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Abstract

We present evidence that variability in the STEREO-A Heliospheric Imager (HI) data is
correlated with in-situ solar wind speed estimates from WIND, STEREO-A, and STEREO-
B. For 2008-2012, we compute the variability in HI differenced images in a plane-of-sky
shell between 20-22.5 solar radii, and, for a range of position angles, compare daily means
of HI variability and in-situ solar wind speed estimates.

We show that the HI variability data and in-situ solar wind speeds have similar tem-
poral autocorrelation functions. Carrington rotation periodicities are well documented for
in-situ solar wind speeds, but, to our knowledge, this is the first time they have been pre-
sented in statistics computed from HI images. In-situ solar wind speeds from STEREO-
A, STEREO-B, and WIND are all are correlated with the HI variability, with a lag that
varies in a manner consistent with the longitudinal separation of the in-situ monitor and
the HI instrument.

Unlike many approaches to processing HI observations, our method requires no
manual feature tracking; it is automated, quick to compute, and does not suffer the sub-
jective biases associated with manual classifications. These results suggest we could possi-
bly estimate solar wind speeds in the low heliosphere directly from HI observations. This
motivates further investigation as this could be a significant asset to the space weather
forecasting community; it might provide an independent observational constraint on helio-
spheric solar wind forecasts, through, for example, data assimilation. Finally, these results
are another argument for the potential utility of including a HI on an operational space
weather mission.

Plain Language Summary

It would be useful for space weather forecasting to have a good estimate of the so-
lar wind speed near the Sun. This could improve space weather forecasting models, and
our knowledge of how the solar wind is formed and varies. However, estimating the so-
lar wind speed near the Sun is difficult to do, with either with spacecraft that measure it
directly, or with cameras observing the solar atmosphere.

We have analysed variations in images of the solar wind taken by the Heliospheric
Imagers on the STEREO-A spacecraft. We show that these variations are well correlated
with solar wind speed measurements taken by in-situ spacecraft. Furthermore, we show
that these correlations evolve in a way that can be explained by the orbits of the space-
craft, which gives us increased confidence that that this statistical relationship is robust.

Therefore, these results might be used to develop a relationship between variability
in the Heliospheric Imager data and solar wind speed, which would allow us to estimate
the solar wind speed near the Sun routinely. Such a technique would be useful for space
weather forecasting, and would be a good reason to put a Heliospheric Imager on any fu-
ture space weather monitoring spacecraft.

1 Introduction

Effective space weather forecasting requires prediction of near-Earth solar wind
conditions and hence modelling the solar wind environment of the inner heliosphere.
For some time now it has been commonplace to use 3D magnetohydrodynamic (MHD)
models to represent the heliosphere (such as ENLIL [Odstrcil, 2003] , MAS [Riley et al.,
2001], and EUFORIA [Pomoell and Poedts, 2018]). Such models are driven, indirectly,
by photospheric and coronal observations, as their inner boundary conditions are typically
derived from the output of coronal magnetic models and empirical parameterisations (e.g
the Wang-Sheeley-Arge (WSA) extrapolation of Potential Field Source Surface (PFSS) so-
lutions of the coronal magnetic field). Several recent studies demonstrate the success of
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this approach, with these models serving as useful research tools [Riley et al., 2012], and
aiding skilful space weather forecasts [Riley et al., 2018].

However, as these models do not directly use any of the available heliospheric solar
wind observations, an obvious question is "can solar wind observations be used to im-
prove MHD modelling of the space weather environment?". The answer appears to be
affirmative, as demonstrated by Lang et al. [2017], who showed that integrating a Data-
Assimilation (DA) scheme into ENLIL improved ENLIL’s representation of the inner he-
liosphere. Specifically, these authors performed a theoretical experiment that showed as-
similating synthetic in-situ plasma observations reduced the error of the model relative
to the ground truth. Furthermore, Lang et al. [2017] and Lang and Owens [2019] high-
light that it should be possible to improve heliospheric modelling by assimilating not only
in-situ plasma measurements, but also remote sensing observations, such as those from
Heliospheric Imaging instruments. Given the paucity of in-situ monitors throughout the
heliosphere, particularly out of the ecliptic plane, the possibility of assimilating remote
sensing observations of the inner heliosphere is particularly interesting, as they may pro-
vide information over a much broader spatial domain than in-situ monitors. We also note
that, alongside visible light instruments, radio observations are another complementary
data source that might be used in an assimilative way, through techniques such as Inter-
planetary Scintillation.

The Heliospheric Imager (HI) instruments are wide-field visible-light imagers, that
have routinely observed the inner heliosphere since 2007, as part of the Sun-Earth-Connection-
Coronal-Heliospheric-Investiation (SECCHI) instrument package aboard the twin STEREO
spacecraft (STEREO-A and STEREO-B) [Howard et al., 2008]. The HI instruments pri-
marily observe sunlight Thomson scattered off free electrons in the solar wind and so, at
the simplest level, these observations provide a measure of the solar wind electron number
density along a line-of-sight (LOS) in the instruments field-of-view (FOV). A key scien-
tific focus for the HI observations has been characterising the evolution and propagation
of Coronal Mass Ejections (CMEs) through the inner heliosphere [Howard et al., 2008;
Harrison et al., 2017]. Furthermore, in the context of space weather forecasting, these data
led to the development of a plethora of techniques designed to predict the arrival of CMEs
throughout the heliosphere [Harrison et al., 2017]. However, much less research has been
done into characterising the background solar wind structure in the HI FOV, and what this
may enable in a space weather forecasting context. That being said, the potential for ex-
tracting background solar wind information from HI observations has been demonstrated.
Rouillard et al. [2008] showed that plasma parcels entrained into Co-rotation Interaction
Regions (CIRs) could be imaged in HI. Subsequently, Plotnikov et al. [2016] tracked many
such events in HI images to study the long-term variability of CIRs, and whether their ar-
rival at Earth could be predicted from analysis of the HI images, demonstrating that they
typically propagate at close to the slow solar wind speed ahead of the CIR, and their ar-
rival near Earth can be predicted with an accuracy of several hours; these results broadly
consolidate those from similar but independent studies by Davis et al. [2012] and Con-
lon et al. [2015]. This line of research was further pursued by Sanchez-Diaz et al. [2017],
who better quantified the temporal and spatial scales of plasma blobs released into the
heliosphere near the heliospheric current sheet. They revealed that such blobs were re-
leased simultaneously across a wide range of longitudes, with a period of approximately
20 hours. However, although these studies have aided our understanding of the structure of
the solar wind in the inner heliosphere, the analysis techniques they depend upon do not
lend themselves to routine, global application which is required to constrain MHD mod-
els of the solar wind with HI observations. This is because all of these studies required a
large amount of manual classification in the HI observations, manually tracking features
associated with CMEs, and plasma blobs acting as tracers for solar wind structures, using,
for example, time-elongation plots (known colloquially as J-maps) [Davies et al., 2009].
Alongside this, we also note that DeForest et al. [2016] presented a groundbreaking anal-
ysis which, through advanced processing of the HI images, revealed and quantified the
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onset of hydrodynamic turbulence in the young solar wind. This work analysed 15 days of
HI1 data from December 2008 in solar minimum, and used structure function analysis to
quantify how the texture of the images changed with radial distance.

There are also a range of image processing techniques that can be used to estimate
the velocity of specific features within an image, or the the velocity throughout an entire
image, which also do not require the manual tracking of features. For example, Pant et al.
[2016] used the Hough transform to determine the kinematics of of CMEs in the HI1
FOV, based on earlier work by Robbrecht and Berghmans [2004] to develop the CACTus
CME catalogue from Coronograph observations. Another branch of techniques fall un-
der banner of optical flow estimation [Horn and Schunck, 1981]. Optical flow techniques
have been used successfully within solar physics to model CME kinematics in corona-
graph images [Colaninno and Vourlidas, 2006], and chromospheric dynamics in EUV im-
agers [Gissot and Hochedez, 2007; Gissot et al., 2008]. Additionally, DeForest et al. [2014]
used Fourier transforms to extract information on the flow of Alfvén waves in coronagraph
images of the outer corona. Our interest has focussed on describing the background solar
wind flow with the HI instruments, and in doing so we have experimented with different
optical flow estimators. However, as of yet, we have been unsuccessfull in robustly de-
termining the background solar wind flow with these techniques, and are unaware of any
published works which successfully tackle this problem. From our own experiments, the
reduced signal to noise ratio of HI images (relative to coronagraph and EUV images) was
a key factor in limiting the success of this approach. Consequently, we have become inter-
ested in simpler and more empirical ways of constraining the background solar wind flow
with heliospheric images.

Hence, within the context of our challenges to directly estimate the solar wind flow
from HI images, here we explore the following question; is there is a way to process the
HI images that reveals aspects of the solar wind structure that might be sensibly used in
conjunction with a data assimilation scheme and MHD model of the solar wind. Ideally
such an algorithm would not require manual classification of the images, and would rely
on relatively simple metrics computed from the images, such that the analysis could be
easily integrated into a solar wind modelling workflow. We posit that variability in HI
differenced images can act as a tracer for solar wind structure, and demonstrate that a
measure of this variability has the same periodic structure as in-situ solar wind plasma
observations from different in-situ monitors, and can, in fact, be directly correlated with
in-situ solar wind plasma observations. Such an approach has promise, given the results
of DeForest et al. [2016, 2018]. In section 2 we introduce the in-situ plasma observations
and HI remote sensing data used throughout this investigation. Section 3 describes some
statistical techniques used in our analysis, while the results are presented in section 4.

2 Data

Throughout this investigation we use white-light remote sensing observations of the
inner heliosphere provided by the Heliospheric Imager on STEREO-A, as well as in-situ
observations of the solar wind plasma provided by the WIND, STEREO-A, and STEREO-
B spacecraft. Below we detail the provenance and processing of these data.

2.1 Heliospheric Imagers

The STEREO spacecraft, operational since late 2006, occupy approximately 1 AU
heliocentric, ecliptic orbits, one ahead of (STEREO-A: STA) and the other behind (STEREO-
B: STB) the Earth. Both STA and STB carry the SECCHI instrument package [Howard
et al., 2008]. Included in the SECCHI package is the HI instrument [Eyles et al., 2008],
which consists of two wide-field white-light cameras (HI1 and HI2) that image solar wind
structures propagating over a total elongation angle range from near 4° to around 90°
from the Sun. During nominal science operations, the 20° FOV of HII is centered at
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14° in the ecliptic plane and the 70° FOV of HI2 is centered at 53.8°, also in the eclip-
tic plane. HI2 also includes a trapezoidal occulter, which was designed to limit the in-
tense light from Earth at the start of the mission [Eyles et al., 2008], and restricts the outer
edge of the central portion of the HI2 FOV to an elongation of around 74°. Throughout
this work, we use only the observations provided by the HI1 camera on STA (HI1A),
over the period spanning 2008-01-01T00:00:00 until 2012-12-31T23:59:59. During this
period, the nominal cadence of HI1 and HI2 science images is 40 and 120 minutes, re-
spectively, while their binned pixel size is 70 arc-sec and 4 arc-min, respectively. More
specifically, we use the Level 2, 11-day background HI1A observations, made available

at https://www.ukssdc.ac.uk/solar/stereo/data.html. The location of features in the HI1A
FOV will be discussed in terms of Helioprojective-Radial-Coordinates: position angle (),
the anti-clockwise angle from solar north, and elongation (¢), the angular distance from
Sun-center.

The photons detected by the HI instrument are primarily white-light solar photons
which have undergone Thomson scattering with free electrons in the solar wind. The sig-
nal received along any given line of sight in the HI FOV is an integral along that line.
But, as both the density of solar wind electrons and intensity of solar photons decreases
with heliocentric radius, the signal received along a sight line is biased towards photons
scattered on the surface of the sphere having a diameter defined by the Sun and observer
as endpoints; originally termed the Thomson Sphere (TS). However, we note that Howard
and Deforest [2012] demonstrated that this bias was actually quite modest and also a broad
function of distance along the line of sight; hence they argued it would be better referred
to as the Thomson plateau.

2.1.1 HI data processing

Differenced images are produced from contiguous Level 2 11-day background sub-
tracted HI1A images. The star fields are suppressed by identifying strong peaks in the
image and replacing them with interpolated values from a 2-d cubic B-spline. Finally, a
5x5 median filter is applied to the differenced image. This is the same method as used in
Barnard et al. [2017], and an example differenced image can be seen in Figure 1. The re-
sulting image has a differenced image intensity field given by I(€,y). We select a subsec-
tion of the image corresponding to the radial shell encompassing the plane-of-sky region
spanning 20-22.5 solar radii, as shown by the red contours in panels A and B of Figure 1.
Within this shell, we measure the differenced image variability as a function of position
angle by computing the standard deviation of I(e,y) according to

(T oy 2 H(e.y) — (Th50 22 I(e,y)/N)? |
N 9

y) =

in position angle boxes 5° wide (6y = 2.5°), centred on every degree of ¥ from
60° to 120°, where €., and €., give the lower and upper elongation limits of the radial
shell, and N is the number of pixels/samples in the position angle box. Examples of these
boxes are shown for central position angles of 75°, 90°, and 105° by the blue, purple, and
orange contours in panel B of Figure 1.

In Panel C of Figure 1 kernel density estimation is used to estimate the distribution

of differenced image pixel brightness in the three position angle boxes marked in panel B.
Kernel density estimation is a non-parametric method used to estimate a parameters distri-
bution function from a set of observations of that parameter. Each observation is assigned
a prescribed distribution function (e.g. a Gaussian) and the normalised sum of these indi-
vidual distributions is assumed to be a fair representation of a parameters true distribution
function [Wilks, 1995]. The vertical dotted lines beneath each distribution mark the re-

gion of +y about the mean brightness. Comparing the breadth of each +y region with the

©2018 American Geophysical Union. All rights reserved.
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corresponding kernel density estimate, we conclude that the standard deviation is a reason-
able measure of variability for these distributions. To facilitate comparison of y(¢) across
multiple frames, we then normalise y(y) in each frame, computing the z-score

YW) - )

Y

Y.(¥) =

where (y(¢)) and o, are the mean and standard deviation of (i) within the radial
shell in that frame. This is necessary, as the orbital motion of STEREO-A means the fixed
radius plane of sky shell corresponds to elongation limits with a small annual variation.
Furthermore, the intensity of HI images falls as approximately €3 (see DeForest et al.
[2016]), such that y(i) tends to lower values when the elongation limits are lager. Com-
puting v, () provides a normalised measure of the variability in each HI frame, allowing
comparison throughout the HI time series.

This process is completed for every viable differenced image (differenced images
cannot be computed if either or both frames are missing), returning a time series of differ-
enced image variability as a function of position angle, y,(¥,t). We then compute the UT
daily mean of this time series, I['(i,t), averaging the vy, (i, ) values at each position an-
gle for each frame within a UT day. This process is demonstrated in Panel D of Figure 1;
the black line shows 7y, () for the differenced image presented in panel A, while the grey
lines show vy, (¢) for all other frames obtained on 2009-06-01. The red circles show the
daily mean value I'(), with the uncertainty bars showing one standard error of the mean.

2.2 In-situ solar wind plasma observations
2.2.1 WIND

The WIND spacecraft has, since 2004, continuously monitored properties of the in-
situ solar wind plasma whilst in a halo orbit of the Earth-Sun L1 Lagrange point. The So-
lar Wind Experiment (SWE) instrument measures solar wind ion and electron properties,
from which estimates of the solar wind bulk speed, density and temperature have been
computed [Ogilvie et al., 1995]. Here, we use the 1-hour average solar wind bulk speed,
density and temperature estimates obtained from https://omniweb.gsfc.nasa.gov/.

2.2.2 STEREO-A and STEREO-B

The STEREO spacecraft are also equipped with the Plasma and Supra-Thermal Ion
Composition (PLASTIC) instrument payload, which measures in-situ solar wind plasma
properties [Kaiser et al., 2008]. From these measurements, estimates of the solar wind
bulk speed, density and temperature have been derived, which we use in our following
analysis. Similar to the WIND data, we use the 1-hour average solar wind bulk speed,
density and temperature estimates obtained from https://omniweb.gsfc.nasa.gov/, for both
STA and STB.

2.3 Data processing

From the 1-hour average time series, we compute daily means of the the solar wind
speed, density and temperature for WIND, STA, and STB, for every UT day in the period
spanning 2008-01-01 to 2012-12-31. This results in 1828 days of samples for each param-
eter, although we note that there were 2, 4, and 8 days where data availability meant valid
daily means could not be computed for WIND, STB, and STA, respectively. Throughout
the remainder of the article we refer to these quantities as Vi, py, and Ty, where the sub-
script x takes the abbreviation of the spacecrafts name.

©2018 American Geophysical Union. All rights reserved.
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differenced image shows more clearly the plane-of-sky region of interest, bounded by the red contours. Within
this region, 3 position angle boxes are drawn at ¢ of 75°, 90°, and 105° by the blue, purple, and orange lines,
respectively. C) Kernel density estimates of the I(e, ) values corresponding to the pixels within the three
position angle boxes in panel B. Vertical dashed lines beneath each distribution show the +y(y) limits around
the mean value, demonstrating that y(i) is a fair measure of the spread of these distributions. D) The black
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nates, respectively.

2.4 STEREO-A, STEREO-B, and WIND orbits

Sections 2.1 and 2.2.1 described how STA and STB were in orbits drifting relative
to Earth, and that WIND was in a halo orbit around the L1 Lagrange point. Therefore, the
relative locations of these three craft are continuously evolving, as described by Figure 2,
which shows the Heliocentric Earth Equatorial (HEEQ) coordinates of WIND, STA, and
STB, from 2008-01-01 until 2012-12-31. The top, middle and bottom panels presents the
HEEQ radius, longitude and latitude respectively. This shows that, for any time over this
period, STA, STB, and WIND sample increasingly separate locations in the heliosphere.
Consequently, when attempting to link these in-situ solar wind observations with features
in the HI remote sensing data, these three craft provide independent data which map to
different elements in the full HI data set, and so provide additional confidence that the
statistical relationships we demonstrate below are robust.

3 Methods
3.1 Spearman’s rank correlation

Spearmans’s rank correlation is a correlation coefficient that provides a measure of
the degree of association between two parameters [Wilks, 1995]. This is a non-parametric
statistical measure, as the degree of association is assessed on the ranks of the variables,
rather than the actual values. Formally, for N paired observations of two parameters X
and Y, Spearman’s rank correlation coeflicient r; is computed by first transforming the
paired samples X; and Y; into their respective ranks Rx; and Ry;, and then computing

XY (Rx; - Rx)(Ry; - Ry)
B ORxORy(N = 1)

3)

s

where Rx and og,, and R_y and ogy, are the means and standard deviations of the
ranks Rx and Ry. Consequently, 7, is a measure of how well the relationship between two
variables may be modelled by a monotonic relationship. This differs from the more com-
monly used Pearson’s product-moment correlation coefficient, which is a measure of how

©2018 American Geophysical Union. All rights reserved.
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well two variables can be modelled with a linear relationship. Furthermore, interpretation
of Pearson’s correlation is complicated in situations when the paired samples do not form
a bi-variate normal distribution. The solar wind plasma properties and statistics computed
from the HI images are not normally distributed, and there is no a-priori reason to assume
a linear relationship between them, hence using Spearman’s rank correlation in this analy-
sis.

Additionally, the statistical significance of r; can be computed, relative to a null-
hypothesis that there is no correlation between the samples [Wilks, 1995]. Such a pro-
cess can not confirm that a relationship exists between the variables, but it can quantify
how unusual it would be to obtain the sample correlation if the true correlation were zero.
Here we employ a bootstrap resampling procedure to estimate the distribution of rg under
the null hypothesis that the true correlation is zero. Under such a null hypothesis, the pair-
ing of the samples is irrelevant, and so computing r, for many random realisations of the
paired samples provides an empirical estimate of the distribution of 7; under the null. By
comparing the sample rg to the estimated null distribution, we can assess the liklihood of
obtaining the sample rg due to random sampling of uncorrelated parameters.

3.2 Autocorrelation functions

Here we also compute the autocorrelation function (ACF) of solar wind plasma pa-
rameters and statistics derived from the HI images. An ACF is simply the correlation be-
tween a parameter and a lagged copy of itself, for a range of different lags. Any measure
of correlation can be used to compute an ACF, and here we choose to compute the Spear-
man ACF.

Similar to computing the statistical significance of r, for a paired sample of two pa-
rameters, the significance of the ACF at any particular lag may also be estimated. This
procedure is analogous to the case of a paired sample of two parameters, except that this
must be applied at each lag.

4 Results
4.1 ACFsof V and o,;

Figure 3 shows the time series and ACFs of V for WIND, STA, and STB, respec-
tively. These time series show the same broad features at WIND, STA, and STB, despite
sampling increasingly different regions of the heliosphere throughout this period. For ex-
ample, with increasing longitudinal separation, these monitors will experience different
transient structures, and, even in a quiet and steady heliosphere, latitudinal differences
mean the monitors still observe different solar wind structure. Panels B1:B3 present the
ACEFs of these V data for WIND, STA, and STB (black lines). The red dashed lines show
the 0.5 and 99.5 percentiles of the null distribution of r,, estimated from the resampling
procedure detailed in section 3.1. Each ACF has clearly defined maxima at lags of ap-
proximately 27 and 54 days, corresponding closely with the synodic solar rotation period
/ Carrington rotation time, as discussed by Owens et al. [2013].The ACF is computed out
to a lag of 75 days, and for much of this window the ACF values are larger than would be
expected due to random sampling under the null hypothesis of zero correlation. We sug-
gest that, between the maxima, the ACF is larger than expected for zero correlation possi-
bly due to solar cycle scale variations introducing persistance at long timescales. Similar
results are obtained for p, and T. For conciseness these figures are not included here, but
are available in the supplementary information.

Figure 4 shows the time series of HI1A relative variability I'y ;, over the same time
window as the V data in Figure 3. Panel A1 shows the full series of Iy, ; for all com-
puted position angles between 70° and 105°. Each vertical slice shows one daily mean,

©2018 American Geophysical Union. All rights reserved.
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Figure 3. Panels A1:A3 show time series of daily mean solar wind speed estimates from WIND, STA, and
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with green regions reflecting larger I'y ;, and pink regions smaller I'y ;. This shows that,
broadly speaking, there is more variability near equatorial position angles (around 90°),
and less variability at more polar position angles, similar to that shown in Figure 1 panel
D. There are more clearly defined boundaries between more and less variable regions ear-
lier in the time series, which becomes more diffuse and complex after approximately day
750. Nonetheless, the time series in panel Al is suggestive of periodic structure, which

is investigated further in panel B1. The ACF of the I'y ; data was computed for each ¢,
and these data are presented as a contour of the ACF values as a function of ¢ and lag

in panel B1. The significance of the ACF was computed using the same resampling pro-
cedure, and areas marked with diagonal hatching in the contour plot are within the 99%
confidence interval of the null distribution of r;. At all considered ¥, we observe the same
approximately 27 and 54 day peaks in the ACF, similar to the ACFs of V, corresponding
to the Carrington rotation time. Panels A2 and B2 present a reduced form of these data,
showing only the time series of I'y ; corresponding to the equatorial ¢ of 90°, as marked
by the dashed blue line in panel Al. Finally, panels A3 and B3 present the time series
and ACF of T, ; data corresponding to the ¢ variation of the WIND spacecraft. This was
computed by using nearest-neighbour interpolation to look-up the I'y ; values correspond-
ing to the time-y variation of WIND, as a synthetic example of how mapping a spacecraft
orbit onto the I'y ; data might differ from the ACFs observed for fixed ¢ considered in
rows 1 and 2. In short, no significant change is observed between the ACFs corresponding
to the fixed ¢ or y variation matching WINDs orbit.

Although we are not certain what changes in HI variability, and its latitudinal
structure, one possible explanation is the different nature of fast and slow solar wind, and
the distribution of their source regions as a function of heliographic latitude. In-situ ob-
servations show that the slow solar wind is typically more dense and more variable than
fast solar wind, with differing turbulent profiles [Neugebauer and Snyder, 1966; Bruno and
Carbone, 2013]. We also note that Ko et al. [2018] recently argued that the magnitude
of solar wind velocity fluctuations are a good discriminator between fast and slow solar
wind, with slow solar wind typically showing smaller velocity fluctuations, although this
work did not consider density fluctuations. Furthermore, in-situ and remote observations
demonstrate that fast solar wind originates from coronal holes, which tend towards more
polar latitudes, particularly at solar cycle minimum [Zirker, 1977; Schwenn, 2007]. Con-
versely, at solar cycle maximum, slow solar wind is not confined to equatorial regions,
and is emitted from a wider range of latitudes. Consequently, we might reasonably expect
to observe more differenced image variability along lines of sight containing more slow
solar wind that is denser and more variable, and less differenced image variability alone
lines of sight with more fast wind, which is less dense and less variable. Furthermore,
this picture is consistent with the trend shown in Figure 4A1; There is a clearer distinction
between variabiltiy at high and low latitudes from 2008 - 2010, during the low activity pe-
riod spanning the solar cycle 23 / 24 transition; As the solar cycle progresses towards the
maximum of solar cycle 24 (2014), there is less of a clear distinction between regions of
high and low variability as a function of heliographic latitude. On the basis of this inter-
pretation, we tentatively suggest there might be a negative correlation between HI variabil-
ity and solar wind speed.

4.2 Rolling ACFs of V and o7,;

Of course, simply demonstrating that the ACFs of V for different in-situ monitors
and also I'y ; are remarkably similar over the period 2008-01-01 to 2012-12-31 is not, in
isolation, good evidence that I'y ; is a potentially useful tracer of solar wind structure. An-
other test is to examine how these ACFs evolve over the studied period. Here we do this
by computing the ACFs in a rolling window for V,,,,4, Vira, and Vg,p, and for traces ex-
tracted from Iy, that match the ¢ variations of WIND, STA, and STB. We use a rolling
window 365 days wide, which is stepped forward in 14 day increments. These parameters
were arbitrarily chosen, but the results are not sensitive to modest changes in the window
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Figure 5. Each panel shows contours of the rolling window ACFs of the V and I'y, ; data. Each ACF is
computed for a 365 day window, stepped forward in 14 day blocks, and in each panel the x-axis shows the
block start date, and the y-axis shows the ACF lag. Hatching shows regions where sample ACFs are inside
the 99% CI of the null distribution of rs. Panels A1:A3 show the rolling ACFS for V,,,,,4, Vssp and Viyp, re-
spectively, while panels B1:B3 show the rolling acfs for I'y ; along the i traces of the WIND, STA, and STB

spacecraft.

width or step size (which was chosen to balance resolution with computational expense).
The resulting ACF data are shown in Figure 5, which presents contours of the ACFs as a
function of the block start date (x-axis) and lag (y-axis). Panels AO:A2 show the results
for Viynd, Vsta, and Vi, while panels BO:B2 show the results for the i traces extracted
from Iy ;. Throughout, hatching marks areas where the ACF value falls inside the 99%
CI limit for the null distribution of 7.

For each monitor considered, there is clear similarity in the variability of the ACFs
between V and the Iy ; slices. Considering the very different nature of the in-situ solar
wind speed estimates, and the HI differenced image variability data, we regard the simi-
larity of these rolling ACFs as striking. Our tentative interpretation of this is that I'y ; is
serving as a metric for structure in the ambient solar wind, propagating though the TP of
the HI1A FOV.

4.3 Correlation of V and I, ,

Given that there appears to be strong correspondence between the ACFs of the in-
situ solar wind speed estimates and I'y, ;, we now consider directly the correlation between
Iy : and V. However, if slices through Iy ; are correlated with V, we should expect there
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Figure 6. Schematic showing the relative locations of WIND, STA, and STB in the equatorial plane of
HEEQ coordinates, for the mid-point times of the calendar years analysed here. Also shown are idealised
Parker spiral streamlines connecting each spacecraft to the outer corona. Both rows show the locations of the
spacecraft in the Sun’s equatorial plane (HEEQ x-y plane), with the bottom row showing an enhanced view
of the inner heliosphere. The purple dashed line shows the Thomson sphere of HI1A, while the black circles
mark the equatorial intersection of the 20-22.5R; plane of sky shell used to compute I'(y, f).

to be some temporal lag between these measures, as at any given instant they observe
properties of the solar wind which map to different source regions. Consequently, this lag
is expected to be a function of the spatial separation of WIND, STA, and STB, recalling
that these three pairs of craft have increasing longitudinal separation throughout the study
period (Figure 2).

Figure 6 highlights this situation, presenting a schematic which shows the relative
locations of WIND, STA, and STB, in the HEEQ equatorial plane, for the mid point times
of each calendar year considered here. The top row shows a view of the heliosphere out to
the orbits of WIND, STA, and STB, giving the locations of these craft with orange, pur-
ple, and red markers. The black circles mark the 20-22.5 solar radii shell used in the HI
image analysis, while the solid purple, orange and red lines mark the idealised Parker spi-
ral streamlines for radial wind of 400 kms~!, serving as an approximate indicator of the
foot-point of the in-situ monitors. The purple dashed line marks the location of the Thom-
son sphere for HI1A. The bottom row shows an expanded view of the inner heliosphere,
highlighting the relative locations of the intersections between the radial shell, approx-
imate foot-points of the in-situ monitors, and Thomson sphere of HI1A. From this, we
form the following hypothesis; the lag between the observed V and I'(y,¢) values will vary
in proportion to the separation between the approximate foot-point longitude, and the lon-
gitude of the intersection between the Thomson sphere and radial shell. Consequently, the
lag will be approximately constant for STA, due to co-location of HI1 and PLASTIC in-
struments on STA. Furthermore, as the footpoints of STB and WIND drift closer to and
past the Thomson sphere intersection over 2008 - 2012, we expect that initially the lag
will be closer to zero for STB than WIND, until eventually WIND is closer and has lags
nearer zero. Finally, as STB and WIND drift at approximate 40° and 20° per year rela-
tive to STA, we expect the optimal lag for STB to change faster than the optimal lag for
WIND.

To investigate this, we split the V series into annual blocks for 2008-2012 (inclu-
sive), and compute the lagged correlation between the V series and the  — ¢ trace ex-
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Figure 7. Lagged correlation between I'(y, 1) and V for WIND, STA and STB. The time series were split
into 1 year blocks, and the lagged correlation was computed within each year, for lags between -27 and +27
days. Successive years are plotted with lighter colors. Correlations outside of the 99% CI of the null distribu-

tion of rg are marked with a full marker, while those within the 99% CI of the null distribution are hollow.

tracted from T'(y,¢), for lags between +27 days. Note that because of the annual variation
in  for each craft, the lag is applied to the look-up of the trace from ['(¢,t); for V(¢,v),
we look-up T'(y,t + [), where [ is the lag. This simple approach is similar to one used in
Riley and Lionello [2011], who used simple lagged correlations to relate modelled solar
wind speeds at 30 R and at 1 AU. Figure 7 presents these lagged correlations for each
of WIND, STA and STB, where each year is plotted in an increasingly light color. Filled
circular markers highlight correlations which fall outside of the 99% CI of the null distri-
bution of r,, assessed through resampling tests.

For each of WIND, STA and STB, there are well defined peaks in the lagged cor-
relation. In particular, each craft displays two strong minima in the lagged correlation for
most years, excepting only the 2012 period in STA and STB. In each year, these double
minima are separated by approximately 27 days. We note this is consistent our interpreta-
tion of Figure 4, where we discussed that we might expect there to be a negative correla-
tion between solar wind speed and HI variability.

The results of the lagged correlation are broadly consistent with our hypothesis, as
described below. Consider first the lagged correlation of the STA data. The lags of the
minima are relatively constant, indicative of the fixed relative locations of the HI1 and
PLASTIC instruments on STA. We also note the approximately 3 day asymmetry between
the two groups of the minima in STA (at approximately —12 and +15 days respectively),
which might be explained by the mean solar wind travel time between the source region
and STA.

For both STB and WIND, the lags of the minima become more positive throughout
2008-2012. Considering the group of minima at more negative lags for each craft, they
are initially closer to zero for STB, and eventually become closer to zero for WIND. This
is consistent with the expectations based on the drifting HEEQ longitudes of the approx-
imate footpoints of STB and WIND relative to the TS of STA and radial shell used to
compute I['(y,1) .

Figure 8 quantifies this relationship, plotting the lag of minimum correlation for
each year, for WIND, STA, and STB. To compute this we selected the group of minima
at more negative lags for WIND and STB, and the group of minima between lags of +10
days for STB. The markers show the lag of minimum correlation in years since 2008 (cen-
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Table 1. Gradients (and 20 errors) of the regression lines shown in Figure 8

tred in the middle of the year block), while the solid lines show the linear regressions of
these points, and the dashed lines the 20~ uncertainty on the gradient of the regression
line. The gradients of these regression lines are given in Table 1. For STA, the outlying
point in the last year block (Figure 8) was not included in the regression. These demon-
strate that, as expected, for STA the drift in the lag of the minimum correlation is, within
errors and excluding an outlier, consistent with zero. Furthermore, the drift in the mini-
mum lag for STB is more rapid than for WIND, being approximately 1.5 times the WIND
drift. Naively, we expected the STB drift to be approximately 2 times the WIND drift, and
don’t currently understand why it is less than this, but within the uncertainties of this anal-
ysis we consider it broadly consistent with our earlier hypothesis.

5 Conclusions

We have demonstrated that, over the period 2008-01-01 to 2012-12-31, variability in
differenced images from HI1A displays Carrington rotation periodicities, with an ACF re-
markably similar to that obtained from in-situ estimates of solar wind speed from WIND,
STA, and STB. Furthermore, considering a sequence of shorter windows in this 5 year pe-
riod, it was shown that the temporal evolution of the ACF was similar for the in-situ solar
wind speed estimates and HI differenced image variability.

It is perhaps not a great surprise that we have demonstrated Carrington rotation pe-
riodicities in HI1A differenced images. For example, it is well established that the HI in-
struments can be used to track the “Sheeley blobs” entrained into CIR structures [Rouil-
lard et al., 2008], and subsequent work has revealed that these are observed to have a
quasi-periodic release into the HI FOV, with a typical release timescale of approximately
19hr, across a wide range of heliographic latitudes [Conlon et al., 2015; Sanchez-Diaz
et al., 2016]. CIR structures recur with approximately 27 day periods, and so it is plausi-
ble that measure of differenced image variability we use here, al'(i,1), is acting as a tracer
for such structures. However, these prior works all relied on manual feature tracking in the
HI FOV, to extract the 7-e-y variation of each blob. We are unaware of any work that has
demonstrated Carrington rotation periodicities in simple statistics computed from the HI
images.

Further to this, we have demonstrated a statistically significant correlation between
HI1A differenced image variability and in-situ estimates of solar wind speed from WIND,
STA, and STB. Although it is always wise to be cautious of the results of a correlation
analysis, we consider this a robust result as similar correlations were found for three in-
dependent in-situ monitors that have sampled increasingly separate regions of the helio-
sphere. Finally, there are systematic drifts in the correlation between in-situ solar wind
speed estimates and HI1A differenced image variability which are well explained by the
varying relative locations of the WIND, STA, and STB spacecraft.

If, as suggested here, a simple statistical analysis of HI1A images can provide an es-
timate of near-Sun solar wind speed structure, it increases the likelihood that heliospheric
imaging can provide a valuable external constraint to MHD modelling of the heliospheric
solar wind, through models such as ENLIL, MAS and EUHFORIA etc. In particular, we
are interested in investigating how HI data may be used within a data assimilation scheme
for heliospheric modelling, as per Lang et al. [2017] and Lang and Owens [2019]. If it
were found that HI observations could be used within a data assimilation scheme for he-
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liospheric modelling, it would provide a good argument for a heliospheric imager to be
included on any future operational space weather monitoring space craft.

Having said this, the analysis presented here is clearly exploratory, and it moti-
vates a more thorough investigation of the relationship between heliospheric imaging and
in-situ solar wind parameters. In our opinion, there are several avenues of investigation
that should be prioritised. Firstly, we have used only the standard level 2 science data for
HI1A. DeForest et al. [2011] presented a method for processing the HI observations which
increases the signal to noise ratio relative to standard level 2 data, referred to as L2S im-
ages by DeForest et al. [2016]. These L2S images may better constrain the relationship
between HI1 variability and in-situ plasma observations. Furthermore, a particular limita-
tion to our investigation is that we have not explored what scale size features in HI might
be best related to in-situ observations. We employed a radial shell in the plane of the sky
from 20-22.5R;, position angle bins 5° wide and 1 day means, which means we are look-
ing at only one scale of feature. An analysis that considers multiple scale sizes within the
HI images would be informative in determining what features are best related to the in-situ
plasma observations.
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