
Logical Methods in Computer Science
Vol. 12(4:7)2016, pp. 1–58
www.lmcs-online.org

Submitted Apr. 2, 2016
Published Dec. 28, 2016

HONESTY BY TYPING ∗

MASSIMO BARTOLETTI, ALCESTE SCALAS, EMILIO TUOSTO, AND ROBERTO ZUNINO

Università degli Studi di Cagliari, Italy
e-mail address: bart@unica.it

Università degli Studi di Cagliari, Italy and Imperial College London, UK
e-mail address: alceste.scalas@imperial.ac.uk

University of Leicester, UK
e-mail address: emilio@leicester.ac.uk

Università degli Studi di Trento, Italy
e-mail address: roberto.zunino@unitn.it

Abstract. We propose a type system for a calculus of contracting processes. Processes
can establish sessions by stipulating contracts, and then can interact either by keeping the
promises made, or not. Type safety guarantees that a typeable process is honest — that
is, it abides by the contracts it has stipulated in all possible contexts, even in presence of
dishonest adversaries. Type inference is decidable, and it allows to safely approximate the
honesty of processes using either synchronous or asynchronous communication.

1. Introduction

It is commonplace that distributed applications are not easy to develop. Besides the intrin-
sic issues due e.g. to physical distribution, and to the fragility of communication networks,
distributed applications have to be engineered within an apparent dichotomy. On the one
hand, distributed components have to cooperate in order to achieve their goals and, on
the other hand, they may have to compete, e.g. to access resources or other components
with limited availability. This dichotomy is well witnessed by the service-oriented para-
digm, which fosters dynamic composition of distributed applications, with the interaction
of components, a.k.a. “services”, deployed by different vendors.

Cooperation and competition hardly coexist harmoniously. A frequent simplification
is to neglect competition, by assuming that all components (including third-party ones)
always adhere to some declared specification. For instance, such a specification could be
a behavioural type, abstracting the input/output behaviour of a component — and the
simplifying assumption is that each component is verified against its declared specification,

2012 ACM CCS: [Theory of computation]: Models of computation; Concurrency – Semantics and
reasoning – Program reasoning – Program specifications – Program verification; Semantics and reasoning –
Program semantics – Operational semantics.

Key words and phrases: contract-oriented computing, verification, session types.
∗ Full version of an Extended Abstract presented at FORTE’13.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-12(4:7)2016
c© M. Bartoletti, A. Scalas, E. Tuosto, and R. Zunino
CC© Creative Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/211231947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/about/licenses

2 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

and has a corresponding runtime behaviour. We argue that this assumption is hardly
realistic in scenarios where third-party components can be used but not inspected, and
thus are not guaranteed to honour their declared behaviour. This is particularly relevant in
competitive scenarios, which may incentivise “selfish” components that diverge from their
declared specification.

Contract-oriented computing [14, 12] addresses these concerns by disciplining the inter-
action among components through contracts, which formalise promised runtime behaviours.
In a contract-oriented setting, the components of a distributed application are implemented
as processes interacting through a contract-oriented middleware. Processes may advertise
contracts; if the middleware finds a set of compliant contracts, it establishes a new session
involving the advertising processes. When involved in a session, a process should perform
the interactions needed to realise its contract; however, a process could also violate its con-
tract, e.g. by not performing some promised input/output action: this may happen either
maliciously, or unintentionally, because of some implementation bug. To discourage con-
tract violations, the middleware can monitor the sessions, and sanction the processes which
do not respect their contracts. These sanctions can be e.g. pecuniary compensations, or
marginalisation: if a process misbehaves, the middleware could decrease its reputation, and
consequently its chances of being involved in further sessions [6, 41].

In this scenario, to avoid sanctions, a process must be able to respect all the contracts
it advertises, in all possible contexts — even those populated by adversaries which try
to make it sanctioned. We call this property honesty. A crucial problem is then how to
guarantee that a process is honest.

An example. Consider an online store S taking orders from buyers. The store sells two
items: apples, which are always available and costs e1, and bananas, which costs e1 when
in stock, and e3 otherwise. In the latter case, the store orders bananas from an external
distributor, which makes the store pay e2 per item.

The store advertises the following contract to potential buyers B:

(1) let the buyer choose between apples and bananas;
(2) if the buyer chooses apples, then receive e1, and then ship the item to him;
(3) if the buyer chooses bananas, offer a quotation to the buyer (e1 or e3);
(4) if the quotation is e1, then receive the payment and ship;
(5) if the quotation is e3, ask the buyer to pay or cancel the order;
(6) if the buyer pays e3, then either ship the item to him, or refund e3.

We can formalise such contract in several process algebras. For instance, we can use
the following session type [32] (without channel passing):

CB = buyA? . pay1E? . shipA! &

buyB? . (quote1E! . pay1E? . shipB! ⊕ quote3E! . C ′B ⊕ abort!)

C ′B = pay3E? . (shipB!⊕ refund!) & quit?

where e.g., buyA? represents a label in a branching construct (i.e., receiving an order for
apples from the buyer), while quote1E! represents a label in a selection construct (i.e.,
sending an e1 quotation to the buyer). The operator ⊕ separates branches in an internal
choice, while & separates branches in an external choice.

HONESTY BY TYPING 3

The protocol between the store and a distributor D is the following:

CD = buyB! . (pay2E! . shipB? ⊕ quit!)

Note that the contracts above do not specify the actual behaviour of the store, but
only the behaviour it promises towards the buyer and the distributor. A possible informal
description of the actual behaviour of the store S is the following (see 3.6 for a formal
specification):

(1) S advertises the contract CB ;
(2) when CB is stipulated, the buyer chooses apples (buyA) or bananas (buyB);
(3) if the buyer chooses apples, S gets the payment (pay1E), and ships the item (shipA);
(4) otherwise, if the buyer chooses bananas, S checks if the item is in stock;
(5) if bananas are in stock, S provides the buyer with the quotation of e1 (quote1E),

receives the payment (pay1E), and ships the item (shipB);
(6) otherwise, if bananas are not in stock, S advertises the contract CD;
(7) when CD is stipulated, S pre-orders bananas from the distributor (buyB);
(8) S sends a e3 quotation to the buyer (quote3E) and waits for the buyer’s reply;
(9) if the buyer pays e3 (pay3E), then S pays the distributor (pay2E), receives the item

from the distributor (shipB), and ships it to the buyer (shipB).

The store service terminates correctly whenever two conditions hold: the buyer is honest,
and at step 7 the middleware selects an honest distributor. Such assumptions are necessary.
For instance, in their absence we have that:

(1) if a malicious buyer does not send e3 at step 9, then the store does not fulfil its
obligation with the distributor, who is expecting a payment or a cancellation;

(2) if the middleware finds no distributor with a contract compliant with CD, then the store
is stuck at line 7, so it does not fulfil its obligation with the buyer, who is expecting a
quotation or an abort;

(3) if a malicious distributor does not ship the item at line 9, then the store does not fulfil
its obligation with the buyer, who is expecting to receive the item or a refund;

(4) if the buyer chooses quit at line 8, the store forgets to handle it; so, it will not fulfil
the contract with the distributor, who is expecting pay2E or quit.

Therefore, we would classify the store process above as dishonest (we will formalise an honest
variant of the store later on, in 7.7). In practice, this implies that a concrete implementation
of such a store could be easily attacked. For instance, an attacker could simply order bananas
(when not in stock), but always cancel the transaction. The middleware will detect that the
store is violating the contract with the distributor, and consequently it will sanction the
store. Concretely, in the middleware of [6] the attacker will manage to never be sanctioned,
and to arbitrarily decrease the store reputation, so preventing the store from being able to
establish new sessions with buyers.

The example above shows that writing honest processes is an error-prone task: this is
because one has to foresee all the possible points of failure of each partner.

Contributions. We address the problem of honesty in CO2 [12], a core calculus for contract-
oriented computing. The main contribution of this paper is a type discipline for statically
ensuring when a CO2 process is honest. The need for a static approximation is motivated
by the fact that honesty is an undecidable property, as shown in [15].

4 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

To obtain this result, we first study a theory of compliance between session types,
both with a synchronous and an asynchronous semantics. We prove that asynchronous
session types are Turing-powerful (2.5). In 2.8 we show that asynchronous compliance is
undecidable, while the synchronous one is decidable.

We introduce a type system for CO2 processes, which associates behavioural types
(based on Basic Parallel Processes) to each session name and variable. For these types we
define a notion of abstract honesty, which we prove decidable (6.6). Exploiting this result,
we show that our type system has a decidable type inference (8.6).

We establish subject reduction, i.e. types simulate processes (9.6), and a strong form
of progress which ensures that processes simulate types (9.7). We then exploit these results
to prove type safety, which guarantees that typeable processes are honest (9.9). Further,
using 4.9, we can lift our type safety result to the case of asynchronous CO2 processes.

Together with the decidability of type inference, we obtain an algorithm to safely approx-
imate the honesty of CO2 processes, both synchronous and asynchronous. Our algorithm is
more precise than the model-checking technique in [9], which can only establish the honesty
of essentially finite-state processes (i.e., without parallel nor delimitation under recursion).
For instance, 7.8 shows a process for which the analysis technique proposed in this paper
is more precise than the one in [9].

2. Session types as contracts

We use first-order binary session types [3] as contracts. These are terms of a process
algebra featuring internal/external choice, and recursion. We consider two semantics: an
asynchronous one, using unbounded queues (2.2), and a synchronous one (2.3). We then
study a compliance relation between session types, which is common for both semantics:
roughly, the compliance relation formalizes when two contracts do not yield communication
errors. In particular, we show that compliance between session types is not decidable (2.8)
under the asynchronous semantics, while it is decidable under the synchronous one. We
then show that synchronous compliance is a sound approximation of the asynchronous one
(2.9).

2.1. Syntax. We assume a set of participants (ranged over by A,B, . . .), and a set of actions,
partitioned into input actions a?, b?, . . . ∈ A?, and output actions a!, b!, . . . ∈ A!. We let
a, b, . . . range over A? ∪ A!.

Definition 2.1 (Session types). Session types are terms of the following grammar:

C,D ::=
⊕
i∈I

ai! . Ci
∣∣ ¯

i∈I
ai? . Ci

∣∣ recX . C
∣∣ X

where (i) the index set I is finite, (ii) in a summation, ai = aj implies i = j, and (iii)
recursion variables X are prefix-guarded.

An internal sum
⊕

i ai! . Ci allows a participant to choose one of the labels ai, and
then to behave according to the branch Ci. Dually, an external sum

˘
i ai? . Ci allows to

wait for the other participant to choose one of the labels ai, and then behave according to
the branch Ci. Empty internal/external sums are identified, and they are denoted with 1,
which represents a success state wherein the interaction has terminated correctly.

HONESTY BY TYPING 5

A : (a! . C ⊕ C ′) [βA] | B : D [βB]
A:a!−−−→→∞ A : C [βA] | B : D [βB a!] [Out]

A : C [βA] | B : (a? . D &D ′) [a! βB]
B:a?−−−→→∞ A : C [βA] | B : D [βB] [In]

Figure 1. Asynchronous semantics of session types (symmetric rules omitted).

We use the binary operators to isolate a branch in a sum: e.g., C = (a! .C ′)⊕C ′′means
that C has the form

⊕
i∈I ai! . Ci and there exist some i ∈ I such that a! . C ′ = ai! . Ci.

Hereafter, we will omit the trailing occurrences of 1, and we will only consider session types
without free occurrences of recursion variables X .

2.2. Semantics. While a session type models the intended behaviour of one of the two
participants involved in a session, the interaction of two participants A and B (say, with
session types C and D, respectively) is modelled by configurations γ, γ ′, . . . of the form
A : C [βA] | B : D [βB], where βA (resp. βB) is an unbounded queue that stores the
messages sent by B (resp. by A) and not read yet.

Definition 2.2 (Asynchronous semantics of session types). A contract configuration is a
term of the form A : C [βA] | B : D [βB], where A 6=B and βA , βB ∈ (A!)∗. We define the
relation ≡ between session types as the least equivalence including α-conversion of recursion
variables and unfolding of recursion (that is, recX.C ≡ C{recX.C/X}, as in the usual equi-
recursive approach). The labelled transition relation −→→∞ is the smallest relation between
contract configurations induced by the rules in Figure 1 up to ≡.

In rule [Out], participant A chooses the branch a! in an internal sum, and sends a! to
the other participants’ queue. The other participant B can read the message from the queue
through rule [In], and then proceed as in the corresponding branch in its external choice.

Definition 2.3 (Synchronous semantics of session types). We define the relation −→→1 as the
subset of −→→∞ where: (i) each queue in γ contains at most one message; (ii) there exists at
most one non-empty queue in γ . Hereafter, we use the symbol ◦ ∈ {1,∞} to parameterise
various notions over the synchronous/asynchronous semantics.

Example 2.4. Let C = a!.b?, D = b!.a? and γ = A : C [] | B : D[]. Under the −→→1

semantics, we have the following traces, where no participant reaches a success state1:

γ
A:a!−−−→→1 A : b? [] | B : D [a!] 6−→→1 and γ

B:b!−−−→→1 A : C [b!] | B : a? [] 6−→→1

Under the −→→∞ semantics, instead, we have the following traces, all leading to the
success state for both participants:

γ
A:a!−−−→→∞ A :b?[] |B :D[a!]

B:b!−−−→→∞ A :b?[b!] |B :a?[a!]
A:b?−−−→→∞ A :1[] |B :a?[a!]

B:a?−−−→→∞ A :1[] |B :1[]

γ
A:a!−−−→→∞ A :b?[] |B :D[a!]

B:b!−−−→→∞ A :b?[b!] |B :a?[a!]
B:a?−−−→→∞ A :b?[b!] |B :1[]

A:b?−−−→→∞ A :1[] |B :1[]

γ
B:b!−−−→→∞ A :C [b!] |B :a?[]

A:a!−−−→→∞ A :b?[b!] |B :a?[a!]
A:b?−−−→→∞ A :1[] |B :a?[a!]

B:a?−−−→→∞ A :1[] |B :1[]

γ
B:b!−−−→→∞ A :C [b!] |B :a?[]

A:a!−−−→→∞ A :b?[b!] |B :a?[a!]
B:a?−−−→→∞ A :b?[b!] |B :1[]

A:b?−−−→→∞ A :1[] |B :1[]

1We will see that both final configurations are deadlocks under −→→1, by 2.6.

6 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

The following Theorem states that session types with the asynchronous semantics sim-
ulate Turing machines. Our result is closely related to analogous expressiveness results for
Communicating Finite State Machines (CFSMs) [19, 30]. The construction in [19] is used
to show that a system of two CFSMs with mixed choices can simulate Turing machines;
the one in [30] is technically different, as it uses two copies of the same non-deterministic
CFSM with no mixed choices. Compared to [19, 30], our result is slightly stronger: indeed,
session types are deterministic (in the sense of constraint (ii) in 2.1) and without mixed
choices, so our encoding has to work in a restricted model compared to CFSMs. Essentially,
our proof constructs a system of two deterministic CFSMs without mixed choice.

Theorem 2.5. Session types (with the −→→∞ semantics) can simulate Turing machines.

Proof. (Sketch). Assume as given a deterministic Turing machine M with states Q =
{q1, . . . , qn}, initial/halting states q0, qh ∈ Q, tape alphabet Σ (with blank symbol #), and
transition function δ. Let s0 . . . sn ∈ Σ∗ be the initial tape. Each configuration of M
can be represented as a string s0s1 . . . si−1qksi . . . sm end , which is obtained from the tape
s0s1 . . . sm by inserting the state/symbol qk at the position of the head (i).

We now define two session types C , D such that A : C [] | B : D [] simulates M
stepwise. Intuitively, C acts as a transducer that inputs the symbols of a configuration of
M , and outputs the symbols of the next configuration. Instead, D simply outputs the initial
configuration of M and then echoes every symbol back, until a stop message is received.
To perform its task, C works in a streaming fashion, emitting the output configuration
while reading the input one. Indeed, to determine the next symbol to emit, we need only a
bounded lookahead. In this way, the procedure requires a finite amount of memory, and is
amenable to be implemented in a session type. After reaching the end marker, C restarts,
so to handle the new configuration received from D. If C eventually finds a configuration
in the halting state, it signals stop to D.

More precisely, we define the session type D as follows:

D = q0! . s0! . . . sn! . end! . (recX . stop? &
˘

x∈Σ∪Q∪{end} x? . x! . X)

In order to define the session type C , it is convenient to first give a set of (recursive)
defining equations, and then apply Bekić theorem [16] (see Theorem 10.1 in [46]) to obtain
the (recursive) term C . To this purpose, we introduce some auxiliary notation. The shortcut
write〈x〉.T stands for x!.T , or for T if x is the special value ⊥. Dually, read(x).T stands
for

˘
x∈Σ∪Q∪{end} x? . T ; here the index x may appear in T , hence it is considered a binder.

The defining equations are as follows:

T 0(p) = read(s).T 1(p, s)

T 1(p, s) =

write〈p〉.T 0(s) if s ∈ Σ

read(s2).T 2(p, s, s2) if s ∈ Q
write〈p〉.write〈#〉.write〈end〉.T 0(⊥) if s = end

T 2(p, q, s2) =

write〈p〉.write〈qh〉.write〈s2〉.write〈stop〉 if q = qh

write〈q′〉.write〈p〉.T 0(s3) if dir = L

write〈p〉.write〈q′〉.T 0(s3) if dir = −
write〈p〉.write〈s3〉.write〈q′〉.read(s4).T 0(s4) if dir = R

where (q′, s3, dir) = δ(q, s2)

HONESTY BY TYPING 7

and we obtain C by applying Bekić theorem on T 0(⊥).
The contract configuration A : C [] | B : D [] simulates M on the initial tape. This is

because C receives its own outputs back, and so repeatedly performs the steps of M .

2.3. Compliance. We define compliance between session types by taking inspiration from
the notion of safety on Communicating Finite State Machines [23, 38]. We start with some
auxiliary definitions.

Definition 2.6 (Deadlock & message-obliviousness). We say that a configuration γ is:

• a deadlock under the −→→◦ semantics iff: γ 6−→→◦ and γ 6= A : 1 [] | B : 1 []
• message-oblivious under the −→→◦ semantics iff γ = A : C [a!βA] | B : D [βB] and

γ
A:a1!−−−→→◦ · · ·

A:ak!−−−→→◦ γ ′ implies γ ′ 6 A:a?−−−−→→◦
or the symmetric condition holds when the roles of A and B are swapped.

The notion of deadlock is standard; message-obliviousness characterizes the configurations
where an enqueued message is left unread forever.

Our compliance relation requires that no reachable configuration is a deadlock or is
message-oblivious.

Definition 2.7 (Compliance). We say that C and D are compliant under the −→→◦ semantics
(in symbols, C ./◦ D) whenever: A : C [] | B : D [] −→→◦∗ γ implies that γ is neither deadlock
nor a message-oblivious configuration under the −→→◦ semantics.

Note that when applying this notion to the synchronous semantics, deadlock-freedom
implies absence of message-oblivious configurations, and so our compliance ./1 coincides
exactly with the usual (symmetric) progress-based notion in [3, 11, 7].

Theorem 2.8. ./1 is decidable; ./∞ is undecidable.

Proof. Decidability of ./1 follows because the state space of A : C [] | B : D [] under −→→1 is
finite. Undecidability of ./∞ follows by 2.5.

The following Theorem, which is a corollary of results in [11, 43], shows that synchro-
nous compliance implies asynchronous compliance. We can then use a decision procedure
for synchronous compliance (which is decidable) to safely approximate asynchronous com-
pliance (which is undecidable).

Theorem 2.9. ./1 (./∞.

Proof. (Sketch). The inclusion⊆ is proved in two parts: first we show that deadlock-freedom
holds in the asynchronous semantics; second, we show that absence of message-oblivious
configurations holds as well.

The first part follows from Proposition 3 in [11], showing that, for session types, client-
biased progress (denoted by a in [11]), can be lifted from synchronous to asynchronous
semantics. Our deadlock-freedom is equivalent to the intersection between client-biased
progress a and the symmetric server-biased progress `. Applying Proposition 3 of [11]
twice, we get that the relation a`=a ∩ ` (i.e., our deadlock freedom) can be lifted to the
asynchronous semantics as well.

For the second part we exploit Theorems 4.9, 4.13 and 5.22 in [43]. These results estab-
lish relations between progress, the I/O compliance relation of [11] (a notion of compliance

8 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

A,B, . . . Participant names
a, b, . . . Actions
C,D, . . . Contracts
γ, γ ′, . . . Contract configurations
γ−→→γ ′ Transition of contract configurations

u, v, . . . Channels, comprising:
s, t, . . . ∈ N Session names
x, y, . . . ∈ V Variables

P ,Q, . . . Processes
S, S ′, . . . Systems
S → S ′ Transition of systems

Table 1. Summary of notation.

which is stricter than progress on arbitrary LTSs, and coincides with it on the LTSs of
session types), and the notion orphan message configuration of [43] (i.e., configurations con-
taining messages which are sent but never received). More precisely, assume that C ./1 D,
i.e. that C a` D using the notation of [43]. Then:

(1) by Theorem 4.9 in [43], C a` D iff C and D are I/O compliant;
(2) by Theorem 4.13 in [43], I/O compliance between session types is preserved when passing

from the synchronous to the asynchronous semantics;
(3) by Theorem 5.22 in [43], if two session types are I/O compliant in the asynchronous

semantics, their asynchronous execution cannot have orphan message configurations;
(4) by Definition 5.5 in [43] and by 2.6, orphan message and message-oblivious configura-

tions coincide for session types.

To obtain the thesis, assume that C ./1 D and A : C [] | B : D [] −→→∞∗ γ . By items (1)–(4)
above, γ is not a message-oblivious configuration.

The strict inclusion it witnessed by C = a!.b? and D = b!.a?, since C 6./1 D and
C ./∞ D (see the traces in 2.4).

3. The CO2 calculus

We now present an instance the process calculus CO2 [13] with the contracts of Section 2.

3.1. Syntax. Let V and N be disjoint sets of, respectively, session variables (ranged over
by x, y, . . .) and session names (ranged over by s, t, . . .), and let u, v, . . . range over channels
V ∪N. Finite sequences are in bold, e.g. u, v, . . . denote finite sequences of channels.

Definition 3.1 (CO2 syntax). The syntax of CO2 is defined as follows:

P ::=
∑

i πi .Pi
∣∣ P | P ∣∣ (u)P

∣∣ (rec X(y). P)(u)
∣∣ X(u) (Processes)

π ::= τ
∣∣ tell ↓u C

∣∣ dou a (Prefixes)

S ::= 0
∣∣ A[P]

∣∣ s[γ]
∣∣ {↓u C}A ∣∣ (u)S

∣∣ S | S (Systems)

We also assume the following syntactic constraints on processes and systems:

(1) recursion is prefix-guarded;
(2) in (u)(A[P] | B[Q] | · · ·), it must be A 6= B;
(3) in (u)(s[γ] | t[γ ′] | · · ·), it must be s 6= t;
(4) we denote with fuse and τ ? two special prefixes which cannot occur in processes, and

with K a special participant name which cannot occur in systems.

HONESTY BY TYPING 9

(u)A[(v)P] ≡ (u, v)A[P] Z | 0 ≡ Z Z | Z ′ ≡ Z ′ | Z (Z | Z ′) | Z ′′ ≡ Z | (Z ′ | Z ′′)
α-conversion of delimited channels Z | (u)Z ′ ≡ (u)(Z | Z ′) if u 6∈ fnv(Z)

(u)(v)Z ≡ (v)(u)Z (u)Z ≡ Z if u 6∈ fnv(Z) {↓s C}A ≡ 0

Figure 2. Structural congruence for CO2 (Z ranges over processes/systems).

Processes specify the behaviour of participants; they can be prefix-guarded finite sums∑
i πi.P i, parallel compositions P | Q, delimited processes (u)P , recursive calls X(u), or

recursive processes (rec X(y). P)(u). Prefixes include the silent action τ , contract adver-
tisement tell ↓u C , and action execution dou a. In a prefix π ∈ {tell ↓u C, dou a}, the
identifier u refers to the target session involved in the execution of π. The special prefixes
fuse and τ ? are technical, and are only used in labels of system transitions (see Figure 3).
Intuitively, τ ? labels dox actions under a delimitation (x), while fuse labels session cre-
ations. Systems are parallel compositions of agents A[P], sessions s[γ], latent contracts
{↓u C}A , and delimited systems (u)S . A latent contract {↓x C}A represents a contract C
signed by participant A but not stipulated yet; the variable x will be instantiated to a fresh
session name upon stipulation.

Delimitation (u) binds channels, both in processes and systems. In the recursive process
(rec X(y). P)(u), the variables in y bind their occurrences in P . Variables and names which
are not bound by such binders are free; their sets are denoted by fv() and fn(), respectively.
For a system/process Z, we denote with fnv(Z) its free channels, i.e. fnv(Z) = fn(Z)∪fv(Z),
and we say that Z is closed when fnv(Z) = ∅.

Notation 3.2. We write 0 for
∑
∅ P , and π1.Q1 + P for

∑
i∈I∪{1} πi.Qi provided that

P =
∑

i∈I πi.Qi and 1 6∈ I. As usual, we omit trailing occurrences of 0. When the sequence
of arguments u is empty, we will write X() instead of X(u).

3.2. Semantics. We formalise the semantics of CO2 as a reduction relation on systems
(3.3). This uses a structural congruence ≡, which is the smallest congruence relation
satisfying the equations in Figure 2. The axioms in Figure 2 are mostly standard; note
that (u)A[(v)P] ≡ (u, v)A[P] allows to move delimitations between systems and processes;
we use the last axiom {↓s C}A = 0 to collect garbage terms possibly arising from variable
substitutions. In order to define honesty in Section 4, we decorate transitions with labels,

by writing
A : π−−−→ for a reduction where participant A fires prefix π.

Definition 3.3 (CO2 semantics). The relation
A : π−−−→ between systems (considered up-to

structural congruence ≡, and parametric w.r.t. synchronous/asynchronous semantics of
session types) is the smallest relation closed under the rules of Figure 3.

We now comment on the rules in Figure 3. Rule [Tau] is standard. Rule [Tell] advertises
the latent contract {↓x C}A . Rule [Fuse] stipulates contract: if there are two compliant
contracts, a fresh session s is created; the latent contracts are consumed, and the substi-
tution σ is applied to the system, to instantiate the variables x, y to the session name s.
The participant K performing this move models a contract broker, similar to the one in [6].

10 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

A[τ .P + P ′ |Q]
A : τ−−−→◦ A[P |Q] [Tau]

A[tell ↓u C .P + P ′ |Q]
A : tell ↓uC−−−−−−−−→◦ A[P |Q] | {↓u C}A [Tell]

γ
A:a−−→→◦γ ′

A[dos a.P + P ′ |Q] | s[γ]
A : dos a−−−−−→◦ A[P |Q] | s[γ ′]

[Do]

A[P {rec X(y). P/X}{u/y} |Q] | S A : π−−−→◦ S ′

A[(rec X(y). P)(u) |Q] | S A : π−−−→◦ S ′
[Rec]

C ./◦ D γ = A : C [] | B : D [] σ = {s/x,y} s 6∈ fnv(S)

(x, y)(S | {↓x C}A | {↓y D}B)
K : fuse−−−−−→◦ (s)(Sσ | s[γ])

[Fuse]

S
A : π−−−→◦ S ′

S | S ′′ A : π−−−→◦ S ′ | S ′′
[Par]

S
A : π−−−→◦ S ′

(u)S
A : delu(π)−−−−−−−→◦(u)S ′

[Del] where delu(π) =

τ if π = tell ↓u C
τ ? if π = dou a

π otherwise

Figure 3. Reduction semantics of CO2.

Rule [Do] allows a participant A to perform some action a in a session s, whose state γ
evolves accordingly to γ ′. Rule [Del] allows a system to evolve under a delimitation. Note
that the label π fired in the premise becomes τ or τ ? in the consequence, when π contains
the delimited channel. This transformation is defined by the function delu(π): for instance,

(x)A[tell ↓x C.P]
A : τ−−−→ (x) (A[P] | {↓x C}A). Here, it would make little sense to have

the label A : tell ↓xC , as x (being delimited) may be α-converted. Rule [Par] is standard.
Rule [Rec] is used to unfold recursions.

3.3. Examples.

Example 3.4 (Honest/dishonest choice). Consider the following processes:

P = (x) tell ↓x (a!⊕ b!).dox a!

Q = (y) tell ↓y (a? & b?).doy a?

HONESTY BY TYPING 11

A possible computation of the system S0 = A[P] | B[Q], both under the synchronous and
the asynchronous semantics, is the following:

S0
B : τ−−−→◦ A[P] | (y) (B[doy a?] | {↓y a? & b?}B) (1)

A : τ−−−→◦ (x, y) (A[dox a!] | B[doy a!] | {↓x a!⊕ b!}A | {↓y a? & b?}B) (2)

K : fuse−−−−−→◦ (s) (A[dos a!] | B[dos a?] | s[A : a!⊕ b! [] | B : a? & b? []]) (3)

A : τ?−−−→◦ (s) (A[0] | B[dos a?] | s[A : 1 [] | B : a? & b? [a!]]) (4)

B : τ?−−−→◦ (s) (A[0] | B[0] | s[A : 1 [] | B : 1 []]) (5)

Transitions (1) and (2) are obtained by applying rules [Tell], [Par], and [Del], and by using
structural congruence to move delimitations. Transition (3) is obtained by rule [Fuse], since
a!⊕b! and a?&b? are compliant (both under ./1 and ./∞). Finally, transitions (4) and (5)
are obtained by rule [Do].

We anticipate that, under both semantics of CO2, P is honest while Q is dishon-
est. Intuitively, P is honest because, in all possible contexts, it always fulfils its con-
tract a! ⊕ b! by performing dox a!. The process Q is not honest because e.g. the system
A[(x) tell ↓x b!.dox b!] | B[Q] admits a computation leading to:

(s) (A[0] | B[dos a?] | s[A : 1 [] | B : a? & b? [b!]])

where B is not fulfilling its contract at session s. Note in fact that B declares in his contract
to be able to read a or b (chosen externally, by the other endpoint of the session), while
the only action in the process of B is to read a. We will formally establish the honesty of
P in 7.3, and the dishonesty of Q in 4.6.

Example 3.5 (Dishonest interleaving). Let:

P = (x, y) tell ↓x a? . tell ↓y b! . dox a? . doy b!
We anticipate that P is not honest (neither under the synchronous nor the asynchronous
semantics of CO2). Indeed, in both semantics we can reduce the system

A[P] | B[(z) tell ↓z b? . doz b?] | C[(w) tell ↓w a! . 0]

into the system:

S = (s, t) (A[dot a?.dos b!] | B[doz b?] | C[0] | t[A : a? [] | C : a! []] | s[A : b! [] | B : b? []])

The system S cannot reduce further. Indeed, C (dishonestly) avoids to perform the internal
choice a! required by his contract, and so A is stuck, waiting for a? from C. Intuitively,
P is dishonest because A does not perform the obligation b! at session s. This intuitive
argument will be made formal in 4.7.

We anticipate that an honest variant of the process P would be the following:

Q = (x, y) tell ↓x a? . tell ↓y b! . (dox a? | doy b!)

Note that in Q the causal dependency between dox a? and doy b? is lost. Another honest
variant of P , preserving such causal dependency (but slightly changing the contract at y)
will be presented in 7.6.

12 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

Example 3.6 (Online store). We formalise the online store S from Section 1 as the CO2

process P below, where we assume that Ri = 0, for i ∈ 1..4.

P = (x) tell ↓x CB .
(
dox buyA?.dox pay1E?.dox shipA! + dox buyB?.P

′(x)
)

P ′(x) = dox quote1E!.dox pay1E?.dox shipB! + (y) tell ↓y CD .P
′′(x, y)

P ′′(x, y) = doy buyB! . dox quote3E! . (

dox pay3E? . (

doy pay2E! . (

doy shipB? . dox shipB!

+ R1

) + R2

) + R3

) + R4

As anticipated in Section 1, this process is not honest; we will show later on in 7.7 an
honest version of the online store (advertising the same contracts). This version will be
obtained by suitably instantiating the processes Ri within P ′′.

4. Honesty

We now define when participants are honest, i.e. when they fulfil their contracts, in all exe-
cution contexts. We start by introducing some auxiliary notions, which are parameterised
over the synchronous/asynchronous semantics of session types (i.e., over ◦ ∈ {1,∞}). The
definition of honesty given in this section extends to the asynchronous case the one in [15].

The set of obligations OA@s
◦ (S) yields the actions (at a session s in S) participant A

must choose from in order to respect her contract.

Definition 4.1 (Obligations). We define the set of actions OA@s
◦ (S) as follows:

OA@s
◦ (S) = {a | ∃γ, S ′ : S ≡ s[γ] | S ′ and γ

A:a−−→→◦}

The set S ↓Au (called ready-do set) collects the actions a that the process of A would
perform, if enabled in session u. The set S ⇓A@u

◦ is a weak variant of S ↓Au (parameterised
over the →◦ semantics), which contains the next reachable ready actions of A.

Definition 4.2 (Ready-do). We define the sets of actions S ↓Au and S ⇓A@u
◦ as:

S ↓Au = {a | ∃v, P , P ′, Q, S ′ . S ≡ (v) (A[dou a.P + P ′ |Q] | S ′) ∧ u 6∈ v}
S ⇓A@u
◦ =

{
a | ∃S ′ : S 6=(A : dou)−−−−−−→◦∗ S ′ and a ∈ S ′ ↓Au

}
where S

6=(A : dou)−−−−−−→◦ S ′ iff ∃B, π . S
B : π−−−→◦ S ′ ∧ (A 6= B ∨ ∀a . π 6= dou a).

A participant A is ready in session s when either A has no obligations at s, or A is
weakly ready to perform some output action in her obligations, or A is weakly ready to
perform all the input actions in her obligations. This reflects the fact that to respect an
internal choice it is enough to perform one of its outputs, while to respect an external choice
one has to be able to perform all of its inputs.

HONESTY BY TYPING 13

Definition 4.3 (Readiness). RdyA@s
◦ is the set of systems S such that:

OA@s
◦ (S) = ∅ ∨ OA@s

◦ (S) ∩ A! ∩ S ⇓A@s
◦ 6= ∅ ∨ ∅ 6= (OA@s

◦ (S) ∩ A?) ⊆ S ⇓A@s
◦

Then, we say that A is ◦-ready in S iff for all s, S ′,u, S ≡ (u)S ′ implies S ′ ∈ RdyA@s
◦ .

Remark 4.4. 4.3 could be simplified as OA@s
◦ (S) = ∅ ∨ OA@s

◦ (S) ∩ S ⇓A@s
◦ 6= ∅, because

(OA@s
◦ (S)∩A?) contains at most one element. However, we prefer to use the same definition

of [15] to inherit its undecidability results.

A process P is honest when, for all contexts where A[P] may be engaged in, A is
persistently ready in all the reducts of that context.

Definition 4.5 (Honesty). We say that:

(1) S is A-free iff it has no latent/stipulated contracts of A, nor processes of A
(2) P is ◦-honest in S iff ∀A : (S is A-free ∧ A[P] | S →∗◦ S ′) =⇒ A is ◦-ready in S ′

(3) P is ◦-honest iff ∀S : P is ◦-honest in S .

The A-freeness requirement in 4.5 is used just to rule out those systems which already
carry stipulated or latent contracts of A outside A[P], e.g., {↓x pay!}A . In the absence of
A-freeness, the context could trivially make a process dishonest. Note that A[P] is vacuously
honest when P advertises no contracts.

We prove below the dishonesty of the process Q from 3.4 and of the process P from 3.5.
Note that processes P from 3.4 and Q from 3.5 are honest. However, at this point of the
paper we do not have a convenient proof technique to cope with the universal quantification
over contexts required in 4.5. We will establish the honesty of these processes using the
type system in Section 7.

Example 4.6 (Dishonest choice). Recall from 3.4 the process:

Q = (y) tell ↓y (a? & b?).doy a?

We prove that Q is not ∞-honest (by 4.9, Q is not even 1-honest). Recall from 3.4 that
the system A[(x) tell ↓x b!.dox b!] | B[Q] may evolve (under the asynchronous semantics)
to:

S = (s)S ′ where S ′ = A[0] | B[dos a?] | s[A : 1 [] | B : a? & b? [b!]]

We have that S ′ 6∈ RdyB@s
∞ , because none of the three disjunctive clauses in 4.3 are

safisfied: indeed, the first two clauses are trivially false, while the third one is false because
OB@s
∞ (S ′) = {b?} 6⊆ {a?} = S ′⇓B@s

∞ . Therefore, A is not ∞-ready in S .

Example 4.7 (Dishonest interleaving). Recall from 3.5 the process

P = (x, y) tell ↓x a? . tell ↓y b! . dox a? . doy b!
Recall from 3.5 that A[P] can be put in a system which evolves (under both the synchronous
and asynchronous semantics) to S ≡ (s)S ′, where:

S ′ = (t) (A[dot a?.dos b!] | B[doz b?] | C[0] | t[A : a? [] | C : a! []] | s[A : b! [] | B : b? []])

We have that S ′ 6∈ RdyA@s
∞ , because none of the clauses in 4.3 are safisfied: in particular,

OA@s
∞ (S ′) = {b!} and S ′⇓A@s

∞ = ∅, so their intersection is empty. Therefore, A is not ready
in S ′, and so P is not ∞-honest (by 4.9, P is not even 1-honest).

14 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

The following theorem states the undecidability of honesty (both under the synchronous
and the asynchronous semantics).

Theorem 4.8. The problem of deciding whether P is ◦-honest is not recursive.

Proof. For ◦ = 1, we can reduce the halting problem to checking dishonesty, similarly to [15].
The construction in [15] can be easily adapted also to the case ◦ =∞.

Honesty under the synchronous semantics implies honesty under the asynchronous one
(4.9). As a consequence, any static analysis over-approximating synchronous honesty (like
e.g., the type system in Section 7) also over-approximates asynchronous honesty.

Theorem 4.9. If P is 1-honest, then P is ∞-honest.

Proof. (Sketch). We prove the contrapositive: if P is∞-dishonest then it is also 1-dishonest.
Let S∞ be such that P is∞-dishonest in S∞. By 4.5, there exists a trace A[P]|S∞ →∗∞ S ′∞
such that A is not ready in S ′∞. We can then craft a new context S1 for which P is 1-
dishonest. Dishonesty is achieved by allowing P to perform the same transitions as in the
previous trace, so reaching a state where A is not ready. To make this possible, we need
to ensure that the prefixes fired in the asynchronous semantics do not become stuck in the
synchronous one. In particular, a dox a prefix can become stuck for two reasons: (1) when
a is an output and the message queue is full, or (2) the session x cannot be established
because the contracts fused in the original trace are compliant under ./∞ but not under
./1. To address these issues, we craft S1 so that: (1) it always keeps its (1-bounded) queues
empty; (2) it advertises all the syntactic duals [3] of the contracts in P , instead of the
contracts used in the asynchronous trace. Consequently, the context S1 allows A to: (1)
fire all the prefixes as in the asynchronous trace, and (2) reach a state S ′1 where A has the
same process as in S ′∞, and the contracts of A in all sessions are the same as in S ′∞. To
make A not ready in S ′1 (under the synchronous semantics), the context simply avoids to do
anything (but keeping its queues empty). Since A is not ready in the asynchronous trace, it
has some unfulfilled obligation in a session of S ′∞; hence, the same obligation is unfulfilled
in S ′1, because S ′1 allows A to fire no more prefixes than S ′∞.

Example 4.10. We now provide an example of the context construction sketched in the
proof of 4.9. Consider the process:

P = (x) tell ↓x (a!.b!.c!.d?).dox a!.dox b!.dox c!

We have that P is ∞-dishonest. To show that, consider e.g. the context:

Q = (y) tell ↓y (d!.a?.b?.c?).doy d!

Under the asynchronous semantics, the system A[P] |B[Q] may evolve to a system wherein
A is not ready. In this computation, first a session between A and B is created, since their
contracts are compliant under ./∞. Then, A enqueues all the outputs a!, b!, c!. Finally,
B enqueues d!. This enables the input action d? of A, but since A does not perform such
obligation, we conclude that A is not ready.

Under the synchronous semantics, however, A[P] | B[Q] does not evolve to a system
where A is not ready. Indeed, in that case no session is created since the two contracts are
no longer compliant: intuitively, making two contracts interact requires queues to be longer
than one message. However, following the proof of 4.9, we can craft a context where A is
not 1-honest, changing the process of B as follows:

Q′ = (y) tell ↓y (a?.b?.c?.d!).doy a?.doy b?.doy c?.doy d!

HONESTY BY TYPING 15

Now the contract of A and the one of B are compliant under ./1, and the system A[P] |B[Q′]
may evolve to a system wherein A is not ready. In this computation, after the session is
created A sends all the outputs to B, which are immediately received by B (who always
empties his queue). When B enqueues d!, A is not ready to receive.

Example 4.11. The converse of 4.9 does not hold, in general. E.g., the process:

(x, y) tell ↓x (a! . a!).dox a!.tell ↓y b?.dox a!.doy b?
is ∞-honest but not 1-honest. Indeed, under the asynchronous semantics all the outputs
can always be fired, while this is not the case in the synchronous case. In particular, under
the synchronous semantics, doy b? is reachable only if the process at the other endpoint of
session x has read the first a!, allowing the second output to be performed.

5. Types

In this section we introduce types for CO2 processes. We will exploit them later on in Sec-
tion 7 to devise a type system for honesty. Note that, by 4.9, we can focus on the syn-
chronous semantics of contracts and systems, only: therefore, hereafter we will implicitly
assume that the synchronicity parameter ◦ is always 1. If a process is typeable, then we
will guarantee its honesty both under the synchronous and the asynchronous semantics.

Assume we want to verify the honesty of a participant A in a system S . We start by
fixing an arbitrary channel u, and transforming S so to gather all the information involving
u, while abstracting away the rest of the system. The result is a pointed abstract system
(Section 5.2), i.e., a pair (Γ,P), whose first component describes the possible sessions which
might be established on u, while the component P (a pointed abstract process, see 5.3)
abstracts the behavior of A on channel u. In particular, the component Γ is either a set
of contracts (when no session has been established yet), or otherwise an abstract contract
configuration C (Section 5.1). Our type system will abstract processes and systems on all
channels simultaneously, inferring a type f , which is a function mapping each channel u to
a pointed abstract process f (u) = P.

5.1. Abstract contract configurations. Let A be a participant, and let γ be a contract
configuration (as in 2.2): in the abstract contract configuration αA(γ) we maintain only
the contract of A, while recording the message sent by A (if any), and abstracting the
context. An abstract contract configuration can be either a contract C , a term ctx a?.C
representing that A has sent a message and the context has not read it yet, or a term
rdy a?.C representing that A has to read a message sent by the context.

Definition 5.1 (Abstract contract configurations). The syntax of abstract contract config-
urations C,D, . . . is defined as follows, where C is a (concrete) contract from 2.1:

C,D ::= C
∣∣ ctx a?. C

∣∣ rdy a?. C

For all participants A and contract configurations γ involving A, we define the abstraction
of γ w.r.t. A, in symbols αA(γ), as follows (symmetric cases omitted):

αA(A : C [] | B : D []) = C

αA(A : C [] | B : D [a!]) = ctx a?. C

αA(A : a?.C & C ′ [a!] | B : D []) = rdy a?. C

16 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

a! . C ⊕ C ′ a!−→→] ctx a?. C rdy a?. C
a?−→→] C

a? . C & C ′
ctx:a!−−−−→→] rdy a?. C ctx a?. C

ctx:a?−−−−→→] C

Figure 4. Semantics of abstract contract configurations.

The LTS −→→] on abstract contract configurations is defined by the rules in Figure 4.

In an internal sum, A chooses a branch; in an external sum, the choice is made by the
context (the ctx in the label indicates that the action is performed by the participant at
the other endpoint of the session); in a rdy a?.C the atom a? is fired.

The following Lemma states that each transition of a contract configuration γ can be
simulated by its abstraction αA(γ). This result was already established as Theorem 4.5
in [9], so we omit its proof here.

Lemma 5.2. For all contract configurations γ , γ ′ such that αA(γ) is defined:

γ
A:a−−→→ γ ′ =⇒ αA(γ)

a−→→] αA(γ ′) (5.2a)

γ
B:a−−→→ γ ′ =⇒ αA(γ)

ctx:a−−−→→] αA(γ ′) (B 6= A) (5.2b)

5.2. Pointed abstract systems. Pointed abstract processes are Basic Parallel Processes
(BPPs) [40] where prefixes are of the following kinds: atoms a!, b?, . . ., nonblocking silent
actions τ , possibly blocking silent actions τ ?, and contract advertisement actions 〈C 〉.

Definition 5.3 (Pointed abstract processes and systems). The syntax of pointed abstract
processes P and prefixes α is defined as follows:

P ::= 0
∣∣ α.P ∣∣ P + P

∣∣ P | P
∣∣ rec X.P

∣∣ X

α ::= a!
∣∣ a?

∣∣ τ ∣∣ τ ?

∣∣ 〈C 〉
where sums and recursions are prefix-guarded. We denote with P the set of all pointed
abstract processes. A pointed abstract system is a pair (Γ,P), where Γ is either a set of
(concrete) contracts (2.1) or an abstract contract configuration (5.1). The semantics of
pointed abstract processes and systems is given in Figure 5.

The set Γ grows when the process P in (Γ,P) advertises a contract D (rule [A-Tell1]).
After one of the contracts in Γ has been stipulated, the set is reduced to a single contract Ci
(rule [A-Fuse]), and further advertisements are neglected (rule [A-Tell2]). Rule [A-Do] models
a do a action performed by P, while rule [A-Ctx] models an action performed by the context
(i.e., the participant at the other endpoint of the session). Some pointed abstract system
transitions will be shown in 6.3.

HONESTY BY TYPING 17

α.P
α−−→] P

[C-Pref]
P

α−−→] P
′

P + P′′
α−−→] P

′
[C-SumL]

P
α−−→] P

′

P | P′′ α−−→] P
′ | P′′

[C-ParL]

P{rec X.P/X} α−−→] P
′

rec X.P
α−−→] P

′
[C-Rec]

commutative monoidal laws for | and +

P
〈D〉−−−→] P

′

({C1, . . . , Cn},P)
τ−→] ({C1, . . . , Cn, D},P′)

[A-Tell1]
P

〈D〉−−−→] P
′

(C,P)
τ−→] (C,P′)

[A-Tell2]

i ∈ {1, . . . , n}
({C1, . . . , Cn},P)

τ?−→] (Ci,P)
[A-Fuse]

P
α−−→] P

′ α ∈ {τ , τ ?}
(Γ,P)

α−→] (Γ,P′)
[A-Tau]

C
a−→→] C′ P

a−−→] P
′

(C,P)
a−→] (C′,P′)

[A-Do]
C

ctx:a−−−→→] C
′

(C,P)
τ?−→] (C′,P)

[A-Ctx]

Figure 5. Semantics of pointed abstract processes and systems.

5.3. Types. We will abstract the behavior of processes and systems as a type f , which
describes the abstract behaviour on all channels as a pointed abstract process. Intuitively,
we abstract the behaviour of P on a free channel u as f (u), a pointed abstract process in P.
On all other channels (i.e., those not free in P), the process P has the same behaviour:
therefore, we cumulatively abstract the behaviour of P on these channels as f (∗), where ∗
is a “dummy” element not in N ∪ V. This makes it possible to limit f to a finite domain,
namely the free channels of P and ∗ (as we will establish in 8.2).

Definition 5.4 (Type). A type is a partial function f : N∪V∪{∗} → P from names/variables
to pointed abstract processes, such that dom f is finite and comprises ∗.

Recall that we consider pointed abstract processes and systems up-to structural equiv-
alence: consequently, also types are up-to structural equivalence, i.e. f = f ′ whenever
dom f = dom f ′ and f (u) ≡ f ′(u) for all u ∈ dom f .

We define below an operator which expands the domain of types. This will be exploited
later on in Section 7.1 in our type system. For instance, to obtain the type of P |Q we need
to expand the domains of the types of P and Q to all the free channels of P |Q.

Definition 5.5 (Domain expansion). For all types f and for all A ⊆ N ∪ V, we define the
type f ↑A as: f ↑A = f {A \ dom f 7→ f (∗)}.

6. Abstract honesty

We now introduce a notion of abstract honesty for pointed abstract processes and systems.
Unlike honesty for concrete processes, the abstract notion does not require a universal
quantification over all contexts, which is key to prove its decidability (6.6). We will exploit
abstract honesty in our type system, when typing delimited processes. Intuitively, the
typing of P constructs a pointed abstract process for each name/variable in P . The typing

18 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

also checks the abstract honesty of these pointed abstract processes: the proof of type safety
exploits these checks to guarantee that typeability implies honesty.

As done for concrete processes, we build abstract honesty over readiness. Intuitively,
a pointed abstract system (C,P) is ready if it can weakly perform some action whenever
C has enabled actions of A. When checking these weak transitions, we only consider those
representing non-blocking steps, i.e. τ actions. By contrast, τ ? transitions represent poten-
tially blocking actions, and so they are not followed, since there is no guarantee that they
are enabled in the concrete system.

In order to be honest, a pointed abstract process must keep itself ready upon transitions,
including the potentially blocking ones. Readiness must be checked against all the contracts
that may be stipulated along the reductions of the abstract process, starting from the empty
set of contracts. 6.1 below formalises the abstract honesty for types (Item 4). This involves
an auxiliary definition, i.e. the abstract honesty of pointed abstract processes (Item 3), which
in turn involves defining the readiness and abstract honesty (respectively, Items 1 and 2)
for pointed abstract systems. Note that, unlike the corresponding condition in 4.5, Item 3
in 6.1 does not universally quantify over all contexts.

Definition 6.1 (Abstract honesty). We say that:

(1) (Γ,P) is ready iff: Γ
a−→→] =⇒ ∃b . (Γ,P)

τ−→]
∗ b−→]

(2) (Γ,P) is honest iff: (Γ,P) −→∗] (C,P′) =⇒ (C,P′) is ready

(3) P is honest iff: (∅,P) is honest
(4) f is honest iff: f (u) is honest, for all u ∈ dom f .

Example 6.2 (Honest/dishonest choice). Let P = 〈a!⊕ b!〉. a!. The LTS of the pointed
abstract system (∅,P) is:

(∅,P) ({a!⊕ b!}, a!) (a!⊕ b!, a!) (ctx a?,0) (1,0)
τ

]

τ?

]

a!

]

τ?

]

To prove that P is honest, we check for readiness all the reducts in the LTS:

(1) (∅,P): nothing to check (no contracts advertised yet).
(2) ({a!⊕ b!}, a!) nothing to check (no contracts stipulated yet).

(3) (a!⊕ b!, a!) is ready, because (a!⊕ b!, a!)
a!−→].

(4) (ctx a?. 1,0) and (1,0) are vacuously ready, since 1 and ctx a?. 1 cannot take
a−→→]-

transitions (for any a).

Now, let Q = 〈a? & b?〉. a?. The LTS of (∅,Q) is the following:

(∅,Q) ({a? & b?}, a?) (a? & b?, a?) (rdy a?, a?)

(rdy b?, a?)

(1,0)
τ

]

τ?

]

ctx : a!

]

ctx : b!

]

a?

]

In this case we have that the reduct (rdy b?, a?) is not ready: indeed, rdy b?
b?−→→], while

(rdy b?, a?) cannot take
a−→]-transitions (for any a). Therefore, Q is not abstractly honest.

We anticipate that P and Q are the pointed abstract processes inferred by our type
system, under the delimitations of the processes P and Q discussed in 3.4. Using the
abstract honesty of P we will show in 7.3 that P is typeable, hence honest. Instead, the

HONESTY BY TYPING 19

abstract dishonesty of Q will prevent us from typing Q — and rightly so, because we know
from 4.6 that Q is dishonest.

Example 6.3. Let C = a!⊕b!, and let P = 〈C 〉 | τ .a!. To determine whether P is honest,
we check for readiness all the reducts of the pointed abstract system (∅,P):

(∅,P) (∅, 〈C 〉 | a!) ({C}, a!) (C, a!) (ctx a?,0) (1,0)

({C}, τ .a!) (C, τ .a!)

τ

]

τ

]

τ?

]

a!

]

τ?

]

τ

]

τ]

τ?

]

τ]

We have that:

(1) (∅,P) and (∅, 〈C 〉 | a!): nothing to check (no contracts advertised yet).
(2) ({C}, τ .a!) and ({C}, a!): nothing to check (no contracts stipulated yet).

(3) (C, τ .a!) is ready, because (C, τ .a!)
τ−→]

a!−→].

(4) (C, a!) is ready, because (C, a!)
a!−→].

(5) (1,0) and (ctx a?,0) are vacuously ready, because 1 and ctx a?. 1 cannot take
a−→→]-

transitions (for all a).

Summing up, we conclude that P is honest.

Silent moves and contract advertisements of pointed abstract processes preserve honesty,

while input/output moves may break honesty: for instance, in P = a!.〈b!〉 a!−−→] 〈b!〉 = P′

we have that P is honest (because (∅,P) is stuck), while P′ is dishonest.

Lemma 6.4. For all α ∈ {τ , τ ?, 〈C ′〉}: P
α−−→] P

′ ∧ P honest =⇒ P′ honest

Proof. See page 37.

The following Lemma gives a compositional criterion to check the abstract readiness of
a pointed abstract system (Γ,P): indeed, it is enough to check the parallel components of
P independently.

Lemma 6.5 (Abstract readiness and parallel composition). For all Γ, P, and Q:

(Γ,P | Q) ready ⇐⇒ (Γ,P) ready ∨ (Γ,Q) ready

Proof. See page 37.

Note that, unlike readiness, honesty is not compositional. E.g., the direction ⇒ of 6.5
would be false since (a! . b!, a! | b!) is honest, while neither (a! . b!, a!) nor (a! . b!, b!)
are such. The direction⇐ would be false since (a! .b!, a!.b!) is honest, while (a! .b!, a! |
a!.b!) is not.

6.6 below establishes one of our main results: checking the honesty of a type f is
decidable. Since abstract honesty will be used as a side condition in our typing rules
for CO2 processes, this result is crucial to obtain decidability for both type checking and
inference (8.6). Our proof reduces abstract honesty to submarking reachability in Petri
nets, which is decidable [31, 39]. To define the reduction, we first map a pointed abstract
system (∅,P) into a Petri Net which preserves its semantics. Roughly, all the reducts of P
are parallel compositions of processes taken, possibly more than once, from a finite set of
subterms of P. Hence, we can associate a place to each such subterm, and use the tokens to

20 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

count their multiplicity. Further, there are only finitely many states for the Γ component,
so we can associate a place to each of them, and use a single token to represent the current
Γ. The correctness of our reduction relies on 6.5, which implies that readiness can be
established by inspecting at most one token for each place.

Theorem 6.6 (Decidability of abstract honesty). Abstract honesty of pointed abstract pro-
cesses is decidable.

Proof. To decide whether P is (abstractly) honest, by Item 3 of 6.1 we need to decide
whether the pointed abstract system (∅,P) is honest. We define the sets:

• {Pj}j , comprising the closed nonempty sums which are subterms of some unfolding of P.
We consider each Pj up-to ≡ and unfolding of recursion.
• Γ(P), comprising elements of two kinds: (i) sets {C1, . . . , Cn} of contracts occurring in
P, and (ii) the reducts of each Cj occurring in P, according to the semantics in Figure 4.

Every pointed abstract system reachable from (∅,P) has the form (Γi,Qi), where Γi ∈ Γ(P),
and Qi can be uniquely written (up to ≡ and unfolding) as the parallel composition of some
terms in {Pj}j , possibly taken multiple times.

We now define a Petri net N = (P, T). The places P comprise all the elements in
Γ(P) (called Γ-places), and all the terms in {Pj}j (called P-places). Intuitively, we want
the reachable markings of N to have exactly one token in a Γ-place (while all the other
Γ-places have none); instead, P-places can contain any number of tokens. The idea is that
the single token in the Γ-places corresponds to the first component in (Γi,Qi), while the
tokens in P-places determine the component Qi. More precisely, the number of tokens in
place Pj is the number of terms Pj in the parallel decomposition of Qi (see [1]). The initial
marking of N is the one corresponding to (∅,P). The transitions of N reflect the semantics
of pointed abstract systems in Figure 5. For instance, we encode rule [A-Do] in the Petri
net by moving the single token in the Γ-places from the place C to C′, and simulating the
firing of action a as follows. First, we find the parallel component

∑
k ak.Rk of P in the

rule with the prefix ak = a to be fired. To rewrite one copy of that sum with Rk, we
consume one token in the P-place associated to the sum, and we produce tokens for Rk in
all the places corresponding to its parallel decomposition. This construction extends the
one in [29], which shows an isomorphism between the transition system of a BPP and the
reachability graph of its Petri net. Summing up, the firing sequences of N correspond to
the computations of (∅,P).

Now, note that the set Γ(P) is finite, because its elements of the form {C1, . . . , Cn}
contain only contracts syntactically occurring in P, and its elements of the form C′ are
reducts of some Cj , so they are finite because the semantics in Figure 4 is finite-state.
Further, also the set {Pj}j is finite, because its elements are considered up-to. Therefore,
N is a finite Petri net.

We reduce the problem of checking dishonesty of (∅,P) to the submarking reachability
problem in N , which is decidable for finite Petri nets [31, 39]. A submarking is a mapping
from a subset of the places P ′ to N, which partially specifies a marking of the whole net.
The submarking reachability problem asks, given a submarking m′ : P ′ → N, to establish
whether or not some marking m is reachable such that m(p) = m′(p) for all p ∈ P ′.

Say that a marking is ready if it corresponds to a ready pointed abstract system. For
every multiset X of places, we denote with χX the marking which associates each place to
the corresponding number of occurrences in X. Then, for all Γ we define the submarking

HONESTY BY TYPING 21

MΓ as follows:

MΓ(p) =

1 if p = Γ

0 if p is a P-place and χ{Γ,p} is ready

undefined otherwise

(6.6a)

We now prove that, for any reachable marking m:

m non ready ⇐⇒ ∃a,Γ : Γ
a−→→] ∧MΓ submarking of m (6.6b)

For the ⇒ direction, let Γi be the single Γ-place with one token. Since m is not ready,

we must have Γi
a−→→] for some a. To obtain the thesis, choose Γ = Γi, and assume by

contradiction that MΓ is not a submarking of m, i.e. MΓ(p) 6= m(p) for some p in the
domain of MΓ . We cannot have that p = Γ, since in that case by Equation (6.6a) it must
be MΓ(p) = m(p) = 1. Hence, p must be a P-place for which χ{Γ,p} is ready. Further, since
MΓ(p) = 0 6= m(p), we have that m(p) has at least as many P-tokens as the ready marking
χ{Γ,p}. By 6.5 (adapted to Petri nets in the natural way), adding more P-tokens to a ready
marking cannot make it non ready, hence m is ready — contradiction.

For the ⇐ direction of Equation (6.6b), assume that Γ
a−→→] and MΓ is a submarking

of m. By Equation (6.6a), m(Γ) = 1. By contradiction, assume that m is ready. Then, by
(the adaptation of) 6.5, one can remove all the P-tokens from m but one, while preserving
its readiness; so, assume that such token is in place p (this implies that m(p) > 0). The
marking obtained in this way is χ{Γ,p}, and since it is ready, Equation (6.6a) givesMΓ(p) = 0.
Since MΓ is a submarking of m, this implies that m(p) = 0 — contradiction.

To conclude, we now exploit the decidability of the submarking reachability problem
on Petri nets to decide abstract dishonesty. First, we equivalently rephrase dishonesty in
terms of submarking reachability:

(∅,P) dishonest ⇐⇒ ∃(C′,P′) non ready : (∅,P) −→∗] (C′,P′) (by 6.1)

⇐⇒ ∃m reachable in N and non ready (by construction of N)

⇐⇒ ∃m reachable in N and

∃a,Γ : Γ
a−→→] ∧MΓ submarking of m (by Equation (6.6b))

⇐⇒ ∃a,Γ : Γ
a−→→] ∧MΓ reachable submarking (6.6c)

To conclude, we show how to verify the last formulation of dishonesty (Equation (6.6c)).
To this purpose, note that we can effectively and finitely enumerate all the possible Γ and a.

In each case we can easily check whether Γ
a−→→]. Further, we can effectively construct the

submarking MΓ following Equation (6.6a). The only non-trivial task is checking whether
χ{Γ,p} is ready. According to 6.1 (adapted to Petri nets), this just requires to check
whether such marking has some weakly ready action, i.e., if it can fire some action b after
a finite sequence of τ actions. This can be reduced once again to a submarking reachability
problem: more precisely, we start by labelling the transitions of N as for the moves of
pointed abstract systems; then we remove from N all the τ ? transitions, while making all
the non-τ transitions (i.e., the ready actions b) fill a special place. At this point, it suffices
to check whether the special place can eventually become nonempty, which is a submarking
reachability problem.

22 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

` 0 : λu . if u = ∗ then 0 else ⊥
[T-Nil]

` P : f ` Q : g A = dom f ∪ dom g

` P |Q : λu . f ↑A(u) | g↑A(u)
[T-Par]

∀i ∈ I 6= ∅. ` P i : f i A =
⋃
i∈I(dom f i ∪ fnv(πi))

`
∑

i∈I πi.P i : λu .
∑

i∈I [πi]u.f i↑A(u)
[T-Sum]

` P : f f ↑{u}(u) honest

` (u)P : f {u 7→ ⊥}
[T-Del]

` P : f

` (rec X(). P)() : λu. rec @X.f (u)
[T-Rec]

` X(): λu . if u = ∗ then @X else ⊥
[T-Var]

Figure 6. Typing rules for processes.

7. A type system for honesty

We now introduce a type system for CO2. Type inference is decidable (8.6), and type
safety guarantees that typeable processes are honest (9.9).

7.1. Process typing. Our type system associates types to CO2 processes. Basically, in
7.1 we abstract the CO2 prefixes as actions of pointed abstract processes (5.3). To give
some intuition, assume we want to abstract the behaviour of a process P over a channel u,
and P has a prefix acting on some channel v. We have two cases.

• If v 6= u, we abstract the prefix as a τ when it is statically known to be unblocking,
otherwise we abstract it as τ ?. For instance, if P has a prefix tell ↓v C , which requires
no synchronisation with the context, then we abstract it with a τ action (unblocking).
Instead, if P has a prefix dov a, which can only be fired with a suitable configuration in
session v, we abstract it as τ ? (potentially blocking).
• If v = u, the abstraction is more precise, recording the effect of the prefix. For instance,

we abstract the prefix tell ↓v C as 〈C 〉, while we abstract dov a as a.

Definition 7.1 (Prefix abstraction). For all u ∈ N ∪ V ∪ {∗}, we define the mapping [·]u
from CO2 prefixes to prefixes of pointed abstract processes as follows:

[τ]u = τ [τ ?]u = τ ? [fuse]u = τ ?

[tell ↓v C]u =

{
〈C 〉 if v = u

τ otherwise
[dov a]u =

{
a if v = u

τ ? otherwise

Our type system extends prefix abstraction to the whole process, on all channels. To
properly deal with delimited channels, we additionally check honesty of the pointed abstract
processes associated to them. Typing judgments for processes have the form ` P : f .

Definition 7.2 (Process typing). Typing rules for processes are given in Figure 6. We
assume an injective function @ which associates a recursion variable X to each constant
X(). We say that f is inhabited whenever ` P : f , for some P .

We now comment on the rules in Figure 6. In all the rules we take care of making the
types defined only on the channels that can be observed, and on the dummy channel ∗, which
represents the other channels (see 8.2): technically, in each judgement ` P : f we ensure
that dom f = fnv(P) ∪ {∗}. To this purpose we often suitably extend, in the conclusions

HONESTY BY TYPING 23

of the rules, the domain of the types mentioned in the premises; this is done through the
operator ·↑· introduced in 5.5. Rule [T-Nil] types the empty process with a map assigning
the type 0 to the dummy channel ∗ (and undefined on the other channels, since fnv(0) = ∅).
The type of a parallel composition is the pointwise parallel composition of the component
types (rule [T-Par]). Rule [T-Sum] types non-empty summations as (abstract) summations,
by abstracting the prefixes according to 7.1.

Rule [T-Del] types delimited processes (u)P : since the channel u is bound in (u)P in
the conclusion we remove it from the domain of the type. In the rule premise, the pointed
abstract process f (u) (with the domain expanded to include u, if needed), abstracts the
whole behaviour of the participant under observation at session u. At this point, checking
the (abstract) honesty of f (u) guarantees that P respects its obligations at session u. Note
that omitting or delaying the honesty check of f (u) at this point would allow a dishonest
behaviour to be typeable: for instance, we would incorrectly type the dishonest process
(u)tell ↓u a!.0; if we delay the the honesty check after the delimitation we would be able
to type the process, since the resulting type f ′ is only defined on ∗, and f ′(∗) = τ , which is
abstractly honest. Note that verifying f (u) honest is decidable by 6.6: we exploit this fact
to prove that type inference is decidable as well.

Finally, rules [T-Rec] and [T-Var] deal with recursive processes and process variables.
Note that only recursive calls without parameters are typeable.

Example 7.3 (Honest choice). Recall from 3.4 the process:

P = (x)P ′ where P ′ = tell ↓x (a!⊕ b!). dox a!

We can type P as follows, where f0 = λu . if u = ∗ then 0 else ⊥ = {∗ 7→ 0}:
[T-Nil]

` 0 : f0
[T-Sum]

` dox a!.0 : λu. [dox a!]u. f0↑{x,∗}(u) = f ′′
[T-Sum]

` P ′ : λu. [tell ↓x (a!⊕ b!)]u. f
′′(u) = f ′ f ′(x) honest

[T-Del]

` P : f ′{x 7→ ⊥} = f

where f ′ = {x 7→ 〈a!⊕ b!〉.a!.0, ∗ 7→ τ .τ ?.0}. Note that the premise of rule [T-Del] holds,
because 〈a!⊕ b!〉.a!.0 is abstractly honest, as shown in 6.2. Since P has no free variables,
its type f has domain {∗}, and we have f (∗) = f ′(∗) = τ .τ ?.0. From the typeability of P ,
type safety (9.9) will allow us to deduce that P is honest.

Example 7.4 (Dishonest choice). Recall from 3.4 the process:

Q = (y) Q′ where Q′ = tell ↓y (a? & b?).doy a?

We show that Q is not typeable. The only possible typing derivation for Q would have the
following form, where g′ = {y 7→ 〈a? & b?〉.a?.0, ∗ 7→ τ .τ ?.0}:

[T-Nil]
` 0 : f0

[T-Sum]

` doy a?.0 : λu. [doy a?]u. f0↑{y,∗}(u) = g′′
[T-Sum]

` Q′ : λu. [tell ↓y (a? & b?)]u. g
′′(u) = g′ g′(y) honest

[T-Del]

` Q : g′{y 7→ ⊥} = g

The rightmost premise in rule [T-Del] is false, because g′(y) = 〈a? & b?〉.a?.0 is not abstractly
honest, as shown in 6.2. Therefore, the (dishonest) process Q is not typeable.

24 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

Example 7.5 (Dishonest interleaving). Recall from 3.5 the process:

P = (x, y) tell ↓x a? . tell ↓y b! . dox a? . doy b!
The only possible typing derivation for P would require the use of rule [T-Del] to close the
delimitation on y. The premise of such rule should verify the abstract honesty of τ .〈b!〉.τ ?.b!

— which is not abstractly honest, because the required b! action is potentially blocked by
the prefix τ ?. Therefore, P is not typeable.

The following Example shows an honest process which interleaves its actions in two
sessions, while enjoying typeability. As such, it respects its obligations in both sessions.

Example 7.6 (Honest interleaving). Consider the process:

R′ = tell ↓x a?. tell ↓y (b!⊕ c!).
(
dox a?.doy b! + τ .(doy c! | dox a?)

)
The process R = (x, y)R′ can be seen as an honest variant of the process P in 3.5. The key
difference w.r.t. P is that, in the internal choice at session y, R adds the option c!, playing
the role of an “abort” message. After advertising the two contracts, the implementation
of R proceeds as follows: (i) if R receives a in session x, it will send b in session y; (ii)
otherwise, if the τ prefix is fired (modelling e.g., a timeout), then R will send the abort
message c in y, while staying ready to receive a in x.

We can type the process R′ with the following type f (where we omit f (∗)):
{ x 7→ 〈a?〉.τ .

(
a?.τ ? + τ .(τ ? | a?)

)
, y 7→ τ .〈b!⊕ c!〉.

(
τ ?.b! + τ .(c! | τ ?)

)
}

Since both f (x) and f (y) are abstractly honest, then we can apply twice rule [T-Del], ob-
taining that R is typeable, hence honest by type safety (9.9).

Example 7.7 (Online store). Recall from 3.6 the dishonest specification P of the online
store in Section 1. By defining the processes Ri within P as follows:

R1 = τ . (dox refund! | doy shipB?)

R2 = τ . (dox refund! | doy quit!)

R3 = dox quit?.doy quit! + τ .((dox pay3E?.dox refund! + dox quit?) | doy quit!)

R4 = τ . (dox abort! | doy buyB!.doy quit!)

we obtain an honest (and typeable) variant of the online store. Intuitively, P in 3.6 is
dishonest in the contexts where the counterpart in one of the two sessions stops to cooperate.
That makes P stuck waiting for a message from that session, and no longer interacting in
the other session, hence becoming not ready there. The processes Ri above deal with these
situations, by performing the needed compensations in order to make the store ready. For
instance, R4 deals with the case where the session y with the distributor is not established
(or delayed): in such case, the action buyB! at y cannot be fired, but still the store must
carry on the interaction with the buyer at x. To this purpose, R4 starts with a τ prefix,
modelling a timeout, and then performs abort! on x. The compensation actions at y are
needed in case the session with the distributor is established after the timeout.

HONESTY BY TYPING 25

In the following Example we type a process which recursively advertises contracts and
respects its obligations in all sessions.

Example 7.8. Let P ′ = tell ↓x a!.Y() | dox a!. We can type the process P ′ as follows,
where fY = λu . if u = ∗ then @Y else ⊥, and f0, f ′′ are as in the previous Example:

[T-Var]
` Y : fY

[T-Sum]
` tell ↓x a!.Y(): λu . [tell ↓x a!]u.fY↑{x,∗}(u)

[T-Nil]
` 0 : f0

[T-Sum]

` dox a! : f ′′
[T-Par]

` P ′ : λu . if u ∈ {x, ∗} then ([tell ↓x a!]u.@Y | [dox a!]u) else ⊥ = f ′

Note that f ′(x) = 〈a!〉.@Y | a! is abstractly honest. Therefore, we can type the recursive
process P = (rec Y(). (x)P ′)() as follows:

` P ′ : f ′ f ′(x) honest
[T-Del]

` (x)P ′ : f ′{x 7→ ⊥} = f
[T-Rec]

` (rec Y(). P)() : λu. rec @Y.f (u)
We note that the process P is infinite-state, because of the delimitation and the parallel
under recursion.

7.8 shows a case where the analysis technique proposed in this paper is more precise
than the one in [9]. Indeed, since P is typeable (and type inference is decidable, 8.6), then
by 9.9 our analysis technique effectively proves that P is honest. Instead, the model check-
ing algorithm in [9] would diverge on P , because it can only handle finite-state processes.
The technique in [9] could be extended by exploiting standard model-checking algorithms
for Petri nets (such as [28]), so to be capable of verifying the honesty of some infinite-state
processes. However, such an extension would still fail to handle the process P of 7.8,
because the delimitation under the recursion makes P not expressible as a Petri net.

7.2. System typing. Observe that the type system for processes is enough to guarantee
whether a participant is honest. However, in order to establish subject reduction we have
to consider system transitions (because the semantics of a process depends on the system
wherein it is run), and so we need to extend our type system to CO2 systems.

Type judgments for systems are of two kinds, `A : and `A B. A judgment of the form
`A S : f guarantees that a participant A in S behaves according to f . Instead, a judgment
of the form `A S B f means that A’s process is not in S , and S is guaranteed to be
compatible with a participant A which behaves as f . Our notion of compatibility is quite
liberal: intuitively, it just checks that every contract of A in the context S has indeed been
advertised by A.

Definition 7.9 (System typing). The relations `A S : f and `A S B f are the smallest
relations closed under the rules in Figure 7.

The first three rules in Figure 7 deal with the typing judgements `A : for systems.
Rule [T-SA] extends to A[P] a typing of P . Rule [T-SDel2] is similar to the rule [T-Del] for
processes. Rule [T-SPar2] types as f the parallel composition of two systems, one of which
must contain A and be typeable with f (under the `A : typing), while the rest of the system
must be compatible with f (using the `A B typing).

26 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

` P : f

`A A[P] : f
[T-SA]

`A S : f f ↑{u}(u) honest

`A (u)S : f {u 7→ ⊥}
[T-SDel2]

`A S : f `A S ′ B f

`A S | S ′ : f
[T-SPar2]

`A 0 B f
[T-SAFree0]

B 6= A fv(P) ∩ dom f = ∅
`A B[P] B f

[T-SAFree1]
B 6= A f (x) = ⊥
`A {↓x C}B B f

[T-SAFree2]

s[γ] A-free f (s) = ⊥
`A s[γ] B f

[T-SAFree3]
(C, f ↑{x}(x)) honest

`A {↓x C}A B f
[T-SFz1]

(αA(γ), f ↑{s}(s)) honest

`A s[γ] B f
[T-SFuse]

`A {↓s C}B B f
[T-SFzS]

`A S B f {u 7→ ⊥}
`A (u)S B f

[T-SDel1]
`A S B f `A S ′ B f

`A S | S ′ B f
[T-SPar1]

Figure 7. Typing rules for systems. Symmetric rules w.r.t. | for [T-SFuse]

and [T-SPar2] are omitted.

All the other rules define the compatibility judgements `A B. For instance, rules
[T-SAFree*] tell that A-free systems are compatible with all types f undefined on the chan-
nels in the conclusion of the rules. For instance, in rule [T-SAFree1] we forbid B to use the
free variables of A (i.e., those in dom f), to avoid potentially harmful name instantiations.
Similar preconditions are required by rules [T-SAFree2] and [T-SAFree3]. Rule [T-SFz1] states
that a latent contract {↓x C}A is typeable with `A B only when f (x) “realizes” such con-
tract. Rule [T-SFused] is similar, except that a contract of A occurs inside a session; also
in this case, A must realize her contract. Rule [T-SFzS] deals with garbage latent contracts
{↓s C}A , which cannot be fused in any sessions (because s is already a session name, so it
cannot be instantiated). Rule [T-SDel1] is symmetrical to [T-SDel2]: for system (u)S to be
compatible with f , the use of u in S has to be decoupled from the abstraction f (u). This is
necessary to prevent confusion between the channel u occurring bound in (u)S and another
channel named u occurring in the process of A, hence found in dom f . Although these two
channels have the same name, their scope is different, so they must be treated as distinct.
For this reason, we need to check S to be compatible to a type obtained by ignoring in f
the presence of u (see 7.10 below). The last rule [T-SPar1] is straightforward.

Example 7.10 (Honest choice). Recall the process P ′ = tell ↓x (a!⊕ b!). dox a! and its
type f ′ from 7.3. We can type the system S = A[P ′] | (x)B[tell ↓x a?] as follows:

` P ′ : f ′
[T-SA]

`A A[P ′] : f ′

B 6= A {x} ∩ dom f ′{x 7→ ⊥} = ∅
[T-SAFree1]

`A B[tell ↓x a?] B f ′{x 7→ ⊥}
[T-SDel2]

`A (x)B[tell ↓x a?] B f ′
[T-SPar2]

`A S : f ′

Note that the typing is possible because the delimited variable x in the process of B does
not interfere with the free variable x in P ′. This would be consistent with α-converting x.

8. Basic properties of the type system

In this section we present some basic properties of our type system for CO2; we defer to
the next section for subject reduction, progress, and type safety.

HONESTY BY TYPING 27

The type system assigns to ∗ a pointed abstract process f (∗) which may only contain
τ and τ ? actions, hence f (∗) is always honest.

Lemma 8.1 (Honesty of f (∗)).
` P : f =⇒ f (∗) only contains τ and τ ? actions (8.1a)

` P : f =⇒ f (∗) honest (8.1b)

`A S : f =⇒ f (∗) honest (8.1c)

Proof. See page 38.

The following Lemma relates the free channels of processes and systems with the domain
of their type. While these sets are the same for processes, in the case of systems we only
have inclusion. For instance, for a system S = A[tell ↓x C] |B[tell ↓y D] with type f , we
have that x and y are free in S , but y does not belong to dom f .

Lemma 8.2 (Free channels of typed processes/systems).

` P : f =⇒ dom f = fnv(P) ∪ {∗} (8.2a)

` S : f =⇒ dom f ⊆ fnv(S) ∪ {∗} (8.2b)

Proof. Straightforward induction on the typing derivations of ` P : f and ` S : f .

Item (8.3a) of the following Lemma states that, when the typing relation `A S : f
holds, then the process of A occurs in S . Conversely, item (8.3b) states that when the
typing relation `A S B f holds, then the process of A does not occur in S .

Lemma 8.3 (Participants and system typing). For all systems S and process types f :

`A S : f =⇒ ∃v, S0, P . S ≡ (v) (A[P] | S0) (8.3a)

`A S B f =⇒ ∀v, S0, P . S 6≡ (v) (A[P] | S0) (8.3b)

Proof. Easy induction on the typing derivation and inspection of the typing rules.

Types are preserved by structural equivalence of processes and systems.

Lemma 8.4 (Type congruence).

` P : f ∧ P ≡ P ′ =⇒ ` P ′ : f (8.4a)

`A S : f ∧ S ≡ S ′ =⇒ `A S ′ : f (8.4b)

`A S B f ∧ S ≡ S ′ =⇒ `A S ′ B f (8.4c)

Proof. See page 40.

The following Lemma states that the type of a process is unique, up-to structural
equivalence of pointed abstract processes and systems. The same holds for `A : typing of
systems. On the contrary, the type obtained by the judgements `A B is not unique: for
instance, we have that `A B[0] B f , for all types f .

Lemma 8.5 (Uniqueness of typing).

` P : f ∧ ` P : f ′ =⇒ f = f ′ (8.5a)

`A S : f ∧ `A S : f ′ =⇒ f = f ′ (8.5b)

Proof. Item (8.5a) follows by easy induction on the derivation of ` P : f , by noting that
each process can be typed with exactly one rule, and all the rules are deterministic.

Likewise for item (8.5b), where in the case of rule [T-Sa] we exploit Equation (8.5a)

28 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

The following Theorem is a cornerstone of our analysis technique, since it establishes
the decidability of type inference. This gives us a terminating algorithm to statically analyse
the honesty of a process P . If we succeed in inferring the type of P , then we know that P
is honest (by type safety, 9.9); otherwise, we cannot establish whether P is honest or not.
Hence, our analysis safely over-approximates honesty.

Theorem 8.6 (Decidability of type inference). Type inference for processes is decidable.

Proof. All the typing rules in Figure 6 follow the syntactic structure of processes. We can
infer the type of P by structural recursion, inferring the types of the sub-processes, and
composing them according to the typing rules. The only non-trivial rule is [T-Del], which
requires to check abstract honesty; however, this is decidable by 6.6.

9. Subject reduction and type safety

In this section we establish the main result of this paper, i.e. type safety for CO2 processes
(9.9), ensuring that typeable processes are honest. As usual, the proof of type safety builds
upon subject reduction and progress, hence we start by proving these results.

Subject reduction states that each step of the process of A within a system is matched
by a step of its type. Formalising this requires to define a transition system over types:
roughly, a type f takes a transition on a prefix π when all its points f (u) agree to take a
transition on the abstract prefix [π]u.

Definition 9.1 (Type transitions). We write f
π−−→] f

′ when dom f ′ ⊆ dom f , and:

∀u ∈ dom f ′ : f (u)
[π]u−−−−→] f

′(u)

∀u ∈ dom f \ dom f ′ : f (u)
[π]u−−−−→] f

′(∗)

The second clause of 9.1 accounts for the transitions of a system that discharge free
channels: the transition system of types must also allow to restrict the domain of types
accordingly, as per ?? 8.2a. When a free channel u is lost by a system transition, it is also
lost from the domain of its type; further, when u is no longer free in the system, at the type
level it is represented by the dummy ∗.

Example 9.2. Consider the following transition, where π = dos a!:

S = A[dos a!] | B[· · ·] | s[A : a! [] | B : a? []]
A : π−−−→

A[0] | B[· · ·] | s[A : 1 [] | B : a? [a!]] = S ′

We have the following typings for S and its reduct S ′:

`A S : {s 7→ a!, ∗ 7→ τ ?} = f `A S ′ : {∗ 7→ 0} = f ′

We have f (∗) τ?−−→] f
′(∗), which satisfies the first clause of 9.1, and f (s)

a!−−→] f
′(∗), which

satisfies also the second clause. Therefore, f
π−−→] f

′.

To prove subject reduction, we need to cope with the fact that rule [Fuse] substitutes
session names for variables. These substitutions affect its typing derivation, as shown by
the following Example.

HONESTY BY TYPING 29

Example 9.3. Consider S = A[dox a!] | {↓x a!}A | {↓y a?}B , And S ′ = A[dos a!] |
s[A : a! [] | B : a? []]. Then, by rule [Fuse] we have the transition (x, y)S

K : fuse−−−−−→ (s)S ′.
The typings of the (open) systems S, S ′ are:

`A S : f = {x 7→ a!, ∗ 7→ τ ?} `A S ′ : f ′ = {s 7→ a!, ∗ 7→ τ ?}
Note that variable x in the domain of f has been “substituted” with s in f ′. Technically,
such substitutions are obtained through the operator • formalised below.

Definition 9.4 (Substitutions on types). We define substitutions on types as follows:

f • {s/x} =

f if x ∩ dom f = ∅
f {y 7→ ⊥}{s 7→ f (y)} if x ∩ dom f = {y}
undefined otherwise

Substituting a (free) variable with a fresh session name does not affect the typeability
of a system or process, but requires adjusting the type with operator • .

Lemma 9.5 (Typing and substitution). For all processes P , systems S , types f , and for
all substitutions σ = {s/x} such that s 6∈ fnv(P) ∪ fnv(S) and f • σ is defined:

` P : f =⇒ ` P σ : f • σ (9.5a)

`A S : f =⇒ `A Sσ : f • σ (9.5b)

`A S B f =⇒ `A Sσ B f • σ (9.5c)

Proof. See page 41.

We can now state subject reduction: typeability is preserved by system transitions. We
need to consider a few cases, depending on which participant moves (either A under typing,
or any other participant B), and on which typing relation is used (: or B). Note that,
by ?? 8.3b, when A moves the typing relation B cannot hold, so we have only three cases.
When a system S takes a transition due to A, the : -type of the reduct cannot be the same
as the type of S , because the action consumed in S has to be consumed also in the type.
Rather, such move of A can be “simulated” by a corresponding move of the type (9.1).
System transitions caused by B 6= A preserve the type (both for : and B).

Note that the hypothesis that f is honest always holds for closed systems, as it is
implied by ?? 8.1c and ?? 8.2b.

Theorem 9.6 (Subject reduction). If S
B : π−−−→ S ′ and f is honest:

`A S : f ∧ B = A =⇒ ∃f ′ . f π−−→] f
′ ∧ `A S ′ : f ′ (9.6a)

`A S : f ∧ B 6= A =⇒ `A S ′ : f (9.6b)

`A S B f ∧ B 6= A =⇒ `A S ′ B f (9.6c)

Proof. See page 45.

30 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

Progress is somehow dual to subject reduction: roughly, it guarantees that type tran-
sitions are “simulated” by system transitions. However, this does not necessarily holds for
do transitions, since they may be enabled in the type but forbidden in the system. For do

transitions, progress only guarantees that they are ready in the system. For instance, in

`A A[dos a! | dos b!] | s[A : b! [] | B : · · ·] : {s 7→ a! | b!, ∗ 7→ · · · }
the type can perform both a! and b! at session s, while the system can only perform b!

(the action a! is ready but not fireable).

Theorem 9.7 (Progress). If `A S : f with f honest, f
π−−→] f

′, and u ∈ dom f , then:

π ∈ {τ , tell ↓u C} =⇒ ∃S ′ . S A : π−−−→ S ′ ∧ `A S ′ : f ′ (9.7a)

π = dou a =⇒ a ∈ S ↓Au (9.7b)

Proof. See page 57.

In order to prove type safety, we first show that if f is the type associated to some
process, and f (u) takes a transition, then the whole f can take a transition.

Lemma 9.8 (Self-concordance). If f is inhabited, then for all u ∈ dom f :

f (u)
α−−→] P

′ =⇒ ∃π, f ′ . [π]u = α ∧ f
π−−→] f

′ ∧ f ′↑{u} (u) = P′

Proof. See page 58.

Type safety guarantees that typeable closed processes are honest.

Theorem 9.9 (Type safety). For all closed P , if ` P : f then P is honest.

Proof. By 4.5, we need to prove that for all A-free S :

A[P] | S →∗ S ′ =⇒ A ready in S ′

Since P is closed, then by Lemma 8.2a it follows that dom f = {∗}; together with the
fact that S is A-free, then by a simple structural induction on S we can apply the rules
in Figure 7 to obtain the typing `A S B f . Hence, we can reconstruct the following typing
derivation:

` P : f

`A A[P] : f
[T-SA]

`A S B f

`A A[P] | S : f
[T-SPar2]

Since dom f = {∗}, then by Lemma 8.1b it follows that f is honest. Since honesty is
preserved by transitions of process types (Lemma 6.4), then by iterating 9.6 (Subject
reduction) we have that:

`A S ′ : f ′ for some f ′ honest

By 4.3, we must prove that, whenever S ′ ≡ (v)S ′0 for some v and S ′0, then, for all s,

S ′0 ∈ RdyA@s. This is equivalent to:

OA@s(S ′0) 6= ∅ =⇒ OA@s(S ′0) ∩ S ′0⇓A@s 6= ∅
The above equivalence holds because OA@s(S ′0) ∩ A? contains at most one element2. So,
assume b ∈ OA@s(S ′0) 6= ∅. Then, S ′0 must be structurally equivalent to:

(u)
(
A[P ′] | s[γ] | S ′′0

)
with γ = A : C [βA] | B : D []

2 This holds for both synchronous and asynchronous semantics of session types: see 4.4.

HONESTY BY TYPING 31

for some u, B, C,D, P ′, S ′′0 and βA such that s 6∈ u, and βA is either empty or a singleton.
Since S ′ ≡ (vu) (A[P ′] | s[γ] | S ′′0) and `A S ′ : f ′, by 8.4 we have that:

`A (vu)
(
A[P ′] | s[γ] | S ′′0

)
: f ′

By inverting the typing derivation, we obtain some honest g such that:

`A A[P ′] : g `A s[γ] B g `A S ′′0 B g

Since `A s[γ]B g can only by typed via rule [T-SFuse], then g↑{s}(s) must realize C = αA(γ).
Let P = g↑{s}(s). Since P realizes C, then by 6.1 we know that (C,P) is honest, i.e. for all
D,Q:

(C,P) −→∗] (D,Q) =⇒ Q is abstractly ready for D

In particular, P is abstractly ready for C, i.e. by 6.1:

C
b−→→] =⇒ ∃a . (C,P)

τ−→]
∗ a−→]

Since γ
A:b−−→→, then by ?? 5.2a we have that C

b−→→], and so from the above implication:

(C,P)
τ−→] (C,P1)

τ−→] · · ·
τ−→] (C,Pn)

a−→] (C′,P′)

By the rules in Figure 5, we obtain a corresponding trace of P:

P
τ−−→] P1

τ−−→] · · ·
τ−−→] Pn

a−−→] P
′

We now exploit 9.8 to prove that there exist π1, . . . , πn, π
′ , and g1, . . . , gn, g

′ such that
[πi] = τ for all i ∈ 1..n, [π′] = a, and:

g
π1−−−→] g1

π2−−−→] · · ·
πn−−−→] gn

π′−−→] g
′

To justify the first step, we observe that, by 5.5, it must either be P = g(s), or P = g(∗).
Since g is inhabited (by S0 = A[P ′] | s[γ] | S ′′0), by applying 9.8 on P

τ−−→] P1 (with u = s

or u = ∗, accordingly) we obtain that g
π1−−−→] g1, for some π1 such that [π1] = τ (and

so, we have either π1 = τ or π1 = tell). Then, we have either g1(s) = P1 or g1(∗) = P1.
Moreover, since g is honest, then by ?? 9.7a it follows that g1 is inhabited by some S1 such

that S0
A : π1−−−→ S1. Hence, by Lemma 6.4 also g1 is honest. By iterating the same argument

to g1, . . . , gn−1, we obtain that gn is honest, inhabited, and either gn(s) = Pn or gn(∗) = Pn.
Therefore, we can apply once again 9.8, from which we obtain some π′ and g′ such that

[π′] = a, and gn
π′−−→] g

′. Note that, in the meanwhile, we have constructed a trace:

S0
A : π1−−−→ S1

A : π2−−−→ · · · A : πn−−−−→ Sn

Since [π′] = a, the abstraction cannot be done on ∗, and so π′ = dos a. Then, by ?? 9.7b it
must be a ∈ Sn ↓As . Then, by 4.2, we also have a ∈ S0 ⇓A@s. Therefore, since s 6∈ u, then

a ∈ S ′0 ⇓A@s. To conclude, just note that, since (C,Pn)
a−→] (C′,P′), then a ∈ OA@s(S ′0).

We have then proved OA@s(S ′0) ∩ S ′0⇓A@s 6= ∅, which concludes the proof.

32 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

The following Example shows that our type system is incomplete, i.e. there exists an
honest process which is not typeable.

Example 9.10. We can type the process P ′ = tell ↓x a!. (dox a! + doy b!) with:

f = { x 7→ 〈a!〉.(a! + τ ?), y 7→ τ .(τ ? + b!), ∗ 7→ τ .(τ ? + τ ?) }
Since f (x) is not abstractly honest, then P = (x)(y)P ′ is not typeable. However, P is
honest: indeed, the branch doy b! is immaterial, since the session y cannot be established.

10. Related work and conclusions

The concept of contract-oriented computing (as surveyed in Section 1) has been introduced
in [14], and CO2 has been later proposed as a contract-agnostic calculus for contract-oriented
computing in [12]. CO2 has been instantiated with several contract models — both binary
[13, 10, 9] and multiparty [12, 36, 8]. Here, similarly to [9], we consider bilateral contracts,
formalised as binary session types (Section 2). A minor difference w.r.t. [13, 10, 36] is that in
the present work we do not have fuse as a language primitive: the creation of fresh sessions
is performed non-deterministically by the context (rule [Fuse] in Figure 3). This is equivalent
to assume a contract broker which collects all contracts, and may establish sessions when
compliant ones are found. The notion of honesty used here is slightly different from the one
in [13]. There, A is considered culpable in a session s when she has enabled moves in s; by
performing such moves, A can exculpate herself. Honesty in [13] requires A to be always
able to exculpate herself, in all contexts and in all sessions. This is a mild variation of the
notion of honesty considered here: we believe that these two notions are equivalent, under
a fair semantics. A survey of other variants of honesty, and of their properties, is in [15].

A type system to safely over-approximate honesty in CO2 has been first proposed in [10].
The present work improves those results in two main directions. First, we have redesigned
the type system so that now it has a decidable type inference (8.6). This result relies
on a (sound and complete) algorithm for deciding abstract honesty, based on submarking
reachability in Petri nets (6.6). Second, we can safely over-approximate the honesty of
processes which interact through asynchronous session types (4.9).

The programming model envisioned by CO2 has been implemented as a contract-
oriented middleware [6] featuring timed session types [5] as contracts. This middleware
collects the contracts advertised by services, and creates a session between two services
when their contracts are compliant. The middleware monitors all the intra-session commu-
nications (similarly to [42]), also checking that services respect the time constraints specified
in their contracts. When a participant is culpable of a contract violation its reputation is
decreased, consequently reducing its chances of being involved in further sessions.

The contract model in the present work (Section 2) is based on an interpretation of
session types as behavioural contracts equipped with an LTS semantics, which are also
studied in [3, 11, 17, 4, 43]. Similarly to [11, 43], here we combine contracts with buffers
and define semantics and notions of compliance accounting for asynchronous interactions.
A novel contribution in this work is 2.5, which proves the undecidability of compliance
between session types interacting via unbounded buffers.

The problem of ensuring safe interactions in session-based systems has been addressed
to a wide extent in the literature, e.g. in [27, 18, 22, 32, 35, 18, 33, 45, 24, 25]. In many of

HONESTY BY TYPING 33

these approaches (surveyed in [34]), deadlock-freedom in the presence of interleaved sessions
is not directly implied by typeability. For instance, the two (dishonest) processes:

P = (x, y) tell ↓x a?.tell ↓y b?.dox a?.doy b?
Q = (x, y) tell ↓x a!.tell ↓y b!.doy b!.dox a!

would typically be well-typed. However, the composition A[P] | B[Q] reaches a deadlock
after fusing the sessions: in fact, A remains waiting on x (while not being ready at y), and
B remains waiting on y (while not being ready at x).

Multiple interleaved sessions has been tackled e.g. in [27, 18, 22, 24, 25]. To guarantee
deadlock freedom, these approaches usually require that all the interactions on a session
must end before another session can be used. For instance, the system A[P] | B[Q] above
would not be typeable in [22], coherently with the fact that it is not deadlock-free. The
resulting notions seem however quite different from honesty, because we do not necessarily
classify as dishonest processes with interleaved sessions. For instance, the processes:

(x, y) tell ↓x a?.tell ↓y b!.
(
dox a?.doy b! + doy b!.dox a?

)
(x, y) tell ↓x a?. tell ↓y (b!⊕ c!).

(
dox a?.doy b! + τ .(doy c! | dox a?)

)
would not be typeable according to [22], but they are honest in our theory (see 7.6).
A further difference between these approaches and ours is that we do not assume the
knowledge of the whole system, but instead we focus on typing standalone participants.
Once a participant A is typed using the rules in Figure 6, then A will always be ready to
make her sessions progress. Our type discipline does not make assumptions on contexts
other than their A-freeness (which can be easily obtained via digital signatures). Deadlocks
can only occur when the context starts behaving dishonestly.

The problem of checking if the abstract behaviour of a service conforms to a role of
a given choreography has been investigated in [20]. Under suitable well-formed conditions,
conformance is attained exploiting the should testing pre-order. Similar techniques have
been used in [21] to define contract-based composition of services. A main difference between
these approaches and ours is that we also consider the contexts where some participants
can be dishonest, i.e. we aim at establishing whether a process abides by its own contract
regardless of its execution context.

In the top-down approach to design a distributed application, one specifies its overall
communication behaviour through a choreography, which validates some global properties
of the application (e.g. safety, deadlock-freedom, etc.). To ensure that the application en-
joys such properties, all the components forming the application have to be verified; this
can be done e.g. by projecting the choreography to end-point views, against which these
components are verified [44, 33]. This approach assumes that designers control the whole
application, e.g., they develop all the needed components. However, in many real-world
scenarios several components are developed independently, without knowing at design time
which other components they will be integrated with. In these scenarios, the compositional
verification pursued by the top-down approach is not immediately applicable, because the
choreography is usually unknown, and even if it were known, only a subset of the needed
components is available for verification. The ideas pursued in this paper depart from the
top-down approach, because designers can advertise contracts to discover the needed compo-
nents (and so ours can be considered a bottom-up approach). Coherently, the main property

34 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

we are interested in is honesty, which is a property of components, and not of global appli-
cations. Some works mixing top-down and bottom-up composition have been proposed in
the past few years [26, 37, 36, 8].

Future works. An interesting direction for future research would be extending our type
discipline to the version of CO2 studied in [9], which features value-passing processes and
conditionals. The behaviour of conditional processes if e then P else Q is delicate to
abstract in the presence of recursion. A näıve attempt could simply abstract it as τ .P+τ .Q,
where P and Q are the abstractions of P and Q, respectively. However, this abstraction
would not be safe. For instance, consider the process:

R = tell ↓x a!.(rec X(). if false then dox a! else τ .X())()

We have that (x)R is not honest, since the promised a! action will never be performed.
However, the näıve abstraction of P ′ on channel x would be 〈a!〉.(rec @X.τ .a! + τ .τ .@X)
which is abstractly honest, since after 〈a!〉 the action a! is persistently weakly enabled.

The issue is that, under recursion, τ .P + τ .Q does not precisely represent the internal
non-determinism caused by conditionals. We could tackle this issue in two different ways:
either refining the notion of readiness as in [9], or — more directly — ruling out conditional
processes wherein some recursive calls are not guarded by do -actions (as in τ .X() above).

Another possible extension of our type system is a more precise handling of recursion,
so to type processes with non-empty lists of parameters in recursive calls X(u). However
this would be a non-trivial task, due to the presence of processes which can possibly extrude
names through recursive invocations. This is why the typing rule [T-Rec] in Figure 6 only
allows recursion with no parameters. This forbids, e.g., to type the following honest process:

(x) tell ↓x a!.(rec X(y). doy a!.(z) tell ↓z a!.X(z))(x)

Note however that the current type system is precise enough to correctly establish the
honesty of complex processes, like e.g. the travel agency case study in [9].

In our work, we focused mainly on the synchronous setting. Asynchrony exposes several
technical challenges that are not present in the synchronous case. For instance, the opera-
tional semantics of CO2 becomes undecidable, because compliance between asynchronous
session types is undecidable (2.9). As for honesty, the set of ∞-honest processes is larger
than the set of 1-honest one, and it is still undecidable (4.8). For instance, 4.11 provides
a ∞-honest process which is not 1-honest (and so, not typeable). While 4.9 allows us
to lift 1-honesty to ∞-honesty, making our type system sound even in the asynchronous
setting, it would be desirable to extend our analysis so to cover a larger class of processes
that includes some ∞-honest but not 1-honest processes. A possible refinement of our type
system would be to modify the abstraction of prefixes to take into account the fact that, in
the asynchronous setting, enabled outputs on a session u are never blocking once u has been
established. Technically, this would require to improve the abstraction of prefixes (7.1) so
that the enabled output actions (but for the first action in u) are abstracted on v 6= u as τ ,
instead of τ ?. For instance, the process in 4.11 would be typeable in this modified analysis.

Another research direction is the integration of contract-oriented primitives within main-
stream programming languages. This can be done e.g. as in [6], where Java APIs are pro-
vided to interact with a middleware which handles contracts and sessions. The problem
of honesty of Java programs is analogous to that of CO2, with the additional issue that
contract violations are explicitly sanctioned by the middleware in terms of reputation loss.

HONESTY BY TYPING 35

The suite of tools Diogenes [2] supports programmers in writing honest Java code. The
tool translates honest CO2 specifications into skeletal Java programs, and checks that their
honesty is preserved upon refinement. To this purpose, the tool first infers a CO2 process
which approximates the behaviour of a Java program; the honesty of this process is then
verified through the model checker in [9].

Acknowledgement

This work has been partially supported by Aut. Reg. of Sardinia P.I.A. 2013 “NOMAD”, by
EU COST Action IC1201 “Behavioural Types for Reliable Large-Scale Software Systems”
(BETTY), and by EU COST Action IC1405 “Reversible Computation - extending hori-
zons of computing”. Alceste Scalas was partly supported by EPSRC grant EP/K011715/1.
We thank the anonymous reviewers and Nicola Atzei for their insightful comments on a
preliminary version of this paper.

References

[1] L. Aceto, W. Fokkink, A. Ingólfsdóttir, and B. Luttik. A finite equational base for CCS with left merge
and communication merge. ACM Trans. Comput. Log., 10(1), 2009.

[2] N. Atzei and M. Bartoletti. Developing honest Java programs with Diogenes. In Proc. FORTE, volume
9688 of LNCS, pages 52–61. Springer, 2016.

[3] F. Barbanera and U. de’Liguoro. Two notions of sub-behaviour for session-based client/server systems.
In Proc. PPDP, pages 155–164, 2010.

[4] F. Barbanera and U. de’Liguoro. Sub-behaviour relations for session-based client/server systems. Math-
ematical Structures in Computer Science, 25:1339–1381, 9 2015.

[5] M. Bartoletti, T. Cimoli, M. Murgia, A. S. Podda, and L. Pompianu. Compliance and subtyping in
timed session types. In Proc. FORTE, LNCS, pages 161–177. Springer, 2015.

[6] M. Bartoletti, T. Cimoli, M. Murgia, A. S. Podda, and L. Pompianu. A contract-oriented middleware.
In Proc. FACS, 2015.

[7] M. Bartoletti, T. Cimoli, and R. Zunino. Compliance in behavioural contracts: a brief survey. In
Programming Languages with Applications to Biology and Security, volume 9465 of LNCS, pages 103–
121. Springer, 2015.

[8] M. Bartoletti, J. Lange, A. Scalas, and R. Zunino. Choreographies in the wild. Science of Computer
Programming, 109:36 – 60, 2015.

[9] M. Bartoletti, M. Murgia, A. Scalas, and R. Zunino. Verifiable abstractions for contract-oriented systems.
Journal of Logical and Algebraic Methods in Programming, 2015. To appear.

[10] M. Bartoletti, A. Scalas, E. Tuosto, and R. Zunino. Honesty by typing. In Proc. FMOODS/FORTE,
volume 7892 of LNCS, pages 305–320. Springer, 2013.

[11] M. Bartoletti, A. Scalas, and R. Zunino. A semantic deconstruction of session types. In Proc. CONCUR,
volume 8704 of LNCS, pages 402–418. Springer, 2014.

[12] M. Bartoletti, E. Tuosto, and R. Zunino. Contract-oriented computing in CO2. Sci. Ann. Comp. Sci.,
22(1):5–60, 2012.

[13] M. Bartoletti, E. Tuosto, and R. Zunino. On the realizability of contracts in dishonest systems. In Proc.
COORDINATION, volume 7274 of LNCS, pages 245–260. Springer, 2012.

[14] M. Bartoletti and R. Zunino. A calculus of contracting processes. In Proc. LICS, 2010.
[15] M. Bartoletti and R. Zunino. On the decidability of honesty and of its variants. In Web Services, Formal

Methods, and Behavioral Types, volume 9421 of LNCS. Springer, 2015.
[16] H. Bekić. Programming Languages and Their Definition: H. Bekić (1936–1982), chapter Definable

operations in general algebras, and the theory of automata and flowcharts, pages 30–55. Springer, 1984.
[17] G. Bernardi and M. Hennessy. Using higher-order contracts to model session types. In Proc. CONCUR,

LNCS, pages 387–401. Springer, 2014.

36 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

[18] L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini, and N. Yoshida. Global progress
in dynamically interleaved multiparty sessions. In Proc. CONCUR, LNCS, pages 418–433. Springer,
2008.

[19] D. Brand and P. Zafiropulo. On communicating finite-state machines. Technical report, IBM Zurich
Research Laboratory, 1981.

[20] M. Bravetti and G. Zavattaro. Towards a unifying theory for choreography conformance and contract
compliance. In Software Composition, 2007.

[21] M. Bravetti and G. Zavattaro. Contract-based discovery and composition of web services. In Formal
Methods for Web Services, volume 5569 of LNCS, pages 261–295. Springer, 2009.

[22] G. Castagna, M. Dezani-Ciancaglini, E. Giachino, and L. Padovani. Foundations of session types. In
Proc. PPDP, 2009.

[23] G. Cécé and A. Finkel. Verification of programs with half-duplex communication. Inf. Comput.,
202(2):166–190, 2005.

[24] M. Coppo, M. Dezani-Ciancaglini, L. Padovani, and N. Yoshida. Inference of global progress properties
for dynamically interleaved multiparty sessions. In Proc. COORDINATION, pages 45–59, 2013.

[25] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani. Global progress for dynamically inter-
leaved multiparty sessions. MSCS, 760:1–65, 2015.

[26] P.-M. Deniélou and N. Yoshida. Multiparty compatibility in communicating automata: Characterisation
and synthesis of global session types. In Proc. ICALP, pages 174–186, 2013.

[27] M. Dezani-Ciancaglini, U. de’Liguoro, and N. Yoshida. On progress for structured communications. In
Proc. TGC, pages 257–275, 2007.

[28] J. Esparza. On the decidability of model checking for several µ-calculi and Petri nets. In Proc. CAAP,
1994.

[29] J. Esparza. Petri nets, commutative context-free grammars, and basic parallel processes. Fundamenta
Informaticae, 31(1):13–25, 1997.

[30] A. Finkel and P. McKenzie. Verifying identical communicating processes is undecidable. Theor. Comput.
Sci., 174(1-2):217–230, 1997.

[31] M. Hack. Decidability questions for Petri nets. Technical report, M.I.T., 1976. Ph. D. Thesis.
[32] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for structured

communication-based programming. In Proc. ESOP, volume 1381 of LNCS, 1998.
[33] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. J. ACM, 63(1):9:1–9:67,

2016. Extended version of a paper presented at POPL’08.
[34] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P.-M. Deniélou, D. Mostrous,

L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, and G. Zavattaro. Foundations of session types
and behavioural contracts. ACM Comput. Surv., 49(1):3:1–3:36, 2016.

[35] N. Kobayashi. A new type system for deadlock-free processes. In Proc. CONCUR, pages 233–247, 2006.
[36] J. Lange and A. Scalas. Choreography synthesis as contract agreement. In Proc. ICE, 2013.
[37] J. Lange and E. Tuosto. Synthesising choreographies from local session types. In Proc. CONCUR, 2012.
[38] J. Lange, E. Tuosto, and N. Yoshida. From communicating machines to graphical choreographies. In

Proc. POPL, pages 221–232, 2015.
[39] E. W. Mayr. An algorithm for the general Petri net reachability problem. SIAM J. Comput., 13(3):441–

460, 1984.
[40] R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-State Systems. PhD

thesis, Technische Universität München, 1998.
[41] A. Mukhija, A. Dingwall-Smith, and D. Rosenblum. QoS-aware service composition in Dino. In Proc.

ECOWS, pages 3–12, 2007.
[42] R. Neykova, L. Bocchi, and N. Yoshida. Timed runtime monitoring for multiparty conversations. In

Proc. BEAT, pages 19–26, 2014.
[43] A. Scalas. A semantic deconstruction of session types. PhD thesis, University of Cagliari, 2015.
[44] W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf. Multiparty contracts:

Agreeing and implementing interorganizational processes. Comput. J., 53(1):90–106, 2010.
[45] V. T. Vasconcelos. Fundamentals of Session Types. Information and Computation, 217:52–70, 2012.
[46] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT Press, Cam-

bridge, MA, USA, 1993.

HONESTY BY TYPING 37

A. Proofs for Section 6

Notation A.1 (Realizes). We say that:

• P is ready for C whenever (C,P) is ready;
• P realizes C whenever (C,P) is honest.

Lemma A.2. For all α ∈ {τ , τ ?, 〈C ′〉}: P
α−−→] P

′ ∧ (Γ,P) honest =⇒ (Γ,P′) honest

Proof. Assume (Γ,P) honest, α ∈ {τ , τ ?, 〈C ′〉}, and P
α−−→] P′ . To show (Γ,P′) honest,

assume that (Γ,P′) −→∗] (C,P′′). We have the following two cases:

• α ∈ {τ , τ ?}. Since P
α−−→] P′ , then by rule [A-Tau] we have (Γ,P)

α−→] (Γ,P′). Hence,

(Γ,P)
α−→] (Γ,P′) −→∗] (C,P′′). Since (Γ,P) is honest, then (C,P′′) is ready.

• α = 〈C ′〉. We can modify the trace (Γ,P′) −→∗] (C,P′′) by adding C ′ to all the sets
of contracts in the trace. The result is still a valid trace, because enlarging the set of
contracts does not reduce the applicability of the rules in Figure 5. In this way, we obtain
the trace (Γ′ ,P′) −→∗] (C,P′′), where Γ′ is either Γ ∪ {C ′} if Γ is a set of contracts, or

Γ′ = Γ otherwise. Therefore, we have (Γ′ ,P)
τ−−→] (Γ′ ,P′) −→∗] (C,P′′). Since (Γ,P) is

honest, then (C,P′′) is ready.

Proof of Lemma 6.4. Immediate consequence of A.2.

Proof of Lemma 6.5 (Abstract readiness and parallel composition). First, we note
that if Γ 6−→→], then both sides are trivially true by 6.1, hence they are equivalent. Therefore,

we can assume that Γ
a−→→] for some a, and so Γ = C for some C.

For the ⇐ direction, assume w.l.o.g. that (C,P) is ready. By 6.1, this implies that

(C,P)
τ−→]
∗ b−→] for some b. Inverting the rules of the semantics of pointed abstract systems,

we find a corresponding trace for the pointed abstract process P, namely P
τ−−→]
∗ b−−→].

Consequently, by rule [C-ParL], P | Q τ−−→]
∗ b−−→], hence (C,P | Q)

τ−→]
∗ b−→].

For the ⇒ direction, assume that (C,P | Q) is ready, hence (C,P | Q)
τ−→]
∗ b−→]. As

above, inverting the rules we obtain P | Q τ−−→]
∗ b−−→]. Therefore, we have that either of

P
τ−−→]
∗ b−−→] and Q

τ−−→]
∗ b−−→] because parallel pointed abstract processes cannot interact

with each other (as their semantics does not allow synchronization or communication among
parallel processes). In both cases, we can then lift the trace on pointed abstract processes
to a trace on pointed abstract systems, showing that (C,P) or (C,Q) is ready.

Lemma A.3. If Q only contains τ and τ ? actions, then:

P honest ⇐⇒ P | Q honest (A.3a)

P honest =⇒ P{Q/X} honest (A.3b)

Proof. For the⇐ direction of item (A.3a), assume that (∅,P) −→∗] (C,P′). By the semantics

of pointed abstract systems, this implies that (∅,P | Q) −→∗] (C,P′ | Q), which is ready

because P | Q is honest. By 6.5, either (C,P′) is ready or (C,Q) is ready. If (C,P′) is ready,
we have the thesis. Otherwise, C has obligations, and (C,Q) is ready — contradicting Q

38 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

performing only τ and τ ? moves (indeed, by 6.1, a pointed abstract systems with only τ e
τ ? cannot fulfil obligations).

For the ⇒ direction of item (A.3a), assume that

(∅,P | Q) −→∗] (C,R) (1)

Assuming that C has some obligations, we need to prove that (C,R) is ready, i.e. (C,R)
τ−→
∗
]
a−→]

for some a. We must have that R = P′ | Q′ , where P −→∗] P′ and Q −→∗] Q′ . This is because
two parallel components can only interact by performing actions on the contract. Exploit-
ing (1), we can construct a trace (∅,P) −→∗] (C,P′). Indeed, in the transitions Q −→∗] Q′ there

are only τ and τ ? actions, so the evolution of the contract in (1) only depends on the tran-

sitions of P. Since P is honest and C has some obligations, we must have (C,P′)
τ−→
∗
]
a−−→],

hence by rule [C-ParL] we conclude that (C,P′ | Q′) τ−→
∗
]
a−→].

For item (A.3b), note that the process P{Q/X} differs from P in that the occurrences of the
free variables X have been replaced by Q (with the usual assumption that the substitution
is capture-avoiding). According to the transition semantics, X is a stuck process, while by
hypothesis Q only performs τ and τ ? actions. Intuitively, the substitution {Q/X} is irrelevant
for the transitions of P{Q/X}, except for those cases where a trace of P would expose an X

at the top level. Hence, a residual of P{Q/X} is formed by a parallel component where the
substitution had no effect in the trace, and the residuals of all the substituted top-level X’s —
which are residuals of Q. More precisely, we have that in every trace (∅,P{Q/X}) −→∗] (C,R):

R = P′{Q/X} | Q1 | · · · | Qk where Qi are residuals of Q and P −→∗] P′ | X | · · · | X︸ ︷︷ ︸
k times

This fact relies on two properties of pointed abstract systems. First, the residuals of Q never
interact with P′{Q/X}, since Q can only perform τ and τ ? actions. Second, sums in pointed
abstract processes are prefix-guarded (otherwise, substituting the honest (a!,X + a!) we
would obtain (a!, τ + a!), which is no longer honest). Roughly, prefix-guardedness ensures
that the moves of Q in P{Q/X} do not conflict with the moves of P.

Hence, from the trace (∅,P{Q/X}) −→∗] (C,R) we can construct a trace (∅,P) −→∗] (C,P′ |
X | · · · | X). Since P is honest, then (C,P′ | X | · · · | X) is ready, and since the components
X are stuck, then also (C,P′) must be ready. Then, (C,P′{Q/X} | Q1 | · · · | Qk) is ready.

B. Proofs for Section 7

Proof of Lemma 8.1 (Honesty of f (∗)). Item (8.1a) follows by easy induction on the typ-
ing derivation of ` P : f (Figure 6). Item (8.1b) is a direct consequence of Equation (8.1a).
For item (8.1c), we proceed by induction on the typing derivation of `A S : f .

• [T-SA]. We have:
` P : f

`A S = A[P] : f
[T-SA]

Thus, f (∗) is honest by item (8.1b).
• [T-SDel2], [T-SPar2]. Straightforward, by applying the induction hypothesis on the rule

premises.

HONESTY BY TYPING 39

Lemma B.1 (Structural equivalence and substitutions). For all processes P , P ′, systems
S, S ′, and for all substitutions σ:

P ≡ P ′ =⇒ P σ ≡ P ′σ
S ≡ S ′ =⇒ Sσ ≡ S ′σ

Proof. Case analysis on all the different cases of structural equivalence.

Lemma B.2 (Substitution of delimited channels). For all S , f , u, and P:

` S B f ∧ u 6∈ fnv(S) =⇒ ` S B f {u 7→ P} and ` S B f {u 7→ ⊥}
Furthermore, these typing derivations have the same depth as the original one.

Proof. Straightforward induction, by inspection of the rules in Figure 7.

Lemma B.3 (Substitution of recursion variables). For all P , Q, f , and g:

` P : f ∧ ` Q : g =⇒ ` P {Q/X} : λu . f ↑A (u){g ↑A (u)/@X} where A = fnv(P {Q/X}).

Proof. Tedious induction on the typing derivation of ` P : f .

Lemma B.4. If f is honest, then f • σ and f ↑A are honest, for all σ and for all A.

Proof. Assume that f is honest, and that u ∈ dom (f • σ). We have that (f •σ)(u) = f (v),
for some v ∈ dom f . Similarly, for all u ∈ dom (f ↑A), we have that f ↑A (u) = f (v), for
some v ∈ dom f . The thesis follows by the assumption that f is honest.

Lemma B.5. For all S , f , f ′, and π such that `A S B f and f
π−−→] f

′:

π = dos a ∧ s[· · ·] 6∈ S =⇒ `A S B f ′ (1)

(∀s, a . π 6= dos a) =⇒ `A S B f ′ (2)

Proof. By induction on the typing derivation of `A S B f . All cases are straightforward,
but the following ones:

• [T-SFz1]. We have:
f ↑{x} (x) realizes C

`A S = {↓x C}A B f
[T-SFz1]

We first note that, since f
π−−→] f

′, then f ↑{x} (x)
[π]x−−−→] f

′↑{x} (x). By 7.1 we have that
for item (1) [π]x = τ ?, while for item (2) [π]x 6= a, for all a. Then, in both cases by A.2
we have that f ′↑{x} (x) realizes C . Therefore, the thesis follows by using rule [T-SFz1].
• [T-SFuse]. We have:

f ↑{t} (t) realizes αA(γ)

`A S = t[γ] B f
[T-SFuse]

We first note that, since f
π−−→] f

′, then f ↑{t} (t)
[π]t−−−→] f

′↑{t} (t). By 7.1 we have that
for item (1) [π]t = τ ? (because the assumption s[· · ·] 6∈ S implies that t 6= s), while for
item (2) [π]t 6= a, for all a. Then, in both cases by A.2 we have that f ′↑{t} (t) realizes
αA(γ). The thesis follows by using rule [T-SFuse].
• [T-SDel1]. We have:

`A S0 B f {u 7→ ⊥}
`A S = (u)S0 B f

[T-SDel1]

40 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

Since f
π−−→] f

′, then f {u 7→ ⊥} π−−→] f
′{u 7→ ⊥}. For item (2) we can apply the

induction hypothesis, which gives `A S0 B f ′{u 7→ ⊥}; the thesis then follows by rule [T-

SDel1]. For item (1) there are two cases, according to whether s = u or not. If s 6= u,
then we can apply the induction hypothesis, and proceed as above. Otherwise, if s = u,
then it might be the case that s[· · ·] ∈ S0, i.e. S0 = s[γ] | · · · . In this case, by 9.1 we also
have that:

f {u 7→ ⊥} π′−−→] f
′{u 7→ ⊥}

where π′ = dot a, with t[· · ·] 6∈ S0. This holds because [π]v = τ ? = [π′]v, for all v ∈ dom f .
Therefore, we can apply the induction hypothesis, which gives `A S0 B f ′{u 7→ ⊥}; we
then conclude by rule [T-SDel1].
• [T-SPar1]. Straightforward, by applying the induction hypothesis on both premises.
• [T-SAFree2], [T-SAFree3]. The thesis follows because dom f ′ ⊆ dom f .

Lemma B.6.

f ↑A {u 7→ P} = (f {u 7→ P})↑A (B.6a)

f ↑A {u 7→ ⊥} = (f {u 7→ ⊥})↑A\{u} (B.6b)

Proof. Straightforward case analysis on u ∈ A in 5.5.

Notation B.7. For all α, and for ◦ ∈ {|,+}, we will use the compact notation α.f for
λu. α.f (u), and f ◦ g for λu. f (u) ◦ g(u).

Proof of Lemma 8.4 (Structural equivalence and typing). By induction on the
typing derivation. Most cases are straightforward; we only show the case of scope extrusion.

For Equation (8.4a), consider the case where:

P = (u)(P 0 | P 1) ≡ P 0 | (u)P 1 = P ′ with u 6∈ fnv(P 0)

We have the following typing derivation for P , where A = dom g0 ∪ dom g1:

` P 0 : g0 ` P 1 : g1
[T-Par]

` P 0 | P 1 : g0↑A | g1↑A = g g↑{u}(u) honest
[T-Del]

` P : g{u 7→ ⊥} = f

Since ` P 0 : g0 and u 6∈ fnv(P 0), then by ?? 8.2a it must be g0↑{u}(u) = g0(∗). Hence,
by ?? 8.1a, g0↑{u}(u) only contains τ and τ ? actions. Together with the fact that g↑{u}(u) =
g0↑{u}(u) | g1↑{u}(u) is honest, by ?? A.3a we deduce that g1↑{u}(u) is honest. We can then
construct the following typing derivation for P ′, where A′ = dom g0 ∪ (dom g1 \ {u}):

` P 0 : g0

` P 1 : g1 g1↑{u}(u) honest
[T-Del]

` (u)P 1 : g1{u 7→ ⊥}
[T-Par]

` P ′ : g0↑A′ | g1{u 7→ ⊥}↑A′ = f ′

To conclude the proof, we need to prove that f ′ = f . Since u 6∈ fnv(P 0) ∪ {∗} = dom g0,
then A′ = (dom g0 ∪ dom g1) \ {u} = A \ {u}, and so g0 = g0{u 7→ ⊥}.

HONESTY BY TYPING 41

We then have:

f = g{u 7→ ⊥} by def. f

= (g0↑A | g1↑A){u 7→ ⊥} by def. g

= g0↑A {u 7→ ⊥} | g1↑A {u 7→ ⊥}
= g0{u 7→ ⊥}↑A′ | g1{u 7→ ⊥}↑A′ by ?? B.6b

= g0↑A′ | g1{u 7→ ⊥}↑A′ as shown before

= f ′ by def. f ′

The analogous case for systems (for 8.4b) is similar.

Proof of Lemma 9.5 (Typing and substitution). We start by proving item (9.5a).
We proceed by induction on the typing derivation of ` P : f . We have the following cases,
according to the last rule used in the derivation:

• [T-Nil], [T-Var]. Trivial, since the substitution is vacuous (both on P and on f).
• [T-Par]. We have:

` P 0 : f0 ` P 1 : f1 A = dom f0 ∪ dom f1

` P = P 0 | P 1 : λu . f0↑A (u) | f1↑A (u)
[T-Par]

Since dom f0 ⊆ dom f ⊇ dom f1 and f • σ is defined, then also f0 • σ and f1 • σ are
defined. Then, by applying the induction hypothesis on both premises:

` P 0σ : f0 • σ ` P 1σ : f1 • σ
Then, by rule [T-Par]:

` P 0σ : f0 • σ ` P 1σ : f1 • σ B = dom f0 • σ ∪ dom f1 • σ
` P σ = P 0σ | P 1σ : λu . (f0 • σ)↑B (u) | (f1 • σ)↑B (u) = g

[T-Par]

To conclude, we need to prove that g = f • σ, i.e.:

(f i↑A) • σ = (f i • σ)↑B (for i ∈ {0, 1})
We proceed by cases on (domσ ∩ dom f0, domσ ∩ dom f1). Since f0 • σ and f1 • σ are
defined, we have the following cases:
– (∅, ∅). We have that f i • σ = f i for i ∈ {0, 1}, hence B = A. We have that:

(f i↑A) • σ = f i↑A (domσ ∩ dom f i↑A = domσ ∩A = ∅)
= (f i • σ)↑A
= (f i • σ)↑B

– ({x}, ∅). By 9.4 we have B = (A \ {x}) ∪ {s}. For i = 0, we have:

(f0↑A) • σ = f0↑A {x 7→ ⊥}{s 7→ f0↑A (x)} (domσ ∩ dom f0↑A = {x})
= f0↑A {x 7→ ⊥}{s 7→ f0(x)} (x ∈ dom f0)

= (f0{s 7→ f0(x)})↑A {x 7→ ⊥} ((B.6a))

= (f0{s 7→ f0(x)}{x 7→ ⊥})↑A\{x} ((B.6b))

= (f0{s 7→ f0(x)}{x 7→ ⊥})↑(A\{x})∪{s} (s ∈ dom f0{s 7→ f0(x)} · · ·)
= (f0 • σ)↑B (B = (A \ {x}) ∪ {s})

42 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

For i = 1, we have:

(f1↑A) • σ = f1↑A {x 7→ ⊥}{s 7→ f1↑A (x)} (domσ ∩ dom f1↑A = {x})
= f1↑A {x 7→ ⊥}{s 7→ f1(∗)} (x 6∈ dom f1)

= f1↑A\{x} {s 7→ f1(∗)} (x 6∈ dom f1)

= f1↑(A\{x})∪{s} (s 6∈ dom f1)

= (f1 • σ)↑B (B = (A \ {x}) ∪ {s})
– (∅, {x}). Symmetrical to the previous case.
– ({x}, {x}). For i = 0, the proof is analogous to the corresponding subcase i = 0 in the

case ({x}, ∅). For i = 1, the proof is symmetric.
– ({x}, {y}) with x 6= y. This case does not apply, because otherwise f • σ would be

undefined.
• [T-Sum]. Similar to the previous case.
• [T-Del]. We have:

` P ′ : f ′ f ′(u) honest

` P = (u)P ′ : f ′{u 7→ ⊥} = f
[T-Del]

Since α-conversion does not change typing, we can assume that s 6= u. Now, let z =
domσ ∩ dom f . We proceed by cases on the possible values of z. Since f • σ is defined,
we only have the following three cases:
– z = ∅. By the induction hypothesis (with substitution σ 6=u), we have:

` P ′σ6=u : f ′ • σ6=u = f ′

Hence, the thesis follows by rule [T-Del].
– z = {u}. This case does not apply, because u 6∈ dom f .
– z = {x}, with x 6= u. By the induction hypothesis (with substitution σ6=u):

` P ′σ 6=u : f ′ • σ 6=u = f ′{x 7→ ⊥}{s 7→ f ′(x)}
Let g = f ′{x 7→ ⊥}{s 7→ f ′(x)}. Since f ′(u) is honest, then g(u) = f ′(u) is honest as
well. Then, by rule [T-Del]:

` P ′σ 6=u : g g(u) honest

` P σ = (u)P ′σ6=u : g{u 7→ ⊥}
[T-Del]

The thesis follows because:

g{u 7→ ⊥} = f ′{x 7→ ⊥}{s 7→ f ′(x)}{u 7→ ⊥} (by def. of g)

= f ′{u 7→ ⊥}{x 7→ ⊥}{s 7→ (f ′{u 7→ ⊥})(x)}
= f ′{u 7→ ⊥} • σ (by 9.4)

= f • σ (by def. of f)

• [T-Rec]. We have:

` P ′ : f
` P = (rec X(). P ′)() : λu. rec @X.f (u)

[T-Rec]

By the induction hypothesis we have ` P ′σ : f • σ. Then, by rule [T-Rec]:

` P ′σ : f • σ
` (rec X(). P ′σ)() : λu. rec @X.(f • σ)(u)

[T-Rec]

HONESTY BY TYPING 43

The thesis is obtained from (rec X(). P ′σ)() = (rec X(). P ′)()σ and

λu. rec @X.(f • σ)(u) = (λu. rec @X.f (u)) • σ
which follows by case analysis on the argument: x, s or something else.

We now prove item (9.5c) (which is needed in order to prove item (9.5b)). By induction on
the typing derivation of `A S B f , we have the following cases, according to the last rule
used in the typing derivation:

• [T-SAFree0], [T-SAFree1], [T-SFzS]. Trivial: the premise is not affected by σ.
• [T-SAFree2]. We have the following two cases:

– x ∈ domσ. Then, Sσ = {↓s C}B , and so the thesis follows by rule [T-SFsZ].
– x 6∈ domσ. Then, Sσ = S , and since f (x) = ⊥, then (f •σ)(x) = ⊥. Hence, the thesis

follows by rule [T-SAFree2].
• [T-SAFree3]. We have that:

s′[γ] A-free f (s′) = ⊥
`A S = s′[γ] B f

[T-SAFree3]

Since s 6∈ fnv(S) by hypothesis, then it must be s′ 6= s. The thesis follows because
(f • σ)(s′) = f (s′).
• [T-SFz1]. We have:

f ↑{x}(x) realizes C

`A S = {↓x C}A B f
[T-SFz1]

We have the following two cases:
– x ∈ domσ. Then, Sσ = {↓s C}A , and so the thesis follows by rule [T-SFsZ].
– x 6∈ domσ. Then, (f • σ)↑{x}(x) = f ↑{x}(x), which realizes C by the premise. Hence,

the thesis follows by rule [T-SFz1].
• [T-SFuse]:

f ↑{s′} (s′) realizes αA(γ)

`A S = s′[γ] B f
[T-SFuse]

Since s 6∈ fnv(S) by hypothesis, then it must be s′ 6= s. The thesis follows because
(f • σ)(s′) = f (s′), which preserves the truth of the premise.
• [T-SDel1]. We have:

`A S0 B f {u 7→ ⊥}
`A (u)S0 B f

[T-SDel1]

W.l.o.g. we can assume u 6= s: otherwise we can α-convert the typing derivation and
obtain the same typing. Now, let z = domσ ∩ dom f . We proceed by cases on the
possible values of z. Since f • σ is defined, we only have the following three cases:
– z = ∅. By the induction hypothesis (with substitution σ), we have:

`A S0σ B f {u 7→ ⊥} • σ
By 9.4 we have that:

f {u 7→ ⊥} • σ = f {u 7→ ⊥} = (f • σ){u 7→ ⊥}
Hence, the thesis follows by rule [T-SDel1].

44 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

– z = {u}. Since s 6∈ fnv(S0), by applying B.2 we obtain:

`A S0 B f {u 7→ ⊥}{s 7→ f (u)}
with a typing derivation of the same depth as the original one. By the induction
hypothesis (with substitution σ6=u), we have:

`A S0σ 6=u B (f {u 7→ ⊥}{s 7→ f (u)}) • σ6=u
By 9.4 we have that:

(f {u 7→ ⊥}{s 7→ f (u)}) • σ 6=u = f {u 7→ ⊥}{s 7→ f (u)}
= f {s 7→ f (u)}{u 7→ ⊥}

Then, by rule [T-SDel1]:

`A S0σ 6=u B f {s 7→ f (u)}{u 7→ ⊥}
`A Sσ = (u)S0σ 6=u B f {s 7→ f (u)}

[T-SDel1]

Since u 6∈ fnv(Sσ), by applying B.2 again we conclude that:

`A Sσ B f {s 7→ f (u)}{u 7→ ⊥} = f • σ
– z = {x}, with x 6= u. By applying the induction hypothesis on the premise, we have:
`A S0σ B f {u 7→ ⊥} • σ. We have that:

f {u 7→ ⊥} • σ = f {u 7→ ⊥}{x 7→ ⊥}{s 7→ f {u 7→ ⊥}(x)}
= f {x 7→ ⊥}{s 7→ f (x)}{u 7→ ⊥}
= (f • σ){u 7→ ⊥}

Then, by rule [T-SDel1] we conclude:

`A S0σ B (f • σ){u 7→ ⊥}
`A Sσ = (u)S0σ B f • σ

[T-SDel1]

• [T-SPar1]. Straightforward, by applying the induction hypothesis on both premises.

To prove item (9.5b), we proceed by induction on the typing derivation of `A S : f . We
have the following cases, according to the last rule used in the typing derivation:

• [T-SA]. We have:
` P : f

`A S = A[P] : f
[T-SA]

By applying 9.5 on the rule premise, we obtain ` P σ : f • σ. The thesis follows by
rule [T-SA].
• [T-SDel2]. We have:

`A S0 : f0 f0↑{u}(u) honest

`A S = (u)S0 : f0{u 7→ ⊥} = f
[T-SDel2]

W.l.o.g. we can assume u 6= s: otherwise we can α-convert the typing derivation and
obtain the same typing. Since u 6= s, then s 6∈ fnv(S0), hence by 8.2 s 6∈ dom f0. Since
f • σ is defined and dom f0 ∩ domσ 6=u ⊆ dom f ∩ domσ, then f0 • σ6=u is defined. Then,
by the induction hypothesis we obtain ` S0 σ 6=u : f0•σ6=u. To prove that f0↑{u}(u) honest
implies (f0 • σ 6=u)↑{u}(u) honest, we consider the following two cases:
– u ∈ dom f0. Then:

(f0 • σ 6=u)↑{u}(u) = f0↑{u}(u) = f0(u) honest

HONESTY BY TYPING 45

– u 6∈ dom f0. Then:

(f0 • σ 6=u)↑{u}(u) = f0↑{u}(u) = f0(∗) honest

Then we can construct the following typing derivation:

`A S0 σ 6=u : f0 • σ6=u (f0 • σ6=u)↑{u}(u) honest

`A S σ 6=u = (u)(S0 σ 6=u) : (f0 • σ6=u){u 7→ ⊥}
[T-SDel2]

Now, let z = domσ∩dom f . We proceed by cases on the possible values of z. Since f •σ
is defined, we only have the following three cases:
– z = ∅. We have that:

(f0 • σ 6=u){u 7→ ⊥} = f0{u 7→ ⊥} = f = f • σ
– z = {u}. This case does not apply, because u 6∈ dom f .
– z = {x}, with x 6= u. We have that:

(f0 • σ6=u){u 7→ ⊥} = f0{x 7→ ⊥}{s 7→ f0(x)}{u 7→ ⊥} (domσ 6=u ∩ dom f0 = {x})
= f0{x 7→ ⊥}{s 7→ f (x)}{u 7→ ⊥} (f0(x) = f (x))

= f {x 7→ ⊥}{s 7→ f (x)} (f = f0{u 7→ ⊥})
= f • σ (domσ ∩ dom f = {x})

• [T-SPar2]. We have:
`A S0 : f `A S1 B f

`A S = S0 | S1 : f
[T-SPar2]

By the induction hypothesis of item (9.5b), we have `A S0σ : f • σ. By item (9.5c), we
have `A S1σ B f • σ. Then, by applying rule [T-SPar2]:

`A S0σ : f • σ `A S1σ B f • σ
`A Sσ = S0σ | S1σ : f • σ

[T-SPar2]

C. Proof of 9.6 (Subject Reduction)

Assume that S
B : π−−−→ S ′, for some B. We proceed by induction on the proof of the reduction

from S to S ′. We have the following cases, according to the last rule used in the reduction.

Rule [Tau]. We have:

S = B[τ .P + P ′ |Q]
B : τ−−−→ B[P |Q] = S ′

• Item (9.6a). Let P 0 = τ.P +P ′ |Q. By hypothesis we have that B = A, and `A S : f . The
only typing rule applicable for S is [T-SA], which requires `A P 0 : f . Let A = dom f =
fnv(P 0) ∪ {∗}, as implied by 8.2. We have:

`A P 0 : f = λu . [τ]u . f
P ↑A (u) + f P

′↑A (u) | fQ↑A (u)

where f P , f P
′

and fQ are, respectively, the types of P , P ′ and Q. Let A′ = fnv(P) ∪
fnv(Q), and let:

f ′ = λu . f P ↑A′ (u) | fQ↑A′ (u)

We now prove that f
τ−−→] f

′, according to 9.1. There are the following two cases:

46 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

– v ∈ dom f ′. We must show that f (v)
τ−−→] f

′(v). We have that:

τ .f P ↑A (v)
τ−−→] f

P ↑A (v)
[C-Pref]

τ .f P ↑A (v) + f P
′
↑A (v)

τ−−→] f
P ↑A (v)

[C-SumL]

τ .f P ↑A (v) + f P
′
↑A (v) | fQ↑A (v)

τ−−→] f
P ↑A (v) | fQ↑A (v)

[C-ParL]

and since dom f ′ ⊆ A, then f ′(v) = f P ↑A (v) | fQ↑A (v). Hence, we conclude that

f (v)
τ−−→] f

′(v).

– v ∈ dom f \ dom f ′. We must show that f (v)
τ−−→] f

′(∗). We have that v 6∈ fnv(P) ∪
fnv(Q), thus f P ↑A (v) | fQ↑A (v) = f P (∗) | fQ(∗) = f ′(∗). The thesis follows by using
the same derivation of the previous case.

We conclude the proof by showing that `A S ′ : f ′:
` P : f P ` Q : fQ

` P |Q : λu . f P ↑A′ (u) | fQ↑A′ (u) = f ′
[T-Par]

`A S ′ : f ′
[T-SA]

• Item (9.6b). The thesis holds vacuously, since, for any f , it is not possible to have a
typing `A B[· · ·] : f when B 6= A (see 8.3).
• Item (9.6c). The typing `A S B f must have been obtained by rule [T-SAFree1], whose

premise requires that fv(τ.P +P ′ |Q). With the same rule we can derive `A S ′B f , since
fv(P |Q) ⊆ fv(τ .P + P ′ |Q).

Rule [Tell]. We have:

S = B[tell ↓w C .P + P ′ |Q]
B : tell ↓wC−−−−−−−−→ B[P |Q] | {↓w C}B = S ′

• Item (9.6a). Let P 0 = tell ↓w C .P + P ′ | Q. By hypothesis we have that B = A, and
`A S : f . The only typing rule applicable for S is [T-SA], which requires `A P 0 : f . Let
A = dom f = fnv(P 0) ∪ {∗}, as implied by 8.2. We have:

`A P 0 : f = λu . [tell ↓w C]u . f
P ↑A (u) + f P

′↑A (u) | fQ↑A (u)

where f P , f P
′

and fQ are, respectively, the types of P , P ′ and Q. Also, by 7.1 we have
that [tell ↓w C]u = if w = u then 〈C 〉 else τ . Let A′ = fnv(P) ∪ fnv(Q), and let:

f ′ = λu . f P ↑A′ (u) | fQ↑A′ (u)

We now prove that f
tell ↓wC−−−−−−−→] f

′, according to 9.1. There are the following two
cases:

– v ∈ dom f ′. We must show that f (v)
[tell ↓wC]v−−−−−−−−→] f

′(v). We have that:

[tell ↓w C]v.f
P ↑A (v)

[tell ↓wC]v−−−−−−−−−→] f
P ↑A (v)

[C-Pref]

[tell ↓w C]v.f
P ↑A (v) + f P

′
↑A (v)

[tell ↓wC]v−−−−−−−−−→] f
P ↑A (v)

[C-SumL]

[tell ↓w C]v.f
P ↑A (v) + f P

′
↑A (v) | fQ↑A (v)

[tell ↓wC]v−−−−−−−−−→] f
P ↑A (v) | fQ↑A (v)

[C-ParL]

and since dom f ′ ⊆ A, then f ′(v) = f P ↑A (v) | fQ↑A (v). Hence, we conclude that

f (v)
[tell ↓wC]v−−−−−−−−→] f

′(v).

HONESTY BY TYPING 47

– v ∈ dom f \ dom f ′. We must show that f (v)
[tell ↓wC]v−−−−−−−−→] f

′(∗). We have that

v 6∈ fnv(P) ∪ fnv(Q), thus f P ↑A (v) | fQ↑A (v) = f P (∗) | fQ(∗) = f ′(∗). The thesis
follows by using the same derivation of the previous case.

We conclude the proof by showing that `A S ′ : f ′. We start by proving that f ′↑{w}(w)
realizes C . To do that, we use the assumption of 9.6 which says that f is honest.
By 6.1 and 5.4, since w ∈ fnv(P 0) = dom f , this implies that (∅, f (w)) is honest. Let
P = f P ↑A (w) | fQ↑A (w). We have that:

(∅, f (w)) −→] ({C},P) −→] (C,P)

By 6.1 we know that P realizes C . We are left with proving that f ′↑{w}(w) = P. For
this we consider two cases, depending on whether w ∈ A′.

If w ∈ A′ = dom f ′, then we have f ′↑{w} (w) = f ′(w) = f P ↑A′ (w) | fQ↑A′ (w). From

this, and A′ ⊆ A, we obtain f P ↑A′ (w) | fQ↑A′ (w) = f P ↑A (w) | fQ↑A (w) = P, hence
f ′↑{w}(w) realizes C .

Otherwise, if w 6∈ A′ = dom f ′ = fnv(P |Q). Here we have

f ′↑{w} (w) = f ′(∗) = f P ↑A′ (∗) | fQ↑A′ (∗)
= f P ↑A (∗) | fQ↑A (∗) = f P ↑A (w) | fQ↑A (w) = P

Therefore, f ′↑{w}(w) realizes C , and we have the following typing derivation:

` P : f P ` Q : fQ

` P |Q : λu . f P ↑A′ (u) | fQ↑A′ (u) = f ′
[T-Par]

`A A[P |Q] : f ′
[T-SA]

f ′↑{w}(w) realizes C

`A {↓w C}A B f ′
[T-SFz1]

`A A[P |Q] | {↓w C}A : f ′
[T-SPar2]

• Item (9.6b). The thesis holds vacuously, since, for any f , it is not possible to have a
typing `A B[· · ·] : f when B 6= A (see 8.3).
• Item (9.6c). Let P 0 = tell ↓w C .P + P ′ | Q. The typing `A S B f must have been

obtained by rule [T-SAFree1] as follows:

B 6= A fv(P 0) ∩ dom f = ∅
`A S = B[P 0] B f

[T-SAFree1]

Since fv(P | Q) ⊆ fv(P 0), then fv(P | Q) ∩ dom f = ∅. Further, since w ∈ fv(P 0) and
fv(P 0) ∩ dom f = ∅, then f (w) = ⊥. Then, we can construct the following typing
derivation for S ′:

B 6= A fv(P |Q) ∩ dom f = ∅
`A B[P |Q] B f

[T-SAFree1]
B 6= A f (w) = ⊥
`A {↓w C}B B f

[T-SAFree2]

`A S ′ B f
[T-SPar1]

Rule [Fuse]. We have B = K 6= A, and:

C ./ D γ = C : C [] | D : D [] σ = {s/x,y} s 6∈ fnv(S0)

S = (x, y)(S0 | {↓x C}C | {↓y D}D)
K : fuse−−−−−→ (s)(S0σ | s[γ]) = S ′

[Fuse]

where C 6= D. We prove the following items:

• Item (9.6a) is trivial, because B = K 6= A.

48 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

• Item (9.6b). The redex S can only be typed as follows (up-to associativity):

`A S0 : f0

D1 D2

`A {↓x C}C | {↓y D}D B f0
[T-SPar1]

`A S0 | {↓x C}C | {↓y D}D : f0
[T-SPar2] f0↑{y}(y)

honest

`A (y)(S0 | {↓x C}C | {↓y D}D) : f0{y 7→ ⊥}
[T-SDel2] f0{y 7→ ⊥}↑{x}(x)

honest

`A S : f0{y 7→ ⊥}{x 7→ ⊥} = f
[T-SDel2]

where the typing derivations D1 and D2 for the latent contracts depend on whether A ∈
{C,D} or not. By 8.2 we have dom f0 ⊆ fnv(S0) ∪ {∗}, so from the premise s 6∈ fnv(S0)
it follows that s 6∈ dom f0. Since `A S0 : f0, by 9.5 we have that `A S0σ : f0 • σ. There
are the following two cases:
– A 6∈ {C,D}. Then:

D1 =
f0(x) = ⊥

`A {↓x C}C B f0

[T-SAFree2]

D2 =
f0(y) = ⊥

`A {↓y D}D B f0

[T-SAFree2]

Since x, y 6∈ dom f0, by 9.4 we have that f0 • σ = f0. Since s 6∈ dom f0, we have that
(f0 • σ)(s) = f0(s) = ⊥. Then,

(f0 • σ)↑{s} (s) = f0(∗) = f (∗)
which is honest by the assumption that f is honest. Then, we can construct the
following typing derivation:

`A S0σ : f0 • σ
s[γ] A-free (f0 • σ)(s) = ⊥

`A s[γ] B f0 • σ
[T-SAFree3]

`A S0σ | s[γ] : f0 • σ
[T-SPar2] (f0 • σ)↑{s}(s)

honest

`A S ′ : (f0 • σ){s 7→ ⊥}
[T-SDel2]

Since x, y, s 6∈ dom f0, we conclude that:

(f0 • σ){s 7→ ⊥} = f0{s 7→ ⊥} = f0 = f0{y 7→ ⊥}{x 7→ ⊥} = f

– A = D. Then, A 6= C, and:

D1 =
f0(x) = ⊥

`A {↓x C}C B f0

[T-SAFree2]

D2 =
f0↑{y}(y) realizes D

`A {↓y D}D B f0

[T-SFz1]

Therefore, x 6∈ dom f0, and we have two cases, according to whether y ∈ dom f0 or
not.
If y 6∈ dom f0, then f0 • σ = f0. Since f0↑{y}(y) = f0(∗) realizes D, and since
D = αA(γ) by 5.1, we have that f0↑{s}(s) = f0(∗) realizes αA(γ), and it is honest

HONESTY BY TYPING 49

since f is honest. Then, we can construct the following typing derivation:

`A S0σ : f0

f0↑{s}(s) realizes αA(γ)

`A s[γ] B f0
[T-SFuse]

`A S0σ | s[γ] : f0
[T-SPar2]

f0↑{s}(s) honest

`A S ′ : f0{s 7→ ⊥}
[T-SDel2]

Since x, y, s 6∈ dom f0, we conclude that:

f0{s 7→ ⊥} = f0{y 7→ ⊥}{x 7→ ⊥} = f

Otherwise, if y ∈ dom f0, the premise of [T-SFz1] implies that f0(y) realizes D. By 9.4
we have that

f0 • σ = f0{y 7→ ⊥}{s 7→ f0(y)}
from which we can compute:

(f0 • σ)↑{s} (s) = (f0 • σ)(s) = f0(y)

Since f0(y) realizes D, and since D = αA(γ) by 5.1, we have that (f0 • σ)↑{s}(s)
realizes αA(γ). Furthermore, since y ∈ dom f0, then:

(f0 • σ)↑{s}(s) = f0(y) = f0↑{y}(y)

which is honest by the premise of [T-SDel2] in the typing derivation of S . Then, we can
construct the following typing derivation:

`A S0σ : f0 • σ

(f0 • σ)↑{s}(s)
realizes αA(γ)

`A s[γ] B f0 • σ
[T-SFuse]

`A S0σ | s[γ] : f0 • σ
[T-SPar2] (f0 • σ)↑{s}(s)

honest

`A S ′ : (f0 • σ){s 7→ ⊥}
[T-SDel2]

Since x, s 6∈ dom f0, we conclude that:

(f0 • σ){s 7→ ⊥} = f0{y 7→ ⊥}{s 7→ ⊥} = f0{y 7→ ⊥}{x 7→ ⊥} = f

• Item (9.6c) We have the following typing derivation for S :

`A S0 B f0

D1 D2

`A {↓x C}C | {↓y D}D B f0

[T-SPar1]

`A S0 | {↓x C}C | {↓y D}D B f {y 7→ ⊥}{x 7→ ⊥} = f0

[T-SPar1]

`A (y)(S0 | {↓x C}C | {↓y D}D) B f {x 7→ ⊥}
[T-SDel1]

`A S B f
[T-SDel1]

where the typing derivations D1 and D2 for the latent contracts depend on whether
A ∈ {C,D} or not. There are the following two cases:
– A 6∈ {C,D}. Then:

D1 =
f0(x) = ⊥

`A {↓x C}C B f0

[T-SAFree2]

D2 =
f0(y) = ⊥

`A {↓y D}D B f0

[T-SAFree2]

50 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

Since x, y 6∈ dom f0, by 9.4 we have that: f0•σ = f0. Since `A S0Bf0 and s 6∈ fnv(S0),
then by B.2 it follows that:

`A S0 B f0{s 7→ ⊥}
and so by 9.5, and since x, y 6∈ dom f0 we have that:

`A S0σ B (f0{s 7→ ⊥}) • σ = f0{s 7→ ⊥}
Therefore, we can construct the following typing derivation for S ′:

`A S0σ B f0{s 7→ ⊥}
s[γ] A-free f0{s 7→ ⊥}(s) = ⊥

`A s[γ] B f0{s 7→ ⊥}
[T-SAFree3]

`A S0σ | s[γ] B f0{s 7→ ⊥}
[T-SPar1]

`A S ′ B f0

[T-SDel1]

Since S ′ = (s)(S0σ | s[γ]) and domσ = {x, y}, then x, y 6∈ fnv(S ′). Then, from the
typing `A S ′ B f0 by B.2 we obtain the typing:

`A S ′ B f0{y 7→ f (y)}{x 7→ f (x)} = f

– A = D. Then, A 6= C, and:

D1 =
f0(x) = ⊥

`A {↓x C}C B f0

[T-SAFree2]

D2 =
f0↑{y}(y) realizes D

`A {↓y D}D B f0

[T-SFz1]

By the typing derivation of S , we have that x, y 6∈ dom f0, hence by 9.4 we have that
f0 • σ = f0. Since `A S0 B f0 and s 6∈ fnv(S0), then by B.2 it follows that:

`A S0 B f0{s 7→ ⊥}
and so by 9.5, using the fact that x, y 6∈ dom f0, we have that:

`A S0σ B (f0{s 7→ ⊥}) • σ = f0{s 7→ ⊥}
Since y 6∈ dom f0, the premise of [T-SFz1] implies that f0(∗) realizes D. Then, also
(f0{s 7→ ⊥})↑{s}(s) = f0(∗) realizesD. By 5.1 we haveD = αA(γ), so (f0{s 7→ ⊥})↑{s}(s)
realizes αA(γ). Therefore, we can construct the following typing derivation for S ′:

`A S0σ B f0{s 7→ ⊥}
(f0{s 7→ ⊥})↑{s}(s) realizes αA(γ)

`A s[γ] B f0{s 7→ ⊥}
[T-SFuse]

`A S0σ | s[γ] B f0{s 7→ ⊥}
[T-SPar1]

`A S ′ B f0

[T-SDel1]

Since S ′ = (s)(S0σ | s[γ]) and domσ = {x, y}, then x, y 6∈ fnv(S ′). Then, from the
typing `A S ′ B f0 by B.2 we obtain the typing:

`A S ′ B f0{y 7→ f (y)}{x 7→ f (x)} = f

HONESTY BY TYPING 51

Rule [Do]. We have:

γ
B:a−−→→γ ′

S = B[dos a.P + P ′ |Q] | s[γ]
B : dos a−−−−−→ B[P |Q] | s[γ ′] = S ′

[Do]

• Item (9.6a). We have B = A, and the typing derivation for S must be of the following
form, where γ = A : C [βA] | C : D [βC]:

...
` dos a.P + P ′ |Q : f

[T-Par]

`A A[dos a.P + P ′ |Q] : f
[T-SA]

f ↑{s}(s) realizes αA(γ)

`A s[γ] B f
[T-SFuse]

`A S : f
[T-SPar2]

Let A = fnv(S) ∪ {∗} = dom f , as implied by 8.2. Hence:

f = λu . [dos a]u . f
P ↑A (u) + f P

′↑A (u) | fQ↑A (u)

where f P , f P
′

and fQ are, respectively, the types of P , P ′ and Q. Let A′ = fnv(P) ∪
fnv(Q). Hence, if we choose:

f ′ = λu . f P ↑A′ (u) | fQ↑A′ (u)

we have a typing judgement ` P |Q : f ′. Since A = dom f and s ∈ fnv(S), then s ∈ dom f .
Hence, f (s) realizes αA(γ). By using the similar arguments to those used in case [Tau],

we can deduce that f
dos a−−−−→] f

′. Then,

f ↑{s} (s) = f (s)
[dos a]s−−−−−−→] f

′↑{s} (s)

Note that [dos a]s = a. Since γ
A:a−−→→γ ′ then by 5.2 it follows that αA(γ)

a−→→] αA(γ ′).
Then, by rule [A-Do] in Figure 5 and by 6.1 we deduce that f ′↑{s} (s) realizes αA(γ ′).
Thus, we have the following typing derivation:

...
` P |Q : f ′

[T-Par]

`A A[P |Q] : f ′
[T-SA]

f ′↑{s}(s) realizes αA(γ ′)

`A s[γ ′] B f ′
[T-SFuse]

`A S ′ : f ′
[T-SPar2]

• Item (9.6b) is vacuous, because S is not typeable with “: ”.
• Item (9.6c). Let P 0 = dos a .P + P ′ | Q. There are two possible typing derivations for
`A S B f , according to whether A occurs in γ or not.

If A does not occur in γ , then we have the following typing derivation:

B 6= A fv(P 0) ∩ dom f = ∅
`A B[P 0] B f

[T-SAFree1]
s[γ] A-free f (s) = ⊥

`A s[γ] B f
[T-SAFree3]

`A B[P 0] | s[γ] B f
[T-SPar1]

The thesis follows by a similar typing derivation, where rule [T-SAFree1] can be used
because γ ′ is still A-free and fv(P |Q) ⊆ fv(P 0).

52 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

Otherwise, if A occurs in γ , then we have the following typing derivation:

B 6= A fv(P 0) ∩ dom f = ∅
`A B[P 0] B f

[T-SAFree1]
f ↑{s} (s) realizes αA(γ)

`A s[γ] B f
[T-SFuse]

`A B[P 0] | s[γ] B f
[T-SPar1]

Since γ
B:a−−→→γ ′ then by 5.2 it follows that αA(γ)

ctx:a−−−→→] αA(γ ′). Then, by rule [A-Ctx]

in Figure 5 and by 6.1 we deduce that f ↑{s} (s) realizes αA(γ ′). Thus, we have the
following typing derivation:

B 6= A fv(P |Q) ∩ dom f = ∅
`A B[P |Q] B f

[T-SAFree1]
f ↑{s}(s) realizes αA(γ ′)

`A s[γ ′] B f
[T-SFuse]

`A S ′ B f
[T-SPar1]

Rule [Del]. We have π = delu(π′), and:

S0
B : π′−−−→ S ′0

S = (u)S0
B : delu(π′)−−−−−−−→ (u)S ′0 = S ′

[Del]

• Item (9.6a). The only possible typing derivation for S is the following:

`A S0 : f0 f0↑{u}(u) honest

`A S = (u)S0 : f0{u 7→ ⊥} = f
[T-SDel2]

We have that f0 is honest. Indeed, for all v ∈ dom f0 we have that: if v 6= u, then
f0(v) = f (v), which is honest by the hypothesis that f is honest; instead, if v = u
then f0↑{u} (u) = f0(u), which is honest by the rightmost premise of [T-SDel2]. Then, by

the induction hypothesis we have that there exists some f ′0 such that f0
π′−−→] f

′
0 and

`A S ′0 : f ′0. Since f0 is honest, then by 6.4 also its reduct f ′0 is honest. By B.4, also
f ′0↑{u} is honest. Then, we have the following typing derivation:

`A S ′0 : f ′0 f ′0↑{u}(u) honest

`A S ′ = (u)S ′0 : f ′0{u 7→ ⊥}
[T-SDel2]

Let f ′ = f ′0{u 7→ ⊥}. Since f0
π′−−→] f

′
0, then by 9.1 we have that dom f ′0 ⊆ dom f0,

and:

∀v ∈ dom f ′0 : f0(v)
[π′]v−−−−→] f

′
0(v) (1)

∀v ∈ dom f0 \ dom f ′0 : f0(v)
[π′]v−−−−→] f

′
0(∗) (2)

We have that:

dom f ′ = dom f ′0 \ {u} ⊆ dom f0 \ {u} = dom f

To prove that f
π−−→] f

′, we need to consider the following two cases.

– v ∈ dom f ′. Then, v ∈ dom f ′0, so from (1) we have f0(v)
[π′]v−−−−→] f

′
0(v). Since u 6= v,

then f (v)
[π′]v−−−−→] f

′(v). There are three further subcases:
∗ π′ = dou a. In this case we have [π′]v = τ ? = delu(π′) = π = [π]v.
∗ π′ = tell ↓u C . In this case we have [π′]v = τ = delu(π′) = π = [π]v.

HONESTY BY TYPING 53

∗ otherwise, π′ = delu(π′) = π, hence [π′]v = [π]v.

– v ∈ dom f \dom f ′, then v ∈ dom f0 \dom f ′0, so from (2) we have f0(v)
[π′]v−−−−→] f

′
0(∗).

Since u 6= v, we conclude that f (v)
[π′]v−−−−→] f

′(∗). The thesis follows because [π′]v =
[π]v, as in the previous case.

• Item (9.6b). The only possible typing derivation for S is the following:

`A S0 : f0 f0↑{u}(u) honest

`A S = (u)S0 : f0{u 7→ ⊥} = f
[T-SDel2]

We have that f0 is honest. Indeed, for all v ∈ dom f0 we have that: if v 6= u, then
f0(v) = f (v), which is honest by the hypothesis that f is honest; instead, if v = u then
f0(v) = f0(u) = f0↑{u}(u), which is honest by the rightmost premise of [T-SDel2]. Hence,

by the induction hypothesis we have that `A S ′0 : f0. Since f0 is honest, then by B.4 it
follows that f0↑{u} is honest. Then, we have the following typing derivation:

`A S ′0 : f0 f0↑{u}(u) honest

`A S ′ = (u)S ′0 : f0{u 7→ ⊥}
[T-SDel2]

The thesis follows by choosing f ′0{u 7→ ⊥} = f .
• Item (9.6c). The only possible typing derivation for S is the following:

`A S0 B f {u 7→ ⊥}
`A S = (u)S0 B f

[T-SDel1]

Since f {u 7→ ⊥} is honest and `A S0 B f {u 7→ ⊥}, then by the induction hypothesis it
follows that `A S ′0 B f {u 7→ ⊥}. Then, we can reconstruct the following derivation:

`A S ′0 B f {u 7→ ⊥}
`A S ′ = (u)S ′0 B f

[T-SDel1]

Rule [Par]. We have:

S0
B : π−−−→ S ′0

S = S0 | S1
B : π−−−→ S ′0 | S1 = S ′

[Par]

• Item (9.6a). We have B = A, and since S0 reduces through A, then a process of A cannot
appear in S1. Hence, the only typing derivation for S is the following:

`A S0 : f `A S1 B f

`A S : f
[T-SPar2]

By applying the induction hypothesis on the leftmost premise of [T-SPar2], we have
some f ′ such that:

f
π−−→] f

′ and `A S ′0 : f ′

Note that if π = dos a, then by rule [Do] it must be s[γ] ∈ S0 (and so, s[γ] 6∈ S1). Hence,
by B.5 we infer that `A S1 B f ′. Then, we can construct the following typing derivation
for S ′:

`A S ′0 : f ′ `A S1 B f ′

`A S ′ : f ′
[T-SPar2]

54 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

• Item (9.6b). We have B 6= A. There are two possible typing derivations for S :

`A S0 : f `A S1 B f

`A S : f
[T-SPar2]

`A S0 B f `A S1 : f

`A S : f
[T-SPar2]

If the leftmost typing derivation has been used, by applying the induction hypothesis
on its leftmost premise we obtain `A S ′0 : f . So, we can construct the following typing
derivation for S ′:

`A S ′0 : f `A S1 B f

`A S ′ : f
[T-SPar2]

If the rightmost typing derivation has been used, by applying the induction hypothesis
of item (9.6c) on its leftmost premise we obtain `A S ′0 B f . So, we can construct the
following typing derivation for S ′:

`A S ′0 B f `A S1 : f

`A S ′ : f
[T-SPar2]

• Item (9.6c). We have the following typing derivation for S :

`A S0 B f `A S1 B f

`A S B f
[T-SPar1]

By applying the induction hypothesis on the leftmost premise, we have that `A S ′0 B f .
So, we can construct the following typing derivation for S ′:

`A S ′0 B f `A S1 B f

`A S ′ B f
[T-SPar1]

Rule [Rec]. We have:

B[P {rec X(y). P/X}{u/y} |Q] | S0
B : π−−−→ S ′

S = B[(rec X(y). P)(u) |Q] | S0
B : π−−−→ S ′

[Rec]

Let P 0 = (rec X(y). P)(u) |Q.

• Item (9.6a). We have B = A, y = u = ∅. The only typing derivation for S is the following,
where f = λu. fX↑A (u) | fQ↑A (u), fX = λu. rec @X.f P (u), and A = dom fX ∪
dom fQ = dom f P ∪ dom fQ :

` P : f P

` (rec X(). P)() : fX
[T-Rec]

` Q : fQ

` (rec X(). P)() |Q : f
[T-Par]

`A A[(rec X(). P)() |Q] : f
[T-SA]

`A S0 B f

`A S : f
[T-SPar2]

Since ` P : f P and ` (rec X(). P)() : fX , then by B.3 we have:

` P {(rec X(). P)()/X} : λu . f P ↑B (u){fX ↑B (u)/@X} = g

where B = dom f P ∪ dom fX = dom f P . Let:

g′ = λu. g↑C (u) | fQ↑C (u)

HONESTY BY TYPING 55

where C = dom g ∪dom fQ = dom f P ∪dom fQ = A. Note that g′ can be obtained from
f , by unfolding the recursion therein: however, the unfolding does not affect the typing
`A S0 B f , which can then be re-typed as `A S0 B g′. Therefore, we have the following
typing for the premise of rule [Rec]:

` P {rec X(). P/X} : g ` Q : fQ

` P {rec X(). P/X} |Q : g′
[T-Par]

`A A[P {rec X(). P/X} |Q] : g′
[T-SA]

`A S0 B g′

`A A[P {rec X(). P/X} |Q] | S0 : g′
[T-SPar2]

Now, since f is honest, then also its unfolding g′ is honest as well. Therefore, by applying
the induction hypothesis on the premise of rule [Rec], we obtain some f ′ such that:

g′
π−−→] f

′ `A S ′ : f ′

To conclude, note that f
π−−→] f

′ follows by rule [C-Rec] in Figure 5.
• Item (9.6b). We have B 6= A, so the only typing derivation for S is the following:

A 6= B fv(P 0) ∩ dom f = ∅
`A B[P 0] B f

[T-SAFree1]
`A S0 : f

`A S : f
[T-SPar2]

Note that the typing with rule [T-SAFree1] is not affected by the unfolding of P 0, because
the unfolding can only decrease the set of free variables. Hence, we can use the same rule
to obtain `A B[P ′] B f , where P ′ is the process within B[· · ·] in the premise of rule [Rec].
By applying [T-SPar2], we then type as f the whole premise of rule [Rec]. Then, by the
induction hypothesis of item (9.6b), we obtain the thesis.
• Item (9.6c). The only typing derivation for S is the following:

A 6= B fv(P 0) ∩ dom f = ∅
`A B[P 0] B f

[T-SAFree1]
`A S0 B f

`A S B f
[T-SPar1]

Note that the typing with rule [T-SAFree1] is not affected by the unfolding of P 0, because
the unfolding can only decrease the set of free variables. Hence, we can use the same rule
to obtain `A B[P ′] B f , where P ′ is the process within B[· · ·] in the premise of rule [Rec].
By applying [T-SPar1], we then type as f the premise of rule [Rec]. By the induction
hypothesis of item (9.6c), we conclude.

D. Proof of 9.7 (Progress)

Lemma D.1 (Process progress). If ` P : f | g with f | g honest, f
π−−→] f

′, and u ∈
dom f = dom g, then:

π ∈ {τ , tell ↓u C} =⇒ ∃x, P ′, S ′ . A[P]
A : π−−−→ (x)(A[P ′] | S ′)
∧ `A (x)(A[P ′] | S ′) : f ′ | g

(D.1a)

π = dou a =⇒ a ∈ A[P]↓Au (D.1b)

56 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

Proof. We prove item (D.1a) by induction on the proof of f
π−−→] f

′, by using the syntactic
notation for process types introduced in B.7, and by universally quantifying P and g in the
inductive statement. To reduce the technical overhead, we will omit the domain expansions
f ↑A throughout the proof. We have the following cases:

• [C-Pref]. Then, f = α.f ′, and α = [π]. Since ` P : f |g, then P has the form (x)(π′.P 0 |Q),
and delx(π′) = π. We proceed by cases on the form of π′ . Since (D.1a) assumes that π
is either a τ or a tell , we only have the following two cases:
– π′ = τ . Let S ′ = 0. Then:

A[(x)(π′ .P 0 |Q)]
A : τ−−−→ (x)(A[P 0 |Q] | S ′) = A[(x)(P 0 |Q)]

Let P ′ = P 0 |Q. To prove that `A (x)(A[P ′] |S ′) : f ′ |g, we first deconstruct the typing
` P : f | g as follows:

` P 0 : f ′0
` π′ .P 0 : f0 = λu.[τ]u.f

′
0(u) = τ .f ′0

[T-Sum]
` Q : g0

` π′ .P 0 |Q : f0 | g0
[T-Par]

(f0 | g0)(x) honest

` (x)(π′ .P 0 |Q) : f | g = (f0 | g0){x 7→ ⊥}
[T-Del∗]

By Lemma 6.4, we have that (f ′0 |g0)(x) is honest. We can then reconstruct the typing
for (x)(A[P ′] | S ′):

` P ′ : f ′0 | g0 (f ′0 | g0)(x) honest

` (x)P ′ : (f ′0 | g0){x 7→ ⊥}
[T-Del∗]

`A A[(x)P ′] : (f ′0 | g0){x 7→ ⊥}
[T-SA]

Since f0
τ−−→] f

′
0 and f | g = f0{x 7→ ⊥} | g0{x 7→ ⊥}, then we have the thesis:

f ′ | g = f ′0{x 7→ ⊥} | g0{x 7→ ⊥}
– π′ = tell ↓w C . Let S ′ = {↓w C}A . Then:

A[(x)(π′ .P 0 |Q)]
A : π−−−→ (x)(A[P 0 |Q] | S ′)

Let P ′ = P 0 |Q. To prove that `A (x)(A[P ′] |S ′) : f ′ |g, we first deconstruct the typing
` P : f | g as in the previous case:

` P 0 : f ′0
` π′ .P 0 : f0 = λu.[π′]u.f

′
0(u) = [π′].f ′0

[T-Sum]
` Q : g0

` π′ .P 0 |Q : f0 | g0
[T-Par]

(f0 | g0)(x) honest

` (x)(π′ .P 0 |Q) : f | g = (f0 | g0){x 7→ ⊥}
[T-Del∗]

By Lemma 6.4, we have that (f ′0 | g0)(x) is honest. We now prove that (f ′0 | g0)↑w (w)
realizes C . There are two cases, according to whether w ∈ x or not. If w ∈ x, then since

(f0 | g0)(x) honest, so in particular (f0 | g0)(w) is honest. Hence, by (f0 | g0)(w)
〈C 〉−−−→]

(f ′0 | g0)(w) we infer that (f ′0 | g0)(w) realizes C . If w 6∈ x, since f | g is honest and
(f | g)(w) = (f0 | g0)(w), then (f0 | g0)(w) is honest; we infer that (f ′0 | g0)(w) realizes
C as in the other case.

HONESTY BY TYPING 57

We can then reconstruct the typing for (x)(A[P ′] | S ′) as follows:

` P ′ : f ′0 | g0
`A A[P ′] : f ′0 | g0

[T-SA]
(f ′0 | g0)↑{w} (w) realizes C

`A {↓w C}A B f ′0 | g0
[T-SFz1]

`A A[P ′] | S ′ : f ′0 | g0
[T-SPar2]

(f ′0 | g0)↑x (x) honest

`A (x)(A[P ′] | S ′) : (f ′0 | g0){x 7→ ⊥}
[T-SDel2∗]

Since f0
π′−−→] f

′
0, then f0{x 7→ ⊥}

π−−→] f
′
0{x 7→ ⊥}. Therefore:

f | g = f0{x 7→ ⊥} | g0{x 7→ ⊥}
π−−→] f

′ | g = f ′0{x 7→ ⊥} | g0{x 7→ ⊥}

For item (D.1b) we have π = dou a. Since u ∈ dom f , then by 8.2 we have u ∈ fv(P),
and so u 6∈ x and π′ = dou a. The thesis follows by 4.2.
• [C-SumL]. Easy generalisation of case [C-Pref], since all sums are guarded.

• [C-ParL]. Then, f = f0 |f1 and f0
π−−→] f

′
0 for some f0, f1 and f ′0. Therefore, f ′ = f ′0 |f1,

and u ∈ dom f0 = dom f1 | g. Both items (D.1a) and (D.1b) follow by the induction
hypothesis, instantiating the parallel component g of the inductive statement as f1 | g.
• [C-Rec]. We have that f = rec X.f0, and:

f0{rec X.f0/X} π−−→] f
′

rec X.f0
π−−→] f

′

Therefore, P = (x)(rec X. P 0), and ` (x)(P 0{P/X}) : f0{f/X} by B.3. Since f | g
is honest, then f0{rec X.f0/X} | g is honest as well, since unfolding preserves the seman-
tics. Further, u ∈ dom f0{rec X.f0/X} = dom g. Both items (D.1a) and (D.1b) follow
by the induction hypothesis, instantiating the process P of the inductive statement as
(x)(P 0{P/X}).

Proof of Theorem 9.7. By 8.3, there exist v, S0, P such that:

S ≡ (v) (A[P] | S0)

By inverting the typing derivation of `A S : f , we must have f = f0{v 7→ ⊥}, for some f0

such that ` P : f0 and f0↑v (v) is honest; Together with the fact that f is honest, we obtain
that f0 is honest. Further, `A S0 B f0. We have the following cases, according to the form
of π:

• π = τ . By 7.1, the hypothesis f
π−−→] f

′ implies f0
π′−−→] f

′
0, where π′ ∈ {τ , tell ↓w C}

(with w ∈ v), and f ′ = f ′0{v 7→ ⊥}. Note that if π′ = tell ↓w C but w 6∈ dom f0, then we

also have f0
τ−−→] f

′
0, so in this case we could also choose π′ = τ . Consequently, w.l.o.g.

we can assume w ∈ dom f0. By D.1 (by choosing g = 0) there exist x, P ′, S0 such that:

A[P]
A : π′−−−→ (x)(A[P ′] | S0) = S ′0 `A S ′0 : f ′0

Hence we have the following derivation:

A[P]
A : π′−−−→ S ′0

A[P] | S0
A : π′−−−→ S ′0 | S0

[Par]

S
A : delv(π′)−−−−−−−→ (v)(S ′0 | S0) = S ′

[Del∗]

58 M. BARTOLETTI, A. SCALAS, E. TUOSTO, AND R. ZUNINO

By definition of π′ we have that delv(π
′) = π. Since `A S0 B f0 and f0

π′−−→] f
′
0 with

π′ 6= do · · ·, then by B.5 we also have `A S0 B f ′0. Let S ′ = (v)(S ′0 | S0). Then, we have
the following typing derivation for S ′:

`A S ′0 : f ′0 `A S0 B f ′0

`A S ′0 | S0 : f ′0
[T-SPar2]

f ′0↑v (v) honest

`A S ′ : f ′0{v 7→ ⊥} = f ′
[T-SDel2∗]

• π = tell ↓u C . By 7.1, the hypothesis f
π−−→] f

′ implies f0
π−−→] f

′
0, using the assump-

tion u ∈ dom f ⊆ dom f0. The proof then proceeds similarly to the previous case, by
exploiting D.1.

• π = dou a. By 7.1, the hypothesis f
π−−→] f

′ implies f0
π−−→] f

′
0, using the assumption

u ∈ dom f ⊆ dom f0. By D.1, a ∈ A[P] ↓Au . Since u 6∈ v, then we have the thesis
a ∈ S ↓Au .

E. Other proofs for Section 9 (Type safety)

Proof of Lemma 9.8. We prove the following stronger statement. If Γ ` P : f , for some
process P and some self-concordant Γ, then f is self-concordant. We proceed by induction
on this typing derivation. We have the following cases, according to the last rule applied in
the derivation:

• [T-Sum]. The rule specifies a set of prefixes πi; then, α = [πi]u for some of these i. Taking
π = πi and f ′ = f i gives the thesis.
• [T-Par]. The thesis follows directly by the induction hypothesis.
• [T-Def]. We have P = X(v), and:

X(u) , P ′ X(v) 6∈ dom Γ Γ{X(v) 7→ λv.X} ` P ′{u 7→ v} : g

Γ ` X(v) : λv. rec X.g(v)
[T-Def]

with f = λv. rec X.g(v). Since rec X.g(u)
α−−→] P

′, then by inverting rule [C-Rec] it must

be g(u){X 7→ rec X.g(v)} α−−→] P
′. From this, we can prove that g(u)

α−−→] P
′′, for some

P′′ such that P′ = P′′{X 7→ rec X.g(u)}. Note that Γ{X(v) 7→ λv.X} is self-concordant.
By the induction hypothesis, there exist π and g′ such that [π]u = α, g′(u) = P′′, and

g
π−−→] g

′. The thesis follows by taking f ′ = λv.g′(v){X 7→ rec X.g(v)}.
• [T-Var]. Trivial, since Γ is self-concordant.
• [T-Del]. We have P = (v)P ′, and:

Γ 6=v ` P ′ : g g(v) honest

Γ ` (v)P ′ : g{v 7→ g(∗)}
[T-Del]

where f = g{v 7→ g(∗)}. There are the following two subcases:
– v 6= u. By the induction hypothesis, there exist π, g′ such that [π]u = α, g′(u) = P′,

and g
π−−→] g

′. The thesis follows by taking f ′ = g′{v 7→ g′(∗)}.
– v = u. Since f (u)

α−−→] P
′, then g(∗) α−−→] P

′. By the induction hypothesis (applied on

∗), there exist π, g′ such that [π]∗ = α, g′(∗) = P′, and g
π−−→] g

′. The thesis follows by
taking f ′ = g′{v 7→ g′(∗)}.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	An example
	Contributions

	2. Session types as contracts
	2.1. Syntax
	2.2. Semantics
	2.3. Compliance

	3. The CO2 calculus
	3.1. Syntax
	3.2. Semantics
	3.3. Examples

	4. Honesty
	5. Types
	5.1. Abstract contract configurations
	5.2. Pointed abstract systems
	5.3. Types

	6. Abstract honesty
	7. A type system for honesty
	7.1. Process typing
	7.2. System typing

	8. Basic properties of the type system
	9. Subject reduction and type safety
	10. Related work and conclusions
	Future works.

	Acknowledgement
	References
	A. Proofs for sec:abs-honesty
	Proof of Lemma ??
	Proof of Lemma ?? (Abstract readiness and parallel composition)

	B. Proofs for sec:type-system
	Proof of Lemma ?? (Honesty of (Black*))
	Proof of Lemma ?? (Structural equivalence and typing)
	Proof of Lemma ?? (Typing and substitution)

	C. Proof of th:types:subject-reduction (Subject Reduction)
	Rule [Tau]
	Rule [Tell]
	Rule [Fuse]
	Rule [Do]
	Rule [Del]
	Rule [Par]
	Rule [Rec]

	D. Proof of th:progress (Progress)
	Proof of Theorem ??

	E. Other proofs for sec:type-safety (Type safety)
	Proof of Lemma ??

