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Abstract. The aim of the present work is to report investigations concerning the influence of homovalent
modificators on relaxor properties of PBZT 25/70/30 ceramics. The selection of the proper homovalent
additive was very important. Literature reports as well as data taken from the periodic table indicated,
that calcium ions substitute themselves for lead ions with high likelihood of occurrence. The investigations
showed that the substitution significantly changed the microstructure of ceramics – with grains of calcium
modified ceramics decreasing and density increasing. The XRD measurements indicate that the pure PBZT
ceramics as well as calcium dopant were characterised by tetragonal structure with space group I4/mmm.
Addition of calcium leads to a slight decrease in the lattice constant and crystal structure. The calcium
modification also changes the dielectric properties. The temperature characteristic of the dielectric constant
achieved a broadened maximum at temperature Tm, which decreases with increasing Ca content. The
properties typical for ferroelectric relaxors weaken with increasing calcium dopant.

1 Introduction

Among the ceramic materials exists a certain special
group, which is characterised by an extremely quick re-
sponse to an external electrical impulse. The materials
are called ferroelectric relaxors (RF) or relaxors. They are
a class of disordered materials possessing peculiar struc-
ture and properties. At high temperature they exist on
a non-polar paraelectric (PE) phase, which is similar in
many respects to the PE phase of normal ferroelectrics.
Upon cooling, at the so-called Burn’s temperature (TB),
they transform into the ergodic relaxor (ER) state, which
characterised by the presence of a polar region of nanome-
ter scale with randomly distributed direction of dipole mo-
ments [1]. The beginning of investigations on this type of
material is attributed to Cross [2]. Over the last thirty
years, a number of models have attempted to explain the
extraordinary behaviour of these materials, but a fully
consistent model describing the behaviour of relaxors has
not existed up to now. The intriguing features of RF
makes them very attractive from the viewpoint of basic
research. The RF are also very original materials with
potential applications in electronic, optical and precision
mechanical systems [3–6], mainly on the grounds of their
physical properties revealed upon application of the elec-
tric field [7,8]. The relaxor behaviour was first observed
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in the perovskites with disorder non-isovalent ions, in-
cluding the stoichiometric complex perovskite compounds
(e.g. Pb (Mg1/3Nb2/3) O3 or Pb (Sc1/2Ta1/2) O3) and non-
stoichiometric solid solutions, which originate from the
PZT system. It is commonly known that the properties of
PZT are enhanced or by the addition of different dopants
in “A” or “B” sites [1]. The proper additives cause the
appearance of relaxor behaviour [2,3]. One example of
such additives is the barium ion. The modification of the
PZT system by barium was connected with the creation
of the (Pb, Ba)(Zr, Ti)O3 (PBZT) system. The investiga-
tions into the PBZT system were initiated by Smolenskii
et al. [8]. Structural studies of the discussed ceramic ma-
terials were performed by Ikeda [9] who worked out the
phase diagram on this base. The investigations were con-
tinued by Li and Haertling [7]. The authors found that the
ceramics for the range of compositions near the boundaries
between the ferroelectric (FE) rhombohedral, tetragonal
and paraelectric (PE) cubic phases show behaviour typi-
cal of a ferroelectric relaxor. The example of such compo-
sitions are PBZT 25/70/30 ceramics. Further investiga-
tions revealed that heterovalent additives intensified the
behaviour considerably [5,7,10].

Investigations described in this paper are focused on
PBZT ceramics with Zr/Ti ratios of 70/30 and Ba content
of 25 [11]. The influence on relaxor properties of heterova-
lent additives substituted Pb or Ba in the A-site of the
crystal lattice as well as Nb in the B-site were described in
detail in the series of papers published previously [12–15].
The additives improved relaxor properties and ex-
tended the temperature range along with their presence.
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Fig. 1. Thermal analysis data of PBZT 25/70/30 ceramics
modified by 1 at.% of calcium.

The thorough analysis of the results allows the author of
this publication to suggest that the influence of homova-
lent additives would have the opposite effect. Very impor-
tant for verification of the hypothesis was the selection
of the proper homovalent additive. Data taken from the
periodic table indicated that calcium ions would be suit-
able. However, despite of fact that the literature around
the subject includes a lot of work describing the influ-
ence of homovalent as well as heterovalent modificators
on the ferroelectric relaxor behaviour [16,17], the influ-
ence of calcium ions has not been reported up to now.
The literature describes the influence of calcium ions on
the physical properties of PZT system, and shows that the
calcium ions meaningfully improved the physical proper-
ties of ceramics (among other piezoelectric and dielectric
properties) [18–20]. The aim of this paper is to present the
influence of calcium ions on the dielectric and ferroelectric
relaxor properties.

2 Sample preparation

Powders of the selected compositions were prepared from
stoichiometric mixtures of the constituent oxides or car-
bonates, PbO; BaCO3, ZrO2, TiO2 and CaCO3, which
were mixed for 12 h, and pressed into cylindrical pellets.
Before the synthesis process the small amount of obtained
powder had been tested using the thermal analysis. Ex-
emplary results of PBZT ceramics modified by 1 at.% of
calcium are presented in Figure 1.

The precise analysis of obtained results of TG, DTA
and DTG measurements point towards the slight loss of
the total of weight Δm ≈ 4%. The TG curve shows three
temperature ranges connected with this loss. The first one
takes place at the RT−400 ◦C range of temperature and
is connected to the three small local minimums which are
visible on the DTG curve at T = 69 ◦C, T = 270 ◦C
and T = 364 ◦C. The moisture evaporation is responsi-
ble for the first local minimum appearing on the DTG
curve. The second notable weight loss occurs within the
temperature range in of 700 ◦C−825 ◦C and is connected
with the large local minimum observed on DTG curve at

temperature 811 ◦C. The weight loss in this range is most
significant and equals Δm ≈ 2.5%. The loss is probably a
result of barium carbonate and calcium carbonate decom-
position and emission of carbon dioxide. The last temper-
ature range, within which the loss of weight takes place, is
between 750 ◦C−1000 ◦C. Moreover, at this temperature
range on the DTA curve two relatively broad exothermic
peaks are visible, evidently due to the crystallisation pro-
cess of oxides and the transformation of amorphous phase
into the perovskite phase. Based on the thermal analysis
results, the following conditions of the thermal synthesis
were set: 2 h at a temperature of 970 ◦C. The crumbled,
milled and sieved materials were once more pressed into
cylindrical pellets and sintered at 1250 ◦C for 4 h. This
procedure was repeated before final sintering at 1300 ◦C
for 12 h. Those sintering processes were carried out in a
double crucible with some amount of PbO and ZrO2 in
order to preserve the established composition and in par-
ticular, to avoid the loss of PbO caused by its sublimation.
The Archimedes displacement method with distilled wa-
ter was employed to evaluate sample density. The density
changed very slightly from 6.8 g/cm3 when undoped, to
7.0 g/cm3 when doped with 4 at.% Ca. The microstruc-
ture of the discussed samples was analysed by a scanning
electron microscope equipped with an energy dispersive
X-ray spectrometer (EDS) with Si(Li) X-ray detector.

The obtained ceramics exhibit perovskite structure,
which was confirmed by XRD measurements. The mea-
surements were carried out on the ceramic samples at
room temperature, using a Huber diffractometer. The
diffraction diagram was measured from 19◦ to 100◦ in 2θ
with a 0.05◦ step and analysed using a set of programs i.e.
the DHN powder diffraction system ver. 2.3.

The computerised automatic system based on preci-
sion LCR meter Agilent E4980A was used to measure the
temperature dependencies of permittivity at several fre-
quencies in the range 0.1−1000 kHz of the measuring field.
The samples were deaged by thermal treatment at 400 ◦C
prior to measurements. Consequently some of the frozen
defects, formed during the sintering process, recombined
and the tensions caused by mechanical treatment relaxed.

3 Results and discussion

The microstructure of pure PBZT ceramics was described
in the previous paper [11]. The material had a good de-
veloped microstructure consisting of polyhedral-shaped
grains with an average size in the order of 15 μm. The
grain structure of calcium modified ceramics are illus-
trated in Figure 2. Generally the addition of calcium re-
sulted in decreasing of average grain size. However there
are no apparent differences in microstructure between un-
doped PBZT 25/70/30 and 1% calcium doped samples.
The average grain size of these ceramics is equal to 15 μm
and 13.5 μm, for pure ceramic and 1 at.% of calcium
modified ceramic, respectively. The additional increase in
modifier content is connected to the significant changes
in average grains size. For samples with the 4 at.% of cal-
cium dopant the average grain size (>6.2 μm) was approx.
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(a) (b)

Fig. 2. Scanning electron micrograph of fracture surface of PBZT ceramics modified by (a) 1 at.% and (b) 4 at.% of Ca.

(a) (b)

Fig. 3. XRD pattern of (a) pure 25/70/30 PBZT ceramics and (b) 25/70/30 PBZT ceramics modified by 1 at.% of Ca.

Table 1. Structural parameters for the PBZT 25/70/30 +
x at.% Ca samples.

x at.% Ca a [Å] α [deg]
0 4.1136 (1) 89.928
1 4.1140 (4) 89.969
2 4.1115 (1) 89.968
3 4.1123 (3) 89.965
4 4.1075 (5) 89.968

2.5 times smaller when compared to undoped ceramics.
The participation of smaller grains increased.

As mentioned, above the crystallographic structure of
the ceramics was examined by XRD. The X-ray diffraction
pattern (XRD) of pure and calcium doped PBZT ceramics
obtained at room temperature is shown in Figure 3.

The results of those measurements revealed that the
single perovskite structure was formed without any de-
tectable secondary phase. The pure PBZT ceramics as well
as calcium dopant ceramics were characterised by tetrag-
onal structure with space group I4/mmm. Addition of
calcium leads to a slight decrease in lattice constant a
(see Tab. 1), what is obvious takes under consideration
the ionic radius of lead, barium and calcium.

The temperature characteristic of real (ε′) and imagi-
nary (ε′′) part of dielectric permittivity measured on heat-
ing at 100 kHz frequency, for undoped and Ca-modified
PBZT 25/70/30 is shown in Figure 4.
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Fig. 4. Temperature dependencies of dielectric permittivity,
measured at frequency 100 kHz, for PBZT 25/70/30 ceramics
with various Ca contents; the insert (a) shows dependence of
temperature Tm, corresponding to εmax on calcium concentra-
tion.

The diffuse maximum can be seen on Figure 4, show-
ing the temperature dependencies of dielectric permittiv-
ity. The value of this maximum initially increases with
increasing calcium content but for the content equal to
3% at. the trend changes. The increasing participation of
calcium ions is connected also with the movement of maxi-
mum permittivity temperature (Tm) to low value, however
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Fig. 5. Temperature dependencies of the dielectric constant measured on heating at various frequencies of measuring field, for
calcium modified ceramics (a) x = 1 at.%, (b) 4 at.%.

Table 2. The diffuse parameter γ, activation energy Ea and
freezing temperature Tf for the PBZT 25/70/30 + x at.% Ca
samples.

x at.% Ca γ Tf (K) Ea (eV)
0 1.94 425 0.2
1 1.85 375 0.1
2 1.84 355 0.1
3 1.83 − −
4 1.8 − −

the displacement is not as marked as it was in the case of
heterovalent additives [12–15].

As mentioned above, the maximum of dielectric per-
mittivity is significantly broadened. In literature the oc-
currence of such diffuseness is generally argued in terms
of variation in local composition and local internal field
causing the appearance of micro-regions, each of which
has slightly different temperature Tm [1,2]. The diffusion
decreased with an increase in calcium content. The quanti-
tative assessment of diffusion (γ) in the paraelectric phase
was evaluated using the expression given by Martirena and
Burfoot [21]:

1
ε′

− 1
ε′max

=
(T − Tm)γ

2δ2
, (1)

where γ and δ are constants. It is known that the value of γ
(1 � γ � 2) is the expression of the degree of dielectric
relaxation in the ferroelectric relaxors. The γ value for
different compositions of PBZT 25/70/30 + Ca ceramics
is given in Table 2.

Temperature changes of the real part of dielectric per-
mittivity were obtained for 20 frequencies of the measuring
field ranging from 0.1 kHz to 1 MHz, in logarithmic steps.
The example of obtained characteristics are presented in
Figures 5a and 5b, for PBZT 25/70/30 modified by 1 and
4 at.% of calcium. All the investigated ceramics show two
types of frequency dispersion. The first one is observable
in the vicinity of temperature Tm and is connected with
the reduction of maximum value of ε and shift in the cor-
responding temperature Tm with frequency increase – it is
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Fig. 6. Degree of frequency dispersion Tm = Tm (0.1 kHz)−Tm

(100 kHz) and εmax = εmax (0.1 kHz)−εmax (100 kHz).

a typical feature of ferroelectric relaxors. The dispersion is
present in all investigated ceramics, however the behaviour
stays less pronounced with the increase in participation of
calcium ions.

The degree of frequency dispersion ΔTm (is defined
here as the difference between the Tm measured at 0.1 kHz
and that measured at the 100 kHz) and Δε′max (defined in
a similar manner) decreased with calcium concentration
(Fig. 6), which shows that the Ca ions are the first among
the dopants that we have previously investigated [12–15].

The frequency dispersion of Tm temperature can
not be described by the Arrhenius law and hence,
as with many other ferroelectric relaxors, another for-
mula should be applied. Two different formulas exist in
the literature [22,23]. However the most popular is the
Vogel-Fulcher relationship:

f = f0 exp
[ −Ea

k(Tm − Tf )

]
, (2)

where Ea is an activation energy associated with the
mechanism of re-orientation of the dipole moments po-
lar nanoregions; Tf is the freezing temperature of polar-
isation fluctuation and f0 is the pre-exponential factor.
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Fig. 7. The Arrhenius plot for calcium modified PBZT-25/70/30 ceramics (a) x = 1 at.%, (b) 4 at.%.

Tagantsev [24] has suggested that the formula can be ob-
tained as a direct consequence of the gradual broaden-
ing of the relaxation time spectrum with decreasing tem-
perature [25]. This formula was used with success to fit
the Tm(f) dependence for undoped 25/70/30 PBZT ma-
terial as well as the ones modified by 1 and 2 at.% cal-
cium. The obtained values of Ea, Tf and f0 are collected
in Table 2. For ceramics containing 3 and 4 at.% of calcium
the fitting procedure did not work – the obtained results
were beyond the upper limit of their physical meaning.

The second type of frequency dispersion is observed
on the temperature characteristic of dielectric permittiv-
ity obtained for frequency of measuring field of range
100 Hz−10 kHz, in a temperatures considerably higher
than Tm. The plot of natural logarithm of the measur-
ing frequency versus the reciprocal absolute temperature,
corresponding to the local minima in the ε′(T ) curves
(Figs. 5a and 5b), is shown in Figure 7 for PBZT 25/70/30
ceramics containing 1 and 4 at.% of calcium. The linear
dependency shown proves that they obey the Arrhenius
formula f = f0 exp(−Ea/kT ). Based on the formula the
value of activation energy was calculated the for all dis-
cussed ceramics. The value were equal to 1.5; 1.59; 1.6;
1.57; 1.43 eV for ceramics modified by 1, 2, 3 and 4 at.%
of calcium.

The discussed type of frequency dispersion has been
observed for pure PBZT-25/70/30 ceramics as well as
other perovskite materials, for example PLZT ceram-
ics [25]. What is more interesting is that PBZT 25/70/30
ceramics the effect completely disappears in the case of
modification by heterovalent additives. The origin of the
effect was widely discussed in the paper [11]. Some remain-
ing FE domains (clusters) can be surrounded by the PE
phase in the temperature range Tf < T < Tm and in a cer-
tain range of T > Tm due to the mentioned differentiation
in the local Curie temperatures. The depolarisation field
associated with polarisation of such domains tends to the
compensated state in two possible ways. One of the ways
is connected with the screening of the domains by elec-
tron and ion space charges from the surrounding medium.
Even after the disappearance of screening domains at a
high enough temperature, the non-randomly distributed

space charges (previously participating in the screening
process) remain in the PE matrix because of the relatively
low mobility of ion defects and the long relaxation time
and contribute to the low frequency dispersion observed
in PBZT 25/70/30 ceramics.

4 Conclusions

The experimental results presented above show that the
calcium modification introduces significant changes to the
properties of PBZT 25/70/30 ceramics. The investigations
indicate that the substitution significantly changed the
microstructure of ceramics – size of grains of calcium mod-
ified ceramics decreased, whereas the density increased.
Moreover, addition of calcium leads to a slight decrease
in the lattice constant and crystal structure. The calcium
modification also changes the dielectric properties. Tem-
perature characteristics of the dielectric constant achieve
broadened maximum at Tm temperature, which decreases
with increasing Ca content.

The most important achievement of this paper is con-
firmation of the negative influence of homovalent calcium
additive on relaxor behaviour of PBZT 25/70/30 ceram-
ics. Namely the calcium ions caused a decrease of diffuse
parameters; values of degree of frequency dispersion ΔTm

and Δε′max. The Vogel-Fulcher relationship above is suc-
cessfully used only for a small amount of calcium dopant.
Moreover the calcium ions do not change the second type
of dispersion.
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