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Should Investors Include Bitcoin in Their Portfolios? A 

Portfolio Theory Approach 
 

 

 

Abstract 

 

 

Many papers in recent years have examined the benefits of adding alternative assets to traditional 

portfolios containing stocks and bonds. Bitcoin has emerged as a new alternative investment for 

investors which has attracted much attention from the media and investors alike. However 

relatively little is known about the investment benefits of Bitcoin and therefore this paper examines 

the benefit of including Bitcoin in a traditional benchmark portfolio of stocks and bonds. Specially, 

we employ data up to June 2018 and analyse the potential out-of-sample portfolio benefits 

resulting from including Bitcoin in a stock-bond portfolio for a range of eight popular asset 

allocation strategies. The out-of-sample analysis shows that, across all different asset allocation 

strategies and risk aversions, the benefits of Bitcoin are quite considerable with substantially higher 

risk-adjusted returns. Our results are robust to rolling estimation windows, the incorporation of 

transaction costs, the inclusion of a commodity portfolio, alternative indices, short-selling as well 

as two additional optimization techniques including higher moments with (and without) variance-

based constraints (VBCs). Therefore, our results suggest that investors should include Bitcoin in 

their portfolio as it generates substantial higher risk-adjusted returns. 

 

Keywords: FinTech; Bitcoin; Diversification; Out-of-Sample Performance; Portfolio 

Optimization 
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1. Introduction 

 

First proposed by Nakamoto (2008), Bitcoin is a peer-to-peer electronic cash system which allows 

online payments to be sent direct from one individual to another without going through a financial 

institution and therefore is frequently argued to be an alternative currency. The key features of 

Bitcoin are that it has no physical representation, association with any authority and is built using 

complex mathematics and computational methods. The value of Bitcoin is not based on any 

country economy (unlike traditional currencies) or on some tangible assets (unlike commodities) 

and is instead based on the security of the algorithm, traceability of the transactions and the 

precedence of each Bitcoin. Further, the exact number of circulating Bitcoins in the market is 

known and therefore its money supply is constant providing an incentive for owners to keep them 

and not trade them for goods or services (Kristoufek 2015). The dramatic growth of Bitcoin (and 

other cryptocurrencies) challenges politicians and policy makers as Bitcoin and FinTech create an 

alternative environment for businesses. Bitcoin experienced a huge surge in price during 2017, 

although the during the first half of 2018, the price has fallen quite considerably.1  However there 

is evidence that this surge in price has nothing to do with Bitcoins ability to be medium exchange, 

but as an investment, see for instance Baur et al (2018), and many others. 

 

There is an ever-growing literature examining Bitcoin, with influential work by Gandal et al (2018) 

documenting the price manipulation of Bitcoin, while Foley et al (2019) show the amount illegal 

activity conducted through Bitcoin. Recently, Makarov and Schoar (2019) show the arbitrage 

opportunities in cryptocurrency markets.  A large area of research has studied the relationship of 

Bitcoin with other financial assets. Dwyer (2015) shows that the average monthly volatility of 

Bitcoin is higher than that of gold or a set of foreign currencies while Urquhart (2016) shows that 

Bitcoin returns are inefficient, which is supported by Nadarajah and Chu (2017) and Bariviera 

(2017).  Cheah and Fry (2015) show that, over the period July 2010 to July 2014, Bitcoin is prone 

to substantial speculative bubbles, while Balcilar et al (2017) show that Bitcoin volume can predict 

returns except in bear and bull market regimes. Katsiampa (2017) examines various GARCH 

models and shows the importance of having both a short-run and long-run component of the 

conditional variance, while Urquhart (2017) shows significant price clustering of Bitcoin prices at 

round numbers. Shen et al (2019) show that the number of tweets of Bitcoin is significant driver 

of trading volume and realized volatility of cryptocurrencies while Grobys and Sapkota (2019) 

show no evidence of significant momentum profits in cryptocurrency markets. 

                                                      
1 See Figure 2 for a time-series graph of the price of Bitcoin during our sample period. 
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These papers have studied the price dynamics of Bitcoin, but another strand of literature examines 

the relationship of Bitcoin to other financial assets. Dyhrberg (2016) shows that Bitcoin can act as 

a hedge against the US dollar and the UK stock market, sharing similar hedging capabilities to 

gold. Bouri et al (2017a) employ a quantile regression approach to analyse the relationship between 

gold and global uncertainty, and show that Bitcoin can hedge against global uncertainty at short 

investment horizons and in bull regimes. Also, Bouri et al (2017b) employ a DCC model and show 

limited evidence of the hedging and safe haven properties of Bitcoin, although it can still be an 

effective diversifier. Guesmi et al (2018) show that Bitcoin can be a hedge against many different 

financial assets. Therefore there is evidence that Bitcoin has some hedging capabilities and 

diversification benefits.2 Klein et al (2018) show that Bitcoin offers no hedging capabilities like 

gold which also holds for the brad cryptocurrency index CRIX while Urquhart and Zhang (2019) 

show that Bitcoin can be a hedge at an intraday level for the CHF, EUR and GBP currencies. 

Recently, Platanakis and Urquhart (2019) show the importance of estimation risk when creating a 

portfolio of cryptocurrencies. 

 

The inclusion of alternative investments in traditional stock-bond portfolios has been studied in 

some detail in the literature, with mixed results. For instance, Gorton and Rouwenhorst (2006), 

Hillier et al (2006), Conover et al (2010) and Gao and Nardari (2018) all find that adding 

commodities to a benchmark portfolio adds value. Contrasting evidence however has been found 

by Erb and Harvey (2006), Daskalaki and Skiadopoulos (2011), Bessler and Wolff (2015) and 

Platanakis et al (2019) who all find that commodities offer no additional value, while Liu et al. 

(2018) find that some commodities provide diversification benefits and some others may not be 

useful for portfolio diversification. There is growing research examining the portfolio 

diversification benefits of Bitcoin, where Brière et al (2015) show that the correlation between 

bitcoin and other assets is exceptionally low and the inclusion of bitcoin dramatically improves the 

risk-adjusted returns of the portfolios. Eisl et al (2015) implement a CVaR approach and show 

that Bitcoin should be included in optimal portfolios as its inclusion leads to better risk-return 

ratios while Wu and Pandey (2014) show that Bitcoin may not be useful as a currency but can play 

an important role in enhancing the efficiency of an investor’s portfolio. Recently, Kajtazi and Moro 

(2019) examine the role of Bitcoin in portfolios of US, European and Chinese assets and support 

previous findings in showing that Bitcoin improves portfolio performance by increasing returns, 

and not be reducing risk.  However, these papers only study Bitcoin over a short period of time 

                                                      
2 For a detailed review of the literature on Bitcoin and other cryptocurrencies, see Corbet al (2019). 
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and some exclude dramatic growth in Bitcoin trading volume and price in 2017, as well as the 

subsequent turmoil in 2018. Further, these papers mainly study in-sample estimation and through 

only one portfolio optimization technique.   

 

So should investors hold Bitcoin, and what effect does holding Bitcoin have on portfolio 

performance? This paper attempts to answer this question in a pure out-of-sample setting. We 

investigate whether Bitcoin adds value to a stock-bond portfolio by employing eight different 

portfolio construction techniques. Portfolio theory is highly sensitive to estimation risk that may 

overstate (understate) returns (risk). In practice this means that optimal portfolios constructed via 

the classical Markowitz mean-variance optimization can be unstable with a weak out-of-sample 

performance and this phenomenon has been well-substantiated in the portfolio theory literature 

(Ziemba and Mulvey, 1998; Kolm et al, 2014; Levy and Roll, 2010; Levy and Levy, 2014; Levy and 

Simaan, 2016; Carroll et al, 2016). For this reason, we employ eight sophisticated portfolio 

construction methods to determine the benefit of including Bitcoin in a stock-bond portfolio. We 

find that including Bitcoin to a portfolio in an out-of-sample setting substantially increases excess 

returns and increases the Sharpe, Omega and Sortino ratios. We also show that these findings are 

robust to expanding and rolling estimation windows, transaction costs, the 2018 downturn in 

Bitcoin, different values of risk aversion, alternative indices, as well as to alternative portfolio 

construction techniques including higher moments with (and without) variance-based constraints 

(VBCs) of Levy and Levy (2014) and to simulated data and when short selling is permitted. Finally, 

we also show that Bitcoin adds value above and beyond commodities by including the GSCI 

commodity index in the original portfolio, where risk-adjusted returns are substantially higher after 

the inclusion of Bitcoin. 

 

Therefore, this study contributes to the literature in several important ways. First, we 

comprehensively analyse the out-of-sample diversification benefits from adding Bitcoin to a 

benchmark portfolio of stocks and bonds. The media and investor interest in Bitcoin has grown 

vastly in the last 8 years, and this paper details whether including Bitcoin in a stock-bond portfolio 

can improve excess returns and the risk-adjusted returns. Second, we implement 8 different and 

popular asset allocation strategies to overcome any concern that any one asset allocation strategy 

is skewing our results. We also include two further models which encompass higher moments as 

a robustness check. Third, since Bitcoin prices can differ across exchanges, we employ two 

different Bitcoin prices, namely the CoinDesk price and the Datastream price (Bitstamp) in order 

to avoid any concern regarding the choice of Bitcoin price.  Fourth, we evaluate the performance 
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of a pure out-of-sample estimation on a risk-adjusted returns basis inclusive of transaction costs 

to provide realistic results for an investor who includes Bitcoin in their asset allocation. Fifth, we 

show that our results are robust to the inclusion of the most popular commodity index to the 

benchmark portfolio. Finally, we include the turbulent period of 2018 in our analysis to show that 

even during this period, Bitcoin improves the risk-adjusted returns of portfolios. 

 

The rest of this paper is organized as follows.  Section 2 presents the data and methodology, while 

Section 3 describes the empirical results, and Section 4 summarizes our findings and provides 

conclusions. 

 

2. Data and Methodology 

 

2.1. Data 

 

We collect weekly Bitcoin prices from CoinDesk from October 2011 to June 2018, as well as the 

Bitstamp Bitcoin price.  We choose this sample period since trading volume of Bitcoin before 

October 2011 is relatively low while the end date is chosen as the date the main work of this paper 

was carried out.3  We select CoinDesk Bitcoin price index since a number of academic papers have 

already employed CoinDesk Bitcoin price index (for instance Cheah and Fry 2015; Katsiampa 

2017). It is also the average price across leading global exchanges that meet specific criteria stated 

by CoinDesk.4 For a robustness check, we analyse the Bitstamp Bitcoin price, which is highly 

liquid, one of the longest running exchanges and is the exchange that Datastream uses to provide 

a Bitcoin price to their customers.  We rebalance our portfolio on a weekly basis since monthly 

data would not provide enough observations for an out-of-sample analysis while daily prices would 

result in a large turnover and thus high transaction costs.   

 

To analyse the benefits of Bitcoin, we take the perspective of a U.S. investor holding a portfolio 

consisting of stocks and bonds as in Daskalaki and Skiadopoulos (2011).  We use the S&P 500 

index for stocks and the Barclays US Aggregate for bonds, both collected from Bloomberg, while 

we collect the 1-month risk-free rate from the database of Kenneth French for our risk-adjusted 

return calculations.5 

                                                      
3 Unlike earlier studies that examined the bull market of Bitcoin, our sample period also includes the bear market 
period and therefore provides a more comprehensive review of the performance of Bitcoin in a portfolio setting. 
4 For more details, see https://www.coindesk.com/price/bitcoin-price-index/.  
5 Found at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.  

https://www.coindesk.com/price/bitcoin-price-index/
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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2.2. Asset Allocation Strategies 

 

There are several portfolio optimization techniques which could be used for optimizing our 

portfolios, and we choose eight of those most popular and commonly considered by portfolio 

managers. Each strategy has a different rationale which may result to different weights being 

allocated to each asset, which is beneficial to us in providing a comprehensive account of the value 

of adding Bitcoin to a portfolio.  Applying a diverse variety of portfolio models reduces the issue 

of estimation risk in the input parameters of the portfolio selection process (Levy and Levy 2014; 

Kolm et al 2014), and also provides robustness to our conclusions. The eight asset allocation 

strategies are as follows: 

 

2.2.1. Markowitz Mean-Variance Portfolio Optimization (Markowitz) 

 

In the mean-variance portfolio optimization framework of Markowitz (1952), investors optimize 

the trade-off between the mean and variance of portfolio returns. Markowitz (2014) also points 

out that over a half-century research in the field has been generally supportive to mean-variance 

analysis. To facilitate this model, we compute the vector of portfolio weights  x , by maximizing 

the following utility function (quadratic) with respect to x  by using the sample mean  μ  and 

covariance matrix   : 

 

T Tλ
,

2
U  x μ - x x                                                        (1) 

 

where the parameter λ represents the investor’s relative risk aversion. We also impose non-short 

selling constraints  x 0,  i i   and normalization of portfolio weights 
1

x 1 .
N

i

i

 
 

 
  

Hence, the 

optimization problem is described as follows: 

 

T T

1

λ

2

. .     x 0,  

         x 1

i

N

i

i

max 

s t i



 
 
 

 



x
 x μ - x x

                                                         (2) 
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2.2.2. Markowitz Mean-Variance Portfolio Optimization with Gens (Markowitz with Gens) 

 

The Markowitz Mean-Variance Portfolio Optimization with Gens approach combines Markowitz 

optimization and lower generalized constraints to decrease further the negative effect of estimation 

errors when computing the optimal portfolio weights. The lower the generalized constraints are 

as follows:
 

 

 ,  with  0,  1/  lower lowerα α N x 1                                       (3) 

 

where 1 denotes a column vector (Nx1) of ones. Please note that the equally weighted portfolio 

(1/N) is obtained if 1/ ,lowerα N   while we get the shortsale-constrained portfolio if 0.lowerα   

We use the middle of the range and set 1
(0 1/ ) / 2

2
lowerα N

N
    as in DeMiguel et al. (2009), 

and many others. 

 

2.2.3. Bayes-Stein Shrinkage Portfolio Approach (Bayes-Stein) 

 

The Bayes–Stein shrinkage portfolio approach (Jorion 1986) is a robust way of dealing with 

estimation risk in the optimal portfolio selection process and has been very widely used in the 

relevant academic literature, see for instance Board and Sutcliffe (1994), DeMiguel et al (2009), 

Bessler et al (2017) and Platanakis and Sutcliffe (2017), amongst others. The Bayes-stein approach 

is based on the idea of “shrinkage estimation” and computes the column vector of mean returns 

 BSμ  as follows:- 

 

 BS G1 g +gμ μ μ 1 ,                                                      (4) 

 

where the shrinkage factor g  0 1g 
 
is given by:-

 

 

     
T 1

G G

N 2
g = .

N 2 μ μT 



  + μ 1  μ 1   
                                    (5) 
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Gμ
 
denotes the expected return of the minimum variance portfolio (allowing short-selling) and 

T  represents the length of the corresponding estimation period. The covariance matrix of asset 

returns  BSΣ  is given by:- 

 

 

 

T

BS T 1

1
,

1

T

T T T

 

  

  
  

   

11
Σ Σ

1 Σ 1
 

(6) 

       

 

where                                           
   

T 1

G G

N 2
.

μ μ







 μ 1  μ 1
                                             (7) 

 

We use the Bayes-Stein estimates  BS BS, μ Σ  in the same optimization process and subject to the 

same constraints as in the Markowitz mean-variance model described in equation 2. 

 

2.2.4. Bayes-Stein Shrinkage Portfolio Approach with Gens (Bayes-Stein with Gens) 

 

This approach combines the Bayes-Stein Shrinkage Portfolio Approach with the lower generalized 

constraints described above. 

 

2.2.5. Black-Litterman Portfolio Construction Model (Black-Litterman) 

 

The Black-Litterman portfolio optimization approach is an alternative approach for dealing with 

estimation errors in the portfolio construction process, and has recently attracted great attention 

in both academia and the financial industry, see for instance Kolm et al (2014), Bessler and Wolff 

(2015), Platanakis and Sutcliffe (2017), Platanakis et al (2019), Oikonomou et al (2018) and Silva, 

et al. (2017), amongst others. The Black-Litterman approach combines two sources of 

information: the investor’s “views” on asset returns (subjective return estimates) and the reference 

(or benchmark) portfolio used for the computation of “neutral” (“implied”) returns. 

 

The column vector of implied excess-returns  H  is given by (Black and Litterman 1992):- 

 

,H x  Reference
                                                          (8) 
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where the column vector x
Reference

 contains the weights of the reference (benchmark) portfolio. 

Following Bessler et al (2017) and Platanakis et al (2018), amongst other, we set x
Reference

  to the 

equally-weighted portfolio 
1

.
N

 
 

 
x 1
Reference

This is the case where investors consider that asset 

return estimates involve a high degree of estimation risk. 

 

The Black-Litterman model computes the column vector (posterior estimate) of mean returns 

 BLμ  as follows:- 

 

   
1

1 1T 1 T 1

BL ,c c


       
   

μ H Q   P P P                                 (9) 

 

where P  is a binary matrix with “ones” only in its leading diagonal indicating which assets are 

involved in each view, Q  is a column vector that contains the investor’s views (subjective returns) 

and the parameter c  represents a measure of reliability for the implied excess-returns in the column 

vector  H . To this end, we use the mean of the values used by previous studies in the literature 

and set 0.1625c   as in Platanakis and Sutcliffe (2017). Furthermore, the diagonal matrix Ω  

quantifies the reliability measures for each asset and is computed as follows (Meucci 2010):- 

 

 1
.


 T

Ω P P                                                          (10) 

 

In addition, we set 1/  to unity following Meucci (2010) and Platanakis and Sutcliffe (2017), 

amongst others, and use the mean asset returns over the corresponding estimation period in 

selecting the investor’s views for the column vector .Q   

 

Finally, we follow Satchell and Scowcroft (2000) and many other studies by computing the 

posterior covariance matrix  BLΣ  as follows:- 

 

 
1

1 T 1

BL c


    
 

Σ   P P                                          (11) 
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We use the Black-Litterman estimates  BL BL, μ Σ  in the same optimization process and subject 

to the same constraints as in the Markowitz mean-variance model described in equation 2. 

 

2.2.6. Minimum Variance with Lower Generalized Constraints (Minimum-Variance with Gens) 

 

For this technique, we minimize the portfolio variance  T
x x  subject to short-selling constraints 

 x 0,  ,i i   normalization of portfolio weights 
1

x 1
N

i

i

 
 

 
  

and lower generalized constraints. 

This portfolio technique is independent of the parameter λ (relative risk aversion). 

 

 

2.2.7. Equally Weighted Portfolio (1/N with re-balancing) 

 

A portfolio weight of 1/N is assigned to each portfolio asset. We use 1/N with re-balancing as in 

DeMiguel et al (2009) and Platanakis et al (2019). 

 

2.2.8. Combination of Portfolio Techniques (3-fund portfolio combination) 

 

Inspired by Kan and Zhou (2007) and DeMiguel et al (2009), amongst others, and in an attempt 

to eliminate further the negative effects of estimation risk in the portfolio construction process, 

we also apply a method that shrinks the portfolio weights by considering combinations of 

portfolios. More specifically, we combine the equally-weighted portfolio  1/N ,x   the minimum-

variance portfolio  MV
x  and the Markowitz mean-variance portfolio  Markowitz .x  All the 

individual portfolios used in this framework  1/N Markowitz MV,   &  x x x   are subject to short selling 

constraints and normalization of portfolio weights. We compute the “optimal” combination of 

the three individual strategies  1/N Markowitz MV,   &  :x x x   

 

1/N MV TP 1/N MV TP

1 2 3 1 2 3,      ,  ,  0          x x x x                          (12) 

 

by maximizing the expected quadratic utility function as in the optimization problem described in 

(2) for the Markowitz mean-variance problem and subject to the same constraints. 
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The eight different portfolio construction models employed for the core analysis are summarized 

in Table 1. 

 

2.3. Out-of-sample estimation procedure  

 

Throughout our analysis, we employ an out-of-sample estimation process. An in-sample setting 

would implicitly assume perfect forecasts of the input parameters, but in practice, forecasts are 

subject to estimation errors, see for instance Welch and Goyal (2008), and many others.  Therefore, 

a more realistic evaluation of the portfolio gains and diversification benefits from Bitcoin rests in 

an out-of-sample procedure.  Here, an investor has to compute the asset weights at time (t) for the 

subsequent periods [t, t + 1] using only data available at time (t).  For the core analysis, we follow 

Board and Sutcliffe (1994) and Tu (2010) by employing an expanding window approach for 

computing the means and the covariance matrix.  This procedure is expected to produce more 

stable estimates over the time horizon.  Specifically, we employ a 52-week expanding window and 

estimate the optimal portfolio weights for each portfolio model by using data up to and including 

time t (where t ≥ 52).  We then apply these asset weights to compute the actual (out-of-sample) 

portfolio returns for the next time period (t + 1), and repeat this process by moving our sample 

one week forward until the end of our sample period. 

 

For robustness purposes, we also implement the rolling window approach as in Bessler and Wolff 

(2015), and many others.  This procedure involves a 52-week rolling window for computing the 

mean returns, while we keep the expanding window for the covariance matrix.  This is because we 

expect that a rolling window may be more responsive to structural breaks for the case of mean 

returns, while the correlation structure is often more stable over time in comparison to mean 

returns estimates, see also discussion in Bessler et al (2017). We also solve each case for three 

different levels of risk aversion and hence our analysis allows an assessment on whether 

diversification benefits differ with differing risk aversion. These values of λ used in our study 

represent respectively the aggressive (λ = 2), moderate (λ = 5) and conservative investors (λ = 10). 

 

2.4. Performance Metrics 

 

We compute the portfolios average out-of-sample return and volatility, as well as the Sharpe ratio 

which is computed as follows (Sharpe 1966):- 



 13 

 

,
p f

p

R R
SR




                                                         (13) 

 

where p fR R  represents the average portfolio return in excess of the risk-free rate computed over 

the entire out-of-sample period, and p  is the corresponding portfolio standard deviation 

estimated over the same investment period. However, the Sharpe ratio has its limitations, and as 

Smetters and Zhang (2014) argue, the Sharpe ratio may face difficulties in providing robust and 

correct rankings when portfolio returns are not normally distributed.6  

 

Therefore we also estimate the Omega ratio (Shadwick and Keating 2002) and the Sortino ratio 

(Sortino and van der Meer 1991) as additional performance metrics. The Omega ratio, which is 

also known as a gain-loss ratio, is defined as follows: 

 

 

 

T

,

1

T

,

1

1
max 0,

T
.

1
max 0,

T

p t

t

p t

t

R

Omega

R














                                               (14) 

 

The main advantage of the Omega ratio is its distribution-free nature since it does not rely on any 

assumption about the distribution of returns.  The Sortino ratio is similar to the Sharpe ratio but 

only considers the standard deviation of downside excess returns rather than the standard 

deviation of all excess returns, such that: 

 

,
p f

p

R R
Sortino

DR


                                                     (15) 

 

where pDR  denotes the downside risk of a portfolio.7 

 

 

 

                                                      
6 For a discussion on the issues with the Sharpe ratio, see also Platanakis et al (2019). 
7 We also calculate a number of alternative performance metrics such as the CER, VaR, Dowd ratio, EDD, MDD, 
Sterling ratio and Calmar ratio. They are available upon request from the corresponding author. 
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3. Empirical Results 

 

In this section, we present the empirical results where we first present the descriptive statistics of 

the data employed in this study.  The analysis of the out-of-sample diversification benefits of 

Bitcoin for the various asset allocation techniques employed in thus study are then presented for 

the expanding as well as the rolling window framework.  We also provide the results inclusive of 

transaction costs, and as a robustness check employ the Bitstamp Bitcoin price instead of the 

CoinDesk Bitcoin price as well employing portfolio selection with higher moments. We also report 

the asset weights of the various portfolios and examine whether Bitcoin adds value above that of 

commodities. Further, we report the results with simulated data and when using the CRIX index 

instead of Bitcoin as robustness checks. Finally, we provide the results when allowing for short 

sales. 

 

3.1. Descriptive Statistics 

 

Panel A of Table 2 reports the descriptive statistics of the returns employed in this study. Both 

Bitcoin returns have the largest mean return, as well as the highest standard deviation. Both the 

S&P 500 and U.S. bonds have negative skewness, while the risk-free asset and both Bitcoin prices 

experience positive skewness.  All series except U.S. bonds have excess kurtosis and therefore a 

leptokurtic distribution. Both Bitcoin prices have similar characteristics indicating that the 

difference between the two exchanges is minimal. Panel B of Table 2 reports the correlation matrix 

between our variables where we can see that the correlation between the S&P500 and both U.S. 

bonds and the risk-free asset is negative, while U.S. bonds and the risk-free asset have a small 

positive correlation. However, the correlation between the both Bitcoin prices and the S&P500 is 

positive, but fairly small indicating possible diversification benefits. Further, the correlation 

between both Bitcoin prices and U.S. bonds is negative, suggesting that there may be some 

diversification benefits when adding Bitcoin to our stock-bond portfolio.  The only significant 

correlation in our matrix is between our two Bitcoin prices (correlation of 0.98) indicating that 

they are very similar and they should offer similar results when added to a stock-bond portfolio. 

 

Although a correlation matrix is useful in that it shows the overall correlation between assets, it 

may be misleading since the relationship between assets is likely to vary substantially over time.  

Therefore we also run a dynamic conditional correlation (DCC) model of Engle (2002).  We 
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include an AR(1) term and plot the DCC GARCH(1,1) model in Figure 1.8,9  We can see from 

Figure 1 that the DCC between the two Bitcoin prices and the S&P500 and bonds fluctuates quite 

considerably over time.  There are periods where the correlation is positive (and as high as 0.4), 

but then there are other prolonged periods where the correlation is negative.  Overall, Figure 1 

suggests that there may be some diversification value in the inclusion of Bitcoin in a stock-bond 

portfolio. 

 

3.2. Out-of-sample benefits of Bitcoin 

 

In this section, we analyse the out-of-sample benefits of including Bitcoin in a stock-bond 

portfolio through a variety of asset allocation strategies with different level of risk aversion. Table 

3 reports the results for the 52-week expanding window for both the mean and variance covariance 

matrix for the eight different asset strategies. We find that the inclusion of Bitcoin increases both 

the excess return and the standard deviation of our results. To determine whether the benefits of 

the increase in excess returns is wiped out by the increase in standard deviation, we examine 

numerous risk-adjusted return metrics. For each strategy, each risk-aversion and each performance 

metric, we find that the risk-adjusted measure increases each time Bitcoin is added to the stock-

bond portfolio.  The mean Sharpe ratio for the stock-bond portfolio is 1.03 while the mean Sharpe 

ratio for the stock-bond-Bitcoin portfolio is 1.64, and the mean Omega ratio is 1.51 for the stock-

bond portfolio and 2.12 for the stock-bond-Bitcoin portfolio. However the biggest increase in our 

risk-adjusted measures comes from the Sortino ratio, where the average Sortino ratio increases 

from 1.62 to 3.57 indicating the downside risk when Bitcoin is included in the portfolio is very 

small.  Investors with higher risk-aversions also benefit more from the inclusion of Bitcoin in their 

portfolio, which is not surprising given the high volatility in Bitcoin returns that are reported in 

Table 2. When comparing the different portfolio construction techniques, we find that adding 

Bitcoin to the portfolio adds, on average, most value (91.00%) to the Minimum-Variance with 

Gens approach in regard to excess returns.  Bitcoin adds least value to a Markowitz portfolio, but 

it adds, on average, 81.85% to the excess returns of the portfolio. Therefore our results are robust 

across all portfolio construction techniques employed. 

 

As shown in Figure 2, Bitcoin experienced a huge surge in price during 2017 and there is the 

concern that our results will not be as strong during the first half of 2018 downturn.   Therefore 

                                                      
8 Other AR terms, GARCH models and alternative ADCC of Cappiello et al (2006) were examined but the DCC-
AR(1) GARCH(1,1)is preferred by the AIC statistic. 
9 For a detailed description of DCC models, see Engle (2002). 
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in Figure 3, we report the time-series plot of the out-of-sample Sharpe ratio of the Markowitz 

model for portfolios excluding and including Bitcoin. Figure 3 shows that the inclusion of Bitcoin 

generates higher Sharpe ratios for each level of risk-aversion for the Markowitz model throughout 

our out-of-sample period indicating the stability of our results. Even during the downturn in the 

price of Bitcoin from January 2018 to June 2018, the portfolio including Bitcoin does consistently 

perform better than the traditional stock-bond portfolio indicating that even during this period, 

investors should look at including this alternative asset in their portfolio.10 

 

Instead of employing a 52-week expanding window approach, Table 4 reports the 52-week rolling 

window approach results where we find similar results in that adding Bitcoin to the stock-bond 

portfolio substantially increases the risk-adjusted measures for all 8 asset allocation strategies.11  

Similar to the expanding window approach, the largest increase is risk-adjusted measures comes in 

the Sortino ratio, where we find that the average increase in the Sortino ratio from adding Bitcoin 

to a portfolio is 167.74%, compared to 60.06% for the Sharpe ratio and 70.68% for the Omega 

ratio. 

 

Initially, our analysis has employed the CoinDesk Bitcoin price, but as previously mentioned many 

other Bitcoin prices are available to investors through many other Bitcoin exchanges.  Therefore 

to ensure our results are not the result of a specific Bitcoin price, we replace the CoinDesk price 

with the Bitstamp price, one of the most popular Bitcoin exchanges for U.S. investors.  The results 

for the 52-week expanding window are reported in Table 5 and support our previous findings that 

including Bitcoin in our portfolio substantially increases the risk-adjusted returns, especially the 

Sortino ratio.  The figures in Table 5 are broadly similar to the results of the expanding window in 

Table 3, and therefore indicate that no matter which Bitcoin price we choose, adding Bitcoin to a 

portfolio adds substantial value to investors. 

 

So far, our analysis has been conducted exclusive of transaction costs.  However with any 

investment strategy, transaction costs are very important since the value of adding Bitcoin to the 

portfolio may be eliminated when transaction costs are included making the strategy unprofitable. 

                                                      
10 To conserve space, we do not present stability analysis of all portfolios however the results indicate that the inclusion 
of Bitcoin increases the risk-adjusted metrics consistently over time. These results are available from the corresponding 
author. 
11 To conserve space, we only report the risk-adjusted results from now on, but excess returns and standard deviations 
are available upon request from the corresponding author.  
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The total transaction costs at time t are subtracted from the portfolio returns when measuring the 

performance such that: 

 

 , , 1

1

TC T x x   ,
N

t i i t i t

i







                                               (16) 

 

where , 1x i t



  denotes the weight of the ith asset at the end of the period t-1. We set the proportionate 

transactions cost (Ti) of trading US equities at 50 bps (DeMiguel et al 2009) as well as 17 bps for 

the risk-free rate and bonds and 50 bps for Bitcoin (Lintilhac and Tourin 2017). Table 6 reports 

the results of the 52-week expanding window estimation inclusive of transaction costs where again, 

Bitcoin adds value in that each risk-adjusted return measure is higher once Bitcoin has been added 

to the portfolio. Similar to the core results, the Minimum-Variance with Gens strategy has the 

largest increase in performance metric from adding Bitcoin (186.74%) while the Markowitz with 

Gens has the smallest increase (91.82%). This may be explained from the fact that minimum-

variance portfolios with additional constraints (e.g. generalized constraints) for tackling further the 

negative effects of estimation errors in the input parameters adopt a more conservative stance 

towards risky assets like cryptocurrencies by under-weighting those assets in the portfolio 

construction process. This can often lead to a superior out-of-sample performance, especially 

during periods of high volatility when the negative effects of estimation errors when constructing 

optimal portfolios are more profound. Regarding choice of performance metrics, the average 

increase in metric from including Bitcoin in a portfolio is 98.19% for the Sharpe ratio, 62.55% for 

the Omega ratio and 187.04% for the Sortino ratio. Therefore, this suggests that even after the 

inclusive of transaction costs, investors should add Bitcoin to their portfolios. 

 

3.3. Portfolio Selection with Higher Moments 

 

Portfolio optimization techniques that are only based on the first two statistical moments (mean 

returns and the covariance matrix of returns) may have a weak out-of-sample performance when 

portfolio returns do not follow a normal distribution (Jondeau and Rockinger 2006; Cumming et 

al 2014).  Hence we incorporate higher moments in the portfolio optimization process as a final 

robustness check.  Specifically, we employ a constant relative risk aversion (CRRA) utility function 

such that: 
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where W  denotes the end-of-period wealth. We express the expected CRRA utility function by 

considering a Taylor series expansion up to the 4th order as follows:- 
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where p1 μ .W    
2 3 4

p p p pμ ,  ,  s  and k   represent respectively the expected return, variance, 

skewness and kurtosis of the portfolio returns for a given vector of portfolio weights.12 We 

maximise the expected CRRA utility function in terms of the vector of asset weights and the utility 

function is subject to the same constraints we employed in the main analysis (normalization of 

portfolio weights and short-selling constraints).  Following Levy and Levy (2014), we also impose 

variance-based constraints (VBCs) as an alternative and intuitive method of decreasing further the 

negative effects of estimation risk in the optimal portfolio process. In particular, the variance-

based constraints are described as follows:- 
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where we set α to 10% and 
 
represents the average standard deviation of all asset classes used 

in each case of our analysis. 

 

Table 7 presents the 52-week expanding window where we implement the higher moments  

method and this shows again, that Bitcoin offers substantial higher Sharpe, Omega and Sortino 

ratios to investors when Bitcoin is included in a stock-bond portfolio. Specially, Bitcoin adds on 

average 53.11% to the Sharpe ratio, 58.01% to the Omega ratio and 108.81% to the Sortino ratio 

for the general higher moments method, while the VBC method increases the Sharpe, Omega and 

Sortino ratios by 76.70%, 54.29% and 117.59% respectively.  Therefore, our results are robust to 

including higher moments in the portfolio construction method as they also show that Bitcoin 

adds substantial value. 

                                                      
12 See Platanakis et al (2017) for further details. 
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3.4. Portfolio Weights 

 

Our analysis has revealed that Bitcoin offers substantial portfolio benefits to a stock-bond 

portfolio which is not dependent on the asset allocation strategy or the risk-adjusted metric 

employed. To investigate further why the benefit is greater for certain asset allocation strategies, 

we also analyse the portfolio shares allocated to Bitcoin in different asset allocation strategies.  

Table 8 provides the average portfolio weight of Bitcoin and the standard deviation for all the 

optimization techniques used in this study. The standard deviation indicates how strongly the 

Bitcoin portfolio weight fluctuates over time, and we also report the maximum and minimum 

portfolio weight of Bitcoin.  The standard deviation of Bitcoin portfolio weights is the highest in 

the Markowitz strategy, which is consistent with the well-known phenomenon of corner solutions 

and large portfolio reallocations (Best and Grauer, 1991; Bessler and Wolff, 2015). The maximum 

portfolio weight in Bitcoin is 99.99% for the Markowitz strategy with a risk aversion of 2, while 

the minimum portfolio weight in Bitcoin is 12.30% for the Markowitz strategy with a risk aversion 

of 10.  We do find across most strategies that the higher the risk aversion of the investor, the lower 

the allocation to Bitcoin in the portfolio, indicating the relative riskiness of investing in Bitcoin.  

Therefore there is a wide-variation in the proportion of Bitcoin in each portfolio, depending on 

the asset allocation strategy and the risk aversion of the investor. 

 

3.5. Does Bitcoin add value beyond commodities? 

 

So far, our analysis has examined whether Bitcoin adds value to a stock-bond portfolio. However 

in the recent past commodities have been examined in great detail to determine whether they add 

value to an investors’ portfolio (for recent positive evidence see Bessler and Wolff (2015) and Gao 

and Nardari (2018)).  There is the concern that our results are just capturing the benefit already 

discovered in including commodities in a stock-bond portfolio. Therefore to alleviate this concern, 

we re-estimate our analysis but include a commodity index in our original stock-bond portfolio, 

and determine whether adding Bitcoin to the portfolio adds value for investors above and beyond 

that of a stock-bond-commodity portfolio. We choose the most popular and longest standing 

commodities index, namely the GSCI Commodity Index (Bessler and Wolff 2015), and the results 

from including it in our analysis are reported in Table 9.  Consistent with our previous findings, 

Bitcoin clearly adds substantial value to the stock-bond-commodity portfolio with much higher 

Sharpe, Omega and Sortino ratios.  In a number of cases, this new portfolio combining stocks, 
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bonds, commodities and Bitcoin actually outperforms the stock-bond-Bitcoin portfolio on a risk-

adjusted basis. In Table 10 we report the portfolio weights of the assets in the stock-bond-

commodity-Bitcoin portfolio, and shows that in all portfolios equities and Bitcoin have the largest 

share of the capital. In most cases Bitcoin has the largest weight indicating that in this setting we 

should allocate a substantial proportion of the capital to Bitcoin. 

 

3.6. Analysis with simulated data 

 

To further enhance the robustness and the generalization of our empirical findings so far, we also 

examine the out-of-sample diversification benefits of bitcoin when mixed with our benchmark (a 

stock-bond portfolio) by using simulated data. The main advantage of using simulated data is that 

the corresponding empirical findings are not driven by the various effects documented in the 

literature, such as anomalies, calendar effects and fat tails, amongst others. Using simulated data 

also decreases the effect of any subjective choices in the portfolio construction models such as the 

initial length of the estimation period for estimation the input parameters. More specifically, we fit 

a multivariate normal distribution to our data (equities, bonds, bitcoin and the risk-free rate) across 

the entire period (October 2011 to June 2018) and generate 2,000 observations for each asset class. 

Then we re-run our models in the same way as in the core part of our analysis and show that our 

main conclusions remain unchanged, e.g. including Bitcoin in our benchmark portfolio provides 

substantially higher risk-adjusted returns, as it can be seen in Table 11 below. 

 

3.7. Robustness with the CRIX Index 

 

So far, our analysis has focused on the portfolio benefits of the inclusion of only one 

cryptocurrency (Bitcoin) in a well-diversified portfolio. However, there are many altcoins available 

and they are becoming more and more popular.  Therefore, we repeat our analysis and implement 

the broad, market-weighted cryptocurrency index CRIX, proposed by Timborn and Härdle 

(2018).13  This index provides an instrument which captures and displays the market movements 

of cryptocurrencies, not just Bitcoin, where we report our results in Table 12. Consistent with our 

previous findings for Bitcoin, we show that the inclusion of the CRIX index substantially increases 

the risk-adjusted returns across all eight asset allocation strategies indicating that our results are 

not Bitcoin specific but that an index of cryptocurrencies also substantially increases the out-of-

sample risk-adjusted returns of a well-diversified portfolio. 

                                                      
13 The index can be sought from https://thecrix.de. We thank the reviewer for suggesting this additional analysis. 

https://thecrix.de/
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3.8. Loosening the short sale constraint 

 

Our previous analysis has implemented a short-selling constraint on Bitcoin, however Bitcoin 

futures were introduced by CBOE in December 2017 enabling the ability of investors to short 

Bitcoin in a safer manner.14  Therefore we re-estimate our analysis but remove the short-selling 

constraint where the results are presented in Table 13.  We show that the inclusion of Bitcoin again 

substantially improves the risk-adjusted returns of our portfolio no matter which asset allocation 

strategy is implemented.  Unsurprisingly, the risk-adjusted returns once short-selling is permitted 

are slightly higher than when short selling is constrained, indicating that investors can benefit more 

from short selling Bitcoin in their portfolio.   

 

4. Conclusions 

 

This paper investigates the potential out-of-sample benefits of adding Bitcoin to a stock-bond 

portfolio by analysing a variety of asset allocation strategies with three different levels of risk 

aversion. This is the first paper to examine the pure out-of-sample benefits of Bitcoin in a portfolio 

framework, and therefore adds substantially to the literature on Bitcoin as well as portfolio 

management. 

 

Our empirical results suggest that the out-of-sample benefits of Bitcoin are consistent across 

portfolio construction techniques and different levels of risk aversion.  Employing either an 

expanding window approach or a rolling window approach, we find that Bitcoin adds substantially 

to a stock-bond portfolio in terms of the Sharpe, Omega and Sortino ratios.  Specifically, Bitcoin 

adds over 100% to the Sortino ratios of all portfolio construction techniques at all risk aversion 

levels.  To test the robustness of our results, we replace the CoinDesk Bitcoin price with the 

Bitstamp Bitcoin price and our findings are consistent with the core results. Our results remain 

strong when short-selling is permitted, as well as when appropriate transaction costs are included. 

To alleviate the concern that our results may be attributed to the exclusion of commodities, we re-

estimate our models and determine whether Bitcoin can add value above and beyond a stock-

bond-commodity portfolio.  We find that Bitcoin adds substantial value to an investor on a risk-

adjusted basis, and in each model a large proportion of the capital is allocated to Bitcoin. Finally, 

                                                      
14 Again, we thank the reviewer for pointing this out and suggesting this additional analysis. 
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the robustness and generalization of our key empirical findings is enhanced further by using 

simulated data where the out-of-sample diversification benefits of bitcoin remain substantial. 

 

No matter how appealing the findings of our results may be, caution must be stressed before 

implementing these portfolio techniques when computing optimal asset allocation decisions. Our 

analysis only employs a limited number of portfolio optimization strategies, and although we use 

an out-of-sample framework, our analysis is still based on the historical mean asset returns as 

return forecasts and the historical return variances and covariances. However historical returns 

can be poor estimates of future returns, especially when applied to Bitcoin given the large volatility 

in the price.  Nevertheless, our analysis suggests that the inclusion of Bitcoin in portfolio allocation 

is beneficial to investors. 
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No. Portfolio Optimization Technique 

1 Markowitz 
2 Markowitz with Gens 
3 Bayes-Stein 
4 Bayes-Stein with Gens 
5 Black-Litterman 
6 Minimum-Variance with Gens 

7 1/n (with rebalancing) 
8 3-Fund Portfolio Combination 

 

Table 1: This table presents the difference portfolio construction techniques 
employed in this study. 
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Panel A: Descriptive Statistics 

  S&P500 U.S. Bond Risk-free CoinDesk  Bitstamp 

Mean 0.0028 -0.0002 0.0001 0.0319 0.0308 

St.Dev 0.0165 0.0041 0.0001 0.1382 0.1350 

Max 0.0742 0.0110 0.0004 0.6568 0.6559 

Min -0.0666 -0.0140 0.0000 -0.4359 -0.4446 

Skew -0.5223 -0.1672 1.6846 0.8301 0.8739 

Kurt 2.6602 0.1865 1.5380 3.8104 3.9573 

Jarque-Bera 11.4241*** 2.0223 196.3143*** 243.0123*** 263.3743*** 

Panel B: Pearson Correlation Matrix 

 S&P500 U.S. Bond Risk-free CoinDesk  Bitstamp 

S&P 500  -0.2349 -0.0240 0.1412 0.1178 

U.S. Bond -0.2349***  -0.0324 -0.0379 -0.0371 

Risk-free -0.0240 -0.0324  -0.0446 -0.0410 

CoinDesk 0.1412 -0.0379 -0.0446  0.9757*** 

Bitstamp 0.1178 -0.0371 -0.0410 0.9757***  

 

Table 2: This table presents the descriptive statistics of the data employed in this study, as well as the Pearson 
correlation matrix between them.  ***, ** and * indicates significance at the 1%, 5% and 10% respectively for 
the Jarque-Bera test and the correlation matrix. 
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    λ=2 λ=5 λ=10 

Method Metric benchmark (+Bitcoin) benchmark (+Bitcoin) benchmark (+Bitcoin) 

 
Excess Return 0.1345 1.4332 0.1339 0.7829 0.1197 0.4284 

 
Std 0.1114 0.9289 0.1112 0.4714 0.1040 0.2456 

 
Sharpe Ratio 1.1771 1.5393 1.1741 1.6535 1.1185 1.7305 

Markowitz Omega Ratio 1.5854 2.0393 1.5835 2.2886 1.5519 2.2358 

 Sortino Ratio 1.8790 3.3574 1.8727 3.7701 1.7576 3.8101 

  Excess Return 0.0971 1.0791 0.0970 0.7491 0.0948 0.4341 

 
Std 0.0824 0.6805 0.0824 0.4577 0.0815 0.2454 

 
Sharpe Ratio 1.1366 1.5807 1.1363 1.6291 1.1216 1.7548 

Markowitz with Gens Omega Ratio 1.5658 1.9891 1.5656 2.2612 1.5575 2.2707 

 Sortino Ratio 1.8014 3.3589 1.8007 3.7023 1.7709 3.9046 

  Excess Return 0.1301 1.2422 0.1168 0.5938 0.0659 0.3125 

 
Std 0.1096 0.8051 0.1044 0.3583 0.0727 0.1875 

 
Sharpe Ratio 1.1559 1.5388 1.0859 1.6477 0.8609 1.6486 

Bayes-Stein Omega Ratio 1.5755 2.1151 1.5411 2.2189 1.4261 2.1285 

 Sortino Ratio 1.8364 3.4276 1.6992 3.6138 1.2732 3.4677 

  Excess Return 0.0949 1.0237 0.0914 0.5755 0.0676 0.3509 

 
Std 0.0816 0.6554 0.0800 0.3551 0.0692 0.2032 

 
Sharpe Ratio 1.1220 1.5567 1.1000 1.6113 0.9277 1.7106 

Bayes-Stein with Gens Omega Ratio 1.5584 2.0052 1.5508 2.2145 1.4587 2.1265 

 Sortino Ratio 1.7727 3.3518 1.7340 3.5525 1.3989 3.6165 

  Excess Return 0.1121 0.6849 0.0745 0.5361 0.0600 0.4833 

 
Std 0.0984 0.4021 0.0681 0.3169 0.0564 0.2885 

 
Sharpe Ratio 1.1058 1.6946 1.0448 1.6808 1.0029 1.6635 

Black-Littermann Omega Ratio 1.5464 2.1336 1.5180 2.0922 1.4991 2.0666 

 Sortino Ratio 1.7295 3.7061 1.6229 3.6359 1.5561 3.5833 

  Excess Return 0.0255 0.2829 0.0255 0.2829 0.0255 0.2829 

 
Std 0.0341 0.1738 0.0341 0.1738 0.0341 0.1738 

 
Sharpe Ratio 0.6478 1.6082 0.6478 1.6082 0.6478 1.6082 

Min-Variance with Gens Omega Ratio 1.3243 1.9993 1.3243 1.9993 1.3243 1.9993 

 Sortino Ratio 0.9948 3.4490 0.9948 3.4490 0.9948 3.4490 

  Excess Return 0.0596 0.5714 0.0596 0.5714 0.0596 0.5714 

 
Std 0.0548 0.3448 0.0548 0.3448 0.0548 0.3448 

 
Sharpe Ratio 1.0254 1.6471 1.0254 1.6471 1.0254 1.6471 

1/N Omega Ratio 1.5126 2.0393 1.5126 2.0393 1.5126 2.0393 

 Sortino Ratio 1.6038 3.5260 1.6038 3.5260 1.6038 3.5260 

  Excess Return 0.1341 1.4291 0.1329 0.7744 0.1141 0.4221 

 
Std 0.1111 0.9261 0.1106 0.4657 0.1003 0.2434 

 
Sharpe Ratio 1.1765 1.5394 1.1712 1.6556 1.1032 1.7202 

3-Fund Omega Ratio 1.5850 2.0412 1.5817 2.2828 1.5452 2.2299 

 Sortino Ratio 1.8776 3.3584 1.8666 3.7663 1.7283 3.8016 

 

Table 3: The results of the 52-week expanding window for both the mean and variance covariance matrix with no transaction 
costs and weekly rebalancing. 'Excess Return' and 'Std' denote the annualized mean excess portfolio returns and standard 
deviations while 'Sharpe Ratio', ‘Omega Ratio’, and 'Sortino Ratio' show the annualized Sharpe, Omega and Sortino ratios. 
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    =2 =5 =10 

Method Metric benchmark (+Bitcoin) benchmark (+Bitcoin) benchmark (+Bitcoin) 

 Sharpe Ratio 1.0223 1.4405 1.0696 1.3640 1.0199 1.4145 

Markowitz Omega Ratio 1.5083 2.0924 1.5417 2.1762 1.5236 2.1568 

  Sortino Ratio 1.5775 3.2073 1.6716 2.9914 1.5616 3.1124 

 Sharpe Ratio 1.0369 1.5256 1.0674 1.4161 1.0690 1.5226 

Markowitz (Gens) Omega Ratio 1.5163 2.0656 1.5388 2.1805 1.5419 2.1594 

  Sortino Ratio 1.5963 3.3920 1.6548 3.1695 1.6507 3.3046 

 Sharpe Ratio 1.0036 1.2515 0.8133 1.2047 0.6270 1.2106 

Bayes-Stein Omega Ratio 1.5304 2.1768 1.4356 2.1589 1.3297 2.0782 

  Sortino Ratio 1.5182 2.7896 1.2025 2.5503 0.9098 2.5610 

 Sharpe Ratio 1.0521 1.4065 0.9027 1.3166 0.7794 1.5100 

Bayes-Stein (Gens) Omega Ratio 1.5363 2.1334 1.4643 2.1249 1.3981 2.0535 

  Sortino Ratio 1.6126 3.1270 1.3537 2.7685 1.1495 3.1540 

 Sharpe Ratio 1.0883 1.5960 1.0411 1.6282 1.0004 1.6373 

Black-Litterman Omega Ratio 1.5446 2.1314 1.5174 2.0859 1.4970 2.0636 

  Sortino Ratio 1.6747 3.5323 1.5943 3.5499 1.5373 3.5445 

 Sharpe Ratio 0.6478 1.6082 0.6478 1.6082 0.6478 1.6082 

Min-Variance (Gens) Omega Ratio 1.3243 1.9993 1.3243 1.9993 1.3243 1.9993 

  Sortino Ratio 0.9948 3.4490 0.9948 3.4490 0.9948 3.4490 

 Sharpe Ratio 1.0254 1.6471 1.0254 1.6471 1.0254 1.6471 

1/N Omega Ratio 1.5126 2.0393 1.5126 2.0393 1.5126 2.0393 

  Sortino Ratio 1.6038 3.5260 1.6038 3.5260 1.6038 3.5260 

 Sharpe Ratio 1.0290 1.4397 1.0790 1.3652 1.0067 1.4140 

3-Fund Omega Ratio 1.5145 2.0958 1.5486 2.1789 1.5192 2.1606 

  Sortino Ratio 1.5895 3.2042 1.6831 2.9863 1.5297 3.1126 

 

Table 4: The results of the 52-week rolling window for the mean with no transaction costs and weekly rebalancing. 'Sharpe Ratio' 
and 'Sortino Ratio' show the annualized Sharpe and Sortino ratios. 
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  =2 =5 =10 

Method Metric benchmark (+Bitcoin) benchmark (+Bitcoin) benchmark (+Bitcoin) 

 Sharpe Ratio 1.1771 1.5498 1.1741 1.6694 1.1185 1.7592 

Markowitz Omega Ratio 1.5854 2.0381 1.5835 2.3133 1.5519 2.2685 

  Sortino Ratio 1.8790 3.4258 1.8727 3.8473 1.7576 3.8694 

 Sharpe Ratio 1.1366 1.5919 1.1363 1.6433 1.1216 1.7719 

Markowitz (Gens) Omega Ratio 1.5658 1.9919 1.5656 2.2667 1.5575 2.3044 

  Sortino Ratio 1.8014 3.4203 1.8007 3.7636 1.7709 3.9585 

 Sharpe Ratio 1.1559 1.5558 1.0859 1.6645 0.8609 1.6745 

Bayes-Stein Omega Ratio 1.5755 2.1220 1.5411 2.2428 1.4261 2.1486 

  Sortino Ratio 1.8364 3.5027 1.6992 3.6639 1.2732 3.4955 

 Sharpe Ratio 1.1220 1.5682 1.1000 1.6244 0.9277 1.7425 

Bayes-Stein (Gens) Omega Ratio 1.5584 2.0085 1.5508 2.2338 1.4587 2.1616 

  Sortino Ratio 1.7727 3.4156 1.7340 3.6028 1.3989 3.6792 

 Sharpe Ratio 1.1058 1.7143 1.0448 1.6971 1.0029 1.6779 

Black-Litterman Omega Ratio 1.5464 2.1486 1.5180 2.1014 1.4991 2.0748 

  Sortino Ratio 1.7295 3.7839 1.6229 3.7036 1.5561 3.6467 

 Sharpe Ratio 0.6478 1.6205 0.6478 1.6205 0.6478 1.6205 

Min-Variance (Gens) Omega Ratio 1.3243 2.0068 1.3243 2.0068 1.3243 2.0068 

  Sortino Ratio 0.9948 3.5038 0.9948 3.5038 0.9948 3.5038 

 Sharpe Ratio 1.0254 1.6576 1.0254 1.6576 1.0254 1.6576 

1/N Omega Ratio 1.5126 2.0433 1.5126 2.0433 1.5126 2.0433 

  Sortino Ratio 1.6038 3.5822 1.6038 3.5822 1.6038 3.5822 

 Sharpe Ratio 1.1765 1.5505 1.1712 1.6713 1.1032 1.7547 

3-Fund Omega Ratio 1.5850 2.0405 1.5817 2.3110 1.5452 2.2712 

  Sortino Ratio 1.8776 3.4294 1.8666 3.8491 1.7283 3.8632 

 

Table 5: The results of the 52-week expanding window for both the mean and variance covariance matrix with no transaction costs 
and weekly rebalancing for the Bitcoin index collected from Datastream. 'Sharpe Ratio' and 'Sortino Ratio' show the annualized 
Sharpe and Sortino ratios. 
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  =2 =5 =10 

Method Metric benchmark (+Bitcoin) benchmark (+Bitcoin) benchmark (+Bitcoin) 

 Sharpe Ratio 1.1658 1.5353 1.1613 1.6328 1.0760 1.6941 

Markowitz Omega Ratio 1.5793 2.0352 1.5766 2.2627 1.5282 2.1957 

  Sortino Ratio 1.8551 3.3484 1.8461 3.7122 1.6830 3.7094 

 Sharpe Ratio 1.1146 1.5681 1.1144 1.6111 1.0942 1.7248 

Markowitz (Gens) Omega Ratio 1.5538 1.9773 1.5537 2.2389 1.5425 2.2361 

  Sortino Ratio 1.7590 3.3258 1.7586 3.6511 1.7197 3.8189 

 Sharpe Ratio 1.1296 1.5291 1.0452 1.6252 0.7710 1.6025 

Bayes-Stein Omega Ratio 1.5610 2.1043 1.5178 2.1923 1.3775 2.0824 

  Sortino Ratio 1.7890 3.4039 1.6314 3.5511 1.1331 3.3518 

 Sharpe Ratio 1.0895 1.5453 1.0700 1.5914 0.8603 1.6684 

Bayes-Stein (Gens) Omega Ratio 1.5406 1.9941 1.5336 2.1910 1.4218 2.0853 

  Sortino Ratio 1.7132 3.3213 1.6825 3.4980 1.2907 3.5078 

 Sharpe Ratio 1.0646 1.6652 1.0214 1.6530 0.9796 1.6360 

Black-Litterman Omega Ratio 1.5232 2.1042 1.5053 2.0653 1.4868 2.0404 

  Sortino Ratio 1.6569 3.6257 1.5802 3.5601 1.5135 3.5083 

 Sharpe Ratio 0.6080 1.5767 0.6080 1.5767 0.6080 1.5767 

Min-Variance (Gens) Omega Ratio 1.3051 1.9705 1.3051 1.9705 1.3051 1.9705 

  Sortino Ratio 0.9286 3.3654 0.9286 3.3654 0.9286 3.3654 

 Sharpe Ratio 0.9916 1.6209 0.9916 1.6209 0.9916 1.6209 

1/N Omega Ratio 1.4945 2.0148 1.4945 2.0148 1.4945 2.0148 

  Sortino Ratio 1.5424 3.4561 1.5424 3.4561 1.5424 3.4561 

 Sharpe Ratio 1.1648 1.5352 1.1569 1.6346 1.0417 1.6749 

3-Fund Omega Ratio 1.5787 2.0369 1.5740 2.2567 1.5109 2.1810 

  Sortino Ratio 1.8532 3.3489 1.8374 3.7076 1.6228 3.6799 

 

Table 6: The results of the 52-week expanding window for both the mean and variance covariance matrix with transaction costs 
and weekly rebalancing. 'Sharpe Ratio' and 'Sortino Ratio' show the annualized Sharpe and Sortino ratios. 
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  =2 =5 =10 

Method Metric benchmark (+Bitcoin) benchmark (+Bitcoin) benchmark (+Bitcoin) 

 Sharpe Ratio 1.1768 1.5333 1.1717 1.6170 1.1055 1.6900 

Higher Moments Omega Ratio 1.5852 2.0161 1.5819 2.2457 1.5464 2.2031 

 Sortino Ratio 1.8783 3.3209 1.8672 3.5737 1.7300 3.6301 

 Sharpe Ratio 1.0645 1.7218 1.0643 1.7017 1.0605 1.6977 

Higher Moments (VBCs) Omega Ratio 1.5316 2.0850 1.5315 2.0939 1.5293 2.0895 

 Sortino Ratio 1.6708 3.6929 1.6704 3.6880 1.6629 3.6190 

 

Table 7: The results of the 52-week expanding window for both the mean and variance covariance matrix with transaction costs 
and weekly rebalancing for the higher moments construction method, as well as the higher moments construction method with 
variance-based constraints (VBCs) of Levy and Levy (2014), where alpha is 10%.'Sharpe Ratio' and 'Sortino Ratio' show the 
annualized Sharpe and Sortino ratios. 
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    λ=2 λ=5 λ=10 

Method Metric Equity Bonds Bitcoin Equity Bonds Bitcoin Equity Bonds Bitcoin 

 Mean (%) 18.74% 0.08% 81.19% 64.35% 1.33% 34.32% 72.84% 10.27% 16.89% 

 Std. Dev (%) 11.90% 0.08% 11.91% 13.18% 6.07% 9.56% 13.18% 6.07% 9.56% 

Markowitz Max (%) 35.00% 0.50% 99.99% 74.42% 48.00% 72.84% 87.05% 71.89% 36.09% 

 Min (%) 0.00% 0.00% 64.94% 1.21% 0.02% 25.55% 2.69% 0.07% 12.44% 

  Mean (%) 16.88% 16.72% 66.40% 48.41% 17.26% 34.33% 61.27% 20.32% 18.40% 

 Std. Dev (%) 0.44% 0.08% 0.52% 10.14% 2.20% 9.19% 10.14% 2.20% 9.19% 

Markowitz with Gens Max (%) 18.75% 16.95% 66.66% 57.53% 33.72% 66.64% 66.64% 59.03% 36.05% 

 Min (%) 16.67% 16.67% 64.33% 16.68% 16.67% 25.70% 16.73% 16.67% 16.67% 

  Mean (%) 35.46% 0.70% 63.83% 70.70% 3.84% 25.46% 61.52% 25.91% 12.58% 

 Std. Dev (%) 13.07% 3.57% 12.41% 15.46% 12.56% 5.97% 15.46% 12.56% 5.97% 

Bayes-Stein Max (%) 53.35% 36.38% 99.97% 81.80% 70.95% 54.12% 82.26% 82.54% 26.87% 

 Min (%) 0.02% 0.01% 46.56% 4.14% 0.00% 18.20% 5.06% 3.28% 8.93% 

  Mean (%) 23.23% 16.84% 59.93% 55.73% 18.72% 25.56% 53.81% 29.23% 16.97% 

 Std. Dev (%) 6.74% 0.39% 6.76% 10.22% 7.24% 5.99% 10.22% 7.24% 5.99% 

Bayes-Stein with Gens Max (%) 36.55% 21.25% 66.66% 64.95% 58.82% 54.45% 66.58% 66.63% 26.91% 

 Min (%) 16.67% 16.67% 46.67% 17.33% 16.67% 18.35% 16.70% 16.73% 16.67% 

  Mean (%) 57.75% 6.64% 35.62% 44.12% 26.59% 29.29% 35.84% 36.94% 27.22% 

 Std. Dev (%) 8.26% 6.10% 2.91% 5.06% 4.24% 1.15% 5.06% 4.24% 1.15% 

Black-Littermann Max (%) 65.01% 36.19% 47.40% 50.87% 42.72% 33.98% 39.12% 45.32% 29.56% 

 Min (%) 22.90% 0.94% 32.94% 25.88% 20.24% 28.20% 26.44% 33.89% 26.69% 

  Mean (%) 19.47% 63.82% 16.71% 19.47% 63.82% 16.71% 19.47% 63.82% 16.71% 

 Std. Dev (%) 1.18% 1.18% 0.03% 1.18% 1.18% 0.03% 1.18% 1.18% 0.03% 

Min-Variance with Gens Max (%) 21.31% 66.64% 16.84% 21.31% 66.64% 16.84% 21.31% 66.64% 16.84% 

 Min (%) 16.68% 61.99% 16.67% 16.68% 61.99% 16.67% 16.68% 61.99% 16.67% 

  Mean (%) 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 

 Std. Dev (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1/N Max (%) 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 

 Min (%) 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 

  Mean (%) 18.80% 0.39% 80.81% 63.78% 2.09% 34.13% 69.04% 13.93% 17.03% 

 Std. Dev (%) 11.86% 0.29% 11.91% 12.97% 6.05% 9.22% 12.97% 6.05% 9.22% 

3-Fund Max (%) 34.97% 1.28% 99.97% 74.29% 48.10% 71.34% 85.26% 68.89% 35.50% 

 Min (%) 0.01% 0.02% 64.77% 1.63% 0.12% 25.56% 6.17% 1.54% 12.74% 

 

Table 8: The portfolio weights of the out-of-sample optimized portfolios.  ‘Mean’ denotes the average portfolio weight while ‘Std’ 
denotes the associated standard deviation of the portfolio weight.  ‘Maximum’ refers to the maximum portfolio share allocated to that 
asset while ‘minimum’ refers the minimum portfolio share allocated to that asset.  All figures are reported in percentages. 
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  =2 =5 =10 

Method Metric benchmark (+Bitcoin) benchmark (+Bitcoin) benchmark (+Bitcoin) 

 Sharpe Ratio 1.1759 1.5389 1.1740 1.6537 1.1159 1.7299 

Markowitz Omega Ratio 1.5846 2.0392 1.5836 2.2889 1.5516 2.2353 

  Sortino Ratio 1.8765 3.3566 1.8732 3.7705 1.7517 3.8053 

 Sharpe Ratio 0.7776 1.5579 0.7772 1.5843 0.7543 1.6321 

Markowitz (Gens) Omega Ratio 1.3614 1.9671 1.3612 2.1870 1.3502 2.1574 

  Sortino Ratio 1.1973 3.2852 1.1967 3.5494 1.1548 3.5572 

 Sharpe Ratio 1.1502 1.5444 1.1164 1.6550 0.8850 1.6528 

Bayes-Stein Omega Ratio 1.5712 2.1044 1.5605 2.2015 1.4369 2.1035 

  Sortino Ratio 1.8266 3.4230 1.7676 3.6087 1.3200 3.4334 

 Sharpe Ratio 0.7537 1.5398 0.7361 1.5566 0.5670 1.5753 

Bayes-Stein (Gens) Omega Ratio 1.3500 1.9674 1.3447 2.1260 1.2642 2.0218 

  Sortino Ratio 1.1558 3.2567 1.1285 3.3535 0.8413 3.2194 

 Sharpe Ratio 1.0899 1.7119 0.8561 1.6786 0.5543 1.6279 

Black-Litterman Omega Ratio 1.5333 2.1434 1.4087 2.0767 1.2578 2.0191 

  Sortino Ratio 1.7114 3.7379 1.3065 3.5850 0.8384 3.4269 

 Sharpe Ratio -0.0859 1.4452 -0.0859 1.4452 -0.0859 1.4452 

Min-Variance (Gens) Omega Ratio 0.9945 1.8520 0.9945 1.8520 0.9945 1.8520 

  Sortino Ratio -0.1324 2.9516 -0.1324 2.9516 -0.1324 2.9516 

 Sharpe Ratio 0.0857 1.5208 0.0857 1.5208 0.0857 1.5208 

1/N Omega Ratio 1.0496 1.8993 1.0496 1.8993 1.0496 1.8993 

  Sortino Ratio 0.1332 3.1210 0.1332 3.1210 0.1332 3.1210 

 Sharpe Ratio 1.1742 1.5368 1.1711 1.6549 1.1113 1.7246 

3-Fund Omega Ratio 1.5836 2.0384 1.5819 2.2827 1.5489 2.2296 

  Sortino Ratio 1.8734 3.3511 1.8674 3.7651 1.7428 3.7921 

 

Table 9: The results of the 52-week expanding window for both the mean and variance covariance matrix with commodities added 
to the original stock-bond portfolio. 'Sharpe Ratio' and 'Sortino Ratio' show the annualized Sharpe and Sortino ratios. 
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    λ=2 λ=5 λ=10 

Method Metric Equity Bonds Com Bitcoin Equity Bonds Com Bitcoin Equity Bonds Com Bitcoin 

 Mean (%) 18.50% 0.24% 0.13% 81.13% 64.34% 1.30% 0.04% 34.32% 72.80% 10.24% 0.08% 16.89% 

 Std. Dev (%) 11.76% 0.15% 0.08% 11.89% 13.27% 5.92% 0.13% 9.57% 18.13% 14.35% 0.19% 4.69% 

Markowitz Max (%) 34.60% 0.47% 0.29% 99.99% 74.38% 46.19% 0.78% 72.88% 86.75% 69.98% 0.91% 36.11% 

 Min (%) 0.00% 0.00% 0.00% 64.92% 2.45% 0.00% 0.00% 25.57% 3.80% 0.04% 0.01% 12.44% 

  Mean (%) 12.56% 12.53% 12.52% 62.39% 40.27% 12.96% 12.61% 34.16% 53.90% 16.47% 12.62% 17.01% 

 Std. Dev (%) 0.10% 0.05% 0.03% 0.17% 9.44% 1.42% 0.13% 8.70% 12.36% 8.44% 0.16% 4.63% 

Markowitz with Gens Max (%) 13.01% 12.69% 12.61% 62.50% 49.25% 24.45% 13.04% 62.42% 62.15% 50.66% 13.22% 36.10% 

 Min (%) 12.50% 12.50% 12.50% 61.71% 12.53% 12.50% 12.50% 25.62% 12.69% 12.50% 12.51% 12.84% 

  Mean (%) 33.55% 1.08% 0.22% 65.14% 69.77% 4.15% 0.13% 25.94% 63.33% 23.74% 0.12% 12.81% 

 Std. Dev (%) 11.07% 4.00% 0.15% 10.54% 15.30% 12.94% 0.30% 5.12% 17.70% 16.50% 0.26% 2.55% 

Bayes-Stein Max (%) 48.35% 37.26% 1.35% 99.98% 79.64% 69.54% 1.81% 52.30% 83.67% 80.81% 1.60% 25.95% 

 Min (%) 0.01% 0.00% 0.00% 51.53% 5.82% 0.00% 0.00% 20.32% 6.26% 1.70% 0.01% 9.95% 

  Mean (%) 15.18% 12.69% 12.61% 59.52% 46.58% 14.73% 12.66% 26.03% 50.65% 23.03% 12.67% 13.64% 

 Std. Dev (%) 3.22% 0.38% 0.14% 3.33% 9.51% 7.16% 0.24% 5.16% 13.32% 12.28% 0.20% 2.09% 

Bayes-Stein with Gens Max (%) 23.04% 17.06% 13.55% 62.49% 54.42% 52.68% 13.76% 52.71% 62.36% 62.37% 13.41% 26.11% 

 Min (%) 12.50% 12.50% 12.50% 51.40% 12.88% 12.50% 12.50% 20.39% 12.56% 12.51% 12.50% 12.50% 

  Mean (%) 61.56% 6.84% 2.28% 29.33% 45.33% 25.49% 6.15% 23.03% 35.02% 33.27% 10.77% 20.94% 

 Std. Dev (%) 9.26% 5.58% 2.11% 2.84% 5.66% 3.46% 2.94% 1.11% 3.36% 1.99% 2.55% 0.54% 

Black-Littermann Max (%) 70.18% 33.03% 10.43% 40.72% 52.75% 38.11% 14.50% 27.60% 41.00% 39.90% 16.26% 23.17% 

 Min (%) 22.50% 0.27% 0.03% 26.77% 22.32% 19.80% 1.62% 22.05% 21.92% 29.81% 3.83% 20.47% 

  Mean (%) 14.67% 58.14% 14.61% 12.59% 14.67% 58.14% 14.61% 12.59% 14.67% 58.14% 14.61% 12.59% 

 Std. Dev (%) 1.22% 2.51% 1.28% 0.07% 1.22% 2.51% 1.28% 0.07% 1.22% 2.51% 1.28% 0.07% 

Min-Variance with Gens Max (%) 17.42% 62.29% 16.49% 12.80% 17.42% 62.29% 16.49% 12.80% 17.42% 62.29% 16.49% 12.80% 

 Min (%) 12.59% 53.42% 12.60% 12.51% 12.59% 53.42% 12.60% 12.51% 12.59% 53.42% 12.60% 12.51% 

  Mean (%) 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 

 Std. Dev (%) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1/N Max (%) 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 

 Min (%) 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 

  Mean (%) 18.49% 0.48% 0.23% 80.80% 64.15% 1.58% 0.13% 34.13% 71.83% 11.15% 0.31% 16.71% 

 Std. Dev (%) 11.71% 0.33% 0.14% 11.96% 13.31% 6.04% 0.24% 9.27% 17.88% 14.15% 0.35% 4.58% 

3-Fund Max (%) 34.59% 1.23% 0.46% 99.96% 74.29% 46.74% 1.52% 71.90% 86.01% 70.12% 2.32% 35.56% 

 Min (%) 0.01% 0.02% 0.01% 64.85% 2.61% 0.06% 0.02% 25.54% 3.81% 0.56% 0.05% 12.38% 

 

Table 10: The portfolio weights of the out-of-sample optimized portfolios when commodities is included.  ‘Mean’ denotes the average portfolio 
weight while ‘Std’ denotes the associated standard deviation of the portfolio weight.  ‘Maximum’ refers to the maximum portfolio share allocated 
to that asset while ‘minimum’ refers the minimum portfolio share allocated to that asset.  All figures are reported in percentages. 
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  =2 =5 =10 

Method Metric benchmark (+Bitcoin) benchmark (+Bitcoin) benchmark (+Bitcoin) 

 Sharpe Ratio 1.3309 1.5992 1.3307 1.7583 1.3220 1.9003 

Markowitz Omega Ratio 1.5973 1.7505 1.5972 1.8670 1.5924 1.9627 

  Sortino Ratio 2.5611 3.1411 2.5607 3.4430 2.5379 3.7439 

 Sharpe Ratio 1.3206 1.6223 1.3206 1.7135 1.3191 1.8786 

Markowitz (Gens) Omega Ratio 1.5966 1.7618 1.5965 1.8361 1.5958 1.9406 

  Sortino Ratio 2.5456 3.2128 2.5455 3.3464 2.5419 3.7216 

 Sharpe Ratio 1.3246 1.6048 1.3193 1.7963 1.2788 1.9039 

Bayes-Stein Omega Ratio 1.5938 1.7543 1.5913 1.8829 1.5730 1.9603 

  Sortino Ratio 2.5446 3.1453 2.5287 3.5412 2.4248 3.7595 

 Sharpe Ratio 1.3159 1.6182 1.3134 1.7477 1.2999 1.8959 

Bayes-Stein (Gens) Omega Ratio 1.5940 1.7598 1.5926 1.8523 1.5860 1.9466 

  Sortino Ratio 2.5337 3.2002 2.5254 3.4368 2.4898 3.7797 

 Sharpe Ratio 1.3107 1.7759 1.2925 1.7604 1.2694 1.7371 

Black-Litterman Omega Ratio 1.5872 1.8639 1.5842 1.8540 1.5771 1.8388 

  Sortino Ratio 2.5127 3.5271 2.4847 3.4997 2.4419 3.4518 

 Sharpe Ratio 1.0358 1.6981 1.0358 1.6981 1.0358 1.6981 

Min-Variance (Gens) Omega Ratio 1.4714 1.8170 1.4714 1.8170 1.4714 1.8170 

  Sortino Ratio 1.9628 3.3653 1.9628 3.3653 1.9628 3.3653 

 Sharpe Ratio 1.2682 1.7039 1.2682 1.7039 1.2682 1.7039 

1/N Omega Ratio 1.5781 1.8159 1.5781 1.8159 1.5781 1.8159 

  Sortino Ratio 2.4428 3.3852 2.4428 3.3852 2.4428 3.3852 

 Sharpe Ratio 1.3307 1.6001 1.3302 1.7596 1.3189 1.8923 

3-Fund Omega Ratio 1.5972 1.7510 1.5970 1.8670 1.5915 1.9561 

  Sortino Ratio 2.5606 3.1438 2.5595 3.4495 2.5299 3.7283 

 

Table 11: The results of the 52-week expanding window for both the mean and variance covariance matrix with no transaction 
costs and weekly rebalancing by using 2,000 simulated data. 'Sharpe Ratio' and 'Sortino Ratio' show the annualized Sharpe and 
Sortino ratios. 



 37 

 

  

    =2 =5 =10 

Method Metric benchmark (+CRIX) benchmark (+CRIX) benchmark (+CRIX) 

 Sharpe Ratio 0.8556 1.4091 0.7371 1.4652 0.6352 1.4847 

Markowitz Omega Ratio 1.4348 1.8937 1.3787 1.8914 1.3568 1.9195 

  Sortino Ratio 1.2443 2.8324 1.0258 2.8351 0.8514 2.7187 

 Sharpe Ratio 0.8335 1.6062 0.7533 1.6368 0.6744 1.8510 

Markowitz (Gens) Omega Ratio 1.4344 2.0014 1.3936 1.9897 1.3727 2.0825 

  Sortino Ratio 1.2058 3.3084 1.0551 3.2112 0.9102 3.4798 

 Sharpe Ratio 0.8053 1.1787 0.5441 1.2808 0.3430 1.2273 

Bayes-Stein Omega Ratio 1.4626 1.8130 1.3462 1.8902 1.2399 1.8225 

  Sortino Ratio 1.1304 2.2152 0.7211 2.3601 0.4484 2.1012 

 Sharpe Ratio 0.8069 1.4087 0.7432 1.6506 0.5254 1.9043 

Bayes-Stein (Gens) Omega Ratio 1.4481 1.8980 1.4345 2.0167 1.3207 2.1418 

  Sortino Ratio 1.1244 2.7597 1.0238 3.0843 0.7080 3.5792 

 Sharpe Ratio 0.7805 1.8539 0.7556 1.9138 0.7247 1.9326 

Black-Litterman Omega Ratio 1.4122 2.1046 1.4130 2.1327 1.4032 2.1396 

  Sortino Ratio 1.0873 3.6685 1.0577 3.7961 1.0189 3.8502 

 Sharpe Ratio 0.4487 1.9239 0.4487 1.9239 0.4487 1.9239 

Min-Variance (Gens) Omega Ratio 1.2823 2.1251 1.2823 2.1251 1.2823 2.1251 

  Sortino Ratio 0.6330 3.8071 0.6330 3.8071 0.6330 3.8071 

 Sharpe Ratio 0.7857 1.9640 0.7857 1.9640 0.7857 1.9640 

1/N Omega Ratio 1.4336 2.1541 1.4336 2.1541 1.4336 2.1541 

  Sortino Ratio 1.1318 3.9578 1.1318 3.9578 1.1318 3.9578 

 Sharpe Ratio 0.8463 1.4118 0.7344 1.4667 0.5894 1.4966 

3-Fund Omega Ratio 1.4297 1.8988 1.3822 1.8994 1.3361 1.9364 

  Sortino Ratio 1.2210 2.8426 1.0141 2.8376 0.7828 2.7491 

 

Table 12: The results of the 52-week expanding window for the CRIX index both the mean and variance covariance matrix with no 
transaction costs and weekly rebalancing. 'Sharpe Ratio' and 'Sortino Ratio' show the annualized Sharpe and Sortino ratios. 



 38 

 
  

    =2 =5 =10 

Method Metric benchmark (+Bitcoin) benchmark (+Bitcoin) benchmark (+Bitcoin) 

 Sharpe Ratio 1.0888 1.7316 1.0747 1.7255 1.0398 1.7110 

Markowitz Omega Ratio 1.5334 2.2156 1.5284 2.2132 1.5114 2.2005 

  Sortino Ratio 1.6840 3.7525 1.6546 3.7415 1.5924 3.7089 

 Sharpe Ratio 1.1366 1.5807 1.1363 1.6291 1.1216 1.7548 

Markowitz (Gens) Omega Ratio 1.5658 1.9891 1.5656 2.2612 1.5575 2.2707 

  Sortino Ratio 1.8014 3.3589 1.8007 3.7023 1.7709 3.9046 

 Sharpe Ratio 0.9562 1.6779 0.9259 1.6687 0.8535 1.6466 

Bayes-Stein Omega Ratio 1.4704 2.1543 1.4569 2.1490 1.4225 2.1255 

  Sortino Ratio 1.4263 3.5239 1.3731 3.5058 1.2596 3.4559 

 Sharpe Ratio 1.1220 1.5567 1.1000 1.6113 0.9277 1.7106 

Bayes-Stein (Gens) Omega Ratio 1.5584 2.0052 1.5508 2.2145 1.4587 2.1265 

  Sortino Ratio 1.7727 3.3518 1.7340 3.5525 1.3989 3.6165 

 Sharpe Ratio 1.0863 1.7103 1.0440 1.6807 1.0036 1.6633 

Black-Litterman Omega Ratio 1.5346 2.1336 1.5174 2.0920 1.4994 2.0664 

  Sortino Ratio 1.6867 3.7311 1.6200 3.6356 1.5571 3.5827 

 Sharpe Ratio 0.6478 1.6082 0.6478 1.6082 0.6478 1.6082 

Min-Variance (Gens) Omega Ratio 1.3243 1.9993 1.3243 1.9993 1.3243 1.9993 

  Sortino Ratio 0.9948 3.4490 0.9948 3.4490 0.9948 3.4490 

 Sharpe Ratio 1.0254 1.6471 1.0254 1.6471 1.0254 1.6471 

1/N Omega Ratio 1.5126 2.0393 1.5126 2.0393 1.5126 2.0393 

  Sortino Ratio 1.6038 3.5260 1.6038 3.5260 1.6038 3.5260 

 Sharpe Ratio 1.0892 1.7324 1.0747 1.7249 1.0389 1.7093 

3-Fund Omega Ratio 1.5337 2.2168 1.5284 2.2139 1.5109 2.1967 

  Sortino Ratio 1.6849 3.7552 1.6546 3.7423 1.5906 3.6968 

 

Table 13: The results of the 52-week expanding window for both the mean and variance covariance matrix with no transaction costs, 
weekly rebalancing and by allowing for short-selling. 'Sharpe Ratio' and 'Sortino Ratio' show the annualized Sharpe and Sortino 
ratios. 
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Figure 1: The dynamic conditional correlations of an AR(1)-GARCH(1,1) model between the S&P500 and two Bitcoin 

prices, as well as the U.S. bonds and the two Bitcoin prices.  
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Figure 2: Time-series plot of the price of Bitstamp. 
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Figure 3: The out-of-sample Sharpe ratios for the 52-week expanding window for the traditional stock-bond 
portfolio and the traditional portfolio including Bitcoin for the Markowitz model. 


