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Abstract—The cognitive network uses cognitive processes to
record data transmission rate among nodes and applies self-
learning methods to trace data load points for finding optimal
transmission path in the distributed computing environment.
Several industrial systems, e.g., data-centers, smart grids, etc.,
have adopted this cognitive paradigm and retrieved the least
HOP count paths for processing huge datasets with minimum
resource consumption. Therefore, this technique works well in
transmitting structured data such as ‘XML’, however, if the data
is in unstructured format i.e. ‘RDF’, the transmission technique
wraps it with the same layout of payload and eventually returns
inaccuracy in calculating traces of data load points due to the
abnormal payload layout. In this paper, we propose a knowledge-
based optimal routing path analyzer (RORP) that resolves the
transmission wrapping issue of the payload by introducing a
novel RDF-aware payload-layout. The proposed analyzer uses
the enhanced payload layout to transmit unstructured RDF
triples with an append pheromone (footsteps) value through cog-
nitive nodes towards the semantic reservoir. The grid performs
analytics and returns least HOP count path for processing huge
RDF datasets in the cognitive network. The simulation results
show that the proposed approach effectively returns the least
HOP count path, enhances network performance by minimizing
the resource consumption at each of the cognitive nodes and
reduces traffic congestion through knowledge-based HOP count
analytics technique in the cognitive environment of the smart
grid.

Index Terms—Cognitive network, Semantic dataset, Apache
Hadoop, RDF Triple, Ant colony optimization, Smart grid.

I. INTRODUCTION

A cognitive network is a data communication paradigm that

facilitates nodes with runtime on-demand service processing

in the distributed computing environment [1]. It’s network

infrastructure consists of cognitive processes that invoke op-

erations to perform runtime tasks such as record, monitor,

append data before it reaches final destination node. Because

of these custom feature to fulfill on demand requirements,

several organizations adopt cognitive network framework for

data processing i.e., IT data-centers and smart grid [2].

A smart grid is a self-driven power generation and distri-

bution system that widely adopts cognitive network features

and applies to the infrastructure through three-tier architec-

ture [3]. The first-tier consists of edge nodes that perform

Acknowledgment: This research was supported by Basic Science Re-
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Fig. 1: Smart grid data generation and storage architecture

sensory operations and generate sensor information dataset.

The second-tier transforms these datasets into Resource De-

scription Framework (RDF) triples workloads and transmit

them through various transmission paths of cognitive network

towards semantic repository. The third-tier performs various

types of data analytics for maintaining, monitoring and pro-

cessing activities of smart grid [4] as shown in Fig. 1.

In this way, we observe that the smart grid assess

the transmission rate and the distance between network

nodes through cognitive processes and draw a routing

path to deliver RDF triple towards semantic reservoir [5],

[6]. Therefore, the grid finds individual data transmission

rate of a node NodeT R = ∑RDFData≤node(Bu f f er)
DataεRDFTriple

(
RDF [Packet]i

Bandwidth

)
and the overall grid nodes transmission rate GridT R =

∑RDFData≤node(Bu f f er)i
DatasetεRDFTriple

(
RDF [Packet]i

Bandwidth

)
n

in its cognitive network

[7].

These transmissions calculate RDF processing path with

HOP count and deliver triples in the semantic reservoir. In

this way, we observe that the delivery path only emphasizes on

working of cognitive processes and traditional network path

optimization strategies to transmit RDF triples. This increases

uncertain complexity between cognitive network functionality

and measurement of path HOP count and results in a non-

compliance among functions in the form of network conges-

tion FlowNode(i) = (TripleChunkk−1
⊗

TripleChunkk−2) [8].

Moreover, it maximizes network overflow issues and deac-

tivates nearest node search function to transmit RDF triples

using Euclidean distance DNodei =
√

∑ j (x j− xi j)
2 [9]. Thus,
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Fig. 2: Default RDF transmission work-flow in smart grid

TABLE I: Smart meter tabular datatypes to RDF datatypes

Tabular Datatype RDF datatype IRI
Key xsd:integer
SmartMeterID rdf:langString
Location rdf:langString
TimeStamp xsd:dateTimeStamp
Temperature xsd:float
Load xsd:float

grid consumes time latency to locate an alternate of related

cognitive nodes and smart grid performs poor in transmitting

semantic data towards its reservoir as shown in Fig. 2.

To resolve this issues, we propose RDF-aware optimal rout-

ing path strategy (RORP) that analyzes all the transmission

paths and extracts least HOP count path through ant colony

pheromone technique to transmit RDF dataset into a semantic

reservoir. The main contributions of this paper are highlighted

as:

• A novel enhancement of payload data segment structure

to fix RDF triples.

• A modified cognitive process that reads RDF workload

concurrently using customized payload structure.

• Insertion of pheromone value into RDF triple payload.

• Pheromone-aware RDF dataset storage into semantic

reservoir.

• A novel knowledge-based RDF data transmission strat-

egy that reduces network congestion and maintains nodes

intact to process dataset with least HOP count in the

smart grid.

The remaining paper is organized in the following manner.

Section II motives the modern technology requirements to

adopt ant colony optimization approach for obtaining least

HOP count in cognitive network. Section III briefly elaborates

RDF-aware optimal routing path strategy (RORP). Section

IV presents the performance evaluation of RORP individually

and with comparative analysis over designed Apache Hadoop

cluster. Section V concludes the proposed approach RORP

with recommendations of future works.

II. MOTIVATION

Finding optimal routing path with least HOP count in a

large-scale cognitive network such as smart grid is no less than

a challenge in today’s distributed computing environment.

There are several schemes and routing protocols that focus

to address this issue by effective gradient data transmission

schemes [10], adaptive HOP routing protocols [11], robust

diffusion algorithms using ant colony optimization [12] and

energy-efficient diffusion routing algorithms [13], however, no

of them resolves this problem through knowledge-based ana-

lytics. To the best of our knowledge, RORP is first of its kind

that addresses optimal routing path issue through calculating

load onto cognitive network nodes and append load value as

pheromone on its RDF-enabled data payload. The semantic

reservoir stores this RDF payload and performs analytics over

large-scale repository that highlights information related to

all the routing paths of smart grid with minute processing

details that helps finding optimal path having least HOP count

through data analytics.

III. RDF-AWARE OPTIMAL ROUTING PATH (RORP)

The proposed approach (RORP) finds least HOP count

path of processing RDF triples in the cognitive network of

smart grid. This strategy consists of five steps i.e., A) RDF

triple payload, B) knowledge-based cognitive processing, C)

append pheromone onto triple payloads, D) pheromone-aware

RDF reservoir and E) Knowledge-based optimal routing path

analyzer.

RORP uses these steps in such a hierarchical way that,

at first, a simple message payload is transformed into RDF

triple compatible payload. In the next step, it calculates the

individual load on each of the triple payloads using RDF-

aware cognitive process. After that, a pheromone value is

appended onto every triple payload and those pheromone-

aware payloads are stored in a semantic reservoir. In the last,

the optimal routing path analytics evaluate the minimum HOP

count used path in the cognitive network of a smart grid.

A. Step-1: RDF Triple Payload

The payload is a data part of RDF triple transmitted onto

the cognitive network of smart grid. By default, the structure

of triple payload consists of a single data block that stores

subject, predicate and object information in a single capsule

[14] and can be expressed as,

RDFPacket =
(
HeaderLength,PayloadLength

)
(1)

RORP enhances this payload packet message into three parts

such as sub-payload, pred-payload and ob j-payload with

individual header id assigned to each of them. Therefore,

when a cognitive process performs a network operation, RDF

triple returns individual part data transmission rate along with

its execution time-stamp. The categorized payload packet is

expressed through Fig. 3 and can be obtained as,

RORPRDF(Packet) =
{
(HSub,PSub) ,(HPred ,PPred) ,

(
HOb j,POb j

)}
(2)



Fig. 3: RORP RDF triples storage payload

Fig. 4: Cognitive node RDF triple processing

and the transmission rate can be expressed as,

RORPRDF(Rate) =

{
(HSub,PSub)

T
,
(HPred ,PPred)

T
,

(
HOb j,POb j

)
T

}
(3)

Where, HSub, HPred and HOb j represent the individual subject,

predicate and object headers packets and PSub, PPred and POb j
depicts each subject, predicate and object payload packets.

The ‘T ’ is the transmission rate that calculates the duration

of sending and receiving of an RDF triple packet.

B. Step-2: Knowledge-based Cognitive Processing

The knowledge-based cognitive process is a function that

analyzes an RDF triple payload RORPRDF(Packet) passing

through a single node of cognitive network. As we are

transmitting RDF payloads of a smart meter [15], so the func-

tion assess individual dataset columns such as element key,

SMID, load, temperature, location and time-stamp values.

The bandwidth used in processing each of the triple sub-

payload is recorded onto the cognitive network and can be

calculated as,

LoadCPi =
RORPRDF(Rate)

BandwidthRDF(Sub,Pred,Ob j)
(4)

The cognitive node keeps a records for each of the individual

sub-payloads of smart meter passed through it as shown in

Fig. 4. The collective node load of RDF triple payloads can

be calculated as,

LoadNodei =
∑LoadCPi

CP(Memory,CPU,I/O)
(5)

C. Step-3: Append Pheromone onto Triple Payloads

The term ‘pheromone’ represents a footstep value used

to memorize the workload on a network path. In case of a

cognitive network, we use cognitive process value LoadCPi as a

pheromone that keeps track of previous individual RDF triple

processing on a particular node. The pheromone between two

cognitive nodes can be expressed as,

PNode(i, j) =

(
τ

LoadCPi
i, j

)
(

τ
LoadNodei, j
i, j

) (6)

Where, ‘τ’ is the amount of pheromone and ‘P’ depicts the

obtained value of pheromone in the reservoir of cognitive

network. In order to get a complete perspective of pheromone

between two nodes, RORP updates it with recent LoadCPi

values as,

τ
LoadCPi
i, j = (1− p)τ

LoadCPi
i, j +Δτ

LoadCPi
i, j (7)

Where, ‘p’ is the rate of pheromone evaporation and ‘Δτi, j’

is the pheromone deposited into semantic reservoir as,

Δτ
LoadCPi
i, j =

{
1

BandwidthRDF(Sub,Pred,Ob j)
i f RORPRDF � node(i, j)

0 otherwise
(8)

In order to receive pheromone statistics of all the nodes of

cognitive network, RORP updates it with recent LoadNodei

values as,

τ
LoadNodei
i, j ← (1− p)τ

LoadNodei
i, j +

m

∑
k=1

Δτ
LoadNodek
i, j (9)

Where, m is the number of nodes and Δτ
LoadNodek
i, j is the

pheromone value over the cognitive network as,

Δτ
LoadNodei
i, j =

{
1

BandwidthNodei
i f RORPRDF � node

(i, j)k

0 otherwise
(10)

D. Step-4: Pheromone-aware RDF Reservoir

The pheromone-aware RDF reservoir contains a computa-

tional environment that includes node table, triple indexes,

pre f ix table and in-line values. The node table manages

RORP triple datasets τ
LoadCPi
i, j with a customized concate-

nation declaration of pheromone value with triple pay-

load RORPRDF(Packet). The triple indexes consists of two-

dimensional double array accessibility feature that fetches

the triple payload with associated pheromone values. The

pre f ix table maps pheromone-index with large-scale node

table index and in-line values wrap pheromone and triple

data-types together to present a single RDF entity as obtained

through stored RORP dataset Δτ
LoadNodei
i, j .



Fig. 5: Knowledge-base optimal path strategy

E. Step-5: Knowledge-based Optimal Routing Path Analyzer

The optimal routing path analytics is a procedure to identify

the shortest path having least HOP count to process RDF

triples. This is carried out through processing a knowledge-

based analyzer over stored Δτ
LoadNodei
i, j pheromone RDF triple

dataset on the semantic reservoir of the smart grid as shown

in Fig. 5.

Algorithm 1 Optimal Routing Path Analyzer

1: procedure READ SEMANTIC RESERVOIR(Δτ
LoadNodei
i, j )

2: Scan RORPRDF(Packet)
3: Count PNode(i, j)
4: while Count ≤Cn+b do
5: Compare τ

LoadCPi
i, j with Process count

6: Compare τ
LoadNodei
i, j with Node count

7: Calculate HOP
(

τ
LoadCPi
i, j ,τ

LoadNodei
i, j

)
Count

8: return Path

Algorithm-1 presents a systematic retrieval of HOP count

through the semantic reservoir pheromone-aware dataset

Δτ
LoadNodei
i, j and evaluates least HOP count path of the cognitive

network in the smart grid.

IV. EXPERIMENTAL WORK

In order to evaluate RORP, we performed experimental

executions over a Hadoop cluster configuration as mentioned

in Table-II.

A. Environment

The hardware configuration includes Intel Xeon processor

with 8 CPU units, 32GB processing memory and storage

media i.e. 128GB Samsung SSD, 1TB disk Seagate Hard

Disk Drive, and tmpfs utility for RAM DISK storage pro-

cessing. Additionally, we have used Intel core i5 processor

with 4 Cores, 16GB processing memory and storage media

i.e. 128GB Samsung SSD, 500GB Hard Disk Drive, and

temfs utility as RAM DISK storage processing. The virtual

environment includes Virtualbox 5.1.34 over 5 virtual machine

configurations as elaborated in Table-III.

TABLE II: Hadoop Cluster Configuration

TABLE III: Virtual Machines in Hadoop Cluster

B. Experimental Dataset

The dataset used to process experimental work includes:

1) 1 GB CSV (source file) (10 Smart meters unstructured

dataset) [16], [17]

C. Experimental Results

The experiments conducted to evaluate RORP are:

1) RDF Triple payload storage,

2) Cognitive process pheromone generation,

3) Pheromone-aware RDF Triple,

4) Cognitive node load analytics, and

5) Comparative analysis.

1) RDF Triple Payload Storage: By default, an RDF triple

contains a layout of two structure segments such as header

and payload. The header stores prefix and postfix acknowl-

edgment messages that identifies a data packet layout and

the payload segment manages subject, predicate and object

tuple information [14]. The proposed analyzer RORP re-

design this payload segment into three sub-parts such as

sub-payload, pred-payload and ob j-payload each equiva-

lent of 1 KB to store individual tuple information through

‘PAY LOAD CAT ’ function. Simultaneously, it extracts triples

from source dataset and wrap individual tuple data using

a wrapper function ‘PAY LOAD WRAP’ for storing into the

already generated sub-payloads segments. This reduces RDF



Fig. 6: RDF Sub-payloads Workload in

Cognitive Network

Fig. 7: Performance of Load and

Pheromone processing

Fig. 8: ‘Slave1’ Node Pheromone aware

and original RDF processing

Fig. 9: Pheromone-aware RDF Triple

Paths in Cognitive Network

Fig. 10: Pheromone-aware RDF HOP

Counts

Fig. 11: Path load analysis with multiple

path optimizers

payload transmission workload evenly on the cognitive nodes

and improves the performances of cognitive processes in the

smart grid as shown in Fig. 6.

2) Cognitive Process Pheromone Generation: A cognitive

process uses T RIPLE RECORD function to capture RDF

triples workload passing through the network nodes. As we

know that, the load of a node is measured in terms of memory

consumed per RDF triple [2]. Therefore, this load value

is labeled with the name of ‘pheromone’ and identified as

the workload footsteps at particular interval of time. RORP

observes these footsteps with a time-interval of ‘5’ seconds

and incorporates them within the new ‘sub-payloads’ of

RDF triple. In this way, we observe two individual activities

i.e., load processing and pheromone processing. In the load

processing, cognitive process records original RDF ‘sub-

payload’ sample that consumes computing capacity, memory

and I/O of the node, where as the pheromone processing con-

sumes less computing capacity, memory and I/O of the node

compared to load processing because of simply encapsulating

pheromone sample to existing RDF ‘sub-payload’ of 100 MB

dataset as shown in Fig. 7.

3) Pheromone-aware RDF Triple: Pheromone-aware RDF

triple includes the footstep record value along with original

sample of RDF. In order to evaluate an actual difference be-

tween pheromone-aware and original RDF triple processing,

we processed ‘2’ individual datasets i.e., with-pheromone and

without-pheromone on a single node ‘slave1’ as discussed in

Table-III and observed an additional consumption of node

processing percentile in pheromone-aware RDF triple case

than original RDF triple as shown in Fig. 8. This extra

consumption of node processing percentile will no longer be a

disadvantage once Hadoop cluster starts performing analytics

on semantic reservoir.

4) Cognitive node load analytics: The cognitive network

of smart grid performs various cognitive processes simul-

taneously to transmit RDF triples through multiple paths

[18]. The same is the case of pheromone-aware RDF triple

processing onto a cognitive network that also adopts various

paths to transmit RDF triples towards semantic reservoir.

There can be many reasons for adopting multiple paths such as

decreasing the factor of failure in RDF transmission, reducing

the assumption of triple corruption and ensuring the storage

of exact number of RDF triples into semantic reservoir [19].

These advantages become more useful, when the precise

load onto each of the listed path is calculated by means of

individual cognitive nodes’ load. We arrange 6 random paths

with the help of simulation environment based on ant colony

optimization approach and calculates that path ‘A’ consumes

least average load percentile than other cognitive network

paths as shown in Fig. 9. The reason of such a low load

consumption refers to the involvement of lower HOP count

number in processing the RDF triples on cognitive network



Fig. 12: HOP count analysis with multiple path optimizers

as shown in Fig. 10.

5) Comparative analysis: The comparative analysis in-

cludes BAR, SC-FF-FP, EEABR and ACORC [20] implemen-

tations onto pheromone-aware RDF processing in a cognitive

network of smart grid. The basic ant routing (BAR) is

a fundamental routing approach that records limited range

of footsteps with a default payload segment less than 200

footsteps. The SC-FF-FP, EEABR and ACORC also observes

a routing table that has limited capacity with an average

buffer flush of 1000 footsteps. In this way, RORP is far better

than discussed approaches because of its flexible range solely

dependent onto indexing range of semantic reservoir. Sec-

ondly, all of the discussed approaches believe that pheromone

evaporates with a less or more time-stamp according to the

functional performance of ant colony approach [12], where

as, RORP does not believe in evaporation of pheromone and

acquires a consistent broad range of pheromone-value that

helps to analyze the path load and HOP count accuracy in

transmitting RDF triples onto cognitive network. The third

important aspect which specifically reflects a prominent dif-

ference among all the discussed approaches and can be known

as decisive metrics to evaluate RORP with other approaches

is the extraction of cognitive node load and optimal path

through persistent dataset into semantic reservoir. Keeping

these factors and metrics into consideration, we compare

RORP with these existing ant colony approaches [20] and

observes an optimal load throughout the cognitive network

than other existing approaches. Also, we get less number of

HOP counts as compared to previous approaches onto the

cognitive network of smart grid as shown in Fig. 11 and

Fig. 12.

V. CONCLUSION

In this paper, we propose RORP that monitors load of

cognitive nodes through pheromone-aware RDF analytics in

the smart grid. The proposed approach applies a novel en-

hancement of payload segment into three sub-payloads so

that each tuple such as subject, predicate and object can

be transmitted efficiently in the cognitive node environment.

Also, the proposed approach adds pheromone onto the RDF

payloads so that cognitive process can analyze the node

workload and evaluate optimal processing path with least

HOP count in the smart grid. The evaluation results show

that RORP effectively addresses the RDF data transmission

and identifies optimal load path with least HOP count in the

cognitive network of the smart grid.
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