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1Institute of Physics, University of Silesia, Katowice, Poland
2Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzów,
Poland

Abstract. Violation of Leggett–Garg inequalities can serve as a signature of a failure of
(macroscopic) realism. We investigate violation of the simplest Leggett–Garg inequality for
a qubit coupled to an integer j spin (angular momentum). Such a system effectively reveals
quantum–classical hybrid behavior in the limit of large j values. We show that a maximal
violation of the Leggett– Garg inequality is larger for quantum–classical hybrids than for fully
quantum systems.

1. Introduction
Discoveries of entanglement [1] and other types of quantum correlations like quantum discord [2]
play essential role in a way of seeing and understanding of the microscopic and macroscopic
reality. Well known violation of Bell inequalities [3] is the best evidence of the existence of
such spatial correlations which cannot be understand in terms of some ”classical” local hidden
variables.

Moreover, recently also temporal quantum correlations are studied. In analogy to the spatial
correlations quantified by the Bell inequalities [3] one predicts and observes violations of the so
called Leggett-Garg inequalities (LGI) [4]. LGI are derived under two assumptions: macroscopic
realism and non–invasive measurability of the system. The second requirement is subtle and
often leads to conceptual difficulties related to the clumsiness loophole [4]. The first requirement,
the macroscopicity, also is often abandoned as the LGI are interesting by its own also in
microscopic systems [5].

It was shown that violation of LGI by free spin particle with dichotomous measurement
increases with respect to absolute value of spin [5]. It is interesting fact since systems with higher
spin are naturally considered as more macroscopic (like atomic nucleus) and hence probably
’more realistic’. In this paper we consider a simple composite system consisting of a qubit
coupled to an integer spin (angular momentum) exhibiting well defined classical limit. In other
words, we consider quantum–classical hybrid system with a qubit as a quantum part. It is
known that the spatial correlations (entanglement) in quantum–classical hybrid systems can
exhibit unexpected properties [6, 7]. Here we show that it is also the case for LGIs which are
more violated by hybrid systems than by those which operate in fully quantum regime.
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2. Model
Leggett–Garg inequalities are constructed from time correlation functions of a series of
measurements of some dichotomous variable carried on a considered system. We study the
simplest among LGIs [4] when the system undergoes the measurement only thrice:

K3 := C21 + C32 − C31 ≤ 1 (1)

where

Cβα =
∑
m,l

qmqlTr
[
ΠmUβαΠlUα0ρ0U

†
α0ΠlU

†
βα

]
(2)

is the time correlation function for some dichotomous variable Q and and ql, qm = ±1 represent
(projective) measurement outputs given by eigenvalues of the observable corresponding to Q
and associated with a set of projectors Πl. Here ρ0 is the initial state of the system and
Uβα = U(tβ, tα) = e−i(tβ−tα)H is the unitary time-evolution operator with the Hamiltonian H.
For non–invasive measurement of Q, violation of the LGI in Eq.(1) indicates possible failure of
the (macroscopic) realism.

For our purposes we assume a simple spin–orbit type of interaction:

H = α ~σ · ~J (3)

typical for Hydrogen–like atomic objects. Here ~σ = (σx, σy, σz) is a vector of Pauli matrices

acting on a qubit subspace, ~J = 1
j (Jx, Jy, Jz) is a vector of an integer spin operator (j = 1, 2, . . .)

and α is a coupling constant. In the limit of j →∞ there is a well defined classical limit of the
integer spin part of the system [8]. As the qubit part, given by ~σ, remains quantum, the total
system effectively mimics in large j limit quantum–classical hybrid. Let us notice that there are
alternative approaches for studying quantum–classical hybrid systems [9, 10].

For the quantity which is measured to obtain the correlation function Eq.(2) we set an x–
component of the qubit spin (i.e. m, l = ±1 in Eq.(2)). Such an observable is represented by a
pair of projectors

Π± = |±x〉 〈±x| ⊗ I (4)

where |±x〉 is an eigenstate of the x–component of σx and the identity I acts on the integer spin
part of the system.

3. Results
In the absence of qubit–spin coupling (α = 0) there is no time evolution, always K3 = 1 and the
LGI Eq.(1) is never violated. For α > 0 let us consider the following initial preparation of the
system:

|ψ〉 =
1√
2

(|0〉+ |1〉)⊗ |m〉 (5)

where the states |0〉 and |1〉 are the eigenstates of σz operator (with eigenvalues +1 and −1) and
|m〉 is one of eigenstates of Jz operator, i.e. Jz |m〉 = m |m〉.

In the following we assume that the measurements required to calculate K3 in Eq.(1)
appearing in Eq.(2) are equally separated in time i.e. t1 = τ, t2 = 2τ and t3 = 3τ .
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3.1. One-dimension coupling
Let us first consider a simplified analytically solvable model with interaction restricted only to
one spin direction:

H =
α

j
σzJz (6)

For the initial state (5) the K3 function reads as follows:

K3 = 2 cos(ωτ)− cos(2ωτ) (7)

where ω = 2αm/j and the period of K3 function is T1 = jπ/αm where the subscript ’1’ indicates
one-dimensional interaction Eq.(6).

Any changes of coupling strength α and integer spin value j affects just the period of the K3

function. In the (semi)classical limit of large j, the smaller are the values of m of the integer
spin projection on quantization axis, the longer is the period of K3 oscillation. Moreover, with
increasing m the period of K3 function becomes minimal (given by T1 = π/α) and independent
on the dimension of the Hilbert space. It holds true for all initial preparations of the form Eq.(5)
with |m = j〉. One can conclude that the interaction between a qubit and a (semi)classical object
results [for small m in Eq.(5)] in stretching of time periods of the LGI violation. In particular,
an amplitude of the K3 function remain the same with an exception of the initial state Eq.(5)
with |m = 0〉 when K3 ≡ 1.

3.2. Three-dimension coupling
In order to examine violation of the LGI of the system evolving according to the full Hamiltonian
Eq. (3) we applied numeric simulations using Python toolbox QuTiP [11]. As in simplified
one-dimensional model Eq.(6), the multiplication constant in a front of Hamiltonian Eq.(3)
representing a strength of an interaction affects only the period of the K3 function (and not its
amplitude). The period of K3 reads as follows:

T3 =
2πj

αN
(8)

where N = 2j + 1 is the dimension of the spin j Hilbert subspace. In the classical limit we
obtain:

T c3 := lim
j→∞

T3 =
π

α
(9)

i.e. the same value as the minimal period in the case one-dimension coupling T1. However, in
the three dimensional case, the time period of the quantum–classical hybrid system Eq.(9) is
maximal i.e. T c3 ≥ T3. Moreover, in this case, the T3–period does not depend on m in the initial
state Eq.(5) and hardly increases with respect to the j value.

Let us notice the qualitative difference between one– and three–dimensional case. In the
later one not only the period of K3 function but also its amplitude changes with respect to the
quantum numbers m and j in the initial state Eq.(5) as in Fig.1(a) and Fig.1(b).

Particularly interesting is of maximal violation of the LGI when the j–component of the
system approaches classical limit i.e. when the qubit–spin system starts to be a quantum–
classical hybrid. Maximum of the LGI violation for different values of j and initial preparations
is presented in Fig.2. One can infer that the LGI violation is stronger in the system interacting
with higher spin values i.e. for quantum–classical hybrids when the LGI violation approaches
its maximal possible value K3 = 3/2 [4].
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Figure 1. (Color online) K3 function for a qubit interacting with integer j spin in the initial
state |m〉 in Eq.(5): (a) for different values of j and m = j; (b) for different values of m for
fixed j = 3. Time interval τ between measurements is rescaled with respect to the period T3 in
Eq.(8).

4. Conclusion
Violation of the Leggett–Garg inequalities, as in the case of Bell inequalities [3], provide an
insight into very counter–intuitive properties of Nature. In our work we investigate a composite
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Figure 2. (Color online) Maximal value Km
3 of K3 function of the qubit coupled to integer spin

j according to Eq.(3) prepared in the state Eq.(5) versus m and for different values of j and
initial state Eq.(5).

system consisting of a qubit, a basic building block for quantum information, and the integer
spin, angular momentum, applicable in various models of atomic physics. We considered
dichotomous measurement of the x–component of the qubit corresponding to projecting the
system on eigenstates of σx operator tensorized with identity acting on integer spin system.
Our aim was to study violation of the LGIs in the limit of large j when the composite qubit–
spin system can mimic quantum–classical hybrid. For the simplest one–dimensional qubit–spin
coupling we obtain analytic results for the K3 function with a period (but not an amplitude)
changing with increasing j. In general three–dimensional case, requiring numerical treatment,
the amplitude of the K3 function became j–dependent in a rather counter–intuitive fashion:
maximal violation of the LGI occurring for the quantum–classical hybrid system is larger than
in the fully quantum systems with small values of j. In particular, for j →∞ K3 → 3/2 i.e. its
value approaches largest possible value.

Since systems with high spin values are naturally considered as more macroscopic we show
that, counter–intuitively, microscopic qubit violates LGI more when it interacts with more
macroscopic object.
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