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Abstract
In this paper we study certain counting functions which represent the numbers of
solutions of systems of linear inequalities arising in the theory of Diophantine approx-
imation. We develop a method that allows us to explain the random-like behavior that
these functions exhibit and prove a central limit theorem for them. Our approach is
based on a quantitative study of higher-order correlations for functions defined on the
space of lattices and a novel technique for estimating cumulants of Siegel transforms.
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1 Introduction andmain results

1.1 Motivation

Many objects which arise in Diophantine Geometry exhibit random-like behavior. For
instance, the classical Khinchin theorem in Diophantine approximation can be inter-
preted as the Borel–Cantelli Property for quasi-independent events, while Schmidt’s
quantitative generalization of Khinchin’s Theorem is analogous to the Law of Large
Numbers. One might ask whether much deeper probabilistic phenomena also take
place.

In this paper, we develop a general framework which allows us to capture certain
independence properties which govern the asymptotic behavior of arithmetic counting
functions. We expect that the new methods will have a wide range of applications in
Diophantine Geometry; here we apply the techniques to study the distribution of a
class of counting functions which we now describe.

A basic problem in Diophantine approximation is to find “good” rational approx-
imants of vectors u = (u1, . . . , um) ∈ R

m . More precisely, given positive numbers
w1, . . . , wm , which we shall assume sum to one, and positive constants ϑ1, . . . , ϑm ,
we consider the system of inequalities

∣
∣
∣
∣
u j − p j

q

∣
∣
∣
∣
� ϑ j

q1+w j
, for j = 1, . . . , m, (1.1)

with (p, q) ∈ Z
m × N. It is well-known that for Lebesgue-almost all u ∈ R

m , the
system (1.1) has infinitely many solutions (p, q) ∈ Z

m × N, so it is natural to try to
count solutions in bounded regions, which leads us to the counting function

�T (u) := |{(p, q) ∈ Z
m × N : 1 � q < T and (1.1) holds}|.

Schmidt [15] proved that for Lebesgue-almost all u ∈ [0, 1]m ,

�T (u) = Cm log T + Ou,ε((log T )1/2+ε), for all ε > 0, (1.2)

where Cm := 2mϑ1 · · · ϑm . One may view this as an analogue of the Law of Large
Numbers, the heuristic for this analogy runs along the following lines. First, note that

�T (u) ≈
�log T �
∑

s=0

�(s)(u),

where

�(s)(u) := |{(p, q) ∈ Z
m × N : es � q < es+1 and (1.1) holds}|.

If one could prove that the functions �(s1)(·) and �(s2)(·) were “quasi-independent”
random variables on [0, 1]m , at least when s1, s2, and |s1 − s2| are sufficiently large,
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Central limit theorems for Diophantine approximants

then (1.2) would follow by some version of the Law of Large Numbers. Moreover,
the same heuristic further suggests that, in addition to the Law of Large Numbers, a
central limit theorem and perhaps other probabilistic limit laws also hold for �T (·).

In this paper, we put the above heuristic on firm ground. We do so by represent-
ing �(s)(·) as a function on the space of unimodular lattices. It turns out that the
“quasi-independence” of the family (�(s)) that we are trying to capture can be trans-
lated into the dynamical language of higher-order mixing for a subgroup of linear
transformations acting on the space of lattices.

1.2 Main results

We are not the first to explore central limit theorems for Diophantine approximants.
The one-dimensional case (m = 1) has been thoroughly investigated by Leveque
[11,12], Philipp [13], and Fuchs [6], leading to the following result proved by Fuchs
[6]: there exists an explicit σ > 0 such that the counting function

�T (u) :=
∣
∣
∣
∣

{

(p, q) ∈ Z × N : 1 � q < T , |u − p/q| <
ϑ

q2 log(1 + q)

}∣
∣
∣
∣

satisfies
∣
∣
∣
∣

{

u ∈ [0, 1] : �T (u) − 2ϑ log log T

(log log T · log log log T )1/2
< ξ

}∣
∣
∣
∣
−→ Normσ (ξ) (1.3)

as T → ∞, where

Normσ (ξ) := (2πσ)−1/2
∫ ξ

−∞
e−s2/(2σ) ds

denotes the normal distribution with the variance σ .
Central limit theorems in higher dimensions when w1 = · · · = wm = 1/m have

recently been studiedDolgopyat et al. [3]. In this paper, using very different techniques,
we establish the following CLT for general exponents w1, . . . , wm .

Theorem 1.1 Let m � 2. Then for every ξ ∈ R,

∣
∣
∣
∣

{

u ∈ [0, 1]m : �T (u) − Cm log T

(log T )1/2
< ξ

}∣
∣
∣
∣
−→ Normσm (ξ) (1.4)

as T → ∞, where

σm := 2Cm(2ζ(m)ζ(m + 1)−1 − 1),

and ζ denotes Riemann’s ζ -function.

Our proof of Theorem1.1, aswell as the proof in [3], proceeds by interpreting�T (·)
as a function on a certain subset Y of the space of all unimodular lattices in R

m+1,
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and then studies how the sequence asY , where a is a fixed linear transformation of
R

m+1, distributes inside this space. However, the arguments in the two papers follow
very different routes. The proof in [3] contains a novel refinement of the martingale
method (this approach was initiated in this setting by Le Borgne [10]). Here, one cru-
cially uses the fact that when w1 = · · · = wm = 1/m, then the set Y is an unstable
manifold for the action of a on the space of lattices. For general weights,Y has strictly
smaller dimension than the unstable leaves, and it seems challenging to apply martin-
gale approximation techniques. Instead, our method involves a quantitative analysis
of higher-order correlations for functions on the space of lattices. We establish an
asymptotic formula for correlations of arbitrary orders and use this formula to com-
pute limits of all the moments of �T (·) directly. One of the key innovations of our
approach is an efficient way of estimating sums of cumulants (alternating sums of
moments) developed in our recent work [2].

We also investigate the more general problem of Diophantine approximation for
systems of linear forms. The space Mm,n(R) of m linear forms in n real variables is
parametrized by real m × n matrices. Given u ∈ Mm,n(R), we consider the family
(L(i)

u ) of linear forms defined by

L(i)
u (x1, . . . , xn) =

n
∑

j=1

ui j x j , i = 1, . . . , m.

Let ‖ · ‖ be a norm on R
n . Fix ϑ1, . . . , ϑm > 0 and w1, . . . , wm > 0 which satisfy

w1 + · · · + wm = n,

and consider the system of Diophantine inequalities

∣
∣
∣pi + L(i)

u (q1, . . . , qn)

∣
∣
∣ < ϑi ‖q‖−wi , i = 1, . . . , m, (1.5)

with (p, q) = (p1, . . . , pm, q1, . . . , qn) ∈ Z
m × (Zn\{0}). The number of solutions

of this system with the norm of the “denominator” q bounded by T is given by

�T (u) := ∣
∣
{

(p, q) ∈ Z
m × Z

n : 0 < ‖q‖ < T and (1.5) holds
}∣
∣ . (1.6)

Our main result in this paper is the following generalization of Theorem 1.1.

Theorem 1.2 If m � 2, then for every ξ ∈ R,

∣
∣
∣
∣

{

u ∈ Mm,n([0, 1]) : �T (u) − Cm,n log T

(log T )1/2
< ξ

}∣
∣
∣
∣
−→ Normσm,n (ξ) (1.7)

as T → ∞, where

Cm,n := Cmωn with ωn :=
∫

Sn−1
‖z‖−n dz
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and

σm,n := 2Cm,n(2ζ(m + n − 1)ζ(m + n)−1 − 1).

The special case w1 = · · · = wm = n/m was proved earlier in [3].

1.3 An outline of the proof of Theorem 1.2

We begin by observing that �T (·) can be interpreted as a function on the space of
lattices in R

m+n . Given u ∈ Mm,n([0, 1]), we define the unimodular lattice 
u in
R

m+n by


u :=
⎧

⎨

⎩

⎛

⎝p1 +
n

∑

j=1

u1 j q j , . . . , pm +
n

∑

j=1

umj q j , q

⎞

⎠ : (p, q) ∈ Z
m × Z

n

⎫

⎬

⎭
, (1.8)

and we see that

�T (u) = |
u ∩ �T | + O(1), for T > 0,

where �T denotes the domain

�T := {

(x, y) ∈ R
m+n : 1 � ‖y‖ < T , |xi | < ϑi ‖y‖−wi , i = 1, . . . , m

}

. (1.9)

The space X of unimodular lattices in R
m+n is naturally a homogeneous space of the

group SLm+n(R) equipped with the invariant probability measure μX . The set

Y := {
u : u ∈ Mm,n([0, 1])}

is a mn-dimensional torus embedded in X , and we equip Y with the Haar probability
measure μY , interpreted as a Borel measure on X .

We further observe (see Sect. 6 for more details) that each domain �T can be
tessellated using a fixed diagonal matrix a in SLm+n(R), so that for a suitable function
χ̂ : X → R, we have

|
 ∩ �T | ≈
N−1
∑

s=0

χ̂(as
) for 
 ∈ X .

Hence we are left with analyzing the distribution of values for the sums
∑N

s=0 χ̂ (as y)

with y ∈ Y . This will allow us to apply techniques developed in our previous work
[2], as well as in [1] (joint with M. Einsiedler). Intuitively, our arguments will be
guided by the hope that the observables χ̂ ◦ as are “quasi-independent” with respect
to μY . Due to the discontinuity and unboundedness of the function χ̂ on X , it gets
quite technical to formulate this quasi-independence directly. Instead, we shall argue
in steps.
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We begin in Sect. 2 by establishing quasi-independence for observables of the form
φ ◦ as , where φ is a smooth and compactly supported function on X . This amounts to
an asymptotic formula (Corollary 2.4) for the higher-order correlations

∫

Y
φ1(a

s1 y) · · · φr (a
sr y) dμY (y) with φ1, . . . , φr ∈ C∞

c (X ). (1.10)

It will be crucial for our arguments later that the error term in this formula is explicit in
terms of the exponents s1, . . . , sr and in (certain norms of) the functions φ1, . . . , φr .
In Sect. 3, we use these estimates to prove the central limit theorems for sums of the
form

FN (y) :=
N−1
∑

s=0

(

φ(as y) − μY (φ)
)

with φ ∈ C∞
c (X ) and y ∈ Y .

To do this, we use an adaption of the classical Cumulant Method (see Proposition 3.4),
which provides bounds on cumulants (alternating sums of moments) given estimates
on expressions as in (1.10), at least in certain ranges of the parameters (s1, . . . , sr ).
Here we shall exploit the decomposition (3.7) into “separated”/“clustered” tuples. We
stress that the cumulant Cum(r)(FN ) of order r can be expressed as a sum of O(Nr )

terms, normalized by Nr/2, so that in order to prove that it vanishes asymptotically, we
require more than just square-root cancellation; however, the error term in the asymp-
totic formula for (1.10) is rather weak. Nonetheless, by using intricate combinatorial
cancellations of cumulants, we can establish the required bounds.

In order to extend the method in Sect. 3 to the kind of unbounded functions which
arise in our subsequent approximation arguments we have to investigate possible
escapes of mass for the sequence of tori asY inside the space X . In Sect. 4, we
prove several results in this direction (see e.g. Proposition 4.5), as well as L p-bounds
(see Propositions 4.6 and 4.8). We stress that the general non-divergence estimates
for unipotent flows developed by Kleinbock–Margulis [8] are not sufficient for our
purposes, and in particular, the exact value of the exponent in Proposition 4.5 will
be crucial for our argument. The proof of the L2-norm bound in Proposition 4.8 is
especially interesting in this regard since it uncovers that the escape of mass is related
to delicate arithmetic questions; our arguments require careful estimates on the number
of solutions of certain Diophantine equations.

To make the technical passages in the final steps of the proof of Theorem 1.2 a bit
more readable, we shall devote Sect. 5 to central limit theorems for sums of the form

N−1
∑

s=0

f̂ (as y) for y ∈ Y,

where f is a smooth and compactly supported function on R
m+n , and f̂ denotes the

Siegel transform of f (see Sect. 4.3 for definitions). We stress that even though f is
assumed to be bounded, f̂ is unbounded on X . To prove the central limit theorems in
this setting, we approximate f̂ by compactly supported functions on X and then use
the estimates from Sect. 3. However, the bounds in these estimates crucially depend
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on the order of approximation, so this step requires a delicate analysis of the error
terms. The non-divergence results established in Sect. 4 play important role here.

Finally, to prove the central limit theorem for the function χ̂ (which is the Siegel
transform of an indicator function on a nice bounded domain in R

m+n), and thus
establish Theorem 1.2, we need to approximate χ with smooth functions, and show
that the arguments in Sect. 5 can be adapted to certain sequences of Siegel transforms
of smooth and compactly supported functions. This will be done in Sect. 6.

2 Estimates on higher-order correlations

Let X denote the space of unimodular lattices in R
m+n . Setting

G := SLm+n(R) and � := SLm+n(Z),

we may consider the space X as a homogeneous space under the linear action of the
group G, so that

X � G/�.

Let μX denote the G-invariant probability measure on X .
We fix m, n � 1 and denote by U the subgroup

U :=
{(

Im u
0 In

)

: u ∈ Mm,n(R)

}

< G, (2.1)

and set Y := UZ
m+n ⊂ X . Geometrically, Y can be visualized as a mn-dimensional

torus embedded in the spaces of lattices X . We denote by μY the probability measure
on Y induced by the Lebesgue probability measure on Mm,n([0, 1]), and we note
that Y corresponds to the collection of unimodular lattices 
u , for u ∈ Mm,n([0, 1)),
introduced earlier in (1.8).

Let us further fix positive numbers w1, . . . , wm+n satisfying

m
∑

i=1

wi =
m+n
∑

i=m+1

wi ,

and denote by (at ) the one-parameter semi-group

at := diag
(

ew1t , . . . , ewm t , e−wm+1t , . . . , e−wm+n t) , t > 0. (2.2)

The aim of this section is to analyze the asymptotic behavior of atY ⊂ X as t → ∞,
and investigate “decoupling” of correlations of the form

∫

Y
φ1(at1 y) . . . φr (atr y) dμY (y) for φ1, . . . , φr ∈ C∞

c (X ), (2.3)

for “large” t1, . . . , tr > 0. It will be essential for our subsequent argument that the
error terms in this “decoupling” are explicit in terms of the parameters t1, . . . , tr > 0
and suitable norms of the functions φ1, . . . , φr , which we now introduce.
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Every Y ∈ Lie(G) defines a first order differential operator DY on C∞
c (X ) by

DY (φ)(x) := d

dt
φ(exp(tY )x)|t=0.

If we fix an (ordered) basis {Y1, . . . , Yr } of Lie(G), then every monomial Z =
Y �1
1 · · · Y �r

r defines a differential operator by

DZ := D�1
Y1

· · ·D�r
Yr

, (2.4)

of degree deg(Z) = �1 + · · · + �r . For k � 1 and φ ∈ C∞
c (X ), we define the norms

‖φ‖L2
k (X ) :=

⎛

⎝
∑

deg(Z)�k

∫

X
|(DZφ)(x)|2 dμX (x)

⎞

⎠

1/2

, (2.5)

and

‖φ‖Ck :=
∑

deg(Z)�k

‖(DZφ)(x)‖∞. (2.6)

Note that for every g ∈ G, φ ∈ C∞(X ) and Y ∈ Lie(G), we have DY (φ ◦ g) =
DAd(g)Y (φ) ◦ g. This identity readily extends to the universal enveloping algebras
U(Lie(G)) as well, and thus we also have DZ (φ ◦ g) = DAd(g)Z (φ) ◦ g, for every
monomial Z in {Y1, . . . , Yr }, where Ad(g) denotes the extension of the Ad(g) from
Lie(G) to U(Lie(G)). Since Ad(g)Z can be written as a finite sum of monomials of
degrees not exceeding the degree of Z , we conclude that for every k � 1, there exists
a sub-multiplicative function g → Ck(g) such that

‖φ ◦ g‖Ck � Ck(g)‖φ‖Ck , for all φ ∈ C∞
c (X ).

In particular, there a constant ξ = ξ(m, n, k) (which also depends on our fixed choice
of weights w1, . . . , wm+n) such that

‖φ ◦ at‖Ck � eξ t‖φ‖Ck , for all t ∈ R and φ ∈ C∞
c (X ), (2.7)

where the suppressed constants are independent of t and φ.
The starting point of our discussion is a well-known quantitative estimate on cor-

relations of smooth functions on X :

Theorem 2.1 There exist γ > 0 and k � 1 such that for all φ1, φ2 ∈ C∞
c (X ) and

g ∈ G,

∫

X
φ1(gx)φ2(x) dμX (x) =

(∫

X
φ1 dμX

)(∫

X
φ2 dμX

)

+ O
(

‖g‖−γ ‖φ1‖L2
k (X )‖φ1‖L2

k (X )

)

.
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This theorem has a very long history that wewill not attempt to survey here, but only
mention that a result of this form can be found, for instance, in [7, Corollary 2.4.4].

From now on we fix k � 1 so that Theorem 2.1 holds.

Our goal is to decouple the higher-order correlations in (2.3), but in order to state our
results we first need to introduce a family of finer norms on C∞

c (X ) than (‖ ·‖L2(X )k
).

Let us denote by ‖ · ‖C0 the uniform norm on Cc(X ). If we fix a right-invariant
Riemannian metric on G, then it induces a metric d on X � G/�, which allows us
to define the norms

‖φ‖Lip := sup

{ |φ(x1) − φ(x2)|
d(x1, x2)

: x1, x2 ∈ X , x1 �= x2

}

,

and

Nk(φ) := max
{

‖φ‖C0 , ‖φ‖Lip, ‖φ‖L2
k (X )

}

, (2.8)

for φ ∈ C∞
c (X ). We shall prove:

Theorem 2.2 There exists δ > 0 such that for every compact � ⊂ U , f ∈ C∞
c (U )

with supp( f ) ⊂ �, φ1, . . . , φr ∈ C∞
c (X ), x0 ∈ X , and t1, . . . , tr > 0, we have

∫

U
f (u)

(
r
∏

i=1

φi (ati ux0)

)

du =
(∫

U
f (u) du

) r
∏

i=1

(∫

X
φi dμX

)

+ Ox0,�,r

(

e−δD(t1,...,tr ) ‖ f ‖Ck

r
∏

i=1

Nk(φi )

)

,

where

D(t1, . . . , tr ) := min{ti , |ti − t j | : 1 � i �= j � r}.

Remark 2.3 The case r = 1 was proved by Kleinbock and Margulis in [9], and our
arguments are inspired by theirs. We stress that the constant δ in Theorem 2.2 is
independent of r .

We also record the following corollary of Theorem 2.2.

Corollary 2.4 There exists δ′ > 0 such that for every φ0 ∈ C∞(Y), φ1, . . . , φr ∈
C∞

c (X ) and t1, . . . , tr > 0, we have

∫

Y
φ0(y)

(
r
∏

i=1

φi (ati y)

)

dμY (y) =
(∫

Y
φ0 dμY

) r
∏

i=1

(∫

X
φi dμX

)

+ Or

(

e−δ′ D(t1,...,tr ) ‖φ0‖Ck

r
∏

i=1

Nk(φi )

)

.
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Proof of Corollary 2.4 (assuming Theorem 2.2) Let x0 denote the identity coset in X ∼=
G/�, which corresponds to the standard lattice Z

m+n , and recall that

Y = U x0 � U/(U ∩ �).

Let φ̃0 ∈ C∞(U ) denote the lift of the function φ0 to U , and χ the characteristic
function of the subset

U0 :=
{(

Im u
0 In

)

: u ∈ Mm,n([0, 1])
}

.

Given ε > 0, let χε ∈ C∞
c (U ) be a smooth approximation of χ with uniformly

bounded support which satisfy

χ � χε � 1, ‖χ − χε‖L1(U ) � ε, ‖χε‖Ck � ε−k .

We observe that if fε := φ̃0χε and f0 := φ̃0χ , then

‖ f0 − fε‖L1(U ) � ε ‖φ0‖C0

and

‖ fε‖Ck � ‖φ̃0‖Ck ‖χε‖Ck � ε−k‖φ0‖Ck ,

which implies that

∫

Y
φ0(y)

(
r
∏

i=1

φi (ati y)

)

dμY (y) =
∫

U
f0(u)

(
r
∏

i=1

φi (ati ux0)

)

du

=
∫

U
fε(u)

(
r
∏

i=1

φi (ati ux0)

)

du

+ O

(

ε

r
∏

i=0

‖φi‖C0

)

,

and

∫

Y
φ0 dμY =

∫

U
f0(u) du =

∫

U
fε(u) du + O

(

ε‖φ0‖C0
)

.

Therefore, Theorem 2.2 implies that

∫

Y
φ0(y)

(
r
∏

i=1

φi (ati y)

)

dμY (y) =
(∫

U
fε(u) du

) r
∏

i=1

(∫

X
φi dμX

)
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+ Or

(

ε

r
∏

i=0

‖φi‖C0 + e−δD(t1,...,tr ) ‖ fε‖Ck

r
∏

i=1

Nk(φi )

)

=
(∫

Y
φ0 dμY

) r
∏

i=1

(∫

X
φi dμX

)

+ Or

(
(

ε + ε−ke−δD(t1,...,tr )
)

‖φ0‖Ck

r
∏

i=1

Nk(φi )

)

.

The corollary (with δ′ = δ/(k + 1)) follows by choosing ε = e−δD(t1,...,tr )/(k+1). ��

2.1 Preliminary results

We recall that d is a distance onX ∼= G/� induced from a right-invariant Riemannian
metric on G. We denote by BG(ρ) the ball of radius ρ centered at the identity in G.
For a point x ∈ X , we let ι(x) denote the injectivity radius at x , that is to say, the
supremum over ρ > 0 such that the map BG(ρ) → BG(ρ)x : g → gx is injective.

Given ε > 0, let

Kε = {
 ∈ X : ‖v‖ � ε, for all v ∈ 
\{0}}. (2.9)

ByMahler’s Compactness Criterion,Kε is a compact subset ofX . Furthermore, using
reduction theory, one can show:

Proposition 2.5 [9, Prop. 3.5] ι(x) � εm+n for any x ∈ Kε.

An important role in our argument will be played by the one-parameter semi-group

bt := diag
(

et/m, . . . , et/m, e−t/n, . . . , e−t/n) , t > 0, (2.10)

which coincides with the semi-group (at ) as defined in (2.2) with the special choice
of exponents

w1 = · · · = wm = 1

m
and wm+1 = · · · = wm+n = 1

n
.

The submanifold Y ⊂ X is an unstable manifold for the flow (bt ) which makes
the analysis of the asymptotic behavior of btY significantly easier than that of atY
for general parameters. Using Theorem 2.1, Kleinbock and Margulis proved in [7]
a quantitative equidistribution result for the family btY as t → ∞, we shall use a
version of this result from their later work [9].

Theorem 2.6 [9, Th. 2.3] There exist ρ0 > 0 and c, γ > 0 such that for every ρ ∈
(0, ρ0), f ∈ C∞

c (U ) satisfying supp( f ) ⊂ BG(ρ), x ∈ X with ι(x) > 2ρ, φ ∈
C∞

c (X ), and t � 0,
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∫

U
f (u)φ(bt ux) du =

(∫

U
f (u) du

)(∫

X
φ dμX

)

+ O
(

ρ‖ f ‖L1(U )‖φ‖Lip + ρ−ce−γ t ‖ f ‖Ck ‖φ‖L2
k (X )

)

.

Remark 2.7 Although the dependence on φ is not stated in [9, Theorem 2.3], the
estimate is explicit in the proof. Indeed, in [9, Section 2, p. 390], the authors show
under the assumptions above that

∣
∣
∣
∣

∫

U
f (u)φ(bt ux) du − 〈 f̃ , b−tφ〉L2(X )

∣
∣
∣
∣
� ρ‖φ‖Lip‖ f ‖L1(U ),

where f̃ is an (explicit) smooth function onX with compact support constructed from
f . Theorem 2.6 now follows from the decay of matrix coefficients in Theorem 2.1.

We will prove Theorem 2.2 through successive uses of Theorem 2.6. In order to
make things more transparent, it will be convenient to embed the flow (at ) as defined
in (2.2) in a multi-parameter flow as follows. For s = (s1, . . . , sm+n) ∈ R

m+n , we set

a(s) := diag
(

es1 , . . . , esm , e−sm+1 , . . . , e−sm+n
)

. (2.11)

We denote by S+ the cone in R
m+n consisting of those s = (s1, . . . , sm+n) which

satisfy

s1, . . . , sm+n > 0 and
m
∑

i=1

si =
m+n
∑

i=m+1

si .

For s = (s1, . . . , sm+n) ∈ S+, we set

�s� := min(s1, . . . , sm+n),

and, with st := (w1t, . . . , wm+nt), we see that at = a(st ).
In addition to Theorem 2.6, we shall also need the following quantitative non-

divergence estimate for unipotent flows established by Kleinbock and Margulis in
[9].

Theorem 2.8 [9, Cor. 3.4] There exists θ = θ(m, n) > 0 such that for every compact
L ⊂ X and a Euclidean ball B ⊂ U centered at the identity, there exists T0 > 0 such
that for every ε ∈ (0, 1), x ∈ L, and s ∈ S+ satisfying �s� � T0, one has

|{u ∈ B : a(s)ux /∈ Kε}| � εθ |B|.

2.2 Proof of Theorem 2.2

Let us fix r � 1 and a r -tuple (t1, . . . , tr ). Upon re-labeling, we may assume that
t1 � . . . � tr , so that
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D := D(t1, . . . , tr ) = min{t1, t2 − t1, . . . , tr − tr−1}. (2.12)

The next lemma provides an additional parameter s ∈ S+, which depends on the
r -tuple (t1, . . . , tr ). This parameter will be used throughout the proof of Theorem 2.2,
and we stress that the accompanying constants c1, c2 and c3 are independent of r and
the r -tuple (t1, . . . , tr ).

Lemma 2.9 There exist c1, c2, c3 > 0 such that given any tr > tr−1 > 0, there exists
s ∈ S+ satisfying:
(i) �s� � c1(tr − tr−1),

(ii) �s − str−1� � c2(tr − tr−1),

(iii) str − s = ( z
m , . . . , z

m , z
n , . . . , z

n ) for some z � c3 min(tr−1, tr − tr−1).

Proof We start the proof by defining s by the formula in (iii), where the parameter z
will be chosen later, that is to say, we set

s =
(

w1tr − z

m
, . . . , wmtr − z

m
, wm+1tr − z

n
, . . . , wm+ntr − z

n

)

.

Then (i) holds provided that

A1tr − z

m
� c1(tr − tr−1) and A2tr − z

n
� c1(tr − tr−1),

where A1 := min(wi : 1 � i � m) and A2 := min(wi : m + 1 � i � m + n), so if
we set c1 = min(A1, A2), then (i) holds when

z � c1 min(m, n)tr−1. (2.13)

To arrange (ii), we observe that

s − str−1 =
(

w1(tr − tr−1) − z

m
, . . . , wm(tr − tr−1) − z

m
,

× wm+1(tr − tr−1) − z

n
, . . . , wm+n(tr − tr−1) − z

n

)

,

and thus (ii) holds provided that

A1(tr − tr−1) − z

m
� c2(tr − tr−1) and A2(tr − tr−1) − z

n
� c2(tr − tr−1).

If we let c2 = min(A1, A2)/2, then (ii) holds when

z � c2 min(m, n)(tr − tr−1). (2.14)

So far we have arranged so that (i) and (ii) hold provided that z satisfies (2.13) and
(2.14). Let c3 = min(c1, c2)min(m, n), and note that if we pick z = c3 min(tr−1, tr −
tr−1), then (i), (ii) and (iii) are all satisfied. ��
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Let us now continue with the proof of Theorem 2.2. With the parameter s provided
by Lemma 2.9 above, we have

�s� � c1 D, (2.15)

�s − sti � � c2 D for all i = 1, . . . , r − 1, (2.16)

a(str − s) = bz for some z � c3 D, (2.17)

where bz is defined as in (2.10) and D as in (2.12) Throughout the rest of the proof
we fix a compact set � ⊂ U . Our aim now is to estimate integrals of the form

Ir :=
∫

U
f (u)

(
r
∏

i=1

φi (ati ux0)

)

du,

where f ranges over C∞
c (U ) with supp( f ) ⊂ �. Our proof will proceed by induction

over r , the case r = 0 being trivial.
Before we can start the induction, we need some notation. Let ρ0 and k be as in

Theorem 2.6, and pick for 0 < ρ < ρ0, a non-negative ωρ ∈ C∞
c (X ) such that

supp(ωρ) ⊂ BG(ρ), ‖ωρ‖Ck � ρ−σ ,

∫

U
ωρ(v) dv = 1, (2.18)

for some fixed σ = σ(m, n, k) > 0. The integral Ir can now be rewritten as follows:

Ir = Ir ·
(∫

U
ωρ(v) dv

)

=
∫

U×U
f (u)ωρ(v)

(
r
∏

i=1

φi (ati ux0)

)

dudv

=
∫

U×U
f (a(−s)va(s)u)ωρ(v)

(
r
∏

i=1

φi (ati a(−s)va(s)ux0)

)

dudv.

If we set

fs,u(v) := f (a(−s)va(s)u)ωρ(v) and xs,u := a(s)ux0,

then

Ir =
∫

U

(
∫

U
fs,u(v)

r
∏

i=1

φi (a(sti − s)vxs,u) dv

)

du.

We observe that if fs,u(v) �= 0, then

v ∈ supp(ωρ) ⊂ BG(ρ) and a(−s)va(s)u ∈ supp( f ),

so that

u ∈ a(−s)v−1a(s)supp( f ) ⊂ a(−s)supp(ωρ)−1a(s)�.
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Since s ∈ S+, the linear map v → a(−s)va(s), for v ∈ U ∼= R
mn , is non-expanding,

and thus we can conclude that there exists a fixed Euclidean ball B in U (depending
only on � and ρ0), and centered at the identity, such that if fs,u(v) �= 0, then u ∈ B.
This implies that the integral Ir can be written as

Ir =
∫

B

(
∫

U
fs,u(v)

r
∏

i=1

φi (a(sti − s)vxs,u) dv

)

du, (2.19)

and

‖ fs,u‖Ck � ‖ f ‖Ck ‖ωρ‖Ck � ρ−σ ‖ f ‖Ck . (2.20)

Furthermore,

∫

U
‖ fs,u‖L1(U ) du =

∫

U×U
| f (a(−s)va(s)u)ωρ(v)| dvdu

=
(∫

U
| f (u)| du

)(∫

U
ωρ(v) dv

)

= ‖ f ‖L1(U ). (2.21)

We decompose the integral Ir in (2.19) as

Ir = I ′
r (ε) + I ′′

r (ε),

where I ′
r (ε) is the integral over

Bε := {u ∈ B : xs,u /∈ Kε},

and I ′′
r (ε) is the integral over B\Bε.

To estimate I ′
r (ε), we first recall that s � c1D by (2.15), so if D � T0/c1, where

T0 is as in Theorem 2.8 applied to L = Kε and B, then the same theorem implies that
there exists θ > 0 such that

|Bε| � εθ |B| (2.22)

for every ε ∈ (0, 1), and thus

I ′
r (ε) �� εθ |B|‖ f ‖C0

(∫

U
ωρ(v) dv

) r
∏

i=1

‖φi‖C0 �� εθ‖ f ‖C0

r
∏

i=1

‖φi‖C0 .

(2.23)

Let us now turn to the problem of estimating I ′′
r (ε). Since the Riemannian distance d

on G, restricted to U , and the Euclidean distance on U are equivalent on a small open
identity neighborhood, we see that

d
(

a(−t)va(t), e
) � e−�t� d(v, e).
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for v ∈ BG(ρ0) and any t ∈ S+. Hence, using (2.16), we obtain that for all i =
1, . . . , r − 1,

φi (a(sti − s)vxs,u) = φi (a(sti − s)xs,u) + O
(

e−c2D ‖φi‖Lip

)

,

and thus, for all v ∈ BG(ρ0),

r−1
∏

i=1

φi (a(sti − s)vxs,u) =
r−1
∏

i=1

φi (a(sti − s)xs,u) + Or

(

e−c2D
r−1
∏

i=1

‖φi‖∗
Lip

)

,

(2.24)

where ‖φ‖∗
Lip := max(‖φ‖C0 , ‖φ‖Lip). This leads to the estimate

I ′′
r (ε) =

∫

B\Bε

r−1
∏

i=1

φi (a(sti − s)xs,u)

(∫

U
fs,u(v)φr (a(str − s)vxs,u) dv

)

du

+ Or

(

e−c2D
r−1
∏

i=1

‖φi‖∗
Lip

(∫

B\Bε

‖ fs,u‖L1(U ) du

)

‖φr‖C0

)

.

Hence, using (2.21), we obtain that

I ′′
r (ε) =

∫

B\Bε

r−1
∏

i=1

φi (a(sti − s)xs,u)

(∫

U
fs,u(v)φr

(

a(str − s)vxs,u
)

dv

)

du

+ Or

(

e−c2D‖ f ‖L1(U )

r
∏

i=1

‖φi‖∗
Lip

)

.

Since by (2.17),

∫

U
fs,u(v)φr (a(str − s)vxs,u) dv =

∫

U
fs,u(v)φr (bzvxs,u) dv,

we apply Theorem 2.6 to estimate this integral. We recall that supp( fs,u) ⊂ BG(ρ).
For u ∈ B\Bε, we have xs,u ∈ Kε, so that ι(xs,u) � εm+n by Proposition 2.5. In
particular, we may take

ε � ρ1/(m+n)

to arrange that ι(xs,u) > 2ρ. Hence, by applying Theorem 2.6, we deduce that there
exist c, γ > 0 such that

∫

U
fs,u(v)φr (bzvxs,u) dv =

(∫

U
fs,u(v) dv

)(∫

X
φr dμX

)

+ O
(

ρ‖ fs,u‖L1(U )‖φr‖Lip + ρ−ce−γ z ‖ fs,u‖Ck ‖φr‖L2
k (X )

)

,
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for all u ∈ B\Bε. Using (2.20) and (2.21) and z � c3 D, we deduce that

I ′′
r (ε) =

(
∫

B\Bε

r−1
∏

i=1

φi (a(sti − s)xs,u)

(∫

U
fs,u(v) dv

)

du

)(∫

X
φr dμX

)

+ Or ,B

(
r−1
∏

i=1

‖φi‖C0

(

ρ‖ f ‖L1(U )‖φr‖Lip + ρ−(c+σ)e−γ c3 D ‖ f ‖Ck ‖φr‖L2
k (X )

)
)

+ Or

(

e−c2D‖ f ‖L1(U )

r
∏

i=1

‖φi‖∗
Lip

)

.

Since ‖ f ‖L1(U ) �� ‖ f ‖Ck ,

I ′′
r (ε) =

(
∫

B\Bε

r−1
∏

i=1

φi (a(sti − s)xs,u)

(∫

U
fs,u(v) dv

)

du

)(∫

X
φr dμX

)

+ Or ,�

(
(

ρ + ρ−(c+σ)e−γ c3 D + e−c2D
)

‖ f ‖Ck

r
∏

i=1

Nk(φi )

)

. (2.25)

Applying (2.24) one more time (in the backward direction), we get

∫

B\Bε

r−1
∏

i=1

φi (a(sti − s)xs,u)

(∫

U
fs,u(v) dv

)

du

=
∫

B\Bε

(
∫

U
fs,u(v)

r−1
∏

i=1

φi (a(sti − s)vxs,u) dv

)

du

+ Or

(

e−c2D
(∫

B
‖ fs,u‖L1(U ) du

) r−1
∏

i=1

‖φi‖∗
Lip

)

.

It follows from (2.22) that

∫

B\Bε

(
∫

U
fs,u(v)

r−1
∏

i=1

φi (a(sti − s)vxs,u) dv

)

du

=
∫

B

(
∫

U
fs,u(v)

r−1
∏

i=1

φi (a(sti − s)vxs,u) dv

)

du

+ Or

(

εθ

(∫

B
‖ fs,u‖L1(U ) du

) r−1
∏

i=1

‖φi‖C0

)

,

where we recognize the first term as Ir−1. Using (2.19) and (2.21), we now conclude
that
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∫

B\Bε

r−1
∏

i=1

φi (a(sti − s)xs,u)

(∫

U
fs,u(v) dv

)

du

= Ir−1 + Or

(
(

εθ + e−c2D
)

‖ f ‖L1(U )

r−1
∏

i=1

‖φi‖∗
Lip

)

.

Hence, combining this estimate with (2.25), we deduce that

I ′′
r (ε) = Ir−1

(∫

X
φr dμX

)

+ Or ,�

(
(

εθ + ρ + ρ−(c+σ)e−γ c3 D + e−c2D
)

‖ f ‖Ck

r
∏

i=1

Nk(φi )

)

,

and thus, in view of (2.23),

Ir = I ′
r (ε) + I ′′

r (ε) = Ir−1

(∫

X
φr dμX

)

+ Or ,�

(
(

εθ + ρ + ρ−(c+σ)e−γ c3 D + e−c2D
)

‖ f ‖Ck

r
∏

i=1

Nk(φi )

)

.

This estimate holds whenever ρ < ρ0 and ε � ρ1/(m+n). Taking ρ = e−c4D for
sufficiently small c4 > 0 and ε � ρ1/(m+n), we conclude that there exists δ > 0 such
that for all sufficiently large D,

Ir = Ir−1

(∫

X
φr dμX

)

+ Or ,�

(

e−δD ‖ f ‖Ck

r
∏

i=1

Nk(φi )

)

. (2.26)

The exponent δ depends on the constants c2 and c3 given by Lemma 2.9 and the
parameters θ, c, σ, γ . In particular, δ is independent of r . By possibly enlarging the
implicit constants we can ensure that the estimate (2.26) also holds for all r -tuples
(t1, . . . , tr ), and not just the ones with sufficiently large D(t1, . . . , tr ). By iterating the
estimate (2.26), using that I0 is a constant, the proof of Theorem 2.2 is finished.

3 CLT for functions with compact support

Let a = diag(a1, . . . , am+n) be a diagonal linear map of R
m+n with

a1, . . . , am > 1, 0 < am+1, . . . , am+n < 1, and a1 · · · am+n = 1.

The map a defines a continuous self-map of the space X , which preserves μX . We
recall that the torus Y = UZ

m+n ⊂ X is equipped with the probability measure μY .
In this section, we shall prove a central limit theorem for the averages
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FN := 1√
N

N−1
∑

s=0

(

φ ◦ as − μY (φ ◦ as)
)

, (3.1)

restricted toY , for a fixed function φ ∈ C∞
c (X ).We stress that this result is not needed

in the proof of Theorem 1.2, but we nevertheless include it here because we feel that
its proof might be instructive before entering the proof of the similar, but far more
technical, Theorem 6.1.

Theorem 3.1 For every ξ ∈ R,

μY ({y ∈ Y : FN (y) < ξ}) → Normσφ (ξ)

as N → ∞, where

σ 2
φ :=

∞
∑

s=−∞

(∫

X
(φ ◦ as)φ dμX − μX (φ)2

)

.

Remark 3.2 It follows from Theorem 2.1 that the variance σφ is finite.

Our main tool in the proof of Theorem 3.1 will be the estimates on higher-order cor-
relations established in Sect. 2. To make notations less heavy, we shall use a simplified
version of Corollary 2.4 stated in terms of Ck-norms (note that Nk � ‖ · ‖Ck ):

Corollary 3.3 There exists δ > 0 such that for every φ0, . . . , φr ∈ C∞
c (X ) and

t1, . . . , tr > 0, we have

∫

Y
φ0(y)

(
r
∏

i=1

φi (ati y)

)

dμY (y) =
(∫

Y
φ0 dμY

) r
∏

i=1

(∫

X
φi dμX

)

+ Or

(

e−δD(t1,...,tr )
r
∏

i=0

‖φi‖Ck

)

.

3.1 Themethod of cumulants

Let (X , μ) be a probability space. Given bounded measurable functions φ1, . . . , φr

on X , we define their joint cumulant as

Cum(r)
μ (φ1, . . . , φr ) =

∑

P
(−1)|P |−1(|P| − 1)!

∏

I∈P

∫

X

(
∏

i∈I

φi

)

dμ,

where the sum is taken over all partitionsP of the set {1, . . . , r}. When it is clear from
the context, we skip the subscript μ. For a bounded measurable function φ on X , we
also set

Cum(r)(φ) = Cum(r)(φ, . . . , φ).
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We shall use the following classical CLT-criterion (see, for instance, [5]).

Proposition 3.4 Let (FT ) be a sequence of real-valued bounded measurable functions
such that

∫

X
FT dμ = 0 and σ 2 := lim

T →∞

∫

X
F2

T dμ < ∞ (3.2)

and

lim
T →∞Cum(r)(FT ) = 0, for all r � 3. (3.3)

Then for every ξ ∈ R,

μ({FT < ξ}) → Normσ (ξ) as T → ∞.

Since all the moments of a random variable can be expressed in terms of its cumu-
lants, this criterion is equivalent to the more widely known “Method of Moments”.
However, the cumulants have curious, and very convenient, cancellation properties
that will play an important role in our proof of Theorem 3.1.

For a partitionQ of {1, . . . , r}, we define the conditional joint cumulant with respect
to Q as

Cum(r)
μ (φ1, . . . , φr |Q) =

∑

P
(−1)|P |−1(|P| − 1)!

∏

I∈P

∏

J∈Q

∫

X

(
∏

i∈I∩J

φi

)

dμ,

In what follows, we shall make frequent use of the following proposition.

Proposition 3.5 [2, Prop. 8.1] For any partition Q with |Q| � 2,

Cum(r)
μ (φ1, . . . , φr |Q) = 0, (3.4)

for all φ1, . . . , φr ∈ L∞(X , μ).

3.2 Estimating cumulants

Fix φ ∈ C∞
c (X ). It will be convenient to write ψs(y) := φ(as y) − μY (φ ◦ as), so

that

FN := 1√
N

N−1
∑

s=0

ψs and
∫

Y
ψs dμY = 0.

In this section, we shall estimate cumulants of the form

Cum(r)
μY (FN ) = 1

Nr/2

N−1
∑

s1,...,sr =0

Cum(r)
μY (ψs1 , . . . , ψsr ) (3.5)
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for r � 3. Since we shall later need to apply these estimate in cases when the function
φ is allowed to vary with N , it will be important to keep track of the dependence on
φ in our estimates.

We shall decompose (3.5) into sub-sums where the parameters s1, . . . , sr are either
“separated” or “clustered”, and it will also be important to control their sizes. For this
purpose, it will be convenient to consider the set {0, . . . , N − 1}r as a subset of R

r+1+
via the embedding (s1, . . . , sr ) → (0, s1, . . . , sr ). Following the ideas developed
in the paper [2], we define for non-empty subsets I and J of {0, . . . , r} and s =
(s0, . . . , sr ) ∈ R

r+1+ ,

ρ I (s) := max{|si − s j | : i, j ∈ I } and ρI ,J (s) := min{|si − s j | : i ∈ I , j ∈ J },

and if Q is a partition of {0, . . . , r}, we set

ρQ(s) := max{ρ I (s) : I ∈ Q} and ρQ(s) := min{ρI ,J (s) : I �= J , I , J ∈ Q}.

For 0 � α < β, we define

�Q(α, β) := {s ∈ R
r+1+ : ρQ(s) � α, and ρQ(s) > β}

and

�(α) := {s ∈ R
r+1+ : |si − s j | � α for all i, j}.

The following decomposition of R
r+1+ was established in our paper [2, Prop. 6.2]:

given

0 = α0 < β1 < α1 = (3 + r)β1 < β2 < · · · < βr < αr = (3 + r)βr < βr+1,

(3.6)

we have

R
r+1+ = �(βr+1) ∪

⎛

⎝

r
⋃

j=0

⋃

|Q|�2

�Q(α j , β j+1)

⎞

⎠ , (3.7)

where the union is taken over the partitionsQ of {0, . . . , r}with |Q| � 2. Intersecting
with {0, 1, . . . , N − 1}r , we see that

{0, . . . , N − 1}r = �(βr+1; N ) ∪
⎛

⎝

r
⋃

j=0

⋃

|Q|�2

�Q(α j , β j+1; N )

⎞

⎠ , (3.8)

for all N � 2, where

�(βr+1; N ) := {0, . . . , N − 1}r ∩ �(βr+1),
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�Q(α j , β j+1; N ) := {0, . . . , N − 1}r ∩ �Q(α j , β j+1).

In order to estimate the cumulant (3.5), we shall separately estimate the sums over
�(βr+1; N ) and �Q(α j , β j+1; N ), the exact choices of the sequences (α j ) and (β j )

will be fixed at the very end of our argument.

3.2.1 Case 0: Summing overÄ(ˇr+1;N)

In this case, si � βr+1 for all i , and thus

|�(βr+1; N )| � (βr+1 + 1)r .

Hence,

∑

(s1,...,sr )∈�(βr+1;N )

Cum(r)
μY (ψs1 , . . . , ψsr ) � (βr+1 + 1)r‖φ‖r

C0 , (3.9)

where the implied constants may depend on r , but we shall henceforth omit this
subscript to simplify notations.

3.2.2 Case 1: Summing overÄQ(˛j,ˇj+1;N)withQ = {{0}, {1, . . . , r}}

In this case, we have

|si1 − si2 | � α j for all i1, i2,

so that it follows that

|�Q(α j , β j+1; N )| � N (1 + α j )
r−1.

Hence,

1

Nr/2

∑

(s1,...,sr )∈�Q(α j ,β j+1;N )

|Cum(r)
μY (ψs1 , . . . , ψsr )| � N 1−r/2αr−1

j ‖φ‖r
C0 .

(3.10)

3.2.3 Case 2: Summing overÄQ(˛j,ˇj+1;N)with |Q| � 2 and
Q �= {{0}, {1, . . . , r}}

In this case, the partition Q defines a non-trivial partition Q′ = {I0, . . . , I�} of
{1, . . . , r} such that for all (s1, . . . , sr ) ∈ �Q(α j , β j+1; N ), we have

|si1 − si2 | � α j if i1 ∼Q′ i2 and |si1 − si2 | > β j+1 if i1 �Q′ i2, (3.11)
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and

si � α j for all i ∈ I0, and si > β j+1 for all i /∈ I0.

In particular,

D(si1 , . . . , si� ) � β j+1. (3.12)

Let I be an arbitrary subset of {1, . . . , r}. In what follows, we shall show a precise
version of the “decoupling”:

∫

Y

(
∏

i∈I

ψsi

)

dμY ≈
�
∏

h=0

⎛

⎝

∫

Y

⎛

⎝
∏

i∈I∩Ih

ψsi

⎞

⎠ dμY

⎞

⎠ , (3.13)

where we henceforth shall use the convention that the product is equal to one when
I ∩ Ih = ∅.

Let us estimate the left hand side of (3.13). We begin by setting

�0 :=
∏

i∈I∩I0

ψsi .

By (2.7), there exists ξ = ξ(m, n, k) > 0 such that

‖�0‖Ck �
∏

i∈I∩I0

‖φ ◦ asi − μY (φ ◦ asi )‖Ck � e|I∩I0|ξ α j ‖φ‖|I∩I0|
Ck . (3.14)

To prove (3.13), we expand ψsi = φ ◦ asi − μY (φ ◦ asi ) for i ∈ I\I0 and get

∫

Y

(
∏

i∈I

ψsi

)

dμY =
∑

J⊂I\I0

(−1)|I\(J∪I0)| ·

·
(
∫

Y
�0

(
∏

i∈J

φ ◦ asi

)

dμY

)
∏

i∈I\(J∪I0)

(∫

Y
(φ ◦ asi ) dμY

)

. (3.15)

We recall that when i /∈ I0, we have si � β j+1, and thus it follows from Corollary 3.3
with r = 1 that

∫

Y
(φ ◦ asi ) dμY = μX (φ) + O

(

e−δβ j+1 ‖φ‖Ck

)

, with i /∈ I0. (3.16)

To estimate the other integrals in (3.15), we also apply Corollary 3.3. Let us first fix a
subset J ⊂ I\I0 and for each 1 � h � l, we pick ih ∈ Ih , and set

�h :=
∏

i∈J∩Ih

φ ◦ asi −sih .
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Then

∫

Y
�0

(
∏

i∈J

φ ◦ asi

)

dμY =
∫

Y
�0

(
�
∏

h=1

�h ◦ asih

)

dμY .

We note that for i ∈ Ih , we have |si − sih | � α j , and thus, by (2.7), there exists
ξ = ξ(m, n, k) > 0 such that

‖�h‖Ck �
∏

i∈J∩Ih

‖φ ◦ asi −sih ‖Ck � e|J∩Ih |ξ α j ‖φ‖|J∩Ih |
Ck . (3.17)

Using (3.12), Corollary 3.3 implies that

∫

Y
�0

(
�
∏

h=1

�h ◦ asih

)

dμY =
(∫

Y
�0 dμY

) �
∏

h=1

(∫

X
�h dμX

)

+ O

(

e−δβ j+1

�
∏

h=0

‖�h‖Ck

)

.

Using (3.14) and (3.17) and invariance of the measure μX , we deduce that

∫

Y
�0

(
�
∏

h=1

�h ◦ asih

)

dμY =
(∫

Y
�0 dμY

) �
∏

h=1

⎛

⎝

∫

X

⎛

⎝
∏

i∈J∩Ih

φ ◦ asi

⎞

⎠ dμX

⎞

⎠

+ O
(

e−(δβ j+1−rξα j ) ‖φ‖|(I∩I0)∪J |
Ck

)

.

Hence, we conclude that

∫

Y
�0

(
∏

i∈J

φ ◦ asi

)

dμY =
(∫

Y
�0 dμY

) �
∏

h=1

⎛

⎝

∫

X

⎛

⎝
∏

i∈J∩Ih

φ ◦ asi

⎞

⎠ dμX

⎞

⎠

+ O
(

e−(δβ j+1−rξα j ) ‖φ‖|(I∩I0)∪J |
Ck

)

. (3.18)

We shall choose the parameters α j and β j+1 so that

δβ j+1 − rξα j > 0. (3.19)

Substituting (3.16) and (3.18) in (3.15), we deduce that

∫

Y

(
∏

i∈I

ψsi

)

dμY

=
∑

J⊂I\I0

(−1)|I\(J∪I0)|
(∫

Y
�0 dμY

) �
∏

h=1

⎛

⎝

∫

X

⎛

⎝
∏

i∈J∩Ih

φ ◦ asi

⎞

⎠ dμX

⎞

⎠
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×μX (φ)|I\(J∪I0)| + O
(

e−(δβ j+1−rξα j ) ‖φ‖|I |
Ck

)

. (3.20)

Next, we estimate the right hand side of (3.13). Let us fix 1 � h � l and for a
subset J ⊂ I ∩ Ih , we define

�J :=
∏

i∈J

φ ◦ asi −sih .

As in (3.17), for some ξ > 0,

‖�J ‖Ck �
∏

i∈J

‖φ ◦ asi −sih ‖Ck � e|J |ξ α j ‖φ‖|J |
Ck .

Applying Corollary 3.3 to the function �J and using that sih > β j+1, we get

∫

Y

(
∏

i∈J

φ ◦ asi

)

dμY =
∫

Y
(�J ◦ asih ) dμY

=
∫

X
�J dμX + O

(

e−δβ j+1 ‖�J ‖Ck

)

=
∫

X

(
∏

i∈J

φ ◦ asi

)

dμX + O
(

e−δβ j+1erξ α j ‖φ‖|J |
Ck

)

,

(3.21)

where we have used a-invariance ofμX . Combining (3.16) and (3.21), we deduce that

∫

Y

⎛

⎝
∏

i∈I∩Ih

ψsi

⎞

⎠ dμY =
∑

J⊂I∩Ih

(−1)|(I∩Ih )\J |
(
∫

X

(
∏

i∈J

φ ◦ asi

)

dμX

)

μX (φ)|(I∩Ih )\J |

+ O
(

e−δβ j+1erξ α j ‖φ‖|I∩Ih |
Ck

)

=
∫

X

∏

i∈I∩Ih

(

φ ◦ asi − μX (φ)
)

dμX

+ O
(

e−(δβ j+1−rξα j ) ‖φ‖|I∩Ih |
Ck

)

, (3.22)

which implies

�
∏

h=0

⎛

⎝

∫

Y

⎛

⎝
∏

i∈I∩Ih

ψsi

⎞

⎠ dμY

⎞

⎠

=
(∫

Y
�0 dμY

) �
∏

h=1

⎛

⎝

∫

X

∏

i∈I∩Ih

(

φ ◦ asi − μX (φ)
)

dμX

⎞

⎠

+ O
(

e−(δβ j+1−rξα j ) ‖φ‖r
Ck

)

.
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Furthermore, multiplying out the products over I ∩ Ih , we get

�
∏

h=0

⎛

⎝

∫

Y

⎛

⎝
∏

i∈I∩Ih

ψsi

⎞

⎠ dμY

⎞

⎠

=
(∫

Y
�0 dμY

)
∑

J⊂I\I0

(−1)|I\(I0∪J )|
�
∏

h=1

⎛

⎝

∫

X

∏

i∈Ih∩J

φ ◦ asi dμX

⎞

⎠μX (φ)|I\(I0∪J )|

+O
(

e−(δβ j+1−rξα j ) ‖φ‖|I |
Ck

)

. (3.23)

Comparing (3.20) and (3.23), we finally conclude that

∫

Y

(
∏

i∈I

ψsi

)

dμY =
�
∏

h=0

⎛

⎝

∫

Y

⎛

⎝
∏

i∈I∩Ih

ψsi

⎞

⎠ dμY

⎞

⎠

+ O
(

e−(δβ j+1−rξα j ) ‖φ‖|I |
Ck

)

when (s1, . . . , sr ) ∈ �Q(α j , β j+1; N ). This establishes (3.13) with an explicit error
term. This estimate implies that for the partition Q′ = {I0, . . . , I�},

Cum(r)
μY (ψs1 , . . . , ψsr ) = Cum(r)

μY (ψs1 , . . . , ψsr |Q′) + O
(

e−(δβ j+1−rξα j ) ‖φ‖r
Ck

)

By Proposition 3.5,

Cum(r)
μY (ψs1 , . . . , ψsr |Q′) = 0,

so it follows that for all (s1, . . . , sr ) ∈ �Q(α j , β j+1; N ),

∣
∣
∣Cum(r)

μY (ψs1 , . . . , ψsr )

∣
∣
∣ � e−(δβ j+1−rξα j ) ‖φ‖r

Ck . (3.24)

3.2.4 Final estimates on the cumulants

Let us now return to (3.5). Upon decomposing this sum into the regions discussed
above, and applying the estimates (3.9), (3.10) and (3.24) to respective region, we get
the bound

∣
∣
∣Cum(r)

μY (FN )

∣
∣
∣ �

(

(βr+1 + 1)r N−r/2 +
(

max j αr−1
j

)

N 1−r/2
)

‖φ‖r
C0

+Nr/2
(

max j e−(δβ j+1−rξα j )
) ‖φ‖r

Ck . (3.25)

This estimate holds provided that (3.6) and (3.19) hold, namely when

α j = (3 + r)β j < β j+1 and δβ j+1 − rξα j > 0 for j = 1, . . . , r . (3.26)
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Given any γ > 0, we define the parameters β j inductively by the formula

β1 = γ and β j+1 = max(γ + (3 + r)β j , γ + δ−1r(3 + r)ξβ j ). (3.27)

It easily follows by induction that βr+1 �r γ , and we deduce from (3.25) that

|Cum(r)
μY (FN )| � ((γ + 1)r N−r/2 + γ r−1N 1−r/2) ‖φ‖r

C0 + Nr/2e−δγ ‖φ‖r
Ck .

Taking γ = (r/δ) log N , we conclude that when r � 3,

Cum(r)
μY (FN ) → 0 as N → ∞. (3.28)

3.3 Estimating the variance

In this section, we wish to compute the limit

‖FN ‖2L2(Y)
= 1

N

N−1
∑

s1=0

N−1
∑

s2=0

∫

Y
ψs1ψs2 dμY .

Setting s1 = s + t and s2 = t , we rewrite the above sums as

‖FN ‖2L2(Y)
= �N (0) + 2

N−1
∑

s=1

�N (s), (3.29)

where

�N (s) := 1

N

N−1−s
∑

t=1

∫

Y
ψs+tψt dμY .

Since ψt = φ ◦ at − μY (φ ◦ at ),

∫

Y
ψs+tψt dμY =

∫

Y
(φ ◦ as+t )(φ ◦ at ) dμY − μY (φ ◦ as+t )μY (φ ◦ at ).

(3.30)

It follows from Corollary 3.3 that for fixed s and as t → ∞,

∫

Y
(φ ◦ as+t )(φ ◦ at ) dμY →

∫

X
(φ ◦ as)φ dμX , and μY (φ ◦ at ) → μX (φ).

We conclude that
∫

Y
ψs+tψt dμY → �∞(s) :=

∫

X
(φ ◦ as)φ dμX − μX (φ)2,
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as t → ∞, and for fixed s,

�N (s) → �∞(s) as N → ∞.

If one carelessly interchange limits above, one expects that as N → ∞,

‖FN ‖2L2(Y)
→ �∞(0) + 2

∞
∑

s=1

�∞(s) =
∞
∑

s=−∞
�∞(s). (3.31)

To prove this limit rigorously, we need to say a bit more to ensure, say, dominated
convergence.

It follows from Corollary 3.3 that

∫

Y
(φ ◦ as+t )(φ ◦ at ) dμY = μX (φ)2 + O

(

e−δ min(s,t) ‖φ‖2Ck

)

,

∫

Y
(φ ◦ as+t ) dμY = μX (φ) + O

(

e−δ(s+t) ‖φ‖Ck

)

,

∫

Y
(φ ◦ at ) dμY = μX (φ) + O

(

e−δt ‖φ‖Ck

)

.

and thus, in combination with (3.30),

∣
∣
∣
∣

∫

Y
ψs+tψt dμY

∣
∣
∣
∣
� e−δmin(s,t) ‖φ‖2Ck . (3.32)

This integral can also be estimated in a different way. If we set φt = φ ◦ at , then we
deduce from Corollary 3.3 that

∫

Y
(φ ◦ as+t )(φ ◦ at ) dμY =

∫

Y
(φt ◦ as)φt dμY

= μY (φt )μX (φt ) + O
(

e−δs ‖φt‖2Ck

)

,

and

μY (φ ◦ as+t ) = μY (φt ◦ as) = μX (φt ) + O
(

e−δs ‖φt‖Ck

)

.

By (2.7), there exists ξ = ξ(m, n, k) > 0, such that

‖φt‖Ck � eξ t ‖φ‖Ck and |μY (φt )| � ‖φ‖Ck ,

and thus
∣
∣
∣
∣

∫

Y
ψs+tψt dμY

∣
∣
∣
∣
� e−δseξ t ‖φ‖2Ck . (3.33)
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Let us now combine (3.32) and (3.33): When t � δ/(2ξ) s, we use (3.33), and when
t � δ/(2ξ) s, we use (3.32). If we set δ′ = min(δ/2, δ2/(2ξ)) > 0, then

∣
∣
∣
∣

∫

Y
ψs+tψt dμY

∣
∣
∣
∣
� e−δ′s ‖φ‖2Ck

for all s � 0, whence

|�N (s)| � 1

N

N−1−s
∑

t=1

∣
∣
∣
∣

∫

Y
ψs+tψt dμY

∣
∣
∣
∣
� e−δ′s ‖φ‖2Ck

uniformly in N . Hence, the Dominated Convergence Theorem applied to (3.29) yields
(3.31).

3.4 Proof of Theorem 3.1

In this subsection we shall check that the conditions of Proposition 3.4 hold for the
sequence (FN ) defined in (3.1). First, by construction, it is easy to check that

∫

Y
FT dμY = 0,

and by (3.31),

∫

Y
F2

N dμY →
∞
∑

s=−∞
�∞(s) as N → ∞.

Furthermore, by (3.28),

Cum(r)
μY (FN ) → 0 as N → ∞,

for every r � 3, which finishes the proof.

4 Non-divergence estimates for Siegel transforms

4.1 Siegel transforms

We recall that the space X of unimodular lattices in R
m+n can be identified with the

quotient space G/�, where G = SLm+n(R) and � = SLm+n(Z), which is endowed
with the G-invariant probability measures μX . We denote by mG a bi-G-invariant
Radon measure on G. Given a bounded measurable function f : R

m+n → R with
compact support, we define its Siegel transform f̂ : X → R by
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f̂ (
) :=
∑

z∈
\{0}
f (z) for 
 ∈ X .

We stress that f̂ is unbounded on X , its growth is controlled by an explicit function
α which we now introduce. Given a lattice 
 in R

m+n , we say that a subspace V of
R

m+n is 
-rational if the intersection V ∩ 
 is a lattice in V . If V is 
-rational, we
denote by d
(V ) the volume of V /(V ∩ 
), and define

α(
) := sup
{

d
(V )−1 : V is a 
-rational subspace of R
m+n

}

.

It follows from the Mahler Compactness Criterion that α is a proper function on X .

Proposition 4.1 [16, Lem. 2] If f : R
m+n → R is a bounded function with compact

support, then

| f̂ (
)| �supp( f ) ‖ f ‖C0 α(
) for all 
 ∈ X .

Using reduction theory, it is not hard to derive the following integrability of α,
which is well-known in Geometry of Numbers (see e.g. [4, Lemma 3.10]).

Proposition 4.2 α ∈ L p(X ) for 1 � p < m + n. In particular,

μX ({α � L}) �p L−p for all p < m + n.

In what follows, dz denotes the volume element on R
m+n which assigns volume

one to the unit cube. In our arguments below, we will make heavy use of the following
two integral formulas:

Proposition 4.3 (Siegel Mean Value Theorem; [17]) If f : R
m+n → R is a bounded

Riemann integrable function with compact support, then

∫

X
f̂ dμX =

∫

Rm+n
f (z) dz.

Proposition 4.4 (Rogers Formula; [14, Theorem 5]) If F : R
m+n × R

m+n → R is a
non-negative measurable function, then

∫

X

⎛

⎝
∑

z1,z2∈P(Zn+m )

F(gz1, gz2)

⎞

⎠ dμX (g�)

= ζ(m + n)−2
∫

Rm+n×Rm+n
F(z1, z2) dz1dz2

+ ζ(m + n)−1
∫

Rm+n
F(z, z) dz

+ ζ(m + n)−1
∫

Rm+n
F(z,−z) dz,
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where P(Zm+n) denotes the set of primitive integral vectors in Z
m+n, and ζ denotes

Riemann’s ζ -function.

4.2 Non-divergence estimates

We retain the notation from Sect. 2. Given

0 < w1, . . . , wm < n and w1 + · · · + wm = n,

we denote by a the self-map on X induced by

a = diag(ew1 , . . . , ewm , e−1, . . . , e−1). (4.1)

Our goal in this subsection is to analyze the escape of mass for the submanifolds asY
and bound the Siegel transforms f̂ (as y) for y ∈ Y . The following proposition will
play a very important role in our arguments.

Proposition 4.5 There exists κ > 0 such that for every L � 1 and s � κ log L,

μY
({y ∈ Y : α(as y) � L}) �p L−p for all p < m + n.

Proof Let χL be the characteristic function of the subset {α < L} of X . By Mahler’s
Compactness Criterion, χL has a compact support. We further pick a non-negative
ρ ∈ C∞

c (G) with
∫

G ρ dmG = 1. Let

ηL(x) := (ρ ∗ χL)(x) =
∫

G
ρ(g)χL(g−1x) dmG(g), x ∈ X .

Since μX is G-invariant,
∫

X
ηL dμX =

∫

X
χL dμX = μX ({α < L}).

It follows from invariance of mG that if DZ is a differential operator as defined as in
(2.4), then DZηL = (DZρ) ∗ χL . Hence, ηL ∈ C∞

c (X ), and ‖ηL‖Ck � ‖ρ‖Ck .
Note that there exists c > 1 such that for every g ∈ supp(ρ) and all x ∈ X , we

have α(g−1x) � c−1 α(x), and thus {α ◦ g−1 < L} ⊂ {α < cL} and ηL � χcL . This
implies the lower bound

μY
({y ∈ Y : α(as y) < cL}) =

∫

Y
χcL(as y) dμY (y) �

∫

Y
ηL(as y) dμY (y).

By Corollary 3.3, there exists δ > 0 and k � 1 such that

∫

Y
ηL(as y) dμY (y) =

∫

X
ηL dμX + O

(

e−δs ‖ηL‖Ck

)

= μX ({α < L}) + O
(

e−δs) ,
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and by Proposition 4.2,

μX ({α � L}) �p L−p for all p < m + n.

Combining these bounds, we get

μY ({y ∈ Y : α(as y) < cL}) � μX ({α < L}) + O
(

e−δs) = 1 + Op
(

L−p + e−δs) ,

and thus

μY
({y ∈ Y : α(as y) � cL}) �p L−p + e−δs .

By taking s � κ log L where κ = p
δ
, the proof is finished. ��

Proposition 4.6 Let f be a bounded measurable function on R
m+n with compact

support contained in the open set {(xm+1, . . . , xm+n) �= 0}. Then, with a as in (4.1),

sup
s�0

∫

Y
| f̂ ◦ as | dμY < ∞.

Remark 4.7 In [4, Theorem 3.2], the authors (implicitly) show a similar uniform esti-
mate for integrals of smooth Siegel transforms over SO(m + n)-orbits of a lattice.
Their proof is quite different from ours.

Proof We note that there exist 0 < υ1 < υ2 and ϑ > 0 such that the support of f is
contained in the set

{

(x, y) ∈ R
m+n : υ1 � ‖y‖ � υ2, |xi | � ϑ ‖y‖−wi , i = 1, . . . , n

}

, (4.2)

and without loss of generality we may assume that f is the characteristic function of
this set. We recall that Y can be identified with the collection of lattices

{


u : u = (

ui j : i = 1, . . . m, j = 1, . . . , n
) ∈ [0, 1)m×n} .

We set ui = (ui1, . . . , uin). Then by the definition of the Siegel transform,

f̂ (as
u) =
∑

(p,q)∈Zm+n\{0}
f
(

ew1s(p1 + 〈u1, q〉), . . . , ewm s(pm + 〈um, q〉), e−sq
)

.

Denoting by χ
(i)
q the characteristic function of the interval

[−ϑ ‖q‖−wi , ϑ ‖q‖−wi
]

,
we rewrite this sum as

f̂ (as
u) =
∑

υ1es�‖q‖�υ2es

∑

p∈Zm

m
∏

i=1

χ
(i)
q (pi + 〈ui , q〉)

=
∑

υ1es�‖q‖�υ2es

m
∏

i=1

⎛

⎝
∑

pi ∈Z

χ
(i)
q (pi + 〈ui , q〉)

⎞

⎠ . (4.3)
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Hence,

∫

Y
( f̂ ◦ as) dμY =

∑

υ1es�‖q‖�υ2es

m
∏

i=1

⎛

⎝
∑

pi ∈Z

∫

[0,1]n
χ

(i)
q (pi + 〈ui , q〉)dui

⎞

⎠ .

We observe that for each i and pi ∈ Z, the volume of the set

{

u ∈ [0, 1]n : |p + 〈u, q〉 | � ϑ ‖q‖−wi
}

is estimated from above by

2ϑ ‖q‖−wi

max j |q j | � ‖q‖−1−wi ,

and we note that the set is empty whenever |p| >
∑

j |q j | + ϑ ‖q‖−wi . In particular,
it is non-empty for at most O(‖q‖) choices of p ∈ Z. Hence, we deduce that

∫

Y
( f̂ ◦ as) dμY �

∑

υ1es�‖q‖�υ2es

m
∏

i=1

‖q‖−wi =
∑

υ1es�‖q‖�υ2es

‖q‖−n � 1,

uniformly in s. This completes the proof. ��
Proposition 4.8 Let f be a bounded measurable function on R

m+n with compact
support contained in the open set {(xm+1, . . . , xm+n) �= 0}. Then

sup
s�0

(1 + s)−νm

∥
∥
∥ f̂ ◦ as

∥
∥
∥

L2(Y)
< ∞,

where ν1 = 1 and νm = 0 when m � 2.

Proof As in the proof of Proposition 4.6, it is sufficient to consider the case when f is
the characteristic function of the set (4.2). Then f̂ (as y) is given by (4.3), and we get

∥
∥
∥ f̂ ◦ as

∥
∥
∥

2

L2(Y)
=

∫

Y
f̂ (as y) f̂ (as y) dμY (y)

=
∑

υ1 es�‖q‖,‖�‖�υ2 es

m
∏

i=1

⎛

⎝
∑

pi ,ri ∈Z

∫

[0,1]n
χ

(i)
q (pi + 〈ui , q〉) χ

(i)
�

(

ri + 〈

ui , �
〉)

dui

⎞

⎠ .

For fixed q, l ∈ Z
n , we wish to estimate

Ii (q, �) :=
∑

p,r∈Z

∫

[0,1]n
χ

(i)
q (p + 〈u, q〉) χ

(i)
�

(

r + 〈

u, �
〉)

du.
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First, we consider the case when q and � are linearly independent. Then there exist
indices j, k = 1, . . . , n such that q j�k − qk� j �= 0. Let us consider the function ψ on

R
2 defined by ψ(x1, x2) = χ

(i)
q (x1)χ

(i)
�

(x2) as well as the periodized function ψ̄ on

R
2/Z

2 defined by ψ̄(x) = ∑

z∈Z2 ψ(z + x). If we set

ω :=
∑

ζ �= j,k

qζ uζ and ρ :=
∑

ζ �= j,k

�ζ uζ ,

then we denote by S the affine map

S : (x1, x2) → (q j x1 + qk x2 + ω, � j x1 + �k x2 + ρ),

which induces an affine endomorphism of the torus R
2/Z

2. We note that

∑

p,r∈Z

∫

[0,1]2
χ

(i)
q (p + 〈u, q〉) χ

(i)
�

(

r + 〈

u, �
〉)

du j duk =
∫

R2/Z2
ψ̄(Sx) dμ(x),

where μ denotes the Lebesgue probability measure on the torus R
2/Z

2. Since the
endomorphism S preserves μ, we see that

∫

R2/Z2
ψ̄(Sx) dμ(x) =

∫

R2/Z2
ψ̄(x) dμ(x) =

∫

R2
ψ(x) dx = 4ϑ2 ‖q‖−wi ‖�‖−wi .

Therefore, we conclude that in this case,

Ii (q, �) � ‖q‖−wi ‖�‖−wi . (4.4)

Let us now we consider the second case when q and � are linearly dependent. Upon
re-arranging indices if needed, we may assume that

|q1| = max(|q1|, . . . , |qn|, |�1|, . . . , |�n|). (4.5)

In particular, q1 �= 0, and thus �1 �= 0, since q and � are linearly dependent, so we
can define the new variables

v1 =
n

∑

j=1

(q j/q1)u j =
n

∑

j=1

(� j/�1)u j and v2 = u2, . . . , vn = un,

and thus

Ii (q, �) � Ji (q, �)

where

Ji (q, �) :=
∑

p,r∈Z

∫ n

−n
χ

(i)
q (p + q1v1) χ

(i)
�

(r + �1v1) dv1.
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We note that the last integral is non-zero only when |p| � |q1| and |r | � |�1|. We
set q1 = q ′d and �1 = �′d where d = gcd(q1, �1). Then q1r − �1 p = jd for some
j ∈ Z. We observe that when j is fixed, then the integers p and r satisfy the equation
q ′r − �′ p = j . Since gcd(q ′, �′) = 1, all the solutions of this equation are of the form
p = p0 + kq ′, r = r0 + k�′ for k ∈ Z. In particular, it follows that the number of such
solutions satisfying |p| � |q1| and |r | � |�1| is at most O(d). We write

Ji (q, �) = J (1)
i (q, �) + J (2)

i (q, �),

where the first sum is taken over those p, r with q1r − �1 p �= 0, and the second sum
is taken over those p, r with q1r − �1 p = 0.

Upon applying a linear change of variables, we obtain

J (1)
i (q, �) =

∑

p,r : q1r−�1 p �=0

∫ n+p/q1

−n+p/q1
χ

(i)
q (q1v1) χ

(i)
�

((q1r − �1 p)/q1 + �1v1) dv1

� d
∑

j∈Z\{0}

∫ ∞

−∞
χ

(i)
q (q1v1) χ

(i)
�

( jd/q1 + �1v1) dv1.

Let us consider the function

ρi (x) :=
∫ ∞

−∞
χ

(i)
q (q1v1) χ

(i)
�

(xd/q1 + �1v1) dv1.

We note that the integrand equals the indicator function of the intersection of the
intervals

[

−ϑ |q1|−1‖q‖−wi , ϑ |q1|−1‖q‖−wi
]

and

[

−xd/(q1�1) − ϑ |�1|−1‖�‖−wi ,−xd/(q1�1) + ϑ |�1|−1‖�‖−wi
]

,

and thus it follows that ρi is non-increasing when x � 0, and non-decreasing when
x � 0. This implies that

∑

j∈Z\{0}
ρi ( j) �

∫ ∞

−∞
ρi (x) dx .

Since

∫ ∞

−∞
ρi (x) dx =

(∫ ∞

−∞
χ

(i)
q (q1v1) dv1

)(∫ ∞

−∞
χ

(i)
�

(xd/q1) dx

)

� d−1‖q‖−wi ‖�‖−wi ,
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we conclude that

J (1)
i (q, �) � d

∑

j∈Z\{0}
ρi ( j) � ‖q‖−wi ‖�‖−wi .

Next, we proceed with estimation of J (2)
i (q, �). Let c0 := min{‖q‖ : q ∈ Z

n\{0}}.
We set

N (q1, �1) = ∣
∣
{

(p, r) ∈ Z
2 : q1r = �1 p with |p| � (c−n

o ϑ + n)|q1|
}∣
∣

and obtain

J (2)
i (q, �) =

∑

p,r : q1r−�1 p=0

∫ n+p/q1

−n+p/q1
χ

(i)
q (q1v1) χ

(i)
�

(�1v1) dv1

� N (q1, �1)
∫ ∞

−∞
χ

(i)
q (q1v1) χ

(i)
�

(�1v1) dv1

� N (q1, �1)|q1|−1‖q‖−wi � N (q1, �1)max
(‖q‖, ‖�‖)−(1+wi )

,

where we used that q1 is chosen according to (4.5). Combining the obtained estimates
for J (1)

i (q, �) and J (2)
i (q, �), we conclude that when q and � are linearly dependent,

Ji (q, �) � ‖q‖−wi ‖�‖−wi + N (q1, �1)max
(‖q‖, ‖�‖)−(1+wi )

, (4.6)

where q1 is chosen according to (4.5).
Now we proceed to estimate

∥
∥
∥ f̂ ◦ as

∥
∥
∥

2

L2(Y)
�

∑

υ1 es�‖q‖,‖�‖�υ2 es

m
∏

i=1

Ii (q, �). (4.7)

Using (4.4), the sum in (4.7) over linearly independent q and � can be estimated as

�
∑

υ1 es�‖q‖,‖�‖�υ2 es

m
∏

i=1

‖q‖−wi ‖�‖−wi �
∑

υ1 es�‖q‖,‖�‖�υ2 es

‖q‖−n‖�‖−n � 1.

For a subset I of {1, . . . , m}, we set w(I ) := ∑

i∈I wi . Then using (4.6), we deduce
that the sum in (4.7) over linearly dependent q and � is bounded by

�
∑∗

υ1 es�‖q‖,‖�‖�υ2 es

∑

I⊂{1,...,m}
‖q‖−w(I )‖�‖−w(I )N (q1, �1)

|I c|

×max
(‖q‖, ‖�‖)−(|I c|+w(I c))
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�
∑

I⊂{1,...,m}
(es)−(n+|I c|+w(I ))

∑∗
υ1 es�‖q‖,‖�‖�υ2 es

N (q1, �1)
|I c|. (4.8)

The star indicates that the sum is taken over linearly dependent q and �.
When I c = ∅, then w(I ) = n. Since the number of (q, �) satisfying υ1 es �

‖q‖, ‖�‖ � υ2 es is estimated as O(e2ns), it is clear that the corresponding term in
the above sum is uniformly bounded.

Now we suppose that I c �= ∅. Since q and � are linearly dependent, the vector � is
uniquely determined given �1 and q , and we obtain that for some υ ′

1, υ
′
2 > 0,

∑∗
υ1 es�‖q‖,‖�‖�υ2 es

N (q1, �1)
|I c| � (es)n−1

∑

υ ′
1 es�|q1|�υ ′

2 es

∑

1�|�1|�|q1|
N (q1, �1)

|I c|.

We shall use the following lemma:

Lemma 4.9 For every k � 1,

∑

1�q�T

∑

1���q

N (q, �)k � T k+1(log T )νk

where ν1 = 1 and νk = 0 when k � 2.

Proof We observe that the sum of N (q, �)k over 1 � � � q is equal to the number of
solutions (p1, . . . , pk, r1, . . . , rk, �) of the system of equations

qr1 − �p1 = 0, . . . , qrk − �pk = 0 (4.9)

satisfying

|p1|, . . . , |pk | � (c−n
0 ϑ + n)q and 1 � � � q.

We order these solutions according to d := gcd(q, �). Let q = q ′d and � = �′d. Then
q ′ and �′ are coprime, and the system (4.9) is equivalent to

q ′r1 − �′ p1 = 0, . . . , q ′rk − �′ pk = 0. (4.10)

Because of coprimality, each pi have to be divisible by q ′, so that the number of such
pi ’s is at most O(q/q ′) = O(d). We note that given d the number of possible choices
for � is at most q/d, and (p1, . . . , pk, �) uniquely determine (r1, . . . , rk). Hence, the
number of solutions of (4.9) is estimated by

�
∑

d|q
(q/d)dk = qσk−1(q),
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where σk−1(q) = ∑

d|q dk−1. Writing q = q ′d, we conclude that

∑

1�q�T

∑

1���q

N (q, �)k �
∑

1�q�T

qσk−1(q) � T
∑

1�q ′�T

�T /q ′�
∑

q=1

dk−1

� T k+1
∑

1�q ′�T

(q ′)−k � T k+1(log T )νk .

This proves the lemma. ��
Remark 4.10 A similar estimate in the case k = 1 was proved by Schmidt in [16].

A simple modification of this argument also gives that

∑

1�|q|�T

∑

1�|�|�|q|
N (q, �)k � T k+1(log T )νk .

Hence, it follows that

∗
∑

υ1 es�‖q‖,‖�‖�υ2 es

N (q1, �1)
|I c| � (es)n+|I c|(1 + s)ν(I ),

where ν(I ) = 1 when |I c| = 1 and ν(I ) = 0 otherwise. Thus, the sum (4.8) is
estimated as

� 1 +
∑

I�{1,...,m}
e−sw(I )(1 + s)ν(I ).

The terms in this sum are uniformly bounded unless I = ∅ and |I c| = 1, namely, when
m > 1. When m = 1, we obtain the bound O(1 + s). This proves the proposition. ��

4.3 Truncated Siegel transform

The Siegel transform of a compactly supported function is typically unbounded onX ;
to deal with this complication, it is natural to approximate f̂ by compactly supported
functions on X , the so called truncated Siegel transforms, which we shall denote by
f̂ (L). They will be constructed using a smooth cut-off function ηL , which will be
defined in the following lemma.

Lemma 4.11 For every c > 1, there exists a family (ηL) in C∞
c (X ) satisfying:

0 � ηL � 1, ηL = 1 on {α � c−1 L}, ηL = 0 on {α > c L}, ‖ηL‖Ck � 1.
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Proof Let χL denote the indicator function of the subset {α � L} ⊂ X , and pick a
non-negative φ ∈ C∞

c (G)with
∫

G φ dmG = 1 and with support in a sufficiently small
neighbourhood of identity in G to ensure that for all g ∈ supp(φ) and x ∈ X ,

c−1 α(x) � α(g±1x) � c α(x).

We now define ηL as

ηL(x) := (φ ∗ χL)(x) =
∫

G
φ(g)χL(g−1x) dmG(g).

Since φ � 0 and
∫

G φ dmG = 1, it is clear that 0 � ηL � 1. If α(x) � c−1 L , then for
g ∈ supp(φ), we have α(g−1x) � L , so that ηL(x) = ∫

G φ dmG = 1. If α(x) > c L ,
then for g ∈ supp(φ), we have α(g−1x) > L , so that ηL(x) = 0.

To prove the last property, we observe that it follows from invariance of mG that
for a differential operator DZ as in (2.4), we have DZηL = (DZφ) ∗ χL . Therefore,
supp(DZηL) ⊂ {α � c L} and ‖DZηL‖C0 � ‖DZφ‖L1(G), whence ‖ηL‖Ck � 1. ��

For a bounded function f : R
m+n → R with compact support, we define the

truncated Siegel transform of f as

f̂ (L) := f̂ · ηL .

We record some basic properties of this transform that will be used later in the proofs.

Lemma 4.12 For f ∈ C∞
c (Rm+n), the truncated Siegel transform f̂ (L) is in C∞

c (X ),

and it satisfies

∥
∥
∥ f̂ (L)

∥
∥
∥

L p(X )
� ‖ f̂ ‖L p(X ) �supp( f ),p ‖ f ‖C0 for all p < m + n, (4.11)

∥
∥
∥ f̂ (L)

∥
∥
∥

C0
�supp( f ) L ‖ f ‖C0 , (4.12)

∥
∥
∥ f̂ (L)

∥
∥
∥

Ck
�supp( f ) L ‖ f ‖Ck , (4.13)

∥
∥
∥ f̂ − f̂ (L)

∥
∥
∥

L1(X )
�supp( f ),τ L−τ ‖ f ‖C0 for all τ < m + n − 1, (4.14)

∥
∥
∥ f̂ − f̂ (L)

∥
∥
∥

L2(X )
�supp( f ),τ L−(τ−1)/2 ‖ f ‖C0 for all τ < m + n − 1. (4.15)

Moreover, the implied constants are uniform when supp( f ) is contained in a fixed
compact set.

Proof It follows from Proposition 4.1 that

∣
∣
∣ f̂ (L)

∣
∣
∣ �supp( f ) ‖ f ‖C0 α ηL .

Since 0 � ηL � 1, (4.11) follows from Proposition 4.2, and the upper bound in (4.12)
holds since supp(ηL) ⊂ {α � cL}.
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We observe that for a differential operatorDZ as in (2.4), we haveDZ ( f̂ ) = D̂Z f .
Hence, we deduce from Proposition 4.1 that

∣
∣
∣DZ ( f̂ )

∣
∣
∣ �supp( f ) ‖ f ‖Ck α.

Since supp(ηL) ⊂ {α � cL} and ‖ηL‖Ck � 1, we deduce that

∥
∥
∥ f̂ (L)

∥
∥
∥

Ck
�supp( f ) L ‖ f ‖Ck

proving (4.13).
To prove (4.14), we observe that since 0 � ηL � 1 and ηL = 1 on {α < c−1L}, it

follows from Proposition 4.1 that

∥
∥
∥ f̂ − f̂ (L)

∥
∥
∥

L1(X )
=

∫

X
| f̂ | · |1 − ηL | dμX �supp( f ) ‖ f ‖C0

∫

{α�c−1L}
α dμX .

Hence, applying the Hölder inequality with 1 � p < m + n and q = (1 − 1/p)−1,
we deduce that

∥
∥
∥ f̂ − f̂ (L)

∥
∥
∥

L1(X )
�supp( f ) ‖ f ‖C0 ‖α‖p μX ({α � c−1L})1/q .

Now it follows from Proposition 4.2 that

∥
∥
∥ f̂ − f̂ (L)

∥
∥
∥

L1(X )
�supp( f ),p ‖ f ‖C0 L−(p−1),

which proves (4.14). The proof of (4.15) is similar, and we omit the details. ��

5 CLT for smooth Siegel transforms

Assume that f ∈ C∞
c (Rm+n) satisfies f � 0 and supp( f ) ⊂ {(xm+1, . . . , xm+n) �=

0}. We shall in this section analyze the asymptotic behavior of the averages

FN (y) := 1√
N

N−1
∑

s=0

(

f̂ (as y) − μY ( f̂ ◦ as)
)

with y ∈ Y,

and prove the following result:

Theorem 5.1 If m � 2 (and thus m + n � 3) and f is as above, then the variance

σ 2
f :=

∞
∑

s=−∞

(∫

X
( f̂ ◦ as) f̂ dμX − μX ( f̂ )2

)

= ζ(m + n)−1
∞
∑

s=−∞

∑

p,q�1

(∫

Rm+n
f (pas z) f (qz) dz +

∫

Rm+n
f (pas z) f (−qz) dz

)

.
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is finite, and for every ξ ∈ R,

μY ({y ∈ Y : FN (y) < ξ}) → Normσ f (ξ) (5.1)

as N → ∞.

The proof of Theorem 5.1 follows the same plan as the proof of Theorem 3.1, but
we need to develop an additional approximation argument which involves truncations
of the Siegel transform f̂ . This can potentially change the behaviour of the averages
FN , so we will have to take into account possible escapes of masses for the sequences
of submanifolds asY in X .

Throughout the proof, we shall frequently make use of the basic observation that if
we approximate FN by F̃N in such a way that ‖FN − F̃N ‖L1(Y) → 0, then FN and F̃N

will have the sameconvergence in distribution.Each timeweapply this observation, the
new approximation will depend on some sequence which depend on N ; ultimately, we
will end up with three different, but interrelated, sequences K (N ), L(N ) and M(N ),
which need to be matched. In Sect. 5.3, we will provide explicit choices for these
sequences.

Let

F̃N := 1√
N

N−1
∑

s=M

(

f̂ ◦ as − μY ( f̂ ◦ as)
)

(5.2)

for some M = M(N ) → ∞ that will be chosen later. We observe that

‖FN − F̃N ‖L1(Y) � 1√
N

M−1
∑

s=0

∥
∥
∥ f̂ ◦ as − μY ( f̂ ◦ as)

∥
∥
∥

L1(Y)

� 2M√
N

sup
s�0

∫

Y
| f̂ ◦ as | dμY . (5.3)

and thus, by Proposition 4.6 we see that

‖FN − F̃N ‖L1(Y) → 0 as N → ∞.

provided

M = o(N 1/2). (5.4)

It particular, it follows that if (5.1) holds for F̃N , then it also holds for FN , we shall
prove the former. In order to simplify notation, let us drop the tilde, and assume from
now on that FN is given by (5.2).

Given a sequence L = L(N ), which shall be chosen later, we consider the average

F (L)
N := 1√

N

N−1
∑

s=M

(

f̂ (L) ◦ as − μY ( f̂ (L) ◦ as)
)
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defined for the truncated Siegel transforms f̂ (L) introduced in Sect. 4.3. We have

∥
∥
∥FN − F (L)

N

∥
∥
∥

L1(Y)
� 1√

N

N−1
∑

s=M

∥
∥
∥

(

f̂ ◦ as − f̂ (L) ◦ as
)

− μY
(

f̂ ◦ as − f̂ (L) ◦ as
)∥
∥
∥

L1(Y)

� 2√
N

N−1
∑

s=M

∥
∥
∥ f̂ ◦ as − f̂ (L) ◦ as

∥
∥
∥

L1(Y)
.

We recall that f̂ (L) = f̂ · ηL , 0 � ηL � 1, and ηL(x) = 1 when α(x) � c−1 L , so
that

∥
∥
∥ f̂ ◦ as − f̂ (L) ◦ as

∥
∥
∥

L1(Y)
=

∥
∥
∥( f̂ ◦ as)(1 − ηL ◦ as)

∥
∥
∥

L1(Y)

�
∫

{α(as y)�c−1 L}
| f̂ (as y)| dμY (y).

Hence, by the Cauchy–Schwarz inequality,

∥
∥
∥ f̂ ◦ as − f̂ (L) ◦ as

∥
∥
∥

L1(Y)
�

∥
∥
∥ f̂ ◦ as

∥
∥
∥

L2(Y)
μY

({

y ∈ Y : α(as y) � c−1L
})1/2

.

Let us now additionally assume that

M � log L, (5.5)

so that the assumption of Proposition 4.5 is satisfied when s � M . This implies that

μY
({

y ∈ Y : α(as y) � c−1L
})

�p L−p for all p < m + n.

We also recall that by Proposition 4.8 when m � 2,

sup
s�0

∥
∥
∥ f̂ ◦ as

∥
∥
∥

L2(Y)
< ∞,

whence, for s � M ,

∥
∥
∥ f̂ ◦ as − f̂ (L) ◦ as

∥
∥
∥

L1(Y)
�p L−p/2,

and thus
∥
∥
∥FN − F (L)

N

∥
∥
∥

L1(Y)
�p N 1/2L−p/2 for all p < m + n. (5.6)

If we now choose L = L(N ) → ∞ so that

N = o
(

L p) for some p < m + n, (5.7)
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then it follows that
∥
∥
∥FN − F (L)

N

∥
∥
∥

L1(Y)
→ 0 as N → ∞.

Hence, if we can show Theorem 5.1 for the averages F (L)
N with the parameter con-

straints above, then it would also hold for FN . In order to prove CLT for (F (L)
N ),

we follow the route of Proposition 3.4 and estimate cumulants and L2-norms of the
sequence.

5.1 Estimating cumulants

We set

ψ(L)
s (y) := f̂ (L)(as y) − μY ( f̂ (L) ◦ as).

Our aim is to estimate

Cum(r)
μY

(

F (L)
N

)

= 1

Nr/2

N−1
∑

s1,...,sr =M

Cum(r)
μY

(

ψ(L)
s1 , . . . , ψ(L)

sr

)

(5.8)

when r � 3. The argument proceeds as in Sect. 3.2, but we have to refine the previous
estimates to take into account the dependence on the parameters L and M . Using the
notation from Sect. 3.2, we have the decomposition

{M, . . . , N − 1}r = �(βr+1; M, N ) ∪
⎛

⎝

r
⋃

j=0

⋃

|Q|�2

�Q(α j , β j+1; M, N )

⎞

⎠, (5.9)

where

�(βr+1; M, N ) := {M, . . . , N − 1}r ∩ �(βr+1),

�Q(α j , β j+1; M, N ) := {M, . . . , N − 1}r ∩ �Q(α j , β j+1).

We decompose the sum into the sums over�(βr+1; M, N ) and�Q(α j , β j+1; M, N ).
Let us choose M so that

M > βr+1. (5.10)

Then �(βr+1; M, N ) = ∅, and does not contribute to our estimates.

5.1.1 Case 1: Summing over (s1, . . . , sr) ∈ ÄQ(˛j,ˇj+1;M,N)with
Q = {{0}, {1, . . . , r}}

In this case, we shall show that
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Cum(r)
μY

(

ψ(L)
s1 , . . . , ψ(L)

sr

)

≈ Cum(r)
μX

(

φ(L) ◦ as1 , . . . , φ(L) ◦ asr
)

(5.11)

where φ(L) := f̂ (L) − μX ( f̂ (L)). This reduces to estimating the integrals

∫

Y

(
∏

i∈I

ψ(L)
si

)

dμY

=
∑

J⊂I

(−1)|I\J |
(
∫

Y

(
∏

i∈J

f̂ (L) ◦ asi

)

dμY

)
∏

i∈I\J

(∫

Y
( f̂ (L) ◦ asi ) dμY

)

.

(5.12)

If (s1, . . . , sr ) ∈ �Q(α j , β j+1; N ), and thus

|si1 − si2 | � α j and si1 � β j+1 for all 1 � i1, i2 � r ,

it follows from Corollary 3.3 with r = 1 that there exists δ > 0 such that

∫

Y
( f̂ (L) ◦ asi ) dμY = μX

(

f̂ (L)
)

+ O
(

e−δβ j+1

∥
∥
∥ f̂ (L)

∥
∥
∥

Ck

)

. (5.13)

For a fixed J ⊂ I , we define

�(L) :=
∏

i∈J

f̂ (L) ◦ asi −s1 ,

and note that for some ξ = ξ(m, n, k) > 0, we have

∥
∥
∥�(L)

∥
∥
∥

Ck
�

∏

i∈J

∥
∥
∥ f̂ (L) ◦ asi −s1

∥
∥
∥

Ck
� e|J |ξ α j

∥
∥
∥ f̂ (L)

∥
∥
∥

|J |
Ck

.

If we again apply Corollary 3.3 to the function �(L), we obtain

∫

Y

(
∏

i∈J

f̂ (L) ◦ asi

)

dμY =
∫

Y
(�(L) ◦ as1) dμY

=
∫

X
�(L) dμX + O

(

e−δβ j+1

∥
∥
∥�(L)

∥
∥
∥

Ck

)

=
∫

X

(
∏

i∈J

f̂ (L) ◦ asi

)

dμX + O

(

e−δβ j+1erξ α j

∥
∥
∥ f̂ (L)

∥
∥
∥

|J |
Ck

)

, (5.14)

where we used that μX is invariant under the transformation a. Let us now choose
the exponents α j and β j+1 so that δβ j+1 − rξα j > 0. Combining (5.12), (5.13) and
(5.14), we deduce that
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∫

Y

(
∏

i∈I

ψ(L)
si

)

dμY =
∑

J⊂I

(−1)|I\J |
(
∫

X

(
∏

i∈J

f̂ (L) ◦ asi

)

dμX

)

μX
(

f̂ (L)
)|I\J |

+ O

(

e−δβ j+1erξ α j

∥
∥
∥ f̂ (L)

∥
∥
∥

|I |
Ck

)

=
∫

X

∏

i∈I

(

f̂ (L) ◦ asi − μX ( f̂ (L))
)

dμX

+ O

(

e−(δβ j+1−rξα j )
∥
∥
∥ f̂ (L)

∥
∥
∥

|I |
Ck

)

, (5.15)

and thus, for any partition P ,

∏

I∈P

∫

Y

(
∏

i∈I

ψ(L)
si

)

dμY =
∏

I∈P

∫

X

(
∏

i∈I

φ(L) ◦ asi

)

dμX

+ O
(

e−(δβ j+1−rξα j )
∥
∥
∥ f̂ (L)

∥
∥
∥

r

Ck

)

,

and consequently,

Cum(r)
μY

(

ψ(L)
s1 , . . . , ψ(L)

sr

)

= Cum(r)
μX

(

φ(L) ◦ as1 , . . . , φ(L) ◦ asr
)

+O
(

e−(δβ j+1−rξ α j )
∥
∥
∥ f̂ (L)

∥
∥
∥

r

Ck

)

(5.16)

whenever (s1, . . . , sr ) ∈ �Q(α j , β j+1; M, N ) with Q = {{0}, {1, . . . , r}}, from
which (5.11) follows.

We now claim that
∣
∣
∣Cum(r)

μX

(

φ(L) ◦ as1 , . . . , φ(L) ◦ asr
)∣
∣
∣

� f

∥
∥
∥ f̂ (L)

∥
∥
∥

(r−(m+n−1))+

C0

∥
∥
∥ f̂ (L)

∥
∥
∥

min(r ,m+n−1)

Lm+n−1(X )
, (5.17)

where we use the notation x+ = max(x, 0). The implied constant in (5.17) and below
in the proof depend only on supp( f ). By the definition of the cumulant, to prove
(5.17), it suffices to show that for every z � 1 and indices i1, . . . , iz ,

∫

X

∣
∣
∣

(

φ(L) ◦ asi1

)

· · ·
(

φ(L) ◦ asiz

)∣
∣
∣ dμX

� f

∥
∥
∥ f̂ (L)

∥
∥
∥

(z−(m+n−1))+

C0

∥
∥
∥ f̂ (L)

∥
∥
∥

min(z,m+n−1)

Lm+n−1(X )
. (5.18)

Using the generalized Hölder inequality, we deduce that when z � m + n − 1,

∫

X

∣
∣
∣

(

φ(L) ◦ asi1

)

· · ·
(

φ(L) ◦ asiz

)∣
∣
∣ dμX
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�
∥
∥
∥φ(L) ◦ asi1

∥
∥
∥

Lm+n−1(X )
· · ·

∥
∥
∥φ(L) ◦ asiz

∥
∥
∥

Lm+n−1(X )

�
∥
∥
∥ f̂ (L)

∥
∥
∥

z

Lm+n−1(X )
.

Also when z > m + n − 1,

∫

X

∣
∣
∣

(

φ(L) ◦ asi1

)

· · ·
(

φ(L) ◦ asiz

)∣
∣
∣ dμX

�
∥
∥
∥φ(L)

∥
∥
∥

z−(m+n−1)

C0

∫

X

∣
∣
∣

(

φ(L) ◦ asi1

)

· · ·
(

φ(L) ◦ asim+n−1

)∣
∣
∣ dμX

� f

∥
∥
∥ f̂ (L)

∥
∥
∥

z−(m+n−1)

C0

∥
∥
∥ f̂ (L)

∥
∥
∥

m+n−1

Lm+n−1(X )
.

This implies (5.18) and (5.17).
Finally, we recall that if (s1, . . . , sr ) ∈ �Q(α j , β j+1; M, N ) with Q =

{{0}, {1, . . . , r}}, then we have |si1 − si2 | � α j for all i1 �= i2, and thus

|�Q(α j , β j+1; M, N )| � Nαr−1
j . (5.19)

Combining (5.17) and (5.19), we conclude that

1

Nr/2

∑

(s1,...,sr )∈�Q(α j ,β j+1;M,N )

∣
∣
∣Cum(r)

μX

(

φ(L) ◦ as1 , . . . , φ(L) ◦ asr
)∣
∣
∣

� f N 1−r/2αr−1
j

∥
∥
∥ f̂ (L)

∥
∥
∥

(r−(m+n−1))+

C0

∥
∥
∥ f̂ (L)

∥
∥
∥

min(r ,m+n−1)

Lm+n−1(X )
.

Hence, it follows from (5.16) that

1

Nr/2

∑

(s1,...,sr )∈�Q(α j ,β j+1;M,N )

Cum(r)
μY

(

ψ(L)
s1 , . . . , ψ(L)

sr

)

� f Nr/2 e−(δβ j+1−rα j ξ)
∥
∥
∥ f̂ (L)

∥
∥
∥

r

Ck

+ N 1−r/2αr−1
j

∥
∥
∥ f̂ (L)

∥
∥
∥

(r−(m+n−1))+

C0

∥
∥
∥ f̂ (L)

∥
∥
∥

min(r ,m+n−1)

Lm+n−1(X )

and using Lemma 4.12, we deduce that

1

Nr/2

∑

(s1,...,sr )∈�Q(α j ,β j+1;M,N )

Cum(r)
μY

(

ψ(L)
s1 , . . . , ψ(L)

sr

)

� f Nr/2 e−(δβ j+1−rα j ξ) Lr‖ f ‖Ck + N 1−r/2αr−1
j L(r−(m+n−1))+‖ f ‖r

C0 .
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5.1.2 Case 2: Summing over (s1, . . . , sr) ∈ ÄQ(˛j,ˇj+1;M,N)with |Q| � 2 and
Q �= {{0}, {1, . . . , r}}

In this case, the estimate (3.24) gives for (s1, . . . , sr ) ∈ �Q(α j , β j+1; M, N ),

∣
∣
∣Cum(r)

μY (ψ(L)
s1 , . . . , ψ(L)

sr
)

∣
∣
∣ � e−(δβ j+1−rξα j )

∥
∥
∥ f̂ (L)

∥
∥
∥

r

Ck
,

and

∑

(s1,...,sr )∈�Q(α j ,β j+1;M,N )

∣
∣
∣Cum(r)

μY (ψ(L)
s1 , . . . , ψ(L)

sr
)

∣
∣
∣ � Nr/2e−(δβ j+1−rξα j )

∥
∥
∥ f̂ (L)

∥
∥
∥

r

Ck

� Nr/2e−(δβ j+1−rξα j )Lr ‖ f ‖r
Ck ,

where we used Lemma 4.12.
Finally, we combine the established bounds to estimate Cum(r)

μY (F (L)
N ). We choose

the parameters α j and β j as in (3.27). Then βr+1 �r γ . In particular, we may choose

M �r γ (5.20)

to guarantee that (5.10) is satisfied. With these choices of α j and β j , we obtain the
estimate

∣
∣
∣Cum(r)

μY (F (L)
N )

∣
∣
∣ � f Nr/2e−δγ Lr‖ f ‖r

Ck + N 1−r/2γ r−1L(r−(m+n−1))+‖ f ‖r
C0 .

(5.21)

We observe that since m � 2,

(r − (m + n − 1))+

m + n
< r/2 − 1 for all r � 3,

Hence, we can choose q > 1/(m + n) such that

q(r − (m + n − 1))+ < r/2 − 1 for all r � 3.

Then we select

L = N q ,

so that, in particular, the condition (5.7) is satisfied. Now (5.21) can be rewritten as

∣
∣
∣Cum(r)

μY (F (L)
N )

∣
∣
∣ � f Nr/2+rqe−δγ ‖ f ‖r

Ck + N q(r−(m+n−1))+−(r/2−1)γ r−1 ‖ f ‖r
C0 .

(5.22)
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Choosing γ of the form

γ = cr (log N )

with sufficiently large cr > 0, we conclude that

Cum(r)
μY (F (L)

N ) → 0 as N → ∞
for all r � 3.

5.2 Estimating variances

We now turn to the analysis of the variances of the average F (L)
N which are given by

∥
∥
∥F (L)

N

∥
∥
∥

2

L2(Y)
= 1

N

N−1
∑

s1=M

N−1
∑

s2=M

∫

Y
ψ(L)

s1 ψ(L)
s2 dμY .

Weproceed as in Sect. 3.3 taking into account dependence on parameters M and L .We
observe that this expression is symmetric with respect to s1 and s2, writing s1 = s + t
and s2 = t with 0 � s � N − M − 1 and M � t � N − s − 1, we obtain that

∥
∥
∥F (L)

N

∥
∥
∥

2

L2(Y)
= �

(L)
N (0) + 2

∑N−M−1
s=1 �

(L)
N (s), (5.23)

where

�
(L)
N (s) := 1

N

N−1−s
∑

t=M

∫

Y
ψ

(L)
s+tψ

(L)
t dμY .

We have
∫

Y
ψ

(L)
s+tψ

(L)
t dμY =

∫

Y
( f̂ (L) ◦ as+t )( f̂ (L) ◦ at ) dμY − μY ( f̂ (L) ◦ as+t )μY ( f̂ (L) ◦ at ).

To estimate �
(L)
N (s), we introduce an additional parameter K = K (N ) → ∞ such

that K � M (to be specified later) and consider separately the cases when s < K and
when s � K .

First, we consider the case when s � K . By Corollary 3.3, we have

∫

Y
( f̂ (L) ◦ as+t )( f̂ (L) ◦ at ) dμY = μX ( f̂ (L))2 + O

(

e−δmin(s,t)
∥
∥
∥ f̂ (L)

∥
∥
∥

2

Ck

)

.

(5.24)

Also, by Corollary 3.3,

∫

Y
( f̂ (L) ◦ at ) dμY = μX ( f̂ (L)) + O

(

e−δt
∥
∥
∥ f̂ (L)

∥
∥
∥

Ck

)

. (5.25)
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Hence, combining (5.24) and (5.25), we deduce that

∫

Y
ψ

(L)
s+tψ

(L)
t dμY = O

(

e−δmin(s,t)
∥
∥
∥ f̂ (L)

∥
∥
∥

2

Ck

)

.

Since

N−M−1
∑

s=K

(
N−1−s
∑

t=M

e−δ min(s,t)

)

�
N−1
∑

s=K

N−1
∑

t=M

(e−δs + e−δt ) � Ne−δK ,

we conclude that

N−M−1
∑

s=K

�
(L)
N (s) � e−δK

∥
∥
∥ f̂ (L)

∥
∥
∥

2

Ck
� f e−δK L2 ‖ f ‖2Ck , (5.26)

wherewe used Lemma 4.12. The implied constants here and below in the proof depend
only on supp( f ).

Let us now consider the case s < K . We observe that Corollary 3.3 (for r = 1)
applied to the function φ

(L)
s := ( f̂ (L) ◦ as) f̂ (L) yields,

∫

Y
( f̂ (L) ◦ as+t )( f̂ (L) ◦ at ) dμY =

∫

Y
(φ(L)

s ◦ at ) dμY

=
∫

X
φ(L)

s dμX + O
(

e−δt
∥
∥
∥φ(L)

s

∥
∥
∥

Ck

)

.

Furthermore, for some ξ = ξ(m, n, k) > 0, we have

∥
∥
∥φ(L)

s

∥
∥
∥

Ck
�

∥
∥
∥ f̂ (L) ◦ as

∥
∥
∥

Ck

∥
∥
∥ f̂ (L)

∥
∥
∥

Ck
� eξs

∥
∥
∥ f̂ (L)

∥
∥
∥

2

Ck
.

Therefore, we deduce that

∫

Y
( f̂ (L) ◦ as+t )( f̂ (L) ◦ at ) dμY =

∫

X
( f̂ (L) ◦ as) f̂ (L) dμX

+ O

(

e−δt eξs
∥
∥
∥ f̂ (L)

∥
∥
∥

2

Ck

)

.

Combining this estimate with (5.25), we conclude that

∫

Y
ψ

(L)
s+tψ

(L)
t dμY =

∫

X
( f̂ (L) ◦ as) f̂ (L) dμX − μX ( f̂ (L))2

+ O

(

e−δt eξs
∥
∥
∥ f̂ (L)

∥
∥
∥

2

Ck

)

.
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Hence, setting

�(L)∞ (s) :=
∫

X
( f̂ (L) ◦ as) f̂ (L) dμX − μX ( f̂ (L))2,

we obtain that

�
(L)
N (s) = N − M − s

N
�(L)∞ (s) + O

(

N−1e−δM eξs
∥
∥
∥ f̂ (L)

∥
∥
∥

2

Ck

)

= �(L)∞ (s) + O

(

N−1(M + s)
∥
∥
∥ f̂ (L)

∥
∥
∥

2

L2(X )
+ N−1e−δM eξs

∥
∥
∥ f̂ (L)

∥
∥
∥

2

Ck

)

.

Therefore, using Lemma 4.12, we deduce that

�
(L)
N (0) + 2

K−1
∑

s=1

�
(L)
N (s) = �(L)∞ (0) + 2

K−1
∑

s=1

�(L)∞ (s)

+ O f

(

N−1(M + K )K ‖ f ‖2C0 + N−1e−δM eξ K L2 ‖ f ‖2Ck

)

. (5.27)

Combining (5.26) and (5.27), we conclude that

�
(L)
N (0) + 2

M−N−1
∑

s=1

�
(L)
N (s)

= �(L)∞ (0) + 2
K−1
∑

s=1

�(L)∞ (s)

+ O f

(

N−1(M + K )K ‖ f ‖2C0 + (N−1e−δM eξ K + e−δK )L2 ‖ f ‖2Ck

)

. (5.28)

We choose the parameters K = K (N ), M = M(N ), and L = L(N ) so that

e−δK L2 → 0, (5.29)

N−1e−δM eξ K L2 → 0, (5.30)

N−1(M + K )K → 0 (5.31)

as N → ∞. Then

∥
∥
∥F (L)

N

∥
∥
∥

2

L2(Y)
= �(L)∞ (0) + 2

K−1
∑

s=1

�(L)∞ (s) + o(1).

Next, we shall show that with a suitable choice of parameters,

∥
∥
∥F (L)

N

∥
∥
∥

2

L2(Y)
= �∞(0) + 2

K−1
∑

s=1

�∞(s) + o(1), (5.32)
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where

�∞(s) :=
∫

X
( f̂ ◦ as) f̂ dμX − μX ( f̂ )2.

We recall that by Lemma 4.12, for all τ < m + n − 1,

∥
∥
∥ f̂ − f̂ (L)

∥
∥
∥

L1(X )
� f ,τ L−τ ‖ f ‖C0 and

∥
∥
∥ f̂ − f̂ (L)

∥
∥
∥

L2(X )
� f ,τ L−(τ−1)/2 ‖ f ‖C0 ,

(5.33)

where the implied constant depends only on supp( f ). It follows from these estimates
that

μX ( f̂ (L)) = μX ( f̂ ) + O f ,τ (L−τ ‖ f ‖C0),
∫

X
( f̂ (L) ◦ as) f̂ (L) dμX =

∫

X
( f̂ ◦ as) f̂ dμX + O f ,τ (L−(τ−1)/2 ‖ f ‖2C0),

so that

�(L)∞ (s) = �∞(s) + O f ,τ

(

L−(τ−1)/2 ‖ f ‖2C0

)

. (5.34)

We choose the parameters K = K (N ) → ∞ and L = L(N ) → ∞ so that

K L−(τ−1)/2 → 0 for some τ < m + n − 1. (5.35)

Then (5.32) follows. We conclude that

∥
∥
∥F (L)

N

∥
∥
∥

2

L2(Y)
→ �∞(0) + 2

∞
∑

s=1

�∞(s) (5.36)

as N → ∞.
Finally, we compute �∞(s) by using Rogers formula (Proposition 4.4) applied to

the function

Fs(z1, z2) :=
∑

p,q�1

f (pas z1) f (qz2), (z1, z2) ∈ R
m+n × R

m+n .

Since

∫

X
( f̂ ◦ as) f̂ dμX =

∫

X

⎛

⎝
∑

z1,z2∈(P(Zm+n))

Fs(gz1, gz2)

⎞

⎠ dμX (g�),

we deduce that

123



M. Björklund, A. Gorodnik

∫

X
( f̂ ◦ as) f̂ dμX =

(∫

Rm+n
f (z) dz

)2

+ ζ(m + n)−1
∑

p,q�1

(∫

Rm+n
f (pas z) f (qz) dz +

∫

Rm+n
f (pas z) f (−qz) dz

)

.

Since by the Siegel Mean Value Theorem (Proposition 4.3),

∫

X
f̂ dμX =

∫

Rm+n
f (z) dz,

we conclude that

�∞(s) = ζ(m + n)−1
∑

p,q�1

(∫

Rm+n
f (pas z) f (qz) dz +

∫

Rm+n
f (pas z) f (−qz) dz

)

.

Finally, we show that the sum in (5.36) is finite. We represent points z ∈ R
m+n as

z = (x, y) with x ∈ R
m and y ∈ R

n . Since f is bounded, and its compact support
is contained in {y �= 0}, we may assume without loss of generality that f is the
characteristic function of the set

{(x, y) ∈ R
m+n : υ1 � ‖y‖ � υ2, |xi | � ϑ ‖y‖−wi , i = 1, . . . , m}

with 0 < υ1 < υ2 and ϑ > 0. Let

�s(p) :=
{

(x, y) ∈ R
m+n : υ1 es

p
� ‖y‖ � υ2 es

p
, p1+wi |xi |‖y‖wi � ϑ, i = 1, . . . , m

}

.

Then

∫

Rm+n
f (pas z) f (±qz) dz = vol (�s(p) ∩ �0(q)) .

Setting

I (u) := {

y ∈ R
n : υ1 u � ‖y‖ � υ2 u

}

,

we obtain that

vol (�s(p) ∩ �0(q)) =
∫

I (es p−1)∩I (q−1)

(
m
∏

i=1

2ϑ max(p, q)−1−wi ‖y‖−wi

)

d y

� max(p, q)−m−n
∫

I (es p−1)∩I (q−1)

‖y‖−n d y.
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We note that I (es p−1) ∩ I (q−1) = ∅ unless (υ1υ
−1
2 )esq � p � (υ2υ

−1
1 )esq, and

also that

∫

I (q−1)

‖y‖−n d y �
∫ υ2/q

υ1/q
r−1 dr � 1.

Hence, it follows that

∞
∑

s=1

�∞(s) �
∞
∑

s,q=1

∑

(υ1υ
−1
2 )esq�p�(υ2υ

−1
1 )esq

max(p, q)−(m+n)

�
∞
∑

s,q=1

(esq)−(m+n−1) < ∞,

because m + n � 3.

5.3 Proof of Theorem 5.1

As we already remarked above, it is sufficient to show that the sequence of averages
F (L)

N converges in distribution to the normal law. To verify this, we use the Method of
Cumulants (Proposition 3.4). It is easy to see that

∫

Y
F (L)

N dμY = 0.

Moreover, with a suitable choice of parameters, we have shown in Sect. 5.1 that for
r � 3,

Cum(r)
μY

(

F (L)
N

)

→ 0 as N → ∞,

and in Sect. 5.2 that

∥
∥
∥F (L)

N

∥
∥
∥

2

L2(Y)
→ σ 2

f < ∞ as N → ∞.

Hence, Proposition 3.4 applies, and it remains to verify that we can choose our param-
eters that satisfy the stated assumptions. We recall that

L = N q and γ = cr (log N ).

The parameters M = M(N ) � K = K (N ) need to satisfy the seven conditions (5.4),
(5.5), (5.20), (5.29), (5.30), (5.31), (5.35). We take

K (N ) = c1(log N )
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with sufficiently large c1 > 0 so that (5.29) is satisfied. Then taking

M(N ) = (log N )(log log N ),

we arrange that (5.5), (5.20), and (5.30) hold for all N � N0(r). We note that the
constant cr and the implicit constant in (5.20) depends on r , and the (log log N )-factor
here is added to guarantee that the parameter M is independent of r . Finally, the
conditions (5.4), (5.31), (5.35) are immediate from our choices.

6 CLT for counting functions and the proof of Theorem 1.2

We recall from Sect. 1.3 that

�T (u) = |
u ∩ �T | + O(1),

where 
u is defined in (1.8) and the domains �T are defined in (1.9). We
shall decompose this domain into smaller pieces using the linear map a =
diag(ew1 , . . . , ewm , e−1, . . . , e−1). We note that for any integer N � 1,

�eN =
N−1
⊔

s=0

a−s�e,

and thus

|
u ∩ �eN | =
N−1
∑

s=0

χ̂(as
u),

where χ denotes the characteristic function of the set �e. Hence the proof of Theo-
rem 1.2 reduces to analyzing sums of the form

∑N−1
s=0 χ̂(as y) with y ∈ Y . For this

purpose, we define

FN := 1√
N

N−1
∑

s=0

(

χ̂ ◦ as − μY (χ̂ ◦ as)
)

. (6.1)

Our main result in this section now reads as follows.

Theorem 6.1 If m � 2, then for every ξ ∈ R,

μY ({y ∈ Y : FN (y) < ξ}) → Normσ (ξ)

as N → ∞, where

σ 2 := 2m+1

(
m
∏

i=1

ϑi

)(∫

Sn−1
‖z‖−n dz

)(
2ζ(m + n − 1)

ζ(m + n)
− 1

)

.
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We approximate χ by a family of non-negative functions fε ∈ C∞
c (Rm+n) whose

supports are contained in an ε-neighbourhood of the set �e, and

χ � fε � 1, ‖ fε − χ‖L1(Rm+n) � ε, ‖ fε − χ‖L2(Rm+n) � ε1/2, ‖ fε‖Ck � ε−k .

This approximation allows us to construct smooth approximations of the Siegel trans-
form χ̂ in the following sense.

Proposition 6.2 For every s � 0,

∫

Y

∣
∣
∣ f̂ε ◦ as − χ̂◦as

∣
∣
∣ dμY � ε + e−s .

Proof We observe that there exists ϑi (ε) > ϑi such that ϑi (ε) = ϑi + O(ε) and
fε � χε, where χε denotes the characteristic function of the set

{

(x, y) ∈ R
m+n : 1 − ε � ‖y‖ � e + ε, |xi | < ϑi (ε) ‖y‖−wi for i = 1, . . . , m

}

.

Then it follows that

| f̂ε(a
s
) − χ̂ (as
)| =

∑

v∈
\{0}

(

fε(a
sv) − χ(asv)

)

�
∑

v∈
\{0}

(

χε(a
sv) − χ(asv)

)

.

It is clear that χε − χ is bounded by the sum χ1,ε + χ2,ε + χ3,ε of the characteristic
functions of the sets

{

(x, y) ∈ R
m+n : 1 − ε � ‖y‖ � 1, |xi | < ϑi (ε) ‖y‖−wi for i = 1, . . . , m

}

,
{

(x, y) ∈ R
m+n : e � ‖y‖ � e + ε, |xi | < ϑi (ε) ‖y‖−wi for i = 1, . . . , m

}

,
{

(x, y) ∈ R
m+n : 1 � ‖y‖ � e, |xi | < ϑi (ε) ‖y‖−wi

for all i, |x j | � ϑ j ‖y‖−w j for some j
}

respectively. In particular, we obtain that

f̂ε(a
s
) − χ̂ (as
) � χ̂1,ε(a

s
) + χ̂2,ε(a
s
) + χ̂3,ε(a

s
).

Hence, it remains to show that for j = 1, 2, 3,

∫

Y
(χ̂ j,ε ◦ as) dμY � ε + e−s .

As in (4.3), we compute that

∫

Y
(χ̂1,ε ◦ as) dμY =

∑

(1−ε)es�‖q‖�es

m
∏

i=1

⎛

⎝
∑

pi ∈Z

∫

[0,1]n
χϑi (ε)‖q‖−wi (pi + 〈ui , q〉) dui

⎞

⎠ ,(6.2)
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where χθ denotes the characteristic function of the interval [−θ, θ ]. We observe that

∫

[0,1]n
χϑi (ε)‖q‖−wi (pi + 〈ui , q〉)dui � (maxk |qk |)−1‖q‖−wi � ‖q‖−1−wi ,

and moreover this integral is non-zero only when |pi | = O(‖q‖). Hence,
∑

pi ∈Z

∫

[0,1]n
χϑi (ε)‖q‖−wi (pi + 〈ui , q〉) dui � ‖q‖−wi ,

and

∫

Y
(χ̂1,ε ◦ as) dμY �

∑

(1−ε)es�‖q‖�es

m
∏

i=1

‖q‖−wi

� e−ns
∣
∣
{

q ∈ Z
n : (1 − ε)es � ‖q‖ � es}

∣
∣ .

The number of integral points in the region {(1− ε)es � ‖y‖ � es} can be estimated
in terms of its volume. Namely, there exist r > 0 (depending only on the norm) such
that

∣
∣
{

q ∈ Z
n : (1 − ε)es � ‖q‖ � es}

∣
∣ � ∣

∣
{

y ∈ R
n : (1 − ε)es − r � ‖y‖ � es + r

}∣
∣ .

Hence,

∫

Y
(χ̂1,ε ◦ as) dμY � e−ns ((es + r)n − ((1 − ε)es − r)n)

� (1 + re−s)n − (1 − ε − re−s)n

� ε + e−s .

The integral for χ̂2,ε ◦ as can be estimated similarly.
The integral over χ̂3,ε ◦ as as in (6.2) can be written as a sum of the products of the

integral

∫

[0,1]n

(

χ
ϑ j (ε)‖q‖−w j (p j + 〈

u j , q
〉

) − χ
ϑ j ‖q‖−w j (p j + 〈

u j , q
〉

)
)

du j

� 2(maxk |qk |)−1(ϑ j (ε) − ϑ j )‖q‖−w j � ε‖q‖−1−w j ,

and the integrals

∫

[0,1]n
χϑi (ε)‖q‖−wi (pi + 〈ui , q〉) dui � 2ϑi (ε)(maxk |qk |)−1‖q‖−wi � ‖q‖−1−wi

with i �= j . We observe that these integrals are non-zero only when |p j | = O(‖q‖)
and |pi | = O(‖q‖). Hence, we conclude that
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∫

Y
(χ̂3,ε ◦ as) dμY �

∑

es�‖q‖�es+1

ε

m
∏

i=1

‖q‖−wi = ε
∑

es�‖q‖�es+1

‖q‖−n � ε,

which completes the proof of the proposition. ��
Now we start with the proof of Theorem 6.1. As in Sect. 5, we modify FN and

consider instead

F̃N := 1√
N

N−1
∑

s=M

(

χ̂ ◦ as − μY (χ̂ ◦ as)
)

(6.3)

for a parameter M = M(N ) → ∞ that will be chosen later. As in (5.3) we obtain
that

‖FN − F̃N ‖L1(Y) → 0 as N → ∞

provided that

M = o(N 1/2). (6.4)

Hence, if we can prove the CLT for (F̃N ), then the CLT for (FN ) would follow. From
now on, to simplify notations, we assume that FN is given by (6.3).

Our next step is to exploit the approximation χ ≈ fε, so we introduce

F (ε)
N := 1√

N

N−1
∑

s=M

(

f̂ε ◦ as − μY ( f̂ε ◦ as)
)

,

where the parameter ε = ε(N ) → 0 will be specified later. We observe that it follows
from Proposition 6.2 that

∥
∥
∥F (ε)

N − FN

∥
∥
∥

L1(Y)
� 2√

N

N−1
∑

s=M

∥
∥
∥ f̂ε ◦ as − χ̂ ◦ as

∥
∥
∥

L1(Y)
� N 1/2(ε + e−M ).

We choose ε = ε(N ) and M = M(N ) so that

N 1/2ε → 0 and N 1/2e−M → 0. (6.5)

Then
∥
∥
∥F (ε)

N − FN

∥
∥
∥

L1(Y)
→ 0 as N → ∞.

Hence, it remains to prove convergence in distribution for the sequence F (ε)
N .
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We observe that the sequence F (ε)
N fits into the framework of Sect. 5. However,

we need to take into account the dependence on the new parameter ε and refine the
previous estimates. It will be important for our argument that the supports of the
functions fε are uniformly bounded, ‖ fε‖C0 � 1, and ‖ fε‖Ck � ε−k .

As in Sect. 5, we consider the truncation

F (ε,L)
N := 1√

N

N−1
∑

s=M

(

f̂ (L)
ε ◦ as − μY ( f̂ (L)

ε ◦ as)
)

.

defined for a parameter L = L(N ) → ∞. We assume that

M � log L, (6.6)

so that Proposition 4.8 applies when s � M . Since the family of functions fε is
majorized by a fixed bounded function with compact support, Proposition 4.8 implies
that when m � 2,

∥
∥
∥ f̂ε ◦ as

∥
∥
∥

L2(Y)
� 1 for all s � 0,

uniformly on ε. Hence, the bound (5.6) can be proved exactly as before, and we obtain

∥
∥
∥F (ε)

N − F (ε,L)
N

∥
∥
∥

L1(Y)
�p N 1/2L−p/2 for all p < m + n.

We choose the parameter L as before so that

N = o
(

L p) for some p < m + n (6.7)

to guarantee that

∥
∥
∥F (ε)

N − F (ε,L)
N

∥
∥
∥

L1(Y)
→ 0 as N → ∞.

Now it remains to show that the family F (ε,L)
N satisfies the CLT with a suitable choice

of parameters M, L, ε. As in Sect. 5 we will show that for r � 3,

Cum(r)
μY

(

F (ε,L)
N

)

→ 0 as N → ∞, (6.8)

and

∥
∥
∥F (ε,L)

N

∥
∥
∥

2

L2(Y)
→ σ as N → ∞ (6.9)

with an explicit σ ∈ (0,∞).
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Under the condition

M � γ, (6.10)

the estimate (5.21) gives the bound

∣
∣
∣Cum(r)

μY (F (ε,L)
N )

∣
∣
∣ � Nr/2e−δγ Lr‖ fε‖r

Ck + N 1−r/2γ r−1L(r−(m+n−1))+‖ fε‖r
C0

� Nr/2e−δγ Lrε−rk + N 1−r/2γ r−1L(r−(m+n−1))+ .

We note that the implicit constant in (5.21) depends only on supp( fε) so that it is
uniform on ε. We choose L = N q as in Sect. 5 and γ = cr (log N ), where cr > 0 will
be specified later. In particular, then N 1−r/2γ r−1L(r−(m+n−1))+ → 0, and assuming
that

Nr/2Lrε−rk = o(eδγ ), (6.11)

it follows that (6.8) holds.
To prove (6.9), we have to estimate

∥
∥
∥F (ε,L)

N

∥
∥
∥

2

L2(Y)
= 1

N

N−1
∑

s1=M

N−1
∑

s2=M

∫

Y
ψ(ε,L)

s1 ψ(ε,L)
s2 dμY ,

where

ψ(ε,L)
s (y) := f̂ (L)

ε (as y) − μY ( f̂ (L)
ε ◦ as).

As in (5.23), we obtain that

∥
∥
∥F (ε,L)

N

∥
∥
∥

2

L2(Y)
= �

(ε,L)
N (0) + 2

N−M−1
∑

s=1

�
(ε,L)
N (s),

where

�
(ε,L)
N (s) := 1

N

N−1−s
∑

t=M

∫

Y
ψ

(ε,L)
s+t ψ

(ε,L)
t dμY .

Our estimate proceeds as in Sect. 5, and we shall show that with a suitable choice of
parameters,

∥
∥
∥F (ε,L)

N

∥
∥
∥

2

L2(Y)
= �

(ε,L)∞ (0) + 2
∑K−1

s=1 �
(ε,L)∞ (s) + o(1), (6.12)
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where

�(ε,L)∞ (s) :=
∫

X
( f̂ (L)

ε ◦ as) f̂ (L)
ε dμX − μX ( f̂ (L)

ε )2.

Indeed, arguing as in (5.28), we deduce that

�
(ε,L)
N (0) + 2

M−N−1
∑

s=1

�
(ε,L)
N (s)

= �(ε,L)∞ (0) + 2
K−1
∑

s=1

�(ε,L)∞ (s)

+ O
(

N−1(M + K )K + N−1e−δM eξ K L2ε−2k + e−δK L2ε−2k
)

.

Hence, (6.12) holds provided that

e−δK L2ε−2k → 0, (6.13)

N−1e−δM eξ K L2ε−2k → 0, (6.14)

N−1(M + K )K → 0. (6.15)

Next, we set

�(ε)∞ (s) :=
∫

X
( f̂ε ◦ as) f̂ε dμX − μX ( f̂ε)

2

and observe that as in (5.34),

�(ε,L)∞ (s) = �(ε)∞ (s) + Oτ

(

L−(τ−1)/2
)

for all τ < m + n − 1,

uniformly on ε. Hence, choosing K so that

K L−(τ−1)/2 → 0 for some τ < m + n − 1, (6.16)

we conclude that

∥
∥
∥F (ε,L)

N

∥
∥
∥

2

L2(Y)
= �(ε)∞ (0) + 2

K−1
∑

s=1

�(ε)∞ (s) + o(1).

The terms�(ε)(s) can be computed using Propositions 4.3 and 4.4, and we obtain that

�(ε)∞ (s) = ζ(m + n)−1
∑

p,q�1

(∫

Rm+n
fε(pas z) fε(qz) dz +

∫

Rm+n
fε(pas z) fε(−qz) dz

)

.
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We also set

�∞(s) := ζ(m + n)−1
∑

p,q�1

(∫

Rm+n
χ(pas z)χ(qz) dz +

∫

Rm+n
χ(pas z)χ(−qz) dz

)

= 2ζ(m + n)−1
∑

p,q�1

∫

Rm+n
χ(pas z)χ(qz) dz.

We claim that

|�(ε)∞ (s) − �∞(s)| � ε1/2e−(m+n−2)s/2. (6.17)

This reduces to the estimation of
∣
∣
∣
∣

∫

Rm+n
fε(pas z) fε(qz) dz −

∫

Rm+n
χ(pas z)χ(qz) dz

∣
∣
∣
∣

�
∣
∣
∣
∣

∫

Rm+n
( fε − χ)(pas z) fε(qz) dz

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

Rm+n
χ(pas z)(χ − fε)(qz) dz

∣
∣
∣
∣
. (6.18)

We observe that there exists 0 < υ1 < υ2 such that
∫

Rm+n
( fε − χ)(pas z) fε(qz) dz = 0

unless υ1 esq � p � υ2 esq, and by the Cauchy–Schwarz inequality under these
restrictions,

∣
∣
∣
∣

∫

Rm+n
( fε − χ)(pas z) fε(qz) dz

∣
∣
∣
∣
� ‖ fε − χ‖L2

p(m+n)/2

‖ fε‖L2

q(m+n)/2
� ε1/2

qm+ne(m+n)s/2
.

Since m + n � 3,

∑

p,q�1

∣
∣
∣
∣

∫

Rm+n
( fε − χ)(pas z) fε(qz) dz

∣
∣
∣
∣

=
∑

q�1

∑

υ1 esq�p�υ2 esq

∣
∣
∣
∣

∫

Rm+n
( fε − χ)(pas z) fε(qz) dz

∣
∣
∣
∣

�
∑

q�1

ε1/2esq

qm+ne(m+n)s/2
� ε1/2e−(m+n−2)s/2.

The sum of the other integral appearing in (6.18) is estimated similarly. This proves
(6.17).

Provided that ε = ε(N ) → 0, the estimate (6.17) implies that

∥
∥
∥F (ε,L)

N

∥
∥
∥

2

L2(Y)
= �∞(0) + 2

K−1
∑

s=1

�∞(s) + o(1).
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Hence,

∥
∥
∥F (ε,L)

N

∥
∥
∥

2

L2(Y)
→ σ 2 := �∞(0) + 2

∞
∑

s=1

�∞(s)

as N → ∞.
Finally, we compute the limit

σ 2 =
∞
∑

s=−∞
�∞(s) = 2ζ(m + n)−1

∞
∑

s=−∞

∑

p,q�1

∫

Rm+n
χ(pas z)χ(qz) dz.

We note that the sum

� :=
∞
∑

s=−∞
χ ◦ as

is equal to the characteristic function of the set

{

(x, y) ∈ R
m+n : ‖y‖ > 0, |xi | < ϑi ‖y‖−wi , i = 1, . . . , m

}

,

and

∫

Rm+n
�(pz)χ(qz) dz =

∫

1/q�‖y‖<e/q

(
m
∏

i=1

2ϑi max(p, q)−1−wi ‖y‖−wi

)

d y

= 2m

(
m
∏

i=1

ϑi

)

max(p, q)−m−n
∫

1/q�‖y‖<e/q
‖y‖−n d y

= 2m

(
m
∏

i=1

ϑi

)

max(p, q)−m−n
∫

Sn−1
‖z‖−n

(
∫ eq−1‖z‖−1

q−1‖z‖−1
r−1 dr

)

dz

= 2m

(
m
∏

i=1

ϑi

)

ωn max(p, q)−m−n,

where ωn := ∫

Sn−1 ‖z‖−n dz. We also see that

∑

p,q�1

max(p, q)−m−n =
∞
∑

p=1

p−m−n + 2
∑

1�p<q

q−m−n

= ζ(m + n) + 2
∑

q�1

q − 1

qm+n
= 2ζ(m + n − 1) − ζ(m + n),
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and thus

σ 2 =
∞
∑

s=−∞
�∞(s) = 2m+1

(
m
∏

i=1

ϑi

)

ωn

(
2ζ(m + n − 1)

ζ(m + n)
− 1

)

.

6.1 Proof of Theorem 6.1

Aswe already remarked above, it is sufficient to show that the average F (ε,L)
N converge

in distribution to the normal law. According to Proposition 3.4, it is sufficient to check
that

Cum(r)
μY

(

F (ε,L)
N

)

→ 0 as N → ∞

when r � 3, and

∥
∥
∥F (ε,L)

N

∥
∥
∥

L2(Y)
→ σ 2 as N → ∞.

These properties have been established above provided that the parameters

M = M(N ), ε = ε(N ), L = N q , γ = cr (log N ), K = K (N ) � M(N )

satisfy the ten conditions (6.4)–(6.7), (6.10), (6.11), (6.13)–(6.16). It remains to show
that such choice of parameters is possible. The condition (6.7) is guaranteed by the
choice of L . First, we take

ε(N ) = 1/N .

Then the first part of (6.5) holds. Then we select sufficiently large cr in γ = cr (log N )

so that (6.11) holds. After that we choose

K (N ) = c1(log N )

with sufficiently large c1 > 0 so that (6.13) holds. Then it is clear that (6.16) also
holds. Given these ε, L , γ , and K , we choose

M(N ) = (log N )(log log N )

so that the second part of (6.5), (6.6), (6.10), and (6.14) hold for all N � N0(r). With
these choices, it is clear that (6.4) and (6.15) also hold. Hence, Theorem 6.1 follows
from Proposition 3.4.

6.2 Proof of Theorem 1.2

For u ∈ Mm,n([0, 1]), we set
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DT (u) := �T (u) − Cm,n log T

(log T )1/2
,

where Cm,n = 2mϑ1 · · · ϑmωn with ωn := ∫

Sn−1 ‖z‖−n dz. We shall show that DT (u)

can be approximated by the averages FN defined in (6.1). This will allow us deduce
convergence in distribution for DT . We observe that:

Lemma 6.3

N−1
∑

s=0

∫

Y
χ̂(as y) dμY (y) = Cm,n N + O(1),

where Cm,n is defined above.

Proof We observe that

N−1
∑

s=0

∫

Y
χ̂ (as y) dμY (y) =

∫

Y
�̂N (y) dμY (y),

where �N denotes the characteristic function of the set

{

(x, y) ∈ R
m+n : 1 � ‖y‖ < eN , |xi | < ϑi ‖y‖−wi , i = 1, . . . , m

}

.

Using notation as in the proof of Proposition 4.6, we obtain

∫

Y
�̂N (y) dμY (y) =

∑

1�‖q‖<eN

∑

p∈Zm

m
∏

i=1

∫

[0,1]m
χ

(i)
q (pi + 〈ui , q〉) dui

=
∑

1�‖q‖<eN

m
∏

i=1

⎛

⎝
∑

pi ∈Z

∫

[0,1]m
χ

(i)
q (pi + 〈ui , q〉) dui

⎞

⎠ .

We claim that

∑

p∈Z

∫

[0,1]m
χ

(i)
q (p + 〈u, q〉) du = 2ϑi‖q‖−wi . (6.19)

To prove this, let us consider more generally a bounded measurable functions χ on R

with compact support, the function ψ(x) = χ(x1) on R
m , and the function ψ̃(x) =

∑

p∈Z
χ(p + x1) on the torus R

m/Z
m . We suppose without loss of generality that

q1 �= 0 and consider a non-degenerate linear map

S : R
m → R

m : u → (〈u, q〉 , u2, . . . , um)

which induced a linear epimorphism of the torus R
m/Z

m . Using that S preserves the
Lebesgue probability measure μ on R

m/Z
m , we deduce that
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∑

p∈Z

∫

[0,1]m
χ (p + 〈u, q〉) du =

∫

Rm/Zm
ψ̃(Sx) dμ(x)

=
∫

Rm/Zm
ψ̃(x) dμ(x) =

∫

R

χ(x1) dx1,

which yields (6.19).
In turn, (6.19) implies that

∫

Y
�̂N dμY = 2m

(
m
∏

i=1

ϑi

)
∑

1�‖q‖<eN

‖q‖−n .

Using that ‖y1‖−n = ‖y1‖−n + O
(‖y1‖−n−1

)

when ‖y1 − y2‖ � 1, we deduce that

∑

1�‖q‖<eN

‖q‖−n = ∫

1�‖y‖<eN ‖y‖−n d y + O(1),

and expressing the integral in polar coordinates, we obtain

∫

1�‖y‖<eN
‖y‖−n d y =

∫

Sn−1

∫ ‖z‖−1eN

‖z‖−1
‖r z‖−n rn−1drdz = ωn N + O(1).

This implies the lemma. ��
Now we return to the proof of Theorem 1.2. Since

�eN (u) =
N−1
∑

s=0

χ̂ (as
u) + O(1),

Lemma 6.3 implies that

‖DeN − FN ‖C0 → 0 as N → ∞,

where (FN ) is defined as in (6.1). Therefore, it follows from Theorem 6.1 that for
every ξ ∈ R,

|{ξ ∈ Mm,n([0, 1]) : DeN (u) < ξ})| → Normσ (ξ) as N → ∞.

Let us take NT = �log T �. Then

eNT � T < eNT +1 and NT � log T < NT + 1,

so that

DT � �eNT +1 − Cm,n NT

(log T )1/2
= aT DeNT +1 + bT
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with aT → 1 and bT → 0 as T → ∞. Hence, we deduce that

|{u ∈ Mm,n([0, 1]) : DT (u) < ξ}| � |{u ∈ Mm,n([0, 1]) : DeNT +1 (u) < (ξ − bT )/aT }|.

It follows that for any ε > 0 and sufficiently large T ,

|{u ∈ Mm,n([0, 1]) : DT (u) < ξ}| � |{u ∈ Mm,n([0, 1]) : DeNT +1(u) < ξ − ε}|.

Therefore,

lim inf
T →∞ |{u ∈ Mm,n([0, 1]) : DT (u) < ξ}| � Normσ (ξ − ε)

for all ε > 0. This implies that

lim inf
T →∞ |{u ∈ M([0, 1]) : DT (u) < ξ}| � Normσ (ξ).

A similar argument also implies the upper bound

lim sup
T →∞

|{u ∈ Mm,n([0, 1]) : DT (u) < ξ}| � Normσ (ξ).

This completes the proof of Theorem 1.2.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
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