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Data compression in the presence of observational error
correlations

By A.M. FOWLER1,2�, 1Department of Meteorology, University of Reading, Reading, UK; 2National
Centre for Earth Observation, University of Reading, Reading, UK

(Manuscript received 20 August 2018; in final form 10 June 2019)

ABSTRACT
Numerical weather prediction (NWP) models are moving towards km-scale (and smaller) resolutions in order
to forecast high-impact weather. As the resolution of NWP models increase the need for high-resolution
observations to constrain these models also increases. A major hurdle to the assimilation of dense
observations in NWP is the presence of non-negligible observation error correlations (OECs). Despite the
difficulty in estimating these error correlations, progress is being made, with centres around the world now
explicitly accounting for OECs in a variety of observation types. This paper explores how to make efficient
use of this potentially dramatic increase in the amount of data available for assimilation. In an idealised
framework it is illustrated that as the length-scales of the OECs increase the scales that the analysis is most
sensitive to the observations become smaller. This implies that a denser network of observations is more
beneficial with increasing OEC length-scales. However, the computational and storage burden associated with
such a dense network may not be feasible. To reduce the amount of data, a compression technique based on
retaining the maximum information content of the observations can be used. When the OEC length-scales
are large (in comparison to the prior error correlations), the data compression will select observations of the
smaller scales for assimilation whilst throwing out the larger scale information. In this case it is shown that
there is a discrepancy between the observations with the maximum information and those that minimise the
analysis error variances. Experiments are performed using the Ensemble Kalman Filter and the Lorenz-1996
model, comparing different forms of data reduction. It is found that as the OEC length-scales increase the
assimilation becomes more sensitive to the choice of data reduction technique.

Keywords: observation network design, data assimilation, degrees of freedom for signal, mutual information

1. Introduction

In numerical weather prediction (NWP), the assimilation
of observations and prior information (commonly
referred to as the background) is performed routinely to
find the most probable state of the atmosphere repre-
sented on the model grid. Data assimilation (DA) has
proven to be essential for accurate weather forecasting by
providing the initial conditions for NWP (Rabier et al.,
2000; Rawlins et al., 2007).

With increasing computer power, the resolution of
NWP models are increasing with the aim of improving
the accuracy of high-impact small-scale events. In
order to constrain these models there is an increasing
need for higher spatial and temporal resolution obser-
vations. These observational needs may potentially be
met by the next generation of geostationary satellites

(e.g. Advanced Himawari Imager onboard Himawari-8,
The Infrared Sounder onboard MTG-S) and phased
array weather Radars (Miyoshi et al., 2016). However,
there are currently many factors limiting the use of the
large datasets produced by these observations. These
include issues with data storage, computational time
and complications caused by correlated errors, which
are difficult to estimate and complicate the DA algo-
rithms (Liu and Rabier, 2003). To address these issues
observations are commonly thinned (both spatially,
temporally and spectrally) (e.g. Rabier et al., 2002;
Dando et al., 2007; Migliorini, 2015; Fowler, 2017)
and ‘super-obbed’ (Berger and Forsythe, 2004; van
Leeuwen, 2015). Variances are also commonly inflated
(Hilton et al., 2009) to reduce the impact of the sub-
optimal use of observations that are known to have
correlated errors not represented during the
assimilation.*Corresponding author. e-mail: a.m.fowler@reading.ac.uk
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The main hurdle to the use of observation error corre-
lations (OECs) in DA is the difficulty in estimating them
as they are often attributed to uncertainty in the compari-
son of the observations to the model variables, known as
representation error, rather than instrument noise (see
Janjic et al., 2017 and references there in). As such they
can be state and model dependent (Waller et al., 2014)
and are predominantly found in observation types with
complex observation operators (such as satellite radiances
Bormann and Bauer, 2010; Stewart et al., 2014; Waller
et al., 2016a; Bormann et al., 2016; Campbell et al.,
2017), observation types measuring features with natural
length- and time-scales that are different to those resolved
by the model (e.g. Doppler radial winds Waller et al.,
2016b), and high level observation products which go
through a large amount of preprocessing (e.g. atmos-
pheric motion vectors (AMVs) derived from satellite radi-
ances Bormann et al., 2003; Cordoba et al., 2017).
However, progress is being made in estimating and allow-
ing for the presence of correlated observation errors in
DA operationally (e.g. Weston et al. 2014; Bormann
et al., 2016; Campbell et al., 2017), potentially facilitating
the assimilation of much denser observations. This barrier
to the use of dense observations is therefore reducing,
however issues with computational effort still remain.

Instead of regular thinning, the compression of the
data may allow for much of the information within the
observations to be retained while still reducing the com-
putational cost of assimilating the data. Data compres-
sion, via principle component analysis, has previously
been suggested and tested on hyper-spectral satellite
instruments such as AIRS and IASI (Collard et al.,
2010). It is generally found that the atmospheric signal
contained in the original spectrum of a few thousand
radiances can be represented by about 200 globally gener-
ated principal components (Goldberg et al., 2003).
However, the observations that provide the greatest con-
straint for estimating the initial state depend not only on
the observations and their uncertainty but also on the
information already provided by the prior. This is
acknowledged in channel selection methods, which use
metrics such as mutual information and degrees of free-
dom for signal to choose a subset of the most informative
channels for selection based on a typical prior error
covariance matrix (e.g. Rabier et al. 2002; Migliorini,
2015; Fowler, 2017). However, the prior error covariance
matrix can be highly flow dependent, as such the infor-
mation content of the observations will also be flow
dependent. This flow-dependency is naturally represented
by DA methods based on the Ensemble Kalman Filter.

Other methods for intelligent network design include
adaptive methods such as targeted observations. These
methods depend not only on the observation and prior

uncertainty but also on the error growth in the forecast
model. This allows regions to be identified where add-
itional observations would reduce the forecast error. A
variety of techniques have been developed to measure the
forecast sensitivity to perturbations to the initial condi-
tions, including those based on the forecast adjoint
model, singular vectors and ensemble techniques (see
review by Majumdar, 2016).

For high-resolution forecasting, which is the focus of
this paper, nested grids are often used with lead-times of
0� 12 h. For example, the UK Met Office runs a nested
grid over the UK at a resolution of 1.5 km concentrating
on precipitation forecasts out to 6 h (Li et al., 2018).
Rapid up-date forecasting systems are also under devel-
opment at centres such as RIKEN-Center for
Computational Science, that perform DA at resolutions
up to 100m on a local domain in order to produce
30min forecasts (Miyoshi et al., 2016). At these shorter
lead times, the influence of the observation on the ana-
lysis, rather than the forecast, becomes more insightful in
defining an optimal data compression strategy.

This work demonstrates how spatially correlated obser-
vation errors affect the influence of the observations on
the analysis. In turn this is used to explain how spatially
correlated observation errors affect the use of data reduc-
tion techniques within the ensemble Kalman Filter.

It is known that observations with correlated errors
provide more information about small-scale features than
observations with uncorrelated error (Seaman, 1977;
Rainwater et al., 2015; Fowler et al., 2018). As such the
use of dense observations is shown in this manuscript to
be much more beneficial when the errors are correlated
than when they are uncorrelated. This contradicts previ-
ous results of Liu and Rabier (2002) and Bergman and
Bonner (1976), which both showed that even when OECs
are correctly modelled, as the density of observations
with correlated error is increased the reduction in analysis
root mean square error (RMSE) is smaller than when the
observation errors are uncorrelated. In Fowler et al.
(2018), this result was shown to depend upon not only
the OECs but how close the likelihood probability distri-
bution function (PDF) structure (representing the uncer-
tainty in the observations) is to the structure of the prior
PDF. It is only when increasing the OECs brings the like-
lihood PDF more in line with the prior PDF that the
observations have a reduced ability to correct the analysis
RMSE. In addition to this it was shown in Fowler et al.
(2018) that the analysis RMSE (or analysis error vari-
ance) only gives a partial measure of the effect of allow-
ing for OECs in the assimilation, and as will be
demonstrated further here, is more sensitive to large scale
corrections than small-scale corrections.
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This manuscript is organised as follows. In Section 2,
the DA theory at the heart of the ensemble Kalman filter
(EnKF) is presented. In Section 3, a method of optimal
data compression, based on that of Xu (2007) and
Migliorini (2013), is presented in which the observations
retained have maximum information content. In Section
3.1, the impact of the OEC length-scale on the data com-
pression is explored in a simplified framework. Then in
Section 3.1, experiments are performed with the Lorenz
1996 model using the EnKF, comparing different strat-
egies for data reduction.

2. Ensemble Kalman filter

Flavours of the EnKF, which merges Kalman filter the-
ory with Monte Carlo estimation methods (Evensen,
1994), are currently in use at many operational centres
(see review by Houtekamer and Zhang, 2016).

The EnKF makes the assumption that both the back-
ground, xb 2 R

n; and observation, y 2 R
p; errors are

unbiased and Gaussian.

xb �xt �N 0;Bð Þ; (1)

y� h xtð Þ�N 0;Rð Þ; (2)

where xt 2 R
n represents the truth in state space. B 2

R
n�n and R 2 R

p�p are the prior and observation error
covariance matrices, respectively. h : Rn ! R

p is the
observation operator (the mapping from state to observa-
tion space). These assumptions lead to an analytical form
for the analysis, xa (the state that maximises the posterior
probability)

xa ¼ xb þ K y� h xbð Þ� �
: (3)

The matrix K 2 R
n�p is known as the Kalman gain

and can be given by

K ¼ B� 1 þHTR� 1Hð Þ� 1
HTR� 1; (4)

where H 2 R
p�n is the observation operator linearised

about the best estimate of the state.
The analysis error covariance matrix, Pa 2 R

n�n; can
be shown to be the inverse of the sum of the background
and observation accuracies in state space (B� 1 and
HTR� 1H; respectively),

Pa ¼ B� 1 þHTR� 1Hð Þ� 1
: (5)

See chapter 5 of Kalnay (2003) for a derivation of
Eqs. (3)–(5).

In the EnKF the prior uncertainty is represented by an
ensemble of model realisations, xf 2 R

n�N where N is the
size of the ensemble. The ensemble mean, �xf 2 R

n; is
computed as �xf ¼ 1

N

PN
j¼1 x

f
j : The perturbation matrix is

given by Xf ¼ xf � x�f1N ; where 1N is a row vector of
length N with each element given by 1.

An approximation to the background error covariance
matrix is then given by B� 1

N� 1X
fðXfÞT: Note that if

N � n then this is rank deficient and non-invertible. In an
attempt to regularise the ensemble estimate of B (and in
turn expand the directions that the observations can
update the prior estimate) ad-hoc localisation and infla-
tion are often performed (Hamill et al., 2001; Oke et al.,
2007). For the idealised experiments shown here, these
techniques are not necessary and a study of their impact
will be left for future work.

At the time of the observations, the ensemble is
updated given the observation values and the observation
error covariance matrix. The updated ensemble mean is a
linear combination of the prior mean and the observa-
tions, analogous to (3),

�xa ¼ �xf þ K y� h �xfð Þ� �
: (6)

The Kalman gain is now approximated as

K ¼ Xf N � 1ð ÞIN þ Yfð ÞTR� 1Yf
� �� 1

Yfð ÞTR� 1; (7)

where Yf ¼ HXf is the perturbation matrix transformed
to observation space.

The updated ensemble perturbation matrix can be
given by Hunt et al. (2007)

Xa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1ð Þ

p
Xb N � 1ð ÞIN þ Yfð ÞTR� 1Yf

� �� 1=2

:

(8)

An approximation to the analysis error covariance
matrix (5) is then given by Pa � 1

N� 1X
aðXaÞT: Equations

(6) and (8) allow the updated ensemble to be recon-
structed xa ¼ Xa þ �xa1N : The updated ensemble is then
propagated forward using the model equations and sto-
chastic forcing (to represent model error) to the time of
the next assimilation step.

3. Information content of observations and data
compression

The information content of the observations at each
assimilation time can be related to the sensitivity of the
analysis (the updated ensemble mean) to the observations.
This is given by the influence matrix, S 2 R

p�p;

S ¼ @h xað Þ
@y

¼ KTHT (9)

Cardinali et al. (2004).
A scalar summary of the influence matrix is then com-

monly given by two quantities; the degrees of freedom
for signal, DFS, and entropy reduction, ER (also known
as mutual information, and Shannon information content

INFORMATION-AWARE DATA COMPRESSION 3



(e.g. Huang and Purser, 1996; Rodgers, 2000; Fowler
et al., 2018).

The DFS is commonly defined as
E½ðxa � xbÞTB� 1ðxa � xbÞ�; where E½v� is the expectation
of v. In an optimal system this is equivalent to

DFS ¼ trace Sð Þ ¼
Xp� 1

k¼0

ksk; (10)

where ksk is the kth eigenvalue of S (Rodgers, 2000).
The ER is defined as the reduction in entropy from the

prior to the posterior, where entropy of a PDF is given by

H xð Þ ¼ �
ð
P xð Þ ln P xð Þð Þ x

:
: (11)

When x follows an unbiased Gaussian distribution,
Nð0;RÞ; the entropy can be evaluated as

H xð Þ ¼ 1
2
ln j2peRj: (12)

Therefore, in an optimal system ER is given by

ER ¼ H xð Þ�H xjyð Þ
¼ 0:5 ln det B Pað Þ� 1

� �
¼ � 0:5 ln det I�Sð Þ
¼ � 0:5

Xp� 1

k¼0

ln 1� ksk
� �

:

(13)

From equations (10) and (13) we see that, the observa-
tions associated with the largest eigenvalues of S have the
greatest information content as measured by both DFS
and ER.

The number of non-zero eigenvalues of S will be
bounded above by minðN; n; pÞ: In most practical applica-
tions this will be given by the ensemble size N
(Migliorini, 2013). The use of localisation could help to
increase this bound by increasing the rank of the ensem-
ble estimate of B:

Let M ¼ R� 1=2HB1=2 � 1ffiffiffiffiffiffiffiffiffiffiffi
ðN� 1Þ

p R� 1=2Yf : It can be
shown that

DFS ¼ trace MMT IþMMTð Þ� 1
� �

; (14)

and

ER ¼ 0:5 ln det IþMMTð Þ: (15)

Therefore, the left singular vector of M can be used to
compress the observations with minimum information
loss (Xu et al., 2009).

Let the compression matrix C 2 R
pc�p be given by

C ¼ IcUTR� 1=2; (16)

where U is a matrix whose columns contain the eigen vec-
tors of MMT ¼ UKM2

UT ordered with respect to the mag-
nitude of the eigenvalues. Ic 2 R

pc�p is a matrix of zeros
except for the elements Ickk;8k ¼ 1; . . . ; pc; which are equal

to one. The size of pc can be chosen to fulfil some criterion
of desirable information loss. For example, In Migliorini
(2013), a threshold on the singular values of M (a measure
of the signal-to-noise ratio) was used to decide the number
of compressed observations to be assimilated.

The observation operator that transforms the state to
the space of the compressed observations then becomes

hc xð Þ ¼ Ch xð Þ: (17)

The assimilated compressed observations are

yc ¼ Cy: (18)

The error covariance matrix for the compressed obser-
vations is

Rc ¼ CRCT; (19)

which in this case is IcðIcÞT ¼ Ipc :

3.1. Idealised circulant framework

A natural framework for understanding the effect of corre-
lated observation error on the optimal compression of data
makes use of circulant matrices. That is the error covarian-
ces are assumed to be homogeneous and isotropic. This
allows the correlation structure to be described by a single
correlation function. In this case matrices of the same
dimension have common eigenvectors given by the discrete
Fourier basis, F; and the eigenvalues are ordered according
to wavenumber (Gray, 2006).

Let us assume that the state is directly observed such
that H ¼ In and B ¼ bFCFT;R ¼ qFWFT; where C and W
are diagonal matrices containing the eigenvalues of the
prior and observation error correlations respectively.
Then we can express the eigenvalues of MMT as

kM
2

k ¼ bck=qwk; (20)

where bck and qwk are the kth eigenvalue of B and R,
respectively. The eigenvectors of MMT are given by F:

If instead of ordering the eigenvalues with respect to
wavenumber we order them in descending order of mag-
nitude of kM

2
then we can express the DFS and ER in

terms of a truncation of the first pc<p compressed obser-
vations. Let these be referred to as DFSc and ERc:

DFSc ¼
Xpc
k¼1

kM
2

k = 1þ kM
2

k

� �
; (21)

ERc ¼
Xpc
k¼1

ln 1þ kM
2

k

� �1=2
: (22)

As the ratio b=q is independent of the kth wavenumber,
the choice of data compression will depend only on the spec-
trum of the error correlations and not on their variances.

Similarly we can give an expression for traceðB�PaÞ
(approximately the reduction in ensemble spread) arising

4 A. M. FOWLER



from assimilating the first pc compressed observations,

trace B�Pað Þc ¼
Xpc
k¼1

bckk
M2

k

1þ kM
2

k

: (23)

In this simple framework, we see that compressing the
observations with respect to the largest eigenvalues of
MMT (or equivalently S) will not necessarily ensure that
the observations that have the greatest effect on reducing
the ensemble spread are also selected. This will depend
on the eigenvalues of B: In the case of uncorrelated
observation errors, this discrepancy between the observa-
tions with the maximum information and those that min-
imise the analysis error variances is not present, as in this
case wk ¼ 1;8k and so kM

2

k / ck:

3.2. Simple numerical illustration

In the following experiments, a simple circular domain is
considered of length 64p; discretised into 32 evenly
spaced points. The state is observed directly at each grid
point. The circulant R and B matrices are characterised
by a SOAR (Second-Order Auto-Regressive) function

with length-scales LR and LB; respectively. The SOAR
function is defined as

cm ¼ 1þ rm=Lð Þe� rm=L; (24)

where rm is the distance between two points and L is the
correlation length-scale. The error variances are assumed
to be 1 for both the prior and observations.

In each of the following experiments, LB ¼ 5: This
results in correlations greater than 0.2 out to six grid points
and an entropy of the prior, given by 0:5 ln j2peBj; of 36.1
(to 3 significant digits). The top panels of Figs. 1–3 show
the eigenvalues of R (blue triangles) andHBHT (red circles)
as a function of wavenumber. LR ¼ 0:1 (Fig. 1), LR ¼ 5
(Fig. 2) and LR ¼ 10 (Fig. 3). This range of length-scales in
R in relation to the length-scales in B could be representa-
tive of different observations. For example, whilst radio-
sonde observations may be thought to have spatially
uncorrelated errors, AMVs could have much larger spa-
tially correlated length-scales in their errors than in B (see
e.g. Cordoba et al., 2017). The ratio of the length-scales in
R to those in B could also vary as balances in the model
breakdown. For example during a convective event, the

Fig. 1. Top: Eigenvalues of MMT (20) (yellow line), R (blue triangles) and B (red circles) for the case of SOAR correlation functions
with LB ¼ 5 and LR ¼ 0:1: Also plotted are the eigenvalues of Pa (purple crosses) when compressed observations retaining 75% of the
total ER are assimilated (13 compressed observations in this case). Bottom: ERc (left), DFSc (middle) and traceðB�PaÞc (right) as a
function of the number of compressed observations ordered according to the eigenvalues of MMT: The dashed lines indicate the number
of compressed observations needed to achieve 75% of the total value. These numbers are also given in Table 1.

INFORMATION-AWARE DATA COMPRESSION 5



prior error correlations length-scales represented by the
ensemble may reduce such that they are shorter than those
in R.

When LR ¼ 0:1;R� I and we see that the observation
uncertainty is 1 at all scales. As the length-scale in R
increases the uncertainty of the observations increases at
small wave numbers and decreases at large wave numbers.
This is consistent with observations with correlated errors
providing more information about smaller scales and less
about larger scales than observation without correlated errors
(Seaman, 1977; Rainwater et al., 2015; Fowler et al., 2018).

Also plotted in the top panels of Figs. 1–3 are the
eigenvalues of MMT (yellow line). When LR<LB (Fig. 1)
we see that the eigenvalues of MMT are greater at small
wave numbers and hence large-scale features will be fav-
oured by the data compression. However, when LR>LB

(Fig. 3) we see that the eigenvalues of MMT are greater
at large wave numbers and hence small-scale features will
be favoured by the data compression. When LR ¼ LB

(Fig. 2) the eigenvalues of MMT are constant (i.e. the
observations provide the same information about all
scales). Therefore, the scales chosen by the data compres-
sion are arbitrary.

In the bottom panels of Figs. 1–3, ERc (left) and DFSc

(middle) are shown as a function of the number of com-
pressed observations ordered according to the magnitude
of kM. The dashed lines indicate the number of com-
pressed observations needed to achieve 75% of the total
value. These numbers are also given in Table 1.

If we first compare the values of ERc and DFSc when
all 32 observations are assimilated we see that both ER
and DFS increase as the length-scales in R increases. This
is explained in detail in Fowler et al. (2018).

When LR 6¼ LB; the information content of the obser-
vations initially rises quickly as the number of com-
pressed observations are increased before slowly
plateauing as additional observations bring little new
information. This means that in these cases less than 75%
of the compressed observations are needed to achieve
75% of the information of the total observations. This is
obviously not the case when LR ¼ LB; in which case the
information content is proportional to the number of
compressed observations.

In the last panel of Figs. 1–3, trðB�PaÞ is shown as a
function of the number of compressed observations, again
ordered according to the magnitude of kM. Again the

Fig. 2. As in Fig. 1 but for LR ¼ 5: The black line of the last panel shows trðB�PaÞc as a function of the number of compressed
observations when the assimilation is performed using large-scale observations first, and the red line when the assimilation is performed
using small-scale observations first.

6 A. M. FOWLER



dashed lines indicate the number of compressed observa-
tions needed to achieve 75% of the total reduction in
error variance (numbers are given in Table 1).

Let us first compare the values of trðB�PaÞc when all
32 observations are assimilated. We see that unlike ER
and DFS, trðB�PaÞ is at a minimum when LR ¼ LB:

This is because both the observations and prior are
informative about the same directions of state space,
whereas when LR 6¼ LB the observations and prior have
more complimentary information and are more able to
reduce the analysis error variances (Fowler et al., 2018).

In the case when LR<LB compressing the observations
to maximise information content is also seen to result in
the maximum reduction in analysis error variance. In this
case, 75% of the reduction in analysis error variance is
achievable with just the first 8 compressed observations.

The eigenvalues of the analysis error covariance matrix
as a function of wavenumber are plotted in the top panel
of Fig. 1 (purple crosses) when the compressed observa-
tions responsible for 75% of the entropy reduction are
assimilated. The reduction in the analysis uncertainty at
large scales compared to the background uncertainty is
clearly seen.

In the case when LR ¼ LB; we saw previously that it
does not matter which of the compressed observations
are used to maximise the information content. However,
this is clearly not the case if we are interested in reducing

the analysis error variance. The black line of the last
panel of Fig. 2 shows trðB�PaÞ as a function of the
number of compressed observations when the assimilation
is performed using large-scale observations first, and the
red line when the assimilation is performed using small-
scale observations first. It is clear that a few observations
of the large-scales (where the background uncertainty is
greatest) results in a much smaller analysis error variance
than many small-scale observations.

The eigenvalues of the analysis error covariance matrix
as a function of wavenumber, for the two different order-
ings of the compressed observations, are plotted in the
top panel of Fig. 2. When 24 compressed observations
(chosen as the number needed to retain 75% of the infor-
mation content) of the large scales are assimilated (purple
crosses), the reduction in the analysis uncertainty at large
scales compared to the background uncertainty is clearly
seen. However, when the first 24 small-scale observations
are assimilated (green crosses), the reduction in the ana-
lysis uncertainty at small scales compared to the back-
ground uncertainty is only visible due to the log scale.
This is because the background is already relatively
accurate at the small scales.

Despite the analysis error variances being smaller when
the large-scale observations are assimilated, it is clear that
the entropy of the posterior is the same irrespective of the
order the compressed observations are assimilated. This is

Fig. 3. As in Fig. 1 but for LR ¼ 10:
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because assimilating the small-scale observations has an
important effect on the analysis error correlations, not
measured by the trace of the analysis error covariance
matrix, and hence the overall entropy is the same in the
two cases. The correlation structure for the circulant ana-
lysis error covariance matrices are shown in Fig. 4. We
see that the correlation length-scales are longer when the
small scale observations are assimilated, implying that in
this case the relative accuracy of the analysis at small
scales to large scales is much greater. In both cases the
entropy of Pa is 28.2.

Lastly, when LR>LB (Fig. 3) it is the small-scale obser-
vations which have the greatest information content.
However, much more than 75% of these compressed
observations are necessary to achieve 75% of the reduc-
tion in analysis error variance.

From these simple experiments it can be concluded
that as the length-scales in R increase and the accuracy of
the observations at the smallest resolved scales becomes
greater than the background, that there is greater benefit
to having a resolution of observations that matches that
of the model. Assimilating this quantity of data is

however unfeasible for many observation types. To
reduce the amount of data for assimilation, data com-
pression may be used to ensure that the most informative
combination of observations are retained. It is possible
that the optimal combination of observations for retain-
ing the maximum information will not be the same as
giving the greatest reduction in analysis error variance,
especially when the small scales are favoured over the
large scales. This discrepancy between information con-
tent and reduction in analysis error variance can be
understood by comparing the equation for ER (13) with
trðB�PaÞ: ER is sensitive to how the determinant of the
error variance matrix changes due to the assimilation of the
observations rather than just the trace. ER is therefore
much more sensitive to corrections to the relatively accurate
small-scales. The relevance of accurately constraining the
small-scales is becoming increasingly important for high-
resolution forecasting of high-impact weather.

Experiments were performed in which observations are
available at a higher resolution than that resolved by the
model but in all cases the information content at these
unresolved scales was less than at those resolved. As such
these unresolved scales would not be chosen during the
data compression, despite having some information.

4. Application to the Lorenz 1996 model

In this section, the data compression method described in
Section 3 is applied to the Lorenz 1996 model (Lorenz,
1995) using the EnKF (described in Section 2) to assimi-
late the observations.

The Lorenz 1996 model solves the following set of
equations

dxj
dt

¼ xjþ1 � xj� 2ð Þxj� 1 �xj þ F; (25)

where j ¼ 1; . . . ; n; with n¼ 40 and F¼ 8, assuming a cyc-
lic domain. Following Lorenz and Emanuel (1998), a
fourth-order Runge-Kutta scheme is used with a time
step of 0.05. This toy model represents the evolution of
an arbitrary ’atmospheric’ variable in n sectors on a lati-
tude circle. With the forcing term F¼ 8, the model

Table 1. 75% of the value of ER, DFS, and trðB�PÞ when all observations are assimilated for different values
of LR: In brackets are the number of compressed observations need to achieve these values.

Criterion

0.75 � ERall 0.75 � DFSall 0.75 � trðB�PaÞall

LR ¼ 0:1 7.08 (13 obs) 9.48 (15 obs) 14.5 (8 obs)
LR ¼ 5 8.32 (23 obs) 12.0 (24 obs) 12.0 (10 large-scale obs, 29 small-scale obs)
LR ¼ 10 16.9 (18 obs) 17.2 (20 obs) 13.4 (27 obs)

Fig. 4. Analysis error correlation structure for the case
illustrated in Fig. 2. The number of compressed observations
assimilated are chosen to conserve 75% of ER. Blue: compressed
observations favour large scales and red: compressed observations
favour small scales.
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Fig. 5. Rows of the observation operator matrix for the five strategies for reducing the observation data detailed in Section 4. The
optimal strategies are illustrated for the first observation time.
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exhibits chaotic behaviour. The model naturally repre-
sents scales associated with the complex sinosoid with the
20 different frequencies that can be represented on the 40
grid points of the model. The largest spatial scale is the
average of the variables across the circular domain and
the smallest is the complex sinusoid with wavelength of
twice the grid spacing.

A simulated true trajectory is generated with initial
conditions given by xtjðt ¼ 0Þ ¼ 2 sin ð2pj=10Þ: An initial
ensemble is generated from xfðkÞðt ¼ 0Þ ¼ xtðt ¼ 0Þ þ gk;

where gk �Nð0;BÞ; k ¼ 1; . . . ;N: In the following experi-
ments B is given by a circulant matrix, with a SOAR cor-
relation function (24) with length-scale LB ¼ 2 and
variance 5. The ensemble size is N¼ 100. The ensemble is
then propagated in time using the Lorenz 1996 model
with stochastic forcing at every grid point and time step
drawn from a Normal distribution with variances given
by 0.01.

40 evenly distributed observations are simulated from
the truth run every 20 time steps starting 100 time steps
into the simulation (allowing for spin up of the ensem-
ble). yðsÞ ¼ xtðt ¼ tsÞ þ es; where es �Nð0;RÞ: 20 time
steps can be thought of as equivalent to 5 days comparing
the error doubling time in the Lorenz 1996 model to the
real atmosphere (assuming the latter is 2 days) (Khare
and Anderson, 2006). This frequency of observations is
chosen to make the effect of the observations at each
assimilation time clearer.

Two observation error covariance matrices are consid-
ered given by a circulant matrix with a SOAR correlation
function (24) and variance 5. In the first LR ¼ 0:1 (effect-
ively uncorrelated observation errors). In the second
LR ¼ 2 (giving correlations greater than 0.2 out to about
7 grid points).

Experiments were performed with other parameters for
the respective covariance matrices and sampling frequen-
cies, however, there was little sensitivity to these in the
qualitative results shown below and the conclusions made
are unchanged.

Five methods of data reduction are compared. Those
referred to as ‘optimal’ imply that they are dependent
upon an objective criterion based on the information con-
tent of the observations. In each case only five pieces of
observational data are retained for assimilation from the
original 40 observations. This dramatic reduction in the
data is chosen to highlight the differences between the
different methods of data reduction within the numerical
experiments. In practice a criteria for retaining a certain
proportion of the information of the total observations
may be used for choosing the number of compressed
observations (as in Section 3.2), or a threshold on the
information content of each compressed observation

assimilated may be used as in Migliorini (2013). The five
methods of data reduction are
1. Thinning: Observations are thinned to every 8th

grid point.
2. Optimal thinning: Observations are chosen

corresponding to the 5 largest diagonal values of S
measuring the greatest values of ohðxaÞk

oyk
:

3. Spatial averaging: Observations are averaged over 8
grid-points centred on every 8th grid point.

4. Optimal Fourier Data Compression (DC):
Observations are compressed using a Fourier
transform with wavelengths chosen corresponding to
the 5 largest diagonal values of FSFT:

5. Optimal DC: Observations are compressed using the
method described in Section 3, again assimilating just
the 5 most informative observations.

For each of these methods a compression matrix, C 2
R

5�40; is defined and the new observation operators,
observations assimilated and their error covariances are
computed using (17) to (19). Note that in this case the
original observation operator, H 2 R

40�40 was simply the
identity matrix.

The observation operators, Hc 2 R
5�40; corresponding

to these five compression strategies are shown in Fig. 5.
The coloured lines represent the 5 different rows of the
Hc matrix. In the first and third compression strategies,
the observation operator is independent of the observa-
tion error covariance matrix and time step. In the
‘optimal’ second, fourth and fifth compression strategies,
the observation operator is dependent upon the ensemble
representation of the prior uncertainties and the full
observation error covariance matrix. These are illustrated
for the first observation time, so that the prior uncer-
tainty (approximated by the ensemble) is the same in
each case. It is seen that when the observation errors are
correlated, the optimal data compression retains smaller
scale features of the observations, wave-numbers selected
by the optimal Fourier decomposition are also shown in
Table 2. In comparison, the effect of spatial averaging is
a severe smoothing out of the small-scale information in
the observations.

Table 2. The wave-numbers selected by the optimal Fourier data
compression method at each observation time for the two
different types of observations. The first observation time
corresponds to the observation operator plotted in Fig. 5.

Ob time LR ¼ 0:1 LR ¼ 2

1 10, 11, 9, 12, 8 12, 13, 11, 10, 15
2 10, 11, 12, 13, 9 14, 12, 13, 20, 15
3 12, 9, 11, 10, 13 15, 14, 17, 20, 18
4 12, 10, 11, 9, 8 17, 19, 18, 16, 20
5 13, 14, 11, 12, 10 19, 17, 15, 18, 16
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In Fig. 6, the pseudo inverse of XfðXfÞT and HT
c R

� 1
c Hc

for the different data reduction strategies are shown for
the first observation time. Note that, unlike in Section
3.1, Pf is no longer circulant. These represent the accur-
acy of the prior and assimilated observations in state
space, respectively. It is seen that the ‘optimal’ thinning
and data compression methods choose observations in
regions where the prior accuracy is low (i.e. the prior
uncertainty is large). When the observation errors are

uncorrelated the trace of HT
c R

� 1
c Hc is approximately

equal to 1 irrespective of data compression strategy.
When the observation errors are correlated the trace of
HT

c R
� 1
c Hc is greatest when observations are compressed

using the optimal DC method described in Section 3, and
the smallest when they are spatially averaged (47.0 com-
pared to 0.227).

The resulting ensemble spread, entropy (estimated
from (11) using the ensemble approximation of the error

Fig. 6. Top left: pseudo inverse of XfðXf ÞT illustrated for the first observation time. Other panels: HT
c R

� 1
c Hc (the accuracy of the

compressed observation in state space) for the 5 different thinning strategies when observation errors are uncorrelated (middle panels)
and correlated (right panels) illustrated for the first observation time.
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covariance matrix) and ER for the thinning experiments
are shown in Fig. 7a–c. In these figures, the values have
been averaged over 200 random realisations of the obser-
vation and model error. Also plotted in Fig. 7d is the
condition number of the analysis error covariance matrix,
which is related to how sensitive the analysis is to pertur-
bations in the data. The closer this is to 1 the better the
conditioned the inverse problem (Golub and Van Loan,
1996). The solid lines are when the simulated

observations have uncorrelated error and the dashed lines
are when the observation errors are correlated.

Let us first compare the case when all 40 observations
are assimilated (grey lines) every 20 time steps. We see
that the observations with correlated errors result in a
smaller ensemble spread and entropy than observations
with uncorrelated errors. It is interesting to note that
after each assimilation time the entropy represented by
the ensemble increases most rapidly when the observation

Fig. 7. (a) Ensemble spread, (b) entropy computed using the ensemble estimate of (11), (c) log10ER; and (d) log10 of the condition
number of the analysis error covariance matrix for the five different thinning strategies detailed in Section 3.1. Solid lines represent
results when the observation errors are uncorrelated, dashed lines represent results when the observation errors are correlated. Results
are averaged over 200 experiments with different realisations of the observation and model error.
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errors are correlated. Recall that both the ensemble
spread and entropy measure the uncertainty in the ensem-
ble, however, the entropy is sensitive to changes in the
correlations in the ensemble perturbations as well as their
magnitudes, and hence more representative of the uncer-
tainty at all scales. Therefore, the greater increase in
entropy with time for the correlated errors is indicative of
the small-scale corrections dissipating during the forecast
period between analysis times.

Observations with correlated error are also seen to
have significantly more information, as the reduction in
entropy is greater at each analysis time. This reduces in
time due to the reduction in the ensemble spread (increase
in the prior accuracy). Initially, the conditioning is worse
when the observation errors are correlated as would be
expected (Tabeart et al., 2018), however, the opposite is
true after the 2nd observation time. This is consistent
with the ensemble spread reducing in time and the influ-
ence of the observations also reducing (Haben
et al., 2011).

When the observations are thinned to every 8th grid
point (blue lines) the performance of the DA is degraded
as would be expected using only 12.5% of the original
observations. The difference between the lines is negli-
gible for the different observation error types. This is
because the thinning distance of the observations is prac-
tically beyond the correlation length-scale.

When the observation errors are uncorrelated, there
appears to be little effect on the ER (Fig. 7c) when the
observations are thinned (blue line), spatially averaged
(yellow line) or compressed using the optimal Fourier
wavelengths (purple line), with numbers ranging between
1.5 and 2.6. There is a slight increase in ER when the
optimal thinning (red line) is used (up to approximately
3.8). When the optimum compression is used (green line)
there is an increase in ER (increasing to approximately
4.08) and a clear reduction in ensemble spread. When the
observation errors are uncorrelated, there is also little dif-
ference between the condition number for the five differ-
ent data reduction strategies.

When the observation errors are correlated the choice
of data reduction on the results is much more significant.
Compared to thinning the observations (blue dashed-
line), spatial averaging (yellow dashed line) is seen to be
significantly detrimental to the ER (0.46 compared to 2.8)
and ensemble spread. This is because spatial averaging
smooths out the highly accurate small scale information
of the observations leaving just the less accurate large
scale information. Spatial averaging is less detrimental
when observation errors are uncorrelated as in this case
the observations provide the same information at all
scales (see Fig. 1), and averaging enables a reduction in
the noise. Again there is a slight increase in ER when the

optimal thinning (red dashed line) is used (3.7 compared
to 2.8).

Using the Fourier compression or the optimal data
compression, when the observation errors are correlated
is seen to lead to a large increase in ER (greater, in many
cases, than using the full 40 observations when the errors
are uncorrelated). In Fig. 5, we saw that both these meth-
ods of data compression are selecting the fine scale infor-
mation in the observations for assimilation.

The reason that the ensemble spread is smaller when
the observations have uncorrelated error compared to
correlated error with the optimal DC may be related to
the results shown in Section 3.2. It was seen here that
using observations to correct the small scales was less
able to reduce the analysis error variance, which is
approximated by the ensemble spread, despite the infor-
mation content of the observations being greater. This
hypothesis is supported by the entropy time series where
it is seen that at each observation time the entropy of the
posterior is actually smaller when assimilating the opti-
mally compressed observations with correlated error
rather than uncorrelated error. Increasing the number of
compressed observations (and hence the number of scales
retained by the data compression) sees the ensemble
spread quickly reduce. For example, when just 8 of the
compressed observations are retained, the ensemble
spread when the observations have correlated errors is
smaller than the ensemble spread when the observation
errors are uncorrelated by the fifth observation time
(results not shown).

In the case when the observation errors are correlated,
the condition number is much larger when using these
more optimal methods of data compression. This could
potentially have an undesirable impact on the sensitivity
of the analysis to perturbations in the data.

5. Summary and conclusions

Recent advances in the estimation and inclusion of OECs
in DA means that we are getting closer to be able to
assimilate denser observations with an accurate descrip-
tion of their uncertainty. As observations with correlated
error are known to have greater information at small
scales than observations with uncorrelated error this may
be crucial for high resolution forecasting in which accur-
ate forecasts of small-scale high impact weather
are sought.

This may seem contradictory to previous studies of Liu
and Rabier (2002) and Bergman and Bonner (1976) that
concluded that increasing the density of observations
with correlated error is not as beneficial as if the observa-
tions had uncorrelated error, due to the reduction in ana-
lysis RMSE not being as great. This is, in part, due to
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the effect of increasing the correlation length-scales of the
observation errors bringing the likelihood PDF more in
line with the prior PDF (Fowler et al., 2018). Once the
OEC length-scales are increased beyond those of the
prior, the reduction in analysis RMSE with increasing
observation density is seen to increase once again.

The potential large increase in the number of observa-
tions available for assimilation carries a large computa-
tional and storage burden with it. It is therefore
important to justify any increase in the amount of data
assimilated and give careful thought to the design of the
observing network. One way to potentially reduce the
computational burden is to reduce the data using a com-
pression technique based on retaining the maximum
information content of the observations.

In an idealised circulant framework it was shown how
the scales that are retained by the data compression
depends upon the structure of the prior and OECs. When
the length-scales in R are smaller than those in B, obser-
vations of large-scale features are retained for assimila-
tion. When the length-scales in R are greater than those
in B, observations of small-scale features are retained for
assimilation. However, the greater the length-scales in R,
the greater the total information content of those
observations.

It was shown that, despite possibly having greater
information content, many more small-scale observations
are needed than large-scale observations to achieve the
same level of reduction in the analysis error variances.
This highlights a potential discrepancy between informa-
tion content (a relative quantity) and reduction in the
analysis error variances (an absolute quantity). The
importance of constraining the analysis at small-scales
depends upon the aim of performing the assimilation.
For the increasingly important applications of high-
impact forecasting that aim to produce limited area fore-
casts out to short lead times, corrections to the small-
scales are arguably more important than correcting the
large-scales. In these cases the large-scales are largely con-
strained by the boundary conditions provided by the glo-
bal model. It is only when forecasting at longer lead
times that the small scale corrections in the analysis dissi-
pate and become invaluable. In addition to this, large
scale information may be available from other observa-
tions. Therefore, to understand the full potential of obser-
vations with correlated errors it is important not to
concentrate only on the effect on the reduction in the
analysis error variances or analysis RMSE.

In Section 3.1, the compression of the observations
was then applied to the EnKF using the Lorenz 1996
model, for observations with correlated and uncorrelated
errors. The data compression method was compared to
other methods to reduce the amount of data. These

included regular thinning, optimal thinning (in which the
observations with the greatest analysis sensitivities where
selected), spatial averaging, and compression using a
Fourier transform based on the wavelengths with the
greatest analysis sensitivity.

It was found that when the observation errors are
uncorrelated, the information content of the reduced data
set is largely insensitive to the strategy used. However,
when the observation errors are correlated, it is found
that the information content of the reduced data set is
highly sensitive to the strategy used. In particular using a
data compression method based on maximising the infor-
mation content of the compressed observations can
increase the entropy reduction of the reduced observa-
tions by up to 420% compared to regular thinning.
Whereas observations reduced using spatial averaging
have only 16% of the entropy reduction of observations
reduced using regular thinning.

This implies that when the observations have corre-
lated error it is more beneficial to have high-density
observations. However, in order to reduce the amount of
data, the use of spatial averaging can be more detrimental
than regular thinning and instead data compression based
on retaining the small-scale information should be used.
The need for this to be performed on-line depends on
how quickly the length scales of the correlations repre-
sented by the ensemble are evolving.

In the Lorenz 1996 example, although the optimal
methods were adaptive with the changing flow of the
ensemble, the compression was actually relatively static
(see Table 2 for an example of the how the most import-
ant wave numbers change for the 5 observation times).
Future work will look further at the effect of the flow
dependent estimate on the data compression using a
more physically realistic model in which prior error corre-
lations are more dynamic. For example, using the multi-
variate modified shallow water model of Kent et al.
(2017) which represents simplified dynamics of cumulus
convection and associated precipitation, and the corre-
sponding disruption to large-scale balances. Methods for
reducing the computational cost of on-line data compres-
sion will also be investigated, as well as the possibility of
retaining some base line scales.

In practice the use of data compression can be
expected to be sensitive to the accuracy of the specified
error characteristics. This will be the focus of future
work. The results could also be sensitive to the way the
ensemble Kalman filter is implemented (e.g. ensemble
size, localisation, inflation, etc.). Experiments were also
performed with a small ensemble size of N¼ 10 with little
effect on the results, largely because, even in this case, the
number of compressed observations (pc ¼ 5) was less
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than N. The sensitivity to the ensemble parameters can
be expected to increase as pc increases.
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