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ARTICLE INFO ABSTRACT

Editor: Michele Rebesco Marine-based ice streams are responsible for a significant proportion of the ice mass loss from the present-day
Greenland Ice Sheet, East Antarctic Ice Sheet (EAIS) and West Antarctic Ice Sheet (WAIS) but the processes
controlling their initiation, evolution and shutdown remain elusive, hindering our understanding of how existing
ice masses will respond to predicted future warming. The exposed beds of palaeo-ice streams offer a unique
opportunity to study subglacial processes, which are largely inaccessible in contemporary settings. We use high
resolution multibeam swath bathymetry data from the Barents Sea to map the geomorphology of a palaeo-ice
stream bed, located in Olgastretet (Olga Trough), approximately 75 km southeast of Kong Karls Land and 200 km
east of central Svalbard. This reveals evidence for shut down of a marine-based ice stream, followed by a phase of
passive retreat or lift-off of the ice stream facilitating preservation of crevasse-squeeze ridges (CSRs).
Subsequently, active retreat of the ice margin was re-established and is marked by recessional moraine ridges
located upstream of the CSRs. Previously, CSRs have been mainly associated with surging land-terminating ice
margins, however our work adds to recent observations of CSRs on the beds of marine-based ice streams, im-
plying that they may be more common than previously thought. It also indicates that marine-based ice streams
may switch on- and off in a surge-like manner which has important implications for our understanding of ice

stream life cycles and the modelling of ice sheets.

1. Introduction

It is estimated that up to 50% of the mass loss from the Greenland
Ice Sheet (Enderlin et al., 2014) and 90% mass loss from the Antarctica
Ice Sheet (Bennett, 2003) is accomplished by the flow of ice to the
ocean, via marine terminating ice-streams. These arteries of ice move
with velocities up to 1500 ma~ ! (Bennett, 2003; Thomas et al., 2013),
at least an order of magnitude higher than surrounding inter-ice stream
areas. Observation from contemporary ice streams show that their ve-
locity may change rapidly and by orders of magnitude (Clarke, 1987;
Engelhardt and Kamb, 2013; Joughin et al., 2002; Rignot et al., 2002),
which has implications for both the mass balance and dynamics of ice
sheets. Understanding these variations is crucial not only to understand
contemporary ice-stream dynamics but also how they will respond to
future climate and sea level changes. Processes occurring subglacially
are considered to have fundamental control on ice stream behaviour
(Bingham et al., 2017). Understandably accessing and studying the
subglacial domain of a contemporary ice stream is extremely challen-
ging. Therefore, investigating exposed beds and bedforms of palaeo-ice
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streams offers a unique opportunity to better our understanding of
mechanisms governing ice stream dynamics and evolution. One of the
best areas to conduct such studies is the Barents Sea where ice streams
are believed to have played a major role during the deglaciation of the
Barents Sea ice sheet (BSIS) (Fig. 1) following the Last Glacial Max-
imum (Andreassen et al., 2014b; Bjarnadéttir, 2016; Bjarnadéttir et al.,
2014; Ingdlfsson and Landvik, 2013; Nielsen and Rasmussen, 2018;
Patton et al., 2017; Siegert and Dowdeswell, 1996). The BSIS has si-
milar characteristics to, and can serve as an ideal analogue for, the
present-day West Antarctic Ice Sheet i.e. they are comparable in size,
are/were marine terminating and grounded largely below sea level, on
the continental shelf.

The geomorphology of a palaeo ice stream bed, located in the
Olgastretet (Olga Trough) (Fig. 1), approximately 75km southeast of
Kong Karls Land and 200 km east of central Svalbard, is mapped in this
paper and used to reconstruct the ice stream margin geometry, ice flow
directions and ice stream dynamics (Fig. 2). Recently-acquired high
spatial resolution bathymetric data enabled mapping at unprecedented
detail, which in turn allowed us to recognise a suite of landform
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Fig. 1. (A). Location map of the western Barents Sea. Black arrows indicate palaeo-ice flow directions from Patton et al. (2015), linked to the Late Weichselian ice
flow. The red square indicates the location of the study area. (B) Study area in upper Bjgrngyrenna, northwestern Barents Sea. The red box indicates the extent of the
multibeam swath bathymetry dataset used in this study. White arrows indicate palaeo-ice flow direction in Olga Trough identified in this study. Kvt- Kvitgya, Nor-
Nordaustlandet, Sbg — Spitsbergen, Hin - Hinlopenstret. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

assemblages that provide evidence for shutdown followed by later re-
activation of a marine ice stream, in a deep-water (~250-450 m) set-
ting (Fig. 2). The landform assemblage has striking similarity to the
terrestrial surging glacier landsystem (e.g. Benediktsson, 2009; Evans
and Rea, 1999; Ingoélfsson et al., 2016; Ottesen et al., 2017; Streuff
et al., 2015).

1.1. Study area

The large-scale bathymetry of the epicontinental Barents Sea is
characterised by shallow banks (water depths ~100-200 m) and cross-
shelf troughs (water depths ~300-500 m), extending to the shelf edge
(Fig. 1). The largest Barents Sea trough, Bjorngyrenna (Bear Island
Trough), extends for over 700 km, and is over 200 km at its widest.
Large depocentres (trough mouth fans) have developed on the con-
tinental slope, immediately beyond the cross-shelf troughs, doc-
umenting significant glacial erosion of the Barents Sea shelf (e.g.
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Batchelor and Dowdeswell, 2014; Laberg and Vorren 1996; Torbjgrn
Dahlgren et al., 2005). The thickness of glacial sediments on the shelf is
variable, but rarely exceeds 100 m (Solheim and Kristoffersen, 1984;
Elverhgi and Solheim, 1983; Andreassen et al., 2008).

Based on clay mineral and ice-rafted debris records from boreholes,
grounded ice is first suggested to have glaciated parts of the Barents Sea
in the Pliocene (3.6 Ma), and continued to be periodically present in the
basin through the Pleistocene, with multiple cycles of ice advance and
retreat (Knies et al., 2009). Around 1.5-1 Ma, northern hemisphere
glaciations intensified, and the general view is that from this time ice
sheets repeatedly covered the Barents Sea all the way to the continental
shelf. At its maximal extent, the BSIS and the Fennoscandian Ice Sheet
(FIS) merged. On coalescence, major trough mouth fans began to form,
via the supply of sediments to the shelf edge by ice streams draining the
interior of the BSIS. Deglaciation of the region started after the global
Last Glacial Maximum (LGM) 21.5-18.1cal. ka BP (e.g. Rasmussen
et al., 2007; Riither et al., 2011). Between 17 and 14 cal. ka BP the BSIS
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Fig. 2. A: Seabed geomorphology of the study area courtesy of MAREANO (www.mareano.no). Black rectangles refer to areas shown in Figs. 4 and 5 B: mapped

distribution of landforms in the study area.
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is thought to have separated from the FIS and by 11.2 cal. ka BP most of
the Barents Sea was ice-free (e.g. Polyak et al., 1995; Salvigsen, 1981;
Landvik et al., 1992; Hughes et al., 2016; Winsborrow et al., 2010).
According to a compilation of available chronological data, the area of
interest in this study (Olgastretet) deglaciated between 16 and 11.7 cal.
ka BP (Hogan et al., 2010; Hughes et al., 2016). The study area is
particularly interesting when the history of the BSIS is considered. Ol-
gastretet was located close to the inferred major ice accumulation
centre during the LGM (Esteves et al., 2017; Ing6lfsson and Landvik,
2013; Newton and Huuse, 2017; Nielsen and Rasmussen, 2018). During
deglaciation, Olgastretet was at the boundary between the SSE-draining
Bjgrngyrenna ice stream and a NE-draining ice stream flowing towards
the Kvitgja Trough and Franz-Victoria Trough (Dowdeswell et al., 2010;
Nielsen and Rasmussen, 2018; Patton et al., 2016). Hogan et al. (2010)
and Dowdeswell et al. (2010) demonstrated, by mapping glacial land-
forms on the seabed, that later in the deglaciation, an E-flowing ice
stream located in Olgastretet flowed NE around Kong Karls Land
draining the Svalbard area with the ice centre located in Hinlopenstret,
between Spitsbergen and Nordaustlandet. Their interpretations of the
location of the ice centre does not fully match with the landform as-
semblage later mapped in the upper part of the Bjgrngyrenna
(Andreassen et al., 2014a, 2014b), testifying to the complex history of
ice divide migration during the deglaciation of the BSIS. Further at-
tempts to reconstruct the glacial history of this particular sector of the
BSIS in greater detail were hampered by a paucity of high-resolution
geophysical data (bathymetry and seismic) and a limited number of
widely-spaced age control points (Dowdeswell et al., 2016; Hogan
et al., 2010)

2. Methodology

High resolution bathymetry of Olgastretet acquired in 2015 is now
available via MAREANO (www.mareano.no). The dataset covers an
area of 1008 km? and was gridded to 10m horizontal resolution.
Analysis of the multibeam bathymetry was carried out in ArcGIS and
glacial landforms were mapped and interpreted based on their expres-
sion on the bathymetric digital terrain model, overlain with 50%
transparent hillshade rasters. The Line Density Tool in ArcGIS was used
to measure, and map, the density of linear features (km/km?). The
search radius was set to 500 m and the output raster cell size was set to
50 m. The regional bathymetry was provided by EMODnet Bathymetry
Consortium, 2016 (http://www.emodnet-bathymetry.eu) at a resolu-
tion of 0.125 arcminute, which translates to ~300 m at the latitude of
the central Barents Sea.

3. Landform assemblages
3.1. Lineations and moulded subglacial landforms

Two major types of subglacially-moulded landforms are identified
in the study area (Fig. 2). The first type consists of elongated ridges
and/or grooves that are consistently parallel to subparallel, 70-460 m
wide, 220-8800 m long (mean 1853 m) and 0.4-2.2m high (Fig. 3A).
They are oriented WSW-ENE and are present across the entire study
area, with the exception of the SW and SE corners. The elongation ratios
of the grooves / ridges (5:1-46:1, mean 7.4:1), relief, width and length
fit well with published metrics of mega scale glacial lineations (MSGL)
(Spagnolo et al., 2014; Ely et al., 2016) and we interpret them as such.
Their spacing (80-900 m) is also consistent with that observed in other
datasets worldwide (Spagnolo et al., 2017). MSGLs were first identified
in the landform record and interpreted to form subglacially beneath
streaming ice (Clark, 1993; Clark and Stokes, 2001). This interpretation
has been subsequently confirmed by observations of MSGLs forming
beneath contemporary fast-flowing glacial systems (King et al., 2009;
Bingham et al., 2017; Ottesen et al., 2017). The presence of MSGLs
indicates that the study area was once occupied by an ice stream,
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flowing along a WSW-ENE axis.

A second group of streamlined landforms is located in the centre of
the study area (Fig. 2B). This region comprises low relief and irregular
mounds with superimposed MSGLs. The mounds are 8-25m high,
10km long and 11 km wide (length and width measured parallel and
perpendicular, respectively, to the inferred ice stream flow). Their
elongation ratio (0.28:1-2.16:1), dimensions and irregular shape make
it difficult to assign these mounds to any “classic” subglacial landform
(Ely et al., 2016). The streamlining of the mounds and the presence of
superimposed MSGLs on their surface indicates that they predate ice
streaming in the study area. They are interpreted as overridden mor-
aines and/or grounding zone wedges (Ottesen et al., 2017) and were
likely deposited during an earlier ice margin still-stand or re-advance.

3.2. Crevasse-squeeze ridges

In the central part of the study area is a prominent ridge complex
comprised of multiple, angular segments trending between NO55E° and
S125E°, perpendicular to sub-parallel to the ice flow direction (Fig. 2).
Individual segments are between 0.5 and 8 m (mean 3.2 m) high and
20-800m (mean 188m) long (measured from the long axis of the
landform) and 30-270 m (mean 101 m) wide (Fig. 3B). Spacing and size
distribution is variable with longer, higher and less densely-spaced
ridges on the SE margin of the complex and shorter, lower and more
densely-spaced segments on the NW margin. In the western part of the
complex, the ridges appear to gradually change direction from SSE-
NNW (ice-flow perpendicular) to WSW-ENE (ice-flow parallel) (Fig. 2
and Fig. 3). The ridges are superimposed on the MSGLs, postdating
them (Fig. 3C). The scale and morphology of these features is typical of
crevasse-squeeze ridges (CSRs) (Evans and Rea, 1999), which are
formed by sediment in-filling basal crevasses. Bottom-up (basal) cre-
vassing occurs when basal water pressures are sufficiently high, and
may be supplemented by extensional strain, to initiate hydrofracturing
(Rea and Evans, 2011). Water-saturated subglacial sediments are
squeezed into the crevasses during hydrofracturing or subsequently
when the basal water pressure decreases, under the weight of overlying
ice. CSRs are widely considered diagnostic of glacier surging and have
been recognised in various settings worldwide (e.g. Benediktsson et al.,
2009; Cofaigh et al., 2010; Evans and Rea, 1999; Ingdlfsson et al.,
2016). They have also been identified on palaeo-ice stream beds
(Andreassen et al., 2014b; Bjarnadéttir et al., 2014; Evans et al., 2016)
similar to that of this study area, and are suggested to be associated
with the final stages of ice streaming and deglaciation, facilitating their
preservation. The angular relationship between the individual segments
of the CSRs retaining the shape of a conjugate fracture system (Fig. 4),
lack of lateral continuity of ridges, and their offset in the direction
parallel to the flow (Fig. 4A) together with discrete, ice stream flow-
parallel units (Fig. 4), rule out an alternative interpretation for these
ridges as De Geer moraines. Moreover, the preservation of underlying
MSGLs would not have been possible if the ridges were in fact De Geer
moraines as these are formed by the bulldozing of sediments during
annual ice re-advances that would have destroyed the MSGLs, as most
likely occurred for the moraines discussed in Section 3.4.

3.3. Subglacial channels

In seven locations in the centre of the study area, anabranching,
sinuous or linear, negative relief landforms are visible (Fig. 5). They are
1100-5500 m long, 35-130 m wide (individual incisions) and up to 6 m
deep. They are almost-exclusively situated on the seabed within the
area where CSRs are preserved. Their orientation varies between in-
dividual features and does not seem to correspond to the overall ice
flow direction (Fig. 2). Collectively, their shape resembles a channel
network (Dowdeswell et al., 2016; Dowdeswell and Bamber, 2007;
Newton and Huuse, 2017; Simkins et al., 2018) or the plough marks of a
multi-keel iceberg. However, they lack the elevated banks typical of
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Fig. 3. Detailed seabed morphology of selected glacial landforms within the study area. For location see Fig. 2. A: Subglacial lineations (MSGLs) indicate ice flow
direction to the NE B: CSRs identified in the central part of the study area. C: CSRs superimposed on subglacial lineations. Note an iceberg ploughmark cutting some
of the CSRs. D: CSRs and recessional moraines. The preservation of CSRs in the NE part of the area is suggested to reflect ice margin lift-off or passive retreat, whilst
recessional moraine ridges indicate the area where the ice margin was retreating actively. E: Recessional moraines documenting active ice margin retreat. Note the
festoon-like shape of some of the ridges. F: Possible subglacial bedrock raft. G: Hill-hole pair surrounded by recessional moraines. In some cases recessional moraines
are continuing into hills implying contemparaneous formation of both landforms. H: Suspected subglacial meltwater channel. Note its anastomosing, sinuous form
and lack of elevated flanks allows channels to be distinguished from iceberg ploughmarks.

iceberg plough marks; their smooth sinuous form and the fact that
grooves are not parallel indicates that they were most likely formed by
channelized flow of water. They are therefore interpreted as channels
formed by erosion in a subglacial drainage network. The CSRs appear to
be cross-cut by the channel in places, whilst in other locations they
appear to be preserved on the seabed and within the channel (Fig. 5).
We suggest two possible interpretations: 1) The channel postdates CSRs
formation and meltwater erosion was insufficient to remove all of the
CSR material or preferentially melted out the ice above the CSRs; or 2)
CSRs postdate channel formation and the remaining deposits within the
channel are evidence of the release from ice and collapse of the CSR
material into over-deepened parts of the channel.

3.4. Linear and curvilinear saw-tooth moraine ridges

Curvilinear and festoon-like ridges (Fig. 3D & E) cover the SW and S
part of the study area. They are often amalgamated and branching,
between 100 and 6700 m long, 100-800 m wide and up to 15 m high.
Their morphology is different from that of the CSRs identified in the
central sector (Fig. 3D). No MSGLs are observed where the ridges are
present (Fig. 6A & C). The ridges are more continuous and less angular
than the CSRs. They are often interconnected, with individual centres of
a ridge segment curving down ice flow, and the sides pointing up ice.
These ridges are interpreted as recessional moraines/saw-tooth mor-
aines (Matthews et al., 1979) and were partially described from this
exact area by Hogan et al. (2010). They are interpreted to record the
active retreat of a back-stepping ice margin that is punctuated by per-
iodic advances, rather than passive retreat. A lack of preserved, un-
derlying MSGLs indicates reworking of the seabed by the oscillations of
the ice margin. This implies that these moraines postdate ice streaming
in the study area.

3.5. Glaciotectonic landforms

3.5.1. Hill-hole Pairs

Fifteen oval seabed depressions rimmed by a sediment ridge on their
NE side are identified in the study area (Fig. 2 & Fig. 3G). The de-
pressions are 200-2800m wide and 150-1300m long. Their depth
varies between 2 and 12 m. The hills have a corresponding width range,
are 80-450m long with heights of 4-35m. Volumetrically, the de-
pressions are 8-13% smaller than the ridges (which may be within
measurement inaccuracy) and they locally co-exist with and/or disrupt
other landforms, such as recessional moraines or MSGLs. We interpret
these as hill-hole pairs, which are glaciotectonic landforms and typi-
cally form when sediment is excavated, transported and deposited,
forming a hill. They are often found in association with recessional
moraines (Aber et al., 1989; Rise et al., 2016). Their orientation implies
that ice was flowing towards the NE, which is similar to the WSW-ENE
flow identified from the MSGLs. The holes are clearly erosional and are
incised into the underlying MSGLs.

3.5.2. Suspected bedrock rafts

A group of flat-topped, irregular or oval mounds (11-25 m high) are
present in the SE corner of the study area (Fig. 3E & F). These mounds
are 100-1200 m in diameter. Some 1500 m up-flow, an over deepening
(18-22 m) with relatively sharp margins is clearly seen in the bathy-
metry. Part of the over deepening lies outside of the study area and
therefore it is impossible to provide a direct measurement for its exact
diameter. The shape of the visible margin of the depression and its
depth appear to correspond to the location of the NE margin of the
mound (Fig. 3F). Some of the mounds have associated tails indicating
ice over-riding and ice flow to the NE. We interpret them as locally
eroded bedrock rafts (Riither et al., 2013 and 2016) but an alternative
interpretation of local bedrock highs cannot be ruled out without ad-
ditional subsurface data (i.e. seismic or wells). Buried glaciotectonic
rafts have recently been located under the Bjgrngyrenna ice stream,
suggesting that they are more common than previously thought

N
Depth [m] |
- 275 |

( Depth [m]
P -290

Fig. 4. Detail of CSRs. Note variable spacing between ridges, angular relationship between discreet sets and differences in lengths between individual segments.
Unlike De Geer moraines the ridges do not follow a continuous trend, instead they terminate sharply and are offset with respect to another set of CSRs.
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Fig. 5. Detailed image of a subglacial channel (3H). In places CSRs appear to be
cross-cut by the channel (marked by X). In other locations CSRs seem to be
preserved on the seabed and within the channel (marked by O). There are two
possible interpretations: 1) The channel postdates CSRs formation and melt-
water erosion was insufficient to remove all of the CSR material or pre-
ferentially melted out the ice above the CSRs, 2) CSRs postdate channel for-
mation and the remaining deposits within the channel are evidence of the
release from ice and collapse of the CSR material into over-deepened parts of
the channel.

(Andreassen and Winsborrow, 2009; Bellwald et al., 2018).

3.6. Iceberg ploughmarks

Rare, linear and curvilinear grooves with elevated flanks are found
in the study area (Fig. 2). Most of them are shallow, relatively short (60-
2400 m long, mean 407 m) and located in the NE of the study area
where the seabed is at least 60 m shallower than in the centre (Fig. 6D).
In the deeper, central part of the study area only a few are present. They
often cross-cut and displace CSR sediments and underlying MSGLs and
are interpreted as iceberg ploughmarks. The rarity of iceberg plough-
marks in the study area indicates that, during deglaciation, either the
area was covered by a mélange/sea ice capable of blocking or diverting
drifting icebergs, or its water depth (~180-360 m) was greater than the
draft of iceberg keels generated by a grounding line in shallower wa-
ters.

4. Discussion

4.1. Implications of formation and preservation of the crevasse squeeze

ridges

The seminal description of CSRs came from land-terminating sur-
ging glaciers in Iceland by Sharp (1985), and they have subsequently
been investigated in many other areas in contemporary and deglaciated
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landscapes, for example: Svalbard (e.g. Boulton et al., 1996;
Christoffersen et al., 2005; Flink et al., 2015; Streuff et al., 2015); Ca-
nada (Johnson, 1975; Clarke et al., 1984; Evans and Rea, 1999; Evans
et al., 1999); and Iceland (e.g. Evans et al., 2009; Waller et al., 2008).
The presence of CSRs in the landform record has been interpreted to
indicate passive retreat of terrestrially-terminating glaciers and ice
streams. This occurs when the ice stagnates and melts away in situ,
facilitating landform preservation (Evans and Rea, 1999). As high re-
solution marine geophysical datasets become more widely available,
CSRs have also been found on the seafloor proximal to terrestrial sur-
ging glaciers (Ottesen and Dowdeswell, 2006; Ottesen et al., 2008),
motivating the development of a water-terminating surging glacier
landsystem model (Ottesen et al., 2017). In such settings, preservation
of CSRs can most easily be explained by ice margin stagnation followed
by in situ melting leading to lift-off (flotation) of the ice from the seabed
facilitating a passive retreat.

Recently, CSRs have been reported from the Bjgrngyrenna (Bear
Island Trough) marine palaeo-ice stream in the Barents Sea (Andreassen
et al., 2014a, 2014b; Bjarnadottir et al., 2014). The CSRs described by
Andreassen et al. (2014a, 2014b) and Bjarnadoéttir et al. (2014) and the
ones described in this study in Olgastretet have comparable metrics to
those reported from terrestrial and marine terminating glaciers and
terrestrial terminating ice streams (Evans et al., 2016; Evans and Rea,
1999). Crucially, their discovery indicates that CSRs can form under ice
streams in marine settings and their preservation is consistent with
shutdown followed by passive retreat. Lift-off of the ice stream due to
marine drawdown and lowering of the ice surface profile may also be
possible, but in such case the CSRs would not have been preserved. The
sediments would have been lifted-off the seabed, incorporated into the
ice stream and re-deposited as iceberg rafted debris.

At some time after shutdown, the ice stream was reactivated, as
suggested by the presence of moraines upstream of the CSRs. The
moraines found to the SE of the CSRs might also be linked to this re-
activation.

The shutdown of an ice stream is relatively easier to understand in
land terminating settings where the drawdown of ice mass by a surging
ice stream reduces the driving stress of the ice, ultimately leading to its
shutdown. In marine terminating ice streams, however, the velocity
remains high all the way to the grounding line. Modern day Antarctic
ice streams terminate in ice shelves which provide back-stress and
buttressing, possibly facilitating a marine ice stream shutdown (De
Angelis and Skvarca, 2003). We therefore propose that the presence of
CSRs on marine palaeo-ice stream beds is consistent with the shutdown
and passive retreat of an ice stream that terminated in an extensive ice
shelf or thick ice melange.

4.2. Implications

The assemblage of landforms described in this paper comes from a
different setting than the Bjgrngyrena palaeo-ice stream bed used by
Andreassen et al. (2014a, 2014b) to develop their marine ice stream
retreat landsystem, and is used to further refine the landsystem model.
In our dataset, no clear sediment apron/grounding line wedge
(Batchelor and Dowdeswell, 2015; Dowdeswell and Fugelli, 2012;
Powell and Alley, 1996; Simkins et al., 2018) can be observed, and
large iceberg ploughmarks are absent from the area. CSRs in our study
area are linear, comprising clearly segmented sections (Fig. 3B & C),
similar to the stagnation ridges described by Bjarnadottir et al. (2014)
rather than the rhombohedral ridges described in the landsystem model
by Andreassen et al. (2014a, 2014b). Finally, densely spaced curvi-
linear, festoon-like ridges (Fig. 3D &E), interpreted here as recessional
moraines, were not found by Andreassen et al. (2014a, 2014b). These
differences are interpreted to relate to the position of the two areas
within a retreating marine ice stream landsystem (Fig. 3D & Fig. 7). The
landform assemblage identified by Andreassen et al. (2014a, 2014b) is
located within 5km of the grounding line, identified by the grounding
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Fig. 6. Landform density maps. A: Distribution of glacial lineations (MSGLSs). B: Distribution of CSRs over the study area. Note the co-occurrence of glacial lineations
and CSRs superimposed on them. C: Distribution of ridges identified as recessional moraines in the study area. Note lack of glacial lineations underlying RMs. D:
Distribution of iceberg ploughmarks over the study area. Higher density of ploughmarks is present only in the N part where the seabed is raised in comparison to the
centre and S where RMs and CSRs are present. Rose diagrams show orientation of the long axes of linear landforms (MSGLs, CSRs, RMs). Individual iceberg
ploughmarks have no prevailing orientation and often curve around, therefore a rose diagram was not created.

zone wedge/sediment apron. The rhombohedral CSR network that they
observe is therefore proximal to the grounding line and in a zone of
increasing velocity and decreasing basal drag. No such sediment apron
is present in the area investigated here and the CSRs have a linear ra-
ther than boxwork pattern. These resemble the CSRs described from the
land terminating Maskwa ice stream, in the Laurentide ice sheet (Evans
et al., 2016) which have been interpreted to have formed prior to ice
stream shutdown, when the fast flowing trunk (an up-flow part) of the
Maskwa ice stream was coming to a stop and fractures developed along
shear zones between flow units moving at different velocities in an
extensional stress regime (Fig. 7). We interprete the CSRs shown in
Figs. 2 and 3 to be representative of a similar environment. Recessional
moraines identified in the study area are located up flow and post-date
formation of the CSRs. This implies that CSRs were preserved where the
ice deglaciated passively, possibly by lift-off from the seabed following
ice stream shutdown. Where recessional moraines are present, no CSRs
or MSGLs exist on the seabed. Recessional moraines in marine settings
can only be formed when the ice margin is grounded on the seabed and
is undergoing active retreat i.e. backstepping, punctuated by still
stands/minor readvances, and with a continuous flux of ice and sedi-
ment to the grounding line. Such settings do not preserve CSRs on the
seabed as they are reworked/destroyed (or never formed).

It is important to note that, in the Barents Sea, CSRs (linear stag-
nation ridges) have only previosuly been described from one other
marine ice stream setting, in relatively deep water and further offshore
(Bjarnadéttir et al., 2014). This may be due to a higher degree of re-
working of the seabed by icebergs in shallower water or simply due to
the lack of high resolution bathymetric data. CSRs have also been re-
ported from other ice stream locations including the Gulf of Bothnia
(Greenwood et al., 2017) and Antarctica (Greenwood et al., 2018;
Klages et al., 2013, 2015).

The interpretation we present here can be summarised as follows. A
period of ice streaming led to the formation of MSGLs on the seafloor of
Olgastretet, and the development of basal crevasses. This was followed
by ice stream shutdown, generating the CSRs. At shutdown the ice
stream terminated in an ice shelf, which remained intact as the
grounding line retreated passively and/or lifted off the bed, protecting
the MSGL and CSRs from reworking by iceberg scouring as is often the
case. Subsequently, the ice shelf/melange broke up removing the
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Fig. 7. Schematic interpretation of the formation of linear and rhombohedral
CSRs as a function of stress field. In the area of primary linear extension the
confining stress is provided by lateral margins of the ice stream. Radial ex-
tension is possible where the lateral confining stress is decreased towards the
ice stream margin.
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backstress, ice velocites increased, leading to a readvance and/or in-
itiation of active retreat and recessional moraine formation at the
grounding line. As the grounding line reteated into shallower water
only rarely were icebergs formed that had sufficient draft to scour the
seabed. Together the presence of the ice shelf during deglaciation and,
subsequent to its breakup, the retreat of the active margin into shal-
lower water, explain the paucity of iceberg scours on the seabed.

4.3. Landsystem

Here we present an updated marine ice stream retreat landsystem
model (Fig. 8) that utilises the reported observations, and revisited and
revised data from Andreassen et al. (2014a, 2014b).

1. Ice margin position during ice stream shutdown is marked by a se-
diment apron (Fig. 8A) interpreted as a GZW (Andreassen et al.,
2014b).

2. Large iceberg ploughmarks (Fig. 8A), can be found distally from the
grounding zone (Andreassen et al., 2014b). They are usually located
in front and/or on the surface of the GZW.

3. Rhombohedral, boxwork CSRs (Fig. 8B) found on the proximal side
of the GZW develop during stagnation of the ice stream. They are
limited to the ice marginal zone probably due to the highest fracture
density in this area. They are always associated with, and super-
imposed, on MSGLs (Andreassen et al., 2014b).

4. MSGLs (Fig. 3A & Fig. 2) are found along the length of the ice stream
and may continue onto the proximal side of the GZW (Andreassen
et al., 2014b). Large-scale elongated sediment mounds reported by
Andreassen et al. (2014a, 2014b), appear to be formed con-
temporaneously to the rhomboedral CSRs as both occur on the
proximal, subglacial side of the sediment apron. They have a very
distinctive morphology quite different from the MSGLs reported
from this and other papers as they are asymmetrical (widening
down flow), wider (measured perpendiculat to flow) and shorter
(measured parallel to flow) (Bingham et al., 2017; Bjarnadéttir and
Andreassen, 2016; Jamieson et al., 2016; Spagnolo et al., 2016).
They resemble streamlined glacial lineations described by Ottesen
et al. (2017) from marine terminating, surging glaciers in Svalbard,
interpreted as a continuum of landforms ranging between MSGLs
and drumlins.

5. Linear CSRs (Fig. 3B & C,Fig. 4, Fig. 6, Fig. 8) develop further up ice
from the rhomboedral CSRs, during ice streaming. They are related
to shear zones between ice flow units within flow-parallel exten-
sional stress regimes due to confining stress of the ice sheet beyond
the ice stream margins (Evans et al., 2016), rather than radial ex-
tensional stress regime described from ice lobes resulting in more
rhomboedral, fracture sets (Fig. 7).

6. Meltwater channels (Fig. 3H &Fig. 8B) develop subglacially, most
likely during the ice stream shutdown when inefficient subglacial
drainage changes to an efficient, channelized flow. The channels
incise the MSGLs, and therefore postdate ice streaming. The relative
age of CSRs and channels is less clear, with examples of channels
incising CSRs and other examples with little/no incision implying
that they are contemporaneous to the formation of the channel.
Most of the channels are located within the area covered by the
CSRs.

7. Saw-tooth (Fig. 3D & E) and recessional moraines (Fig. 8C), indicate
a phase of active ice margin retreat following passive retreat. The
festoon shape of some of the ridges is probably due to the squeezing
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Fig. 8. Block diagram illustrating landform assemblage associated with marine ice stream shutdown. Landforms identified in proglacial and ice marginal zones after
Andreassen et al. (2014a, 2014b). A: High velocity of ice streamflow (surge). Deposition of sedimentary apron by bulldozing and bottom-up hydrofracture devel-
opment. B: Stagnation and lift-off of ice in the distal part. Sediments fill in basal fracture networks when ice delelerates. Passive retreat allows preservation of CSRs on
the seabed. C: Active retreat at the grounding line resulting in destruction of CSRs and MSGLs and deposition of recessional moraines.

of soft basal sediments into the remaining fracture network at the 9. During ice stream shutdown and subsequent stagnation, ice flow

ice-bed interface during a periodic, possibly annual, ice re-advance.
. Glaciotectonic bedforms (sediment rafts and hill-hole pairs) form
when an ice stream is grounded and advancing and are preserved by
the ice stream retreating. They most likely indicate basal freeze-on
condition when less subglacial meltwater is delivered to the system.
Some hill hole pairs may form during fast ice stream flow when
there is a steep counterslope or discontinuity on the seabed oriented
against the ice flow direction. They appear to be contemporary with
the saw-tooth moraines.
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velocity decreased by several orders of magnitude, likely facilatated

by the buffering effect of an ice shelf/melange. The ice stream then:

a. Lifted off the seabed/retreated passively, allowing preservation
of CSRs and MSGLs.

b. Subsequently, upstream of the CSRs and MSGLs, the grounded ice
stream margin began active retreating, depositing recessional
moraines and destroying evidence of any underlying CSRs and
MSGLs.

Ice streaming, shutdown, passive retreat are reminiscent of
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behaviour reported previously from surging glaciers (Evans et al.,
2016; Evans and Rea, 1999; Ingdlfsson et al., 2016), and can be
accommodated by glacier physics and observed in numerical
modelling (Alley et al., 2006; Bindschadler, 1997; Evans and
Cofaigh, 2003; Feldmann and Levermann, 2017; Kristensen et al.,
2007; Lelandais et al., 2018; Simon et al., 2014). To date, very
limited morphological evidence for acceleration and stagnation
(i.e. surging) of marine-based ice streams has been reported
(Andreassen et al., 2014b). In documenting a second example of
surge behaviour of a marine-based ice stream, we add support to
the notion that such dynamics may be more commonly associated
in these settings.

The interpertation that during ice sheet retreat, ice streams can
switch on and off (in a surging manner), has major implications
for both our understanding of palaeo and modern ice sheet dy-
namics. When modelling an ice sheet it is worth considering the
“pulsating” rather than “steady flow” nature of an ice stream. The
shutdown of a marine-based ice stream, may be facilitated by the
buffering effect of an ice shelf and/or an ice melange with the
opposite being true upon removal.

5. Conclusions

® We document a landform assemblage from the bed of a marine-

based ice stream comprising MSGLs, CSRs and recessional moraines.

We interpret this to represent evidence for ice stream shutdown,

followed by a phase of passive retreat and lift-off of the ice stream

and finally re-establishment of active retreat of the ice margin far-

ther up-flow.

The landsystem model presented here builds on the model proposed

by Andreassen et al. (2014a, 2014b) and provides the most complete

description of the landform assemblage associated with marine ice

streaming, shutdown, retreat and subsequent reactivation.

® Preservation of CSRs superimposed on MSGLs formed under an ice
stream is only possible following ice stream shutdown and passive
retreat.

® Presence of linear CSRs in the study area indicates unidirectional
extensional stress regime aligned with the ice stream flow direction
most likely due to the lateral confining stress of the adjacent slow
flowing ice and explains the absence of rhombohedral CSRs, in
contrast to the marine-based ice stream landsystem described by
Andreassen et al. (2014a, 2014b)

® Renewed active retreat is marked by recessional moraines up-flow
from the CSR and MSGL.

® Presence of an extensive ice shelf/ice melange, exerting a buffering

effect on the ice stream is inferred and can play a role in marine ice

stream shutdown.

Lack of large scale iceberg ploughmarks in the study area indicates

that the icebergs transiting through the area were smaller (shal-

lower) that the contemporaneous water depth which is consistent

with the passive deglaciation lift-off and ice shelf/melange hy-

pothesis.

e Morphological evidence of marine ice stream shutdown char-
acterised by surge-stagnation-reactivation cycles may be more
common than previously thought.
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