
 

 

Using machine learning for assessing 
customer suitability in business to business 
environment  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using 

the Turnitin OriginalityCheck service. 

Master’s thesis 

University of Turku 

Department of Future Technologies 

Software engineering 

2019 

Markus Lindberg 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTUPub

https://core.ac.uk/display/211225435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

University of Turku 
Department of Future Technologies 

 

Markus Lindberg: Using machine learning for assessing customer suitability in business to business 

environment 

Master’s Thesis, 55 p., 0 app. p 

Software engineering 

May 2019 

______________________________________________________________________________ 

The industry has gone through multiple revolutions as a result of advancements in technology. 

Now, it might be on the verge of another one because of machine learning. In business to business 

setting, sales processes include many manual tasks. They consume a lot of time, that could 

otherwise be used for deepening relationships with customers or for acquiring new ones. Machine 

learning could be used to support and automate these tasks. Also, it could be used to forecast how a 

sales process ends.   

This thesis proposes a new approach for using machine learning in the said environment. Instead of 

using sales data to just predict the outcomes of active sales processes, it is used to estimate how 

good a potential customer would be for a company. With these kinds of estimates, a company could 

more effectively screen the customers making their sales efforts potentially more profitable. The 

thesis aims to research questions that arise from this approach. These include the question of how to 

provide suitability estimates without saved data, when to start using machine learning for providing 

the estimates and how to maintain the performance of selected machine learning method. In the 

thesis, an open business to business dataset is used. It is introduced and analyzed. Also, a selection 

of machine learning models is introduced and one of them selected for the thesis. To answer the 

open questions of the thesis code is developed and tested. The code forms a two-mode system for 

providing suitability estimates. The purpose of the code was to verify the ideas useful for such a 

system. 

As results of the thesis it can be stated that without saved data it is possible to offer suitability 

estimates by defining an optimal customer and comparing all the new customers to it. The system 

can start using machine learning once a classifier fitted to the data gives good enough cross-

validation results. Once a machine learning model is in use, its performance can be maintained by 

retraining the model and finding the optimal parameters each time the dataset has changed. Finally, 

it is however stressed that the suitability estimates are not absolute truths. They should not be used 

blindly, but as decision support when selecting new customers for a company. 
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Teollisuus on käynyt läpi usean muutoksen teknologian kehityksen seurauksena. Koneoppimisen 

takia uusi muutos on taas edessä. B2B ympäristössä myyntiprosesseihin kuuluu monia manuaalisia 

tehtäviä. Niihin kuluu paljon aikaa, jota muuten voisi käyttää asiakassuhteiden syventämiseen tai 

uusien asiakkaiden hankkimiseen. Koneoppimista voidaan käyttää näiden tehtävien tukemiseen ja 

automatisoimiseen. Se soveltuu myös myyntiprosessien lopputulosten ennustamiseen. 

Tämä työ ehdottaa uutta tapaa käyttää koneoppimista B2B ympäristössä. Sen sijaan, että 

myyntidataa käytettäisiin uusien myyntiprojektien lopputulosten ennustamiseen, sitä käytetään 

arvioimaan, kuinka hyvä potentiaalinen asiakas on yritykselle. Tällaisia arvioita hyödyntäen 

yrityksellä on mahdollisuus tehokkaampaan asiakkaiden seulontaan ja tätä kautta myyntiprojektien 

kannattavuuden parantamiseen. Työ käsittelee tästä lähtökohdasta nousevia kysymyksiä. Näihin 

kuuluu kysymys siitä, miten sopivuusarvioita on mahdollista tuottaa ilman talletettua tietoa, milloin 

koneoppimista voidaan käyttää soveltuvuusarvioihin ja miten ylläpitää valitun koneoppimismallin 

suorituskykyä. Tässä työssä käytetään avointa B2B-aineistoa. Se esitellään ja analysoidaan. 

Kokoelma koneoppimismalleja esitellään myös, jonka jälkeen yksi niistä valitaan. 

Tutkimuskysymyksiin vastaamiseksi ohjelmakoodia rakennetaan sekä testataan työssä. Koodi 

muodostaa kaksiosaisen järjestelmän soveltuvuusarvioiden tuottamista varten.  

Työn tuloksina voidaan mainita, että on mahdollista tuottaa soveltuvuusarvioita vähällä määrällä 

talletettua dataa määrittelemällä optimiasiakas ja vertaamalla muita asiakkaita tähän. Arvioiden 

tuottamiseen voidaan ruveta käyttämään koneoppimista, kunhan tämä malli dataan sovitettuna 

tuottaa riittävän hyviä tuloksia ristiinvalidoinnilla. Kun koneoppiminen on käytössä, sen 

suorituskykyä voidaan ylläpitää uudelleenkouluttamalla käytössä oleva malli ja hakemalla sille 

optimaaliset parametrit aina, kun käytetty data jotenkin muuttuu. Lopuksi työssä kuitenkin 

painotetaan, että tuotettuja arvioita ei tule pitää ehdottomina totuuksina. Niitä ei tulisi käyttää 

sokeasti, vaan päätöksen tukena uutta asiakasta valittaessa. 

Avainsanat: Koneoppiminen, B2B, Päätöstuki 
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1 Introduction 

During the industrial age, the industry has gone through multiple revolutions. First revolution was 

started by mechanization and the use of steam power. It brought changes with it making tasks 

previously dependent on human and animal work much more effective. The second revolution 

introduced mass production with the availability of electricity. The third introduced automation and 

computers. Now that the computational power of the computers has increased and there is great 

amount of data available in the internet, the industry might be on the verge of another revolution. It 

is caused by machine learning.  

Before discussing the effects of machine learning on industry any further, two concepts need to be 

introduced. Selling is naturally involved, when it comes to industry. A company can manufacture 

products or services and sell them directly to their customers or other businesses. The way in which 

the demand forms for these manufactured goods can be seen as a division between two types of 

markets. If a business manufactures products or services, that are shaped by the specific needs of 

the buyer and sells these products straight to the consumer, this is called business to customer 

marketing (B2C). If the demand for a product is somehow derived from the needs of a further 

customer, this is called business to business marketing (B2B). First this activity was known as 

industrial marketing. It involved the sales and transactions of raw materials that other businesses 

used in their daily activities. With the growth of service and technology sector, the name was 

replaced with B2B marketing. This name describes all relationships that generate value between 

different businesses, government agencies, non-profit organizations and people representing the 

said agencies and organizations [1]. This thesis will not focus on activities that occur in business to 

customer setting. However, technologies used in this setting may be mentioned. 

Sharma and Syama [2] introduced, how the newest revolution would affect the sales process of each 

company. The process in general includes a lot of manual tasks that the sales representatives need to 

do. As a result of this, they do not have as much time to focus on building customer relationships. 

Machine learning could be used to automate and support these manual tasks. In sales process, 

generating and validating leads is one of the time-consuming activities. The study mentioned one 

estimate, according to which the sales representatives are using 80% of their time validating leads. 

According to the article it has also been demonstrated that machine learning can be used in lead 

generation. Using it also reduces the workload required from sales personnel of a company.  

Decision making could also benefit from machine learning. Bohanec et al [3] mentions that 

companies relying on data-driven decisions are more productive and profitable than their 



 

2 

 

counterparts. It also mentions studies related to decision support systems. Those who use this kind 

of system, are more likely to use the recommendation produced by it, if explanations for the 

produced recommendation are available. This introduces one problem: machine learning models, 

which give the best results, are not transparent. This leads to low usage and acceptance by the users. 

In both papers of Bohanec et al [4] and Bohanec et al [3] a machine learning model was used to 

forecast the outcome of a sales process in business to business environment. Although Bohanec et al 

[4] mentioned, that there have been great advancements in the practice of forecasting sales, the 

decision makers are reluctant to start using any recommender systems. Instead, they trust their own 

mental models, which can lead to sub-optimal forecasts.   

In Bohanec et al [4] the machine learning model was used in a process, where two sets of 

predictions were made on the outcomes of active sales processes. First set was produced in a 

meeting based on human evaluation and the other was made with the help of a machine learning 

model. These machine learning predictions were produced by an external consultant. One of the key 

problems of sales personnel mentioned previously, is the extensive time needed to qualify leads. 

Therefore, one of the interests of this thesis would be to see, if the process mentioned in Bohanec et 

al [4] could be further automatized. 

In the same study, it was also mentioned that business environment is changing fast. It proposes a 

challenge for predicting sales with machine learning. New factors might be introduced to the sales 

process so that the old model is unable to provide accurate predictions. This is called the concept 

drift. According to the study, it is countered by continuously reflecting on the predictions produced 

by used machine learning model and taking action accordingly for example by adding a new 

variable to the data. In this thesis, ways of dealing with concept drift will be studied.  

So, in short, machine learning is used mostly as a forecasting tool for sales projects. Knowing how 

and when a sales project ends, can help to steer a company’s operations internally. However, 

instead of just focusing on the sales projects and their outcomes, the information on previous sales 

projects could be used to evaluate a customer even before any sales activity takes place. It would 

refine the quality of sales projects, save time and function as a decision support system for 

companies assessing new customers. This thesis will survey how the process of creating a machine 

learning system for assessing the suitability of a new customer can be automatized. Suitability of a 

customer is a term used in this thesis to describe how likely it is that a sales process started with the 

potential customer is going to end favorably for the company. Also, the ways in which the possible 

concept drift can be dealt with, will be studied. Finally, a machine learning system will be designed 

and developed as a proof of concept. It is to show the capabilities of the selected machine learning 
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method and the ways in which the automatization was possible in the end. The aim is to build the 

system so that its ideas could be later taken into use by a company.  

The research questions of the thesis can be summarized as follows 

1. How can machine learning be used to provide suitability estimates for potential customers? 

2. How much can be automatized from the creation and use of machine learning models in 

customer suitability estimations? 

3. How can the effects of concept drift be automatically dealt with? 

This chapter of the thesis introduces the overall topic. In the second chapter, a literature review will 

be conducted to gain insight in the ways machine learning has been used in business to business 

environment. The third chapter will introduce the used data in the thesis. The fourth chapter will 

introduce machine learning in general and include general descriptions of some popular machine 

learning models. In the fifth chapter, cross-validation will be introduced. Also, nested cross 

validation will be performed on the data to find the most suitable model for the system. 

Descriptions of technical details of the conducted cross-validation will be included in the chapter. In 

the sixth chapter, the system to be built will be described on a general level. Seventh chapter will 

describe the technical details of the proposed system and demonstrate each part. Chapter eight 

contains conclusions and further work.  
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2 Literature review 

In this section, a literature review over technologies used in B2B marketing will be conducted. 

After the review, a summarizing chapter will follow. Summary will be used to gain an overall idea 

of what have been done in the field and what could be used in the system to be developed later in 

this thesis. 

A lot of research exists regarding predicting sales and their outcomes. In the paper of Bohanec et al 

[3] the researchers focused on sales prediction in B2B setting. For the prediction they developed a 

set of attributes that described a sales process. With them they used a random forest to predict the 

outcome of the project. They also tested other machine learning models like decision trees and 

support vector machines for the same task, but validations with classification accuracy and area 

under curve justified their selection of random forests. In their work, the researchers also made 

effort to explain, which of the attributes used are the most influential. They used methods called 

EXPLAIN and IME, since random forest is a black box model and not interpretable like decision 

trees. The mentioned methods are explanation methods that have sensitivity analysis at their core. In 

such analysis, an attributes effect on the output is investigated by simulating the lack of it. If the 

change in the output is big, the attribute is important.  

In Bohanec et al [4] the user acceptance of machine learning models was addressed. Multiple 

machine learning models were evaluated, but in the end random forest was selected for their study. 

They also used IME and EXPLAIN model explanation methods in their study. Action Design 

Research (ADR) model was implemented in the study to promote the user acceptance of the 

developed machine learning predictor. In ADR, users are involved in the development of the 

predictor. They co-operate with researchers in an organizational setting to develop the solution to be 

used.  

Chen and Lu [5] studied ways in which sales of computer resellers could be predicted. They used 

three types of products, namely desktop computers, LCD -screens and notebook computers as 

example products in their study. The biweekly sales data from January 2005 to September 2009 was 

used. For prediction, they proposed multiple different combined clustering and machine learning 

techniques the best of which was growing hierarchical self-organizing map with extreme learning 

machine. The overall idea in their predictor was to cluster their training data and then use the data 

from these clusters as training data for extreme learning machine.    

The paper of Gentner et al [6] states that B2B companies are behind B2C companies, when it comes 

to analyzing the customer base for needs, affinity for technology and future customer applications. 
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According to them, this analysis is still based on management heuristics and does not cover the 

complexity of customer relationships. In the study they developed forensic customer approach for 

the identification of weak signals. Weak signals are rare events or indicators of change. In the 

application, they developed this said framework within an international German company, which 

developed equipment for hydro powerplants. The product management team was preparing to 

launch a new sensor. They used CRISP-DM, a cross industry standard process for data mining in 

the project. For the training of classifiers, they used data from the company ERP and CRM. The 

data consisted of 23 different variables and for the training of classifiers data instances that had 

more than 15 variables missing were rejected. The study used Resilient multilayer neural network 

and a c4.5 decision tree algorithm. The decision tree achieved slightly better classification accuracy 

than neural network.  

The study of D’Haen and Van den Poel [7] proposed an online tool to help acquire customers. 

According to the study acquiring customers in B2B setting can be difficult because of the amount of 

available data. Sales force of a company can lose a lot of time, while pursuing bad business leads. 

Because of this a tool was developed. Its purpose was to automate the work of the sales force and to 

generate a list of prospects that are more likely to turn into leads and ultimately into customers. 

Prospects mean potential customers that meet certain criteria. Leads mean prospects that will be 

contacted and are most likely to respond. The proposed tool works in three phases and uses the 

current customer base of a company as a basis for generating the prospect list. In the phase one, k-

nearest neighbor algorithm was applied. It was used with a Jaccard similarity coefficient to cluster 

prospects with profiles of current customers of the company. In the center of a cluster, there is a 

profile of an existing customer. The closer the prospect is to the center of a cluster, the more likely 

it is going to turn eventually into a customer. The result of the first phase is a list of prospects each 

of which having a similarity value ranging from 0 to 1.  

The phase two uses the list generated by the first phase. For each item in the list, a predicted 

probability was added. For this, they included both logistic regression and decision trees in their 

system. AUC was calculated for both models and the one with higher value was used in the end. 

Artificial neural network was used as well, but only as a backup due to it being slow. Phase three in 

turn is a combination of phases one and two. It calculates weights for both phases and produces the 

final prospect list. This list is used as feedback in phase two.  

Bohanec et al [8] aimed to promote the acceptance of machine learning models in business. The 

study claimed that companies basing their operations on data-driven decisions were more profitable 

and productive than their counterparts. They also stated that those using knowledge-based systems 
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were more likely to act on the recommendations of the system if explanations were also available. 

In their study they developed a framework that integrated the historical data owned by the company 

into their decision-making process. People were included in this process. They developed this 

framework using ADR for a real medium-sized company selling software solutions. For the 

framework, they tested multiple different machine learning models. They were evaluated with 

classification accuracy (CA) and area under curve (AUC). Random forest produced the best results, 

but for demonstration purposes of the framework, they used also other models. EXPLAIN and IME 

was used to explain the outputs of used machine learning models. The company CRM was also 

updated as a part of the study with new variables. This resulted in a machine learning dataset used 

in the study. The set was also made publicly available.   

The process of the framework starts with a meeting. In the meeting the participants produce an 

initial forecast of sales leads that are supposed to be closed as won after a month. This forecast is 

updated to the company CRM. Then an external consultant uses a selected machine learning model 

on the updated CRM and produces another forecast. It is then shown to the company personnel with 

explanations. Based on this, the company then updates and re-adjusts their initial forecasts. At the 

end of the period of the framework the CRM is again updated.  

D'Haen et al [9] focused on customer acquisition process of a company which they state, is a 

stressful undertaking. One part of this acquisition is trying to predict, which of the leads are 

profitable, once they turn into customers. For this, most companies use external data sources. The 

study however points out that these sources of data can produce low quality datasets. Another way 

to acquire data for such predictions, is to mine information from company websites. According to 

the paper, this is rarely done in companies. Both ways of acquiring information were evaluated with 

different data-mining techniques, namely logistic regression, decision trees and bagged decision 

trees. The aim was to find the best working combinations. In their study, they selected data from the 

point of view of a German B2B mail order company. Companies, that had a website and were in 

Germany, were selected from commercial data sources. The ones, that were profitable for the mail 

order company and had a website, were used as the sources for web data mining. As a result, they 

found out that bagging trees worked the best out of the tested mining techniques. They also found 

out that data mined from the web results in better predictions than commercial data. However, 

combining the two sources resulted in even better predictions. When using the two data sources 

together they noticed that bagged trees outperform the regression analysis and normal decision 

trees. When the bagged trees were evaluated against both available data sources, predictions with 
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web data were much better than with commercial data. Also here combining the two sources 

resulted in even better predictions. 

Bohanec et al [10] created a list of machine learning attributes for B2B setting. The list was meant 

to support knowledge engineers in data structure construction of sales opportunities for machine 

learning. As machine learning models are highly dependent on the input data quality and chosen 

parameters, it was the aim of the study to create a list of comprehensive parameters for said setting. 

They reviewed previous study and academic papers. Over 75 attributes were selected for the list and 

categorized to five different categories. These categories were as follows: 

1. Economy of the client: Describes the situation of client  

2. Individual seller: Describes the traits of a seller 

3. Internal: Describes, how an opportunity is perceived in the company 

4. Relationship: Describes the nuances of B2B relationship 

5. External: Describes the external economic situation 

At the end of the study, it was stated that from all the listed attributes, a subset that provides a solid 

description of sales opportunities can be selected for each company based on expert opinion.  

Meire et al [11] integrated data extracted from social media pages into B2B customer acquisition 

decision support system. According to the study, the potential of social media has been recognized 

in business to business environment. However, its adoption rate has been much slower than in 

business to customer environment. In total, three different sources of data were used in the study, 

namely commercial data, data from prospects websites and data extracted from company’s 

Facebook page. The aim of the study was to evaluate the predictive value of the data from company 

Facebook page. It was compared with the data extracted from company website and with data from 

a commercial source. For the evaluation, the sales funnel model of D’Haen et al [9] was used. 

Random forest classifier was selected for the classification tasks of the study. Different 

combinations of the mentioned data sources were used as input data in both phases of the 

acquisition model. The predictive performance of the data was evaluated with AUC and Lift. The 

study found out that the model performance was only slightly better if commercial data was used. 

So, they argued, that it might be worth building the customer acquisition system with only data 

acquired from the websites and social media.  

Jadhav and Deshpande [12] reviewed multiple techniques to detect concept drift. Concept drift 

means a change in the distribution of data. The study states that when concept drift occurs, the 

quality of predictions offered by classifier trained on data with initial distribution starts to worsen. 
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In their study, they form a distinction between two types of concept drifts, namely gradual and 

sudden. Sudden concept drift occurs when data with a distribution “n” gets replaced with a 

distribution “m”. Gradual concept drift means that instances from datasets with two or more 

distributions appear at the same time and over time, the probability of encountering instances from 

an unknown distribution increase. In the paper, online models and block-based models are 

introduced and their capabilities in detecting concept drift mentioned. The study states that online 

models are better at detecting sudden concept drifts as they are updated each time a new data 

instance is made available. Block based models on the other hand can detect gradual concept drifts 

better as their updates are done with a set of new data instances. They also highlight that online 

models are not good in detecting gradual drifts and block-based models are not good in detecting 

sudden drifts. Because of this, an ensemble system for detecting both types of concept drifts equally 

well is proposed. The system would keep both online and block type classifiers in an ensemble with 

a buffer for data instances. These classifiers would be weighted. Once a data instance is entered in 

the ensemble, the online classifiers of the ensemble are used to predict the class label for the 

instance. All the predictions are aggregated to get a majority vote. In addition to this operation, the 

online classifiers are updated, and their weights are modified based on accuracy of previous 

predictions. After this, the data instance is stored in the buffer. Once it is full, similar operations are 

carried out with the block classifiers. The weights of the block classifiers are modified based on the 

accuracy of newest block of data, the block classifier is updated based on the newest data block and 

the class labels for instances are produced as a majority vote.  Error rate is calculated for both 

classifier types, and once it falls below a certain threshold and stays there for the next blocks of 

data, concept drift is detected. 

Bruno et al [13] proposed an ensemble system called DDE for detecting concept drift. Their 

motivation was to achieve more precise detections of concept drifts by combining three concept 

drift detection methods. Different methods for detecting concept drift were reviewed, the following 

of which ended up in their proposed system: DDM, ADWIN, ECDD, HDMMa and HDMMw. 

DDM detects changes in a distribution. It does this by analyzing the probability of error (p) and its 

standard deviation (s). Both values are calculated for each instance inserted in the system. The 

method also maintains knowledge of minimum values for error (𝑝𝑚𝑖𝑛) and standard deviation 

(𝑠𝑚𝑖𝑛). Drift is detected, when p + s ≥ 𝑝𝑚𝑖𝑛+𝑠𝑚𝑖𝑛 ∗  𝛼 , where 𝛼 is the confidence level.  

ADWIN takes advantage of a sliding window technique. The window size increases while the data 

distribution remains the same and decreases while concept drift occurs. In ADWIN there are also 

dynamically adjusted sub-windows for older data and recent data. The difference between the 
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averages of data from both windows is calculated and concept drift is detected, when the difference 

is higher than a set threshold.  

HDDM is a collection of methods that measure values available during the learning process of a 

classifier. Drifts are detected, when a significant change is detected from these values. “Test_a” 

variation of the method uses moving averages while “test_w” variation uses weighted moving 

averages. ECDD uses estimations of mean and standard deviation of variables and detects changes 

from that. All these methods were applied in DDE. Three different sensibility levels were proposed 

and different combinations of introduced concept drift detection methods were attached to each of 

the levels. Each level sensibility defines how easily a concept drift is detected. If one of the methods 

notices a drift, it is immediately confirmed by the method at sensibility level one. If sensibility level 

is higher than one, only warning is issued at the drift detection of one method. When two or more 

methods detect this drift as well, the ensemble signals drift. Max wait is also defined by DDE. The 

detection of concept drift is classified as false positive, if one detector detects a concept drift that is 

not confirmed by other detectors within the wait period. The aim of the method was also to be 

lightweight. That is why they had only one classifier in use when the detected concept is stable and 

two for other states.  

In Costa et al [14] the methods for detecting concept drifts were divided into two groups, namely 

blind and informed. Blind methods do not try to explicitly detect a concept drift. Instead, they 

counter them by regularly retraining the used machine learning model. Informed methods on the 

other hand have a mechanism for detecting the drift. In the study they proposed a method for 

detecting concept drift explicitly and in unsupervised manner. By using this way of concept drift 

detection, they aimed to provide an alternative to other state of the art concept drift detectors for 

example DDM and EDDM. Those concept drift detection methods are incremental and require that 

the true labels of the data instances are readily available. According to the study, this is an 

unrealistic requirement when it comes to many real-world applications. In the paper DDAL method 

was proposed for concept drift detection. It works in two phases and uses blocks of data. In the 

phase one a classifier is generated from data, which is currently available. Then in the second phase 

the density variation of the most significant instances is monitored. The most significant instances 

are identified by using a class-separating hyperplane and user defined virtual margins. If the density 

variation of these most important instances is higher than user defined threshold, drift is detected. If 

this is the case, reaction module of the method is triggered. There a new classifier is trained with the 

newest block of data. This classifier replaces the old one. If no drift is detected, the newest batch is 

classified, and the process returns to detection phase. 
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2.1 Summary of the review 

In the articles found for this thesis, the focus was to develop a system to help either with finding the 

right customers for a company or with predicting the outcome of a sales project. For this, machine 

learning was applied. Many of the studies evaluated multiple models but for example in Bohanec et 

al [3], Bohanec et al [8] and Meire et al [11] random forest was used.  

Explanation methods of machine learning models came up in the articles. Bohanec et al [8] stated, 

that companies who use knowledge-based systems, are more likely act on the recommendations 

produced by the system if there are explanations available. In Bohanec et al [3] explanation 

methods EXPLAIN, and IME were introduced. They were applied to produce explanations for the 

predictions of machine learning model in use. In D'Haen et al [9] data mined from the internet was 

considered as an alternative to commercially purchased data. Both sources were evaluated. In the 

end, it was noticed that combining data from both sources improved the predictions of used 

machine learning models. In Meire et al [11] used data extracted from social media in a customer 

acquisition decision support system. D’Haen and Van den Poel [7] developed a three phased online 

tool for customer acquisition. In the first phase the potential customers were analyzed based on 

existing customers, in the second phase, probabilities were attached to the customers and in the last 

one, the final analysis was done for the potential customers.  

Detecting concept drift is an important factor to consider. In Jadhav and Deshpande [12] and Bruno 

et al [13] employed an ensemble-based approach.  Jadhav and Deshpande [12] introduced both 

sudden and gradual concept drift. In the study it was stated that the gradual drift would be better 

detected with a block -based machine learning models. Sudden drift on the other hand would be 

better detected by online learners. So, for the detector, both types of learners were combined. The 

actual detection of concept drift would be done by monitoring the error rate of the classifiers in the 

detector. In Bruno et al [13] an ensemble method was also proposed. The main idea of this method 

was to combine three different drift detection methods in a three different sensibility levels. The 

higher the level the longer the detection of drift would take. At level one, drift would be signaled 

already with one method detecting a drift. At higher levels, drift detected by one method would 

cause only a warning. When other methods of the level detect the drift as well, the drift is verified 

and signaled by the ensemble. In Costa et al [14] drift was detected by monitoring the changes in 

density variations of the most significant data instances. If the variation was greater than a user 

defined level, drift was signaled.  
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When it comes to this thesis, the system constructed in D’Haen and Van den Poel [7] would seem 

the most promising. The focus there is on automation, and unlike in Bohanec et al [8], no external 

consultant is used to produce predictions with a machine learning model. Because of this, there is 

potential for saving time. As reported in Bohanec et al [3], Bohanec et al [8] and D’Haen et al [9] 

multiple machine learning models were somehow evaluated and tested after which the best one was 

selected. So, for this thesis the same procedure will be used. Later, the results of the procedure will 

be discussed more in depth. Here however it can be stated that further discussion of explanation 

methods will be excluded from this thesis. Bohanec et al [10] created a list of attributes that would 

best represent a sales process between two companies. Because using quality data with machine 

learning is important it is recommended to take those attributes in to account when inserting data for 

the system of this thesis. 
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3 Introducing the dataset 

In this chapter, the business to business dataset from Bohanec et al [8] will be introduced. It will be 

analyzed on a general level. Principal component analysis will also be introduced and then 

performed on the dataset. This is done to see how different classes of the dataset are positioned in 

relation to each other and if there are any visible boundaries between them. Later in the thesis the 

instances within the dataset will be used as a test data when constructing the system for validating 

new customers.   

3.1 Dataset 

The selected dataset contains real world B2B business cases of a medium sized company selling 

software solutions. These business cases will be referred to as “instances”. The dataset will be 

referred to as “B2B dataset” [15]. The set has 448 instances, each of which has 22 + 1 attributes. 

49% of the instances are labeled as lost and 51% are labeled as won. The attributes that all the 

instances have were selected by the company at a workshop during the study. Next, all the selected 

attributes will be listed, and their meanings explained: 

• Product 

o Offered product 

▪ Product A - K 

• Seller 

o Seller’s name  

▪ Seller 1 - 20 

• Authority 

o Authority level at client side 

▪ Low, Mid, High 

• Company size 

o Size of a company 

▪ Small, Mid, big 

• Competitors 

o Does the company have competitors? 

▪ Yes, No, Unknown 

• Purchasing department 

o Is the purchasing department involved? 

▪ Yes, No, Unknown 
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• Partnership 

o Is the sale occurring in partnership? 

▪ Yes, No 

• Budget allocated 

o Did the client reserve budget?  

▪ Yes, No, Unknown 

• Formal tender 

o Was formal tendering procedure required? 

▪ Yes, No 

• RFI 

o Was a request for information received? 

▪ Yes, No 

• RFP 

o Was a request for proposal received? 

▪ Yes, No 

• Growth 

o The growth of the client company 

▪ Stable, Growth, Unknown 

• Positive statements 

o Were positive statements expressed? 

▪ Yes, Neutral 

• Source 

o Source of the project 

▪ Referral, Joint past, Unknown 

• Client 

o Type of a client 

▪ Current, New 

• Scope clarity 

o Has the scope of the implementation been defined? 

▪ Clear, Few questions 

• Strategic deal 

o Does the deal have strategic value? 

▪ Unimportant, Average important, Very important 
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• Cross sale 

o Is the company selling additional product to an existing customer? 

▪ Yes, No 

• Up sale 

o Is the company selling more expensive product or upgrade to the customer? 

▪ Yes, No 

• Deal type 

o What is the type of the deal? 

▪ Project, Maintenance, Solution 

• Needs defined 

o Did the customer clearly state their needs? 

▪ Yes, No, Info gathering 

• Attention to client 

o Attention to a client 

▪ Strategic account, Normal, First deal, Bad client  

• Status 

o The outcome of the sales project 

▪ Won, Lost 

The attributes presented here come from a larger list of attributes found to characterize business to 

business sales. The list was constructed by Bohanec et al [10]. In their study, the attributes were 

split into five categories. Those categories were presented in the literature review of this thesis. In 

this set, attributes from following categories are present: Internal (product, source, cross-sale, up-

sale, strategic deal, scope clarity and client status), Individual (seller), Client-related (company-size, 

competitors, RFI, RFP, budget-allocated, formal tender, authority, growth, positive statements), 

Relationship (needs defined, attention to client). Partnership, purchasing department and deal type 

were parameters added by the company for which the set of parameters was developed in Bohanec 

et al [8].   

Oshiro et al [16] introduced density-based metrics for analyzing the difficulty in which a dataset can 

be learned by a classifier. They propose that the density of a dataset can be calculated with a similar 

formula used for physical objects. For them, density is calculated by dividing the mass of the object 

by its volume. For a dataset, the study considers the number of instances as the mass of a dataset. 

The volume is given by the dataset’s attributes.  
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In the study, they proposed three ways in which the density could be calculated. Only one of them 

was used. The formula considers three variables, namely classes of a dataset (c), attributes of a 

dataset (a) and the instances of a dataset (n). The used formula was derived from its original, 

physical object inspired form as follows: 

 𝐷1 ≜
𝑛

𝑎
 

 𝐷2 ≜ 𝑙𝑜𝑔𝑎𝑛 

 𝐷3 ≜ 𝑙𝑜𝑔𝑎
𝑛

𝑐
  

The first formula is the starting point of the dataset density calculation. In the study, the density was 

calculated for 29 different datasets. In all those datasets, the considered values vary understandably. 

Because of this, the values were considered in a natural logarithmic scale. This led to the second 

formula. When the effect of the number of classes on the instances was considered, the result was 

the final formula. This formula was the one used in the density calculations of the study. In it they 

determined that if the result of the calculation was lower than one the dataset had a low density and 

it would probably be difficult to learn from the dataset. The density was considered high if it was 

one or more. In this case, the study suggested that it might be easy for a learner to learn from the 

dataset. 

As mentioned before, the dataset has 448 instances, 22 attributes and two classes. As an evaluation 

measure, the density of the B2B dataset was calculated using the formula as follows: 

𝑙𝑜𝑔22
448

2
≈ 1.8  

The resulting value would indicate that the dataset has a high density and learning from the dataset 

might be easy.  

 

3.2 Principal component analysis 

As stated before, the B2B dataset has 22 attributes in total per instance. In theory these variables 

could be plotted against each other for a series of graphs. It however is effective for datasets that 

have only few variables. If there are more, like in the case of the B2B dataset, new ways of analysis 

are needed to effectively gain insight in the dataset.   

Reris and Brooks [17] mentioned a paper of Karl Pearson named “On Lines and Planes of Closest 

Fit to Systems of Points in Space”. The ideas in the paper created the foundation for technique that 
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would later be called principal component analysis. It is a technique that can be used to reduce the 

dimensionality of a multi-dimensional dataset. Reduction is achieved by creating a set of new 

variables that are linear combinations of the original variables. 

For example, let us assume, that there is a n dimensional dataset. This dataset can be presented in a 

n-dimensional space. Once visualized, the set might appear as a large cloud of points. If the cloud is 

elongated in some direction, it is an indication that two or more parameters are correlated. Principal 

component analysis tries to find these directions. It starts from the dimension p, then moves onto 

dimension p – 1 until all dimensions are analyzed [18]. By doing this it reduces the dimensionality 

of the original dataset without losing much of the information contained in the data [19]. The found 

directions are used as axes for the parametrization of the p-dimensional space. These are called the 

principal components [18]. In other words, the directions are linear combinations of features 

contained in the original dataset projected in the direction of greatest variance. They are also 

uncorrelated.  The first principal component is situated in the data so that it has the greatest possible 

variance of the analyzed dataset. The second principal component is calculated so that it needs to be 

perpendicular to the first component. Its variance is also lower than the variance of the previous one 

[19].    

The analysis of the B2B dataset was continued by performing a principal component analysis on its 

data. Since the dataset contains only categorical values, the dataset was encoded. The encoding 

process was carried out for each column or in other words, one attribute at a time. First the 

categorical values in a column were transformed into numerical values. For that, the Label Encoder 

from Scikit-learn preprocessing package was used. The encoder gives an integer number for the 

categorical value that is between 0 and n-1, where n is the number of different categorical values the 

attribute can have. After that, label binarizer from the preprocessing package was used to one hot 

encode the column. The encoder carries out its operation in one vs all-style. Finally, PCA from 

Scikit-learn decomposition library was used to carry out the analysis. The algorithm was set to 

process the dataset so that only two features were left in the dataset for each instance. This was 

done to enable displaying the data in a two-dimensional space. With the analysis done, the dataset 

was visualized as a scatterplot using Pandas data-analysis library.  
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Figure 1 Principal component analysis of the B2B dataset 

 

Each dot on the scatterplot represents an instance of the original dataset. Immediately it can be seen, 

that the points representing the “Won” and “Lost” – classes overlap in the scatterplot. However, the 

points representing the classes are not evenly placed. On the left side of the plot, dots of the “Won”-

class are more common and more densely placed than on the right side. On the right side on the 

other hand, the points of “Lost”-class are more common. In the middle of the plot, there is a 

noticeable area where the density of the points is quite low.  Although the classes are not cleanly 

separated, a vertical line could be imagined somewhere between 0 and 1 on the right side of the 

plot. This line would divide the cloud of points into regions corresponding to the classes of the 

dataset. Overall, the plot looks promising and would indicate that a machine learning model could 

learn from the dataset the plot represents.     
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4 Machine learning  

 

In the context of sales, a variety of different machine learning methods have been studied. These 

methods are also application area specific so available options need to be reviewed and the best one 

selected. The system, that will be constructed as a part of this thesis, will study ways in which 

machine learning can be used to provide recommendations on how well a company is suitable as a 

customer for another company. The machine learning model will be trained on data gathered from 

previous sales processes of a company. A sales project starts with one potential customer and 

attributes that the potential customer has. The project then will end after some time as won or lost 

with gained or lost profit. Like stated earlier in the thesis the sales projects can be different for each 

company. Therefore, the selected machine learning model needs to be able to adapt to the 

conventions of each company.  

In this chapter, different training paradigms for machine learning will be introduced. After that a 

selection of different machine learning models will be described. In the following chapter the 

performance of each model will be evaluated with the B2B dataset. One of the models will be 

selected for the application of this system.  

 

 

4.1 Learning paradigms 

Machine learning offers a different angle for controlling the operation of a computer. Traditionally 

a computer requires a specific set of instructions that are translated into a machine-readable format 

for the computer. Based on this translation, the computer can do what it has been told to.  These 

instructions need to be comprehensive and precise. Otherwise the execution of a program might end 

up in a crash or in an unexpected state. Machine learning gives a computer the ability to learn 

without being explicitly programmed [19].  Instead a machine learning model needs to be trained 

for it to be able to function properly. Once the training has been done, the model can find and 

characterize hidden relationships within a large collection of data. Predictions are also possible. 

There are multiple methodologies for training a machine learning model. They all try to optimize 

some sort of metric that tells about the performance of the overall model [20]. Most of the machine 

learning applications utilize supervised learning. The training method needs a set of input values 

and a set of expected output values as training data. During the training the model aims to learn the 
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mapping between the two. If such a model has been trained well enough, it will be able to provide 

mappings even for instances of data that have never been inserted in the trained model before [20, 

19]. If, however the model is too complex, overfitting may occur. In that situation, rather than 

generating a general predictive rule for the mappings in similar data, the model knows only what is 

in the training data [21].      

Unsupervised learning is another way of training a machine learning model. Such training needs a 

set of input data. However, labels or target values are not used in the training. Unsupervised 

learning can be used for several purposes, such as clustering and extraction of features. Generally, it 

tries to find hidden structures within the raw data. It does all this without external instructions. [19, 

22]. 

Other training methods include semi-supervised learning and reinforcement learning. Reinforced 

learning works by trying to maximize a cumulative reward. Essentially it is a trial and error 

paradigm that gets either rewarded or punished based on certain sequence of actions. In reinforced 

learning there are some elements to be mentioned. First, there is a policy that maps actions to the 

perceived state of the environment. Then, there is critique, which is an estimated value function. It 

criticizes made actions according to the policy of the model. The critique continuously shapes and 

corrects the policy of the model. Finally, the reward function estimates the perceived state of the 

environment for an attempted control action [19].  

Semi-supervised learning operates somewhere in between supervised and unsupervised learning. 

Since the data available is commonly unlabeled using supervised learning methods can be difficult. 

Most of the semi- supervised approaches aim to design an algorithm that takes both labeled and 

unlabeled data into account. In addition to this, a supervised learning algorithm can be improved by 

utilizing unlabeled data. This is called the semi supervised improvement. Semi- supervised 

algorithm can satisfy two types assumptions. If the algorithm assumes that data samples with high 

similarity must share the same label, the algorithm satisfies the cluster assumption. If the algorithm 

satisfies the manifold assumption, the algorithm utilizes the fact that the input data lies in the low 

dimensional manifold of the input space [23].   
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4.2 Decision trees 

Decision trees are composed of decision nodes, branches and terminal nodes. Each decision node 

contains a logical test that can split the data into two or more classes. Branches connect the nodes to 

each other so that parent is connected to a child node. Connection made with a branch represents a 

logical “AND” operation. Each terminal or leaf node represent a class within a decision tree [24]. A 

data item is classified with the decision tree by going through a path from the top of the tree 

towards one of the terminal nodes. The path is dictated by the properties of the data item [25].  

Decision trees are grown or induced by adding decision nodes to it incrementally [25].  There are 

multiple algorithms that can be used to build a decision tree. These include for example “ID3”, 

“ChAID” and “See5”. Among the most used algorithms is CART. The algorithm operates in two 

phases, where in the first one the data is split with successive partitions. The generated tree is then 

pruned to simplify the generated model. This improves its generalization capability [24].  

There are several advantages to decision trees. Getting the knowledge from pre-classified examples 

lowers the need for knowledge from domain expert. The trees can also be used on deterministic or 

incomplete problems [24]. They are sometimes also much easier to interpret than for example 

neural networks. They also naturally support such classification problems that can have multiple 

classes. On the other hand, If the input data changes even a little bit, it can result in major changes 

to the generated tree [25]. 

 

 

4.3 Random forest 

Random forest is a black-box machine learning model Bohanec et al [3]. It is also an ensemble 

learning method that uses a large collection of decision trees. The trees are grown by using a 

randomized tree building algorithm. Together the trees form a strong classifier [25, 19]. The 

resulting classification of the random forest is the class voted by the majority of the trees in the 

forest [26]. This results in better predictive performance than for example that of a decision tree. 

Decision trees suffers from high bias and variance [19]. Other advantages of random forest are for 

example its capability to handle noisy data well, the ability to give an estimate on how relevant a 

variable is for classification and its robustness to overfitting [27, 19].  

In Awad and Khanna [19], growing and using the random forest is described as follows: to grow a 

specified number of trees for the forest, n number of so-called bootstrap samples are selected from 
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the dataset. For each of these samples, a classification tree is grown. M prediction variables from all 

the variables of the dataset are selected at random. Then at a node of a decision tree, a variable that 

best splits the dataset in two is selected. This variable performs splitting the data in the said node. 

The next node of the tree then selects another collection of m-variables and again selects a variable 

that best splits the dataset. Once all the trees have been grown, the resulting forest can be used for 

predictions.  

A relevant question with random forest is the suitable amount of decision trees in the forest. It was 

studied by Oshiro et al [16]. The study states that most appliers of random forest find the number of 

decision trees through trial and error. Also, it was mentioned that in some cases by increasing the 

number of trees in the forest only the computational power needed to run the algorithm increases 

while little to no performance is gained. In the study 29 different datasets were used. These datasets 

were grouped into low-, and high-density ones and then used to test random forest with 

exponentially increasing number of trees. For evaluation, ROC curve and percentage of used 

attributes in random forest was used. The significance of changes in results with different number of 

trees was determined with Friedman test. Based on the tests it was noticed that there was no 

significant difference between forests, when increasing the used trees from 128. The study also 

noticed that median and mean AUC-values did not change much starting from 64 trees. Finally, the 

study suggested that to get the best possible balance between AUC, processing time and memory 

usage, a range of trees between 64 to 128 should be used in a random forest.        

 

4.4 Neural networks 

Neural networks are inspired by the human brain and the way in which it processes information. In 

a network there are neurons that are connected to other neurons via synapses. Synapses have 

weights to them that indicate the strength of the connection. Modifying these weights causes the 

network to learn. A synapse takes data to a neuron after it has been multiplied by its weight. Neuron 

then sums together all its inputs. After this summation the neuron produces an output that usually is 

the logistic sigmoid of the generated sum [28]. 

There are many types of neural networks. The networks are considered black-box machine learning 

models [3]. The most common ones are the feed forward neural networks and recurrent networks. 

In the feed forward version, the data moves from the input layer of the network to its output layer. 

There the output of the network is generated. In addition to the input and output layers there can be 

one or more hidden layers. In the recurrent network the data can move in both directions [29]. 
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The feedforward networks can be trained using the so called “Back propagation” algorithm. It is a 

supervised learning method that teaches the relationship between the input space and output space 

to the network [29, 30]. At a general level the training starts so that the synapses of the network 

have random weights between 1 and -1 [19]. Data is fed to the network with the initial, random 

weights and then the values obtained from the output layer are compared with the expected results. 

After this the weights in the synapses are updated and data is then fed to the network again. This is 

continued until the network produces expected results [29]. 

One of the problems, that neural networks have, is the problem of local minimum. The gradient 

descent algorithm will stop, when a minimum in the error is reached. However, there is no 

guarantee that the reached minimum really is the global minimum of the error. To counter this 

problem a momentum term can be added to the equation, which updates the synaptic weights. This 

gives the error some ability to escape the local minimum. Other way of avoiding the local minimum 

would be to train the network multiple times with different initial random weights in the synapses. 

Then the solution to which most of the training iterations converge, could be taken as the best 

solution [30].  

When applying neural network, important is to decide on the topology of the network. According to 

Bailer-Jones et al [30] it is a matter of experience. However, there are some ideas that can be 

utilized when designing the network. In the study, a theorem is mentioned according to which any 

continuous function can be approximated with such a network that has only one hidden layer and 

enough neurons in the network. This also is mentioned in Hill et al [28] and in Matijevic et al [31]. 

Bailer-Jones et al [30] also mentions in addition to the presented theorem that there are many 

problems for which a network with one to two hidden layers and 5 to 10 neurons in each is enough. 

These are however not the only ways of determining the topology. In Matijevic et al [31] multiple 

different methods for determining the topology where presented and compared. Further discussion 

of those methods is however out of scope of this thesis.  

 

4.5 K-nearest neighbors 

K-nearest neighbors is a popular classification method because it is simple and has a relatively high 

convergence speed [32]. The idea in which k-nearest neighbors works is that it finds k instances 

from the training set closest to the instance under analysis. Then, using those instances, the class 

label is assigned to the analyzed instance. It is done by determining the majority class of the 

selected training instances. Important in addition to the selected training instances is the distance 
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metric. It is used to select the closest neighbors. A wide range of different distance metrics, 

including Euclidean distance, can be used [32]. Important is also the value of K that determines the 

number of selected neighbors. Small number of neighbors will result in noisy behavior. A too large 

number will include too many instances in the selected neighbors, resulting in incorrect 

classifications [19]. There are some things to note when applying the algorithm. If the classes in the 

dataset to be classified are unevenly distributed, the classifier might not produce good results [33]. 

If there are a lot of irrelevant or redundant attributes in the dataset, it can affect the classification 

accuracy of the model. This is why preprocessing the data is important [32]. 

 

4.6 Support vector machine 

Support vector machines were first introduced in 1992. It is a popular machine learning algorithm 

that is primarily used for classification, regression analysis and novelty detection. The support 

vector machine sees training samples as points in space. It is trained by fitting a hyperplane into the 

space such that the distance between edge instances of classes to be separated is the largest. These 

points define margins for the said hyperplane and are called support vectors. The training of a 

support vector machine results in one solution, which is the optimum one. When the support vector 

machine is trained, it requires that all the data is available and stored in memory. When the training 

is completed the model only relies on support vectors for classification. New data samples are 

classified by seeing on which side of the learned hyperplane they fall. Support vector machines 

provide a regularization mechanism for controlling model complexity. This way it can avoid over- 

or underfitting. The complexity of classification increases as the amount of used support vectors 

increases. It does not happen with increasing dimensions of the input space [19].  

Support vector machine is capable of classifying dataset items that would otherwise be inseparable. 

Let us assume that set of datapoints is displayed in one dimensional space. The set contains samples 

of two different classes. Let us also assume that all the points of one class are surrounded by the 

samples from the other class from both sides. In this case, separating the classes with a single 

border is not possible. Support vector machine makes classifying the described data possible with 

the help of kernel functions. The function introduces a new dimension to the dataset, making the 

separation of the dataset possible. There are many possible options to use as a kernel function, but 

the optimal one is usually selected via the means of cross validation [34]. 
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5 Model evaluation with dataset 

For this thesis, five different machine learning models were evaluated. The B2B dataset was first 

processed so that its attribute values were encoded into numerical values with label encoder from 

Scikit-learn preprocessing library and then one hot encoded with label binarizer from the same 

library. Readymade implementations of the models found in Scikit-learn python library were used. 

These models were random forest, decision tree, multi-layer perceptron, k-nearest neighbors and 

support vector machine.  

Random forest was included in the evaluation, because of its positive traits mentioned in the 

literature review. In Bohanec et al [3], the model was selected because it was broadly recognized as 

a robust and well-performing machine learning method. There it was also mentioned that black box 

models achieve generally better results than simpler models. Random forest belongs to this group of 

black box machine learning models. The study of Bohanec et al [8] evaluated five different machine 

learning models using a dataset, the attributes of which were based on Bohanec et al [10]. For all 

the models, AUC (area under curve) and CA (classification accuracy) was calculated. Random 

forest had the best performance with AUC of 0.84 and CA of 0.776 closely followed by naïve 

Bayesian classifier with AUC of 0.81 and CA of 0.765. Bohanec at al [8] also included a mention of 

the robust performance of random forest. Similar mention is also in Meire et al [11].  

The multi-layer perceptron is also a black box model and it was considered in Bohanec et al [4], 

Bohanec et al [8] as a possible alternative machine learning model for the business to business 

application. In Sharma and Syam [2] it was stated, that feed forward neural networks are most 

commonly used in business applications, so it was included as an alternative black-box model in the 

thesis. Support vector machine was also included as an alternative black box model for multilayer 

perceptron and random forest. 

The rest of the models, namely decision tree and k-nearest neighbors were included in the thesis, 

because they are more simple machine learning models. This was to bring contrast against the three 

mentioned black box models and to see if simpler models could reach satisfactory results with the 

B2B dataset. In order to find the best machine learning model out of the presented five, a nested 

cross validation was run for each of them. In the inner cross-validation of the procedure, possible 

hyperparameters for the models were tested.  

Since each of the selected models were from Scikit-learn, it introduced some restrictions on the 

possible hyperparameters for each of the models. For support vector machine, available kernels 

were tested. Four different functions were mentioned in the documentation of the model and 
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included “linear”,” poly”,” rbf” and “sigmoid”. For multi-layer perceptron, in addition to testing the 

possible topologies, available activation functions were tested. Scikit-learn provides three functions, 

which are “logistic”,”tanh” and “relu”. For k-nearest neighbors, values for K were tested from a 

range of 12 to 200. For decision tree, values for maximum depth were tested from a range from 1 to 

50. For support vector machine both the used kernel and value for C were optimized. Scikit-learn 

offers four kernel options, which are “linear”, “poly”, “rbf” and” sigmoid”. C-values were 

optimized from a range of exponentially increasing values. Base number for these values was 2 and 

the exponents ranged from -4 to 6. Ten values were drawn. Finally, the number of estimators for a 

random forest was tested from a range of 50 to 500.  

For the data set analysis, graphs and later for the developed system Python 3.6 with following 

libraries will be used: 

• matplotlib 3.0.3 

• pandas 0.24.2 

• numpy 1.16.2 

• Scikit-learn 0.20.3 

• scipy 1.2.1 

 

 

5.1 Cross-validation 

Cross-validation can be used to asses and select a machine learning model [35]. Already in the 

1930, it was noticed that if a machine learning model is trained and tested using the same data, the 

results are overly optimistic. Usually, when conducting cross-validation, there is not that much data 

available. That is why, the data is split for the validation. One part of the data is used to train the 

model while the other is used to test the model’s performance [36].  Sometimes the previous 

domain knowledge can help in selecting the best model for the task. However, when the data is 

received for the task, the knowledge from it can be inconclusive. That is why Schaffer [37] used 

cross-validation to select the best model. According to them, using cross validation for model 

selection can lead to a better average performance while at the same time guarding against 

catastrophic performance. 

Cross validation can be used also to assess the performance of a machine learning model. One 

option to conduct this assessment would be to use leave-one-out cross-validation. In this type of 
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cross-validation, only one data instance is used to validate the model while the rest of the dataset is 

used for training. This method is almost unbiased, and it also reduces the influence of random 

pairings of data instances from the dataset [38].  

In Krstajic et al [35], cross-validation pitfalls were introduced. According to their study, one pitfall 

would be to report either cross-validation error or single nested cross-validation error as an estimate 

of the error. Also, according to them, a pitfall would be to select model parameters prior to cross-

validation or to select the model based on performance of a single cross-validation iteration.  

Varma and Simon [39] state, that if a classifier has been tuned using cross-validation and then 

afterwards the error estimate is calculated with cross-validation as well, significant bias is 

introduced in the estimate of the model performance. As a measure to counter the discussed cross-

validation bias, the study presents an improved cross-validation procedure. The procedure does not 

try to present the error estimate of a certain classifier. Instead, a nested cross-validation procedure is 

used. In the inner cross-validation loop the optimum parameters for a classifier are determined by 

minimizing the cross-validation error estimate. In the outer loop, the error estimate for this 

optimized classifier is calculated. It is the almost unbiased estimate of the true error, as stated in 

Varma and Simon [39].  

 

5.2 Implementation 

The nested cross validation was conducted by using a self-implemented algorithm. The algorithm 

accepts the instances of B2B dataset in a list and the target values of the instances in another list. In 

addition to these a string parameter that determines the classifier type is passed into the algorithm. 

First, before the outer part of the procedure, the algorithm instantiates a “StratifiedKFold()”, with 

10 splits. These splits are then extracted with a for-loop. It starts the outer part of the nested cross-

validation. The larger split is handed over to the inner cross-validation, whereas the smaller one is 

saved as a validation set for later. The inner part of the cross-validation and also the optimum 

parameter search is conducted by a method called “inner_search()”. It receives a part of the 

dataset, stratified K-fold instance with nine splits, type of the classifier used and numerical values 

for use in the optimum parameter search. These values can be either single values in a list or tuples 

within a list that represent either a range of integer values or a topology of multi-layer perceptron’s 

hidden layers. The training and testing indexes are extracted from the K-fold instance with a for-

loop. Within the loop, the type of the classifier is determined. Passed numerical values and possible 

textual variables, such as activation functions in the case of multi-layer perceptron, are then tested 
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in different combinations. For each combination, the inner cross-validation is run. Within each 

iteration of the validation, the selected model is fit to the data, AUC is calculated and saved in a list. 

Once the inner cross validation has been completed for one combination of parameters, the mean of 

the saved AUC-values of the inner validation is saved in a list. Also, the parameters that were used 

during the inner cross-validation are saved in a list. Once the inner cross-validation is finished the 

list of average AUC-values and the parameters, that caused the highest average AUC, are returned. 

The returned parameters are then used to instantiate the analyzed classifier in the outer cross-

validation. The resulting classifier is fit to the larger part of the dataset extracted in the outer cross-

validation and validated with the saved validation data. After this, the AUC is calculated and saved 

in a list like in the inner cross-validation. Knowledge of the highest AUC is also maintained in the 

outer part of the validation. If the calculated AUC-value is higher than the one calculated during the 

previous iteration of the outer validation, the value for highest AUC is updated. The whole process 

then starts again and is repeated until no splits are left in the stratified k-fold instance of the outer 

cross-validation. The mean of all the saved AUC-values is the return value of the entire procedures. 

 

5.3  Results 

The performance of all the selected models was evaluated with nested cross-validation. The 

deterministic models, namely k-nearest neighbors and support vector machine were evaluated once. 

The rest of the models are non-deterministic. Because of this, the evaluation was done four times. It 

was to see how much variation could be seen in the results. The average AUC-value was calculated 

from all the tests for all non-deterministic models. This average is used when comparing 

performance with other models. The optimum parameter search was conducted for all the models, 

four times for the non-deterministic ones. All the values resulting from the testing were gathered in 

a spreadsheet. In addition to this a bar-chart was produced to visualize the performance of the tested 

models.  

 

 

Figure 2 Nested cross-validation results of non-deterministic models 
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In the table above there is a collection of AUC-values from the four nested cross-validation runs 

conducted for the non-deterministic models. The results for random forest are quite stable. The 

results for decision tree exhibit moderate variation, while multilayer perceptron varies the most. For 

all those models, the parameter “random_state” was set to None. This means that the random 

number generator used by those models was the random state instance used by “np.random”. From 

the values in the table, averages were calculated for each non-deterministic model. They are 

presented in the following table among the results obtained for the deterministic models.  

 

 

Figure 3  AUC-values obtained from the nested cross-validation 

 

 

Figure 4 Visualized AUC-values. 
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In the chart presented above, each bar represents the AUC-value of each tested machine learning 

model. Each bar is assigned to a model with an abbreviation. “RF” stands for random forest, “MLP” 

stands for multi-layer perceptron, “DEC” stands for decision tree, “SVM” stands for support vector 

machine and “KNN” stands for k-nearest neighbors. As can be seen from the bar chart, all the 

AUC-values are between 0,75 and 0,83.  

The worst model out of all the compared models was decision tree with an AUC-value of 0.75. 

Multilayer perceptron received a slightly better result with AUC-value of 0.78. K-nearest neighbors 

performed better with AUC-value of 0.79. Support vector machine was the second-best model with 

AUC-value of 0.80. The best was random forest with AUC-value of 0.83. 

 

 

Figure 5 Optimal parameters of the tested models 

 

The optimal parameters were searched for each of the tested models after their nested cross-

validation. This was done by using the same method responsible for inner cross-validation in the 

implementation of nested cross-validation. In the leftmost column of the table the tested model is 

named with a listing of optimized hyperparameters. The parameters are enclosed in brackets and if 

more than one hyperparameter is optimized, the parameters are separated with a forward slash. 

Non-deterministic models and deterministic ones are separated. On the top the optimum parameter 

search results of the non-deterministic models are listed in adjacent columns. The bottom of the 

chart is reserved for the deterministic models. The optimum parameters are listed in column labeled 

“Param. Search”.   

As can be seen from the table, all the runs of the optimum parameter search for the non-

deterministic models produced varying results. This is caused by the nature of the training 

algorithm all of them have.  

As it is discussed in the subchapter of this thesis, that introduces random forests, randomness is 

involved in growing the decision trees for the forest. At each node of a tree, that is being grown, a 

variable is selected to split the dataset in two as cleanly as possible. This said variable is selected 
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from a subset of variables that are in turn selected from all the variables of the dataset at random. 

So, because of this randomness, sometimes variables that better split the dataset are selected more 

often to the nodes of grown trees. Because of this, less trees are required to reach the peak 

predictive performance for the given dataset. On the other hand, if parameters that do not split the 

dataset well get selected to the nodes of the tree more often, more trees are needed to reach the peak 

performance.  

When it comes to neural networks, the synaptic weights are selected at random before the training. 

As implied by Bailer-Jones et al [30], different starting weights lead to varying values for the 

training error, or in the case of this thesis, varying values for AUC. The optimum parameter search, 

that is conducted within the nested cross-validation, contributes to varying results of the AUC- 

values as well. Since different starting weights are used each time, different combinations of 

hyperparameters will produce the optimum results for each iteration of nested-cross validation. This 

can also be seen from the results of the independent optimum parameter search conducted for multi-

layer perceptron.  

As it is visible from the produced bar charts and the table displaying the AUC-values obtained for 

the tested models, the differences between the performances are not huge. But as the results of the 

nested cross-validation show, random forest performed the best out of all the tested classifiers. It 

will not however be selected for the system of this thesis. The nested cross-validation and later tests 

made it clear that the used implementation of random forest performed exceptionally slowly. For 

this reason, support vector machine will be used.  
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6 Key features of the system 

 

In this chapter of the thesis the key features and the architecture of the application will be discussed. 

It aims to test how the requirements stated in the introduction can be implemented. The 

implementation will be described in the next chapter. In this chapter however the architecture of the 

application will be described on a general level. Then the key features of the system will be 

described in depth.  

To reiterate the requirements, the application should be robust to concept drifts that can be 

introduced to the system with the increasing number of sales process instances. Also, the 

application should be able to automatically produce estimates on how suitable a company would be 

as a customer for another company without the need of an external consultant. 

 

6.1 Flow of the system 

Let us start discussing the implementation of the system on a higher level. When a user takes the 

system into use, there is necessary not enough data to train a machine learning model for estimating 

the suitability of a new customer. It still needs to be able to provide recommendations on which 

customer would be the most beneficial to start a sales process with. Therefore, I suggest a system 

with two modes. In the first one, no machine learning is used for producing recommendations. The 

focus of the first mode, besides providing recommendations, is to gather labeled data. The data is 

then later used as training data for machine learning in the second mode. Depending on the 

situation, multiple sales processes with a customer can be processed within the system at the same 

time. Here however, the journey of only one sales process is described. Next the general 

architecture of the first mode will be introduced. 
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6.1.1 Mode one 

 

Figure 6 The flow of the first mode 

 

When the user takes the system into use it requires the user to select, which parameters should be 

gathered from each sales project with a customer company. Here, also the optimal values or ranges 

should be defined for the selected parameters. The system never returns to this phase automatically. 

Once the optimum instance is defined, the system is initiated and operates in the first mode. The 

mode is a loop that starts when a new customer is inserted in the system. Once this is done, the 

system provides a suitability estimate for the potential customer. The estimation is done by 

calculating the distance between the saved optimal instance and the potential customer instance. 

The method of calculating the distance for providing the estimate is discussed later in this chapter. 

This estimate is offered to the user with a choice to either accept or discard the new customer. This 

option can potentially introduce bias to the dataset. Since potential customers, that are not deemed 

as good, can be discarded the dataset might evolve into such state that is not representative of the 

actual business environment the system operates in. This later can affect the performance of applied 

machine learning models. If a customer is discarded, the system reverts to phase where new 

customers are inserted. If a customer is accepted, it is entered in the sales funnel of the company. 

Sales funnel represents the normal sales process the company uses. Once the sales process with the 
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new customer is finished, the outcome of the process is saved together with the initially saved 

customer data. Then the amount of saved data is analyzed. If enough data is saved so that a machine 

learning model could predict from it, the system moves onto the second mode. If there is not 

enough data, the system stays on the first mode and waits for a new customer.  

 

6.1.2 Mode two 

 

Figure 7 The flow of the second mode 

 

Once second mode is initiated, there is no need for going back to the first one. The mode starts by 

executing model control part of the mode. The purpose of the module is to search the optimum 

parameters for the used machine learning model and to train the model with data gathered in the 

first mode. In the case of this thesis, support vector machine will be tested but depending on the 

data and preferences of the user, other models can be used. Once the model is trained the general 

loop of the second mode starts. First, the mode waits for a new customer to be inserted in the 

system. Once the information of a new customer is inserted, the probability of a sales process with 

the customer ending as “Won”, is calculated. If the customer is accepted based on that, its data is 

saved. The customer is then moved on to the sales funnel of the company with a sales project. 

Otherwise the customer is discarded, and the system goes on standby for a new one. This choice 

offered to the user introduces the possibility of bias like in the first mode. Once the sales project 

finishes, the outcome of the project is saved before the process exits the sales funnel. Then the 
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model control is executed again. The dataset has grown by one instance at this point so there is a 

possibility that drift has been introduced to the concept within the dataset. That is why the model is 

retrained and selected hyperparameters evaluated to make sure they still are suitable. This is a blind 

way of dealing with concept drift as stated in Costa et al [14]. The method is not as sophisticated as 

those introduced in the literature review and with increasing size of the dataset the computational 

cost of retraining the machine learning model increases. However, the blind way of dealing with 

concept drift will be enough for this thesis.   

 

6.2 Distance between new lead and optimal parameters.  

The first calculation that is executed by the system occurs within the mode one. The distance of the 

new customer to the optimum one is calculated and used as a suitability measurement for each new 

instance.  In D’Haen and Van den Poel [7] the distance between different instances of data was 

measured with Jaccard similarity coefficient. It is possible to get this coefficient by calculating the 

number of variables that belong to the intersection and to the union of the two instances. Once those 

numbers have been calculated the coefficient is obtained by dividing the number of variables in the 

intersection with the number instances in the union.  

𝑆𝑗𝑎𝑐𝑘𝑎𝑟𝑑(𝐼𝑜𝑝𝑡, 𝐼𝑛𝑒𝑤) =  
|𝐼𝑜𝑝𝑡 ∩ 𝐼𝑛𝑒𝑤|

|𝐼𝑜𝑝𝑡 ∪ 𝐼𝑛𝑒𝑤|
 

 

Where 𝐼𝑜𝑝𝑡 represents the user defined optimum instance and 𝐼𝑛𝑒𝑤 a new instance the distance of 

which from the optimum situation is calculated. The values, that are characteristic to a sales project 

can be mixed. Categorical values, numerical values or ranges of values are possible. The way in 

which the number of attributes belonging to the intersection is calculated is quite clear: if the values 

match exactly, the value of the compared variable belongs to the intersection of the two instances. If 

the compared variables do not match, they belong to the union of the instances.  In this thesis a 

range of values or a list of possible values can be defined for a variable in the optimum instance. If 

a value of an attribute in a new instance is within the defined range or one of the defined values for 

the said attribute, it belongs to the intersection. 
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6.3 Assessing the amount of collected data 

For determining when the system can start operating in the mode two, a method is needed to 

determine if the selected machine learning model is able to predict from the collected data. For this, 

nested cross-validation will be used. The data gathered in the dataset will be analyzed each time it 

has grown a certain amount. The resulting AUC-values and their changes will be interpreted as a 

metric for dataset size. As the gathered AUC-values can vary quite a lot with low amounts of data, a 

best fit curve will be fitted to the group of calculated AUC-values. If the difference of two latest 

points of the best fit curve is small enough and above zero, the system will interpret the dataset size 

to be big enough. 
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7 Building and testing the system 

The system was built as a proof of concept. Target was not to build a ready-to-use system, but to 

concretize the ideas that would be useful for organizations willing to put together such a system. 

Each key feature described above namely the function for measuring the distance between the 

optimum instance and new instance, the feature for analyzing the total amount of instances within 

the dataset and the model control module will be implemented and demonstrated. The B2B dataset 

will be used for testing. In this chapter the function of each implemented module will be explained. 

After the explanations, the function of each module will be demonstrated.  To help with the 

implementation of all the modules, a utility class was implemented for the key features of each 

module. The demonstrations were extended with three tests. Two of the tests, called A and B, were 

used to verify the effect of Jaccard filtering to the performance of used machine learning model. 

The last one was a collective test for the dataset size measurer, for transition from mode one to 

mode two and for the model control of the second mode. This test was called test C. Each of the 

parts mentioned will be analyzed in their own sub- chapters. The data for those tests will however 

be from one run of the system, where each separately described part was run together.  

 

7.1 Offering recommendations with low amount of data 

To be able to offer recommendations even without much data, the system offers the possibility to 

determine an optimal customer. All the potential customers are compared to this instance. The user 

does this definition, once the system is taken into use. For comparing instances, the Jaccard 

similarity coefficient described in the previous chapter is used. For the system, a utility class was 

created that can store the user-defined optimum instance and calculate the Jaccard coefficient. The 

optimum instance is stored as a python dictionary where the keys are attribute names and values are 

the possible values of the defined attributes. Values in this dictionary can be exact string values, 

numbers, ranges of numbers the start and end value of which is defined in a tuple or lists of exact 

values. For calculating the distance between the new instance and the optimum one, a function 

named “calculate_jaccard()”, was defined. It accepts an instance of data that needs to be in a 

dictionary form. The function keeps track of the number of attributes that belong to the union and 

intersection of the compared instances. The number of attributes belonging to the intersection and 

union is calculated within a loop. There all the keys and values of the optimum instance are iterated 

over. Within each iteration all the possible values are tested. The number of attributes in the 

intersection and in the union is increased by one if the variable of tested instance: 
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- matches the value of the same attribute in the optimum instance 

- is one of the values defined in a list for the same attribute in the optimum instance 

- is a number and within a range defined with a tuple in the optimum instance for the tested 

attribute 

- is any value if the value for the same attribute in the optimum instance is an empty string 

 

The number of attributes in the union is increased by two if the value of the tested attribute in the 

new instance: 

- is not within a range defined in the optimum instance for the attribute 

- is not one of the values defined in a list in the optimum instance for the attribute 

- does not match the exact value defined in the optimum instance 

Once all the attributes have been iterated the method divides the number of attributes in the 

intersection by the number of attributes in the union and returns the resulting Jaccard similarity 

coefficient. It is multiplied by 100 to get the value as a percentage.  

Since the measurer accepts an instance in a dictionary form, a method for converting an instance 

into such was created. The method is called “get_row_as_dict()”. In short, this method accepts the 

index of the row where the instance is in the dataset and the number of attributes to fetch for it. First 

the method fetches the desired number of attribute labels from the dataset title row. In the case of 

the measurer test the number was set to 22. This resulted in the exclusion of the class label. All the 

other attribute labels were included. Once the labels were fetched, the values that relate to them 

were fetched from the dataset row determined by the index passed to the method. Finally, labels and 

fetched values were mapped together and returned in a dictionary. This method was used within 

another method, called “get_dataset_categorical()”. As a parameter this method accepts the size of 

the dataset. Within the method, a list for all dataset instances was defined. It was then returned filled 

with all the instances of the dataset in the categorial form. Before testing anything, the whole 

dataset was retrieved in categorical format by using the defined bulk method and in one hot-

encoded format to speed up the testing.  

In the Jaccard test a loop was defined that set a variable running from zero to the last index of the 

dataset. This was used to get each instance from the fetched dataset one by one. Each of these 

instances were fed to the similarity measurer to get the Jaccard similarity coefficient. For the 
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similarity measurer to work, the optimum instance was defined and passed as a parameter to the 

constructor of the utility class. Based on the resulting values for the similarity coefficient, the 

dataset was split in two. The instances receiving a similarity value that exceeded a certain threshold 

were deemed as suitable instances and the ones that did not get high enough value were deemed 

unsuitable instances. For both groups, two lists were needed. One was used to store the dataset 

instances and the other was to store the class labels. The threshold was incorporated in the test to 

simulate a user that in a real-life situation would make the selection to take the new inserted 

instance as a customer. For visualization purposes the suitability values were stored in a dictionary 

so that the keys were the suitability percentages and values the frequencies.  

  

7.2 Testing the similarity measurer 

Testing the similarity measurer was started by defining an arbitrary optimal instance. Values for 

each of the labels in the dataset were set as follows: 

• Product: “” 

• Seller:”” 

• Authority: [“Mid”,” High”] 

•  Comp_size: [“Mid”,”Big”] 

• Competitors: “No” 

• Purch_dept:”No” 

• Partnership: “No” 

• Budgt_alloc: “Yes” 

• Forml_tend: “No” 

• RFI: “Yes” 

• RFP: “Yes” 

• Growth: “Stable” 

• Posit_statm: “” 

• Source: [“Joint past”,” Referral”] 

• Client: [“Current”,” New”] 

• Scope: “Clear” 

• Strat_deal: [“Very important”, “Average important”] 

• Cross_sale: “” 

• Up_sale: “” 
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• Deal_type: [“Project”,” Maintenance”] 

• Needs_def: “Yes” 

• Att_t_client: “” 

With these values set as the point of reference, the similarity measurer filtered the entire dataset into 

multiple groups with the suitability percentage as the groups label. 

  

Figure 8 Suitability groups as bar chart 

 

 

Figure 9 Instances grouped by their suitability percentages 

 

From the illustrations it can be seen, that the implemented similarity measurer can assess new 

instances based on the optimum instance. Each instance is given a suitability percentage. With it, it 
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is possible to provide recommendations on how good a customer the new instance would be to the 

user. Looking back at the defined optimum instance, it would not seem to be that strict. Out of 22 

variables in the optimum instance six accept more than one possible value and six accept any value 

that can be associated with the variable in question.  That makes twelve “liberal” variables. The 

remaining ten have one exact value that needs to be the same in the corresponding attribute of the 

new instance. This means the slight minority of the variables. With these variables, the system gave 

suitability of 63% and up for most of the instances in the dataset. Biggest group was 127 instances 

in size with 83% suitability. Only 17 instances were given 100% suitability. The threshold value in 

the test was set to 60. It split the dataset into two so that 412 instances were categorized as suitable 

and 36 as unsuitable.  

With these suitability estimates there is one thing that needs to be considered. The optimum 

instance is defined by the user. Because of this, all the other instances inserted in the system during 

the mode one are compared to something that represents the user’s personal ideas and preferences 

of a customer. This probably does not represent the real business environment the system is about to 

be used in. Because of this, the optimum instance should not be decided by just one person. 

Multiple people should be included in the decision so that the selected optimum values better reflect 

the real situation. If the decided optimum instance proves to be bad, it is possible to change it. The 

“bad” optimum instance means that the suitability estimator of the first mode might give better 

suitability estimates for customers with which a sales process is more likely to end as lost. It should 

also be mentioned that these “bad” instances could be included in the dataset even with an excellent 

optimum instance. The estimates are after all there only for guidance.   

 

7.3 Assessing the effect of Jaccard similarity filtering to machine learning  

In the introduction of this chapter, tests A and B were mentioned. Here, both were conducted to see 

what kind of effect the Jaccard filtering would have on the training of a machine learning model. 

Test A was conducted first. Initialization of the test included defining the same optimum instance 

for the utility class that was used in the test of Jaccard filter. In addition to this, a list for AUC-lists 

was defined. The actual tests were run within a loop set to repeat 10 times. After this definition, 

more preparations followed. They were required by the individual test. First preparation of the 

individual test A was to shuffle the dataset, that was fetched in one hot-encoded format before any 

testing.  
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For shuffling, “shuffle_data_set()” method was implemented. As its inputs, it accepts the dataset 

and class-labels related to the dataset instances. Within the method, a range of numbers from zero to 

the length of the dataset was gathered in a list. This list was labeled “indexes”. The elements of this 

list were shuffled. Then, two lists for shuffled dataset and class-labels were initialized. They were 

populated in a loop that iterates over the index list. Each value of the index list was used to 

determine a position in the dataset from which an instance was selected for the shuffled list. This 

resulted in a new dataset the instances of which were in random order. List for both shuffled dataset 

and shuffled class labels was returned.  

After shuffling, the dataset and its labels were split into train and test data with stratified train-test-

split method of the Sklearn model_selection package. It was used within a method called” 

train_test_split_stratified()” that returns both the train and test data within a dictionary while also 

taking into account the class distribution of the dataset. With this done, the set of training samples 

was then iterated over so that each sample was inserted in the dataset of the utility class one by one.  

The performance of a machine learning model was then monitored each time two conditions were 

met. First condition was that at least 100 instances needed to be in the dataset. The second condition 

was that the dataset size of the utility class had to be 1.15 times bigger than it was when a previous 

measurement was done. The nested cross-validation implementation was used to conduct the 

performance measurement. The result of each repetition of the test was a list of AUC-values from 

the nested cross-validations.  

The test B differed in some ways from the test A. Before even adding the first instance to the 

maintained dataset, the suitability was calculated for the instance with Jaccard similarity. If the 

suitability was below set threshold, which in the test was 63%, the inspected instance was ignored. 

Different for this test was also, that it needed the dataset both in categorical and in one hot-encoded 

format. Because of this, shuffling the both sets and splitting them to train and test data was done 

here slightly differently. First, a list containing indexes in random order from zero to the length of 

the dataset was obtained from a separate method. Then, both versions of the dataset were shuffled in 

random order with a method called “shuffle_data_set_randomizer()”. This was essentially the 

same method as “shuffle_data_set()”, the only difference being that it used the separately 

generated index list for shuffling. Because of this, both the dataset versions could be shuffled to the 

same random order. This is important, as after Jaccard similarity was calculated for the instance, the 

encoded version of it could be added to the dataset of the utility class from the encoded data 

collection only by using the index known from the categorical list. 
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Both versions of the dataset were also split to training and testing parts for the test so that 75% of 

the data is used for training. This was achieved by using “StratifiedShuffleSplit” from Scikit-learn 

model_selection package. With it, training and testing indexes were first generated for the splitting 

of the both versions of the dataset. They were then used to populate the training and testing 

partitions for both categorical and one hot-encoded data.    

 

7.4 Analyzing the effect of Jaccard filtering  

The effect of Jaccard filtering on the performance of machine learning model was demonstrated by 

producing two graphs. One depicts how AUC-values develop with instances that have been filtered 

based on Jaccard similarity and the other depicts how the values develop without any filtering. All 

the 10 repetitions of both tests were plotted in their own graphs. 

 

Figure 10 Development of AUC-values in tests A and B 

 

 The first test is conducted in all the different repetitions when 100 instances are in the dataset. As it 

is visible from both charts the initial AUC-values vary quite much. In test A the lowest initial value 

is below 0.75 and highest is just below 0.875. Initial values are at their densest between 0.775 and 

0.85. The spread of initial values in test B is slightly lower than in test A. The curves of test B 

however spread out quite strongly as the number of instances increase towards 150. The AUC-

values of the curves in the region between 100 and 150 instances also seem to vary more than in test 

A. Highest initial value of B is just above 0.80 and lowest is between 0.70 and 0.725. The denser 

area of initial values is between 0.775 and 0.825. As the number of instances increase in the dataset 

the variation of AUC-between the different curves seems to get smaller. In other words, all the 

curves seem to converge towards a smaller range of values. In both tests the difference of highest 
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and lowest AUC-value at 300 instances is smaller than at 100 instances. This difference is more 

noticeable in test B.  

In general, these tests highlight well the effect of Jaccard filtering. As the number of instances 

increase in the dataset during test A, values of all the AUC-value curves converge towards a smaller 

range of values. This also happens with test B, where the instances are filtered with the Jaccard 

similarity measurer. Although the AUC-values might vary quite a lot at first with the filtering, over 

time a more stable AUC can be achieved. In other words, when there is not enough data in the 

dataset, Jaccard similarity can be used to provide the suitability estimates until machine learning 

can be used.  

  

7.5 Monitoring the dataset growth 

For detecting when it is possible to start using machine learning for providing suitability estimates, 

a dataset monitoring system was developed. It was tested with support vector machine. For 

monitoring the size of the dataset, the system uses AUC-values and more specifically a best fit 

curve that goes through them. Once the difference of two points in this best fit curve is small 

enough the system determines that there are enough instances in the dataset. 

Before testing the dataset control system, the dataset is first fetched in categorical and in one hot 

encoded format and shuffled in a manner similar to test B. Then both the shuffled sets are split to 

training and testing data so that 75% of both the sets is used as training data.  

The actual test then occurs within a loop that goes through all the instances within the training data. 

For each instance the Jaccard similarity coefficient is calculated. If this value is high enough, the 

one hot instance corresponding to the analyzed categorical instance is selected for later addition to 

the dataset of the utility class. Also, the class label corresponding to this instance is added to a list 

for suitable class labels.  

Before monitoring can take place, there needs to be enough instances stored in the dataset. For this 

reason, with the inbuilt method of the utility class, the size of the dataset is queried. If the size is 

less than 100 instances, the only operation done during the iteration is an increment of the dataset of 

the utility class by one.  Once the threshold of 100 instances is exceeded, the dataset is incremented 

by one as well. In addition to this a new list for class labels is defined and filled with values from 

the list containing class labels of the suitable instances. The whole list of class labels is not 

transferred, only from indexes 0 to index + 1, where index refers to the current value of the iteration. 
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After this, a new test is conducted. The test controls that there are at least two occurrences of the 

both class labels in the new class-label list. Also, it is monitored that the size of the dataset has 

grown by 1.15 from the previous monitoring. These tests are linked with AND-operation. The count 

of both class labels needs to be checked so that the later cross-validation of the monitor system can 

give probability estimates for both classes. The growth of the dataset also needs to be monitored. It 

is to ensure that each time the size of the dataset is monitored, meaningful changes in the results can 

be observed.  

Once all the mentioned tests are passed, the monitor system starts the actual operations needed to 

assess the development of the dataset. First, the size of the dataset during this iteration is saved in a 

variable. This is used to determine the next suitable iteration for such control. After this, nested 

cross-validation is run for the current state of the dataset. Once the AUC-value is obtained from the 

validation, it is stored in a list.  

The actual analysis of the dataset size is started, once the size of the AUC-list is over three. A best 

fit curve is fit over the stored AUC-values. After that, the steepness of the line is analyzed. The 

points for the best fit curve are generated by using “UnivariateSpline()” from Scipy. The method 

accepts two lists. One is for the AUC-values and the other is for the number of instances in the 

dataset each time the AUC was calculated. In turn, it returns a list containing the values for the best 

fit curve. From these points it is determined when the system should make the transition from the 

mode one to mode two. Mainly for this, the last two points in the best fit curve are considered. The 

value of second to last AUC is subtracted from the last. If this difference is close to zero, the dataset 

has enough data for transition. In the test, the difference values that were considered suitable for 

transition, were between zero and 0.25.     

 

7.6 Demonstrating the dataset control system 

The dataset control system test was executed once with support vector machine. As mentioned in 

the previous chapter, the code of this test mirrored that of the test B with the dataset size 

requirement of 100 and a suitability requirement for an instance. For this test it was set to 63%.  

Each time the size of the dataset was monitored during the tests, the optimum parameter search was 

run for the used support vector machine. The result of the monitoring system test was a list of AUC-

values and a curve depicting the best fitting curve to the stored AUC-values. This sub-chapter 

begins the collective test C, described in the introduction of this thesis. Next, the produced best fit 

curve for random forest is displayed and analyzed. 
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Figure 11 AUC-values with best fit curve marked in green 

 

From the figure it is visible, that the AUC-values plotted in orange vary heavily as the size of the 

dataset increases. The best fit curve plotted in green, changes much less and is thus more suitable 

for the dataset analysis. When there were 180 instances in the dataset, the dataset monitoring system 

triggered a transition from mode one to mode two. 

 

7.7 Model control of the second mode 

Once there is enough data in the dataset, the system transitions to mode two. The most important 

part there, is the model control module. For this thesis, it was simulated by repeatedly fitting 

selected model to the data within the gathered dataset. Then, instances from test data list were added 

one by one to the dataset to see if there is significant change in the performance of the used machine 

learning model. The test data mentioned here is from the same dataset split the training data of 

which was used in chapter 7.5. Also, the way in which the suitability estimates were calculated in 

the second mode was tested here. Once a classifier has been fitted with data it is possible to 

calculate probability estimates for each of the available classes when a new data instance is given to 

the classifier. The probability of the new instance being classified as “Won” is used here as the 

suitability measure for a company. 

Before starting the model control system simulation, the suitable class instances are transferred to a 

general list labeled “classes”. Then three lists are instantiated, one for AUC-values that are again 

used to measure the performance of the machine learning model, one for storing number of 
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instances in the dataset during each of the measurements and dictionary for calculated probability 

estimates. The actual simulation then occurs within a loop, that iterates through a range of numbers 

from zero to length of the test instance list. First operation within the loop is to conduct optimum 

parameter search for the used machine learning model. For this, the inner validation method 

described earlier in this thesis is used. Then, a classifier is initialized with the obtained optimum 

parameters and fit to the current state of the dataset. After this, an instance is taken from the one hot 

encoded test data. With the classifier, the probability estimates are calculated for the instance. The 

one for the “Won”- class is multiplied by 100 after this. This value in real application is the 

customer suitability value. Following this the suitability percentage is stored in a dictionary with its 

frequency as the key. This is not necessary in a real situation but is used here to enable the 

visualization of all different suitability percentages found within the test data. After this, the 

performance of machine learning model is measured with nested cross-validation. The resulting 

AUC-value is stored in a list. The test iteration is finished by storing the analyzed instance within 

the dataset of the utility class and the corresponding class label is stored within the classes list. This 

continues until all the instances in the test data are processed.  

 

7.8 Testing the model control of the second mode 

The model control module was tested after the system transitioned from mode one to the mode two. 

AUC-values and probability estimates were gathered during the test. AUC-was used to see the 

development of the support vector machine performance as the dataset size increased. The 

calculated probabilities were used on the other hand to visualize the suitability distribution found by 

the classifier. Probability for the “Won” class was used as the suitability. This sub-chapter continues 

the test C. From the test run, following suitability percentages were gathered.  
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Figure 12 Suitability percentages obtained with support vector machine 

The first observation from the visualized suitability percentages would be that the used classifier 

found a more fine-grained selection of different suitability percentages than the Jaccard similarity 

filter. The best suitability percentage was 99 and worst was 1. The frequencies of the found 

suitability percentages vary between 1 and 17. In my opinion the results visualized in the bar chart 

look realistic. For each instance, the suitability percentage was calculated from a part of the dataset 

the classifier has never seen. For this reason, all the found suitability percentages are distributed the 

way they are. In the chart, there are two clusters of instances that stand out. One is between 70% 

and 80% and the other one is between 5% and 20%. The bar chart would look different if the 

classifier were to analyze instances it already knows. For example, the mentioned cluster between 

70% and 80% would be closer to the better end of the suitability spectrum and in the cluster, there 

would be more instances.  



 

48 

 

 

Figure 13 AUC development of k-nearest neighbors  

During the test, the AUC-values were also calculated after each added new instance to the dataset. 

For that, the nested cross-validation implementation was used. The general idea of the test was to 

see how increasing the dataset with new instances affects the performance of the model. As it can 

be seen from the AUC-value curve the value changes considerably between the added instances. 

The orange best fit curve however would indicate that the general direction of the AUC-values is 

towards the better ones. This would suggest that adding new instances would not have too adverse 

effects on the model performance. With different data instances or different order of the added 

instances, there is however potential for different looking plot. 

 

 

 

 

 

 

 

 



 

49 

 

8 Conclusions and further work 

As a part of this thesis, a demonstrative system for analyzing customer suitability was developed. It 

had two different modes for operation. The first of them did not utilize any machine learning for 

providing estimates of suitability while the other one did. All the different modules of the system 

were introduced separately. The similarity measurer of the first mode was demonstrated separately 

from the other modules. The test results of the rest of the modules were analyzed in their own 

chapters. Data for those chapters was produced from a program execution where all the modules 

were integrated into a complete system. The aim in building the system was to test the ideas needed 

to build such a system rather than to build a ready to use implementation. If a company is willing to 

put such a system together, the ideas tested in this thesis could be used.  

This thesis had three research questions. First one asked, how can machine learning be used to 

provide suitability estimates for potential customers. The problem with using machine learning was 

the availability of data. Without data, providing estimates would not be possible with machine 

learning. Through research, an open dataset was found that listed sales processes and their 

outcomes. It was mentioned in Bohanec et al [3]. In that study, machine learning was used to 

forecast the outcomes of sales processes. This thesis however used the sales process data to measure 

the suitability of a potential customer. First as the user begins to use the system there potentially is 

no data gathered in the system for them. The found dataset was used to simulate the flow of new 

customers to the system. First with low number of instances, the suitability estimates were provided 

only with Jaccard similarity coefficient. Machine learning was only used to measure the size of the 

gathered dataset. As the size of the set grew big enough, the system changed modes and started to 

offer recommendations with machine learning. The gathered data was used as training data in mode 

two. Once a completely new instance was inserted to the system operating in that mode, instead of 

predicting its outcome, the probability estimates for both outcomes were calculated. The probability 

estimate for the “Won”-class was used as the suitability estimate for the new customer. 

The second research question asked how much can be automized from creation and use of the 

machine learning models in customer suitability estimation. In Bohanec et al [4] the machine 

learning model was used by an external consultant and the results of machine learning predictions 

were analyzed later in a meeting. For comparing different machine learning models and finding out 

their optimum parameters, code was developed for this thesis. Nested cross-validation was used for 

comparison, and the inner part of the validation was used for the optimum parameter search. So, if a 
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company wants to adopt this system into their processes, a selection of machine learning models 

could be compared with said methods to determine the best one.  

The question of how the use of machine learning models can be automatized is answered with the 

developed code of this thesis. For analyzing the size of gathered data in the mode one, machine 

learning was used. There, nested cross-validation with selected model was integrated in the system 

to see when to move onto next mode. The resulting AUC-values were gathered from the validations 

and a best fit curve was used to determine the transition point. In the second mode, model control 

module included machine learning. The used machine learning model was retrained each time a 

new instance was added to the system and then used to provide the suitability estimate.  

The final research question was answered by first researching concept drift and possible ways of 

detecting and dealing with it. In Costa et al [14] blind way of dealing with concept drift was 

mentioned. Essentially it means retraining the used machine learning model each time a new 

instance is added to the dataset. Since other methods seemed quite complex the blind way was 

implemented in the constructed system. The training occurring in model control of mode two, is 

exactly for dealing with the concept drift. 

The gained speed by using the developed modules of this thesis within a decision support system 

are speculations. Nevertheless, some of the possible benefits are as follows: instead of having to 

compare multiple different company customer candidates manually the system allows the user to 

define what he or she considers the best characteristics for their customers. Based on this the system 

does the comparison work for the user while saving time. There is however one time-consuming 

part still in the system, which is putting in the data of a new and potential customer. The data still 

needs to be inserted manually and searching for different parameters from different sources can take 

a lot of time. The system however could be extended so that all the required data is fetched from an 

external information provider via an API. Selecting the most suitable API is best left for each user’s 

own consideration. Using this kind of API would reduce the users work to just making the decision 

on which customer to accept as a new customer. The system is also capable of adapting to changing 

business environments. Although it was mentioned previously in this thesis that the system never 

automatically returns to the definition of optimum instance in mode one, it is not prevented. If the 

user notices that the optimum instance needs to be changed, it is possible. In mode two the used 

machine learning model is retrained each time a new instance is added to the dataset. This way, the 

concept drift possibly introduced by the new instance is dealt with and the model used provides 

accurate enough estimates.  
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Once the internal logic is implemented with such a way that is suitable for the user and their 

company, the presentation of customer candidates and their suitability percentage should be thought 

of. I suggest that it should not be too complex. When a user is inserting data, the suitability could be 

shown as soon as the user has filled in all the information of the new company. For inserting the 

data, a simple form could be implemented, and the suitability could be shown within the form as a 

percentage. The percentage could be situated near buttons that allow accepting or rejecting the 

customer candidate. This would be a possibility with a version of the system that does not have an 

external data-provider integrated.   

With the version, that has some sort of external data-provider integrated a module could be added 

that searches potential customers based on inserted search criteria. These customers could be then 

presented in a list. The item of this list does not have to have all the information visible from the 

company. The name along with the suitability could be enough. A nice visual addition would be for 

example a colored dot that can have a range of colors going from green via yellow to red. Green 

would obviously mean the most suitable and red the least suitable instances. By clicking such item, 

the company form with complete information could be opened.  

In conclusion, it can be stated that by careful planning it is possible to use machine learning to 

assess the suitability of a potential customer. The modules of this thesis integrated in a system 

suitable for a certain company will not offer absolute truths. However, they can be used as a 

decision support when analyzing which companies are the most beneficial to be taken as a 

customer. Although it still is recommended to analyze the gathered dataset while the system is in 

use the need for external participants as in Bohanec et al [3] is no more.  

This thesis considered aspects that would be relevant when developing a program for producing 

recommendations, rather than considering paradigms for using machine learning within a company 

as an internal process. Only in D’Haen and Van den Poel [7] of all the used sources of this thesis, a 

programmatical tool was developed for utilizing machine learning. It inspired the proposed two 

mode approach with dataset size monitoring and possibility to start with no gathered data. A way to 

move forward with the ideas of this thesis would be to start for example an open source project 

around them. With it, the project would be open to an abundance of ideas and a way towards a 

better customer suitability analysis tool would be possible.   
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