier Transformations of the acoustic signals, (Teranishi et al. 2005).

The signal is divided into frames and the spectral components are calcu-

lated from a Fourier transformation and then used as the features.

• Cepstrum analysis and use of the cepstrum coefficients of the acoustic

signal, (Teranishi et al. 1999). The signal is again divided into frames

and for each frame the cepstrum coefficients, see (Bogert et al. 1963), are

calculated and used as the features.

• Acoustic Energy Patterns of the signal, (Teranishi et al. 2000). The sig-

nal is divided into frames and the energy (in relation to the square of

amplitude) of the signal is used as the features.

• Acoustic Wavelet Components, (Teranishi et al. 2002). A wavelet trans-

formation (Graps 1995) is applied and the wavelet power pattern is used

as the features.

The results reported seem to be in Teranishi et al. (2002) a 10-fold cross

validated test error but without reporting the variance of the error, and in the

rest of the cases a rough test error percentage. Therefore, it is not clear what is

the real performance estimate of the methods and the conclusions that can be

drawn. It appears that the wavelet transformation leads to better classification
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rates than using the energy of the signal, and that using the tensional acoustic

signal instead of the frictional one can lead to a lower misclassification rate.

The use of acoustic signals for the determination of the fatigue level is an

interesting idea as it could also provide in the future an alternative source of

information for the proposed pMKL methodology and it could also be used, in a

similar manner to the reviewed work, to determine the fatigue level of the note.

The expectation is that such an information source would particularly assist,

and would be weighted accordingly from the pMKL methods, in the separation

between new and circulated genuine notes.

6.3 ACV with Multiple Sources of Information

In this thesis we focus on the specific ACV problem of integrating the avail-

able sensory information towards an overall classification decision. A typical

ATM is equipped with various sensors that collect information of the deposited

currency notes during the transaction as depicted in Figure 6.1. Such sensors

can be light based, in which case light emitted in different frequencies hits the

note and it either reflects back or transmits through to the sensor, or non-light

based such as sensors measuring physical characteristics of the note. The first

produce an Image-like signal that retains specific characteristics and features of

the original note, the latter are in the form of spatio-temporal signals or discrete

measurements. The sensory information collected and employed in this thesis is

summarised in Table 6.1.

ACV Sensory Information
Sensor (Generic Abbreviation) Dimensions

FS1 (Image-like) 23760
FS2 (Image-like) 23760
FS3 (Image-like) 23760
FS4 (Non-Image) 240
FS5 (Non-Image) 1920
FS6 (Non-Image) 720

Table 6.1: Characteristics of the available ACV sensory information. Further
details regarding sensor measurements are confidential to NCR Labs.

Figure 6.1 gives a schematic description of the problem and the level on

which the proposed pMKL methodology integrates the available information
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Figure 6.1: Multiple Sources of Automated Currency Validation. The deposited
currency note produces crude sensory information from which features are ex-
tracted and later combined via the proposed pMKL methodology towards a final
classification decision. Images not necessarily representative of sensor measure-
ments.
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sources towards an overall classification decision. Before presenting the experi-

mental results we briefly consider the feature extraction methods considered for

each signal and comment on the computational restrictions that guide the final

choices.

6.4 Feature Extraction

The feature extraction procedures are briefly described in this section without an

in depth investigation due to security and commercial sensitivity issues. For an in

depth investigation the reader is directed to the confidential reports (Damoulas

2006, Damoulas 2008a). As it was shown in Table 6.1, the crude signals are

high-dimensional and prohibitive for an online classification method in an as-is

basis. Furthermore, the proposed feature extraction methods are able to capture

the structure of the data and provide very discriminative feature spaces that,

as it will be shown, produce state of the art ACV results across currencies and

denominations.

6.4.1 Image Channels

The “Image” channels are the standard type ATM signals used for ACV and

they resemble actual images of the note under different light conditions. Previ-

ous work (He and Ross 2006) on constructing discriminative features from these

high dimensional sources offers an efficient solution to the feature extraction

problem which has been further improved within this thesis. The approach con-

sists of grouping characteristics within each Image channel in order to create a

segmentation template or “mask” which can later be used to extract the corre-

sponding features from an incoming note. Such masks can be seen in Figure 6.2

for specific Image channels.

The proposed feature extraction improvement is to simultaneously group

characteristics from all the Image channels hence exploiting structure available

from every Image source and result into one overall “mask” similar to the ones

in Figure 6.2. This further reduces the memory requirements of storing these

templates while retaining (and even improving) classification levels (Damoulas

2006).
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Figure 6.2: Typical extraction masks for some Image channels.

6.4.2 Non-Image Channels

In the case of the Non-Image channels, alternative feature extraction approaches

were examined despite the observation that a similar procedure of constructing

”masks” offers the most discriminative feature space (Damoulas 2008a). The al-

ternative approaches that were examined and subsequently adopted were chosen

on the basis of very low dimensionality in order to satisfy computational and

memory restrictions. The majority of the adopted feature extraction methods

for these channels are histogram statistics within specific sub-areas of the chan-

nels (Damoulas 2008a). Given the information integration offered by the pMKL

methodology, less than optimal feature extractions on the Non-Image channels

are satisfactory in achieving state of the art results that are presented in the

following sections.

6.5 Covariate Ranking

Before presenting the pMKL results on integrating the various Image and Non-

Image channels for the ACV problem, we consider standard Bayesian Gener-

alised Linear Models (GLMs) (Denison et al. 2002) applied to a concatenation

of features extracted from the Image channels with a second order polynomial

expansion. As the aforementioned segmentation procedure extracts clusters

within these sources, the goal is to infer the significance or these covariates

and their discriminative power. This first experimental study, summarised in

(Damoulas 2006), offered to NCR Labs an insight into the information content

of specific sub-regions of the notes for various currencies and denominations. In

order to reconfirm the results and assess different inference schemes that were

introduced in Chapter 2, the GLM models in Table 6.2 were considered.



CHAPTER 6. AUTOMATIC CURRENCY VALIDATION 152

GLM Model Inference scheme(s)
Binary Logistic regression Metropolis MCMC & Laplace Approximation
Binary Probit regression Gibbs MCMC & Laplace Approximation

Multinomial Logistic regression Metropolis MCMC & Laplace Approximation
Multinomial Probit regression Gibbs MCMC

Table 6.2: Generalised Linear Models employed for Covariate Ranking.

The experimentation was performed on an NCR dataset of ∼ 700 English

£20 notes with front face orientation performing 10 fold cross-validation and the

binary classifiers were employed to classify genuine versus counterfeit notes while

the multinomial classifiers addressed the three-way distinction between genuine

new, genuine used and counterfeit notes. In the following subsections we sum-

marise the main findings, see (Damoulas 2006) for full details, and concentrate

on inference of informative covariates in a statistical significance sense.

6.5.1 Binary Classification

Treating the problem as a binary classification allows one to examine discrimi-

native covariates between the general category of genuine notes and counterfeits.

In Figure 6.3, a typical Markov chain for binary logistic regression is plotted.

As it can be seen a specific regressor deviates significantly from the zero-mean

prior hence indicating evidence of significance for the corresponding weighted

covariate. The specific identified segmentation region of the note is consistently

ranked across models as informative and provided insight to NCR regarding

note design, security features and the difference between human and machine

discrimination.

Examining further some of the resulting posteriors in Figure 6.4, we can see

the difference between regressor posteriors of discriminative and non-discriminative

covariates.

In order to assess statistical significance we employ the standard Z-scores

(Denison et al. 2002) which is simply the ratio of the posterior mean over its

standard deviation and hence penalises “vague” posteriors that might appear

significant but have a small scale. The typical Z-scores for the binary case can

be seen in Figure 6.5 where again the same covariate achieves a score well above

two which indicates significant discriminatory strength.
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Figure 6.3: Typical Markov chain from the GLMs. Top: Acceptance ratio tuned
to 30%. Bottom: Samples from the regression coefficients posterior distribution.
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Figure 6.4: Some posterior distributions (smoothened via a Parzen window type
filter) from the Markov chain. Top row: Posteriors significantly deviating from
the zero-mean prior. Bottom: Posteriors not deviating from the zero-mean prior.
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Figure 6.5: Typical Z-scores for the binary classification between genuine and
counterfeit notes.

Typical classification error progressions can be seen in Figure 6.6 and Figure

6.7 for different segmentation levels. As it can be seen, the Image channels

alone are able to produce an error percentage well below the 1% level for this

specific currency and orientation (this is not the case across currencies as Non-

Image information has been found to outperform these channels in certain cases).

As the segmentation level increases the performance of the classifier improves

and it is apparent that even simple GLM models operating on the extracted

features (the cross and square terms of the polynomial expansion are not judged

significant) are able to produce satisfactory recognition rates for this currency

and orientation.

Finally, only a couple of covariates are judged statistically significant for the

machine discrimination, indicating that a further reduction in dimensionality

of the samples is attainable if further computational processing and memory

reductions are needed. Considering that the original dimensionality of the con-

catenated Image channels is in the area of 70, 000 and that the feature extraction

reduces that to less than 100 dimensions, it becomes apparent that the segmenta-

tion captures very discriminative areas that have now been specifically identified.
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These areas offer insight into the genuine currency note design and most impor-

tantly on the shortcomings of state of the art counterfeit note construction.
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Figure 6.6: Typical error progression with the logistic regression models.
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Figure 6.7: Typical error progression with the probit regression models.
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6.5.2 Multinomial Classification

Following the same procedure as for the binary classification, we consider the

Z-scores of the C × D, where D the sample dimensions after the polynomial

expansion, regression coefficients now for the three classes in order to identify

discriminatory covariates. From Figure 6.8 it can be seen that only certain

covariates achieve an absolute Z-score above a value of two and these indicate

corresponding discriminative areas of the Image channels. It is worth noting that

the 10th covariate is again significant for the discrimination of counterfeit notes,

as in the binary case, but now also additional covariates contribute especially in

the distinction between genuine new and genuine old notes.
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Figure 6.8: Typical Z-scores for the multiclass classification between genuine
new, genuine old and counterfeit notes.

Finally, the error progressions follow the similar trend of improved perfor-

mance when the number of segments increases. However the mean error pro-

gression is higher than the binary problem due to additional misclassifications

between the genuine new and used classes. The initial results presented so far

are for a fixed training size with an emphasis on covariate ranking; in the next

sections we concentrate on the proposed pMKL methodologies and offer learn-

ing curves when varying the available training size in order to further assess the
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behaviour of the proposed classifiers on the ACV problem.
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Figure 6.9: Typical error progression on the multiclass ACV case.

6.6 VBpMKL Results

In this section we present results from the variational approximation on the

pMKL methodology and on various international currencies. First, the Image

channels are integrated and training size dependent results are presented to-

gether with an assessment of the prediction confidence and inference of the con-

tribution from each channel. In the next sub-section we extend the problem by

including the Non-Image channels as well and further improve the classification

performance measures on various currencies, denominations and orientations.

These sections summarise results from the full experimental analysis in the con-

fidential reports (Damoulas 2008b, Damoulas 2008a). Convergence is monitored

via the lower bound progression at the 0.1% level with a maximum number of

100 iterations and experiments are repeated with random initialisations to offer

statistics on the recorded performance measures.
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6.6.1 Image Integration

The following datasets and training-test splits in Table 6.3 are considered with a

bootstrap procedure of sampling a specific number of training notes and a fixed

number of testing notes with replacement 20 times. Second order polynomial or

Gaussian (RBF) kernels are employed as they were found to perform the best

across currencies. We monitor the test error, the predictive likelihood which

is our confidence in classifying a note and also the total CPU processing time.

Some observed variability in CPU times is due to varying loads on different

computer cluster nodes. Finally the results are presented over three different

segmentation levels in order to assess the feature extraction procedure.

Currency English £20 Chinese ¥100 US $50 (BC)
Training 10:10:400 10:10:900 10:10:200
Testing 288 500 148
Total 688 1483 348

Table 6.3: The training ranges examined for the specific fixed test size.

US $50

First the results on the US dollars dataset are given. Throughout the datasets

considered, a higher segmentation level typically leads to a better (lower or

smaller std) test error performance as in Figure 6.10. Such a higher segmentation

level also implies more confident class membership probabilities as in Figure 6.11

and as expected higher computational costs, Figure 6.12, as the dimensionality

of the constructed feature spaces increases.

The inferred kernel combination weights are presented in Figure 6.13 and as

it can be seen there is a clear preference for the FS3 source , this is typical across

most currencies considered, which contributes the most into the final composite

kernel space. This is in agreement with past confidential work from the NCR

Labs and the expected rankings of the sensor channels.



CHAPTER 6. AUTOMATIC CURRENCY VALIDATION 159

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�

�

��

��

��

��

��

������������������

�
��
�
��
�
��
�
�
�
�
��
�
��
�

����������������

�������������������

�����������������

Figure 6.10: Learning curves on $50 currency notes.
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Figure 6.11: Predictive likelihood progressions for varying training size on $50.
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Figure 6.12: CPU time requirements for varying training size on $50.
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Figure 6.13: Kernel combination parameters indicating the discriminative
strength of each channel.
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Chinese ¥100

Next, learning curve results are presented for the Chinese ¥100 currency. The

error progression in Figure 6.14 converges below an average 3% rate and this time

without an improvement when increasing the segmentation level. The predictive

likelihood follows the same trend, Figure 6.15, and the only significant effect of

increasing the segmentation level is the additional processing requirements shown

in Figure 6.16. The integration of Image channels alone is already achieving very

high recognition rates that will be further improved via the introduction of the

Non-Image information in the next sub-section.
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Figure 6.14: Learning curves on ¥100 currency notes.
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Figure 6.15: Predictive likelihood progressions for varying training size on ¥100.
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Figure 6.16: CPU time requirements for varying training size on ¥100.

English £20

Finally, the results for the £20 notes are given in Figures 6.17, 6.18 and 6.19.

Similarly to the ¥100 case the error progression reaches an average rate below

3% while a low segmentation level is sufficient to achieve performances compet-

itive to higher dimensional feature extractions. The recognition rates from the

Image integration will again be improved via the further fusion of Non-Image

information in the following sub-section.
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Figure 6.17: Learning curves on £20 currency notes.
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Figure 6.18: Predictive likelihood progressions for varying training size on £20.
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Figure 6.19: CPU time requirements for varying training size on £20.

6.6.2 Image and Non-Image Integration

Having combined the information from the Image channels the next step is to

include the Non-Image signals and examine their contribution and the expected

classification improvements. Following the same bootstrap setting of 20 repe-

titions, a fixed training and test split is now considered for every currency as

described in Table 6.4. Results are presented for the best experimental settings

and kernel types with the full analysis in confidential report (Damoulas 2008a).
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Currency US $50 (BC) US $50 (BA) Chinese ¥100 Scottish £20
Training 279 263 500 190
Testing 100 100 500 100
Total 379 363 1705 290

Table 6.4: The training/test sample sizes examined.

US $50 (BA) Front Orientation

In Table 6.5 the comparison between the Image-channels and the integration

of all six channels is given. As it can be seen there is a statistically signifi-

cant improvement that increases the recognition rate above the 99% level. The

kernel combination parameters in Figure 6.20 show a high contribution from

channels 1,4 and 5 offering additional intuition regarding the specific currency

and orientation (Damoulas 2008a).

Channels: Image Integration Total Integration
% error (mean ± std) 1.65± 1.13 0.65± 0.67

Table 6.5: Fixed Integration in US50BA : Combination of 2nd order polynomial
kernels. Comparison between Integration with Image only channels versus total
Integration with additional Non-Image channels on the US $50 (BA) currency.
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Figure 6.20: Predictive strength of fused channels on the US $50 front orienta-
tion.
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US $50 (BC) Back Orientation

Similarly for the back orientation of the US $50 currency, a clear improvement

is offered, Table 6.6, with an average recognition rate of 99.4%. The kernel

combination parameters from Figure 6.21 indicate that different sources become

discriminative for the back orientation face despite the same currency type. This

is due to the different properties of the faces and specific security features that

become more emphasised in different orientations. Again, confidentiality does

not allow an in depth analysis but this phenomenon confirms the nature of the

US dollars and their alternative name as “greenbacks”.

Channels: Image Integration Total Integration
% error (mean ± std) 1.30± 0.73 0.60± 0.75

Table 6.6: Fixed Integration in US50BC : Combination of 2nd order polynomial
kernels. Comparison between Integration with Image only channels versus total
Integration with additional Non-Image channels on the US $50 (BC) currency.
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Figure 6.21: Predictive strength of fused channels on the US $50 back orienta-
tion.

Chinese ¥100

The third currency examined is the Chinese yen ¥100. The inclusion of the Non-

Image channels leads to the best improvement so far as the average recognition

rate increases from 97.8% to 99.4%, Table 6.7, due to the particular contribution

from the Non-Image channels 5 and 6 as shown in Figure 6.22.
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Channels: Image Combination Total Integration
% error (mean ± std) 2.71± 0.73 0.57± 0.27

Table 6.7: Weighted Integration in Chinese : Combination of 2nd order polyno-
mial kernels. Comparison between Integration with Image only channels versus
total Integration with additional Non-Image channels on the Chinese ¥100 cur-
rency.
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Figure 6.22: Predictive strength of fused channels on the ¥100.

Scottish £10

Finally, the Scottish £10 currency which already produces recognition rates of

99.2% with only the Image channels, Table 6.8, is again further improved to an

average 99.95% level due to the contribution of the Non-Image channel 5 on the

already highly discriminative Image channel 3 as depicted in Figure 6.23.

Channels: Image Combination Total Integration
% error (mean ± std) 0.75± 0.78 0.05± 0.22

Table 6.8: Weighted Integration in SCT : Combination of 2nd order polynomial
kernels. Comparison between Integration with Image only channels versus total
Integration with additional Non-Image channels on the Scottish £10 currency.
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Figure 6.23: Predictive strength of fused channels on the Scottish £10 currency.

6.7 mRVM Results

In this section results are reported from the sparse pMKL methodology devel-

oped in Chapter 5 and the associated EM deterministic schemes. The same

international currency datasets as in the previous section are employed and the

focus is on the resulting recognition rates and sparsity levels. The latter is par-

ticularly emphasized as it leads to great computational savings in both memory

and processing time, and for both training and testing phases of the algorithms.

It is worth noting that the results reported here for mRVM1 do not include the

further development of informative sample selection and additional convergence

measures that are described in Psorakis et al. (2010) and in Chapter 5. As a

consequence, the following results from mRVM1 can be considered sub-optimal

especially on sparsity levels but still serve as an upper bound to the potential

computational reduction benefits.

Second order polynomial kernels are employed across the six feature spaces as

they were found to perform best from the previous methodologies. Convergence

was monitored via the relative change of the regression coefficients and auxiliary

variables (threshold denoted by T ) in addition to maximum iteration number

(denoted by “It”) and a maximum proposal of samples (denoted as “ItML”) for

mRVM1. Experiments are repeated as previously over 20 randomly initialised

trials. In Tables 6.9, 6.10, 6.11 and 6.12 the main results are depicted for all the

currencies considered.
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US $50 (BA) Front Orientation

Method EM mRVM1 mRVM2
Settings It = 100, T = 0.3 It = 2N , ItML = 1 It = 100, T = 0.3
Error % 0.6± 0.75 2.25± 1.4 1.4± 1.05
Relevance Vectors All (263) 28.1± 6.93 8.75± 1.02

Table 6.9: Comparison across Methods for US $50 (BA) currency.

US $50 (BC) Back Orientation

Method EM mRVM1 mRVM2
Settings It = 100, T = 0.3 It = 2N , ItML = 1 It = 200, T = 0.2
Error % 0.55± 0.76 1.75± 1.3 1.4± 1.1
Relevance Vectors All (279) 27.3± 7.9 10.6± 2.6

Table 6.10: Comparison across Methods for US $50 (BC) currency.

Chinese ¥100

Method EM mRVM1 mRVM2
Settings It = 100, T = 0.3 It = N , ItML = 2 It = 100, T = 0.3
Error % 0.32± 0.33 1.62± 0.8 1.02± 0.5
Relevance Vectors All (500) 42.3± 9.4 14.7± 1.4

Table 6.11: Comparison across Methods for Chinese ¥100 currency.

Scottish £10

Method EM mRVM1 mRVM2
Settings It = 100, T = 0.3 It = 2N , ItML = 1 It = 100, T = 0.3
Error % 0± 0 0.65± 0.67 0.4± 0.7
Relevance Vectors All (190) 20.8± 5.4 6± 0.8

Table 6.12: Comparison across Methods for Scottish £10 currency.
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As it can be seen, the EM approximation retains high recognition rates com-

petitive to the variational approximation and the mRVMs produce very sparse

solutions with a minor trade-off on accuracy. The resulting Relevance Vectors

(RVs) are less than 10% of the total training size and hence significantly re-

duce computational requirements and processing times. Considering that the

results from mRVM1 can be further improved via the informative sample selec-

tion strategies and better convergence measures that were proposed previously,

these sparse models constitute a very efficient and accurate approach to the

multi-feature problem of ACV with the additional benefits of probabilistic pre-

dictions.

Accuracy and Sparsity

Finally, the training size dependent error and sparsity progressions are depicted

below for the considered models and on the largest dataset available (Chinese

¥100 currency). As expected in all cases the recognition rate improves when

increasing the training size which especially for the sparse models indicates the

possibility of retaining more descriptive RVs able to produce a better decision

boundary.
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Figure 6.24: EM Estimator: Error progression while varying the training size.
Fixed test size of 500 notes.
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Figure 6.25: mRVM1: Error progression while varying the training size. Fixed
test size of 500 notes.
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Figure 6.26: mRVM2: Error progression while varying the training size. Fixed
test size of 500 notes.
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Sparsity levels increase as the training size increases but the relationship in

Figures 6.27 and 6.28 shows a linear trend with the mRVM1 retaining 5% of the

training set and mRVM2 retaining just 2%.
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Figure 6.27: mRVM1: Sparsity progression while varying the training size.

��� ��� ��� ��� ��� ���� ���� ����
��

��

��

��

��

��

��

���������������������

�
�
��
�
�
�
�
�
��
�
�
��
��
��
�
�
�
�
��
�
��
�

Figure 6.28: mRVM2: Sparsity progression while varying the training size.

6.8 Discussion

In this final experimental Chapter, the deterministic approximation methods

VBpMKL and mRVMs, were employed to address the motivating application

for this thesis, that of Automatic Currency Validation (ACV) with multiple

sources of information. Following the literature review on ACV and the specific

problem motivation, covariate ranking results were presented from standard gen-

eralised linear models under an MCMC or deterministic Laplace approximations.
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By identifying statistically significant covariates we were able to assess the lim-

itations of counterfeit currency and infer which specific genuine currency note

features are responsible for efficient machine discrimination.

Further on, experimental results were presented for classification of a vari-

ety of international currencies producing multiple signals while being deposited

in an Automated Teller Machine (ATM) and detected by the available sensors.

The proposed probabilistic multiple kernel learning (MKL) methodologies were

able to informatively integrate the available sensor measurements towards an

overall accurate classification decision while offering reduced computational re-

quirements through approximations and resulting sparsity.



Chapter 7

Further Large Scale Applications

This Chapter1 presents further experimental results of all the proposed methods

of this thesis. The emphasis is placed on large scale applications, in domains be-

yond Automatic Currency Validation, that have the same need for probabilistic

multiple kernel learning (pMKL) methodology. The applications are on bioin-

formatics and pattern recognition problems such as protein folding prediction,

hand-written numeral detection and protein sub-cellular localisation.

The main aims of the present Chapter are to offer an assessment of the

various multiple kernel learning rules introduced in Chapter 3, the variational

approximation introduced in Chapter 4 in comparison with the Gibbs sampling

scheme of Chapter 3, the further deterministic approximations in Chapter 5 with

the corresponding sparsity inducing models, and finally to provide large scale

evidence of the scalability and efficiency of the proposed pMKL methods against

classifier combination strategies.

The experimental results are presented in an order that follows the method-

ological developments of this thesis with an introduction on each of the large

scale applications considered. Table 7.1 serves as a roadmap for the experiments

considered in this chapter, the methodologies employed for each problem, the

main problem characteristics and the experimental goal (what is demonstrated)

in each section.

1Parts of this work have already appeared in (Damoulas and Girolami 2008, Damoulas
and Girolami 2009a, Damoulas and Girolami 2009b, Damoulas and Girolami 2009c, Damoulas
et al. 2008, Ying et al. 2009)

173



CHAPTER 7. FURTHER LARGE SCALE APPLICATIONS 174

Experimental Roadmap
Section Methods Characteristics Goal
HNR Gibbs & VBpMKL MKL(4), MC(10) MKL rules, MKL vs CC
PFR VBpMKL & mRVMs MKL(12), MC(27) Het.MKL, MKL vs CC
RHD VBpMKL MKL(4), MC(54) MKL on String Kernels
PSL mRVMs MKL(69), MC(4,5) Het.MKL, Sparsity

Table 7.1: A roadmap for this Chapter regarding experiments, methods, problem
main characteristics and experimental goals. Abbreviations: HNR-Handwritten
Numeral Recognition, PFR-Protein Fold Recognition, RHD-Remote Homology
Detection, PSL-Protein Sub-cellular Localisation, MKL(Sources S)-Multiple
Kernel Learning, MC(Classes C)-Multiclass problem, CC-Classifier Combina-
tion methods, Het.MKL-Heterogeneous MKL.

7.1 Handwritten Numeral Recognition

The first application area considered is Handwritten Numeral Recognition (HNR),

a well studied problem that has been heavily researched in the last decades (Chi

et al. 1995, Tax et al. 2000) alongside the general problem areas of character

and handwriting recognition (Tappert et al. 1990, Plamondon and Srihari 2000).

The goal of HNR, as the name suggests, is to recognise (classify) handwritten

numbers and the majority of the research is concentrated on improving recogni-

tion rates by proposing novel feature extraction methods (Trier et al. 1996, Shi

et al. 2002) and classifier combination schemes (Tax et al. 2000) or other ensem-

ble learning methods (Dietterich 2000b).

This work concentrates on offering an alternative to classifier combination

methods on existing standard feature sets and hence further feature extrac-

tion and construction is not considered. The results reported are on the well

known multiclass “Multiple Features” dataset from the UCI repository (Newman

et al. 1998) which consists of features of 2000 handwritten numerals from 0 to 9

(10 classes with 200 examples each). Four different feature sets are used in ac-

cordance with past work (Tax et al. 2000), namely the Fourier descriptors (FR),

the Karhunen-Loéve features (KL), the pixel averages (Pix) and the Zernike

moments (ZM). In contrast with (Tax et al. 2000) we do not restrict the (ZM)

features to 9 classes and allow the rotation invariance property to introduce

further problems in the distinction between digits 6 and 9.

The first section of experiments employ the Gibbs sampling scheme intro-
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duced in Chapter 3 and the later section performs a direct comparison between

the latter and the variational approximation offered in Chapter 4.

7.1.1 Multiple Features Dataset: Gibbs Sampling

Experiments are repeated over 10 randomly initialised trials in order to report

statistical properties. We report training set size dependent results for each

trial by varying the number of training samples, from 10 to 100 per class, with a

fixed test size of 20 test points per class. The classifier is trained on 5,000 Gibbs

samples and we disregard the first 2,000 samples as burn-in period, see (Gelman

et al. 2004) for details. In each trial we train individual classifiers on each

set (denoted by the corresponding descriptor name, i.e FR), four standard (see

Chapter 2) classifier combination methods (denoted by a C suffix), four proposed

kernel combination methods (denoted by a K suffix) and a concatenation of

all the object descriptors leading to a single kernel (denoted as Single). The

abbreviations for the methods are given in Table 7.2.

Abbreviation Method
Prod C Product of Class Probabilities from Individual Classifiers
Sum C Sum of Class Probabilities from Individual Classifiers
Max C Maximum of Class Probabilities from Individual Classifiers
Maj C Majority of Class Assignment from Individual Classifiers

Single K Concatenating features into single Kernel
Fix K Fixed Combination of Kernels

Weighted K Convex Linear Combination of Kernels
Prod K Product Combination of Kernels

WProd K Weighted Product Combination of Kernels
Bin K Binary Combination of Kernels

Table 7.2: Abbreviated names of ensemble methods.

In this section it is shown that the proposed pMKL approach with the Gibbs

sampling method improves upon the individually trained classifiers on specific

feature spaces, and matches the best performing classifier combination schemes

while outperforming the rest. Furthermore, learning curves are offered for the

various kernel combination rules and the methodology identifies complementary

feature spaces for the handwritten numerals problem that explain previously re-

ported results in (Tax et al. 2000). Throughout this experimental study, Gaus-

sian (RBF) kernels with fixed kernel parameters θsd = 1/Ds are employed in
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order to minimise the computational cost for producing learning curves from

the Gibbs sampler.

In Figure 7.1 the performances of the classifier combination schemes are de-

picted and in Figure 7.2 the best performing of these is compared against the

individually trained classifiers. We can see that the product and sum combina-

tion rule outperform all the individual classifiers and the maximum and majority

combination schemes. The best performances offered by the two rules are in the

range of 2.2 ± 1% with a single best performance achieving 0.5% error. Of the

individual classifiers, the classifier trained on the Pix feature set performs the

best followed by the KL classifier. The disagreement with (Tax et al. 2000) on

the preference between the Pix and ZK is due to the class restriction employed

in their work.
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Figure 7.1: Performance of the classifier combinations (Prod C, Sum C, Max C,
Maj C).

Turning now our attention to the kernel combination rules proposed in this

thesis, we plot in Figure 7.3 their learning curves and in Figure 7.4 the best

performing kernel combinations against the best performing classifier combi-

nation method (Prod C). First we can observe that when the training size is

very small (10 samples per class), the weighting schemes for kernel combination

(i.e. Weight and Bin) perform somewhat worse than a fixed combination of

kernels. This is supported by the intuition that weighting schemes require more
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Figure 7.2: Performance of the individual classifiers (FR, KL, Pix, ZM) against
the best classifier combination (Prod C).

evidence as the parameter space increases. Also, the product, and to a lesser

extent the sum classifier combination methods perform significantly better in

such small training size cases than the kernel combination approaches. This is

due to the aforementioned drawback of weighting schemes and also on the fact

that fixed kernel combination rules can be seen as combining information on the

prior class membership level (the composite kernel is fixed from the start and

carries prior class membership probabilities through the resulting similarities)

whereas classifier combination methods operate on an a posteriori class mem-

bership level hence gaining on diversity as the information ”bottleneck” occurs

after the training regime.

When the training size is increased, the convex linear combinations of kernels

match the fixed combination (while still offering insight on the significance of

the sources) and the kernel combination methods match the best performing

classifier combination methods and significantly outperform the best individual

classifier (Pix) and the Maj and Max classifier combination rules.

Finally, it is worth noting that the binary kernel combination fails (on aver-

age) to improve on the pixel classifier when the training set is very small. This

is due to the limited number of training samples and the “hard” nature of the

binary switch which decides to effectively “switch off” certain kernels.
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Figure 7.3: Performance of kernel combination methods (Fix K, Bin K, Weighted
K, Prod K) and the single kernel (Single K).

�� �� �� �� ���
�

�

�

�

�

��

��

��

�������������������������

�
��
�
��
�

����� ���������� ������

Figure 7.4: Performance of the best kernel combination methods (Fix K,
Weighted K) and the best performing classifier combination method (Prod C).



CHAPTER 7. FURTHER LARGE SCALE APPLICATIONS 179

The combinatorial weights β for the convex linear combination rule can give

us an insight into the relative importance of base kernels and furthermore indi-

cate which sources complement each other and are selected to be combined. In

Figure 7.5 we plot the progression (mean ± std) of the weights, at the end of

the Gibbs sampling procedure, for the training/test range and over the 10 trials.
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Figure 7.5: The mean and std of the multiple kernel weights from the convex
linear method (Weighted K).

As expected, the pixel kernel (Pix) is the most important one followed by

the fourier (FR) one. This is in agreement with the comparative performances

of the individual classifiers. However, the Karhunen-Loéve kernel receives on

average the lowest weight although it is the second best individual classifier and

the Fourier kernel is weighted as more important for the combination. This

is possibly due to lack of information diversity between the Pixel and the KL

source. The underlying phenomenon is also depicted in the work of (Tax et al.

2000) where the performance reported is better by removing the Karhunen-Loéve

classifier than by removing the Fourier one from the combination of classifiers.

Furthermore, it is interesting to note that for small training sizes the weights

clearly prefer the two top-performing base kernels but as more objects are in-

cluded the weighting scheme seems to converge towards a 1/S weighting. This is

in agreement with our intuition for this specific problem as there are no counter-
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informative base kernels and for small training sizes certain descriptors might be

clearly preferred on the basis of their discriminative power for that training set

but as more objects are presented, other complementary features start playing

a significant role as well.

Finally, the zero-one loss match between the weighted and fixed kernel com-

bination in Figure 7.4 is in agreement with previous work on kernel combi-

nation where a fixed procedure is as-good-as a weighted combination (Lewis

et al. 2006b, Girolami and Zhong 2007) regarding the zero-one loss performance.

This phenomenon is addressed in Chapter 8 via the theoretical analysis of mul-

tiple kernel learning methods.

7.1.2 Multiple Features Dataset: Variational Bayes

In this section we revisit the HNR problem but this time extending the compari-

son between the proposed pMKL methods and classifier combination schemes by

also including the variational Bayes approximation (VBpMKL) that was intro-

duced in Chapter 4. The aim is to assess any possible degradation of performance

introduced by the deterministic approximation with respect to the full MCMC

Gibbs sampling solution.

In Tables 7.3, 7.4, 7.5 and 7.6, we report experimental results over 50 repeated

trials where we have randomly selected 20 training and 20 testing objects from

each class. For each trial we employ a single classifier on each feature space, the

classifier combination schemes and the proposed pMKL methods. In all cases

we employ Gaussian (RBF) kernels with the aforementioned fixed parameters

and for the VBpMKL method we monitor the lower bound convergence at the

0.1% level with a maximum of 100 iterations.

MCMC Gibbs sampling on Individual Feature Sets
FR KL PX ZM

27.3± 3.3 11.0± 2.3 7.3± 2 25.2± 3

Table 7.3: Results on HNR from individual classifiers.

The conclusions drawn for the comparisons between the Gibbs sampling

scheme, the individual classifiers and the classifier combination schemes follow

from the previous section. The interest is now on the variational approximation

which, from Table 7.6, is shown to perform very well compared with the MCMC
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MCMC Gibbs sampling for Combining Classifiers
Prod C Sum C Max C Maj C

5.1± 1.7 5.3± 2 8.4± 2.3 8.45± 2.2

Table 7.4: Results on HNR when combining classifiers.

MCMC Gibbs sampling for pMKL
Bin Fix K Weighted K Prod K WProd K

5.7± 2 5.5± 2 5.8± 2.1 5.2± 1.8 5.9± 1.2

Table 7.5: Results on HNR with the pMKL methods.

Gibbs solution and with a standard t-test p-value of 0.47, between them there

is no statistical difference.

VBpMKL
Bin K Fix K Weighted K Prod K WProd K

5.53± 1.7 4.85± 1.5 6.1± 1.6 5.35± 1.4 6.43± 1.8

Table 7.6: Results on HNR with the VBpMKL methods.

Hence, from this section it is clear that pMKL methods are competitive with,

and in cases outperform, classifier combination schemes with the additional ben-

efit of inferring the significance of the contributing information sources. Further-

more, the variational approximation appears to retain classification performance

levels when compared with the “full” MCMC Gibbs sampling approach.
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Figure 7.6: Tim-barrel 7-bladed beta-propeller
Image Source: Wikipedia under a GNU Free Documentation License.

7.2 Protein Fold Recognition

Much effort has been directed to the prediction of the three-dimensional struc-

tures of proteins for which no experimental structures are available (Baker and

Sali 2001). Where there is sequence similarity to proteins of known structure, a

comparative matching procedure is often adopted. However, where no such se-

quence similarity exists, the prediction problem is formidable, not least because

the overall structure may be unlike that of any protein, the structure of which

has been determined.

In this context, one approach, known as the taxonomic approach (Ding and

Dubchak 2001, Shen and Chou 2006), has been to divide the problem of deter-

mining the overall three-dimensional structure into that of determining its ’fold’.

The term ’fold’ is used to denote a particular arrangement of a specific num-

ber of secondary structure components (usually alpha-helices and beta-strands)

that is the basis of the overall structure of several different proteins which may

have little or no amino acid sequence similarity. The appearances of some of

these arrangements have given rise to names like ’barrel’, ’bundle’, ’sandwich’

and ’propeller’, although these tend to encompass several more specific folds e.g.

the TIM beta/alpha barrel and the 7-bladed beta-propeller, Figure 7.6. Hence,

protein fold prediction can be seen as a challenging multiclass recognition prob-

lem where proteins are classified into folds based on their characteristics and

available measurements.

Past work on the problem of predicting protein folds has employed artificial



CHAPTER 7. FURTHER LARGE SCALE APPLICATIONS 183

neural networks (ANNs), support vector machines (SVMs), Bayesian networks,

Hidden Markov Models and k -nn classifiers (Chou and Zhang 1995, Dubchak

et al. 1995, Jaakkola, Diekhans and Haussler 1999, Raval et al. 2002) with vary-

ing success. In (Ding and Dubchak 2001) an extensive study on a publicly

available data-set, consisting of 27 SCOP folds (Lo Conte et al. 2000, Andreeva

et al. 2004), was conducted exploring the use of various multiclass adaptations

of the well-known binary SVM classifier methodology. In that work, the best

methodology for combining binary SVMs was identified for the particular prob-

lem giving an accuracy of 56%, and furthermore, via an extensive experimental

procedure the most predictive protein characteristics were selected from the ini-

tial group considered. These were found to be the amino-acid composition (C),

the secondary structure (S) and the hydrophobicity (H).

Recently, (Shen and Chou 2006) proposed two modifications to the method

of (Ding and Dubchak 2001) that raised the best performance accuracy from

56% to 62.1%. Firstly, they proposed a somewhat ad-hoc ensemble learning

approach where multiclass k -nn classifiers individually trained on each feature

space (such as C or S) were later combined and secondly, they proposed the use

of 4 additional feature groups to replace the amino-acid composition. These were

pseudo-amino acid compositions (Chou 2005) designed to capture sequence-order

effects by using a correlation function between hydrophobicity and hydrophilicity

in different intervals of the protein sequence.

In this thesis, I concentrate on the same benchmark dataset of (Ding and

Dubchak 2001) with the extra groups of features proposed by (Shen and Chou

2006) and also include sequence-alignment2 features via a pairwise kernel (Liao

and Noble 2003), which essentially describes the sequence based similarity of the

proteins. The VBpMKL method is employed as a single multiclass multi-kernel

machine that is able to operate on all of these groups of features simultaneously

and instructively combine them. This offers a new and efficient way of incorpo-

rating multiple feature characteristics of the proteins without an increase in the

number of required classifiers. In addition, the importance and predictive power

of the pseudo-amino acid compositions proposed by (Shen and Chou 2006) to-

gether with all the other available characteristics are assessed and hence further

insight is gained on the protein fold recognition problem.

The best performance reported on the SCOP PDB-40D benchmark data-set

2Despite the apparent low homology dataset
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is a 70% accuracy by combining all the available feature groups from global

protein characteristics but also including sequence-alignment features. We offer

an 8% improvement on the previously best reported performance that combines

binary SVM classifiers while at the same time reducing computational costs and

assessing the predictive power of the various available features.

7.2.1 Experimental Setup

The approach adopted is based on the motivation to reduce the number of

classifiers needed for such challenging multiclass recognition problems where

multiple feature sets are available, while improving performance. Combining

binary classifiers as in the work by (Ding and Dubchak 2001) heavily increases

the computational resources needed since, e.g for the best performing all-vs-all

method, we need to deploy S× C(C−1)
2

= 2106 classifiers, where S is the number

of feature spaces or sources (only 6 in their work) and C the number of classes.

Furthermore, even when employing multiclass classifiers in an ensemble learn-

ing framework such as the one proposed by (Shen and Chou 2006), we still need

as many classifiers as there are available feature spaces. Considering the nature

of the protein fold prediction problem, where the fold type of a protein can de-

pend on a large number of protein characteristics and also noting that even in the

taxonomic approach the number of fold types already approaches the thousand

boundary, it is straightforward to see the need for a methodological framework

that can cope with a large number of classes and can incorporate as many as

there are available feature spaces while assessing their informational content.

The original dataset3 from (Ding and Dubchak 2001) (based on SCOP PDB-

40D) consists of 313 proteins for training and 385 proteins for testing with less

than 35% sequence identity between any two proteins in the training and the test

set. Furthermore, the extensions proposed by (Shen and Chou 2006) exclude 4

proteins from the original dataset, namely proteins 2SCMC and 2GPS from the

training set plus 2YHX 1 and 2YHX 2 from the test set, due to lack of sequence

records.

The 27 SCOP fold types (Dubchak et al. 1995) together with the origi-

nal feature spaces in (Ding and Dubchak 2001), the 4 proposed by (Shen and

Chou 2006) which describe pseudo-amino acid compositions (PseAA) estimated

3Available at http://crd.lbl.gov/̃cding/protein.
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on different intervals of the protein sequence, and the two local alignment Smith-

Waterman (SW) based feature spaces, with different scoring matrices, are de-

scribed in Tables 7.7 and 7.8.

(1) globin-like (15) lipocalins
(2) cytochrome c (16) TIM-barrel
(3) DNA binding 3-helical bundle (17) FAD-binding motif
(4) 4-helical up-and-down bundle (18) flavodoxin-like
(5) 4-helical cytokines (19) Rossmann fold
(6) EF-hand (20) P-loop
(7) immunoglobulin-like (21) thioredoxin-like
(8) cupredoxins (22) H-like motif
(9) viral coat & capsid proteins (23) hydrolases
(10) conA-like glucanases (24) periplasmic binding protein-like
(11) SH3-like barrel (25) β-grasp
(12) OB-fold (26) ferredoxin-like
(13) beta-trefoil (27) small inhibitors, toxins, lectins
(14) trypsin-like serine proteases

Table 7.7: Fold types (27 classes) in the dataset

Feature Employed in Dim
Amino Acid Composition (C) D&D 20
PseAA λ = 1 (λ1) S&C 22
PseAA λ = 4 (λ4) S&C 28
PseAA λ = 14 (λ14) S&C 48
PseAA λ = 30 (λ30) S&C 80
Predicted Secondary Structure (S) Both 21
Hydrophobicity (H) Both 21
van der Waals volume (V) Both 21
Polarity (P) Both 21
Polarizability (Z) Both 21
SW with BLOSUM62 (SW1) None N
SW with PAM50 (SW2) None N

Table 7.8: The 12 Feature spaces. Sequence-alignment based features were com-
puted with different gap penalties: SW1 with scoring settings from Liao and
Noble (2003) and SW2 with penalties of 0.8.
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7.2.2 Results and Discussion

Reported results are averaged over 20 (fold recognition) randomly initialised tri-

als in order to obtain statistical measures of accuracy and precision. We monitor

convergence via the lower bound to the marginal likelihood and convergence is

assumed when there is less than 0.01% increase of the lower bound progression

or when a maximum of 100 iterations have been completed. Throughout this

study, second order polynomial kernels for the global characteristics and inner

product kernels for the local characteristics (SW) are employed as they were

found to provide a better embedding of the feature spaces. CPU times reported

are for a 2 GHz Intel based PC with 2Gb RAM running Matlab codes.

First, the performance from individual feature spaces is given to gain an over-

all understanding of their predictive abilities. This however does not draw the

complete picture as complementary information may be shared across sources

achieving low performances. In Table 7.9 the mean percentage accuracy with

standard deviations from the proposed method (VBpMKL) is presented, to-

gether with the best ones reported by (Ding and Dubchak 2001) on the original

dataset.

Table 7.9: Average Individual Feature Space Percentage Accuracy
Feature Space VBpMKL Ding and Dubchak
Amino Acid Composition (C) 51.2 ± 0.5 44.9
Predicted Secondary Structure (S) 38.1 ± 0.3 35.6
Hydrophobicity (H) 32.5 ± 0.4 36.5
Polarity (P) 32.2 ± 0.3 32.9
van der Waals volume (V) 32.8 ± 0.3 35
Polarizability (Z) 33.2 ± 0.4 32.9
PseAA λ = 1 (λ1) 41.5 ± 0.5 -
PseAA λ = 4 (λ4) 41.5 ± 0.4 -
PseAA λ = 14 (λ14) 38 ± 0.2 -
PseAA λ = 30 (λ30) 32 ± 0.2 -
SW with BLOSUM62 (SW1) 59.8±1.9 -
SW with PAM50 (SW2) 49±0.7 -

Regarding the original features employed by (Ding and Dubchak 2001) we

are in agreement with their observations as the best performing feature space,

seems to be the amino acid composition (C). The λ = 1 and λ = 4 PseAA

achieve the second best global individual performance and as the “step” λ in-

creases further, the individual performances decrease. Although according to
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(Shen and Chou 2006) the PseAA composition “has the same form as the con-

ventional amino acid composition, but contains much more information” it seems

at this stage that none of the PseAA is as predictive as the conventional amino

acid composition. Furthermore, the local characteristics (SW) surprisingly out-

perform every global one and SW1 achieves a higher accuracy than the best

SVM-combinations proposed by (Ding and Dubchak 2001). This is because al-

though most of the proteins have less than 35% sequence similarity, this seems

to be an adequate similarity level to achieve good accuracy.

In Table 7.10 the effect of sequentially adding the feature spaces in the order

of (Ding and Dubchak 2001) is presented and extended to the addition of the

PseAA compositions and finally the sequence similarity based features. The

comparison is against the best performing SVM combination methodology as

reported in (Ding and Dubchak 2001) and the ensemble method of (Shen and

Chou 2006). As we can see in all the steps the proposed method outperforms the

best reported accuracies and offers the current state-of-the-art in this data-set.

Table 7.10: Effect of F.S combination. % Accuracy reported.
Feature Spaces VBpMKL Ding & Dubchak (AvA)
C 51.2 ± 0.5 44.9
CS 55.7 ± 0.5 52.1
CSH 57.7 ± 0.6 56.0
CSHP 57.9 ± 0.9 56.5
CSHPV 58.1 ± 0.8 55.5
CSHPVZ 58.6 ± 1.1 53.9
CSHPVZλ1 60 ± 0.8 -
CSHPVZλ1λ4 60.8 ± 1.1 -
CSHPVZλ1λ4λ14 61.5 ± 1.2 -
CSHPVZλ1λ4λ14λ30 62.2 ± 1.3 -
CSHPVZλ1λ4λ14λ30SW1 66.4±0.8 -
CSHPVZλ1λ4λ14λ30SW1SW2 68.1±1.2 -

Shen & Chou
SHPVZλ1λ4λ14λ30 61.0 ± 1.4 62.1

The best performances can be seen in Table 7.12 in comparison with the best

ones reported in the cited past work. An improvement over both past methods

is achieved while employing a single multiclass kernel machine without resorting

to combinations of multiple binary classifiers. The average CPU times can be

seen in Table 7.11 together with standard deviations.

The convex linear combination of base kernels is able to infer the significance
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F.S Combination µ± σ over 20 runs
CSHPVZ 2,243 ±485
SHPVZλ1λ4λ14λ30 2,844±644
CSHPVZλ1λ4λ14λ30 2,713±453

Table 7.11: CPU times (sec) for the VBKC

Table 7.12: Best single run performances (% Accuracy)
Feature Spaces Ding & Dubchak Shen & Chou VBpMKL
CSHP 56.5 - 59.3
SHPVZλ1λ4λ14λ30 - 62.1 63.5
CSHPVZλ1λ4λ14λ30 - - 63.9
CSHPVZλ1λ4λ14λ30SW1SW2 - - 70
No. of Classifiers 2,106 9 1

of the corresponding feature descriptions. In Figure 7.7 a summarising plot of

the weights over 20 runs depicting the lower quartile, median, and upper quartile

values is given.
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Figure 7.7: Combinatorial weights when all the feature spaces are employed.

As we can observe, the amino acid composition and the secondary structure

are judged as more important, followed by the PseAA λ = 1. However, it is

worth noting that by taking out the amino acid composition we have only a

small loss in performance as we have seen in Table 7.10. These two observa-

tions suggest that the original amino acid (C) and the pseudo- ones (λi) carry

redundant information. Furthermore, despite the individual accuracies of the

SW features, they are not heavily weighted. This is because they depend solely
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on the sequence similarity between proteins and their quality of discriminative

information is strongly related to which end of the 0-35% sequence similarity the

two proteins will belong. In reality, for the real ”twilight-zone” of low-homology

proteins (much less than 35% similarity) such features have little effect by defi-

nition.

In Figure 7.8 the confusion matrix for a single run is depicted. The values on

the matrix are normalised according to Rij =
Pj
Ni

where Ni is the total number

of proteins belonging in class i and Pj is the number of these Ni proteins that

were predicted to belong to class j. For example when all of the proteins in class

c were predicted correctly, then Rcc = 1 and Rcj = 0 ∀ j 6= c ∈ {1, C}
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Figure 7.8: Confusion matrix with each element normalised to Rij

First, it is worth noting that there are two areas where consistent misclassifi-

cation occurs. The first one is when proteins of class 10 to 13 (conA-like barrel,

SH3-like barrel, OB, beta-trefoil) are classified as class 7 (fold: immunoglobu-

lin like) and the second one is when proteins of class 19-20 and 24 (Rossmann

fold, P-loop, periplasmic binding protein-like) are classified as class 16 (fold:

TIM-barrel). Noting that folds 7 and 16 are represented by the top two largest
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numbers in the training set (30 and 29 proteins respectively) this seems to imply

that these classes are over-represented in comparison with other folds (mean size

of 10 proteins) and that features such as (pseudo- or not) amino acid composi-

tion and secondary structure offer little discriminative power on the distinction

problem in these two areas.

Furthermore, besides the proteins in the fifth class (fold: 4-helical cytokines)

that are all correctly classified as expected by previous observations by (Ding and

Dubchak 2001), now the first class (fold: globin-like) is also achieving a 100%

accuracy together with three more classes (7, 16, 27) (folds: immunoglobulin-

like, TIM-barrel, small inhibitors) above the 90% level.

7.3 Remote Homology Detection

As a further generalisation of the proposed methodology to other challenging

domains that have recently received a lot of attention we consider the simulated

remote homology problem (RHD) as described in the works of (Liao and Noble

2003, Leslie et al. 2004, Saigo et al. 2004, Lingner and Meinicke 2004). RHD

is the problem of detecting protein homology (proteins belonging into the same

evolutionary family) in cases when there is a low sequence similarity between

them. It is a formidable problem as by definition the sequence based similarity

between homologs is less informative and there is no approach that works well

in all cases (Ben-Hur and Brutlag 2003).

The SCOP 1.53 benchmark data-set4 as described in (Liao and Noble 2003) is

employed to simulate the RHD problem. It consists of 4,352 proteins belonging

to one of 54 families and the positive training is performed on low-homologs while

the positive testing on members of the same family. We consider four state-of-

the-art string kernels, namely a local alignment (LA) kernel (Saigo et al. 2004), a

mismatch (MM) kernel (Leslie et al. 2004), an oligomer kernel (Mono) (Lingner

and Meinicke 2004) and a pairwise Smith-Waterman (SW) kernel (Liao and

Noble 2003) that were previously individually employed in conjunction with

discriminative SVM classifiers.

Following the MKL paradigm, the best performing case from each string

kernel category is selected as a separate informational source to be combined

with the proposed VBpMKL method. The lower bound is monitored at the 0.1

4Available from http://www.ccls.columbia.edu/compbio/svm-pairwise
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% level with a maximum of 100 iterations and following the above past works we

add a class-dependent regularisation parameter to the diagonal of the kernels to

improve performance on this highly imbalanced problem. Adhering to the same

performance measures as in the related works, we report the average AUC or

ROC score (Area Under the Receiver Operating Characteristic Curve), for both

the standard 100% and the 50% level, and also the median RFP (Rate of False

Positives) score which is the fraction of negative test sequences (non-homologs)

that score as high or better than the median-scoring positive test sequences

(homologs). Results are averaged over 10 randomly initialised trials.

The results from the combination of the string kernels are depicted in Table

7.13 together with the best previously reported results within the SVM method-

ology. We achieve state-of-the-art performance via the combination of the kernels

and match the overall best performing SVM method outperforming other string

kernels.

Table 7.13: ROC, ROC50 and median RFP scores.
Method Mean ROC Mean ROC50 Mean mRFP
SVM (SW) 0.896 0.464 0.0837
SVM (LA) 0.925 0.649 0.0541
SVM (MM) 0.872 0.400 0.0837
SVM (Mono) 0.919 0.508 0.0664
VBpMKL 0.924 0.567 0.0661

In Figure 7.9 the number of families that achieve certain ROC scores is

depicted in comparison with some of the best performing methods reported in

the literature.

Furthermore, by employing the weighted combination we infer the contribu-

tion of each string kernel and as it can be seen from Figure 7.10 the Monomer

(Mono) and the Local-alignment (LA) kernel are weighted most heavily as ex-

pected from Table 7.13 and previously reported results.

7.4 Protein Subcellular Localisation

The final application of the proposed pMKL methodology in this Chapter is on

a very large multiple feature problem (69 attribute sets) which is attacked with

the sparse mRVM models of Chapter 5. The problem addressed is the one of
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Figure 7.9: ROC score (AUC) distributions for the proposed string combination
method and two state-of-the-art string kernels with SVMs. Every point in the
graph describes the number of families (y-axis) that achieve a specific ROC score
(x-axis) by a single method.
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Figure 7.10: Kernel combination weights when all the string kernels are fused.

predicting subcellular protein localisation (the cell location of a protein) based

on a set of disparate data sources, represented as a set of feature spaces and

incorporated in the proposed method by a set of appropriate kernels.

Two problems are considered: predicting subcellular localisation for Gram

positive (PSORT+) and Gram negative bacteria (PSORT-). Original state-of-

the-art performance on this problem5 was given by PSORTb (Gardy et al. 2005),

a prediction tool utilising multiple SVMs and a Bayesian network which pro-

5Data and associated material in http://www.psort.org/
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vides a prediction confidence measure for the method, compensating for the

non-probabilistic formulation of standard SVMs. The confidence measure can

be thresholded to perform class assignment or to indicate some samples as un-

classifiable.

Following the experimental setup of Ong and Zien (Zien and Ong 2007) 69

feature spaces are proposed of which 64 are motif kernels computed at different

sections of the protein sequence and the rest are pairwise string kernels based

on BLAST E-values and phylogenetic profile kernels (Kuang et al. 2004). Their

MKL method with SVMs (Zien and Ong 2007) claimed a new state-of-the art

performance, on a reduced subset of the PSORTb dataset, with reported perfor-

mances of 93.8±1.3 on PSORT+ and 96.1±0.6 on PSORT- using an average F1

score. However due to the non-probabilistic nature of SVMs the MKL method

was augmented with a post-processing criteria to create class probabilities in or-

der to leave out the 13% lowest confidence predictions for PSORT+ and 15% for

PSORT-, thus approximating the unclassifiable assignment option of PSORTb.

Further comparison is reported with another multiclass multi-kernel learning

algorithm proposed in (Ye et al. 2008) for regularised kernel discriminant analysis

(RKDA). For this algorithm, we employ the semi-infinite linear programming

(SILP) approach with a fixed regularisation parameter 5 × 10−4 as suggested

there.

In Table 7.14 the average test-error percentage over 10 randomly initialised

80% training and 20% test splits on the PSORT+ subset for both mRVM meth-

ods is presented. Similarly Table 7.15 presents the results for the PSORT- case.

The resulting average sample sparsity of the two models is very large, in cases

requiring less than 20% of the total number of samples. It is worth pointing out

that there are no analogous sparse relevant vectors in the RKDA kernel learning

approach and the method relies on all the training samples.

Method Test Error% Relevance Vectors
mRVM1 12.9± 3.7 27.9± 4.5
mRVM2 10.4± 3.9 60.8± 4.3

RKDA-MKL 8.39± 1.46 −−

Table 7.14: Error and sparsity on PSORT+

The further sparsity of the kernel combinations for PSORT+ can be seen

from Figure 7.11, where the average kernel combination parameters β over the
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Method Test Error% Relevance Vectors
mRVM1 13.8± 4.5 109.2± 19.5
mRVM2 11.9± 1.2 102.7± 7.4

RKDA-MKL 10.52± 2.56 −−

Table 7.15: Error and sparsity on PSORT-

10 runs are shown. We are in general agreement with the selected kernels from

previous studies as E-value kernels (3,4) and phylogeny kernels (68,69) are judged

significant in these combinations.

0 10 20 30 40 50 60 700

0.1

0.15

!i

Figure 7.11: Average kernel usage: PSORT+

Similarly for PSORT-, Figure 7.12 indicates that the E-value and phylogeny

kernels are significant contributors. Hence now both sample-wise and kernel-wise

sparse solutions exist for the problem under consideration.

7.5 Discussion

In this Chapter the previously introduced probabilistic multiple kernel learning

(pMKL) methodology has been applied to important large scale applications

which benefit from both a computational and an informative perspective under

such probabilistic fusion schemes. It was demonstrated that the proposed pMKL
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Figure 7.12: Average kernel usage: PSORT-

approaches produce state of the art results across multi-feature problem domains

while retaining their efficiency and offering an appealing alternative to classifier

combination and other ensemble learning methods.

Specifically, both the variational approximation and the Gibbs sampling ap-

proach performed competitively to previously introduced classifier combination

rules on the problem of handwriting numeral recognition while inferring the sig-

nificance of contributing sources. Furthermore, the variational approximation

was shown to provide the state of the art on challenging bioinformatics problems

such as protein fold recognition and remote homology detection where previous

approaches required thousands of classifiers. Finally, the sparse methodology of

mRVMs was shown to significantly reduce the required sample size while retain-

ing few multiclass relevance vectors to be used for prediction on the problem of

subcellular protein localisation.

In the following final main Chapter, an assessment of the underlying theoret-

ical principles of MKL and a justification for the use of parameterised (weighted)

or fixed kernel combination schemes is offered together with an attempt to for-

mally define the conditions when the aforementioned integration schemes are

expected to be beneficial on zero-one loss or predictive likelihood criteria.



Chapter 8

Diversity in Multiple Kernel

Learning

Multiple Kernel Learning (MKL) methods aim at learning an optimal (in a pre-

defined model-specific sense such as predictive likelihood or zero-one loss) com-

bination of individual base kernels. Therefore such approaches follow the basic

assumption that kernel combination parameter inference is crucial and beneficial

over a fixed a priori combination. However, in a number of reported cases (Lewis

et al. 2006b, Girolami and Zhong 2007, Damoulas and Girolami 2008) it has been

observed that there is none or little such benefit. The opposite phenomenon of a

significant performance improvement from an a posteriori combination rule has

also been observed on other problems (Zien and Ong 2007, Damoulas et al. 2008)

indicating a dataset dependent MKL behaviour. In this Chapter we attempt to

address these issues and provide a formal reasoning behind this phenomenon.

Borrowing ideas from classifier construction analysis (Hand 2006) and decom-

position of the loss (Krogh and Vedelsby 1995, Ueda and Nakano 1996) we

examine the conditions under which parameterised MKL methods are expected

to improve over a priori fixed combinations.

Furthermore, an information theoretic perspective on MKL approaches is

proposed via the Fisher Information and Optimal Experimental Design by Sir

R. A Fisher (1935). This novel direction is considered as a significant future

MKL research work that can lead to qualitative conclusions and further novel

algorithms.

196
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8.1 The Flat Maximum Effect

Hand (1997) first described the “Flat Maximum Effect” in the context of classi-

fier performance as the phenomenon when “often quite large deviations from the

optimal set of weights will yield predictive performance not substantially worse

than the optimal weights”. In Hand (2006) a set of regression coefficients are

shown to be highly correlated between any other random set of regression coef-

ficients if the predictor variables are correlated. This is generalised here for the

kernel combination parameters and provides a starting argument for the need of

diversity between individual information sources embedded as kernels.

The original case of simple linear combination of predictor variables, as de-

scribed in Hand (2006) is revisited here, as it will form the basis for this section’s

analysis on multiple kernel learning.

8.1.1 Linear regression model

Let the predictor variables be (x1, . . . , xd)
T = x and assume they are standard-

ised to zero mean E(xi) = 0 and variance one V (xi) = 1 for i = 1, . . . , d.

Considering non-negative weights wi, ui ≥ 0 and requiring
∑d

i=1wi = 1 and∑d
i=1 ui = 1 then the two weighted sums can be written as

w =
d∑
i=1

wixi and u =
d∑
j=1

ujxj (8.1)

with the Pearson product-moment correlation coefficient for variables u,w

given by

ρ(u,w) =
E(uw)− E(u)E(w)√

E(u2)− E2(u)
√

E(w2)− E2(w)
(8.2)

where E denotes expectation as usual. Substituting from Equation 8.1 and

analysing terms leads to the expression:
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ρ(u,w) =

=

E

0BB@
d∑
i=1

uixi

d∑
j=1

wjxj

1CCA−E

0BB@
d∑
i=1

uixi

1CCAE

0BB@
d∑
j=1

wjxj

1CCA
vuuuuutE

0BB@
0BB@

d∑
i=1

uixi

1CCA
21CCA−E2

0BB@
d∑
i=1

uixi

1CCA
vuuuuutE

0BB@
0BB@

d∑
j=1

wjxj

1CCA
21CCA−E2

0BB@
d∑
j=1

wjxj

1CCA

=

d∑
i,j=1

uiwj [E (xixj)− E (xi) E (xj)]√√√√ d∑
i,j=1

uiuj [E (xixj)− E (xi) E (xj)]

√√√√ d∑
i,j=1

wiwj [E (xixj)− E (xi) E (xj)]

which by substituting for the covariance Vij = E (xixj) − E (xi) E (xj) can be

further simplified to

ρ(u,w) =

d∑
i,j=1

uiwjVij√√√√ d∑
i,j=1

uiujVij

√√√√ d∑
i,j=1

wiwjVij

(8.3)

Noting that ρ(xi, xj) =
Vij√
Vii
√
Vjj

and Vii = 1 ∀ i ∈ {1, . . . , d} we have:

ρ(u,w) =

d∑
i,j=1

uiwjρ(xi, xj)√√√√ d∑
i,j,k,λ=1

uiujwkwλVijVkλ

(8.4)

and as the covariates are standardised, Vij ≤ 1 ∀ i, j ∈ 1, . . . , d, and the regres-

sion coefficients sum to one, it leads to the final bound of the relationship:

ρ(u,w) ≥
d∑

i,j=1

uiwjρ(xi, xj) (8.5)

Equation 8.5 states that the correlation between any two sets of regression

coefficients is bounded below by a function of the correlation between the co-
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variates. Hence, when covariates are highly correlated then it does not really

matter which regression coefficients are employed or in other words that a ”flat

maximum” region exists for all possible parameter values.

8.1.2 Extension to Multiple Kernel Learning

In a direct analogy to the linear regression case, a flat maximum effect can

be observed for the case of multiple kernel learning and the standard convex

linear combination rule. Consider S sources of information represented by S

standardised kernels describing similarities between N training objects. For

a test object xi = {x1, . . . , xD} ∈ RD the responses for two different linear

combinations b and β are given by:

yb =
N∑
j=1

wj

S∑
s=1

bsks(xi,xj) and yβ =
N∑
j=1

wj

S∑
τ=1

βτkτ (xi,xj) (8.6)

which by setting θs =
N∑
j=1

wjks(xi,xj) results in

yb =
S∑
s=1

bsθs and yβ =
S∑
τ=1

βτθτ (8.7)

in direct correspondence with Equation 8.1 from the linear response case.

Following the same analysis, the correlation between these two responses yb and

yβ is directly related to the correlation between the weighted base kernels. The

response correlation is:

ρ(yb, yβ) =
E(ybyβ)− E(yb)E(yβ)√

E(y2
b)− E2(yb)

√
E(y2

β)− E2(yβ)
(8.8)

which by defining the correlation between θs and θτ as ρ (θs, θτ ) and the covari-

ance ∆sτ = E (θsθτ )− E (θs) E (θτ ) leads to

ρ (yb, yβ) =

S∑
s,τ=1

bsβτρ (θs, θτ )√√√√ S∑
s,τ,λ,k=1

bsbτβλβk∆sτ∆λk

(8.9)
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and since ∆sτ ≤ 1 ∀ s, τ ∈ R the relationship can again be bounded as

ρ(yb, yβ) ≥
S∑

s,τ=1

bsβτρ (θs, θτ ) (8.10)

Hence, when the sources of information are highly correlated then any two

responses y created by different sets of kernel combination weights b and β

will be highly correlated, exhibiting the so called Flat maximum effect on MKL

problems. This novel characteristic for kernel combinations is in agreement with

both the intuition regarding correlated information sources that do not offer any

additional gain and with similar arguments of required diversity for multiple

classifier systems (Kuncheva and Whitaker 2003). A further insight into why

diverse base kernels are expected to offer improvement in MKL is given by the

decomposition of the loss in a regression setting which is directly connected to

the proposed pMKL classifiers due to the implicit regression on the auxiliary

variables. We consider such decompositions in the following two Sections that

highlight exactly that need for diversity.

8.2 The Ambiguity Decomposition

The auxiliary variable regression nature of the proposed probabilistic MKL mod-

els is amenable to the ensemble regression analysis introduced by Brown and

Wyatt (2003) which is an extension of the well-known bias-variance decompo-

sition by Krogh and Vedelsby (1995). In this section the so called ambiguity

decomposition analysis is adopted and applied on the MKL scenario.

Consider the (ensemble) response of the model for sample i under the stan-

dard convex linear combination of base kernels

ye =
N∑
j=1

wj

S∑
s=1

βsks(xi,xj) =
S∑
s=1

βsys (8.11)

with the individual base kernel response defined as ys =
∑N

j=1wjks(xi,xj) and

the typical linear constraint
∑S

s=1 βs = 1. Defining ŷ as the target regression

variable and analysing the expression
∑S

s=1 βs (ys − ŷ)T (ys − ŷ)
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=
S∑
s=1

βs (ys − ye + ye − ŷ)T (ys − ye + ye − ŷ)

=
S∑
s=1

βs

[
(ys − ye)

T (ys − ye) + (ye − ŷ)T (ye − ŷ) + 2 (ys − ye)
T (ye − ŷ)

]
=

S∑
s=1

βs (ys − ye)
T (ys − ye) + (ye − ŷ)T (ye − ŷ) (8.12)

Rearranging we have

(ye − ŷ)T (ye − ŷ)︸ ︷︷ ︸
Composite Error

=
S∑
s=1

βs (ys − ŷ)T (ys − ŷ)︸ ︷︷ ︸
Weighted Ind. Error

−
S∑
s=1

βs (ys − ye)
T (ys − ye)︸ ︷︷ ︸

Ambiguity

(8.13)

where the first term of the right hand side is the weighted average error of

individual base kernel responses and the second term is the Ambiguity term

which describes the variability or diversity of the individual base kernels with

respect to the ensemble response.

Hence, in order to minimise the composite error, the individual base kernel

errors must be minimised and their response diversity maximised. The prefer-

ence therefore is for accurate but different and uncorrelated ensemble members

that potentially capture different aspects of the underlying phenomenon while

retaining a good overall performance. In the next section an alternative decom-

position of the loss reveals how the “Ambiguity” term can be formally captured

within the covariance of the base kernel responses.

8.3 Bias-Variance-Covariance Decomposition

This analysis follows the Bias-Variance-Covariance loss decomposition of Ueda

and Nakano (1996). Retaining the same notation as previously, the bias-variance

decomposition for a single regressor (individual base kernel) with output ys can
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be expressed as:

E
{

(ys − ŷ)
T

(ys − ŷ)
}

=

(E {ys} − ŷ)
T

(E {ys} − ŷ)︸ ︷︷ ︸
Bias

T
Bias

+ E
{

(ys − E {ys})
T

(ys − E {ys})
}

︸ ︷︷ ︸
Variance

(8.14)

Extending the decomposition now to the the ensemble (composite kernel)

output ye:

E
{

(ye − ŷ)
T

((ye − ŷ)
}

=

(E {ye} − ŷ)
T

(E {ye} − ŷ)︸ ︷︷ ︸
Term 1

+ E
{

(ye − E {ye})
T

(ye − E {ye})
}

︸ ︷︷ ︸
Term 2

(8.15)

and recalling that ye =
∑S

s=1 βsys and
∑S

s=1 βs = 1, we can further examine the

resulting terms in analogy with the original bias-variance decomposition.

Analysing Term 1 leads to:

(E {ye} − ŷ)
T

(E {ye} − ŷ) =
S∑
s=1

S∑
σ=1

β
T

s βσ (E {ys} − ŷ)
T

(E {yσ} − ŷ)︸ ︷︷ ︸
Bias

T
Bias

(8.16)

Analyzing Term 2 leads to:
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E


(

S∑
s=1

βsys − E

{
S∑
s=1

βsys

})T (
S∑
s=1

βsys − E

{
S∑
s=1

βsys

}) (8.17)

=
S∑
s=1

β
T

s βs E
{

(ys − E {ys})
T

(ys − E {ys})
}

︸ ︷︷ ︸
Variance

(8.18)

+
S∑
s=1

S∑
σ 6=s

βsβσ E
{

(ys − E {ys})
T

(yσ − E {yσ})
}

︸ ︷︷ ︸
Covariance

(8.19)

Hence, combining both terms back to our original expression we have the final

expression for the decomposition of the loss from an ensemble of base kernels:

E
{

(ye − ŷ)
T

((ye − ŷ)
}

=
S∑
s=1

S∑
σ=1

β
T

s βσBias
T

Bias

+
S∑
s=1

β
T

s βsVariance +
S∑
s=1

S∑
σ 6=s

βsβσCovariance (8.20)

The above decomposition of the MKL regression loss follows other ensemble

learning methods (Ueda and Nakano 1996, Kittler et al. 1998, Tax et al. 2000) in

including an additional Covariance term between the ensemble members (base

kernels in our case) which offers an alternative description for the effect of di-

versity and its contribution on the overall loss.

8.4 Diversity and Information

So far we have seen how the “diversity” (expressed through the covariance and

ambiguity terms) in base kernels plays an important role in reducing the loss

and also that when such diversity is absent, we can expect a parameterised

kernel combination rule not to improve upon fixed combinations due to the flat

maximum effect. A further case when parameterised combinations should be

preferred is when an information source is corrupt. To illustrate that scenario,

classification on the Neal dataset is investigated with two information sources.

The first is the original data and the second source is a corrupted version of it
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which is created by adding random noise with varying standard deviation.

In order to observe how the diversity of the sources increases when the noise

term becomes more dominant in the corrupted source we consider the Frobenius

inner product between the two base sources Ki,Kj ∈ RN×N which is an explicit

measure of kernel (matrix) similarity defined as:

F = Tr
[
KiK

′
j

]
= Tr [KjK

′
i] (8.21)

and we can normalise it with respect to the self-similarity of a matrix as

F̂ =
Tr
[
KiK

′
j

]
√
C1C2

(8.22)

where C1 = Tr [KiK
′
i] and C2 = Tr

[
KjK

′
j

]
In Figure 8.1 the results from the convex linear and the fixed summation rule

are shown while varying the noise and hence decreasing the similarity between

the base kernels.
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Figure 8.1: Varying the corruption level on a source while measuring the Frobe-
nius inner product. Results are averaged over 10 randomly bootstrapped runs
for every noise level.

As it can be seen, for low corruption levels and hence a normalised Frobenius
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inner product close to one, both methods achieve same levels of performance. On

the contrary, when the noise corruption level is increased the parameterised ker-

nel combination rule clearly outperforms the fixed combination as it can down-

weight the corrupted source and exploit the informative base kernel instead.

However, diversity or correlation do not describe the information quality of

sources but only their dissimilarity and as we have seen here diversity may be

present without additional information content. Towards that goal of assess-

ing both the diversity and the information gain we propose Fisher information

criteria in the following and last section.

8.5 Fisher Information for MKL

An alternative, information-theoretic, view for MKL can be offered via the

Fisher Information (FI) and the optimal experimental design principles by Fisher

(1935). In accordance with the latter we seek to maximise the information of-

fered by the model parameters with respect to the evidence observed. This leads

to the examination of the log-likelihood curvature which expresses the variance of

the log-likelihood for small parameter permutations and hence acts as a measure

of the information density in specific regions of the parameter space.

The Fisher Information for parameters θ, evidence y and log-likelihood L =

log p(y|θ) is defined as:

F(θ) = −E
{

∂2L
∂θ∂θT

}
(8.23)

In this section, a simple linear regression case for MKL is considered:

y = Kβw + ε with ε ∼ N (0, I) (8.24)

where the likelihood is given by:

L = C exp

{
−1

2
(y −Kβw)

T

(y −Kβw)

}
(8.25)

and the log-likelihood, disregarding constant terms or terms independent of the

parameters β and w, is expressed as:

L =

(
y

T
S∑
s=1

βsKsw −
1

2
w

T
S∑
s=1

S∑
k=1

βsβkKsKkw

)
(8.26)
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where Ks is the sth base kernel ∈ RN×N and Kβ is the composite kernel ∈ RN×N .

8.5.1 Fisher Information of β

First we are interested in the Fisher information of the kernel combination pa-

rameters β which is given by:

F(β) = −E
[

∂2L
∂β∂βT

]
(8.27)

Hence we need the first derivative:

∂L
∂βs

= y
T

Ksw −w
T
∑
k

βkKsKkw (8.28)

which leads to the following second derivative:

∂2L
∂βsβk

= −w
T

KsKkw (8.29)

and finally the Fisher Information matrix has elements given by:

Fsk(β) = w
T

KsKkw (8.30)

8.5.2 Fisher Information of the regression coefficients w

Similarly for the parameters w, the Fisher Information is given by:

F(w) = −E
[

∂2L
∂w∂wT

]
(8.31)

Hence we need the first derivative:

∂L
∂wi

= y
T

ki −
∑
j

wjk
T

i kj (8.32)

where ki is the ith column vector of the composite kernel Kβ. This leads to the

following second derivative:

∂2L
∂wiwj

= −k
T

i kj (8.33)

and finally the Fisher Information matrix has elements given by:
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Fij(w) = k
T

i kj (8.34)

where ki =
∑S

s=1 βsk
s
i . The Fisher Information matrix can therefore be ex-

pressed as:

F(w) = K
T

βKβ (8.35)

8.5.3 Maximisation of the Fisher Information

Having derived the Fisher Information matrices for the regression coefficients

and the kernel combination parameters we seek to find the optimal parameters

β̂ that maximise the FI of the regression coefficients. Following the A-optimality

criterion by Fisher (1935):

min Tr
[
F−1

]
(8.36)

which, in the case of the regression coefficients is expressed as:

min Tr [KβKβ]−1 (8.37)

each base kernel is eigen-decomposed as Ki = UiΛU
T

i and hence we have:

KβKβ =
S∑

i,j=1

UiΛβiU
T

i UjΛβjU
T

j (8.38)

where Λβi is a diagonal eigenvalue matrix with elements λinβi. Now the inverse

of the above matrix product, due to the unitary nature of Ui, is simply:

(KβKβ)−1 =
S∑

i,j=1

UiΛ
−1
βi

U
T

i UjΛ
−1
βj

U
T

j (8.39)

and finally the trace, using the property that Tr[ABC] = Tr[ACB], where

A,B,C matrices, and that for unitary matrices U
T

i Ui = I, is given by:

Tr [KβKβ]−1 =
S∑

i,j=1

Tr
[
Λ−1
βi

Λ−1
βj

]
=

S,S,N∑
i,j,n

1

λinλ
j
nβiβj

(8.40)
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Hence we want to maximise A:

A =

S,S,N∑
i,j,n

λinλ
j
nβiβj (8.41)

where differentiating with respect to β and setting to zero in order to find the

maximum leads to the following homogeneous linear system:

∆β = 0 (8.42)

where ∆ij =
∑

n λ
i
nλ

j
n

The solution of this system of equations is:{
βi = 0 ∀ i ∈ {1, · · · , S} if |∆| 6= 0

Infinite solutions if |∆| = 0
(8.43)

and considering the constraints
∑S

s=1 βs = 1 and βi ≥ 0 ∀ i ∈ {1, · · · , S} this

implies that if matrix ∆ is not singular there is no acceptable solution. If the

matrix is singular than exists a solution other than the trivial solution (β = 0)

and iterative methods can be employed.

Therefore, the Fisher Information perspective on the simple linear regression

MKL setting results in a condition for employing parameterised kernel combina-

tions. Only if the matrix ∆ is singular there exists a solution to the system and

in that case a convex linear combination with the resulting parameters should

be used. In the contrary case where the matrix is non-singular the Fisher Infor-

mation cannot be maximised and hence non-parametric combinations should be

employed in order to reduce the dimensionality of the parameter space.

It is worth noting that when the matrix ∆ is singular, a specific relationship

between the eigenvalues of the base kernels arises and the resulting optimal (in

a Fisher Information context) solution for the parameters β is in direct relation

with these base kernel eigenvalues. This preliminary result for the simple linear

regression case shows a promising direction that is proposed as future research

for probabilistic multiple kernel learning.
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8.6 Discussion

In this final Chapter a theoretical analysis on the multiple kernel learning prob-

lem was offered. It was shown how the Flat maximum effect lower bounds the

correlation of differently parameterised ensemble responses with the correlation

between the ensemble members thus proving that highly correlated sources do

not require parameterised combinations. When the base kernels are correlated,

any set of kernel combination parameters produce correlated responses and hence

a flat maximum region exists where no real improvement can be achieved by in-

ferring such parameters. This offers a justification for many MKL problems

where a simple fixed summation of base kernels has been observed to perform as

well as a parameterised combination rule without the added burden of inference

on that level and the expanded parameter space.

Further analysis with the Ambiguity and the Bias-Variance-Covariance de-

composition of the loss expressed the direct link between the necessary diversity

for base kernels and the resulting composite loss, in an analogy to other ensemble

learning approaches such as classifier and regressor ensemble methods. Further-

more, it was demonstrated that when diverse but noisy information sources are

present parameterised kernel combinations should be employed in order to ad-

dress the corrupted signals.

This also motivated the need to assess the information content of the vari-

ous base kernels besides relying on diversity measures, and led to an alternative

information theoretic approach based on Fisher Information and A-optimality

criteria. The preliminary investigation on the linear regression MKL scenario

resulted in necessary conditions for employing a parameterised combination over

a fixed non-parametric one. This offers a new perspective and a promising re-

search direction for the future as this analysis can be extended on more complex

classification scenarios where perhaps further sufficient conditions and optimal

parameter settings can be derived towards a Fisher Information MKL method-

ology. This and other future research directions are proposed in the next final

chapter together with the conclusions of this thesis.



Chapter 9

Conclusions and Future Research

Directions

This thesis examined the problem of multiclass classification in the presence

of multiple and possibly heterogeneous sources of information with Automatic

Currency Validation (ACV) as the motivating application. Probabilistic multiple

kernel learning (pMKL) approaches were proposed that are able to take into

account uncertainty and effectively integrate the information sources towards an

overall classification decision. The original contributions of this thesis have been

presented in Chapters 3, 4, 5, 7, 6 and 8 with accompanying codes for some of

the developments in http://www.dcs.gla.ac.uk/inference/pMKL.

In Chapter 3 the hierarchical Bayesian framework for pMKL was introduced

with different kernel combination rules and full Markov chain Monte Carlo

(MCMC) solutions. Employing the multinomial probit likelihood gave rise to

an efficient Gibbs sampling scheme for multiclass classification that was comple-

mented with additional Metropolis sub-samplers for inference on unobtainable

parameter posterior distributions. Parameterised and fixed kernel combination

rules were proposed from the standard convex linear summation to novel binary

and product kernel combinations.

In Chapter 4 an efficient variational Bayes approximation was proposed to

alleviate some of the computational burdens of MCMC while retaining classifica-

tion performance. The accuracy of the approximation was examined in compar-

ison with the Gibbs sampling solution and it was demonstrated that there is no

statistical significant difference in classification performance despite the under-

estimation of the posterior covariance structure. Computational times for both
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training and testing phases were greatly improved while retaining approximate

posterior structure and uncertainty estimates.

Further deterministic approximations were proposed in Chapter 5 based on

a Maximum a Posteriori and an Expectation Maximisation scheme. Subsequent

sparse approximations offered a constructive and a top-down approach for tack-

ling the problem of O (N3) scaling, typical in kernel methods, by retaining a

small prototypical set of input samples. That led to the generalisation of Rel-

evance Vector Machines to the multiclass multiple kernel setting through the

proposed mRVM methodologies that were shown to result in very sparse mul-

ticlass solutions while being competitive with methods that utilise the whole

training set.

Large scale experimentation to applications in bioinformatics and pattern

recognition problems was reported in Chapter 7 where state of the art classi-

fication performances with a single pMKL kernel machine were achieved. The

proposed pMKL methods were shown to be competitive with multiple classi-

fier methods with the additional benefits of inferring the contribution of each

source, and hence assessing their discriminative power, while employing a single

classifier.

The motivating application of ACV was presented in Chapter 6 together

with a review of the specific application area. Extensive experimental valida-

tion of the pMKL methods on international currencies and denominations was

reported and it was shown that an overall integration of the various modali-

ties significantly improves recognition rates when discriminating genuine from

counterfeit currency notes. Further insight on machine discriminative regions of

the currency notes was gained and currency specific informative modalities were

identified.

Finally, Chapter 8 offered a theoretical analysis of multiple kernel learning

with respect to the decomposition of the ensemble loss and the flat maximum

effect observed in kernel combination approaches. The diversity of information

sources was identified and justified as a necessary condition for performance

improvement via multiple kernel learning methods while a preliminary analysis

with the Fisher information criteria on linear kernel regression provided the basis

for one of the following promising future research directions.
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9.1 Future Research Directions

As natural, model extensions, further issues and questions on probabilistic mul-

tiple kernel learning remain open. Some of them, judged as most pertinent are

proposed here.

The theoretical analysis in Chapter 8, although promising, is still incom-

plete. Maximising the Fisher information seems a very promising direction and

it has only been addressed in this thesis for the limited linear multiple kernel

regression setting. Considering the sigmoidal likelihoods for classification will

result in a measure for optimising the Fisher information for the truly interest-

ing classification scenario. The hope is that an intuitive eigenvalue relationship,

such as the result of Sun et al. (2004) for kernel target alignment optimisation,

will emerge and provide an alternative procedure for pMKL based on Fisher

optimality criteria. This is considered as an imminent research direction.

Furthermore, a limitation that has not been addressed in this thesis is station-

arity of kernel combinations. The very recent work of Christoudias et al. (2009)

follows the appropriate direction, similar to the hierarchical mixture of experts

method (Jordan and Jacobs 1994), of introducing locality into the problem and

designing covariance combinations dependent on the input space. However, a

series of relatively unjustified approximations is followed to tackle the inference

of covariance hyper-parameters and the hope is that by employing a gating func-

tion that partitions the input space, and avoid the problem of hyper-parameter

covariance estimation with the adoption of the proposed framework, would be

preferable and more efficient.

Another research direction stemming from the sparse models proposed in

Chapter 5 is to pursue joint feature and sample sparsity. This will have the

benefit of identifying both significant features and samples within a common

framework and could potentially improve classification performances in prob-

lems where noisy uninformative dimensions exist. Such model would achieve

sparsity in three levels and could potentially identify samples, attributes and

feature sets (kernels) which would be of interest to bioinformatics and medical

informatics research. However, this does not look trivial within the existing

type-II maximum likelihood procedure as the marginal likelihood cannot be de-

composed to individual contributions from sample attributes.

A direct, but arguably less interesting direction, would be to extend the
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present methods to alternative sigmoidal likelihoods such as the softmax or the

log-log models and further Bayesian approximations such as expectation prop-

agation (Minka 2001) which scales favourably to competing approaches. This

would extend the Bayesian approaches to pMKL and cover a wider spectrum of

models and approximations.

The major research direction in MKL appears to be (see literature review)

towards non-linear kernel combination rules and inference of the relationship

directly from the evidence. Although increasing the combination complexity

will prove beneficial in specific classification tasks, first a theoretical direction

that will provide the conditions under which further non-linear combinations

are expected to improve is needed. Summation of kernels implies concatenation

of feature expansions and product rules result in tensor products of feature

expansions, further non-linear combinations will require a better understanding

of the implicit mapping.

For the motivating application of ACV, specific open research directions in-

clude the automatic inference of segmentation level via a wrapper feature extrac-

tion approach and the extension of MKL to novelty detection. Having offered a

formal probabilistic framework for information integration in multiclass classifi-

cation and computational viable solutions the interest lies now on risk assessment

and decision making. These can and should be addressed via Bayesian decision

theory (Berger 1985).

Finally, the i.i.d assumption, common to standard supervised learning prob-

lems, needs to be addressed for ACV. Currency validation is not a stationary

process as the class conditional distribution of currency notes constantly changes

(covariate shift) over time as the notes age in at least a geographical dependent

way (environmental conditions and societal habits). Hence, even the inference of

kernel combination parameters, signifying the discriminatory strength of various

channels, needs to be non-stationary over time and adaptive. This research di-

rection leads to online learning and tracking, which at the moment is addressed

via importance sampling approaches such as sequential Monte Carlo, and it is

a promising research avenue for proposing adaptive probabilistic multiple kernel

learning.



Appendix A

Posterior Inference in MCMC

A.1 Kernel Combination Parameters

The Metropolis-Hastings sub-samplers and additional Gibbs steps are given for

the parameters and associated hyper-parameters of each kernel combination case.

A.1.1 Convex Linear Combination

In the convex linear case the MH subsamplers employed, based on the prior

distributions placed on the model in Chapter 3 and symmetric proposal distri-

butions, have acceptance ratios:

R
(
βi,β∗

)
= min

1,

N,C∏
n,c=1

Nync

(
w

T

ck
β∗

n , 1
)
Dβ∗(ρ)

N,C∏
n,c=1

Nync

(
w

T

ck
βi

n , 1
)
Dβi(ρ)

 (A.1)

R
(
ρi,ρ∗

)
= min

(
1,
Dβ (ρ∗)

∏S
s=1 Gρ∗s(λ, µ)

Dβ (ρi)
∏S

s=1 Gρis(λ, µ)

)
(A.2)

with the proposed move symbolised by ∗ and the current state with i.

A.1.2 Weighted Product Combination

In the same manner and following the model’s prior distributions for the weighted

product case from Chapter 3 we have MH subsamplers with acceptance ratios:
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R
(
βi,β∗

)
= min

1,

N,C∏
n,c=1

Nync

(
w

T

ck
β∗

n , 1
) S∏
s=1

Gβ∗s (πs, χs)

N,C∏
n,c=1

Nync

(
w

T

ck
βi

n , 1
) S∏
s=1

Gβis(πs, χs)

 (A.3)

R
(
πi,π∗

)
= min

1,

S∏
s=1

Gβs(π∗s , χs)
S∏
s=1

Eπ∗s (µ)

S∏
s=1

Gβs(πis, χs)
S∏
s=1

Eπis(µ)

 (A.4)

R
(
χi,χ∗

)
= min

1,

S∏
s=1

Gβs(πs, χ∗s)
S∏
s=1

Eχ∗s(λ)

S∏
s=1

Gβs(πs, χis)
S∏
s=1

Eχis(λ)

 (A.5)

A.1.3 Binary Combination

In the case of the binary combination inference of the kernel combination param-

eters is performed with an additional Gibbs step that depends on the conditional

distribution of the auxiliary variables Y|β marginalised over the model regres-

sion coefficients W.

The conditional distribution which is the extra Gibbs step introduced, here

for switching off kernels, p (βi = 0|β−i,Y,Ks:1...S) is given by:

p (Y|βi = 0,β−i,Ks:1...S) p (βi = 0|β−i)
1∑
j=0

p (Y|βi = j,β−i,Ks:1...S) p (βi = j|β−i)

where Ks:1...S are all the base kernels. The case for switching on kernels follows

logically from the above.

Finally, the marginal likelihood that the Gibbs step depends on, is given, see

(Denison et al. 2002), by:

p (Y|β,Ks:1...S) =
C∏
c=1

(2π)−
N
2 | Ωc |−

1
2 exp

{
−1

2
y

T

cΩcyc

}
(A.6)
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where Ωc = I + KβΘA−1
c KβΘ

A.2 Kernel Parameters

Finally, the MH ratio for the kernel parameters following the prior Gamma

distribution from Chapter 3 is:

R
(
Θi,Θ∗

)
= min

1,

C,N∏
c,n=1

Nycn

(
wck

βΘ∗

n , 1
) S,D∏
s,d=1

Gθ∗sd(ω, φ)

C,N∏
c,n=1

Nycn

(
wck

βΘi

n , 1
) S,D∏
s,d=1

Gθisd(ω, φ)

 (A.7)

again with the proposed move symbolised by ∗ and the current state with i.



Appendix B

Variational Approximations

B.1 Approximate posterior distributions

The full derivations are given here for the approximate posteriors of the pMKL

model under the variational approximation. A first order approximation is em-

ployed for the kernel parameters Θ, i.e. EQ(θ){Kθi
i K

θj
j } ≈ K

eθi
i K

eθj
j , to avoid

nonlinear contributions to the expectation. The same approximation is applied

to the weighted product kernel rule for the combinatorial parameters β where

EQ(β){Kβi
i K

βj
j } ≈ K

eβi
i K

eβj
j

B.1.1 Q (Y)

Q (Y) ∝ exp{EQ(W)Q(β)Q(Θ){log p (t|Y) + log p (Y|W,β,Θ)}}

∝
N∏
n=1

δtn exp{EQ(W)Q(β)Q(Θ) log p (Y|W,β,Θ)} (B.1)

where the exponential term, after denoting E† = EQ(W)Q(β)Q(Θ) can be anal-

ysed as follows:

217



APPENDIX B. VARIATIONAL APPROXIMATIONS 218

exp{E† log p (Y|W,β)} = exp
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E† log
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n , I

)}

= exp
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W̃WTk
eθj
jn

)}
(B.2)

where k
eθi
in is the nth N -dimensional column vector of the ith base kernel with

kernel parameters θ̃i. Now from this exponential term we can form the posterior

distribution as a Gaussian and reach to the final expression:

Q (Y) ∝
N∏
n=1

δ (yi,n > yk,n∀k 6= i) δ (tn = i)Nyn

(
W̃

T

k
eβ eΘ
n , I

)
(B.3)

which is a C-dimensional conically truncated Gaussian.

B.1.2 Q (W)

Q (W) ∝ exp
{
EQ(Y)Q(β)Q(A)Q(Θ){log p (Y|W,β) + log p (W|A)}

}

= exp

{
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(B.4)

Again we can form the posterior expectation as a new Gaussian:
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Q (W) ∝
C∏
c=1

Nwc

(
VcK

eβ eΘỹc,Vc

)
(B.5)

where Vc is the covariance matrix defined as:

Vc =

(
S∑
i=1

S∑
j=1

β̃iβjK
ieθiKj eθj + Ãc

)−1

(B.6)

and Ãc is a diagonal matrix of the expected scales α̃ic . . . α̃Nc for each class.

B.1.3 Q (A)

Q (A) ∝ exp
{
EQ(W) (log p (W|A) + log p (A|τ, υ))

}
= exp

{
EQ(W) (log p (W|A))

}
p (A|τ, υ) (B.7)

Analysing the exponential term only:

exp

{
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(
log

C∏
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N∏
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Nwnc (0, αnc)

)}

= exp
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α
1
2
nc exp

(
−1

2
w̃2
ncαnc

)

which combined with the p (Z|τ, υ) prior Gamma distribution leads to the

approximate posterior distribution:

Q (A) =

N,C∏
n,c=1

Gαnc
(
τ +

1

2
, υ +

1

2
w̃2
nc

)
(B.8)

B.1.4 Q (β) , Q (ρ) , Q (Θ)

Importance sampling techniques (Andrieu 2003) are used to approximate these

posterior distributions as they are intractable. We present the case of the convex

linear composite kernel analytically:



APPENDIX B. VARIATIONAL APPROXIMATIONS 220

For Q (ρ) we have p (ρ|β) ∝ p (β|ρ) p (ρ|µ, λ) and hence the unnormalised

posterior is:

Q∗ (ρ) = p (β|ρ) p (ρ|µ, λ) with the importance weights defined as:

W
(
ρi
)

=

Q∗
(
ρi
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=
Deβ (ρi′)
I∑
i=1

Deβ (ρi)
(B.9)

where I is the total number of samples of ρ taken until now from the product

Gamma distributions and i′ denotes the current (last) sample. So now we can

estimate any function f of ρ based on:

f̃ (ρ) =
I∑
i=1

f (ρ)W
(
ρi
)

In the same manner as above but now for Q (β) and Q (Θ) we can use the un-

normalised posteriorsQ∗ (β) andQ∗ (Θ), where p (β|ρ,Y,W) ∝ p (Y|W,β) p (β|ρ)

and p (Θ|ω, φ,Y,W) ∝ p (Y|W,Θ) p (Θ|ω, φ) with importance weights defined

as:
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and again we can estimate any function g of β and h of Θ as:

g̃ (β) =
I∑
i=1

g (β)W
(
βi
)

and h̃ (Θ) =
I∑
i=1

g (Θ)W
(
Θi
)
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B.2 Posterior Expectations for the Auxiliary

Variables

As it was shown Q (Y) ∝
∏N

n=1 δ (yn,i > yn,k∀k 6= i) δ (tn = i)Nyn

(
W̃

T
k
eβ eΘ
n , I

)
.

Hence Q (yn) is a truncated multivariate Gaussian distribution and we need to

calculate the correction to the normalizing term Zn caused by the truncation.

Thus, the posterior expectation can be expressed as

Q (yn) = Z−1
n
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N tn
ync
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T

ck
eβeΘ
n , 1

)
where the superscript tn indicates the truncation needed so that the appropriate

dimension i (since tn = i ⇐⇒ yni > ynj ∀ j 6= i) is the largest.

Now, Zn = P (yn ∈ C) where C = {yn : yin > yjn} hence
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with p (u) = Nu (0, 1). The posterior expectation of ync for all c 6= i (the

auxiliary variables associated with the rest of the classes except the one that

object n belongs to) is given by
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(B.10)

For the ith class the posterior expectation yni (the auxiliary variable associ-

ated with the known class of the nth object) is given by:
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ỹni = = Z−1
n

∫ +∞

−∞
yniNyni

(
w̃

T

i k
eβeΘ
n , 1

)∏
j 6=i

Φ
(
yni − w̃

T

jk
eβeΘ
n

)
dyni

= w̃
T

i k
eβeΘ
n + Z−1

n Ep(u)

{
u
∏
j 6=i

Φ
(
u+ w̃

T

i k
eβeΘ
n − w̃

T

jk
eβeΘ
n

)}
= w̃

T

i k
eβeΘ
n +

∑
c 6=i

(
w̃

T

ck
eβeΘ
n − ỹnc

)
(B.11)

where we have made use of the fact that for a variable u N (0, 1) and any

differentiable function g(u), E {ug(u)} = E {g′(u)}.

B.3 Predictive distribution

In order to make a prediction t∗ for a new point x∗ we need to know:

p (t∗ = c|x∗,X, t) =

∫
p (t∗ = c|y∗) p (y∗|x∗,X, t) dy∗

=

∫
δ∗cp (y∗|x∗,X, t) dy∗ (B.12)

Hence we need to evaluate p (y∗|x∗,X, t)

=

∫
p (y∗|W,x∗) p (W|X, t) dW

=
C∏
c=1

∫
N

wT
c K∗

(yc∗, I)Nwc (VcKỹc,Vc) dwc (B.13)

We proceed by analysing the integral, gathering all the terms depending on

wc, completing the square twice and reforming to

p (y∗|x∗,X, t) =
C∏
c=1

∫
Nyc∗

(
Ṽc∗K

T

∗ΛcKỹc, Ṽc∗
)
Nwc (Λc (Kỹc + K∗yc∗) ,Λc)

(B.14)
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with

Ṽc∗ =
(
I−K

T

∗ΘcK∗

)−1

(Ntest× Ntest) (B.15)

and

Λc =
(
K∗K

T

∗ + V−1
c

)−1

(N× N) (B.16)

Finally we can simplify Ṽc∗ by applying the Woodbury identity and reduce

its form to:

Ṽc∗ =
(
I + K

T

∗VcK∗

)
(B.17)

Now the Gaussian distribution with respect to wc integrates to one and we

are left with

p (y∗|x∗,X, t) =
C∏
c=1

Nyc∗

(
m̃c∗, Ṽc∗

)
(B.18)

where m̃c∗ = Ṽc∗K
T

∗ΛcKỹc

Hence we can go back to the predictive distribution and consider the case of

a single test point with associated scalars m̃c∗ and ν̃c∗

p (t∗ = c|x∗,X, t)

=

∫
δ∗c

C∏
c=1

Nyc∗ (m̃c∗, ν̃c∗) dyc∗

=

∫ +∞

−∞
Nyc∗ (m̃c∗, ν̃c∗)

∏
j 6=c

∫ yc∗

−∞
Nyj∗ (m̃j∗, ν̃j∗ ) dyj∗dyc∗

=

∫ +∞

−∞
Nyc∗−gmc∗ (0, ν̃c∗)

∏
j 6=c

∫ yc∗−gmj∗
−∞

Nyj∗−gmj∗ (0, ν̃j∗ ) dyj∗dyc∗ (B.19)

Setting u = (yc∗ − m̃c∗) ν̃c∗
−1 and x = (yc∗ − m̃j∗) ν̃j∗

−1 we have:

p (t∗ = c|x∗,X, t) =

∫ +∞

−∞
Nu (0, 1)

∏
j 6=c

∫ (ufνc∗+gmc∗−gmj∗)fνj∗−1

−∞
Nx (0, 1) dxdu

= Ep(u)

{∏
j 6=c

Φ

[
1

ν̃j∗
(uν̃c∗ + m̃c∗ − m̃j∗)

]}
(B.20)
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B.4 Lower bound

The variational lower bound, conditioning on current values of β,Θ,A and ρ

has the relevant components:

EQ(Y)Q(W) {log p (Y|W,β,K)}

+ EQ(Y)Q(W) {log p (W|A,K)}

− EQ(Y) {logQ (Y)}

− EQ(W) {logQ (W)} (B.21)

which, by noting that the expectation of a quadratic form under a Gaussian

is another quadratic form plus a constant, leads to the following expression for

the lower bound

Lower Bound = −NC
2

log 2π − 1
2

∑C
c=1

∑N
n=1

{
ỹ2
nc + k

T

nw̃cw
T

ckn − 2ỹncw̃
T

ckn

}
−NC

2
log 2π − 1

2

∑C
c=1 log |Zc| − 1

2

∑C
c=1 w̃

T

cAcw̃c − 1
2

∑C
c=1 Tr [AcVc]

+
∑N

n=1 logZn + NC
2

log 2π + 1
2

∑N
n=1

∑C
c=1

(
ỹ2
cn − 2ỹcnw̃

T

ckn + k
T

nw̃cw̃
T

ckn

)
+NC

2
log 2π + 1

2

∑C
c=1 log |Vc|+ NC

2
(B.22)

which simplifies to our final expression

Lower Bound =
NC

2
+

1

2

C∑
c=1

log |Vc|+
N∑
n=1

logZn

− 1

2

C∑
c=1

Tr [AcVc]−
1

2

C∑
c=1

w̃
T

cAcw̃c

− 1

2

C∑
c=1

log |A−1
c | −

1

2

C∑
c=1

N∑
n=1

k
T

nVckn (B.23)
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Quadratic Program

The joint likelihood of the model as depicted in Figure 5.1 is given by:

L = p (t|Y) p (Y|K,W,β) p (W|A) p (A|τ, υ) p (β) (C.1)

where by placing a uniform Dirichlet prior on β ∼ Dβ(ρ) with ρs = 1, and

disregarding irrelevant terms leads to the following expression for the logarithm

of the joint likelihood:

L =
N∑
n=1

δtn − 1

2

N,C∑
n,c=1

(
y2
nc − 2yncw

T

ckn + (w
T

ckn)2
)

+
1

2

N,C∑
n,c=1

logαnc −
1

2

N,C∑
n,c=1

αncw
2
nc

+ (τ − 1)

N,C∑
n,c=1

logαnc − υαnc (C.2)

Recalling that the composite kernel is a function of the parameters β, i.e.

K =
∑S

s=1 βsKs, setting mnc = w
T

ckn =
∑S

s=1 βsw
T

cksn =
∑S

s=1msnc and maxi-

mizing the logarithm of the expected joint likelihood with respect to the kernel

parameters β leads to:

β̂ = arg max
β

N,C∑
n,c=1

ỹncmnc −
1

2
m2
nc = arg min

β

N,C∑
n,c=1

1

2
m2
nc − ỹncmnc (C.3)
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which is a Quadratic Program (QP) with inequality and equality constraints due

to the Dirichlet prior on the kernel combination parameters. Finally, the QP

can be expressed in matrix format as: β̂ = arg min
β

1
2
β

T
Ωβ − βT

f

subject to βs ≥ 0 and
∑S

s=1 βs = 1
(C.4)

where Ωij =
∑N,C

n,c mincmjnc is an S × S matrix and fi =
∑N,C

n,c mincỹnc.
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Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.:

2009, Dataset Shift in Machine Learning, Neural Information Processing

series, MIT Press, Cambridge.

Rakotomamonjy, A., Bach, F., Canu, S. and Grandvalet, Y.: 2007, More ef-

ficiency in multiple kernel learning, Proceedings of the 24th international

conference on Machine learning, ACM New York, NY, USA, pp. 775–782.

Rao, N. S. V.: 2001, On fusers that perform better than best sensor, IEEE

Transactions on Pattern Analysis and Machine Intelligence 23(8), 904–909.

Rao, N. S. V.: 2004, A generic sensor fucion problem: Classification and function

estimation, Multiple Classifier Systems, pp. 16–30.

Rasmussen, C. E. and Williams, C. K. I.: 2006, Gaussian Processes for Machine

Learning, MIT Press, Cambridge, Massachusetts, USA.

Raval, A., Ghahramani, Z. and Wild, D. L.: 2002, A Bayesian network model

for protein fold and remote homologue recognition, Bioinformatics 18, 788–

801.

Ripley, B. D.: 1996, Pattern Recognition and Neural Networks, Cambridge Uni-

versity Press, UK.

Roth, V.: 2004, The generalized LASSO, IEEE Transactions on Neural Networks

15(1), 16–28.

Saigo, H., Vert, J.-P., Ueda, N. and Akutsu, T.: 2004, Protein homology detec-

tion using string alignment kernels, Bioinformatics 20(11), 1682–1689.

Schapire, R. E.: 2003, The boosting approach to machine learning: An overview,

Lecture Notes in Statistics pp. 149–172.



BIBLIOGRAPHY 240

Schmolck, A. and Everson, R.: 2007, Smooth relevance vector machine: a

smoothness prior extension of the RVM, Machine Learning 68(2), 107–135.

Schölkopf, B. and Smola, A.: 2002, Learning with Kernels, The MIT Press,

Cambridge, Massachusetts, USA.

Shawe-Taylor, J. and Cristianini, N.: 2004, Kernel Methods for Pattern Analysis,

Cambridge University Press, Cambridge, England, UK.

Shen, H.-B. and Chou, K.-C.: 2006, Ensemble classifier for protein fold pattern

recognition, Bioinformatics 22(14), 1717–1722.

Shi, M., Fujisawa, Y., Wakabayashi, T. and Kimura, F.: 2002, Handwritten nu-

meral recognition using gradient and curvature of gray scale image, Pattern

Recognition 35(10), 2051–2059.

Sonnenburg, S., Ratsch, G. and Schafer, C.: 2006, A general and efficient mul-

tiple kernel learning algorithm, Advances in Neural Information Processing

Systems 18: proceedings of the 2005 conference, MIT.
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