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Abstract

We present a numerical study of the collective dy-
namics in a population of coupled excitable lasers
with saturable absorber. At variance with previous
studies where real-valued (lossy) coupling was consid-
ered, we focus here on the purely imaginary coupling
(evanescent wave coupling). We show that evanes-
cently coupled excitable lasers synchronize in a more
efficient way compared to the lossy coupled ones.
Furthermore we show that out-of-diagonal disorder-
induced localization of excitability takes place for
imaginary coupling too, but it can be frustrated by
nonvanishing linewidth enhancement factor.

1 Introduction

The last decade has been characterized by the rise
and spread of data storage and analytics over many
industrial and commercial fields, due to the decreas-
ing cost of data collection, storage and transmission.
While it is clear that large datasets are needed to
obtain meaningful statistical information about com-
plex systems, the instruments used for such informa-
tion distillation have not evolved with the same speed
as the data infrastructure, due on one hand to our
still rough understanding of large, complex systems,
and on the other hand to the exponentially increasing
computing resources needed to apply more and more
complex models for data interpretation. A promis-
ing framework for advanced data processing tasks is

constituted by neural networks [1], which currently
see widespread usage to perform actions that are tra-
ditionally a premise of human beings, such as pat-
tern recognition, natural language processing (infor-
mation extraction from texts and translation), and
identification of objects in images. Although special-
ized hardware and software has been developed to
increment the efficiency of implementing such frame-
work with the currently most advanced computing
paradigma, based on a Von Neumann architecture ex-
ecuted on CMOS-based integrated circuits, the level
of complexity and efficiency of the human brain is far
from reach by many orders of magnitude.

The maturity and apparent limits of the current
technology have pushed scientists from many dis-
ciplines to propose new computing paradigms that
could enable a leap towards the higher processing
power required for the aforementioned purposes; the
most promising results take inspiration from what is
considered to be the most advanced naturally evolved
computer: the human brain. The resulting field of
neuromorphic computing aims at taking advantage
from systems that exhibit naturally the characteris-
tics that make biological neural networks so powerful
and efficient, mapping the process paradigm to its un-
derlying dynamics rather than abstracting away from
it, as it is currently done with software implementa-
tion of neural networks on serialized, digital hardware
[2].

The two key ingredients for implementing neuro-
morphic computing are neuron-like behavior and a
large network of interconnections [1]. The first ingre-
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dient is provided by excitable systems: excitability
is an ubiquitous process in nature mostly known in
biology [3, 4] in the context of the neuronal cell activ-
ity and can be defined as the generation of spike-like
behaviour in one or more system dynamical variables
in response to external perturbations whose magni-
tude exceeds a given threshold. In such regime the
system response does not depend on the perturba-
tion strength and each spike generation is followed
by a refractory time during which the system re-
mains silent; after such refractory time the emission
of another spike can take place again. Excitability
needs to be provided by a suitable neuron-like sys-
tem, which in turn will constitute the building block
to perform simple computations in a highly parallel
fashion, making the system fast and efficient. What
is needed to perform complex computations is a large
network of interconnects that weight the outputs of
previous neurons and route them to other computa-
tion elements, i.e. other neuron-like blocks. A net-
work of interconnects is thus the key ingredient to
transform a bunch of excitable systems into a highly-
efficient computer able to solve complex tasks.

Currently, the golden standard for electronics-
based computing, CMOS integrated circuits, is un-
able to provide these two elements while keeping the
power efficiency high [5]. As we approach the few-
atom transistor, with bigger and bigger challenges
without any significant decrease of power consump-
tion, new directions have been probed in search for
another platform that could provide high integration,
low power consumption and scalability. Thanks to re-
cent advances in optoelectronics integration, photon-
ics technologies constitute one of the most promising
platforms for neuromorphic computing: neuromor-
phic photonics is gaining momentum as a research
field where emerging photonics technologies are used
to mimic neuronal dynamics and/or to perform com-
putational tasks based on brain inspired strategies
[6]. Excitability in photonics has been reported in
a variety of different lasers and amplifiers systems
[7, 8, 9, 10, 11, 12, 13, 14, 15]. Possibly the first his-
torically studied example of a photonics system ex-
hibiting excitability is the semiconductor laser with
saturable absorber [7]. Excitability in such laser is
enabled by a phase space portrait exhibiting a limit

cycle close to a saddle node bifurcation. In the regime
where the absorption is the slow dynamical variable,
if the below, but close-to-threshold laser is perturbed
strongly enough, then the stimulated emission pro-
cess builds up producing the emission of giant light
pulse. Such emission depletes the gain and is followed
by a refractory time after which the laser is ready to
be excited again. Such dynamics can be associated
to a so called type III excitability [8].

Engineering optically excitable elements connec-
tivities and studying their collective properties and
dynamics are both crucial tasks towards achieving
a general understanding of neuromorphic photonics
systems. Focussing our attention to the excitable
laser with saturable absorber, it is important to stress
that coupling engineering of excitable semiconductor
lasers with saturable absorber has been shown to al-
low pattern recognition [14], neuronal circuits design
[16] and coincidence detection devices [17]. As far as
the collective dynamics is concerned, we have shown
theoretically in two recent works [18, 19] that tem-
poral and intensity synchronization, array enhanced
coherence resonance, and even disorder-induced lo-
calization of excitability can take place in arrays of
excitable lasers with nearest neighbour real-valued
(lossy) coupling. In this work we extend our previ-
ous studies on synchronization and disorder-induced
localization of excitability to the case of an ensem-
ble of excitable lasers with saturable absorber cou-
pled via a nearest neighbour purely imaginary cou-
pling coefficient. Imaginary valued couplings describe
the physical evanescent waves interaction between
adjacent laser cavities. Such interaction is most
likely the relevant coupling mechanism for micropil-
lars lasers, where collective excitable dynamics could
be observed [20].

2 The model

We consider here a population of n lasers with
nearest neighbour coupling. The following normal-
ized Yamada model describes the i-th laser dynamics:

Ḟi =
1

2
[Gi(1− iα)−Qi(1− iβ)− 1]Fi + σi
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− i(Ki,i+1 +Ki,i−1)Fi + iKi+1,iFi+1 + iKi−1,iFi−1,

Ġi = γ(A−Gi − IiGi),

Q̇i = γ(B −Qi − aQiIi). (1)

Here Fi denotes the electric field strength, Ii = |Fi|2
its intensity, Gi and Qi gain and absorption respec-
tively. A is the pump parameter, B the background
absorption, a the differential absorption relative to
the differential gain, γ is the absorber and gain decay
rate, α and β denote the linewidth enhancement fac-
tors for the gain and the absorber respectively; these
parameters do not have subscript i since they have
been considered identical for all lasers. σi describes
a delta correlated Gaussian noise term of strength D
with 〈σi(t1)σj(t2)〉 =

√
2Dδ(t1 − t2)δij providing the

perturbations needed for excitable behaviour. The
dot denotes temporal derivative and the time vari-
able has been normalized to the uncoupled laser pho-
ton lifetime. Ki,j denotes the nearest neighbour cou-
pling strength describing light coupling from the i-
th to the j-th laser where the reciprocity condition
Ki,j = Kj,i has been imposed. The identical cou-
pling case Ki,i+1 = K results in an effective discrete
Laplace diffraction operator in the array.
Periodic conditions at the array boundary have been
applied. Across the whole paper we have set A = 6.5,
B = 5.8, a = 1.8, γ = 10−3 while for α and β dif-
ferent values have been used and specified across the
paper.

3 Synchronization

We have first studied the effect of coupling on the
synchronization of the firing events in the lasers array
as a function of the number of lasers constituting the
array itself and of the values of the linewidth enhance-
ment factors. To this purpose we have considered in-
dependent additive noise sources to be present in all
lasers and varied their amplitude, D, from 0 to 0.15.
The coupling strength, K = K0, has been considered
identical for all lasers and has been varied from 0 to 1.
For each pair (D,K) we run one simulation for a time
duration T = 100000. The pulse synchronization can
be understood both in space and time: in the first

Figure 1: In panels a) to e) the temporal traces of five
different uncoupled lasers have been plotted showing
uncorrelated lasers firing. In panels f) to j) the time
traces of five randomly-picked up lasers in a chain
of 50 coupled elements have been depicted. Spatial
synchronization is clearly evident in presence of non
vanishing coupling. Parameters used are D = 0.01,
α = β = 0 for both the coupled and uncoupled case;
K0 = 0 in a) to e) and K = 0.05 in f) to j).

case it refers to neighbor lasers emitting a pulse at
the same time while in the second case it character-
izes a regular (i.e. equally spaced) emission of pulses
from the single laser. To give a qualitative flavour of
temporally synchronous pulses (spikes) emission of
coupled lasers we have plotted in Fig. 1 the temporal
traces corresponding to coupled and uncoupled laser
(left and right column, respectively).

We have characterized the spatial synchronization
by using an indicator (S) that quantifies the phase
slip between the firing events of nearest-neighbors
lasers [18, 21]. The phase of the i-th laser reads:

φi(t) =
t− τk

τk+1 − τk
+ 2kπ (2)

where τk is the time of the k-th firing event, i.e. the
position in time of the k-th emitted pulse. We define
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then

si = sin

(
φi − φi+1

2

)2

(3)

which characterizes the phase synchronization be-
tween the i-th and i+ 1-th lasers. The average both
across all the array elements and along temporal du-
ration of the time trace gives the S indicator, which
provides a measure of the spatial synchronization of
the whole system:

S = lim
T→∞

1

T

∫ T

0

(
1

n

n∑
i=1

si

)
dt. (4)

The maximum synchronization occurs for S = 0
while for the completely non synchronized state S =
0.5.

We have furthermore characterized the regular
emission of pulses of the individual laser (temporal
synchronization) by means of the single laser pulse
jitter defined as J = σT /〈T 〉, where 〈T 〉 is the aver-
age time interval between two consecutive pulses and
σT is the standard deviation. A value of J close to 0
indicates regular pulses emission, while values close
or greater than 1 indicate poor regularity.

The panels in Fig. 2 and in Fig. 3 show the J and
S synchronization indicators, respectively, for differ-
ent number of lasers constituting the chain and dif-
ferent values of the line enhancement factors, ver-
sus the noise and the coupling strength. The be-
havior observed here is qualitatively different from
the case of real (dissipative) coupling, showing no
array-enhanced coherence resonance [18]. Instead of
enlarging the region of the (D,K) parameter space
characterized by high synchronization, an increase in
the number of coupled lasers improves the temporal
synchronization in a limited region of the parame-
ters space (the lower-left one) while worsening the
synchronization in all the remaining region. In other
words, enlarging the array creates a sharper separa-
tion between the regions of high and low synchroniza-
tion, without changing its area.
On the other hand, increasing the number of lasers in
the array has the effect of reducing the region of high-
est spatial synchronization, i.e. low value of the S

Figure 2: The single-laser temporal synchronization
index, J , is plotted in the (D,K) space for different
numbers of lasers (rows - 4, 20 and 150 from top to
bottom) and different values of the line enhancement
factors (columns - 0, 1, 3 and 5 from left to right).

indicator. This effect is well visible in the part of the
(D,K) space characterized by D > 0.05, and mani-
fests itself quickly with the increase of lasers forming
the chain (compare first and second row of Fig. 3). It
is worth noting that even in the worst synchroniza-
tion cases, the S indicator is smaller than 10−5, indi-
cating good spatial synchronization in all the (D,K)
space.

The second control parameter we considered, the
line enhancement factor, differently from the number
of lasers modifies the shape and size of the synchro-
nization region. For a small number of lasers (4, first
row in Figs. 2-3), its progressive increase from 0 to 5
causes an enlargement of the region of high synchro-
nization towards larger values of the noise, both in
time and space. For a longer chain (20 and 150 lasers,
two bottom rows), high synchronization occurs in a
more and more localized region towards small val-
ues of K and D; even in a strong coupling regime
high temporal synchronization of spikes emitted by
the same laser results more difficult to achieve.

As compared to the real coupling case [18] we can
observe that a much smaller value of the coupling
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Figure 3: The logarithm of the spatial synchroniza-
tion, log10(S), is plotted in the (D,K) space for dif-
ferent numbers of lasers (rows - 4, 20 and 150 from
top to bottom) and different values of the line en-
hancement factors (columns - 0, 1, 3 and 5 from left
to right).

strength is needed to achieve comparable synchro-
nization. Imaginary coupling is hence a much more
efficient way to achieve synchronization of excitabil-
ity.

4 Disorder-induced localiza-
tion

In our previous study for real-valued couplings we
pointed out how randomness in the laser array cou-
pling strength is strikingly able to induce spatial ex-
ponential localization of excitable behavior in a given
area of the array [19]. Such disorder-induced local-
ization does not occur due to a trivial breaking of the
lasers chain but due to a dynamical process entailing
both scattering and dissipation. We want to stress
that the localization we are discussing here, although
mediated by disorder, can not be assimilated directly
to the celebrated Anderson localization [22]. The lat-
ter, although it has inspired our work, is occurring in
ideally conservative systems while in our system dis-

Figure 4: In a) the intensity dynamics in absence
disorder: an excitability wave propagates through the
array. In b) an example of the temporal dynamics in
presence of disorder is shown: excitability is spatially
localized. Parameters used are: α = β = 0, K0 =
0.05, r = 0.005.

sipation plays of course a paramount important role.
Still inspired by the conspicuous literature on An-
derson localization we can borrow some useful termi-
nology. In the traditional studies of Anderson local-
ization of electronic transport in solid state physics,
the distinction between diagonal and out-of-diagonal
disorder is made when referring to disorder on the
individual atomic sites, or in the hopping terms be-
tween neighbour atomic sites respectively [23]. In our
system we identify clearly the former as correspond-
ing to randomness in some internal laser parameter
(e.g. pump parameter), while the latter to the cou-
pling between the lasers. In this paper we will con-
sider out-of-diagonal disorder defining the coupling
as: Ki,i+1 = K0 + ρi,i+1, being K0 a value com-
mon to all lasers and ρi,i+1 a random number con-
stant in time drawn from a uniform distribution in
the interval [−r,+r] which describes light coupling
from the i-th laser to nearest neighbour on the right.
We recall also that the reciprocity constraint implies
ρi,i+1 = ρi+1,i.
In order to investigate the disorder-induced localiza-
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Figure 5: The temporal average of 100 traces charac-
terized by different realizations of disorder with the
same value of r is plotted here together with the fit
to Eq. 5 used to extract the value of the localization
exponent, λ. To extract the correct localization ex-
ponent we discard the central laser, whose average
intensity is systematically too high due to the pres-
ence of additive noise, and its nearest neighbors. Pa-
rameters used are the same of Fig. 6, with α = β = 0
and r = 0.002.

tion we have considered that the additive noise is
present, without loss of generality, only in the cen-
tral laser of the array. If all the lasers are coupled
with identical coupling strength (Ki,i+1 = K0 ∀ i),
then an excitability wave propagates from the centre
of the array both towards left and right (see Fig. 4).
We have considered a chain of 150 lasers with an av-
erage coupling K0 = 0.05, a noise on the central laser
with strength D = 0.1 and a random coupling distri-
bution varying in the interval r ∈ [0, 0.002]. We have
verified that in this condition, with noise acting only
on one laser, we have regular emission of pulses that
propagate to all the lasers in the chain for r = 0.

For each value of r, 100 numerical experiments with
a time duration of T = 50000 has been carried out.
For each disordered coupling configuration we have
computed the average intensity trace across the ar-
ray. We have then fitted the averaged intensity distri-
bution after the 100 realizations of the disorder with

Figure 6: The average localization exponent 〈λ〉 has
been plotted versus randomness strength r for 3 dif-
ferent values of the linewidth enhancement factors α
and β. For vanishing α and β a transition from bal-
listic to localized regime occurs, low values of α and
β require an higher threshold for localization. At
large values of the linewidth enhancement factor lo-
calization is lost. Parameters used are D = 0.1 and
K = 0.05.

the same strength r, with the following exponential
function:

f = b+ exp (−λ|i− i0|) (5)

where i0 denotes the position of the central laser (see
Fig. 5 for an example). This procedure has been re-
peated 8 times, so that the average value and stan-
dard deviation of the fit parameters can be extracted;
the average localization exponent 〈λ〉 versus the dis-
order strength r is plotted in Fig. 6, together with
error bars indicating the standard deviation.

Such disorder-induced localization occurs for cou-
pling values such that if we couple all the lasers with
identical value of K0−r equal to the minimum possi-
ble value generated by the random process, we would
still have an excitability wave spreading from the ar-
ray center both towards left and right; this ensures
the fact that localization is not caused by a trivial
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breaking of the laser chain but is indeed provoked by
a dynamical effect. For vanishing α and β we can
notice that localization occurs for coupling strength
much smaller than the ones needed in the real cou-
pling case (about 0.3, see [19]).
We have furthermore investigated the impact of
linewidth enhancement factor both for the gain
medium (α) and for the saturable absorber (β) on the
disorder-induced localization of excitability. Physi-
cally α and β are responsible for coupling of ampli-
tude to phase fluctuations. It is interesting to appre-
ciate that linewidth enhancement factor (α,β 6= 0)
causes a decrease (for α = β = 1) and even a vanish-
ing (for α = β = 3 or 5) of the localization.

5 Conclusions

We have demonstrated with the help of numerical
simulations that evanescently coupled excitable lasers
with saturable absorber synchronize in a more effi-
cient way compared to lossy coupled ones, but that
they do not exhibit array enhanced coherence res-
onance. We have furthermore demonstrated that
disorder-induced localization of excitability caused by
randomness in the coupling strength exists for imagi-
nary coupling too. Taking into account the linewidth
enhancement factor both in the gain medium and in
the saturable absorber we have shown that localiza-
tion is reduced and eventually quenched by an in-
crease of the linewidth enhancement factor. This fact
may constitute a serious obstacle in the experimen-
tal observation of the disorder-induced localization
of excitability. Our results shed further light on the
collective dynamics of coupled excitable lasers with
saturable absorber and suggest interesting directions
for experimental studies.
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