
Turku Centre for Computer Science

TUCS Dissertations
No 241, June 2019

Markus A. Whiteland

On the k-Abelian Equivalence
Relation of Finite Words

On the k-Abelian Equivalence Relation of
Finite Words

Äärellisten Sanojen k-Abelin Ekvivalenssirelaatiosta

Markus A. Whiteland

To be presented, with the permission of the Faculty of Science and Engineering of
the University of Turku, for public criticism in Agora XXI on June 28, 2019 at

12 noon.

University of Turku
Department of Mathematics and Statistics

FI-20014 Turku, Finland

2019

Supervisors

Juhani Karhumäki
Department of Mathematics and Statistics
University of Turku
FI-20014 Turku
Finland

Svetlana Puzynina
St. Petersburg State University Sobolev Institute of Mathematics
29B Line 14th (Vasilyevsky Island) Prospekt Akademika Koptyuga, 4
199178 Saint Petersburg 630090, Novosibirsk
Russia Russia

Reviewers

Robert Mercaş
Department of Computer Science
Loughborough University
Epinal Way
Loughborough LE11 3TU
United Kingdom

Michel Rigo
Department of Mathematics
University of Liège
Grande traverse 12 (B37)
B-4000 Liège
Belgium

Opponent

Dirk Nowotka
Department of Computer Science
Kiel University
24098 Kiel
Germany

The originality of this thesis has been checked in accordance with the University
of Turku quality assurance system using Turnitin OriginalityCheck service.

ISBN 978-952-12-3837-6
ISSN 1239-1883

Abstract

This thesis is devoted to the so-called k-abelian equivalence relation of sequences
of symbols, that is, words. This equivalence relation is a generalization of the
abelian equivalence of words. Two words are abelian equivalent if one is a per-
mutation of the other. For any positive integer k, two words are called k-abelian
equivalent if each word of length at most k occurs equally many times as a factor
in the two words. The k-abelian equivalence defines an equivalence relation, even
a congruence, of finite words. A hierarchy of equivalence classes in between the
equality relation and the abelian equivalence of words is thus obtained.

Most of the literature on the k-abelian equivalence deals with infinite words.
In this thesis we consider several aspects of the equivalence relations, the main
objective being to build a fairly comprehensive picture on the structure of the
k-abelian equivalence classes themselves. The main part of the thesis deals with
the structural aspects of k-abelian equivalence classes. We also consider aspects
of k-abelian equivalence in infinite words.

We survey known characterizations of the k-abelian equivalence of finite words
from the literature and also introduce novel characterizations. For the analysis of
structural properties of the equivalence relation, the main tool is the characteriza-
tion by the rewriting rule called the k-switching. Using this rule it is straightfor-
ward to show that the language comprised of the lexicographically least elements
of the k-abelian equivalence classes is regular. Further word-combinatorial ana-
lysis of the lexicographically least elements leads us to describe the deterministic
finite automata recognizing this language. Using tools from formal language the-
ory combined with our analysis, we give an optimal expression for the asymptotic
growth rate of the number of k-abelian equivalence classes of length n over an
m-letter alphabet. Explicit formulae are computed for small values of k and m,
and these sequences appear in Sloane’s Online Encyclopedia of Integer Sequences.

Due to the fact that the k-abelian equivalence relation is a congruence of the
free monoid, we study equations over the k-abelian equivalence classes. The main
result in this setting is that any system of equations of k-abelian equivalence
classes is equivalent to one of its finite subsystems, i.e., the monoid defined by the
k-abelian equivalence relation possesses the compactness property.

Concerning infinite words, we mainly consider the (k-)abelian complexity
function. We complete a classification of the asymptotic abelian complexities
of pure morphic binary words. In other words, given a morphism which has an
infinite binary fixed point, the limit superior asymptotic abelian complexity of the
fixed point can be computed (in principle). We also give a new proof of the fact
that the k-abelian complexity of a Sturmian word is n+ 1 for length n < 2k, and
2k for n > 2k. In fact, we consider several aspects of the k-abelian equivalence
relation in Sturmian words using a dynamical interpretation of these words. We
reprove the fact that any Sturmian word contains arbitrarily large k-abelian repe-
titions. The methods used allow to analyze the situation in more detail, and this
leads us to define the so-called k-abelian critical exponent which measures the ratio
of the exponent and the length of the root of a k-abelian repetition. This notion
is connected to a deep number theoretic object called the Lagrange spectrum.

i

Tiivistelmä

Väitöskirja käsittelee äärellisten symbolijonojen, eli sanojen, k-abelin ekvivalenssi-
relaatiota. Tämä käsite yleistää sanojen abelin ekvivalenssirelaation. Kaksi sanaa
ovat abelin ekvivalentit, jos toinen sanoista on toisen permutaatio. Kaksi sanaa
ovat k-abelin ekvivalentit, missä k on positiivinen kokonaisluku, jos jokainen kor-
keintaan pituutta k oleva sana esiintyy yhtä monta kertaa osasanana kummassakin
sanassa. Näin määritelty relaatio on ekvivalenssirelaatio ja jopa kongruenssi. Edel-
leen, näin saadaan määriteltyä ekviavalenssiluokkien hierarkia abelin ekvivalenssin
ja yhtäsuuruusekvivalenssin välillä.

Kirjallisuudessa k-abelin ekvivalenssia on tarkasteltu lähinnä äärettömien sano-
jen näkökulmasta. Tässä väitöskirjassa ekvivalenssirelaatiota tarkastellaan useista
eri näkökulmista, ja päätarkoituksena on ollut antaa melko kattava kuva k-abelin
ekvivalenssiluokkien rakenteesta. Niinpä suurin osa väitöskirjasta koskee k-abelin
ekvaivalenssiluokkien rakenteen analysointia. Tarkastelemme myös k-abelin ekvi-
valenssia äärettömien sanojen yhteydessä.

Käymme läpi k-abelin ekvivalenssirelaation tunnetut luonnehdinnat kirjalli-
suudesta, ja esittelemme myös uusia luonnehdintoja. Esitetyistä luonnehdinnoista
tärkein k-abelin ekvivalenssiluokkien rakenteen tarkastelemisen kannalta on uudel-
leenkirjoitussääntö k-switching. Tämän säännön avulla on suoraviivaista osoittaa,
että ekvivalenssiluokkien leksikografisesti pienimpien alkioiden muodostama kieli
on säännöllinen. Tarkastelemme syvällisemmin tämän edustajiston rakennetta
kielenä, ja tämän analyysin johdosta saadaan kuvailtua kielen hyväksyvien äärel-
listen determinististen automaattien rakennetta. Käyttämällä formaalisten kielten
teorian työkaluja, saadaan pituutta n olevien m-kirjaimisten k-abelin ekvivalenssi-
luokkien lukumäärälle asymptoottisesti tarkka lauseke. Esittelemme myös ekspli-
siittisiä lausekkeita kyseisten lukujen laskemiseksi pienillä lukujen k ja m arvoilla.
Nämä lukujonot esiintyvät nyt verkkosivustolla Sloane’s Online Encyclopedia of
Integer Sequences.

Yhtälöitä yli k-abelin ekvivalenssiluokkien on mahdollista tarkastella, sillä k-
abelin ekvivalenssi määrää kongruenssin. Väitöskirjassa osoitetaan, että jokainen
tällainen yhtälöryhmä on ekvivalentti jonkin äärellisen osayhtälöryhmänsä kanssa.
Toisin sanoen k-abelin ekvivalenssirelaation määräämällä monoidilla on kompak-
tisuusominaisuus.

Äärettömien sanojen yhteydessä tarkastelemme lähinnä (k-)abelin komplek-
sisuuksia. Täydennämme puhtaasti morfisten binääristen sanojen asymptoottis-
ten abelin kompleksisuuksien ylärajakasvun luokittelun. Toisin sanoen, annet-
tuna morfismi, joka määrää binäärisen kiintopisteen, kyseisen kiintopisteen abelin
kompleksisuuden ylärajakasvu voidaan laskea ainakin periaatteessa. Todistamme
uudelleen, että Sturmin sanan k-abelin kompleksisuus on n + 1, kun n < 2k ja
2k, kun n > 2k. Tarkastelemme myös muita k-abelin ekvivalenssiin liittyviä käsit-
teitä Sturmin sanoissa käyttäen Sturmin sanojen luonnehdintaa dynaamisena sys-
teeminä. Annamme vaihtoehtoisen todistuksen sille seikalle, että Sturmin sanoissa
esiintyy mielivaltaisen suuria k-abelin toistoja. Käyttämämme menetelmät salli-
vat aiempaa tarkemman analyysin tilanteesta, ja tämä seikka johdattelee määrit-
telemään kriittisen k-abelin eksponentin, joka vertaa sanassa esiintyvän k-abelin
toiston eksponenttia sen juuren pituuteen. Tämä taas johdattaa syvälliseen luku-
teoreettiseen rakenteeseen, niin kutsuttuun Lagrangen spektriin.

ii

Acknowledgments

Finally, the project is almost completed. I could never have done this on my own.
It has not been an easy project, and a lot of doubts arose during the work on
this project. For the support during these years, I am grateful for the people and
organizations who helped me achieve this feat.

I would like to express my deepest gratitude to my supervisors Professor Ju-
hani Karhumäki and Docent Svetlana Puzynina for their guidance and support
throughout this project. It has been an enlightening opportunity to work with
you and to explore our research field. I would also like to thank you for your
patience in me. It has been a long ride, but it is coming to an end. Thank you
Juhani, for the experiences in banding ravens. This was something I did not see
coming when I applied for doctoral studies in mathematics. Thank you also for the
course on combinatorics on words, which woke my interest into this topic. Thank
you Svetlana for your scientific advising. I have learned tons from you.

I am grateful for the financial support from the University of Turku Graduate
School and the Yrjö, Ville, Kalle Väisälä foundation of the Finnish Academy of
Science and Letters. I would also like to thank the doctoral program MATTI for
the financial support for traveling to conferences.

I am grateful to Doctor Robert Mercaş and Professor Michel Rigo for agreeing
to review this dissertation, and for their suggestions which greatly improved the re-
adability of the text. I am equally grateful to Professor Dirk Nowotka for agreeing
to act as the opponent.

I would like to thank Professor Jarkko Kari for acting as my research director.
Thank you for the many inspiring discussions on mathematics and the extremely
interesting courses in automata theory and cellular automata. They are among
the most interesting courses I have taken.

I would like to thank the director of the Department of Mathematics and
Statistics, Professor Iiro Honkala, for presenting several interesting teaching op-
portunities, as well as time for research and finalizing the thesis.

To Doctor Jarkko Peltomäki I express my deepest gratitude for the numerous
invigorating discussions on mathematics, life, and all kinds of other stuff, as well
as your friendship. It has been a real joy to collaborate with you. Thank you for
these years. I hope you feel good about yourself for pushing me over the edge into
the world of fountain pens.

I would also like to thank the members of the symbolic dynamics seminar group
for interesting and brilliant talks on the subject. Merci Beaucoup Doctor Thibault
Godin, Joonatan Jalonen, Johan Kopra, Etienne Moutot, and Doctor Ville Salo.
I would like to thank the several colleagues who have shared an office with me.
Thank you Doctor Mikhail Barash, Doctor Reino Niskanen, Tuomo Lehtilä, Juho
Salmensuu, Doctor Michal Szabados, Timo Vesalainen, and Doctor Jetro Vesti for
the time spent during these years, for the numerous lunch discussions, and for the
help in fighting occasional computer issues.

The atmosphere in the department was always warm and welcoming, and the
staff of the Department of Mathematics and Statistics is to be thanked. Thank
you Doctors Kaisa Joki, Ville Junnila, Eija Jurvanen, Jyrki Lahtonen, Tommi
Meskanen, and Eila Seppänen and Outi Montonen and Eila Seppänen for the
numerous interesting and fun discussions during coffee breaks. I’d especially like

iii

to thank Ville Junnila and Tommi Meskanen for their humour without which life
would be quite sunny. I would like to thank Doctor Petteri Harjulehto for several
discussions on the pedagogical aspects of teaching mathematics. Your views helped
me a lot in the teaching duties. Doctor Arto Lepistö, thank you for helping out
with the all things related to computers and thank you for sharing your stories
in programming. I would like to thank Sonja Vanto and Tuire Huuskonen for
help in bureaucratic matters during the beginning of my studies. Thank you to
Professor Marko Mäkelä and Doctors Petteri Harjulehto, Jyrki Lahtonen, Yuri
Nikulin, Reino Niskanen, Mikko Pelto, and Tuomas Nurmi for the tough but fair
games of floorball. Thank you Doctor Thibault Godin, Joonatan Jalonen, Ville
Laitinen, and Etienne Moutot for lots of enjoyable moments during bouldering
and climbing.

Lopuksi haluan kiittää ystäviäni ja läheisiäni. Haluan kiittää kaikkia hen-
kilöitä, jotka ovat elämääni kuuluneet. Olette opettaneet minulle elämästä pal-
jon. Haluan kiittää Henryä lukemattomista kokemuksista, jotka olen saanut jakaa
kanssasi. Kiitos siitä, että olen saanut kokea kanssasi aitoa iloa, kummastusta
ja ihmettelyä, naurua ja rehellisyyttä. Kiitos myös, että autoit ymmärtämään
kaiken edellä olleen tyhjyyden. Ystäväni, joiden kanssa olen kasvanut lapsesta
aikuiseksi, kiitos, että olette muistaneet minua, vaikka tiemme ovat välillä eriy-
tyneet pidemmäksikin aikaa. Erityisesti haluan kiittää Juri and Leena Viita-
niemiä lämmöstä ja ystävyydestä, sekä kaikesta avusta matkan varrella. Kiitos
myös Atelle, Juholle, Santerille, Konstalle ja kaikille Vanhoille Kamuille, että olette
olemassa. Haluan myös kiittää Samia ja Akua tuesta ja ystävyydestä elämän lähi-
taistelutilanteissa. Haluan kiittää myös isovanhempiani Leeviä, jonka rakkaalle
muistolle omistan tämän väitöskirjan, ja Terttua tuesta ja rakkaudesta. Kiitos
Heli kaikista keskusteluista elämän realiteeteista. Kiitän siskoani Annia mukavista
ja ei niin mukavista hetkistä lapsuudessamme ja nuoruudessamme. Kiitos myös
Eetille ja Fiiralle, joiden ansiosta voin kokea uutta ihmetystä maailmaa kohtaan.

I would like to thank my parents Alan and Tuula for their love and support.
Thank you for making this a possibility for me.

Turku, June 6, 2019 Markus A. Whiteland

iv

Contents

1 Introduction 1

1.1 Background . 1

1.2 Structure of the Thesis . 4

2 Preliminaries 7

2.1 Basic Notation and Terminology 7

2.2 Notions and Terminology of Combinatorics on Words 9

2.3 Notions and Terminology from Language Theory 16

3 Characterizations of k-abelian equivalence 19

3.1 Characterizations by Counting Occurrences of Factors 20

3.2 A Characterization by Rewriting 22

3.3 k-abelian Equivalence Classes as Eulerian Walks 25

3.4 Equivalence Classes as Matrices . 28

4 Representatives of Equivalence Classes 33

4.1 Lexicographically Least Elements 33

4.2 k-abelian Singletons . 39

4.3 Representatives of Classes of Fixed Size 43

5 Automata Theoretic Aspects of k-Abelian Equivalence 47

5.1 The Languages Lk,Σ,C and Lk,Σ,sing are Regular 47

5.2 The k-switching as a Language Operation 55

5.3 The Regularity of Classes of Constant Cardinality 58

5.4 Some Related (Non-)Closure Properties 60

6 Quantitative Aspects of k-Abelian Equivalence 63

6.1 Exact Numbers of Equivalence Classes and Singletons 63

6.2 On the Asymptotic Growth of Regular Languages 69

6.3 The Asymptotic Number of k-Abelian Equivalence Classes 77

6.4 On the Asymptotic Number of k-abelian Singletons 79

7 On k-Abelian and k-Binomial Equations 87

7.1 On Commutation in Σ∗/ ∼k and Σ∗/ ≡k 87

7.2 On Conjugacy in Σ∗/∼k and Σ∗/≡k 92

7.3 On Systems of Equations . 95

v

8 Asymptotic Abelian Complexities 101
8.1 Background . 102
8.2 Completing a Classification of Pure Morphic Binary Words 103
8.3 On Morphic Words with Common Abelian Complexities 109

9 On the k-Abelian Equivalence in Sturmian Words 115
9.1 k-Abelian Equivalence and Repetitions in Sturmian Words 117
9.2 Generalizations of the Lagrange Spectrum 125
9.3 Words with Rigid Structure on k-Abelian Equivalence 129

A Algorithms 133

B Sequences of Numbers of Equivalence Classes 135
B.1 Numbers of Equivalence Classes . 135
B.2 Numbers of Singletons . 136

C Transition Tables of Automata 139
C.1 Transition Tables of Minimal Representatives 139
C.2 Transition Tables for Singletons . 141

vi

List of Original Publications
and Manuscripts

[1] J. Cassaigne, J. Karhumäki, S. Puzynina, and M.A. Whiteland. “k-Abelian
Equivalence and Rationality”. Fundam. Inform. 154.1-4 (2017), pp. 65–94.
doi: 10.3233/FI-2017-1553.

[2] J. Karhumäki, S. Puzynina, M. Rao, and M.A. Whiteland. “On cardinalities
of k-abelian equivalence classes”. Theor. Comput. Sci. 658 (2017), pp. 190–
204. doi: 10.1016/j.tcs.2016.06.010.

[3] J. Karhumäki and M.A. Whiteland. “Regularity of k-Abelian Equivalence
Classes of Fixed Cardinality”. In: Adventures Between Lower Bounds and
Higher Altitudes - Essays Dedicated to Juraj Hromkovič on the Occasion of
His 60th Birthday. 2018, pp. 49–62. doi: 10.1007/978-3-319-98355-4_4.

[4] J. Peltomäki and M.A. Whiteland. On k-Abelian Equivalence and Genera-
lized Lagrange Spectra. (Submitted). 2018. url: https://arxiv.org/abs/
1809.09047v1.

[5] M.A. Whiteland. “Asymptotic Abelian Complexities of Certain Morphic
Binary Words”. Journal of Automata, Languages and Combinatorics 24.1
(2019), pp. 89–114. doi: 10.25596/jalc-2019-089.

[6] M.A. Whiteland. On Equations Over Monoids Defined by Generalizati-
ons of Abelian Equivalence. (in preparation). Parts presented at the Fifth
Russian-Finnish Symposium on Discrete Mathematics (RuFiDiM), Veliky
Novgorod, Russia, May 19–22. 2019.

The thesis is based on the publications and manuscripts listed above. The no-
tations and results of these works have have been modified and unified for the
presentation of this thesis.

vii

https://doi.org/10.3233/FI-2017-1553
https://doi.org/10.1016/j.tcs.2016.06.010
https://doi.org/10.1007/978-3-319-98355-4_4
https://arxiv.org/abs/1809.09047v1
https://arxiv.org/abs/1809.09047v1
https://doi.org/10.25596/jalc-2019-089

viii

1

Chapter 1

Introduction

1.1 Background

Sequences of symbols, i.e. words, appear all around in the research of mathema-
tics. Especially in number theory, modern algebra, and probability theory, the
combinatorial analysis of these kinds of sequences is of major significance. In
the area of theoretical computer science and formal language theory, the usage of
words is paramount, and is even a central notion of the research areas. Other areas
of science having particular use of word combinatorics are for example physics in
crystallography and biology in gene assembly. The increasing use of words and
related notions led to the birth of a research area of words called combinatorics on
words, a branch of combinatorics. The topic of this thesis falls well into the areas
of combinatorics on words and theoretical computer science.

The study of finite and infinite words as an object of independent interest can
be traced back to the work [103, 104] (for a modern interpretation of these results
see [9]) of A. Thue in the early 1900’s. In these papers, Thue exhibited the existence
of an infinite word over three letters which avoids squares, that is, two consecutive
identical contiguous subwords, or factors. No such infinite words over two letters
exists (each binary word of length four contains a square). On the other hand, he
constructed an infinite binary word avoiding cubes, that is, no three consecutive
identical factors occur. This infinite word constructed by Thue is now known as
the Prouhet–Thue–Morse word. The first implicit use of this word can be found in
the work of Prouhet [83] as early as 1851 [5], and was also used by M. Morse in [71].
The word has been rediscovered several times in the literature. Thue considered
this problem on infinite words of independent interest and without any particular
application in mind. See [5] for a comprehensive treatment of the history of this
word.

The first broad and unifying treatment of combinatorics on words was perfor-
med in the 1983 book [63] titled Combinatorics on Words by the pseudonym M.
Lothaire. At that point the topic had ripened to a level of having mature theory
and clearly articulated major topics of research. The research progressed quite
quickly, and the area attracted a lot of interest. The subsequent book [64] titled
Algebraic Combinatorics on Words (2002) deepened the theories presented in the
previous book as well as presented new topics that had not been ripe enough for

2 Introduction §1

the first exposition. Later on, in 2005, a third title [65] from the pseudonym was
published: Applied Combinatorics on Words. This book presents the wide use of
combinatorics on words in other areas such as “. . . core algorithms for text proces-
sing, natural language processing, speech processing, bioinformatics, and several
areas of applied mathematics such as combinatorial enumeration and fractal ana-
lysis” [65]. These three books on combinatorics on words testify the solidification
of this topic as a research area in its own right.

As an algebraic structure, the set of finite words is extremely rigid. Two finite
words are distinct if either they have different lengths, or there exists an index at
which the two words have distinct letters. When applying combinatorics on words
to problems arising in other areas of mathematics, it is natural to identify distinct
words by using equivalence relations. For example, one such equivalence relation
is the so-called abelian equivalence: two words are called abelian equivalent if each
symbol of the alphabet occurs equally many times in the two words. Thus two
words are abelian equivalent if we may permute either of the words to obtain the
other. The topic of this thesis concerns a generalization of the abelian equivalence,
the so-called k-abelian equivalence introduced by J. Karhumäki in [53]. In fact,
the notion of k-abelian equivalence contains a hierarchy of equivalence relations.
For each k > 1, two words are k-abelian equivalent if each word of length at
most k occurs equally many times in u and v. The 1-abelian equivalence and the
abelian equivalence coincide. For any k > 1, two words being k-abelian equivalent
implies that they are k′-abelian equivalent for each k′ < k, but not necessarily
conversely. Thus the k-abelian equivalence may be seen as a refinement of the
abelian equivalence as an equivalence relation on words. Now two words are equal
if and only if they are k-abelian equivalent for each k > 1. By interpreting the
equality relation as the ∞-abelian equivalence, we obtain an infinite hierarchy of
refinements between the abelian equivalence and the equality relation.

Several aspects of k-abelian equivalence in infinite words have been studied
in the recent literature. In [53] the notion was introduced as a generalization of
the so-called Parikh mapping and considered in decidability problems, such as the
equivalence of HD0L-systems (in a k-abelian sense) and problems related to Post
Correspondence Problem. It is not inaccurate to say that such considerations have
been inspired by the central questions of combinatorics on infinite words applied
in the k-abelian setting. The main aspects considered have been the avoidance
of k-abelian repetitions and the k-abelian complexity functions, though several
other notions are considered as well [17, 20, 50, 56, 57, 58, 86, 88]. Indeed, these
problems have been strongly motivated by the results concerning the central topics
of avoiding powers or abelian powers, and the notions of factor complexity and
abelian complexities, respectively. Especially interesting questions regarding the
k-abelian setting are when the corresponding behaviours of the equality relation
and abelian equivalence differ. For example, cubes (three consecutive identical
blocks) are avoidable in binary words, but abelian cubes are not. (Abelian cubes
are avoidable over ternary words [29] and so are thus k-abelian cubes for any
k > 1.) What about k-abelian cubes in binary words? Similarly, squares can be
avoided in ternary words, but not abelian squares (abelian squares are avoidable
with four letters [60]). What about k-abelian squares? Questions of these sorts
were among the first considered in the literature regarding k-abelian aspects in
infinite words. The search for the minimal k for which k-abelian cubes can be

§1.1 Background 3

avoided over the binary alphabet was initiated in [48], where it was shown that
k 6 8. The search of the optimal k was continued in [69] (showing k 6 5) and
[68] (showing k 6 3), and was finally settled to k = 2 in [86], by constructing
a binary word avoiding 2-abelian cubes. Similarly, in [49] it was shown that 2-
abelian squares over the ternary alphabet cannot be avoided,1 but, on the other
hand, in [46] it was shown that 64-abelian cubes can be avoided. In [86] a ternary
word avoiding 3-abelian squares was constructed, settling this question.

The study of somehow quantifying the complexity of an infinite word is a well-
motivated and actively studied research area. Especially fruitful is the notion of
relating the complexity of an infinite word to the complexity of the word’s finite
factors. The factor complexity function Cw : N→ N of an infinite word w counts,
for each n ∈ N, the number of distinct blocks of length n occurring in w. The
notion is a fundamental one in combinatorics of infinite words. Indeed, the theorem
of M. Morse and G.A. Hedlund [72], which characterizes ultimately periodic words
as exactly the words admitting C(n0) 6 n0 for some n0 ∈ N, already showcases the
usefulness of this notion. For surveys on factor complexity we refer the reader to
[21, 23]. Sturmian words comprise a large class of extensively studied words with
strong connections to number theory, particularly to continued fractions (see, e.g.,
[10], [64, Chapter 2], [84, Chapter 6] and references therein). An infinite word w
is Sturmian if and only if Cw(n) = n+ 1 for each n > 0. Sturmian words may be
characterized in several different ways (see [64, Chapter 2]).

The notion of factor complexity has prompted other quantifications of com-
plexity. One such is the abelian complexity of infinite words. For other related
complexity measures, see for instance [57, 79, 93] and the survey [92]. The abe-
lian complexity function Cab

w : N → N of an infinite word w counts, for each n,
the number of distinct abelian equivalence classes of length n occurring in the
word w. (The subscript is omitted when w is clear from context.) E.M. Coven
and G.A. Hedlund [24] characterize purely periodic words to be exactly the words
w for which Cab

w (n0) = 1 for some n0 > 1. This creates the starting point of the
study of the abelian complexity function. Even though the notion has been around
for some time, the study was formally initiated only recently by G. Richomme,
K. Saari, and L.Q. Zamboni in [91].

Again, natural questions arise for the k-abelian equivalence in relation to com-

plexity functions. For each k > 1, the k-abelian complexity function C(k)
w (n) : N→

N of the infinite word w is defined by setting C(k)
w (n) to equal the number of dis-

tinct k-abelian equivalence classes represented by factors of w of length n. This
notion was introduced in [57], where the usefulness of the notion was immediately

showcased: if, for some k > 1 and n0 > 1, the value C(k)
w (n) is too small (depending

on k), w is ultimately periodic (we discuss the precise result in the beginning of
Chapter 9). Ever since the introduction of this notion there has been quite a bit
of interest towards the k-abelian complexity function [20, 22, 78].

The critical exponent of an infinite word w is the supremum of exponents
of fractional powers occurring in w. The Prouhet–Thue–Morse word mentioned
above has critical exponent 2, as shown by Thue in 1906 [103]. In other words,
it does not avoid squares, but it avoids factors of the form axaxa, where a is a
letter and x is a word. Thus the notion of a critical exponent is a central one

1The longest ternary words avoiding 2-abelian squares have length 537 [47, 48].

4 Introduction §1

in combinatorics on words. The powers occurring in Sturmian words are well-
understood, and a formula for the critical exponent of a Sturmian word has been
determined by Damanik and Lenz [27], and Justin and Pirillo [52]. For example,
the critical exponent of the Fibonacci word, the fixed point of the morphism a 7→
ab, b 7→ a (see Subsection 2.2.3 for a definition), is (5 +

√
5)/2 [70]. The critical

exponent of the Fibonacci word is minimal among all Sturmian words. In the
recent years, there has been a substantial amount of research in generalizations of
the concept of a power. A popular generalization is that of an abelian power; other
generalizations are k-abelian powers (studied here) and those based on k-binomial
equivalence [93]. Also abelian repetitions in Sturmian words are well-investigated,
see, e.g. [36] and references therein.

As mentioned previously, most of the literature on k-abelian equivalence is
on aspects in infinite words. There are of course results on finite words and the
equivalence classes themselves. Several characterizations of k-abelian equivalence

are known (see Chapter 3 for a review). Also, for example, the number P(k)
m (n) of

k-abelian equivalence classes of words of length n over an m-letter alphabet was
considered in [57], and an asymptotic formula has been obtained (see Chapter 2
for notation of asymptotic analysis):

Theorem 1.1. Let k > 1,m > 1. We have P(k)
m (n) = Θ(nm

k−1(m−1)), where the
constants implied by Θ depend on k and m.

This theorem gives a polynomial order of growth for the number of k-abelian
equivalence classes of words of length n over an m-letter alphabet. We emphasize
this result since the question of sharpening this bound was the main motivation
behind the research on the structure of k-abelian equivalence classes.

Algorithmic aspects of the k-abelian equivalence relation have also been con-
sidered. A linear time algorithm for finding the largest k for which two given
words are k-abelian equivalent was obtained in [33], together with text processing
algorithms in the k-abelian sense.

In this thesis, we mainly take the viewpoint of studying the k-abelian equiva-
lence relation, the corresponding equivalence classes and the properties of repre-
sentatives of the classes. We elaborate on the topics covered in this thesis in the
following section.

1.2 Structure of the Thesis

We structure the thesis as follows. In Chapter 2 we recall basic notions and
terminology from the literature on combinatorics on words and related areas. We
also prove some basic results needed in the thesis. The rest of the thesis can be seen
to be comprised of two parts, one on aspects of the k-abelian equivalence on finite
words and the other one on infinite words. In Chapters 3–7 we consider different
aspects of the k-abelian equivalence in finite words: characterizations of k-abelian
equivalence, language theoretic aspects, numbers of k-abelian equivalence classes,
and k-abelian equations. Chapters 8 and 9 then focus on the k-abelian aspects of
infinite words. Let us briefly summarize the contents of each of these chapters.

In Chapter 3 we review several different equivalent characterizations of the
k-abelian equivalence relation from the literature. We also introduce novel charac-
terizations, a rewriting rule called the k-switching (introduced in [55]) and a matrix

§1.2 Structure of the Thesis 5

representation ([110]) (see Sections 3.2 and 3.4, respectively). These characteri-
zations open up different aspects of the k-abelian equivalence relation. When
considering structural properties of the k-abelian equivalence classes, we employ
two of these characterizations. One of them involves the so-called de Bruijn graphs
and the other is the k-switching. The matrix representation of the k-abelian equi-
valence is relevant when studying algebraic properties of the k-abelian equivalence
classes.

In Chapter 4 we focus on certain representatives of the k-abelian equivalence
classes, namely, the lexicographically least elements of each class. We see how
these lexicographically least representatives may be seen in a couple of different
viewpoints, which we then exploit in consequent chapters. The structure of these
representatives as words are studied in a word combinatorial sense together with
an interpretation of them in certain graphs. We also consider the structure of the
so-called k-abelian singletons, that is, words who are k-abelian equivalent to only
themselves. This chapter lays down the basic notions which we use in the rest of
the thesis. Most of this chapter is based on parts of the article [19].

In Chapter 5 we turn to automata theoretic aspects of the k-abelian equivalence
classes. We first give two proofs of the regularity of the language of lexicographi-
cally least representatives. Similar arguments show that the language of k-abelian
singletons is also regular. Both the proofs are constructive, but have different
consequences. We construct automata for these languages for some small values
of k and of the cardinality of the alphabet. We also show that the language of
all words representing classes of a fixed cardinality is regular, as well as other lan-
guage theoretic aspects related to the k-abelian equivalence classes. This chapter
is based on the works [19] and [59].

In Chapter 6 we turn to quantitative aspects of the k-abelian equivalence clas-
ses. The main result is the sharp asymptotic expression for the growth of the
number of k-abelian equivalence classes of length n; We show that the limit

lim
n→∞

P(k)
m (n)

nmk−1(m−1)

exists and equals to a rational number. This can be considered as a sharpening
of Theorem 1.1. We also give an upper bound on the asymptotic growth of the

number S(k)
m (n) of k-abelian singletons of length n over an m-letter alphabet:

S(k)
m (n) = O(nNm(k−1)−1),

where

Nm(`) = 1
`

∑
d|`

ϕ(d)m`/d

is the number of conjugacy classes (or necklaces) of words of length ` over an m-
letter alphabet (see Chapter 2 for definitions). The main tool used for these results
is the general treatment of the asymptotic complexities of regular languages having
polynomial growth. More precisely, we give a sufficient condition for a regular
language having polynomial growth to have growth asymptotic to a polynomial.
Explicit formulae for computing the number of k-abelian equivalence classes and
k-abelian singletons of length n over an m letter alphabet for small values of k and

6 Introduction §1

m are also given. Finally, we discuss the relation of the problem of lower bounding
the asymptotic growth of k-abelian singletons to other problems in the literature.
This chapter is based on the articles [19, 55].

In Chapter 7 we turn to equations in the k-abelian setting as well as equations
in terms of a related equivalence relation called the k-binomial equivalence. This
related equivalence relation has been of interest in the recent literature, and we
consider the k-binomial setting here, since it is quite interesting to see how these
two equivalence relations differ. We consider two concrete examples of equations,
namely commutation and conjugacy. We also consider the general properties of
systems of equations. As the main result we show that any system of equations
in the k-abelian setting has an equivalent finite subsystem. The same property is
shown to hold in the k-binomial setting. We conclude the chapter by considering
the number of equations in the so-called independent systems of equations: We
give a uniform upper bound on the number of equations in such a system (in
both the k-abelian and the k-binomial settings). This chapter is based on the
unpublished manuscript [110].

All the previous chapters consider properties of the k-abelian equivalence clas-
ses. The last two chapters of the thesis concern k-abelian aspects in infinite words.
In Chapter 8 we consider abelian complexities of morphic binary words (for de-
finitions see Subsection 2.2.3). When considering the existence of infinite words
having certain properties, the question is quite often answered, when positive,
by constructing such a morphic word. One example is the Prouhet–Thue–Morse
word introduced previously; it answers positively the question whether there exist
infinite binary words avoiding cubes. The morphic words are thus an interesting
class of words by themselves. The celebrated theorem of Pansiot [76] classifies
the factor complexities of pure morphic words; the factor complexity is asympto-
tically one of five possibilities: Θ(1), Θ(n), Θ(n log log n), Θ(n log n), or Θ(n2).
The study of abelian complexities of pure morphic words is inspired by this re-
sult. The research on abelian complexities was initiated in [12]. We study certain
pure morphic binary words and give limit superior and inferior asymptotics for
the abelian complexity. The words studied here are the only binary pure morphic
words whose abelian complexities had not yet been considered. Thus we complete
the classification of the asymptotic limit superior abelian complexities of pure
morphic binary words. We then consider morphic binary words, and give several
such words having asymptotically the same abelian complexity, but having distinct
factor complexities. The considerations in this chapter appear in the article [109].

In Chapter 9 we consider several aspects of the k-abelian equivalence in the
Sturmian words. We give new proofs of the k-abelian complexity (see Chapter 9) of
Sturmian words and the fact that there are arbitrarily large k-abelian repetitions
in Sturmian words—results already proved in [57]. We thus give alternative proofs
through our starting point of Sturmian words as encodings of irrational rotations.
This viewpoint gives us tools to analyze the situation more precisely, and this can
be seen in the statements of our results. Indeed, we sharpen some of the results
of [57]. We also consider other notions from the literature related to Sturmian
words concerning abelian equivalence, and generalize such notions to k-abelian
equivalence. This chapter is based on the manuscript [81].

7

Chapter 2

Preliminaries

2.1 Basic Notation and Terminology

The symbols N, Z, Q, R, C denote the set of natural numbers (including zero),
the integers, the rational numbers, the real numbers, and the complex numbers
respectively. The cardinality of a set S is denoted by #S and sometimes by |S|.
We only consider cardinalities of finite sets in this thesis.

We recall the Bachmann–Landau notation for asymptotic comparison of functi-
ons. Let f and g be functions N → R, with f having non-negative values and g
having positive values. We write

• f(n) = O(g(n)) if there exist n0 ∈ N and C > 0 such that f(n) 6 Cg(n) for
all n > n0;

• f(n) = Ω(g(n)) if there exist n0 ∈ N and C > 0 such that f(n) > Cg(n) for
all n > n0;

• f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n));

• f(n) = o(g(n)) if limn→∞
f(n)
g(n) = 0;

• f(n) ∼ g(n) if limn→∞
f(n)
g(n) = 1.

We make use of linear algebraic notation in several occasions. When explicitly
stated, a vector ~u is a finite ordered tuple of elements from a ring R, and the
components are indexed with natural numbers starting from 1. The ith element of
the vector ~x = (a1, a2, . . . , an) ∈ Rn is expressed as ~x[i]. The dot product (~x, ~y),
or ~x · ~y, of vectors ~x, ~y ∈ Rn, is thus the element

∑n
i=1 ~x[i] · ~y[i] of R. We often

do not require an explicit expression of the indexing, in which cases we express
the elements of a vector in some other way. For example, let A be a finite set
and let R be a ring. Let RA denote the set of functions from A to R. Then RA

is seen as a finitely generated left module by identifying the elements of RA with
vectors of dimension #A over the ring R. We may index the elements of such a
vector ~x by elements of A, whence the notation ~x[a] is understood as the element
at “position” a, i.e., the element at the position corresponding to the element a.

8 Preliminaries §2

Here some ordering of the coordinates is implicitly assumed. Thus, for ~x, ~y ∈ RA,
where A is a finite set and R is a ring, we may compute the dot product as

~x · ~y =
∑
a∈A

~x[a] · ~y[a].

Note that this dot product does not depend on the order of which the components
are defined, since the sum operation is commutative (in R). Thus no explicit
ordering is required for such an operation.

For a matrix M defining a linear mapping RA → RB , where A and B are
finite non-empty sets, we index the rows of M by the elements of B and the
columns of M by the elements of A. Thus, for a ∈ A and b ∈ B, the element
M [b, a] means the “ath” element of the “bth” row of M . For ~x ∈ RA we thus have
(M~x)[b] =

∑
a∈AM [b, a] · ~x[a] for each b ∈ B.

Next we set some terminology on graphs. Throughout this thesis, when talking
about graphs, we usually mean directed multigraphs with loops allowed. Someti-
mes we consider labeled multigraphs, so that each edge is distinguishable, and at
other times it is not important. If the choice of interpretation is not clear from
context, we shall explicitly mention if the edges need to be distinguishable. For a
graph G = (V,E), where V is some set and E consists of edges (labeled or not)
between elements of V , we let V (G) denote the set V of vertices and E(G) the set
E of edges. For an edge e ∈ E(G) from vertex x to vertex y, we call the vertex
x the tail of e, denoted by tail(e), and y the head of e, denoted by head(e). We
denote by d+

G(u) (resp., d−G(u)) the number of outgoing (resp., incoming) edges of
u. For u, v ∈ V , the number of edges from u to v in G is denoted by mG(u, v).
In all of these notations we omit the subscript G when the graph is clear from
context.

A sequence W = (ei)
t
i=1 of edges satisfying head(ei) = tail(ei+1) for each

i ∈ [1, t − 1], is called a walk (in G). We set tail(W) = tail(e1) and head(W) =
head(et). Further, we let |W | denote the length t of W . For a given walk W =
(ei)

t
i=1 we let V (W) denote the set

{tail(ei),head(ei) : i ∈ [1, t]}

of vertices and E(W) the set

{ei : i ∈ [1, t]}

of edges along W . We call W a path if tail(ei) 6= tail(ej) when i 6= j, and
head(et) 6= tail(ei) for all i ∈ [1, t]. In other words, a path P does not visit any
vertex twice. If the walk (ei)

t−1
i=1 is a path and e0 is an edge such that tail(e0) =

head(et−1) and head(e0) = tail(e1), then we call the walk (ei)
t−1
i=0 a cycle. (We

index the edges of a cycle starting from 0 for notational reasons.) In the literature,
our notion of a cycle is often called a simple cycle, while a cycle is defined as a
walk W for which tail(W) = head(W). A graph G is called Eulerian if there exists
an Eulerian cycle, that is, a walk W in G which contains each edge exactly once,
and tail(W) = head(W).

Let W = (ei)
s
i=1 and W ′ = (e′i)

t
i=1 be non-empty walks such that tail(W ′) =

head(W). We define the concatenation of W and W ′, denoted by W ·W ′, as the
walk (di)

s+t
i=1, where di = ei if i 6 s, and di = e′i−s if i > s. For an empty walk W ,

§2.2 Notions and Terminology of Combinatorics on Words 9

we define W ·W ′ = W ′ ·W = W ′. Note here that a cycle C can be concatenated
with itself arbitrarily many times. We say that a walk W is a repetition of a cycle
if we may write W = Cr for some r > 1. A vertex x is said to be an internal vertex
of a walk W , if we may write W = W1W2 for some non-empty walks W1, W2 with
head(W1) = x. A vertex x is an extremal vertex of W if tail(W) or head(W) = x.

We say that a cycle C = (dj)
s−1
j=0 occurs along the walk W if we may write

W = W1 · (dr+j mod s)
s−1
j=0 ·W2

for some 0 6 r < s and some (possibly empty) walks W1, W2. We say that W
enters C via the vertex tail(dr) if W1 is either empty or dr−1 mod s is not the last
edge of W1. In this case we say that W enters C at position |W1|+ 1. We say that
W leaves C via the vertex head(dr+s−1 mod s) if W2 is empty or dr is not the first
edge of W2. In this case we say that W leaves C at position |W1|+ s.

Let G be a graph and let the set V (G) of vertices be ordered as V (G) =
{v1, . . . , v#V }. The adjacency matrix of G is the matrix (m(vi, vj))i,j .

2.2 Notions and Terminology of Combinatorics
on Words

We recall some basic notions of combinatorics of words used in this thesis. We
also mention some basic but relevant results used along this thesis.

2.2.1 Finite Words

An alphabet Σ is a non-empty set of symbols which are called letters. All alphabets
in this thesis should be considered finite unless explicitly otherwise stated. A finite
or infinite sequence of letters over the alphabet Σ is called a word. The empty word
is denoted by ε. The set of finite words over Σ is denoted by Σ∗, the set of non-
empty finite words by Σ+, and the set of infinite words by ΣN. For a word u ∈ Σ∗

and a natural number n > 0, we let un denote the concatenation of n copies of
u; un = uu · · ·u (n times). A word u is called primitive, if u = vn for some
word v implies that n = 1. A set L ⊆ Σ∗ of words is called a language. For a
(usually finite) language S ⊆ Σ∗, S∗ denotes the language of finite concatenations
of elements of S interpreted as words over Σ. One should always see such languages
as languages over the alphabet Σ, and not interpret S as an alphabet. The sets
S+ and SN are defined analogously. For u ∈ Σ+ we let u∗ and u+ denote the sets
{u}∗ and {u}+, respectively. The infinite word uω denotes the singleton element
of {u}N. When talking about the binary alphabet, we mean the alphabet {a, b}.
Throughout the thesis we let B denote the binary alphabet. For a finite word
w ∈ Σ∗, the length |w| of w is the number of letters occurring in w. The set of
words of length n over Σ is denoted by Σn. For a language L ⊆ Σ∗, we define the
mapping CL : N → N, called the complexity or the growth function of L, defined
by CL(n) = #(L ∩ Σn) for each n > 0.

A word u ∈ Σ∗ is a factor of w ∈ Σ∗ if there exist p, q ∈ Σ∗ such that w = puq.
For a non-empty word u we let |w|u denote the number of occurrences of u in w as
a factor. The set of factors of w is denoted by F (w). We let Fn(w) denote the set
F (w) ∩Σn. For w as above, if p = ε (resp., q = ε) then u is called a prefix (resp.,

10 Preliminaries §2

suffix) of w. Further, if q 6= ε (resp., p 6= ε) then u is called a proper prefix (resp.,
proper suffix). For w = pq we define p−1w = q. Similarly we define wq−1 = p.
The set of prefixes (resp., suffixes) of w is denoted by pref(w) (resp., suff(w)) and
the length k prefix (resp., suffix) of w, with k 6 |w|, is denoted by prefk(w) (resp.,
suffk(w)). For a word w = a0a1 · · · an−1 ∈ Σ∗ and indices 0 6 i 6 j < n, the
factor ai · · · aj , is denoted by w[i, j]. For i > j we set w[i, j] = ε. Similarly, for
i < j we set w[i, j) = w[i, j − 1] and we set w[i, j) = ε when i > j. For a finite
word w ∈ Σ∗, we let w[i..] (resp., w[..i]) denote the suffix w[i, |w|) (resp., the prefix
w[0, i]) for brevity. We say that a word x ∈ Σ∗ has position i in w if the word
w[i..] has x as a prefix.

Let w = a0a1 · · · an−1 ∈ Σ∗. A word u ∈ Σ+ is called a subword (also known
as a scattered subword or scattered factor in the literature) of w if there exist
an increasing sequence of indices 0 6 i1 < i2 < . . . < im < n such that u =
ai1ai2 · · · aim . For u ∈ Σ+ we let

(
w
u

)
denote the number of occurrences of u in

w as a subword, that is, the number of distinct increasing sequences of indices
(ij)j=1,...,m such that ai1ai2 · · · aim = u. We stress the distinction between factors
and subwords.

For words x, y ∈ Σ∗ we say that x is conjugate to y if there exists z ∈ Σ∗ such
that xz = zy. This is equivalent to the existence of p, q ∈ Σ∗ such that x = pq
and y = qp. Note that conjugacy is an equivalence relation on Σ∗. We call a
conjugacy class a necklace. In our future considerations we recall the number of
necklaces of a certain length. Let Nm(`) be the number of necklaces of length `
over an m-letter alphabet. We have

Nm(`) =
1

`

∑
d|`

ϕ(d)m`/d, (2.1)

where ϕ is Euler’s totient function, that is, ϕ(n) counts the number of natural
numbers less than n which are coprime with n (see, e.g., [95]). The sequence
(N2(`))∞`=0 is sequence A000031 in N. Sloane’s On-line Encyclopedia of Integer
Sequences (http:/oeis.org). The first few values of the sequence are

1, 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352, 632, 1182, 2192, 4116, 7712, . . .

See also the sequences A001867–A001869.
We now turn to some more recent notions in the literature of combinatorics of

words used in this thesis.
Let us first of all articulate the k-abelian equivalence in the form of a definition.

Definition 2.1. Let k > 1 and let u, v ∈ Σ∗. Then u and v are called k-abelian
equivalent if, for each x ∈ Σ∗ of length at most k, we have |u|x = |v|x.

Example 2.2. Let u = aaba and v = abaa. One sees that |u|a = |v|a = 3,
|u|b = |v|b = 1, and |u|aa = |u|ab = |u|ba = |v|aa = |v|ab = |v|ba = 1. Consequently
u ∼2 v. The fact that |u|aab = 1 6= 0 = |v|aab implies u 6∼3 v.

Let x = aaba and y = baab. Even though |x|t = |y|t for each t ∈ Σ2, we have
|x|a 6= |y|a which implies x 6∼2 y.

Since the number of occurrences of letters in a word u ∈ Σ∗ sum up to the length
of u, we immediately have that u ∼k v, for k > 1, implies that |u| = |v|. Further,

http:/oeis.org/A000031
http:/oeis.org
http:/oeis.org/A001867
http:/oeis.org/A001869

§2.2 Notions and Terminology of Combinatorics on Words 11

if u ∼k v, then u ∼t v for all t 6 k. The relation ∼k is clearly an equivalence
relation. We let [u]k denote the k-abelian equivalence class defined by u. We may
consider also the equivalence relation with k = ∞, which we understand as the
equality relation. We obtain a hierarchy of equivalence relations:

u ∼1 v ⇐ u ∼2 v ⇐ · · ·u ∼k v ⇐ u ∼k+1 v ⇐ · · · ⇐ u = v.

For each k > 1 and u ∈ Σ∗ we define its generalized Parikh vector Ψk(u) of
order k as Ψk(u) = (|u|x)x∈Σk . The vector Ψ1(u) = (|u|a)a∈Σ is known in the
literature as the Parikh vector. Thus two words u, v ∈ Σ∗ are k-abelian equivalent
if and only if Ψ`(u) = Ψ`(v) for each ` = 1, . . . , k.

We shall briefly consider also another equivalence relation on words recently
introduced by M. Rigo and P. Salimov in [93].

Definition 2.3. Two words u, v ∈ Σ∗ are k-binomial equivalent, u ≡k v in sym-
bols, if

(
u
e

)
=
(
v
e

)
for all words e of length at most k.

Observe also that the k-abelian equivalence and the k-binomial equivalence are
incomparable as equivalence relations. Indeed, there exist k-abelian equivalent
words that are not k-binomial equivalent and vice versa [93]. The notion has also
gathered quite a bit of interest in recent years [39, 62, 87]

Basic properties of binomial coefficients
(
u
v

)
are presented in [63, Chapter 6].

We repeat the main properties here. We define, for a, b ∈ Σ, δa,b = 1 if a = b,
otherwise δa,b = 0. For all p, q ∈ N, u, v ∈ Σ∗, and a, b ∈ Σ we have(

ap

aq

)
=
(
p
q

)
;
(
u
ε

)
= 1; |u| < |v| implies

(
u
v

)
= 0;

(
ua
vb

)
=
(
u
vb

)
+ δa,b

(
u
v

)
.

The last three relations completely determine the binomial coefficient
(
u
v

)
for all

u, v ∈ Σ∗. We repeat a couple of basic results of k-binomial equivalence from [93].

Proposition 2.4. Let u, v, e ∈ Σ∗ and a ∈ Σ.

• We have
(
uv
e

)
=
∑
e1e2=e

(
u
e1

)(
v
e2

)
.

• Let ` > 0. We have
(
u
a`

)
=
(|u|a
`

)
and

∑
|v|=`

(
u
v

)
=
(|u|
`

)
.

We refine the second point of the above proposition:

Lemma 2.5. Let u, v ∈ Σ∗. Then
∑
v′≡1v

(
u
v′

)
=
∏
a∈Σ

(|u|a
|v|a

)
.

Proof. We count the number of choices of subwords v′ of u having |v′|a = |v|a
for each a ∈ Σ. For each a ∈ Σ, we may choose the occurrences of a in

(|u|a
|v|a

)
ways. Since the choices of distinct letters are independent, the total number of
choices equals

∏
a∈Σ

(|u|a
|v|a

)
. Each of these choices corresponds to an occurrence of

a subword v′ ≡1 v of u.

Example 2.6. Given two words x, y ∈ Σ∗, we have that x ≡2 y if and only if
x ≡1 y and

(
x
ab

)
=
(
y
ab

)
for all pairs of letters a, b ∈ Σ with a C b. Indeed, x ≡1 y

implies that
(
x
aa

)
=
(|x|a

2

)
=
(|y|a

2

)
=
(
y
aa

)
, and Lemma 2.5 implies that, for aC b,(

x
ba

)
= |x|a|x|b −

(
x
ab

)
= |y|a|y|b −

(
y
ab

)
=
(
y
ba

)
.

12 Preliminaries §2

2.2.2 Infinite Words

For an infinite word x ∈ ΣN, we define factors, prefixes, and left quotients analo-
gously and we use the same notation as for finite words. To distinguish infinite
words from finite words, we write infinite words in boldface. An infinite word
y ∈ ΣN such that x = uy for some u ∈ Σ∗, is called a tail of x. We call x ulti-
mately periodic if there exist u ∈ Σ∗, v ∈ Σ+ such that x = uvω. If, in the above,
u = ε, then x is called purely periodic. If no such u and v exist, then x is called
aperiodic.

An infinite word x is called recurrent if every non-empty factor u ∈ F (x) occurs
infinitely many times in x. Moreover, x is called uniformly recurrent if, for each
factor u ∈ F (x), there exists an N ∈ N depending on u such that u occurs in each
factor of x of length N . Further, x is called linearly recurrent if, for each u ∈ F (x),
there exists K ∈ N such that u occurs in each factor of x of length K|u|.

Let x ∈ ΣN and let u be a non-empty factor of x. The set of complete first
returns to u in x, denoted by <x(u), is defined as

<x(u) = {v ∈ F (x) : u ∈ pref(v), u ∈ suff(v), and |v|u = 2}.

An element of <x(u)u−1 is called a return to u in x. We recall a result from [31].

Proposition 2.7 ([31, part of Proposition 2.6.]). Let p1, . . . , pn ∈ <x(u)u−1.
Then |p1 · · · pnu|u = n+ 1 and u ∈ pref(pi · · · pnu) for all i = 1, . . . , n.

The following result is used implicitly in [31]. We give a proof for the sake of
completeness.

Corollary 2.8. The set <x(u)u−1 is an ω-code, and thus a code. That is, if
p1p2 · · · = q1q2 · · · for some pi, qi ∈ <x(u)u−1, i = 1, . . . ,∞, then pi = qi for all
i = 1, . . . ,∞.

Proof. Assume that y = p1p2 · · · = q1q2 · · · for some pi, qi ∈ <x(u)u−1. Now, for
all n > 1, we have |p1p2 · · · pnu|u = n+1. Let n > |u|+1. It follows that p2 · · · pnu
begins with u, and thus p2 · · · pn begins with u, since p2 · · · pn has length at least
|u|. By repeating the above to q1q2 · · · qnu for n large enough, we see that q2 · · · qn
begins with u. Now y begins with both p1u and q1u. Since q1u and p1u are
complete first returns to u in x, it follows that q1 = p1. We may argue inductively,
using similar arguments, to show that pi = qi for each i = 1, . . . ,∞. The claim
follows.

We define complete first returns in finite words as well. We shall not make any
distinction between these notions. We refer the reader to [31, 106] for more on the
notion of first return words.

Definition 2.9. Let x be a finite or infinite word. The complexity function Cx(n) :
N→ N of x is defined as Cx(n) = #Fn(x).

As was remarked in the introduction, the notion of factor complexity turns out
to be very fruitful: If Cx(n) 6 n for some n > 1, then x is ultimately periodic. A
family of words has been very tightly related to this notion, namely, the so-called
Sturmian words.

§2.2 Notions and Terminology of Combinatorics on Words 13

Definition 2.10. An infinite word s is called Sturmian, if Cs(n) = n+ 1 for each
n > 0.

In particular, Sturmian words are binary words. An example of a Sturmian
word is the famous Fibonacci word, which may be defined as the fixed point of
the morphism ϕ : B→ B, a 7→ ab, b 7→ a.

The idea of identifying the complexity of an infinite word with the complexity of
its finite factors may be extended to abelian equivalence and k-abelian equivalence.

Definition 2.11. Let x ∈ Σ∗. For k > 1, we define the k-abelian complexity

C(k)
x (n) of x is defined by C(k)

x (n) = Fn(x)/∼k, that is, C(k)
x (n) counts the number

of distinct k-abelian equivalence classes among words of length n represented by
factors of x.

In the special case of k = 1, we use the notation Cab
x (n) = C(1)

x (n).

In general, the abelian complexity function Cab can be strongly fluctuating
(see, e.g., [66, 58]), so, in a general setting, it is more meaningful to study the
asymptotic behavior of the abelian complexity function. To this end, we define
the upper (resp., lower) abelian complexity functions, Uab

x (resp., Lab
x), of a word

x ∈ ΣN as

Uab
x (n) = max{Cab

x (m) : 0 6 m 6 n} (resp., Lab
x (n) = min{Cab

x (m) : m > n}.)

The asymptotic growth rates of these functions indicate how large the fluctuation
of the abelian complexity of x can be.

2.2.3 Other Basic Notions

A mapping ϕ : ∆∗ → Σ∗ from the language ∆∗ to the language Σ∗ is called
a morphism if ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ ∆∗. The notion of a morphism
extends naturally to infinite words, and we will not make a distinction between
the two. We say that ϕ is uniform if the lengths of the images of letters are all
equal. Throughout the text, when speaking of binary morphisms, we specifically
mean morphisms B∗ → B∗.

For an ordering of Σ = {a1, a2, . . . , a|Σ|} and a morphism ϕ : Σ∗ → Σ∗, the
incidence matrix Aϕ of ϕ is defined as Aϕ[i, j] = |ϕ(aj)|ai . In other words, the
jth entry of the ith row equals the number of occurrences of ai in ϕ(aj). It is
straightforward to conclude that when ϕ : Σ∗ → Σ∗, we have Aϕn = Anϕ for all
n ∈ N. The morphism ϕ is called primitive if there exists n0 ∈ N such that An0

ϕ

contains only positive entries. In the case of the binary alphabet B, we fix a1 = a,
a2 = b so that, given a binary morphism ϕ, Aϕ is of the form

Aϕ =

(
|ϕ(a)|a |ϕ(b)|a
|ϕ(a)|b |ϕ(b)|b

)
.

Let ϕ : Σ∗ → Σ∗ be a morphism satisfying ϕ(a) = ah for some a ∈ Σ and a word
h ∈ Σ+ such that limn→∞ |ϕn(h)| = ∞. Then the word ϕω(a) = limn→∞ ϕn(a)
exists and is a fixed point of ϕ. A word x ∈ ΣN is called pure morphic if there
exist a letter a ∈ Σ and a morphism ϕ such that x = ϕω(a). Further, x is called
primitive pure morphic, if such a primitive morphism ϕ exists. A word is said

14 Preliminaries §2

to be morphic if it is a morphic image of a pure morphic word. In other words,
y ∈ ΣN is morphic if there exist a pure morphic word x ∈ ∆N and a morphism
γ : ∆→ Σ∗ such that y = γ(x).

We make extensive use of the so-called de Bruijn graphs. For any k > 1 and
alphabet Σ, the de Bruijn graph dBΣ(k) of order k over Σ is defined as a directed
graph for which V (dBΣ(k)) = Σk. There is an edge (x, y) ∈ E(dBΣ(k)) if there
exists a letter a ∈ Σ such that the word xa ∈ Σk+1 ends with y. In this case (x, y)
is denoted by (x, a) (since y is uniquely defined by the word xa). We shall often
omit Σ from the subscript, as this is usually clear from context.

We note that any word u = a0 · · · an, where n > k − 1 and ai ∈ Σ for each
i = 0, . . . , n, defines a walk Wu = (ei)

n−k−1
i=0 in dB(k). Here ei = (u[i, i+ k), ai+k)

for each i = 0, . . . , n − k − 1. Conversely, any walk W = ((xi, ai))
t
i=1 in dB(k)

defines the word x1 · a1 · · · at ∈ Σk+t of length k + t. Thus a (long enough) word
u ∈ Σ∗ is often identified as a walk in dB(k) and vice versa. Now each edge in
the de Bruijn graph dB(k) is uniquely defined by the initial vertex and its label.
Thus, any walk W = ((xi, ai))

t
i=1 is uniquely defined by the initial vertex x1 ∈ Σk

and the labels of the edges; we may write W = (x1, a1 · · · at).
We observe that, for example, for a primitive word x of length k, the walk x2

defines the cycle (x, x) in the de Bruijn graph dB(k). The vertices of this cycle
equals the necklace defined by x. For the history of de Bruijn graphs, see, e.g.,
[15] and the references therein.

We refer the reader to [23, 63, 64] for more on basic notions in combinatorics
on words.

2.2.4 Semigroups and Equations

A semigroup is a set S equipped with an associative binary operation ·. A semi-
group is called a monoid if S contains an identity element e, that is, an element e
satisfying e · x = x = x · e for each x ∈ S. The set of finite, non-empty words Σ+

equipped with the operation of concatenation forms a semigroup called the free
semigroup on Σ. Thus the set of finite words Σ∗ forms a monoid, when equipped
with the concatenation operation. An equivalence relation ∼ is called a refinement
of another equivalence relation ≡, if x ∼ y implies x ≡ y.

Definition 2.12. An equivalence relation R on a semigroup S is called a congru-
ence, if for all x, y, z ∈ S it holds that xRy implies zxRzy and xzRyz.

It is straightforward to see that an equivalence relation R on a semigroup S
is a congruence if and only if x1Ry1 and x2Ry2 implies that x1x2Ry1y2. Let xR
denote the equivalence class represented by x. Then, for a congruence R, the
quotient S/R = {xR : x ∈ S} is a semigroup when equipped with the operation
xR· yR = (xy)R. In this thesis we only consider congruences on the free monoids
Σ∗ for a finite alphabet Σ. In fact we only consider two congruences in depth:

Proposition 2.13. For any k > 1, the k-abelian and the k-binomial equivalence
relations are congruences.

Proof. The k-abelian equivalence being a congruence is a straightforward corollary
of Lemma 3.3. The k-binomial equivalence is shown to be a congruence in [93].

§2.3 Notions and Terminology of Combinatorics on Words 15

Note that Σ∗/≡k is cancellative as a monoid, that is, for x, y, z ∈ Σ∗/≡k,
xy ≡k xz implies y ≡k z and yx ≡k zx implies y ≡k z. This can be seen by a
straightforward induction utilizing the first point of Proposition 2.4. The monoid
Σ∗/∼k is, on the other hand, not cancellative when k > 2 (consider the words
x = a, y = ak−2bak, and z = ak−1bak−1).

We introduce the terminology of semigroups to discuss particular aspects of
the k-abelian equivalence, namely, equations. Let Ξ be a finite non-empty set of
variables and S a semigroup (we assume that Ξ+ ∩ S = ∅). An element (u, v) ∈
(Ξ ∪ S)+ × (Ξ ∪ S)+ is called an equation over S with variables Ξ. A solution to
an equation (u, v) over S with variables Ξ is a morphism α : Ξ → S such that
α(u) = α(v) (α is the identity morphism on S). An equation e = (u, v) is often
denoted by e : u = v. The set of solutions to the equation e is denoted by Sol(e).

The following properties of words inferred from the following example are used
throughout the thesis without explicit mention.

Example 2.14 ([64]). For two word u, v ∈ Σ∗ we have uv = vu if and only if
there exists r ∈ Σ∗ such that u, v ∈ r∗. Thus the set Sol(xy = yx) of solutions to
the equation xy = yx in Σ∗ equals {α : x 7→ ri, y 7→ rj : r ∈ Σ∗, i, j,> 0}.

For words x, y, z ∈ Σ∗ we have xz = zy if and only if there exist p, q ∈ Σ∗

such that x = pq, y = qp, and z ∈ (pq)∗p. In the free monoid, we thus have
Sol(xz = zy) = {(x, y, z) 7→ (pq, qp, (pq)rp,) : p, q ∈ Σ∗, r ∈ N}.

We also consider systems E ⊆ Ξ+ × Ξ+ of equations and the set

Sol(E) =
⋂
e∈E

Sol(e)

of solutions to E. We say that two systems E1 and E2 of equations are equivalent
if Sol(E1) = Sol(E2). Further, we say that a system of equations E is independent
if E is not equivalent to any of its finite proper subsystems E′ ⊆ E.

There are still interesting open problems regarding independent systems of
equations over the free semigroup. Very recently, two longstanding open problems
were solved by D. Nowotka and A. Saarela in [74]. Let us state one of them
explicitly.

Theorem 2.15 ([74]). Let E be a independent system of constant-free equations
on three variables for the free semigroup. Then the system E contains at most 18
equations.

The problem of upper bounding the number of equations in such a system was
open for quite some time. It was conjectured by J. Karhumäki and K. Culik in [25]
that the bound is three. In fact, before giving a uniform upper bound of 18, the
previous best bound by Nowotka and Saarela was that the number of equations
in such a system is logarithmically bounded with respect to the length of the
shortest equation [75]. We refer the reader to [74] for more on the development of
the solution of the above theorem.

In Chapter 7 we consider equations over the monoids defined by the k-abelian
equivalence and the k-binomial equivalence over Σ∗, and consider independent
systems of equations in these monoids. We discuss some further theory in that
chapter.

16 Preliminaries §2

2.3 Notions and Terminology from Language
Theory

2.3.1 Automata and Formal Languages

Regular expressions over an alphabet Σ are the finite expressions constructed re-
cursively by using the following operations. The symbol ∅, and each a ∈ Σ ∪ {ε}
are expressions. If E and E′ are expressions, then so are (E · E′), (E + E′), and
(E∗). Each expression E defines a language, denoted by L(E) as follows: Each
a ∈ Σ ∪ {ε} defines the singleton language L(a) = {a} and ∅ defines the empty
language. For expressions E and E′, the expressions (E · E′), (E + E′) and (E∗)
define the languages L(E) · L(E′), L(E) ∪ L(E′), and ∪n>0L(E)n, respectively.

A deterministic finite automaton (DFA) A over Σ is a tuple (Q, q0, δ, F), where
Q is a finite set of states, q0 is the initial state, δ is a partial function δ : Q×Σ→ Q
called the transition function, and F ⊆ Q is the set of final states. Given a word
w = a0 · · · an ∈ Σ∗, the automaton operates on w using δ starting from q0 by
the rule δ(q, au) = δ(δ(q, a), u) for all u ∈ Σ+. If δ(q0, w) ∈ F we say that A
accepts w, otherwise A rejects w. We let L(A) denote the language recognized by
A; L(A) = {w ∈ Σ∗ | A accepts w}. We identify a DFA A with a directed labeled
multigraph graph GA, where V (GA) = Q and (q1, q2) ∈ E(GA) with label a if and
only δ(q1, a) = q2.

The languages defined by regular expressions are exactly the languages recog-
nized by finite automata; that is, these models are equivalent. Such languages are
called regular languages. Another equivalent model for regular languages conside-
red in this thesis are non-deterministic finite automata with ε-transitions (ε-NFA),
in which case the transition function may be multi-valued and we may have tran-
sitions for the empty word.

We need knowledge of several closure properties of regular languages. First,
given two regular languages L and L′ ⊆ Σ∗, the union and concatenation of
these languages is regular (this is by definition of regular expressions). Also, the
intersection L ∩ L′ is regular. Further, the complement Σ∗ \ L and the difference
L \ L′ are regular languages. We also need the knowledge of the following closure
properties. Given a regular language L ⊆ Σ∗, the language

• ϕ(L) = {ϕ(x) : x ∈ L} (morphic image);

• ϕ−1(L) = {u ∈ ∆∗ : ϕ(u) ∈ L}, ϕ : ∆→ Σ∗ (morphic preimage);

• u−1L, Lu−1 (left/right quotient);

is regular. We refer to [45] for these facts, and on more of equivalent models and
closure properties of regular languages. All the above properties are used without
being explicitly mentioned.

For a regular language L there exists a DFA having the least number of states
among deterministic finite automata recognizing L. We call such an automaton a
minimal DFA. For a regular language, there exists a unique minimal automaton
recognizing L. We recall a well-known results from the literature concerning mi-
nimal DFA. To this end, we define the following. Let p be a state of a DFA A,
F be the set of accepting states of A, and δ be the transition function of A. We

§2.3 Notions and Terminology from Language Theory 17

define the language Lp as the set of words u for which δ(p, u) ∈ F . We call two
states p and q equivalent, if Lp = Lq.

Theorem 2.16. Let A be a minimal DFA. Then two states p and q are equivalent
if and only if p = q.

For a proof and related properties of regular languages, see [45].

2.3.2 Generating Functions and Rational Sequences

We now turn to the generating functions of the automata described above. For a
general treatment on the topic of generating functions, see [37]. We shall briefly
recall results concerning formal languages. To this end, let L ⊆ Σ∗ be a language.
The (ordinary) generating function GL of L is defined as the formal power series

GL(x) =

∞∑
k=0

CL(k)xk.

We often omit the summation bounds to avoid cluttering the text; we always
have k = 0, . . . ,∞. For two generating functions G1(x) =

∑
k akx

k and G2(x) =∑
k bkx

k, the sum G1(x) +G2(x) and the product G1(x) ·G2(x) are defined as

G1(x) +G2(x) =
∑
k

(ak + bk)xk and

G1(x) ·G2(x) =
∑
k

(∑
i+j=k

aibj

)
xk.

For disjoint languages L1, L2 ⊆ Σ∗, we have

GL1∪L2
(x) = GL1

(x) +GL2
(x),

as can straightforwardly be verified. If the product

L1L2 = {u1u2 | u1 ∈ L1, u2 ∈ L2}

of languages L1 and L2 is unambiguous, that is, u1v1 = u2v2 for some u1, u2 ∈ L1,
v1, v2 ∈ L2 implies u1 = u2 and v1 = v2, then GL(x) = GL1

(x) ·GL2
(x), as can be

readily verified.
In addition to classical language theoretical properties, we make use of the

theory of languages with multiplicities. This counts how many times a word occurs
in a language. This leads to the theory of N-rational sets. Using the terminology
of [98], a multiset over Σ∗ is called N-rational if it is obtained from finite multisets
by applying finitely many times the rational operations product, union, and taking
quasi-inverses, i.e., iteration restricted to ε-free languages. Further, a unary N-
rational subset is referred to as an N-rational sequence. We refer to [98] for more
on this topic. The basic result we need is (see [98]):

Proposition 2.17. Let A be a non-deterministic finite automaton over the alp-
habet Σ. The function fA : Σ∗ → N defined as

fA(w) = #of accepting paths of w in A

18 Preliminaries §2

is N-rational. In particular, the function `A : N→ N,

`A(n) = #of accepting paths of length n in A (2.2)

is an N-rational sequence. Consequently, the generating function for `A is a rati-
onal function.

The above theorem implies that the generating function GL(x) of an arbitrary
regular language L is an N-rational sequence: We may take a DFA recognizing L
and modify it into a unary automaton by identifying all the letters in the auto-
maton. Then we may apply the above theorem to the modified automaton. Thus
the sequence ` as in the above theorem equals, for each n, the number of words of
length n in L, since the original DFA was deterministic. Now, in particular, the

generating function GL(x) as a formal power series has a rational expression p(x)
q(x)

for some polynomials p, q.

Example 2.18. The regular language L1 defined by the expression a∗ has the
generating function

GL1(x) =
∑
k

xk,

which has the rational expression 1
1−x . The language L2 defined by the regular

expression (ab)∗ has the generating function

GL2
(x) =

∑
k

x2k

which has the rational expression 1
1−x2 . Finally, the regular language L3 defined

by the expression a∗b∗ has the generating function

GL3
(x) = (

∑
k

xk)(
∑
k

xk) =
∑
k

(k + 1)xk

which has the rational expression 1
(1−x)2 .

19

Chapter 3

Characterizations of
k-abelian equivalence

In this chapter we present several characterizations of the k-abelian equivalence
relation from the literature. We also introduce a characterization, which has not
been previously published, using matrix semigroups. We learn that there are
several equivalent definitions of the k-abelian equivalence from different points of
view, all of which contribute to the broader view of this equivalence relation.

The first definition of k-abelian equivalence (Definition 2.1) implies that to
check the k-abelian equivalence of two words, one needs to compute the number
of occurrences of all factors of length at most k. In the next section, we present
further characterizations which compare the numbers of occurrences of factors, but
for which the number of factors needing comparisons is decreased. These charac-
terizations are also very useful in other aspects, for example, in understanding the
structure of k-abelian equivalence classes, and determining the asymptotic number
of k-abelian equivalence classes.

The second section of this chapter presents a characterization based on a word
rewriting rule. This point of view is totally different to the previous characte-
rizations. As a consequence, this characterization opens the way to a language
theoretic approach on the k-abelian equivalence, and this area is explored in sub-
sequent chapters.

In the third section, we consider the k-abelian equivalence in de Bruijn graphs.
Using tools from the rich theory of graphs, further properties of k-abelian equiva-
lence classes are obtained. One immediate consequence is a formula for computing
the cardinality of a k-abelian equivalence class defined by a given word. The graph
theoretic interpretation of the k-abelian equivalence is also used at several other
occasions, mainly in Chapters 4 and 6.

This chapter is closed off with the section concerning a matrix representation
of the k-abelian equivalence. More precisely, a finitely generated matrix monoid
is shown to be isomorphic to that of the monoid Σ∗/∼k. This point of view gives
yet another glimpse of k-abelian equivalence in the setting of monoids and, in
particular, equations over k-abelian equivalence classes.

20 Characterizations of k-abelian equivalence §3

3.1 Characterizations by Counting Occurrences
of Factors

In [57] a combinatorial characterization of the k-abelian equivalence is obtained.
The proof is quite straightforward. We repeat this characterization here, as it will
be used on several occasions further on.

Proposition 3.1. Let u, v ∈ Σ∗ be of length at least k−1 for some positive integer
k. Assume that |u|x = |v|x for all x ∈ Σk. The following are equivalent.

1) |u|t = |v|t for all t ∈ Σ6k−1 (that is, u ∼k v);

2) |u|t = |v|t for all t ∈ Σk−1;

3) prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v);

4) prefk−1(u) = prefk−1(v);

5) suffk−1(u) = suffk−1(v);

6) prefi(u) = prefi(v) and suffk−i−1(u) = suffk−i−1(v) for some 0 6 i 6 k − 1.

Observe that Item 3) above is included in both Items 4) and 5). A useful
characterization of k-abelian equivalence is thus immediately obtained:

Lemma 3.2. Let k > 1. For all u, v ∈ Σ∗ we have u ∼k v if and only if |u|x = |v|x
for all x ∈ Σk and either

prefmin{|u|,k−1}(u) = prefmin{|v|,k−1}(v) or

suffmin{|u|,k−1}(u) = suffmin{|v|,k−1}(v).

Using this characterization the following properties of the k-abelian equivalence
are easy to see.

Lemma 3.3 ([57]). Let k > 1.

• For words u, v ∈ Σ∗ with |u|, |v| 6 2k − 1, if u ∼k v then u = v.

• For words u1, u2, v1, v2 ∈ Σ∗, if u1 ∼k v1 and u2 ∼k v2, then u1u2 ∼k v1v2.
In other words, ∼k is a congruence relation (see Definition 2.12.)

Observe that the second item above implies that Σ∗/∼k is a monoid. We
consider this aspect in Chapter 7 when dealing with k-abelian equations. Indeed,
to have a meaningful theory of equations, a monoid structure is required.

Remark 3.4. For any k > 1, the following relation ρk is an equivalence relation
on Σ∗: uρkv if and only if |u|x = |v|x for each x ∈ Σk. For k = 1 this is the
abelian equivalence. For k > 2 we note that ρ does not define a congruence:
ak−2bakb ρk a

k−1bak, but |a · ak−2bakb|ak 6= |a · ak−1bak|ak .

Observe that ∼k is a refinement of ρk defined above. As a brief sidestep, we
make precise the relation between ρk and ∼k.

Lemma 3.5. The k-abelian congruence relation is the coarsest congruence refining
ρk, i.e., any congruence R refining ρk is a refinement of ∼k.

§3.1 Characterizations by Counting Occurrences of Factors 21

Proof. Let R be a congruence refining ρk. First of all we show that uRv implies
|u| = |v|. Indeed, since R is a congruence, then urRvr, where r is an integer such
that r|u| > k. It follows that r|u| = r|v|, since now urρkv

r and, for all w ∈ Σ∗

with |w| > k, we have
∑
x∈Σk |w|x = |w| − k + 1. Next we show that if uRv for

some u, v ∈ Σ∗, where |u| < k, then u = v. Indeed, assuming that |u| < k, let
t ∈ Σ∗ such that |tu| = k. Then, since R is a congruence refining ρk, tuRtv implies
that |tu|tu = |tv|tu and hence u = v. Assume now, for a contradiction, that there
exist u, v ∈ Σ∗ such that uRv, but u 6∼k v. It follows that |u| = |v| > k by the
above observations. Further, since uρkv, by the above characterization of u ∼k v
it follows that prefk−1(u) 6= prefk−1(v). Let p = prefk−1(u) and q = prefk−1(v).
Then auRav but |au|ap = |u|ap + 1 = |v|ap + 1 = |av|ap + 1, so that R is not a
refinement of ρk. This contradiction shows that R is a refinement of ∼k.

The definition of k-abelian equivalence as in Definition 2.1 implies that, in order
to check whether two words u and v are k-abelian equivalent, one needs to check

the occurrences of
∑k
i=1 |Σ|i = |Σ|k+1−|Σ|

|Σ|−1 many words in both u and v. However,

the above characterization implies that one needs to check the occurrences of only
|Σ|k factors (together with coinciding prefixes or suffixes).

Example 3.6. Let u = aaba and v = abaa. Since |u|x = |v|x for each x ∈ B2 and
pref1(u) = pref1(v) = a, it follows that u and v are k-abelian equivalent.

For x = aaba and y = baab, we see that pref1(x) 6= pref1(y), that is, x 6∼2 y.

An interesting improvement of the above characterization can be found in [20].
In fact, this characterization of k-abelian equivalence gives a nice argument for a
proof of Theorem 1.1 presented in [20]. Let us first recall this characterization.

Lemma 3.7. Let a ∈ Σ. For each k > 1 define Za,k = (Σ6k \ aΣ∗) \ Σ∗a. Then
u ∼k v if and only if
• |u| = |v|,
• prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v), and

• |u|x = |v|x for all x ∈ Za,k.

To check whether two words u, v ∈ Σ∗ are k-abelian equivalent over an m-letter
alphabet Σ, it suffices to check the number of occurrences of

#(Za,k \ {ε}) = (m− 1) + (m− 1)2
k−2∑
i=0

mi = mk−1(m− 1)

factors (together with checking the prefixes and suffixes of length k − 1 and the
lengths of u and v).

Example 3.8. Recall Example 3.6, where the 2-abelian equivalence of u = aaba
and v = abaa was asserted using Lemma 3.2. Let us repeat this task using
Lemma 3.7. One checks that pref1(u) = pref1(v), suff1(u) = suff1(v), |u|b = |v|b,
and |u|bb = |v|bb. Thus u ∼k v.

Let us briefly sketch the proof of Theorem 1.1 given in [20]. The upper bound

O(nm
k−1(m−1)) is obtained by a straightforward combinatorial argument from the

above lemma. For the lower bound Ω(nm
k−1(m−1)), let Σ = {0, . . . ,m− 1} be an

22 Characterizations of k-abelian equivalence §3

m-letter alphabet and let ΣM = {0, . . . ,M − 1}, where M = mk−1(m − 1) + 1.
Let us define an ordering of the set Z0,k = {y0, . . . , yM−1} (over Σ) and, finally,
define h : ΣM → Σ, h(i) = yi0

2k−1−|yi|. Now, for two words u, v ∈ Σ∗M , we have
h(u) ∼k h(v) if and only if u ∼1 v and prefk−1(h(u)) = prefk−1(h(v)) [20, Lemma

3.3]. It is then straightforward to exhibit, for n large enough, Θ(nm
k−1(m−1))

distinct words, no two of which being k-abelian equivalent [20, Lemma 4.2].

3.2 A Characterization by Rewriting

In this subsection we describe rewriting rules of words which preserve k-abelian
equivalence classes. This provides a different characterization of k-abelian equi-
valence which opens new automata theoretic aspects of the equivalence relation.
This section is based on the article [55].

Definition 3.9. Let k > 1 and let u = u0 · · ·un−1. Suppose further that there
exist indices i, j, ` and m, with 0 6 i < j 6 ` < m 6 n − k + 1, such that
u[i, i+ k − 1) = u[`, `+ k − 1) = x and u[j, j + k − 1) = u[m,m+ k − 1) = y for
some x, y ∈ Σk−1. We thus have

u = u[0, i) · u[i, j) · u[j, `) · u[`,m) · u[m..],

where u[i..] and u[`..] begin with x and u[j..] and u[m..] begin with y. Note here
that we allow ` = j (in this case y = x). We define a k-switching on u, denoted
by Su,k(i, j, `,m), as

Su,k(i, j, `,m) = u[0, i) · u[`,m) · u[j, `) · u[i, j) · u[m..]. (3.1)

In other words, for a word u = a0 · · · an−1, a k-switching Su,k(i, j, `,m) = v can
be seen as a permutation π on the set {0, . . . , n− 1}:

(0, . . . , n− 1)
π7→ (0, . . . , i− 1, `, . . . ,m− 1, j, . . . , `− 1, i, . . . , j − 1,m, . . . , n− 1),

and Su,k(i, j, `,m) = aπ(0) · · · aπ(n−1).

A k-switching operation is illustrated in Figure 3.1. We also give a simple
example of applying k-switchings on a word.

Example 3.10. Let u = aabababaaabab and k = 4. Let then x = aba, y = bab,
i = 1, j = 2, ` = 3 and m = 10. We then have

u = a · a · b · ababaaa · bab
Su,4(i, j, `,m) = a · ababaaa · b · a · bab.

One can check that u ∼4 Su,4(i, j, `,m). Note that in this example the occurrences
of x and y are overlapping.

Roughly speaking, the idea is to switch the positions of two factors who both
begin and end with the same factors of length k − 1, and we allow the situation
where the factors can all overlap. We remark that, in the case of j = `, k-switchings
were considered in a different context in [16].

§3.2 A Characterization by Rewriting 23

u
i j m`

v

Figure 3.1: Illustration of a k-switching. Here v = Sk,u(i, j, `,m); the white
rectangles symbolize x and the black ones symbolize y. [18, Fig. 1], [19, Figure 1].

Let now u = u1u2u3u4u5 and v = u1u4u3u2u5, where x ∈ Σk−1 occurs at
positions |u1| and |u1u2u3|, and y ∈ Σk−1 occurs at positions |u1u2| and |u1u2u3u4|
in u. Here v is a k-switching on u. We now show that x occurs at positions |u1|
and |u1u4u3|, and that y occurs at positions |u1u4| and |u1u4u3u2| in v. Indeed,
recall that u5 is assumed to begin with y and that u2 6= ε 6= u4. Since we allow
the occurrences of x and y to overlap, we have no other assumptions on the words
ui, i = 1, . . . , 4. Firstly, since prefk−1(u5) = y = prefk−1(u3u4u5), we have

prefk−1(u2u5) = prefk−1(u2y) = prefk−1(u2u3u4u5) = x.

Secondly, by the above, we have

prefk−1(u3u2u5) = prefk−1(u3x) = prefk−1(u3u4u5) = y.

Finally, by the previous observation, we have

prefk−1(u4u3u2u5) = prefk−1(u4y) = prefk−1(u4u5) = x.

Using these observations, we show that k-switchings preserve k-abelian equi-
valence.

Lemma 3.11. Let u ∈ Σ∗ and v = Su,k(i, j, `,m) be a k-switching on u. Then
u ∼k v.

Proof. Let u = u1u2u3u4u5 and v = u1u4u3u2u5, where v is the k-switching with
the indices i = |u1|, j = i + |u2|, ` = j + |u|3, and m = ` + |u4|. For ease of
notation, define sk(x) = suffmin{|u|,k}(u) for any x ∈ Σ∗. Observe now that

Ψk(u) =
∑5
i=1 Ψk(ui) +

∑4
i=1 Ψk(sk−1(ui) prefk−1(ui+1 · · ·u5))

=
∑5
i=1 Ψk(ui) + Ψk(sk−1(u1)x) + Ψk(sk−1(u2)y)

+ Ψk(sk−1(u3)x) + Ψk(sk−1(u4)y)

=
∑5
i=1 Ψk(ui) + Ψk(sk−1(u1) prefk−1(u4u3u2u5))

+ Ψk(sk−1(u4) prefk−1(u3u2u5)) + Ψk(sk−1(u3) prefk−1(u2u5))

+ Ψk(sk−1(u4) prefk−1(u5))

= Ψk(v),

where, in the third equality, we have used the observation preceding this lemma.
Further, since the suffixes of u and v of length k− 1 are equal, we have u ∼k v by
Proposition 3.1.

24 Characterizations of k-abelian equivalence §3

w
λ x

i

a x

`

b

w′
λ x

i

b x a

p

Figure 3.2: Illustration of the proof of Claim 3.13. [55, Fig. 2].

Let us define a relation Rk of Σ∗ with uRkv if and only if v = Su,k for some
k-switching on u. Now Rk is clearly symmetric, so that the reflexive and transitive
closure R∗k of Rk is an equivalence relation. It is not hard to see that R∗k is actually
a congruence which refines ρk as defined in Remark 3.4. Thus, by Lemma 3.5, R∗k
refines ∼k. In other words, uR∗kv implies u ∼k v. We now prove the converse, so
that the relations ∼k and R∗k actually coincide.

Theorem 3.12. For two words u, v ∈ Σ∗, we have u ∼k v if and only if uR∗kv.

For the proof of the the above theorem, we need the following technical claim
which will be used also later:

Claim 3.13. Let w ∼k w′, w 6= w′. Let λx be the longest common prefix of w
and w′ with λ ∈ Σ∗, x ∈ Σk−1, whence w = λxaµ and w′ = λxbµ′ for some
µ, µ′ ∈ Σ∗, a, b ∈ Σ, a 6= b. Then there exist y ∈ Σk−1 and indices j, `,m, with
|λ| 6 j 6 ` < m, such that

• w[j, j + k − 1) = y,

• w[`, `+ k) = xb, and

• w[m,m+ k − 1) = y.

Proof. It follows from w ∼k w′ that w′ has an occurrence of xa and w has an
occurrence of xb after the common prefix λ. We let i = |λ|+1 be the position (i.e.,
the starting index of the occurrence) of xa in w and let ` be the minimal position
(leftmost occurrence) of xb in w with ` > i. Let p be a position of xa in w′ with
p > i (see Figure 3.2).

Consider then the set Fk(w′[i..]); each word in this set occurs somewhere in
w[i..], since w ∼k w′. Let then q, with q > i, be the minimal index such that the
factor w′[q, q+k) occurs in w[i, `+k−1). Such an index exists since, for example,
w′[p, p + k) = w[i, i + k). Moreover, by the minimality of `, we have q > i. Let
y = w′[q, q + k − 1) and let j′, where i 6 j′ 6 ` − 1, be a position of y in w. We
shall now choose the index j in the claim. If j′ > i we choose j = j′. If j′ = i,
then necessarily x = y and we choose j = `.

We shall now choose the index m in the claim. By the choice of q, we have that
w′[q − 1, q + k − 1), an element of Fk(w′[i..]), occurs at some position m′, m′ > `,
in w. It follows that y occurs in w at position m = m′ + 1, with m > `. We have
now obtained the factor y and the positions of y and xb as claimed.

Proof of Theorem 3.12. It is enough to show that u ∼k v implies uR∗kv, since the
converse follows from Lemma 3.11.

Assume that u ∼k v but u 6= v. Let ν be the longest common prefix of u and
v, denoted by lcp(u, v). Applying Claim 3.13 to w = u and w′ = v, with ν = λx,

§3.3 k-abelian Equivalence Classes as Eulerian Walks 25

we obtain indices i, j, `,m which give rise to a k-switching Su,k(i, j, `,m) = z, such
that | lcp(z, v)| > |ν|. We have zRku and, by Lemma 3.11, z ∼k u and thus z ∼k v.
Again we may apply Claim 3.13 to z and v to obtain a word zRkz1 and z1 ∼k v
with | lcp(z1, v)| > | lcp(z, v)|. Repeating these observations finitely many times,
we obtain a sequence u Rk z Rk z1 · · ·Rk v, and thus uR∗kv.

The characterization of k-abelian equivalence using k-switchings has a different
flavour to the characterizations obtained previously, namely, it gives means for
constructing k-abelian equivalent words.

3.3 k-abelian Equivalence Classes as Eulerian
Walks

This section is based on [55]. We repeat an observation made in [57] connecting

k-abelian equivalence with Eulerian paths in the multigraphs. Let f ∈ NΣk be an
arbitrary vector. We modify the de Bruijn graph dB(k− 1) with respect to f into
a multigraph Gf = (V,E) as follows. We define V as the set of words x ∈ Σk−1

such that x is a prefix or a suffix of a word z ∈ Σk for which f [z] > 0. We define
the set of edges as follows: for each z ∈ Σk with f [z] > 0, we take the edge from
u to v with multiplicity f [z], where u is the length k − 1 prefix of z, and v is the
length k − 1 suffix of z.

Note that for f = Ψk(w), the graph Gf resembles the Rauzy graph of w of
order k − 1 (see [89]), with V = Fk−1(w) and the edges of Gf corresponding to
the set Fk(w) with multiplicities.

In the following, for u, v ∈ Σk−1, we denote by Σ(u, v) the set of words which
begin with u and end with v: Σ(u, v) = uΣ∗ ∩ Σ∗v.

Lemma 3.14 ([57, Lemma 2.12.]). For a vector f ∈ NΣk and words u, v ∈ Σk−1,
the following are equivalent:

1. there exists a word w ∈ Σ(u, v) such that f = Ψk(w),

2. Gf has an Eulerian path starting from u and ending at v,

3. the underlying graph of Gf is connected, and d−(s) = d+(s) for every vertex
s, except that if u 6= v, then d−(u) = d+(u)− 1 and d−(v) = d+(v) + 1.

The above lemma is articulated in terms of the k-abelian equivalence in [55] as
a corollary.

Corollary 3.15. For a word w ∈ Σ(u, v) and k > 1, we have that w′ ∼k w if and
only if w′ induces an Eulerian path from u to v in GΨk(w).

Given a word w with length at least k− 1, we may thus identify the k-abelian
equivalence class [w]k as a weighted Eulerian subgraph of the de Bruijn graph of
order k − 1 together with the fixed start and end vertices.

Example 3.16. Let u ∈ Σ∗ and x ∈ Fk−1(u) such that |u|x > 3. We may then
write Wu = W1W2W3W4 for some walks Wi with head(Wi) = x = tail(Wi+1) for
each i ∈ {1, 2, 3}. Then, by the above corollary, we have u ∼k v, where v is defined
by the walk Wv = W1W3W2W4. Indeed, Wv is well-defined due to the choice of
the extremal vertices of the walks Wi and the same edges are traversed equally
many times as in Wu.

26 Characterizations of k-abelian equivalence §3

An almost immediate consequence of the above corollary is that we may express
the cardinality #[w]k of the k-abelian equivalence class defined by a given long
enough word w. Let w ∈ Σ(u, v), where u, v ∈ Σk−1, and let f = Ψk(w). The
value #[w]k is now the number of Eulerian walks of Gf starting at u and ending
at v. Here we consider two cycles to be distinct if the vertices are traversed in
different orders.

Let us briefly recall a relevant result from the literature.

Definition 3.17. Let G = (V,E) be a directed multigraph. The Laplacian matrix
∆(G) of G is defined as

∆(G)uv =

{
−m(u, v), if u 6= v,

d+(u)−m(u, v), if u = v.

For the Laplacian ∆(G) of a graph G and a vertex v of G, we denote by ∆(G)(v)

the matrix obtained by removing from ∆(G) the row and column corresponding
to v.

Remark 3.18. We note that for a directed multigraph G and a vertex v,
det(∆(G)(v)) counts the number of rooted spanning trees with root v in G. This
result is known as Kirchhoff’s matrix tree theorem (for a proof, see [1]).

We recall the BEST theorem, first discovered by C.A.B. Smith and W.T. Tutte
in 1941 and later generalized by T. van Aardenne-Ehrenfest and N.G. de Bruijn
(see [1]). For this, let ε(G) denote the number of distinct Eulerian cycles in an
Eulerian graph G. Here two cycles are considered to be the same, if one is a cyclic
shift of the other. Equivalently, ε(G) counts the number of distinct Eulerian cycles
beginning from a fixed edge e.

Theorem 3.19 (BEST theorem). Let G be a connected directed Eulerian multi-
graph. Then

ε(G) = det(∆(G)(u))
∏
v∈V

(d+(v)− 1)!,

where u is any vertex of G.

Now the number of Eulerian walks up to the order of vertices traversed is
distinct to the number of Eulerian walks, that is, ε(Gf) (in the case of Gf being
Eulerian). Nonetheless, we still employ the BEST theorem (Theorem 3.19) to
obtain the desired value. Note that in Gf we have d+(x) = |w|x for all x 6= v and
d+(v) = |w|v − 1.

Proposition 3.20. Let k > 1 and w ∈ Σ(u, v) for some u, v ∈ Σk−1. Then

#[w]k = det(∆(G)(v))
∏

x∈Fk−1(w)

(|w|x − 1)!∏
a∈Σ |w|xa!

, (3.2)

where G = GΨk(w).

Proof. Let V = V (G), that is, V = Fk−1(w), and let f = Ψk(w). Suppose first
that u = v, so that G contains an Eulerian cycle. We shall first count the number

§3.4 k-abelian Equivalence Classes as Eulerian Walks 27

of distinct Eulerian cycles starting from vertex v. Note here that two cycles are
considered distinct if the edges are traversed in a different order.

It follows from the BEST theorem, that the number of Eulerian cycles starting
from vertex v equals

d+(v) det(∆(G)(v))
∏
x∈V

(d+(x)− 1)! = det(∆(G)(v))
∏
x∈V

(|w|x − 1)!. (3.3)

Now two Eulerian cycles are induced by the same word z if and only if the vertices
are traversed in the same order. The claim follows by dividing the right hand side
of Equation (3.3) by the number of different ways to order the individual edges
between two vertices x and y for all x, y ∈ V :∏

(x,y)∈E

m(x, y)! =
∏
x∈V

∏
a∈Σ

f [xa]!.

Suppose then that u 6= v. We shall now add to G a new edge e = (v, u) to
obtain H, an Eulerian graph. Observe that d+

H(v) = d+
G(v) + 1 = |wv|, the rest

of the out-degrees remain the same. Furthermore, the number of Eulerian paths
from u to v in G equals the number of Eulerian cycles beginning with e in H. We
again invoke the BEST theorem: the number of Eulerian cycles beginning from
edge e is

det(∆(H)(v))
∏
x∈V

(d+
H(x)− 1)! = det(∆(H)(v)) d+

G(v)!
∏
x∈V
x 6=v

(d+
G(x)− 1)!

= det(∆(H)(v))
∏
x∈V

(|w|x − 1)!, . (3.4)

Note that det(∆(H)(v)) = det(∆(G)(v)), since the Laplacians of G and H differ
only in the row and column corresponding to v.

Similar to the previous case, we are not interested in which order the edges
from x to y are traversed, with one exception: we have fixed the starting edge e.
The right hand side of equation (3.4) should thus be divided by

(mH(v, u)− 1)!
∏

(x,y)∈E
(x,y)6=(v,u)

mH(x, y)! =
∏

(x,y)∈E

mGf (x, y)! =
∏
x∈V

∏
a∈Σ

f [xa]!.

The claim follows.

Example 3.21. Let w = ababaaaa and f = Ψ2(w). We have

f = (|w|aa, |w|ab, |w|ba, |w|bb) = (3, 2, 2, 0).

The Laplacian of Gf is
(

2 −2
−2 2

)
, from which we obtain det(∆(a)) = 2. The above

proposition then gives us:

#[w]2 = det(∆(a)) · (|w|a − 1)!(|w|b − 1)!

|w|aa!|w|ab!|w|ba!
= 2 · 5! · 1!

3! · 2! · 2!
= 10.

28 Characterizations of k-abelian equivalence §3

3.4 Equivalence Classes as Matrices

This section is based on unpublished work of the manuscript [110]. Recall that
two words are abelian equivalent if and only if their Parikh vectors are equal. This
property may be interpreted in terms of monoids. Namely, the monoid Σ∗/∼1

is isomorphic to the monoid N|Σ| equipped with coordinate-wise summation. We
may also embed the monoid Σ∗/∼1 into the multiplicative monoid (Z2|Σ|×2|Σ|, ·)
of 2|Σ| × 2|Σ| integer matrices. Indeed, for each letter a ∈ Σ and u ∈ Σ∗, we
define the 2× 2-matrix Aa(u) =

(
1 |u|a
0 1

)
. By a simple computation one sees that

Aa(v)Aa(w) = Aa(vw) for all words v, w ∈ Σ∗. For v ∈ Σ∗ we define the matrix
A(v) ∈ Z2|Σ|×2|Σ| as the block diagonal matrix

A(v) =


Aa1

(v) 0 · · · 0

0 Aa2
(v)

. . .
...

...
. . .

. . . 0
0 · · · 0 Aa|Σ|(v)

 ,

where Σ = {a1, . . . , a|Σ|}. It is clear that u ∼1 v if and only if A(u) = A(v), as
the numbers of occurrences of letters are indicated in the matrix. Moreover, it is
straightforward to verify that A(u)A(v) = A(uv) for all words u, v ∈ Σ. Thus the
multiplicative monoid generated by the matrices {A(a) : a ∈ Σ} is isomorphic to
Σ∗/∼1. Note that by replacing the first diagonal block Aa1

(v) by the scalar 2|v|

in A(v), we still have the above properties, and the dimension of the matrix is
reduced by one.

Our aim is to generalize this construction for k-abelian equivalence for arbitrary
k. Some technicalities are involved to ensure that the multiplication of matrices
corresponds to the multiplication of k-abelian equivalence classes. More precisely,
it is crucial to accommodate the property that, for all v, w ∈ Σ∗, u ∈ Σk,

|vw|u = |v|u + |w|u + | suffk−1(v) prefk−1(w)|u.

For the sake of readability we define, for two words u, v ∈ Σ∗, the characteristic
function δuv as δuv = 1 if u = v and otherwise δvu = 0. Observe that for any u, v, w ∈
Σ∗ we have δuvw =

∑
u=u1u2

δu1
v δu2

w , where the sum goes over all factorizations of
u into two words.

Definition 3.22. Let u ∈ Σ+ and write u = u0 · · ·uL−1. For all i > 1 and
v ∈ Σ∗, let si(v) = suffmin{i,|v|}(v) and pi(v) = prefmin{i,|v|}(v). Define, for any
word v ∈ Σ∗, the (L+ 1)× (L+ 1) matrix

Au(v) =



1 |v|u δ
prefL−1(u)

sL−1(v)
δ
prefL−2(u)

sL−2(v)
· · · δ

pref2(u)

s2(v)
δ
pref1(u)

s1(v)

0 1 0 0 · · · 0 0

0 δ
suff1(u)
p1(v)

δεv 0 · · · 0 0

0 δ
suff2(u)
p2(v)

δ
u[L−2,L−1)
v δεv

. . . 0 0

...
...

...
...

. . .
. . .

...

0 δ
suffL−2(u)

pL−2(v)
δ
u[2,L−1)
v δ

u[2,L−2)
v · · · δεv 0

0 δ
suffL−1(u)

pL−1(v)
δ
u[1,L−1)
v δ

u[1,L−2)
v · · · δ

u[1,2)
v δεv


.

§3.4 Equivalence Classes as Matrices 29

More precisely, we define Au(v) = (ai,j)
L+1
i,j=1 such that

• a1,1 = a2,2 = 1; a1,2 = |v|u; a2,j = 0 and ai,1 = 0 for all j 6= 2, i > 2;

• ai+2,2 = δ
suffi(u)
pi(v) for all 1 6 i < L;

• a1,j+2 = δ
prefk−j(u)

sk−j(v) for all 1 6 j < L;

• ai+2,i+2 = δεv for all 1 6 i < L;

• ai+2,j+2 = δ
u[L−i,L−j)
v if i > j and ai+2,j+2 = 0 if i < j for all 1 6 i, j < L.

We aim to show that Au(v)Au(w) = Au(vw) for all u, v, w ∈ Σ∗. Before doing
so, we give an example of the construction of the above matrix for two values of
the parameter u.

Example 3.23. We give examples on constructing the matrices Au(v). Let a, b ∈
Σ be distinct letters. By the definition above, we have

Aab(a) =

1 0 δaa
0 1 0
0 δba δεa

 =

1 0 1
0 1 0
0 0 0

 and

Aab(b) =

1 0 δab
0 1 0
0 δbb δεb

 =

1 0 0
0 1 0
0 1 0

 .

Observe now that

Aab(a)Aab(b)Aab(a) =

1 1 1
0 1 0
0 0 0

 =

1 |aba|ab δaa
0 1 0
0 δba δεaba

 = Aab(aba).

We give another example of constructing the matrix Au(v). Again by definition
we have

Aaba(a) =


1 0 0 1
0 1 0 0
0 1 0 0
0 0 0 0

 and Aaba(b) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0

 .

We make a similar observation as above:

Aaba(a)Aaba(b)Aaba(a) =


1 1 0 1
0 1 0 0
0 1 0 0
0 0 0 0

 = Aaba(aba).

Remark 3.24. Observe that, for any k > 1 and u ∈ Σk, the matrix Au(ε) is the
identity matrix. For any letter a ∈ Σ, the matrix Aa(v) is always invertible, which
is straightforward to verify. However, for k > 2 and u ∈ Σk, the matrix Au(v) is
invertible if and only if v = ε. Indeed, for v 6= ε, the third row is either all zeroes
or it equals the second row. Further, if |v| > k − 1, the matrix Au(v) is of simple
form, namely, the lower right k × (k − 1) submatrix is all zeroes.

30 Characterizations of k-abelian equivalence §3

Proposition 3.25. For all u ∈ ΣL and all v, w ∈ Σ∗, Au(vw) = Au(v)Au(w).

Proof. We first note that

|vw|u = |v|u+ |w|u+

L−1∑
i=1

δusuffi(v) prefL−i(w) = |v|u+ |w|u+

L−1∑
i=1

δ
prefL−i(u)

suffL−i(v) · δ
suffi(u)
prefi(w).

Here Au(vw)[1, 2] = |vw|u and the right hand sum is the inner product of the
first row of Au(v) and the second column of Au(w). We then note that for all
1 6 ` 6 L− 1

δ
prefL−`(u)

suffL−`(vw) = δ
u[..L−`)
suffL−`(w) + δ

u[..L−`)
suffL−`(v) · δ

ε
w +

L−1∑
j=`+1

δ
u[..L−j)
suffL−j(v) · δ

u[L−j,L−`)
w .

Here Au(vw)[1, `+ 2] = δ
prefL−`(u)

suffL−`(vw) and the sum on the right hand side equals the

inner product the first row of Au(v) and column `+ 2 of Au(w). Further,

δ
suff`(u)
pref`(vw) = δ

suff`(u)
pref`(v) +

`−1∑
j=1

δu[L−`,L−j)
v δu[L−j..)

w + δεv · δ
suff`(u)
pref`(w),

where Au(vw)[` + 2, 2] = δ
suffL−`(u)
pref`(vw) and the right hand sum is the inner product

of row `+ 2 of Au(v) and the second column of Au(w). Finally, for all i, j, where
1 6 i < j 6 L− 1, we have

δu[L−i,L−j)
vw = δu[L−i,L−j)

v δεw +

j−1∑
`=i+1

δu[L−i,L−`)
v · δu[L−`,L−j)

w + δεvδ
u[L−i,L−j)
w ,

where Au(vw)[i + 2, j + 2] = δ
u[L−i,L−j)
vw , and the sum on the right hand side is

the inner product of row i + 2 of Au(v) and column j + 2 of Au(w). The claim
now follows straightforwardly.

Next we construct matrices corresponding to words using the above defined
matrices Au(v) as building blocks. This gives rise to a matrix representation of
the k-abelian equivalence.

Definition 3.26. Let a ∈ Σ and let Za,k = Σ6k \ (aΣ∗ ∪Σ∗a) (as in Lemma 3.7).
Let k > 2. We define for all v ∈ Σ∗ the block diagonal matrix

Ak(v) =


2|v| 0 0 · · · 0
0 Au(1)(v) 0 · · · 0

0 0 Au(2)(v)
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 Au(#Z)(v)

 ,

where u(1), u(2), . . . , u(#Z) are all the words of Za,k in lexicographic order.

Let us give an example of the above definition.

§3.4 Equivalence Classes as Matrices 31

Example 3.27. Let k = 2 and Σ = B = {a, b}. Now Za,2 = {b, bb} and, taking
v = baab,

A2(v) =

2|v| 0 0
0 Ab(v) 0
0 0 Abb(v)

 =


24 0 0 0 0 0
0 1 2 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 0

 .

Once again we note that

A2(v)2 =


28 0 0 0 0 0
0 1 4 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 1 0

 = A2(v2).

For any fixed k > 1, the dimension of the matrix Ak(v) is constant for all words
v ∈ Σ∗. We denote this common value by dim(Ak). This value is straightforward
to compute, as the dimension of Au(v), where u ∈ Za,k, is |u| + 1. Thus, for an
m-letter alphabet Σ,

dim(Ak) = 1 +
∑

u∈Za,k

|u|+ 1 = 1 + 2(m− 1) + (m− 1)2
k−2∑
i=0

mi(i+ 3)

= (k + 1)mk − (k + 2)mk−1 + 2. (3.5)

Proposition 3.28. The mapping Σ∗/∼k → Ndim(Ak), where [v]k 7→ Ak(v), is
an injective morphism. In other words, the monoid Σ∗/∼k is isomorphic to the
multiplicative matrix monoid generated by {Ak(a) | a ∈ Σ}.

Proof. The claim is straightforward to verify when k = 1. Indeed, the length of
a word together with the number of occurrences of all but one letters determines
the 1-abelian equivalence class. Assume thus that k > 2.

To see that this mapping is well-defined, that is, v ∼k w implies Ak(v) =
Ak(w), we observe the following. First of all, v and w are of the same length
so that the elements in position [1, 1] of the matrices are equal. If |v| < k, then
v = w and there is nothing to prove. Assume then that |v| > k so that the length
k − 1 prefixes (resp., suffixes) of v and w are equal by Lemma 3.7. Furthermore
|v|u = |w|u for all u ∈ Z. These observations imply that the submatrices Au(v)
and Au(w), for each u ∈ Z, in the definitions of Ak(v) and Ak(w) are equal. It
follows that Ak(v) = Ak(w).

To see that the mapping is a morphism, that is, Ak(v)Ak(w) = Ak(vw) for
all v, w ∈ Σ∗, we simply observe that 2|v|2|w| = 2|vw| and that the equality of the
rest of the elements reduces to Proposition 3.25.

Finally, we show that the mapping is one-to-one. Assume that Ak(v) = Ak(w).
It immediately follows that |v| = |w| and that |v|u = |w|u for all u ∈ Z. For the
claim it suffices to show that pk−1(v) = pk−1(w) and sk−1(v) = sk−1(w). Let

32 Characterizations of k-abelian equivalence §3

vi = prefi(v) for all i = 1, . . . ,min{k − 1, |v|}. Let b ∈ Σ \ {a} and observe
that bvi ∈ Z if and only if vi does not end with a. Now if bvi ∈ Z, then element
[|bvi|+1, 2] of the submatrix Abvi(w) of Ak(w) equals 1 implying that prefi(w) = vi
and, in particular, that the ith letter of v equals the ith letter of w. Otherwise
bvi must end with a and, for all u ∈ Z of length i+ 1, the element [i+ 2, 2] of the
submatrix Au(w) of Ak(w) equals zero. This implies that prefi(w) also ends with
a. We have thus shown that for each i = 1, . . . ,min{k − 1, |v|} the ith letter of v
equals the ith letter of w so that pk−1(v) = pk−1(w). Symmetric arguments show
that sk−1(v) = sk−1(w) and the claim follows.

Remark 3.29. Another matrix representation, only of larger dimension, could be
constructed as follows. In the definition of Ak(v), instead of having the blocks
Au(v), with u ∈ Z, on the diagonal, we instead have the blocks Au(v) for all
u ∈ Σk. In this construction, the length of |v| does not need to be recorded. The
dimension of this representation is (k + 1)|Σ|k, as opposed to dim(Ak) in (3.5).

Remark 3.30. The matrix representation obtained here is inspired by the matrix
representation of k-binomial equivalence obtained in [93].

There are several equivalence relations related to finite words using matrices.
We mention the so-called Parikh matrices introduced in [67] by Mateescu et. al.
which define the so-called M -equivalence of words. This notion has been extensi-
vely studied in the literature (see, e.g., [101] and the references therein).

We have reviewed several characterizations of the k-abelian equivalence rela-
tion. These characterizations are put to work in the consequent chapters of this
thesis.

33

Chapter 4

Representatives of
Equivalence Classes

When considering equivalence classes over finite words, it is often of use to consider
certain representatives of equivalence classes. A natural candidate for a represen-
tative is the lexicographically least word in the equivalence class. This approach
turns out to be extremely fruitful in studying the language theoretic aspects of the
k-abelian equivalence, which in turn gives new tools to study quantitative aspects
of the equivalence relation. Moreover, these tools are then put into use in the
following chapter.

4.1 Lexicographically Least Elements

Let C denote a total order on Σ and the corresponding lexicographic order on Σ∗.
We make use of the following language:

Lk,Σ,C = {w ∈ Σ∗ | w C6 u for all u ∈ [w]k}. (4.1)

In other words, Lk,Σ,C is the language of lexicographically least elements (with
respect to C) of the k-abelian equivalence classes over Σ. We omit k and Σ from
the subscript whenever they are clear from context or have no importance (in
which case they are assumed to be fixed but arbitrary).

Remark 4.1. Observe that the language Lk,Σ,C is factorial (a language L is said
to be factorial if, for every u ∈ L, any factor w of u is in L). Indeed, suppose that
u = u1u2u3 ∈ Lk,Σ,C with u2 /∈ Lk,Σ,C. We may take u′2 for which u′2 ∼k u2 and
u′2 C u2 (thus |u2| > 2k − 1). By replacing u2 by u′2 we obtain u′ = u1u

′
2u3 C u

and u′ ∼k u, since ∼k is a congruence relation. This is a contradiction, and thus
our statement holds.

4.1.1 A Combinatorial Characterization of Lexicographi-
cally Least Representatives

We give a combinatorial characterization of lexicographically least elements of k-
abelian equivalence classes. This characterization has a graph theoretic flavor,
which we discuss later on.

34 Representatives of Equivalence Classes §4

Definition 4.2. Let u = a1 · · · an ∈ Σ∗, where n > k. For each i ∈ [1, n−k+1] we
define the extension history ∆i

u ⊆ Σk−1×Σ of u at position i recursively as follows.
For i = 1 we add, for each x ∈ Σk−1 and a ∈ Σ, the pair (x, a) ∈ ∆1

u if and only if
the first occurrence of x in u is followed by the letter a ∈ Σ. Assume that ∆i

u is
defined, where i 6 n−k, and that u[i+ 1, i+k] = xb for some x ∈ Σk−1, b ∈ Σ. It
follows that (x, a) ∈ ∆i

u for some a ∈ Σ. We set ∆i+1
u = (∆i

u \ {(x, a)}) ∪ {(x, b)}.
In the case of a 6= b we call (x, b) an update and say that position i+ 1 defines the
update (x, b).

Roughly speaking, the extension history ∆i
u tells us, for each factor of length

k− 1, by which letter it was most recently followed by. The technicalities come in
when, in fact, the factor of length k−1 in question has not yet occurred. Our main
focus is on the updates, and the reader should observe that the first occurrence of
a factor (together with the letter following it) do not constitute as an update.

The following definition might seem quite technical, but the reader should
compare this to the definition of k-switchings and keep in mind what sort of k-
switchings may be performed on lexicographically least representatives. Indeed,
our aim is to characterize the words of Lk,Σ,C by the following notion.

Definition 4.3. A sequence of extension histories (∆i
u)ti=1 of u is called increasing

if it satisfies the following property: for each x ∈ Σk−1, if

• (x, a) ∈ ∆i
u and x occurs at some position i′ 6 i,

• ` defines the update (x, b), and

• there exists y ∈ Σk−1 occurring at positions j and m,

where i < j 6 ` < m, then it follows that a C6 b. Otherwise the sequence is called
non-increasing.

We illustrate the above definition with an example.

Example 4.4. Let u = aababba and consider k = 2. For each i = 1, . . . , 6, the
extension history ∆i

u thus consists of two elements. For i = 1, the first occurrence
of a is followed by a and the first occurrence of b is followed by a. By the definition
above, ∆1

u = {(a, a), (b, a)}. At position 2 we have a followed by b, so we get an
update (a, b); ∆2

u = {(a, b), (b, a)}. At position 3 we have b followed by a, so that
∆3
u = ∆2

u. At position 4 we have a followed by b, whence ∆4
u = ∆2

u. At position
5 we have b followed by b, so an update occurs: ∆5

u = {(a, b), (b, b)}. Finally, at
position 6 we have b followed by a, so that ∆6

u = {(a, b), (b, a)}. The sequence of
extension histories is increasing, since, even though position 6 defines the update
(b, a) where the extension of b decreases, the factors of length 1 between position
4 and 6, and factors occurring after position 6 do not intersect.

We obtain a characterization of words u ∈ LC using extension histories. The
proof is almost immediate due to the evident connection to k-switchings. We still
give a rigorous proof to illustrate the connection.

Lemma 4.5. Let u = a1 · · · an, with n > k − 1. Then u ∈ Lk,Σ,C if and only if
(∆i

u)n−k+1
i=1 is increasing.

§4.1 Lexicographically Least Elements 35

Proof. If u /∈ Lk,Σ,C, then there is a k-switching on u which gives a lexicographi-
cally smaller element in the k-abelian equivalence class. Thus there exist words
x, y′ ∈ Σk−1 and indices i′, j′, `′,m′ satisfying i′ < j′ 6 `′ < m′ and letters a C b
such that xb occurs at i′, xa occurs at `′ and y′ occurs at positions j and m. Let
i = i′ so that (x, b) ∈ ∆i

u and x occurs at i. Take ` to be the leftmost occurrence of
xa satisfying ` > i so that ` defines the update (x, a). If y′ occurs at j, i < j 6 `,
then we may take y = y′ and m = m′ so that (∆n

u)n is non-increasing and we are
done. If y′ does not occur between i and `, then x occurs at position `′ > ` and
we may take y = x, j = `, and m = `′ so that (∆n

u)n is non-increasing.
Assume then that u ∈ Lk,Σ,C. Assume that (x, a) ∈ ∆i

u and x occurs at some
position i′ 6 i, and that ` defines the update (x, b). Observe that it follows that
there exists an index i′, where i′ 6 i, such that x occurs at i′, followed by the letter
a and x occurs at `, followed by the letter b. If there exists a word y ∈ Σk−1 such
that y occurs at some positions j and m with i < j 6 ` < m, then a possibility
for a k-switching on u arises. Since u ∈ Lk,Σ,C, then necessarily a C6 b. It follows
that (∆n

u)n is increasing.

4.1.2 Lexicographically Least Representatives in the de
Bruijn Graph

We describe the lexicographically least representatives as walks in the de Bruijn
graphs. To this end we need the following definition.

Definition 4.6. Let G be a graph and W a walk in G. We say that W is
cycle-deterministic if, for each cycle C occurring along W , the walk enters C at a
unique position. The set of distinct cycles (up to the order of the edges) along a
cycle-deterministic walk W is denoted by Cyc(W).

Note that for a cycle-deterministic walk W and a cycle C ∈ Cyc(W), some of
the vertices and the edges occurring in C may be traversed by W after leaving C.
Cycle-determinism means that the full cycle C is not traversed contiguously later
on. For a cycle-deterministic walk W , we may write

W = P0C
α1
1 P1 · · ·Cαrr Pr (4.2)

for some r > 0, where Ci is a cycle and αi > 1 for each i = 1, . . . , r, Pi is a
(possibly empty) path for each i = 0, . . . , r, and W enters Ci at position 1 +
|P0| +

∑
j<i αj |Cj | + |Pj | for each i. Observe that W leaves the cycle Ci before

(or at the same time as) entering Ci+1. Further, Ci 6= Cj for each i 6= j. Here
Cyc(W) = {C1, . . . , Cr}. To clarify the notion, we give the following example.

Example 4.7. Consider the de Bruijn graph dBB(2). The walk Wu = (ei)
10
i=1,

defined by the word u = aaaabaabaaba, has two distinct cycles occurring along
it, namely the loop C1 = (aa, a) and the cycle C2 = ((aa, b), (ab, a), (ba, a)). The
walk Wu enters C1 at position 1 and leaves C1 at position 2 (both via the vertex
aa), and does not enter C1 later on. It does not enter the loop C1 at another
position. Further, Wu enters the cycle C2 at position 3 (via the vertex aa) and
W leaves the cycle via (ba, a) at position 10 (via the vertex ba). We may write
W = C2

1 · C2
2 · ((aa, b), (ab, a)). Note that u ∈ L3,B,C.

On the other hand, the walk Wuaa in dB(k−1) defined by the word uaa is not
cycle-deterministic, as we may write Wuaa = Wu · ((ba, a), (aa, a)) = C2

1 · C3
2 · C1,

36 Representatives of Equivalence Classes §4

whence Wuaa enters the cycle C1 at positions 1 and 12. The cycle C2 is now left
from at position 11. Note that now uaa /∈ L3,B,C.

We show that walks in the de Bruijn graph defined by lexicographically least
representatives are cycle-deterministic. We go on further to compute the number
of cycles occurring along such a walk. In doing so, we employ the combinatorial
characterization of lexicographically least representatives obtained in Lemma 4.5.
Note that the elements of the extension histories can be seen as edges in dB(k−1).

Lemma 4.8. Let u ∈ Lk,Σ,C with |u| > k− 1. Then the walk Wu in dB(k− 1) is
cycle-deterministic.

Proof. Suppose that this is not true for some u ∈ Lk,Σ,C. We may thus write

Wu = W1 · C ·W2 · C ′ ·W3,

where C is a cycle and C ′ is the same cycle up to the order of the edges. We assume
here that Wu leaves C at position |W1C| via the vertex tail(C) = x ∈ Σk−1 and
that Wu enters the cycle C at position |W1CW2|+ 1 via the vertex tail(C ′) = y ∈
Σk−1. Consequently, W2 is not the empty walk. Let us write C ′ = P1 · P2, where
P1 is the path starting from y and ending in x, and P2 is the path starting with
x and ending with y. (If x = y, then we set P1 as the empty walk and C ′ = P2.)
We may write

Wu = W1 · C ·W2 · P1 · P2 ·W3.

Assume (x, a) ∈ C and that W2 begins with (x, b) for some b ∈ Σ \ a. In parti-

cular, |W1C| + 1 defines the update (x, b) ∈ ∆
|W1C|+1
u and x occurs at position

|W1CW2P1|+ 1. It follows that aC b by Lemma 4.5.
Consider now the word u′ defined by the walk

W ′ = W1 · C · P2 · P1 ·W2 ·W3 = W1 · C2 ·W2 ·W3.

Note that W ′ is a valid walk, since tail(W2) = x = tail(P2) and head(W2) = y =
head(P2). Now u′ ∼k u by Corollary 3.15 but u′ C u, a contradiction.

We further describe the connection between extension histories of lexicographi-
cally least representatives and the walks they induce in the de Bruijn graph. We
determine an upper bound on the number of cycles in Cyc(W) for a walk W
corresponding to a lexicographically least representative. This value has some im-
portance in our future considerations, especially in the following two chapters. We
make use of the following technical lemma.

Lemma 4.9. Let W = (ei)
t
i=1 be a walk in dB(k−1) and u the word corresponding

to W . Let r ∈ [1, t] be fixed. Consider the graph G = (V (W),∆r
u). Then, for any

` 6 r, there is a unique path from tail(e`) to head(er) in G.

Proof. We prove this by induction starting from ` = r. Now if er is not a loop,
then (er) ∈ ∆r

u is a path and is unique by the definition of extension histories.
In the case head(er) = tail(er), we are satisfied with the empty path which is
unique. Suppose the claim is true for some ` and all indices i with ` 6 i 6 r.
Let x = tail(e`−1). If x = tail(ei) for some i ∈ [`, r], then the claim follows by

§4.1 Lexicographically Least Elements 37

the induction hypothesis. Otherwise, since `− 1 is now the last occurrence of the
vertex x along the walk (ej)

r
j=1, we must have e`−1 ∈ ∆r

u. Thus, there is a unique
simple path e`−1 from x to tail(e`) in G. By the induction hypothesis, we may
extend this path uniquely all the way to head(er).

Proposition 4.10. Let u = a1 · · · an ∈ LC with n > k− 1 and let W = (ei)
n−k+1
i=1

be the corresponding walk in dB(k − 1). Then, between two distinct consecutive
cycles occurring along W , there is an edge which defines an update in the sequence
of extension histories of u which has not occurred along W before. In particular,

#Cyc(W) 6 1 +
∣∣∣⋃n−ki=1 ∆i+1

u \∆i
u

∣∣∣ .
Here

⋃n−k
i=1 ∆i+1

u \ ∆i
u is the set of distinct updates in the sequence of extension

histories of u.

Proof. Now W is a cycle-deterministic walk, so that we may write W =
P0C1P1 · · ·CtPt, where t = #Cyc(W) and W leaves the cycle Ci at position
si = |P0C1P1 · · ·Ci| for each i ∈ [1, t−1]. It follows that, for each i ∈ [1, t−1], the
position si + 1 defines an update in the sequence of extension histories. We claim
that, for each i ∈ [1, t− 1], the greatest index ` ∈ [si + 1, si + |Pi|+ 1] defining an
update, defines an update that has not previously occurred along W .

Suppose, to the contrary, that this is not the case, for some i ∈ [1, t− 1]. Let `
be the greatest position in [si + 1, si + |Pi| + 1] which defines an update. By our
assumption, e` = ej = (x, a) for some j < `, x ∈ Σk−1, and a ∈ Σ. Note that
there exists a position r, where j < r < `, defining the update er = (x, b), for some
b 6= a (otherwise ` would not define an update). By Lemma 4.5 we necessarily
have bBa. We claim that x occurs at some position m > `. This is a contradiction
by Lemma 4.5.

If head(e`) = tail(e`), then x occurs at position m = `+ 1. Suppose this is not
the case. Observe first that

∆`
u ∩∆`−1

u = ∆`
u \ {e`}.

Let now G = (V (W),∆`−1
u). By Lemma 4.9, there exists a path P from head(e`) =

tail(ej+1) to head(e`−1) = x using only edges from ∆`−1
u (note that `− 1 > j+ 1).

Since we do not use the edge e` along such a path, we are using only edges from
∆`
u. Since W enters Ci+1 at some position `′ > `, we continue using edges from

∆`
u until Ci+1 occurs along W . Thus W continues by e` ·P which is a cycle having

head(e`P) = x, whence x occurs at m = ` + |P | + 2 in u. This concludes the
proof.

Corollary 4.11. Let u ∈ Lk,Σ,C and let W be the corresponding walk in dB(k−1).
Then #Cyc(W) 6 mk−1(m− 1) + 1.

Proof. For each factor x of length k−1 occurring in u there can be at most (m−1)
updates, since the pairs (x, a) ∈ ∆1

u are not counted as updates. There are mk−1

such factors x. The claim now follows from the above proposition.

We make a further observation regarding the cycles along a walk defined by
u ∈ LC. If some cycle occurring along u occurs at least twice, then we may
construct a whole family of words in LC.

38 Representatives of Equivalence Classes §4

Lemma 4.12. Let C be a cycle and let W,W ′ be walks in dB(k − 1) with
head(W) = tail(W ′) = tail(C). For each r let u(r) ∈ Σ∗ be defined by the walk
W (r) = W ·Cr ·W ′. Then u(r) ∈ Lk,Σ,C for all r > 0 if and only if u(2) ∈ Lk,Σ,C.

Proof. Notice that the “left to right” direction is trivial: if the claim is true for all
values, then it is true for some value. Let thus u = u(2) ∈ Lk,Σ,C and let us first
show that u(r) ∈ Lk,Σ,C, for r 6 1. Let (x, a) ∈ ∆i

u(0) , and assume that x occurs
at some position prior to i. In fact, we may assume that xa occurs at position
i. Assume further that ` defines the update (x, b) and that there exists y ∈ Σk−1

which occurs at position j and m, where i < j 6 ` < m. It is clear that similar
occurrences of xa, xb, and y occur in u (e.g., if i 6 |W | then xa occurs at position
i in u, and if i > |WCr|, then xa occurs at position i + |C2−r| in u). It follows
that a C6 b, since the sequence (∆i

u)i of extension histories of u is increasing by
Lemma 4.5.

We then focus on the case r > 2. Now the sequence of extension histories of
u(r) is defined as follows:

∆i
u(r) =


∆i
u if i 6 |WC|

∆
|WC|
u if |WC| < i < |WCr|

∆
i−(r−2)|C|
u if i > |WCr|

.

Assume that (x, a) ∈ ∆i
u(r) and x occurs in u(r) at some position i′ 6 i, and that `

defines the update (x, b) for some i < `. Assume further that there exists y ∈ Σk−1

occurring at positions j and m with i < j 6 ` < m. We may assume that either i
defines the update (x, a) or that (x, a) ∈ ∆1

u(r) and x occurs for the first time at i,
since such an index (of magnitude at most i) exists. Since no index n in the interval
[|WC|, |WCr|) defines an update, we see that i, ` /∈ [|WC|, |W |Cr). Observe now
that if none of the indices i, j, `, or m occur in the interval [|WC|, |WCr|), then
we may argue as in the case r 6 1 to show that a C6 b.

Thus we may consider the case i < |WC|, as otherwise none of the indices occur
in the interval [|WC|, |WCr|). Now xa occurs at position i in u also. Assume first
that ` < |WC|. Then xb occurs at position `, and y occurs at position j in u as
well. Now m is in the interval [|WC|, |WCr|) and hence y is a vertex of C. There
exists an index m′ such that |WC| < m′ 6 |WC2| and y occurs in u at position m′.
Again, a C6 b since the sequence of extension histories of u is increasing. Assume
then that ` > |WCr|. Now xb occurs at position `− (r − 2)|C| and y at position
m− (r − 2)|C| in u as well. Now j is in the interval [|WC|, |WCr|) so that y is a
vertex of C. Let j′ be an index such that |WC| 6 j′ < |WC2| and y occurs at j′

in u. Again it follows that a C6 b.
We have shown that the sequence of extension histories of u(r) is increasing,

that is, u(r) ∈ Lk,Σ,C by Lemma 4.5.

The requirement that the cycle C is repeated twice in the above lemma is
necessary. Indeed, consider the following example:

Example 4.13. Let u = aabbcaacbbab with k = 3 and a C b C c. Now we may
write Wu = CW , where C is the cycle ((aa, b), (ab, b), (bb, c), (bc, a), (ca, a)) and
W = ((aa, c), (ac, b), (cb, b), (bb, a), (ba, b)). Now the sequence of extension histories
of u is increasing, since, even though (bb, c) ∈ ∆3

u and (bb, a) ∈ ∆9
u, the factors ba

§4.2 k-abelian Singletons 39

and ab, which are the only factors of length 2 occurring after position 9, do not
occur at any position in the interval [3, 9]. Thus u ∈ Lk,Σ,C. But now the sequence
of extension histories of the word aabbc · u = u(2) corresponding to the walk C2W
is not increasing. Indeed, ab occurs at positions 7 and 16, while (bb, c) ∈ ∆3

u(2) and

(bb, a) ∈ ∆14
u(2) . Thus u(2) is not in Lk,Σ,C.

4.2 k-abelian Singletons

We also consider properties of particular k-abelian equivalence classes, namely,
singleton classes. Let us formally define words defining such classes.

Definition 4.14. A word w ∈ Σ∗ is called a k-abelian singleton, if the equivalence
class represented by w is a singleton set. We define the language Lk,Σ,sing as the
language of k-abelian singletons over alphabet Σ:

Lk,Σ,sing = {w ∈ Σ∗ : |[w]k| = 1}.

Observe that the language Lk,Σ,sing is a subset of the language Lk,Σ,C. Furt-
hermore each word of length at most 2k−1 is a k-abelian singleton by Lemma 3.3.

Remark 4.15. Observe that the language Lk,Σ,sing is also factorial (recall Re-
mark 4.1). This may be seen with a similar proof as in the case of Lk,Σ,C.

Example 4.16. It is not difficult to verify that the set of 2-abelian singletons over
B = {a, b} beginning with a is the (regular) language

a+b∗ + ab∗a+ (ab)∗{ε, a}.

As the number of singleton classes beginning with b are the same up to switching
a’s with b’s, the total number of 2-abelian singleton classes of length n over a
binary alphabet is 2n+ 4 for n > 4.

Similar to the previous section, we give a combinatorial characterization of
k-abelian singletons, and then describe the walks they define in the de Bruijn
graphs.

4.2.1 A Combinatorial Characterization of k-abelian Sing-
letons

We characterize k-abelian singletons in terms of generalized return words using k-
switchings. For this we say that x is a proper factor of w if x occurs in w[1, |w|−1).

Definition 4.17. Let u ∈ Σ∗ and let x, y ∈ Σ+ be of the same length. A return
from x to y in u is a word v ∈ Σ+ such that vy is a factor of u, x is a prefix of vy
and x and y do not occur as proper factors of vy. Recall that if x = y, then vy is
simply a complete first return to x in w.

Note that if v and v′, |v| 6 |v′|, are distinct returns from x to y in a word w,
then vy cannot be a factor of v′y, as otherwise v′y would contain either x or y as
a proper factor. The following characterization appears in the article [55].

40 Representatives of Equivalence Classes §4

Lemma 4.18. A word w ∈ Σ∗ is a k-abelian singleton if and only if for each pair
x, y ∈ Fk−1(w) there is at most one return from x to y in w.

Proof. Let w ∈ Σ∗ and suppose it contains two distinct returns v and v′ from x to
y. Let vy = w[i, j)y and v′y = w[`,m)y with i < `. Note that j < m as otherwise
vy contains v′y as a factor. In fact, by definition, we necessarily have i < j and
` < m (since v, v′ ∈ Σ+) and j 6 `, (since otherwise vy contains x as a proper
factor). But now

w ∼k w′ = w[1, i)w[`,m)w[j, `)w[i, j)w[m..] 6= w

since w begins with w[1, i)vy and w′ with w[1, i)v′y. It follows that w cannot be
a k-abelian singleton.

Suppose then that for each pair x, y ∈ Fk−1(w) there is at most one return from
x to y in w. Suppose, for the sake of contradiction, that w′ ∼k w with w′ 6= w.
Let w = λxaµ and w′ = λxbµ′ with a, b ∈ Σ, a 6= b, λ ∈ Σ∗ and x ∈ Σk−1. Since
w′ ∼k w, we have that xa occurs in w′[|λ|+ 1..] and xb occurs in w[|λ|+ 1..]. Let
` > |λ|+1 be a position of xb in w. Now we must have y ∈ Σk−1 which occurs both
in w[|λxa|, `+k−1) and w[`+1..], say at positions j and m, respectively (compare
to the proof of Theorem 3.12). We can assume that j and m are minimal.

Now there exists a return to x in w which begins with xa. Therefore, x cannot
occur in w[` + 1..], as otherwise w contains also a return to x which begins with
xb. It follows that w[`,m)y is a return from x to y which begins with xb. Now
w[i, j)y cannot be a return from x to y, since it begins with xa. We thus have
a position of x in between i and j and if we take it to be maximal, we obtain a
return from x to y; it has to begin with xb. But this is a final contradiction, since
w has now also a return to x which begins with xb.

4.2.2 k-abelian Singletons as Cycle Decompositions

We now interpret k-abelian singletons as walks in the de Bruijn graph of order k−1.
Observe that, since k-abelian singletons are elements of Lk,Σ,C, we immediately
have that a walk Wu in dB(k−1) is cycle-deterministic by Lemma 4.8. The results
in this subsection are based on results in the article [55], though the approach is
different. We apply the approach using notions from the previous section.

Lemma 4.19. Let u ∈ Lk,sing and let Wu be the corresponding walk in dB(k−1).
If a vertex x occurs in a cycle C occurring along Wu, then x does not occur along
Wu before entering C or after leaving C. Furthermore, if x ∈ Σk−1 occurs at least
three times in u, then x occurs (as a vertex) in a cycle occurring along Wu.

Proof. Let C be a cycle occurring along Wu and let x ∈ V (C). Let us write

Wu = W1 · C ·W2 ·W3 = W1 ·W ′2 · C ′W3,

where C ′ is a shifted version of C, Wu enters C at position |W1|+ 1 and leaves C
at position |W1W

′
2C
′|. Assume for a contradiction that we may write W3 = V V ′

for some walks V , V ′ such that V is non-empty, head(V) = x, and x is not an
internal vertex of V . Let us write C ′ = P1P2, where head(P1) = x and P1 is
non-empty. Now P1 corresponds to a return from y to x in u. If y is not an
internal vertex of V , then V also corresponds to a return from y to x in u. This is

§4.2 k-abelian Singletons 41

a contradiction, since P1 and V begin with distinct edges, implying that the two
returns mentioned above are distinct. Now if y is an internal vertex of V , then we
may write V = P1P2, where P1 is non-empty with head(P1) = y, and y is not an
internal vertex of P1. Now C ′ and P1 correspond to distinct returns to y in u, a
contradiction. Thus x does not occur in W3 (except possibly as the first vertex).

Similarly, assume that x occurs in W1 with W1 = V ′V , V non-empty, tail(V) =
x and x is not an internal vertex of V . Let tail(C) = y. Write C = P1P2 where
P2 is non-empty and tail(P2) = x. Then P2 corresponds to a return from x to y
in u. If y does not occur in V , then V corresponds to a different return from x
to y in u, a contradiction. If y occurs in V as an internal vertex, then we may
write V = S1S2 with S2 non-empty and tail(S2) = y. Hence S2 corresponds to a
return to y and the last edges of C and S2 are distinct, implying that the returns
are distinct. This is again a contradiction.

Assume now that x occurs along Wu at least three times. Factorize Wu =
W1W2W3W4, where W2 and W3 are non-empty walks and x = head(W1) =
head(W2) = head(W3). Assume further that x is not an internal vertex of neither
W2 nor W3. Since W2 and W3 correspond to returns to x in u, they must be equal;
let W = W2 = W3. Assume that W is not cycle. Thus there exists some internal
vertex y of W which occurs twice. Then we may write W = V1V2V3V4 where
head(V1) = tail(V2) = head(V2) = tail(V3) = y and y is not an internal vertex of
neither V1, V3, nor V4. We assume that V3 is non-empty, but V2 is allowed to be
empty. Now V3 corresponds to a return to y in u which does not contain x as a
factor. On the other hand, V4V1 corresponds to a return to y in u which contains
x as a factor, a contradiction.

Corollary 4.20. Let u ∈ Lk,Σ,sing and let Wu be the walk in dB(k−1) correspon-
ding to u. Then the cycles in Cyc(W) are vertex-disjoint.

The previous corollary allows us to consider k-abelian singletons as certain
kinds of walks in cycle-semi-decompositions of the de Bruijn graphs. We formalize
this concept now. Let G = (V,E) be a graph and let C = {C1, . . . , Cm} be a
set of vertex-disjoint cycles of G. Let Vi = V (Ci) for each i = 1, . . . ,m, and
let V⊗ = V \

⋃m
i=1 Vi. The set consisting of the partitions Vi, i = 1, . . . ,m and

{v}, v ∈ V⊗, is called a cycle-semi-decomposition of G, denoted by V/C.

Definition 4.21. Let G = (V,E) and let C be a set of vertex disjoint cycles of G.
We define the quotient graph G/C = (V/C, E′) with respect to C as follows. For
X,Y ∈ V/C, X 6= Y , we have (X,Y) ∈ E′ if and only if there exist x ∈ X and
y ∈ Y such that (x, y) ∈ E.

Remark 4.22. Let now u be a k-abelian singleton and consider the graph Gu obtai-
ned from GΨk(u) by removing multiplicities of edges. The graph Gu/Cyc(Wu) then
contains a walk which traverses through each vertex V (C), where C ∈ Cyc(Wu),
once and through each {v}, where v ∈ V⊗, at least once and at most twice.

Example 4.23. Consider the graph Gu induced by the 4-abelian singleton u =
2(01)32(0110)3014. The vertex-disjoint cycles corresponding to u are defined by
the sets of vertices V1 = {010, 101}, V2 = {011, 110, 100, 001} and V3 = {111}. The
set of factors occurring at most twice in u is V⊗ = {201, 012, 120}. The quotient
graph Gu/Cu is displayed in Figure 4.1.

42 Representatives of Equivalence Classes §4

{201}

V1

{012}

{120}

V2 V3

Figure 4.1: The quotient graph Gu/Cyc(Wu) induced by the 4-abelian singleton
u = 2(01)32(0110)3014. The cycles defining V1, V2, and V3 are {(010, 1), (101, 0)},
{(011, 0), (110, 0), (100, 1), (001, 1)}, and {(111, 1)}, respectively. Modification of
[55, Fig 3].

We give an upper bound on the number of cycles in Cyc(Wu) for any u ∈ Lsing

and the corresponding walk Wu in the de Bruijn graph. Recall that the number
of necklaces of length ` over an m-letter alphabet is denoted by Nm(`) and that
the formula Equation 2.1 is for counting these values. We also recall a related
result from the literature, namely, the following theorem, originally conjectured
by Lempel and later proved to be true by J. Mykkeltveit (see [73] and references
therein).

Theorem 4.24 ([73]). The minimum number of vertices which, if removed from
dBΣ(n), will leave a graph with no cycles, is N|Σ|(n) (defined by (2.1)).

The above theorem implies that the size of any set C of vertex disjoint cycles
in the de Bruijn graph dBΣ(n) is at most N|Σ|(n). Indeed, if |C| were larger than
N|Σ|(n), then removing any set of N|Σ|(n) vertices from the graph dB(n) would
leave some cycle of C in dB(n), contradicting the above theorem. Since the cycles
in Cyc(Wu), where u is a k-abelian singleton and Wu is the corresponding walk in
dB(k−1), are vertex disjoint by Corollary 4.20, we have the following proposition.

Proposition 4.25. Let u ∈ Lk,Σ,sing and let Wu be the corresponding walk in
dBΣ(k − 1). Then #Cyc(Wu) 6 Nm(k − 1).

We may prove a similar result to Lemma 4.12 for singletons.

Lemma 4.26. Let C be a cycle and W and W ′ be walks in dB(k − 1). For each
r > 0 let u(r) be defined by the walk W (r) = WCrW ′. Then we have u(r) ∈
Lk,Σ,sing for all r > 0 if and only if u(1) ∈ Lk,Σ,sing.

Proof. Without loss of generality we may assume that W (r) enters C at position
|W |1 and leaves C at position |WC(r)|+t for some t < |C|. Let us write C = P1P2,
where |P1| = t, whence WC(r)W ′ = WCrP1W

′′, and the cycle C is left at position
|WCrP1|.

Again the “left to right” direction is clear. Assume thus that u = u(1) ∈
Lk,Σ,sing and let r be arbitrary. We show that for each pair x, y ∈ Σk−1, there is
at most one return from x to y in u(r).

Assume the contrary, namely that there exist x, y ∈ Σk−1 and two distinct
returns from x to y in u(r). These returns correspond to subwalks R1 and R2 of
W (r) starting from x and ending in y and x and y occur only as external vertices.
It follows that we may write u = T0R1T1R2T2. If x ∈ V (C) then, by Lemma 4.19,
x does not occur in W or W ′′ except possibly as the last (resp., first) vertex. The

§4.3 Representatives of Classes of Fixed Size 43

same holds for y. We conclude that x ∈ V (C) if and only if y ∈ V (C). If x ∈ V (C)
then the only return from x to y follows the cycle C, and there is only one such
return. Assume thus that x /∈ V (C). Now if R1 and R2 both occur along either
W or W ′′, then the corresponding returns occur in u ∈ Lk,Σ,sing, which is not
possible. We are left with the case that either R1 occurs along W or R2 occurs
along W ′′ (both cannot contain parts of CrP1). Assume the former, the latter
leads to a similar contradiction. Now R2 is of the form V CrP1V

′. Thus R1 and
V CP1V

′ correspond to distinct returns in u, which is again a contradiction. This
concludes the proof.

4.3 Representatives of Classes of Fixed Size

In the previous section we considered k-abelian singleton classes. In this section
we describe a slightly more general set of k-abelian classes. These classes were
considered in the work [59], where the results of this section appear.

Definition 4.27. Let k > 1 and r > 1. Define the language Lk,Σ,r = {w ∈
Σ∗ : |[w]k| = r}. In other words, Lk,Σ,r consists of the words which represent
k-abelian equivalence classes of cardinality r.

We consider these languages in a language theoretic setting. We remark that,
for r = 1, the language Lk,Σ,r coincides with the language Lk,Σ,sing. For r > 2, we
observe that Lk,Σ,r is not a subset of Lk,Σ,C. Let us make a brief observation on
words in Lk,Σ,r.

Lemma 4.28. Let k > 1 and r > 2. There exists an integer Bk,r such that, for
each u ∈ Lk,Σ,r, if #<u(x) > 2 for some x ∈ Fk−1(u) then |u|x 6 Bk,r.

Proof. Let u ∈ Lk,Σ,r and assume #<u(x) > 2 for some x ∈ Fk−1(u). Let us write
Wu in terms of complete first returns of x in u;

Wu = W0W1 · · ·W|u|x−1W|u|x ,

where tail(Wi) = head(Wi) = x for all i = 1, . . . , |u|x − 1. Observe now that each
walk Wi, where i = 1, . . . , |u|x − 1, corresponds to complete first return to x in u,
and thus x is not an internal vertex of any of the walks Wi, where i = 0, . . . , |u|x.
Furthermore, W0 and W|u|x contain the vertex x only as the last and first vertex,
respectively. Now, for any permutation σ of [1, |u|x), we have that u ∼k vσ, where
vσ is defined by the walk

Wσ = W0Wσ(1) · · ·Wσ(|u|x−1)W|u|x

(by Corollary 3.15). The number of distinct words obtained by this method is(|u|x−1
m1,...,mL

)
= (|u|x−1)!

m1!···mL! , where L = #<u(x) and (mi)i = (|u|y)y∈<u(x). This is the

number of distinct permutations of words y ∈ <u(x) with multiplicities |u|y, where
y ∈ <u(x). It is clear that all these words are distinct by the definition of complete

first returns. We now have, by assumption, L > 2 whence
(|u|x−1
m1,...,mL

)
> |u|x − 1.

This implies r = #[u]k > |u|x − 1, or in other words, |u|x 6 r + 1. We may take
Bk,r = r + 1.

44 Representatives of Equivalence Classes §4

Example 4.29. In the case r = 1 and u ∈ Lk,Σ,1, we have #<u(x) 6 1 for all
x ∈ Σk−1 by Lemma 4.18. Thus we may set Bk,1 = 0 by convention. On the other
hand, for r > 2, we have Bk,r > 2. Indeed, the word u = ak+r−2bak−1 defines the
k-abelian equivalence class

[u]k = {ak−1+tbak+r−2−t : 0 6 t 6 r − 1}

as is straightforward to verify. Thus u ∈ Lk,Σ,r. We also note that #<u(ak−1) = 2.

Definition 4.30. Let k > 1 and L ⊆ Σ∗. Let further C be a lexicographic
ordering on Σ∗. We define the language C-Mink(L) as

C-Mink(L) = {u ∈ L : u C6 v for all v ∈ L ∩ [u]k}.

In other words, C-Mink(L) is the language of elements of L which are lexicographi-
cally smaller than all other words in the same k-abelian equivalence class. We may
say that C-Mink(L) is the language of lexicographically least representatives with
respect to C and L. We omit the prefix C whenever it is not of importance. In
this case it should be considered to be fixed, but arbitrary.

Observe now that Mink(Lk,Σ,r) = Lk,Σ,C ∩ Lk,Σ,r. This, of course, does not
hold for general languages L; we shall consider the language Mink(L) for regular
languages L in the following chapter. Here we only make the following remark.

Lemma 4.31. Let k > 2 and let u ∈ Mink(Lr,k) and assume |u|x > Bk,r. Then
we may write Wu = W · C |u|x−1 ·W ′ for some cycle C with tail(C) = x.

Proof. Assume that |u|x > Bk,r for some x ∈ Σk−1. Since |u|x > Bk,r, we have
<u(x) = 1 by the above lemma. Let y be the single element in <u(x). We

may write Wu = W ·W |u|x−1
y ·W ′, where head(W) = tail(Wy) = head(Wy) =

tail(W ′) = x and Wy is the walk in dB(k − 1) corresponding to y. We claim
that Wy is a cycle. Assume the converse; then there exists a vertex z in Wy such
that there are two distinct edges both with tail z along Wu. As in the proof of
Lemma 4.19, we deduce that #<u(z) > 2. Furthermore, |u|z > 2(|u|x − 1) > Bk,r
which is contrary to the above lemma.

We conclude this chapter with yet again a result similar to Lemma 4.12 for
words in Mink(Lk,Σ,r).

Lemma 4.32. Let r > 2. Let u(s), for each s > 0, denote the word defined by the
walk W (s) = W · Cs ·W ′ (in dB(k − 1)) for some cycle C and walks W and W ′.
Then u(s) ∈ Mink(Lk,Σ,r) for some s > Bk,r if and only if u(s) ∈ Mink(Lk,Σ,r) for
all s ∈ N.

Proof. The other implication is immediate, so assume u(s) ∈ Mink(Lk,Σ,r) for some
s > Bk,r. The fact that u(s) ∈ Lk,Σ,C for all s ∈ N follows by Lemma 4.12, so it
is enough to show that u(s) ∈ Lk,Σ,r for all s ∈ N (recall that for r > 2, we have
Bk,r > 2 by Example 4.29). Without loss of generality we may assume that W (s)
enters C = (ei)

`−1
i=0 (|C| = ` > 1) at position |W | + 1 and that s is maximal, i.e.,

W (s) leaves C before position |W | + (s + 1)|C| and, further, that W (s) leaves C
via vertex y = tail(eo), where 0 6 o 6 `− 1.

§4.3 Representatives of Classes of Fixed Size 45

Observe now that |u(s)|x > s for all x ∈ V (C). It follows by the above lemma
that for each vertex x ∈ V (C) we have #<u(s)(x) = 1 (if there were another
complete first return to x in u for some x ∈ V (C), we would have |u(s)|x > Bk,r,
a contradiction). Consequently, by the maximality of s, |u(s)|tail(ei) = s + 1 for

all i ∈ [0, o], and |u(s)|tail(ei) = s for all i ∈ (o, `). Further, each (except possibly

the last) occurrence of x is followed by the same letter ax in u(s). Moreover, the
only vertex y ∈ V (C) followed by a letter b 6= ay in u is the vertex y = tail(eo) via
which W (s) leaves C from (the only exception is that W ′ is a subpath of C).

Consider the graph Gs = Gu(s) in light of Proposition 3.20. Let κs denote
κhead(W (s)) for each s > 0. By the above observations we conclude that any
rooted spanning tree with root head(W (s)) of Gs contains one of the (multiple
copies of the) edge ei for each i = [0, `) \ {o}, and the edge (y, b) /∈ E(C) (unless
head(W (s)) = y whence no edge from y exists in such a tree). Let us compute κs in
terms of κ0 and s. Adding s copies to an edge ei, where 0 6 i < o, to G0 increases
the number of trees (s + 1)-fold, as each tree must contain exactly one copy of
this edge and there are s + 1 to choose from. For the remainder of the vertices
z ∈ V (C) \ y, any tree in Gs must contain some copy of the path (ej)

`−1
j=o+1 which

connects to a copy of a tree defined by G0. Given s copies of each edge along
this path, there are altogether s`−o−1 choices for the path. We conclude that
κs = κ0 ·(s+1)os`−o−1. This may be expressed as κs = κ0 ·

∏
x∈V (C)\y(s+ |u(0)|x).

Further, we observe that, in the product

∏
x∈Fk−1(u(s))

(|u(s)|x − 1)!∏
a∈Σ |u(s)||xa|!

,

the only values that vary according to s are certain values corresponding to the
vertices of C. In particular, |u(s)|x = |u(s)|xax = s + |u(s)|x0

∈ {s, s + 1} for each
x ∈ V (C) \ y, |u(s)|y = s + 1, and |u(s)|yay = s. Recall that |u(s)|yb = 0 or 1
depending on whether head(W (s)) = y or not. Plugging these values in (3.2), we
find that the following ratio equals 1 for any s > 1:

#[u(s)]k
#[u(0)]k

=
∏

x∈V (C)\y

(s+ |u(0)|x) ·
∏

x∈V (C)\y

1

(s+ |u(0)|x)
= 1.

Thus, for any choice of s, the obtained word u(s) has #[u(s)] = r. The claim
follows.

Remark 4.33. We close this chapter with some concluding remarks.
The aim of this chapter has been to explore the structure of minimal represen-

tatives of k-abelian equivalence classes. The considerations here are quite technical
and involved, but all have graph theoretical flavour due to the main tool used—
the de Bruijn graphs. This proves to be of particular use when considering how
the factors of length k are situated in such words. Of course, it is the factors of
length k together with the prefixes and suffixes of length k − 1 which determine
the k-abelian equivalence class. The involved work done in this chapter allow us
to translate certain properties into finite automata, as the graph structure of auto-
mata permits certain interpretations using the de Bruijn graph. This is precisely
what we do in the following two chapters.

46 Representatives of Equivalence Classes §4

47

Chapter 5

Automata Theoretic Aspects
of k-Abelian Equivalence

We begin the exposition to language theoretic aspects of k-abelian equivalence
by noting that the languages Lk,Σ,C and Lk,Σ,sing are regular. This is a straig-
htforward observation from the characterization of k-abelian equivalence by k-
switchings and especially Claim 3.13. We also give another proof of the regularity
of these languages in the first section of this chapter. This proof is based on the
work done in the previous chapter.

In the second section we develop a k-switching operation on languages. We
show that regular languages are closed under this operation. In the third section
we use this tool to show that the languages Lk,Σ,r are regular for any r > 1. We
conclude this chapter with some language theoretic observations related to the
concepts introduced in this chapter.

5.1 The Languages Lk,Σ,C and Lk,Σ,sing are Regular

This section consists of two separate proofs (each) of the facts that Lk,Σ,C and
Lk,Σ,sing are regular. The first proofs appear in [19]. The second proofs are inspired
by the results of [59]. This section contains work mainly from the article [19].

We start by giving a straightforward proof of the fact that Lk,Σ,C and Lk,Σ,sing

are regular.

Theorem 5.1 ([19]). The languages Lk,Σ,C and Lk,Σ,sing are regular for any in-
teger k > 1, any alphabet Σ, and any lexicographic ordering C.

Proof. Let u be the lexicographically least element of [u]k with respect to C. If
there exists a k-switching on u which yields a new element, it has to be lexico-
graphically greater than u. In particular, u does not contain factors from the
language(

(xbΣ∗ ∩ Σ∗y) Σ∗ ∩ Σ∗x
)
aΣ∗ ∩ Σ∗y,

for each pair x, y ∈ Σk−1 and each pair of letters a, b ∈ Σ with aC b. On the other
hand, any word u avoiding such factors is lexicographically least in the k-abelian

48 Automata Theoretic Aspects of k-Abelian Equivalence §5

equivalence class it represents. Indeed, this follows from Claim 3.13. We thus have

Lk,Σ,C =
⋂

x,y∈Σk−1

a,b∈Σ, aCb

Σ∗
((

(xbΣ∗ ∩ Σ∗y) Σ∗ ∩ Σ∗x
)
aΣ∗ ∩ Σ∗y

)
Σ∗, (5.1)

where, for a regular expression R, R denotes the complement language Σ∗ \L(R).
Let B be the inverse ordering of C. Since Lk,Σ,C and Lk,Σ,B are both regular,

then so is their intersection. Observe that a word u is in this intersection if and
only if [u]k is a singleton set. Thus Lk,Σ,sing is regular.

A representation of Lk,Σ,sing similar to (5.1) is straightforward to construct.
Indeed, a k-abelian singleton avoids all k-switchings that yield a different word.
Thus, the expression for Lk,Σ,sing is the same as in (5.1) except that we require
a 6= b instead of aC b in the intersection.

For a fixed k and Σ it is easy, though time consuming, to construct a DFA
recognizing Lk,Σ,C or Lk,Σ,sing using (5.1). This may be done by using known
methods for converting the regular expressions in (5.1) to automata and, further,
by using known constructions for intersections of automata. Using the expression
(5.1) (and the similar expression for k-abelian singletons), in [19] the minimal DFA
recognizing the languages Lk,B,C for k = 2, 3, 4, the languages Lk,B,sing for k = 2, 3,
and the language L2,{a,b,c},C are computed. We recall these in Figures 5.1–5.6.
The transition tables are presented in Appendix C. We make a few observations
and remarks.

Example 5.2. In the automata of Figures 5.1–5.6 the sink states are omitted (as
are all the transitions leading to the sink state). All other states are accepting.
This is because the languages are defined by avoiding certain patterns, so that the
languages are factor closed. The number of states (including the sink state) in the
minimal DFA of Lk,Σ,C for k = 2, 3, 4 are 10, 49, and 936 states, respectively. The
number of states in the minimal DFA of Lk,Σ,sing for k = 2, 3, and 4 are 15, 87, and
1011, respectively. Finally, the number of states in the minimal DFA recognizing
L2,{a,b,c},C and L2,{a,b,c},sing are 66 and 84, respectively.

Remark 5.3. It seems to be the case that the number of states in the minimal DFA
recognizing Lk,Σ,C and Lk,Σ,sing grow rapidly when k or Σ grows. It can be shown
that the minimal DFA recognizing Lk,Σ,C must contain at least mk−1(m− 1) + 1
vertex-disjoint cycles (see Section 6.3), and thus at least that many states. For the
languages Lk,Σ,sing no such lower bound is known (see discussion in Section 6.4).

Example 5.4. By observing the DFA in Figure 5.1, on the right hand side, we
obtain the following regular expression for L2,B,sing ∩ aB∗:

a(ε+ aa∗ + aa∗bb∗ + b+ ba(ba)∗ + ba(ba)∗b+ bb∗ + bb∗a)

Recall that a more compact expression was obtained in Example 4.16.

We remark that a crude upper bound on the number of states in the minimal
DFA recognizing Lk,Σ,C (and Lk,Σ,sing) can be obtained from the above regular
expression using well-known conversions between various models of regular langua-
ges (see, [41, 45]). Indeed, e.g., Glushkov’s algorithm outputs an equivalent NFA

§5.1 The Languages Lk,Σ,C and Lk,Σ,sing are Regular 49

b

a

a

b

ba b

a

a

b a

b

b

a

a

a

a

b

a

a

a

a

b

b

b

b

a

b

a

a

b

b

b

b

b

a

Figure 5.1: On the left the minimal DFA recognizing the language L2,B,C (aC b).
On the right the minimal DFA recognizing the language L2,B,sing. The sink states
are not illustrated. [19, Figure 3], modification of [18, Fig. 3].

of n + 1 states, given a regular expression of n occurrences of alphabet symbols.
The determinization of an n state NFA can, in the worst case, give a DFA with 2n

states. The minimal DFA of the intersection of two regular languages, having n1

and n2 states respectively, can have n1n2 states in the worst case. We have not
attempted to make any precise estimations of the number of states in the minimal
DFA recognizing Lk,Σ,C for general k.

Next we give an alternative proof of the regularity of the languages Lk,Σ,C
and Lk,Σ,sing. The first proof given here is quite straightforward and clean, which
gives an algorithmic procedure to construct corresponding automata. The alter-
native proof, on the other hand, is not quite as straightforward, but it gives, as
an immediate corollary, the fact that the languages have polynomial growth and
provides bounds on the degree of the polynomial using an well-known result from
the literature. Observe that the expression given in the first proof of Theorem 5.1
does not, at least not immediately, imply that this should be the case.

Theorem 5.5. The language Lk,Σ,C (resp., Lk,Σ,sing) may be expressed by a finite
union of regular expressions of the form z0y

∗
1z1 · · · y∗t zt, where t 6 mk−1(m−1)+1

(resp., t 6 Nm(k − 1)).

Proof. The following proof works for both languages with only slight differences,
which we mention explicitly. Let thus L be either Lk,Σ,C or Lk,Σ,sing. Recall
Lemma 4.8, that is, for any long enough u ∈ L we have that the corresponding
cycle-deterministic walk Wu in dB(k − 1) is of the form

Wu = P0C
α1
1 P1 · · ·Cαtt Pt, (5.2)

where {C1, . . . , Ct} = Cyc(Wu), αi > 1 for each i = 1, . . . , t, and Pi is a path for

each i = 0, . . . , t. Furthermore, Wu enters Ci at position |P0|+
∑i−1
j=1 |C

αj
j Pj | for

each i = 1, . . . , t. Up to varying the exponents αi, there are finitely many such

50 Automata Theoretic Aspects of k-Abelian Equivalence §5

a

b

b

b
a

a
a

a

a

a

b
b

b

b

a

a

b

b
a

a

b

b

a b

b

b

b

a

b

b

b

a a

a a

a

b

b

a
a

a

a

b

b a

a

a

b

b

a

b

b

a b

b

a, b

b

b

b

b

a b

a

b

b

b

a

b

a

b

a

b

a

a

a

a

b

ba

a

b

a

Figure 5.2: The minimal DFA recognizing the language L3,B,C with a C b. [19,
Figure 4].

representations. Indeed, there are finitely many cycles in dB(k − 1), and Wu is
cycle-deterministic. Furthermore, there are finitely many choices for the paths Pi.
(In fact, by Corollary 4.11 we have t 6 mk−1(m− 1) + 1 for Lk,Σ,C. For Lk,Σ,sing,
we have t 6 N|Σ|(k − 1) by Proposition 4.25.)

Let B be the (finite) set of words having a presentation of the form (5.2),
where αi 6 2 for all i = 1, . . . , t. Let v ∈ B and let Wv be of the form (5.2).
Let x = tail(Wv), zi = label(Pi) for each i = 0, . . . , t, and yi = label(Ci) for each
i = 1, . . . , t. We thus have v = xz0y

α1
1 z1 · · · yαtt zt. Let Lv be the regular language

defined by the expression

xz0y
ε1
1 z1 · · · yεtt zt, (5.3)

where εi = 1 if αi = 1; otherwise we let εi be the Kleene star ∗. (If v is a k-abelian
singleton, we may take εi = ∗ for each i.) We claim that L = ∪v∈BLv. We first
show that Lv ⊆ L for each v ∈ B. Indeed, let u ∈ Lv for some v ∈ B. We have

u = xz0y
β1

1 z1 · · · yβtt zt,

where βi > 0 for each i = 1, . . . , t. The walk Wu in dB(k − 1) corresponding to u
is thus of the form

Wu = P0C
β1

1 P1 · · ·Cβtt Pt.

By repeatedly using Lemma 4.12 in the case of Lk,Σ,C (Lemma 4.26 in the case of
Lk,Σ,sing), we see that u ∈ L.

We then show that L ⊆ ∪v∈BLv. Let u ∈ L have a walk in dB(k − 1) of the
form (5.2). Then the word v has the same representation, only with exponents
βi defined by βi = 1 if αi = 1, otherwise βi = 2. By Lemma 4.12 in the case of

§5.1 The Languages Lk,Σ,C and Lk,Σ,sing are Regular 51

b

a

a

b

a

b

a

a

b

a

b

b

a

b

b

a

a

b

a

b

b

a

a

b

a

b

a

b

b

a

b

a

b
a

a

b

b

b

a

a

a

b

a

a

b

b

b

b

b

b

b

b

a

b

b

b

b

b

a

a

a

b

a

a

a

a

b

b

a

b

b

b

a

b

a

a

b

a

a

a

b

a

a

a

a

a

a

a

a

b

b

a

a

a

a

b

a

a

b

a

b

b

b

a
b

b

b

b

b

b

b

b

b

a

a

a a

a

b

a

a

b

b

b

b

a

b

b

b

a

a

a

a

b

a

b

b

b

a

b

a

a

a

a

Figure 5.3: The minimal DFA recognizing the language L3,B,sing. Modification of
[19, Figure 6].

52 Automata Theoretic Aspects of k-Abelian Equivalence §5

c c

a

b

c

c

c
a

a

c

b

cb

c

a

c

c

a

c

c

a
b

b

b

c

c

c

b

a

c

a, b

b

b
b

c

a

a

a

a

b

cb

a

a

c

c

b

a

b

b

b

b

c

b

c

b

c

c

c

a

a

a

b

b

b

a

a

a

a

b

c

b

c

b

b

a

c

b

a

c

c

c

c

a

c

b

c

a

b

c

b

c

b

b

c

c

a

b

b

a

a

a

b

c

c

b

c

c

c

b b

a

a

a

a

c

c

a

a

c

c

b

a

c

b

c

a

b

b

a

a

b

a

c

a, b

b
b

c

b

b

c

a

a

b

a

a

a

c

Figure 5.4: The minimal DFA recognizing the language L2,{a,b,c},C with aC bC c.
Modification of [19, Figure 5].

§5.1 The Languages Lk,Σ,C and Lk,Σ,sing are Regular 53

Figure 5.5: The minimal DFA recognizing L2,{a,b,c},sing. [19, Figure 7].

54 Automata Theoretic Aspects of k-Abelian Equivalence §5

Figure 5.6: The minimal DFA recognizing the language L4,B,C with a C b. [19,
Figure 8].

Lk,Σ,C, and Lemma 4.26 in the case of Lk,Σ,sing, we have v ∈ L. Thus v ∈ B and
clearly u ∈ Lv. This concludes the proof.

We make the following observation which is a consequence of the above theo-
rem.

Theorem 5.6. For all k > 1 and Σ, where |Σ| = m > 1, we have

CLk,Σ,C(n) = O(nm
k−1(m−1)) and

CLk,Σ,sing(n) = O(nNm(k−1)−1).

This follows from Theorem 5.5 together with the following well-known result
of [102] (for related considerations, see [40]):

Theorem 5.7. For a regular language L, we have CL(n) = O(nk) for some k > 0
if and only if L can be represented as a finite union of regular expressions of the
form z0y

∗
1z1 · · · y∗t zt with a non-negative integer t 6 k+ 1, where z0, yi, zi ∈ Σ∗ for

all i = 1, . . . , t.

§5.2 The k-switching as a Language Operation 55

We consider more of these quantitative aspects connected to k-abelian equiva-
lence classes and k-abelian singletons in the following chapter. We just mention
that the first of the results is a weaker version of Theorem 1.1, and that the se-
cond result is actually the same as Theorem 6.25 (see discussion in the following
chapter).

5.2 The k-switching as a Language Operation

We proceed to describe a k-switching operation on languages. In this section we
show that this language operation preserves regularity. In other words, given a
regular language L, the language obtained by this operation is also regular. This
result is used in the following section. This section is based on the publications
[18, 19]. Let us now define the k-switching on languages.

Definition 5.8. For a language L ⊂ Σ∗, we define the k-switching of L, denoted
by Rk(L), as the language

Rk(L) = {w ∈ Σ∗ | wRkv for some v ∈ L}.

Similarly, we define R∗k(L) =
⋃
n∈NR

n
k (L) =

⋃
w∈L[w]k.

Note that, from a regular language L, it is straightforward to identify all words
that admit a k-switching (i.e., the words on the top row of Figure 3.1). It is not at
all clear that, by performing all possible k-switchings on all words of L (i.e., taking
the union of all words on the bottom row of Figure 3.1), the obtained language is
also regular. The proof given here appears in [18].

Theorem 5.9. Let L be a regular language. Then Rk(L) is also regular.

The proof is constructive. Given a DFA A recognizing the language L, we
construct an ε-NFA A′ which recognizes the language obtained by performing all
possible k-switchings. We then have that Rk(L) = L(A′). Let us first briefly
sketch the construction of A′ before defining it rigorously. To this end, let u ∈ L
and v = Su,k(i, j, `,m). The computation of A on u may be split into five stages:
the computations of

1. u[1, i) starting from the initial state, ending in some state qi;

2. u[i, j) starting from qi, ending in some state qj ;

3. u[j, `) starting from qj , ending in some state q`;

4. u[`,m) starting from q`, ending in some state qm;

5. u[m..] starting from qm, ending in an accepting state f .

The word v has the same computations with the exception that stages 2. and 4. are
interchanged. An accepting computation of A′ on v performs this interchange by
ε-transitions: the automaton A′ guesses at which indices the k-switching has been
performed by guessing the states qt, where t ∈ {i, j, `,m}, which correspond to
the states the automaton is in after reading u[1, i), u[1, j), u[1, `), and u[1,m), re-
spectively. The automaton then performs four ε-transitions non-deterministically,

56 Automata Theoretic Aspects of k-Abelian Equivalence §5

initA(u) qi qj q` qm f
u[0,i) u[i,j) u[j,`) u[`,m) u[m..)

initA′(v) q
(0)
i

q
(1)
` q

(1)
m

q
(2)
j q

(2)
`

q
(3)
i

q
(3)
j

q
(4)
m f (4)

ε

ε

ε

ε

Figure 5.7: The computation of A on a word u and a computation of A′ on
v = Sk,u(i, j, `,m). The automaton A′ non-deterministically guesses the states
qt, where t = 1, . . . , 4, and performs the ε-transitions non-deterministically. The
number of ε-transitions performed is encoded into the states of A′. The factors of
length k− 1 starting at the first and third ε-transitions have to be equal, and this
is checked in parallel. The same is done for the factors occurring at the second and

fourth ε-transitions. We have abbreviated the states q
(c,(qi,q`),(qj ,qm))
r of the proof

of Theorem 5.9 by q
(c)
r (for c ∈ {0, . . . , 4} and r ∈ {init, i, j, `,m}). [19, Figure 2],

modification of [18, Fig. 2].

the order of which is important. The transitions are from qi to q`, qm to qj , q` to
qi, and from qj to qm. Thus the word v is accepted if it is obtained by a k-switching
on u. The computation of A′ on v is depicted in Figure 5.7.

In order to ensure that any word accepted by A′ is in Rk(L), the automaton
checks, in parallel, that the factors of length k−1 starting from the first and third
ε-transitions are equal. Similar verifications are performed for the factors starting
at the second and fourth ε-transitions. Furthermore, the automaton checks that,
after the first and third ε-transitions, at least one letter is read before the next
ε-transition is performed. (These verifications correspond to the requirements that
u[i, j) and u[`,m) are non-empty.) Thus, any word accepted by A′ can be obtained
by a k-switching on some word in L.

Remark 5.10. It is worth noticing that, in a k-switching, the word v is obtained
from u by changing the order of the factors u[i, j) and u[`,m). They are of un-
bounded length and hence cannot be remembered by a finite automaton. Instead,
in the proof, only the corresponding states at positions of i, j, `, and m in the
automaton A recognizing u are remembered.

Proof of Theorem 5.9. For a language L and fixed words x, y ∈ Σk−1, consider the
language

Rx,y(L) = {w ∈ Σ∗ | w =Sk,u(i, j, `,m) for some i < j 6 ` < m, u ∈ L,
with u[i, i+ k − 1) = u[`, `+ k − 1) = x and

u[j, j + k − 1) = u[m,m+ k − 1) = y}.

§5.2 The k-switching as a Language Operation 57

We construct, for a regular language L recognized by a deterministic finite auto-
maton A = (Q,Σ, δ, pinit, F), an ε-NFA Â which recognizes Rx,y(L). The claim
then follows for Rk(L), as Rk(L) =

⋃
x,y∈Σk−1 Rx,y(L) is a finite union of regular

languages.
In essence, Â is a Cartesian product of form Â = A1×Ax×Ay×Ax×Ay. The

first component automaton A1 consists of 5|Q|4 copies of A, some of which are
connected by ε-transitions. The second and fourth components are copies of an
automaton Ax recognizing the language xΣ∗ and the third and fifth components
are copies of an automaton Ay recognizing the language yΣ∗. The components
2, 3, 4, and 5 are initiated according to the computations performed in A1. We
shall now make this construction more formal.

We first construct A1 = (Q1,Σ, δ1, p̃init, F1) as follows. For each state p ∈ Q,
we have p(c,(p1,p2),(p3,p4)) ∈ Q1 for all c = 0, . . . , 4 and pr ∈ Q, r = 1, . . . , 4. We
also add the initial state p̃init, from which we have ε-transitions to all the states of

form p
(1,(p1,p2),(p3,p4))
init , p1, p2, p3, p4 ∈ Q. Thus the computation of A1 begins with

an ε-transition. We then add the following ε-transitions for all p1, p2, p3, p4 ∈ Q:

p
(0,(p1,p2),(p3,p4))
1

ε−→ p
(1,(p1,p2),(p3,p4))
2

p
(1,(p1,p2),(p3,p4))
3

ε−→ p
(2,(p1,p2),(p3,p4))
4 ,

p
(2,(p1,p2),(p3,p4))
2

ε−→ p
(3,(p1,p2),(p3,p4))
1 ,

p
(3,(p1,p2),(p3,p4))
4

ε−→ p
(4,(p1,p2),(p3,p4))
3 .

Otherwise the computation of A1 respects the original automaton, that is,

δ1(p(i,(p1,p2),(p3,p4)), a) = q(i,(p1,p2),(p3,p4))

if and only if there is a transition δ(p, a) = q in A. Finally, F1 consists of all states
of form f (5,(p1,p2),(p3,p4)), where f ∈ F and p1, p2, p3, p4 ∈ Q.

We remark the following about A1. Firstly, once the first ε-transition is ta-
ken, the states p1, p2, p3, and p4 are fixed for the remainder of the computa-
tion. Secondly, the states pr, r = 1, . . . , 4, determine between which states an
ε-transition can be performed. Furthermore, the parameter c counts the number
of ε-transitions performed (after the first ε-transition which starts the computa-
tion). The parameters c, p1, p2, p3, and p4 together determine at which time and
between which states an ε-transition can be performed.

We now describe the behavior of the rest of the component automata of Â.
For s ∈ {2, . . . , 5}, the sth component automaton of Â is initiated during the sth
ε-transition performed in A1 (the first ε-transition being the first computation
step of A1). We also require from Â that, after the second and fourth ε-transition
performed in A1, at least one letter is read before performing the next ε-transition.
This is not required after the third ε-transition. Note that these requirements can
be encoded, e.g., into the parameter c of the states in A1. Finally, Â accepts if
and only if all its components are in accepting states.

We first show that Rx,y(L) ⊆ L(Â). In order to see this, let u ∈ L and let
v = Sk,u(i, j, `,m) ∈ Rx,y(L). Let qt, t = 1, . . . , |u|, denote the state δ(pinit, u[1, t))
(note that some of the states qt can be the same). We then find an accepting
computation of A1 for v as follows. We first take the ε-transition from p̃init to

the state p
(0,(qi,q`),(qj ,qm))
init . After this, the computation is as in Figure 5.7 by

58 Automata Theoretic Aspects of k-Abelian Equivalence §5

following the dashed lines. The computation of A on u follows the continuous
lines. Note that the other components of Â also end up in accepting states, since
by the definition of the k-switching Sk,u(i, j, `,m), x and y have positions in v
corresponding to the initiations of the copies of the automata Ax and Ay. Thus

Rx,y(L) ⊆ L(Â).

We now show the converse. For this, let v ∈ L(Â) and consider an accepting
path of Â on v. By construction, the automaton A1 starts with an ε-transition

to a state p
(0,(p1,p2),(p3,p4))
init . After this, the computation contains four more ε-

transitions; suppose they occur just before reading the ith, jth, `th and mth letter,
with i < j 6 ` < m, respectively. (Here we use the requirement of not allowing an
ε-transition immediately after the second and fourth ε-transitions.) Furthermore,
by the acceptance of the other component automata of Â, x has positions i and `,
and y has positions j and m in v. We claim that u = Sk,v(i, j, `,m) ∈ L. It then
follows, by the symmetry of the k-switching relation, that v ∈ Rx,y(L). Indeed,
turning back to the computation of A1 on v, we obtain the following walks in A:

1. a path from pinit to p1 labeled by v[0, i),

2. a path from p2 to p3 labeled by v[i, j),

3. a path from p4 to p2 labeled by v[j, `),

4. a path from p1 to p4 labeled by v[`,m), and

5. a path from p3 to an accepting state of A labeled by v[m..].

Thus u = v[1, i)v[`,m)v[j, `)v[i, j)v[m..] ∈ L, as was claimed.

In contrast to the above theorem, the following example shows that the family
of regular languages is not closed under the language operation R∗k.

Example 5.11. Fix k > 1 and let L = (abk)+. It is straightforward to verify,
e.g., by comparing the number of occurrences of factors of length k, that

R∗k(L) = {abr1abr2 · · · abrn : n > 1, ri > k − 1,
∑n
i=1 ri = nk} .

Let now h be a morphism defined by h(a) = abk−1 and h(b) = b. It is again
straightforward to show that h−1(R∗k(L)) = {w ∈ a{a, b}∗ : |w|a = |w|b}, which is
clearly not regular. It follows that R∗k(L) is not regular.

5.3 The Regularity of Classes of Constant Cardi-
nality

The established regularity of the languages LC and Lsing raises questions for the
structure of larger equivalence classes. We are thus interested in the k-abelian
equivalence classes of fixed cardinality, that is the languages Lk,Σ,r, where r > 2.
We first consider the case r > 2. We show that Lk,Σ,2 is regular by employing
Theorem 5.9. In the following, we say that y ∈ Σ∗ is extremal (with respect to
C) if y is in the (regular) language Lext = Lk,Σ,C ∪ Lk,Σ,B. In other words, y is
extremal if it is either the lexicographically least or the lexicographically maximal
element of [y]k.

Theorem 5.12. The language Lk,Σ,2 is regular.

§5.3 The Regularity of Classes of Constant Cardinality 59

Proof. Consider the regular language L = Σ∗ \ Lext: we have

L = {w ∈ Σ∗ | |[w]k| > 3 and w is not extremal},

since all classes containing at most two elements are removed. Let us apply the
language operation Rk defined previously to L: take L′ = Rk(L) ∪ L. Note that
L′ is regular since regular languages are closed under union and the operation Rk.
It is not hard to see that L′ = {w ∈ Σ∗ | |[w]k| > 3}. Indeed, note that one
operation of Rk is sufficient to fill in the equivalence classes: by Claim 3.13, each
word x ∈ L admits at least two distinct switchings, one decreasing and the other
increasing lexicographically since x is not extremal. Finally, the complement of L′

is the language {w ∈ Σ∗ | |[w]k| 6 2}. Consequently

Lk,Σ,2 = (Σ∗ \ L′) \ Lk,Σ,sing

is a regular language.

The use of Rk gives a nice proof of the above result. For r > 3 this approach
does not seem to work, at least in a straightforward manner (see Proposition 5.15
and consequent discussion for the case r = 3). In the following section we describe
a (failing) approach which gives an interesting view on the problem. The rest of
this section is devoted to proving the following generalization.

Theorem 5.13. For any k > 1, alphabet Σ, and integer r > 1, the language
Lk,Σ,r is regular.

We show that Lk,Σ,r is regular for any r > 3 by the use of Mink(Lk,Σ,r) and
the language operation Rk. We first show that Mink(Lk,Σ,r) is regular. The proof
is very much similar to the proof of Theorem 5.5. The main ingredients here
are Lemma 4.28 and Lemma 4.32. The regularity of Lk,Σ,r then follows from
Proposition 5.14 by applying r times the regularity preserving language operation
Rk on Mink(Lk,Σ,r).

Proposition 5.14. The language Mink(Lk,Σ,r) is regular for any integers r, k,
and alphabet Σ.

Proof. We claim that Mink(Lk,Σ,r) is a finite union of languages defined by regular
expressions of the form z0y

∗
1z1 · · · y∗t zt.

Consider now a word u ∈ Mink(Lk,Σ,r). Since u ∈ Lk,Σ,C, by Lemma 4.8, we
may write

Wu = W0C
s1
1 W1 · · ·Cstt Wt

for some paths Wi, where i = 0, . . . , t, and some repetitions Csii of cycles Ci, where

i = 1, . . . , t, such that Wu enters cycle Ci at position |W0| +
∑i−1
j=1 |C

sj
j Wj | + 1,

for all 1 6 i 6 t, and leaves Ci before entering Ci+1. Now u may be written as

u = tail(W0) · label(W0C
s1
1 W1 · · ·Cstt Wt) = z0y

s1
1 z1 · · · ystt zt,

where z0 = tail(W0) · label(W0), yi = label(Ci), and zi = label(Wi) for 1 6 i 6 t.
Now if si > Bk,r, then Lemma 4.28 ensures that

L(z0y
s1
1 z1 · · · y∗i zi · · · y

st
t zt) ⊆ Lk,Σ,r. (5.4)

60 Automata Theoretic Aspects of k-Abelian Equivalence §5

By repeating the above, we may replace all exponents sj satisfying sj > Bk,r with
∗ in (5.4).

Let L be the union of all the languages obtained as above from words
u ∈ Mink(Lr,k) satisfying |u|x 6 Bk,r + 1 for all x ∈ Σk−1. These words are
bounded in length, so that the union is finite. Clearly L ⊆ Mink(Lr,k) by the
above observation. We claim that Mink(Lr,k) ⊆ L.

Indeed, let u ∈ Mink(Lr,k). If |u|x > Bk,r + 1 Lemma 4.31 ensures that we

have Wu = W0W
|u|x−1
y W1 for y the unique complete first return to x in u. Further

Wy is a cycle. If Wu does not enter Wy at position |W0| + 1, we may extend the
cycle to the left and right to obtain W ′0W

t
y′W

′
1, where t ∈ {|u|x − 1, |u|x}. By the

above lemma we may reduce the number of repetitions of W ′y to obtain a word u′

for which |u′|x 6 Bk,r + 1 and u is in the language defined by u′ as in (5.4). If
|u′|x′ > Bk,r + 1 for some x′ ∈ Σk−1, we may repeat the above for u′ to obtain a
word u′′ having |u′′|x′ 6 Bk,r + 1 and that u and u′ are in the language defined
by u′′ as in (5.4). This can be continued until we obtain a word v such that
|v|x 6 Bk,r + 1 for all x ∈ Σk−1 and u is contained in the language defined by v as
in (5.4). We thus have u ∈ L, which concludes the proof.

Proof of Theorem 5.13. The language Mink(Lr,k) is regular. Since the operation
Rk preserves regularity by Theorem 5.9 and thus, by applying finitely many ite-
rations of Rk, we have that Lk,Σ,r = Rrk(Mink(Lk,Σ,r)) is regular.

5.4 Some Related (Non-)Closure Properties

In this section we consider language operations related to Rk. We consider the
question whether regular languages are closed under this operation. The moti-
vation for studying these language operations comes from different approaches to
proving the regularity of Lk,Σ,r, r > 1. Unfortunately, these approaches either
fail or seem to become too involved. We nonetheless consider these as having
independent interest.

The language operation Rk can be modified, e.g., to obtain the language ope-
ration Rk, 6= defined by

Rk, 6=(L) = {u ∈ Σ∗ | ∃v ∈ L : u ∈ Rk({v}) \ {v}}.

This latter operation performs k-switchings that actually give another word. A
straightforward modification of the proof of Theorem 5.9 shows that regular lan-
guages are closed under this new operation as well. A similar observation holds also
for the operation Rk,C(L) which gives all words that are obtained by a k-switching
on a lexicographically larger element of L.

Using the newly defined operation Rk, 6=, we can show that the language

K = {x ∈ Σ∗ : Rk, 6=(y) = [x]k ∩ Lext ∀y ∈ [x]k \ Lext}

is a regular language. This is the language of words x for which any y ∈ [x]k,
with y not extremal, admits exactly two (non-trivial) k-switchings: one giving the
least element of [x]k, the other giving the maximal element of [x]k. Note that the
language Lk,Σ,3 is included in K, but that there also exist other classes in K. For
example, [u]k ⊆ K, where u = akbak−1ckdck−1 for which #[u]k = 4.

§5.4 Some Related (Non-)Closure Properties 61

Proposition 5.15. The language K is regular.

Proof. Let again L = Σ∗ \ Lext = {w ∈ Σ∗ : w not extremal}. We obtain another
regular language K1 defined by

K1 = Rk, 6=(L) \ Lext = {w ∈ Σ∗ \ Lext : Rk, 6=({w}) \ Lext 6= ∅}.

The language K1 consists of all the words w ∈ Σ∗ \Lext for which Rk(w) contains
non-extremal elements. Indeed, let w ∈ Σ∗ \ Lext and assume that there is a k-
switching giving a non-extremal element w′ ∈ L. Then there is a k-switching on w′

giving w. Thus w ∈ Rk, 6=(w′) \ Lext ⊆ K1. On the other hand, if Rk(w) contains
only extremal elements, then w /∈ Rk, 6=(L) \ Lext = K1. We further observe that,
for the language K2 = Rk(K1) ∪K1, we have

K2 = K1 ∪
(
Lext ∩ {[w]k | w ∈ K1}

)
.

It is clear that if w ∈ K2 is not extremal, then w ∈ K1 from the above. To see
that Lext ⊂ K2, let w ∈ K1 and consider the lexicographically greatest element
w′ of [w]k ∩ K1. Since w′ /∈ Lext, there exists a k-switching on w′ which is
lexicographically greater. Since w′ was maximal in [wk] ∩K1, it follows that this
switching must be the lexicographically greatest element of [w]k. The case of the
lexicographically least element is similar.

Consider the language K3 = Rk(K2) ∪ K2. We claim that it consists of k-
abelian equivalence classes [x]k for which there exists x′ ∈ [x]k \ Lext such that
Rk(x′) \ Lext 6= ∅. Let x ∈ K2 and assume that x′ ∈ [x]k. We show that x′ ∈ K3.
Since x′ /∈ K2, it follows that x′ is not extremal but Rk(x′) = [x]k∩Lext. It follows
that x′ ∈ Rk([x]k ∩Lext) ⊆ K3. We conclude by noting that K is the complement
of K3. Since all the operations performed above are regularity preserving and we
start from a regular language, we conclude that K is a regular language.

Considering the problem of showing that Lk,Σ,3 is regular this way, it seems
that separating k-abelian equivalence classes of size 3 from other classes occurring
in K could be quite involved using k-switchings alone.

We then consider another approach generalizing that of Theorem 5.12. If the
class of regular languages was closed under Mink, the regularity of Lk,Σ,r would
then easily be proved using the same idea as in Theorem 5.12. Indeed, by setting
Ki+1 = Ki \Mink(Ki), K0 = Σ∗, we obtain that Σ∗ \ Rrk(Kr) = ∪i6rLk,Σ,r for
each r ∈ N. If Mink preserved regularity, then Lk,Σ,r would be regular since a
finite sequence of regularity preserving operations would be used. Unfortunately,
as it will soon be shown, Mink does not preserve regularity. The approach of
removing (in a regular way) one element from each k-abelian equivalence class at
a time does not seem to extend to the languages Lk,Σ,r, r > 3. One reason to
think that Mink would preserve regularity is the following observation. We may
extend the definition of k-abelian equivalence to the case of k = 0, the relation
being the “equal length” relation. An old result gives a positive answer to the
above question when k = 0.

Theorem 5.16 ([6, Theorem 4.1], see also [11]). For every regular language L,
the language min(L) = {w ∈ L | w C6 u for every u ∈ L, |u| = |w|} is regular, and
a regular grammar (and thus an automaton) for it can be effectively constructed.

62 Automata Theoretic Aspects of k-Abelian Equivalence §5

For k > 1, we see that Mink does not preserve regularity.

Example 5.17. Let k > 1 and L = (abk)∗ ∪ abk−1b∗(abk−1)∗. When n is not a
multiple of k+1, we see that the words of length n of L are all in distinct k-abelian
equivalence classes. On the other hand, when n = s(k + 1), s > 2, we see that
(abk)s and abk−1bs(abk−1)s−1 are k-abelian equivalent. Again, all other words are
in distinct k-abelian equivalence classes. Since (abk)sCabk−1bs(abk−1)s we deduce
that

L \Mink(L) = {(abk−1)br+1(abk−1)r | r > 1}.

The language h−1(L\Mink(L)), where a 7→ abk−1 and b 7→ b, equals {abbrar | r >
1} which is clearly not regular. Since all other operations preserve regularity, we
conclude that Mink does not preserve regularity.

There might still be other ways to remove one element at a time from each
equivalence class in a regular way. The above examples show that this operation
would be quite involved, if such an operation existed.

In this chapter we considered language theoretic aspects of the k-abelian equi-
valence classes. The results obtained here are utilized in the following chapter,
where we consider the asymptotic numbers of k-abelian equivalence classes of
length n. In particular, we utilize well-known results for computing the asympto-
tic growth rates of regular languages.

63

Chapter 6

Quantitative Aspects of
k-Abelian Equivalence

In this chapter we focus on quantitative aspects of k-abelian equivalence classes.
We mainly consider the number of k-abelian equivalence classes of words of length
n over an m-letter alphabet, and the number length n k-abelian singletons over
an m-letter alphabet.

In the first section of this chapter we consider the exact number of k-abelian
equivalence classes of length n and the exact number of k-abelian singletons of
length n. We show that these numbers, interpreted as sequences, are N-rational.
We then compute explicit expressions giving, for each n ∈ N, the number of k-
abelian equivalence classes of length n over an m-letter alphabet for small values
of k and m. We recall relevant tools from the literature. The basis for computing
closed formulae for these sequences is based on the automata constructed in the
previous chapter.

In the second section we consider a more general setting. In particular, we
prove a sufficient condition for an regular language having polynomial complexity
to have asymptotically polynomial complexity. That is, we give a condition such
that if a regular language L has CL(n) of the order O(nt) but CL(n) is not of the
order O(nt−1) for some t > 1, and satisfies the above mentioned condition, then
L has complexity CL(n) = C · nt +O(nt−1) for some constant C. The main tools
used here are the generating functions of such regular languages.

In the third section we consider the asymptotic growth of the number of k-
abelian equivalence classes of length n over an m-letter alphabet. We show that
this sequence is asymptotic to a polynomial using results from the second section of
this chapter. In the fourth section we consider the numbers of k-abelian singletons
and show a connection to Gray codes for necklaces.

6.1 Exact Numbers of Equivalence Classes and
Singletons

Let P(k)
m (n) be the number of k-abelian equivalence classes of length n words over

an m-letter alphabet. Let similarly S(k)
m (n) be the number of k-abelian singletons

64 Quantitative Aspects of k-Abelian Equivalence §6

of length n words over an m-letter alphabet. In this section we study the sequences

(P(k)
m (n))n>0 and (S(k)

m (n))n>0. We show that these sequences are N-rational and
how, in principle, an explicit formula can be constructed for each of them. We

illustrate this method by giving explicit formulae for P(k)
m (n) and S(k)

m (n) for small

values of k and m. For example, we show that P(2)
2 (n) = n2 − n+ 2 for all n > 1

and S(2)
2 (n) = 2n+4 for all n > 4. These results were previously proved in [49] and

[55], respectively, using different methods. The results of this section appear in
[19], though the methods were only briefly discussed in the article. We elaborate
on these methods in this section. We also provide novel results (Propositions 6.6
and 6.7), which have not appeared previously.

We start by observing that P(k)
m (n) = CLk,Σ,C(n) and S(k)

m (n) = CLk,Σ,sing
(n),

where Σ is any m-letter alphabet. Indeed, each word in Lk,Σ,C corresponds to a
unique k-abelian equivalence class and vice versa. Thus CLk,Σ,C(n) gives the num-
ber of k-abelian equivalence classes of length n for each n > 0. Similar arguments
hold for k-abelian singletons. As an immediate consequence (by Proposition 2.17)
we have the following.

Proposition 6.1 ([19]). The sequences (P(k)
m (n))n>0 and (S(k)

m (n))n>0 are N-
rational for any k and m.

Next we study the question of how to obtain explicit formulae for P(k)
m (n) and

S(k)
m (n). Due to the connection to Lk,Σ,C and Lk,Σ,sing, respectively, this task

reduces to finding the number of distinct words of length n of a given regular
language. Several strategies are known for doing this, and we mention two of
them used here to obtain the formulae in Propositions 6.4 and 6.5. We consider

here the function P(k)
m (n), the case of S(k)

m (n) being analogous. Given k and m,
we may construct a DFA A recognizing Lk,Σ,C for some m-letter alphabet Σ and
an ordering C as described in the previous chapter.

We then construct a unary automaton A′ by identifying all the letters. Now
the number of length n words in Lk,Σ,C equals the number of accepting paths in
A′ of length n. Let M be the adjacency matrix of A′. It is known that, for all
large enough n,

`A′(n) =
∑
λ∈Eig(M) pλ(n)λn =

∑d
i=0

(∑
λ∈Eig(M) αλ,iλ

n
)
ni, (6.1)

where, the first summation is taken over all distinct eigenvalues Eig(M) of M ,
and pλ is a polynomial with complex coefficients of degree at most µλ − 1 for
each eigenvalue λ. Here µλ is the multiplicity of λ as a root of the minimal
polynomial of M . (See, e.g., [34, 107].) In the second summation we have d =
maxλ∈Eig(M)\0 µλ−1, the coefficients αλ,i are some complex numbers, and αλ,i = 0

when i > µλ. When considering our sequences P(k)
m (n) and S(k)

m (n), it is evident
that the polynomial pλ ≡ 0 whenever |λ| > 1, since in this case `(n) is bounded
from above by a polynomial.

In Tables 6.1 and 6.2 we list the minimal polynomials of the minimal DFA
recognizing Lk,Σ,C and Lk,Σ,sing in Figures 5.1–5.6. Using these minimal polyno-

mials we describe two methods to find an explicit expression of P(k)
m and S(k)

m for
the corresponding values k and m.

§6.1 Exact Numbers of Equivalence Classes and Singletons 65

(k, |Σ|) Minimal polynomial associated to Lk,Σ,C

(2, 2) (x− 2) (x− 1)3 x2 (x+ 1)

(2, 3) (x− 3) (x− 1)7 x3 (x+ 1)3 (x2 + x+ 1)

(3, 2) (x− 2) (x− 1)5 x5 (x+ 1) (x2 + 1) (x2 + x+ 1)

(4, 2) (x− 2) (x− 1)9 x10 (x+ 1)5 (x2 − x+ 1) (x2 + 1)3 (x2 + x+ 1)3 ·
· (x4 + 1) (x4 + x3 + x2 + x+ 1) (x6 + x5 + x4 + x3 + x2 + x+ 1)

Table 6.1: The minimal polynomials associated to the automata recognizing Lk,Σ,C
in Figures 5.1, 5.2, 5.4, and 5.6.

(k, |Σ|) Minimal polynomial associated to Lk,Σ,sing

(2, 2) (x− 2) (x− 1)2 x4 (x+ 1)

(2, 3) (x− 3) (x− 1)3 x6 (x+ 1) (x2 + x+ 1)

(3, 2) (x− 2) (x− 1)3 x9 (x+ 1) (x2 + 1) (x2 + x+ 1)

(4, 2)∗ (x− 2) (x− 1)4 x18 (x+ 1)2 (x2 − x+ 1) (x2 + 1) (x2 + x+ 1)2 ·
· (x4 + 1) (x4 + x3 + x2 + x+ 1) (x6 + x5 + x4 + x3 + x2 + x+ 1)

Table 6.2: The first three rows are the minimal polynomials associated to the
automata recognizing Lk,Σ,sing in Figures 5.1, 5.3, and 5.5, respectively. In the
fourth row we have the minimal polynomial of the automaton recognizing Lk,Σ,sing\
bΣ∗ (see the transition table in Appendix C).

Method I. We start by identifying the vector einit corresponding to the initial
state. We also construct the vector eF corresponding to all accepting states. We

then have that P(k)
m (n) = einitM

neTF .

To calculate P(k)
m (n) explicitly, the Jordan decomposition (see, e.g., [107]) M =

SJS−1 of M is computed. A closed form for Jn, n > µ0, can be easily computed,
from which we obtain a closed form for Mn = SJnS−1. (Note that the dimension
of the largest Jordan block corresponding to the eigenvalue 0 of M equals µ0.)
Thus einitM

neTF may be computed.

Example 6.2. We illustrate this method to obtain an explicit expression for

P(2)
2 (n). Consider the DFA of Figure 5.1 which recognizes the language L2,B,C.

Let us then identify all the letters to obtain a unary NFA. Let then M be the
adjacency matrix of this transformed NFA:

M =



0 1 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 2


. (6.2)

66 Quantitative Aspects of k-Abelian Equivalence §6

Here we order the states as follows: the initial state corresponds to the first
row and the sink state corresponds to the last row. The rest of the states are
arranged using the radix ordering as in the following table.

state obtained by reading: a b ab bb aba bba abb abba
row corresponding to state: 2 3 4 5 6 7 8 9

The vector einit, corresponding to the initial state, equals (1, 0, . . . , 0), and
the vector eF , corresponding to all accepting states, equals (1, . . . , 1, 0). We then
compute the Jordan decomposition M = SJS−1 of M :

J =



−1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 2


, and

S =



0 0 1 0 −1 1 2 −1 1 1
1 0 0 0 −1 0 1 1 0 1
−1 0 0 1 0 0 1 0 0 1
−2 0 0 0 0 −1 0 1 1 1
0 0 0 0 1 0 0 0 0 1
2 1 0 0 0 −1 0 1 0 1
0 0 0 0 0 1 0 0 0 1
0 −1 0 0 0 0 0 0 2 1
0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1


.

A closed form for Jn, n > 2, is straightforward to compute:

Jn =



(−1)n 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 n 0 0 0 0
0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 n n(n−1)
2 0

0 0 0 0 0 0 0 1 n 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 2n


,

from which we obtain a closed form for Mn = SJnS−1. Finally, we have that, for
n > 2, einitSJ

nS−1eTF = n2 − n+ 2.

Method II. The construction of the Jordan decomposition of a matrix beco-
mes quite time consuming computationally, which leads us to consider the method

§6.1 Exact Numbers of Equivalence Classes and Singletons 67

of curve fitting. This is done by first computing the eigenvalues {λ}, the mini-
mal polynomial m(x) of M , and the multiplicities {µλ} of the eigenvalues {λ}
as roots of m(x). In general, numerical approximation could be a problem when
computing the eigenvalues. But for the small cases that we studied, all eigenvalues
are simple algebraic numbers: 0, −1, e±

2iπ
3 , etc. The computations can thus be

made completely formally. In theory, this can be done with arbitrary algebraic
numbers. We then continue to compute the coefficients of the polynomials pλ(x)
in the expression (6.1) for each λ ∈ Eig(M) by fitting a curve to the data points

P(k)
m (µ0), . . . ,P(k)

m (nM), where nM = µ0 +
∑
λ∈Eig(M)\0 µλ − 1 6 dim(A). These

values should be computed separately. There are thus
∑
λ∈Eig(M)\0 µλ functions

and we fit them using equally many points.
Let us be more precise. We first compute the minimal polynomial of the

adjacency matrix M to obtain the eigenvalues and their multiplicities. We then
construct a vector function ~x(n) of dimension

∑
λ∈Eig(M)\0 µλ. For each eigenvalue

λ of M , ~x(n) contains the components niλn, i = 0, . . . , µλ − 1. Let then ~c =

(P(k)
m (µ0 + i))

dim(~x(n))−1
i=0 . We then construct a dim(~x(n)) square matrix B, where

the ith row equals ~x(µ0 + i) for each i = 0, . . . ,dim(~x(n))− 1. Let ~y be a vector
containing for each niλn the corresponding (unknown) coefficient in the polynomial
pλ. We have the linear system B~y = ~c. We may solve for ~y since B is invertible.

Thus, we may obtain a closed formula P(k)
m (n) = (~y, ~x(n)), where (~x, ~y) denotes

the inner product of the vectors ~x and ~y.

Example 6.3. We compute the polynomial of the matrix M defined in (6.2).
We obtain m(x) = (x − 2)(x − 1)3x2(x + 1), from which we infer that Eig(M) =
{2, 1, 0,−1} and that µ2 = 1, µ1 = 3, µ0 = 2, and µ−1 = 1. We then construct a
vector function ~x(n) = (2n, 1, n, n2, (−1)n) and the matrix B having as rows ~x(n),
n = 2, . . . , 6:

B =


4 1 2 4 1
8 1 3 9 −1
16 1 4 16 1
32 1 5 25 −1
64 1 6 36 1

 .

The vector ~c = (P(2)
2 (n))6

n=2 is computed to be (4, 8, 14, 22, 32). We may solve for

~y = B−1~c = (0, 2, 1, 1, 0). Finally P(2)
2 (n) = (~y, ~x(n)) = n2 − n+ 2.

Using the described methods the following explicit formulae for P(k)
m (n) and

S(k)
m (n) were computed in [19]. Here we represent the formulae in a slightly dif-

ferent manner to the expression in (6.1). In all these cases we see that each
λ ∈ Eig(M) having non-zero coefficient polynomial is a root of unity. Thus the
coefficients of the terms ni (in the second summation in the expression (6.1)) may
be viewed as periodic functions, where the period depends on the degree of the
roots of unity λ ∈ Eig(M). We denote a periodic function f with period m by
f(n) = 〈a0, . . . , am−1〉n, where ai = f(i), 0 6 i < m. For example, let

f(n) = e−πi/3(e2πi/3)n + eπi/3(e−2πi/3)n.

Then f may be expressed as f(n) = 〈1, 1,−2〉n. We recall that, for a periodic
function f(n) = 〈a0, . . . , am−1〉n, we may express f as f(n) =

∑
λm=1 αλλ

n, where

68 Quantitative Aspects of k-Abelian Equivalence §6

the summation goes through all the mth roots of unity. The coefficients αλ are
determined by the values a0, . . . , am−1.

We are now in the position to state the explicit formulae.

Proposition 6.4 ([19]).

For all n > 1, P(2)
2 (n) = n2 − n+ 2;

for all n > 2, P(3)
2 (n) = 1

18n
4 − 5

18n
3 + 65

36n
2 − 23

6 n+ 1307
216

− 1
8 〈1,−1〉n + 2

27 〈1, 1,−2〉n; and

for all n > 1, P(2)
3 (n) = 1

960n
6 + 7

320n
5 + 67

384n
4 − 19

32n
3 + 1457

480 n
2

− 1569
640 n+ 741

256 −
3

128 〈1,−1〉n · n+ 27
256 〈1,−1〉n.

Proposition 6.5 ([19]).

For all n > 4, S(2)
2 (n) =2n+ 4;

for all n > 9, S(3)
2 (n) = 1

2n
2 + 16n− 535

12 + 2
3 〈2,−1,−1〉n − 3

4 〈1,−1〉n; and

for all n > 6, S(2)
3 (n) =3n2 + 27n− 63.

The formulae for P(2)
2 and S(2)

2 were proved in [49] and [55], respectively, using
different methods.

The values given by the formulae for P(2)
3 and P(3)

2 obtained here coincide with
values previously computed by Eero Harmaala (n = 2, . . . , 18 and n = 4, . . . , 28,
respectively) (personal communication), and to values (see Appendix B) computed
using an algorithm suggested by Julien Cassaigne (see Appendix A). Similarly,

the values given by the formulae obtained here for S(3)
2 and S(2)

3 coincide with
the values (see Appendix B) computed using an algorithm suggested by Julien
Cassaigne (see Appendix A).

We obtain formulae for P(4)
2 and S(4)

2 .

Proposition 6.6. For all n > 3 we have

P(4)
2 (n) = 283

512·243·25·49n
8 + 223

32·243·25·49n
7 + 2 657

256·243·25·7n
6

− 731
8·243·25·7n

5 + 14 111
32·243·25n

4 − 1 609
4·27·25n

3 + 1 850 177 503
512·729·25·49n

2

− 3 779 893
64·729·7 n+ 81 883 529 107

1 024·729·125·49

+ 1
512 〈1,−1〉n · n2 − 5

64 〈1,−1〉n · n+ 489
1 024 〈1,−1〉n

+ 1
2·729 〈−7, 5, 2〉n · n2 + 2

729 〈38,−7,−31〉n · n
+ 1

4·729 〈−1 853, 571, 1 282〉n + 1
16 〈−2, 1, 2,−1〉n

+ 2
125 〈21, 6,−4,−14,−9〉n + 1

8 〈−1, 1, 1, 1,−1,−1〉n
+ 4

49 〈2, 1,−1,−4,−1, 1, 2〉n.

Proof. Let us denote the expression on the right hand side by f(n). Observe that
the periodic coefficients of each term ni of f(n) may be expressed as a linear
combination of the eigenvalues of the adjacency matrix associated to the language

L4,B,C (see Table 6.1). Further, we have f(n) = P(4)
2 (n) for n = 10, . . . , 52, which

§6.2 On the Asymptotic Growth of Regular Languages 69

were computed separately. (Notice that µ0 = 10). We have thus shown that

f(n) = P(4)
2 (n) for n > 10, since

∑
λ∈Eig(M)\0 µλ = 43. The values of f(n) and

P(4)
2 (n) also coincide for the values n > 3. This concludes the proof.

Proposition 6.7. For all n > 18 we have

S
(4)
2 (n) = 2

27n
3 + 1823

60 n2 − 28651
270 n− 665587

504

+ 2
27 〈2,−1,−1〉n · n+ 1

27 〈−66, 109,−43〉n − 25
24 〈1,−1〉n

+ 4
7 〈−1,−1,−1,−1, 6,−1,−1〉n + 1

3 〈−4,−5,−1, 4, 5, 1〉n
+ 2

5 〈5, 0,−4,−2, 1〉n + 1
2 〈0,−1, 0, 1〉n.

Proof. Similar to the proof of the above proposition, we let f(n) denote the ex-
pression on the right hand side. Observe that the number of 4-abelian singletons

not beginning with b equals 1
2S

(4)
2 (n) for all n > 1. Indeed, a word u is a k-abelian

singleton if and only if E(u) is a k-abelian singleton, where E is the complemen-
tation morphism a↔ b. Further u = E(u) if and only if u = ε.

It thus suffices to show that CL(n) = 1
2f(n), where L = L4,B,sing \ bB∗. This

language is regular, and the minimal DFA recognizing it has 664 states (see Ap-
pendix C for the transition table). The corresponding minimal polynomial is given
in the fourth row of Table 6.2. The periodic coefficients of the terms ni in the
expression of 1

2f(n) may be expressed using the roots of this polynomial. Furt-
her, we notice that µ0 = 18. Now the values CL(n) and 1

2f(n) coincide for the
values n = 18, . . . , 46, where 46 = µ0 +

∑
λ∈Eig(M) µλ − 1. We conclude that

S(4)
2 (n) = f(n) for all n > 18.

Proposition 6.6 was already conjectured in [19] and Proposition 6.7 was conjec-

tured by Julien Cassaigne (personal communication). The expressions for P(4)
2 (n)

and S(4)
2 (n) were computed by Julien Cassaigne using only the values P(4)

2 (n),

n = 4, . . . , 49, and S(4)
2 (n), n = 18, . . . , 100, respectively. In particular, he did not

use the constructed automata. These values were computed using the algorithm
in Appendix A for independent implementations of this algorithm by Julien Cas-

saigne and the author. The values P(4)
2 (n), n = 51, . . . , 55 were computed by the

author.

Remark 6.8. The On-Line Encyclopedia of Integer Sequences (http://oeis.org,
accessed November 5, 2018) contains the following sequences from Propositions

6.4 and 6.5: (P(2)
2 (n))n>0 (shifted), (P(3)

2 (n))n>0, (P(2)
3 (n))n>0, and (S(2)

2 (n))n>0

(shifted) as the sequences A014206, A289657, A289658, and A005843, respectively.
The other sequences do not appear in the OEIS. We remark that the sequences
were not indexed in the OEIS prior to our work.

6.2 On the Asymptotic Growth of Regular Lan-
guages

Observing Propositions 6.4 and 6.6, it seems that P(k)
m (n) ∼ Ck,mn

mk−1(m−1) for

some constant Ck,m depending on k and m. In other words limn→∞
P(k)
m (n)

nmk−1(m−1)
=

http://oeis.org/A014206
http://oeis.org/A289657
http://oeis.org/A289658
http://oeis.org/A005843

70 Quantitative Aspects of k-Abelian Equivalence §6

Ck,m. This turns out to be true for all m, k > 1, which we show in the following

section. The proof relies on the connection of P(k)
m (n) to regular languages, and

in this section, we consider the slightly more general question: Given a regular
language L having CL(n) of order O(nk) for some k > 0, when does CL(n) ∼ Cnk
for some constant C (depending on L)? We give a sufficient condition, regarding
the structure of a DFA recognizing L, for this to happen.

We first consider certain kinds of polynomial regular languages defined by
regular expressions of a very special form. We consider their generating functions,
from which we deduce a condition for these kind of languages to have complexity
asymptotic to a polynomial. Finally, we apply these considerations to general
polynomial regular languages. This section is based on the article [19], in which
the main results of this section appear.

6.2.1 The Asymptotic Complexities of Simple Polynomial
Languages

Let us first set some terminology. The longest common prefix of the words x and
y is denoted by lcp(x, y). We say that lcp(x, y) is proper, if y 6= lcp(x, y) 6= x.

Definition 6.9. Let L be a regular language defined by a regular expression
z0y
∗
1z1 · · · y∗t zt, where, for each i = 1, . . . , t − 1, the longest common prefix of yi

and zi is proper. Then L is called a simple polynomial language of degree t.

It is easy to show that a simple polynomial language L of order t has CL(n)
of order O(nt−1) but not of order O(nt−2). Indeed, it is straightforward to show
that each word u ∈ L has exactly one factorization of the form z0y

α1
1 z1 · · · yαtt zt

(this is done in the proof of Lemma 6.12). A similar counting argument to [102,
Lemma 1] shows that CL(n) 6= O(nt−2). The main result in this subsection is the
following:

Proposition 6.10 ([19]). Let L be a simple polynomial language having a regular
expression as in Definition 6.9. Assume further that gcd(|y1|, |y2|, . . . , |yt|) = 1.
Then

CL(n) ∼ 1∏t
i=1 |yi|

1

(t− 1)!
nt−1.

We proceed to prove the above proposition by considering the generating functi-
ons of simple polynomial languages. Recall Subsection 2.3.2 for the basic notions
and results regarding this notion. We give a general treatment of the asymptotic
growth of simple polynomial languages, from which we deduce the above theorem.

Example 6.11. Let L1 be a regular language defined by the regular expression
z0y
∗
1z1 for some z0, z1, y1 ∈ Σ∗, where y1 6= ε. It is readily verified that the

generating function GL1
of L1 may be written as

GL1(x) =
∑
k

x|z0|+k|y1|+|z1| = x|z0z1|
∑
k

xk|y1| =
x|z0z1|

1− x|y1|
.

Let L2 be the language defined by the expression y∗2z2 for some y2, z2 ∈ Σ∗,

where y2 6= ε. Then, similar to the above, GL2(x) = x|z2|

1−x|y2| . Assume further

§6.2 On the Asymptotic Growth of Regular Languages 71

that lcp(z1, y1) is proper. Consider then the generating function of the language
L = L1 · L2: Now L has the property that each u ∈ L has a unique factorization
of the form u = u1u2, where u1 ∈ L1, u2 ∈ L2. Indeed, this follows from the
assumption that `cp(y1, z1) is proper (see the proof of the following lemma). It
follows that GL(x) is the product of GL1(x) and GL2(x):

GL(x) = GL1
(x) ·GL2

(x) = x|z0z1z2|

(1−x|y1|)(1−x|y2|) .

We generalize the above example.

Lemma 6.12. Let L be a regular language defined by the regular expression
z0y
∗
1z1 · · · y∗t zt, where, for each i = 1, . . . , t− 1, lcp(yi, zi) is proper. Then

GL(x) = xz
t∏
i=1

1

1− x|yi|
, where z = |z0z1 · · · zt|. (6.3)

Proof. The case t = 1 was handled in the above example. Assume that the claim
is true for t and consider the case of t+ 1. Let L1 and L2 be the languages defined
by the expressions z0y

∗
1z1 · · · y∗t zt and y∗t+1zt+1 respectively, so that L = L1 · L2.

We claim that

GL1·L2
(x) = GL1

(x) ·GL2
(x),

that is, each element of L has a unique factorization into a word of L1 concatenated
with a word of L2. Suppose the contrary: there exist ir, jr ∈ N, r = 1, . . . , t + 1,
such that

z0y
i1
1 z1 · · · yit+1

t+1 zt+1 = z0y
j1
1 z1 · · · yjt+1

t+1 zt+1

and there exists a minimal index ` > 0 such that ir 6= jr (if no such index existed,
the factorizations would be the same). Observe that ` 6 t, as otherwise the lengths
implied by the factorizations would not coincide. We may assume that i` > j`,
from which it follows that

yi`−j`` z` · · · yit+1

t+1 zt+1 = z` · · · yjt+1

t+1 zt+1.

This is a contradiction, since lcp(y`, z`) is assumed to be proper. The claim now
follows by the induction hypothesis, since

GL1(x) ·GL2(x) = xz
t∏
i=1

1

1− x|yi|
· x|zt+1|

1− x|yt+1|
= xz+|zt+1|

t+1∏
i=1

1

1− x|yi|
,

where z = |z0z1 · · · zt|.

For the rest of this subsection we fix L to be a language as in Lemma 6.12 so
that the generating function GL(x) of L has the rational expression (6.3). Writing
GL(x) =

∑
akx

k as a formal power series, we consider the asymptotic behavior of
the coefficients ak, for k > 0, by performing certain manipulations to the rational
expression of GL(x).

For the rest of the subsection, let RL(x) = xz
∏t
i=1

1
1−x|yi| be the rational

function defined by expression (6.3) of GL(x). Further, let qL(x) =
∏t
i=1 1− x|yi|

72 Quantitative Aspects of k-Abelian Equivalence §6

denote the denominator of RL(x). Assume further that qL(x) has d distinct roots
λ1, . . ., λd for some d > 1. (Observe that each λi is a root of unity.)

Now qL(x) has the decomposition qL(x) =
∏d
i=1(x− λi)mi , where λi 6= λj for

i 6= j, and mi > 1 for each i = 1, . . . , d. We may express RL(x) using the partial
fraction decomposition

RL(x) = r0(x) +

d∑
i=1

mi∑
j=1

Cij
(λi − x)j

, (6.4)

where r0(x) is a polynomial of degree deg p−deg q if this number is non-negative, or
otherwise r0(x) = 0, and Cij are constants for each i = 1, . . . , d and j = 1, . . . ,mi.
We may now express GL(x) as a sum of formal power series by recalling the
expression for the negative binomial series 1

(λ−x)t =
∑
k

(
k+t−1
t−1

)
λ−t−kxk in (6.4):

GL(x) =
∑
k

akx
k = r0(x) +

d∑
i=1

mi∑
j=1

Cij
∑
k

(
k + j − 1

j − 1

)
λ−j−ki xk. (6.5)

It is clear that one of these roots is 1; we set λ1 = 1. Let also m = max{mi},
that is, m is the maximal multiplicity of the roots of qL(x). In the following, we
call λ a maximal root of qL(x) if the multiplicity of λ as a root of qL(x) equals
m. We shall now consider the asymptotic behaviour of the coefficients ak in
GL(x) =

∑
k akx

k using (6.5).

Lemma 6.13. For all k > deg r0, where r0 is as in the formal power series (6.5),

ak =

d∑
i=1

Ci
(m−1)!λ

−m−k
i km−1 +O(km−2),

where Ci = Cim as defined in (6.4) if λi is a maximal root of qL(x), otherwise
Ci = 0.

Proof. As discussed above, each root λi of qL(x) is a root of unity whence the
values λki , for k ∈ Z, are uniformly bounded for each i. Further, we note that(
k+j−1
j−1

)
= 1

(j−1)! (k+1) · · · (k+j−1) = 1
(j−1)!k

j−1 +O(kj−2). Let then k > deg r0.

By the equality (6.5),

ak =

d∑
i=1

mi∑
j=1

Cij

(
k + j − 1

j − 1

)
λ−j−ki

=

d∑
i=1

mi∑
j=1

(
Cij

(j−1)!k
j−1 +O(kj−2)

)
λ−j−ki

=

d∑
i=1

mi∑
j=1

(
Cij

(j−1)!λ
−j−k
i kj−1 +O(kj−2)

)

=

d∑
i=1

(
Cimi

(mi−1)!λ
−mi−k
i kmi−1 +O(kmi−2)

)
=

d∑
i=1

Ci
(m−1)!λ

−m−k
i km−1 +O(km−2).

§6.2 On the Asymptotic Growth of Regular Languages 73

Here we employ the facts that the values λki , for k ∈ Z, are uniformly bounded,
and that mi 6 m for each i = 1, . . . , d.

For the polynomial qL(x) we see that the root λ1 = 1 has multiplicity t. Since
each polynomial of the form 1−xr, where r > 1, has r distinct roots, it follows that
the maximum multiplicity m of a root of the polynomial qL(x) =

∏t
i=1(1− x|yi|)

equals t. It thus follows that 1 is a maximal root of qL(x). In particular, in the
partial fraction decomposition (6.4) of RL(x), we have mi 6 t for each i, and
m1 = m = t, where λ1 = 1. Furthermore, C1 = C1t in the above lemma. Let us
compute the exact value of C1.

Lemma 6.14. Let C1 be as defined above. Then C1 =
∏t
i=1

1
|yi| .

Proof. Let H(x) be defined by qL(x) = (1− x)tH(x), that is,

H(x) =
qL(x)

(1− x)t
=

t∏
i=1

|yi|−1∑
j=0

xj .

Note that H(1) =
∏t
i=1 |yi|. By combining all other terms in (6.4), we may express

RL(x) as

RL(x) =
xz

qL(x)
=

C1

(1− x)t
+

P (x)

(1− x)t−1H(x)
=
C1H(x) + (1− x)P (x)

qL(x)
,

where P (x) is the polynomial defined by the above equality. This implies that
C1H(x) + (1− x)P (x) = xz. Evaluating both sides at x = 1 yields C1 = 1/H(1).
The claim follows.

We are in the position to prove the main result of this subsection.

Proof of Proposition 6.10. We show that the root λ1 = 1 of qL(x) is the unique
maximal root of qL(x). The claim then follows by Lemma 6.13 together with the
above lemma.

First note that an mth root of unity λ, that is, λm = 1, is a root of the
polynomial 1−xr if and only if m divides r. We already observed that λ1 = 1 is a
maximal root of qL(x), and has multiplicity t. Suppose then that an mth root of
unity λ 6= 1 is also a maximal root of qL(x). It follows that λ is a root of each of
the polynomials 1− x|yi|, i = 1, . . . , t, whence m divides |yi| for each i = 1, . . . , t.
This is a contradiction, since it would follow that gcd(|y1|, |y2|, . . . , |yt|) > m > 1.
Thus λ has multiplicity less than t and λ1 is the unique maximal root of qL(x).

6.2.2 A Sufficient Condition for Languages Having Growth
Asymptotic to a Polynomial

Let us then consider the general case of a regular language L having CL(n) = O(nk)
for some k > 0. Consider any DFA A recognizing L and any walk W in the
underlying multigraph of A starting from the initial state and ending in some

74 Quantitative Aspects of k-Abelian Equivalence §6

accepting state. Any two distinct cycles1 occurring along W must be vertex-
disjoint, as otherwise CL(n) is not of the order O(nk) for any k > 0 (see [102]).2

In particular, the only strongly connected components in the underlying graph of
A are simple cycles (after removing non-reachable states and states from which no
accepting state is reachable). For example, see the automata in Figures 5.1–5.5.
Thus any such walk W is cycle-deterministic. We may write

W = P0C
α1
1 P1 · · ·Cαtt Pt, (6.6)

where P0P1 · · ·Pt = P is a path, Ci is a cycle and αi > 1 for each i = 1, . . . , t.
Further, W enters the cycle Ci at position |P0C

α1
1 P1 · · ·Pi−1| + 1 for each i. Not

only is W cycle-deterministic, but it has an even stronger property: once W leaves
the cycle Ci, none of the previously visited vertices are visited afterwards.

Definition 6.15. Let W be a walk in the underlying graph of the DFA A, such
that tail(W) is the initial state of A, and head(W) is an accepting state of A. Then
W defines the sub-automaton AW of A, called a walk-automaton (defined by W)
of A, as follows. The initial state of AW is the initial state of A, and the only
accepting state is head(W). The states of AW are the vertices occurring in W and
the transitions are as in A restricted to the states in V (W). If there is a transition
leading out of V (W) in A, then this transition is directed to a sink state in AW.

Remark 6.16. A word accepted by a walk-automaton of a DFA A is called r-tiered
in [102]. Here r represents the number of cycles the computation of A enters.

Clearly the language recognized by a walk-automaton AW is a sublanguage of
L(A). Observe that several walks may define the same walk-automaton B. Now if
two walks W1 and W2 define the same walk-automaton B, the corresponding sets
of cycles occurring along the walks are equal: Cyc(W1) = Cyc(W2). Thus, for
a walk-automaton B, we let Cyc(B) denote the set of cycles occurring along any
walk defining B. We call the walk-automaton B saturated, if the number of cycles
#Cyc(B) is maximal among all walk-automata of A.

Example 6.17. Consider the automaton in Figure 5.2 recognizing the language
L3,B,C. Let W be the walk defined by the word w = aabaabaabababa. We may
write W = P0C

2
1P1C2P2, where label(P0) = aab = label(C1), label(P1) = ab =

label(C2), and label(P2) = a. The walk-automaton B defined by W thus recognizes
the language aab(aab)∗ab(ab)∗a. Observe that the walk W′ defined by the word
w′ = aabaabababa also defines B. Now Cyc(B) = {C1,C2}. On the other hand, the
walk W′′ defined by the word aaabaabababa defines a different walk-automaton,
which recognizes the language aaa∗b(aab)∗ab(ab)∗a.

The maximum number of cycles occurring along a walk in A is 5, as can be
verified from the figure. (The cycles have emboldened edges for convenience). The
union of the saturated walk-automata of A is defined by the regular expression

(aa+ abaa+ baa+ bbaa) · a∗b(aab)∗·
·
(
ab(ab)∗b(abb)∗ + b(aabb)∗ab(bab)∗b

)
· bb∗(ε+ a+ aa+ ab),

as can be verified by carefully inspecting Figure 5.2.

1Two cycles of a multigraph are distinct if the sets of (labeled) edges are distinct.
2If two cycles shared a common vertex, L would contain a language of the form x(y1 + y2)∗z

for some words x, y1, y2, z ∈ Σ∗, y1 6= ε 6= y2.

§6.2 On the Asymptotic Growth of Regular Languages 75

For the remainder of this section we let L be a regular language having poly-
nomial complexity, and let A be a DFA recognizing L.

Let now AW be a walk-automaton of A defined by the walk W of the form (6.6).
By the structure of A, L(AW) is defined by the regular expression z0y

∗
1z1 · · · y∗t zt,

where

• The word z0 is the label of the path P0 from tail(W) to tail(C1);

• The word yi is the label of Ci for each i = 1, . . . , t;

• The word zi is the label of the path Pi from tail(Ci) to tail(Ci+1) for each
i = 1, . . . , t− 1;

• The word zt is the label of the path Pt from tail(Ct) to f .

Moreover, since A is deterministic, the longest common prefix lcp(yi, zi) of yi and
zi is proper for each i = 1, . . . , t−1. In particular, zi ∈ Σ+ for each i = 1, . . . , t−1.
It follows that L(AW) is a simple polynomial language. For a walk W we call the
above regular expression the canonical expression defined by W.

Lemma 6.18. Let W and W′ define distinct saturated walk-automata of A. Then
L(AW) ∩ L(AW′) = ∅.

Proof. Assume, for a contradiction, that both automata accept the same word w.
Without loss of generality, we may take

W = P0C1P1 · · ·CtPt and W′ = P′0C
′
1P
′
1 · · ·C′tP′t.

Let further z0y
∗
1z1 · · · y∗t zt and u0v

∗
1u1 · · · v∗t ut be the canonical expressions defined

by W and W′ respectively. Now, for some αi, βi > 0, we have

w = z0y
α1
1 z1 · · · yαtt zt = u0v

β1

1 u1 · · · vβtt ut.

Let i > 1 be the minimum index for which zi−1 6= ui−1 or yi 6= vi. Such an
index exists, since the walks W and W′ define distinct walk-automata and A
is deterministic. It follows that αj = βj for j < i since the longest common

prefix of yj and zj is proper. Thus zi−1y
αi
i zi · · · y

αt
t zt = ui−1v

βi
i ui · · · v

βt
t ut. If

zi−1 = ui−1, then yi 6= vi. It follows that two distinct cycles start from the state
tail(Ci) = tail(C′i) in A, which is not possible. Thus zi−1 6= ui−1 and, without loss
of generality, we may assume |zi−1| > |ui−1|. We deduce that ui−1 is a proper
prefix of zi−1. Let Pi−1 = P′i−1P

′′, and consider the walk

W′′ = P0C1P1 · · ·Ci−2Pi−2Ci−1P
′
i−1C

′
iP
′′CiPi · · ·CtPt.

It is a well-defined walk in A, and thus defines some walk-automaton B′′. But now
#Cyc(B′′) = t+ 1, which contradicts the assumption that AW is saturated. This
concludes the proof.

Theorem 6.19. Let L be a regular language with CL(n) of order O(nk), but not
of order O(nk−1) for some k > 0. Let A be a DFA recognizing L. Assume that
for each B ∈ Sat(A), we have gcd{|C| | C ∈ Cyc(B)} = 1. Then CL(n) ∼ Dnk,
where

D =
1

k!

∑
B∈Sat(A)

∏
C∈Cyc(B)

1

|C|
.

76 Quantitative Aspects of k-Abelian Equivalence §6

Proof. Let B be any walk-automaton of A. Then B recognizes a simple polynomial
language K having complexity CK(n) = O(nCyc(B)−1) by Lemma 6.13. Let M =
#Cyc(B) for a saturated walk-automaton B. Since A is the union of all its walk-
automata, we deduce that CL(n) = O(nM−1), in particular, M > k + 1. On the
other hand, since CL(B)(n) ∼ αnM−1 for some α by Proposition 6.10, it follows

that M = k+1. Let L′ = ∪B∈Sat(A)L(B). We have that CL(n) = CL′(n)+O(nk−1),

since all other walk-automata contribute at most O(nk−1) words. Since, by the
above lemma, L(B) ∩ L(B′) = ∅ for distinct walk-automata B, B′ ∈ Sat(A), it

follows that CL′(n) ∼
(∑

B∈Sat(A)
1
k!

∏
C∈Cyc(B)

1
|C|

)
nk by Proposition 6.10. The

claim follows.

The above result is crucial in our analysis of k-abelian equivalence classes in
the following sections. Before moving towards the analysis of Lk,Σ,C we give a
clarifying example concerning the notions discussed above.

Example 6.20. Recall the automaton A in Figure 5.2. In Example 6.17 a regu-
lar expression was obtained for the union L′ of the languages recognized by the
saturated walk-automata of A. Since these languages are disjoint, the generating
function of L equals the sum of the generating functions of these languages. We
thus obtain the rational expression for GL(x):

(x2 + x3 + 2x4) · 1
1−x · x ·

1
1−x3 ·

·
(
x2 1

1−x2x
1

1−x3 + x 1
1−x4x

2 1
1−x3x

)
· x 1

1−x · (1 + x+ 2x2)

=
x7(1 + x+ 2x2)2(1 + x+ x2)

(1− x)5(1 + x)(1 + x2)(1 + x+ x2)2

=
4

3

1

(1− x)5
− 12x10 +O(x9)

3(1− x)4(1 + x) (1 + x2) (1 + x+ x2)
.

In the corresponding generating function
∑
akx

k, the dominating term of the
coefficient ak is contributed from 4

3
1

(1−x)5 = 4
3

1
4!

∑∞
k (k+4)(k+3)(k+2)(k+1)xk.

Thus ak = 4
3 (k

4

4! +O(k3)) = 1
18k

4+O(k3). Another way to find the coefficient of k4

is by inspecting the lengths of the cycles of saturated automata by Theorem 6.19.
We again find 1

4!16(1
1·3·2·3·1 + 1

1·3·4·3·1) = 1
18 . This coincides with the coefficient

computed in Proposition 6.4, as expected.

Remark 6.21. Assume that a regular language L has CL(n) of order O(nt) but
not of order O(nt−1). It is not hard to see that then CL(n) = 〈a0, . . . , am〉nnt +
O(nt−1), where a0, . . . , am are some non-negative constants and at least one of
them is positive. (For example, this can be seen by Lemma 6.13 and Lemma 6.18).
If, further, L is factor closed, then each ai is positive, so that CL(n) = Θ(nt).
Indeed, in this case CL(n) 6 CL(n + 1) 6 |Σ|CL(n). This does not imply that
CL(n) ∼ Cnt for some constant C as shown by the following example.

Example 6.22. Let a0, ai, bi, ci be distinct letters for each i = 1, . . . , t. Let
K = a0(b1c1)∗a1 · · · (btct)∗at be a simple polynomial language of degree t. Let
further L be the factor closure Fact(K) of K. We claim that CL(n) = Θ(nk−1)
but CL(n) 6= C ′nt−1 for any constant C ′. Let now K ′ = Fact(a−1

0 L)∪Fact(La−1
t).

Note that K ′ is also factor closed as the union of factor closed languages. We see

§6.3 The Asymptotic Number of k-Abelian Equivalence Classes 77

that K = K ′ ∪ L and that this union is disjoint, as none of the words of K ′ both
begin with a0 and end with at, while each word in L does so. It is not hard to
convince oneself that CK′(n) has complexity Θ(nt−1). For example, after some
consideration, we see that

K ′ = (ε+ c1)(b1c1)∗a1 · · · (btct)∗(ε+ bt + at)

∪ (ε+ a0 + c1)(b1c1)∗a1 · · · (btct)∗(ε+ bt)

∪ Fact(a1(b2c2)∗a2 · · · (bt−1ct−1)∗at−1),

so, by induction, K ′ is a finite union of simple polynomial languages of degree at
most t.

Assume that CK′(n) ∼ C ′nt−1. Now CK(t + 2m) = 0 for all m > 0. On
the other hand, CK(t + 1 + 2m) =

(
m+t−1
t−1

)
∼ 1

(t−1)!m
t−1, so that CK(n) =

〈0, 1
2t−1(t−1)! 〉n+tn

t−1 + O(nt−2). But now CL(n) = 〈C,C + 1
2t−1(t−1)! 〉n+tn

t−1 +

O(nt−2) so that CL(n) 6= C ′nt−1 for any constant C ′.

6.3 The Asymptotic Number of k-Abelian Equi-
valence Classes

In this section we show that P(k)
m (n) is asymptotic to a polynomial. This is a

sharpening of Theorem 1.1, which states that P(k)
m (n) = Θ(nm

k−1(m−1)) for all
m, k > 1 (the constants implied by Θ depend on m and k). The considerations of
this section appear in the article [19].

Theorem 6.23. For all k,m > 1 we have P(k)
m (n) ∼ Ck,mn

mk−1(m−1) for some
rational constant Ck,m depending on k and m.

We prove this theorem by showing that the minimal DFA recognizing Lk,Σ,C,
where |Σ| = m, satisfies the assumptions of Theorem 6.19. Namely we aim to
show that each saturated walk-automaton of the minimal DFA contains a cycle of
length 1, that is, a loop.

We begin with a connection between cycles in walk-automata of a DFA recog-
nizing Lk,Σ,C, and cycles in the de Bruijn graph.

Let A be a DFA recognizing Lk,Σ,C and let B be a walk-automaton of A.
Assume B has the canonical expression z0y

∗
1z1 · · · y∗t zt. Take u = z0y

α1
1 z1 · · · yαtt zt,

where αi is the minimal integer such that αi|y|i > k − 1 + 2|yi|. We have yαii =
piy
′
iyiyi, where piy

′
i = yαi−2, |pi| = k − 1, and y′i is a proper suffix of yi. Now

piy
′
iy

2
i = yipiy

′
iyi = y2

i piy
′
i. Consider the walk Wi defined by y2

i pi in dB(k−1). We
may write Wi = P 2

i , where tail(Pi) = head(Pi) = pi and label(Pi) = y′iy
′′
i = xi,

where yi = y′′i y
′
i. We claim that Pi is a repetition of a cycle; Pi = Crii . Indeed,

since tail(Pi) = head(Pi), a cycle C occurs along Pi, that is, Pi = XCX ′. Now
P 2
i = XCX ′XCX ′ and, since Pi is cycle-deterministic,3 we have X ′X = Cr. But

then XX ′ = Dr, where D is the cycle C traversed starting from a different vertex,
and thus P 2

i = D2r+2, that is, Pi = Dr+1. Thus Pi is a repetition of a cycle.
Using the above notation, we write the walk Wu defined by u in dB(k − 1) as

Wu = V0C
2r1
1 V1 · · ·C2rt

t Vt,

3Recall that the language Lk,Σ,C is factor closed.

78 Quantitative Aspects of k-Abelian Equivalence §6

where tail(Wu) = prefk−1(u), Ci is a cycle labeled by xi with tail(Ci) = pi, V0 is
a walk from prefk−1(u) to p1 labeled by u[k− 1, k− 1 + |z0|), Vi is a walk from pi
to pi+1 labeled by y′izipi+1, and Vt is a walk from pt to suffk−1(v) labeled by y′tzt.
Recall now that lcp(yi, zi) is proper. It follows that the walk Crii Vi leaves the cycle
Ci at some point before reaching the end. We conclude that Cyc(Wu) > Cyc(B).

Assume now that B above is saturated. Since P(k)
m (n) = Θ(nm

k−1(m−1)), it
follows that #Cyc(B) = mk−1(m − 1) + 1. By the above and Corollary 4.11, we
have #Cyc(B) 6 #Cyc(Wu) 6 mk−1(m− 1) + 1 so that these numbers are equal.
We conclude that there is a one-to-one correspondence between the labels of the
cycles in Cyc(B) and the labels of the cycles in Cyc(Wu).

Proposition 6.24 ([19]). Let A be the minimal DFA recognizing Lk,Σ,C. Then
each saturated walk-automaton B of A contains a cycle of length 1.

Proof. Let T = mk−1(m− 1) + 1 and let B be defined by the walk

W = P0C1P1 · · ·CTPT ,

where P0 · · ·PT is a path, Ci is a cycle, and W enters the cycle at position
|P0C1P1 · · ·Ci−1Pi−1| + 1. Let z0y

∗
1z1 · · · y∗T zT be the canonical expression of

B and let u = z0y
α1
1 z1 · · · yαTT zT , where αi is the minimal integer for which

αi|yi| > k − 1 + 2|yi|. Then, letting Wu be the walk defined by u in dB(k − 1),
we have Wu = V0C

2r1
1 V1 · · ·C2rT

T VT for some cycles Ci, by the above discussion.
Further, the walk C2ri

i Vi leaves the cycle Ci before it ends. Observe that Vi−1

could end with a repetition of Ci, and Vi can begin with a repetition of Ci. Let
us rewrite

Wu = P0D
β1

1 P1 · · ·DβT
T ,

where Di is a cycle, βi > 2ri, P0 is a path from prefk−1(u) to tail(D1), Pi
is a path from head(Di) to tail(Di+1) and Wu enters the cycle Di at position

|P0D
β1

1 P1 · · ·Dβi−1

i−1 Pi−1|+ 1.
Recall Proposition 4.10: Between two consecutive cycles occurring along Wu,

there is an update in the sequence of extension histories of u which has not occurred
along Wu before. Since there are mk−1(m − 1) possible updates,4 it follows that
each of these updates occur along Wu and, moreover, after each update, W enters
a cycle before another update occurs. Further, there is a cycle which occurs along
W before the first update. Let a ∈ Σ. Now the vertex ak−1 occurs at some index j
with (ak−1, a) ∈ ∆j

u, so that Wu enters the cycle (ak−1, a). We conclude that one
of the cycles Di equals this cycle. It follows that the label of the corresponding
cycle Ci along the defining walk W of B equals ari .

We claim that ri = 1, that is, the cycle Ci is a loop. Let e be the first edge of Ci.
We show that tail(e) is equivalent to head(e), which implies that tail(e) = head(e)
by Theorem 2.16, since A is assumed to be the minimal DFA recognizing Lk,Σ,C.

Let v0 = z0z1 · · · zi−1a
riαi . Notice that since A is deterministic, after reading

v0 (resp., v0a), A reaches the state tail(e) (resp., head(e)) when starting from
the initial state. Now the walks Wv0

and Wv0a in dB(k − 1) are of the form
X(ak−1, a)2 and X(ak−1, a)3, respectively. Further, for any word v ∈ Σ∗ the

4Recall that the elements of ∆1
u are not counted as updates.

§6.4 On the Asymptotic Number of k-abelian Singletons 79

corresponding walks Wv0v and Wv0av in dB(k− 1) are of the form X(ak−1, a)2X ′

and X(ak−1, a)3X ′. By Lemma 4.12, we have v0v ∈ Lk,Σ,C if and only if v0av ∈
Lk,Σ,C, which implies that v ∈ Ltail(e) if and only if v ∈ Lhead(e), that is, tail(e)
and head(e) are equivalent. This concludes the proof.

Theorem 6.23 follows immediately from the above proposition by Theorem 6.19.

6.4 On the Asymptotic Number of k-abelian Sing-
letons

An immediate consequence of Theorem 5.6 is the following:

Theorem 6.25. For k and m fixed, we have Sk,m(n) = O(nNm(k−1)−1), where
the constants implied by O depend on k and m.

Recall that Nm(`) is the number of necklaces of length ` over an m-letter
alphabet. In this section we show that for each m, k > 1 there exists an integer

sk,m 6 Nm(k − 1) − 1 such that S(k)
m (n) = Θ(nsk,m). We give a characterization

of this s in terms of cycle semi-decompositions of the de Bruijn graph of order
k − 1. We show for some small values of k and m that sk,m = Nm(k − 1) − 1.
We actually conjecture that sk,m = Nm(k − 1) − 1 for any k,m > 1. We discuss
some supporting evidence and tie, in some cases of m and k, this conjecture to
a conjecture on so-called Gray codes for necklaces stated in the literature (see
Conjecture 6.35). We show that whenever sk,m = Nm(k− 1)− 1, then, in fact, we

have S(k)
m (n) ∼ Dk,mn

Nm(k−1)−1 for some constant Dk,m depending on k and m.
Our approach is similar to the approach to Theorem 6.23.

Theorem 6.26. There exists an integer sk,m such that S(k)
m (n) = Θ(nsk,m).

Proof. Let A be a DFA recognizing Lk,Σ,sing, where |Σ| = m, and let B be a
saturated walk-automaton of A. It follows that Lk,Σ,sing may be expressed as a
finite union of expressions of the form z0y

∗
1z1 · · · y∗t zt where t 6 #Cyc(B), whence

S(k)
m (n) = O(n#Cyc(B)−1). Now CL(B)(n) is not of the order O(n#Cyc(B)−2) which

implies that S(k)
m (n) is not of the order O(n#Cyc(B)−2). Finally, since Lk,Σ,sing

is factorial by Remark 4.15, we conclude that S(k)
m (n) = Θ(n#Cyc(B)−1) by Re-

mark 6.21. Thus sk,m + 1 equals the number of cycles in a saturated walk-
automaton of any DFA recognizing Lk,Σ,C.

The above theorem is not explicitly stated in [55], though it can be deduced
from the discussion in the paper.

The following characterization of sk,m in terms of cycle semi-decompositions
of the de Bruijn graph occurs in [55]. The proof given here is different, though in
the same spirit.

Proposition 6.27. Let k,m > 1. Then sk,m + 1 equals the maximal number s
such that there exists a set C of cardinality s of vertex-disjoint cycles of dB(k− 1)
for which dB(k − 1)/C contains a walk which traverses each vertex corresponding
to a cycle precisely once and each vertex of dB(k − 1) \ V (C) at most twice.

80 Quantitative Aspects of k-Abelian Equivalence §6

Proof. Let u be a k-abelian singleton and let Wu be the corresponding word in
dB(k − 1). In the alternative proof of Theorem 5.1, it is shown that such a walk
induces a polynomial language L ⊆ Lk,Σ,sing having CL(n) = O(n#Cyc(Wu)−1),
when applied to a k-abelian singleton. It is not hard to see that this language
is a simple polynomial language, so that the complexity of Lk,Σ,sing is not of the
order O(n#Cyc(Wu)−2). By Remark 4.22, u defines a cycle-semi-decomposition
with #Cyc(Wu) cycles. We conclude that sk,m is the claimed quantity.

In pursuit of finding bounds for sk,m, we consider the cycle-semi-
decompositions of the de Bruijn graph due to the above characterization of sk,m.

6.4.1 On Maximal Cycle-Decompositions

As concluded in Proposition 4.25, sk,m + 1 is bounded above by the number of
necklaces of length k − 1 over an m-letter alphabet. We explore the possibility
when sk,m = Nm(k − 1)− 1 and define the following.

Definition 6.28. A cycle-semi-decomposition V/C of dBΣ(n) is called maximal
if C contains N|Σ|(n) cycles.

Note that a maximal cycle-semi-decomposition of dBΣ(n) exists for any n ∈ N :
take the cycles induced by necklaces. The corresponding quotient graph then
contains only vertices corresponding to cycles. This actually holds for any maximal
cycle-semi-decomposition of dBΣ(n) by the following proposition.

Proposition 6.29 ([55]). For any maximal cycle-semi-decomposition V/C of
dBΣ(n), each vertex occurs in one of the cycles of C. In particular, V/C is a
cycle-decomposition.

Proof. We first recall the following: Let G be an Eulerian graph and C̃ a set of
edge-disjoint cycles of G. Then there exists a decomposition D̃ of G into edge-
disjoint cycles such that C̃ ⊆ D̃. Indeed, since G is Eulerian, each vertex v has the
property d+

G(v) = d−G(v). If G′ is the graph obtained from G by removing edges

occurring in C̃, then each vertex v ∈ G′ has the property d+
G′(v) = d−G′(v). It

follows from Veblen’s theorem ([105]) for directed graphs (see, e.g., [13], exercise
2.4.2) that there exists a decomposition Ẽ of G′ into edge-disjoint cycles. Now
Ẽ ∪ C̃ = D̃ is a decomposition of G into edge-disjoint cycles satisfying the claim.

Let then C be a set of N(n) vertex-disjoint cycles in dB(n). The vertices of
dB(n) correspond to the edges of dB(n− 1), so that C can be seen as a set C̃ of
edge-disjoint cycles of dB(n− 1), an Eulerian graph. Suppose there is a vertex v
in dB(n) not included in any of the cycles of C. Then v corresponds to an edge
e in dB(n − 1) which does not occur in C̃. By the above, C̃ can be extended to
a decomposition of dB(n − 1) into edge-disjoint cycles D̃ such that C̃ ⊂ D̃. But
now D̃ can be seen as a set of vertex-disjoint cycles of dB(n) with more than N(n)
cycles, a contradiction.

Observe that, for a maximal cycle-decomposition C of dB(n), the quotient
graph can be seen as an undirected graph. To see this, let (X,Y) be an edge of
G = dB(n)/C, that is, there exist a, b ∈ Σ, u ∈ Σn−1 such that au ∈ V (X) and
ub ∈ Y whence (au, ub) is an edge in dB(n). By Proposition 6.29, X and Y are

§6.4 On the Asymptotic Number of k-abelian Singletons 81

cycles, so that there exist c, d ∈ Σ such that (au, uc) ∈ E(X) and (du, ub) ∈ E(Y),
whence (du, uc) is an edge in dB(n). By definition, (Y,X) ∈ G as well.

The following proposition is immediate, as noted in [55].

Proposition 6.30. Let k,m > 1. Then S(k)
m (n) = Θ(nNm(k−1)−1) if and only if

there exists a maximal cycle-decomposition of dBΣ(k − 1), where |Σ| = m, such
that the induced quotient graph contains a Hamiltonian path, i.e., a path traversing
through each vertex precisely once.

When inspecting propositions 6.5 and 6.6, one observes that actually, in those

cases, S(k)
m (n) ∼ Dk,mn

Nm(k−1)−1 for some constant Dk,m depending on k and m.
Indeed, for these values of k and m there exist maximal cycle-decompositions of
dB(k − 1) such that the quotient graph contains a Hamiltonian path. For any
k and m, the existense of such a decomposition implies the existense of such a
constant Dk,m by the following results.

Lemma 6.31. Let n > 1 and let Σ be an alphabet. Then any maximal cycle-
decomposition of dBΣ(n) contains the cycle (loop) (an, a) for any a ∈ Σ.

Proof. Let C be a maximal cycle-decomposition of dB(k − 1). Now the vertex an

occurs in some cycle C ∈ C by Proposition 6.29. Assume that C 6= (an, a). Since
the cycles in C are vertex-disjoint, the set C′ = (C \C)∪ (an, a) consists of Nm(n)
vertex-disjoint cycles. But now the vertices in V (C) \ {an} do not occur in any
cycle, which contradicts Proposition 6.29.

The following conditional result is based on work presented in this thesis.

Proposition 6.32. Assume that S(k)
m (n) = Θ(nNm(k−1)−1). Then S(k)

m (n) ∼
Dk,mn

Nm(k−1)−1 for some constant Dk,m depending on k and m.

Proof. The proof is analogous to that of Theorem 6.23. Namely, we show, similar
to Proposition 6.24, that each saturated walk-automaton of the minimal DFA
recognizing Lk,Σ,sing contains a cycle of length 1.

Let A be the minimal DFA recognizing Lk,Σ,sing. Let B be a saturated walk-
automaton of A. By assumption we have #Cyc(B) = Nm(k − 1). As in the
proof of Proposition 6.24, we may construct a corresponding walk W in dB(k− 1)
containing at least Nm(k−1) cycles. Further, the labels of these cycles correspond
to conjugates of the labels of the cycles in Cyc(W). On the other hand, since the
word corresponding to W is a k-abelian singleton, the cycles occurring along W
are vertex-disjoint, so that #Cyc(B) = #Cyc(W). The cycles Cyc(W) now define
a maximal cycle-decomposition of dB(k − 1), whence, by the above lemma, one
of the cycles occurring along W is (ak−1, a). It follows that one of the cycles of
Cyc(B) has label ari for some integer ri. It can be shown that ri = 1, using the
assumption that A is minimal (using the same argument as in Proposition 6.24).
Thus Cyc(B) contains a cycle of length 1.

We conclude this chapter by considering concrete cycle-decompositions of the
de Bruijn graphs. The rest of the considerations of this chapter appear in [55].

82 Quantitative Aspects of k-Abelian Equivalence §6

0000 0001

0011

0101

0111 1111

00000 00001

00011

00101

00111

01011

01111 11111

Figure 6.1: The binary necklace graphs NG(4) and NG(5). A vertex represents
the necklace induced by its label. [55, Fig 4].

On Long Paths in Necklace Graphs

We consider the cycle-decomposition of the de Bruijn graph given by the cycles
defined by necklaces. Note that the length of such a cycle necessarily divides the
order of the de Bruijn graph. We begin with a definition.

Definition 6.33. Let CΣ(n) be the set of cycles induced by necklaces of length n
over the alphabet Σ. The quotient graph NGΣ(n) = dBΣ(n)/CΣ(n) is called the
necklace graph of order n.

Note that NG(n) does not always contain a Hamiltonian path:

Example 6.34. The binary necklace graphs of order 4 and 5 are illustrated in
Figure 6.1. A longest path in NG(4) contains 5 vertices out of a total of 6. On
the other hand, one can easily find a Hamiltonian path in NG(5).

The problem of finding a Hamiltonian path in necklace graphs has been ex-
tensively studied in terms of Gray codes ([28, 97, 99, 108, 111]). A Gray code for
necklaces of length n is defined as a sequence of all necklaces of length n such
that two consecutive necklaces have representatives which differ in one bit. One
can easily see that Gray codes for necklaces correspond to Hamiltonian paths in
necklace graphs. The following conjecture was stated over 20 years ago. To the
best of our knowledge it remains unsolved to this day.

Conjecture 6.35 ([99, Section 7]). Let n ∈ N be odd and let Σ be a binary
alphabet. Then there exists a Gray code for necklaces of length n over Σ. In other
words, NG(n) contains a Hamiltonian path.

The conjecture has previously been verified for necklaces up to length 9 in
[111]. Michael Rao verified the conjecture computationally up to n = 15 [55].
For completeness, we give Gray codes for binary words of odd lengths 5–15 in
Table 6.3. In the table, a Gray code is represented as a word a1 . . . aN(n)−1 over
the hexadecimals to be read as follows. The first necklace in the ordering is 0n. The
(i+1)st, i > 0, necklace is then obtained by complementing the aith letter (0↔ 1)
of the lexicographically least representative of the ith necklace. For example, the
coding 1114111 corresponds to the following ordering of necklaces of length 5:

00000, 00001, 00011, 00111, 00101, 01011, 01111, 11111.

§6.4 On the Asymptotic Number of k-abelian Singletons 83

n Gray code

5 1114111

7 1116165614521341111

9 11181878167876781576876567861878678185951575415813754113211

11 111a1a9a189a989a179a989a9798a9891679a89a978a98a6789a89789a871579a978

a98a67a89a8a7898b6167a9a879697a89a97a5856896378a2789a87269a78a989678

798489278979a62a8a72924745254527118584a82a346181811

13 111c1cbc1abcbabc19bcbabcb9bacbab189cbcabcb9abacba89bcbabcb9bcaba1789

abcab9acbcac98abcbabc78abcab9acbcac98abcbab97acbcac7abcba16789cbc9ab

cbab89cabcac9abcba789acbac9acbc89cbacbc89b65189abcb9abcac89cabcac987

9acabc8abcab96acba6915677ca1579bacba9a8cbcab1ca78b9cabcb8797b8cba89c

bacb9b768c9bc9acb89bcabcb9856ab8abcb9acbac89cbca97c7ba7568cb89acabc9

789cba9babc98acabda7acb188acabc78cbc8ca967cb7ab76a8bacba8a57c5a8bacb

a614ccb2bc89aca9aba789bc9acb8b67963acab567bc9acbab789b9abca98ca9ba67

8ba89abc7ac859c97897ca98ba4a9ca2c67cb98747a158ca9bc89ca7a89b8d6167bc

74a674ca47c45956c89aca6a42c11b18bc92c8ba86ca657b52865628ba392952178a

712ca139c78197a4411

15 111e1ede1cdedcde1bdedcdedbdcedcd1abedecdedbcdcedcabdedcdedbdecdc19ab

cedecedbcedeceabcdedcde9acedecedbcedeced17dedcd9bcedecebcdedc189abcd

ecdbcedecebacdedcde9acedecedbcedeced89bcdecdbcedecebacdedcdebc8edece

d9bcedecebcdedc89cdc9abcedecedacedeced16edece178abedebcdedcdabcedece

d9acdecdbcedecebacdedcdbc9edece9cdca89bcdecdbcedecebacdedcde9acdecdb

cedecebacdedcdb9cedece9cded8c8789abdedcbdedabdedcded9acedceb9edacdec

e9acedecbacdedbdedcf9cded18eb89abedcecbcdedcd9bcdecdbcdecba9cdedcde1

67bdcedcbdecede9edecd1679edbecdedbdedca8bde3cdedbdcedcd9becdecea8cdc

edcbdcedca8dedced89bcdecdbce9bdecded9bec9dcda789bedbcedecabcdcedcbde

d9badcedcbdece9ae9bcbedbcdbd98abdedcbdedabedcedebadeaced9f7c9edece17

9aedecdecded8bab8cdcedcbadcedc678becdedbdcedcda9becdecebcdedc9bcedce

89aedcbdedcbacedcdbadeacedec9abcecdebcecda67d96f819bcdece8bcded8a789

dedcbacdcedcbdedcdaedad9abedcecbedceaebdecdedbcec86dce67ec79abedebcd

edcd9bedcecbedca5dec19bcdcedcbded971579adedbcedceabecdecbcedcda9bcec

debcdecdabecdecbcedcd789acdcedcabedcede9acecdebcdecda9ecd9bdcedcbc98

abedbcdeabedcedeba9867bceedcecdedbcedce9aecd9bdcedcbcde8c86789decb9a

debcdecda9ed9bcdce89eadebcedceaecbdeceba9bcbdcbedbca8b8edcdeb879aded

cabdcedcb9aebcdedbdeca9ce9becdece9b9c789ec7abebcdceabecdecebcdc97875

f467abebcdceabeced2edeb9decded15bcbdcbedbc9a9bedcedeb7569bcec9adedcb

dcedc9aedc98cdecd8bedcebed789dbecdedbadaeda9bdedcbdceabedcecbc98aedc

edebacecdebcdc98a8768bcedccdedbc867edcbedbdabedcecb98acedceabedabacb

ec9adedaceb8edcd79a9bdedbdecda68adcea968bedcecbcedc87c9adecd5a7a59ec

deceabcecde9f46be68ecded8adedbcedc7abebd67bdeb81689de71edaedcbe1ebea

bcecdbcdc89acdcabdcecbacaed9adecbedbd78bdbcdecba9ecbdcb9dceb9ce9cdc8

7bdcecbce79aecedabdcebce968dc1ebedbcdeabecd5679dce2bcedcd98cd38569be

dbcde9aedcbdebea98acabcdba97bdebcedadbcebc79ca9bed6dabdcbd89dacdabdc

9caeb8ab89ba7ecbcdc96bdcbd8965958adecbebd87cdea879c8b6986ecbc7897bcb

e745eddcbddeab9aebcec8de6ed4c92ecbedbdaeb676459dabdc9ca78bda9dbab45d

cbdd9bcb635f4de51676b2dab76ba6997ec89a9ce7ec9ea7978bc8ce45e6cbce6746

bec1e78aecbacbd9b74319db8de9a8cec9acecb986511398b7959edbda796c8cd8a8

67a8dc1aeceb1d425975ae7ec425527e11d1dbadcac1642aca8acd8abd89bd96e729

a8595dbeb7265bd18a71dcdc3c4562b8676d7b74169b3115278631cca414f52ed1db

62ad416187cb111

Table 6.3: Gray codes for binary necklaces of odd lengths up to 15. [55, Table 1].

84 Quantitative Aspects of k-Abelian Equivalence §6

Remark 6.36. By Proposition 6.32 and the above discussion, for each even k 6 16,

there exists a constant Dk,2 such that S(k)
2 (n) ∼ Dk,2n

N2(k−1)−1.

On the other hand, binary necklace graphs are bipartite. When n > 4 is even,
the difference of cardinalities of the partitions is greater than 1 so the graph cannot
contain a Hamiltonian path. In fact, it is not hard to calculate an upper bound
on the length of the longest path:

Proposition 6.37. For the binary alphabet and n even, the number of vertices in
a longest path in NG(n) is at most

BPL(n) =
1

n

∑
d|n
2-d

ϕ(d)2n/d + 1. (6.7)

Remark 6.38. The first few terms of (BPL(2n))∞n=1 are

3, 5, 13, 33, 105, 345, 1173, 4097, 14573, 52433, 190653, 699073, . . .

The sequence (BPL(n))∞n=1 equals (a(n) + 1)∞n=1 where (a(n))∞n=1 is the sequence
A063776 in the On-Line Encyclopedia of Integer Sequences (http://oeis.org,
accessed November 5, 2018).

Proof. Let A (resp., B) be the set of necklaces containing an even (resp., odd)
number of 1s; NG(n) is then bipartite with respect to the partition into A and B.
Now the number N(n, `) of necklaces of length n containing precisely ` 1s equals
1
n

∑
d|gcd(`,n) ϕ(d)

(
n/d
`/d

)
(see, e.g., [97]). We thus have

n|A| =
n/2∑
`=0

nN(n, 2`) =

n/2∑
`=0

∑
d|gcd(2`,n)

ϕ(d)

(
n/d

2`/d

)
.

Let us count the above sum in a different order. Consider first even divisors d of
n. In the above sum, we count ϕ(d)

(
n/d
2`/d

)
for each 0 6 2` 6 n such that d | 2`, i.e.,

2` = d`′ for some `′ (since 2 | d). We thus count ϕ(d)
(
n/d
`′

)
for each 0 6 `′ 6 n

d .
Consider then a fixed divisor d of n such that 2 - d. Similar to the above, we

count ϕ(d)
(
n/d
2`/d

)
for each 0 6 2` 6 n such that d | 2`, that is, 2` = 2d`′ for some

`′ (since 2 - d). We thus count ϕ(d)
(
n/d
2`′

)
for each 0 6 `′ 6 1

2
n
d .

Combining the above calculations we obtain

n|A| =
∑
d|n
2|d

ϕ(d)

n/d∑
`′=0

(
n/d

`′

)
+
∑
d|n
2-d

ϕ(d)

1
2n/d∑
`′=0

(
n/d

2`′

)

=
∑
d|n
2|d

ϕ(d)2n/d +
∑
d|n
2-d

ϕ(d)2n/d−1 = n
2N2(n) + 1

2

∑
d|n
2|d

ϕ(d)2n/d,

so that |B| = 1
2N2(n) − 1

2n

∑
d|n
2|d

ϕ(d)2n/d = 1
2n

∑
d|n
2-d

ϕ(d)2n/d < |A|. A longest

path in NG(n) can thus contain at most |B|+ 1 vertices from A and |B| vertices
from B, that is, 2|B|+ 1 = 1

n

∑
d|n
2-d

ϕ(d)2n/d + 1 = BPL(n) vertices in total.

http://oeis.org/A063776

§6.4 On the Asymptotic Number of k-abelian Singletons 85

n code

6 111521651511

8 11171767156725671472674521615611

Table 6.4: Path in the binary necklace graph NG(n) of length BPL(n) as defined
in (6.7). [55, Table 2].

Example 6.39. For even n 6 8 the bound in the above proposition is actually
achievable. See Figure 6.1 for the case n = 4 and Table 6.4 for n = 6 and 8, where
the coding is defined as that of the Gray codes in Table 6.3.

In [55] it is conjectured that this bound is achievable for all even n:

Conjecture 6.40. For even n, the length of a longest path in the (bipartite) binary
necklace graph NG(n) is equal to BPL(n) (defined by (6.7)).

On Other Maximal Cycle-Decompositions of the de Bruijn graph

Next, we briefly discuss the maximal cycle-decompositions not induced by neckla-
ces. In other words, the length of a cycle in such a decomposition need not divide
the order of the de Bruijn graph. We give some examples of such decompositions
which induce quotient graphs containing Hamiltonian paths.

Example 6.41. The 5-abelian singleton

u = 04021(10001)21001(001)20101(01)21011(1011)214

corresponds to a cycle-decomposition of dB(4) with 6 cycles C1, · · · , C6 and the
resulting quotient graph contains a Hamiltonian path. Here the cycles are defined
as (v, `), where v is the starting vertex and ` is the label of the cycle:

(04, 0), (031, 1031), (1001, 001), ((01)2, 01), (1011, 1011), (14, 1).

Moreover, the cycle decomposition containsN2(4) = 6 cycles, which is the maximal
possible by Theorem 4.24. Note here that the second and third cycles have lengths
which do not divide 4. The other cycles are defined by necklaces.

Example 6.42. Similarly, we obtain the following N2(6) = 14 vertex-disjoint
cycles in dB(6) which induce a quotient graph containing a Hamiltonian path:

(06, 0), (051, 051), (0411, 0411), (0313, 0313), (01301, 01301), ((10)3, 10),

(010100, 010100), (001011, 001011), ((100)2, 100), (010011, 010011),

((011)2, 011), (11013, 1013)∗, (1400, 1500)∗, (16, 1).

The ordering of the cycles gives a Hamiltonian path in the quotient graph. The
first vertex of each cycle is reached by a vertex in the previous cycle. The cycles
marked by ∗ have lengths 5 and 7, respectively. Neither of these lengths divides
the order 6 of the de Bruijn graph. All other cycles are defined by necklaces.

86 Quantitative Aspects of k-Abelian Equivalence §6

Example 6.43. For n = 8 we compute the following set of N2(8) = 36 vertex-
disjoint cycles of dB(8), the cycles listed in an order yielding a Hamiltonian path
in the quotient graph. For each cycle, the first vertex is reached by some vertex in
the previous cycle. Here all cycles marked with ∗ have lengths which do not divide
the order 8 of the de Bruijn graph. All other cycles are defined by necklaces.

(08, 0), (071, 071), (0611, 0611), (0513, 0513), (10510, 10510),

(101041, 101041), (010410, 010410), (104101, 104101), (110411, 110411),

(0315, 0315), (103130, 103130), (0103110, 0103110), ((0010)2, 0010),

(0103101, 0103101), ((01)4, 01), ((10)311, 13(01)31)∗, (1(10)30, 1(10)30),

(01001100, 01001100), (0110311, 0110311), ((011)201, 101)∗,

(1(011)21, (101)2(011)21)∗, ((01)2(10)2, (01)2(10)2), (10(100)2, 10(100)2),

((100)211, (100)211), (010014, 010014), (10015, 10015), (1101300, 1101300),

((1100)2, 1100), (0110013, 0110013), (0(01)31, 0(01)31),

(11001011, 11001011), (0010130, 0010130), (0101301, 01301)∗,

((1011)2, 1011), (13014, 13014), (18, 1).

Remark 6.44. By Proposition 6.32 and the above examples, for each odd k 6 9

there exists a constant Dk,2 such that S(k)
2 (n) ∼ Dk,2n

N2(k−1)−1.

The above observations led to state the following conjecture in [55], which was
verified for all odd n 6 15 and all even n 6 8 over the binary alphabet.

Conjecture 6.45. For every n ∈ N and alphabet Σ, there exists a maximal cycle-
decomposition C of dBΣ(n) for which dBΣ(n)/C contains a Hamiltonian path.

This problem is quite intricate at least in the binary case for even n. Indeed, if
true, such a cycle-decomposition contains cycles not defined by necklaces. On the
other hand, it seems that the problem is quite hard for odd lengths as well, since it
is not known whether the necklace graph would give such a cycle-decomposition.

An equivalent formulation, due to Proposition 6.30 together with Proposi-
tion 6.32, is the following.

Conjecture 6.46. For any k,m > 1, there exists a constant Dk,m such that

S(k)
m (n) ∼ Dk,mn

Nm(k−1)−1.

87

Chapter 7

On k-Abelian and
k-Binomial Equations

Recall that the k-abelian equivalence is a congruence, whence Σ∗/∼k, is a monoid.
Recall also that the k-binomial equivalence defines a congruence, and thus Σ∗/≡k
is a monoid. We call these monoids the k-abelian monoid and the k-binomial
monoid, respectively.

In this chapter we consider equations over these previously described monoids.
The two equivalence relations are quite closely related, though they are incompa-
rable as equivalence relations. In particular, we consider the concrete equations
xy = yx and xz = zy, that is, commutation and conjugacy, respectively. For the k-
abelian monoid we obtain characterizations of the sets Sol(xy, yx) and Sol(xz, zy).
In contrast, in the k-binomial monoid, we only obtain partial results. Part of the
challenges in this case follow from the property that a modification in just one
position of a word can have global effects of the distribution of subwords, and thus
the structure of the equivalence classes.

We also consider the questions of independent systems of equations over these
monoids. We show that both monoids possess the so-called compactness property
(see Definition 7.17.) Moreover, in both cases, we give an upper bound on the
number of equations in an independent system of equations. This chapter is based
on the manuscript [110].

7.1 On Commutation in Σ∗/ ∼k and Σ∗/ ≡k

For a word x ∈ Σ∗ we let ρ(x) denote the primitive root of x, that is, ρ(x) satisfies
x = ρ(x)n, where n is maximal. Thus x is primitive if x = ρx. We let per(x)
denote the set of periods of x, that is, per(x) = {y : x ∈ pref(yω), |y| 6 |x|}. We
let p̃er(x) denote the left periods of x, that is,

p̃er(x) = {y : x ∈ suff(yn), |y| 6 |x| 6 n|y|}.

88 On k-Abelian and k-Binomial Equations §7

7.1.1 Commutation in the k-Abelian Monoid

Let us first inspect commutativity in the k-abelian monoid. In the following, we let
pk(w) (resp., sk(w)) denote the word prefmin{|w|,k}(w) (resp., suffmin{|w|,k}(w)).
We begin with a technical lemma. Recall here that the generalized Parikh vector
Ψk(w) equals the vector (|w|x)x∈Σk .

Lemma 7.1. Let x, y ∈ Σ∗ be primitive and k > |x|, |y|. Let further u ∈ pref(xω)
and v ∈ pref(yω) such that u 6= v and |u| = |v| > k + max{|x|, |y|} − 1. Then
Ψk(u) = Ψk(v) if and only if x and y are conjugates (in Σ∗) and |u| ≡ k − 1
(mod |x|).

Proof. Let X = prefk−1(xω) and Y = prefk−1(yω). We first observe that, since
|x| 6 k and x is primitive, we have #Fk(xω) = |x|. In other words, each position
i ∈ [0, |x|) starts a distinct factor of xω of length k; we enumerate these factors by
wi = xω[i, i+ k), i ∈ [0, |x|).

Suppose first that x and y are conjugates and u ∈ F (xω) = F (yω) has length
n|x|+k−1 for some n > 1. Then we may write u = xnX. By arguing as above, it
is straightforward to see that |u|wi = n for each i ∈ [0, |x|). Moreover, this holds
for any factor of xω of length |u|, and thus Ψk(u) = Ψk(v), since v ∈ F (xω).

Suppose then that Ψk(u) = Ψk(v). We first show that x and y are conjugates.
Since |x| 6 k and |u| > k−1 + |x| it follows that xX is a prefix of u. Similarly, yY
is a prefix of v. Since Ψk(u) = Ψk(v), each conjugate of x is a factor of v and thus
of yω. Similarly, each conjugate of y is a factor of xω. It follows that |x| = |y|,
and thus x and y are conjugates.

We previously showed that if |u| ≡ k − 1 (mod |x|) then Ψk(u) = Ψk(v).
Assume thus that |u| 6≡ k−1 (mod |x|). We may write u = xmXx0 and v = ymY y0

for some m > 1, x0 a factor of xω, y0 a factor of yω, and 1 6 |x0| = |y0| < |x| − 1.
We now have Ψk(u) = Ψk(xmX) + Ψk(Xx0) and similarly Ψk(v) = Ψk(ymY) +
Ψk(Y y0). Since Ψk(xmX) = Ψk(ynY) by the above, we obtain

Ψk(u)−Ψk(v) = Ψk(Xx0)−Ψk(Y y0).

Since |x0| < |x|, we have that |Xx0|wi = 1 for all i ∈ [0, |t|) and |Xx0|wi = 0
otherwise. Let then prefk(Y y0) = wj . Since u 6= v, we have j > 0. Similarly
|Y y0|wi = 1 for all i ∈ {j + ` (mod |x|) | ` ∈ [0, |y0|)}, and otherwise |Y y0|wi = 0.
Consider now the index n = min{j − 1, |x0| − 1}. Now |u|wn = 1, since n < |x|0.
On the other hand, n /∈ {j + ` (mod |x|) | ` ∈ [0, |y0|)} as, for each 0 6 ` < |y0|,
either j+` (mod |x|) > j or j+` (mod |x|) < |y0|−1. It follows that |Y y0|wn = 0,
and hence Ψk(u) 6= Ψk(v). This concludes the proof.

We may now characterize k-abelian commutation.

Proposition 7.2. Let x, y ∈ Σ+, with |x| 6 |y|.

• If |xy| < 2k, then xy ∼k yx if and only if x, y ∈ r∗ for some r ∈ Σ∗.

• If |x| < k − 1 and |xy| > 2k, then xy ∼k yx if and only if x is a period of
prefk−1(y) and x is a left period of suffk−1(y).

• If |x| > k − 1 and |xy| > 2k, then xy ∼k yx if and only if prefk−1(x) =
prefk−1(y) and suffk−1(x) = suffk−1(y).

§7.1 On Commutation in Σ∗/ ∼k and Σ∗/ ≡k 89

Proof. The first point follows trivially from the observation that xy ∼k yx if and
only if xy = yx.

Assume thus that |xy| > 2k. We have

Ψk(xy) = Ψk(x) + Ψk(sk−1(x)pk−1(y)) + Ψk(y).

Hence xy ∼k yx if and only if Ψk(sk−1(x)pk−1(y)) = Ψk(sk−1(y)pk−1(x)),
prefk−1(xy) = prefk−1(yx), and suffk−1(xy) = suffk−1(yx). For the third point,
observe that this implies xy ∼k yx if and only if prefk−1(x) = prefk−1(y) and
suffk−1(x) = suffk−1(y), as it was claimed.

We are thus left with the second point, that is, |x| < k − 1 and |xy| > 2k.
Observe that now pk−1(x) = x = sk−1(x). Suppose first that x is a period of
Y = prefk−1(y) and x is a left period of Y ′ = suffk−1(y). It follows that Y = xnp
and Y ′ = sxn for some n ∈ N, p ∈ pref(x), and s ∈ suff(x). Thus

prefk−1(xy) = prefk−1(xY) = prefk−1(xn+1p) = Y = prefk−1(yx) and

suffk−1(yx) = suffk−1(Y ′x) = suffk−1(sxn+1) = Y ′ = suffk−1(xy).

Furthermore, |sxn+1| = |xn+1p| = k − 1 + |x| so that |xY | ≡ k − 1 (mod |ρ(x)|).
By the above lemma we have Ψk(xY) = Ψk(Y ′x). It thus follows that xy ∼k yx.

Suppose then that xy ∼k yx. Now prefk−1(xy) = xy1 = prefk−1(yx) = Y =
y1y2 for some y1, y2 ∈ Σ∗. It follows that y1 ∈ (pq)∗p, x = pq, and y2 = qp for
some p, q ∈ Σ∗. Thus x is a period of Y .

Similarly suffk−1(yx) = y3x = suffk−1(xy) = Y ′ = y4y3 for some y3, y4 ∈ Σ∗,
so that x = rs, y3 ∈ (sr)∗s, and y4 = sr for some r, s ∈ Σ∗. We thus see that x is
a left period of Y ′, as was claimed.

This concludes the characterization of the set Sol(xy, yx) of solutions in the
k-abelian monoid.

7.1.2 On Commutation in the k-Binomial Monoid

Next we consider commutation in the k-binomial monoid. In this case we only
obtain partial results, and, in particular, are not able to characterize the set
Sol(xy, yx) of solutions in the k-binomial monoid, for general k. However, we
manage to do so in the case of the 2-binomial monoid:

Proposition 7.3. For all x, y ∈ Σ+, xy ≡2 yx if and only if Ψ(x) = |x|
|y|Ψ(y).

Proof. Suppose first that xy ≡2 yx. It follows that for all a, b ∈ Σ(
x
ab

)
+
(
x
a

)(
y
b

)
+
(
y
ab

)
=
(
xy
ab

)
=
(
yx
ab

)
=
(
x
ab

)
+
(
y
a

)(
x
b

)
+
(
y
ab

)
,

which is equivalent to |x|a|y|b = |y|a|x|b. By summing both sides over all b ∈ Σ,

we obtain |x|a|y| = |y|a|x| for all a ∈ Σ, which is equivalent to Ψ(x) = |x|
|y|Ψ(y) as

claimed.
For the converse, we observe that the property |x|a = |x|

|y| |y|a for all a ∈ Σ

implies that |x|a|y|b = |x|
|y| |y|a

|y|
|x| |x|b = |y|a|x|b for all a, b ∈ Σ, which, in turn, is

equivalent to xy ≡2 yx as was seen above.

90 On k-Abelian and k-Binomial Equations §7

By allowing x and y to be empty words, we may state the above proposition
in other words: The elements x and y commute in Σ∗/ ≡2 if and only if there
exist a word r ∈ Σ∗ and non-negative integers ` and n such that x ≡1 r` and
y ≡1 r

n. In this case r is a common 1-binomial root. In the following, we consider
generalizing this to larger k. The following proposition says that sharing common
(k − 1)-binomial roots implies k-binomial commutation.

Proposition 7.4. Let k > 2 be an integer, r ∈ Σ∗, and m,n > 0. For any
x ≡k−1 r

m and y ≡k−1 r
n we have xy ≡k yx.

Proof. For all a ∈ Σ, we clearly have |xy|a = |yx|a. Further, for each word e ∈ Σ6k

of length at least two,(
xy
e

)
−
(
x
e

)
−
(
y
e

)
=

∑
e1e2=e
e1,e2∈Σ+

(
x
e1

)(
y
e2

)
=

∑
e1e2=e
e1,e2∈Σ+

(
r`

e1

)(
rn

e2

)
=
(
r`+n

e

)
−
(
r`

e

)
−
(
rn

e

)
=

∑
e1e2=e
e1,e2∈Σ+

(
rn

e1

)(
r`

e2

)
=

∑
e1e2=e
e1,e2∈Σ+

(
y
e1

)(
x
e2

)
=
(
yx
e

)
−
(
x
e

)
−
(
y
e

)
,

where the second and fifth equalities above follow from x ≡k−1 r
m and y ≡k−1 r

n

and the observation that e1, e2 ∈ Σ6k−1 in the summations.

The converse of the above proposition does not hold. In other words, for k > 3,
xy ≡k yx does not necessarily imply that x and y share a common (k−1)-binomial
root.

Example 7.5. Let x = aba and y = baaaab. Now y ≡2 x
2, by simply counting

the occurrences of subwords of length at most two:

a : 4, b : 2, aa : 6, ab : 4, ba : 4, bb : 1

By the above proposition we have xy ≡3 yx, as can also be verified by counting
the occurrences of subwords.

We shortly show in Example 7.7 that the converse of the above proposition
does not always hold. Namely, we show that xy ≡k yx does not imply that x and
y necessarily share a common (k − 1)-binomial root. We first make the following
observation.

Lemma 7.6. Let s, r ∈ Σ∗ and ` > 1 such that s` ≡k r`. Then s ≡k r.

Proof. Let e ∈ Σk. Notice first that for all ` > 1 and r ∈ Σ∗

(
r`

e

)
=

|e|∑
i=1

(
`

i

) ∑
e=e1···ei
ej∈Σ+

(
r
e1

)
· · ·
(
r
ei

)
,

§7.1 On Commutation in Σ∗/ ∼k and Σ∗/ ≡k 91

where
(
`
i

)
= 0 whenever i > `. We prove the claim by induction on k. The claim is

trivially true for k = 1. Assume that s` ≡k+1 r
`, so that s ≡k r by the induction

hypothesis. For all e ∈ Σk+1 we have

(
r`

e

)
=

(
`

1

)(
r
e

)
+

|e|∑
i=2

(
`

i

) ∑
e=e1···ei
ej∈Σ+

(
r
e1

)
· · ·
(
r
ei

)

=

(
`

1

)(
r
e

)
+

|e|∑
i=2

(
`

i

) ∑
e=e1···ei
ej∈Σ+

(
s
e1

)
· · ·
(
s
ei

)

=
(
s`

e

)
−
(
`

1

)((
s
e

)
−
(
r
e

))
,

where, in the second equality, we use the induction hypothesis, and observe that

|ej | 6 k in the summation. Since
(
r`

e

)
=
(
s`

e

)
, we conclude that

(
r
e

)
=
(
s
e

)
.

We are in the position to give a counter-example to the converse of Proposi-
tion 7.4.

Example 7.7. Let x = aaababbaba, y = aaabbaaabbbaaab, and r = aabab. We see
that x ≡2 r

2 and y ≡2 r
3, whence xy ≡3 yx by Proposition 7.4. One can further

check that xy ≡4 yx, as the values
(
xy
w

)
=
(
yx
w

)
for w ∈ {a, b}4 are as follows:

aaaa : 1365, aaab : 1302, aaba : 1294, aabb : 897,

abaa : 1241, abab : 1106, abba : 880, abbb : 571,

baaa : 713, baab : 700, baba : 644, babb : 447,

bbaa : 498, bbab : 453, bbba : 329, bbbb : 210.

Furthermore x 6≡3 r
2, as

(
x
bba

)
= 9 while

(
r2

bba

)
= 5. Assume for a contradiction that

x and y have a common 3-binomial root s. It follows that |s| divides gcd(|x|, |y|) =
5. Since x and y contain both letters, it follows that |s| = 5, and x ≡3 s

2, y ≡3 s
3.

By the above lemma we have s ≡2 r. As
(
r
ba

)
= 1 and |r|b = 2 we have that s ends

with bab. It follows that r = s, which is not possible. Thus x and y do not have a
common 3-binomial root.

It is unknown to us whether xy ≡3 yx implies the existence of a common
2-binomial root of x and y.

Further, we present a characterization of commutation among words of equal
length.

Proposition 7.8. Let x, y ∈ Σ∗ with |x| = |y|. Then xy ≡k yx if and only if
x ≡k−1 y.

Proof. Note that x ≡k−1 y implies xy ≡k yx by Proposition 7.4. We shall prove
the converse by induction on k. Note that the case of k = 2 follows from applying
Proposition 7.3 with |x| = |y|. Assume that the claim holds for some k > 2 and
suppose xy ≡k+1 yx. It follows that xy ≡k yx so that x ≡k−1 y by induction. Let

92 On k-Abelian and k-Binomial Equations §7

then a, b ∈ Σ and e ∈ Σk−1. We have(
xy
aeb

)
=
(
x
aeb

)
+
(
y
aeb

)
+
(
x
a

)(
y
eb

)
+
(
x
ae

)(
y
b

)
+

∑
e1e2=e
e1,e2∈Σ+

(
x
ae1

)(
y
e2b

)
and

(
yx
aeb

)
=
(
y
aeb

)
+
(
x
aeb

)
+
(
y
a

)(
x
eb

)
+
(
y
ae

)(
x
b

)
+

∑
e1e2=e
e1,e2∈Σ+

(
y
ae1

)(
x
e2b

)
.

Putting
(
xy
aeb

)
=
(
yx
aeb

)
and noting that

(
y
ae1

)(
x
e2b

)
=
(
x
ae1

)(
y
e2b

)
for all terms in the

summation (as x ≡k−1 y), we obtain, after rearranging,

|x|a
((

y
eb

)
−
(
x
eb

))
= |x|b

((
y
ae

)
−
(
x
ae

))
.

Note that the above equation holds for all a, b ∈ Σ and e ∈ Σk−1. Assume without
loss of generality that |x|a 6= 0. Letting e = e0 · · · ek−2 and repeatedly applying
the above (to possibly different letters a, b and words e ∈ Σk−1), we obtain(

y
eb

)
−
(
x
eb

)
=
((

y
ae0···ek−2

)
−
(

x
ae0···ek−2

)) |x|b
|x|a

=
((

y
aae0···ek−3

)
−
(

x
aae0···ek−3

)) |x|ek−2

|x|a
|x|b
|x|a

= · · ·

=
((

y
a`

)
−
(
x
a`

)) |x|b∏k−2
i=0 |x|ei
|x|k−1
a

= 0,

since
(
y
ak

)
=
(
x
ak

)
, as x ≡1 y. It thus follows that

(
y
eb

)
=
(
x
eb

)
for all b ∈ Σ and

e ∈ Σk−1, and therefore, x ≡k y.

Corollary 7.9. Let k > 2 and x, y ∈ Σ∗. If xy ≡k yx, then there exist `, n ∈ N
such that x` ≡k−1 y

n.

Proof. Since xy ≡k yx it follows that x`yn ≡k ynx` for all `, n ∈ N. We may choose
` = |y| and n = |x|, whence |x|y|| = |x||y| = |y|x||. By the above proposition we
have that x` ≡k−1 y

n as was claimed.

It seems that the full characterization of Sol(xy, yx) is quite a tricky problem.
We are left with the open problem:

Problem 7.10. Characterize when, for two words x, y ∈ Σ∗, we have xy ≡k yx.

7.2 On Conjugacy in Σ∗/∼k and Σ∗/≡k
Next we consider conjugacy in our monoids of interest. We are thus interested
in the set of solutions to the equation xz = zy in the k-abelian and k-binomial
monoids. For the k-abelian monoid, we obtain a satisfactory characterization of
when there exists z ∈ Σ∗ such that xz ∼k zy. In the k-binomial monoid we find
the situation to be quite complicated, and only briefly consider solutions to this
equation.

Note that xz ∼k zy and xz ≡k zy both imply that |x| = |y|.

§7.2 On Conjugacy in Σ∗/∼k and Σ∗/≡k 93

7.2.1 Conjugacy in Σ∗/ ∼k
Recall that in the monoid Σ∗ we have xz = zy if and only if there exist words
p, q ∈ Σ∗ such that x = pq, y = qp, and z ∈ (pq)∗p.

We first make a straightforward observation. Let k > 1 and x, y ∈ Σ∗. Assume
further that there exists z ∈ Σ∗ such that xz ∼k zy. Then there exists a word
z′ ∈ Σ∗ of length at least k− 1 with xz′ ∼k z′y. Indeed, we may take z′ = xnz for
some suitably large n, whence x · xnz = xn · xz = xnz · y.

Proposition 7.11. Let x, y ∈ Σ+. Then there exists z ∈ Σ∗ such that xz ∼k zy
if and only if y has a conjugate y′ (in Σ∗) such that y′pk−1(y′) ∼k xpk−1(x).

Proof. Assume first that there exists a conjugate y′ of y such that y′pk−1(y′) ∼k
xpk−1(x). There thus exist p, q ∈ Σ∗ such that y = qp and y′ = pq. Let z = pqp,
whence y′z = zy. We may write z = pk−1(y′)Z = pk−1(x)Z for some Z ∈ Σ∗, since
z begins with y′. Now y′z = y′pk−1(y′)Z ∼k xpk−1(x)Z = xz, so that zy ∼k xz.

Assume then that there exists a word z ∈ Σ∗ such that xz ∼k zy. We may
assume that |z| > k − 1 by the discussion in the beginning of this subsection. Let
Z = prefk−1(z) and Z ′ = suffk−1(z). Now xz ∼k zy implies that

Ψk(xZ) = Ψk(Z ′y),

prefk−1(xZ) = Z, and suffk−1(Z ′y) = Z ′. If |x| 6 k − 1, then x is a period of Z
and y is a left period of Z ′. It follows that there is a conjugate y0 of y which is a
period of Z ′. Let us write y0Y = Z ′y. Now Ψk(xZ) = Ψk(Z ′y) = Ψk(y0Y). By
applying Lemma 7.1 to u = xZ and v = y0Y , we have that x and y0, and thus y,
are conjugates. We may thus take y′ = x in the claim.

Assume then that |x| > k − 1, and let X = prefk−1(x) and Y ′ = suffk−1(y).
We thus have Z = X and Z ′ = Y ′. Further, Ψk(xX) = Ψk(Y ′y). We infer that
X is a factor of Y ′y and thus there exists a conjugate y′ of y beginning with
X, so that y′ prefk−1(y′) = y′X. Now suffk−1(xX) = suffk−1(y′X). Further,
Ψk(Y ′y) = Ψk(y′X), since all factors of yω of length k occur equally many times
in Y ′y, and the same holds for y′X. It follows that Ψk(y′X) = Ψk(xX) so that
y′X ∼k xX, as claimed. This concludes the proof.

7.2.2 On Conjugacy in Σ∗/ ≡k
As observed previously, xz ≡k zy implies that x ≡1 y in any case. For k > 2 and
assuming that such a word z exists, then z cannot contain any letters not occurring
in x and y. Indeed, if |x|c = |y|c = 0, |z|c > 1, and |x|a > 1, then

(
xz
ac

)
>
(
z
ac

)
, but(

zy
ac

)
=
(
z
ac

)
. In this subsection, we consider conjugacy only in Σ∗/≡2.

Proposition 7.12. Let x, y ∈ B∗. Then there exists z ∈ B∗ such that xz ≡2 zy if
and only if x ≡1 y and gcd(|x|a, |x|b) divides

(
x
ab

)
−
(
y
ab

)
.

Proof. Indeed, assume first there exists z such that xz ≡2 zy. It immediately
follows that x ≡1 y. We also have(

x
ab

)
+
(
x
a

)(
z
b

)
+
(
z
ab

)
=
(
xz
ab

)
=
(
zy
ab

)
=
(
y
ab

)
+
(
z
a

)(
y
b

)
+
(
z
ab

)
,

which implies that
(
x
ab

)
−
(
y
ab

)
= |z|a|y|b − |z|b|x|a = |z|a|x|b − |z|b|x|a. It now

follows that gcd(|x|a, |x|b) divides
(
x
ab

)
−
(
y
ab

)
.

94 On k-Abelian and k-Binomial Equations §7

Let d = gcd(|x|a, |x|b) and assume that x ≡1 y and
(
x
ab

)
−
(
y
ab

)
= kd for some

k ∈ Z. By Bezout’s identity there exist i, j ∈ Z, such that kd = i|x|b− j|x|a. Here
we may assume that i, j > 0 since otherwise we may replace i with h|x|a + i and j
with h|x|b + j for a suitably large h. We claim that z = aibj satisfies

(
xz
ab

)
=
(
zy
ab

)
.

Indeed,
(
x
ab

)
−
(
y
ab

)
= i|x|b − j|x|a which is equivalent to(

x
ab

)
+ |z|b|x|a +

(
z
ab

)
=
(
y
ab

)
+ |z|a|x|b +

(
z
ab

)
.

The latter is equivalent to
(
xz
ab

)
=
(
zy
ab

)
as seen above. By Lemma 2.5, we have(

xz
ba

)
=
(
zy
ba

)
and, since y ≡1 x, we have xz ≡2 zy as claimed.

Example 7.13. Let x = aabaaaabbbab and y = bbaababaaaba. As y ≡1 x and
gcd(|x|a, |x|b) = 1, there exists z ∈ Σ∗ such that xz ≡2 zy. Now

(
x
ab

)
−
(
y
ab

)
= 16

and 3·|x|b−2·|x|a = 1; therefore, the proof above gives us, for example, z = a48b32.
Note that also z′ = b2 satisfies xz ≡2 zy.

On the other hand, if x = aabb and y = abab, we have x ≡1 y and
gcd(|x|a, |x|b) = 2, but 2 does not divide

(
x
ab

)
−
(
y
ab

)
= 1. Thus x and y are

not 2-binomial conjugate, in other words, xz 6≡2 zy for all z ∈ Σ∗.

We now discuss the generalization of the above characterization for larger al-
phabets. As seen in Example 2.6, we have xz ≡2 zy if and only if x ≡1 y and(
xz
ab

)
=
(
zy
ab

)
for each pair of letters a, b ∈ Σ with a < b. An equivalent form of the

latter requirement is, by the above example, that
(
x
ab

)
−
(
y
ab

)
= |z|a|x|b − |z|b|x|a

for all pairs of letters a, b ∈ Σ, aC b. We thus obtain a system of linear equations.
Let us formalize what we mean by the above. Let x, y ∈ Σ∗ and assume that

x ≡1 y. Assume further that each letter of Σ occurs in x. Fix an ordering on Σ
and define the vector Dx,y indexed by pairs of letters a, b ∈ Σ, a C b, defined as

follows: Dx,y[(a, b)] =
(
x
ab

)
−
(
y
ab

)
. Let then Mx be a

(|Σ|
2

)
× |Σ|-matrix, where

the rows are indexed by pairs a, b ∈ Σ, a < b, and the columns by Σ, defined as
Mx[(a, b), a] = |x|b, Mx[(a, b), b] = −|x|a, and Mx[(a, b), c] = 0 for c 6= a, b. Let ~X
be a vector of |Σ| unknowns indexed by the letters a ∈ Σ. We consider solutions
to the equation

Mx
~X = Dx,y. (7.1)

Let us give a brief example of the entities defined above.

Example 7.14. Let Σ = {0, 1, 2} and let x, y ∈ Σ∗ such that x ≡1 y and |x|a > 1
for each a ∈ Σ. Then Equation (7.1) is defined as|x|1 −|x|0 0

|x|2 0 −|x|0
0 |x|2 −|x|1

~X[0]
~X[1]
~X[2]

 =

(x01

)
−
(
y
01

)(
x
02

)
−
(
y
02

)(
x
12

)
−
(
y
12

)
 .

Observe that for any word z ∈ Σ∗ we have

MxΨ(z)T =
∑
c∈Σ

Mx[(a, b), c] · |z|c = (|x|b|z|a − |x|a|z|b)(a,b),aCb. (7.2)

Now, for x and y as defined above, if there exists z ∈ Σ∗ such that xz ≡k zy, then
~X = Ψ(z)T is a solution to Equation (7.1). Indeed, recall that

|x|b|z|a − |x|a|z|b =
(
x
ab

)
−
(
y
ab

)
= Dx,y[(a, b)].

§7.3 On Systems of Equations 95

On the other hand, if ~X is a solution to Equation (7.1) having non-negative entries,

then the word z =
∏
a∈Σ a

~X[a] is a solution to xz ≡2 zy.
We may now characterize 2-binomial conjugacy over arbitrary alphabets.

Proposition 7.15. Let x, y ∈ Σ∗ and assume that each letter of Σ occurs in
x. Then there exists z ∈ Σ∗ such that xz ≡2 zy if and only if x ≡1 y and
Equation (7.1) has solution ~X having integer entries.

Proof. If there exists z such that xz ≡2 zy, then Ψ(z)T is an (non-negative) integer
solution to the equation, as was observed above.

Conversely, assume that ~X is an integer solution to Equation (7.1). A priori,

some entries of ~X could be negative. Observe now that plugging z = x in Equa-
tion (7.2), we have MxΨ(x)T = ~0.1 Thus, for each n > 0, ~X + nΨ(x)T is also an
integer solution to the equation. Moreover, taking n large enough, each entry is
a non-negative integer, since all entries of Ψ(x) are assumed to be positive. Now

the word z =
∏
a∈Σ a

~X[a]+n|x|a satisfies xz ≡2 zx (and is well-defined), as was
observed above.

As seen by the above result, characterizing k-binomial conjugacy of two words
is already quite involved even for k = 2. We have not considered word combina-
torial characterizations for this case. Neither have we attempted characterizing
k-binomial conjugacy for larger values of k. We leave open the following problem.

Problem 7.16. Characterize when, for words x, y, z ∈ Σ∗, we have xz ≡k zy.

7.3 On Systems of Equations

In this section we consider systems of equations over the monoids Σ∗/∼k and
Σ∗/≡k. The basic notion studied here is the so-called compactness property of
semigroups, defined as follows.

Definition 7.17. A semigroup S is said to possess the compactness property if
any system of equations E over a finite number of variables has a finite equivalent
subsystem E′.

Famously, the free monoid Σ∗ possesses the compactness property, as was pro-
ved in [4] and [42] independently. The latter also shows that free groups possess the
compactness property. In [44] it is shown, employing Redei’s Theorem [90] among
other arguments, that all commutative semigroups possess the compactness pro-
perty. Thus, for example, for each x, y ∈ Σk−1, the subsemigroup (xΣ∗∩Σ∗y)/∼k
of Σ∗/∼k possesses the compactness property, since it is commutative by Propo-
sition 7.2.

Nevertheless, not all semigroups possess compactness property. For example,
neither the monoid of finite languages, nor the so-called bicyclic monoid, nor the
Baumslag–Solitar group possess the compactness property. For the first result, see
[61], the latter two are shown in [44].

We remark that the compactness property must cover also the inconsistent
systems of equations, that is, systems that admit no solutions. In other words, a

1In fact, it is not hard to verify (compare to Proposition 7.3) that Ker(Mx) = Span(Ψ(x)).

96 On k-Abelian and k-Binomial Equations §7

system E of equations, whether it has a solution or not, must have an equivalent
finite subsystem. There exist semigroups for which each consistent system of equa-
tions has an equivalent finite subsystem, but for which there exists an inconsistent
system, all finite subsystems of which are consistent [100].

For our main purpose, the following result gives us what we need.

Theorem 7.18 ([64, Chapter 13]). Let R be a commutative Noetherian ring2 con-
taining an identity element. If a semigroup S can be embedded into a subsemigroup
of matrices over R, then S possesses the compactness property.

As the ring Z of integers is Noetherian, we see that the monoids Σ∗/∼k and
Σ∗/≡k possess the compactness property. (The former follows from Proposi-
tion 3.28, while the latter from [93, Corollary 18].)

Theorem 7.19. For any k > 1, the monoid Σ∗/∼k has the compactness property.

Theorem 7.20. For any k > 1, the monoid Σ∗/≡k has the compactness property.

Now if a semigroup possesses the compactness property, then any independent
system of equations is finite. We turn to the interesting question on how large such
a system over our monoids can be. The aspect of considering sizes of independent
systems of equations in semigroups has been previously treated, e.g., in the paper
[54]. See also [75], and references therein, concerning the free semigroup.

Let us recall some relevant results from the literature. For this, let S possess
the compactness property and define FS(n) = c, where c is the maximum size of
an independent system E ⊆ Ξ+×Ξ+ of equations without constants, and with the
number |Ξ| of variables n, if this constant exists. Otherwise FS(n) = UB (short
for unbounded).

There exists a commutative group G for which FG(1) = UB (see the following
example). On the other hand, for a finitely generated commutative group G,
there exists a constant cG depending on G such that FG(n) = cGn. These two
results appear in [54]. For free groups G, we have FG(6) = UB [64, Chapter 13].
For the free monoids, it is not known if FΣ∗(n) = UB for some n. There exists
independent systems of equations with n variables having size Θ(n4) [54]. Note
that Theorem 2.15 gives FΣ∗(3) 6 18 and it is conjectured that FΣ∗(3) = 3 [25].

Example 7.21 ([54]). For distinct prime numbers p1, . . . , pk, let n = p1 · · · pk and
ni = n/pi for each i = 1, . . . k. Consider the system E of k equations ei : xni = 1,
where i = 1, . . . , k. Now, for a fixed j, e2πinj/n is a solution to each ei with i 6= j,
but not for ej . Thus E is independent.

The rest of this section is devoted to showing that, for both Σ∗/∼k and Σ∗/≡k,
there exists a uniform upper bound on the number of equations of an independent
system of equations. For k fixed, the size of an independent system of equations
has a polynomial upper bound with respect to the number of unknowns. On the
other hand, the upper bound is exponential when the number |Ξ| of unknowns Ξ
is fixed and k is allowed to vary. We remark that these bounds do not depend
on the size of the alphabet Σ, when the equations have no constants, that is, the
system of equations is a subset of Ξ+ × Ξ+.

2A ring R is Noetherian if for each chain I0 ⊆ I1 ⊆ I2 · · · of ideals there exists n0 > 0 such
that In = In0 for each n > n0. For us it suffices to know that Z is a Noetherian ring.

§7.3 On Systems of Equations 97

Remark 7.22. Let S be a semigroup with a finite generating set G. Any system
E of equations (with or without constants) over S may be modified into a system
without constants by identifying each generator g ∈ G with a new variable Xg.
The set of solutions of the original system are obtained from the solutions to
the modified system by choosing the solutions where Xg 7→ g for each generator.
Further, if the number of equations in an independent system of equations without
constants using n variables is at most f(n) for each n, then the number of equations
in an independent system of equations is at most f(n+ #G).

In particular, the monoids Σ∗/∼k and Σ∗/≡k are finitely generated with |Σ| ge-
nerators. Thus, by considering systems of equations without constants, we obtain
bounds for systems of equations where constants are allowed.

7.3.1 On Independent Systems of Equations over Σ∗/∼k
We set some notation. As before, for any k > 0, we set sk(u) = suffmin{|u|,k}(u) and

pk(u) = prefmin{|u|,k}(u). Let now u ∈ Ξ+. We define the |Ξ|
k+1−|Ξ|
|Ξ|−1 -dimensional

vector ~u (whose components are indexed by non-empty words in Ξ6k) associated
to u as

~u = (|u|X)X∈Ξ × (|u|XY Z)X,Z∈Ξ,Y ∈Ξ6k−2 .

Let then h : Ξ→ Σ∗ be a non-erasing morphism. For any word w ∈ Σk we define

the |Ξ|
k+1−|Ξ|
|Ξ|−1 -dimensional vector ~hw (the entries indexed by the non-empty words

in Ξ6k) associated to h and w as follows: For each X ∈ Ξ we set ~hw[X] = |h(X)|w.
For each X,Z ∈ Ξ, Y ∈ Ξ6k−2 we set

~hw[XY Z] =
∣∣sk−1(h(XY))pk−1−|h(Y)|(h(Z))

∣∣
w

if |h(Y)| < k − 1, else we set ~hw[XYZ] = 0.
The following observation is crucial to our endeavors towards showing an upper

bound on the size of independent systems of equations.

Lemma 7.23. Let u ∈ Ξ+, h : Ξ→ Σ+ be a non-erasing morphism, and w ∈ Σk.
Then |h(u)|w = ~hw · ~u.

Proof. Let u = X0 · · ·Xn, where Xi ∈ Ξ for each i = 0, . . . , n. To avoid cluttering
the text, we let Ŷ = h(Y) for each Y ∈ Ξ6k. Now

|h(u)|w =

n∑
i=0

|X̂i|w +

n∑
i=1

∣∣sk−1(X̂i−1) · pk−1(X̂i · · ·)
∣∣
w

=
∑
X∈Ξ

|u|X · |X̂|w +

n∑
i=1

∣∣sk−1(X̂i−1) · pk−1(X̂i · · ·)
∣∣
w
.

=
∑
X∈Ξ

~u[X] · ~hw[X] +

n∑
i=1

∣∣sk−1(X̂i−1) · pk−1(X̂i · · ·)
∣∣
w
. (7.3)

The first sum counts the number occurrences of w occurring in the images X̂ of
letters X occurring in u, while the second sum counts the number of occurrences

98 On k-Abelian and k-Binomial Equations §7

of w not appearing in an image of a letter. We focus on the second sum in Equa-
tion (7.3). Observe that, for each i, we may write pk−1(X̂i · · ·) = pk−1(X̂i · · · X̂ri),

where ri equals the minimal index s > i such that |X̂i · · · X̂s| > k−1 if such an in-
dex s exists, otherwise ri = n. As h is non-erasing, we have that |Xi · · ·Xri | 6 k−1,
whence Xi−1Xi · · ·Xri ∈ Ξ6k for all i = 1, . . . , n. We may thus rewrite the second
sum in the above as

n∑
i=1

∣∣sk−1(X̂i−1) ·pk−1(X̂i · · · X̂ri)
∣∣
w

=
∑

X,Z∈Ξ,Y∈Ξ∗

|ŶẐ|>k−1

|Ŷ |<k−1

|u|XYZ ·
∣∣sk−1(X)pk−1(YZ)

∣∣
w
.

Let now Y ∈ Ξ6k−2 and Z ∈ Ξ such that |Ŷ | < k− 1 and |Ŷ Ẑ| > k− 1. Consider

the occurrences of w occurring as a proper overlap of X̂ · Ŷ ·Ẑ, for some X ∈ Ξ. By
a proper overlap we mean that the occurrence of w starts in X̂ and ends in Ẑ. The
number of such occurrences is easily seen to equal |sk−1(X̂Ŷ)pk−1−|Ŷ |(Ẑ)|w. Now

each occurrence of w that does not occur in an image X̂ of a letter X ∈ Ξ occurs
as a proper overlap of X̂ · Ŷ · Ẑ for some X,Z ∈ Ξ, Y ∈ Ξ6k−2 with |Ŷ | < k − 1.
Thus, to count the number of occurrences of w as an overlap, we count the number
of occurrences of w as a proper overlap in all images of factors of u of length at
most k:∑
X,Z∈Ξ

Y ∈Ξ6k−2

|u|XYZ ·
∣∣sk−1(X̂Ŷ)pk−1−|Ŷ |(Ẑ)

∣∣
w
·δ|Ŷ |<k−1 =

∑
X,Z∈Ξ

Y ∈Ξ6k−2

~u[XYZ]·~hw[XYZ]

Note that the summation goes through all words W ∈ Ξ6k with |W | > 2. Thus,

plugging the above into Equation (7.3), we obtain |h(u)|w = ~hw ·~u, as claimed.

For an equation e : u = v, we define ~e = ~u − ~v. In the following, we let ~e⊥

denote the orthogonal complement (subspace) of the vector ~e. We characterize
the solutions to an equation in Σ∗/∼k.

Lemma 7.24. Let e : u = v be an equation over Ξ and h : Ξ→ Σ+ a non-erasing
morphism. Then h is a solution to e in Σ∗/∼k if and only if pk−1(h(pk−1(u))) =

pk−1(h(pk−1(v))) and ~hw ∈ ~e⊥ for all w ∈ Σ∗.

Proof. Since h is non-erasing we have pk−1(h(u)) = pk−1(h(v)) if and only if
pk−1(h(pk−1(u))) = pk−1(h(pk−1(v))). Furthermore by the above lemma we have,

for all w ∈ Σk, |h(u)|w − |h(v)|w = 0 if and only if ~hw · ~u − ~hw · ~v = ~hw · ~e = 0

for all w ∈ Σ∗. Thus h(u) ∼k h(v) if and only if ~hw ∈ ~e⊥ and pk−1(h(pk−1(u))) =
pk−1(h(pk−1(v))). The claim follows.

Theorem 7.25. The number of equations in an independent system of equations

over the semigroup Σ+/ ∼k with variables Ξ is at most |Ξ6k|+
(|Ξ6k−1|−1

2

)
.

Proof. Let Ξ be a finite set of variables and let E be an independent system of
equations with variables Ξ; E = {ei : ui = vi | ui, vi ∈ Ξ+}i∈I . (Note that E
is finite by Theorem 7.19). Assume first that the set Sol(E) is not empty. By

the above lemma, if h is a solution to E, then ~hw ∈ ~e⊥i for all w ∈ Σk and
i ∈ I. As

⋂
i∈I ~e

⊥
i = U is a finite dimensional vector space, there exists a finite

§7.3 On Systems of Equations 99

set F = {e1, . . . , ef} of equations, where f < |Ξ6k|, such that U =
⋂f
i=1 ~e

⊥
i . Let

further F ′ ⊆ E be a set chosen so that, for each pair of distinct non-empty words
z, z′ ∈ Ξ6k−1, precisely one equation e : u = v from E having pk−1(u) = z and

pk−1(v) = z′ occurs in F ′. There are at most
(|Ξ6k−1|−1

2

)
such equations.

We now claim that the subsystem E′ = F∪F ′ is equivalent to E (and thus E′ =
E). Assume that h is a solution to E′ over Σ∗/∼k and let e : u = v be an equation

in E. Since h is a solution to the system of equations F , it follows that ~hw ∈ U ⊆
~e⊥, where U is defined as above, for all w ∈ Σk. Further, since there exists an
equation e′ : u′ = v′ in F ′ having pk−1(u) = pk−1(u′), pk−1(v) = pk−1(v′), (and
h(u′) ∼k h(v′)) it follows that pk−1(h(pk−1(u))) = pk−1(h(pk−1(v))) (if pk−1(u) =
pk−1(v) then the previous conclusion is trivial). It follows that h(u) ∼k h(v) by
the above lemma, and thus h is a solution to e.

Assume then that the system E has no solutions. Let e ∈ E and let G = E\{e}.
Now there exists a solution to G, since otherwise E is not independent (or G is
empty). Applying the above to G, we obtain the finite, equivalent system of
equations E′ as defined above. Now E′ ∪ e has no solutions (otherwise a solution
to E′ ∪ e would be a solution to E), and thus E = E′ ∪ e. The claim follows.

We have not attempted giving a lower bound on the maximal number of equa-
tions in an independent system of equations for the k-abelian monoid. We propose
the following question.

Question 7.26. What is the maximal size of an independent system of equations
(without constants) with n variables in the k-abelian monoid?

7.3.2 On Independent Systems of Equations over Σ∗/≡k
Our approach for upper bounding the size of an independent system of equations
over Σ∗/≡k is identical to the approach for Σ∗/∼k. The considerations here turn
out to be slightly simpler.

Let us fix some notation. Let k > 1 be fixed. Consider a word u ∈ Ξ+ and

define the |Ξ|
k+1−|Ξ|
|Ξ|−1 -dimensional vector ~u as

~u =
((
u
Y

))
Y ∈Ξ6k\{ε} .

For any non-erasing morphism h : Ξ→ Σ∗/ ≡k we define, for each word w ∈ Σ6k,

the |Ξ|
k+1−|Ξ|
|Ξ|−1 -dimensional vector ~hw (components indexed by non-empty words in

Ξ6k) as

~hw[Y] =
∑

w=w1···w`
wj∈Σ+

(
h(Y1)
w1

)
· · ·
(
h(Y`)
w`

)
,

for each Y = X1 · · ·X` ∈ Ξ6k with Xi ∈ Ξ for all i = 1, . . . , `. Note that ~he[Y] = 0
for all Y for which |Y | > |e|, as e does not have a factorization into |Y | non-empty
words.

The following lemma is crucial in the following endeavors.

Lemma 7.27. Let h : Ξ → Σ∗/ ≡k be a non-erasing morphism, u ∈ Ξ+, and

w ∈ Σ6k. Then
(
h(u)
w

)
= ~hw · ~u.

100 On k-Abelian and k-Binomial Equations §7

Proof. Again, to avoid cluttering the text, we set h(X) = X̂ for each X ∈ Ξ. Let
u = X1 · · ·Xn, where Xi ∈ Ξ for each i = 1, . . . , n. For any subset S of {1, . . . , n},
by the sequence S1, . . . , S|S| we mean the sequence of elements of S arranged in

increasing order. Now, for each w ∈ Σ6k, we observe that(
h(u)
w

)
=

∑
S⊆[1,n]
|S|6|w|

∑
w=w1···w|S|
wj∈Σ+

(
X̂S1
w1

)
· · ·
(X̂S|S|
w|S|

)
.

Indeed, for each occurrence of w as a subword, there exists a subset S ⊆ [1, n]
of length at most k such that w = w1 · · ·w|S|, where wi ∈ Σ+ and the indices

of wi in u are a subset of the indices of X̂Si in h(u). For each subset S of [1, n]
having |S| > |e|, there exists no such factorization, and thus the corresponding
sum contributes nothing to the total sum. Now for two subsets S, S′ ⊆ [1, n]
having XS1

· · ·XS|S| = XS′1
· · ·XS′|S′|

= Y , the corresponding sums contribute the

same value. The number of distinct such sets equals
(
u
Y

)
. We may thus rewrite

the above equation as∑
Y ∈Ξ6k

(
u
Y

) ∑
w=w1···w|Y |
wj∈Σ+

(
X̂1

w1

)
. . .
(
X̂|Y |
w|Y |

)
=

∑
Y ∈Ξ6k

~hw[Y] · ~u[Y] = ~hw · ~u,

as claimed.

Lemma 7.28. Let w : u = v be an equation and let h : Ξ → Σ∗/ ≡k be a non-

erasing morphism. Then h is a solution to e over Σ∗/≡k if and only if ~hw ∈ ~e⊥
for all w ∈ Σ6k, where ~e = ~u− ~v.

Proof. We have h(u) ≡k h(v) if and only if
(
h(u)
w

)
−
(
h(v)
w

)
= 0 for all non-empty

w ∈ Σ6k if and only if ~hw · (~u− ~v) = ~hw · ~e = 0 for each w ∈ Σ6k, by the lemma
above.

We may now bound the number of equations in an independent system.

Theorem 7.29. The number of equations in an independent system of equations
(without constants) over the semigroup Σ+/ ≡k with variables Ξ is at most |Ξ6k|.

Proof. Let E = {ei : ui = vi}i∈I be an independent system of equations over Ξ.
Assume again that Sol(E) is not empty. The case of Sol(E) having no solutions

is analogous to the k-abelian case. Now h is a solution to E if and only if ~hw ∈⋂
e∈E ~e

⊥ = U for all w ∈ Σ6k. Since U is a finite dimensional vector space, there

exist equations e1, . . . , ef ∈ E such that U = ∩fi=1e
⊥
i , where f 6 |Ξ6k| − 1. We

claim that E′ = {e1, . . . , ef} is an equivalent subsystem of E.

Let e ∈ E. Let then h be a solution to E′. It follows that ~hw ∈ ~e⊥i for all

i = 1, . . . , f , so that ~hw ∈ U for all w ∈ Σ∗. Furthermore ~hw ∈ ~e⊥ which is
equivalent to h being a solution to e by the above lemma.

We again leave open the following question:

Question 7.30. What is the maximal number of equations in an independent
system of equations in the k-binomial monoid?

101

Chapter 8

Asymptotic Abelian
Complexities

The last two chapters of this thesis focus on the k-abelian equivalence in infinite
words. This chapter focuses on the 1-abelian complexity, that is, abelian com-
plexity of infinite words, or more precisely, of certain morphic binary words. The
analysis of binary words is already quite intricate, even though the abelian com-
plexity in this case is strongly related to the so-called balancedness of the infinite
word (see Definition 8.1).

We first consider the pure morphic binary words. We recall relevant results
from the literature and observe that the limit superior abelian complexities of pure
morphic binary words are almost all known. Our first main result is the analysis of
the asymptotic abelian complexities of the remaining unknown cases of pure mor-
phic binary words. The words studied here admit fluctuating abelian complexity,
that is, the limit inferior and limit superior abelian complexities are of different
order. In studying limit superior abelian complexities, we make use of the notion
of derivated words of uniformly recurrent words (see Definition 8.9). We associ-
ate the limit superior abelian complexity of a word to the limit superior balance
function of one of its derivated words. This allows us to invoke the classification
result of [2] dealing with the balance function (defined in the following) of primi-
tive pure morphic words. We thus complete the classification of the limit superior
abelian complexities of pure morphic binary words: given a binary morphism ϕ
admitting a fixed point x = ϕ(a)ω, the asymptotic behaviour of the limit superior
abelian complexity of x can be easily computed.

We then consider morphic binary words which are not pure morphic, having
asymptotic abelian complexity of the order O(nr) for some rational r for which
0 < r < 1. The main result here is the following. For each pair p, q ∈ N, p < q, we
give a sequence (wn)n>0 of morphic binary words each having asymptotic abelian
complexity Θ(np/q), while the factor complexities satisfy Cwi+1(n) = o(Cwi(n)) for
each i > 0. The morphic words in these sequences are defined as binary images
of pure morphic words having larger and larger alphabet sizes. Consequently, the
analysis of the factor complexities and abelian complexities become quite intricate.

This results of this chapter appear in the article [109].

102 Asymptotic Abelian Complexities §8

8.1 Background

Let us first recall relevant results from the literature. We define a complexity
function closely related to the abelian complexity. For this we need the following
notation. For an infinite word w ∈ ΣN and a letter a ∈ Σ, we define

maxw,a(n) = max{|u|a | u ∈ Fn(w)}.

The function minw,a : N→ N is defined analogously.

Definition 8.1. Let w ∈ ΣN. The balance function Bw of w is defined as Bw(n) =
max {maxw,a(n)−minw,a(n) | a ∈ Σ} .

It is straightforward to verify that, for w ∈ BN, we have Cab
w (n) = Bw(n) + 1

for all n ∈ N.
The following deep result of B. Adamczewski [2] is the first stepping stone of

the classification of the abelian complexities of morphic words. The result classifies
the asymptotic growth of the balance function of primitive pure morphic words.
The asymptotic behaviour of Uab

x for binary words x can be extracted from the
above, as was done in [12]. We state the result here because we make use of it in
our later considerations. Before we do so, however, we recall some basic notions
of linear algebra.

When talking about eigenvalues of a morphism ϕ, we mean eigenvalues of Aϕ.
The multiplicity of the eigenvalue λ in the minimal polynomial of Aϕ is denoted
by αλ. We let θ1, θ2, . . . , θn be the distinct eigenvalues of ϕ ordered in such a way
that |θi| > |θi+1| and if |θi| = |θi+1|, then αθi > αθi+1

. For a primitive ϕ, the
Perron–Frobenius theorem (see, e.g., [85]) implies that θ1 ∈ R, θ1 > 1, θ1 > |θ2|,
and αθ1 = 1. The eigenvalue θ1 is called the Perron-eigenvalue of ϕ. We also
make use of the eigenvalue θ2, which can be seen as the second most significant
eigenvalue of ϕ.

In the following we let α2 = αθ2 − 1.

Theorem 8.2. ([2] (as formulated in [12])) Let x be a fixed point of a primitive
morphism ϕ. Then the following hold:

1. If |θ2| < 1 then Bx(n) = (O ∩ Ω̂)(1);

2. If |θ2| > 1 then Bx(n) = (O ∩ Ω̂)((log n)α2nlogθ1 |θ2|);

3. If |θ2| = 1 and θ2 is not a root of unity, then Bx(n) = (O ∩ Ω̂)((log n)α2+1);

4. If |θ2| = 1 and θ2 is a root of unity, then either

• Bx(n) = (O ∩ Ω̂)((log n)α2+1), or

• Bx(n) = (O ∩ Ω̂)((log n)α2),

according to whether a certain constant Aϕ,x equals zero or not, respectively.

We refer the interested reader to [2] for more on computing the constant Aϕ,u
mentioned in the last item above.

From the above we immediately infer that Uab
x (n), for a primitive pure morphic

binary word x, is of order Θ(1), Θ(log n), or Θ(nlogθ1 θ2) (since α2 = 0). In [12]

§8.2 Completing a Classification of Pure Morphic Binary Words 103

Blanchet-Sadri, Fox, and Rampersad go on to study abelian complexities of fixed
points of non-primitive binary morphisms. Before stating their result, we recall a
straightforward characterization of such morphisms.

Proposition 8.3. Let ϕ be a non-primitive binary morphism which admits an
infinite fixed point y = ϕω(a). Then either ϕ(a) ∈ aa+ and ϕ(b) ∈ Σ∗2, or ϕ is of
the form

ϕ(a) ∈ aΣ∗bΣ∗ and ϕ(b) ∈ b∗, (8.1)

where, if ϕ(b) = ε, then |ϕ(a)|a > 2. Further, y is ultimately periodic if and only if
ϕ(a) ∈ aa+ or ϕ is of the form (8.1) and satisfies one of the following conditions:
ϕ(a) ∈ ab+, ϕ(b) = ε, or ϕ(a) = (abr)sa and ϕ(b) = b for some r, s > 1.

Theorem 8.4. ([12]) Let ϕ be a non-primitive binary morphism as in (8.1) with
ϕ(b) = bk for some k > 1. Suppose further that ϕ admits an aperiodic infinite
fixed point y = ϕω(a). Then the following holds:

1. If k = 1 and ϕ(a) ends with b, then Caby (n) = Θ(n);

2. If k > 2 then

• Caby (n) = Θ(n) if |ϕ(a)|a > k,

• Caby (n) = Θ(n/ log n) if |ϕ(a)|a = k, and

• Caby (n) = Θ
(
nlogk |ϕ(a)|a

)
if |ϕ(a)|a < k.

Observe that if x ∈ ΣN is (ultimately) periodic, then Cab
x = Θ(1). It is straight-

forward to check that the words fixed by non-primitive morphisms whose asymp-
totic (upper) abelian complexities are not yet classified are as in (8.1), where k = 1
and ϕ(a) ends with a. More precisely, ϕ is of the form

ϕ(a) = abk1abk2 · · · abksa, ϕ(b) = b, (8.2)

where ki > 0 for all i = 1, . . . , s and there exist i, j such that ki < kj . Our aim is
to complete the classification by proving the following in Section 8.2:

Theorem 8.5. Let ϕ be as in (8.2) and y = ϕω(a). Then Uab
y (n) = Θ(log n) and

Lab
y (n) = Θ(1).

In particular, morphisms of the form (8.2) are the only non-primitive binary
morphisms whose fixed points have upper and lower abelian complexities of diffe-
rent orders of growth.

8.2 Completing a Classification of Pure Morphic
Binary Words

In this section we prove Theorem 8.5. We first consider the lower abelian com-
plexities of words fixed by morphisms of the form (8.2). After this, we focus on
the upper abelian complexity. We achieve this by finding a connection between

104 Asymptotic Abelian Complexities §8

the upper abelian complexities and the balance functions of some derivated words
of these words (see Subsection 8.2.1).

Let us fix the notation for the rest of this section. We let ϕ be a morphism as
in (8.2) and we let Y = ϕω(a). We also let km (resp., kM) denote the minimal
(resp., maximal) of the exponents ki, i = 1, . . . , s, in (8.2).

We start with some elementary properties of the word Y.

Lemma 8.6. The word Y has the following properties.

1. The set <Y(a) equals <ϕ(a)(a) = {abkia | i = 1, . . . , s}.

2. For any fixed m ∈ N, we have Y ∈ {ϕm(a)bki | i = 1, . . . , s}ω.

3. The word Y is linearly recurrent (so, in particular, uniformly recurrent).

Proof. 1. Suppose this is not the case, abra ∈ F (Y) \ F (ϕ(a)) for some r ∈ N.
Suppose that abra ∈ ϕ(w), where w ∈ F (ϕt(a)), t > 1, t is the least such integer,
and w is the shortest such factor of Y. Clearly w is not a letter, and since
|abra|a = 2, we have w = absa for some s > 0. Now abra ∈ F (ϕ(a)bsϕ(a)). Since
abra /∈ <ϕ(a)(a), it follows that s = r, that is, abra ∈ F (ϕt−1(a)), a contradiction.

2. The claim is true for m = 0 by the previous item. Suppose then that the
claim is true for some m > 0; Y =

∏∞
i=1 ϕ

m(a)bri , ri ∈ {k1, . . . , ks} for all i > 1.
But then Y = ϕ(Y) =

∏∞
i=1 ϕ

m+1(a)bri .
3. Let um = ϕm(a) for each m > 0. It is straightforward to conclude that

um+1 contains each factor of length |um| of Y for each m ∈ N. Further, by item 2,
any factor of length 2|um+1|+kM contains um as a factor. The claim follows since
|um+1| 6 |u1||um|.

Remark 8.7. Observe that limn→∞
minY,c(n)

n > 0 for both c ∈ B. This is immediate
by item 2 (case m = 1) in the above lemma together with |ϕ(a)|a, |ϕ(a)|b > 0.
Observe that the limit always exists as the sequence (minY,c(n))n>0 is subadditive.

In fact, since Y is linearly recurrent, we have lim
n→∞

min
v∈Fn(Y)

|v|u
n = lim

n→∞
max

v∈Fn(Y)

|v|u
n

for any u ∈ F (Y) ([32, Theorem 15] and [35, Proposition 7.2.10]). For us however,
the first observation above is enough.

We are ready to show that the lower abelian complexity of Y is bounded.

Lemma 8.8. Let ϕ and Y be as fixed previously. Then Lab
Y (n) = Θ(1).

Proof. Let um = ϕm(a) for each m ∈ N. We claim that Cab
Y (|um|) is bounded by a

constant depending only on ϕ. Let now v ∈ F (Y) have length |um|. By item 2 in
the above lemma, it follows that v is a factor of umb

kium for some i ∈ {1, . . . , s}.
In other words we have v = qbrp, where p (resp., q) is a (possibly empty) prefix
(resp., suffix) of um and r 6 kM . On the other hand, we have um = puq, for some
u ∈ Fr(Y). We thus conclude that

|um|b = |p|b + |u|b + |q|b 6 |p|b + r + |q|b = |v|b 6 |um|b + r 6 |um|b + kM .

It follows that Cab
Y (|um|) 6 kM + 1 for all m ∈ N, and the claim follows.

The rest of this section is devoted to the upper abelian complexity of Y. We
develop the tools needed in the following.

§8.2 Completing a Classification of Pure Morphic Binary Words 105

8.2.1 On Derivated Words of Uniformly Recurrent Words

We recall the definition of a derivated word of a uniformly recurrent word from
[31]. We then study the derivated words of uniformly recurrent pure morphic
words, and remark a slight generalization of a result from [31].

Definition 8.9. Let x ∈ ΣN be uniformly recurrent and p ∈ pref(x) be non-
empty. By the above discussion, we may write uniquely x =

∏∞
i=0 qi, where

qi ∈ <x(p)p−1 for each i ∈ N. Let ∆p,x be an alphabet with |∆p,x| = |<x(p)|, and
let πp,x : ∆p,x → <x(p)p−1 be a bijection. The derivated word of x with respect to
p, denoted by Dp(x), is defined as Dp(x) =

∏∞
i=0 π

−1
p,x(qi) ∈ ∆ω.

In the following, we order the elements of <x(p) = {p1, . . . , pd} in the order
they occur for the first time in x. We then set ∆p,x = {δ1, . . . , δd} and fix πp,x
by πp,x(δi) = pi, i = 1, . . . , d. We often omit the subscripts from ∆p,x and πp,x
whenever the word x and prefix p are clear from context.

Note that πp,x can be interpreted as a morphism πp,x : ∆∗p,x → Σ∗, whence
x = πp,x(Dp(x)). Note also that, since x is uniformly recurrent, then so is Dp(x).
The following result is a minor generalization of [31, Proposition 5.1].

Proposition 8.10. Let ρ : Σ∗ → Σ∗ be a morphism admitting a uniformly re-
current fixed point x = ρω(a). Let p be a non-empty prefix of x. Then Dp(x) is
primitive pure morphic. Moreover, a primitive morphism µ fixing Dp(x) may be
constructed when <x(p) is known.

For the sake of completeness, we give a proof, which is essentially the same as
for Durand’s result, as suggested by Jarkko Peltomäki (personal communication).

To this end we partially define π−1
p,x : Σ∗ → ∆∗p,x as follows. Let q ∈ F (x) be

a return to p in x, that is, q ∈ Σ+, qp ∈ F (x), and p ∈ pref(qp). We can then
write uniquely (by Proposition 2.7) qp = q1 · · · qnp, where qi ∈ <x(p)p−1 for each
i = 1, . . . , n. We define π−1

p,x(q) = π−1
p,x(q1) · · ·π−1

p,x(qn) ∈ ∆∗. Otherwise we leave
π−1
p,x undefined.

Proof. For ease of notation, let ∆ = ∆p,x and π = πp,x. We first define a mapping
µ : ∆→ ∆∗ as follows. For each δ ∈ ∆, we set µ(b) = π−1θπ(δ).

We first verify that µ is well-defined, that is, we show that θ(q) is a return to
p in x whenever q ∈ <x(p)p−1. By definition, qp ∈ F (x), so that θ(q)θ(p) ∈ F (x).
Note that θ(q) 6= ε, as q begins with a. Furthermore, we have p ∈ pref(θ(p)), as can
easily be deduced using the properties of θ. Thus θ(q)p ∈ F (x), p ∈ pref(θ(q)p),
and |θ(q)p| > |p|. In other words, θ(q)p is a complete return to p in x. Thus π−1

is defined on θ(q), as was to be shown.
We now consider µ as the morphism µ : ∆∗ → ∆∗. Our next step is to show

that µω(δ1) = Dp(x). For this, we first note that θπ = πµ. Indeed, both mappings
are morphisms (as compositions of morphisms) and they agree on the letters of ∆.
Further, θπ(δ1) = θ(p1) ∈ pref(x). It follows that µ(δ1) = π−1θπ(δ1) begins with
δ1. Moreover, for all n ∈ N and s = 1, . . . , d,

πµn(δi) = θπµn−1(δi) = · · · = θnπ(δi) = θn(pi),

which implies that limn→∞ π(µn(δ1)) = x. Hence, there exists a unique fixed point
z = µω(δ1) satisfying, by the above, π(z) = x. Since the factorization of x into
complete first returns to p is unique by Proposition 2.7, we have z = Dp(x).

106 Asymptotic Abelian Complexities §8

Finally, we show that µ is primitive. Note that Dp(x) is uniformly recurrent,
so it suffices to show that |µn(δi)| obtains arbitrarily large values for each δi ∈ ∆.
Now |πµn(δi)| = |θnπ(δi)| and π(δi) = pi always begins with the letter a. Thus
|θnπ(δi)| > |θn(a)| so that |πµn(δ)| obtains arbitrarily large values, and hence so
does |µn(δi)|.

The ingredients of the proof of the above result are essential to our later conside-
rations. In particular, the construction of the primitive morphism µ : ∆p,x → ∆∗p,x
satisfying µω(δ1) = Dp(x) is analyzed in our setting. We clarify the above con-
struction by an example.

Example 8.11. Let ϕ(a) = aabab2a and ϕ(b) = b so that ϕ is of the form
(8.2). Let y = ϕω(a). By Lemma 8.6, <y(a) = {aa, aba, ab2a} so we set ∆a,y =
{δ1, δ2, δ3}. Now π is defined by π(δi) = abi−1 for each i = 1, 2, 3. The primitive
morphism µ is now defined by

µ(δi) = π−1ϕπ(δi) = π−1(aabab2abi−1) = δ1δ2δ3δi

for each i = 1, 2, 3. The incidence matrix Aµ of µ is thus

Aµ =

|µ(δ1)|δ1 |µ(δ2)|δ1 |µ(δ3)|δ1
|µ(δ1)|δ2 |µ(δ2)|δ2 |µ(δ3)|δ2
|µ(δ1)|δ3 |µ(δ2)|δ3 |µ(δ3)|δ3

 =

2 1 1
1 2 1
1 1 2

 .

Note that, for example, the word fixed by the morphism a 7→ ab2abab3a, b 7→ b,
has the same derivated word Da(y).

In the above example the constructed morphism µ is uniform with length 4 =
|ϕ(a)|a. This is no coincidence when the morphism ϕ is of the form (8.2). Indeed,
consider the construction of µ for our word Y and prefix a. We have ∆ = ∆a,Y =
{δ1, . . . , δd}. Now <Y(a)a−1 ⊆ ab∗ so we may define π = πa,Y by π(δi) = abri ∈
<ϕ(a)(a)a−1, for each i = 1, . . . , d. By the definition of µ in the above construction,
we obtain

µ(δi) = π−1ϕπ(δi) = π−1(ϕ(a)bri) = π−1(ϕ(a)a−1abri) = pδi, (8.3)

where p = π−1(ϕ(a)a−1). The morphism µ is thus uniform with length |ϕ(a)|a.

Proposition 8.12. We have BDa(Y)(n) = O(log n).

Proof. We aim to show that µ has eigenvalues |ϕ(a)| and 1, both with multiplicities
1 (as roots of the minimal polynomial of Aµ). The claim then follows by the fourth
point of Theorem 8.2. Indeed, the incidence matrix Aµ is of the form

Aµ =
(
Ψ(p)T | Ψ(p)T | · · · | Ψ(p)T

)
+ Id×d = A + Id×d,

where Ψ(p) is the Parikh vector of p in (8.3), Id×d is the d×d identity matrix, and
A is a d× d matrix, where each column is the same vector Ψ(p)T .

Now let λ be an eigenvalue of Aµ. This implies that

0 = det(Aµ − λId×d) = det(A + Id×d − λId×d) = det(A− (λ− 1)Id×d).

§8.2 Completing a Classification of Pure Morphic Binary Words 107

It is readily verified that the only eigenvalues of A are
∑d
i=1 |p|δi = |p| and 0 from

which it follows that the eigenvalues of Aµ are |ϕ(a)|a and 1.
We now claim that the minimal polynomial of Aµ is x2 − (|p|+ 2)x + |p|+ 1.

Indeed, it is straightforward to check that A2 = |p|A, from which it follows that
A2
µ − (|p| + 2)Aµ + (|p| + 1)Id×d = 0. Now the minimal polynomial of Aµ is of

degree 2 implying that the eigenvalue 1 has multiplicity 1, as was to be shown.

8.2.2 The Upper Abelian Complexity of Y

We are now ready to prove that the upper abelian complexity of Y is of order
Uab
Y n = Θ(log n). For this, we bound the upper abelian complexity of Y in terms

of the asymptotic balance function of Da(Y). We then show that for infinitely
many m, we have Cab

Y (m) = Θ(logm).

Lemma 8.13. We have Uab
Y (n) = O(log n).

Proof. Let µ be the primitive morphism having Da(Y) as a fixed point, and let
π = πa,Y as defined in the previous subsection. Let n ∈ N with Cab(n) > 2. Now
there exists a factor uM ∈ F (Y) of length n such that |uM |a = maxY,a(n) and uM
begins with a. Indeed, if |v|a = maxY,a(n) with v ∈ braΣ∗, then, by considering a
factor vw ∈ F (Y) with |w| = r, we have | suffn(vw)|a = |v|a + |w|a, and suffn(vw)
begins with a. By a similar argument, there exists a factor um ∈ F (Y) of length
n such that |um| begins with a and |um|a 6 minY,a(n) + 1. Observe that now
|uM |a > |um|a by the choice of n.

As um begins with a, there exists a factor x of Da(Y) of length |um|a such that
um is a prefix of π(x), whence |um|a = |π(x)|a and |um|b 6 |π(x)|b 6 |um|b + kM .
(Recall that between consecutive occurrences of a in Y, there are at most kM bs.)
Similarly, we may write uM = π(z)v, where z is factor of Da(Y) of length |um|a,
and v begins with a. We now have |uM |a− |um|a = |v|a so that Cab

Y (n) 6 |v|a + 2.
We claim that |v| = O(log n) to conclude the proof. As |π(z)|+|v| = |uM | 6 |π(x)|
and |π(z)|a = |π(x)|a, we have |v| 6 |π(x)| − |π(z)| = |π(x)|b − |π(z)|b. Moreover,
x and z are factors of Da(Y) of equal length. By Proposition 8.12,

|π(x)|b − |π(z)|b =

d∑
i=1

ri(|x|ai − |z|ai) 6 dkMBDa(Y)(|x|) = O(log |x|),

where ri is defined as πa,Y(ai) = bri , and ri 6 kM by definition. Finally, |x| =
|um|a 6 n and thus |v| = O(log n). The claim follows.

We now proceed to show that Uab
Y (n) = Ω(logn). To this end, let ϕ(a) = gauah

for some g, u, h ∈ Σ∗. We construct a sequence of factors of y as follows. Let
ug,h0 = a and, for all n > 0, define ug,hn+1 = g−1ϕ(ug,hn)h−1. Note that the sequence
is well-defined, as ϕ(un) ∈ gaΣ∗2ah for each n > 1. We now make some observations
on the words in the sequence. In the following we let α = |ϕ(a)|a and β = |ϕ(a)|b
for ease of notation.

Lemma 8.14. For all n ∈ N

• |ug,hn |a = (1− |gh|aα−1)αn + |gh|a
α−1 ,

• |ug,hn |b = β
α−1 (1− |gh|aα−1)(αn − 1) + (β

α−1 |gh|a − |gh|b)n.

108 Asymptotic Abelian Complexities §8

Proof. Define Φg,h(v) = (|v|a, |v|b,−|gh|a,−|gh|b)T ∈ Z4 for all v ∈ Σ∗. Consider
the following 4× 4 matrix (in block form)

Âϕ =

(
Aϕ I
0 I

)
,

where I = I2×2 and 0 = 02×2 are the 2 × 2 identity matrix and zero matrix,

respectively. It is readily verified that for any v ∈ aΣ∗a, we have ÂϕΦg,h(v) =

Φg,h(g−1ϕ(v)h−1). This implies that ÂnϕΦg,h(a) = Φg,h(ug,hn) for all n ∈ N. We
then have, for all n ∈ N, that

Ânϕ =

(
Anϕ

∑n−1
i=0 A

i
ϕ

0 I

)
,

where

Anϕ =

(
αn 0

β
αn−1
α−1 1

)
and

n−1∑
i=0

Aiϕ =

(
αn−1
α−1 0

β
αn−1−n(α−1)

(α−1)2 n

)
,

by straightforward induction. We finally have, for all n ∈ N, that

ÂnϕΦg,h(a)[1, 2] =

(
αn − αn−1

α−1 |gh|a
β α

n−1
α−1 − β

αn−1−n(α−1)
(α−1)2 |gh|a − n|gh|b

)
.

Rearranging the terms gives our claims.

Recall that there exist gm, hm, gM , hM ∈ Σ∗ such that ϕ(a) = gmab
kmahm =

gMab
kMahM , where km and kM are fixed as in the beginning of this section. Let

then (un) = (ugm,hmn) and (vn) = (ugM ,hMn) be sequences constructed as above.
Note that |gmhm|a = |gMhM |a = α−2 and |gmhm|b−|gMhM |b = kM−km whence,
by the above lemma,

|vn| − |un| = |vn|b − |un|b = −n|gMhM |b + n|gmhm|b = n(kM − km) (8.4)

for all n ∈ N. We are now in the position to complete the proof of Theorem 8.5.

Proof of Theorem 8.5. By Lemma 8.8 and Lemma 8.13 it is enough to show that
Uab
Y n = Ω(log n).

Let (un)n and (vn)n be the sequences as discussed above. Let then unfn ∈
F (Y), so that |unfn| = |vn|, that is, |fn| = n(kM − km). Now, by Remark 8.7,
for all large enough n there exists γ < 1 such that |fn|b 6 γ|fn|. From (8.4) we
obtain

Cab
Y (|vn|) > |vn|b − |unfn|b > (1− γ)(kM − km)n.

Further, from the above lemma, we have

|vn| = |vn|a + |vn|b = |ϕ(a)|−1
(α−1)2 α

n +O(n) = Θ(αn).

We thus conclude that Cab
Y (|vn|) = Ω(log |vn|), whence Uab

Y n = Ω(log n).

§8.3 On Morphic Words with Common Abelian Complexities 109

We have shown that aperiodic words fixed by a morphism of the form (8.2) have
abelian complexity which fluctuates between constant and logarithmic growth.
This completes the classification of the abelian complexities of pure morphic words
fixed by non-primitive binary morphisms. Further, the classification of upper
abelian complexities of pure morphic binary words is completed. Observe that
the classification of lower abelian complexities remains open for primitive pure
morphic binary words. We mention that the lower abelian complexities of a large
family of uniform binary morphisms is obtained in [12].

The following problem is left open.

Question 8.15. Is there a classification similar to the one in Theorem 8.2 for the
asymptotic orders of growth of Uab

x (n) and Lab
x (n) for pure morphic words x?

Classifying the abelian complexities for primitive pure morphic words over
larger alphabets remains totally open. The methods used here are specific to
binary words and cannot be applied to larger alphabets directly. More precisely,
the techniques rely on the equivalence of the balance function and the abelian
complexity of binary words. For larger alphabets, the link is not that clear.

8.3 On Morphic Words with Common Abelian
Complexities

In this section we extend our analysis to morphic binary words. In particular, we
are interested in morphic words having abelian complexity of the order Θ(np/q),
where p < q.

We note that, in the case of pure morphic binary words, one can achieve such
abelian complexity with both primitive and non-primitive morphisms. Primitive

morphisms having their adjacency matrix of the form
(

2q−1 2q−2p−1
1 2p+1

)
, where p <

q, yield words with Uab(n) = Θ
(
np/q

)
(item 2 of Theorem 8.2). On the other

hand, non-primitive morphisms having their adjacency matrix of the form
(

2p 0
s 2q

)
with p < q and s > 1, yield fixed points having Cab(n) = Θ

(
np/q

)
(item 2 of

Theorem 8.4, third point). What is worth noting is that both of the above types
of words give Θ(n) factor complexity:

Lemma 8.16. Let y = ϕω(a) for some binary morphism ϕ. If Uab
y (n) = Θ(nr)

for some r ∈ Q with 0 < r < 1, then Cy(n) = Θ(n).

Proof. Note that y is necessarily aperiodic. We show that the morphism ϕ is
everywhere-growing and quasi-uniform (for definitions see [76, 77], or [21, Defini-
tions 4.7.35 and 4.7.39]), that is, there exists β > 1 such that |ϕn(a)|, |ϕn(b)| =
Θ(βn). The claim follows, as aperiodic fixed points of everywhere-growing quasi-
uniform morphisms have linear factor complexity by Pansiot’s result [76].

It is a simple exercise to show that a primitive morphism ϕ is everywhere-
growing and quasi-uniform. If ϕ is non-primitive, then, by Theorems 8.4 and 8.5,
|ϕ(a)|a < |ϕ(b)|b. In this case it is simple to see that β above equals |ϕ(b)| > 1.

The main result of this section is the following.

Theorem 8.17. For each pair p, q ∈ N with p < q, there exists a sequence of mor-
phic binary words (ys)s∈N satisfying Cabys(n) = Θ(np/q) and Cys+1(n) = o (Cys(n)).

110 Asymptotic Abelian Complexities §8

There thus exists a family of morphic binary words having the same asymptotic
abelian complexities (up to a constant) while the asymptotic factor complexities
are different. We shall construct such sequences for each pair p, q ∈ N.

8.3.1 Words of Interest and Some Initial Observations

We first fix the notation of the remainder of the section. For convenience we use
the infinite alphabet ΣN = {ai | i > 0} indexed by the natural numbers. Let also
Σs = {a0, . . . , as} and Γs = {ai | i > s}. Define then the morphism γ : ΣN → Σ∗N
by γ(a0) = a0 and γ(ar) = arar−1 for r > 1. Further, for each s ∈ N, we define
the morphism σs : ΣN → B∗ by σs(ar) = b if ar ∈ Γs and σs(ar) = a otherwise.

Now, for each r > 1, the word γω(ar) exists. For the remainder of this section
we set, for each r > 1, Xr = γω(ar). Further, we let Xs,r denote the morphic
word σs(Xr) for all s > 0 and r > 1.

Example 8.18. We illustrate the words defined above. (Here we identify ai with
i, i = 0, 1, 2, 3).

X3 = 3221211021101002110100100021101001000100002 · · ·
X1,3 = b b b b b b bab b babaab b babaabaaab b babaabaaabaaaab · · ·
X2,3 = b b babaaabaaaaaabaaaaaaaaaabaaaaaaaaaaaaaaab · · · .

We remark that the words Xs,s+1 appear in the literature as examples of
morphic, but not pure morphic, words ([77], see also [21, Subsection 4.7.1]).

The aim is to prove the following proposition.

Proposition 8.19. Let r, s ∈ N with 1 6 s < r, and let x = Xs,r. Then

1. Cx(n) = Θ
(
n1+1/s

)
and

2. Cabx (n) = Θ
(
n1−s/r).

Let us first see how Theorem 8.17 follows from the above proposition.

Proof of Theorem 8.17. Let us fix p, q ∈ N with 1 6 p < q. For each s > 1, let ys =
Xs(q−p),sq. By Proposition 8.19, ys has Cys(n) = Θ

(
n1+1/s(q−p)) and Cab

ys (n) =

Θ
(
n1−s(q−p)/sq) = Θ

(
np/q

)
. It is now clear that Cys+1

(n) = o (Cys(n)).

We need to make some observations concerning γ and the words Xr, r > 1,
before proving the above proposition. To tidy up notation, we define Λm,`,r =∏`
i=m γ

i(ar−1) for all m, r ∈ N and ` ∈ N ∪ {∞}, with r > 1 and ` > m. For
technical reasons we also allow ` = m− 1, and we set Λm,m−1,r = ε.

Lemma 8.20. The following properties hold for all r > 1.

1. Xr ∈ arΣωr−1. In particular, X1 = a1a
ω
0 and Xr,r = baω.

2. For all n,m ∈ N with n > m > 0, we have

γn(ar) = arΛ0,n−1,r = γm(ar)Λm,n−1,r and Xr = γn(ar)Λn,∞,r.

3. F (Xt) ⊆ F (Xr) and F (Xs,t) ⊆ F (Xs,r) for all t, r, s ∈ N with 1 6 t 6 r.

§8.3 On Morphic Words with Common Abelian Complexities 111

Proof. Item 1 is clear by the definition of γ and item 2 is easily shown by induction.
Item 3 is immediate by item 2.

To further simplify notation, we define, for all r > 1 and s > 0, the functions
pr, ps,r : N→ N by pr(n) = |γn(ar)|, and ps,r(n) = |γn(ar)|as . Thus, for example,
pr(n) =

∑r
i=0 pi,r(n).

Lemma 8.21. Let r, s ∈ N with r > s > 0 and r > 0. Then,

1. ps,r(n) =
(
n
r−s
)

= 1
(r−s)!n

r−s +O(nr−s−1) and

2. pr(n) =
∑r
i=0

(
n
i

)
= 1

r!n
r +O(nr−1).

Proof. For each s ∈ Σr, let Is denote the (r+ 1)× (r+ 1) matrix having the entry
aij = 1 if j = i+ s and aij = 0 otherwise. It is easy to check that It1 = It for each
t = 1, . . . , r, that It1 = 0 for t > r, and that I0 is the identity matrix.

Consider then the adjacency matrix Aγ,r of γ restricted to the alphabet Σr
(the top-left entry being |γ(a0)|a0

while the bottom-right entry being |γ(ar)|ar).
We have Aγ,r = I0 + I1 so that

Anγ,r =
∑r
i=0

(
n
i

)
Ii1 =

∑r
i=0

(
n
i

)
Ii.

The rightmost column contains the entries |γn(ar)|ai for i = 0, . . . , r, whence

ps,r(n) = Anγ,r[s, r] =
(
n
r−s
)

= 1
(r−s)!n

r−s +O(nr−s−1).

Finally, pr(n) =
∑r
i=0

(
n
i

)
= 1

r!n
r +O(nr−1). The claims follow.

We move on to prove Proposition 8.19 in two parts.

8.3.2 Analyzing the Factor Complexity

We first analyze the factor complexity of Xs,r for any pair 1 6 s < r. Our aim is
to prove Proposition 8.19, Part 1. We start with an observation, after which we
give a straightforward proof of the desired result.

Lemma 8.22. Let 0 6 s 6 r. Then σs (γn(ar)) ends with baps(n−r+s)−1 for all
n > r − s.

Proof. Let s be fixed. We shall prove the claim by induction on r. The base
case r = s is trivial, as σs(γ

n(as)) = baps(n)−1 for all n > 1. Suppose the claim
is true for r and consider the case of r + 1. Let n > r + 1 − s. By item 2 of
Lemma 8.20, γn(ar+1) ends with γn−1(ar). As n − 1 > r − s, the induction
hypothesis asserts that σs(γ

n−1(ar)) ends with baps(n−(r+1)+s)−1. We have thus
completed the induction step.

We are in the position to analyze the factor complexity. The proof is quite
crude and heavily uses the structure of the defined words.

Proof of Proposition 8.19, item 1. Let s > 1 be fixed. We prove, by induction on
r, that Xs,r has the claimed factor complexity. The base case r = s+ 1 is a result
in [77] (see also [21, Proposition 4.7.2]). Suppose then that the claim is true for

112 Asymptotic Abelian Complexities §8

a fixed r and consider the word Xs,r+1. Let us fix n and estimate the size of
Fn(Xs,r+1) \ Fn(Xs,r). Factorize Xs,r+1 into three parts

Xs,r+1 = σs (ar+1Λ0,k1,r+1) · σs (Λk1+1,k2,r+1) · σs (Λk2+1,∞,r+1) ,

where k1 is minimal in the sense that pr(k1) > n and k2 is minimal in the sense
that σs(γ

k2(ar)) ends with at least n a’s. By Lemma 8.21, pt(x) = 1
t!x

t +O(xt−1)

for each t ∈ N, so that k1 = Θ(n1/r) and, by the above lemma, k2 = Θ(n1/s).
Consider the prefix. We first note that, by Lemma 8.20, ar+1Λ0,k1,r+1 =

γk1+1(ar+1). Trivially |Fn (σs (ar+1Λ0,k1,r+1)) | 6 |γk1+1(ar+1)| and we obtain,
by Lemma 8.21, the rough upper bound

|γk1+1(ar+1)| = 1
(r+1)!k

r+1
1 +O(kr1) = O

(
n1+1/r

)
.

Consider next the factors occurring in σs(Λk1+1,k2,r+1). Any factor occurring in
σs(γ

i(ar)) occurs already in Xs,r. By the choice of k1, it suffices to consider factors
that are of the form σs(u1u2), where u1 ∈ suff(γi(ar)) and u2 ∈ pref(γi+1(ar)) for
some i satisfying k1 6 i < k2. For each such i, there are at most n− 1 choices of
u1 and u2, and we obtain the upper bound∑k2

i=k1
n = nO(n1/s) = O(n1+1/s).

Finally, the factors of length n occurring in the infinite tail have already been
counted previously, either as factors of Xs,r, or as a prefix of Xs,r preceded by a
block of a’s. We conclude, by the induction hypothesis, that

CXs,r+1(n) = CXs,r (n) +O(n1+1/s) +O(n1+1/r) = Θ
(
n1+1/s

)
.

8.3.3 Analyzing the Abelian Complexity

We now analyze the abelian complexity of Xs,r for 1 6 s < r. Our aim is to prove
Proposition 8.19, Part 2, the following lemma being crucial in doing so. In what
follows, for w ∈ Σ∗N and s ∈ N, we let |w|Γs =

∑
a∈Γs

|w|a.

Lemma 8.23. Let 1 6 s 6 r and let n,m ∈ N. Then |v|Γs 6 |prefn(Λm,∞,r)|Γs
for all v ∈ Fn(Λm,∞,r). Further, |prefn(Xr)|Γs = maxv∈Fn(Xr) |v|Γs for all n ∈ N.

Proof. We prove these claims, for any fixed s > 1, by induction on r. Both of
these are trivial for the base case r = s. Suppose the claims are true for some
r > s, and consider the case of r + 1. Let n be fixed. We start by proving the
following:

Claim 8.24. If v ∈ Fn(Λm,∞,r+1) is of the form

v = eΛm+1,`,rf (8.5)

for some `,m ∈ N with ` > m > 0, e ∈ suff(γm(ar)), and f ∈ pref(γ`+1(ar)), then
|v|Γs 6 |prefn(Λm,∞,r+1)|Γs .

§8.3 On Morphic Words with Common Abelian Complexities 113

Λm,`+1,r+1

γm(ar) Λm+1,`,r+1 γ`+1(ar)

u e f

v

Λm,`−1,r+1 z 1) 2)

Figure 8.1: The words v and Λm,`−1,r+1z in the proof of Claim 8.24. Here z
ends at point 1) if |z| < |γ`(ar)|, otherwise z ends at point 2). If ` = m, then
Λm+1,`,r+1 = Λm,`−1,r+1 = ε, v = ef , and z is a prefix of uef . [109, Figure 1].

Proof. Let v ∈ Fn(Λm,∞,r+1) be as in (8.5). Let z ∈ pref(γ`(ar)f) so that
|Λm,`−1,r+1z| = |v|. Thus γm(ar) = ue for some u ∈ Σ∗r and |z| = |γ`(ar)| +
|f | − |u|. Note that these notations are valid for the technical case ` = m also.
The situation is illustrated in Figure 8.1.

Suppose first that |z| > |γ`(ar)| whence |u| 6 |f | and thus u is a prefix of f . In
Figure 8.1, this corresponds to z ending at point 2). Let v′ = suff |u|(f). We have

|Λm,`−1,r+1z|Γs − |v|Γs = |u|Γs − |v′|Γs > 0,

by applying the induction hypothesis to u ∈ pref(Xr) and v′ ∈ F (Xr).

Suppose then that |z| < |γ`(ar)| whence |f | < |u| and f is a proper prefix of
u. In Figure 8.1, this corresponds to z ending at point 1). If e = ε and ` = m,
then z = v = f ∈ pref(γm(ar)) and there is nothing to prove. Assume then
that either e 6= ε or ` > m. Let v′ = suff |u|−|f |(γ

`(ar)). If f = ε, then we have
|Λm,`−1,r+1z|Γs − |v|Γs = |u|Γs − |v′|Γs > 0 by applying the induction hypothesis
to v′ ∈ F (Xr) and u ∈ pref(Xr).

We are left with the case of f being a non-empty proper prefix of u. Write
u = fu′ for some u′ ∈ Σ+

r , whence |Λm,`−1,r+1z|Γs −|v|Γs = |u′|Γs −|v′|Γs . Hence,
to conclude the proof, it suffices to show that |u′|Γs > |v′|Γs . There exist m1 ∈ N,
0 6 m1 < m, and words g1, g2 ∈ Σ∗r such that

f = γm1(ar)g1 and γm1+1(ar) = γm1(ar)γ
m1(ar−1) = fg2,

that is, g1g2 = γm1(ar−1). Now, by item 2 of Lemma 8.20, γ`(ar) =
γm1(ar)Λm1,`−1,r. We may thus write g1u

′ = pref |g1u′|(Λm1,`−1,r) ∈ F (Xr).

Observe now that γ`+1(ar) = γ`(ar)γ
`(ar−1). Since v′ ∈ suff(γ`(ar)) and

g1 ∈ pref(γm1(ar−1)) ⊆ pref(γ`(ar−1)), it follows that we may write v′g1 =
e′Λm2,`−1,rg1 ∈ F (Λm1,∞,r), where m2 is minimal and e′ ∈ suff(γm2−1(ar)). Note
that m2 > m1 since e 6= ε or ` > m. We apply the induction hypothesis on v′g1

and g1u to obtain |v′g1|Γs 6 |g1u
′|Γs , from which it follows that |u′|Γs > |v′|Γs .

This concludes the proof of Claim 8.24.

From Claim 8.24 it follows that |prefn(Λm′,∞,r+1)|Γs 6 |prefn(Λm,∞,r+1)|Γs
for all m′ > m. Indeed, since prefn(Λm′,∞,r+1) has a factorization of the form
(8.5) (with m′ in the role of m+ 1 and e = ε), we obtain

|prefn(Λm′,∞,r+1)|Γs 6 |prefn(Λm′−1,∞,r+1)|Γs 6 . . . 6 |prefn(Λm,∞,r+1)|Γs .

114 Asymptotic Abelian Complexities §8

Assume now that v ∈ Fn(Λm,∞,r+1) has a factorization of the form v =

eΛm′+1,`′,r+1f for some `′ > m′ > m, e ∈ suff(γm
′
(ar)), and f ∈ prefn(γ`

′+1(ar)).
By Claim 8.24 and the previous observation, we have

|v|Γs 6 |prefn(Λm′,`′,r+1f)|Γs 6 |prefn(Λm,∞,r+1)|Γs .

If, on the other hand, v ∈ Fn(Λm,∞,r+1) has no factorization of the form (8.5),
then v ∈ F (Xr). By the induction hypothesis and the above observation, we have

|v|Γs 6 |prefn(Xr)|Γs = |prefn(Λm′,∞,r+1)|Γs 6 |prefn(Λm,∞,r+1)|Γs ,

where m′ is minimal such that |γm′(ar)| > n. We have proved that, for all v ∈
F (Λm,∞,r+1), |v|Γs 6 |prefn(Λm,∞,r+1)|Γs , that is, the first part of Lemma 8.23.
It remains to prove that |prefn(Xr+1)|Γs = maxv∈Fn(Xr+1) |v|Γs . But this is trivial
since for all v ∈ Fn(Xr+1) \ {prefn(Xr+1)} = Fn(Λ0,∞,r+1), we have

|v|Γs 6 |prefn(Λ0,∞,r+1)|Γs = |prefn(a−1
r+1Xr+1)|Γs 6 |prefn(Xr+1)|Γs .

We have thus completed the induction step, completing the proof of Lemma 8.23.

We are finally in the position to complete the proof of Proposition 8.19.

Proof of Proposition 8.19, item 2. We now complete the proof by analyzing the
abelian complexity of Xs,r. Note that Cab

Xs,r
is monotonously increasing, since

minXs,r,b(n) = 0 for all n ∈ N. By Lemmas 8.21 and 8.23, we have Cab
Xr,s

(pr(k)) =

|γk(ar)|Γs + 1 = 1
(r−s)!k

r−s +O(kr−s−1). We thus have Cab
Xr,s

(nk) = Θ(n
1−s/r
k) for

a sequence (nk) of indices. Note also that there exists α ∈ R such that nk+1 6 αnk
for all large enough k. Let now n ∈ N, such that nk < n 6 nk+1 for some large
enough k ∈ N. Now there exist C1, C2 ∈ R such that

Cab(n) 6 Cab(nk+1) 6 C1n
1−s/r
k+1 6 C1α

1−s/rn1−s/r and

Cab(n) > Cab(nk) > C2n
1−s/r
k > C2

α1−s/r n
1−s/r.

Thus Cab
Xr,s

(n) = Θ(n1−s/r).

We already noted that Theorem 8.17 follows from Proposition 8.19. This con-
cludes our considerations of abelian complexities of morphic words. We have only
considered binary words. We note that the following question posed by J.-J. Pan-
siot in [77] is still open.

Question 8.25. What can the factor complexity of a morphic word be?

Some progress has recently been made:

Theorem 8.26 ([30]). The factor complexity of a morphic word is either of the
order Θ(n1+1/k) for some k > 1, or is of the order O(n log n).

We are naturally interested in the following question.

Question 8.27. What can the abelian complexity of a morphic word be?

It is straightforward to see that the abelian complexity of a morphic word is
of the order O(n2) (O(n) among binary words). A sharper answer would seem to
be quite intricate, as implied by Theorem 8.2 applied to the binary case.

115

Chapter 9

On the k-Abelian
Equivalence in Sturmian
Words

The study of the k-abelian complexity of infinite words was first initiated in [57].
Relating the complexity of an infinite word to the complexity of its finite factors,
this time the k-abelian equivalence, again turned out to be a fruitful notion. Recall

that for an infinite word w, the k-abelian complexity function C(k)
w (n) of w is

defined as the number of k-abelian equivalence classes of the factors of length n
of w. Define, for each k > 1, the function q(k) : N → N by q(k)(n) = n + 1
for n < 2k, q(k)(n) = 2k for n > 2k. Now if an infinite word w ∈ ΣN has

C(k)
w (n0) < q(k)(n0) for some k, n0 > 1 or k =∞, then w is ultimately periodic (but

the converse is not necessarily true for k 6= ∞, k 6= 1) [57]. Moreover, Sturmian
words (recall Definition 2.10, we also give another definition in this section) may
be characterized:

Theorem 9.1 ([57, Theorem 4.1]). For any k > 1 (or k =∞), the k-abelian com-
plexity of any Sturmian word equals q(k). Conversely, if the k-abelian complexity
function of an aperiodic word w ∈ ΣN equals q(k) for some fixed k > 1, then w is
Sturmian.

Other aspects of k-abelian equivalence in infinite words were also considered in
[57]. Among these aspects, the authors investigated various questions related to k-
abelian repetitions, such as connection of repetitions to the k-abelian complexity.
We do not repeat the results here, but we recall an immediate corollary applied
to Sturmian words, which is of interest to us. A word of the form u0u1 · · ·un−1,
where u0 ∼k u1 ∼k · · ·un−1, is called a k-abelian power of exponent n.

Theorem 9.2 ([57, Corollary 5.7]). For any k > 1 and N > 1, a Sturmian word
contains a k-abelian power of exponent N .

In this chapter we consider several aspects of k-abelian equivalence in Sturmian
words. We give alternative proofs for several results related to Sturmian words
obtained in [57]. In particular, we give a new proof of the k-abelian complexity

116 On the k-Abelian Equivalence in Sturmian Words §9

of Sturmian words, and we prove a result slightly sharpening Theorem 9.2. We
also generalize related research done in [36, Proposition 3.3], where abelian repe-
titions in Sturmian words were considered. In particular, we define the so-called
k-Lagrange spectrum for each k > 1, which generalizes the well-known Lagrange
spectrum from number theory. The basis of the considerations in this chapter
is the interpretation of Sturmian words as certain dynamical systems, which we
recall from [64, Chapter 2] next.

The results of this chapter appear in the work [81].
For a real number x, let us define the fractional part of x as 〈x〉 = x − bxc,

where bxc is the greatest integer less than or equal to x.1 Let us identify the
unit interval [0, 1) with the torus T, and let α be a positive irrational number.
The mapping R : T → T, x 7→ 〈x + α〉 defines a rotation on T. Partition the
torus T into two half-open intervals Ia and Ib defined by the endpoints 0 and
1− α. Now we have two choices: Ia = [0, 1− α) or Ia = (0, 1− α] (in either case
Ib = T \ Ia). This choice is represented by the choice of whether 0 ∈ Ia or not.
For our considerations this choice does not matter, as we consider only the interior
points of the intervals, therefore we just consider it fixed. Define a coding function
ν : T→ {a, b} by ν(x) = a if x ∈ Ia and ν(x) = b if x ∈ Ib. Define now the infinite
word sx,α as the word obtained by setting its nth, n > 0, letter to ν(Rn(x)). The
word sx,α is called the Sturmian word of slope α and intercept x.2 Note that this
word is unique after fixing the choice of whether 0 ∈ Ia or not.

Recall the previously mentioned example of a Sturmian word, namely, the
Fibonacci word f . Its slope is 1/ϕ2 ≈ 0.38, where ϕ is the golden ratio, and its
intercept equals its slope. We have

f = abaababaabaababaababaabaababaaba · · · .

Let x, y ∈ T with x < y. Then by both I(x, y) and I(y, x) we mean the interval
[x, y) if 0 ∈ Ia and the interval (x, y] if 0 /∈ Ia. We let ‖x‖ be the distance of x to
the nearest integer, that is, ‖x‖ = min{〈x〉, 1− 〈x〉}.

It is well-known that the sequence (〈nα〉)n>0 is dense in the interval [0, 1).
In particular, Sturmian words of slope α have the same finite factors; for a
fixed α we let Fα denote the set of factors of a Sturmian word of slope α. Let
w = a0a1 · · · an−1 be a word in Fα having length n. Then there exists a unique
subinterval [w] of T such that the Sturmian word sx,α begins with w if and only if
x ∈ [w]. It is not hard to see that [w] = Ia0

∩R−1(Ia1
)∩ . . .∩R−(n−1)(Ian−1

) (here
the choice of whether or not 0 ∈ Ia matters, but we only consider interior points
of these intervals). The points 0, 〈−α〉, 〈−2α〉, . . ., 〈−nα〉 partition the torus into
n + 1 subintervals which are exactly the intervals [w] for factors of length n. We
call these n + 1 intervals the level n intervals, and we denote the set containing
them by L(n).

Continued fractions are extremely useful in studying Sturmian words, so let
us recall continued fraction expansions of irrational numbers. For an overview on
this connection, see [80, Chapter 4].

1Note that the fractional part of a number x is usually denoted by {x}. We shall be consi-
dering explicit sets of fractional parts of numbers, so we use the notation 〈x〉 instead to avoid
misinterpretations.

2This is a characterization of Sturmian words. These words are exactly the words previously
defined in Definition 2.10.

§9.1 k-Abelian Equivalence and Repetitions in Sturmian Words 117

Every irrational real number α has a unique infinite continued fraction expan-
sion:

α = [a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

(9.1)

with a0 ∈ Z and ak > 1 for all k > 1. The term ak is called the kth partial
quotient of α. The number [a0; a1, a2, . . . , ak], which we call the kth convergent of
α, is a rational number, and we set [a0; a1, a2, . . . , ak] = pk/qk for each k > 1. The
convergent pk/qk, for any k > 1, of α satisfies the property

‖qkα‖ = min
0<m<qk+1

‖mα‖,

which is called the best approximation property.
In the rest of chapter, we fix the irrational number α ∈ (0, 1) with continued

fraction expansion [a0; a1, a2, . . .]. When talking about the convergents pk/qk, the
level n intervals L(n), the rotation R, etc., we implicitly mean these notions defined
by this fixed α.

9.1 k-Abelian Equivalence and Repetitions in
Sturmian Words

In this section we consider the k-abelian complexity of Sturmian words. We give
an alternative proof of Sturmian words having k-abelian complexity function equal
to q(k) as defined in the beginning of this chapter (one direction of Theorem 9.1).
We do this by showing that the k-abelian equivalence classes of factors of length
n of a Sturmian word correspond to q(k)(n) intervals on the torus T. Moreover,
we characterize the endpoints of these intervals (Theorem 9.7). We also prove a
result slightly sharpening the following result of [57] (applied to Sturmian words)
(see Theorem 9.13).

Proposition 9.3 ([57, Proposition 2.8]). Let u and v be two factors of length n
occurring in a Sturmian word. Then u ∼k v if and only if u and v share common
prefixes and common suffixes of length min{n, k − 1} and u ∼1 v.

Remark 9.4. We remark that this result is quite interesting in the sense that a
rather weak condition is enough to determine k-abelian equivalence of factors of a
Sturmian word. This is not unique to Sturmian words: it holds for the so-called
episturmian words [57, Proposition 2.8], and the so-called Cantor word, the fixed
point ϕω(a) of the morphism ϕ : a 7→ aba, b 7→ bbb, [22, Theorem 1]. We return to
related questions later on.

Our Theorem 9.7 can be seen as a generalization of the following result, which
characterizes, in a dynamical sense, abelian equivalence among factors of the same
length in a Sturmian word.

Proposition 9.5 ([94, Theorem 19], see also [36, Proposition 3.3]). Let u and v
be two factors of length n occurring in a Sturmian word of slope α. Then u ∼1 v
if and only if [u], [v] ⊆ I(0, 〈−nα〉) or [u], [v] ⊆ I(〈−nα〉, 1).

118 On the k-Abelian Equivalence in Sturmian Words §9

The above result says that there are two possible abelian equivalence classes
for factors of length n. These classes correspond to q(1)(n) = 2 intervals on the
torus and, furthermore, the endpoints of these intervals are 0 and 〈−nα〉. It is this
interpretation we generalize for k > 2.

9.1.1 k-Abelian Equivalence on the Torus

In light of Proposition 3.1, for two words of equal length to be k-abelian equivalent,
they must share common prefixes and common suffixes of length k−1. We interpret
this property in Sturmian words in the dynamical sense, that is, in the torus.

Letm > 1, and defineDk,m = {0, 〈−α〉, 〈−2α〉, . . . , 〈−min{m, k−1}α〉}. These
points divide the torus into min{m+1, k} intervals (which are the level min{m, k−
1} intervals), and two points x and y belong to the same interval if and only if
the prefixes of sx,α and sy,α of length min{m, k− 1} are equal. Now if m > k− 1,
then #Dk,m = k and

R−(m−(k−1))(Dk,m) = {〈−(m− (k − 1))α〉, . . . , 〈−mα〉}.

These points also divide the torus into k intervals. Again, two points x and y belong
to the same interval if and only if the prefixes of sx,α and sy,α of length m have a
common suffix of length k− 1. Let us now set Pk,m = Dk,m ∪R−(m−(k−1))(Dk,m)
if m > k − 1; otherwise set Pk,m = Dk,m.

Definition 9.6. Order the points xi of Pk,m: 0 = x0 < x1 < . . . < x`−1 < x` = 1,
where ` = #Pk,m, and set Ii = [xi, xi+1) if 0 ∈ Ia and Ii = (xi, xi+1] if 0 /∈ Ia for
0 6 i < `. We define Ik,m as the set of the intervals Ii, i = 0, . . . , `− 1.

Note that Pk,m is always a subset of the points defining the level m intervals
L(m). This implies that the interval [u] corresponding to a factor of length m is
always contained entirely in some interval of Ik,m. Observe that, when m > 2k,
Ik,m consists of 2k intervals. Furthermore, when m < 2k, the intervals of Ik,m
coincide with the level m intervals. Indeed, if m < k − 1 this is so by definition,
and if k − 1 6 m < 2k, we have

Pk,m = {0, 〈−α〉, . . . , 〈−(k − 1)α〉} ∪ {〈−(m− (k − 1))α〉, . . . , 〈−mα〉}
= {0, 〈−α〉, . . . , 〈−mα〉}.

We claim that the intervals Ik,m determine the k-abelian equivalence classes.

Theorem 9.7. Let k > 1 and let u and v be two factors of length m occurring in
a Sturmian word of slope α. Then u ∼k v if and only if there exists J ∈ Ik,m such
that [u], [v] ⊆ J .

Let us first analyze the statement. In the case of k = 1, this is exactly Propo-
sition 9.5. Thus, for the rest of these considerations, we may assume k > 2. Now,
if m 6 2k − 1 in the above theorem, then u ∼k v is equivalent to u = v. Further,
by the observation above, the intervals of Ik,m coincide with the level m intervals.
Thus the claim reduces to u = v if and only if [u] = [v], which is, of course, trivial.
We proceed to prove Theorem 9.7 in parts. First we show the only if direction.

Lemma 9.8. Let u and v be k-abelian equivalent factors of length m of a Sturmian
word of slope α. Then there exists an interval J ∈ Ik,m such that [u], [v] ⊆ J .

§9.1 k-Abelian Equivalence and Repetitions in Sturmian Words 119

Proof. Assume for a contradiction that [u] and [v] are contained in distinct inter-
vals of Ik,m. We thus deduce that u 6= v whence m > k − 1. By Proposition 3.1,
u and v share a common prefix and a common suffix of length k − 1. For all
x ∈ [u] we have either x > y for all y ∈ [v] or x < y for all y ∈ [v]. Thus,
without loss of generality, we assume that sup[u] 6 inf[v]. Let K be the interval
{z : sup[u] 6 z 6 inf[v]}. (If sup[u] = inf[v], then K is the singleton set containing
the common endpoint of the intervals [u] and [v].) Since [u] and [v] are contained
in distinct intervals of Ik,m, there exists a point x in Pk,m such that x ∈ K. Let
S denote the set R−(m−(k−1))(Dk,m). Now the point x cannot be in Dk,m, as ot-
herwise [u] ⊆ I(0, x) and [v] ⊆ I(x, 1) implying that u and v have distinct prefixes
of length k − 1, contradicting our assumption. Thus we must have x ∈ S. Let
y be an arbitrary point in S. If y ∈ T \ ([u] ∪ [v] ∪K), then either [u] ⊆ I(x, y)
and [v] ∩ I(x, y) = ∅ or symmetrically [v] ⊆ I(x, y) and [u] ∩ I(x, y) = ∅. Then,
by the definition of the points S, we see that u and v have distinct suffixes of
length k − 1, which is impossible. We conclude that S ⊆ K (see Example 9.12
for this situation). Since 〈−mα〉 ∈ S, it follows by Proposition 9.5 that u and
v are not abelian equivalent, and thus cannot be k-abelian equivalent. This is a
contradiction.

For the if direction of Theorem 9.7, we offer two proofs. The first, and clearly
the shorter, makes use of Proposition 9.3. We give a second proof, which only
uses the dynamical aspects of Sturmian words (and combinatorial properties of
k-abelian equivalence), to let us claim an alternative proof of Proposition 9.3.

Lemma 9.9. Let u and v be two factors of length m of a Sturmian word of slope
α. Assume there exists an interval J ∈ Ik,m such that [u], [v] ⊆ J . Then u ∼k v.

Proof 1. By the definition of the intervals Ik,m, the words u and v share a common
prefix and a common suffix of length k−1. Moreover they are abelian equivalent by
Proposition 9.5 because the point 〈−mα〉 separating the two abelian equivalence
classes is among the points Pk,m. Now Proposition 9.3 implies that u ∼k v.

Before giving an alternative proof of the above lemma, we make an observation.

Lemma 9.10. Let u be a factor of length 2k of a Sturmian word x of slope α.
Assume that [u] has 〈−kα〉 as an endpoint. Then |u|w = 1 for each factor of length
k of x.

Proof. We show that each factor of length k occurs at least once in u. Since
|u| = 2k, it follows that each factor occurs exactly once. Let K denote the point
〈−kα〉, whence [u] = I(K,x) for some x = 〈−rα〉, r 6 2k. Assume that K < x,
the other case being analogous.

Let v be a factor of length k, whence [v] = I(y, z), where y = 〈−iα〉 and
z = 〈−jα〉 for some i, j 6 k and y < z. Observe now that Rk−i([u]) = I(y, 〈(k −
i − r)α〉). Now if Rk−i([u]) 6⊆ [v] then 〈−jα〉 occurs in the interval Rk−i([u]).
But then [u] would contain the point R−(k−i)(〈−jα〉) = 〈−(k − j + i)α〉, where
0 6 k − j + i 6 2k, since −k 6 i − j 6 k. Moreover [u] would not be a level 2k
interval, which is absurd. Thus Rk−i([u]) ⊆ [v], which implies that v occurs as a
factor of u, since 0 6 i 6 k.

120 On the k-Abelian Equivalence in Sturmian Words §9

Ik,m
0 1[u] [v]

K

[w]

Ik,m−1
0 1[u0] [v0]

p q

Figure 9.1: Illustration of the situation in Proof II of Lemma 9.9. The unit line
[0, 1) is partitioned by the intervals of Ik,m, in one of which both [u] and [v] are
assumed to rest in. The endpoints of this interval in Pk,m are denoted by bars. It
is assumed that [u0] and [v0] rest in distinct intervals of Ik,m−1. The only possible
point of Pk,m−1 separating [u0] and [v0] is q = −(m − k)α. Here [u] ⊆ [u0] and
[v] ⊆ [v0]. Similarly, [u1] and [v1] are assumed to lie in distinct intervals of Ik,m−1,
and the only point of Pk,m−1 that separates these points is R(p), where p = 〈−kα〉.
In this figure p < q.

Proof II of Lemma 9.9. The claim is true for all m 6 2k−1 by previous discussion.
We proceed to prove the claim for m > 2k by induction. Assume the claim is true
for m−1. It follows that the prefixes (resp., suffixes) of length k−1 > 1 of u and v
coincide. Let u = u0c = du1 and v = v0c = dv1 for some letters c, d ∈ {a, b}. Now
if [u0] and [v0] are contained in a common interval of Ik,m−1, then u0 ∼k v0 by
induction, and thus u = u0c ∼k v0c = v. Similarly, if [u1] and [v1] are contained
in a common interval of Ik,m−1, then u1 ∼k v1 and thus u ∼k v. We are left with
the case that both [u0] and [v0], and [u1] and [v1] lie in distinct intervals of Ik,m−1.

We fix some technical notation. Without loss of generality we may assume that
sup[u] 6 inf[v]. Let us set K to be the set {z : sup[u] 6 z 6 inf[v]}. See Figure 9.1
for an illustration of the intervals [u], [v], and K. The figure is also helpful for
following the subsequent arguments. Observe that [u] ⊆ [u0] and [v] ⊆ [v0], and
that R([u]) ⊆ [u1] and R([v]) ⊆ [v1]. Since [u0] and [v0] lie in distinct intervals
of Ik,m−1, there are some points of Pk,m−1 occurring in K. Of these points, only
〈−(m− k)α〉 = q can lie in K, since otherwise [u] and [v] would reside in distinct
intervals of Ik,m. Similarly, since [u1] and [v1] rest in distinct intervals of Ik,m−1,
we deduce that R(K) contains some points of Pk,m−1, and thus K contains some
points of R−1(Pk,m−1). We conclude that the only possible point is 〈−kα〉 = p, as
otherwise [u] and [v] would reside in distinct intervals of Ik,m. See again Figure 9.1
for a depiction of the situation.

If p = q it follows that m = 2k, since α is irrational. In this case the intervals
[u] and [v] are the two level 2k intervals having p = 〈−kα〉 as a common endpoint.
By Lemma 9.10, we have u ∼k v.

Assume now that p 6= q. Consider the case p < q, the other case being
symmetric. Let w be a factor of length m with [w] ⊆ I(p, q). Since w lies in the
same interval of Ik,m as both [u] and [v], we may write w = w0c = dw1. Now [w0]
and [u0] rest in a common interval of Ik,m−1 (both intervals are to the left of q).
We showed that in this case u ∼k w. Similarly, [w1] and [v1] lie an a common
interval of Ik,m−1. We showed that in this case v ∼k w. Thus, by the transitivity
of ∼k, we have u ∼k v, as claimed.

Notice that Ik,m contains q(k)(m) intervals for all m. We thus have proved the

§9.1 k-Abelian Equivalence and Repetitions in Sturmian Words 121

[aabaa]

[aabab]
[abaab]

[ababa]

[baaba]

[babaa]

0

−α

−2α

−3α

−4α

−5α

[aabaaba]

[aababaa]
[abaabaa]

[abaabab]

[ababaab]

[baabaab]
[baababa]

[babaaba]

0

−α

−2α

−3α

−4α

−5α

−6α

−7α

Figure 9.2: Factors of length 5 and 7 of the Fibonacci word on the unit circle. The
outer circles illustrate the level 5 and 7 intervals and the inner circles the 2-abelian
equivalence classes of length 5 and 7. [81, Figure 1].

following proposition:

Proposition 9.11. For any k > 1, the k-abelian complexity function of an arbi-
trary Sturmian word equals q(k).

As mentioned previously, the above proposition is one direction of Theorem 9.1.

Example 9.12. Let us consider the 2-abelian equivalence classes of length 5 of the
Fibonacci word f . Recall that the slope α of f is 1/ϕ2. On the left in Figure 9.2,
there are two concentric circles. The outer circle represents the level 5 intervals
separated by the points 0, 〈−α〉(≈ 0.62), 〈−2α〉 (≈ 0.24), 〈−3α〉 (≈ 0.85), 〈−4α〉
(≈ 0.47), and 〈−5α〉 (≈ 0.09). The inner circle shows the endpoints of the 2-
abelian equivalence classes. The points 0 and 〈−α〉 of D2,5 are shown in black
while the points 〈−4α〉 and 〈−5α〉 of R−4(D2,5) are represented by circles filled
with white. The concentric circles on the right in Figure 9.2 give the corresponding
intervals and points when m = 7.

We have four 2-abelian equivalence classes for length 5: {aabaa},
{aabab, abaab}, {ababa}, and {baaba, babaa}. The singleton classes are special.
At the end of the proof of Lemma 9.8, we had to take some extra steps because
factors corresponding to two distinct intervals of Ik,m could share prefixes and
suffixes of length k − 1. Indeed here aabaa and ababa have common prefixes and
suffixes of length 1, but this does not guarantee abelian equivalence.

9.1.2 A Sharpening of Proposition 9.3

Let us now translate Theorem 9.7 from the torus into the word combinatorial
setting. This allows us to state the following strengthening of Proposition 9.3.

Theorem 9.13. Let u and v be two factors of equal length occurring in a Sturmian
word of slope α. Then u ∼k v if and only if they share a common prefix and a
common suffix of length min{|u|, k − 1} and u ∼1 v. Moreover, the condition
u ∼1 v may be omitted if (2k − 2)‖α‖ > 1.

122 On the k-Abelian Equivalence in Sturmian Words §9

Proof. The claim is trivial when k = 1, so we may assume k > 2. Let |u| = m
and assume that u and v share common prefixes and common suffixes of length
min{m, k − 1}. (Let us not yet assume u ∼1 v or ‖α‖ > 1/(2k − 2).) Assume
further that [u] and [v] lie in distinct intervals of Ik,m which is equivalent to u 6∼k v.
This will lead to contradictions in both cases. We now have m > 2k− 1. We may
proceed as in the proof of Lemma 9.8, to obtain a situation where S ⊆ K (using
the notation of Lemma 9.8). (Instead of invoking Proposition 3.1 for u and v
to have common prefixes and common suffixes of length k − 1, we have this by
assumption.)

To conclude the first part of the theorem, we now further assume that u ∼1

v, so we may continue in a way similar to the proof of Lemma 9.8, to reach a
contradiction. Thus [u] and [v] rest in a common interval of Ik,m, whence, by
Lemma 9.9, u ∼k v.

For the second part, that is, assuming that ‖α‖ > 1/(2k − 2) with k > 2, in
addition to u and v having common prefixes and suffixes of length k−1, we obtain
a contradiction as follows.

Notice that the set K is fully contained in some level (k− 1) interval J (u and
v have the same prefixes of length k − 1), and the points S all rest in J properly
(i.e., not as endpoints). Since k > 2 and m > k − 1, S contains two points which
have distance ‖α‖ (e.g., 〈−(m − 1)α〉 and 〈−mα〉), so we deduce that the length
of J is greater than ‖α‖.

We first claim that k − 1 < b1/‖α‖c. Indeed, if k − 1 > b1/‖α‖c, then the
longest interval of level k − 1 has length at most ‖α‖ (recall how the points
0, 〈−α〉, . . . , 〈−(k − 1)α〉 are drawn on the torus: the distance of 〈−iα〉 and
〈−(i + 1)α〉 is ‖α‖). Since J , a level (k − 1) interval, has length greater than
‖α‖, we conclude that k − 1 < b1/‖α‖c.

Now the points {0, 〈−α〉, . . . , 〈−(k − 1)α〉} are exactly the points P = {0, 1−
‖α‖, . . . , 1 − (k − 1)‖α‖}. In particular, J must be the interval having length
(k − 1)‖α‖, as the other intervals have length ‖α‖. Now S consists of the points
R−(m−(k−1))(P). Since R is an isometry, these points define, on the torus, k − 1
intervals of length ‖α‖ together with one interval having length equal to that of
J . Since S ⊆ J , we conclude that J must have length at least (k−1)‖α‖. Putting
these together, we have (k − 1)‖α‖ < 1 − (k − 1)‖α‖, that is, ‖α‖ < 1/(2k − 2),
which directly contradicts our assumption ‖α‖ > 1/(2k − 2).

Notice that, in the above theorem, ‖α‖ is always less than 1/2. Thus, in
order to have (2k − 2)‖α‖ > 1 (to omit the requirement u ∼1 v in the k-abelian
equivalence), we need k > 3.

Example 9.14. The slope of the Fibonacci word is approximately 0.38 which is
greater than 1/4 = 1/(2 ·3−2), so Theorem 9.13 says that two equal length factors
u and v of the Fibonacci word are k-abelian equivalent, for k > 3, if and only if
they share common prefixes and suffixes of length k − 1.

It is rather surprising that such a weak condition is sufficient to establish the
k-abelian equivalence of two factors in an infinite word. This raises the question
of whether it is possible to improve on the Fibonacci word: does there exist an
infinite word such that, for all k > 2, two factors u and v are k-abelian equivalent
if and only if prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v)? We study
this question, and related ones, in the final section of this chapter.

§9.1 k-Abelian Equivalence and Repetitions in Sturmian Words 123

9.1.3 k-Abelian Repetitions in Sturmian Words

If u0, u1, . . ., un−1 are k-abelian equivalent words of length m, then their conca-
tenation u0u1 · · ·un−1 is a k-abelian power of exponent n and period m. In this
section, we consider k-abelian powers in Sturmian words. We are only interested
in nondegenerate powers, that is, we assume that n > 2. Let Aexpk,α(m) be the
maximum exponent of k-abelian powers of period m occurring in a Sturmian word
of slope α. We give a formula to compute Aexpk,α(m) in terms of the intervals
Ik,m and ‖mα‖. To this end, we need the following lemma. We let len(J) denote
the length of an interval J .

Lemma 9.15. Let u be a length m factor of a Sturmian word s of slope α. Let
k > 1, J ∈ Ik,m such that u ⊆ J . Then s contains a k-abelian power u1 · · ·un of

period m and exponent n with u1 ∼k u if and only if n 6
⌊
len(J)
‖mα‖

⌋
+ δ, where δ = 1

if len(J) is not an integral multiple of ‖mα‖, and otherwise δ = 0.

Proof. Take the Sturmian word sx,α of slope α and intercept x. Assume that
sx,α begins with a k-abelian power of period m and exponent n. The prefix of
sx,α of length m and the factor of sx,α of length m starting after this prefix are k-
abelian equivalent so, by Theorem 9.7, the points x and 〈x+mα〉 both lie in J . The
distance between these points is ‖mα‖. Continuing this line of thought, we see that
the points x = x0, x1, . . . , xn−1, where xi = 〈x+ imα〉 for each i = 0, . . . , n−1, all
rest J . In particular, len(J) > (n− 1)‖mα‖, and actually len(J) > (n− 1)‖mα‖,
since J is half-open. Conversely, given a point x such that the points Rim(x),
where i = 0, . . . , n− 1, are all included in J implies that that the word sx,α begins
with a k-abelian power of period m and exponent n.

In the following, we abuse the notation by letting max Ik,m be the maximum
length of an interval in Ik,m. The following result is immediate from the above
lemma.

Proposition 9.16. We have Aexpk,α(m) =
⌊

max Ik,m
‖mα‖

⌋
+δ, where δ = 1 if max Ik,m

is not an integral multiple of ‖mα‖ and otherwise δ = 0.

Example 9.17 (Example 9.12 continued). Let intervals I2,5 have lengths ‖α‖,
‖3α‖, and ‖5α‖ in decreasing order. Observe now that ‖5α‖ = ‖−5α‖ ≈ 0.09.
Thus, by Proposition 9.16, the maximal 2-abelian power with period 5 in the Fi-
bonacci word equals bα/‖5α‖c + 1 = 5. The interval of the class {baaba, babaa}
has length α which means, by Lemma 9.15, that using the words in this class, a
2-abelian power of exponent 5 and period 5 can be formed. Indeed, it is straightfor-
ward to check that (babaa)2(baaba)3 is a factor of the Fibonacci word. Using words
from the class {ababa} only 2-abelian powers of exponent b‖3α‖/‖5α‖c + 1 = 2
can be formed. The word (aabaa)2 is not a factor of the Fibonacci word since the
Fibonacci word does not contain the factor aaa. Indeed, we see using Lemma 9.15
that the exponent for this class is 1.

Interestingly, Aexp2,α(7) = 1. Indeed, it may be computed that ‖mα‖ = ‖7α‖
is large: we have ‖7α‖ ≈ 0.33. This is large compared to the length of the longest
interval of I2,7 = ‖7α‖. The k-abelian equivalence relation for k > 1 differs in this
respect from abelian equivalence: it follows from [36, Theorem 4.7] that in any
Sturmian word there exists an abelian square of period m for each m > 1.

124 On the k-Abelian Equivalence in Sturmian Words §9

Our next target is to give an alternative proof of Theorem 9.2. As the va-
lue max Ik,m is generally difficult to find, let us argue next that, when m is
chosen suitably, then, in order to approximate Aexpk,α(m), it is sufficient to
study the level 2k − 2 intervals instead of the intervals of Ik,m. Recall that
the points Dk,m = {0, 〈−α〉, 〈−2α〉, . . . , 〈−(k − 1)α〉} together with the points
S = R−(m−(k−1))(Dk,m) = {〈−(m − (k − 1))α〉, . . . , 〈−mα〉} determine the inter-
vals Ik,m. Suppose now that ‖mα‖ is very small (to be bounded above later).
Then the points Rm(S) = Rk−1(Dk,m) are very close to the points S; indeed, the
distance of xi = 〈−(m − (k − i))α〉 and Rm(xi) = 〈(k − i)α〉 is exactly ‖mα‖
for each i = 0, . . . , k − 1. Now compare the intervals Ik,m defined by the points
Dk,m ∪S to those intervals defined by the points Dk,m ∪Rk−1(Dk,m), we see that
some intervals of Ik,m might be shortened or lengthened by ‖mα‖, but the order
of the points is the same whenever ‖mα‖ is small enough. The points 〈−mα〉 and
0 however merge, but, since the interval has length ‖mα‖ and is thus assumed to
be very short, we do not care. Now

Dk,m ∪Rk−1(Dk,m) = {〈−(k − 1)α〉, . . . , 〈−α〉, 0, α, . . . , 〈(k − 1)α〉}.

Furthermore, since we are interested in lengths of intervals and R is an isometry,
we can study the set R−(k−1)(Dk,m ∪ Rk−1(Dk,m)) instead. This is the set of
endpoints of the level 2k − 2 intervals. It is quite obvious from the preceding
that the above considerations may be performed, that is, ‖mα‖ is small enough,
whenever ‖mα‖ is less than the length of the shortest interval of level 2k − 2.

We abuse the notation by letting minL(n) (resp., maxL(n)) denote the length
of the shortest (resp., longest) interval of level n. We have thus argued that
whenever ‖mα‖ < minL(2k − 2), we have

|max Ik,m −maxL(2k − 2)| 6 ‖mα‖.

Therefore we have proved the following lemma.

Lemma 9.18. Let m be a positive integer and suppose that ‖mα‖ < minL(2k−2).
Then ∣∣∣⌊maxL(2k−2)

‖mα‖

⌋
−Aexpk,α(m)

∣∣∣ 6 1.

Theorem 9.2 follows now by observing that ‖mα‖ can be made as small as we
wish.

Let us now consider the general case for Aexpk,α(m). It is possible that
Aexpk,α(m) is large, but we may bound this with respect to Aexpk,α(qt), where qt
refers to the denominator of the tth convergent of α.

Proposition 9.19. For all large enough t, we have Aexpk,α(m) 6 Aexpk,α(qt) + 2
for all 1 6 m < qt+1.

Proof. Let t > 1, and assume that t is so large that ‖qtα‖ < minL(2k − 2).
Suppose that m is an integer such that 1 6 m < qt+1. By the best approximation
property of the convergents, we have ‖mα‖ > ‖qtα‖. Suppose first that ‖mα‖ <
minL(2k − 2). Then by Lemma 9.18, we have

Aexpk,α(m) 6 maxL(2k−2)
‖mα‖ + 1 < maxL(2k−2)

‖qtα‖ + 1,

§9.2 Generalizations of the Lagrange Spectrum 125

so, by the same lemma, we have Aexpk,α(m) 6 Aexpk,α(qt) + 2. Suppose next that
‖mα‖ > minL(2k − 2). Then

maxL(m)
‖mα‖ 6 maxL(m)

minL(2k−2) 6 1
minL(2k−2) ,

so Aexpk,α(m) is bounded by a constant. Thus Aexpk,α(m) < Aexpk,α(qt) for all
large enough t. The sequence (Aexpk,α(qi))i reaches arbitrarily high values due to
Lemma 9.18.

Observe that it is very well possible that Aexpk,α(qt) > Aexpk,α(qt+1). For

example, let k = 2 and take α = [0; 3, 1, 1, 1, 100, 1]. The sequence of denomi-
nators of convergents of α begins with 1, 3, 4, 7, It is readily computed that
Aexpk,α(4) = 6 > 5 = Aexpk,α(7). On the other hand, if k = 1, then we have
Aexpk,α(m) < Aexpk,α(qt) for all t and 1 6 m < qt as can be readily observed from
[36, Lemma 4.7].

9.2 Generalizations of the Lagrange Spectrum

Recall that the critical exponent of an infinite word w is the supremum of the
set {α ∈ Q : uα ∈ F (w)}. A similar notion could be defined for the k-abelian
repetitions. For Sturmian words, however, this notion would not lead to anything
interesting, because by Theorem 9.2, Sturmian words contain k-abelian powers
of arbitrarily large exponents for any k > 1. Instead, we consider the following
related notion.

Definition 9.20. We define the k-abelian critical exponent of slope α, denoted by
Acritk(α), as

lim sup
m→∞

Aexpk,α(m)

m
.

The value Acritk(α) measures the maximal ratio between the exponent and
period of a k-abelian power in a Sturmian word of slope α. The notion was
introduced in the case k = 1 in [36]. For the case of k = 1 this leads to a
very interesting notion in the theory of continued fractions called the Lagrange
spectrum. We recall some terminology from the literature.

Let α be an irrational number, and define the Lagrange constant λ(α) of α as
the infimum of real numbers λ such that for every c > λ the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1

cq2
(9.2)

has only finitely many rational solutions p/q. Hurwitz’s Theorem [51] states that
λ(α) >

√
5 for any irrational α, and there exist numbers with λ(α) =

√
5. The

numbers with finite Lagrange constant are often called badly approximable num-
bers. The Lagrange constant of α with continued fraction expansion as in (9.1) is
computed as follows:

λ(α) = lim sup
t→∞

([at+1; at+2, . . .] + [0; at, at−1, . . . , a1]). (9.3)

126 On the k-Abelian Equivalence in Sturmian Words §9

Two numbers with continued fraction expansions [a0; a1, . . .] and [b0; b1, . . .] are
called equivalent if there exists integers N and M such that aN+i = bM+i for all
i > 0. From the formula above, it is clear that two equivalent numbers have the
same Lagrange constant.

Definition 9.21. The Lagrange spectrum is defined as the set of the finite La-
grange constants.

For the above details and more on the Lagrange spectrum, see [26] or [3].
We are now in the position to state the connection to the critical abelian

exponent of Sturmian words.

Theorem 9.22 ([36, Theorem 5.10]). The set of finite values Acrit1(α), α ∈ R,
equals the Lagrange spectrum.

Now the set of finite values ofAcritk(α), k > 2, can be viewed as a combinatorial
generalization of the Lagrange spectrum. Thus we give the following definition.

Definition 9.23. We call the set {Acritk(α) : α is irrational and positive} ∩ R of
finite k-abelian critical exponents the k-Lagrange spectrum, denoted by Lk.

This section is devoted to studying some properties of the k-Lagrange spectrum.
We first characterize the value Acritk(α) in terms of Acrit1(α). Using this cha-
racterization, we are able to consider some topological aspects of the k-Lagrange
spectra in the spirit of what is known about the ordinary Lagrange spectrum.
There are similarities and stark differences between the generalized spectra for
k > 1 compare to the ordinary spectrum, as we shall shortly see.

Using the results from the previous section we may state the following.

Theorem 9.24. We have Acritk(α) = maxL(2k − 2) · Acrit1(α) for all k > 1.

Proof. Let t be large and let m be an integer such that qt 6 m < qt+1. It follows
from Proposition 9.19 that

Aexpk,α(m)

m
6
Aexpk,α(qt) + 2

qt
.

This observation leads us, by Lemma 9.18, to

Acritk(α) = lim sup
m→∞

Aexpk,α(m)

m
= lim sup

t→∞

Aexpk,α(qt)

qt
= lim sup

t→∞

maxL(2k − 2)

qt‖qtα‖
.

When k = 1, we have, by Theorem 9.22, Acrit1(α) = lim supt→∞
1

qt‖qtα‖ . This

implies our claim:

Acritk(α) = maxL(2k − 2) · Acrit1(α).

Example 9.25 (Example 9.12 continued). Consider the Fibonacci word f . Recall
that the abelian critical exponent of f equals

√
5. It is readily verified that the

longest level 2 interval has length 1/ϕ2. Thus the 2-abelian critical exponent of
the Fibonacci word equals 1

ϕ2

√
5 ≈ 0.85.

§9.2 Generalizations of the Lagrange Spectrum 127

Notice that Acrit1(α) is finite if and only if α has bounded partial quotients;
see (9.3). Therefore, for any k > 1, Acritk(α) is finite if and only if α has boun-
ded partial quotients. Furthermore, it is well-known that numbers with bounded
partial quotients comprise a set of measure zero (this is a consequence of the
Borel–Bernstein Theorem [14, 7, 8]).

Recall that equivalent real numbers (that is, numbers with eventually partial
quotients) have the same Lagrange constant. By Theorem 9.24, this no longer
holds for the k-Lagrange constant when k > 1 because maxL(2k − 2) depends on
α. It is not difficult to see that the points obtained in Theorem 9.24 from a single
class of equivalent numbers form a dense set. This is what we prove next. As a
corollary we obtain Theorem 9.28, which states that the k-Lagrange spectrum Lk
is itself dense when k > 1. In the statement of the following lemma, by maxLβ(`)
we mean the maximal length of a level ` interval of slope β.

Lemma 9.26. Let α be irrational. The set {maxLβ(`) : β is equivalent to α} is
contained in (1

`+1 , 1) and is dense there for all ` > 1.

Proof. First of all, clearly 1 is an upper bound of the set, as the lengths of the
intervals on the torus are less than 1 for any `. Let us argue why 1

`+1 is an
unachievable lower bound on the set. The value maxLβ(`) is the maximum length
of the intervals on the torus when partitioned with ` + 1 points. There are thus
` + 1 intervals, so the longest of the intervals must have length at least 1

`+1 .

Since the intervals cannot all have length 1
`+1 (as α is irrational) we conclude that

maxLβ(`) > 1
`+1 for all β.

Let γ ∈ (1
`+1 , 1), and suppose without loss of generality that it is irrational.

By cutting the continued fraction expansion of 1 − γ, after finitely many partial
quotients, we obtain a fraction that is as close to 1− γ as we desire. Thus we can
find a rational β such that `β is arbitrarily close to 1− γ (from either side).

Now form an irrational β′ by continuing the continued fraction expansion of
β in such a way that it is equivalent to α. By selecting the partial quotients
appropriately, we find that `β′ is arbitrarily close to 1− γ. Consider now the level
` intervals of slope β′. The longest such interval clearly has length 1 − `β′ since
γ > 1

`+1 . As 1− `β′ is as close to γ as we like, the claim follows.

Now the smallest element of the Lagrange spectrum is
√

5. Interestingly, the
Lagrange constant corresponding to the Fibonacci word defined previously, equals√

5. Thus, by Theorem 9.24 and Lemma 9.26 we have the following:

Theorem 9.27. Let k > 1. Then Lk ⊆ (
√

5
2k−1 ,∞) and

√
5

2k−1 is the least accumu-
lation point of Lk. In particular, the set Lk is not closed.

The above theorem should be compared with the fact that L1 is closed [26,
Theorem 2 of Chapter 3]. Notice that it also follows that when k > 1, the Fibo-
nacci word no longer has minimal critical k-abelian exponent among all Sturmian
words. Indeed, there exist Sturmian words that have k-abelian critical exponent
arbitrarily close to

√
5/(2k−1). In particular, for k = 2, there are Sturmian words

having 2-abelian critical exponent arbitrarily close to
√

5/3 ≈ 0.75.
Let us now recall some remarkable facts about the Lagrange spectrum. Hall’s

ray is the largest half-line contained in L1. It was proven by M. Hall that the
half-line [6,∞) is contained in L1 [43]. Several improvements of the left endpoint

128 On the k-Abelian Equivalence in Sturmian Words §9

were made by several researchers, and finally, in [38], G. Freiman determined that
Hall’s ray equals [cF ,∞), where cF is the Freiman constant

cF =
2221564096 + 283748

√
462

491993569
= 4.5278295661 . . .

The detailed history and references can be found in [26, Chapter 4].
We now show that Lk forms a dense set when k > 1.

Theorem 9.28. The k-Lagrange spectrum Lk is dense in (
√

5
2k−1 ,∞) when k > 1.

Proof. By Lemma 9.26, the intervals (
√

5
2k−1 ,

√
5) and (cF

2k−1 , cF) are dense with
points of Lk. Now cF is less than 6, so cF

2k−1 < 2 <
√

5 meaning that these dense

sets overlap. Thus the interval (
√

5
2k−1 , cF] is dense with points of Lk. For each point

θ in Hall’s ray [cF ,∞) there exists an irrational α such that Acrit1(α) = θ. Now θ
is an accumulation point of the set θ ·{maxLβ(2k−2) : β is equivalent to α} ⊆ Lk,
so that θ is in the set of accumulation points of Lk. The claim follows.

The above should be compared to the fact that the (1-)Lagrange spectrum is
not dense between

√
5 and cF . In fact, a substantial amount of research has been

performed on searching for maximal gaps occurring in this interval, see, e.g., [26,
Chapter 5]. It is known for example that the set [

√
5, 3] ∩ L1 is discrete and that

the interior of the interval [
√

12,
√

13] does not include any points of L1 while its
endpoints are in L1. It is unknown if L1 contains an interval below cF .

We do not know whether a corresponding half-line exists in Lk when k > 1.

Indeed, we only have that the spectrum is dense in the half-line (
√

5
2k−1 ,∞). As an

example, take for each real number θ > 0 the set Qk,θ = (θ
2k−1 , θ)∩Q. Clearly the

union of the sets Qk,θ, θ > 0, does not contain any intervals. It is not clear whether
a similar phenomenon happens with the k-Lagrange spectra for k > 1. As another
example, it is possible for uncountably many numbers to have the same Lagrange
constant (one such number is 3; it is the Lagrange constant of uncountably many
numbers [96, Theorem 3, Chapter IV§6]). From such numbers it could be possible
to construct an interval. Indeed, we have that the set (3

2k−1 , 3) ∩ Lk contains a
disjoint union of uncountably many dense disjoint sets. We do not suggest that
this gives an interval in Lk, but it cannot be ruled out without further inspection.

Let us state the underlying question above explicitly:

Question 9.29. Does the k-Lagrange spectrum Lk contain an interval? Does it
contain a half-line?

Let us also point out that it is easy to come up with numbers greater than√
5/(2k − 1) that are not in Lk. The two smallest elements of L1 are

√
5 and√

8, so any point in Lk between
√

5/(2k − 1) and
√

8/(2k − 1) is of the form
maxLα(2k − 2) ·

√
5 for some α equivalent to the golden ratio. The number

maxLα(2k−2) is always irrational, so rational multiples of
√

5 between
√

5/(2k−1)
and
√

8/(2k − 1) are not in Lk. In particular, the k-Lagrange spectrum is not a
half-line for any k > 1.

We conclude these considerations by stating the following questions.

Question 9.30. Is there an arithmetical characterization or interpretation for the
k-Lagrange spectra, k > 2?

§9.3 Words with Rigid Structure on k-Abelian Equivalence 129

Considering the k-abelian critical exponents of infinite words in general, the
following question arises naturally.

Question 9.31. Let α ∈ R be non-negative. Is α the critical k-abelian exponent
of some infinite word?

We answer this question in the positive in [82], which was recently accepted
for publication in the proceedings of the 12th International Conference on Words
2019, Loughborough, UK.

9.3 Words with Rigid Structure on k-Abelian
Equivalence

To conclude this chapter, and this thesis, we briefly discuss the topic of k-abelian
equivalence among factors of certain infinite words. Our focus is on infinite words
where the k-abelian equivalence of two factors is determined with quite weak
requirements. We firstly set some terminology.

Definition 9.32. An infinite word w is said to have Property K if, for all k > 1,
two equal length factors u and v of w are k-abelian equivalent if and only if u ∼1 v
and u and v share common prefixes and common suffixes of length min{|u|, k−1}.

An infinite word w is said to have Property K′k0
if, for any k > k0, two equal

length factors u and v of w are k-abelian equivalent if and only if u and v share
common prefixes and common suffixes of length min{|u|, k − 1}.

As was observed already in Remark 9.4, several infinite words have Property
K, including all Sturmian words, all episturmian words, and the Cantor word.
The authors of [22] asked what sort of words have the Property K. In fact, the
proof of [57, Proposition 2.8] can be used to prove that all infinite words having
at most one right special factor of each length have Property K. Sturmian words
and episturmian words are in this family, but there also exist others. Observe that
the Cantor word is not in this family, as it contains the right special factors ab
and bb. We give the proof here for the sake of completeness.

Proposition 9.33. Let x ∈ ΣN be an infinite word for which there exists at most
one right special factor of length n for each n ∈ N. Then x has Property K.

Proof. The claim is of course trivial for k = 1, so assume k > 2. Assume u and v
share common prefixes and common suffixes of length k − 1 and that u ∼1 v. By
induction we have u ∼k−1 v. Let axb be a factor of x of length k for some letters
a and b and a word x. We aim to show that |u|axb = |v|axb.

If ax is not right special, then ax is always followed by b in x. We deduce that
|u|axb = |u|ax − δ, where δ = 1 if ax is a suffix of u and otherwise δ = 0. Since
u and v share common suffixes of length k − 1 and u ∼k−1 v, we deduce that
|u|ax − δ = |v|ax − δ = |v|axb.

Assume then that ax is right special. For each letter c we define nc = |u|cxb
and n′c = |v|cxb. Observe that for each letter c 6= a, cx is not right special, as ax
is the unique right special factor of length k − 1. We already showed that, in this
case, nc = n′c. Now

∑
c∈Σ nc = |u|xb − δ = |v|xb − δ =

∑
c∈Σ n

′
c, where δ = 1 if xb

is a prefix of u (and hence a prefix of v) and otherwise δ = 0. Since nc = n′c for
all c 6= a, it follows that na = n′a, which concludes the proof.

130 On the k-Abelian Equivalence in Sturmian Words §9

Now Theorem 9.13 implies that each Sturmian word x of slope α has Property

K′k0
for k0 =

⌈
1

2‖α‖

⌉
+ 1. Thus there exist Sturmian words having the Property

K′3 (e.g., the Fibonacci word). Clearly only words aω, where a is a letter, have
the property K′1. At the end of Subsection 9.1.2 it was asked whether there exist
words having Property K′2. The next proposition tells that such binary words
exist, but that they are rather uninteresting. (In particular, no Sturmian word
has this property).

Proposition 9.34. Let w be an infinite binary word such that, for each of its
factors u and v of equal length, we have u ∼1 v if they begin with and end with
common letters. Then w is ultimately periodic.

Proof. Assume for a contradiction, that x ∈ BN is aperiodic. Thus x contains
either aa or bb. By symmetry, we may assume that aa occurs, and, furthermore,
it occurs prior to a possible occurrence of bb. Now if bb does occur, x contains the
factors aab and abb. This is impossible, since they begin and end with common
letters, but are not abelian equivalent (we call such factors incompatible). Thus
each occurrence of b is always preceded and followed by a in x. Observe that aba
thus occurs in x implying that aaa cannot occur in x, as these two factors are
incompatible. We conclude that x contains an occurrence of aa which is followed
by an infinite product of the words ba and baa.

If baa(ba)nbaa and baa(ba)nbaba both occur in x, then x contains the incom-
patible pair aa(ba)nbaa and a(ba)nbaba. Therefore baa(ba)nbaa can occur only for
at most one value n. We conclude that w must have either of the words (ba)ω or
(baa(ba)n)ω as a suffix. This is a contradiction.

However, if we allow more than two letters, then aperiodicity is possible as is
shown by the next proposition. Before we prove this, we articulate two properties
of Sturmian words that have already been alluded to previously. Firstly, in any
Sturmian word there exists a unique right special factor of each length. Also,
Sturmian words are balanced. In other words, for any pair of equal length factors
u and v of occurring in a Sturmian word, we have ||u|a−|v|a| 6 1. These properties
can be found from [64, Chapter 2].

Let σ be the morphism defined by σ(a) = 02, σ(b) = 1. It is easy to see that
the word σ(s) is aperiodic for any Sturmian word s. We show the following:

Proposition 9.35. Let s be a Sturmian word containing aa. Then σ(s) has
property K′2.

Let us first show an intermediate result.

Lemma 9.36. Let s be a Sturmian word containing aa. Then σ(s) has property
K′2.

Proof. We show that σ(s) has exactly one right special factor of each length. It
then follows by Proposition 9.33 that σ(s) has the property K.

Let w and w′ be two right special factors of equal length occurring in σ(s).
It is clear that both w and w′ must end with 2, since 0 is always followed by 2,
and 1 is always followed by 0. By the form of the morphism σ, there exist words
c, d ∈ {ε, 0} and unique factors x and y of s such that cw = σ(x) and dw′ = σ(y).
Without loss of generality we may assume that |σ(x)| > |σ(y)|. Since w and w′

Words with Rigid Structure on k-Abelian Equivalence 131

are right special, so are x and y. Since s has a unique right special factor of each
length we deduce that y is a suffix of x. It follows that both w and w′ are suffixes
of σ(x), and thus w = w′, since |w| = |w′|. We have thus shown that σ(s) has
property K.

Proof of Proposition 9.35. We first show that if u and v are factors of equal length
of σ(s) beginning and ending with common letters, then u ∼1 v.

By the form of the morphism σ and the fact that b is always preceded and
followed by a in s, there exist words c ∈ {ε, 0}, d ∈ {ε, 2}, and factors x and y of s
such that aub = σ(x) and avb = σ(y). We show that x ∼1 y from which it follows
that u ∼1 v, as claimed.

Observe that |σ(x)| = |σ(y)|. Now the words x and y end in a common letter
c ∈ {0, 1} by the above. Now x ∼1 y if and only if xc−1 ∼1 yc

−1 so, by replacing
x with xc−1 and y with yc−1 if necessary, we may assume that x and y end with
the letter a (recall that b is always preceded by a in s). For each binary word w,
we have |σ(w)| = |w|+ |w|a. Since |σ(x)| = |σ(y)|, we obtain

|x|+ |x|a = |y|+ |y|a. (9.4)

Suppose, without loss of generality, that |x| > |y|, and write x = zt with |z| = |y|.
By plugging this into (9.4), we obtain |t|+ |t|a = |y|a − |z|a. Since s is balanced,
we see that |t| + |t|a 6 1. Thus t = ε or t = b. The latter case is impossible as x
ends with a, so t = ε. Thus |x| = |y| and so |x|a = |y|a by (9.4). This means that
x ∼1 y.

Let us finally show that σ(s) has Property K′2. Let k > 2 and assume that two
equal length factors u and v of σ(s) share common prefixes and common suffixes
of length min{|u|, k − 1}. We may assume that |u| > k − 1. Since k > 2, u and v
begin and end with common letters so, by the above, u ∼1 v. But since σ(s) has
Property K, it follows that u ∼k v. This concludes the proof.

Finally, we state some obvious open problems in this area are as follows.

Problem 9.37. Characterize those words having Property K.

This was in essence already asked in [22]. All words having at most one right
special factor for each length were shown to have this property, but other words
exists (e.g., the Cantor word). For such words the analysis of the asymptotic
k-abelian complexities reduces to studying the asymptotic abelian complexity. In-

deed, for such words w, we have Cab
w (n) 6 C(k)

w (n) 6 Cw(k − 1)2 · Cab
w (n) for all

n > 2k − 2. For example, by Theorem 8.4, item 3), the Cantor word C has

Cab
C (n) = Θ(nlog3 2), and thus C(k)

C (n) = Θ(nlog3 2) for all k > 2.
We may also state the related following problems.

Problem 9.38. Characterize those words w for which there exists k0 ∈ N such
that w has Property K′k0

.

Sturmian words were observed to have this property, and there exist other such
words. An interesting particular open problem would be the following.

Problem 9.39. Characterize those words having property K′2.

132 On the k-Abelian Equivalence in Sturmian Words

Proposition 9.35 gives a large family of these words. Such words would neces-
sarily be quite rigid in the k-abelian sense. Clearly, for k > 2, each of the k-abelian

complexities of such a word w would be bounded: C(k)
w (n) 6 Cw(k − 1)2 for all

n > 2k − 2.

133

Appendix A

Algorithms

Algorithm 1: Algorithm to check if, for a given minimal representative v
and a letter a, va admits a lexicographically smaller k-switching involving
the suffix of va of length k − 1.

input : A word v ∈ Lk,Σ,C, letter a ∈ Σ.
output: Returns true if and only if va ∈ Lk,Σ,C.

1 if |va| < 2k then
2 return true;
3 end
4 y ← suffk−1(va),
5 i← position of last occurrence of y in va;
6 while y occurs in va before i do
7 i← last occurrence of y in va before i;

8 for x ∈ Σk−1 do
9 for b ∈ Σ do

10 for c ∈ Σ, bC c do
11 if xc occurs before i in va & xb occurs at or after i in va

then
12 return false;
13 end

14 end

15 end

16 end

17 end
18 return true;

The above procedure checks whether, given a word v = a0 · · · an−1 and a letter
a, the word va admits a k-switching Sva,k(i, j, `, n− k+ 2). Now if v is a minimal
representative of [v]k and algorithm 1 returns false on the input v, a, then va is
the minimal representative of [va]k. Indeed, in this case va avoids k-switchings
that give lexicographically smaller words. Observe also that all words of length
less than 2k are all minimal representatives of their equivalence classes.

134 Algorithms

Now using the above procedure, the number of minimal representatives of a
given length may be computed using the following algorithm.

Algorithm 2: Algorithm to compute P(k)
m (n) for given integers k,m, n.

input : Integer k > 1, integer n > 1, alphabet Σ.

output: P(k)
m (n), where m = |Σ|

1 if n 6 2k − 1 then
2 return mn;
3 else
4 Q← Σ2k−1 as queue;
5 v ← dequeue(Q);
6 while |v| < n do
7 for Letter a ∈ Σ do
8 if algorithm 1(v,a) then
9 enqueue(Q, va);

10 end

11 end
12 v ← dequeue(Q);

13 end

14 end
15 return length(Q) + 1;

In the case of singletons, we may define a similar algorithm to algorithm 1.
Indeed, consider the algorithm obtained by modifying row 10 to have, instead of
bC c, we have b 6= c. Now it should be clear that the modified algorithm returns
true if and only if the word va is a k-abelian singleton, given that v is a k-abelian
singleton.

To count the number of k-abelian singletons, we only need to modify the row
8 of algorithm 2, to invoke the newly modified algorithm described above instead
of algorithm 1.

135

Appendix B

Sequences of Numbers of
Equivalence Classes

This appendix contains numbers of k-abelian equivalence classes and numbers of
k-abelian singletons. These values have been computed using implementations of
the algorithms described in Appendix A.

B.1 Numbers of Equivalence Classes

The values P(2)
2 (n) for n = 0, . . . , 100

1, 2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, 158, 184, 212, 242, 274, 308, 344,
382, 422, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192,
1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1982, 2072, 2164, 2258,
2354, 2452, 2552, 2654, 2758, 2864, 2972, 3082, 3194, 3308, 3424, 3542, 3662,
3784, 3908, 4034, 4162, 4292, 4424, 4558, 4694, 4832, 4972, 5114, 5258, 5404,
5552, 5702, 5854, 6008, 6164, 6322, 6482, 6644, 6808, 6974, 7142, 7312, 7484,
7658, 7834, 8012, 8192, 8374, 8558, 8744, 8932, 9122, 9314, 9508, 9704, 9902

The values P(3)
2 (n) for n = 0, . . . , 81

1, 2, 4, 8, 16, 32, 60, 106, 176, 280, 426, 626, 892, 1238, 1678, 2230, 2910,
3738, 4734, 5920, 7318, 8954, 10852, 13040, 15546, 18400, 21632, 25276, 29364,
33932, 39016, 44654, 50884, 57748, 65286, 73542, 82560, 92386, 103066, 114650,
127186, 140726, 155322, 171028, 187898, 205990, 225360, 246068, 268174,
291740, 316828, 343504, 371832, 401880, 433716, 467410, 503032, 540656,
580354, 622202, 666276, 712654, 761414, 812638, 866406, 922802, 981910,
1043816, 1108606, 1176370, 1247196, 1321176, 1398402, 1478968, 1562968,
1650500, 1741660, 1836548, 1935264, 2037910, 2144588, 2255404

The values P(4)
2 (n) for n = 0, . . . , 55

1, 2, 4, 8, 16, 32, 64, 128, 250, 478, 886, 1590, 2768, 4680, 7692, 12326,
19286, 29524, 44300, 65256, 94496, 134710, 189270, 262374, 359210, 486124,

136 Sequences of Numbers of Equivalence Classes

650802, 862534, 1132430, 1473700, 1901988, 2435694, 3096338, 3909016,
4902824, 6111338, 7573208, 9332712, 11440372, 13953708, 16937952, 20466812,
24623434, 29501272, 35205068, 41851996, 49572780, 58512844, 68833756,
80714528, 94353070, 109967848, 127799534, 148112650, 171197634, 197372694

The values P(5)
2 (n) for n = 0, . . . , 30

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1014, 1992, 3874, 7438, 14078, 26266, 48254,
87298, 155474, 272578, 470496, 799794, 1339378, 2210844, 3598784, 5780204,
9165504, 14356150, 22223932, 34019930, 51521788

The values P(2)
3 (n) for n = 0, . . . , 50

1, 3, 9, 27, 75, 186, 414, 840, 1578, 2784, 4662, 7476, 11556, 17313, 25245,
35955, 50157, 68697, 92559, 122889, 161001, 208404, 266808, 338154, 424620,
528654, 652980, 800634, 974970, 1179699, 1418895, 1697037, 2019015, 2390175,
2816325, 3303783, 3859383, 4490526, 5205186, 6011964, 6920094, 7939500,
9080802, 10355376, 11775360, 13353717, 15104241, 17041623, 19181457,
21540309, 24135723

The values P(3)
3 (n) for n = 0, . . . , 20

1, 3, 9, 27, 81, 243, 717, 2073, 5814, 15774, 41250, 103842, 251436, 586056,
1316847, 2858295, 6006132, 12244842, 24270909, 46865127, 88315263

B.2 Numbers of Singletons

The values S(2)
2 (n) for n = 0, . . . , 100

1, 2, 4, 8, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92,
94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128,
130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162,
164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196,
198, 200, 202, 204

The values S(3)
2 (n) for n = 0, . . . , 100

0,1.0 1,2.0 2,4.0 3,8.0 4,16.0 5,32.0 56, 86, 112, 142, 164, 192, 220, 248, 276, 310,
338, 372, 406, 440, 474, 514, 548, 588, 628, 668, 708, 754, 794, 840, 886, 932, 978,
1030, 1076, 1128, 1180, 1232, 1284, 1342, 1394, 1452, 1510, 1568, 1626, 1690,
1748, 1812, 1876, 1940, 2004, 2074, 2138, 2208, 2278, 2348, 2418, 2494, 2564,
2640, 2716, 2792, 2868, 2950, 3026, 3108, 3190, 3272, 3354, 3442, 3524, 3612,
3700, 3788, 3876, 3970, 4058, 4152, 4246, 4340, 4434, 4534, 4628, 4728, 4828,
4928, 5028, 5134, 5234, 5340, 5446, 5552, 5658, 5770, 5876, 5988, 6100, 6212,
6324, 6442, 6554

Numbers of Singletons 137

The values S(4)
2 (n), n = 0, . . . , 100

1, 2, 4, 8, 16, 32, 64, 128, 244, 446, 760, 1202, 1784, 2486, 3272, 4140, 5052,
6012, 7046, 8142, 9300, 10538, 11840, 13210, 14656, 16180, 17756, 19424, 21156,
22958, 24842, 26796, 28820, 30930, 33108, 35360, 37692, 40098, 42578, 45158,
47792, 50504, 53306, 56184, 59136, 62188, 65304, 68494, 71782, 75144, 78586,
82128, 85732, 89428, 93214, 97078, 101020, 105070, 109186, 113392, 117702,
122074, 126538, 131116, 135756, 140490, 145326, 150240, 155238, 160356,
165538, 170814, 176198, 181658, 187218, 192890, 198624, 204460, 210412,
216438, 222562, 228810, 235114, 241530, 248062, 254668, 261374, 268208,
275110, 282114, 289244, 296444, 303750, 311190, 318694, 326316, 334050,
341862, 349788, 357850, 365974

The values S(5)
2 (n) for n = 0, . . . , 55

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1004, 1938, 3664, 6742, 12032, 20870,
35004, 56914, 89544, 136324, 200778, 286504, 396572, 533934, 700014, 896762,
1125230, 1386962, 1683012, 2015768, 2386114, 2797250, 3250650, 3749452,
4295018, 4891412, 5539324, 6242502, 7002982, 7823982, 8706584, 9655342,
10671144, 11758610, 12919294, 14156478, 15472042, 16871266, 18354570,
19926674, 21589688, 23347734, 25202186, 27159222, 29218694, 31386376,

The values S(2)
3 (n) for n = 0, . . . , 100

1, 3, 9, 27, 69, 135, 207, 273, 345, 423, 507, 597, 693, 795, 903, 1017, 1137, 1263,
1395, 1533, 1677, 1827, 1983, 2145, 2313, 2487, 2667, 2853, 3045, 3243, 3447,
3657, 3873, 4095, 4323, 4557, 4797, 5043, 5295, 5553, 5817, 6087, 6363, 6645,
6933, 7227, 7527, 7833, 8145, 8463, 8787, 9117, 9453, 9795, 10143, 10497, 10857,
11223, 11595, 11973, 12357, 12747, 13143, 13545, 13953, 14367, 14787, 15213,
15645, 16083, 16527, 16977, 17433, 17895, 18363, 18837, 19317, 19803, 20295,
20793, 21297, 21807, 22323, 22845, 23373, 23907, 24447, 24993, 25545, 26103,
26667, 27237, 27813, 28395, 28983, 29577, 30177, 30783, 31395, 32013, 32637

The values S(3)
3 (n) for n = 0, . . . , 33

1, 3, 9, 27, 81, 243, 705, 1965, 5133, 12543, 28347, 59223, 113445, 200055,
325881, 495819, 712575, 981141, 1305345, 1691769, 2146701, 2677611, 3289701,
3991029, 4788819, 5690025, 6703461, 7836837, 9097701, 10496643, 12041667,
13741521, 15607401, 17648571

138 Sequences of Numbers of Equivalence Classes

139

Appendix C

Transition Tables of
Automata

We give the transition tables of the Minimal DFA recognizing Lk,Σ,C illustrated in
Figures 5.1–5.6. The states are enumerated starting from 0. The initial state of the
automaton is always indexed by 0. All other states are final, except the one with
the largest index. This state is the sink state. The transitions are represented by
triples [p, δ(p, a), δ(p, b)] for the binary case, quadruples [p, δ(p, a), δ(p, b), δ(p, c)]
in the ternary case.

C.1 Transition Tables of Minimal Representati-
ves

Transitions of the Minimal DFA Recognizing L2,{a,b},C

[0,1,2], [1,1,3], [2,1,4], [3,5,6], [4,7,4], [5,9,3], [6,8,6], [7,7,9], [8,9,9], [9,9,9]

Transitions of the Minimal DFA Recognizing L3,{a,b},C

[0,1,2], [1,3,4], [2,5,6], [3,3,7], [4,5,8], [5,3,9], [6,5,10], [7,11,12], [8,13,14], [9,15,16],
[10,17,10], [11,18,19], [12,20,21], [13,22,23], [14,24,14], [15,25,9], [16,26,27],
[17,28,29], [18,48,7], [19,30,31], [20,32,33], [21,34,21], [22,22,35], [23,48,16],
[24,24,36], [25,25,48], [26,25,23], [27,37,27], [28,28,38], [29,39,48], [30,36,19],
[31,40,41], [32,48,35], [33,48,31], [34,42,36], [35,48,12], [36,48,48], [37,25,36],
[38,43,48], [39,25,29], [40,36,33], [41,44,41], [42,48,36], [43,45,46], [44,36,36],
[45,48,38], [46,47,48], [47,36,46], [48,48,48]

Transitions of the Minimal DFA Recognizing L2,{a,b,c},C

[0,1,2,3], [1,1,4,5], [2,1,6,7], [3,1,8,9], [4,10,11,12], [5,13,14,15], [6,16,6,7],
[7,17,18,19], [8,20,21,22], [9,23,24,9], [10,65,4,5], [11,25,11,12], [12,26,27,28],
[13,65,29,5], [14,30,31,32], [15,29,33,15], [16,16,65,34], [17,17,35,36], [18,37,65,22],
[19,38,37,19], [20,20,39,40], [21,41,21,22], [22,37,18,42], [23,23,43,65], [24,23,44,65],
[25,65,65,34], [26,65,35,36], [27,45,65,32], [28,46,47,28], [29,65,29,65], [30,65,65,40],

140 Transition Tables of Automata

[31,48,31,32], [32,45,27,49], [33,45,33,65], [34,25,65,50], [35,65,65,51], [36,52,53,54],
[37,37,65,65], [38,38,45,65], [39,55,56,57], [40,65,58,59], [41,41,65,48], [42,37,37,42],
[43,60,33,65], [44,37,44,65], [45,65,65,65], [46,65,45,65], [47,45,65,65], [48,65,65,48],
[49,45,47,49], [50,45,65,50], [51,26,53,54], [52,65,45,36], [53,65,65,61], [54,46,45,54],
[55,65,39,40], [56,48,56,57], [57,65,62,63], [58,30,56,57], [59,65,33,59], [60,65,43,65],
[61,45,53,64], [62,45,65,57], [63,65,47,63], [64,45,45,64], [65,65,65,65]

Transitions of the Minimal DFA Recognizing L4,{a,b},C

[0,1,2], [1,3,4], [2,5,6], [3,7,8], [4,9,10], [5,11,12], [6,13,14], [7,7,15], [8,9,16], [9,11,17], [10,13,18], [11,7,19], [12,9,20],
[13,11,21], [14,13,22], [15,23,24], [16,25,26], [17,27,28], [18,29,30], [19,31,32], [20,33,34], [21,35,36], [22,37,22],
[23,38,39], [24,40,41], [25,42,43], [26,44,45], [27,46,17], [28,47,48], [29,49,50], [30,51,30], [31,52,53], [32,54,55], [33,56,57],
[34,58,59], [35,60,61], [36,62,63], [37,64,65], [38,66,67], [39,68,69], [40,70,71], [41,72,73], [42,74,75], [43,76,77], [44,78,79],
[45,80,45], [46,81,82], [47,83,84], [48,85,86], [49,87,88], [50,89,90], [51,91,92], [52,93,19], [53,94,95], [54,96,97], [55,98,99],
[56,100,101], [57,102,36], [58,103,104], [59,105,59], [60,106,107], [61,108,109], [62,110,57], [63,111,112], [64,113,114],
[65,115,116], [66,935,15], [67,117,118], [68,119,39], [69,120,121], [70,122,123], [71,124,125], [72,126,127], [73,128,73],
[74,74,129], [75,130,32], [76,131,61], [77,132,133], [78,134,135], [79,136,137], [80,138,139], [81,81,140], [82,935,141],
[83,142,143], [84,144,77], [85,145,146], [86,147,86], [87,87,148], [88,149,150], [89,151,152], [90,935,63], [91,153,154],
[92,155,156], [93,93,935], [94,157,53], [95,158,159], [96,93,75], [97,160,161], [98,162,163], [99,164,99], [100,100,165],
[101,166,167], [102,110,935], [103,168,169], [104,102,90], [105,170,171], [106,106,172], [107,173,174], [108,175,61],
[109,176,177], [110,178,179], [111,110,104], [112,180,112], [113,113,181], [114,182,183], [115,184,185], [116,186,935],
[117,187,188], [118,189,190], [119,191,192], [120,193,194], [121,195,196], [122,935,129], [123,130,118], [124,197,198],
[125,199,200], [126,201,202], [127,203,204], [128,205,206], [129,130,24], [130,935,207], [131,208,209], [132,210,84],
[133,211,212], [134,134,213], [135,130,150], [136,214,152], [137,935,133], [138,138,215], [139,216,156], [140,935,217],
[141,218,219], [142,142,220], [143,221,167], [144,222,935], [145,223,224], [146,144,137], [147,225,226], [148,227,228],
[149,229,230], [150,935,55], [151,231,232], [152,233,234], [153,153,235], [154,236,156], [155,91,139], [156,935,935],
[157,93,82], [158,237,238], [159,239,240], [160,241,242], [161,243,244], [162,93,135], [163,245,246], [164,247,248],
[165,249,250], [166,251,252], [167,253,254], [168,168,255], [169,256,257], [170,258,259], [171,102,156], [172,260,261],
[173,262,263], [174,264,265], [175,175,266], [176,222,267], [177,268,269], [178,178,270], [179,271,935], [180,110,171],
[181,272,273], [182,274,275], [183,276,935], [184,277,278], [185,279,280], [186,110,281], [187,156,67], [188,282,283],
[189,284,285], [190,286,287], [191,935,140], [192,935,288], [193,289,290], [194,291,125], [195,292,293], [196,294,196],
[197,295,296], [198,297,298], [199,299,194], [200,300,301], [201,935,213], [202,130,302], [203,303,304], [204,935,200],
[205,305,215], [206,306,156], [207,130,935], [208,208,307], [209,935,174], [210,210,308], [211,210,146], [212,309,212],
[213,130,228], [214,310,311], [215,130,156], [216,312,139], [217,313,314], [218,157,935], [219,315,316], [220,317,250],
[221,935,252], [222,222,156], [223,223,318], [224,319,257], [225,225,320], [226,144,156], [227,321,322], [228,935,41],
[229,93,88], [230,323,324], [231,231,325], [232,326,327], [233,328,152], [234,935,177], [235,329,156], [236,330,248],
[237,93,143], [238,331,161], [239,332,333], [240,334,240], [241,93,209], [242,335,336], [243,337,238], [244,338,339],
[245,340,341], [246,935,244], [247,93,215], [248,342,156], [249,343,344], [250,345,346], [251,93,347], [252,935,348],
[253,349,350], [254,351,352], [255,353,354], [256,355,356], [257,935,254], [258,258,357], [259,358,156], [260,359,360],
[261,361,362], [262,93,107], [263,363,364], [264,935,365], [265,366,367], [266,935,368], [267,144,109], [268,222,369],
[269,370,269], [270,371,935], [271,372,935], [272,373,374], [273,375,935], [274,93,114], [275,376,377], [276,378,379],
[277,277,380], [278,381,382], [279,383,185], [280,384,935], [281,102,116], [282,385,188], [283,386,387], [284,156,123],
[285,388,389], [286,390,391], [287,392,287], [288,393,394], [289,935,220], [290,395,396], [291,397,935], [292,398,399],
[293,291,204], [294,400,401], [295,935,307], [296,935,402], [297,403,198], [298,404,405], [299,406,308], [300,299,293],
[301,407,301], [302,935,190], [303,408,409], [304,410,411], [305,935,215], [306,412,206], [307,935,261], [308,156,935],
[309,210,226], [310,310,413], [311,935,327], [312,312,414], [313,119,935], [314,415,416], [315,417,935], [316,418,316],
[317,935,344], [318,419,354], [319,935,356], [320,420,156], [321,421,422], [322,423,424], [323,417,230], [324,935,159],
[325,425,426], [326,427,428], [327,935,265], [328,328,429], [329,430,206], [330,93,154], [331,431,935], [332,93,224],
[333,331,246], [334,432,433], [335,434,242], [336,435,436], [337,93,308], [338,337,333], [339,437,339], [340,93,311],
[341,438,439], [342,440,248], [343,441,442], [344,935,443], [345,444,445], [346,446,447], [347,166,448], [348,449,450],
[349,93,451], [350,156,452], [351,453,454], [352,455,352], [353,456,457], [354,935,346], [355,93,458], [356,935,459],
[357,460,156], [358,461,414], [359,462,463], [360,464,465], [361,935,466], [362,467,468], [363,434,263], [364,469,470],
[365,471,364], [366,935,472], [367,473,367], [368,156,368], [369,144,234], [370,222,226], [371,474,935], [372,93,179],
[373,475,476], [374,477,478], [375,479,480], [376,481,275], [377,482,935], [378,93,483], [379,484,485], [380,486,487],
[381,488,489], [382,490,935], [383,383,406], [384,222,491], [385,156,192], [386,492,493], [387,494,495], [388,496,497],
[389,498,499], [390,156,202], [391,500,501], [392,502,503], [393,385,935], [394,504,505], [395,935,506], [396,507,508],
[397,414,156], [398,935,318], [399,509,510], [400,511,320], [401,291,156], [402,512,513], [403,429,266], [404,397,514],
[405,515,516], [406,935,308], [407,299,401], [408,935,413], [409,935,517], [410,518,304], [411,935,405], [412,420,414],
[413,935,426], [414,935,156], [415,519,935], [416,520,416], [417,93,521], [418,440,935], [419,935,457], [420,935,414],
[421,935,148], [422,522,302], [423,519,322], [424,935,121], [425,523,524], [426,935,362], [427,93,232], [428,525,526],
[429,935,266], [430,527,528], [431,93,156], [432,93,320], [433,331,156], [434,93,266], [435,431,529], [436,530,531],
[437,337,433], [438,532,341], [439,935,436], [440,93,414], [441,935,533], [442,534,535], [443,536,537], [444,538,539],
[445,156,540], [446,541,542], [447,543,447], [448,544,545], [449,546,547], [450,548,549], [451,414,167], [452,550,551],
[453,93,552], [454,156,553], [455,554,555], [456,556,557], [457,935,558], [458,256,559], [459,935,450], [460,560,414],
[461,93,259], [462,935,172], [463,561,402], [464,403,360], [465,562,563], [466,564,465], [467,935,565], [468,566,468],
[469,935,567], [470,568,569], [471,241,263], [472,570,526], [473,935,248], [474,571,572], [475,935,181], [476,573,574],
[477,575,374], [478,576,935], [479,577,578], [480,579,580], [481,93,581], [482,582,583], [483,130,183], [484,584,585],
[485,586,935], [486,587,588], [487,589,935], [488,93,278], [489,590,591], [490,935,592], [491,144,280], [492,156,290],
[493,593,389], [494,594,595], [495,596,495], [496,156,296], [497,597,598], [498,599,493], [499,600,601], [500,602,603],
[501,935,499], [502,156,215], [503,604,156], [504,605,935], [505,606,505], [506,935,607], [507,608,609], [508,610,611],
[509,935,612], [510,935,508], [511,935,320], [512,935,613], [513,614,615], [514,291,298], [515,397,616], [516,617,516],
[517,935,513], [518,618,429], [519,619,620], [520,412,935], [521,935,621], [522,622,623], [523,624,625], [524,626,627],
[525,532,428], [526,935,470], [527,935,235], [528,628,156], [529,331,336], [530,431,629], [531,630,531], [532,93,429],
[533,249,631], [534,632,506], [535,633,634], [536,635,636], [537,637,638], [538,935,639], [539,414,396], [540,640,641],
[541,642,643], [542,156,644], [543,645,555], [544,646,547], [545,647,648], [546,93,649], [547,935,650], [548,651,652],
[549,653,549], [550,337,350], [551,654,655], [552,414,257], [553,935,551], [554,93,397], [555,156,156], [556,935,656],
[557,657,658], [558,935,537], [559,935,545], [560,659,660], [561,661,662], [562,935,663], [563,664,665], [564,197,360],
[565,666,627], [566,935,206], [567,331,364], [568,935,667], [569,668,569], [570,340,428], [571,935,270], [572,669,935],
[573,670,671], [574,672,935], [575,673,674], [576,675,676], [577,935,677], [578,130,574], [579,678,679], [580,680,935],
[581,935,681], [582,93,682], [583,331,485], [584,93,683], [585,684,685], [586,337,583], [587,686,687], [588,688,689],
[589,935,690], [590,691,489], [591,692,935], [592,693,591], [593,555,935], [594,156,399], [595,593,501], [596,694,695],
[597,696,497], [598,697,698], [599,156,308], [600,599,595], [601,699,601], [602,156,409], [603,700,701], [604,702,503],
[605,156,620], [606,702,935], [607,703,704], [608,156,539], [609,156,705], [610,706,707], [611,708,611], [612,935,709],
[613,710,711], [614,935,712], [615,713,615], [616,291,411], [617,397,401], [618,935,429], [619,935,714], [620,935,715],
[621,935,219], [622,156,422], [623,716,717], [624,935,325], [625,718,517], [626,518,524], [627,935,563], [628,719,503],
[629,331,439], [630,431,433], [631,720,721], [632,156,442], [633,722,723], [634,724,725], [635,726,727], [636,935,728],
[637,729,730], [638,731,638], [639,414,250], [640,299,445], [641,732,733], [642,935,734], [643,414,510], [644,935,641],
[645,735,397], [646,93,736], [647,737,652], [648,738,648], [649,221,448], [650,739,740], [651,93,741], [652,935,742],

Transition Tables for Singletons 141

[653,432,414], [654,337,454], [655,743,655], [656,353,744], [657,745,612], [658,935,634], [659,935,357], [660,746,156],
[661,156,463], [662,747,711], [663,291,465], [664,935,748], [665,749,665], [666,303,524], [667,331,526], [668,935,433],
[669,750,935], [670,156,476], [671,751,752], [672,753,754], [673,935,755], [674,935,756], [675,757,758], [676,291,580],
[677,130,273], [678,759,760], [679,761,762], [680,299,676], [681,763,935], [682,764,765], [683,935,382], [684,691,585],
[685,766,935], [686,935,380], [687,767,768], [688,769,588], [689,770,935], [690,771,689], [691,93,406], [692,935,772],
[693,584,489], [694,156,320], [695,593,156], [696,156,266], [697,555,773], [698,774,775], [699,599,695], [700,776,603],
[701,935,698], [702,156,414], [703,777,723], [704,778,779], [705,780,781], [706,156,643], [707,156,782], [708,783,555],
[709,935,704], [710,496,662], [711,784,785], [712,786,787], [713,935,503], [714,935,788], [715,935,394], [716,605,623],
[717,935,387], [718,789,790], [719,156,528], [720,791,636], [721,792,793], [722,156,794], [723,935,795], [724,796,797],
[725,798,725], [726,935,799], [727,395,535], [728,800,801], [729,802,803], [730,935,804], [731,400,414], [732,299,542],
[733,805,733], [734,414,354], [735,935,397], [736,414,448], [737,93,806], [738,554,414], [739,337,547], [740,807,808],
[741,319,559], [742,935,740], [743,337,555], [744,935,721], [745,156,557], [746,809,414], [747,696,662], [748,291,627],
[749,935,401], [750,156,572], [751,810,671], [752,811,935], [753,156,578], [754,812,813], [755,935,814], [756,815,935],
[757,935,816], [758,817,818], [759,935,819], [760,935,768], [761,769,679], [762,820,935], [763,481,935], [764,935,821],
[765,822,935], [766,431,823], [767,824,825], [768,826,935], [769,827,406], [770,935,828], [771,678,588], [772,331,591],
[773,593,598], [774,555,829], [775,830,775], [776,156,429], [777,156,727], [778,831,797], [779,832,779], [780,599,609],
[781,833,834], [782,935,781], [783,156,397], [784,935,835], [785,836,837], [786,602,790], [787,935,785], [788,935,314],
[789,156,625], [790,838,787], [791,839,794], [792,840,730], [793,841,793], [794,414,535], [795,842,843], [796,156,844],
[797,935,845], [798,783,414], [799,317,631], [800,299,636], [801,846,847], [802,935,848], [803,509,658], [804,935,801],
[805,299,555], [806,414,559], [807,337,652], [808,849,808], [809,156,660], [810,156,674], [811,850,851], [812,852,853],
[813,854,935], [814,855,935], [815,810,935], [816,856,857], [817,935,858], [818,859,935], [819,935,487], [820,397,860],
[821,935,861], [822,862,863], [823,331,685], [824,156,687], [825,864,865], [826,935,866], [827,935,406], [828,291,689],
[829,593,701], [830,555,695], [831,156,803], [832,694,414], [833,599,707], [834,867,834], [835,593,711], [836,935,868],
[837,869,837], [838,776,790], [839,935,870], [840,871,844], [841,645,414], [842,599,723], [843,872,873], [844,414,658],
[845,935,843], [846,299,730], [847,874,847], [848,419,744], [849,337,414], [850,156,758], [851,593,813], [852,156,760],
[853,875,876], [854,599,851], [855,575,935], [856,935,877], [857,878,935], [858,935,879], [859,880,881], [860,291,762],
[861,882,935], [862,93,883], [863,156,884], [864,885,825], [865,886,935], [866,887,865], [867,599,555], [868,593,787],
[869,935,695], [870,414,631], [871,935,888], [872,599,797], [873,889,873], [874,299,414], [875,885,853], [876,890,935],
[877,935,891], [878,892,893], [879,894,935], [880,156,895], [881,156,896], [882,897,898], [883,414,765], [884,899,935],
[885,156,406], [886,935,900], [887,852,825], [888,414,744], [889,599,414], [890,555,901], [891,902,935], [892,903,895],
[893,156,904], [894,905,906], [895,414,818], [896,907,935], [897,93,908], [898,935,909], [899,337,863], [900,593,865],
[901,593,876], [902,910,911], [903,935,912], [904,913,935], [905,156,914], [906,935,915], [907,599,881], [908,764,916],
[909,917,935], [910,918,914], [911,935,919], [912,414,857], [913,299,893], [914,817,920], [915,921,935], [916,922,935],
[917,337,898], [918,935,923], [919,924,935], [920,925,935], [921,599,906], [922,926,898], [923,856,927], [924,299,911],
[925,928,906], [926,93,929], [927,930,935], [928,156,931], [929,414,916], [930,932,911], [931,414,920], [932,933,931],
[933,935,934], [934,414,927], [935,935,935]

C.2 Transition Tables for Singletons

Transitions of the Minimal DFA Recognizing L2,{a,b},sing

[0,1,2], [1,3,4], [2,5,6], [3,3,7], [4,8,9], [5,10,11], [6,12,6], [7,14,7], [8,14,11], [9,13,9],
[10,10,13], [11,8,14], [12,12,14], [13,14,14], [14,14,14]

Transitions of the Minimal DFA Recognizing L3,{a,b},sing

[0,1,2], [1,3,4], [2,5,6], [3,7,8], [4,9,10], [5,11,12], [6,13,14], [7,7,15], [8,16,17],
[9,18,19], [10,20,21], [11,22,23], [12,24,25], [13,26,27], [14,28,14], [15,29,30],
[16,31,32], [17,33,34], [18,35,36], [19,24,37], [20,38,39], [21,40,21], [22,22,41],
[23,42,43], [24,44,19], [25,45,46], [26,47,48], [27,49,50], [28,51,52], [29,86,53],
[30,54,55], [31,86,36], [32,56,37], [33,57,58], [34,59,34], [35,35,60], [36,42,37],
[37,86,37], [38,61,62], [39,86,50], [40,40,63], [41,63,41], [42,31,86], [43,64,65],
[44,44,86], [45,44,39], [46,66,46], [47,47,67], [48,68,69], [49,44,70], [50,45,86],
[51,71,72], [52,73,86], [53,29,37], [54,86,74], [55,75,55], [56,63,32], [57,86,62],
[58,86,76], [59,75,63], [60,63,37], [61,61,77], [62,86,69], [63,86,86], [64,57,86],
[65,78,65], [66,44,63], [67,63,79], [68,80,86], [69,64,86], [70,49,63], [71,71,79],
[72,81,86], [73,44,52], [74,86,82], [75,86,63], [76,83,86], [77,86,79], [78,75,86],
[79,63,86], [80,86,84], [81,85,86], [82,54,86], [83,63,58], [84,68,63], [85,86,72],
[86,86,86]

Transitions of the Minimal DFA Recognizing L2,{a,b,c},sing

[0,1,2,3], [1,4,5,6], [2,7,8,9], [3,10,11,12], [4,4,13,14], [5,15,16,17], [6,18,19,20],
[7,21,22,23], [8,24,8,25], [9,26,27,28], [10,29,30,31], [11,32,33,34], [12,35,36,12],
[13,83,37,38], [14,83,39,40], [15,83,22,41], [16,41,16,42], [17,43,44,45], [18,83,46,31],
[19,47,48,49], [20,46,50,20], [21,21,41,51], [22,15,83,41], [23,52,53,45], [24,54,83,55],

142 Transition Tables of Automata

[25,56,83,57], [26,58,59,60], [27,61,83,34], [28,62,61,28], [29,29,63,46], [30,64,48,65],
[31,18,46,83], [32,58,66,67], [33,68,33,61], [34,61,27,83], [35,69,70,83], [36,71,72,83],
[37,83,37,41], [38,83,73,51], [39,83,63,74], [40,83,46,40], [41,83,83,41], [42,75,83,42],
[43,83,59,83], [44,75,83,49], [45,76,77,45], [46,83,46,83], [47,83,83,67], [48,78,48,77],
[49,75,44,83], [50,75,50,83], [51,83,75,51], [52,83,75,60], [53,47,83,83], [54,54,83,41],
[55,79,83,42], [56,68,83,80], [57,61,83,57], [58,58,78,76], [59,83,83,65], [60,52,75,83],
[61,61,83,83], [62,62,75,83], [63,83,63,75], [64,83,66,75], [65,43,83,83], [66,64,83,75],
[67,83,53,83], [68,68,83,75], [69,69,46,83], [70,81,50,83], [71,62,82,83], [72,61,72,83],
[73,83,83,74], [74,83,73,83], [75,83,83,83], [76,83,75,83], [77,75,83,83], [78,83,83,75],
[79,83,83,80], [80,79,83,83], [81,83,82,83], [82,81,83,83], [83,83,83,83]

Transitions of the Minimal DFA Recognizing L4,{a,b},sing \
b{a, b}∗
[0,1,663], [1,2,3], [2,4,5], [3,6,7], [4,8,9], [5,10,11], [6,12,13], [7,14,15], [8,8,16], [9,17,18],
[10,19,20], [11,21,22], [12,23,24], [13,25,26], [14,27,28], [15,29,30], [16,31,32], [17,33,34], [18,35,36],
[19,37,38], [20,39,40], [21,41,42], [22,43,44], [23,45,46], [24,47,48], [25,49,50], [26,51,52], [27,53,54],
[28,55,56], [29,57,58], [30,59,30], [31,60,61], [32,62,63], [33,64,65], [34,66,67], [35,68,69], [36,70,71],
[37,72,73], [38,47,74], [39,75,76], [40,77,78], [41,79,80], [42,81,82], [43,83,84], [44,85,44], [45,45,86],
[46,87,88], [47,89,90], [48,91,92], [49,93,94], [50,25,95], [51,96,97], [52,98,99], [53,100,101],
[54,102,103], [55,104,105], [56,106,107], [57,108,109], [58,110,111], [59,112,113], [60,663,114],
[61,115,116], [62,117,118], [63,119,120], [64,663,73], [65,121,74], [66,122,123], [67,124,125], [68,126,127],
[69,128,129], [70,130,131], [71,132,71], [72,72,133], [73,87,74], [74,134,135], [75,75,136], [76,39,137],
[77,138,97], [78,139,140], [79,141,142], [80,143,103], [81,144,105], [82,145,107], [83,146,147],
[84,148,149], [85,150,151], [86,152,153], [87,154,90], [88,155,156], [89,157,38], [90,663,74], [91,158,159],
[92,160,161], [93,162,163], [94,663,164], [95,165,166], [96,167,168], [97,169,82], [98,170,171], [99,172,99],
[100,100,173], [101,174,175], [102,176,177], [103,178,107], [104,179,180], [105,181,182], [106,183,184],
[107,663,107], [108,185,186], [109,187,188], [110,189,190], [111,663,191], [112,192,193], [113,194,195],
[114,196,74], [115,197,198], [116,199,200], [117,663,201], [118,202,203], [119,204,205], [120,206,120],
[121,207,90], [122,197,136], [123,66,208], [124,209,210], [125,211,212], [126,663,142], [127,143,213],
[128,214,215], [129,216,107], [130,217,218], [131,219,220], [132,221,222], [133,152,74], [134,663,223],
[135,224,225], [136,663,226], [137,169,137], [138,227,228], [139,229,171], [140,230,140], [141,141,231],
[142,143,175], [143,663,232], [144,233,234], [145,235,97], [146,236,237], [147,143,188], [148,238,190],
[149,663,239], [150,150,240], [151,241,195], [152,195,90], [153,242,243], [154,64,663], [155,244,245],
[156,246,247], [157,157,663], [158,157,248], [159,249,250], [160,251,252], [161,253,161], [162,162,254],
[163,663,255], [164,256,257], [165,258,663], [166,259,260], [167,261,262], [168,263,264], [169,265,663],
[170,266,267], [171,169,149], [172,268,269], [173,270,271], [174,272,273], [175,274,107], [176,157,275],
[177,276,277], [178,278,232], [179,279,280], [180,281,282], [181,283,105], [182,169,107], [183,284,285],
[184,286,56], [185,185,287], [186,288,289], [187,290,291], [188,663,292], [189,293,294], [190,295,296],
[191,297,663], [192,298,299], [193,300,195], [194,301,151], [195,663,663], [196,60,90], [197,663,136],
[198,115,302], [199,303,304], [200,305,306], [201,143,307], [202,308,309], [203,310,107], [204,663,311],
[205,312,313], [206,314,315], [207,195,65], [208,316,208], [209,317,318], [210,316,129], [211,319,320],
[212,321,212], [213,322,107], [214,323,324], [215,325,326], [216,327,210], [217,663,237], [218,143,328],
[219,329,330], [220,663,331], [221,314,240], [222,332,195], [223,663,333], [224,663,334], [225,335,225],
[226,195,226], [227,336,337], [228,263,663], [229,338,339], [230,340,269], [231,143,271], [232,143,663],
[233,341,342], [234,663,282], [235,235,343], [236,236,344], [237,143,289], [238,345,346], [239,347,663],
[240,143,195], [241,348,151], [242,195,349], [243,350,351], [244,352,663], [245,353,354], [246,355,356],
[247,357,247], [248,358,264], [249,359,663], [250,360,107], [251,157,361], [252,362,363], [253,364,365],
[254,663,366], [255,367,368], [256,369,663], [257,370,371], [258,372,373], [259,374,663], [260,375,260],
[261,261,376], [262,377,378], [263,663,379], [264,380,107], [265,265,195], [266,381,382], [267,383,384],
[268,268,385], [269,169,195], [270,195,386], [271,387,107], [272,388,663], [273,389,390], [274,391,232],
[275,281,392], [276,393,394], [277,395,107], [278,157,80], [279,279,396], [280,397,398], [281,176,399],
[282,400,107], [283,283,399], [284,401,402], [285,403,663], [286,183,663], [287,404,405], [288,406,407],
[289,663,408], [290,157,409], [291,410,411], [292,412,663], [293,413,414], [294,415,416], [295,417,190],
[296,663,418], [297,183,419], [298,298,420], [299,421,195], [300,422,423], [301,424,425], [302,426,302],
[303,663,427], [304,426,203], [305,428,429], [306,430,306], [307,431,107], [308,663,432], [309,433,434],
[310,435,304], [311,143,436], [312,437,438], [313,663,439], [314,663,240], [315,440,195], [316,441,663],
[317,663,337], [318,442,663], [319,443,444], [320,316,220], [321,445,446], [322,447,232], [323,663,342],
[324,663,448], [325,449,215], [326,316,107], [327,435,343], [328,663,450], [329,451,452], [330,453,454],
[331,455,663], [332,456,222], [333,134,107], [334,663,457], [335,663,358], [336,336,458], [337,377,663],
[338,459,460], [339,383,663], [340,340,461], [341,341,462], [342,663,398], [343,195,663], [344,143,405],
[345,463,464], [346,663,416], [347,235,171], [348,348,358], [349,343,465], [350,195,466], [351,467,351],
[352,663,468], [353,469,663], [354,470,107], [355,471,663], [356,472,473], [357,474,475], [358,663,195],
[359,157,234], [360,476,477], [361,358,384], [362,478,663], [363,663,479], [364,157,441], [365,480,195],
[366,343,366], [367,481,663], [368,482,483], [369,157,373], [370,484,663], [371,480,371], [372,485,486],
[373,663,487], [374,488,489], [375,348,663], [376,490,491], [377,663,492], [378,493,107], [379,663,277],

Transition Tables for Singletons 143

[380,158,343], [381,381,494], [382,495,496], [383,663,497], [384,663,498], [385,335,195], [386,270,499],
[387,195,232], [388,663,500], [389,501,502], [390,503,107], [391,126,663], [392,358,107], [393,157,399],
[394,276,504], [395,505,663], [396,506,507], [397,272,399], [398,508,107], [399,663,509], [400,663,510],
[401,401,511], [402,512,663], [403,513,663], [404,195,514], [405,663,515], [406,516,663], [407,517,518],
[408,519,663], [409,415,520], [410,521,522], [411,663,523], [412,524,232], [413,413,525], [414,526,527],
[415,290,528], [416,663,529], [417,417,528], [418,169,663], [419,286,111], [420,530,195], [421,531,532],
[422,157,425], [423,533,195], [424,534,535], [425,536,195], [426,358,663], [427,537,663], [428,663,538],
[429,426,313], [430,539,540], [431,117,232], [432,663,541], [433,542,309], [434,426,107], [435,663,343],
[436,663,543], [437,663,544], [438,545,546], [439,547,663], [440,335,315], [441,358,195], [442,663,548],
[443,663,460], [444,549,663], [445,539,461], [446,316,195], [447,195,127], [448,550,107], [449,542,399],
[450,551,663], [451,663,464], [452,663,552], [453,553,330], [454,663,554], [455,327,320], [456,335,358],
[457,663,555], [458,490,663], [459,459,556], [460,495,663], [461,335,663], [462,663,507], [463,463,557],
[464,663,527], [465,242,107], [466,343,558], [467,195,559], [468,358,378], [469,323,663], [470,560,561],
[471,663,562], [472,563,663], [473,663,564], [474,565,663], [475,566,195], [476,157,343], [477,567,250],
[478,157,346], [479,568,663], [480,569,663], [481,570,663], [482,571,663], [483,566,483], [484,157,489],
[485,485,572], [486,663,573], [487,256,107], [488,574,575], [489,663,576], [490,663,572], [491,577,107],
[492,663,390], [493,244,343], [494,578,579], [495,663,580], [496,663,581], [497,663,411], [498,582,663],
[499,343,107], [500,397,392], [501,542,663], [502,389,583], [503,584,663], [504,567,107], [505,157,228],
[506,195,399], [507,585,107], [508,663,586], [509,195,107], [510,249,663], [511,343,663], [512,587,663],
[513,157,285], [514,404,585], [515,387,663], [516,663,588], [517,589,590], [518,663,591], [519,592,232],
[520,663,426], [521,157,528], [522,410,593], [523,594,663], [524,157,147], [525,595,596], [526,406,528],
[527,663,597], [528,663,435], [529,598,663], [530,195,420], [531,599,663], [532,600,195], [533,569,423],
[534,534,601], [535,602,195], [536,422,358], [537,663,603], [538,604,663], [539,663,461], [540,426,195],
[541,605,107], [542,663,399], [543,606,663], [544,663,607], [545,608,438], [546,663,609], [547,435,429],
[548,663,610], [549,663,611], [550,663,612], [551,613,232], [552,663,614], [553,608,528], [554,316,663],
[555,224,663], [556,578,663], [557,663,596], [558,663,615], [559,343,195], [560,435,663], [561,609,354],
[562,358,496], [563,451,663], [564,616,663], [565,663,441], [566,461,663], [567,617,663], [568,476,618],
[569,157,358], [570,663,486], [571,619,663], [572,663,499], [573,367,107], [574,574,620], [575,663,621],
[576,663,622], [577,195,343], [578,663,620], [579,663,623], [580,663,518], [581,624,663], [582,251,343],
[583,609,107], [584,317,663], [585,663,511], [586,353,663], [587,625,663], [588,526,520], [589,608,663],
[590,517,626], [591,627,663], [592,217,663], [593,663,628], [594,629,663], [595,195,528], [596,663,630],
[597,631,663], [598,663,632], [599,663,535], [600,461,532], [601,633,195], [602,531,358], [603,663,634],
[604,663,635], [605,663,636], [606,204,232], [607,663,637], [608,663,528], [609,426,663], [610,638,107],
[611,663,639], [612,640,663], [613,195,218], [614,641,663], [615,350,663], [616,560,642], [617,157,195],
[618,567,363], [619,663,575], [620,663,585], [621,663,643], [622,370,663], [623,577,663], [624,355,343],
[625,663,402], [626,663,644], [627,645,663], [628,567,663], [629,157,339], [630,585,663], [631,663,646],
[632,362,663], [633,195,358], [634,647,107], [635,663,648], [636,649,663], [637,650,663], [638,651,663],
[639,663,652], [640,653,663], [641,663,654], [642,609,473], [643,482,663], [644,609,663], [645,443,663],
[646,472,663], [647,303,663], [648,663,655], [649,308,663], [650,663,656], [651,195,318], [652,657,663],
[653,195,324], [654,658,663], [655,659,663], [656,660,663], [657,661,663], [658,662,663], [659,428,663],
[660,437,663], [661,195,444], [662,195,452], [663,663,663]

144 Transition Tables of Automata

145

Bibliography

[1] T. van Aardenne-Ehrenfest and N.G. de Bruijn. “Circuits and Trees in
Oriented Linear Graphs”. Simon Stevin 28 (1951), pp. 203–217.

[2] B. Adamczewski. “Balances for Fixed Points of Primitive Substitutions”.
Theoretical Computer Science 307.1 (2003), pp. 47–75. doi: 10 . 1016 /

S0304-3975(03)00092-6.

[3] M. Aigner. Markov’s Theorem and 100 Years of the Uniqueness Conjecture.
A Mathematical Journey from Irrational Numbers to Perfect Matchings.
Springer, 2013. doi: 10.1007/978-3-319-00888-2.

[4] M. Albert and J. Lawrence. “A Proof of Ehrenfeucht’s Conjecture”. The-
oretical Computer Science 41 (1985), pp. 121–123. doi: 10.1016/0304-
3975(85)90066-0.

[5] J.-P. Allouche and J. Shallit. “The Ubiquitous Prouhet-Thue-Morse Se-
quence”. In: Sequences and their Applications. Ed. by C. Ding, T. Helleseth,
and H. Niederreiter. London: Springer London, 1999, pp. 1–16.

[6] M. Andras, iu, G. Păun, J. Dassow, and A. Salomaa. “Language-theoretic
Problems Arising from Richelieu Cryptosystems”. Theoretical Computer
Science 116.2 (1993), pp. 339–357. doi: 10.1016/0304-3975(93)90327-P.

[7] F. Bernstein. “Über eine Anwendung der Mengenlehre auf ein aus der The-
orie der säkularen Störungen herrührendes Problem”. Mathematische An-
nalen 71.3 (1911), pp. 417–439. doi: 10.1007/BF01456856.

[8] F. Bernstein. “Über geometrische Wahrscheinlichkeit und über das Axiom
der beschränkten Arithmetisierbarkeit der Beobachtungen”. Mathematische
Annalen 72.4 (1912), pp. 585–587. doi: 10.1007/BF01456678.

[9] J. Berstel. “Axel Thue’s work on repetitions in words”. Séries Formelles et
Combinatoire Algébrique (1997).

[10] J. Berstel. “Sturmian and episturmian words. A survey of some recent re-
sults”. In: Algebraic Informatics. Second International Conference, CAI
2007. Ed. by S. Bozapalidis and G. Rahonis. Lecture Notes in Computer
Science 4728. Springer, 2007, pp. 23–47. doi: 10.1007/978-3-540-75414-
5_2.

[11] J. Berstel and L. Boasson. “The Set of Minimal Words of a Context-free
Language is Context-free”. Journal of Computer and System Sciences 55.3
(1997), pp. 477–488. doi: 10.1006/jcss.1997.1497.

https://doi.org/10.1016/S0304-3975(03)00092-6
https://doi.org/10.1016/S0304-3975(03)00092-6
https://doi.org/10.1007/978-3-319-00888-2
https://doi.org/10.1016/0304-3975(85)90066-0
https://doi.org/10.1016/0304-3975(85)90066-0
https://doi.org/10.1016/0304-3975(93)90327-P
https://doi.org/10.1007/BF01456856
https://doi.org/10.1007/BF01456678
https://doi.org/10.1007/978-3-540-75414-5_2
https://doi.org/10.1007/978-3-540-75414-5_2
https://doi.org/10.1006/jcss.1997.1497

146 BIBLIOGRAPHY

[12] F. Blanchet-Sadri, N. Fox, and N. Rampersad. “On the Asymptotic Abelian
Complexity of Morphic Words”. Advances in Applied Mathematics 61.C
(2014), pp. 46–84. doi: 10.1016/j.aam.2014.08.005.

[13] J.A. Bondy and U.S.R. Murty. Graph Theory. Graduate Texts in Mathe-
matics 244. New York: Springer, 2008. isbn: 978-3642142789.

[14] E. Borel. “Les probabilités denombrables et leurs applications
arithmétiques”. Rendiconti Del Circolo Matematico Di Palermo 27
(1909), pp. 247–271.

[15] N.G. de Bruijn. Acknowledgement of Priority to C. Flye Sainte-Marie on
the Counting of Circular Arrangements of 2n Zeros and Ones that Show
Each n-letter Word Exactly Once. Tech. rep. (EUT report. WSK, Dept. of
Mathematics and Computing Science; Vol. 75-WSK-06. Technische Hoges-
chool Eindhoven Nederland, 1975.

[16] A. Carpi and A. de Luca. “Uniform Words”. Advances in Applied Mathe-
matics 32.3 (2004), pp. 485–522. doi: 10.1016/S0196-8858(03)00057-5.

[17] J. Cassaigne, J. Karhumäki, and S. Puzynina. “On k-abelian palindromes”.
Information and Computation 260 (2018), pp. 89–98. doi: 10.1016/j.ic.
2018.04.001.

[18] J. Cassaigne, J. Karhumäki, S. Puzynina, and M.A. Whiteland. “k-Abelian
Equivalence and Rationality”. In: Developments in Language Theory - 20th
International Conference, DLT 2016, Montréal, Canada, July 25–28, 2016,
Proceedings. Ed. by S. Brlek and C. Reutenauer. Vol. 9840. Lecture Notes
in Computer Science. Springer, 2016, pp. 77–88. doi: 10.1007/978-3-
662-53132-7_7.

[19] J. Cassaigne, J. Karhumäki, S. Puzynina, and M.A. Whiteland. “k-Abelian
Equivalence and Rationality”. Fundamenta Informaticae 154.1–4 (2017),
pp. 65–94. doi: 10.3233/FI-2017-1553.

[20] J. Cassaigne, J. Karhumäki, and A. Saarela. “On Growth and Fluctuation
of k-Abelian Complexity”. European Journal of Combinatorics 65 (2017),
pp. 92–105. doi: 10.1016/j.ejc.2017.05.006.

[21] J. Cassaigne and F. Nicolas. “Factor Complexity”. In: Combinatorics, Auto-
mata and Number Theory. Vol. 135. Encyclopedia Math. Appl. Cambridge
Univ. Press, Cambridge, 2010, pp. 163–247.

[22] J. Chen, X. Lü, and W. Wu. “On the k-abelian complexity of the Cantor
sequence”. Journal of Combinatorial Theory, Series A 155 (2018), pp. 287–
303. doi: 10.1016/j.jcta.2017.11.010.

[23] C. Choffrut and J. Karhumäki. “Combinatorics of Words”. In: Handbook
of Formal Languages: Volume 1 Word, Language, Grammar. Ed. by G.
Rozenberg and A. Salomaa. Berlin, Heidelberg: Springer Berlin Heidelberg,
1997, pp. 329–438. doi: 10.1007/978-3-642-59136-5_6.

[24] E.M. Coven and G.A. Hedlund. “Sequences with Minimal Block Growth”.
Mathematical Systems Theory 7.2 (1973), pp. 138–153. doi: 10 . 1007 /

BF01762232.

https://doi.org/10.1016/j.aam.2014.08.005
https://doi.org/10.1016/S0196-8858(03)00057-5
https://doi.org/10.1016/j.ic.2018.04.001
https://doi.org/10.1016/j.ic.2018.04.001
https://doi.org/10.1007/978-3-662-53132-7_7
https://doi.org/10.1007/978-3-662-53132-7_7
https://doi.org/10.3233/FI-2017-1553
https://doi.org/10.1016/j.ejc.2017.05.006
https://doi.org/10.1016/j.jcta.2017.11.010
https://doi.org/10.1007/978-3-642-59136-5_6
https://doi.org/10.1007/BF01762232
https://doi.org/10.1007/BF01762232

BIBLIOGRAPHY 147

[25] K. Culik II and J. Karhumäki. “Systems of equations over a free monoid
and Ehrenfeucht’s conjecture”. Discrete Mathematics 43.2 (1983), pp. 139–
153. doi: https://doi.org/10.1016/0012-365X(83)90152-8.

[26] T.W. Cusick and M.E. Flahive. The Markoff and Lagrange Spectra. Mathe-
matical Surveys and Monographs 30. Providence, Rhode Island: American
Mathematical Society, 1989.

[27] D. Damanik and D. Lenz. “The index of Sturmian sequences”. European
Journal of Combinatorics 23 (2002), pp. 23–29. doi: 10.1006/eujc.2000.
0496.

[28] C. Degni and A.A. Drisko. “Gray-ordered Binary Necklaces”. Electronic
Journal of Combinatorics 14.1 (2007). url: http://www.combinatorics.
org/Volume_14/Abstracts/v14i1r7.html.

[29] F. Dekking. “Strongly non-repetitive sequences and progression-free sets”.
Journal of Combinatorial Theory, Series A 27.2 (1979), pp. 181–185. doi:
10.1016/0097-3165(79)90044-X.

[30] R. Devyatov. “On Factor Complexity of Morphic Sequences”. Moscow Mat-
hematical Journal 18.2 (2018), pp. 211–303.

[31] F. Durand. “A Characterization of Substitutive Sequences Using Return
Words”. Discrete Mathematics 179.1–3 (1998), pp. 89–101. doi: 10.1016/
S0012-365X(97)00029-0.

[32] F. Durand. “Linearly Recurrent Subshifts have a Finite Number of Non-
periodic Subshift Factors”. Ergodic Theory and Dynamical Systems 20.4
(2000), pp. 1061–1078.

[33] T. Ehlers, F. Manea, R. Mercaş, and D. Nowotka. “k-Abelian Pattern Mat-
ching”. Journal of Discrete Algorithms 34 (2015), pp. 37–48. doi: 10.1016/
j.jda.2015.05.004.

[34] S. Eilenberg. Automata, Languages, and Machines. Vol. A. New York, New
York, USA: Academic Press, Inc., 1974. isbn: 978-0-12-234001-7.

[35] S. Ferenczi and T. Monteil. “Infinite Words with Uniform Frequencies, and
Invariant Measures”. In: Combinatorics, Automata and Number Theory.
Vol. 135. Encyclopedia of Mathematics and its Applications. Cambridge
Univ. Press, Cambridge, 2010, pp. 373–409.

[36] G. Fici, A. Langiu, T. Lecroq, A. Lefebvre, F. Mignosi, Jarkko Peltomäki,
and É. Prieur-Gaston. “Abelian powers and repetitions in Sturmian words”.
Theoretical Computer Science 635 (2016), pp. 16–34. doi: 10.1016/j.tcs.
2016.04.039.

[37] P. Flajolet and R. Sedgewick. Analytic Combinatorics. 1st ed. New York,
NY, USA: Cambridge University Press, 2009. isbn: 978-0-521-89806-5.

[38] G.A. Freiman. Diophantine approximation and geometry of numbers (Mar-
kov’s problem). (Russian). Kalininskii Gosudarstvennyi Universitet, Kali-
nin, 1975.

[39] D.D. Freydenberger, P. Gawrychowski, J. Karhumäki, F. Manea, and
W. Rytter. “Testing k-binomial equivalence”. arXiv e-prints (2015),
arXiv:1509.00622. arXiv: 1509.00622 [cs.FL].

https://doi.org/https://doi.org/10.1016/0012-365X(83)90152-8
https://doi.org/10.1006/eujc.2000.0496
https://doi.org/10.1006/eujc.2000.0496
http://www.combinatorics.org/Volume_14/Abstracts/v14i1r7.html
http://www.combinatorics.org/Volume_14/Abstracts/v14i1r7.html
https://doi.org/10.1016/0097-3165(79)90044-X
https://doi.org/10.1016/S0012-365X(97)00029-0
https://doi.org/10.1016/S0012-365X(97)00029-0
https://doi.org/10.1016/j.jda.2015.05.004
https://doi.org/10.1016/j.jda.2015.05.004
https://doi.org/10.1016/j.tcs.2016.04.039
https://doi.org/10.1016/j.tcs.2016.04.039
http://arxiv.org/abs/1509.00622

148 BIBLIOGRAPHY

[40] P. Gawrychowski, D. Krieger, N. Rampersad, and J. Shallit. “Finding the
Growth Rate of a Regular of Context-Free Language in Polynomial Time”.
In: Developments in Language Theory: 12th International Conference, DLT
2008, Kyoto, Japan, September 16-19, 2008. Proceedings. Ed. by M. Ito and
M. Toyama. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 339–
358. doi: 10.1007/978-3-540-85780-8_27.

[41] H. Gruber and M. Holzer. “From Finite Automata to Regular Expressi-
ons and Back — A Summary on Descriptional Complexity”. International
Journal of Foundations of Computer Science 26.8 (2015), pp. 1009–1040.
doi: 10.1142/S0129054115400110.

[42] V.S. Guba. “Equivalence of Infinite Systems of Equations in Free Groups
and Semigroups to Finite Subsystems”. Matematicheskie Zametki 40.3
(1986). In Russian, pp. 321–324, 428.

[43] M. Hall, Jr. “On the sum and products of continued fractions”. Annals of
Mathematics 48.4 (1947), pp. 966–993. doi: 10.2307/1969389.

[44] T. Harju, J. Karhumäki, and W. Plandowski. “Compactness of Systems of
Equations in Semigroups”. International Journal of Algebra and Computa-
tion 7.4 (1997), pp. 457–470. doi: 10.1142/S0218196797000204.

[45] J.E. Hopcroft and J.D. Ullman. Introduction To Automata Theory, Lan-
guages, And Computation. 1st. Addison-Wesley Publishing Co., Inc., 1979.
isbn: 0-201-02988-X.

[46] Huova, Mari. “Existence of an Infinite Ternary 64-Abelian Square-free
Word”. RAIRO Theoretical Informatics and Applications 48.3 (2014),
pp. 307–314. doi: 10.1051/ita/2014012.

[47] M. Huova and J. Karhumäki. Observations and Problems on k-Abelian
Avoidability. 2011. arXiv: 1104.4273 [math.CO].

[48] M. Huova, J. Karhumäki, and A. Saarela. “Problems in between Words and
Abelian Words: k-Abelian Avoidability”. Theoretical Computer Science 454
(2012), pp. 172–177. doi: 10.1016/j.tcs.2012.03.010.

[49] M. Huova, J. Karhumäki, A. Saarela, and K. Saari. “Local Squares, Perio-
dicity and Finite Automata”. Rainbow of Computer Science: Dedicated to
Hermann Maurer on the Occasion of His 70th Birthday. Ed. by C.S. Ca-
lude, G. Rozenberg, and A. Salomaa. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 90–101. doi: 10.1007/978-3-642-19391-0_7.

[50] M. Huova and A. Saarela. “Strongly k-Abelian Repetitions”. In: Combina-
torics on Words - 9th International Conference, WORDS 2013, Turku, Fin-
land, September 16-20. Proceedings. 2013, pp. 161–168. doi: 10.1007/978-
3-642-40579-2_18.

[51] A. Hurwitz. “Ueber die angenäherte Darstellung der Irrationalzahlen durch
rationale Brüche”. Mathematische Annalen 39.2 (1891), pp. 279–284. doi:
10.1007/BF01206656.

[52] J. Justin and G. Pirillo. “Fractional powers in Sturmian words”. Theoretical
Computer Science 255 (2001), pp. 363–376. doi: 10.1016/S0304-3975(99)
90294-3.

https://doi.org/10.1007/978-3-540-85780-8_27
https://doi.org/10.1142/S0129054115400110
https://doi.org/10.2307/1969389
https://doi.org/10.1142/S0218196797000204
https://doi.org/10.1051/ita/2014012
http://arxiv.org/abs/1104.4273
https://doi.org/10.1016/j.tcs.2012.03.010
https://doi.org/10.1007/978-3-642-19391-0_7
https://doi.org/10.1007/978-3-642-40579-2_18
https://doi.org/10.1007/978-3-642-40579-2_18
https://doi.org/10.1007/BF01206656
https://doi.org/10.1016/S0304-3975(99)90294-3
https://doi.org/10.1016/S0304-3975(99)90294-3

BIBLIOGRAPHY 149

[53] J. Karhumäki. “Generalized Parikh Mappings and Homomorphisms”. In-
formation and Control 47.3 (1980), pp. 155–165. doi: 10.1016/S0019-
9958(80)90493-3.

[54] J. Karhumäki and W. Plandowski. “On the Size of Independent Systems
of Equations in Semigroups”. Theoretical Computer Science 168.1 (1996),
pp. 105–119. doi: 10.1016/S0304-3975(96)00064-3.

[55] J. Karhumäki, S. Puzynina, M. Rao, and M.A. Whiteland. “On Cardinali-
ties of k-Abelian Equivalence Classes”. Theoretical Computer Science 658,
Part A (2017). Formal Languages and Automata: Models, Methods and
Application In honour of the 70th birthday of Antonio Restivo, pp. 190–
204. doi: 10.1016/j.tcs.2016.06.010.

[56] J. Karhumäki, S. Puzynina, and A. Saarela. “Fine and Wilf’s Theorem
for k-Abelian Periods”. International Journal of Foundations of Computer
Science 24.7 (2013), pp. 1135–1152. doi: 10.1142/S0129054113400352.

[57] J. Karhumäki, A. Saarela, and L.Q. Zamboni. “On a Generalization of
Abelian Equivalence and Complexity of Infinite Words”. Journal of Com-
binatorial Theory, Series A 120.8 (2013), pp. 2189–2206. doi: 10.1016/j.
jcta.2013.08.008.

[58] J. Karhumäki, A. Saarela, and L.Q. Zamboni. “Variations of the Morse–
Hedlund Theorem for k-Abelian Equivalence”. Acta Cybernetica 23.1
(2017), pp. 175–189. doi: 10.14232/actacyb.23.1.2017.11.

[59] J. Karhumäki and M.A. Whiteland. “Regularity of k-Abelian Equivalence
Classes of Fixed Cardinality”. In: Adventures Between Lower Bounds and
Higher Altitudes - Essays Dedicated to Juraj Hromkovič on the Occasion of
His 60th Birthday. 2018, pp. 49–62. doi: 10.1007/978-3-319-98355-4_4.

[60] V. Keränen. “Abelian Squares Are Avoidable on 4 Letters”. In: Procee-
dings of the 19th International Colloquium on Automata, Languages and
Programming. ICALP ’92. Springer-Verlag, 1992, pp. 41–52.

[61] J. Lawrence. “The Non-existence of Finite Test Sets for Set-equivalence of
Finite Substitions”. Bulletin of the EATCS 28 (1986), pp. 34–36.

[62] M. Lejeune, J. Leroy, and M. Rigo. “Computing the k-binomial complexity
of the Thue–Morse word”. arXiv e-prints (2018), arXiv:1812.07330. arXiv:
1812.07330 [cs.DM].

[63] M. Lothaire. Combinatorics on Words. Vol. 17. Encyclopedia of Mathema-
tics and its Applications. Addison-Wesley, Advanced Book Program, World
Science Division, 1983. isbn: 978-0-201-13516-9.

[64] M. Lothaire. Algebraic Combinatorics on Words. Vol. 90. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge,
2002. doi: 10.1017/CBO9781107326019.

[65] M. Lothaire. Applied Combinatorics on Words. Vol. 105. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2005. doi:
10.1017/CBO9781107341005.

[66] B. Madill and N. Rampersad. “The Abelian Complexity of the Paperfolding
Word”. Discrete Mathematics 313.7 (2013), pp. 831–838. doi: 10.1016/j.
disc.2013.01.005.

https://doi.org/10.1016/S0019-9958(80)90493-3
https://doi.org/10.1016/S0019-9958(80)90493-3
https://doi.org/10.1016/S0304-3975(96)00064-3
https://doi.org/10.1016/j.tcs.2016.06.010
https://doi.org/10.1142/S0129054113400352
https://doi.org/10.1016/j.jcta.2013.08.008
https://doi.org/10.1016/j.jcta.2013.08.008
https://doi.org/10.14232/actacyb.23.1.2017.11
https://doi.org/10.1007/978-3-319-98355-4_4
http://arxiv.org/abs/1812.07330
https://doi.org/10.1017/CBO9781107326019
https://doi.org/10.1017/CBO9781107341005
https://doi.org/10.1016/j.disc.2013.01.005
https://doi.org/10.1016/j.disc.2013.01.005

150 BIBLIOGRAPHY

[67] A. Mateescu, A. Salomaa, K. Salomaa, and S. Yu. “A sharpening of the
Parikh mapping”. RAIRO-Theoritcal Informatics and Applications 35.6
(2001), pp. 551–564. doi: 10.1051/ita:2001131.

[68] R. Mercaş and A. Saarela. “3-Abelian Cubes Are Avoidable on Binary
Alphabets”. In: Developments in Language Theory. Ed. by M.-P. Béal and
O. Carton. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 374–
383. doi: 10.1007/978-3-642-38771-5_33.

[69] R. Mercaş and A. Saarela. “5-Abelian Cubes are Avoidable on Binary Al-
phabets”. RAIRO - Theoretical Informatics and Applications 48.4 (2014),
pp. 467–478. doi: 10.1051/ita/2014020.

[70] F. Mignosi and G. Pirillo. “Repetitions in the Fibonacci infinite word”.
RAIRO Informatique Théorique et Applications 26.3 (1992), pp. 199–204.

[71] H.M. Morse. “Recurrent geodesics on a surface of negative curvature”.
Transactions of the American Mathematical Society 22.1 (1921), pp. 84–
100. doi: 10.2307/1988844.

[72] M. Morse and G.A. Hedlund. “Symbolic Dynamics II. Sturmian Trajec-
tories”. American Journal of Mathematics 62.1 (1940), pp. 1–42. issn:
00029327, 10806377. url: https://www.jstor.org/stable/2371431.

[73] J. Mykkeltveit. “A Proof of Golomb’s Conjecture for the de Bruijn graph”.
Journal of Combinatorial Theory, Series B 13 (1972), pp. 40–45. doi: 10.
1016/0095-8956(72)90006-8.

[74] D. Nowotka and A. Saarela. “An Optimal Bound on the Solution Sets
of One-Variable Word Equations and its Consequences”. In: 45th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP
2018). Ed. by I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella.
Vol. 107. Leibniz International Proceedings in Informatics (LIPIcs). Dag-
stuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018,
136:1–136:13. doi: 10.4230/LIPIcs.ICALP.2018.136.

[75] D. Nowotka and A. Saarela. “One-Variable Word Equations and Three-
Variable Constant-Free Word Equations”. International Journal of Founda-
tions of Computer Science 29.5 (2018). doi: 10.1142/S0129054118420121.

[76] J.-J. Pansiot. “Complexité des Facteurs des Mots Infinis Engendrés par
Morphimes Itérés”. In: Automata, Languages and Programming, 11th Collo-
quium, Antwerp, Belgium, July 16-20, 1984, Proceedings. Ed. by J. Pareda-
ens. Vol. 172. Lecture Notes in Computer Science. Springer, 1984, pp. 380–
389. isbn: 3-540-13345-3. doi: 10.1007/3-540-13345-3_34.

[77] J.-J. Pansiot. “Subword Complexities and Iteration”. Bulletin of the EA-
TCS 26 (1985), pp. 55–62.

[78] A. Parreau, M. Rigo, E. Rowland, and É. Vandomme. “A New Approach to
the 2-Regularity of the `-Abelian Complexity of 2-Automatic Sequences”.
The Electronic Journal of Combinatorics 22.1 (2015), P1.27. url: https:
/ / www . combinatorics . org / ojs / index . php / eljc / article / view /

v22i1p27.

https://doi.org/10.1051/ita:2001131
https://doi.org/10.1007/978-3-642-38771-5_33
https://doi.org/10.1051/ita/2014020
https://doi.org/10.2307/1988844
https://www.jstor.org/stable/2371431
https://doi.org/10.1016/0095-8956(72)90006-8
https://doi.org/10.1016/0095-8956(72)90006-8
https://doi.org/10.4230/LIPIcs.ICALP.2018.136
https://doi.org/10.1142/S0129054118420121
https://doi.org/10.1007/3-540-13345-3_34
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p27
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p27
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p27

BIBLIOGRAPHY 151

[79] J. Peltomäki. “Introducing Privileged Words: Privileged Complexity of
Sturmian Words”. Theoretical Computer Science 500 (2013), pp. 57–67.
doi: 10.1016/j.tcs.2013.05.028.

[80] J. Peltomäki. “Privileged Words and Sturmian Words”. Ph.D. dissertation.
Turku, Finland: Turku Centre for Computer Science, University of Turku,
2016. url: http://urn.fi/URN:ISBN:978-952-12-3422-4.

[81] J. Peltomäki and M.A. Whiteland. On k-Abelian Equivalence and Genera-
lized Lagrange Spectra. (Submitted). 2018. url: https://arxiv.org/abs/
1809.09047v1.

[82] J. Peltomäki and M.A. Whiteland. “Every nonnegative real number is an
abelian critical exponent”. In: Proceedings of WORDS 2019. Lecture Notes
in Computer Science. (To appear). Springer, 2019.

[83] E. Prouhet. “Mémoire sur quelques Relations entre les Puissances des Nom-
bres”. Comptes rendus de l’Académie des Sciences Paris. I 33 (1851), p. 225.

[84] N. Pytheas Fogg. Substitutions in Dynamics, Arithmetics and Combinato-
rics. Lecture Notes in Mathematics 1794. Springer, 2002. doi: 10.1007/
b13861.

[85] M. Queffélec. Substitution Dynamical Systems — Spectral Analysis. Lecture
Notes in Mathematics. Springer Berlin Heidelberg, 2010. isbn: 978-3-642-
11212-6.

[86] M. Rao. “On Some Generalizations of Abelian Power Avoidability”. The-
oretical Computer Science 601 (2015), pp. 39–46. doi: 10.1016/j.tcs.
2015.07.026.

[87] M. Rao, M. Rigo, and P. Salimov. “Avoiding 2-binomial squares and cubes”.
Theoretical Computer Science 572 (2015), pp. 83–91. doi: 10.1016/j.tcs.
2015.01.029.

[88] M. Rao and M. Rosenfeld. “Avoidability of Long k-Abelian Repetitions”.
Mathematics of Computation 85.302 (2016), pp. 3051–3060. doi: 10.1090/
mcom/3085.

[89] G. Rauzy. “Suites á Termes dans un Alphabet Fini”. Seminaire de Théorie
des Nombres de Bordeaux 12 (1982-1983), pp. 1–16. url: http://eudml.
org/doc/182163.

[90] L. Rédei. The Theory of Finitely Generated Commutative Semigroups. In-
ternational series of monographs in pure and applied mathematics. Perga-
mon Press, 1965. doi: doi.org/10.1016/C2013-0-01797-5.

[91] G. Richomme, K. Saari, and L.Q. Zamboni. “Abelian Complexity of Mini-
mal Subshifts”. Journal of the London Mathematical Society 83.1 (2011),
pp. 79–95. doi: 10.1112/jlms/jdq063.

[92] M. Rigo. “Relations on Words”. Indagationes Mathematicae 28.1 (2017),
pp. 183–204. doi: 10.1016/j.indag.2016.11.018.

[93] M. Rigo and P. Salimov. “Another Generalization of Abelian Equivalence:
Binomial Complexity of Infinite Words”. Theoretical Computer Science 601
(2015), pp. 47–57. doi: 10.1016/j.tcs.2015.07.025.

https://doi.org/10.1016/j.tcs.2013.05.028
http://urn.fi/URN:ISBN:978-952-12-3422-4
https://arxiv.org/abs/1809.09047v1
https://arxiv.org/abs/1809.09047v1
https://doi.org/10.1007/b13861
https://doi.org/10.1007/b13861
https://doi.org/10.1016/j.tcs.2015.07.026
https://doi.org/10.1016/j.tcs.2015.07.026
https://doi.org/10.1016/j.tcs.2015.01.029
https://doi.org/10.1016/j.tcs.2015.01.029
https://doi.org/10.1090/mcom/3085
https://doi.org/10.1090/mcom/3085
http://eudml.org/doc/182163
http://eudml.org/doc/182163
https://doi.org/doi.org/10.1016/C2013-0-01797-5
https://doi.org/10.1112/jlms/jdq063
https://doi.org/10.1016/j.indag.2016.11.018
https://doi.org/10.1016/j.tcs.2015.07.025

152 BIBLIOGRAPHY

[94] M. Rigo, P. Salimov, and É. Vandomme. “Some properties of abelian return
words”. Journal of Integer Sequences 16 (2013).

[95] J. Riordan. An introduction to combinatorial analysis. Wiley series in pro-
bability and mathematical statistics. Probability and mathematical statis-
tics. Wiley, 1958.

[96] A.M. Rockett and P. Szüsz. Continued Fractions. World Scientific Publis-
hing, 1992.

[97] F. Ruskey and J. Sawada. “An Efficient Algorithm for Generating Necklaces
with Fixed Density”. SIAM J. Comput. 29.2 (1999), pp. 671–684. doi:
10.1137/S0097539798344112.

[98] A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power
Series. Texts and Monographs in Computer Science. Springer, 1978. doi:
10.1007/978-1-4612-6264-0.

[99] C. Savage. “A Survey of Combinatorial Gray Codes”. SIAM Review 39.4
(1997), pp. 605–629. doi: 10.1137/S0036144595295272.

[100] A. Shevlyakov. “Elements of Algebraic Geometry Over a Free Semilattice”.
Algebra and Logic 54.3 (2015), pp. 258–271. doi: 10.1007/s10469-015-
9345-6.

[101] K.G. Subramanian, A.M. Huey, and A.K. Nagar. “On Parikh Martices”.
International Journal of Foundations of Computer Science 20.02 (2009),
pp. 211–219. doi: 10.1142/S0129054109006528.

[102] A. Szilard, S. Yu, K. Zhang, and J. Shallit. “Characterizing regular langua-
ges with polynomial densities”. In: Mathematical Foundations of Computer
Science 1992: 17th International Symposium Prague, Czechoslovakia, Au-
gust 24–28, 1992 Proceedings. Ed. by I.M. Havel and V. Koubek. Berlin,
Heidelberg: Springer, 1992, pp. 494–503. doi: 10.1007/3- 540- 55808-
X_48.

[103] A. Thue. “Über Unendliche Zeichenreihen”. Skrifter Udgivne af Videnskabs-
selskabet i Christiania: Mathematisk-naturvidenskabelig Klasse (1906). Re-
printed in ”Selected mathematical papers of Axel Thue,” T. Nagell, ed.,
Universitetsforlaget, Oslo, 1977, pp. 139–158., pp. 1–22.

[104] A. Thue. “Über die gegenseitige Lage gleicher Teile gewisser Zeichenrei-
hen”. Skrifter Udgivne af Videnskabsselskabet i Christiania: Mathematisk-
naturvidenskabelig Klasse 1 (1912). Reprinted in ”Selected mathematical
papers of Axel Thue,” T. Nagell, ed., Universitetsforlaget, Oslo, 1977, pp.
413–478., pp. 1–67.

[105] O. Veblen. “An Application of Modular Equations in Analysis Situs”. An-
nals of Mathematics 14.1/4 (1912), pp. 86–94. issn: 0003486X. url: http:
//www.jstor.org/stable/1967604.

[106] L. Vuillon. “A Characterization of Sturmian Words by Return Words”.
European Journal of Combinatorics 22.2 (2001), pp. 263–275. doi: 10.

1006/eujc.2000.0444.

[107] S.H. Weintraub. Jordan Canonical Form: Theory and Practice. Synthe-
sis Lectures on Mathematics & Statistics. Morgan & Claypool Publishers,
2009. doi: 10.2200/S00218ED1V01Y200908MAS006.

https://doi.org/10.1137/S0097539798344112
https://doi.org/10.1007/978-1-4612-6264-0
https://doi.org/10.1137/S0036144595295272
https://doi.org/10.1007/s10469-015-9345-6
https://doi.org/10.1007/s10469-015-9345-6
https://doi.org/10.1142/S0129054109006528
https://doi.org/10.1007/3-540-55808-X_48
https://doi.org/10.1007/3-540-55808-X_48
http://www.jstor.org/stable/1967604
http://www.jstor.org/stable/1967604
https://doi.org/10.1006/eujc.2000.0444
https://doi.org/10.1006/eujc.2000.0444
https://doi.org/10.2200/S00218ED1V01Y200908MAS006

BIBLIOGRAPHY 153

[108] M. Weston and V. Vajnovszki. “Gray Codes for Necklaces and Lyndon
Words of Arbitrary Base”. Pure Mathematics and Applications 17.1–2
(2006), pp. 175–182.

[109] M.A. Whiteland. “Asymptotic Abelian Complexities of Certain Morphic
Binary Words”. Journal of Automata, Languages and Combinatorics 24.1
(2019), pp. 89–114. doi: 10.25596/jalc-2019-089.

[110] M.A. Whiteland. On Equations Over Monoids Defined by Generalizati-
ons of Abelian Equivalence. (in preparation). Parts presented at the Fifth
Russian-Finnish Symposium on Discrete Mathematics (RuFiDiM), Veliky
Novgorod, Russia, May 19–22. 2019.

[111] I. Zinovik, D. Kroening, and Y. Chebiryak. “Computing Binary Combina-
torial Gray Codes Via Exhaustive Search With SAT Solvers”. IEEE Trans.
Information Theory 54.4 (2008), pp. 1819–1823. doi: 10.1109/TIT.2008.
917695.

https://doi.org/10.25596/jalc-2019-089
https://doi.org/10.1109/TIT.2008.917695
https://doi.org/10.1109/TIT.2008.917695

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services
178. Jari Björne, Biomedical Event Extraction with Machine Learning
179. Katri Haverinen, Natural Language Processing Resources for Finnish: Corpus

Development in the General and Clinical Domains
180. Ville Salo, Subshifts with Simple Cellular Automata
181. Johan Ersfolk, Scheduling Dynamic Dataflow Graphs
182. Hongyan Liu, On Advancing Business Intelligence in the Electricity Retail Market
183. Adnan Ashraf, Cost-Efficient Virtual Machine Management: Provisioning,

Admission Control, and Consolidation
184. Muhammad Nazrul Islam, Design and Evaluation of Web Interface Signs to

Improve Web Usability: A Semiotic Framework
185. Johannes Tuikkala, Algorithmic Techniques in Gene Expression Processing: From

Imputation to Visualization
186. Natalia Díaz Rodríguez, Semantic and Fuzzy Modelling for Human Behaviour

Recognition in Smart Spaces. A Case Study on Ambient Assisted Living
187. Mikko Pänkäälä, Potential and Challenges of Analog Reconfigurable Computation

in Modern and Future CMOS
188. Sami Hyrynsalmi, Letters from the War of Ecosystems – An Analysis of

Independent Software Vendors in Mobile Application Marketplaces
189. Seppo Pulkkinen, Efficient Optimization Algorithms for Nonlinear Data Analysis
190. Sami Pyöttiälä, Optimization and Measuring Techniques for Collect-and-Place

Machines in Printed Circuit Board Industry
191. Syed Mohammad Asad Hassan Jafri, Virtual Runtime Application Partitions for

Resource Management in Massively Parallel Architectures
192. Toni Ernvall, On Distributed Storage Codes
193. Yuliya Prokhorova, Rigorous Development of Safety-Critical Systems
194. Olli Lahdenoja, Local Binary Patterns in Focal-Plane Processing – Analysis and

Applications
195. Annika H. Holmbom, Visual Analytics for Behavioral and Niche Market

Segmentation
196. Sergey Ostroumov, Agent-Based Management System for Many-Core Platforms:

Rigorous Design and Efficient Implementation
197. Espen Suenson, How Computer Programmers Work – Understanding Software

Development in Practise
198. Tuomas Poikela, Readout Architectures for Hybrid Pixel Detector Readout Chips
199. Bogdan Iancu, Quantitative Refinement of Reaction-Based Biomodels
200. Ilkka Törmä, Structural and Computational Existence Results for Multidimensional

Subshifts
201. Sebastian Okser, Scalable Feature Selection Applications for Genome-Wide

Association Studies of Complex Diseases
202. Fredrik Abbors, Model-Based Testing of Software Systems: Functionality and

Performance
203. Inna Pereverzeva, Formal Development of Resilient Distributed Systems
204. Mikhail Barash, Defining Contexts in Context-Free Grammars
205. Sepinoud Azimi, Computational Models for and from Biology: Simple Gene

Assembly and Reaction Systems
206. Petter Sandvik, Formal Modelling for Digital Media Distribution

207. Jongyun Moon, Hydrogen Sensor Application of Anodic Titanium Oxide
Nanostructures

208. Simon Holmbacka, Energy Aware Software for Many-Core Systems
209. Charalampos Zinoviadis, Hierarchy and Expansiveness in Two-Dimensional

Subshifts of Finite Type
210. Mika Murtojärvi, Efficient Algorithms for Coastal Geographic Problems
211. Sami Mäkelä, Cohesion Metrics for Improving Software Quality
212. Eyal Eshet, Examining Human-Centered Design Practice in the Mobile Apps Era
213. Jetro Vesti, Rich Words and Balanced Words
214. Jarkko Peltomäki, Privileged Words and Sturmian Words
215. Fahimeh Farahnakian, Energy and Performance Management of Virtual

Machines: Provisioning, Placement and Consolidation
216. Diana-Elena Gratie, Refinement of Biomodels Using Petri Nets
217. Harri Merisaari, Algorithmic Analysis Techniques for Molecular Imaging
218. Stefan Grönroos, Efficient and Low-Cost Software Defined Radio on Commodity
 Hardware
219. Noora Nieminen, Garbling Schemes and Applications
220. Ville Taajamaa, O-CDIO: Engineering Education Framework with Embedded
 Design Thinking Methods
221. Johannes Holvitie, Technical Debt in Software Development – Examining
 Premises and Overcoming Implementation for Efficient Management
222. Tewodros Deneke, Proactive Management of Video Transcoding Services
223. Kashif Javed, Model-Driven Development and Verification of Fault Tolerant
 Systems
224. Pekka Naula, Sparse Predictive Modeling – A Cost-Effective Perspective
225. Antti Hakkala, On Security and Privacy for Networked Information Society –
 Observations and Solutions for Security Engineering and Trust Building in
 Advanced Societal Processes
226. Anne-Maarit Majanoja, Selective Outsourcing in Global IT Services – Operational
 Level Challenges and Opportunities
227. Samuel Rönnqvist, Knowledge-Lean Text Mining
228. Mohammad-Hashem Hahgbayan, Energy-Efficient and Reliable Computing in

Dark Silicon Era
229. Charmi Panchal, Qualitative Methods for Modeling Biochemical Systems and

Datasets: The Logicome and the Reaction Systems Approaches
230. Erkki Kaila, Utilizing Educational Technology in Computer Science and

Programming Courses: Theory and Practice
231. Fredrik Robertsén, The Lattice Boltzmann Method, a Petaflop and Beyond
232. Jonne Pohjankukka, Machine Learning Approaches for Natural Resource Data
233. Paavo Nevalainen, Geometric Data Understanding: Deriving Case-Specific

Features
234. Michal Szabados, An Algebraic Approach to Nivat’s Conjecture
235. Tuan Nguyen Gia, Design for Energy-Efficient and Reliable Fog-Assisted

Healthcare IoT Systems
236. Anil Kanduri, Adaptive Knobs for Resource Efficient Computing
237. Veronika Suni, Computational Methods and Tools for Protein Phosphorylation

Analysis
238. Behailu Negash, Interoperating Networked Embedded Systems to Compose the

Web of Things
239. Kalle Rindell, Development of Secure Software: Rationale, Standards and

Practices
240. Jurka Rahikkala, On Top Management Support for Software Cost Estimation
241. Markus A. Whiteland, On the k-Abelian Equivalence Relation of Finite Words

Turku
Centre for
Computer
Science

University of Turku
Faculty of Science and Engineering
 • Department of Future Technologies
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Faculty of Science and Engineering
 • Computer Engineering
 • Computer Science
Faculty of Social Sciences, Business and Economics
 • Information Systems

ISBN 978-952-12-3837-6
ISSN 1239-1883

http://www. tucs.fi

tucs@abo.fi

M
arkus A

. W
hiteland

M
arkus A

. W
hiteland

O
n the k-A

belian Equivalence R
elation of Finite W

ords

O
n the k-A

belian Equivalence R
elation of Finite W

ords

