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Abstract12

We present evidence that variability in the STEREO-A Heliospheric Imager (HI) data is13

correlated with in-situ solar wind speed estimates from WIND, STEREO-A, and STEREO-14

B. For 2008-2012, we compute the variability in HI differenced images in a plane-of-sky15

shell between 20-22.5 solar radii, and, for a range of position angles, compare daily means16

of HI variability and in-situ solar wind speed estimates.17

We show that the HI variability data and in-situ solar wind speeds have similar tem-18

poral autocorrelation functions. Carrington rotation periodicities are well documented for19

in-situ solar wind speeds, but, to our knowledge, this is the first time they have been pre-20

sented in statistics computed from HI images. In-situ solar wind speeds from STEREO-21

A, STEREO-B, and WIND are all are correlated with the HI variability, with a lag that22

varies in a manner consistent with the longitudinal separation of the in-situ monitor and23

the HI instrument.24

Unlike many approaches to processing HI observations, our method requires no25

manual feature tracking; it is automated, quick to compute, and does not suffer the sub-26

jective biases associated with manual classifications. These results suggest we could possi-27

bly estimate solar wind speeds in the low heliosphere directly from HI observations. This28

motivates further investigation as this could be a significant asset to the space weather29

forecasting community; it might provide an independent observational constraint on helio-30

spheric solar wind forecasts, through, for example, data assimilation. Finally, these results31

are another argument for the potential utility of including a HI on an operational space32

weather mission.33

Plain Language Summary34

It would be useful for space weather forecasting to have a good estimate of the so-35

lar wind speed near the Sun. This could improve space weather forecasting models, and36

our knowledge of how the solar wind is formed and varies. However, estimating the so-37

lar wind speed near the Sun is difficult to do, with either with spacecraft that measure it38

directly, or with cameras observing the solar atmosphere.39

We have analysed variations in images of the solar wind taken by the Heliospheric40

Imagers on the STEREO-A spacecraft. We show that these variations are well correlated41

with solar wind speed measurements taken by in-situ spacecraft. Furthermore, we show42

that these correlations evolve in a way that can be explained by the orbits of the space-43

craft, which gives us increased confidence that that this statistical relationship is robust.44

Therefore, these results might be used to develop a relationship between variability45

in the Heliospheric Imager data and solar wind speed, which would allow us to estimate46

the solar wind speed near the Sun routinely. Such a technique would be useful for space47

weather forecasting, and would be a good reason to put a Heliospheric Imager on any fu-48

ture space weather monitoring spacecraft.49

1 Introduction50

Effective space weather forecasting requires prediction of near-Earth solar wind51

conditions and hence modelling the solar wind environment of the inner heliosphere.52

For some time now it has been commonplace to use 3D magnetohydrodynamic (MHD)53

models to represent the heliosphere (such as ENLIL [Odstrcil, 2003] , MAS [Riley et al.,54

2001], and EUFORIA [Pomoell and Poedts, 2018]). Such models are driven, indirectly,55

by photospheric and coronal observations, as their inner boundary conditions are typically56

derived from the output of coronal magnetic models and empirical parameterisations (e.g57

the Wang-Sheeley-Arge (WSA) extrapolation of Potential Field Source Surface (PFSS) so-58

lutions of the coronal magnetic field). Several recent studies demonstrate the success of59
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this approach, with these models serving as useful research tools [Riley et al., 2012], and60

aiding skilful space weather forecasts [Riley et al., 2018].61

However, as these models do not directly use any of the available heliospheric solar62

wind observations, an obvious question is "can solar wind observations be used to im-63

prove MHD modelling of the space weather environment?". The answer appears to be64

affirmative, as demonstrated by Lang et al. [2017], who showed that integrating a Data-65

Assimilation (DA) scheme into ENLIL improved ENLIL’s representation of the inner he-66

liosphere. Specifically, these authors performed a theoretical experiment that showed as-67

similating synthetic in-situ plasma observations reduced the error of the model relative68

to the ground truth. Furthermore, Lang et al. [2017] and Lang and Owens [2019] high-69

light that it should be possible to improve heliospheric modelling by assimilating not only70

in-situ plasma measurements, but also remote sensing observations, such as those from71

Heliospheric Imaging instruments. Given the paucity of in-situ monitors throughout the72

heliosphere, particularly out of the ecliptic plane, the possibility of assimilating remote73

sensing observations of the inner heliosphere is particularly interesting, as they may pro-74

vide information over a much broader spatial domain than in-situ monitors. We also note75

that, alongside visible light instruments, radio observations are another complementary76

data source that might be used in an assimilative way, through techniques such as Inter-77

planetary Scintillation.78

The Heliospheric Imager (HI) instruments are wide-field visible-light imagers, that79

have routinely observed the inner heliosphere since 2007, as part of the Sun-Earth-Connection-80

Coronal-Heliospheric-Investiation (SECCHI) instrument package aboard the twin STEREO81

spacecraft (STEREO-A and STEREO-B) [Howard et al., 2008]. The HI instruments pri-82

marily observe sunlight Thomson scattered off free electrons in the solar wind and so, at83

the simplest level, these observations provide a measure of the solar wind electron number84

density along a line-of-sight (LOS) in the instruments field-of-view (FOV). A key scien-85

tific focus for the HI observations has been characterising the evolution and propagation86

of Coronal Mass Ejections (CMEs) through the inner heliosphere [Howard et al., 2008;87

Harrison et al., 2017]. Furthermore, in the context of space weather forecasting, these data88

led to the development of a plethora of techniques designed to predict the arrival of CMEs89

throughout the heliosphere [Harrison et al., 2017]. However, much less research has been90

done into characterising the background solar wind structure in the HI FOV, and what this91

may enable in a space weather forecasting context. That being said, the potential for ex-92

tracting background solar wind information from HI observations has been demonstrated.93

Rouillard et al. [2008] showed that plasma parcels entrained into Co-rotation Interaction94

Regions (CIRs) could be imaged in HI. Subsequently, Plotnikov et al. [2016] tracked many95

such events in HI images to study the long-term variability of CIRs, and whether their ar-96

rival at Earth could be predicted from analysis of the HI images, demonstrating that they97

typically propagate at close to the slow solar wind speed ahead of the CIR, and their ar-98

rival near Earth can be predicted with an accuracy of several hours; these results broadly99

consolidate those from similar but independent studies by Davis et al. [2012] and Con-100

lon et al. [2015]. This line of research was further pursued by Sanchez-Diaz et al. [2017],101

who better quantified the temporal and spatial scales of plasma blobs released into the102

heliosphere near the heliospheric current sheet. They revealed that such blobs were re-103

leased simultaneously across a wide range of longitudes, with a period of approximately104

20 hours. However, although these studies have aided our understanding of the structure of105

the solar wind in the inner heliosphere, the analysis techniques they depend upon do not106

lend themselves to routine, global application which is required to constrain MHD mod-107

els of the solar wind with HI observations. This is because all of these studies required a108

large amount of manual classification in the HI observations, manually tracking features109

associated with CMEs, and plasma blobs acting as tracers for solar wind structures, using,110

for example, time-elongation plots (known colloquially as J-maps) [Davies et al., 2009].111

Alongside this, we also note that DeForest et al. [2016] presented a groundbreaking anal-112

ysis which, through advanced processing of the HI images, revealed and quantified the113
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onset of hydrodynamic turbulence in the young solar wind. This work analysed 15 days of114

HI1 data from December 2008 in solar minimum, and used structure function analysis to115

quantify how the texture of the images changed with radial distance.116

There are also a range of image processing techniques that can be used to estimate117

the velocity of specific features within an image, or the the velocity throughout an entire118

image, which also do not require the manual tracking of features. For example, Pant et al.119

[2016] used the Hough transform to determine the kinematics of of CMEs in the HI1120

FOV, based on earlier work by Robbrecht and Berghmans [2004] to develop the CACTus121

CME catalogue from Coronograph observations. Another branch of techniques fall un-122

der banner of optical flow estimation [Horn and Schunck, 1981]. Optical flow techniques123

have been used successfully within solar physics to model CME kinematics in corona-124

graph images [Colaninno and Vourlidas, 2006], and chromospheric dynamics in EUV im-125

agers [Gissot and Hochedez, 2007; Gissot et al., 2008]. Additionally, DeForest et al. [2014]126

used Fourier transforms to extract information on the flow of Alfvén waves in coronagraph127

images of the outer corona. Our interest has focussed on describing the background solar128

wind flow with the HI instruments, and in doing so we have experimented with different129

optical flow estimators. However, as of yet, we have been unsuccessfull in robustly de-130

termining the background solar wind flow with these techniques, and are unaware of any131

published works which successfully tackle this problem. From our own experiments, the132

reduced signal to noise ratio of HI images (relative to coronagraph and EUV images) was133

a key factor in limiting the success of this approach. Consequently, we have become inter-134

ested in simpler and more empirical ways of constraining the background solar wind flow135

with heliospheric images.136

Hence, within the context of our challenges to directly estimate the solar wind flow137

from HI images, here we explore the following question; is there is a way to process the138

HI images that reveals aspects of the solar wind structure that might be sensibly used in139

conjunction with a data assimilation scheme and MHD model of the solar wind. Ideally140

such an algorithm would not require manual classification of the images, and would rely141

on relatively simple metrics computed from the images, such that the analysis could be142

easily integrated into a solar wind modelling workflow. We posit that variability in HI143

differenced images can act as a tracer for solar wind structure, and demonstrate that a144

measure of this variability has the same periodic structure as in-situ solar wind plasma145

observations from different in-situ monitors, and can, in fact, be directly correlated with146

in-situ solar wind plasma observations. Such an approach has promise, given the results147

of DeForest et al. [2016, 2018]. In section 2 we introduce the in-situ plasma observations148

and HI remote sensing data used throughout this investigation. Section 3 describes some149

statistical techniques used in our analysis, while the results are presented in section 4.150

2 Data151

Throughout this investigation we use white-light remote sensing observations of the152

inner heliosphere provided by the Heliospheric Imager on STEREO-A, as well as in-situ153

observations of the solar wind plasma provided by the WIND, STEREO-A, and STEREO-154

B spacecraft. Below we detail the provenance and processing of these data.155

2.1 Heliospheric Imagers156

The STEREO spacecraft, operational since late 2006, occupy approximately 1 AU157

heliocentric, ecliptic orbits, one ahead of (STEREO-A: STA) and the other behind (STEREO-158

B: STB) the Earth. Both STA and STB carry the SECCHI instrument package [Howard159

et al., 2008]. Included in the SECCHI package is the HI instrument [Eyles et al., 2008],160

which consists of two wide-field white-light cameras (HI1 and HI2) that image solar wind161

structures propagating over a total elongation angle range from near 4◦ to around 90◦162

from the Sun. During nominal science operations, the 20◦ FOV of HI1 is centered at163
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14◦ in the ecliptic plane and the 70◦ FOV of HI2 is centered at 53.8◦, also in the eclip-164

tic plane. HI2 also includes a trapezoidal occulter, which was designed to limit the in-165

tense light from Earth at the start of the mission [Eyles et al., 2008], and restricts the outer166

edge of the central portion of the HI2 FOV to an elongation of around 74◦. Throughout167

this work, we use only the observations provided by the HI1 camera on STA (HI1A),168

over the period spanning 2008-01-01T00:00:00 until 2012-12-31T23:59:59. During this169

period, the nominal cadence of HI1 and HI2 science images is 40 and 120 minutes, re-170

spectively, while their binned pixel size is 70 arc-sec and 4 arc-min, respectively. More171

specifically, we use the Level 2, 11-day background HI1A observations, made available172

at https://www.ukssdc.ac.uk/solar/stereo/data.html. The location of features in the HI1A173

FOV will be discussed in terms of Helioprojective-Radial-Coordinates: position angle (ψ),174

the anti-clockwise angle from solar north, and elongation (ε), the angular distance from175

Sun-center.176

The photons detected by the HI instrument are primarily white-light solar photons177

which have undergone Thomson scattering with free electrons in the solar wind. The sig-178

nal received along any given line of sight in the HI FOV is an integral along that line.179

But, as both the density of solar wind electrons and intensity of solar photons decreases180

with heliocentric radius, the signal received along a sight line is biased towards photons181

scattered on the surface of the sphere having a diameter defined by the Sun and observer182

as endpoints; originally termed the Thomson Sphere (TS). However, we note that Howard183

and Deforest [2012] demonstrated that this bias was actually quite modest and also a broad184

function of distance along the line of sight; hence they argued it would be better referred185

to as the Thomson plateau.186

2.1.1 HI data processing187

Differenced images are produced from contiguous Level 2 11-day background sub-188

tracted HI1A images. The star fields are suppressed by identifying strong peaks in the189

image and replacing them with interpolated values from a 2-d cubic B-spline. Finally, a190

5x5 median filter is applied to the differenced image. This is the same method as used in191

Barnard et al. [2017], and an example differenced image can be seen in Figure 1. The re-192

sulting image has a differenced image intensity field given by I(ε,ψ). We select a subsec-193

tion of the image corresponding to the radial shell encompassing the plane-of-sky region194

spanning 20-22.5 solar radii, as shown by the red contours in panels A and B of Figure 1.195

Within this shell, we measure the differenced image variability as a function of position196

angle by computing the standard deviation of I(ε,ψ) according to197

γ(ψ) =
©­«
(
∑ψ+δψ
ψ−δψ

∑εr2
εr1 I(ε,ψ) − (

∑ψ+δψ
ψ−δψ

∑εr2
εr1 I(ε,ψ)/N))2

N
ª®¬

1
2

, (1)

in position angle boxes 5◦ wide (δψ = 2.5◦), centred on every degree of ψ from198

60◦ to 120◦, where εr1 and εr2 give the lower and upper elongation limits of the radial199

shell, and N is the number of pixels/samples in the position angle box. Examples of these200

boxes are shown for central position angles of 75◦, 90◦, and 105◦ by the blue, purple, and201

orange contours in panel B of Figure 1.202

In Panel C of Figure 1 kernel density estimation is used to estimate the distribution203

of differenced image pixel brightness in the three position angle boxes marked in panel B.204

Kernel density estimation is a non-parametric method used to estimate a parameters distri-205

bution function from a set of observations of that parameter. Each observation is assigned206

a prescribed distribution function (e.g. a Gaussian) and the normalised sum of these indi-207

vidual distributions is assumed to be a fair representation of a parameters true distribution208

function [Wilks, 1995]. The vertical dotted lines beneath each distribution mark the re-209

gion of ±γ about the mean brightness. Comparing the breadth of each ±γ region with the210
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corresponding kernel density estimate, we conclude that the standard deviation is a reason-211

able measure of variability for these distributions. To facilitate comparison of γ(ψ) across212

multiple frames, we then normalise γ(ψ) in each frame, computing the z-score213

γz(ψ) =
γ(ψ) − 〈γ(ψ)〉

σγ
, (2)

where 〈γ(ψ)〉 and σγ are the mean and standard deviation of γ(ψ) within the radial214

shell in that frame. This is necessary, as the orbital motion of STEREO-A means the fixed215

radius plane of sky shell corresponds to elongation limits with a small annual variation.216

Furthermore, the intensity of HI images falls as approximately ε−3 (see DeForest et al.217

[2016]), such that γ(ψ) tends to lower values when the elongation limits are lager. Com-218

puting γz(ψ) provides a normalised measure of the variability in each HI frame, allowing219

comparison throughout the HI time series.220

This process is completed for every viable differenced image (differenced images221

cannot be computed if either or both frames are missing), returning a time series of differ-222

enced image variability as a function of position angle, γz(ψ, t). We then compute the UT223

daily mean of this time series, Γ(ψ, t), averaging the γz(ψ, t) values at each position an-224

gle for each frame within a UT day. This process is demonstrated in Panel D of Figure 1;225

the black line shows γz(ψ) for the differenced image presented in panel A, while the grey226

lines show γz(ψ) for all other frames obtained on 2009-06-01. The red circles show the227

daily mean value Γ(ψ), with the uncertainty bars showing one standard error of the mean.228

2.2 In-situ solar wind plasma observations240

2.2.1 WIND241

The WIND spacecraft has, since 2004, continuously monitored properties of the in-242

situ solar wind plasma whilst in a halo orbit of the Earth-Sun L1 Lagrange point. The So-243

lar Wind Experiment (SWE) instrument measures solar wind ion and electron properties,244

from which estimates of the solar wind bulk speed, density and temperature have been245

computed [Ogilvie et al., 1995]. Here, we use the 1-hour average solar wind bulk speed,246

density and temperature estimates obtained from https://omniweb.gsfc.nasa.gov/.247

2.2.2 STEREO-A and STEREO-B248

The STEREO spacecraft are also equipped with the Plasma and Supra-Thermal Ion249

Composition (PLASTIC) instrument payload, which measures in-situ solar wind plasma250

properties [Kaiser et al., 2008]. From these measurements, estimates of the solar wind251

bulk speed, density and temperature have been derived, which we use in our following252

analysis. Similar to the WIND data, we use the 1-hour average solar wind bulk speed,253

density and temperature estimates obtained from https://omniweb.gsfc.nasa.gov/, for both254

STA and STB.255

2.3 Data processing256

From the 1-hour average time series, we compute daily means of the the solar wind257

speed, density and temperature for WIND, STA, and STB, for every UT day in the period258

spanning 2008-01-01 to 2012-12-31. This results in 1828 days of samples for each param-259

eter, although we note that there were 2, 4, and 8 days where data availability meant valid260

daily means could not be computed for WIND, STB, and STA, respectively. Throughout261

the remainder of the article we refer to these quantities as Vx , ρx , and Tx , where the sub-262

script x takes the abbreviation of the spacecrafts name.263
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Figure 1. A) A HI1A differenced image from 2009-05-01T19:29. The region enclosed in the blue square
is the image segment shown in the expanded view in panel B, while the red-dashed contours show the elon-
gations corresponding to plane-of-sky distances of 20-22.5 solar radii. B) This expanded view of the HI1A
differenced image shows more clearly the plane-of-sky region of interest, bounded by the red contours. Within
this region, 3 position angle boxes are drawn at ψ of 75◦, 90◦, and 105◦ by the blue, purple, and orange lines,
respectively. C) Kernel density estimates of the I(ε,ψ) values corresponding to the pixels within the three
position angle boxes in panel B. Vertical dashed lines beneath each distribution show the ±γ(ψ) limits around
the mean value, demonstrating that γ(ψ) is a fair measure of the spread of these distributions. D) The black
line shows γz (ψ) for the HI frame in panel B, while the grey lines show γz (ψ) for the other HI frames from
2009-05-01. The red points mark Γ(ψ) for 2009-05-01, while the uncertainty bars show one standard error of
the mean.
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Figure 2. Time series of the Heliocentric Earth Equatorial (HEEQ) coordinates of the WIND, STA and
STB spacecraft. The top, middle and bottom spacecraft show the radial, longitudinal and latitudinal coordi-
nates, respectively.

276

277

278

2.4 STEREO-A, STEREO-B, and WIND orbits264

Sections 2.1 and 2.2.1 described how STA and STB were in orbits drifting relative265

to Earth, and that WIND was in a halo orbit around the L1 Lagrange point. Therefore, the266

relative locations of these three craft are continuously evolving, as described by Figure 2,267

which shows the Heliocentric Earth Equatorial (HEEQ) coordinates of WIND, STA, and268

STB, from 2008-01-01 until 2012-12-31. The top, middle and bottom panels presents the269

HEEQ radius, longitude and latitude respectively. This shows that, for any time over this270

period, STA, STB, and WIND sample increasingly separate locations in the heliosphere.271

Consequently, when attempting to link these in-situ solar wind observations with features272

in the HI remote sensing data, these three craft provide independent data which map to273

different elements in the full HI data set, and so provide additional confidence that the274

statistical relationships we demonstrate below are robust.275

3 Methods279

3.1 Spearman’s rank correlation280

Spearmans’s rank correlation is a correlation coefficient that provides a measure of281

the degree of association between two parameters [Wilks, 1995]. This is a non-parametric282

statistical measure, as the degree of association is assessed on the ranks of the variables,283

rather than the actual values. Formally, for N paired observations of two parameters X284

and Y , Spearman’s rank correlation coefficient rs is computed by first transforming the285

paired samples Xi and Yi into their respective ranks Rxi and Ryi , and then computing286

rs =
∑N

i (Rxi − Rx)(Ryi − Ry)
σRxσRy(N − 1)

(3)

where Rx and σRx , and Ry and σRy , are the means and standard deviations of the287

ranks Rx and Ry. Consequently, rs is a measure of how well the relationship between two288

variables may be modelled by a monotonic relationship. This differs from the more com-289

monly used Pearson’s product-moment correlation coefficient, which is a measure of how290
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well two variables can be modelled with a linear relationship. Furthermore, interpretation291

of Pearson’s correlation is complicated in situations when the paired samples do not form292

a bi-variate normal distribution. The solar wind plasma properties and statistics computed293

from the HI images are not normally distributed, and there is no a-priori reason to assume294

a linear relationship between them, hence using Spearman’s rank correlation in this analy-295

sis.296

Additionally, the statistical significance of rs can be computed, relative to a null-297

hypothesis that there is no correlation between the samples [Wilks, 1995]. Such a pro-298

cess can not confirm that a relationship exists between the variables, but it can quantify299

how unusual it would be to obtain the sample correlation if the true correlation were zero.300

Here we employ a bootstrap resampling procedure to estimate the distribution of rs under301

the null hypothesis that the true correlation is zero. Under such a null hypothesis, the pair-302

ing of the samples is irrelevant, and so computing rs for many random realisations of the303

paired samples provides an empirical estimate of the distribution of rs under the null. By304

comparing the sample rs to the estimated null distribution, we can assess the liklihood of305

obtaining the sample rs due to random sampling of uncorrelated parameters.306

3.2 Autocorrelation functions307

Here we also compute the autocorrelation function (ACF) of solar wind plasma pa-308

rameters and statistics derived from the HI images. An ACF is simply the correlation be-309

tween a parameter and a lagged copy of itself, for a range of different lags. Any measure310

of correlation can be used to compute an ACF, and here we choose to compute the Spear-311

man ACF.312

Similar to computing the statistical significance of rs for a paired sample of two pa-313

rameters, the significance of the ACF at any particular lag may also be estimated. This314

procedure is analogous to the case of a paired sample of two parameters, except that this315

must be applied at each lag.316

4 Results317

4.1 ACFs of V and σhi318

Figure 3 shows the time series and ACFs of V for WIND, STA, and STB, respec-319

tively. These time series show the same broad features at WIND, STA, and STB, despite320

sampling increasingly different regions of the heliosphere throughout this period. For ex-321

ample, with increasing longitudinal separation, these monitors will experience different322

transient structures, and, even in a quiet and steady heliosphere, latitudinal differences323

mean the monitors still observe different solar wind structure. Panels B1:B3 present the324

ACFs of these V data for WIND, STA, and STB (black lines). The red dashed lines show325

the 0.5 and 99.5 percentiles of the null distribution of rs , estimated from the resampling326

procedure detailed in section 3.1. Each ACF has clearly defined maxima at lags of ap-327

proximately 27 and 54 days, corresponding closely with the synodic solar rotation period328

/ Carrington rotation time, as discussed by Owens et al. [2013].The ACF is computed out329

to a lag of 75 days, and for much of this window the ACF values are larger than would be330

expected due to random sampling under the null hypothesis of zero correlation. We sug-331

gest that, between the maxima, the ACF is larger than expected for zero correlation possi-332

bly due to solar cycle scale variations introducing persistance at long timescales. Similar333

results are obtained for ρ, and T . For conciseness these figures are not included here, but334

are available in the supplementary information.335

Figure 4 shows the time series of HI1A relative variability Γψ,t , over the same time340

window as the V data in Figure 3. Panel A1 shows the full series of Γψ,t for all com-341

puted position angles between 70◦ and 105◦. Each vertical slice shows one daily mean,342
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Figure 3. Panels A1:A3 show time series of daily mean solar wind speed estimates from WIND, STA, and
STB respectively, for the period of 2008-01-01 until 2012-12-31. Panels B1:B3 show the ACFs (solid black
lines) of the daily mean solar wind speed values, for WIND, STA, and STB respectively. The dashed red lines
show the 0.5 and 99.5 percentiles of the estimated null distribution of rs .
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with green regions reflecting larger Γψ,t , and pink regions smaller Γψ,t . This shows that,343

broadly speaking, there is more variability near equatorial position angles (around 90◦),344

and less variability at more polar position angles, similar to that shown in Figure 1 panel345

D. There are more clearly defined boundaries between more and less variable regions ear-346

lier in the time series, which becomes more diffuse and complex after approximately day347

750. Nonetheless, the time series in panel A1 is suggestive of periodic structure, which348

is investigated further in panel B1. The ACF of the Γψ,t data was computed for each ψ,349

and these data are presented as a contour of the ACF values as a function of ψ and lag350

in panel B1. The significance of the ACF was computed using the same resampling pro-351

cedure, and areas marked with diagonal hatching in the contour plot are within the 99%352

confidence interval of the null distribution of rs . At all considered ψ, we observe the same353

approximately 27 and 54 day peaks in the ACF, similar to the ACFs of V , corresponding354

to the Carrington rotation time. Panels A2 and B2 present a reduced form of these data,355

showing only the time series of Γψ,t corresponding to the equatorial ψ of 90◦, as marked356

by the dashed blue line in panel A1. Finally, panels A3 and B3 present the time series357

and ACF of Γψ,t data corresponding to the ψ variation of the WIND spacecraft. This was358

computed by using nearest-neighbour interpolation to look-up the Γψ,t values correspond-359

ing to the time-ψ variation of WIND, as a synthetic example of how mapping a spacecraft360

orbit onto the Γψ,t data might differ from the ACFs observed for fixed ψ considered in361

rows 1 and 2. In short, no significant change is observed between the ACFs corresponding362

to the fixed ψ or ψ variation matching WINDs orbit.363

Although we are not certain what changes in HI variability, and its latitudinal370

structure, one possible explanation is the different nature of fast and slow solar wind, and371

the distribution of their source regions as a function of heliographic latitude. In-situ ob-372

servations show that the slow solar wind is typically more dense and more variable than373

fast solar wind, with differing turbulent profiles [Neugebauer and Snyder, 1966; Bruno and374

Carbone, 2013]. We also note that Ko et al. [2018] recently argued that the magnitude375

of solar wind velocity fluctuations are a good discriminator between fast and slow solar376

wind, with slow solar wind typically showing smaller velocity fluctuations, although this377

work did not consider density fluctuations. Furthermore, in-situ and remote observations378

demonstrate that fast solar wind originates from coronal holes, which tend towards more379

polar latitudes, particularly at solar cycle minimum [Zirker, 1977; Schwenn, 2007]. Con-380

versely, at solar cycle maximum, slow solar wind is not confined to equatorial regions,381

and is emitted from a wider range of latitudes. Consequently, we might reasonably expect382

to observe more differenced image variability along lines of sight containing more slow383

solar wind that is denser and more variable, and less differenced image variability alone384

lines of sight with more fast wind, which is less dense and less variable. Furthermore,385

this picture is consistent with the trend shown in Figure 4A1; There is a clearer distinction386

between variabiltiy at high and low latitudes from 2008 - 2010, during the low activity pe-387

riod spanning the solar cycle 23 / 24 transition; As the solar cycle progresses towards the388

maximum of solar cycle 24 (2014), there is less of a clear distinction between regions of389

high and low variability as a function of heliographic latitude. On the basis of this inter-390

pretation, we tentatively suggest there might be a negative correlation between HI variabil-391

ity and solar wind speed.392

4.2 Rolling ACFs of V and σhi393

Of course, simply demonstrating that the ACFs of V for different in-situ monitors394

and also Γψ,t are remarkably similar over the period 2008-01-01 to 2012-12-31 is not, in395

isolation, good evidence that Γψ,t is a potentially useful tracer of solar wind structure. An-396

other test is to examine how these ACFs evolve over the studied period. Here we do this397

by computing the ACFs in a rolling window for Vwnd , Vsta, and Vstb , and for traces ex-398

tracted from Γψ,t that match the ψ variations of WIND, STA, and STB. We use a rolling399

window 365 days wide, which is stepped forward in 14 day increments. These parameters400

were arbitrarily chosen, but the results are not sensitive to modest changes in the window401
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Figure 4. Panel A1: Time series of the Γψ,t data, for all position angles considered. Pink and green regions
show areas of lesser and greater Γψ,t . Panels A2 and A3 present reduced versions of the Γψ,t data, corre-
sponding to a ψ slice of 90◦ and the ψ variation of the WIND spacecraft, as marked by the blue dashed line
and orange dash-dot line in panel A1, respectively. Panel B1: A contour plot of the ACFs computed along
each ψ of the Γψ,t data. Hatched regions highlight areas where the ACFs were within the 99% CI of the null
distribution of rs .
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Figure 5. Each panel shows contours of the rolling window ACFs of the V and Γψ,t data. Each ACF is
computed for a 365 day window, stepped forward in 14 day blocks, and in each panel the x-axis shows the
block start date, and the y-axis shows the ACF lag. Hatching shows regions where sample ACFs are inside
the 99% CI of the null distribution of rs . Panels A1:A3 show the rolling ACFS for Vwnd , Vstb and Vstb , re-
spectively, while panels B1:B3 show the rolling acfs for Γψ,t along the ψ traces of the WIND, STA, and STB
spacecraft.

408

409

410

411

412

413

width or step size (which was chosen to balance resolution with computational expense).402

The resulting ACF data are shown in Figure 5, which presents contours of the ACFs as a403

function of the block start date (x-axis) and lag (y-axis). Panels A0:A2 show the results404

for Vwnd , Vsta, and Vstb , while panels B0:B2 show the results for the ψ traces extracted405

from Γψ,t . Throughout, hatching marks areas where the ACF value falls inside the 99%406

CI limit for the null distribution of rs .407

For each monitor considered, there is clear similarity in the variability of the ACFs414

between V and the Γψ,t slices. Considering the very different nature of the in-situ solar415

wind speed estimates, and the HI differenced image variability data, we regard the simi-416

larity of these rolling ACFs as striking. Our tentative interpretation of this is that Γψ,t is417

serving as a metric for structure in the ambient solar wind, propagating though the TP of418

the HI1A FOV.419

4.3 Correlation of V and Γψ,t420

Given that there appears to be strong correspondence between the ACFs of the in-421

situ solar wind speed estimates and Γψ,t , we now consider directly the correlation between422

Γψ,t and V . However, if slices through Γψ,t are correlated with V , we should expect there423
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Figure 6. Schematic showing the relative locations of WIND, STA, and STB in the equatorial plane of
HEEQ coordinates, for the mid-point times of the calendar years analysed here. Also shown are idealised
Parker spiral streamlines connecting each spacecraft to the outer corona. Both rows show the locations of the
spacecraft in the Sun’s equatorial plane (HEEQ x-y plane), with the bottom row showing an enhanced view
of the inner heliosphere. The purple dashed line shows the Thomson sphere of HI1A, while the black circles
mark the equatorial intersection of the 20-22.5Rs plane of sky shell used to compute Γ(ψ, t).

450

451

452

453

454

455

to be some temporal lag between these measures, as at any given instant they observe424

properties of the solar wind which map to different source regions. Consequently, this lag425

is expected to be a function of the spatial separation of WIND, STA, and STB, recalling426

that these three pairs of craft have increasing longitudinal separation throughout the study427

period (Figure 2).428

Figure 6 highlights this situation, presenting a schematic which shows the relative429

locations of WIND, STA, and STB, in the HEEQ equatorial plane, for the mid point times430

of each calendar year considered here. The top row shows a view of the heliosphere out to431

the orbits of WIND, STA, and STB, giving the locations of these craft with orange, pur-432

ple, and red markers. The black circles mark the 20-22.5 solar radii shell used in the HI433

image analysis, while the solid purple, orange and red lines mark the idealised Parker spi-434

ral streamlines for radial wind of 400 kms−1, serving as an approximate indicator of the435

foot-point of the in-situ monitors. The purple dashed line marks the location of the Thom-436

son sphere for HI1A. The bottom row shows an expanded view of the inner heliosphere,437

highlighting the relative locations of the intersections between the radial shell, approx-438

imate foot-points of the in-situ monitors, and Thomson sphere of HI1A. From this, we439

form the following hypothesis; the lag between the observed V and Γ(ψ, t) values will vary440

in proportion to the separation between the approximate foot-point longitude, and the lon-441

gitude of the intersection between the Thomson sphere and radial shell. Consequently, the442

lag will be approximately constant for STA, due to co-location of HI1 and PLASTIC in-443

struments on STA. Furthermore, as the footpoints of STB and WIND drift closer to and444

past the Thomson sphere intersection over 2008 - 2012, we expect that initially the lag445

will be closer to zero for STB than WIND, until eventually WIND is closer and has lags446

nearer zero. Finally, as STB and WIND drift at approximate 40◦ and 20◦ per year rela-447

tive to STA, we expect the optimal lag for STB to change faster than the optimal lag for448

WIND.449

To investigate this, we split the V series into annual blocks for 2008-2012 (inclu-456

sive), and compute the lagged correlation between the V series and the ψ − t trace ex-457
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Figure 7. Lagged correlation between Γ(ψ, t) and V for WIND, STA and STB. The time series were split
into 1 year blocks, and the lagged correlation was computed within each year, for lags between -27 and +27
days. Successive years are plotted with lighter colors. Correlations outside of the 99% CI of the null distribu-
tion of rs are marked with a full marker, while those within the 99% CI of the null distribution are hollow.

466

467

468

469

tracted from Γ(ψ, t), for lags between ±27 days. Note that because of the annual variation458

in ψ for each craft, the lag is applied to the look-up of the trace from Γ(ψ, t); for V(t,ψ),459

we look-up Γ(ψ, t + l), where l is the lag. This simple approach is similar to one used in460

Riley and Lionello [2011], who used simple lagged correlations to relate modelled solar461

wind speeds at 30 Rs and at 1 AU. Figure 7 presents these lagged correlations for each462

of WIND, STA and STB, where each year is plotted in an increasingly light color. Filled463

circular markers highlight correlations which fall outside of the 99% CI of the null distri-464

bution of rs , assessed through resampling tests.465

For each of WIND, STA and STB, there are well defined peaks in the lagged cor-470

relation. In particular, each craft displays two strong minima in the lagged correlation for471

most years, excepting only the 2012 period in STA and STB. In each year, these double472

minima are separated by approximately 27 days. We note this is consistent our interpreta-473

tion of Figure 4, where we discussed that we might expect there to be a negative correla-474

tion between solar wind speed and HI variability.475

The results of the lagged correlation are broadly consistent with our hypothesis, as476

described below. Consider first the lagged correlation of the STA data. The lags of the477

minima are relatively constant, indicative of the fixed relative locations of the HI1 and478

PLASTIC instruments on STA. We also note the approximately 3 day asymmetry between479

the two groups of the minima in STA (at approximately −12 and +15 days respectively),480

which might be explained by the mean solar wind travel time between the source region481

and STA.482

For both STB and WIND, the lags of the minima become more positive throughout483

2008-2012. Considering the group of minima at more negative lags for each craft, they484

are initially closer to zero for STB, and eventually become closer to zero for WIND. This485

is consistent with the expectations based on the drifting HEEQ longitudes of the approx-486

imate footpoints of STB and WIND relative to the TS of STA and radial shell used to487

compute Γ(ψ, t) .488

Figure 8 quantifies this relationship, plotting the lag of minimum correlation for489

each year, for WIND, STA, and STB. To compute this we selected the group of minima490

at more negative lags for WIND and STB, and the group of minima between lags of ±10491

days for STB. The markers show the lag of minimum correlation in years since 2008 (cen-492
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WIND STA (no outlier) STB
Gradient 1.7 ± 0.2 0.1 ± 0.5 2.5 ± 0.3

Table 1. Gradients (and 2σ errors) of the regression lines shown in Figure 8503

tred in the middle of the year block), while the solid lines show the linear regressions of493

these points, and the dashed lines the 2σ uncertainty on the gradient of the regression494

line. The gradients of these regression lines are given in Table 1. For STA, the outlying495

point in the last year block (Figure 8) was not included in the regression. These demon-496

strate that, as expected, for STA the drift in the lag of the minimum correlation is, within497

errors and excluding an outlier, consistent with zero. Furthermore, the drift in the mini-498

mum lag for STB is more rapid than for WIND, being approximately 1.5 times the WIND499

drift. Naively, we expected the STB drift to be approximately 2 times the WIND drift, and500

don’t currently understand why it is less than this, but within the uncertainties of this anal-501

ysis we consider it broadly consistent with our earlier hypothesis.502

5 Conclusions510

We have demonstrated that, over the period 2008-01-01 to 2012-12-31, variability in511

differenced images from HI1A displays Carrington rotation periodicities, with an ACF re-512

markably similar to that obtained from in-situ estimates of solar wind speed from WIND,513

STA, and STB. Furthermore, considering a sequence of shorter windows in this 5 year pe-514

riod, it was shown that the temporal evolution of the ACF was similar for the in-situ solar515

wind speed estimates and HI differenced image variability.516

It is perhaps not a great surprise that we have demonstrated Carrington rotation pe-517

riodicities in HI1A differenced images. For example, it is well established that the HI in-518

struments can be used to track the “Sheeley blobs” entrained into CIR structures [Rouil-519

lard et al., 2008], and subsequent work has revealed that these are observed to have a520

quasi-periodic release into the HI FOV, with a typical release timescale of approximately521

19hr, across a wide range of heliographic latitudes [Conlon et al., 2015; Sanchez-Diaz522

et al., 2016]. CIR structures recur with approximately 27 day periods, and so it is plausi-523

ble that measure of differenced image variability we use here, aΓ(ψ, t), is acting as a tracer524

for such structures. However, these prior works all relied on manual feature tracking in the525

HI FOV, to extract the t-ε-ψ variation of each blob. We are unaware of any work that has526

demonstrated Carrington rotation periodicities in simple statistics computed from the HI527

images.528

Further to this, we have demonstrated a statistically significant correlation between529

HI1A differenced image variability and in-situ estimates of solar wind speed from WIND,530

STA, and STB. Although it is always wise to be cautious of the results of a correlation531

analysis, we consider this a robust result as similar correlations were found for three in-532

dependent in-situ monitors that have sampled increasingly separate regions of the helio-533

sphere. Finally, there are systematic drifts in the correlation between in-situ solar wind534

speed estimates and HI1A differenced image variability which are well explained by the535

varying relative locations of the WIND, STA, and STB spacecraft.536

If, as suggested here, a simple statistical analysis of HI1A images can provide an es-537

timate of near-Sun solar wind speed structure, it increases the likelihood that heliospheric538

imaging can provide a valuable external constraint to MHD modelling of the heliospheric539

solar wind, through models such as ENLIL, MAS and EUHFORIA etc. In particular, we540

are interested in investigating how HI data may be used within a data assimilation scheme541

for heliospheric modelling, as per Lang et al. [2017] and Lang and Owens [2019]. If it542

were found that HI observations could be used within a data assimilation scheme for he-543
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Figure 8. The lag of the minimum correlation between Γ(ψ, t) and V as a function of the mid-point time
of the yearly blocks considered in Figure 7. The lag of minimum correlation steadily increases for STB and
WIND, while is relatively constant for STA, excepting the outlier in the last year block. The solid lines show
the standard least-squares linear regression of each set of points, while the dashed lines give the 2σ errors on
the gradient, the statistics of which are stated in Table 1. For STA, the outlying point in the last year block was
not included in the regression.
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liospheric modelling, it would provide a good argument for a heliospheric imager to be544

included on any future operational space weather monitoring space craft.545

Having said this, the analysis presented here is clearly exploratory, and it moti-546

vates a more thorough investigation of the relationship between heliospheric imaging and547

in-situ solar wind parameters. In our opinion, there are several avenues of investigation548

that should be prioritised. Firstly, we have used only the standard level 2 science data for549

HI1A. DeForest et al. [2011] presented a method for processing the HI observations which550

increases the signal to noise ratio relative to standard level 2 data, referred to as L2S im-551

ages by DeForest et al. [2016]. These L2S images may better constrain the relationship552

between HI1 variability and in-situ plasma observations. Furthermore, a particular limita-553

tion to our investigation is that we have not explored what scale size features in HI might554

be best related to in-situ observations. We employed a radial shell in the plane of the sky555

from 20-22.5Rs , position angle bins 5◦ wide and 1 day means, which means we are look-556

ing at only one scale of feature. An analysis that considers multiple scale sizes within the557

HI images would be informative in determining what features are best related to the in-situ558

plasma observations.559
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