
Lightweight Session Programming in Scala∗

Alceste Scalas1 and Nobuko Yoshida2

1 Imperial College London, UK
a.scalas@imperial.ac.uk

2 Imperial College London, UK
n.yoshida@imperial.ac.uk

Abstract
Designing, developing and maintaining concurrent applications is an error-prone and time-con-
suming task; most difficulties arise because compilers are usually unable to check whether the
inputs/outputs performed by a program at runtime will adhere to a given protocol specification.

To address this problem, we propose lightweight session programming in Scala: we leverage
the native features of the Scala type system and standard library, to introduce (1) a representation
of session types as Scala types, and (2) a library, called lchannels, with a convenient API for
session-based programming, supporting local and distributed communication. We generalise the
idea of Continuation-Passing Style Protocols (CPSPs), studying their formal relationship with
session types. We illustrate how session programming can be carried over in Scala: how to
formalise a communication protocol, and represent it using Scala classes and lchannels, letting
the compiler help spotting protocol violations. We attest the practicality of our approach with a
complex use case, and evaluate the performance of lchannels with a series of benchmarks.

1998 ACM Subject Classification D.1.3 Concurrent Programming, D.3.1 Formal Definitions
and Theory, F.3.3 Studies of Program Constructs – Type structure

Keywords and phrases session types, Scala, concurrency

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2016.21

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.2.1.11

1 Introduction and motivation

Concurrent and distributed applications are notoriously difficult to design, develop and
maintain. One of the main challenges lies in ensuring that software components interact
according to some predetermined communication protocols describing all the valid message
exchanges. Such a challenge is typically tackled at runtime, e.g. via testing and message
monitoring.

Unfortunately, depending on the number of software components and the complexity of
their protocols, tests and monitoring routines can be costly to develop and to maintain, as
software and protocols evolve.

Consider the message sequence chart in Figure 1: it is based on an example of “actor
protocol” from [26] (slide 42), and schematises the authentication procedure of an application
server. A client connects to a frontend, trying to retrieve an active session by its Id; the

∗ Work partly supported by: EPSRC EP/K011715/1, EP/K034413/1 and EP/L00058X/1, and EU project
FP7-612985 UpScale.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Alceste Scalas and Nobuko Yoshida;
licensed under Creative Commons License CC-BY

30th European Conference on Object-Oriented Programming (ECOOP 2016).
Editors: Shriram Krishnamurthi and Benjamin S. Lerner; Article No. 21; pp. 21:1–21:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/211231942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.4230/DARTS.2.1.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Lightweight Session Programming in Scala

Client Frontend Auth App server

GetSession(Id)
GetSession(Id)

Success(S)
Active(S)

AltAlt Session Id is valid

Failure()

GetAuthentication()

Authentication(A)
New(A)
Authenticate(Credentials)

Failure()✗
AltAlt Invalid credentials

CreateSession(User)
NewSession(S)

Success(S)✓

AltAlt Valid credentials

AltAlt Session Id does not exist, or is expired

Commandi (Ti)

Responsei (T ′
i)

.

Loop/Alt i ∈{1, . . . , n}Loop/Alt i ∈{1, . . . , n} Client-server session

Figure 1 Server with frontend.

frontend queries the application server: if Id is valid, the client gets an Active(S) message
with a session handle S, which can be used to perform the command/response loop at the
bottom; otherwise, the client must authenticate: the frontend obtains an handle A from
an authentication server, and forwards it to the client with a New(A) message. The client
must now use A to send its credentials (through an Authenticate message); if they are not
valid, the authentication server replies Failure(); otherwise, it retrieves a session handle
S and sends Success(S) to the client, who uses S for the session loop (as above). In this
example, four components interact with intertwined protocols. Ensuring that messages are
sent with the right type and order, and that each component correctly handles all possible
responses, can be an elusive and time-consuming task. Runtime monitoring/testing can
detect the presence of communication errors, but cannot guarantee their absence; moreover,
protocols and code may change during the life cycle of an application – and monitoring/testing
procedures will need to be updated. Compile-time checks would allow to reduce this burden,
lowering software maintenance costs.

CPS protocols in Scala. The developers of the Akka framework [28] have been addressing
these challenges, in the setting of actor-based applications. Standard actors communicate in
an untyped way: they can send each other any message, anytime, and must check at runtime
whether a given protocol is respected. Akka developers are thus trying to leverage the Scala
type system to obtain static protocol definitions and compile-time guarantees on the absence

A. Scalas and N. Yoshida 21:3

1 case class GetSession(id: Int,
2 replyTo: ActorRef[GetSessionResult])
3
4 sealed abstract class GetSessionResult
5 case class New(authc: ActorRef[Authenticate])
6 extends GetSessionResult
7 case class Active(service: ActorRef[Command])
8 extends GetSessionResult
9

10 case class Authenticate(username: String, password: String,
11 replyTo: ActorRef[AuthenticateResult])
12
13 sealed abstract class AuthenticateResult
14 case class Success(service: ActorRef[Command])
15 extends AuthenticateResult
16 case class Failure() extends AuthenticateResult
17
18 sealed abstract class Command
19 // ... case classes for the client-server session loop ...

Figure 2 Akka Typed: protocol of client in Fig. 1.

1 def client(frontend: ActorRef[GetSession]) = {
2 val cont = spawn[GetSessionResult] {
3 case New(a) => doAuthentication(a)
4 case Active(s) => doSessionLoop(s)
5 }
6 frontend ! GetSession(42, cont)
7 }

Figure 3 Actor spawning (pseudo code).

of communication errors. Their tentative solution has two parts. The first is Akka Typed
[29]: an experimental library with actors that can only receive messages via references of
type ActorRef[A], which in turn only allow to send A-typed messages. The second is what
we dub Continuation-Passing Style Protocols (CPSPs): sets of message classes that represent
sequencing with a replyTo field, of type ActorRef[B]. By convention, replyTo tells where
the message recipient should send its B-typed answer: Fig. 2 (based on [26], slide 41) shows
the CPSPs of the client in Fig. 1.

In practice, a replyTo field can be instantiated by producing a “continuation actor” that
handles the next step of the protocol. Fig. 3 shows a client that, before sending GetSession
to the frontend (line 6), spawns a new actor accepting GetSessionResult messages. Then,
cont (line 2) has type ActorRef[GetSessionResult], and is sent as replyTo: the frontend
should send its New/Active answer there. This creates a conversation between the client and
frontend: the message sender produces a “continuation”, and the receiver should use it.

Opportunities and limitations. CPSPs have the appealing feature of being standard Scala
types, checked by its compiler, and giving rise to a form of structured interaction in Akka.
However, their incarnation seen above has some shortcomings. First and foremost, they are a
rather low-level representation, not connected with any established, high-level formalisation
of protocols and structured interaction. Hence, non-trivial protocols with branching and
recursion (e.g. the one in Fig. 1) can be hard to write and understand in CPS; even message
ownership and sequencing may be non-obvious: e.g., determining who sends Failure in
Fig. 2, and whether it comes before or after another message, can take some time. Moreover,
the CPSPs in Fig. 2 seems to imply that some continuations should be used exactly once –
but this intuition is not made explicit in the types. E.g., in Fig. 3, frontend and cont are
both ActorRefs – but the actor referred by frontend might accept multiple GetSession

ECOOP 2016

21:4 Lightweight Session Programming in Scala

requests, whereas the one referred by cont (spawned on lines 2–5) might just wait for one
New/Active message, spawn another continuation actor, and terminate. Arguably, the type
of cont should convey whether sending more than one message is an error.

Our contribution: lightweight session programming in Scala. We address the challenges
and limitations above by proposing lightweight session programming in Scala – where
“lightweight” means that our proposal does not depend on language extensions, nor external
tools, nor specific message transport frameworks. We generalise the idea of CPSP, relating it
to a well established formalism for the static verification of concurrent programs: session
types [19, 20, 39]. We present a library, called lchannels, offering a simplified API for session
programming with CPSPs, supporting network-transparent communication. Albeit the Scala
type checker does not cater for all the static guarantees provided by session-typed languages
(mostly due to the lack of static linearity checks), we show that lchannels and CPSPs allow
to represent protocol specifications as Scala types, and write session-based programs in a
rather natural way, guaranteeing protocol safety: i.e., once a session starts, no out-of-protocol
messages can be sent, and all valid incoming messages are handled. We show that typical
protocol errors are detected at compile-time – except for linearity errors: lchannels checks
them at runtime, reminding the typical usage of Scala Promises/Futures.

This work focuses on Scala since we leverage several convenient features of the language
and its standard library: object orientation, parametric polymorphism with declaration-site
variance, first-class functions, labelled union types (case classes), Promises/Futures; yet,
our approach could be adapted (at least in part) to any language with similar features.

Outline of the paper. In §2, we summarise session types, explaining the difficulties in their
integration in a language like Scala, and how we overcome them by exploiting an encoding into
linear types for I/O. In § 3 we introduce lchannels, a library for type-safe communication
over asynchronous linear channels. In § 4 we explain, via several examples, how session
programming can be carried over in Scala, by using lchannels and representing session
types as CPSPs, according to a session-based software development approach (§ 4.2). § 5
presents optimisations and extensions of lchannels, achieving message transport abstraction
and network-transparent communication. In § 6 we show the practicality of our approach
by implementing the case study in Fig. 1, and evaluating the performance of lchannels –
particularly, its message delivery speed w.r.t. other inter-process communication methods.
In § 7 we give a formal foundation to § 4, proving crucial results about duality/subtyping
of session types represented in Scala, and overcoming technical difficulties in the transition
from a structural to nominal types (e.g., different handling of recursion). We discuss related
works in § 8, and conclude in § 9 – showing how our approach can be adapted to other
communication frameworks.

Online resources. Due to space limits, we include proofs, benchmarking details and other
materials in http://www.doc.ic.ac.uk/research/technicalreports/2015/#7. For the
latest version of lchannels, visit http://alcestes.github.io/lchannels/.

2 Programming with session types: background and challenges

We now summarise the features of languages based on binary session types (§ 2.1) and their
notions of duality and subtyping (§ 2.2). We then explain their relationship with linear I/O
types (§ 2.3), and give an overview of our strategy for representing them in Scala (§ 2.4).

http://www.doc.ic.ac.uk/research/technicalreports/2015/#7
http://alcestes.github.io/lchannels/

A. Scalas and N. Yoshida 21:5

2.1 Background: binary session types in a nutshell
Session types regulate the interaction of processes communicating through channels; each
channel has two endpoints, and the intuitive semantics is that all values sent on one endpoint
can be received on the other in the same order – a bidirectional FIFO model akin e.g. to
TCP/IP sockets. A session type says how a process is expected to use a channel endpoint.
Let B = {Int,Bool,Unit, . . .} be a set of basic types. A session type S has the following syntax:

S ∶∶=
˘
i∈I?li(Ti).Si ∣ ⊕i∈I !li(Ti).Si ∣ µX .S ∣ X ∣ end T ∶∶= B ∣ S (closed)

where I ≠ ∅, recursion is guarded, and all li range over pairwise distinct labels. T denotes a
payload type. The branching type (or external choice)

˘
i∈I?li(Ti).Si requires the process

to receive one input of the form li(Ti), for any i ∈ I chosen at the other endpoint; then,
the channel must be used according to the continuation type Si. The selection type (or
internal choice) ⊕i∈I !li(Ti).Si, instead, requires the program to choose and perform one
output li(Ti), for some i ∈ I, and continue using the channel according to Si. µX .S is a
recursive session type, where µ binds X, and X is a recursion variable. We say that S is
closed iff all its recursion variables are bound. end is a terminated session with no further
inputs/outputs. Note that a payload type T can be either a basic or a session type: hence,
channel endpoints allow to send/receive e.g. integers, strings, or other channel endpoints.
I Remark 2.1. We use ⊕/& as infix operators, omitting them in singleton choices. We often
omit end and Unit: ?A.(!B(Int)⊕ !C) stands for

˘
{ ?A(Unit).⊕{!B(Int).end , !C(Unit).end}}.

For example, the type Sh below describes the client endpoint of a “greeting protocol”:
Sh = µX .(!Greet(String).(?Hello(String).X & ?Bye(String).end) ⊕ !Quit.end)

The client can send either Quit and end the session, or Greet(String); in the second case, it
might receive from the server either Bye(String) (ending the session), or Hello(String): in
the second case, the session continues recursively.

Programming languages that support session types are usually based on session-π – i.e.,
a version of π-calculus [31] extended with session operators. A client respecting Sh would be
implemented as hello(c) in Fig. 4 (left): c is a Sh-typed channel endpoint, ! is a language
primitive for selecting and sending messages, and ? for branching (i.e., receiving and pattern
matching messages). The type system ensures that c is used according to Sh, guaranteeing:

S1. safety: no out-of-protocol I/O actions are allowed. E.g., c can initially be used only to
send Greet/Quit (lines 3/8), no outputs are allowed when Sh expects c to receive (line
4), no inputs when Sh expects c to send (lines 3,8), no I/O when Sh has ended (line 6);

S2. exhaustiveness: when receiving a message, all outcomes allowed by the type must be
covered. E.g., the client must handle both Hello and Bye answers (lines 4–6);

S3. output linearity: if Sh prescribes an output, it must occur exactly once. E.g., after
receiving Hello, the client must send Greet or Quit (as in the recursive call of line 5);

S4. input linearity: similarly, if Sh prescribes an input, it must occur exactly once. E.g., after
sending Greet, the client must receive the response (as in line 4).

2.2 Background: safe, deadlock-free interaction via duality/subtyping
A session-typed language ensures correct run-time interaction by statically checking that the
two endpoints of a channel are used dually. The dual of S, written S, is defined as:

˘
i∈I?li(Ti).Si = ⊕i∈I !li(Ti).Si ⊕i∈I !li(Ti).Si =

˘
i∈I?li(Ti).Si

µX .S = µX .S X = X end = end

ECOOP 2016

21:6 Lightweight Session Programming in Scala

1 def hello(c: S_h): Unit = {
2 if (...) {
3 c ! Greet("Alice")
4 c ? {
5 case Hello(name) => hello(c)
6 case Bye(name) => ()
7 }
8 } else { c ! Quit() }
9 }

1 def lHello(c: LinOutChannel[?]): Unit = {
2 if (...) {
3 val (c2in, c2out) = createLinChannels[?]()
4 c.send(Greet("Alice", c2out))
5 c2in.receive match {
6 case Hello(name, c3out) => lHello(c3out)
7 case Bye(name) => ()
8 }
9 } else { c.send(Quit()) }

10 }

Figure 4 Greeting protocol client (pseudo code): session types (left) vs. linear I/O types (right).

Intuitively, the internal/external choices of S are swapped in S; hence, each client-side output
is matched by a server-side input, and vice versa. In our example, c is a client-side endpoint
that must be used according to Sh; the server-side dual channel endpoint has type:

Sh = µX .(?Greet(String).(!Hello(String).X ⊕ !Bye(String).end) & ?Quit.end)

Duality guarantees the safe and deadlock-free interaction of a client and server observing Sh
and Sh: no unexpected messages are sent/received, and the session progresses until its end.

Such a guarantee is made more flexible via session subtyping [13]. Consider the type
1 def hello2(c2: S_h2): Unit = {
2 c2 ! Quit()
3 }

Sh2 = !Quit, and its implementation on the right: since
hello2 only outputs Quit on c2, it would also behave
safely on a Sh-typed channel endpoint c. In fact, in a
session-typed language we have Sh ⩽ Sh2– i.e., an Sh-typed channel endpoint can always be
used in place of an Sh2-typed one; hence, invoking hello2(c) is allowed – and such a client
program would interact safely and without deadlocks with a server observing Sh.

2.3 From session-typed to linearly-typed programs
Unfortunately, integrating session types into a “mainstream” programming language is
not trivial: they require sophisticated type system features. Safety/exhaustiveness can be
achieved by letting c’s type evolve according to Sh after each I/O action – but most type
systems assign a fixed type to each variable; I/O linearity checks require linearity analysis;
internal/external choices, session subtyping and duality need dedicated type-level machinery.

In this paper, we show how session programming can be carried over in Scala, recovering
part of the static guarantees provided by session types. We take inspiration from the encoding
of session-π into standard π-calculus with variants and linear I/O types [8]: the key idea is
that session-π and session types can be encoded in a more basic language and type system
that do not natively support session primitives (e.g., internal/external choices and duality),
by adopting a “continuation-passing style” interaction over linear input/output channel
endpoints that are used exactly once. In particular, [8] (Theorems 1, 2) proves that a process
using variants, linear I/O types and CPS interaction can precisely mirror the typing and the
runtime communications of a session typed process.

An intuition of our approach is given in Fig. 4 (right), where lHello is the “linearly
encoded” version of hello. Its argument c is a linear output channel endpoint that carries
a single value (whose type is left unspecified, for now). On line 3, it creates a new pair of
linear channels endpoints, which can carry another single value of some (again unspecified)
type: intuitively, what is sent on c2out becomes available in c2in. On line 4, c is used to
send a Greet message – which also carries c2out. Then, the recipient of Greet and c2out is
expected to use the latter to continue the session – i.e., send either Hello or Bye. On line 5,
c2in is used to receive such an answer, and the result is matched against Hello and Bye; the

A. Scalas and N. Yoshida 21:7

Linear I/O types
(with variants and records)

S

?(U) or !(U)

In[A] or Out[A]

S

!(U) or ?(U)

Out[A] or In[A]

ServerClient

U

CPS protocol classes
A1,A2, . . . ,An

Session types

Scala types

Figure 5 From session types to Scala types.

latter carries no continuation channel, i.e. the session has ended (line 7); the former, instead,
carries a linear (output) channel endpoint c3out, that is used to continue the session with a
recursive call (line 6). Note that all channel endpoints received/created in lHello are either
used exactly once (c, c2in, c3out), or sent to some other process (c2out).

A crucial difference between hello and lHello is that in the latter, each variable has a
constant type. This suggests that, although the Scala type checker cannot check linearity, it
might be leveraged to obtain a form of session typing, offering safety and exhaustiveness for
programs written in “linear CPS”, like lHello. Then, as seen in § 2.2, we could also obtain
safe and deadlock-free interaction – provided that a program creates, uses or sends its linear
channel endpoints according to [8], and the other program involved in a session interacts in
a “dual” way. However, the pseudo-code of Fig. 4 (right) highlights four Problems:

P1. we need to represent and implement linear input and output channels;
P2. we need to suitably instantiate each ?-type, so to describe the same interactions of Sh;
P3. we must automate the creation, sending and use of linear channels, offering an API that

guides the CPS interactions prescribed in [8], and allows to write code similar to hello;
P4. we need to handle session subtyping and duality in the Scala type system.

2.4 From session types to session programming in Scala: an outline
In the rest of the paper, we demonstrate how to tackle Problems P1–P4, staying close to the
session/linear types theory, and yet achieving practical session programming in Scala. Our
approach is summarised in Fig. 5. On top, we have a client and a server that should interact
through a channel, whose protocol is described with dual session types S and S. On the
bottom, the same protocol is represented in Scala, as a set of CPSP classes, shared between
the client and server, and similar to those discussed in § 1: they are used as parameters for
In[A] and Out[A], which implement respectively an input/output channel endpoint carrying
a single value of type A. We extract such CPSP classes from S or S, through an encoding
represented by the arrows; such an encoding exploits an intermediate generation of linear
I/O types (middle of Fig. 5), as detailed in § 7. We address P1 in § 3, P2 in § 4, P3 in § 4.3,
and P4 in § 7.3.

3 lchannels, a (small) library for type-safe interaction

We now introduce lchannels, a Scala library providing typed linear channels. We designed
the programmer interface to be close to the formal definition of linear channels (§ 7.2) –

ECOOP 2016

21:8 Lightweight Session Programming in Scala

1 abstract class In[+A] {
2 def future: Future[A]
3 def receive(implicit d: Duration): A = {
4 Await.result[A](future, d)
5 }
6 def ?[B](f: A => B)(implicit d: Duration): B = {
7 f(receive)
8 }
9 }

10

11 abstract class Out[-A] {
12 def promise[B <: A]: Promise[B]
13 def send(msg: A): Unit = promise.success(msg)
14 def !(msg: A) = send(msg)
15 def create[B](): (In[B], Out[B])
16 }

1 class LocalIn[+A](val future: Future[A]) extends In[A]
2

3 class LocalOut[-A](p: Promise[A]) extends Out[A] {
4 override def promise[B <: A] = {
5 p.asInstanceOf[Promise[B]] // Type-safe cast
6 }
7 override def create[B]() = LocalChannel.factory[B]()
8 }
9

10 object LocalChannel {
11 def factory[A](): (LocalIn[A], LocalOut[A]) = {
12 val promise = Promise[A]()
13 val future = promise.future
14 (new LocalIn[A](future), new LocalOut[A](promise))
15 }
16 }

Figure 6 Linear channels in Scala: abstract classes (left) and local implementation (right).

notably, by reflecting their co/contra-variance. For simplicity, we shape the API and its basic
implementation around Promises/Futures from the Scala standard library [16], since they
are familiar to Scala developers, and remarkably close to the expected usage of linear channel
endpoints (§ 2.3): (i) a Promise[A] must be completed exactly once with an A-typed value v,
and (ii) after completion, v becomes available on the corresponding Future[A]. Moreover,
Promises/Futures provide asynchronous message passing.

We present the lchannels API in § 3.1, and a simple implementation in § 3.2. We give
further details, examples and extensions after showing the representation of session types as
CPSP classes (§ 4) – which constitute the principal use case for lchannels.

3.1 The programmer interface
The cornerstones of lchannels are the abstract classes Out[-A] and In[+A], representing
channel endpoints allowing respectively to send and receive one A-typed value. Their slightly
simplified declarations are shown in Fig. 6 (left).

The class Out[-A] is contravariant w.r.t. A1. Its promise (line 12) is expected to be
eventually completed with the value to be sent; a crucial requirement is that promise must be
implemented as a constant2, to ensure that it will be completed only once. Note that due to
the contravariance of A, the type of promise cannot be simply Promise[A]: the reason is that
the latter is invariant w.r.t. A; the bounded type parameter B <∶ A allows to overcome this
limitation. send(msg) and its alias ! offer a simplified interface above promise, representing
the selection/output operator of session-π (see Theorem 3.1). Finally, Out’s abstract method
create[B]() returns a new pair of input/output channels carrying B: this method is used
to create continuation endpoints, as seen in Fig. 4 (right, line 3).

The class In[+A] is covariant w.r.t. its type parameter A3. Its future will contain the
value sent from the corresponding Out endpoint. The receive method offers a simplified
interface over future: the implicit parameter d specifies how long to wait for an incoming
message before raising a timeout error. The ? method implements the typical branching
operator of session-π: it takes a function f: A => B, and once a value v is received, it
returns f(v). The rationale behind the method signature is clarified in Theorem 3.1.

1 This matches the output subtyping rule [⩽`-Out] in Theorem 7.4.
2 Such a requirement could be enforced by defining the field as val, instead of def; the drawback is that

val does not allow type parameters, and this would result in an invariant Out with limited subtyping.
3 This matches the input subtyping rule [⩽`-In] in Theorem 7.4.

A. Scalas and N. Yoshida 21:9

I Example 3.1 (!, ? and selection/branching). Consider the following classes:
1 sealed abstract class AorB
2 case class A() extends AorB; case class B() extends AorB

Let c be an instance of Out[AorB]. The c.! method can be used as follows:
1 c ! A() or 1 c ! B()

Note that ! resembles the output/selection operator seen in Fig. 4 (left). Moreover, the
Scala compiler ensures that the argument of ! belongs to a subtype of AorB, – e.g., A or B4:
this corresponds, in session-π, to the type checking of an internal choice.

Let now c be an instance of In[AorB]. The c.? method can be used as shown below,
1 c ? { case A() => println("Got A")
2 case B() => println("Got B") }

where the {...} block, as per usual Scala syntax, is
a function from AorB to Unit. This reminds the

branching operator seen in Fig. 4 (left). Moreover, since AorB is a sealed abstract class,
the Scala compiler can check exhaustiveness, warning if the cases do not cover both A and
B5: this corresponds, in session-π, to the type checking of an external choice.

Using lchannels endpoints: static vs. dynamic checks. As seen in Theorem 3.1, the
Scala compiler can check that an instance of lchannels Out (resp. In) carrying a sealed
abstract class is only used under the safety and exhaustiveness guarantees of a session-
typed channel endpoint with a top-level ⊕ (resp. &)6, i.e., S1 and S2 in § 2.1. Also, an
instance of e.g. Unit provides the guarantees of an end-typed channel endpoint: it cannot
be used for I/O. Unfortunately, the Scala type checker cannot enforce input/output linearity
(S3 and S4 in § 2.1); hence, lchannels implements the following runtime linear usage rules:

L1. each Out instance should be used to perform exactly one output. Any further output will
generate a runtime exception, forbidding duplicated message transmissions;

L2. each In instance should be used at least once. Each use will retrieve the same value.

L1 and L2 reflect the typical usage of Scala’s Promises and Futures. The lack of static
linearity checks impacts deadlock-freedom guarantees: we will discuss this topic in § 6.1.3.
Note that L1 matches S3, while L2 is more relaxed than S4. The latter is not a technical
necessity, since In could be easily designed to raise an exception if used twice for input; we
adhere to the familiar behaviour of Futures for simplicity of presentation, and to readily
apply some common programming patterns, e.g. registering one or more input callbacks.

3.2 A local implementation
Fig. 6 (right) shows a simple local implementation of In[A]/Out[A], as a thin layer over a
Promise[A]/Future[A] pair (created in lines 12–14): a value written in the former becomes
available on the latter. The A-cast in line 5 (due to the invariance of Promise[A]) is safe:
the type bound on B ensures that Promise[B] can only be written with a subtype of A.

I Example 3.2 (Spawning interacting threads). Two threads that communicate through a
local (linear) channel can be created with a method similar to the following:

4 Due to Java legacy, in Scala also Null is a subtype of AorB. This will be explicit in § 7.3.
5 By design, Scala does not enforce matching on null values, albeit they might be received (see note 4).
6 This arises from the encoding of session types into linear I/O types with variants [8]: we render the
latter in Scala as sealed case classes (as detailed in § 7.3).

ECOOP 2016

21:10 Lightweight Session Programming in Scala

1 case class Q(p: Boolean, cont: Out[R])
2 case class R(p: Int)
3

4 def f(c: In[Q]) = {
5 c ? { q => q.cont ! R(42) }
6 }
7

8 def g(c: Out[Q]) = {
9 val (ri,ro) = c.create[R]()

10 c ! Q(true, ro)
11 ri ? { r =>
12 println(f"Got ${r.p}")
13 } }

Figure 7 SQR and SQR in Scala.

1 def parallel[A, B1, B2](p1: In[A] => B1, p2: Out[A] => B2): (Future[B1], Future[B2]) = {
2 val (in, out) = LocalChannel.factory[A](); (Future { p1(in) }, Future { p2(out) })
3 }

Here, p1 and p2 are functions taking respectively an input and output channel endpoint
carrying A, and returning resp. B1 and B2. The parallel method creates a pair of A-carrying
local channel endpoints (line 2), applies p1 and p2 on them by spawning separate threads,
and returns a pair of Futures that will be completed with their return value (line 3).

Actually, parallel is a method of the LocalChannel object in Fig. 6. Most of the
examples in the rest of the paper feature two endpoint functions with the signature of p1 and
p2, and they can be executed concurrently (and type-safely) via LocalChannel.parallel.

Our local implementation of lchannels is suitable for type-safe inter-thread communica-
tion, as suggested in Theorem 3.2. However, Promise/Future instances cannot be serialised,
and thus cannot be sent/received over a network: this makes LocalIn and LocalOut unsuit-
able for distributed applications. We address this issue later on, in § 5.

4 Session programming with lchannels and CPS protocols

We now address Problem P2 in § 2.3: given a session type S, how to instantiate the type
parameters of In[⋅]/Out[⋅], to represent the (possibly recursive) sequencing of internal/ex-
ternal choices of S. The answer lies in representing the states of S as CPS protocol classes,
as outlined in § 2.4. We give an example-driven intuition of such a representation, and the
resulting session-based software development approach (§ 4.2). The formalisation is in § 7.

4.1 Representing sequential inputs/outputs
Let us consider the session type SQR = ?Q(Bool).!R(Int), dictating that a channel endpoint
must be used first to receive Q(Bool), and then to output R(Int). In Scala, we could

1 case class Q(p: Boolean)
2 case class R(p: Int)

define the two case classes on the right (where the field p
stands for “payload”), and we can instantiate a linear input
endpoint of type In[Q], which allows to perform the first
input of SQR; but, how do we require to send a value of type R along the same interaction?

Inspired by the encoding of session types into linear types [8], we can instead define the
case classes in Fig. 7 (lines 1–2), where cont stands for “continuation” (and recalls replyTo
in § 1). Now, the value received from In[Q] also carries an Out[R] endpoint for continuing
the interaction; the value received from In[R], instead, does not have a cont field, since the

A. Scalas and N. Yoshida 21:11

protocol ends there. In lines 4–6, f uses c to receive a Q-typed value q (line 5); then, uses
q.cont to send a value of type R.

Now, consider the dual SQR = !Q(Bool).?R(Int): we can represent it in Scala simply by
reusing Q and R in Fig. 7, and instantiating a linear output endpoint Out[Q]. Its usage is
shown in lines 8–13. To produce a value of type Q, g must also produce a channel endpoint
Out[R]: for this reason, the two continuation endpoints ri,ro are created (line 9), respectively
with types In[R],Out[R]. On line 10, c is used to send a Q-typed value, carrying ro: the
recipient is expected to use it for continuing the interaction; on line 11, ri is used to receive
the value r (of type R) sent on ro.

4.2 A development approach for session-based applications
In our last example, Q and R are the CPSP classes of both SQR and SQR, In[Q] is the Scala
representation of SQR, while Out[Q] is the representation of SQR. We can outline a development
approach for session-based applications. For each communication channel:

D1. formalise the two endpoint session types S and S (assuming they are not trivially end);
D2. extract the CPSP classes of S (or, equivalently, of S). Roughly, it means:

a. convert each internal/external choice into a set of case classes (one per label);
b. when a choice has multiple labels, let each case class above extend a common sealed

abstract class, representing the multiple choice itself;
c. recover the sequencing in S (and S) by “connecting” each case class to its “successor”

(if any), through the cont field;
D3. let C be the class representing the outermost internal/external choice of S:

if S starts with an internal choice, its Scala endpoint type is Out[C]. Dually, since S
starts with an external choice, the Scala type at the other endpoint is In[C];
otherwise, if S starts with an external choice, its Scala endpoint type is In[C]. Dually,
since S starts with an internal choice, the Scala type at the other endpoint is Out[C].

The extraction of protocol classes must deal with some subtleties, in particular for determining
whether cont should be an In[⋅] or Out[⋅] endpoint, and for representing recursion. We will
formally address these issues in § 7.3; now, we proceed with more examples.

4.3 Interlude: automating channel creation

1 abstract class Out[-A] { ...
2 def !![B](h: Out[B] => A): In[B] = {
3 val (cin, cout) = this.create[A]()
4 this ! h(cout)
5 cin
6 }
7 def !![B](h: In[A] => B): Out[B] = {
8 val (cin, cout) = this.create[A]()
9 this ! h(cin)

10 cout
11 } }

Before proceeding, we take a quick detour to address
Problem P3 of § 2.3. In Fig. 7 (line 9), we can notice a
case of manual creation of channel endpoints, as in Fig. 4
(right, line 3). This is a key pattern for “CPS interactions”:
when sending a message that does not conclude a session,
it is necessary to create a pair of channels, send one of
them, and use the other to continue interacting7. This
“create-send-continue” pattern ensures session progress, but is an error-prone burden for the
programmer; so, we automate it by extending Out (Fig. 6, left) with the method !! above.

Take c of type Out[Q] from Fig. 7 (lines 8–13), and let h be a function from Out[R] to Q:
c !! h creates a pair of channel endpoints (cin,cout) of type In[R],Out[R] (line 3 above),

7 The pattern actually reflects how session-π processes are encoded in standard π-calculus (§ 2.3).

ECOOP 2016

21:12 Lightweight Session Programming in Scala

applies h to cout, sends the result via c (line 4), and returns cin for continuing the session
(the other case of !! is “dual”, when h’s domain is In[R]). By letting h be an instance of Q
with a hole in place of cont, we can remove line 9 of Fig. 7, and rewrite line 10 as:
1 val ri = c !! Q(true, _:Out[R]) , where the type annotation is necessary due to the

limited type inference capabilities of Scala8. 1 case class Q(p: Boolean)
2 (val cont: Out[R]) // Curried
3 case class R(p: Int)
4

5 def g(c: Out[Q]) = {
6 val ri = c !! Q(true)_ // No type annot.
7 ri ? { r => println(f"Got ${r.p}") }
8 }

We can address this last inconvenience
by defining Q as a curried case class, and
placing the hole in the curried cont field:
the Scala compiler can now infer its type.
The resulting code is shown on the right
(with f unchanged w.r.t. Fig. 7). We will adopt this style for the rest of the paper.

4.4 Examples

We now discuss some examples of the session-based approach outlined in § 4.2. We proceed
by increasing complexity, showing how to instantiate CPSP classes to represent recursion
(Theorem 4.1), non-singleton external/internal choices (Theorem 4.2), and multiple channels
with higher-order types for session delegation (Theorem 4.3).

I Example 4.1 (FIFO). An unidirectional FIFO channel, with endpoints for sending/receiv-
ing values of type T , can be represented with the following recursive session types:

Sfifo = µX .!Datum(T).X (sending endpoint) Sfifo = µX .?Datum(T).X (receiving endpoint)

The corresponding CPSP classes consist in just one (parametric) declaration:
1 case class Datum[T](p: T)(val cont: In[Datum[T]])

i.e., we represent the recursion on X by (i) taking the name of the class corresponding to
the outermost internal/external choice under µX (i.e., Datum), and (ii) continuing with
such a name when X occurs (for another case of recursion, see Theorem 4.2). Note that
cont is an input endpoint, used by the recipient to receive a further value, while the sender
keeps the output endpoint to produce a value. The endpoint processes can be written as:
1 def sender(fifo: Out[Datum[Int]]): Unit = {
2 val cont = fifo !! Datum(1)_ !! Datum(2)_
3 sender(cont)
4 }

1 def receiver(fifo: In[Datum[Int]]): Unit = {
2 val v = fifo.receive
3 println(f"Got ${v.p}"); receiver(v.cont)
4 }

Here, sender performs two outputs in a row (line 2): this is allowed since each application
of !! returns a channel of type Out[Datum[T]] (cf. declaration of Datum[T] above).

I Example 4.2 (Greeting protocol). Consider the “greeting” types Sh and Sh from §2. Unlike
Theorem 4.1, we now have non-singleton internal/external choices. To extract their CPSP
classes, we apply item D2b of §4.2: add a sealed abstract class for each internal/external
choice, extending it with one case class per label. In this case, we add:

Start for the internal choice of Sh (i.e., the external choice of Sh) between Greet,Quit;
Greeting for the external choice of Sh (i.e., the internal choice of Sh) between Hello,Bye.

8 This limitation is present in Scala 2.11.8, but might be overcome in future versions.

A. Scalas and N. Yoshida 21:13

We obtain the CPSP
classes on the right, with
Out[Start]/In[Start] repre-
senting Sh/Sh (by D3). We can
write two endpoint processes as:

1 sealed abstract class Start
2 case class Greet(p: String)(cont: Out[Greeting]) extends Start
3 case class Quit(p: Unit) extends Start
4

5 sealed abstract class Greeting
6 case class Hello(p: String)(cont: Out[Start]) extends Greeting
7 case class Bye(p: String) extends Greeting

1 def client(c: Out[Start]): Unit = {
2 if (Random.nextBoolean()) {
3 val c2 = c !! Greet("Alice")_
4 c2 ? {
5 case m @ Hello(name) => client(m.cont)
6 case Bye(name) => ()
7 }
8 } else { c ! Quit() } }

1 def server(c: In[Start]): Unit = {
2 c ? {
3 case m @ Greet(whom) => {
4 val c2in = m.cont !! Hello(whom)_
5 server(c2in)
6 }
7 case Quit() => ()
8 } }

Note that client
is similar to the
pseudo code of
hello in Fig. 4
(left).

I Example 4.3 (Sleeping barber with session delegation). We address a classical problem in
concurrency theory [10]: a barber waits for customers in his shop, sleeping when there is
nobody to serve. When a customer enters in the shop, he goes through a waiting room with
n chairs: if all chairs are taken, he leaves; otherwise, he sits. If the barber is sleeping, he
wakes up, serves all sitting customers (one a time), and sleeps again when nobody is waiting.
We model this scenario with three components: the customer, the shop and the barber, using
session types to formalise their expected interactions, schematised below.

Customer Shop Barber

Full()✗
AltAlt No seats

Seat()✓
Available()

Ready()

Customer(Scut)

Descr(String)
Haircut()

Pay(Int)

AltAlt Seat available

In this example, we show how multiple concurrent sessions (one
per customer) can be handled by single-threaded programs (shop
and barber). We also show how to exploit session delegation by
leveraging higher-order session types (i.e., channel endpoints that
send/receive other channel endpoints). When a customer enters in
the shop, he gets a Scstm-typed channel endpoint:
Scstm = ?Full & ?Seat.?Ready.Scut Scut = !Descr(String).?Haircut.!Pay(Int)
He might receive either a Full message (when no seats are avail-
able), or a Seat: in the first case, the session ends; in the second
case, he waits for the barber to be Ready. Then, he continues with
Scut: Describes the new hairdo, waits for the Haircut, Pays and
leaves. The shop uses the other, dually-typed channel endpoint:

Scstm = !Full ⊕ !Seat.!Ready.Scut Scut = ?Descr(String).!Haircut.?Pay(Int)

and keeps track of the n seats to choose whether to send Full or Seat. When the customer
gets a Seat, the shop interacts with the barber, through a channel with endpoint types:

Sbarber = µX .!Available.?Serve(Scut).X (barber endp.) Sbarber = µX .?Available.!Serve(Scut).X (shop endp.)

i.e., the shop recursively waits for the barber to be Available; when it happens, it picks
a sitting customer (i.e., one that has received a Seat), sends a Ready message to him, and
forwards the channel endpoint (now Scut-typed) to the barber, as the payload of Serve.

Meanwhile, the barber uses its Sbarber-typed channel endpoint to notify that he is
Available, and wait for a Serve message – sleeping until he gets one; when it happens,
the barber gets a Scut-typed channel endpoint in the message payload: he is expected to
use it for interacting with the customer, i.e., listen for the hairdo Description, perform the
Haircut, and take the Payment. When the customer session terminates, the barber must
resume his recursive session with the shop: he notifies that he is Available again, etc.

ECOOP 2016

21:14 Lightweight Session Programming in Scala

The CPSP classes extracted from
the session types above are shown
on the right. As per item D2b of
§ 4.2, we introduce WaitingRoom as
the sealed abstract class corre-
sponding to the external (resp. inter-
nal) choice between Full and Seat
in Scstm (resp. Scstm).

1 // Customer <--> shop protocol
2 sealed abstract class WaitingRoom
3 case class Full() extends WaitingRoom
4 case class Seat()(val cont: In[Ready]) extends WaitingRoom
5
6 case class Ready()(val cont: Out[Description])
7 case class Description(p: String)(val cont: Out[Cut])
8 case class Cut()(val cont: Out[Pay])
9 case class Pay(p: Int)

10
11 // Barber <--> shop protocol
12 case class Available()(val cont: Out[Serve])
13 case class Serve(p: In[Description])(val cont: Out[Available])

Implementation. The code of the shop, barber and customer is shown in Fig. 8. They are
supposed to run as concurrent threads, and thus implement the Runnable interface.

Shop is parametric in the number of seats. It collects the channel endpoints of the
waiting customers in its private seats field, which may be any FIFO-like container with
a blocking read method: we could use e.g. scala.concurrent.Channel[Out[Ready]], or
a FIFO based on Theorem 4.1. Once started, Shop creates a Sbarber-typed channel (line
19) and gives the output endpoint to a new Barber (line 20). The enter method returns
an input endpoint for interacting according to Scstm: after creating two channel endpoints
of the suitable type (line 6), enter checks how many people are trying to get a seat, and
outputs Full (line 10) or Seat (line 12) before returning the input endpoint (line 15). In the
main loop (lines 24–33), the shop waits for an Available message from the barber (line 25),
sleeps while retrieving a customer channel from seats (line 26), notifies the customer that
the barber is Ready, forwards the channel to the barber, and continues its loop.

Barber, in line 7, notifies the shop that he is Available, and uses the channel endpoint
returned by !! (whose type is In[Serve]) to wait for a Serve message. Then, he interacts
with the customer using the In[Descr]-typed endpoint received as payload (lines 8–11);
after being paid, he continues the session with the shop (line 11).

The code for Customer is simple: he invokes the enter method of the Shop given as
parameter (line 3), and uses the returned channel to interact according to Scstm. If the
waiting room is Full, he retries later (lines 5–7). To model multiple customers competing
for the seats, it is sufficient to start multiple Customers referring to the same Shop.

As anticipated, our solution for the sleeping barber problem exploits session delegation:
the customer starts interacting with the shop, but his session is eventually forwarded to the
barber, with a higher-order Serve(Scut) message. Delegation is transparent: no dedicated
code is required in Customer’s implementation. Moreover, delegation is safe: e.g., the
Scala type checker ensures that only Out[Ready]-typed channel endpoints are stored in
Shop.seats, and that the barber picks up the session only after the shops sends Ready.

5 Optimisations, transport abstraction and error handling

In this section, we demonstrate how lchannels allows to abstract from the underlying
message transport medium, and to handle communication errors. In § 3, we introduced the
abstract classes In/Out, and LocalIn/LocalOut as simple local implementations for inter-
thread communication. The In[⋅]/Out[⋅] interface can abstract other message transports,
allowing lchannels-based programs to achieve faster message delivery, or transparently
interact across a network. We discuss 3 examples: queue-, actor- and stream-based channels.

Optimised queue-based channels. The simple LocalIn/LocalOut classes in Fig. 6 (right)
perform all communications through the underlying Future/Promise. However, many

A. Scalas and N. Yoshida 21:15

1 class Shop(nSeats: Int) extends Runnable {
2 private val seats: Fifo[Out[Ready]] = Fifo() // Customers queue
3 private val waiting = new AtomicInteger(0) // Customers in shop
4

5 def enter(): In[WaitingRoom] = {
6 val (in, out) = LocalChannel.factory[WaitingRoom]()
7 val nPeople = waiting.getAndIncrement() // New person in shop
8 if (nPeople >= nSeats) { // More people than seats
9 waiting.getAndDecrement() // Customer must leave

10 out ! Full() // Tell customer that the witing room is full
11 } else {
12 val r = out !! Seat()_ // Tell customer that he got a seat
13 seats.write(r) // Add customer to waiting queue
14 }
15 in // Return input endpoint of customer channel
16 }
17

18 override def run(): Unit = {
19 val (bIn, bOut) = LocalChannel.factory[Available]()
20 new Barber(bOut).start() // Spawn barber with output endpoint
21 loop(bIn) // Loop on the input endpoint
22 }
23

24 private def loop(bIn: In[Available]): Unit = {
25 bIn ? { avl => // The barber is available
26 val cust = seats.read // Take 1st customer, sleep if none
27 waiting.getAndDecrement() // Customer is leaving the seat
28 val cust2 = cust !! Ready()_ // Notify that barber is ready
29 // Forward the customer to the barber
30 val bIn2 = avl.cont !! Serve(cust2)_ // bIn2: In[Available]
31 loop(bIn2) // Keep interacting with the barber
32 }
33 }
34 }

1 class Barber(c: Out[Available]) extends Runnable {
2 override def run(): Unit = {
3 loop(c)
4 }
5

6 private def loop(c: Out[Available]): Unit = {
7 (c !! Available()_) ? { srv => // Got customer
8 val d = srv.p.receive // Got haircut descr
9 val payC = d.cont !! Haircut()_ // Cut hair

10 val pay = payC.receive // Wait payment
11 // Got pay, no continuation: customer done
12 loop(srv.cont) // Continue shop interaction
13 }
14 }
15 }

1 class Customer(shop: Shop) extends Runnable {
2 override def run(): Unit = {
3 val s = shop.enter() // Type: In[WaitingRoom]
4 s ? {
5 case Full() => { // No seats
6 Thread.sleep(...) // Random wait
7 run() // Try taking a seat again
8 }
9 case m @ Seat() => { // Got a seat

10 val r = m.cont.receive // Barber ready
11 val cutC = r.cont !! Descr("Fancy cut")_
12 val cut = cutC.receive // Wait for cut
13 cut.cont ! Pay(42) // Cut done, paying
14 }
15 }
16 }
17 }

Figure 8 Sleeping barber (Theorem 4.3): shop, barber and customer implementations.

applications could mostly use the In.receive/Out.send methods, and could benefit from an
optimised implementation of In/Out that (when possible) bypasses In.future/Out.promise.
We developed this idea with the QueueIn/QueueOut classes: internally, they deliver messages
through Java LinkedTransferQueues (under the runtime linearity constraints L1/L2 of §3.1)
– and only allocate and use a Future/Promise when the .future/.promise methods are
explicitly invoked. Moreover, we optimised the QueueOut.!! method to reuse queues when
continuing a session. The resulting performance improvements are shown in § 6.2.

Network-transparent actor-based channels. We implemented proof-of-concept network-
transparent subclasses of In/Out, called ActorIn/ActorOut: they deliver messages by auto-
matically spawning Akka Typed actors [29], which in turn can communicate over a network.

Using such actor-based channels, a local process can interact with a remote one through
a local actor-based endpoint that proxies a remote endpoint. E.g., to obtain a remote
interaction between greeting server and client (Theorem 4.2) we can run the former as:

1 val (in, out) = ActorChannel.factory[Start]("start"); server(in)

Now, out.path contains the Akka Actor Path [27] of an automatically-generated actor. Such
a path can be used, even on a different JVM, to instantiate a proxy for out, as follows:

1 val c = ActorOut[Start]("akka.tcp://sys@host.com:5678/user/start"); client(c)

where ActorOut’s argument matches out.path above. Then, the client and server will
interact over a network, without changing their code.

All the examples in this paper can also run on ActorChannels, simply by replacing
the calls to LocalChannel.factory[A]() with ActorChannel.factory[A]() (e.g. in Fig. 8,
Shop, line 6). To achieve complete transport-independence, factory can be parameterised.

We choose Akka as a message transport medium due to its widespread availability, using
Akka Typed to obtain stronger static typing guarantees throughout the implementation.
The main challenges were related to making ActorIn/ActorOut instances serializable: this

ECOOP 2016

21:16 Lightweight Session Programming in Scala

is a crucial requirement, as channel endpoints might appear (as payloads or continuations)
in messages sent/received over a network. In particular, sending an ActorOut[A] roughly
corresponds to sending an ActorRef[A] instance (which is serializable out-of-the-box) – but
sending an ActorIn[A] has no Akka equivalent, and requires some internal machinery.

Network-transparent stream-based channels. Often, programs interacting over a network
are implemented with different languages, and use bare TCP/IP sockets without a common
higher-level networking framework. Still, such programs might need to observe complicated
protocols (e.g. RFC-based ones like POP3, SMTP, etc.) that can be abstractly represented
as session types [12, 21]. To address this scenario, we extended lchannels with channel end-
points that send/receive messages through Java InputStream/OutputStreams, obtained e.g.
from a network socket. The main classes are StreamIn/StreamOut (extending resp. In/Out),
and can only be instantiated by providing a protocol-specific StreamManager which can
serialize/deserialize messages to/from a stream of bytes (tracking the session status if needed).

Message Text format
Greet("Alice") GREET Alice
Hello("Alice") HELLO Alice

Bye("Alice") BYE Alice
Quit() QUIT

For example, suppose that the “greeting protocol” from The-
orem 4.2 abstracts a textual protocol as shown on the left,
and we want our client to interact with a third-party server
using that textual format over TCP/IP sockets. We first
need to derive the StreamManager class, implementing a

HelloStreamManager that suitably serializes/deserializes the textual messages. Then, we
can let our client talk with a remote server, via TCP/IP, using the textual format:

1 val conn = new Socket("host.com", 1337) // Hostname and port where greeting server runs
2 val strm = new HelloStreamManager(conn.getInputStream, conn.getOutputStream)
3 val c = StreamOut[Start](strm) // Output channel endpoint, towards host.com:1337
4 client(c)

Note that we did not change the code of client seen in Theorem 4.2: we leverage lchannels
and protocol classes to represent and type-check the high-level protocol structure (sequencing,
choices, recursion), while separating the low-level details from the logic of the program.

Error handling. The methods of In[A] seen in Fig. 6 do not handle errors; e.g., receive
throws an exception if no message arrives within the (implicit) Duration d. However, input
errors are quite common in real-world applications: e.g., the process at the other endpoint
might not timely send a message, or may send a wrong message that a StreamManager
cannot deserialize, or a network problem may occur. As typical for Scala APIs, we extended
In[A] to capture failures as Try[A] values, via 2 additional methods: tryReceive and ??.

1 c ?? { case Success(m) => m match {
2 case A() => println("Got A")
3 case B() => println("Got B") }
4 case Failure(e) => /* Inspect e */ }

E.g., the branching on AorB in Theorem 3.1 can be
made error-resilient by using c.??, as shown on the
left: the top-level matching is now on Try[AorB].

6 Evaluation

We now assess the practicality of the approach in § 4.2 with a case study based the “client
with frontend” in Fig. 1 (§ 6.1), and a performance evaluation of lchannels (§ 6.2).

6.1 A case study: application server with frontend
This section shows how our approach can address the “server with frontend” scenario in
§ 1. We consider an application server that is a chat server allowing users to join/leave
chat rooms, and send/receive messages to/from them. We formalise the protocols of the

A. Scalas and N. Yoshida 21:17

application (§ 6.1.1), and illustrate some characteristics of the implementation (§ 6.1.2), and
discuss how development was aided by CPS protocols and lchannels (§ 6.1.3).

6.1.1 The protocols

We formalise the protocols in Fig. 1 as session types, dividing them in two groups: public
(used by clients), and internal (used for frontend/auth/chat server interaction).

Public protocols. The session type Sfront formalises the usage of the channel endpoint that
the frontend handles while interacting with a client. It is defined as follows:

Sfront = ?GetSession(Id).(!New(Sauth)⊕ !Active(Sact)) Sauth = !Authenticate(Cred).(?Success(Sact) & ?Failure)

Sact = µX .(!Quit ⊕ !GetId.?Id(Id).X ⊕ !Ping.?Pong.X ⊕ !Join(String).?ChatRoom((Sr, Srctl)).X)

The service implementing Sfront waits for a GetSession(Id) request from a client; then,
with an internal choice ⊕, it might answer by sending either New(Sauth) or Active(Sact):

New carries a Sauth-typed channel endpoint, talking with the auth server: it allows the
client to send an Authenticate(Cred) message (with Cred being the credentials), and
wait for either Success(Sact) or Failure (the Sact-typed channel is explained below);
Active carries an Sact-typed channel endpoint representing the active “session loop”
(Fig. 1). When the client receives it, Sact (which is recursive) allows to choose among:

Quit. In this case, the chat session ends;
GetId. Then, the client receives an Id(Id) answer whose payload is the current session
identifier, and continues the session recursively;
Ping(String). Then, the client receives a Pong(String), and continues recursively;
Join(String), with the payload being a chat room name. Then, the client joins a chat
room, gets a ChatRoom ((Sr, Srctl)) answer, and the session continues recursively. The
two channels endpoints in the payload allow to interact with the chat room:
∗ Sr = µY .?NewMessage((String,String)).Y & ?Quit. This recursive endpoint allows

the client to receive either a NewMessage from the chat room (with the payload
being the sender username and the message text), or Quit (ending the interaction);

∗ Srctl = µZ .!SendMessage(String).Z ⊕ !Quit. This endpoint allows the client to
send either a message on the chat room (with the payload being the text), or Quit.

The CPS protocol classes of the session types above are extracted as in the examples of § 4.4,
and are almost identical to Fig. 2. In particular, we use Command as the sealed abstract
class for the top-level choice in Sact (this detail will be mentioned again in § 6.1.2).

Internal protocols. Fig. 1 also outlines the internal communications among the frontend,
authentication and chat server: they can be formalised as session types, too – as for barber-
shop interaction in Theorem 4.3. Here, we only detail the frontend-server interaction type:

SFS = µX .!GetSession(Id).(?Success(Sact).X & ?Failure.X)

The frontend recursively queries for active sessions (passing the Identifier received from
a client), getting either Success or Failure. In the first case, the message payload is a
Sact-typed channel endpoint, that will be forwarded to the client with an Active message.

ECOOP 2016

21:18 Lightweight Session Programming in Scala

6.1.2 The implementation
This case study uses higher-order session types to naturally model the “handles” mentioned
in § 1. A difference w.r.t. Theorem 4.3 is that the delegation appears explicitly in client’s
session types, e.g. in Active messages with a channel as payload. In CPS protocols, this
difference is almost negligible: the Active message classhas no continuation, but the client
should keep interacting via the Out endpoint in the payload – as per rule L1 in § 3.1.

The server-side implementation reuses several solutions from Theorem 4.3 – e.g., internal
FIFOs for storing and later processing requests: this happens e.g. when the single-threaded
chat server manages multiple client sessions. The main difference w.r.t. Theorem 4.3 is that
requests are queued asynchronously (via In.future) and enriched with internal data.

1 class ChatServer(...) extends Runnable {
2 ...
3 private def createSession(username: String): Out[Command]) = {
4 val id = allocUniqueSessionId()
5 val (in, out) = LocalChannel.factory[Command]()
6 in.future.onComplete { // Using scala.util.{Success, Failure}
7 case Success(cmd) => queueRequest(Success((id, cmd)))
8 case Failure(e) => queueRequest(Failure(e))
9 }

10 // Add the new session to the list of known sessions
11 sessions(id) = ... /* session info, including username */
12 out
13 } }

E.g., the chat server calls the method
on the left when the auth server asks
to create a new session for username:
it reserves a session id (line 4), cre-
ates the channel endpoints in,out
carrying a Command (line 5), keeps
in, and returns out (line 12), that
will be the payload of a NewSession

message. The client Command is received asynchronously via in.future: in lines 6–9, cmd
is paired with the session id, and queued (line 7). When the pair is later dequeued and
processed, id tells on which session cmd is acting. A similar queuing is performed as the
session progresses; e.g., when a cmd of type Ping is dequeued, the server runs:

1 val in2 = cmd.cont !! Pong(cmd.msg)_ // cmd’s type: Ping; in2’s type: In[Command]

and in2.future is used for queuing the next client command, like in.future in lines 6–9.

6.1.3 Lessons learned
As expected, CPS protocols and lchannels allow the Scala type checker to detect protocol
errors that usually arise on untyped channels, e.g., trying to send the wrong type of message,
or forgetting to consider some cases when branching with In.?. This greatly simplified the
present case study, where multiple channels with various protocols are handled concurrently.
Since we leverage the existing Scala type system, modern Scala IDEs (such as [30]) provide
channel usage errors and hints, e.g. via typing information and auto-completion suggestions.

However, as seen in § 3.1, Scala and lchannels cannot perform static linearity checks:
hence, they cannot spot two kinds of errors, illustrated below, that impact session progress.

Double usages of output endpoints. They occur when an Out[A] instance is used twice to
send A-typed values: then, by L1 in §3.1, an exception is thrown, and the extra message is
not sent. This kind of error never occurred in our experience: the CPS interaction guided
by lchannels seems to naturally shape programs where output endpoints are discarded
after used. Moreover, as for Scala Promises, double outputs causes an immediate runtime
error, that (we believe) should usually arise in proximity of the code requiring a fix.

Unused channel endpoints. Not performing an output can leave a process at the other
endpoint stuck, waiting for input – and this could escalate to other processes waiting on
other channels; this problem can also arise if a program does not input a message whose
continuation/payload is an output channel. Spotting this kind of errors can be tricky,
especially if channels are dynamically generated, sent, received, stored in collections (as
in our case study). lchannels mitigates this issue via timeouts on the receiving side

A. Scalas and N. Yoshida 21:19

(§ 5): they allow to see which channel is stuck in which state – and thus, which process is
not producing an output. In our case study, a few issues of this kind were easily fixed.

6.2 Benchmarks
We implemented several micro-benchmarks to evaluate how lchannels impacts communica-
tion speed w.r.t. other inter-thread communication methods: Fig. 9 shows the results. The
benchmarks are mainly inspired by [24]; “Streaming” is a parallel blend of “Ring”+“Counting
actor” : 16 threads are connected in a ring and a sequence (“stream”) of messages is sent at
once, measuring the time required for all to complete one loop.

We wrote an implementation of each benchmark using Out.send/In.receive for inter-
thread communication, instantiating them with LocalChannels, QueueChannels and Actor-
Channels (columns 1, 5, 7). As a comparison, we adapted such implementations to interact
via Promises/Futures (column 2), and also to interact “non-CPS” via scala.concurrent.
Channels, and Java ArrayBlockingQueues / LinkedTransferQueues (columns 3, 4, 6).

The overhead of lchannels w.r.t. “non-CPS” queue-based interaction has two origins:

1. runtime linearity checks, i.e. inspecting/setting a flag when a channel endpoint is used;
2. repeated creation of In/Out continuation pairs (§ 4.3): in comparison, our “non-CPS”

benchmarks create Scala channels / Java queues just once at the beginning of each session.

Hardware/JVM settings highly influence the measurements: queues or Promises/Futures
can become relatively faster/slower, or show more/less variance, depending on the benchmark.
Still, the results tend to be consistent with Fig. 9. It can be seen that LocalChannels add
a small slowdown to the underlying Promises/Futures. QueueChannels are considerably
faster, except when many short-lived sessions are rapidly created (this scenario is stressed by
“Chameneos”, against the optimisations seen in § 5); still, QueueChannels add a perceivable
overhead on the underlying LinkedTransferQueues. ActorChannels are slower, especially
with many threads and low parallelism (as in “Ring”): it is due to the (currently unoptimised)
internal machinery that makes ActorChannels network-transparent, and more suitable for
distributed settings where network latency can make the slowdown less relevant.

Notably, the usual “non-CPS” communication we implemented (and measured) over Scala
channels / Java queues requires connecting pairs of threads P1,P2 with pairs of queues (one
carrying messages from P1 to P2, the other from P2 to P1). Such queues have type Queue[A],
where A must cover all the message types that could be sent/received: for protocols with
sequencing and branching, this leads to loose static type checks, that combined with the lack
of runtime monitoring, increase the risk of protocol violations errors.

7 A formal foundation

We now explain the formal foundations of our approach (as outlined in § 4.2), by detailing
how to extract CPSP classes from session types, and studying how Scala’s type system
handles session subtyping/duality. We summarise session subtyping (§ 7.1), and we introduce
our encoding from session to linear types (§ 7.2), and then into Scala types (§ 7.3).

7.1 Session types and subtyping
We defined session types and duality in § 2; to ease the treatment, we adopt 2 restrictions.
I Remark 7.1 (Syntactic restrictions). For all S, (i) each label is unique, and also a valid
Scala class name, and (ii) each µ binds a distinct variable that actually occurs in its scope.

ECOOP 2016

21:20 Lightweight Session Programming in Scala

35000
36000
37000
38000
39000
40000

Ping-pong (2000000 message exchanges)

15000
16500
18000
19500
21000

lchannels
(Promise/

Future)

Promise/
Future

Scala
channels

Array
Blocking
Queues

lchannels
(queues)

Linked
Transfer
Queues

lchannels
(actors)

800
1000
1200
1400

m
se

cs

150000
165000
180000
195000
210000

Ring (1000 threads, 2000 loops)

lchannels
(Promise/

Future)

Promise/
Future

Scala
channels

Array
Blocking
Queues

lchannels
(queues)

Linked
Transfer
Queues

lchannels
(actors)

12500

15000

17500

20000

m
se

cs

56000
58000
60000
62000

Chameneos (256 chameneos, 2000000 meetings)

lchannels
(Promise/

Future)

Promise/
Future

Scala
channels

Array
Blocking
Queues

lchannels
(queues)

Linked
Transfer
Queues

lchannels
(actors)

7000

7500

8000

8500

m
se

cs

60000
63000
66000
69000

Streaming (16 threads, 3000000 msgs sent/recvd)

17000
18000
19000
20000
21000

lchannels
(Promise/

Future)

Promise/
Future

Scala
channels

Array
Blocking
Queues

lchannels
(queues)

Linked
Transfer
Queues

lchannels
(actors)

60
90

120
150
180

m
se

cs

Figure 9 Benchmark results (box&whisker plot): 30 runs× 10 JVM invocations, Intel Core i7-4790
(4 cores, 3.6 GHz), 16 GB RAM, Ubuntu 14.04, Oracle JDK 64-bit 8u72, Scala 2.11.7, Akka 2.4.2.

Restriction (i) allows to directly generate a Scala case class from each internal/external
choice label. Restriction (ii) is a form of Ottmann/Barendregt’s variable convention [4].

The session subtyping relation ⩽ allows to safely replace a S′-typed channel endpoint
with a S-typed one, provided that S ⩽ S′ holds. The relation is defined as follows.

I Definition 7.2 (Session subtyping [13]). The subtyping relation between session types is
coinductively defined by the following rules (where ⩽B is a subtyping between basic types):

∀i ∈ I ∶ Ti ⩽ T
′
i Si ⩽ S

′
i˘

i∈I?li(Ti).Si ⩽
˘
i∈I∪J ?li(T ′i).S′i

[⩽-Ext]
∀i ∈ I ∶ T ′i ⩽ Ti Si ⩽ S

′
i

⊕i∈I∪J !li(Ti).Si ⩽ ⊕i∈I !li(T ′i).S′i
[⩽-Int]

end ⩽ end [⩽-End]
S{µX .S/X} ⩽ S′

µX .S ⩽ S′
[⩽-µL]

S ⩽ S′{µX .S
′

/X}

S ⩽ µX .S
′ [⩽-µR]

T ⩽B T
′

T ⩽ T ′
[⩽-B]

Rule [⩽-Ext] says that an external choice S is smaller than another external choice S′ iff S
offers a subset of the labels, and for all common labels, the payload and continuation types
are in the relation. The rationale is that a program which correctly uses an S′-typed channel
endpoint supports all its inputs – hence, the program also supports the more restricted inputs
of an S-typed endpoint. Dually, [⩽-Int] says that an internal choice S is smaller than another
internal choice S′ iff S offers a superset of the labels, and for all common labels, the payload
and continuation types are in the relation. The rationale is that a program which correctly
uses an S′-typed channel endpoint might only perform one of the allowed outputs, that is
also allowed by the more liberal S-typed endpoint. [⩽-End] says that a terminated session has
no subtypes. [⩽-µL] and [⩽-µR] are standard. [⩽-B] extends ⩽ to basic types.

7.2 Linear I/O types (with records and variants)
In order to encode session types into Scala types, we exploit an intermediate encoding into
linear types for input and output [36]. We focus on a subset of such types, defined below.

I Definition 7.3. Let B be a set of basic types (§ 2). A linear type L is defined as:

L ∶∶= ?(U) ∣ !(U) ∣ ● U ∶∶= [li_{p ∶ Vi,c ∶ Li}]i∈I ∣ µX .U ∣ X V ∶∶= B ∣ L (closed)

where (i) recursion is guarded, and (ii) all li range over pairwise distinct labels. We also
define the carried type of L as carr(?(U)) = carr(!(U)) = U .

A. Scalas and N. Yoshida 21:21

?(U) (resp. !(U)) is the type of a linear channel endpoint that must be used to input
(resp. output) one value of type U ; ● denotes an endpoint that cannot be used for I/O. U is
a (possibly recursive) variant type where each li-labelled element is a record with 2 fields: p
(mapped to a basic value or a linear channel endpoint) and c (mapped to a linear endpoint).

I Definition 7.4 ([36]). The subtyping relation ⩽` between linear types is coinductively
defined by the following rules (where ⩽B is a subtyping between basic types):

U ⩽` U
′

?(U) ⩽` ?(U ′)
[⩽`-In]

U ′ ⩽` U

!(U) ⩽` !(U ′)
[⩽`-Out] ● ⩽` ● [⩽`-End]

V ⩽B V
′

V ⩽` V
′ [⩽`-B]

∀i ∈ I ∶ Vi ⩽` V
′
i Li ⩽` L

′
i

[li_{p ∶ Vi,c ∶ Li}]i∈I ⩽` [li_{p ∶ V ′i ,c ∶ L′i}]i∈I∪J
[⩽`-VR]

U{µX .U/X} ⩽` U
′

µX .U ⩽` U
′ [⩽`-µL]

U ⩽` U
′{µX .U

′

/X}

U ⩽` µX .U
′ [⩽`-µR]

The rules in Theorem 7.4 are standard: they include the subtyping for variants and records
(rule [⩽`-VR]) and left/right recursion ([⩽`-µL]/[⩽`-µR]). [⩽`-In] and [⩽`-Out] provide respectively
the subtyping for linear inputs (covariant w.r.t. the subtyping of carried types) and outputs
(which is instead contravariant): note that they are matched by the variances of In[⋅]/Out[⋅]
(Fig. 6, left). By [⩽`-End], ● is the only subtype of itself. [⩽`-B] extends ⩽` to basic types.

In the linear types world, the duality between two channel endpoints is very simple: it
holds when they are both ●, or they are an input and an output carrying the same type.

I Definition 7.5 ([8]). The dual of L (written L) is: ?(U) = !(U); !(U) = ?(U); ● = ●.

We now introduce our encoding of session types into linear types. Albeit inspired by
[8, 6], it features a different treatment of recursion, allowing us to bridge into Scala types.

I Definition 7.6 (Encoding of session into linear types). Let the action of a session type be:
act(

˘
i∈I?li(Ti).Si) = ? act(⊕i∈I !li(Ti).Si) = ! act(µX .S) = act(S)

Moreover, let Γ be a partial function from session type variables to linear types. The encoding
of S into a linear type w.r.t. Γ, written JSKΓ, is defined as:

J
˘
i∈I?li(Ti).SiKΓ = ?([li_{p ∶ JTiK,c ∶ JSiKΓ}]i∈I) J⊕i∈I !li(Ti).SiKΓ = !([li_{p ∶ JTiK,c ∶ JSiKΓ}]i∈I)

J
˘
i∈I?li(Ti).SiK

µ
Γ = [li_{p ∶ JTiK,c ∶ JSiKΓ}]i∈I J⊕i∈I !li(Ti).SiKµΓ = [li_{p ∶ JTiK,c ∶ JSiKΓ}]i∈I

JµX .SKΓ = act(S)(µX .JSKµΓ{act(S)(X)/X}) JendKΓ = ●

JµX .SKµΓ = µX .JSKµΓ{act(S)(X)/X} JXKΓ = Γ(X) JT KΓ = T (if T ∈ B)

The encoding of S into a linear type is JSK∅, also abbreviated JSK.

Theorem 7.6 is inductively defined on S. Intuitively, it turns end into ●, and external
(resp. internal) choices into linear input (resp. output) types. In the latter case, each choice
label becomes a label of the carried variant, its payload is encoded into the p field of the
corresponding record, and its continuation into the c field. Crucially, when encoding an
internal choice, c carries the dual of the encoding of the original continuation: this is because,
as seen in § 4.3, sending a value requires to allocate a new pair of I/O channel endpoints,
keep one of them, and send the other (i.e., the dual, by Theorem 7.5) for continuing the
session. Recursion is encoded by turning a recursive external (resp. internal) choice into a
linear input (resp. output) carrying a recursive variant: this “structural shift” is achieved
by collecting open recursion variables in Γ, and using the auxiliary encoding J⋅KµΓ. E.g., let
S = µX .?A.X: JSKΓ gives the type ?(µX .U), with U obtained by letting Γ′ = Γ{?(X)/X}, and
U = J?A.XKµΓ′ = [A_{p ∶ Unit, c ∶ JXKΓ′}] = [A_{p ∶ Unit, c ∶ ?(X)}] (see Theorem 7.11).

Our handling of recursion greatly affects our proofs, and is a main difference between
Theorem 7.6 and the encoding in [6]. Despite this, the crucial Theorem 7.2 still holds.

[Encoding preserves duality, subtyping]
q
S

y
= JSK, and S ⩽ S′ iff JSK⩽` JS′K.

ECOOP 2016

21:22 Lightweight Session Programming in Scala

7.3 From session types to Scala types
We now present our encoding of session types into Scala types. Since Scala has a nominal
type system but session types are structural, our encoding requires a nominal environment
(Theorem 7.7), giving a distinct class name to each subterm of S.

I Definition 7.7. A nominal environment for session types N is a partial function from
(possibly open) session types to Scala class names. N is suitable for S iff (i) dom(N)

contains all subterms of S (except end), (ii) is injective w.r.t. the internal/external choices
in its domain, (iii) maps each singleton internal/external choice to its label, (iv) is du-
ally closed, i.e. ∀S′ ∈ dom(N) ∶N(S′) = N(S′), and (v) if N(µX .S

′) is defined, then
N(µX .S

′) = N(X) = N(S′).

Our encoding of a session type S into a Scala type is given in Theorem 7.10. It relies
on an intermediate encoding of S into a linear type L, which is further encoded into Scala
classes. Such an intermediate step will allow us to exploit the fact that L is either ●, or a
linear input/output ?(U)/!(U), for some (possibly recursive) U . We will see that:

if L is an input (resp. output), it will result in a lchannels In[⋅] (resp. Out[⋅]) type;
U also appears in the dual L (by Def. 7.5), corresponding to S (by § 7.2): it will produce
both the type parameter of In/Out above, and the CPSP classes of S/S.

We first formalise the encoding from linear types to Scala types, in Theorem 7.8 below.

I Definition 7.8. A nominal environment for linear types M is a partial function from
(possibly open) variant types to Scala class names. M is suitable for L iff dom(M) contains
all subterms of L (except ●), is injective w.r.t. the variants in its domain, maps each singleton
variant to its label, and ifM(µX .U) is defined, thenM(µX .U) =M(X) =M(U). GivenM
suitable for L, we define the encoding of L into Scala types w.r.t.M, written jLoM, as:

j?(U)oM = In[M(U)] j!(U)oM = Out[M(U)] j●oM = Unit jV oM = V (if V ∈ B)

jUoM =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

case class l (p: jV o
M

)(val cont: jLo
M

)

jU ′o
M

if U ′ = carr(V)

jU ′′o
M

if U ′′ = carr(L)
if U = [l_{p ∶ V , c ∶ L}]

jUoM =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sealed abstract class M(U)
case class li (p: jVioM)(val cont: jLioM) extends M(U)
jU ′o

M
if U ′ = carr(Vi)

jU ′′o
M

if U ′′ = carr(Li)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭i∈I

if U = [li_{p ∶ Vi,c ∶ Li}]i∈I

and ∣I ∣ > 1

jµX .UoM = jUoM jXoM =M(X)

The encoding in Theorem 7.8 is inductively defined on L. The first 3 cases turn a top-level
?(⋅)/!(⋅)/● into a corresponding In[⋅]/Out[⋅]/Unit type in Scala, and the 4th case keeps
basic types unaltered; note that when encoding ?(U) (resp. !(U)), the type parameter of the
resulting In[⋅] (resp. Out[⋅]) is the Scala class name thatM maps to U . The remaining cases
of Theorem 7.8 show how U originates the session protocol classes. Singleton variants are
turned into case classes, while non-singleton variants are turned into sealed abstract
classes (with a name given byM), extended by one case class per label. Note that if
the p field of a variant consists in some linear type ?(U ′)/!(U ′), the CPSP classes of U ′
are generated as well – and similarly for the c field. A recursive term µX .U is handled
by noticing that, by Theorem 7.7, M(µX .U) =M(X) =M(U): hence, X is encoded as
M(X) =M(µX .U).

The last ingredient for our encoding is a way to turn a nominal environment for a session
type (Theorem 7.7) into one for a linear type (Theorem 7.8): this is formalised below.

A. Scalas and N. Yoshida 21:23

I Definition 7.9. We say that S maps S′ to U ′ (in symbols, S ⊢ S′ ↦ U ′) iff, for some Γ,
the computation of JSK involves either (a) an instance of JS′KΓ returning ?(U ′) or !(U ′), or
(b) an instance of JS′KµΓ returning U ′. If N is suitable for S, the linear encoding of N (w.r.t.
S) is a nominal environment for linear types denoted with JN KS , such that:

JN KS(U) = A iff ∃S′∶ S ⊢ S′ ↦ U and N(S′) = A

Intuitively, Theorem 7.9 says that if N maps an internal/external choice S′ to some class
name A, then JN KS maps the variant obtained from the encoding of S′ to the same A.

We are now ready to define our encoding of session types into Scala types.

I Definition 7.10. Given N suitable for S, we define the encoding of S into a Scala type
as ⟪S⟫N = jJSKoJN KS

, and the protocol classes of S as: prot⟪S⟫N = jcarr(JSK)oJN KS
.

Theorem 7.10 gives us two pieces of information: ⟪S⟫N is the type In[⋅]/Out[⋅]/Unit on
which a Scala program can communicate according to S, and prot⟪S⟫N gives the definitions
of all necessary CPSP classes. Technically, S and N are first linearly encoded (via Definitions
7.6 and 7.9); then, the result is further encoded into Scala types (via Theorem 7.8).

I Example 7.11. The linear encoding of the greeting session type Sh in § 2 is:

JShK = !(Uh) where Uh = µX .

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Greet_{p ∶ String,c ∶ !([Hello_{p ∶ String,c ∶ !(X)},

GoodNight_{p ∶ String,c ∶ ●}
])},

Quit_{p ∶ Unit,c ∶ ●}

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Let us now define N , as described in Theorem 4.2, making it suitable for Sh (as per
Theorem 7.7):

N
⎛
⎜
⎝

!Greet(String).(?Hello(String).X
& ?Bye(String).end)

⊕ !Quit(Unit)

⎞
⎟
⎠
= Start N(Sh) = Start

N(X) = Start
N(

?Hello(String).X
& ?Bye(String).end) = Greeting

Now, we can verify that the following mappings hold:

Sh ⊢
⎛
⎜
⎝

!Greet(String).(?Hello(String).X
& ?Bye(String).end)

⊕ !Quit(Unit)

⎞
⎟
⎠
↦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Greet_{p ∶ String,c ∶ !([Hello_{p ∶ String,c ∶ !(X)},

Bye_{p ∶ String,c ∶ ●}
])},

Quit_{p ∶ Unit,c ∶ ●}

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Sh ⊢ Sh ↦ Uh Sh ⊢X ↦X Sh ⊢ (
?Hello(String).X
& ?Bye(String).end) ↦ [

Hello_{p ∶ String,c ∶ !(X)},

Bye_{p ∶ String,c ∶ ●}
]

Hence, by Theorem 7.9, JN KSh
maps the first, second and third (recursive) variant types

above to Start, and the last one to Greeting. The encoding ⟪Sh⟫N = jJShKoJN KSh

is
Out[Start], while prot⟪Sh⟫N = jcarr(JShK)oJN KSh

gives the Scala protocol classes seen in
Theorem 4.2.

We conclude with two results at the roots of our session-based development approach
(§ 4.2). Letthe dual of a Scala type be In[A] = Out[A], Out[A] = In[A], and Unit = Unit.

For all S, ⟪S⟫N = ⟪S⟫N and prot⟪S⟫N = prot⟪S⟫N .
§ 7.3 says that a session type and its dual are encoded as dual Scala types, and dual session
types have the same protocol classes: this justifies steps D1–D3 in § 4.2.

Finally, let <∶ be the Scala subtyping (the full definition is available in the on-line technical
report, see § 1). Suppose that we encode a session type S, getting B, and write a program
using A such that A <∶ B or B <∶ A: by §7.3, this is sound. For all A, S,N , A <∶ ⟪S⟫N implies
one of the following:

(a1) S = end, and: A <∶ Unit and ∀B∶A /∈ {In[B],Out[B]};
(a2) act(S) = ?, and: A <∶ Null or ∃B∶A = In[B] and (Null ≨∶ B implies ∃S′,N ′ ∶ A = ⟪S′⟫N ′ and S′ ⩽ S);
(a3) act(S) = !, and: A <∶ Null or ∃B∶A = Out[B] and (B ≨∶ AnyRef implies A = ⟪S⟫N).
Moreover, for all A, S,N , ⟪S⟫N <∶ A implies one of the following:

ECOOP 2016

21:24 Lightweight Session Programming in Scala

(b1) S = end, and: Unit <∶ A and ∀B∶A /∈ {In[B],Out[B]};
(b2) act(S) = ?, and: AnyRef <∶ A or ∃B∶A = In[B] and (B ≨∶ AnyRef implies A = ⟪S⟫N);
(b3) act(S) = !, and: AnyRef <∶ A or ∃B∶A = Out[B] and (Null ≨∶ B implies ∃S′,N ′ ∶ A = ⟪S′⟫N ′ and S ⩽ S′).

Roughly, § 7.3 says that Scala subtyping reflects session subtyping, thus preserving its
safety/exhaustiveness guarantees (S1 and S2 in § 2.1). When end is encoded, items a1/b1
say that its Scala sub/super-types cannot be In/Out, i.e. their instances do not allow I/O.
For item a2, consider Theorem 4.3: we have In[Full] <∶ In[WaitingRoom], reflecting
the fact that ?Full ⩽ Scstm (by [⩽-Ext]). For item b3, consider Theorem 4.2: we have
Out[Start] <∶ Out[Quit], reflecting the fact that Sh ⩽ !Quit (by [⩽-µL] and [⩽-Int]). § 7.3 also
says that <∶ is stricter than ⩽ – e.g., by item a3, the Scala encoding of an internal choice has
no subtypes, and by item b2, an external choice has no supertypes. However, Scala allows
for sub/super-types that do not correspond to any session type: besides the unavoidable
Null cases (items a2, a3, b3), it is possible e.g. to write a method f with a parameter of
type In[Any] (b2), or In[Nothing] (a2), or Out[Any] (a3), or Out[Nothing] (b3). This
does not compromise safety/exhaustiveness, either: In[Any] makes f accept any message,
Out[Nothing] forbids f to send, while In[Nothing]/Out[Any] are subtypes of all In/Out
types – thus making f non-applicable to any channel endpoint obtained by encoding a session
type. Notably, this holds by co/contra-variance of In[+A]/Out[-A] (Fig. 6, left).

8 Related work

Session types and their implementation. Session types were introduced by Honda et al. in
[18, 39, 19], as a typing discipline for a variant of the π-calculus (called session-π in §2). They
have been studied and developed in multiple directions during the following decades, notably
addressing multiparty interactions [20] and logical interpretations [5, 43]. The encoding of
session types in linear π-calculus types has been studied in [9, 8, 6, 7]; our work is mainly
based on [8], but our treatment of recursion is novel (see § 7.2).

Session types have been mostly implemented on dedicated programming languages with
the advanced type-level features outlined in § 2 [14, 43, 11, 40, 3]. [32, 34] aim at an
integration with Haskell, using monads to enforce linearity (at the price of a restrictive and
rather complicated API). [25] adapts [34] to Rust, exploiting its affine types, but showing
limitations to binary internal/external choices. [23, 37, 38] are based on a Java language
extension and runtime with session-type-inspired primitives for I/O and branching. [22]
integrates session types in Java via automatic generation of classes representing session-typed
channel endpoints, with run-time linearity checks. The main differences w.r.t. our work are
that [22] is closer to session-π, is based on the Scribble tool [44], supports multiparty sessions,
and generates classes which represent both a channel endpoint and its protocol; hence, in the
binary setting, each endpoint has its own hierarchy of generated classes that is different (but
“dual”) w.r.t. the other endpoint. Instead, our I/O endpoints are closer to linear types for
the π-calculus [36]: they take the protocol as a type parameter, from a set of CPSP classes
which is common between the two endpoints. Other differences are mostly due to the Java
type system, which e.g. does not support case classes (complicating exhaustiveness checks)
nor declaration-site variance (complicating the handling of I/O co/contra-variance).

The work closer to ours is [33]: it presents an encoding of session types in a ML-like
language, and an OCaml library reminiscent of lchannels. We share several ideas and
features, including the theoretical basis of [8]. The differences are at technical and API
design levels, due to different languages and goals (type inference vs. CPSP extraction);given
the wide adoption of Scala, we focus on practical validation with use cases and benchmarks.

Strong typing guarantees for concurrent applications have been a longstanding goal for

A. Scalas and N. Yoshida 21:25

the Scala and Akka communities. In the actor realm, Akka Typed (§ 1) is remarkably close
to [17]: both propose ActorRef[A]-typed actor references. We drew inspiration from them
and CPSPs, merging the theoretical basis of [8]. Some (non-linear) channel APIs have been
tentatively introduced in Akka, e.g. channels (Akka 1.2) and macro-based typed channels
(Akka 2.1); however, they were later deprecated, mainly due to design and maintainability
issues [26]. lchannels is based on a clear and well-established theory, adapted to the Scala
setting: thus, the implementation is fairly simple and maintainable, not requiring macros.

9 Conclusions

We showed how session programming can be carried over in Scala, by representing protocols
as types that the compiler can check. We based our approach on a lightweight integration
of session types, based on CPSP classes and the lchannels library. We showed that our
approach supports local and distributed interaction, has a formal basis (the encoding of
session types into linear I/O types), and attested its viability with use cases and benchmarks.

We plan to extend our approach to multiparty session types (MPSTs), by extracting CPSP
classes from a global type [20], rather than addressing multiple binary session separately (as
in Theorem 4.3 and § 6.1). Just as binary session typing guarantees safe and deadlock free
interaction for two parties involved in one session (§ 2.2), MPSTs extend such a guarantee to
two or more parties; the main challenge is that encoding MPSTs into Scala types might be
complex, and require a tool akin to [22].

The Scala landscape is fast-moving, and recent developments may influence the evolution
of our work. [41] introduces customisable effect for Scala: by extending the lchannels I/O
operations with an effect, we could obtain stronger linearity guarantees – e.g., ensuring that
a program does not “forget” a session (§ 6.1.3). [15] studies capabilities for borrowing object
references: they could ensure that a channel endpoint is never used if sent (§ 3.1). Similar
guarantees could be achieved by examining the program call graph [1]. Recent results on
Scala’s type system (e.g. on path-dependant and structural types [2, 35]) might improve our
encoding, removing the limitation on the uniqueness of choice labels (Remark 7.1).

We will further extend and optimise lchannels and its API: many improvements are
possible, and the transport abstraction allows to easily compare different implementations,
under different settings and uses. We also plan to extend our approach to other languages:
one candidate is C#, due to its support for first-class functions and declaration-site variance.

Towards session types for Akka Typed (and other frameworks). This work focuses on
lchannels, but our approach can be generalised to other communication frameworks. One
possible way is abstracting under the In[⋅]/Out[⋅] API, as in § 5; another way is directly
using the I/O endpoints offered by other frameworks. Consider e.g. Akka Typed: we can adapt
CPSP extraction (Theorem 7.8) to yield ActorRef[A] types instead of Out[A], obtaining
CPSP classes similar to those in Fig. 2. Remarkably, Out[A] and ActorRef[A] are both
contravariant w.r.t. A, and enjoy similar subtyping properties (§ 7.3). However:
(i) Akka Typed does not offer an input endpoint similar to In[⋅]. Hence, session types

whose CPSPs carry input endpoints (e.g., Theorem 4.1, or Srctl in § 6.1.1) must be
adapted (i.e., sequences of two outputs or two inputs must be replaced with input-output
alternations);

(ii) instances of ActorRef[A] raise no errors when used multiple times for sending messages;
(iii) to produce and send a continuation ActorRef[A], it is customary to cede the control to

another actor (possibly a new one, as in Fig. 3); lchannels, instead, encourages the
creation and use of I/O endpoints along a single thread, in a simple sequential style.

ECOOP 2016

21:26 Lightweight Session Programming in Scala

Item 1 is a minor issue; 2 could be addressed, taking inspiration from the session/linear types
theory, by distinguishing unrestricted [42] ActorRefs (allowing 0 or more outputs of the
same type) from linear ActorRefs – with the former usable as the latter, but not vice versa.
Item 3 marks a crucial difference between reactive, actor-based concurrent programming
(where the protocol flow is decomposed into multiple input-driven handlers), and thread-based
programming. We plan to study the formal foundations for applying “session types as CPSPs”
in the reactive setting, and their feasibility w.r.t. software industry practices.

Acknowledgements. Thanks to Roland Kuhn, Julien Lange and the anonymous reviewers
for their helpful remarks on earlier versions of this paper. Thanks to Julien Lange and
Nicholas Ng for their feedback during artifact testing, and to the anonymous artifact reviewers
for their detailed remarks and suggestions.

References
1 Karim Ali, Marianna Rapoport, Ondřej Lhoták, Julian Dolby, and Frank Tip. Constructing

call graphs of Scala programs. In ECOOP, 2014. doi:10.1007/978-3-662-44202-9_3.
2 Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of path-dependent types. In

OOPSLA, 2014. doi:10.1145/2660193.2660216.
3 Stephanie Balzer and Frank Pfenning. Objects as session-typed processes. In AGERE!,

2015. doi:10.1145/2824815.2824817.
4 Hendrik Pieter Barendregt. The Lambda Calculus, Its Syntax and Semantics. North Hol-

land, 1985.
5 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In

CONCUR, 2010. doi:10.1007/978-3-642-15375-4_16.
6 Ornela Dardha. Recursive session types revisited. In BEAT, 2014. doi:10.4204/EPTCS.

162.4.
7 Ornela Dardha. Type Systems for Distributed Programs: Components and Sessions. Phd

thesis, Università degli studi di Bologna, May 2014.
8 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In PPDP,

2012. doi:10.1145/2370776.2370794.
9 Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus with

linear types. In CONCUR, 2011.
10 Edsger W Dijkstra. Cooperating sequential processes. Springer, 1965.
11 Juliana Franco and Vasco Thudichum Vasconcelos. A concurrent programming language

with refined session types. In SEFM, 2013. doi:10.1007/978-3-319-05032-4_2.
12 Simon Gay and Malcolm Hole. Types and subtypes for client-server interactions. In ESOP.

Springer Berlin Heidelberg, 1999. doi:10.1007/3-540-49099-X_6.
13 Simon Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Infor-

matica, 2005. doi:10.1007/s00236-005-0177-z.
14 Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session types.

J. Funct. Program., 20(1), January 2010. doi:10.1017/S0956796809990268.
15 Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing. In ECOOP,

2010.
16 Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland Kuhn, and

Vojin Jovanovic. Futures and Promises. URL: http://docs.scala-lang.org/overviews/
core/futures.html.

17 Jiansen He, Philip Wadler, and Philip Trinder. Typecasting actors: From Akka to TAkka.
In SCALA’14, 2014. doi:10.1145/2637647.2637651.

http://dx.doi.org/10.1007/978-3-662-44202-9_3
http://dx.doi.org/10.1145/2660193.2660216
http://dx.doi.org/10.1145/2824815.2824817
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.4204/EPTCS.162.4
http://dx.doi.org/10.4204/EPTCS.162.4
http://dx.doi.org/10.1145/2370776.2370794
http://dx.doi.org/10.1007/978-3-319-05032-4_2
http://dx.doi.org/10.1007/3-540-49099-X_6
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1017/S0956796809990268
http://docs.scala-lang.org/overviews/core/futures.html
http://docs.scala-lang.org/overviews/core/futures.html
http://dx.doi.org/10.1145/2637647.2637651

A. Scalas and N. Yoshida 21:27

18 Kohei Honda. Types for dyadic interaction. In CONCUR, 1993. doi:10.1007/
3-540-57208-2_35.

19 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives
and type discipline for structured communication-based programming. In ESOP, 1998.
doi:10.1007/BFb0053567.

20 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. In POPL, 2008. doi:10.1145/1328438.1328472.

21 Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda.
Type-safe eventful sessions in Java. In ECOOP, 2010. doi:10.1007/978-3-642-14107-2_
16.

22 Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API
generation. In FASE, 2016.

23 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming
in Java. In ECOOP, 2008. doi:10.1007/978-3-540-70592-5_22.

24 Shams M. Imam and Vivek Sarkar. Savina – an actor benchmark suite: Enabling em-
pirical evaluation of actor libraries. In Proceedings of the 4th International Workshop
on Programming Based on Actors Agents & Decentralized Control, AGERE!, 2014.
doi:10.1145/2687357.2687368.

25 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session
types for rust. In Proceedings of the 11th ACM SIGPLAN Workshop on Generic Program-
ming, WGP, 2015. doi:10.1145/2808098.2808100.

26 Roland Kuhn. Project Gålbma, actors vs types, 2015. Slides (available on
slideshare.net).

27 Lightbend, Inc. Actor paths, 2016. http://doc.akka.io/.../addressing.html.
28 Lightbend, Inc. The Akka toolkit and runtime, 2016. URL: http://akka.io/.
29 Lightbend, Inc. Akka Typed, 2016. http://doc.akka.io/.../typed.html.
30 Lightbend, Inc. The Scala IDE, 2016. URL: http://scala-ide.org/.
31 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes.

Inf. &Comput., 1992. doi:10.1016/0890-5401(92)90008-4.
32 Matthias Neubauer and Peter Thiemann. An implementation of session types. In PADL,

2004. doi:10.1007/978-3-540-24836-1_5.
33 Luca Padovani. A Simple Library Implementation of Binary Sessions. hal:01216310, 2015.
34 Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In Haskell,

2008. doi:10.1145/1411286.1411290.
35 Tiark Rompf and Nada Amin. From F to DOT: Type soundness proofs with definitional

interpreters. Technical report, Purdue University and EPFL, 2015. Unpublished. http:
//arxiv.org/abs/1510.05216. arXiv:1510.05216.

36 Davide Sangiorgi and David Walker. The Pi-Calculus: A Theory of Mobile Processes.
Cambridge University Press, 2003.

37 K. C. Sivaramakrishnan, Karthik Nagaraj, Lukasz Ziarek, and Patrick Eugster. Efficient
session type guided distributed interaction. In COORDINATION, 2010. doi:10.1007/
978-3-642-13414-2_11.

38 K. C. Sivaramakrishnan, Mohammad Qudeisat, Lukasz Ziarek, Karthik Nagaraj, and
Patrick Eugster. Efficient sessions. Sci. Comput. Program., 78(2), 2013. doi:10.1016/
j.scico.2012.03.004.

39 Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its
typing system. In PARLE, 1994. doi:10.1007/3-540-58184-7_118.

40 Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions, and
sessions: a monadic integration. In ESOP, 2013. doi:10.1007/978-3-642-37036-6_20.

ECOOP 2016

http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1007/978-3-642-14107-2_16
http://dx.doi.org/10.1007/978-3-642-14107-2_16
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1145/2687357.2687368
http://dx.doi.org/10.1145/2808098.2808100
http://slideshare.net/rolandkuhn/project-galbma-actors-vs-types
http://slideshare.net/rolandkuhn/project-galbma-actors-vs-types
http://doc.akka.io/docs/akka/2.4.4/general/addressing.html
http://akka.io/
http://doc.akka.io/docs/akka/2.4.4/scala/typed.html
http://scala-ide.org/
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1007/978-3-540-24836-1_5
https://hal.archives-ouvertes.fr/hal-01216310
http://dx.doi.org/10.1145/1411286.1411290
http://arxiv.org/abs/1510.05216
http://arxiv.org/abs/1510.05216
http://arxiv.org/abs/1510.05216
http://dx.doi.org/10.1007/978-3-642-13414-2_11
http://dx.doi.org/10.1007/978-3-642-13414-2_11
http://dx.doi.org/10.1016/j.scico.2012.03.004
http://dx.doi.org/10.1016/j.scico.2012.03.004
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/978-3-642-37036-6_20

21:28 Lightweight Session Programming in Scala

41 Matías Toro and Éric Tanter. Customizable gradual polymorphic effects for Scala. In
OOPSLA, 2015. doi:10.1145/2814270.2814315.

42 Vasco T. Vasconcelos. Fundamentals of session types. Inf. & Comput., 217, 2012. doi:
10.1016/j.ic.2012.05.002.

43 Philip Wadler. Propositions as sessions. In ICFP, 2012. doi:10.1145/2364527.2364568.
44 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol

language. In TGC, 2013. doi:10.1007/978-3-319-05119-2_3.

http://dx.doi.org/10.1145/2814270.2814315
http://dx.doi.org/10.1016/j.ic.2012.05.002
http://dx.doi.org/10.1016/j.ic.2012.05.002
http://dx.doi.org/10.1145/2364527.2364568
http://dx.doi.org/10.1007/978-3-319-05119-2_3

	Introduction and motivation
	Programming with session types: background and challenges
	Background: binary session types in a nutshell
	Background: safe, deadlock-free interaction via duality/subtyping
	From session-typed to linearly-typed programs
	From session types to session programming in Scala: an outline

	scalaColorlchannels, a (small) library for type-safe interaction
	The programmer interface
	A local implementation

	Session programming with scalaColorlchannels and CPS protocols
	Representing sequential inputs/outputs
	A development approach for session-based applications
	Interlude: automating channel creation
	Examples

	Optimisations, transport abstraction and error handling
	Evaluation
	A case study: application server with frontend
	The protocols
	The implementation
	Lessons learned

	Benchmarks

	A formal foundation
	Session types and subtyping
	Linear I/O types (with records and variants)
	From session types to Scala types

	Related work
	Conclusions

