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Abstract. We revisit the static dependency pair method for proving
termination of higher-order term rewriting and extend it in a number
of ways: (1) We introduce a new rewrite formalism designed for general
applicability in termination proving of higher-order rewriting, Algebraic
Functional Systems with Meta-variables. (2) We provide a syntactically
checkable soundness criterion to make the method applicable to a large
class of rewrite systems. (3) We propose a modular dependency pair
framework for this higher-order setting. (4) We introduce a fine-grained
notion of formative and computable chains to render the framework more
powerful. (5) We formulate several existing and new termination proving
techniques in the form of processors within our framework.

The framework has been implemented in the (fully automatic) higher-
order termination tool WANDA.

1 Introduction

Term rewriting [3,48] is an important area of logic, with applications in many dif-
ferent areas of computer science [4,11,18,23,25,36,41]. Higher-order term rewrit-
ing – which extends the traditional first-order term rewriting with higher-order
types and binders as in the λ-calculus – offers a formal foundation of functional
programming and a tool for equational reasoning in higher-order logic. A key
question in the analysis of both first- and higher-order term rewriting is termi-
nation; both for its own sake, and as part of confluence and equivalence analysis.

In first-order term rewriting, a hugely effective method for proving termina-
tion (both manually and automatically) is the dependency pair (DP) approach
[2]. This approach has been extended to the DP framework [20,22], a highly
modular methodology which new techniques for proving termination and non-
termination can easily be plugged into in the form of processors.

In higher-order rewriting, two DP approaches with distinct costs and ben-
efits are used: dynamic [31,45] and static [6,32–34,44,46] DPs. Dynamic DPs
are more broadly applicable, yet static DPs often enable more powerful analy-
sis techniques. Still, neither approach has the modularity and extendability of
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the DP framework, nor can they be used to prove non-termination. Also, these
approaches consider different styles of higher-order rewriting, which means that
for all results certain language features are not available.

In this paper, we address these issues for the static DP approach by extend-
ing it to a full higher-order dependency pair framework for both termination and
non-termination analysis. For broad applicability, we introduce a new rewriting
formalism, AFSMs, to capture several flavours of higher-order rewriting, includ-
ing AFSs [26] (used in the annual Termination Competition [50]) and pattern
HRSs [37,39] (used in the annual Confluence Competition [10]). To show the
versatility and power of this methodology, we define various processors in the
framework – both adaptations of existing processors from the literature and
entirely new ones.

Detailed Contributions. We reformulate the results of [6,32,34,44,46] into a DP
framework for AFSMs. In doing so, we instantiate the applicability restriction of
[32] by a very liberal syntactic condition, and add two new flags to track proper-
ties of DP problems: one completely new, one from an earlier work by the authors
for the first-order DP framework [16]. We give eight processors for reasoning in
our framework: four translations of techniques from static DP approaches, three
techniques from first-order or dynamic DPs, and one completely new.

This is a foundational paper, focused on defining a general theoretical frame-
work for higher-order termination analysis using dependency pairs rather than
questions of implementation. We have, however, implemented most of these
results in the fully automatic termination analysis tool WANDA [28].

Related Work. There is a vast body of work in the first-order setting regarding
the DP approach [2] and framework [20,22,24]. We have drawn from the ideas
in these works for the core structure of the higher-order framework, but have
added some new features of our own and adapted results to the higher-order
setting.

There is no true higher-order DP framework yet: both static and dynamic
approaches actually lie halfway between the original “DP approach” of first-
order rewriting and a full DP framework as in [20,22]. Most of these works
[30–32,34,46] prove “non-loopingness” or “chain-freeness” of a set P of DPs
through a number of theorems. Yet, there is no concept of DP problems, and the
set R of rules cannot be altered. They also fix assumptions on dependency chains
– such as minimality [34] or being “tagged” [31] – which frustrate extendability
and are more naturally dealt with in a DP framework using flags.

The static DP approach for higher-order term rewriting is discussed in, e.g.,
[34,44,46]. The approach is limited to plain function passing (PFP) systems. The
definition of PFP has been made more liberal in later papers, but always con-
cerns the position of higher-order variables in the left-hand sides of rules. These
works include non-pattern HRSs [34,46], which we do not consider, but do not
employ formative rules or meta-variable conditions, or consider non-termination,
which we do. Importantly, they do not consider strictly positive inductive types,
which could be used to significantly broaden the PFP restriction. Such types
are considered in an early paper which defines a variation of static higher-order
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dependency pairs [6] based on a computability closure [7,8]. However, this work
carries different restrictions (e.g., DPs must be type-preserving and not introduce
fresh variables) and considers only one analysis technique (reduction pairs).

Definitions of DP approaches for functional programming also exist [32,33],
which consider applicative systems with ML-style polymorphism. These works
also employ a much broader, semantic definition than PFP, which is actually
more general than the syntactic restriction we propose here. However, like the
static approaches for term rewriting, they do not truly exploit the computability
[47] properties inherent in this restriction: it is only used for the initial generation
of dependency pairs. In the present work, we will take advantage of our exact
computability notion by introducing a computable flag that can be used by
the computable subterm criterion processor (Theorem 63) to handle benchmark
systems that would otherwise be beyond the reach of static DPs. Also in these
works, formative rules, meta-variable conditions and non-termination are not
considered.

Regarding dynamic DP approaches, a precursor of the present work is [31],
which provides a halfway framework (methodology to prove “chain-freeness”)
for dynamic DPs, introduces a notion of formative rules, and briefly translates a
basic form of static DPs to the same setting. Our formative reductions consider
the shape of reductions rather than the rules they use, and they can be used as
a flag in the framework to gain additional power in other processors. The adap-
tation of static DPs in [31] was very limited, and did not for instance consider
strictly positive inductive types or rules of functional type.

For a more elaborate discussion of both static and dynamic DP approaches
in the literature, we refer to [31] and the second author’s PhD thesis [29].
Organisation of the Paper. Section 2 introduces higher-order rewriting using
AFSMs and recapitulates computability. In Sect. 3 we impose restrictions on
the input AFSMs for which our framework is soundly applicable. In Sect. 4 we
define static DPs for AFSMs, and derive the key results on them. Section 5
formulates the DP framework and a number of DP processors for existing and
new termination proving techniques. Section 6 concludes. Detailed proofs for all
results in this paper and an experimental evaluation are available in a technical
report [17]. In addition, many of the results have been informally published in
the second author’s PhD thesis [29].

2 Preliminaries

In this section, we first define our notation by introducing the AFSM formalism.
Although not one of the standards of higher-order rewriting, AFSMs combine
features from various forms of higher-order rewriting and can be seen as a form
of IDTSs [5] which includes application. We will finish with a definition of com-
putability, a technique often used for higher-order termination methods.
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2.1 Higher-Order Term Rewriting Using AFSMs

Unlike first-order term rewriting, there is no single, unified approach to higher-
order term rewriting, but rather a number of similar but not fully compatible
systems aiming to combine term rewriting and typed λ-calculi. For generality,
we will use Algebraic Functional Systems with Meta-variables: a formalism which
admits translations from the main formats of higher-order term rewriting.

Definition 1 (Simple types). We fix a set S of sorts. All sorts are simple
types, and if σ, τ are simple types, then so is σ → τ .

We let → be right-associative. Note that all types have a unique representa-
tion in the form σ1 → . . . → σm → ι with ι ∈ S.

Definition 2 (Terms and meta-terms). We fix disjoint sets F of function
symbols, V of variables and M of meta-variables, each symbol equipped with
a type. Each meta-variable is additionally equipped with a natural number. We
assume that both V and M contain infinitely many symbols of all types. The set
T (F ,V) of terms over F ,V consists of expressions s where s : σ can be derived
for some type σ by the following clauses:

(V) x : σ if x : σ ∈ V (@) s t : τ if s : σ → τ and t : σ
(F) f : σ if f : σ ∈ F (Λ) λx.s : σ → τ if x : σ ∈ V and s : τ

Meta-terms are expressions whose type can be derived by those clauses and:
(M) Z〈s1, . . . , sk〉 : σk+1 → . . . → σm → ι

if Z : (σ1 → . . . → σk → . . . → σm → ι, k) ∈ M and s1 : σ1, . . . , sk : σk

The λ binds variables as in the λ-calculus; unbound variables are called free, and
FV (s) is the set of free variables in s. Meta-variables cannot be bound; we write
FMV (s) for the set of meta-variables occurring in s. A meta-term s is called
closed if FV (s) = ∅ (even if FMV (s) �= ∅). Meta-terms are considered modulo
α-conversion. Application (@) is left-associative; abstractions (Λ) extend as far
to the right as possible. A meta-term s has type σ if s : σ; it has base type if
σ ∈ S. We define head(s) = head(s1) if s = s1 s2, and head(s) = s otherwise.

A (meta-)term s has a sub-(meta-)term t, notation s � t, if either s = t or
s � t, where s � t if (a) s = λx.s′ and s′ � t, (b) s = s1 s2 and s2 � t or (c)
s = s1 s2 and s1 � t. A (meta-)term s has a fully applied sub-(meta-)term t,
notation s � t, if either s = t or s � t, where s � t if (a) s = λx.s′ and s′ � t,
(b) s = s1 s2 and s2 � t or (c) s = s1 s2 and s1 � t (so if s = x s1 s2, then x
and x s1 are not fully applied subterms, but s and both s1 and s2 are).

For Z : (σ, k) ∈ M, we call k the arity of Z, notation arity(Z).

Clearly, all fully applied subterms are subterms, but not all subterms are
fully applied. Every term s has a form t s1 · · · sn with n ≥ 0 and t = head(s) a
variable, function symbol, or abstraction; in meta-terms t may also be a meta-
variable application F 〈s1, . . . , sk〉. Terms are the objects that we will rewrite;
meta-terms are used to define rewrite rules. Note that all our terms (and meta-
terms) are, by definition, well-typed. For rewriting, we will employ patterns:



756 C. Fuhs and C. Kop

Definition 3 (Patterns). A meta-term is a pattern if it has one of the forms
Z〈x1, . . . , xk〉 with all xi distinct variables; λx.� with x ∈ V and � a pattern; or
a �1 · · · �n with a ∈ F ∪ V and all �i patterns (n ≥ 0).

In rewrite rules, we will use meta-variables for matching and variables
only with binders. In terms, variables can occur both free and bound, and
meta-variables cannot occur. Meta-variables originate in very early forms of
higher-order rewriting (e.g., [1,27]), but have also been used in later formalisms
(e.g., [8]). They strike a balance between matching modulo β and syntactic
matching. By using meta-variables, we obtain the same expressive power as
with Miller patterns [37], but do so without including a reversed β-reduction as
part of matching.

Notational Conventions: We will use x, y, z for variables, X,Y,Z for meta-
variables, b for symbols that could be variables or meta-variables, f, g, h or more
suggestive notation for function symbols, and s, t, u, v, q, w for (meta-)terms.
Types are denoted σ, τ , and ι, κ are sorts. We will regularly overload notation
and write x ∈ V, f ∈ F or Z ∈ M without stating a type (or minimal arity).
For meta-terms Z〈〉 we will usually omit the brackets, writing just Z.

Definition 4 (Substitution). A meta-substitution is a type-preserving func-
tion γ from variables and meta-variables to meta-terms. Let the domain of γ
be given by: dom(γ) = {(x : σ) ∈ V | γ(x) �= x} ∪ {(Z : (σ, k)) ∈ M |
γ(Z) �= λy1 . . . yk.Z〈y1, . . . , yk〉}; this domain is allowed to be infinite. We let
[b1 := s1, . . . , bn := sn] denote the meta-substitution γ with γ(bi) = si and
γ(z) = z for (z : σ) ∈ V \ {b1, . . . , bn}, and γ(Z) = λy1 . . . yk.Z〈y1, . . . , yk〉 for
(Z : (σ, k)) ∈ M \ {b1, . . . , bn}. We assume there are infinitely many variables x
of all types such that (a) x /∈ dom(γ) and (b) for all b ∈ dom(γ): x /∈ FV (γ(b)).

A substitution is a meta-substitution mapping everything in its domain to
terms. The result sγ of applying a meta-substitution γ to a term s is obtained by:
xγ = γ(x) if x ∈ V (s t)γ = (sγ) (tγ)
fγ = f if f ∈ F (λx.s)γ = λx.(sγ) if γ(x) = x ∧ x /∈

⋃
y∈dom(γ) FV (γ(y))

For meta-terms, the result sγ is obtained by the clauses above and:
Z〈s1, . . . , sk〉γ = γ(Z)〈s1γ, . . . , skγ〉 if Z /∈ dom(γ)
Z〈s1, . . . , sk〉γ = γ(Z)〈〈s1γ, . . . , skγ〉〉 if Z ∈ dom(γ)

(λx1 . . . xk.s)〈〈t1, . . . , tk〉〉 = s[x1 := t1, . . . , xk := tk]
(λx1 . . . xn.s)〈〈t1, . . . , tk〉〉 = s[x1 := t1, . . . , xn := tn] tn+1 · · · tk if n < k

and s is not an abstraction

Note that for fixed k, any term has exactly one of the two forms above
(λx1 . . . xn.s with n < k and s not an abstraction, or λx1 . . . xk.s).

Essentially, applying a meta-substitution that has meta-variables in its
domain combines a substitution with (possibly several) β-steps. For exam-
ple, we have that: deriv (λx.sin (F 〈x〉))[F := λy.plus y x] equals
deriv (λz.sin (plus z x)). We also have: X〈0, nil〉[X := λx.map (λy.x)] equals
map (λy.0) nil.
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Definition 5 (Rules and rewriting). Let F ,V,M be fixed sets of function
symbols, variables and meta-variables respectively. A rule is a pair � ⇒ r of
closed meta-terms of the same type such that � is a pattern of the form f �1 · · · �n

with f ∈ F and FMV (r) ⊆ FMV (�). A set of rules R defines a rewrite relation
⇒R as the smallest monotonic relation on terms which includes:
(Rule) �δ ⇒R rδ if � ⇒ r ∈ R and dom(δ) = FMV (�)
(Beta) (λx.s) t ⇒R s[x := t]

We say s ⇒β t if s ⇒R t is derived using a (Beta) step. A term s is terminating
under ⇒R if there is no infinite reduction s = s0 ⇒R s1 ⇒R . . . , is in normal
form if there is no t such that s ⇒R t, and is β-normal if there is no t with
s ⇒β t. Note that we are allowed to reduce at any position of a term, even below
a λ. The relation ⇒R is terminating if all terms over F ,V are terminating. The
set D ⊆ F of defined symbols consists of those (f : σ) ∈ F such that a rule
f �1 · · · �n ⇒ r exists; all other symbols are called constructors.

Note that R is allowed to be infinite, which is useful for instance to model
polymorphic systems. Also, right-hand sides of rules do not have to be in β-
normal form. While this is rarely used in practical examples, non-β-normal rules
may arise through transformations, and we lose nothing by allowing them.

Example 6. Let F ⊇ {0 : nat, s : nat → nat, nil : list, cons : nat → list →
list, map : (nat → nat) → list → list} and consider the following rules R:

map (λx.Z〈x〉) nil ⇒ nil
map (λx.Z〈x〉) (cons H T ) ⇒ cons Z〈H〉 (map (λx.Z〈x〉) T )

Then map (λy.0) (cons (s 0) nil) ⇒R cons 0 (map (λy.0) nil) ⇒R cons 0 nil.
Note that the bound variable y does not need to occur in the body of λy.0 to
match λx.Z〈x〉. However, a term like map s (cons 0 nil) cannot be reduced,
because s does not instantiate λx.Z〈x〉. We could alternatively consider the
rules:

map Z nil ⇒ nil
map Z (cons H T ) ⇒ cons (Z H) (map Z T )

Where the system before had (Z : (nat → nat, 1)) ∈ M, here we
assume (Z : (nat → nat, 0)) ∈ M. Thus, rather than meta-variable appli-
cation Z〈H〉 we use explicit application Z H. Then map s (cons 0 nil) ⇒R
cons (s 0) (map s nil). However, we will often need explicit β-reductions; e.g.,
map (λy.0) (cons (s 0) nil) ⇒R cons ((λy.0) (s 0)) (map (λy.0) nil) ⇒β

cons 0 (map (λy.0) nil).

Definition 7 (AFSM). An AFSM is a tuple (F ,V,M,R) of a signature and
a set of rules built from meta-terms over F ,V,M; as types of relevant variables
and meta-variables can always be derived from context, we will typically just refer
to the AFSM (F ,R). An AFSM implicitly defines the abstract reduction system
(T (F ,V),⇒R): a set of terms and a rewrite relation on this set. An AFSM is
terminating if ⇒R is terminating (on all terms in T (F ,V)).
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Discussion: The two most common formalisms in termination analysis of higher-
order rewriting are algebraic functional systems [26] (AFSs) and higher-order
rewriting systems [37,39] (HRSs). AFSs are very similar to our AFSMs, but
use variables for matching rather than meta-variables; this is trivially translated
to the AFSM format, giving rules where all meta-variables have arity 0, like
the “alternative” rules in Example 6. HRSs use matching modulo β/η, but the
common restriction of pattern HRSs can be directly translated into AFSMs,
provided terms are β-normalised after every reduction step. Even without this
β-normalisation step, termination of the obtained AFSM implies termination of
the original HRS; for second-order systems, termination is equivalent. AFSMs
can also naturally encode CRSs [27] and several applicative systems (cf. [29,
Chapter 3]).

Example 8 (Ordinal recursion). A running example is the AFSM (F ,R) with
F ⊇ {0 : ord, s : ord → ord, lim : (nat → ord) → ord, rec : ord → nat →
(ord → nat → nat) → ((nat → ord) → (nat → nat) → nat) → nat} and R
given below. As all meta-variables have arity 0, this can be seen as an AFS.

rec 0 K F G ⇒ K
rec (s X) K F G ⇒ F X (rec X K F G)

rec (lim H) K F G ⇒ G H (λm.rec (H m) K F G)

Observant readers may notice that by the given constructors, the type nat in
Example 8 is not inhabited. However, as the given symbols are only a subset of F ,
additional symbols (such as constructors for the nat type) may be included. The
presence of additional function symbols does not affect termination of AFSMs:

Theorem 9 (Invariance of termination under signature extensions).
For an AFSM (F ,R) with F at most countably infinite, let funs(R) ⊆ F be
the set of function symbols occurring in some rule of R. Then (T (F ,V),⇒R) is
terminating if and only if (T (funs(R),V),⇒R) is terminating.

Proof. Trivial by replacing all function symbols in F \funs(R) by corresponding
variables of the same type. ��

Therefore, we will typically only state the types of symbols occurring in the
rules, but may safely assume that infinitely many symbols of all types are present
(which for instance allows us to select unused constructors in some proofs).

2.2 Computability

A common technique in higher-order termination is Tait and Girard’s com-
putability notion [47]. There are several ways to define computability predicates;
here we follow, e.g., [5,7–9] in considering accessible meta-terms using strictly
positive inductive types. The definition presented below is adapted from these
works, both to account for the altered formalism and to introduce (and obtain
termination of) a relation �C that we will use in the “computable subterm cri-
terion processor” of Theorem 63 (a termination criterion that allows us to handle
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systems that would otherwise be beyond the reach of static DPs). This allows
for a minimal presentation that avoids the use of ordinals that would otherwise
be needed to obtain �C (see, e.g., [7,9]).

To define computability, we use the notion of an RC-set :

Definition 10. A set of reducibility candidates, or RC-set, for a rewrite rela-
tion ⇒R of an AFSM is a set I of base-type terms s such that: every term in I
is terminating under ⇒R; I is closed under ⇒R (so if s ∈ I and s ⇒R t then
t ∈ I); if s = x s1 · · · sn with x ∈ V or s = (λx.u) s0 · · · sn with n ≥ 0, and for
all t with s ⇒R t we have t ∈ I, then s ∈ I (for any u, s0, . . . , sn ∈ T (F ,V)).

We define I-computability for an RC-set I by induction on types. For s ∈
T (F ,V), we say that s is I-computable if either s is of base type and s ∈ I; or
s : σ → τ and for all t : σ that are I-computable, s t is I-computable.

The traditional notion of computability is obtained by taking for I the set of
all terminating base-type terms. Then, a term s is computable if and only if (a)
s has base type and is terminating; or (b) s : σ → τ and for all computable t : σ
the term s t is computable. This choice is simple but, for reasoning, not ideal:
we do not have a property like: “if f s1 · · · sn is computable then so is each si”.
Such a property would be valuable to have for generalising termination proofs
from first-order to higher-order rewriting, as it allows us to use computability
where the first-order proof uses termination. While it is not possible to define
a computability notion with this property alongside case (b) (as such a notion
would not be well-founded), we can come close to this property by choosing
a different set for I. To define this set, we will use the notion of accessible
arguments, which is used for the same purpose also in the General Schema [8],
the Computability Path Ordering [9], and the Computability Closure [7].

Definition 11 (Accessible arguments). We fix a quasi-ordering �S on S
with well-founded strict part �S := �S \ �S .1 For a type σ ≡ σ1→ . . .→σm →κ
(with κ ∈ S) and sort ι, let ι �S

+ σ if ι �S κ and ι �S
− σi for all i, and let

ι �S
− σ if ι �S κ and ι �S

+ σi for all i.2

For f : σ1 → . . . → σm → ι ∈ F , let Acc(f) = {i | 1 ≤ i ≤ m ∧ ι �S
+ σi}.

For x : σ1 → . . . → σm → ι ∈ V, let Acc(x) = {i | 1 ≤ i ≤ m ∧ σi has the form
τ1 → . . . → τn → κ with ι �S κ}. We write s �acc t if either s = t, or s = λx.s′

and s′ �acc t, or s = a s1 · · · sn with a ∈ F ∪ V and si �acc t for some i ∈ Acc(a)
with a /∈ FV (si).

With this definition, we will be able to define a set C such that, roughly, s
is C-computable if and only if (a) s : σ → τ and s t is C-computable for all C-
computable t, or (b) s has base type, is terminating, and if s = f s1 · · · sm then
si is C-computable for all accessible i (see Theorem 13 below). The reason that
Acc(x) for x ∈ V is different is proof-technical: computability of λx.x s1 · · · sm

1 Well-foundedness is immediate if S is finite, but we have not imposed that require-
ment.

2 Here ι �S
+ σ corresponds to “ι occurs only positively in σ” in [5,8,9].



760 C. Fuhs and C. Kop

implies the computability of more arguments si than computability of f s1 · · · sm

does, since x can be instantiated by anything.

Example 12. Consider a quasi-ordering �S such that ord �S nat. In Example 8,
we then have ord �S

+ nat → ord. Thus, 1 ∈ Acc(lim), which gives lim H�accH.

Theorem 13. Let (F ,R) be an AFSM. Let f s1 · · · sm �I si t1 · · · tn if both
sides have base type, i ∈ Acc(f), and all tj are I-computable. There is an RC-
set C such that C = {s ∈ T (F ,V) | s has base type ∧ s is terminating under
⇒R ∪ �C ∧ if s ⇒∗

R f s1 · · · sm then si is C-computable for all i ∈ Acc(f)}.

Proof (sketch). Note that we cannot define C as this set, as the set relies on
the notion of C-computability. However, we can define C as the fixpoint of a
monotone function operating on RC-sets. This follows the proof in, e.g., [8,9]. ��

The complete proof is available in [17, Appendix A].

3 Restrictions

The termination methodology in this paper is restricted to AFSMs that satisfy
certain limitations: they must be properly applied (a restriction on the number
of terms each function symbol is applied to) and accessible function passing (a
restriction on the positions of variables of a functional type in the left-hand sides
of rules). Both are syntactic restrictions that are easily checked by a computer
(mostly; the latter requires a search for a sort ordering, but this is typically
easy).

3.1 Properly Applied AFSMs

In properly applied AFSMs, function symbols are assigned a certain, minimal
number of arguments that they must always be applied to.

Definition 14. An AFSM (F ,R) is properly applied if for every f ∈ D there
exists an integer k such that for all rules � ⇒ r ∈ R: (1) if � = f �1 · · · �n then
n = k; and (2) if r � f r1 · · · rn then n ≥ k. We denote minar(f) = k.

That is, every occurrence of a function symbol in the right-hand side of a rule
has at least as many arguments as the occurrences in the left-hand sides of rules.
This means that partially applied functions are often not allowed: an AFSM with
rules such as double X ⇒ plus X X and doublelist L ⇒ map double L is not
properly applied, because double is applied to one argument in the left-hand
side of some rule, and to zero in the right-hand side of another.

This restriction is not as severe as it may initially seem since partial
applications can be replaced by λ-abstractions; e.g., the rules above can be
made properly applied by replacing the second rule by: doublelist L ⇒
map (λx.double x) L. By using η-expansion, we can transform any AFSM to
satisfy this restriction:
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Definition 15 (R↑). Given a set of rules R, let their η-expansion be given by
R↑ = {(� Z1 · · · Zm)↑η ⇒ (r Z1 · · · Zm)↑η| � ⇒ r ∈ R with r : σ1 → . . . → σm →
ι, ι ∈ S, and Z1, . . . , Zm fresh meta-variables}, where

– s↑η= λx1 . . . xm.s (x1↑η) · · · (xm↑η) if s is an application or element of V ∪F ,
and s↑η= s otherwise;

– f = f for f ∈ F and x = x for x ∈ V, while Z〈s1, . . . , sk〉 = Z〈s1, . . . , sk〉
and (λx.s) = λx.(s↑η) and s1 s2 = s1 (s2↑η).

Note that � ↑η is a pattern if � is. By [29, Thm. 2.16], a relation ⇒R is
terminating if ⇒R↑ is terminating, which allows us to transpose any methods to
prove termination of properly applied AFSMs to all AFSMs.

However, there is a caveat: this transformation can introduce non-termination
in some special cases, e.g., the terminating rule f X ⇒ g f with f : o → o and
g : (o → o) → o, whose η-expansion f X ⇒ g (λx.(f x)) is non-terminating.
Thus, for a properly applied AFSM the methods in this paper apply directly.
For an AFSM that is not properly applied, we can use the methods to prove
termination (but not non-termination) by first η-expanding the rules. Of course,
if this analysis leads to a counterexample for termination, we may still be able
to verify whether this counterexample applies in the original, untransformed
AFSM.

Example 16. Both AFSMs in Example 6 and the AFSM in Example 8 are prop-
erly applied.

Example 17. Consider an AFSM (F ,R) with F ⊇ {sin, cos : real →
real, times : real → real → real, deriv : (real → real) → real → real}
and R = {deriv (λx.sin F 〈x〉) ⇒ λy.times (deriv (λx.F 〈x〉) y) (cos F 〈y〉)}.
Although the one rule has a functional output type (real → real), this AFSM is
properly applied, with deriv having always at least 1 argument. Therefore, we do
not need to use R↑. However, if R were to additionally include some rules that did
not satisfy the restriction (such as the double and doublelist rules above), then
η-expanding all rules, including this one, would be necessary. We have: R↑ =
{deriv (λx.sin F 〈x〉) Y ⇒ (λy.times (deriv (λx.F 〈x〉) y) (cos F 〈y〉)) Y }.
Note that the right-hand side of the η-expanded deriv rule is not β-normal.

3.2 Accessible Function Passing AFSMs

In accessible function passing AFSMs, variables of functional type may not occur
at arbitrary places in the left-hand sides of rules: their positions are restricted
using the sort ordering �S and accessibility relation �acc from Definition 11.

Definition 18 (Accessible function passing). An AFSM (F ,R) is accessi-
ble function passing (AFP) if there exists a sort ordering �S following Definition
11 such that: for all f �1 · · · �n ⇒ r ∈ R and all Z ∈ FMV (r): there are variables
x1, . . . , xk and some i such that �i �acc Z〈x1, . . . , xk〉.
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The key idea of this definition is that computability of each �i implies com-
putability of all meta-variables in r. This excludes cases like Example 20 below.
Many common examples satisfy this restriction, including those we saw before:

Example 19. Both systems from Example 6 are AFP: choosing the sort order-
ing �S that equates nat and list, we indeed have cons H T �acc H and
cons H T �acc T (as Acc(cons) = {1, 2}) and both λx.Z〈x〉 �acc Z〈x〉 and
Z �acc Z. The AFSM from Example 8 is AFP because we can choose ord �S

nat and have lim H �acc H following Example 12 (and also s X �acc X
and K �acc K, F �acc F, G �acc G). The AFSM from Example 17 is AFP,
because λx.sin F 〈x〉 �acc F 〈x〉 for any �S : λx.sin F 〈x〉 �acc F 〈x〉 because
sin F 〈x〉 �acc F 〈x〉 because 1 ∈ Acc(sin).

In fact, all first-order AFSMs (where all fully applied sub-meta-terms of the
left-hand side of a rule have base type) are AFP via the sort ordering �S that
equates all sorts. Also (with the same sort ordering), an AFSM (F ,R) is AFP if,
for all rules f �1 · · · �k ⇒ r ∈ R and all 1 ≤ i ≤ k, we can write: �i = λx1 . . . xni

.�′

where ni ≥ 0 and all fully applied sub-meta-terms of �′ have base type.
This covers many practical systems, although for Example 8 we need a non-

trivial sort ordering. Also, there are AFSMs that cannot be handled with any �S .

Example 20 (Encoding the untyped λ-calculus). Consider an AFSM with F ⊇
{ap : o → o → o, lm : (o → o) → o} and R = {ap (lm F ) ⇒ F} (note that
the only rule has type o → o). This AFSM is not accessible function passing,
because lm F �acc F cannot hold for any �S (as this would require o �S o).

Note that this example is also not terminating. With t = lm (λx.ap x x), we
get this self-loop as evidence: ap t t ⇒R (λx.ap x x) t ⇒β ap t t.

Intuitively: in an accessible function passing AFSM, meta-variables of a
higher type may occur only in “safe” places in the left-hand sides of rules. Rules
like the ones in Example 20, where a higher-order meta-variable is lifted out of
a base-type term, are not admitted (unless the base type is greater than the
higher type).

In the remainder of this paper, we will refer to a properly applied, accessible
function passing AFSM as a PA-AFP AFSM.

Discussion: This definition is strictly more liberal than the notions of “plain
function passing” in both [34] and [46] as adapted to AFSMs. The notion in
[46] largely corresponds to AFP if �S equates all sorts, and the HRS formalism
guarantees that rules are properly applied (in fact, all fully applied sub-meta-
terms of both left- and right-hand sides of rules have base type). The notion
in [34] is more restrictive. The current restriction of PA-AFP AFSMs lets us
handle examples like ordinal recursion (Example 8) which are not covered by
[34,46]. However, note that [34,46] consider a different formalism, which does
take rules whose left-hand side is not a pattern into account (which we do not
consider). Our restriction also quite resembles the “admissible” rules in [6] which
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are defined using a pattern computability closure [5], but that work carries addi-
tional restrictions.

In later work [32,33], Kusakari extends the static DP approach to forms of
polymorphic functional programming, with a very liberal restriction: the defi-
nition is parametrised with an arbitrary RC-set and corresponding accessibility
(“safety”) notion. Our AFP restriction is actually an instance of this condition
(although a more liberal one than the example RC-set used in [32,33]). We have
chosen a specific instance because it allows us to use dedicated techniques for
the RC-set; for example, our computable subterm criterion processor (Theorem
63).

4 Static Higher-Order Dependency Pairs

To obtain sufficient criteria for both termination and non-termination of AFSMs,
we will now transpose the definition of static dependency pairs [6,33,34,46] to
AFSMs. In addition, we will add the new features of meta-variable conditions,
formative reductions, and computable chains. Complete versions of all proof
sketches in this section are available in [17, Appendix B].

Although we retain the first-order terminology of dependency pairs, the set-
ting with meta-variables makes it more suitable to define DPs as triples.

Definition 21 ((Static) Dependency Pair). A dependency pair (DP) is a
triple � � p (A), where � is a closed pattern f �1 · · · �k, p is a closed meta-term
g p1 · · · pn, and A is a set of meta-variable conditions: pairs Z : i indicating that
Z regards its ith argument. A DP is conservative if FMV (p) ⊆ FMV (�).

A substitution γ respects a set of meta-variable conditions A if for all Z : i in
A we have γ(Z) = λx1 . . . xj .t with either i > j, or i ≤ j and xi ∈ FV (t). DPs
will be used only with substitutions that respect their meta-variable conditions.

For � � p (∅) (so a DP whose set of meta-variable conditions is empty), we
often omit the third component and just write � � p.

Like the first-order setting, the static DP approach employs marked function
symbols to obtain meta-terms whose instances cannot be reduced at the root.

Definition 22 (Marked symbols). Let (F ,R) be an AFSM. Define F � :=
F � {f� : σ | f : σ ∈ D}. For a meta-term s = f s1 · · · sk with f ∈ D and
k = minar(f), we let s� = f� s1 · · · sk; for s of other forms s� is not defined.

Moreover, we will consider candidates. In the first-order setting, candidate
terms are subterms of the right-hand sides of rules whose root symbol is a defined
symbol. Intuitively, these subterms correspond to function calls. In the current
setting, we have to consider also meta-variables as well as rules whose right-hand
side is not β-normal (which might arise for instance due to η-expansion).

Definition 23 (β-reduced-sub-meta-term, �β, �A). A meta-term s has a
fully applied β-reduced-sub-meta-term t (shortly, BRSMT), notation s �β t, if
there exists a set of meta-variable conditions A with s�A t. Here s�A t holds if:

– s = t, or
– s = λx.u and u �A t, or
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– s = (λx.u) s0 · · · sn and some si �A t, or u[x := s0] s1 · · · sn �A t, or
– s = a s1 · · · sn with a ∈ F ∪ V and some si �A t, or
– s = Z〈t1, . . . , tk〉 s1 · · · sn and some si �A t, or
– s = Z〈t1, . . . , tk〉 s1 · · · sn and ti �A t for some i ∈ {1, . . . , k} with (Z : i) ∈ A.

Essentially, s �A t means that t can be reached from s by taking β-reductions
at the root and “subterm”-steps, where Z : i is in A whenever we pass into
argument i of a meta-variable Z. BRSMTs are used to generate candidates:

Definition 24 (Candidates). For a meta-term s, the set cand(s) of candi-
dates of s consists of those pairs t (A) such that (a) t has the form f s1 · · · sk

with f ∈ D and k = minar(f), and (b) there are sk+1, . . . , sn (with n ≥ k) such
that s �A t sk+1 · · · sn, and (c) A is minimal: there is no subset A′ � A with
s �A′ t.

Example 25. In AFSMs where all meta-variables have arity 0 and the right-
hand sides of rules are β-normal, the set cand(s) for a meta-term s consists
exactly of the pairs t (∅) where t has the form f s1 · · · sminar(f) and t occurs as
part of s. In Example 8, we thus have cand(G H (λm.rec (H m) K F G)) =
{ rec (H m) K F G (∅) }.

If some of the meta-variables do take arguments, then the meta-variable
conditions matter: candidates of s are pairs t (A) where A contains exactly
those pairs Z : i for which we pass through the ith argument of Z to reach t in s.

Example 26. Consider an AFSM with the signature from Example 8 but a rule
using meta-variables with larger arities:

rec (lim (λn.H〈n〉)) K (λx.λn.F 〈x, n〉) (λf.λg.G〈f, g〉) ⇒
G〈λn.H〈n〉, λm.rec H〈m〉 K (λx.λn.F 〈x, n〉) (λf.λg.G〈f, g〉)〉

The right-hand side has one candidate:

rec H〈m〉 K (λx.λn.F 〈x, n〉) (λf.λg.G〈f, g〉) ({G : 2})

The original static approaches define DPs as pairs �� � p� where � ⇒ r is a
rule and p a subterm of r of the form f r1 · · · rm – as their rules are built using
terms, not meta-terms. This can set variables bound in r free in p. In the current
setting, we use candidates with their meta-variable conditions and implicit β-
steps rather than subterms, and we replace such variables by meta-variables.

Definition 27 (SDP). Let s be a meta-term and (F ,R) be an AFSM. Let
metafy(s) denote s with all free variables replaced by corresponding meta-
variables. Now SDP(R) = {�� � metafy(p�) (A) | � ⇒ r ∈ R∧p (A) ∈ cand(r)}.

Although static DPs always have a pleasant form f� �1 · · · �k �
g� p1 · · · pn (A) (as opposed to the dynamic DPs of, e.g., [31], whose right-hand
sides can have a meta-variable at the head, which complicates various techniques
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in the framework), they have two important complications not present in first-
order DPs: the right-hand side p of a DP � � p (A) may contain meta-variables
that do not occur in the left-hand side � – traditional analysis techniques are not
really equipped for this – and the left- and right-hand sides may have different
types. In Sect. 5 we will explore some methods to deal with these features.

Example 28. For the non-η-expanded rules of Example 17, the set SDP(R) has
one element: deriv� (λx.sin F 〈x〉) � deriv� (λx.F 〈x〉). (As times and cos are
not defined symbols, they do not generate dependency pairs.) The set SDP(R↑)
for the η-expanded rules is {deriv� (λx.sin F 〈x〉) Y � deriv� (λx.F 〈x〉) Y }.
To obtain the relevant candidate, we used the β-reduction step of BRSMTs.

Example 29. The AFSM from Example 8 is AFP following Example 19; here
SDP(R) is:

rec� (s X) K F G � rec� X K F G (∅)
rec� (lim H) K F G � rec� (H M) K F G (∅)

Note that the right-hand side of the second DP contains a meta-variable that is
not on the left. As we will see in Example 64, that is not problematic here.

Termination analysis using dependency pairs importantly considers the
notion of a dependency chain. This notion is fairly similar to the first-order
setting:

Definition 30 (Dependency chain). Let P be a set of DPs and R a set of
rules. A (finite or infinite) (P,R)-dependency chain (or just (P,R)-chain) is
a sequence [(�0 � p0 (A0), s0, t0), (�1 � p1 (A1), s1, t1), . . .] where each �i �
pi (Ai) ∈ P and all si, ti are terms, such that for all i:

1. there exists a substitution γ on domain FMV (�i) ∪ FMV (pi) such that si =
�iγ, ti = piγ and for all Z ∈ dom(γ): γ(Z) respects Ai;

2. we can write ti = f u1 · · · un and si+1 = f w1 · · · wn and each uj ⇒∗
R wj.

Example 31. In the (first) AFSM from Example 6, we have SDP(R) =
{map� (λx.Z〈x〉)(cons H T ) � map� (λx.Z〈x〉) T}. An example of
a finite dependency chain is [(ρ, s1, t1), (ρ, s2, t2)] where ρ is the one
DP, s1 = map� (λx.s x) (cons 0 (cons (s 0) (map (λx.x) nil)))
and t1 = map� (λx.s x) (cons (s 0) (map (λx.x) nil)) and s2 =
map� (λx.s x) (cons (s 0) nil) and t2 = map� (λx.s x) nil.

Note that here t1 reduces to s2 in a single step (map (λx.x) nil ⇒R nil).

We have the following key result:

Theorem 32. Let (F ,R) be a PA-AFP AFSM. If (F ,R) is non-terminating,
then there is an infinite (SDP(R),R)-dependency chain.

Proof (sketch). The proof is an adaptation of the one in [34], altered for the more
permissive definition of accessible function passing over plain function passing
as well as the meta-variable conditions; it also follows from Theorem 37 below.

��
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By this result we can use dependency pairs to prove termination of a given
properly applied and AFP AFSM: if we can prove that there is no infinite
(SDP(R),R)-chain, then termination follows immediately. Note, however, that
the reverse result does not hold: it is possible to have an infinite (SDP(R),R)-
dependency chain even for a terminating PA-AFP AFSM.

Example 33. Let F ⊇ {0, 1 : nat, f : nat → nat, g : (nat → nat) → nat} and
R = {f 0 ⇒ g (λx.f x), g (λx.F 〈x〉) ⇒ F 〈1〉}. This AFSM is PA-AFP, with
SDP(R) = {f� 0 � g� (λx.f x), f� 0 � f� X}; the second rule does not cause the
addition of any dependency pairs. Although ⇒R is terminating, there is an infi-
nite (SDP(R),R)-chain [(f� 0 � f� X, f� 0, f� 0), (f� 0 � f� X, f� 0, f� 0), . . .].

The problem in Example 33 is the non-conservative DP f� 0 � f� X,
with X on the right but not on the left. Such DPs arise from abstractions in
the right-hand sides of rules. Unfortunately, abstractions are introduced by the
restricted η-expansion (Definition 15) that we may need to make an AFSM prop-
erly applied. Even so, often all DPs are conservative, like Examples 6 and 17.
There, we do have the inverse result:

Theorem 34. For any AFSM (F ,R): if there is an infinite (SDP(R),R)-chain
[(ρ0, s0, t0), (ρ1, s1, t1), . . .] with all ρi conservative, then ⇒R is non-terminating.

Proof (sketch). If FMV (pi) ⊆ FMV (�i), then we can see that si ⇒R · ⇒∗
β t′i for

some term t′i of which ti is a subterm. Since also each ti ⇒∗
R si+1, the infinite

chain induces an infinite reduction s0 ⇒+
R t′0 ⇒∗

R s′
1 ⇒+

R t′′1 ⇒∗
R . . . . ��

The core of the dependency pair framework is to systematically simplify a set
of pairs (P,R) to prove either absence or presence of an infinite (P,R)-chain,
thus showing termination or non-termination as appropriate. By Theorems 32
and 34 we can do so, although with some conditions on the non-termination
result. We can do better by tracking certain properties of dependency chains.

Definition 35 (Minimal and Computable chains). Let (F ,U) be an AFSM
and CU an RC-set satisfying the properties of Theorem 13 for (F ,U). Let F
contain, for every type σ, at least countably many symbols f : σ not used in U .

A (P,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .] is U-computable if: ⇒U ⊇ ⇒R,
and for all i ∈ N there exists a substitution γi such that ρi = �i � pi (Ai) with
si = �iγi and ti = piγi, and (λx1 . . . xn.v)γi is CU -computable for all v and B
such that pi �B v, γi respects B, and FV (v) = {x1, . . . , xn}.

A chain is minimal if the strict subterms of all ti are terminating under ⇒R.

In the first-order DP framework, minimal chains give access to several pow-
erful techniques to prove absence of infinite chains, such as the subterm criterion
[24] and usable rules [22,24]. Computable chains go a step further, by building
on the computability inherent in the proof of Theorem 32 and the notion of
accessible function passing AFSMs. In computable chains, we can require that
(some of) the subterms of all ti are computable rather than merely terminating.
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This property will be essential in the computable subterm criterion processor
(Theorem 63).

Another property of dependency chains is the use of formative rules, which
has proven very useful for dynamic DPs [31]. Here we go further and con-
sider formative reductions, which were introduced for the first-order DP frame-
work in [16]. This property will be essential in the formative rules processor
(Theorem 58).

Definition 36 (Formative chain, formative reduction). A (P,R)-chain
[(�0 � p0 (A0), s0, t0), (�1 � p1 (A1), s1, t1), . . .] is formative if for all i, the
reduction ti ⇒∗

R si+1 is �i+1-formative. Here, for a pattern �, substitution γ and
term s, a reduction s ⇒∗

R �γ is �-formative if one of the following holds:

– � is not a fully extended linear pattern; that is: some meta-variable occurs
more than once in � or � has a sub-meta-term λx.C[Z〈s〉] with x /∈ {s}

– � is a meta-variable application Z〈x1, . . . , xk〉 and s = �γ
– s = a s1 · · · sn and � = a �1 · · · �n with a ∈ F � ∪ V and each si ⇒∗

R �iγ by an
�i-formative reduction

– s = λx.s′ and � = λx.�′ and s′ ⇒∗
R �′γ by an �′-formative reduction

– s = (λx.u) v w1 · · · wn and u[x := v] w1 · · · wn ⇒∗
R �γ by an �-formative

reduction
– � is not a meta-variable application, and there are �′ ⇒ r′ ∈ R, meta-variables

Z1 . . . Zn (n ≥ 0) and δ such that s ⇒∗
R (�′ Z1 · · · Zn)δ by an (�′ Z1 · · · Zn)-

formative reduction, and (r′ Z1 · · · Zn)δ ⇒∗
R �γ by an �-formative reduction.

The idea of a formative reduction is to avoid redundant steps: if s ⇒∗
R

�γ by an �-formative reduction, then this reduction takes only the steps
needed to obtain an instance of �. Suppose that we have rules plus 0 Y ⇒
Y, plus (s X) Y ⇒ s (plus X Y ). Let � := g 0 X and t := plus 0 0. Then the
reduction g t t ⇒R g 0 t is �-formative: we must reduce the first argument to
get an instance of �. The reduction g t t ⇒R g t 0 ⇒R g 0 0 is not �-formative,
because the reduction in the second argument does not contribute to the non-
meta-variable positions of �. This matters when we consider � as the left-hand
side of a rule, say g 0 X ⇒ 0: if we reduce g t t ⇒R g t 0 ⇒R g 0 0 ⇒R 0, then
the first step was redundant: removing this step gives a shorter reduction to the
same result: g t t ⇒R g 0 t ⇒R 0. In an infinite reduction, redundant steps may
also be postponed indefinitely.

We can now strengthen the result of Theorem 32 with two new properties.

Theorem 37. Let (F ,R) be a properly applied, accessible function passing
AFSM. If (F ,R) is non-terminating, then there is an infinite R-computable
formative (SDP(R),R)-dependency chain.

Proof (sketch). We select a minimal non-computable (MNC) term s := f s1 · · · sk

(where all si are CR-computable) and an infinite reduction starting in s. Then we
stepwise build an infinite dependency chain, as follows. Since s is non-computable
but each si terminates (as computability implies termination), there exist a rule
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f �1 · · · �k ⇒ r and substitution γ such that each si ⇒∗
R �iγ and rγ is non-

computable. We can then identify a candidate t (A) of r such that γ respects
A and tγ is a MNC subterm of rγ; we continue the process with tγ (or a term
at its head). For the formative property, we note that if s ⇒∗

R �γ and u is
terminating, then u ⇒∗

R �δ by an �-formative reduction for substitution δ such
that each δ(Z) ⇒∗

R γ(Z). This follows by postponing those reduction steps not
needed to obtain an instance of �. The resulting infinite chain is R-computable
because we can show, by induction on the definition of �acc, that if � ⇒ r
is an AFP rule and �γ is a MNC term, then γ(Z) is CR-computable for all
Z ∈ FMV (r). ��

As it is easily seen that all CU -computable terms are ⇒U -terminating and
therefore ⇒R-terminating, every U-computable (P,R)-dependency chain is also
minimal. The notions of R-computable and formative chains still do not suffice
to obtain a true inverse result, however (i.e., to prove that termination implies
the absence of an infinite R-computable chain over SDP(R)): the infinite chain
in Example 33 is R-computable.

To see why the two restrictions that the AFSM must be properly applied and
accessible function passing are necessary, consider the following examples.

Example 38. Consider F ⊇ {fix : ((o → o) → o → o) → o → o} and R =
{fix F X ⇒ F (fix F ) X}. This AFSM is not properly applied; it is also
not terminating, as can be seen by instantiating F with λy.y. However, it does
not have any static DPs, since fix F is not a candidate. Even if we altered the
definition of static DPs to admit a dependency pair fix� F X � fix� F , this
pair could not be used to build an infinite dependency chain.

Note that the problem does not arise if we study the η-expanded rules R↑ =
{fix F X ⇒ F (λz.fix F z) X}, as the dependency pair fix� F X � fix� F Z
does admit an infinite chain. Unfortunately, as the one dependency pair does
not satisfy the conditions of Theorem 34, we cannot use this to prove non-
termination.

Example 39. The AFSM from Example 20 is not accessible function passing,
since Acc(lm) = ∅. This is good because the set SDP(R) is empty, which would
lead us to falsely conclude termination without the restriction.

Discussion: Theorem 37 transposes the work of [34,46] to AFSMs and extends
it by using a more liberal restriction, by limiting interest to formative, R-
computable chains, and by including meta-variable conditions. Both of these
new properties of chains will support new termination techniques within the DP
framework.

The relationship with the works for functional programming [32,33] is less
clear: they define a different form of chains suited well to polymorphic systems,
but which requires more intricate reasoning for non-polymorphic systems, as
DPs can be used for reductions at the head of a term. It is not clear whether
there are non-polymorphic systems that can be handled with one and not the
other. The notions of formative and R-computable chains are not considered
there; meta-variable conditions are not relevant to their λ-free formalism.
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5 The Static Higher-Order DP Framework

In first-order term rewriting, the DP framework [20] is an extendable framework
to prove termination and non-termination. As observed in the introduction, DP
analyses in higher-order rewriting typically go beyond the initial DP approach
[2], but fall short of the full framework. Here, we define the latter for static DPs.
Complete versions of all proof sketches in this section are in [17, Appendix C].

We have now reduced the problem of termination to non-existence of certain
chains. In the DP framework, we formalise this in the notion of a DP problem:

Definition 40 (DP problem). A DP problem is a tuple (P,R,m, f) with P
a set of DPs, R a set of rules, m ∈ {minimal, arbitrary} ∪ {computableU |
any set of rules U}, and f ∈ {formative, all}.3

A DP problem (P,R,m, f) is finite if there exists no infinite (P,R)-chain
that is U-computable if m = computableU , is minimal if m = minimal, and is
formative if f = formative. It is infinite if R is non-terminating, or if there
exists an infinite (P,R)-chain where all DPs used in the chain are conservative.

To capture the levels of permissiveness in the m flag, we use a transitive-
reflexive relation � generated by computableU � minimal � arbitrary.

Thus, the combination of Theorems 34 and 37 can be rephrased as:
an AFSM (F ,R) is terminating if (SDP(R),R, computableR, formative) is
finite, and is non-terminating if (SDP(R),R,m, f) is infinite for some m ∈
{computableU , minimal, arbitrary} and f ∈ {formative, all}.4

The core idea of the DP framework is to iteratively simplify a set of DP
problems via processors until nothing remains to be proved:

Definition 41 (Processor). A dependency pair processor (or just processor)
is a function that takes a DP problem and returns either NO or a set of DP
problems. A processor Proc is sound if a DP problem M is finite whenever
Proc(M) �= NO and all elements of Proc(M) are finite. A processor Proc is
complete if a DP problem M is infinite whenever Proc(M) = NO or contains an
infinite element.

To prove finiteness of a DP problem M with the DP framework, we proceed
analogously to the first-order DP framework [22]: we repeatedly apply sound DP
processors starting from M until none remain. That is, we execute the following
rough procedure: (1) let A := {M}; (2) while A �= ∅: select a problem Q ∈ A and
a sound processor Proc with Proc(Q) �= NO, and let A := (A \ {Q}) ∪ Proc(Q).
If this procedure terminates, then M is a finite DP problem.

3 Our framework is implicitly parametrised by the signature F� used for term forma-
tion. As none of the processors we present modify this component (as indeed there
is no need to by Theorem 9), we leave it implicit.

4 The processors in this paper do not alter the flag m, but some require minimality
or computability. We include the minimal option and the subscript U for the sake of
future generalisations, and for reuse of processors in the dynamic approach of [31].
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To prove termination of an AFSM (F ,R), we would use as initial DP problem
(SDP(R),R, computableR, formative), provided that R is properly applied
and accessible function passing (where η-expansion following Definition 15 may
be applied first). If the procedure terminates – so finiteness of M is proved by
the definition of soundness – then Theorem 37 provides termination of ⇒R.

Similarly, we can use the DP framework to prove infiniteness: (1) let A :=
{M}; (2) while A �= NO: select a problem Q ∈ A and a complete processor Proc,
and let A := NO if Proc(Q) = NO, or A := (A \ {Q}) ∪ Proc(Q) otherwise. For
non-termination of (F ,R), the initial DP problem should be (SDP(R),R,m, f),
where m, f can be any flag (see Theorem 34). Note that the algorithms coin-
cide while processors are used that are both sound and complete. In a tool,
automation (or the user) must resolve the non-determinism and select suitable
processors.

Below, we will present a number of processors within the framework. We will
typically present processors by writing “for a DP problem M satisfying X, Y , Z,
Proc(M) = . . . ”. In these cases, we let Proc(M) = {M} for any problem M not
satisfying the given properties. Many more processors are possible, but we have
chosen to present a selection which touches on all aspects of the DP framework:

– processors which map a DP problem to NO (Theorem 65), a singleton set
(most processors) and a non-singleton set (Theorem 42);

– changing the set R (Theorems 54, 58) and various flags (Theorem 54);
– using specific values of the f (Theorem 58) and m flags (Theorems 54, 61, 63);
– using term orderings (Theorems 49, 52), a key part of many termination

proofs.

5.1 The Dependency Graph

We can leverage reachability information to decompose DP problems. In first-
order rewriting, a graph structure is used to track which DPs can possibly follow
one another in a chain [2]. Here, we define this dependency graph as follows.

Definition 42 (Dependency graph). A DP problem (P,R,m, f) induces a
graph structure DG, called its dependency graph, whose nodes are the elements
of P. There is a (directed) edge from ρ1 to ρ2 in DG iff there exist s1, t1, s2, t2
such that [(ρ1, s1, t1), (ρ2, s2, t2)] is a (P,R)-chain with the properties for m, f .

Example 43. Consider an AFSM with F ⊇ {f : (nat → nat) → nat → nat} and
R = {f (λx.F 〈x〉) (s Y ) ⇒ F 〈f (λx.0) (f (λx.F 〈x〉) Y )〉}. Let P := SDP(R) =

{
(1) f� (λx.F 〈x〉) (s Y ) � f� (λx.0) (f (λx.F 〈x〉) Y ) ({F : 1})
(2) f� (λx.F 〈x〉) (s Y ) � f� (λx.F 〈x〉) Y ({F : 1})

}

The dependency graph of (P,R, minimal, formative) is:

(1) (2)
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There is no edge from (1) to itself or (2) because there is no substitution γ
such that (λx.0)γ can be reduced to a term (λx.F 〈x〉)δ where δ(F ) regards its
first argument (as ⇒∗

R cannot introduce new variables).

In general, the dependency graph for a given DP problem is undecidable,
which is why we consider approximations.

Definition 44 (Dependency graph approximation [31]). A finite graph Gθ

approximates DG if θ is a function that maps the nodes of DG to the nodes of
Gθ such that, whenever DG has an edge from ρ1 to ρ2, Gθ has an edge from
θ(ρ1) to θ(ρ2). (Gθ may have edges that have no corresponding edge in DG.)

Note that this definition allows for an infinite graph to be approximated
by a finite one; infinite graphs may occur if R is infinite (e.g., the union of all
simply-typed instances of polymorphic rules).

If P is finite, we can take a graph approximation Gid with the same nodes
as DG . A simple approximation may have an edge from �1 � p1 (A1) to �2 �
p2 (A2) whenever both p1 and �2 have the form f� s1 · · · sk for the same f and
k. However, one can also take the meta-variable conditions into account, as we
did in Example 43.

Theorem 45 (Dependency graph processor). The processor ProcGθ
that

maps a DP problem M = (P,R,m, f) to {({ρ ∈ P | θ(ρ) ∈ Ci},R,m, f) | 1 ≤
i ≤ n} if Gθ is an approximation of the dependency graph of M and C1, . . . , Cn

are the (nodes of the) non-trivial strongly connected components (SCCs) of Gθ,
is both sound and complete.

Proof (sketch). In an infinite (P,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .], there is
always a path from ρi to ρi+1 in DG. Since Gθ is finite, every infinite path in
DG eventually remains in a cycle in Gθ. This cycle is part of an SCC. ��

Example 46. Let R be the set of rules from Example 43 and G be the graph given
there. Then ProcG(SDP(R),R, computableR, formative) = {({f� (λx.F 〈x〉)
(s Y ) � f� (λx.F 〈x〉) Y ({F : 1})},R, computableR, formative)}.

Example 47. Let R consist of the rules for map from Example 6 along with f L ⇒
map (λx.g x) L and g X ⇒ X. Then SDP(R) = {(1) map� (λx.Z〈x〉) (cons H T )
� map� (λx.Z〈x〉) T, (2) f� L � map� (λx.g x) L, (3) f� L � g� X}. DP (3)
is not conservative, but it is not on any cycle in the graph approximation Gid

obtained by considering head symbols as described above:

(3) (2) (1)

As (1) is the only DP on a cycle, ProcSDPGid
(SDP(R),R, computableR,

formative) = { ({(1)},R, computableR, formative) }.
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Discussion: The dependency graph is a powerful tool for simplifying DP prob-
lems, used since early versions of the DP approach [2]. Our notion of a depen-
dency graph approximation, taken from [31], strictly generalises the original
notion in [2], which uses a graph on the same node set as DG with possibly
further edges. One can get this notion here by using a graph Gid. The advantage
of our definition is that it ensures soundness of the dependency graph processor
also for infinite sets of DPs. This overcomes a restriction in the literature [34,
Corollary 5.13] to dependency graphs without non-cyclic infinite paths.

5.2 Processors Based on Reduction Triples

At the heart of most DP-based approaches to termination proving lie well-
founded orderings to delete DPs (or rules). For this, we use reduction triples
[24,31].

Definition 48 (Reduction triple). A reduction triple (�,�,�) consists of
two quasi-orderings � and � and a well-founded strict ordering � on meta-terms
such that � is monotonic, all of �,�,� are meta-stable (that is, � � r implies
�γ � rγ if � is a closed pattern and γ a substitution on domain FMV (�) ∪
FMV (r), and the same for � and �), ⇒β ⊆ �, and both � ◦ � ⊆ � and
� ◦ � ⊆ �.

In the first-order DP framework, the reduction pair processor [20] seeks to
orient all rules with � and all DPs with either � or �; if this succeeds, those
pairs oriented with � may be removed. Using reduction triples rather than pairs,
we obtain the following extension to the higher-order setting:

Theorem 49 (Basic reduction triple processor). Let M = (P1 �
P2,R,m, f) be a DP problem. If (�,�,�) is a reduction triple such that

1. for all � ⇒ r ∈ R, we have � � r;
2. for all � � p (A) ∈ P1, we have � � p;
3. for all � � p (A) ∈ P2, we have � � p;

then the processor that maps M to {(P2,R,m, f)} is both sound and complete.

Proof (sketch). For an infinite (P1 � P2,R)-chain [(ρ0, s0, t0), (ρ1, s1, t1), . . .] the
requirements provide that, for all i: (a) si � ti if ρi ∈ P1; (b) si � ti if ρi ∈ P2;
and (c) ti � si+1. Since � is well-founded, only finitely many DPs can be in P1,
so a tail of the chain is actually an infinite (P2,R,m, f)-chain. ��

Example 50. Let (F ,R) be the (non-η-expanded) rules from Example 17, and
SDP(R) the DPs from Example 28. From Theorem 49, we get the following
ordering requirements:

deriv (λx.sin F 〈x〉) � λy.times (deriv (λx.F 〈x〉) y) (cos F 〈y〉)
deriv� (λx.sin F 〈x〉) � deriv� (λx.F 〈x〉)
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We can handle both requirements by using a polynomial interpretation J to
N [15,43], by choosing Jsin(n) = n + 1, Jcos(n) = 0, Jtimes(n1, n2) = n1,
Jderiv(f) = Jderiv�(f) = λn.f(n). Then the requirements are evaluated to:
λn.f(n) + 1 ≥ λn.f(n) and λn.f(n) + 1 > λn.f(n), which holds on N.

Theorem 49 is not ideal since, by definition, the left- and right-hand side of
a DP may have different types. Such DPs are hard to handle with traditional
techniques such as HORPO [26] or polynomial interpretations [15,43], as these
methods compare only (meta-)terms of the same type (modulo renaming of
sorts).

Example 51. Consider the toy AFSM with R = {f (s X) Y ⇒ g X Y, g X ⇒
λz.f X z} and SDP(R) = {f� (s X) Y � g� X, g� X � f� X Z}. If f and g
both have a type nat → nat → nat, then in the first DP, the left-hand side has
type nat while the right-hand side has type nat → nat. In the second DP, the
left-hand side has type nat → nat and the right-hand side has type nat.

To be able to handle examples like the one above, we adapt [31, Thm. 5.21]
by altering the ordering requirements to have base type.

Theorem 52 (Reduction triple processor). Let Bot be a set {⊥σ : σ |
σ a type} ⊆ F � of unused constructors, M = (P1 � P2,R,m, f) a DP prob-
lem and (�,�,�) a reduction triple such that: (a) for all � ⇒ r ∈ R, we have
� � r; and (b) for all � � p (A) ∈ P1 � P2 with � : σ1 → . . . → σm → ι and
p : τ1 → . . . → τn → κ we have, for fresh meta-variables Z1 : σ1, . . . , Zm : σm:

– � Z1 · · · Zm � p ⊥τ1 · · · ⊥τn
if � � p (A) ∈ P1

– � Z1 · · · Zm � p ⊥τ1 · · · ⊥τn
if � � p (A) ∈ P2

Then the processor that maps M to {(P2,R,m, f)} is both sound and complete.

Proof (sketch). If (�,�,�) is such a triple, then for R ∈ {�,�} define R′

as follows: for s : σ1 → . . . → σm → ι and t : τ1 → . . . → τn → κ, let
s R′ t if for all u1 : σ1, . . . , um : σm there exist w1 : τ1, . . . , wn : τn such that
s u1 · · · um R t w1 · · · wn. Now apply Theorem 49 with the triple (�,�′,�′). ��

Here, the elements of Bot take the role of minimal terms for the ordering. We
use them to flatten the type of the right-hand sides of ordering requirements,
which makes it easier to use traditional methods to generate a reduction triple.

While � and � may still have to orient meta-terms of distinct types, these
are always base types, which we could collapse to a single sort. The only relation
required to be monotonic, �, regards pairs of meta-terms of the same type. This
makes it feasible to apply orderings like HORPO or polynomial interpretations.

Both the basic and non-basic reduction triple processor are difficult to use for
non-conservative DPs, which generate ordering requirements whose right-hand
side contains a meta-variable not occurring on the left. This is typically difficult
for traditional techniques, although possible to overcome, by choosing triples
that do not regard such meta-variables (e.g., via an argument filtering [35,46]):
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Example 53. We apply Theorem 52 on the DP problem (SDP(R),R,
computableR, formative) of Example 51. This gives for instance the following
ordering requirements:

f (s X) Y � g X Y f� (s X) Y � g� X ⊥nat

g X � λz.f X z g� X Y � f� X Z

The right-hand side of the last DP uses a meta-variable Z that does not occur on
the left. As neither � nor � are required to be monotonic (only � is), function
symbols do not have to regard all their arguments. Thus, we can use a polynomial
interpretation J to N with J⊥nat

= 0, Js(n) = n + 1 and Jh(n1, n2) = n1 for
h ∈ {f, f�, g, g�}. The ordering requirements then translate to X + 1 ≥ X and
λy.X ≥ λz.X for the rules, and X + 1 > X and X ≥ X for the DPs. All
these inequalities on N are clearly satisfied, so we can remove the first DP. The
remaining problem is quickly dispersed with the dependency graph processor.

5.3 Rule Removal Without Search for Orderings

While processors often simplify only P, they can also simplify R. One of the
most powerful techniques in first-order DP approaches that can do this are usable
rules. The idea is that for a given set P of DPs, we only need to consider a subset
UR(P,R) of R. Combined with the dependency graph processor, this makes it
possible to split a large term rewriting system into a number of small problems.

In the higher-order setting, simple versions of usable rules have also been
defined [31,46]. We can easily extend these definitions to AFSMs:

Theorem 54. Given a DP problem M = (P,R,m, f) with m � minimal and
R finite, let UR(P,R) be the smallest subset of R such that:

– if a symbol f occurs in the right-hand side of an element of P or UR(P,R),
and there is a rule f �1 · · · �k ⇒ r, then this rule is also in UR(P,R);

– if there exists � ⇒ r ∈ R or � � r (A) ∈ P such that r�F 〈s1, . . . , sk〉 t1 · · · tn
with s1, . . . , sk not all distinct variables or with n > 0, then UR(P,R) = R.

Then the processor that maps M to {(P,UR(P,R), arbitrary, all)} is sound.

For the proof we refer to the very similar proofs in [31,46].

Example 55. For the set SDP(R) of the ordinal recursion example (Examples 8
and 29), all rules are usable due to the occurrence of H M in the second DP.
For the set SDP(R) of the map example (Examples 6 and 31), there are no
usable rules, since the one DP contains no defined function symbols or applied
meta-variables.

This higher-order processor is much less powerful than its first-order version:
if any DP or usable rule has a sub-meta-term of the form F s or F 〈s1, . . . , sk〉
with s1, . . . , sk not all distinct variables, then all rules are usable. Since applying
a higher-order meta-variable to some argument is extremely common in higher-
order rewriting, the technique is usually not applicable. Also, this processor
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imposes a heavy price on the flags: minimality (at least) is required, but is lost;
the formative flag is also lost. Thus, usable rules are often combined with reduc-
tion triples to temporarily disregard rules, rather than as a way to permanently
remove rules.

To address these weaknesses, we consider a processor that uses similar ideas
to usable rules, but operates from the left-hand sides of rules and DPs rather
than the right. This adapts the technique from [31] that relies on the new for-
mative flag. As in the first-order case [16], we use a semantic characterisation
of formative rules. In practice, we then work with over-approximations of this
characterisation, analogous to the use of dependency graph approximations in
Theorem 45.
Definition 56. A function FR that maps a pattern � and a set of rules R to
a set FR(�,R) ⊆ R is a formative rules approximation if for all s and γ: if
s ⇒∗

R �γ by an �-formative reduction, then this reduction can be done using only
rules in FR(�,R).

We let FR(P,R) =
⋃

{FR(�i,R) | f �1 · · · �n � p (A) ∈ P ∧ 1 ≤ i ≤ n}.
Thus, a formative rules approximation is a subset of R that is sufficient for

a formative reduction: if s ⇒∗
R �γ, then s ⇒∗

FR(	,R) �γ. It is allowed for there to
exist other formative reductions that do use additional rules.
Example 57. We define a simple formative rules approximation: (1) FR(Z,R) =
∅ if Z is a meta-variable; (2) FR(f �1 · · · �m,R) = FR(�1,R) ∪ · · · ∪ FR(�m,R)
if f : σ1 → . . . → σm → ι and no rules have type ι; (3) FR(s,R) = R otherwise.
This is a formative rules approximation: if s ⇒∗

R Zγ by a Z-formative reduction,
then s = Zγ, and if s ⇒∗

R f �1 · · · �m and no rules have the same output type as
s, then s = f s1 · · · sm and each si ⇒∗

R �iγ (by an �i-formative reduction).
The following result follows directly from the definition of formative rules.

Theorem 58 (Formative rules processor). For a formative rules approxi-
mation FR, the processor ProcFR that maps a DP problem (P,R,m, formative)
to {(P,FR(P,R),m, formative)} is both sound and complete.

Proof (sketch). A processor that only removes rules (or DPs) is always complete.
For soundness, if the chain is formative then each step ti ⇒∗

R si+1 can be replaced
by ti ⇒∗

FR(P,R) si+1. Thus, the chain can be seen as a (P,FR(P,R))-chain. ��
Example 59. For our ordinal recursion example (Examples 8 and 29), none
of the rules are included when we use the approximation of Example 57
since all rules have output type ord. Thus, ProcFR maps (SDP(R),R,
computableR, formative) to (SDP(R), ∅, computableR, formative). Note: this
example can also be completed without formative rules (see Example 64). Here
we illustrate that, even with a simple formative rules approximation, we can
often delete all rules of a given type.

Formative rules are introduced in [31], and the definitions can be adapted to a
more powerful formative rules approximation than the one sketched in Example
59. Several examples and deeper intuition for the first-order setting are given in
[16].
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5.4 Subterm Criterion Processors

Reduction triple processors are powerful, but they exert a computational price:
we must orient all rules in R. The subterm criterion processor allows us to
remove DPs without considering R at all. It is based on a projection function
[24], whose higher-order counterpart [31,34,46] is the following:

Definition 60. For P a set of DPs, let heads(P) be the set of all symbols f that
occur as the head of a left- or right-hand side of a DP in P. A projection function
for P is a function ν : heads(P) → N such that for all DPs � � p (A) ∈ P, the
function ν with ν(f s1 · · · sn) = sν(f) is well-defined both for � and for p.

Theorem 61 (Subterm criterion processor). The processor Procsubcrit that
maps a DP problem (P1 � P2,R,m, f) with m � minimal to {(P2,R,m, f)} if
a projection function ν exists such that ν(�) � ν(p) for all � � p (A) ∈ P1 and
ν(�) = ν(p) for all � � p (A) ∈ P2, is sound and complete.

Proof (sketch). If the conditions are satisfied, every infinite (P,R)-chain induces
an infinite � · ⇒∗

R sequence that starts in a strict subterm of t1, contradicting
minimality unless all but finitely many steps are equality. Since every occurrence
of a pair in P1 results in a strict � step, a tail of the chain lies in P2. ��
Example 62. Using ν(map�) = 2, Procsubcrit maps the DP problem ({(1)},
R, computableR, formative) from Example 47 to

{
(∅,R, computableR,

formative)
}
.

The subterm criterion can be strengthened, following [34,46], to also handle
DPs like the one in Example 28. Here, we focus on a new idea. For computable
chains, we can build on the idea of the subterm criterion to get something more.

Theorem 63 (Computable subterm criterion processor). The proces-
sor Procstatcrit that maps a DP problem (P1 � P2,R, computableU , f) to
{(P2,R, computableU , f)} if a projection function ν exists such that ν(�) � ν(p)
for all � � p (A) ∈ P1 and ν(�) = ν(p) for all � � p (A) ∈ P2, is sound
and complete. Here, � is the relation on base-type terms with s � t if s �= t
and (a) s �acc t or (b) a meta-variable Z exists with s �acc Z〈x1, . . . , xk〉 and
t = Z〈t1, . . . , tk〉 s1 · · · sn.

Proof (sketch). By the conditions, every infinite (P,R)-chain induces an infinite
(�CU ∪ ⇒β)∗· ⇒∗

R sequence (where CU is defined following Theorem 13). This
contradicts computability unless there are only finitely many inequality steps.
As pairs in P1 give rise to a strict decrease, they may occur only finitely often.

��
Example 64. Following Examples 8 and 29, consider the projection function
ν with ν(rec�) = 1. As s X �acc X and lim H �acc H, both s X � X
and lim H � H M hold. Thus Procstatc(P,R, computableR, formative) =
{(∅,R, computableR, formative)}. By the dependency graph processor, the
AFSM is terminating.

The computable subterm criterion processor fundamentally relies on the new
computableU flag, so it has no counterpart in the literature so far.
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5.5 Non-termination

While (most of) the processors presented so far are complete, none of them can
actually return NO. We have not yet implemented such a processor; however, we
can already provide a general specification of a non-termination processor.

Theorem 65 (Non-termination processor). Let M = (P,R,m, f) be a DP
problem. The processor that maps M to NO if it determines that a sufficient
criterion for non-termination of ⇒R or for existence of an infinite conservative
(P,R)-chain according to the flags m and f holds is sound and complete.

Proof. Obvious. ��

This is a very general processor, which does not tell us how to determine
such a sufficient criterion. However, it allows us to conclude non-termination as
part of the framework by identifying a suitable infinite chain.

Example 66. If we can find a finite (P,R)-chain [(ρ0, s0, t0), . . . , (ρn, sn, tn)]
with tn = s0γ for some substitution γ which uses only conservative DPs,
is formative if f = formative and is U-computable if m = computableU ,
such a chain is clearly a sufficient criterion: there is an infinite chain
[(ρ0, s0, t0), . . . , (ρ0, s0γ, t0γ), . . . , (ρ0, s0γγ, t0γγ), . . .]. If m = minimal and we
find such a chain that is however not minimal, then note that ⇒R is non-
terminating, which also suffices.

For example, for a DP problem (P,R, minimal, all) with P = {f� F X �
g� (F X), g� X � f� h X}, there is a finite dependency chain: [(f� F X �
g� (F X), f� h x, g� (h x)), (g� X � f� h X, g� (h x), f� h (h x))]. As f� h (h x)
is an instance of f� h x, the processor maps this DP problem to NO.

To instantiate Theorem 65, we can borrow non-termination criteria from first-
order rewriting [13,21,42], with minor adaptions to the typed setting. Of course,
it is worthwhile to also investigate dedicated higher-order non-termination
criteria.

6 Conclusions and Future Work

We have built on the static dependency pair approach [6,33,34,46] and formu-
lated it in the language of the DP framework from first-order rewriting [20,22].
Our formulation is based on AFSMs, a dedicated formalism designed to make
termination proofs transferrable to various higher-order rewriting formalisms.

This framework has two important additions over existing higher-order DP
approaches in the literature. First, we consider not only arbitrary and minimally
non-terminating dependency chains, but also minimally non-computable chains;
this is tracked by the computableU flag. Using the flag, a dedicated processor
allows us to efficiently handle rules like Example 8. This flag has no counterpart
in the first-order setting. Second, we have generalised the idea of formative rules
in [31] to a notion of formative chains, tracked by a formative flag. This makes
it possible to define a corresponding processor that permanently removes rules.
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Implementation and Experiments. To provide a strong formal groundwork, we
have presented several processors in a general way, using semantic definitions of,
e.g., the dependency graph approximation and formative rules rather than syn-
tactic definitions using functions like TCap [21]. Even so, most parts of the DP
framework for AFSMs have been implemented in the open-source termination
prover WANDA [28], alongside a dynamic DP framework [31] and a mechanism
to delegate some ordering constraints to a first-order tool [14]. For reduction
triples, polynomial interpretations [15] and a version of HORPO [29, Ch. 5] are
used. To solve the constraints arising in the search for these orderings, and also to
determine sort orderings (for the accessibility relation) and projection functions
(for the subterm criteria), WANDA employs an external SAT-solver. WANDA
has won the higher-order category of the International Termination Competi-
tion [50] four times. In the International Confluence Competition [10], the tools
ACPH [40] and CSIˆho [38] use WANDA as their “oracle” for termination proofs
on HRSs.

We have tested WANDA on the Termination Problems Data Base [49], using
AProVE [19] and MiniSat [12] as back-ends. When no additional features are
enabled, WANDA proves termination of 124 (out of 198) benchmarks with static
DPs, versus 92 with only a search for reduction orderings; a 34% increase. When
all features except static DPs are enabled, WANDA succeeds on 153 benchmarks,
versus 166 with also static DPs; an 8% increase, or alternatively, a 29% decrease
in failure rate. The full evaluation is available in [17, Appendix D].
Future Work. While the static and the dynamic DP approaches each have their
own strengths, there has thus far been little progress on a unified approach,
which could take advantage of the syntactic benefits of both styles. We plan to
combine the present work with the ideas of [31] into such a unified DP framework.

In addition, we plan to extend the higher-order DP framework to rewriting
with strategies, such as implicit β-normalisation or strategies inspired by func-
tional programming languages like OCaml and Haskell. Other natural directions
are dedicated automation to detect non-termination, and reducing the number of
term constraints solved by the reduction triple processor via a tighter integration
with usable and formative rules with respect to argument filterings.
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