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ABSTRACT

Conductive microneedle patches consisting of carbon nanoparticles embedded

in a polystyrene matrix have been prepared using micro-moulding techniques.

The interfacial properties of the structures before and after electrochemical

etching have been characterised using X-ray photoelectron spectroscopy and

contact angle. Anodisation of the needles leads to a significant increase in

oxygen functionality and is shown to dramatically improve the electroanalytical

capabilities of the microneedle array. The detection of uric acid in horse blood

was used as a model system through which to assess the performance of the

system. The composite approach is shown to lead to viable carbon-based sensors

and can offer a rapid prototype option for the development of tailored micro-

needle systems.

Introduction

Microneedle (MN) patches have garnered extensive

interest for the transdermal delivery of drugs and

vaccines where the small dimensions of the needles

penetrating the skin fail to trigger the dermal nerves

and offer near painless injection [1–3]. A wide variety

of approaches have been investigated in the design

and construction of the microneedle masters but tend

to revolve around the lithography/etching of resist

layers on silicon wafers [4–6] or the CNC milling of

metal blocks (typically aluminium [7–10]). Lim and

colleagues have provided a critique of the approa-

ches taken in microneedle [7, 11], but, irrespective of

the process taken to acquire the master, the replica-

tion workhorse templates are almost invariably pro-

duced using PDMS [4, 7, 8, 10, 12, 13]. The high

specification of the instruments needed to produce

the master template was once a major hurdle and has

often restricted availability of the PDMS replicate

moulds to the host group. The increasing commercial

availability of PDMS moulds covering a wide range

of needle designs, however, provides greater oppor-

tunities through which new MN formulations can be
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developed and targeted at different applications. The

ability to manipulate the material composition of the

MN patch has obvious advantages for therapeutic

delivery applications, but it has also been shown to

enable the production of MN arrays for sensing

applications. A number of approaches have been

taken in the development of electrochemical MN

sensors for transdermal glucose monitoring but most

rely on the deposition of Au or Pt onto preformed

MN arrays [4, 6, 8, 14, 15].

The fabrication of MN arrays based on conductive

composites from ‘‘off the shelf’’ PDMS moulds offers

a potentially simpler and faster route to the proto-

typing of biosensors and one which avoids the

instrumental overheads necessary for the preparation

of master templates. The potential viability of the

approach was initially demonstrated through the

fabrication of conductive palladium/polycarbonate

MN structures [16]. The development of carbon-

based MN arrays, however, could yield a much more

versatile system and, through exploiting a wealth of

existing electroanalytical methods based on carbon

electrodes, open up new avenues for transdermal

sensing. In particular, the large overpotential

required for hydrogen evolution at carbon could offer

much wider potential ranges for electroanalytical

investigations than those employing gold or plat-

inum [4, 6, 8, 14, 15]. The surface chemistries of the

exposed carbon nanoparticles could also offer cat-

alytic capabilities through the presence of endoge-

nous quinone functionalities [17]. Moreover, the

presence of interfacial carboxylic acid groups could

also serve as a simple anchor through which biomo-

lecules (enzymes/antibodies) could be tethered

through conventional carbodiimide coupling [18, 19].

A possible disadvantage, however, relates to the

granular nature of the carbon particles which could

compromise the mechanical integrity of the needles.

The adoption of nanoparticles is critical in this aspect

allowing greater incorporation and physical interac-

tion with the polymeric binder of the composite. The

aim of the present communication has been to

investigate the development of conductive carbon

microneedle arrays based on a carbon nanoparticle–

polystyrene composite and to examine the modifica-

tion of the interfacial surface functionalities to yield

sensors with enhanced electroanalytical capabilities.

Fabrication methodology

Composite microneedles have previously been pre-

pared through solvent casting a suspension of

metallic particles in a polymer/cyclohexanone mix-

ture into a pre-patterned silicone template [16]. The

latter determines the number and dimensions of the

needles in the resulting MN patch. Once the solvent

has evaporated, a solid composite MN array remains

in which the conductive particle is homogenously

distributed within a polymer binder. In the present

instance, the intention was to use carbon nanoparti-

cles (\ 100 nm) as the conductive component and

polystyrene as the binder with the distribution of the

carbon enabling conduction from needle tip through

the bulk to the base plate. The basic design is high-

lighted in Fig. 1 with electrical contact to the poten-

tiostat achieved through connection to the back of the

base plate. It can be expected that graphitic carbon is

present at the interface and, although possessing a

range of surface functionalities and defects, will

consist of a largely basal plane structure as indicated

in Fig. 1b. The latter presents a number of issues in

that such structures can exhibit slow electron transfer

kinetics towards biomolecular targets such as uric

[20, 21]. Electrochemical anodisation is known to

improve electroanalytical performance at solid car-

bon surfaces such as screen-printed carbon [21] and

carbon fibre [17], but it is possible such procedures

could be deleterious to the needle microstructures

here.

The electroanalytical performance of the MN sys-

tem was evaluated through examining the response

to uric acid. The latter is a common biomarker in a

range of clinical conditions, such as hypertension

[22], kidney function [23], stroke [24] and cardiovas-

cular disease [25, 26]. It is little surprise therefore that

there is an extensive literature base on its electro-

chemical detection and, with continuing advances in

2D carbon nanomaterials and other catalytic particles,

continues to hold the interest of the diagnostics

[27–31]. While the present investigation has sought to

examine the material characteristics of the composite

MN array, the response to urate within horse blood,

as a model system, was critically assessed along with

its potential translation to transdermal applications.
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Experimental details

Materials and instrumentation

Carbon nanopowder (\ 100 nm), polystyrene (MW

192000) and all associated laboratory chemicals were

obtained from Sigma-Aldrich, were the highest grade

available and were used without further purification.

Britton Robinson buffers (acetic, boric, and phos-

phoric acids, each at a concentration of 0.04 M and

adjusted to the appropriate pH through the addition

of sodium hydroxide) were used throughout unless

otherwise specified. Defibrinated horse blood (with-

out preservative) was obtained from Fischer Scientific

(Thermo Scientific Oxoid 100ML) and used upon

receipt. Microneedle moulds were obtained from

Micropoint Technologies Pte Ltd (Singapore) and

were pyramidal in format with 200 (base) 9 500

(pitch) 9 700 (height) micron dimensions covering a

10 9 10 needle array.

Instrumentation

Electrochemical analysis was carried out using a

micro-Autolab (Type III) computer controlled

potentiostat (Eco-Chemie) with a standard three-

electrode configuration in which the microneedle

patch was used as the working electrode with plat-

inum and a Ag|AgCl half cell (3 M NaCl, BAS

Technicol UK) acting as counter and reference,

respectively. All measurements were taken at

22 �C ± 2 �C. Conductivity measurements were

taken using a 2461 series SourceMeter� (Keithley)

four-point probe. The conductivity of an unmodified

carbon–polystyrene microneedle patch was found to

be 1575.2 S/m ± 96 S/m (N = 5).

Static contact angle measurements were taken

using a CAM 200 optical contact angle meter (KSV

Instruments Ltd.). The sessile drop method was

employed with deionised water (5 lL) used as the

probe liquid. Left and right contact angles were then

calculated from the high-resolution CCD camera

images using drop shape analysis.

A Kratos Axis Ultra DLD Spectrometer was used to

quantify surface composition and acquire X-ray

photoelectron spectroscopy (XPS) spectra. Spectra

were analysed using monochromated Al Ka X-rays

[hv = 1486.6 electron volts (eV)] with typical operat-

ing parameters of 15 kV and 10 mA (150 W). During

analysis, a hybrid lens mode was used (electrostatic

and magnetic) with a 300 lm 9 700 lm analysis area

and a take-off angle (TOA) of 90� with respect to the

sample surface. Wide energy survey scans (WESS)

were collected across a range of - 5 to 1200 eV

binding energy (BE), with a pass energy of 160 eV

and step size of 1 eV. High-resolution spectra were

collected with a pass energy of 20 eV with a 0.05 eV

step size, a scan width of 25 eV, a dwell time of

150 ms and at least 3 sweeps to reduce the signal

noise. A Kratos charge neutraliser system with a fil-

ament current between 1.8 and 1.95 A and a charge

balance of 3.3–3.6 V and a filament bias of 1.3 V was

used for all samples. Charging effects on the BE

positions were adjusted by setting the lowest BE for

the C1s spectral envelope to 284.8 eV, which is

commonly accepted as adventitious carbon surface

contamination. Three measurements were taken per

sample, with a Shirley background subtracted from

each XPS spectra. The peak areas of the most intense

spectral lines for each elemental species were used to

determine the percentage atomic concentration. Peak

Figure 1 a Dimensions of microneedle array and b interfacial

structure of carbon nanoparticles within the microneedle array.
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fitting of high-resolution spectra was carried out

using Casa XPS software.

Preparation of microneedles

Carbon nanoparticles were combined with poly-

styrene powder in a ratio of 1:1 by weight, dissolved

in cyclohexanone and stirred until a homogenous

solution was obtained (typically 2 h). The solution

was then cast into silicone microneedle templates,

and a carbon fibre stub was placed into the base plate

section to facilitate electrical connection. The tem-

plates were placed in a vacuum at 30 �C, and once the

pressure had increased to 1000 mbar, the air was

released again. (This was to draw the homogenous

solution to the tips of the silicone cast ensuring sharp

microneedle production.) If required after vacuum-

ing, the templates were topped up with more solu-

tion preferably overflowing the cast to allow for

solvent evaporation. The solvent was left to evapo-

rate at room temperature (over 48 h), whereupon the

needles could be removed from the patch. A typical

silicone microneedle template (Micropoint�) is

shown in Fig. 2a along with a scanning electron

micrograph detailing the morphology of the carbon–

polystyrene microneedle array. The baseplate and

non-needle surfaces were coated with enamel (6 h

drying period) to serve as a dielectric and define the

geometric electrode area.

Results

Square wave voltammograms detailing the response

of the unmodified carbon MN array towards uric

acid in pH 7 buffer are shown in Fig. 3. A broad

oxidation peak can be seen at ? 0.6 V which increa-

ses with increasing urate concentration. In contrast,

the response obtained at a carbon MN array which

had been anodised for 5 min under similar condi-

tions exhibits a sharp peak at ? 0.3 V with a dra-

matically increased current response. The shift in the

oxidation potential can be attributed to an increase

edge plane sites (c.f. Fig. 1) and oxygen functionality

that is known to improve electron transfer kinetics.

The limit of detection was found to be 2.85 lM (based

on 3.3 Sb/m) and is well within the range expected for

UA within many biofluids. The response sensitivity

was 361 lA mM-1 cm-2 and, while many literature

reports fail to provide comparative data, of those that

Figure 2 a Silicone template used for micro-moulding the

10 9 10 microneedle array. b Scanning electron micrograph of

a carbon nanoparticle–polystyrene microneedle array obtained.

Figure 3 Square wave voltammograms detailing the response of

a carbon nanoparticle–polystyrene microneedle array towards uric

acid additions in pH 7 buffer before (a) and after

(b) electrochemical anodisation.
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do [32–34], the system here appears competitive

without having to undergo the more complex surface

modifications.

A detailed investigation of the carbon interface was

conducted using high resolution X-ray photoelectron

spectroscopy. Spectra detailing changes in the C 1 s

profile before and after 5 min of anodisation are

compared in Fig. 4a, b, respectively. It can be seen

from the XPS data that there is a significant increase

in oxygen functionality at the carbon MN interface

after anodisation and this stands in marked contrast

to the simpler spectrum observed with the unmodi-

fied array. The interface is composed of carbon

entrapped in a polystyrene matrix and, while both

components will contribute to the sp2 signal, any

reduction in magnitude of this signal can be attrib-

uted principally to the oxidation of the carbon. It

should be noted that there will be sp2 and sp3 moi-

eties at interface and it is not feasible to distinguish

between the two under the present operating

conditions.

The non conductive nature of the polystyrene and

unreactive nature of its aromatic rings (and hence the

large sp2 contribution) could be expected to change

little during the anodisation process. A detailed

breakdown of the % composition for the various

carbon–oxygen surface functionalities is highlighted

in Table 1. The increased oxygen functionality is

broadly consistent with previous studies by Ander-

son and co-workers who examined the anodic oxi-

dation of carbon fibre [17].

Given the significant lack of oxygen functionality

in the unanodised MN array, it would be expected to

express considerable hydrophobicity. In contrast, the

anodised MN array contains a multitude of polar

groups and a high degree of intercalated water which

should greatly improve surface wetting. The contact

angle for single component polystyrene film formed

from the solvent casting of the material used as the

binder in the MN arrays onto a planar silicone sheet

(devoid of **the microneedle features) was found to

be 88.7� ± 0.9� (N = 6) which is consistent with pre-

vious studies of the polymer. The angles found with

the unmodified carbon–polystyrene films and those

that had been anodised yielded angles of

98.1� ± 0.81� and 95.2� ± 2.9�, respectively. Thus,

while there is a moderate increase in hydrophobicity

associated with the inclusion of the carbon nanopar-

ticles—the process of electrochemical anodisation

does little to increase the hydrophilicity. The contact

angle for the actual MN composites shows a further

increase in hydrophobicity with the unmodified and

anodised systems exhibiting angles of 115� ± 7.7�
and 108� ± 1.3�, respectively. Representative contact

angle images highlighting the hydrophobicity of the

MN system are shown in Fig. 5.

Electroanalytical capability

A preliminary assessment of the analytical viability

of the anodised MN was conducted using defibri-

nated horse blood (HB) as the test matrix. The uric

acid concentration within the HB was analysed using

a standard addition protocol in which known

amounts of a standard urate solution (typically 50 lL
aliquots of a 0.01 M solution) were added directly to

Figure 4 XPS analysis of a carbon–polystyrene microneedle

array before (a) and after (b) electrochemical anodisation.
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10 mL of the sample. Square wave voltammograms

detailing the response of the anodised MN to HB in

the absence and presence of increasing additions of

standard urate are detailed in Fig. 6. A distinct peak

attributed to the oxidation of urate can be observed in

the HB solution which increases in magnitude as the

standard urate is added. The scan parameters are

narrowed to 0 to ? 0.5 V to minimise oxidation of

other components within the sample which would

otherwise foul the surface [21]. The reference range

for urate in horse blood (plasma) is typically

30–250 lM and varies depending on the relative

health of the animal [35]. The electrochemical analy-

sis of the defibrinated HB highlighted in Fig. 6 yiel-

ded 155 lM.

Table 1 Deconvoluted data

highlighting the change in

carbon–oxygen functionality

pre and post anodisation of the

MN array

Peak Position/eV % Compositiona

Unmodified MN Anodised MN

C 1s

Sp2 284.57 73.4 13.0

C–OH 285.50 12.7 28.9

C–O–C 286.52 10.3 31.8

C=O 287.50 v.low 19.3

COOH 289.13 v.low 2.5

Pi to Pa 292.11 3.7 4.5

O 1s

C=O 531.47 3.7 1.4

C–O 532.47 59.1 24.5

C–OH 533.80 19.4 24.1

Absorbed water 534.14 17.8 50.0

aMean values based on 3 replicate measurements

Figure 5 Contact angle measurement conducted on an

unmodified carbon–polystyrene microneedle array without any

electrochemical modification.

Figure 6 Square wave voltammograms detailing the response of

an anodised MN array in HB before and after the addition of

standard uric acid.

10710 J Mater Sci (2019) 54:10705–10714



A slight peak shift can be seen in Fig. 6 and can be

attributed to the gradual fouling of the electrode

surface. Similar issues have been reported by Phair

and colleagues who found that screen-printed carbon

electrodes operating within whole blood samples

were susceptible to surface contamination by proteins

and other macromolecular species [21]. While

restricting the scan range minimises the effect of

tyrosine and tryptophan oxidation leading to elec-

trode passivation, the bare electrode remains sus-

ceptible to passive adsorption. This is highlighted in

Fig. 7a where the magnitude of the peak attributed to

urate oxidation in HB was monitored over 14

consecutive scans. There is a sustained decrease in

the height with increasing scan number as the surface

is progressively fouled. Surface contamination by

proteinaceous material was confirmed through XPS

analysis of the anodised carbon–polystyrene com-

posites placed in HB. The N 1s and S 2p spectral

profiles obtained from an anodised carbon nanopar-

ticle–polystyrene composite are detailed in Fig. 7b, c,

respectively. While there is negligible N or S content

in the anodised composite which had not been

exposed to HB, amide and thiol/disulphide func-

tionalities were found on those that were immersed

for 30 min. It should be noted that similar profiles

were observed with unanodised materials immersed

for the same period with no significant difference in

% N or %S content from that of the anodised variant.

The presence of the amide N and thiol groups on the

surface is consistent with peptide moieties that have

accumulated at the electrode surface.

A complete analytical appraisal of the composite

MN systems is beyond the scope of the present paper

but it is clear from the results with horse blood that

while they are able to respond to analytes within

real/complex samples and perform as a conventional

carbon electrode, fouling will be an issue—especially

over long measurement periods. Surface fouling is an

age old problem in electrochemistry and the MN

systems are no different from other, generic, carbon

electrodes. The application of the MN within trans-

dermal applications will similarly encounter issues of

fouling and, while this can be mitigated to some

extent through conducting the analysis within a short

time frame after insertion, permselective barriers (i.e.,

Nafion�) may still be required where prolonged

contact/periodic measurements are needed.

Leaving aside the issue of fouling, it is clear that

the anodisation process enables the speedy creation

of a range of oxygen functionality, which can dra-

matically improve the electroanalytical performance.

While the interfacial composition is altered upon

anodisation, electron microscopy revealed no appre-

ciable change in the surface morphology from those

shown in Fig. 2b. The detection of urate has received

considerable attention and many electrode modifica-

tion strategies have been pursued. Some of the more

recent approaches are summarised in Table 2 along

with the electrode performance indicators. While the

electrochemical anodisation approach does not pro-

vide a detection limit which is at the forefront of

sensing technology, it is nevertheless competitive

Figure 7 a Decrease in the urate oxidation peak height recorded

at an anodised MN array in horse blood as a consequence of

increasing scan number. XPS spectra detailing the N 1s (b) and S

2p (c) profiles as a result of the carbon–polystyrene composite

being immersed in the blood sample for 30 min.
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when considering the nature of the electrode fabri-

cation and ease of modification. It should also be

noted that many of the modifications in Table 2

would not be directly compatible with a transdermal

application.

Conclusions

Microneedle based sensors have largely been based

on metallic layers deposited onto the surface of pre-

patterned needle templates. The ability to create

composite systems in which the formulation can be

readily altered at low cost within conventional labo-

ratory environments can however facilitate much

more responsive development programmes. More-

over, the rich surface chemistry available at the car-

bon based systems through the simple processes of

electrochemical anodisation is a critical advantage as

it greatly increases the range of detection method-

ologies available to transdermal sensing. The mini-

mally invasive merits of microneedle systems suggest

considerable scope for biomedical sensing and the

adoption of composite systems, as highlighted, here

could open new avenues for electroanalytical

approaches.
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