
Lloyd, Huw and Hammoudeh, Mohammad (2019)A Distributed Cellular Au-
tomaton Algorithm for Barrier Formation in Mobile Sensor Networks. In:
Wireless Days, 24 April 2019 - 26 April 2019, Manchester. (Unpublished)

Downloaded from: http://e-space.mmu.ac.uk/622805/

Version: Accepted Version

Please cite the published version

https://e-space.mmu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/211233394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://e-space.mmu.ac.uk/view/creators/Lloyd=3AHuw=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Hammoudeh=3AMohammad=3A=3A.html
http://e-space.mmu.ac.uk/622805/
https://e-space.mmu.ac.uk


A Distributed Cellular Automaton Algorithm for
Barrier Formation in Mobile Sensor Networks

Huw Lloyd
School of Computing, Mathematics and Digital Technology

Manchester Metropolitan University
Manchester, United Kingdom
huw.lloyd@mmu.ac.uk

Mohammad Hammoudeh
School of Computing, Mathematics and Digital Technology

Manchester Metropolitan University
Manchester, United Kingdom
m.hammoudeh@mmu.ac.uk

Abstract—There is growing interest in the application of wire-
less sensor networks to the problem of monitoring international
borders. In this application, barrier coverage is essential in
order to ensure that intrusion events are detected. The use of
mobile sensors has the potential to enable barrier coverage to
be achieved and maintained in hostile environments where the
orderly deployment of sensors is impossible. In this paper, we
present a distributed cellular automaton based algorithm for
autonomous deployment of mobile sensors to achieve barrier
coverage. We compare the algorithm with an existing, state-of-
the-art algorithm and show that our proposed algorithm achieves
barrier coverage with competitive or improved energy cost, and
with a communication overhead that is orders of magnitude less.
For dense deployment scenarios, our algorithm uses up to six
times less energy than the state-of-the-art algorithm.

Index Terms—keywords

I. INTRODUCTION

Wireless Sensor Networks (WSN) are an important technol-
ogy for a wide range of monitoring applications, and interest
has recently grown in the use of WSN for monitoring inter-
national borders [1]–[4]. Border monitoring applications are
typically concerned with establishing barrier coverage rather
than area coverage of the sensed region; the aim is to detect
entities crossing the region of interest, and this is guaranteed as
long as the region is covered by a continuous chain of sensors
with overlapping sensing areas (Strong Barrier Coverage,
[5], [6]); Strong k-Barrier Coverage is the existence of k
independent strong barriers [5]. Recent work has focused on
the construction of strong k-barriers using networks of mobile
nodes [7], [8], which can move to fill coverage gaps. Ideally,
a practical algorithm should be distributed in nature, so that
no central node is required to coordinate the sensors, and so
that the algorithm is scalable to arbitrarily large deployments.

Cellular Automata (CA) present a model of computation
which is inherently local and distributed; however CA are
capable of generating rich and complex global behaviour from
simple local rules [9]. In this paper, we present a novel CA-
based algorithm for the formation of strong k−barriers in
mobile WSNs. The algorithm is distributed and decentralized;
nodes rely only on messages exchanged with neighboring
nodes and local information about their surroundings. We
show that the energy performance of our algorithm is com-
petitive with the best existing algorithms in most cases, and

superior in cases where the nodes are deployed in a dense ini-
tial configuration. Furthermore, the communication overhead
of the proposed algorithm is shown to be very low compared to
the existing state of the art. Although CA have been explored
previously in the context of mobile WSNs [10], [11], to the
best of our knowledge this is the first application of CA to the
problem of barrier formation with mobile sensors.

II. RELATED WORK

Two recent works represent the state of the art in dis-
tributed algorithms for barrier formation: MobiBar [7] and
DDABC [8]. MobiBar is a distributed algorithm which
achieves the maximum level of k-barrier coverage with the
available sensors, and is shown by the authors to outperform
competing distributed approaches, and to achieve performance
close to centralized approaches. Two deployment scenarios are
considered: random, in which nodes are initially distributed
randomly over the Region of Interest (ROI) and dense, in
which all the nodes are initially clustered in a small area.
The algorithm achieves maximum barrier coverage in both
scenarios. In MobiBar, barriers are formed in a way that fills
the ROI with overlapping nodes starting at the baseline, b0
(the border) and then filling barriers b1, b2, . . . at increasing
distances from the border.

Distributed Deployment Algorithm for Barrier Coverage
(DDABC) [8] is a distributed algorithm for barrier forma-
tion that achieves near-optimal performance with respect to
movement distance of nodes. In contrast to MobiBar, DDABC
does not form barriers at the border, but aims to fill the
ROI with an evenly-spaced grid of nodes which form barriers
covering the entire ROI. In order to do this, the ROI is divided
into clusters of 2 × 2 cells. A drawback of this algorithm is
that each cluster must have at least one node present at the
beginning of the algorithm, or this cluster will not receive any
nodes in the final deployment. In the simulations presented
by [8], this is always the case, since they consider random
deployment with relatively large numbers of nodes. However
DDABC is likely to fail in the dense deployment scenario,
and in random deployments with small numbers of nodes. The
formation of clusters places a restriction on the communication
radius which needs to be much larger than for MobiBar.
The simulations in [8] use a communication radius of 80m,



compared to 15m for MobiBar. However, for the scenarios
given (random deployment with large numbers of sensors),
DDABC is shown to outperform MobiBar.

In this work, we compare our proposed algorithm against
the results for MobiBar presented in [7]. While DDABC
outperforms MobiBar in some circumstances, MobiBar has
wider applicability, can function in a wide range of deployment
scenarios, and does not require long-distance communication.
In Section IV, we repeat the scenarios simulated by [7] using
our algorithm.

III. CELLULAR AUTOMATON ALGORITHM

The system is decentralized and distributed, so that all nodes
run the same algorithm. Space is notionally divided into square
cells. Each node maintains information about the state of the
cell in which it currently resides and immediate neighbouring
cells. Information about node movements and positions is
communicated through the communication protocol described
in Section III-B. Each node updates a finite state machine
(FSM, described in section III-C) to determine its next action;
this FSM makes use of a CA (described in section III-D) to
determine local node movements.

A. Network Model

We assume a rectangular ROI which is delineated by 0 ≤
x ≤ w, 0 ≤ y ≤ h; the border to be monitored lies on the
line y = 0 (see Figure 1). We assume that the sensors have a
uniform sensing radius rs and communication radius rc, and
that the sensors are equipped with GPS receivers which enable
them to determine their positions. Following [7], we divide the
region of interest into square cells of size ∆, with ∆ = 2rs−
2ε, where ε is the maximum error in position measurement. In
this way, if all the cells in a line across the Border of Interest
(BOI) are occupied by a node at the centre, barrier formation
is guaranteed even in the presence of positional errors. A cell
is defined by two indices (i, j) with x ≤ i∆ < (i+ 1)∆ and
j∆ ≤ y < (j + 1)∆. The choice of origin here is arbitrary
(that is, the cell i = 0, j = 0 is not special), and in a practical
application all transformations that map the GPS coordinates
onto x, y values are equally valid. Other than knowing the
direction of the border, the nodes require no knowledge of
the dimensions of the ROI, as long as they have some means
of determining locally whether a neighboring cell is a valid
member of the ROI or not.

Our cellular automaton requires that a sensor within a cell
must be able to communicate with any node in the Moore
neighborhood (that is, in its own cell and the eight surrounding
cells). This places a limitation on the communication radius,
rc ≥ 2

√
2∆. Finally, we assume that all nodes possess some

property (UID) with which they can be uniquely identified.

B. Communication Protocol

The communication protocol (Table I) provides the mes-
sages required in order for the distributed system to maintain
each node’s local knowledge of the positions and UIDs of its
peers in the Moore neighborhood of its current cell.

Fig. 1. Geometry of the region of interest and network model.

TABLE I
COMMUNICATION PROTOCOL

Message ID Payload Meaning
initial_pos x, y, UID Broadcast message of initial posi-

tion of a node.
arrival x, y, UID Node UID has arrived in a new cell

at position (x, y).
welcome x, y, UID Message sent in reponse to an

arrival message, reporting the
details of an existing node in the
neighborhood.

leave UID Node UID is moving to another
cell.

move x, y Message sent to instruct another
node to move to a new position (x,
y).

C. Finite State Machine

We assume that each node has access to absolute time. The
algorithm proceeds in time phases, each of duration τphase.
We require that τphase is greater than the maximum time for a
mobile node to travel between cells, i.e. τphase > 3

√
2∆/(2v),

where v is the movement speed of a node. For typical values
(∆ = 10m, v = 0.5ms−1), τphase > 42s. Since this time is
large compared to expected discrepancies between individual
nodes’ clocks we assume that all nodes will simultaneously
be in the same phase for the majority of τphase.

1) Node Data: Each node maintains the following data: x,
y (the current position), UID, i_phase (the current phase,
given by bt/τphasec), neighbors (an array of lists of node
data structures which each contain x, y, UID for the cell’s
neighbours), and state (the current state of the state machine
– one of STATE_START, STATE_IDLE, STATE_RUNCA
or STATE_MOVE).

2) Start State: In the start state a node initializes the empty
neighbours data structure, adds itself to the list for the
central cell, then sends a broadcast initial_pos message
before setting the state to STATE_IDLE.

3) Idle State: The idle state is a loop which runs while the
state remains idle. Messages are handled first; on receiving
initial_pos or arrival messages, new nodes are added
to the neighbours data and a welcome message is sent
to the source of any arrival message. If a move message
is received, the target position is saved, a broadcast leave
message is sent, and the state is set to STATE_MOVE. Finally,
if bt/τphasec > i_phase, then i_phase is incremented and
state is set to STATE_RUNCA.



4) Run CA State: In this state (Algorithm 1), the cellular
automaton is run using the data stored in neighbors. The
details of the CA algorithm are given in Section III-D; for
the purposes of this section, it can be assumed that the CA
will return a list of changes (called change_list). This
list, which may be empty, contains key-value pairs in which
the key identifies a cell in the neighborhood, and the value is
the net change in the node count. This phase also deals with
moving nodes to their final positions in the centre of a cell
when there is only one node in the cell.

Algorithm 1 RUNCA State
1: Obtain change_list from CA
2: Initialize empty list move_list
3: for each c(key, value) in move_list do
4: if c.value< 0 then
5: Find c1, the nearest cell in move_list with

c2.value> 0
6: c.value ← c.value+1
7: c2.value ← c2.value−1
8: Append (c,c2) to move_list
9: end if

10: end for
11: if UID = first UID in cell list then
12: for each (c0, c1) in move_list do
13: Find first node in cell c0 which has not already

moved, and send it a move message to move to the
centre of cell c1

14: end for
15: end if
16: if move_list empty AND node has not moved for two

stencil phases then
17: send move message to self, with target centre of cell
18: end if
19: state← STATE IDLE

5) Move State: In this state, the node moves to its target
position defined in the move message which initiated the state.
On reaching the target, the node broadcasts an arrival
message and sets its state to STATE_IDLE.

D. Cellular Automaton

We restrict any given iteration of the automaton to updating
a set of cells whose neighbourhoods do not overlap. This
stencil of cells to be updated is moved after each phase, so
that each cell is updated once every cycle of nine phases. The
Moore neighborhood, and the update stencil are illustrated in
Figure 2.

1) Stencil Update: The stencil is updated by considering
the (i, j) indices of the cell to be updated, along with the
current value of i_phase for the node requesting the update.
Cell (i, j) is in the stencil if i ≡ i_phase mod 3 and
bj/3c ≡ i_phase mod 3. The CA update rule is only run
for cells which are currently in the stencil.

2) Update Rule: Let the N be the number of cells in the
Moore neighbourhood, and n̄ be the mean number of nodes per

5 5 5

5 5 5

2 2 2

2 2 2

8 8 8

8 8 8

3 3 3

3 3 3

0 0 0

0 0 0

6 6 6

6 6 6

4 4 4

4 4 4

1 1 1

1 1 1

7 7 7

7 7 7

(a)

SW S SE

W C E

NW N NE

(b)

Fig. 2. (a) A section of the CA stencil. Numbers in cells refer to the values
of i_phase mod 9 in which cells are active. The shaded cells highlight
the configuration of the stencil when i phase ≡ 0 mod 9. (b) Labelling of
the cells in the Moore neighborhood.

cell, rounded down to an integer. The excess over the mean, e
is the remainder on dividing N by n̄. We define the distribution
order, D, in which the e excess nodes are distributed among
the cells of M , as

D =


S, SE, SW,W,C,E,NE,N,NW n̄ = 0, j even
S, SW,SE,E,C,W,NW,N,NE n̄ = 0, j odd
N,NW,NE,E,C,W, SW,S, SE n̄ > 0, j even
N,NE,NW,W,C,E, SE, S, SW n̄ > 0, j odd

The update rule which gives the updated values n′c for the
cells c ∈M is then:

1) Set n′c = n̄∀ c ∈M .
2) Increment n′c by one for the first e cells in D which are

also in M .
That is, the excess e is distributed in the cell order given by
D.

IV. EVALUATION

The algorithm has been implemented in a Python simu-
lation (the full source code may be downloaded from https:
//github.com/huwlloyd-mmu/wsn ca). Following [7], we run
experiments with two different deployment scenarios; random,
in which the sensors are distributed randomly over the ROI,
and dense, in which the sensors are distributed randomly
within a small region at the bottom left corner of the BOI
(0 < x < ∆, 0 < y < ∆). We use the same parameters as [7]
(w = 400m, h = 100m, rs = 5m, ε = 0.5m, ∆ = 9m). The
communication radius is set to 30m. This is larger than the
value of 15m used by [7] although well within the maximum
communication range of typical sensor network nodes [12].
We use the same model of energy consumption as [7]. The cost
of receiving a message is 1 unit of energy, sending a message
costs 1.25 units, movement of 1m uses 300 times the energy
of sending a message (375 units), and starting or stopping
a movement uses the same energy as 1m of movement. For
each configuration, we determined average quantities from 50
simulation runs. In all cases, the algorithm converged to a
solution with the maximum number of barriers formed.



(c) (d)

(a) (b)

Fig. 3. Random deployment, distance (a), number of moves (b), total energy
used (c) and energy used in communication (d)

Figures 3 and 4 show the results of the simulations com-
pared to results taken from [7]. In the random deployment
scenario (Figure 3), the total energy consumption of both
algorithms is comparable. However, the CA algorithm uses
less energy in communication by an order of magnitude; the
algorithm is far less dependent on communication and there-
fore may hold an advantage over MobiBar when conditions
are difficult for wireless communication. Figure 4 shows the
results for the dense deployment. The difference between
the two algorithms is clearer in this scenario. The energy
consumption for the CA algorithm remains roughly constant,
whereas there is a sharp increase in energy requirement for
MobiBar as the density of nodes increases. In this scenario,
the energy consumed by MobiBar is dominated by communi-
cation. We conclude that in the dense deployment scenario, the
CA algorithm has a clear advantage over MobiBar. It should
also be noted that DDABC would likely fail in this scenario.

V. CONCLUSION

In this paper, we have presented a novel CA-based algo-
rithm for deployment of mobile sensors to form barriers. The
algorithm is decentralized and distributed (and hence scal-
able), relatively simple to implement, and gives the maximum
possible number of barriers for a given number of sensors.
We used simulations of the algorithm to make comparisons
with the state-of-the-art algorithm MobiBar. We find that our
algorithm is competitive with MobiBar in random deployment
scenarios, but outperforms MobiBar by a significant margin
in dense deployment scenarios. Moreover, in all scenarios the
communication overhead of the proposed algorithm is very
low compared to MobiBar (in some cases 100 times less)
which would make the algorithm more suitable for use in
situations in which communication is difficult.

(c) (d)

(a) (b)

Fig. 4. Dense deployment, distance (a), number of moves (b), total energy
used (c) and energy used in communication (d)

REFERENCES

[1] M. Hammoudeh, F. Al-Fayez, H. Lloyd, R. Newman, B. Adebisi,
A. Bounceur, and A. Abuarqoub, “A wireless sensor network border
monitoring system: Deployment issues and routing protocols,” IEEE
Sensors Journal, vol. 17, no. 8, pp. 2572–2582, April 2017.

[2] C. Komar, M. Y. Donmez, and C. Ersoy, “Detection quality of border
surveillance wireless sensor networks in the existence of trespassers’
favorite paths,” Computer Communications, vol. 35, no. 10, pp. 1185 –
1199, 2012.

[3] T. Yang, D. Mu, W. Hu, and H. Zhang, “Energy-efficient border
intrusion detection using wireless sensors network,” EURASIP Journal
on Wireless Communications and Networking, vol. 2014, no. 1, pp. 1–12,
2014.

[4] Z. Sun, P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan,
and I. F. Akyildiz, “Bordersense: Border patrol through advanced
wireless sensor networks,” Ad Hoc Netw., vol. 9, no. 3, pp. 468–477,
May 2011.

[5] S. Kumar, T. H. Lai, and A. Arora, “Barrier coverage with wireless
sensors,” in Proceedings of the 11th Annual International Conference
on Mobile Computing and Networking, ser. MobiCom ’05. New York,
NY, USA: ACM, 2005, pp. 284–298.

[6] B. Liu, O. Dousse, J. Wang, and A. Saipulla, “Strong barrier coverage
of wireless sensor networks,” in Proceedings of the 9th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing, ser.
MobiHoc ’08. New York, NY, USA: ACM, 2008, pp. 411–420.

[7] S. Silvestri and K. Goss, “Mobibar: An autonomous deployment al-
gorithm for barrier coverage with mobile sensors,” Ad Hoc Networks,
vol. 54, pp. 111 – 129, 2017.

[8] T. G. Nguyen and C. So-In, “Distributed deployment algorithm for
barrier coverage in mobile sensor networks,” IEEE Access, vol. 6, pp.
21 042–21 052, 2018.

[9] S. Wolfram, A New Kind of Science. Champaign, Ilinois, US, United
States: Wolfram Media Inc., 2002.

[10] S. Choudhury, K. Salomaa, and S. G. Akl, “Cellular automata and object
monitoring in mobile wireless sensor networks,” in 2015 IEEE Wireless
Communications and Networking Conference (WCNC), March 2015, pp.
1344–1349.

[11] S. Choudhury, “Cellular automata and wireless sensor networks,” Emer-
gence, Complexity and Computation, vol. 24, pp. 321–335, 2017.

[12] G. Anastasi, A. Falchi, A. Passarella, M. Conti, and E. Gregori,
“Performance measurements of motes sensor networks,” in Proceedings
of the 7th ACM International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, ser. MSWiM ’04. New
York, NY, USA: ACM, 2004, pp. 174–181.


