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Abstract

The Monte Carlo within Metropolis (MCwM) algorithm, interpreted as a perturbed Metropolis—
Hastings (MH) algorithm, provides an approach for approximate sampling when the target distribution is
intractable. Assuming the unperturbed Markov chain is geometrically ergodic, we show explicit estimates
of the difference between the nth step distributions of the perturbed MCwM and the unperturbed MH
chains. These bounds are based on novel perturbation results for Markov chains which are of interest
beyond the MCwM setting. To apply the bounds, we need to control the difference between the transition
probabilities of the two chains and to verify stability of the perturbed chain.

(© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Markov chain Monte Carlo; Restricted approximation; Monte Carlo within Metropolis; Intractable likelihood

1. Introduction

The Metropolis—Hastings (MH) algorithm is a classical method for sampling approximately
from a distribution of interest relying only on point-wise evaluations of an unnormalized
density. However, when even this unnormalized density depends on unknown integrals and
cannot easily be evaluated, then this approach is not feasible. A possible solution is to replace
the required density evaluations in the MH acceptance ratio with suitable approximations. This
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idea is implemented in Monte Carlo within Metropolis (MCwM) algorithms which substitute
the unnormalized density evaluations by Monte Carlo estimates for the intractable integrals.

Yet in general, replacing the exact MH acceptance ratio by an approximation leads to inexact
algorithms in the sense that a stationary distribution of the transition kernel of the resulting
Markov chain (if it exists) is not the distribution of interest. Moreover, convergence to a
distribution is not at all clear. Nonetheless, these approximate, perturbed, or noisy methods,
see e.g. [1,10,12], have recently gained increased attention due to their applicability in certain
intractable sampling problems. In this work we attempt to answer the following questions about
the MCwM algorithm:

e Can one quantify the quality of MCwM algorithms?
e When might the MCwM algorithm fail and what can one do in such situations?

Regarding the first question, by using bounds on the difference of the nth step distributions
of a MH and a MCwM algorithm based Markov chain we give a positive answer. For the
second question, we suggest a modification for stabilizing the MCwM approach by restricting
the Markov chain to a suitably chosen set that contains the “essential part”, which we also call
the “center” of the state space. We provide examples where this restricted version of MCwM
converges towards the distribution of interest while the unrestricted version does not. Note
also that in practical implementations of Markov chain Monte Carlo on a computer, simulated
chains are effectively restricted to compact state spaces due to memory limitations. Our results
on restricted approximations can also be read in this spirit.

Perturbation theory. Our overall approach is based on perturbation theory for Markov chains.
Let (X,)nen, be al Markov chain with transition kernel P and (X Jnen, be a Markov chain with
transition kernel P on a common Polish space (G, B(G)). We think of P and P as “close” to
each other in a suitable sense and consider P as a perturbation of P. In order to quantify the
difference of the distributions of X, and Yn, denoted by p, and p, respectively, we work with

”pn - ﬁn”tv ) (1)

where |||, denotes the total variation distance. The Markov chain (X,,),en, can be interpreted
as the unavailable, unperturbed, or ideal chain; while (X )neN, 18 a perturbation that is available
for simulation. We focus on the case where the ideal Markov chain is geometrically ergodic,
more precisely V-uniformly ergodic, implying that its transition kernel P satisfies a Lyapunov
condition of the form

PV(x)<dV(x)+ L, x € G,

for some function V: G — [1, 0o) and numbers § € [0, 1), L € [1, 0c0).
To obtain estimates of (1) we need two assumptions which can be informally explained as
follows:

1. Closeness of P and P: The difference of P and P is measured by controlling either a
weighted total variation distance or a weighted V-norm of P(x, ) — F(x, -) uniformly.
Here, uniformity either refers to the entire state space or, at least, to the “essential” part
of it.

2. Stability of P: A stability condition on P is satisfied either in the form of a Lyapunov
condition or by restriction to the center of the state space determined by V.
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Under these assumptions, explicit bounds on (1) are provided in Section 3. More precisely,
in Proposition 6 and Theorem 7 stability is guaranteed through a Lyapunov condition for P,
whereas in Theorem 9 a restricted approximation P is considered.

Monte Carlo within Metropolis. In Section 4 we apply our perturbation bounds in the context
of approximate sampling via MCwM. In the following we briefly introduce the setting. The
goal is to (approximately) sample from a target distribution = on G, which is determined by
an unnormalized density function 7, : G — [0, co) w.r.t a reference measure p, that is,

[y m(x) dpx)

Jo () dpu(x)’
Classically the method of choice is to construct a Markov chain (X,),en, based on the MH
algorithm for approximate sampling of . This algorithm crucially relies on knowing (at least)
the ratio m,(y)/m,(x) for arbitrary (x, y) € G2, e.g., because m,(x) and m,(y) can readily be
computed. However, in some scenarios, only approximations of m,(x) and m,(y) are available.
Replacing the true unnormalized density , in the MH algorithm by an approximation yields a
perturbed, “inexact” Markov chain (in)neN0~ If the approximation is based on a Monte Carlo
method, the perturbed chain is called MCwM chain.

Two particular settings where approximations of i, may rely on Monte Carlo estimates are
doubly-intractable distributions and latent variables. Examples of the former occur in Markov
or Gibbs random fields, where the function values m,(x) of the unnormalized density itself are
only known up to a factor Z(x). This means that

7,(x) = p(x)/ Z(x), x€G, (@)

7(A) A € B(G).

where only values of p(x) can easily be computed while the computational problem lies in
evaluating

Z(x) = fyﬁ(x, VIre(dy),

where ) denotes an auxiliary variable space, p: G x V — [0, 00) and r, is a probability
distribution on ). We investigate a MCwM algorithm, which in every transition uses an iid
sequence of random variables (Yi(x))lfif N, With Y l(x) ~ ry, to approximate Z(x) by Z N&x) =
% ZlN: L olx, Yi(x)) (and Z(y) by 2N(y), respectively). The second setting we study arises from
latent variables. Here, m,(x) cannot be evaluated since it takes the form

() = /y Px, y) re(dy), 3)

where r, is a probability distribution on a measurable space ) of latent variables y, and
p: G x )Y — [0,00) is a non-negative density function. In general, no explicit computable
expression of the above integral is at hand and the MCwM idea is to substitute m,(x) in the MH
algorithm by a Monte Carlo estimate based on iid sequences of random variables (Yi()‘))lf,-S N
and (Yi(y))lfiEN with Y fx> ~7re, Y l(y )~ ry. The resulting MCwM algorithm has been studied
before in [3,14]. Let us note here that this MCwM approach should not be confused with the
pseudo-marginal method, see [3]. The pseudo-marginal method constructs a Markov chain on
the extended space G x ) that targets a distribution with 7 as its marginal on G.

Perturbation bounds for MCwM. In both intractability settings, the corresponding MCwM
Markov chains depend on the parameter N € N which denotes the number of samples used
within the Monte Carlo estimates. As a consequence, any bound on (1) is N-dependent, which
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allows us to control the dissimilarity to the ideal MH based Markov chain. In Corollary 16 and
the application of Corollary 17 to the examples considered in Section 4 we provide informative
rates of convergence as N — oo. Note that with those estimates we relax the requirement
of uniform bounds on the approximation error introduced by the estimator for m,, which is
essentially imposed in [1,14]. In contrast to this requirement, we use (if available) the Lyapunov
function as a counterweight for a second as well as inverse second moment and can therefore
handle situations where uniform bounds on the approximation error are not available. If we do
not have access to a Lyapunov function for the MCwM transition kernel we suggest to restrict
it to a subset of the state space, i.e., use restricted approximations. This subset is determined by
V and usually corresponds to a ball with some radius R(N) that increases as the approximation
quality improves, that is, R(N) — oo as N — o0.

Our analysis of the MCwM algorithm is guided by some facts we observe in simple illustra-
tions, in particular, we consider a log-normal example discussed in Section 4.1. In this example,
we encounter a situation where the mean squared error of the Monte Carlo approximation grows
exponentially in the tail of the target distribution. We observe empirically that (unrestricted)
MCwM works well whenever the growth behavior is dominated by the decay of the (Gaussian)
target density in the tail. The application of Corollary 17 to the log-normal example shows that
the restricted approximation converges towards the true target density in the number of samples
N at least like (log N)~' independent of any growth of the error. However, the convergence is

better, at least like lo;ng , if the growth is dominated by the decay of the target density.

2. Preliminaries

Let G be a Polish space, where B(G) denotes its Borel o-algebra. Assume that P is a
transition kernel with stationary distribution 7 on G. For a signed measure ¢ on G and a
measurable function f: G — R we define

gP(A) = /G P(x,A)dg(x), Pf(x):= /G fO) Px,dy), xeG,AcecBG).

For a distribution u on G we use the notation u(f) = fG f(x)du(x). For a measurable
function V: G — [1, 0o) and two probability measures w, v on G define

lw = vlly = sup |u(f) —v()l.
[flsv
For the constant function V = 1 this is the total variation distance, i.e.,
lw = vl = sup |u(f) —v()l.
Ifl=1

The next, well-known theorem defines geometric ergodicity and states a useful equivalent
condition. The proof follows by [23, Proposition 2.1] and [17, Theorem 16.0.1].

Theorem 1. For a ¢-irreducible and aperiodic transition kernel P with stationary distribution
7 defined on G the following statements are equivalent:

o The transition kernel P is geometrically ergodic, that is, there exists a number & € [0, 1)
and a measurable function C: G — [1, 00) such that for w-a.e. x € G we have

|P"x,) =7, <Cxa". neN. 4)
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e There is a m-a.e. finite measurable function V: G — [1, oo] with finite moments with
respect to w and there are constants a € [0, 1) and C € [1, o0) such that

|P"(x,)—7|, =CV(x)a", xeG,neN )
In particular, the function V can be chosen such that a Lyapunov condition of the form
PV(x)<dsV(x)+ L, x €G, (6)
for some & € [0, 1) and L € (0, 00), is satisfied.

Remark 2. We call a transition kernel V-uniformly ergodic if it satisfies (5) and note that this
condition can be rewritten as

1P"(x, ) — mlly
sup ——— 2TV cgn, 7)
e V()

3. Quantitative perturbation bounds

Assume that (X, ),en, is @ Markov chain with transition kernel P and initial distribution
po on G. We define p, := poP", i.e., p, is the distribution of X,. The distribution p, is
approx1mated by using another Markov chain (X, Jnen, With transition kernel P and initial
distribution py. We define p, := poP i.e., p, is the distribution of X,.. The idea throughout
the paper is to interpret (X,).cn, as some ideal, unperturbed chain and (X,,)neNO as an
approximating, perturbed Markov chain.

In the spirit of the doubly-intractable distribution and latent variable case considered in
Section 4 we think of the unperturbed Markov chain as “nice”, where convergence properties
are readily available. Unfortunately since we cannot simulate the “nice” chain we try to
approximate it with a perturbed Markov chain, which is, because of the perturbation, difficult
to analyze directly. With this in mind, we make the following standing assumption on the
unperturbed Markov chain.

Assumption 3. Let V: G — [1,00) be a measurable function and assume that P is
V-uniformly ergodic, that is, (5) holds for some constants C € [1, c0) and « € [0, 1).

We start with an auxiliary estimate of ||p, — p,|l, which is interesting on its own and is
proved in Appendix A.l.

Lemma 4. Let Assumption 3 be satisfied and for a measurable function W: G — [1, 00)
define

P(x.)— P(x. -
g LPE = P,

xeG W(x)
”P(X, ) - P(x’ )”V
Ey,w = Su
xeG W(X)
Then, for any r € (0, 1],
n—1
1pn = Pally < Ca™ llpo = Polly + ey € w €7 Pr(W)a" 71" ®)

i=0
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Remark 5. The quantities &, w and ey w measure the difference between P and P. Note that
we can interpret them as operator norms

sww = | P - F”Bm)ﬁmvv) and ey w =P - F”BWMB(W)’
where
B(W)z{f:G—>RI||f||ooW1=S“PM<OO}' ©)
' xeG W(x)

It is also easily seen that &, w < min{2, ey w} which implies that a small number ey  leads
also to a small number &, w. In (8) an additional parameter r appears which can be used to
tune the estimate. Namely, if one is not able to bound ey w sufficiently well but has a good
estimate of &,y one can optimize over r. On the other hand, if there is a satisfying estimate

of ey, w one can just set r = 1.
In the previous lemma we proved an upper bound of || p, — p,ll, which still contains an

unknown quantity given by

n—1

Z p"i(W)a(nfifl)r

i=0
which measures, in a sense, stability of the perturbed chain through a weighted sum of
expectations of the Lyapunov function W under p;. To control this term, we impose additional
assumptions on the perturbed chain. In the following, we consider two assumptions of this
type, a Lyapunov condition and a bounded support assumption.

3.1. Lyapunov condition

We start with a simple version of our main estimate which illustrates already some key
aspects of the approach via the Lyapunov condition. Here the intuition is as follows: By
Theorem 1 we know that the function V of Assumption 3 can be chosen such that a Lyapunov
condition for P is satisfied. Since we think of P as being close to P, it might be possible to
show also a Lyapunov condition with V of P. If this is the case, the following proposition is
applicable.

Proposition 6. Let Assumption 3 be satisfied. Additionally, let s e [0, 1) and Le (0, 00) be
such that

PV(x)<8V(x)+L, x€eG. (10)
Assume that py = py and define k := max {ﬁo(V), 1—%} , as well as (for simplicity)

St = Ew.v, gy =¢&yy.

Then, for any r € (0, 1],

~ ., Ck
Ipn = Pl < 7" 7 (1
Proof. We use Lemma 4 with W = V. By (10), it follows that
~ 5i ~ i~ L
pi(V) = / P'V(x) po(dx) < 8'po(V)+ (1 — & )ﬂ <k. (12)
G _

The final estimate is obtained by a geometric series and 1 —o” > r(1 —«). O
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Now we state a more general theorem. In particular, in this estimate the dependence on
the initial distribution can be weakened. In the perturbation bound of the previous estimate,
the initial distribution is only forgotten if po(V) < L /- 8). Yet, intuitively, for long-term
stability results po(V) should not matter at all. This intuition is confirmed by the theorem.

Theorem 7. Let Assumption 3 be satisfied. Assume also that W: G — [1, 00) is a measurable
Sfunction which satisfies with § € [0, 1) and L € (0, 00) the Lyapunov condition

PWx) <SWx)+L, xeG. (13)
Define ey, w, ev,w as in Lemma 4 and y = 1—%5 Then, for any r € (0, 1] with
B na(n—l)r’ o = 'g’
ﬂn.r(a’ O[) = o™ — 'gn ~
f o =8 43,
le” — §|
we have

~ noy e —r .r rl 3 14
s = Pully < Ca" 1o — polly + &4y )5 C |:P0(W),3n,r(5, o) + m] . (14

Proof. Here we use Lemma 4 with possibly different W and V. By (13) we have p;(W) <
8 Po(W) + v and by

n—1

D ST =B, )

i=0
we obtain the assertion by a geometric series and 1 —a” > r(1 —a). O

Remark 8. We consider an illustrating example where Theorem 7 leads to a considerably
sharper bound than Proposition 6. This improvement is due to the combination of two novel
properties of the bound of Theorem 7:

1. In the Lyapunov condition (13) the function W can be chosen differently from V.

2. Note that ,B,l,,(g, a) is bounded from above by n - max{g, o}~ Thus ﬂ,,,,(g, )
converges almost exponentially fast to zero in n. This implies that for n sufficiently
large the dependence of py(W) vanishes. Nevertheless, the leading factor n can capture
situations in which the perturbation error is increasing in n for small .

Illustrating example. Let G = {0, 1} and assume py = py = (0, 1). Here state “1” can be
interpreted as “transitional” while state “0” as “essential” part of the state space. Define

P:G 8) and ﬁ:(} (1))
2 2

Thus, the unperturbgd Markov chain (X,),cn, moves from “1” to “0” right away, while
the perturbed one (X,),cn, takes longer. Both transition matrices have the same stationary
distribution 7= = (1, 0). Obviously, || po — Pollv = 0 and for n € N it holds that

Ipn = Pullw = 2P(X,, # X,) =

on—1"
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The unperturbed Markov chain is uniformly ergodic, such that we can choose V =1 and (5)
is satisfied with C = 1 and o = 0. In particular, in this setting &, and ¢y from Proposition 6
coincide, we have &, = 1. Thus, the estimate of Proposition 6 gives

”pn - ﬁn”tv <éey = 1.

This bound is optimal in the sense that it is best possible for n» = 1. But for increasing » it is
getting worse. Notice also that a different choice of V cannot really remedy this situation: The
chains differ most strongly at n = 1 and the bound of Proposition 6 is constant over time. Now
choose the function W(x) = 1 + v - 1{,=1) for some v > 0. The transition matrix P satisfies
the Lyapunov condition

- 1 1
PWx)< =W -,
(x)_2 (x)+2

ie., S=1= % Moreover, we have po(W) = 1+ v and ¢y, = ew.w = 1/(1 4+ v). Thus, in
the bound from Theorem 7 we can set r = 1 and y = 1 such that

~ 1
n— DPnlly = —— + -
1P = Pullr < —— + 35

Since v can be chosen arbitrarily large, it follows that

- 1
lpn — Pullw < S

which is best possible for all n € N.

The previous example can be seen as a toy model of a situation where the transition
probabilities of a perturbed and unperturbed Markov chain are very similar in the “essential”
part of the state space, but differ considerably in the “tail”, seen as the “transitional” part.
When the chains start both at the same point in the “tail”, considerable differences between
distributions can build up along the initial transient and then vanish again. Earlier perturbation
bounds as for example in [18,22,26] take only an initial error and a remaining error into
account. Thus, those are worse for situations where this transient error captured by S, ,
dominates. A very similar term also appears in the very recent error bounds due to [10]. In
any case, the example also illustrates that a function W different from V is advantageous.

3.2. Restricted approximation

In the previous section, we have seen that a Lyapunov condition of the perturbation helps
to control the long-term stability of approximating a V-uniformly ergodic Markov chain. In
this section we assume that the perturbed chain is restricted to a “large” subset of the state
space. In this setting a sufficiently good approximation of the unperturbed Markov chain on
this subset leads to a perturbation estimate.

For the unperturbed Markov chain we assume that transition kernel P is V-uniformly
ergodic. Then, for R > 1 define the “large subset” of the state space as

Br={xe G| V() <R}

If V is chosen as a monotonic transformation of a norm on G, By is simply a ball around 0.
The restriction of P to the set By, given as Pg, is defined as

Pr(x, A) = P(x, AN Bg)+ 14(x)P(x, By), A e B(G), x €G.
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In other words, whenever P would make a transition from x € By to G\ Bg, Pg remains in x.
Otherwise, Py is the same as P. We obtain the following perturbation bound for approximations
whose stability is guaranteed through a restriction to the set Bg.

Theorem 9. Under the V-uniform ergodicity of Assumption 3 let § € [0, 1) and L € [1, 00)
be chosen in such a way that
PV(x)<dV(x)+L, xedgG.

For the perturbed transition kernel P assume that it is restricted to Bg, ie., ﬁ(x, Bg) =1 for
all x € G, and that R - A(R) < (1 — 8)/2 with

Pr(x, ) — P X,
ARy sy 1P = P
x€Bg V(X)
Then, with py = py and

~ L
Kk = max { po(V), 13

we have for R > exp(1) that

33C(L+ 1)k logR
l-a« R

The proof of the result is stated in Appendix A.l. Notice that while the perturbed chain is

restricted to the set Bg, we do not place a similar restriction on the unperturbed chain. The
estimate (15) compares the restricted, perturbed chain to the unrestricted, unperturbed one.

lPn = Pally < 15)

Remark 10. In the special case where ﬁ(x, ) = Pg(x, -) for x € Bg we have A(R) = 0. For
example

P(x, A) = 15, (x) Pr(x, A) + 15¢ (x)8,,(A), A € B(G),

with xo € By satisfies this condition. The resulting perturbed Markov chain is simply a
restriction of the unperturbed Markov chain to Bg and Theorem 9 provides a quantitative bound
on the difference of the distributions.

3.3. Relationship to earlier perturbation bounds

In contrast to the V-uniform ergodicity assumption we impose on the ideal Markov
chain, the results in [1,12,18] only cover perturbations of uniformly ergodic Markov chains.
Nonetheless, perturbation theoretical questions for geometrically ergodic Markov chains have
been studied before, see e.g. [5,7,14,20,24,26,28] and the references therein. A crucial aspect
where those papers differ from each other is how one measures the closeness of the transitions
of the unperturbed and perturbed Markov chains to have applicable estimates, see the
discussion about this in [7,26,28]. Our Proposition 6 and Theorem 7 refine and extend the
results of [26, Theorem 3.2]. In particular, in Theorem 7 we take a restriction to the center
of the state space into account. Let us also mention here that [22,26] contain related results
under Wasserstein ergodicity assumptions. More recently, [1 1] studies approximate chains using
notions of maximal couplings, [20] extends the uniformly ergodic setting from [12] to using
L, norms instead of total variation, and [10] explores bounds on the approximation error of
time averages.
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The usefulness of restricted approximations in the study of Markov chains has been observed
before. For example in [27], in an infinite-dimensional setting, spectral gap properties of a
Markov operator based on a restricted approximation are investigated. Also recently in [30] it is
proposed to consider a subset of the state space termed “large set” in which a certain Lyapunov
condition holds. This is in contrast to a Lyapunov function defined on the entire space, which
might deteriorate as the dimension of the state space or the number of observations increases.
This new Lyapunov condition from [30] is particularly useful for obtaining explicit bounds on
the number of iterations to get close to the stationary distribution in high-dimensional settings.

4. Monte Carlo within Metropolis

In Bayesian statistics it is of interest to sample with respect to a distribution 7 on (G, B(G)).
We assume that w admits a possibly unnormalized density m,: G — [0, co) with respect
to a reference measure pu, for example the counting, Lebesgue or some Gaussian measure.
The Metropolis—Hastings (MH) algorithm is often the method of choice to draw approximate
samples according to 7:

Algorithm 1. For a proposal transition kernel Q a transition from x to y of the MH algorithm
works as follows.

1. Draw U ~ Unif[0, 1] and a proposal Z ~ Q(x, -) independently, call the result # and
z, respectively.
2. Compute the acceptance ratio
r(r.2) = 7(d2)Q(z, dv) _ mu(2) M(dZ)Q(de)’
m(dx)Q(x,dz)  m,(x) u(dx)Q(x, dz)
which is the density of the measure 7 (dz)Q(z, dx) w.r.t. 7(dx)Q(x, dz), see [29].

3. If u < r(x, z), then accept the proposal, and return y := z, otherwise reject the proposal
and return y = x.

(16)

The transition kernel of the MH algorithm with proposal Q, stationary distribution = and
acceptance probability

a(x, z) :=min{l, r(x, 2)}

is given by

M,(x,dz) == a(x, 2)Q(x,dz) + §,(dz) <1 — / a(x, y)Q(x, dy)) . 17
G

For the MH algorithm in the computation of r(x, z) one uses m,(z)/m,(x), which might be
known from having access to function evaluations of the unnormalized density 7. However,
when it is expensive or even impossible to compute function values of r,, then it may not be
feasible to sample from 7 using the MH algorithm. Here are two typical examples of such
scenarios:

e Doubly-intractable distribution: For models such as Markov or Gibbs random fields,
the unnormalized density m,(x) itself is typically only known up to a factor Z(x), that is,

7, (x) = p(x)/ Z(x), xeG (18)
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where functions values of p can be computed, but function values of Z cannot. For
instance, Z might be given in the form

Z(x) = fy Px, y) r(dy),

where ) denotes an auxiliary variable space, p: G x Y — [0, c0) and r, is a probability
distribution on ).
o Latent variables: Here 7, (x) cannot be evaluated, since it takes the form

Ta(x) = /y P0x. y) r(dy) (19)

with a probability distribution r, on a measurable space ) of latent variables y and a
non-negative function p: G x Y — [0, 00).

In the next sections, we study in both of these settings the perturbation error of an
approximating MH algorithm. A fair assumption in both scenarios, which holds for a large
family of target distributions using random-walk type proposals, see, e.g., [9,16,25], is that the
infeasible, unperturbed MH algorithm is V-uniformly ergodic:

Assumption 11. For some function V: G — [1, co) let the transition kernel M, of the MH
algorithm be V-uniformly ergodic, that is,
|Mix,) — x|, < CV(x)a"
with C € [1,00) and « € [0, 1), and additionally, assume that the Lyapunov condition
M,V(x) <8V(x)+ L,
for some § € [0, 1) and L € [1, 00) is satisfied.
We have the following standard proposition (see e.g. [26, Lemma 4.1] or [1,4,10,15,22])
which leads to upper bounds on &, ¢y and A(R) (see Lemma 4 and Theorem 9) for two

MH type algorithms M, and M, with common proposal distribution but different acceptance
probability functions b, c: G x G — [0, 1], respectively.

Proposition 12. Let b,c: G x G — [0,1] and let V: G — [1,00) be such that

SUP, e M"}XC(;C) < T for a constant T > 1. Assume that there are functions n,&: G — [0, c0)

and a set B C G such that, either
[b(x, y) — c(x, )| < 1g(y)(n(x) + n(y)b(x, y)§(x), or
1b(x, y) — c(x, )| = 1) (n(x) + n(y)b(x, y)E(y)
forall x,y € G. Then we have
| Mp(x, -) — Mc(x, )lly
sup
xeB V(x)
and, with the definition of ||-||..w provided in (9), for any B € (0, 1),
| Mp(x, ) — Mc(x, )l
sup
xeB V(x)

The proposition provides a tool for controlling the distance between the transition kernels
of two MH type algorithms with identical proposal and different acceptance probabilities. The

(20)

=A4T n -1l 15 - 18l »

< 4T In-1slloo,ve 15 - 1nllog vi-s -
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specific functional form for the dependence of the upper bound in (20) on x and y is motivated
by the applications below. The set B indicates the “essential” part of G where the difference of
the acceptance probabilities matter. The parameter B is used to shift weight between the two
components & and n of the approximation error. For the proof of the proposition, we refer to
Appendix A.2.

4.1. Doubly-intractable distributions

In the case where m, takes the form (18), we can approximate Z(x) by a Monte Carlo
estimate

N
~ 1 _ .
Iy = > pe, v,
i=1

under the assumption that we have access to an iid sequence of random variables (Yi(X))]§i§ N
where each Yi(x) is distributed accord/ipg to r,. Then, the idea is to substitute the unknown
quantity Z(x) by the approximation Zy(x) within the acceptance ratio. Defining Wy (x) =
Zv&) the acceptance ratio can be written as

Z(x)
QG &) Zye) _ o W)

w(dx)Q(x, dz)  Zy(z) W)’

where the random variables Wy (x), Wy(z) are assumed to be independent from each other.

Notice that the quantities Wy only appear in the theoretical analysis of the algorithm. For the

implementation, it is sufficient to be able to compute 7. This leads to a Monte Carlo within

Metropolis (MCwM) algorithm:

r(x, z, Wy(x), Wy(z2)) :=

Algorithm 2. For a given proposal transition kernel Q, a transition from x to y of the MCwM
algorithm works as follows.

1. Draw U ~ Unif[0, 1] and a proposal Z ~ Q(x, -) independently, call the result # and
z, respectively.

2. Calculate 7(x, z, Wy(x), Wy(z)) based on independent samples for Wy(x), Wy(z),
which are also independent from previous iterations.

3. If u < 7(x, z, Wy(x), Wy(2)), then accept the proposal, and return y := z, otherwise
reject the proposal and return y = x.

Given the current state x € G and a proposed state z € G the overall acceptance probability
is
an(x, z) = E[min {1, 7(x, z, Wy (x), Wx(2)}], 2D

which leads to the corresponding transition kernel of the form M, , see (17).

Remark 13. Let us emphasize that the doubly-intractable case can also be approached algo-
rithmically from various other perspectives. For instance, instead of estimating the normalizing
constant Z(x) one could estimate unbiasedly (Z(x))~' whenever exact simulation from the
Markov or Gibbs random field is possible. In this case, 7, (x) turns into a Monte Carlo estimate
which can formally be analyzed with exactly the same techniques as the latent variable scenario
described below. Yet another algorithmic possibility is explored in the noisy exchange algorithm
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of [1], where ratios of the form Z(x)/Z(y) are approximated by a single Monte Carlo estimate.
Their algorithm is motivated by the exchange algorithm [19] which, perhaps surprisingly, can
avoid the need for evaluating the ratio Z(x)/Z(y) and targets the distribution 7 exactly, see
e.g. [6,21] for an overview of these and related methods. However, in some cases the exchange
algorithm performs poorly, see [1]. Then approximate sampling methods for distributions of the
form (2) might prove useful as long as the introduced bias is not too large. As a final remark
in this direction, the recent work [2] considers a correction of the noisy exchange algorithm
which produces a Markov chain with stationary distribution .

The quality of the MCwM algorithm depends on the error of the approximation of Z(x).
The root mean squared error of this approximation can be quantified by the use of Wy, that
is,

)

JN

E[Wy(x) =11 = x€G, N eN, (22)

where
s(x) = E W (x) — 1|H)?

is determined by the second moment of W;(x). In addition, due to the appearance of the
estimator Wy (z) in the denominator of 7, we need some control of its distribution near zero.
To this end, we define, for z € G and p > 0, the inverse moment function

i@ = (EWy()?)7 .

With this notation we obtain the following estimate, which is proved in Appendix A.2.

Lemma 14. Assume that there exists k € N such that i5 1 (x) and s(x) are finite for all x € G.
Then, for all x,z € G and N > k we have

1
la(x, z) —ay(x, 2)| < alx, 2)—=i2x(2)(s(x) + 5(2)).

VN

Remark 15. One can replace the boundedness of the second inverse moment i; ;(x) for any
x € G by boundedness of a lower moment i, ,,(x) for p € (0, 2) with suitably adjusted m € N,
see Lemma 23 in the Appendix A.2.

4.1.1. Inheritance of the Lyapunov condition

If the second and inverse second moment are uniformly bounded, ||s|o, < oo as well as
||i2, N”oo < 00, one can show that the Lyapunov condition of the MH transition kernel is
inherited by the MCwM algorithm. In the following corollary, we prove this inheritance and
state the resulting error bound for MCwM.

Corollary 16.  For a distribution mg on G let m, = moM} and m, y = moMy, be the
respective distributions of the MH and MCwM algorithms after n steps. Let Assumption 11 be
satisfied and for some k € N let

D = 8L [liz ], Islloe < 00

Further, define 8y =8 + D/~/N and B, = nmax{8y, a}"~'. Then, for any

D2
N > max {k, ————
{ (1—5)2}
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we have 6y € [0, 1) and

i)
(I=8n1—a)]

M,V (x)
V(x)

DC
[t = ], = [mowmn +

tv — \/N
Proof. Assumption 11 implies sup,.q
B = G, we obtain
g IMa(x ) = May Iy D
nY e V(o) = UN
Further, note that

< 2L. By Lemma 14 and Proposition 12, with

D
Moy V(x) = M,V (x) < | Ma(x, ) = Moy (x, 9|, < J_NV(X)’
which implies, by Assumption 11, that for N > D2/(1 — 8)* we have 8y € [0,1) and
M, V(x) < éyV(x)+ L. By Theorem 7 and Remark 8 we obtain for r = 1 the assertion. [J

Observe that the estimate is bounded in n € N so that the difference of the distributions
converges uniformly in n to zero for N — oo. The constant § decreases for increasing N, so
that larger values of N improve the bound.

Log-normal example I. Let G = R and the target measure m be the standard normal
distribution. We choose a Gaussian proposal kernel Q(x,-) = N (x, y?) for some y? > 0,
where A (it, o'2) denotes the normal distribution with mean y and variance 2. It is well known,
see [9, Theorem 4.1, Theorem 4.3 and Theorem 4.6], that the MH transition kernel satisfies
Assumption 11 for some numbers «, C, § and L with V(x) = exp(x2/4).

Let g(y; i, 0?) be the density of the log-normal distribution with parameters u and o,
i.e., g is the density of exp(u + o S) for a random variable S ~ N(0, 1). Then, by the fact
that fooo yg(y; —o(x)?/2, 0(x)*)dy = 1 for all functions o: G — (0, 00), we can write the
(unnormalized) standard normal density as

exp(—x2/2)

Jo v &y —o(@?/2,0(x))dy’
Hence 7, takes the form (18) with ) = [0, 00), p(x) = exp(—x2/2), p(x,y) =y and r, being
a log-normal distribution with parameters —o (x)?>/2 and o (x)?. Independent draws from this
log-normal distribution are used in the MCwM algorithm to approximate the integral. We have
E[W;(x)?] = exp(p(p — D)o (x)?/2) for all x, p € R and, accordingly,

s(x) = (exp(0(x)*) = D2 < exp(o (x)*/2)

ip1(x) = exp((p + Do (x)*/2).

By Lemma 23 we conclude that

. . B A
i2,k(x) < iz/k,1(x) = exp <<§ + E) o (x) ) .

Hence, ||s]4 as well as ||i2,k ||OO are bounded if for some constant ¢ > 0 we have o(x)? < ¢
for all x € G. In that case Corollary 16 is applicable and provides estimates for the difference
between the distributions of the MH and MCwM algorithms after n-steps. However, one might
ask what happens if the function o (x)? is not uniformly bounded, taking, for example, the
form o(x)?> = |x|? for some ¢ > 0. In Fig. 1 we illustrate the difference of the distribution

m,(x) = exp(—x?/2) =
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Fig. 1. Here o(x)? := |x|'® for x € R. The target density (standard normal) is plotted in gray, a kernel density
estimator based on 10° steps of the MCwM algorithm with N = 10 (left), N = 10? (middle) and N = 10’ (right)
is plotted in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

0 0 o
00 80 60 40 20 ©0 20 40 60 80 100 00 80 60 40 20 O 20 40 60 80 100 100 80 60 40 20 ©0 20 40 60 8 100

Fig. 2. Here o(x)? := |x|?>? for x € R. The target density (standard normal) is plotted in gray, a kernel density
estimator based on 10° steps of the MCwM algorithm with N = 10 (left), N = 10? (middle) and N = 10° (right)
is plotted in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

of the target measure to a kernel density estimator based on a MCwM algorithm sample for
ox)? = |x|l‘8. Even though s(x) and i, (x) grow super-exponentially in |x|, the MCwM
still works reasonably well in this case. However, in Fig. 2 we consider the case where
ox)?* = |x|2'2 and the behavior changes dramatically. Here the MCwM algorithm does not
seem to work at all. This motivates a modification of the MCwM algorithm in terms of
restricting the state space to the “essential part” determined by the Lyapunov condition.

4.1.2. Restricted MCwM approximation

With the notation and definition from the previous section we consider the case where the
functions i 4(x) and s(x) are not uniformly bounded. Under Assumption 11 there are two
simultaneously used tools which help to control the difference of a transition of MH and
MCwM:

1. The Lyapunov condition leads to a weight function and eventually to a weighted norm,
see Proposition 12.

2. By restricting the MCwM to the “essential part” of the state space we prevent that
the approximating Markov chain deteriorates. Namely, for some R > 1 we restrict the
MCwM to Bp, see Section 3.2.

For x, z € G the acceptance ratio 7 used in Algorithm 2 is now modified to
15,(2) - 7(x, z, Wy(x), Wy (2))
which leads to the restricted MCwM algorithm:
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Algorithm 3. For given R > 1 and a proposal transition kernel Q a transition from x to y
of the restricted MCwM algorithm works as follows.

1. Draw U ~ Unif[0, 1] and a proposal Z ~ Q(x, -) independently, call the result u and
z, respectively.

2. Calculate 7(x, z, Wy(x), Wy(z)) based on independent samples for Wy(x), Wy (z),
which are also independent from previous iterations.

3.If u < 1p,(2) - F(x, z, Wy(x), Wy(z)), then accept the proposal, and return y = z,
otherwise reject the proposal and return y := x.

Given the current state x € G and a proposed state z € G the overall acceptance probability
is
ay(x,2) = E [min {1, 15,(2) - Fx, 2. Wy(x), Wy (2)}] = 15,(2) - an(x, 2),

which leads to the corresponding transition kernel of the form M (x), see (17). By using
Theorem 9 and Proposition 12 we obtain the following estimate. N

Corollary 17. Let Assumption 11 be satisfied, i.e., M, is V -uniformly ergodic and the function
V as well as the constants «, C, § and L are determined. For 8 € (0, 1) and R > 1 let

Br ={x € G| V(x) <R},

DR =12 -L “iZ,k . lBR Hoo,VI*ﬂ ”S . lBR “oo,VlS < OQ.

Let mq be a distribution on Bg and k := max{my(V), L/(1 — 8)}. Then, for

R-Dg\>
N > max k’4<1—8) (23)

and R > exp(1) we have
- 33C(L + 1)k logR

R
e =i

v 11—« R ’
where mflR,)v = moM"y and m, = moM; are the distributions of the MH and restricted
’ a

MCwM algorithm aftean-steps.

Proof. We apply Theorem 9 with P(x, -) = M,(x, -) and
P(x,) = 15,00 Mo (x. ) + 15, ()35, (). - x € G,

for some x¢ € Bgr. Note that ﬁ(x, Bg) = 1 for any x € G. Further P and Ma(R) coincide on
N

Bpg, thus we also have pn = M" ) on Bg for n € N. Observe also that the restriction of P to
an

Bg, denoted by Pg, satisfies Pg = M, with a'®(x, z) := 15,(z) a(x, z). Hence

P
AR) = sup v

Moreover, we have by Lemma 14 that

a®r,2) = a5, 2)| =1 latx, 2) — ay(x, 2)



2216  F. Medina-Aguayo, D. Rudolf and N. Schweizer / Stochastic Processes and their Applications 130 (2020) 2200-2227

<15,(2) - alx, z)ﬁ b (D) + $(2)
ﬁ b4 (D)) + 5(2)).

=a®(x, z)

With Proposition 12 and
My V(x) _ “ M,V(x) 41

< < 3L,
xeG V()C) xeG V()C) Assumption 11
we have that A(R) < Dg/+/N. Then, by N > 4(RDg/(1 — §8))* we obtain
1-3
R-A(R) < —

such that all conditions of Theorem 9 are verified and the stated estimate follows. [

Remark 18. The estimate depends crucially on the sample size N as well as on the parameter
R. If the influence of R in Dy is explicitly known, then one can choose R depending on N in
such away that the conditions of the corollary are satisfied and one eventually obtains an upper
bound on the total variation distance of the difference between the distributions depending
only on N and not on R anymore. For example, if we additionally assume that the function
g:(0,00) — (0, 00) given by g(R) = R - Dg is invertible, then for N > k and the choice
R:=g! ((1 — 8)\/ﬁ/2> we have

_3BCAL+ log (g“ ((1 - S)W/z))
= l—«o g ((] B 8)W/2> .

tv
Thus, depending on whether and how fast g’1 ((1 — 8)\/N / 2) — oo for N — oo determines

the convergence of the upper bound of Hmn — mflR,{, H to zero.
’ tv

_®
my mn,N

Log-normal example II. We continue with the log-normal example. In this setting we have

Br = {x e R| |x| <2/log R},

1 1 , 1-8,
sup  exp ((— + %> o(x)" — Tx ) ,
|x|<2./log R 2

sup exp (o(x)*/2 — Bx*/4).

[x|<24/log R

Thus, Dy is uniformly bounded in R for o(x)> o |x|? with ¢ < 2 and not uniformly bounded
for ¢ > 2. As in the numerical experiments in Figs. 1 and 2 let us consider the cases
o(x)? = |x|'"® and o(x)? = |x|*2. In Fig. 3 we compare the normal target density with
a kernel density estimator based on the restricted MCwM on Bz = [—10, 10] and observe
essentially the same reasonable behavior as in Fig. 1. In Fig. 4 we consider the same scenario
and observe that the restriction indeed stabilizes. In contrast to Fig. 2, convergence to the true
target distribution is visible but, in line with the theory, slower than for o (x)> = lx|'8.

Now we apply Corollary 17 in both cases and note that by similar arguments as below one
can also treat o(x)? oc |x|? with, respectively, ¢ < 2 or ¢ > 2.

IA

”ilk “1gy ”oo,VFﬂ

IA

s Lol ve
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Fig. 3. Here o(x)? := |x|'8 for x € R and Bg = [—10, 10]. The target density (standard normal) is plotted in gray,
a kernel density estimator based on 10° steps of the MCwM algorithm with N = 10 (left), N = 10? (middle) and
N = 10? (right) is plotted in blue.

Fig. 4. Here o(x)? = |x|?2 for x € R and Bg = [—10, 10]. The target density (standard normal) is plotted in gray,
a kernel density estimator based on 10° steps of the MCwM algorithm with N = 10 (left), N = 102 (middle) and
N = 10? (right) is plotted in blue.

1. Case o(x)? = |x|"®. Fork = 100 and B = 1/2 one can easily see that ||i2,100 -1p, ||oo Vi
and |s - 15, Hoo 1,2 is bounded by 6000, independent of R. Hence there is a constant D > 1
so that D < D. With this knowledge we choose R = %\/ﬁ such that for N >

max {100, %} condition (23) and R > exp(l) is satisfied. Then, Corollary 17 gives

the existence of a constant C > 0, so that

R
[ =y

~ log N
<C
tv \/N

for any initial distribution mo on Bg.
2. Case o(x)? = |x|*2. For k = 100 and 8 = 1/2 we obtain

IA

exp (2.5 (log R)“/IO) ,
exp (2.5 log B)''/1%)..

2,100 - Lo [ o 2

IA

(ERR VY NP

Hence Dy < 12L exp (5 (log R)“/lo) . Eventually, for

242 2'611/10 L2
N > max {100, exp( ) }

(1-26)
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SNG—s)\ 1171 ) )
we have with R = exp [log (T)] that R > exp(1) and (23) is satisfied. Then,

with 51 = w, 52 =,/ ;4L and Corollary 17 we have

~ ~ 10/11 -
Ci - gz [log (C2N)] __ Gkt
10k/11°

(R)
Hm” — My N =

Yo exp (W [log (52N)]10/“> " [log (C2N)]

for any initial distribution mo on Bg and all k € N. Here the last inequality follows by the fact
that exp(x) > % for any x > 0 and k € N.

To summarize, by suitably choosing N and R (possibly depending on N) sufficiently large
the difference between the distributions of the restricted MCwM and the MH algorithms after
n-steps can be made arbitrarily small.

4.2. Latent variables

In this section we consider m,, of the form (19). Here, as for doubly intractable distributions,
the idea is to substitute m,(x) in the acceptance probability of the MH algorithm by a Monte
Carlo estimate

N
~ LI S
on(x) = v iz_l p(x, Y™

where we assume that we have access to an iid sequence of random variables (Yi(x))lsiS ~ Where
each Yl.(x) has distribution r,. Define a function Wy : G — R by Wy(x) := py(x)/m,(x) and
note that E[Wx(x)] = 1. Then, the acceptance probability given Wy (x), Wy(z) modifies to

cwo=effins B2
N

where Wy (x), Wy(z) are assumed to be independent random variables. Note that all the objects
which depend on ay, such as M,,,, al N , )M (R), that appear in this section are defined just as in
Section 4.1. The only difference is that the order of the variables Wy (x) and Wy(z) in the ratio
7 at (21) has been reversed. Thus, this leads to a MCwM algorithm as stated in Algorithm 2,
where the transition kernel is given by M, .

Also as in Section 4.1 we define s(x) := (B |W;(x) — 112)""* and i, y(x) = EWy(x)"")1/P
for all x € G and p > 0. With those quantities we obtain the following estimate of the
difference of the acceptance probabilities of M, and M,, proved in Appendix A.2.

Lemma 19. Assume that there exists k € N such that i5 1 (x) and s(x) are finite for all x € G.
Then, for all x,z € G and N > k we have

la(x, z) —an(x, 2)| < a(x, 2) ﬁ i2k(X)(s(x) + 5(2)). (24)

If |Isllo and [ iz, are finite for some k € N, then the same statement as formulated
in Corollary 16 holds. The proof works exactly as stated there. Examples which satisfy this
condition are for instance presented in [15]. However, there are cases where the functions s
and i, are unbounded. In this setting, as in Section 4.1.2, we consider the restricted MCwM
algorithm with transition kernel Ma%‘" Here again the same statement and proof as formulated
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in Corollary 17 hold. We next provide an application of this corollary in the latent variable
setting.

Normal-normal model. Let G = R and the function ¢, ;2> be the density of N(u, 0%). For
some z € R and (precision) parameters yz, yy > 0 define

T (x) = /prz,yz—l(y) o1 (6 = ¥)dy,

that is, YV = R, p(x,y) = ¢, yq(y) and r, = N(x, yY_l). By the convolution of two normals
“Vz
the target distribution 7 satisfies

T =g, 1), with yzy =y (25)

Note that, for real-valued random variables Y, Z the probability measure 7 is the posterior
distribution given an observation Z = z within the model

ZIY =y ~N(.v;'). Yix ~N(x, %),

with the improper Lebesgue prior imposed on x.
Pretending that we do not know 7,(x) we compute

N
1
o~ _ (x)
PN =D e (),
i=1

where (Yi(x))lf,-f ~ 1s a sequence of iid random variables with Y l(x) ~ N, vy 1. Hence

Wa() = — i 0y 01 <£>1/Z i o0 (/72 = 1)
! ‘pz,yzjly(x) N \vzy = 901(JVzy(z = X)) ’

N
By using a random variable & ~ A/(0, 1) we have for p > —yy/yz that

p/2
E[Wi)"] = (y—z) E [exp (gm @-x? -2 % P —x) - s>2)]

Yz.y
X exp (w (z— x)2> . (26)
2(yy + pv2)

Here o« means equal up to a constant independent of x. As a consequence, ||s|o, = oo and
therefore Corollary 16 (which is also true in the latent variable setting) cannot be applied.
Nevertheless, we can obtain bounds for the restricted MCwM in this example using the
statement of Corollary 17 by controlling s and i, ; using a Lyapunov function V. The following
result, proved in Appendix A.2, verifies the necessary moment conditions under some additional
restrictions on the model parameters.

i=1

Proposition 20. Assume that yy > ~/2yz, the unnormalized density m, is given as in (25) and
let the proposal transition kernel Q be a Gaussian random walk, that is, Q(x,-) = N (x, o?)
for some o > 0. Then, there is a Lyapunov function V: G — [1, o0) for M,, such that M, is
V -uniformly ergodic, i.e., Assumption 11 is satisfied, and there are B € (0, 1) as well as k € N
such that

lizil o yr-s <00 and  lIsllgys < 00
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The previous proposition implies that there is a constant D < oo, such that Dg from
Corollary 17 is bounded by D independent of R. Hence there are numbers C, C; > 0 such
that with R = C;+/N and for N sufficiently large we have
~ logN
C, =
tv JN

for any initial distribution m( on Bg.

R
[ =

A
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Appendix. Technical proofs

A.l. Proofs of Section 3

Before we come to the proofs of Section 3 let us recall a relation between geometric
ergodicity and an ergodicity coefficient. Let V: G — [1, oo] be a measurable, r-a.e. finite
function, then, define the ergodicity coefficient ty(P) as

W)= S T ST V)

The next lemma provides a relation between the ergodicity coefficient and V-uniform ergod-
icity.

Lemma 21. [f (7) is satisfied, then ty(P") < Ca".

A proof of this fact is implicitly contained in [13] and can also be found in [26, Lemma 3.2].
Both references crucially use an observation of Hairer and Mattingly [8].

To summarize, if the transition kernel P is geometrically ergodic, then, by Theorem 1 there
exist a function V: G — [l,00), @ € [0,1) and C € (0, 00) such that, by Lemma 21,
Ty (P") < Ca". The next proposition states two further useful properties (submultiplicativity
and contractivity) of the ergodicity coefficient. For a proof of the corresponding inequalities
see for example [13, Proposition 2.1].

Proposition 22. Assume P, Q are transition kernels and (i, v are probability measures on
G. Then

(P Q) < wv(P) v(Q), (submultiplicativity)
(e —v)Plly < tv(P) Il —vly . (contractivity)
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Now we prove Lemma 4.

Proof of Lemma 4. As in the proof of [18, Theorem 3.1] we use
n—1
P — o= (Po— pOP" + ) pi(P — P)P"" ",
i=0
which can be shown by induction over n € N. Then

n—1
10 = Palle < [(Bo = pO)P" |, + D | Bi(P — PYP"=71| .. (A1)
i=0

With Proposition 22 and Lemma 21 we estimate the first term of the previous inequality by
(o — po)P" |, < [(Po — Po)P"|, < Tv(P") B0 — polly < Ca" 1o — polly -

For the terms which appear in the sum of (A.1) we can use two types of estimates. Note that
71(P) < 1 (here the subscript indicates that V = 1) which leads by Proposition 22 to

|pi(P = PyP =Y < | Bi(P = P, 1P < | (P = P,

/G fx) Pi(P — P)(dx) /G (P — P)f(x) pi(dx)

= sup
If1=1

= /G | PCx, ) = PG, )|, Pidx) < w Bi(W).

On the other hand
5P = PP < B = PP < B = P m )
< Ca P = P, < car ™ [ P = P, A

< Ca" ey Pi(W).

= sup
Ifl=1

Thus, for any r € (0, 1] we obtain
|FiP = Pyt | < [P = PYP | [P = Py
< e vy €7 Bi(W) a7
which gives by (A.1) the final estimate. [
Next we prove Theorem 9.
Proof Theorem 9. Locally for x € Bg we have PRV(x) < PV(x) < éV(x) + L, and,
eventually,
PV(x) < PRV(x) + |PV(x) — PRV (x)|
<8V()+ R |P(x,") = Pr(x, )|, + L
<@+ R -AR))V(x)+ L. (A2)

We write By for G \ Bg and obtain for x € By that

PV(x)= / V() P(x,dy) < V(x). (A3)
Br
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Denoie § =6 +R- A(R) < 1/2+4+68/2 < 1. For i > 2 we obtain by (A.2), (A.3) and
(1 =8 <2(1 — 8" that

- ~ ~_ L
pi(V) <4 / V(x)podx) + (1 = 8")—=
Br 1-6

~ ~ ~ L
+5'—‘/ PV (x)po(dx) + (1 —5’—‘)1—5
B, -

~

i—1 _%i-1 3L
<3 po(V)+ (-4 )—1 35616-

Furthermore, po(V) < « and pj(V) < 2«. Now it is easily seen that

n—1

6K
(n—i—1)r
Z;p,w)a <
For &, v we have
P(x,) = P(x,- P(x,) — P(x, -
Sw,y < max { sup [ Pex. ) &, )”w’ sup | PCx, ) .9, .
xebr V) xe V()

The second term in the maximum is bounded by 2/R. For x € By we have

| PG, )= P(x, )|, < I1PGx, ) = Prlx, )l + || Pr(x, ) = P(x, )|,
<2P(x, Bp) + || Pr(x,-) — P(x, )|,
so that the first term in the maximum satisfies
P(x,) = P(x,) x, By
xeBp Vi(x) xeBR V( )
Consider a random variable X7 with distribution P(x, -), x € Bg. Applying Markov’s inequality
to the random variable V(X7) leads to

PV(x) =E[V(X)] > R-P(V(X}) > R) = R - P(x, BS),

and thus

P(x, BS) PV(x) §+ L
sup ——R2 < su <
x€BR V(-x) x€Bg R- V(-x) R

Finally, R - A(R) < 1 — 48 and L > 1 imply &,y < @.
We obtain ey y < 2(L + 1) by the use of

| PG, )= Px, )|, < PV(x)+ PV(x),

the fact that sup,..; PVV()(();) <é+ L and

sup

su
e V@) ;

, sup
xeBg V) yepy VX)

< max{g—l—L,l}gL—i—l.
(A.2), (A.3)

Then, by Lemma 4 for r € (0, 1],
12C" (L + )« - 12C(L + 1k
r-R="(1—a) “r-R—7"(1 —a)

PV(x) B max{ PV(x) PV(x)

”pn - ﬁn”tv <
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By minimizing over » we obtain for R > exp(1) that
12C(L + )k  RY1°:® 1og(R)
-« R
Finally by the fact that R'/1°2R = exp(1) < 33/12 the assertion follows. [J

”pn - ﬁn”tv S

A.2. Proofs of Section 4

We start with the proof of Proposition 12.

Proof of Proposition 12. For any f: G — R we have
My f(x) — Mc f(x) =/ FO(b(x, y) = c(x, y)Q(x, dy)
G

+ f(X)/G(C(x, y) = b(x, y)Q(x, dy).

In the first case of (20), we have for all x € B that
Mp(x, ) = Mc(x, )y < 2/ |b(x, y) — c(x, y)| Q(x, dy)
G

< Q/Bb(x, MEX)M(x) +n(y)Q(x, dy) = 28(x)(n(x) + My(n - 15)(x))

< 26)((x) + Mp VP ) I - gl vs)

< AT ||E 13l y1-8 1 - 1Bl ve V(X),
where we used that sup, .; “52 < T implies sup,
Moreover, for any x € B we obtain

MV (x)P
V(x)B

< T# by Jensen’s inequality.

Mp(x, ) — M(x, Hlly < |?|upv ‘/ SO)b(x,y) —clx, y)QO(x,dy)
fl= G

+ f () ( | et = b o, dy)) |
< [ VO lbtr. ) = s, QG ) + V@) [ 1o ) et ] Qx,dy)
< [ VO DED0W + 1) QG )
B

+ V(X)/ b(x, y)E(x)(n(x) + n(y)) Q(x, dy)
B
= 2|n-1glle II§ - 1plloe (MpV(x) + V(x)),

which implies the assertion in that case. In the second case of (20), we have similarly for any
X € B that

[Mp(x, ) = Mc(x, Iy < 2n(x)Mp(§ - 1) +2M(§ - 0 - 15)

< 200 1§ - 1plloo,v1-s Mp(V' ")) + 2116 -0 - 1glloo,y MV (x)

< 4T [In - 1glloo,vs 1§ - 1l y1-5 V(x)
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and

[Mp(x, ) = Mc(x, )lly < /B V(nb(x, y)E(y)n(x) +n(y))Q(x, dy)

700 [ bl EGI) + 1) 00, )
<2018 -1l 17 - 1plloo (MpV (x) + V(x)),
which finishes the proof. [

Before we come to further proofs of Section 4 we provide some properties of inverse
moments of averages of non-negative real-valued iid random variables (S;);cn. In this setting,
the pth inverse moment, for p > 0, is defined by

1 r N4
Jpr = (E (;;&) ) :

Lemma 23. Assume that j,, < oo for some r € N and p > 0. Then

(i) jps < jpr fors € Nwiths >r;
(ii) jq,r < jp,r for 0 < q < p;
(1ii) j.pkr < jp,r for any k € N.

Proof. Properties (i) and (ii) follow as in [14, Lemma 3.5]. For proving (iii) we have to show
that
k

(5s) =2 [(i2s) T

To this end, observe first that we can write

where the “batch-means” Vi, ..., V} are non-negative, real-valued iid random variables which

have the same distribution as } Z;zl S;. With Z; = Vi_l we obtain

k k
() |-#lss)
1Nk @ = TNk 1
ﬁZf‘c:lSi %Zi:lz%—

which is a moment of the harmonic mean of Zj, ..., Z;. Using the inequality between
geometric and harmonic means as well as the independence we find that

pk k pk
1 r| _ p1k 1
) =)o —l(s) |

The previous lemma shows that when inverse moments of some positive order are finite, then
so are inverse moments of all higher and lower orders if the sample size is adjusted accordingly.
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Proof of Lemma 14. It is easily seen that
Wi (x)
Wy (z)

for any x, z € G. By virtue of Jensen’s inequality and E[Wy(z)] = 1 we have E[Wy(z)~'] > 1
as well as

a(x, 2)E |:min{1, ” <an(x,2)

ay(x,z) < min{l, rix,z)-E I:VVZIJ\;?ZC))“ <a(x,z)

where we also used the independence of Wy (x) and Wy (z) in the last inequality. (The previous
arguments are similar to those in [14, Lemma 3.3 and the proof of Lemma 3.2].) Note that
ir n(x) < izx(x) for N > k by Lemma 23. Hence, one can conclude that

E [max {0, 1— ‘VVVx(()zC))” a(x,z) > an(x, z)

la(x, z) —ayn(x, 2)| < a(x,z)

E [‘J’V%(é)) _ 1] a(x,z) <an(x,z)

Wy (x)
Wy (z)

< atx, i@ [ E W0 = 11)"7 + (W) —11)]

)1/2

<a(x,E ’1 - <a(x,2)irn(@) (EIWy(x) — Wy@)I?

i2,%(2)

VN

Proof of Lemma 19. As in the previous proof or from [14, Lemma 3.3 and the proof of
Lemma 3.2] an immediate consequence is

Wy (2) WN(Z):I
Wi (x) Wy(x) ]

Note that ip y < ipx for N > k, see Lemma 23. The rest of the lemma follows as in the

previous proof, only the ratio Wy (x)/ Wy(z) is reversed. [

<a(x,z) (s(x)+s(z)). O

a(x, 2)E |:min{1, ” <ay(x,z2) Ea(x,z)]E|:

Proof of Proposition 20. For random-walk-based Metropolis chains (in particular for Q as
assumed in the statement) by [9, Theorem 4.1 and the first sentence after the proof of the
theorem, as well as, Theorem 4.3, Theorem 4.6] we have that M, is V;-uniformly ergodic with

V() o, () ocexp (1 F2E 2 = ).

for any ¢ € (0, 1). Hence, Assumption 11 is satisfied and we need to find ¢ € (0, 1) as well
as B € (0, 1) such that ”i2~’<”oo yl-p < 00 and ||s||o<> yp < 00 for some k € N. For showing
B Nt
||s||Oo vf < 00 we use (20) to see that
Vi

~ Yz Yz.y )
s(x) <Cex ((—)—(z—x)),
P22/ 2

for some C < oo. Hence

s(x) ~ Yz _ Yzy 2)
v,<x>ﬂfcexp((yy+2yz tﬁ) 2 C)
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and choosing g € (0, 1) such that

Yz
tp=—— (A4)
Yy +2yz
leads to ||s|| oo, vF < 00. In order to show H’”” y)= < 00, we first use Lemma 23(iii) and

obtain for any x € G and any k € N
. 241 _2 %
24() = EIW(0 21} < E[wi@ E]"
Then, for k > 2y, /yy by (26) we have

Yz (1 + %) VZ,y
Yy — %)/z 2

E[Wl(x)_%]% x (z —x)>

Therefore, there is a constant C < oo such that

izgk(x) < 66Xp Yz (1 + %) _ t(

Yz.y 2
— 5 = 1=-p)) = —x)
Vi()!=# Yy — 37

2

z
We have ||i2 k|| 1-p < o0 if M < t(1 — B). The latter condition holds whenever
oo,V YY—gvz

S22 (41 = B)

yri(l —pB)— vz
provided that #(1 — 8) > yz/yy. This implies, by (A.4), that ¢ should be chosen such that
Yz Yz
>4 ) (A.5)
v Yr +2yz

Choosing ¢ such that it satisfies (A.5) is feasible whenever the right-hand side of (A.5) is
smaller than 1. This is the case if yy > v2y;. O
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