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Abstract: Scientific advances across a range of disciplines hinge on our ability to make 

inferences about unobservable theoretical entities based on empirical data patterns. Accurate 

inferences rely on both a) discovering valid, replicable data patterns, and b) accurately 

interpreting those patterns in terms of their implications for theoretical constructs. The 25 

replication crisis in science has led to widespread efforts to improve the reliability of research 

findings, but comparatively little attention has been devoted to the validity of inferences based 

on those findings. Using an example from cognitive psychology, we demonstrate a blinded 

inference paradigm for assessing the quality of theoretical inferences from data. Our results 

reveal substantial variability in expert judgements on the very same data, hinting at a possible 30 

inference crisis.  

Data and materials availability: Data and analyses are available at 

https://osf.io/92ahy/?view_only=2f6d9b285c2d4e279f144b6fed363142. 
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Assessing theoretical conclusions with blinded inference to investigate a potential inference 

crisis 

At the most fundamental level, science is the process of creating, testing, and refining 

ideas that explain and predict natural phenomena. Two core components are necessary for this 

process to be effective: First, researchers must be able to produce reliable data patterns. Second, 5 

researchers must be able to reach sound theoretical conclusions based on those patterns. 

Scientists in a variety of fields have developed techniques to minimize failure in the first 

component, that is, to correct the surprisingly high rate of unreliable data patterns reported in the 

scientific literature, often referred to as the replication crisis (Open Science Collaboration, 

2015). These techniques, including pre-registration (Miguel et al., 2014), an increased emphasis 10 

on direct replication (Open Science Collaboration, 2015), and blinded analysis (MacCoun & 

Perlmutter, 2015), are crucial for promoting reliable scientific findings. However, we suggest 

that researchers looking to reform the scientific process should broaden the scope of their 

investigation to assess whether researchers can make valid theoretical conclusions by analyzing 

empirical outcomes. This broader perspective could reveal whether some fields suffer from an 15 

inference crisis; that is, a situation in which researchers have a surprisingly high likelihood of 

making incorrect theoretical conclusions even if they are working with reliable, replicable data 

patterns (Rotello, Heit, & Dubé, 2015).  

The most direct way to assess inference quality is to create data sets for which the correct 

inferences are known and to determine whether researchers can discover these correct inferences 20 

through blinded data analysis. This blinded inference procedure represents an extension of 

blinding techniques already in common practice. As outlined in 1, blinding techniques applied 

during data collection and analysis are used routinely to reduce the tendency of researchers 
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and/or participants to promote desired outcomes. Specifically, “blinded data collection” refers to 

experimental designs that blind the experimental participant, the researcher, or both to the 

assigned condition (e.g., placebo v. drug), minimizing the ability of these agents to change their 

behavior according to their beliefs about the assigned condition. “Blinded analysis” techniques, 

increasingly common in physics (MacCoun & Perlmutter, 2015), hide from the data analyst 5 

either the true experimental condition from which each observation is drawn (e.g., scrambled 

conditions) or the true value of the observation itself (e.g., addition of removable random noise), 

thereby limiting the ability of analysts to promote desired outcomes with their analysis choices, 

such as in the well-documented practice of p-hacking (Simmons, Nelson, & Simonsohn, 2011). 

These blinding procedures are valuable tools to limit the malign effects of “researcher degrees of 10 

freedom (df),” a term that describes the wide range of design and analysis choices researchers 

can use to address the same research question (Simmons et al., 2011). A recent study (Silberzahn 

et al., 2018) highlighted the influence of researcher degrees of freedom by sending the same data 

set to 29 teams of researchers and asking each team to determine whether soccer referees 

disproportionately “red-card” darker-skinner players. The results showed substantial variability 15 

in analysis techniques and conclusions across the research teams. 
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Fig. 1. Diagram of the scientific process. The top panel denotes the main stages. The middle 

panel outlines the methods used in the present paper. The bottom panel denotes common 

blinding techniques applied in each of the scientific stages, including the blinded inference 

paradigm advocated for in the present paper. 5 

These blinding methods are excellent strategies to limit the influence of researcher 

degrees of freedom and/or to assess the consistency of inferences across researchers, but they do 

not address the validity of those inferences. This extra step is crucial because researchers might 

make inference errors even if they are not promoting a desired outcome with their analysis 10 

choices, and these errors could be consistent across researchers who make similar choices (for 

examples, see Rotello et al., 2015). To assess the validity of theoretical inference, we advocate 

widespread use of a blinded inference design to supplement traditional approaches. In such a 

design, researchers who are blinded to condition assignment make inferences about the state of 

independent variables that are linked to theoretical constructs. Our characterization of the 15 

blinded inference technique is heavily influenced by a recent study by Dutilh et al. (2018) in 

which condition-blinded data sets were sent to response-time modelers who were asked to infer 

whether the conditions differed in terms of psychological constructs such as response caution 

and evidence strength. Our general charaterization of the blinded inference approach relies on 
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Dutilh et al.’s innovative design with two modifications: (1) analysts should be asked to make 

inferences about empirically manipulated factors rather than latent constructs so that the correct 

inferences can be unambiguously defined, and (2) analysts should be required to communicate 

the level of uncertainty associated with their inferences in terms of a probability distribution. 

As characterized here, blinded inference can be used in any scenario in which researchers 5 

claim that they can (a) measure a theoretical construct based on data patterns and (b) manipulate 

that theoretical construct with independent variables. If both of these claims are true, then 

researchers should be able to make accurate inferences about the state of independent variables 

specifically linked to the theoretical construct by analyzing data. If researchers fail in this task, 

then it suggests that at least one of the claims is false, i.e., researchers either lack valid 10 

techniques for measuring the theoretical construct, lack valid ways to manipulate it, or both. In 

turn, failures to validly measure theoretical constructs could arise from a variety of problems. 

One class of problems applies to the process of selecting a measurement model to map patterns 

of data to underlying processes. Different models might suggest different inferences even if they 

have a similar ability to match observed data patterns. Another class of problems applies to the 15 

process of applying the model, and includes malign factors like parameter estimation biases and 

mishandling of data. 

Concretely, consider a famous example: Mendel and his peas. Mendel recorded 

systematic patterns of variables, i.e., the relationship between the traits of parents and offspring, 

and linked them to unobservable theoretical constructs, i.e., hereditary “factors” that obeyed 20 

certain laws. His data have been described as being too clean, with too few extreme observations, 

which may be a result of “unconscious bias in classifying ambiguous phenotypes, stopping the 

counts when satisfied with the results, recounting when results seem suspicious, and repeating 
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experiments whose outcome is mistrusted” (Hartl & Fairbanks, 2007). Thus, Mendel’s 

conclusions might represent the first documented case of p(ea)-hacking. Clearly, Mendel would 

have benefitted from using blinded analyses to eliminate researcher biases, but we wish to 

demonstrate how he could have gone further.  

By applying his theory of genetics, Mendel claimed to be able to (a) measure underlying 5 

hereditable factors by evaluating the phenotype of a plant and (b) manipulate hereditable factors 

in offspring by selecting parents with certain phenotypes. These are precisely the claims related 

to the validity of theoretical inference that can be tested in a blinded inference paradigm. For 

example, someone could have given Mendel a number of plants produced by mating parents with 

certain traits (unknown to Mendel) and asked him to use his laws of hereditability to predict the 10 

likely traits of the parent plants by interpreting the traits of the offspring. Mendel would not have 

been able to make perfect inferences, of course, given that some phenotypes can be produced by 

multiple genotypes, but he should have been able to make substantially more accurate inferences 

than someone without a valid theory linking the phenotypes of parents and offspring. We claim 

that a procedure like this one would have provided a more compelling demonstration of the 15 

predictive value of Mendel's laws than unblinded data that could be "massaged." Moreover, by 

revealing specific offspring phenotypes for which the parents’ phenotypes were particularly 

difficult to predict accurately, it might have allowed the limitations in Mendel’s basic theory to 

be identified more quickly.   

 Many modern scientists share with Mendel the challenge of making inferences about 20 

theoretical constructs on the basis of indirect evidence. For example, modern geoscientists infer 

the composition and dynamics of Earth’s interior from a variety of indirect methods, including 

radar and magnetic fields. Likewise, cosmologists have inferred that dark matter exists in the 
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absence of direct observation. In the authors’ discipline, cognitive processes are inferred from 

observable behaviors such as decision accuracy or response times. Thus, a critical step in 

establishing the validity of many scientific claims is to test the inferential power of the data, and 

this is precisely what the blinded inference procedure achieves: If the researcher is blind to the 

nature of the manipulation(s), conclusions about what experimental factor was manipulated 5 

depend entirely on the data and not on the expectations or unconscious biases of the researcher. 

In what follows, we demonstrate the blinded inference paradigm using an example study 

from recognition memory research. The scheme in the middle of 1 summarizes the design. We 

conducted a study in which we sent recognition memory researchers (“contributors”) seven data 

sets generated with common experimental manipulations and asked them to make inferences 10 

about memory performance. In a recognition memory task, participants are asked to indicate 

whether they previously encountered a stimulus (often a word) in a certain context (typically a 

study list). A common question is whether, and to what extent, an independent variable produces 

changes in discriminability (the ability to distinguish stimuli that were and were not seen in the 

target context), and in many cases this determination is obscured by differences in response bias 15 

(the overall predilection for saying “studied”). Signal detection theory (SDT; Macmillan & 

Creelman, 2005) was developed in the 1950s with the goal of separating discriminability and 

bias, and SDT-based measures have been in common use throughout psychology and other 

disciplines ever since. Several other models or measurement techniques have been developed as 

alternatives to SDT (Ratcliff, 1978; Riefer & Batchelder, 1988), and some of these also achieved 20 

wide popularity throughout psychology (e.g., Erdfelder et al., 2009). Thus, researchers have had 

nearly seven decades to hone their ability to distinguish discriminability and bias as theoretical 

constructs, and thousands of papers have been published using models and measures that claim 
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to be able to do so. We tested published memory researchers on their ability to detect whether 

memory discriminability varied between experimental conditions that might have also varied in 

terms of response biases. 

We have two primary research questions: First, how variable are inferences across 

researchers? Finding high variability across researchers would be unsettling, given that they all 5 

analyzed the same data. Second, and more importantly, how accurate are researcher inferences? 

If recognition memory researchers have effective methods for manipulating and measuring 

discriminability and bias based on seven decades of investigating these constructs, then they 

should be able to make accurate inferences about whether conditions come from the same level 

or from different levels of a discriminability manipulation. 10 

To preview, we found surprisingly high variability in the inferences of memory 

researchers asked to interpret the same data, and we also found that many researchers made more 

inferential errors than would be expected from sampling variability in the data. Given that our 

task required a relatively simple inference, we suspect that this pattern of surprisingly low 

inferential accuracy is likely to be found in other research areas. Broadly, however, we 15 

emphasize key positive outcomes of this study. Our study exemplifies scientists' commitment to 

improving the research process, in that many respected memory researchers had the courage to 

put their conclusions to a public test. Moreover, despite the troubling error rate of the group, our 

framework identified multiple researchers as having made highly accurate inferences. We 

therefore believe that our study demonstrates a promising methodology for the future goal of 20 

improving inference quality by identifying best practices. 
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Methods 

Experimental Design 

There were two main phases of data collection. In Phase 1, we collected experimental 

data in a large-scale recognition memory experiment that used standard study materials and 5 

included orthogonally-varied factors known to influence memory discriminability and response 

bias.1 The between-subjects design of Phase 1 is analogous to any comparison of memory 

performance between a special population (e.g., Alzheimer’s patients) and a control group, 

except that our participants were randomly assigned to conditions.  In Phase 2, subsets of the full 

data set were selected to generate seven two-condition experiments in which only the factor 10 

affecting discriminability varied (2 experiments), only the factor affecting response bias varied 

(2 experiments), both factors varied (2 experiments), or neither varied (1 experiment).  The 

conditions in these seven experiments were masked and the data were shared with researchers 

who had published papers investigating recognition memory, and these experts (or 

“contributors”) were asked to rate the probability that each experiment had only a memory 15 

discriminability manipulation, only a response bias manipulation, both, or neither. Contributors 

were not told how many experiments of each type were included in the data sets, and they were 

free to select their preferred strategy for distinguishing memory discriminability and response 

bias. 

20 

Phase 1 

1 All study procedures were approved by the Institutional Review Board at the University of Massachusetts 

Amherst. 
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Participants. A total of 459 participants were recruited through Amazon’s Mechanical 

Turk (Buhrmester, Kwang, & Gosling, 2011) using psiTurk (Gureckis et al., 2016). Participants 

earned $1.00 for completing the experiment. 

Materials. The experiment utilized 104 high-frequency (at least 100 occurrences/million 

in Kučera & Francis, 1967) English nouns that were 3-7 letters long. Four words were used in 5 

the practice block, and the remaining 100 were equally divided into two study lists, A and B. 

Participants were randomly assigned to study either list A or list B. All participants were tested 

on the combined list of all 100 words, resulting in complete counterbalancing of stimulus status 

(studied or unstudied) across participants.  

Procedure. The experiment was coded in javascript using the jsPsych library (de Leeuw, 10 

2015). Participants were given detailed instructions that included comprehension checks for key 

components, and they completed a brief practice block before beginning the main task. Word 

order in the study and test phases was independently randomized for each participant. On each 

trial of the study phase, participants were asked to report whether the presented word represented 

an animate object. All of the stimulus words represented clearly animate or inanimate objects, as 15 

judged by four independent raters. Each word remained on the screen until the participant 

entered a response for the animacy question. On each trial of the test phase, participants were 

first asked to report whether or not they had seen the presented word in the study phase. 

Participants were then asked to report how confident they were in their response on a 1-3 scale, 

in which a “1” meant “Not Sure” and a “3” meant “Very Sure”. All responses were made via key 20 

press, and participants were asked to balance speed and accuracy throughout the experiment. 

Memory discriminability and bias were manipulated between participants. 

Discriminability was manipulated by varying the number of times each word was presented in 



 

11 

the study phase (1, 2, or 3). Bias was manipulated by instructing participants to avoid making 

particular kinds of errors in the test phase. Specifically, conservative participants were told to 

particularly avoid false alarms (“old” responses to unstudied items), liberal participants were told 

to particularly avoid misses (“new” responses to studied items), and neutral participants were 

told to avoid both errors equally. This manipulation was reinforced by varying the quality of the 5 

error feedback in the test phase, such that conservative participants saw a “BAD ERROR!” 

message after false alarms and standard “ERROR” message after misses, liberal participants saw 

a standard “ERROR” message after false alarms and a “BAD ERROR!” message after misses, 

and neutral participants saw a standard “ERROR” message in both cases. The “BAD ERROR!” 

message was accompanied by a reminder of the type of error to particularly avoid and was 10 

presented longer than the standard message (2500ms vs. 500ms).  

Phase 1 results. Complete data are available at the OSF site. A summary of the data 

analyzed in each of the seven experiments appears in Table 1. We offer no statistical 

interpretation of these data, given our goal of crowd-sourcing that interpretation in Phase 2 

(described next).  However, we note that the outcome of this experiment is very consistent with 15 

decades of recognition memory literature. For example, hit rates increased and false alarm rates 

decreased with repeated learning opportunities (as in, e.g., Lachman & Field, 1965; Ratcliff, 

Clark, & Shiffrin, 1990; Stretch & Wixted, 1998; Verde & Rotello, 2007). We also observed 

typical effects of response bias manipulations: both hit and false alarm rates tended to increase as 

increasingly liberal responding was encouraged (e.g., Dube, Starns, Rotello, & Ratcliff, 2012; 20 

Han & Dobbins, 2009; Starns, Hicks, Brown, & Martin, 2008; Swets, Tanner, & Birdsall, 1961) 

and the effects of bias appeared weaker when encoding strength was greater (e.g., Ratcliff, Sheu, 

& Gronlund, 1992). 
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Experiment Condition Discriminability Bias N Hit Rate False Alarm Rate 

A 1 3 Liberal 24 .873 .239 

2 3 Conservative 24 .875 .126 

B 1 1 Liberal 27 .865 .266 

2 2 Conservative 25 .840 .191 

C 1 2 Neutral 27 .861 .205 

2 3 Neutral 24 .911 .174 

D 1 1 Neutral 27 .781 .256 

2 1 Conservative 26 .739 .195 

E 1 1 Conservative 26 .742 .192 

2 3 Neutral 24 .815 .190 

F 1 1 Liberal 26 .812 .287 

2 3 Liberal 26 .935 .164 

G 1 2 Liberal 26 .847 .208 

2 2 Liberal 26 .913 .208 

Notes: Discriminability represents the number of times each target word was presented in the 

study phase (1, 2, or 3). Liberal and conservative biases refer to instructions to particularly avoid 

missing studied items and false alarms to unstudied memory probes, respectively, in the test 

phase; neutral bias emphasized both errors equally. N indicates sample size, and hit and false 5 

alarm rates indicate the proportion of correct and erroneous “old” judgments. 

Table 1. Definition and summary statistics of the seven experiments sent to contestants. 

Phase 2 10 

Participants. Contributors were recruited through targeted e-mails to researchers with a 

background in recognition memory and/or models of memory and decision making. These 

individuals were encouraged to forward our invitation to other experts. Out of the 121 

researchers who were initially contacted, a total of 46 contributors (comprising 27 PIs and 19 

members of their labs) submitted analyses. The data were available in two phases, one for which 15 

the confidence-rating data were withheld and another that included the confidence ratings. The 

purpose of the phases was to investigate whether or not confidence ratings improved inference 
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quality. Of the 27 groups of contributors, 14 also submitted new analyses when the confidence 

rating data were released. Two contributors declined authorship, and their inferences are de-

identified. Of the 44 contributors who accepted authorship, 33 (representing 19 labs) opted to 

have their inferences associated with their identities; the others chose to remain anonymous. The 

27 PIs had an average of 14.7 years of post-Ph.D. experience. 5 

Materials. Subsets of data collected in Phase 1 were sampled to form seven 

“experiments” for the contributors to analyze, summarized in Table 1. Each experiment was 

designed to have two between-participant conditions that differed in terms of either a memory 

discriminability manipulation, a response bias manipulation, both, or neither. The data for each 

condition were created by taking separate random samples of participants who studied list A and 10 

participants who studied list B and combining them. Each condition had either an equal number 

of participants from the two lists or very close to equal (off by one). The data sets that 

contributors received for the binary analyses included data from the test phase with variables for 

participant ID, condition (1 or 2), study list (A or B), trial (1-100), test word, whether or not the 

tested word had been studied (target or lure), the participant’s binary response (“old” or “new”), 15 

and response time for the binary response. The data sets that contributors received for the 

confidence rating analyses additionally included the participant’s confidence rating, both on the 

original 1-3 scale and on a recoded 1-6 scale that ranged from “Very Sure New” to “Very Sure 

Old”, and response time for the confidence rating response. 

Each contributor completed a submission template summarizing their analyses (see OSF 20 

site for an example). The template asked contributors to report the authors collaborating on the 

submission, accept or decline authorship, and indicate whether they would prefer their 

conclusions be de-identified. Contributors were then asked to provide a description of their 
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process for analyzing the data in sufficient detail for external replication, a description of any 

exclusion criteria that were applied, and any code that they were comfortable sharing. All shared 

code is available at the OSF site. Contributors were lastly asked to report four probabilities for 

the four possible types of experiment; namely, experiments for which the two conditions were 

from (1) different levels of a memory strength (discriminability) manipulation but not different 5 

levels of a bias manipulation, (2) different levels of a bias manipulation but not different levels 

of a memory strength manipulation, (3) different levels of both a memory strength and a bias 

manipulation, or (4) the same levels of memory strength and bias (i.e., null data sets). 

Procedure. Materials for the binary and confidence rating data analyses were posted to 

separate private OSF pages. The materials for the binary data analyses were made accessible to 10 

contributors on July 7, 2017 and analyses were due August 31, 2017. The materials for the 

confidence rating data analyses were made accessible on September 9, 2017 and analyses were 

due on November 1, 2017. No changes to the binary data contributions were allowed after the 

confidence rating data were released. To support the independence of contributors’ inferences, 

all communication of the coordinating team with contributors was conducted via individually-15 

generated emails, contributors’ identities were not shared until mid-November of 2017, and 

contributors were strongly discouraged from discussing their interpretations of the data with one 

another in case they accidentally discovered their common participation.  

Results 20 

Our response format was designed to highlight the fact that contributors needed to 

distinguish the effects of discriminability and bias, but we are primarily interested in conclusions 

about whether there was a discriminability manipulation. A wide range of research questions in 
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the recognition memory literature require conclusions about discriminability, whereas bias is 

more often considered a “nuisance” process. Moreover, focusing on discriminability gives our 

contributors the best chance to succeed because discriminability is better understood and less 

theoretically contentious than bias (Macmillan & Creelman, 2005). To isolate discriminability 

inferences, we collapsed the “memory alone” and “both” categories to represent the reported 5 

probability of a discriminability manipulation and the “bias alone” and “neither” categories to 

represent the reported probability of no discriminability manipulation (see OSF for bias results, 

which unsurprisingly showed poorer inference performance than the discriminability results).  

Fig. 2A shows histograms of the reported probability of a discriminability manipulation 

across contributors for each of the seven experiments, with regions reflecting correct and 10 

incorrect inferences marked in green and red, respectively. The most striking finding shown in 

Fig. 2A is the extremely high variability across contributors, with responses spanning a wide 

range of probabilities for all experiments. For example, some contributors reported a 0% chance 

that the conditions in Experiment A came from different levels of a memory discriminability 

manipulation, some reported a 100% chance, and the rest follow an essentially uniform 15 

distribution of probability estimates between these two extremes. Responses were concentrated 

on the correct side for some experiments (e.g., D, F), but not for others (A, B). The high level of 

variability is surprising given that all researchers received the same data sets. Note that Fig. 2B, 

addressed in greater detail below, shows the data that informed the researchers’ inferences, 

namely the proportion of studied and non-studied items called “studied” (or the “hit rate” and 20 

“false alarm rate” in signal detection terms). The dark symbols show results with no participants 

or trials excluded and grey symbols show results of applying the exclusion criteria used by each 

contributor. A priori, some experiments seemed likely to be easier to interpret, for example, 
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when both the hit and false alarm rate effects were large and consistent with the same theoretical 

inference (e.g., in Exp. F, the higher hit rate and lower false alarm rate for Cond. 2 both indicate 

higher memory discriminability in this condition).  

The variability in inferences was matched by high variability in the analysis methods 

selected by our contributors. These methods, identified on the y-axis of Fig. 2D and described in 5 

the Supplemental Materials, are purportedly capable of distinguishing memory discriminability 

and response bias. Within most of these techniques, some contributors used traditional 

frequentist statistical methods (e.g., maximum likelihood estimation, significance tests) and 

others used Bayesian methods (e.g., posterior distributions of parameters or model selection via 

Bayes Factors). When all analysis choices were considered, no two contributors used exactly the 10 

same analysis approach (e.g., same exclusion criteria, measurement technique, and statistical 

approach). 

To summarize inferential accuracy, we counted the number of times across experiments 

that each contributor reported the true discriminability effect status as the most likely outcome, 

that is, reported a greater than 50% chance of a discriminability manipulation when 15 

discriminability was in fact manipulated or reported a less than 50% chance of a discriminability 

manipulation when it was not. A histogram of these results appears in Fig. 2C. Slightly over half 

of the contributors performed well by this measure, correctly describing five or six of the seven 

data sets, but the other contributors performed more poorly. We note that the contributor with 

zero correct inferences estimated a 50% chance of a discriminability manipulation for every 20 

experiment, so in fairness, this contributor did not make any incorrect inferences either.  
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Fig. 2. Discriminability inference performance. Panel A: Histograms of contributors’ estimated 

probabilities of an effect in each of the seven experiments. Red denotes incorrect estimates 

whereas green denotes correct estimates. Panel B: Hit and false alarm rates for each of the seven 

experiments. Black points represent original values. Grey points represent values after applying 5 

each contributor’s specified exclusion criteria. Panel C: Histogram of the number of correct 

inferences out of the seven experiments analyzed for each contributor. The blue dashed line 

denotes simulation-based benchmark for reasonable performance. Panel D: The adjusted Brier 

score for each contributor, labelled by their chosen method of analysis. (Note that 19 contributor 

groups, highlighted in bold, were willing to have their names associated with their responses. 10 

The OSF page includes a figure that identifies these contributors.) Black points represent scores 

for the binary data analysis. Red and green points represent scores for the data analysis with 

confidence ratings where performance decreased or increased, respectively. The black vertical 

line denotes chance performance; The blue dashed line denotes simulation-based benchmark for 
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reasonable performance. Labels on the y-axis denote analysis strategies (defined in the 

Supplemental Materials) and statistical choices (B = Bayesian; F = frequentist). 

Even a valid inference procedure will sometimes reach inaccurate conclusions due to 

sampling variability, so we needed to identify a benchmark accuracy level below which it would 5 

be reasonable to conclude that an invalid inference technique had been applied. We performed 

model simulations to identify this benchmark. In the simulations, we generated data sets by 

randomly sampling data from a signal detection model and analyzing those data sets with 

measures derived from the same model (see the Supplementary Materials for details). Each 

simulated data set contained the same type of information as the data sets sent to contributors 10 

with no labeling to identify the experimental manipulation. Thus, the simulation code performed 

blinded inference just like our contributors. The key difference between the simulation code and 

the contributors’ analyses is that the former uses an inference procedure that is known to be valid 

(i.e., consistent with the process that generated the data), so the results represent expected 

performance levels when sampling variability is the only source of inaccuracy. We set 15 

performance benchmarks such that only 10% of the simulated studies fell below the value, 

meaning that performance is rarely that bad when a valid inference method is applied.  

The benchmark for number correct is indicated with a dashed line in Fig. 2C. Nearly half 

of the contributors fell below this benchmark, suggesting that some aspect of their inference 

method was ineffective. To assess whether our empirical data sets were a particularly misleading 20 

sample (like the 10% of simulated data sets that produced accuracy below our benchmark even 

when a valid inference technique was applied), we used the analysis technique from the 

simulation on the actual data sets sent to contributors and obtained correct inferences for 6 of the 

7 data sets. Thus, the empirical data sets do not seem to be a “bad” or misleading sample.  
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Scientists should be able to express appropriate degrees of certainty in their conclusions, 

so we also assessed accuracy with a measure that is sensitive to the contributors' probability 

estimates: the Brier score (Brier, 1950). Brier scores compute the variance between the predicted 

probability that an outcome will occur and the actual outcome (coded as a 0 or 1). In our case, 

the outcome is whether or not the two conditions in an experiment come from different levels of 5 

a discriminability manipulation. Therefore, the best possible performance is produced by 

reporting a 0% predicted chance of a discriminability manipulation for all data sets without a 

discriminability manipulation and a 100% predicted chance for all data sets with a 

discriminability manipulation, the worst possible performance is the converse, and "chance" 

performance means reporting a 50% chance for all data sets (meaning that estimates provide no 10 

information about which data sets have discriminability manipulations). We adjusted our Brier 

scores such that 0 represents chance performance, 1 represents the best possible performance, 

and –1 represents the worst possible performance (see the Supplementary Materials for details). 

In our simulations to explore performance levels for a valid inference technique, the median 

adjusted Brier score was .44 and 10% of scores fell below .13, which will thus serve as our 15 

benchmark for problematic inferences. Applying the analysis technique from the simulations to 

the empirical data sets sent to contributors produced a Brier score of .38, which is well above our 

benchmark.  

Fig. 2D shows ranked Brier scores for our contributors (contributions are labeled by their 

inference technique). The contributor who reported 50% for every data set is on the chance line. 20 

Although this contributor returned no correct inferences, their probability estimates 

outperformed about one-third of contributors in terms of Brier scores. The contributors who are 

below chance made multiple incorrect inferences with high confidence levels; in other words, 
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their reported probabilities provided misinformation as to which data sets were likely to have a 

discriminability manipulation. Roughly half of contributors were below the benchmark for 

problematic inferences, shown by the dashed vertical line, demonstrating that researchers fairly 

commonly made the mistake of being inappropriately confident in their incorrect inferences. 

Reassuringly, some contributors achieved Brier scores that are basically as high as can be 5 

expected given sampling variability in the data, suggesting that they applied appropriate 

inference methods. Given the poor overall performance, one might wonder whether these high-

performing contributors were simply lucky, indicating that none of our contributors truly 

succeeded in the inference task. The Supplementary material includes analyses that strongly 

support the conclusion that at least some of our contributors applied valid inference procedures.  10 

Inference errors were not associated with the choice of any particular analysis technique. 

The y-axis of Fig. 2D reveals no clear pattern. Methods used by multiple contributors tend to be 

distributed among the top, middle, and bottom rankings, as are techniques relying on frequentist 

and Bayesian approaches. Our simulation results also showed that inferences about 

discriminability are generally robust to different measurement methods, at least for data patterns 15 

similar to those in our experiments. Specifically, we reanalyzed all of the simulated data sets 

using a different measure of discriminability (Pr = hit rate – false alarm rate) that is consistent 

with a different class of models (Pazzaglia, Dube, & Rotello, 2013; Snodgrass & Corwin, 1988) 

than the data-generating signal detection model. The Pr analyses achieved accuracy levels that 

were well above our benchmarks for problematic inferences in terms of number correct and Brier 20 

scores (see the Supplementary materials for details). Pr depends on different processing 

assumptions than the signal-detection model used to sample the simulated data sets, but the two 

models often make similar discriminability inferences for data set like the ones we sent to 
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contributors (inferences start to diverge for data sets that have large bias effects, but our bias 

effects were moderate). Thus, it is possible to make appropriate conclusions about 

discriminability when using a measurement model that does not exactly match the processes 

generating the data, and selecting an incorrect measurement model cannot entirely explain the 

poor inference performance revealed in Figure 2. 5 

Variability in inferences was not predictable from contributors’ rules for censoring data. 

Recall that the grey symbols in Fig. 2B show the mean hit and false alarm rates for each 

condition with the exclusion criteria used by each contributor. Although these censoring rules 

clearly resulted in different hit and false alarm rates, we were unable to identify any systematic 

relationship between these rules and inference accuracy. Moreover, seven contributors did not 10 

exclude any data, yet they used different analytic tools and reached different conclusions about 

the probability of a discriminability effect. 

Theoretically, discriminability and bias effects are more easily distinguished with 

receiver operating characteristics (ROCs) formed from confidence-rating data than with binary 

old/new response data (Rotello et al., 2015).  In a second round of blinded inference, we re-sent 15 

the data sets with an addition column for the reported confidence level on each trial, and 14 

contributors offered new probability ratings based on the ROCs in each experiment.  The 

resulting Brier scores appear in Fig. 2D with lines to mark the difference from the corresponding 

Brier scores based on the binary-response data. The largest changes were actually negative, 

reflecting reduced inferential accuracy with ROC data. 20 

Discussion 
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Distinguishing memory discriminability effects from bias effects is a common empirical 

issue for recognition memory researchers that has important theoretical and practical 

implications; for example, understanding memory processes in a special population (e.g., older 

adults) hinges on the ability to determine if differences from a control group reflect a memory 

discriminability effect. The available tools to interpret discriminability are well-established, and 5 

some have been in use for nearly 70 years (Macmillan & Creelman, 2005). Despite these truths, 

our expert contributors had mixed success when faced with the task of inferring whether 

discriminability had been manipulated across conditions that might have also had different levels 

of response bias. Strikingly, the reported probability of a discriminability effect was highly 

variable across contributors even though they all received the same data sets. One natural 10 

interpretation of these results is that the data themselves were too noisy to allow clear inference. 

Our simulations are inconsistent with that conclusion: 90% of simulated sets of experiments 

yielded five or more (of seven possible) correct inferences about discriminability. Thus, we view 

the outcome of this blinded inference study as a challenge to recognition memory researchers; 

one which should result in a re-evaluation of our methods, and in humbler presentation of future 15 

conclusions that rely on the ability to distinguish discriminability and bias effects. The fact that 

we found generally low inference quality when researchers used decades-old analysis tools 

shows that the normal practice of science is not sufficient to ensure effective analysis techniques. 

Indeed, some examples of systematically problematic inferences have survived decades of 

scientific review, to the detriment of theoretical progress in those domains (see, e.g., Dube, 20 

Rotello, & Heit, 2010, for a specific example and Rotello et al., 2015, for a more general 

treatment). Widespread use of the blinded inference procedure will help to quickly identify these 

inference problems and refine analysis methods to optimize inference quality.   
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Constraints on generality. Our study only provides information about a single research 

scenario – assessing discriminability changes based on recognition memory data – but the fact 

that we found surprisingly low accuracy for this relatively simple inferential task suggests that 

problematic inference procedures may plague a broad range of research domains. However, these 

different domains must be assessed individually in future work, and our results should not be 5 

used to make general conclusions about general validity of scientific research. Even within the 

field of recognition memory, our results are only directly troubling for studies that attempt to 

make conclusions about discriminability and bias when both processes can potentially vary. 

Although this is an unavoidable situation for some research questions (e.g., comparing memory 

across different populations), for other questions memory researchers can substantially simplify 10 

the inferential process by experimentally controlling bias when evaluating discriminability, or 

vice versa. Moreover, memory researchers use a wide range of different types of paradigms and 

data beyond the recognition tasks that we investigated.   

The blinded inference paradigm demonstrated here is also not a substitute for good theory 

testing and development. A theory that makes correct assumptions could perform poorly in 15 

blinded inference based on limitations in the analysis tools available to implement the 

measurement properties of the theory, and a theory that makes incorrect assumptions might 

nevertheless serve as a useful tool in some situations (e.g., Newton’s Laws are sufficient for 

many applications despite being incomplete). Our results show that inference problems are not 

limited to particular theoretical approaches in recognition memory: even researchers who relied 20 

on the same measurement model were highly variable in their inferences. Good theory 

development should run on several parallel tracks simultaneously – empirical assessment, 
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quantitative modeling or analysis, and, we argue, blinded inference studies – to establish that 

applications of the theory can truly measure what they are intended to measure.  

Another potential limitation of our results is that contributors might have applied 

different analysis standards for our project than they would in a “real” study conducted in their 

labs. We cannot rule out the possibility that our contributors might have made better inferences if 5 

they were analyzing their own data for their own purposes, but there are many good reasons to 

consider this unlikely. The vast majority of our contributors elected to be co-authors on this 

manuscript, and a majority (19/27) agreed to have their name directly linked to their performance 

level in presentations and publications (note that while inference methods were used as labels in 

Figure 2, results identified by contributor are available on OSF). Thus, one could argue that our 10 

contributors had a stronger incentive for rigor compared to typical studies in which no one is 

likely to re-run the analyses and conclusions are never compared to an “answer key.” Indeed, our 

contributors generally displayed a remarkable level of motivation and dedication to the project, 

with some applying state-of-the-art techniques like hierarchical Bayesian modeling and/or 

analyzing the data with multiple measurement models to inform their conclusions. Moreover, the 15 

majority of contributors (14/27) agreed to make their analysis code publicly available (see OSF). 

Thus, we are confident that the inference problems that we observed are not based on a simple 

lack of effort, and although we cannot rule out the possibility that some contributors made 

careless, easily correctable mistakes, we seriously doubt that these mistakes can fully explain the 

inference problems that we observed. 20 

Comparison to similar studies. Our results are similar to those of Silberzahn et al. 

(2018) in that both reveal high variability in inferences across contributors who all received the 

same data. In many ways, though, the high variability in our contributors’ inferences is even 
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more surprising – and troubling – given that our inference task represented a fairly common 

research scenario. Whereas Silberzahn et al. (2018) asked contributors to address the novel 

research question of whether referees are biased against darker-skinned players by analyzing 

real-world data that lacked an experimental control, we asked our contributors to address a 

research question that has been a focus of recognition memory research for decades and to do so 5 

with data from controlled experiments. 

Our results are also similar in some respects to the previous blinded inference study 

reported by Dutilh et al. (2018), but direct comparisons are difficult based on procedural 

differences between the two studies. In that study, response-time (RT) modelers analyzed 

unlabeled data sets with the goal of inferring whether the conditions differed in psychological 10 

constructs represented in RT models. Unfortunately, contributors disagreed about which 

cognitive processes should theoretically vary as a function of certain experimental 

manipulations; in other words, they had different views about what the “answer key” should be. 

Different scoring rules were developed in light of this disagreement, making it difficult to 

characterize overall performance. Using the originally planned scoring, at least, the proportion of 15 

correct inferences (71%) was similar to our overall accuracy rate (68%). We recommend that 

future blinded inference studies adopt our strategy of asking contributors to make inferences 

about experimental manipulations as opposed to underlying theoretical processes to avoid 

scoring ambiguities. A second difference between our study and Dutilh et al. (2018) also limits 

our ability to compare the results: Their contributors were not required to express their 20 

uncertainty with probability distributions. As a result, we do not know if their contributors’ 

inferences varied as dramatically as ours, with contributors reporting effect probabilities ranging 
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from 0% to 100% for some data sets, and we cannot compare Brier score results between the two 

studies.  

Refining analysis quality. Blinded inference can be a method to not only assess 

inference quality, but also to improve it. Many of our contributors expressed surprise when they 

learned of their performance level and conveyed that they would carefully re-evaluate their 5 

chosen analysis techniques. Our results show that inference problems in recognition memory are 

not a simple matter of choosing poor measurement techniques, as there are many instances of the 

same technique being used by both high- and low-performing contributors. Defining the 

characteristics of effective inference will require additional research, but for now we recommend 

that analysts try a variety of analysis techniques and, ideally, have multiple researchers 10 

independently analyze the data, reserving high confidence for consistent inferences.  

Conclusion. We will end by again emphasizing that all of our contributors drew 

inferences about the same data. Thus, the disparate conclusions reached by our contributors are 

not another example of the replication crisis. Contributors were allowed to use any analysis and 

any data censoring criteria they preferred, but those researcher degrees of freedom could not 15 

systematically influence their conclusions because contributors were blind to the nature of the 

experimental manipulation. Thus, our findings suggest that current efforts to improve research 

quality are incomplete, in that they largely focus on limiting researchers’ ability to bias results by 

promoting desired outcomes (whether implicitly or explicitly). Even unbiased analysis 

techniques can be ineffective, so it is critical for scientists to put their skills as analysts to direct 20 

(and public) tests. The blinded inference paradigm is a promising method of assessing inference 

quality and improving analysis procedures, so any field that uses analysis techniques to link data 

patterns to unobserved theoretical constructs will benefit from applying this method. Our results 
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suggest that even well-established areas of research may be facing an inference crisis that 

warrants equal consideration with the replication crisis.  

5 
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