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Abstract
This paper reviews our own and colleagues’ research on using convex preference 
cones in multiple criteria decision making and related fields. The original paper by 
Korhonen, Wallenius, and Zionts was published in Management Science in 1984. 
We first present the underlying theory, concepts, and method. Then we discuss appli-
cations of the theory, particularly for finding the most preferred alternative, finding 
a partial and total rank ordering of alternatives, as well as developing algorithms for 
solving multi-objective integer and other optimization problems.

Keywords Multiple criteria decision making · Discrete · Convex preference cones · 
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JEL Classification C6

1 Introduction

This paper is about multiple criteria decision making (MCDM). MCDM has been an 
active research field for more than half a century. We focus on problems in which the 
number of alternatives is countable. The number of alternatives can be either finite or 
countably infinite. Typical examples of the first type of problems are so-called evalu-
ation problems, in which we assume that the set of all decision alternatives is explic-
itly known. We also discuss multi-objective integer programming problems, which are 
sometimes countably infinite. In evaluation problems we assume that the goal is either 
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to find the most preferred alternative (from the decision-maker’s point of view), a small 
subset of good alternatives, or rank order the alternatives from best to worst. We do 
not assume explicit knowledge of the decision-maker’s underlying value function, but 
we assume the value function to be quasi-concave and increasing. This corresponds to 
convex-to-the-origin indifference contours, a rather common assumption in economics.

More specifically, our paper summarizes our work and our colleagues’ work on con-
vex preference cones, a stream of research started by Pekka Korhonen, Jyrki Walle-
nius, and Stanley Zionts in early 1980s. Their first publication dealing with this topic 
emerged in 1984, although the work was started during 1980. Over the years we have 
collaborated with many colleagues on convex preference cones. Roughly a dozen pub-
lications are joint with Murat Köksalan, who completed his Ph.D. at State University 
of New York at Buffalo in 1983 under the supervision of Mark Karwan and Stanley 
Zionts. His dissertation topic was convex preference cones. Murat Köksalan has since 
worked with many Turkish Ph.D. students and colleagues on this topic. In 2006, while 
Jyrki Wallenius was a Visiting Professor at Arizona State University, he suggested the 
use of convex preference cones in Evolutionary Multi-objective Optimization, a new 
and active field of research, as a dissertation topic to a student (Marquis). Their collabo-
ration resulted in two joint publications. Akram Dehnokhalaji and Nasim Nasrabadi, at 
the time Ph.D. students from Iran, joined the Korhonen–Wallenius team around 2009. 
One of the ideas was to generate a partial order and a total order with the help of con-
vex preference cones. The collaboration with Banu Lokman from METU has resulted 
in two publications dealing with multi-objective integer programming problems, with 
the help of convex preference cones. One of the papers develops an exact algorithm for 
solving the problem, a more recent paper a powerful heuristic based on approximate 
cones. Moreover, Korhonen and Wallenius have collaborated with Majid Soleimani on 
the mathematical aspects of convex preference cones. An interesting paper reviewing 
the use of convex cones is Karsu (2013). However, our review is more comprehensive 
and up-to-date. Olson (1996) also provided decision aids for selection problems.

The idea of convex preference cones is relatively simple. Assume we want to find 
the most preferred alternative from among a (large) set of alternatives. Each alterna-
tive is evaluated with multiple criteria. The most preferred alternative depends on 
the decision-maker’s preferences. How can we reliably and easily capture the deci-
sion-maker’s preferences? Multiple approaches have been suggested in the literature. 
We have always liked pairwise comparisons. There is some behavioral research, 
which indicates that such comparisons are relatively easy. However, to identify the 
most preferred alternative with the help of pairwise comparisons may require a pro-
hibitive number of such comparisons. We must therefore find mechanisms, which 
would allow us to eliminate many alternatives, which obviously are not of inter-
est to the decision-maker. The convex preference cones are one such mechanism. 
Let us illustrate with an example. Let us assume that we simply randomly ask the 
decision-maker to make a number of pairwise comparisons. Assume, for example, 
that A is preferred to B, C is preferred to D, and E is preferred to D. Next, group the 
alternatives into sets, where we know the worst alternative (in the set). This results 
in two sets: (1) A and B (B worst), (2) C, D, and E (D worst). In both cases connect 
the points from the best to the worst (A to B; C to D and E to D) and extend the lines 
beyond the worst points, i.e. the dotted lines with the arrows stand for the spanning 
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directions of the cones. The result is two preference cones: one two-point cone 
(Fig. 1a) and one (yellow or shaded) three-point cone (Fig. 1b). We have proved that 
all alternatives which lie in the cones or below them, are not better than the known 
worst alternative—and can be eliminated from further consideration. The proof is 
based on assuming an increasing quasi-concave value function.

The structure of our paper is as follows. Section 2 presents the basic concepts and 
theory of convex preference cones. Section 3 presents the original convex preference 
cone method and enhancements for finding the most preferred alternative. Section 4 
reviews applications of the convex cone theory to discrete problems. Section 5 dis-
cusses applications to solving integer and continuous optimization problems. Sec-
tion 6 concludes the paper.

2  Basic concepts and theory

In this section we explain the basic concepts and theory of convex preference cones, 
which are utilized in solving different types of MCDM problems (Korhonen et al. 
1984). We first illustrate the main idea by using a simple example and then general-
ize it by presenting some theoretical results. Without loss of generality, we assume 
in the sequel that more is better for each criterion. The value function is assumed to 
be increasing and quasi-concave. Also see Hazen (1983) and Ramesh et al. (1988).

Example 1 Assume that we have a discrete Bi-criteria decision making problem. 
Suppose that we do not explicitly know the decision-maker’s (DM) value function, 
but assume that it is increasing and quasi-concave (the corresponding definitions 
will be provided later). Moreover, she/he has expressed preferences in the form of 
pairwise comparisons. For simplicity, assume that there are only five alternatives 
denoted by S = {A,B,C,D,E} , and the DM prefers alternative B to D . The set of 
alternatives in the criterion space ( R2-space) is presented in Fig. 2.

Fig. 1  Illustration of convex cones: a two-point cone, b three-point cone
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Based on the main properties of the value function, i.e. being increasing and 
quasi-concave, we are able to extract some additional information about some of 
the other alternatives (besides B and D). In brief, the following statements hold 
true:

1. Each alternative located on the line segment BD or above it is at least as preferred 
as D.

2. Alternative D is at least as preferred as each alternative located on or below the 
half-line (= two-point cone) emanating from D in the direction �����⃗BD.

Hence, alternative C is at least as preferred as D , whereas D is at least as preferred 
as E . However, we are unable to make preference statements regarding alternative A , 
since it satisfies neither (1) nor (2).

Now, in order to generalize the idea, we provide some definitions. Assume that 
we have m alternatives to be evaluated by p criteria ( p ≥ 2 ). We denote this set of 
alternatives by S = {X1,… ,Xm} where Xi = (xi1,… , xip)

T ∈ Rp is the i-th alterna-
tive. The main idea of the “convex cone approach” is to construct preference cones 
based on the DM’s pairwise comparisons. Utilizing the properties of the underlying 
cones enables us to extract additional preferences regarding other alternatives. For 
the theory to work, the DM’s value function is assumed to be increasing and quasi-
concave. In what follows, we provide the necessary definitions.

Definition 1 Assume that X, Y ∈ Rp . Then X dominates Y  if and only if 
X ≥ Y andX ≠ Y  . Moreover, a vector X∗ ∈ Rp in a given set S ⊆ Rp is said to be 
non-dominated if and only if there does not exist another vector in S which domi-
nates X∗.

To illustrate Definition 1, consider the set S = {A,B,C,D,E} as shown in Fig. 2. 
It is easy to verify that all alternatives in set S are non-dominated, because for each 
X ∈ S there are no other members in S , which dominate X.

Fig. 2  Set of five alternatives in Example 1
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Definition 2 A function f ∶ Rp
→ R is called a value function if it has the follow-

ing properties:

1. f (X∗) > f (X) , if X∗ dominates X.
2. f (X∗) > f (X) , if and only if X∗ is preferred to X.
3. f (X∗) ≥ f (X) , if X∗ is at least as preferred as X.

Part (1) means that f  is increasing, whereas parts (2) and (3) clarify the con-
cept of preference with respect to a given value function. Formally, we write 
X∗ ≻ X , if X∗ is preferred to X , and X∗≽X if X∗ is at least as preferred as X.

Definition 3 A function f ∶ Ω ⊆ Rp
→ R on a non-empty convex set Ω is quasi-

concave, if f (�X + (1 − �)Y) ≥ min{f (X), f (Y)} , for all X, Y ∈ Ω and � ∈ [0, 1].

Note that quasi-concave value functions correspond to convex-to-the origin 
indifference contours.

If the value function is explicitly known, it is straightforward to solve the 
MCDM problem, given certain regularity conditions. Unfortunately, in most real-
world problems, the underlying value function is not explicitly known. However, 
it can be assumed that the DM’s value function satisfies some pre-known proper-
ties, such as monotonicity, linearity, concavity, quasi-concavity, etc. In order to 
implement the “convex cone” approach, the underlying value function is assumed 
to be increasing and quasi-concave. As mentioned in Korhonen et  al. (1984): 
“The quasi-concave functions are the most general class of functions for which 
the theory needed in the convex cone approach is valid.” In addition, when imple-
menting the convex cone approach, it is assumed that the DM is provided with 
some preference information regarding the set of alternatives in the form of pair-
wise comparisons. Then based on this preference information and using the main 
properties of convex cones, it is possible to extract additional preference informa-
tion concerning many of the alternatives.

Assume that the DM’s preferences are given as

In fact, set P provides the preference information for some pairs of alterna-
tives in S in the form of pairwise comparisons. Regarding each subset of S , in 
which the least preferred alternative is given, a convex cone can be constructed 
with the property that the least preferred alternative is the vertex and the other 
alternative(s) are generator(s) of the cone. Formally, we define a preference sub-
set, a preference cone, and a preference polyhedron as follows.

Definition 4 Let X1,… ,Xk−1,Xk,… ,Xq ∈ S be q distinct points with the property 
that Xi ≻ Xk for i = 1,… , q and i ≠ k.

(1)P =
{(

Xr,Xs

)||Xr ≻ Xs , 1 ≤ r, s ≤ m
}
.
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1. The set including alternatives X1,… ,Xk−1,Xk,… ,Xq is called a preference subset 
of P and is denoted by {X1,… ,Xq;Xk} , where Xk is the least preferred alternative 
in the set.

2. The cone with vertex Xk is defined as

and is called a preference cone.
3. The polyhedron spanned by points X1,… ,Xq is defined as

and is called a preference polyhedron.

Using Theorem  1, we are able to detect additional inferior and superior alter-
natives (to Xk ), without explicitly asking about them. For a detailed proof, see 
Korhonen et al. (1984).

Theorem 1 Let f ∶ Rp
→ R be a quasi-concave value function and {X1,… ,Xq;Xk} 

be a preference subset. Then:

1. For each Z ∈ C(X1,… ,Xq;Xk) , we have Xk ≻ Z,
2. For each Y ∈ H(X1,… ,Xq;Xk) , we have Y≽Xk.

In other words, if an alternative lies in or below the convex cone C, it is inferior 
or indifferent to Xk (1). Moreover, if an alternative lies in the polyhedron H or above 
it, it is superior or indifferent to Xk (2). (See Korhonen et al. (2017) for proofs of 
some additional properties of quasi-concave value functions and convex cones.)

Korhonen et al. (1984) provide simple LP formulations to check whether condi-
tions in (1) and/or (2) are met.

Example 2 Consider the discrete Bi-criteria decision problem with five non-domi-
nated alternatives S = {A,B,C,D,E} presented in Fig.  2. Assume the DM prefers 
alternative B to D . This gives us the preference subset {B,D;D} . Based on Definition 
1, the corresponding preference cone is formed as the half-line emanating from D 
in the direction �����⃗BD and the preference polyhedron is given as the line segment BD . 
Now, based on Theorem 1, it is easy to verify that C is preferred to D, and D is pre-
ferred to E.

Although Theorem 1 provides useful information about preference cones and 
preference polyhedra, we mainly focus on using convex cones, i.e. on part (1) 
of Theorem 1 in this paper. Based on part (1) of the theorem, the convex cone 

(2)

C
(
X1,… ,Xq;Xk

)
=

{
Z|Z = Xk +

q∑

i=1,i≠k

�i(Xk − Xi), �i ≥ 0, i = 1,… , q, i ≠ k

}

(3)

H
(
X1,… ,Xq;Xk

)
=

{
Y|Y =

q∑

i=1

�iXi,

q∑

i=1

�i = 1, �i ≥ 0, i = 1,… , q

}
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C(X1,… ,Xq;Xk) and the region dominated by it, denoted by C−(X1,… ,Xq;Xk) , is 
considered an inferior region and can be discarded from further consideration. 
Hence for each alternative, the idea is to check if it is included in such a region or 
not. In the following we operationalize the idea.

Suppose that Xo is a given alternative such that Xo ∉ {X1,… ,Xq;Xk} , and our 
aim is to check the preference status of Xo compared to Xk . To do this, it is enough 
to check whether Xo belongs to the cone-dominated region or not. The following 
LP problem was formulated by Korhonen et al. (1984):

where 1 = (1,… , 1) . Based on model (4) and part (1) of Theorem 1, it can be easily 
verified that if 𝜀∗ > 0 , then Xk is preferred to X0 . Moreover, if �∗ = 0 , then Xk is at 
least as preferred as Xo . It is worthwhile to note that some other helpful results can 
also be obtained from the above problem. The reader is referred to Korhonen et al. 
(2016) for a comprehensive discussion.

The reader may ask, how do we know, whether the decision-maker has a quasi-
concave value function or not. Given set P of the DM’s preferences, Korhonen 
et  al. (1986) developed a simple approach, which checks whether there exists 
a quasi-concave value function consistent with the DM’s preferences. Their 
approach investigates this by solving the following linear program:

where P(Y) = {X|(X, Y) ∈ P} . At optimality, if �∗ ≥ 0 , it is concluded that the DM’s 
value function is quasi-concave, or equivalently, the assumption of quasi-concavity 
is consistent with the DM’s preferences. In other words, we do not reject the hypoth-
esis that the value function is quasi-concave. Note that the condition is necessary, 
but not sufficient. Köksalan and Sagala (1995) have developed an efficient approach 
that quickly identifies whether the DM’s preferences are consistent with a linear, 
quasi-concave, or a more general function.

In Fig. 3a, b, we illustrate our considerations by comparing three alternatives 
A, B, and C in two dimensions. The values of the alternatives in the criterion 
space (criteria to be maximized) are A: (1, 2.5), B: (2, 2), and C: (2.5,1).

In Fig. 3a, we assume that B ≻ A and B ≻ C . In this case, we can see that it is 
possible to find vector � such that its scalar product between vectors ����⃗CB and ����⃗AB is 
greater than zero. It means that there is no reason to reject the assumption that the 
value function is quasi-concave, whereas such a vector cannot be found in case b, 
and we reject the quasi-concavity assumption.

(4)

�∗ = max �

s.t.

q∑

i=1,i≠k

�i(Xk − Xi) − �1 ≥ X0 − Xk

�i ≥ 0, i = 1,… , q, i ≠ k,

(5)

�∗ = max �

s.t. �(Y)T (X − Y) ≥ �, (X, Y) ∈ P

1T�(Y) = 1, �(Y) ≥ 0,∀Y ,P(Y) ≠ �
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2.1  Dual cone approach

In case the number of alternatives included in the preference subset is large com-
pared to the number of criteria, i.e. q > p , it is helpful to use a dual cone approach 
instead of solving model (4). This issue was investigated in Korhonen et al. (2016). 
To illustrate the dual cone approach, we first provide the following definition.

Definition 5 The polyhedral cone W , associated with the preference subset 
{X1,… ,Xq;Xk} is defined as W =

{
V ∈ Rp|V

(
Xi − Xk

)
≥ 0, i = 1,… , q,V ≥ 0

}
.

Geometrically, W is the set of all non-negative vectors V  with the property that 
the angle between V  and all vectors of the form Xi − Xk for all i = 1,… , q, i ≠ k 
is between zero and �

2
 . Now, assume that V1,… ,Vt are the extreme generators of W . 

The following theorem clarifies the relation between the polyhedral cone and our 
original model (Korhonen et al. 2016).

Theorem 2 Considering above notations,

1. �∗ ≥ 0 if and only if Vi(Xk − Xo) ≥ 0 for i = 1,… , t . Equivalently, Xk is at least 
as preferred as Xo

2. 𝜀∗ > 0 if and only if Vi(Xk − Xo) > 0 for i = 1,… , t . Equivalently, Xk is preferred 
to Xo

 Theorem  2 enables us to check the preference status of Xo in comparison with 
Xk , by means of extreme generators of W . To simplify the idea, notice that if 
Vi(Xk − Xo) ≥ 0 for i = 1,… , t , then Xk is at least as preferred as Xo . Moreover, if 
Vi(Xk − Xo) > 0 for i = 1,… , t , then Xk is preferred to Xo . This result forms the fun-
damental idea of the dual cone approach.

Fig. 3  Illustration of quasi-concavity test
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Example 3 Let X1 = (2.5, 3.5)T and Xk = (4, 2)T . Assume that X1 ≻ Xk and we aim 
to check the preference status of Xp = (4.5, 1)T and Xq = (5, 1.5)T with respect to 
the preference cone C(X1,Xk;Xk) . From Fig.  4a it can be observed that Xk is pre-
ferred to Xp , however no preference information is derived for Xq . The same infor-
mation can be derived using the dual cone. The cone W is represented in Fig. 4b 
with V1 = (0, 1)T and V2 = (1, 1)T as its extreme generators. Moreover, the vectors 
Xk − Xp and Xk − Xq are also depicted. We can see that the angle between Xk − Xp 
and both V1 and V2 belongs to (0, �

2
) , which implies that 𝜀∗ > 0 . However, the angle 

between Xk − Xq and V2 is in ( �
2
,�) for Xq , and hence 𝜀∗ < 0.

3  The original method and its enhancements

Based on the original theory provided in the previous section, a number of studies 
have been conducted to enhance it. In this section we review a number of such stud-
ies. All of them are based on Korhonen et al. (1984). A quasi-concave value func-
tion is assumed in each case. Pairwise comparisons are the mechanism of eliciting 
preference information from the DM.

3.1  The original approach: Korhonen et al. (1984)

The original article developed the convex cone theory and an operational approach 
for identifying the most preferred alternative among a set of discrete alternatives. 
The original approach works as follows. To begin with, a linear value function with 
arbitrary weights is generated and the alternative which maximizes this value func-
tion is determined. Then the DM is asked to compare this alternative with all of its 
adjacent alternatives in a pairwise fashion, in the spirit of the Zionts and Wallenius 
algorithm (Zionts and Wallenius 1976). Based on the obtained preference infor-
mation among the alternatives, all possible convex cones are generated. Then, by 
applying model (4) (or its dual form), all alternatives located in the cone-dominated 
regions are identified and eliminated. Moreover, the DM’s pairwise comparisons are 
used to update the underlying weights of the linear value function. With the new set 
of consistent weights, the procedure is repeated until all alternatives except one are 

Fig. 4  The dual cone for Example 1
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eliminated. The remaining alternative is presented to the DM as the most preferred. 
The authors report on some computational statistics and numbers of pairwise com-
parisons required to identify the most preferred alternative for problems of different 
sizes. The results were encouraging.

3.2  Introducing dummy alternatives: Köksalan et al. (1984) and Köksalan 
and Taner (1992)

As part of Köksalan’s Ph.D. research, he introduced improvements to the original 
algorithm, published in Köksalan et al. (1984). The main idea for improvement was 
based on introducing dummy alternatives. The authors believed that by introducing 
dummy alternatives in a suitable way, it was possible to eliminate more alternatives in 
each step of the algorithm. Dummy alternatives chosen smartly can expand the cone 
dominated region and therefore more alternatives are likely to be eliminated. The orig-
inal dummies were convex combinations of Xk and alternatives found better than it (in 
pairwise comparisons). Finally, they compared their version of the algorithm with the 
original version of Korhonen et  al. (1984). The performance measure was the total 
number of pairwise comparisons required to solving the problem (identifying the most 
preferred alternative). The results of computer simulations showed that for almost all 
test problems, the improved algorithm performed better than the original algorithm. 
Also, it was verified that by implementing a heuristic stopping rule, in general the 
most preferred alternative was found in less than 20 pairwise comparisons.

Köksalan and Taner (1992) developed an improved version of Köksalan et  al. 
(1984) regarding the rule for selecting the dummy alternatives. They suggested 
using as dummies alternatives, which dominate the least preferred of the cone gener-
ators and which are less preferred than the remaining cone generators. The purpose 
of the improvements was to reduce the number of pairwise comparisons required 
from the DM. Moreover, they suggested that by using three-point cones along with 
dummy alternatives, the algorithm would perform more effectively. Figure 5 illus-
trates the use of dummy variables, denoted Xd. In the left-hand figure, we assume 
that X1 is preferred to Xd. In the right-hand figure, Xd is preferred to Xk.

In an early paper, Malakooti (1988) also presented different ways to select the 
cone generators, including the use of dummy alternatives to increase the area that 
can be eliminated by the cones. He also discussed the use of trade-off information to 
eliminate less preferred alternatives and find better ones.

Fig. 5  Using dummy alternatives to enlarge the cone dominated region
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3.3  Techniques for minimizing number of pairwise comparisons: Taner 
and Köksalan (1991) and Özpeynirci et al. (2017)

One of the most important concerns in implementing interactive approaches to find-
ing the most preferred alternative is the amount of preference information required 
from the DM. Taner and Köksalan (1991) investigated this issue in the framework of 
the convex cone approach. They conducted several experiments to investigate how 
some factors, such as the number of cone generators, the way in which the gen-
erators are selected, and the order of making pairwise comparisons affect the total 
number of pairwise comparisons. They observed that cones having three generators 
are generally more powerful than other cones in the first iterations, when the number 
of alternatives exceeds 10. However, two-point cones guarantee to eliminate at least 
one alternative at each iteration, in case we have 10 or fewer alternatives. Therefore, 
using both types of cones, three-point cones for the first iterations and two-point 
cones for the remaining iterations, is suggested.

In a recent paper, Özpeynirci et al. (2017) revisited the issue of minimizing the 
number of questions asked of the DM. They significantly enhanced the original con-
vex cone idea by systematically choosing the pairs of alternatives for comparison. 
The idea was based on the expected number of eliminated alternatives per pair. This 
depended on the estimated likelihood one alternative is preferred to another. The 
likelihood information is updated for not yet chosen pairwise alternatives. The rest 
of the algorithm follows the convex cone logic. The goal of the algorithm is to ask 
as few pairwise comparisons as possible.

3.4  Ordinal, cardinal, and mixed criteria: Köksalan et al. (1986, 1988)

Köksalan et al. (1986) addressed the problem of finding the most preferred alterna-
tive among a set of finite alternatives, which are evaluated in terms of ordinal and 
cardinal criteria simultaneously. Moreover, a heuristic method to solve the problem 
with only cardinal criteria was also proposed. Experimental tests of the proposed 
algorithms indicate that for problems consisting of 100 and 150 alternatives with 
four criteria, the number of pairwise comparisons required to identify the most pre-
ferred alternative is approximately 20. Köksalan et al. (1988) paper deals with the 
case of pure ordinal criteria.

4  Application of convex preference cones to discrete problems

Most of the applications of the convex cone theory have been to discrete problems. 
We review a number of such studies. They include partitioning alternatives into 
acceptable and unacceptable; characterizing regions of “surely” and “possibly bet-
ter” alternatives; ranking of alternatives; Evolutionary Multi-Objective Optimiza-
tion; and Data Envelopment Analysis (DEA).
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4.1  Partitioning alternatives into acceptable and unacceptable: Ulu and Köksalan 
(2001)

Ulu and Köksalan (2001) considered the problem, which partitions alternatives 
into acceptable and unacceptable sets. Assuming that the DM’s value function 
is linear, quasi-concave or general monotone, they developed algorithms to find 
an acceptable subset of alternatives. Their approach is of critical importance, 
especially when the number of alternatives is large. They conducted experimental 
tests to verify the validity of their proposed approach. Moreover, they used their 
approach in a real-world application with the purpose of admitting students to 
Middle East Technical University, Turkey. The previous idea has been general-
ized to any number of classes in Ulu and Köksalan (2014). They refer to the prob-
lem as sorting.

4.2  Surely and possibly preferred alternatives: Korhonen et al. (1986)

Assuming that a quasi-concave value function consistent with P exists, Korhonen 
et  al. (1986) defined and characterized the regions of “surely better solutions” 
and “possibly better solutions”, when considering augmenting the original set of 
alternatives. The idea underlying this distinction is based on dominance and cone 
dominance. Assume that A is the best alternative found so far. Then obviously, 
alternatives which dominate the most preferred alternative (so far), are surely bet-
ter. In other words, the process that is used for finding the most preferred alterna-
tive so far, produces preference information (convex preference cones), which we 
can use to eliminate inferior alternatives from further consideration. The alterna-
tives, which belong to the cone-dominated region, are surely less preferred than 
the most preferred alternative found so far. The region which is not surely better 
nor surely worse, consists of possibly better alternatives. The distinction between 
surely and possibly better alternatives is important when forming a total or partial 
rank order. Also see Karakaya and Köksalan (2018).

4.3  Ranking

Ranking is a problem that has interested decision scientists for quite some time. 
In the two papers outlined below (Dehnokhalaji et  al. 2011,  2014), we use the 
convex cone idea to generate a partial order and a total order of a finite set of 
alternatives. Ranking has many possible applications. It can, among others, be 
used to incorporate preference information in, e.g., Data Envelopment Analysis 
(DEA) and Evolutionary Multi-Objective Optimization (EMO). Both applications 
are briefly described below. A related problem is to find the k-best alternatives 
and rank them. This problem has been addressed by Köksalan (1989).
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4.3.1  Partial order: Dehnokhalaji et al. (2011)

In this paper, we considered the problem of finding a preference-based strict 
partial order for a finite set of multiple criteria alternatives. We developed an 
approach based on information provided by the decision maker in the form of 
pairwise comparisons. We assumed that the decision-maker’s value function is 
not explicitly known, but it has a quasi-concave form. Based on this assumption, 
we constructed convex cones providing additional preference information to par-
tially order the set of alternatives. We also extended the information obtained 
from the quasi-concavity of the value function to derive heuristic information that 
enriches the strict partial order.

4.3.2  Total order: Dehnokhalaji et al. (2014)

The problem of finding a strict total order for a finite set of multiple criteria alterna-
tives was considered. Our research extended previous work by us, which considered 
finding a partial order for a finite set of alternatives. We merged the preference infor-
mation extracted from the preference cones and corresponding polyhedral sets, with 
the information derived from pairwise comparisons of two alternatives, yielding a 
preference matrix. This preference matrix was used as input to an integer program-
ming model to obtain a strict total order that provides a transitive ranking for the set 
of alternatives.

4.4  Evolutionary multi‑objective optimization (EMO)

Evolutionary multi-objective optimization (EMO) is a relatively new field, which 
uses concepts of survival of the fittest to solve complex optimization problems (Deb 
2001). It started with the engineering community, and the goal was to generate the 
Pareto-optimal front for Bi-criteria problems. No decision maker was involved. 
EMO differs from classical optimization in many ways. Classical optimization algo-
rithms typically seek to find an improving sequence of solutions, which hopefully 
converges to the optimal solution. EMO algorithms, on the other hand, operate with 
a set of candidate solutions, which we seek to improve over multiple (typically hun-
dreds) of iterations. In EMO algorithms the fitness function is used to measure the 
quality of the set of candidate solutions.

4.4.1  Fowler et al. (2010) and Marquis et al. (2015)

Fowler et al. (2010) present a hybrid MCDM/EMO approach to interactively solve 
multi-objective optimization problems. A DM is involved and guides the search. 
The Fowler et  al. algorithm uses a partial preference order, obtained via convex 
preference cones, to replace the fitness function in an EMO algorithm. We periodi-
cally ask the DM to make pairwise preference comparisons and use the resulting 
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preference information to form convex preference cones. The cones allow us to rank 
solutions that the DM has not even considered. As before, we assume that the prefer-
ence function is quasi-concave.

The above algorithm opens a number of behavioral questions. For example, what 
is the role of human inconsistencies on the convergence of the algorithm? How 
should the interactions be organized? More questioning early on or later on? In a 
relatively recent paper (Marquis et  al. 2015) we investigated such questions. As 
test problems we used two- to four-objective combinatorial optimization problems, 
which are notoriously hard to solve. In the tests, two different preference functions 
were used: linear and Chebyshev. We concluded that it is possible to obtain solutions 
that are very good or even nearly optimal with a reasonable number of interactions.

4.5  DEA/VEA

Data envelopment analysis (DEA) is a linear programming-based technique for 
evaluating the relative efficiency of a number of homogenous decision-making units 
using multiple inputs to produce multiple outputs. In DEA the efficiency score is 
calculated for each unit in such a way that the units with efficiency score equal to 
one are diagnosed as efficient and the other units as inefficient. The original refer-
ence is Charnes et al. (1978). An important feature of DEA is that the original DEA 
model is value-free.

4.5.1  Halme et al. (2014)

This work builds on value efficiency analysis (VEA) proposed by Halme et  al. 
(1999). Recall that the main motivation of value efficiency analysis (VEA) was to 
incorporate the decision-maker’s preferences into DEA. The original VEA model 
assumes that the DM provides his/her preferences via determining the most pre-
ferred solution. In the original formulation this solution could be either an observed 
or a virtual unit. However, in some real problems the DM may wish to evaluate only 
existing units. In such cases, the non-convex value efficiency analysis model, sug-
gested by Halme et al. (2014) is useful. The idea of the model is to construct convex 
preference cones and then use them to approximate the contours of the value func-
tion passing through the most preferred solution. The authors applied their model to 
evaluate the performance of bank branches in Helsinki, Finland.

4.5.2  Dehnokhalaji et al. (2017)

An important issue in DEA is to rank order efficient units. Based on the approach 
proposed by Dehnokhalaji et  al. (2014) for constructing a total order for alterna-
tives evaluated in terms of multiple criteria, Dehnokhalaji et al. (2017) developed a 
method for ranking units in DEA. They implemented and modified the radial model 
formulated by Dehnokhalaji et  al. (2014) to obtain a non-radial measure, which 
is more stable in practice. The main idea of their model is to construct preference 
cones and preference polyhedra in the context of DEA and then find the distance of 
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the unit under assessment to the convex cone/the polyhedral in terms of L − 1 norm. 
Then, according to the calculated distances, they were able to generate a full rank-
ing of all units under consideration. Moreover, the accuracy of the results has been 
investigated through computational tests.

4.6  Capturing preferences for inequality aversion: Karsu et al. (2018)

Karsu et  al. (2018) considered fairness problems, which occur widely in the pub-
lic sector. In these problems the DM has both efficiency as well as equity or fair-
ness concerns. The authors provided a procedure for ranking a discrete set of dis-
tributions (of income, wealth, health). In a societal setting, there is usually some 
initial preference information available regarding different distributions. Available 
preference information between some pairs of distributions is skillfully used to infer 
additional preference information. The authors proposed a tractable computational 
scheme for using the available preference information in order to derive a stronger 
ranking of distributions. This was accomplished via the use of convex cones. They 
provided some simulation results showing that their proposed method is computa-
tionally feasible for problems with small and medium sizes. They provided the first 
extensive work to incorporate preference information via convex cones into fairness 
problems.

5  Application of convex preference cones for continuous/integer 
problems

With some exceptions, the application of the convex cone theory to continuous 
multi-objective optimization problems or to integer programming problems is rather 
recent. We review a number of such studies.

5.1  Use of convex cones in interactive multiple objective optimization: Prasad 
et al. (1997)

Prasad et  al. (1997) generalized the idea of convex cones to incorporate the idea 
how much an alternative lies above a convex cone. They developed the so-called p 
cones concept and defined the p cone efficiency, which measures the distance of an 
alternative from the region dominated by the convex cone. The smaller the obtained 
p cone efficiency, the closer the alternative is to be dominated by the convex cone. 
Cone-dominated alternatives have a p cone efficiency equal to zero. They proposed 
two procedures, namely, Acceleration and Early Termination, based on the obtained 
p cone efficiencies, to reduce the required preference information. By extracting new 
preference information (within an interactive solution framework), they reduced the 
preference information requirements to improve the convergence of multi-objective 
linear programming procedures.



 N. Nasrabadi et al.

1 3

5.2  An interactive evolutionary algorithm to solve continuous and integer 
programming problems: Sinha et al. (2018)

Sinha et al. (2018) introduced an interactive evolutionary algorithm to solve multi-
objective continuous and integer programming problems. They assumed that the 
underlying value function is strictly increasing and quasi-concave. Since the Pareto 
optimal frontier is high-dimensional for such problems and visualizing it is very 
challenging, they let the DM guide the search towards the most preferred solution. 
On one hand, they eliminated non-preferred solution candidates by applying these 
cones, and on the other hand, they introduced extreme gradient directions to boost 
the evolutionary search. Borrowing from Fowler et al. (2010), they also constructed 
a cone-based merit (or fitness) function to measure the quality of the solution candi-
date. The direction and the merit function constructed based on the cones accelerates 
the convergence of their proposed algorithm. The approach successfully reached the 
most preferred solution for all test problems for different value functions.

5.3  Multi‑objective integer programming: Ramesh et al. (1989, 1990) 
and Lokman et al. (2016, 2018)

Early work in using convex cones to solve multi-objective integer programming 
problems is Ramesh et al. (1989, 1990). They developed a branch-and-bound scheme 
using convex cones. The tests are for Bi-criteria problems only. The approaches 
developed showed promise; however, were not capable of solving large-scale integer 
programming problems with the computing power available at the time.

In a recent paper we developed an exact interactive algorithm that finds the most 
preferred solution for multi-objective integer programming problems (Lokman et al. 
2016). Again, we assumed that the DM’s preferences are consistent with a quasi-
concave value function. Based on the properties of quasi-concave value functions 
and pairwise preference information obtained from the DM, we generated con-
straints to restrict the implied inferior regions. An additional computational diffi-
culty arises in these problems in characterizing the feasible region, as it becomes 
non-convex with the introduction of cone constraints. The algorithm continues itera-
tively and guarantees to find the most preferred solution for integer programs. We 
tested the performance of the algorithm on multi-objective combinatorial problems. 
Due to the inherent difficulty of integer programs, the increase in the number of 
non-dominated points, and the additional complexity of characterizing non-con-
vex regions, the algorithm requires substantial computational effort for large-sized 
problems.

The computational difficulties of our 2016 algorithm served for us as a motiva-
tion to develop a computationally powerful algorithm, at the expense of a small 
(and controllable at a desired level) deterioration in solution quality (Lokman et al. 
2018). Specifically, we approximated the most preferred solution of a multi-objec-
tive integer programming problem for any desired level of accuracy by establishing 
regions that are possibly inferior. As before, the DM’s preferences were assumed 
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to be consistent with an increasing quasi-concave value function. Using pairwise 
comparisons of the DM, we constructed convex cones and eliminated the inferior 
regions that are ‘close’ to being dominated by the cones in addition to the regions 
dominated by the cones. The performance of the algorithm was tested on a num-
ber of multi-objective combinatorial optimization problems. The performance of the 
algorithm is very good in terms of the quality of the solution found, the solution 
time, and the required number of pairwise comparisons. This demonstrates that it is 
a viable approach to solving multi-objective combinatorial optimization problems as 
well as general integer programming problems. For an application to multi-objective 
vehicle routing, see Tezcaner and Köksalan (2011, 2016), and to auctions Karakaya 
and Köksalan (2016).

6  Conclusion

This paper overviews the powerful idea and the literature behind the convex prefer-
ence cones for solving different types of MCDM problems. The only input required 
from a DM is a number of pairwise preference comparisons, that is which one out of 
two alternatives is preferable. Convex preference cones have been found very useful 
in diverse applications, including multi-objective integer programming, evolution-
ary multi-objective optimization, and in generating a partial or total order for alter-
natives. An interesting recent generalization of the cone idea is by Karakaya et al. 
(2018).

We conclude with brief state-of-the art recommendations, what type of convex 
preference cones to form and how to use them. It is difficult to directly recommend 
some cone type, that is two-point, three-point etc., cones. Hence, we have on pur-
pose been cautious in our recommendations. One thing is sure, however. Once we 
have the preference information (pairwise comparisons), we do want to generate all 
possible cones (to maximally use the available information), even though at some 
computational cost. But it is also possible to design the pairwise comparisons in 
suitable ways, so that they would, for example maximally support the formation of 
two-point cones. Such two-point cones have the advantage of simplicity and are effi-
cient per question asked. We do not want too-many-point cones, but suitable three- 
or four-point cones are also effective in many situations. Including dummy alterna-
tives in comparisons is good, because it helps enlarging the eliminated space, but 
may be criticized as being artificial.
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