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Abstract In the paper the moments-based fast wedgelet
transform has been presented. In order to perform the clas-
sical wedgelet transform one searches the whole wedgelets’
dictionary to find the best matching. Whereas in the pro-
posed method the parameters of wedgelet are computed di-
rectly from an image basing on moments computation. Such
parameters describe wedgelet reflecting the edge present in
the image. However, such wedgelet is not necessarily the
best one in the meaning of Mean Square Error. So, to over-
come that drawback, the method which improves the match-
ing result has also been proposed. It works in the way that
the better matching one needs to obtain the longer time it
takes. The proposed transform works in linear time with re-
spect to the number of pixels of the full quadtree decom-
position of an image. More precisely, for an image of size
N × N pixels the time complexity of the proposed wedgelet
transform is O(N2 log2 N).

Keywords Wedgelets · Moments · Fast wedgelet
transform · Multiresolution

1 Introduction

From day to day image processing techniques become more
and more efficient. Advanced multiresolution geometrical
methods are seen nearly as a standard for modern algorithms
of image processing such as denoising, segmentation, edge
detection and compression. The most widely used wavelets
theory has been replaced recently by geometrical wavelets.
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It follows from the fact that the methods based on them
best reflect the way in which the human eye sees an im-
age. Indeed, they properly catch changes of location, scale
and orientation. And what follows, they properly reflect the
geometry of an image. The theory of geometrical wavelets
methods can be divided in two main groups. The first group
is related to frames. In these techniques all the frame ele-
ments of different location, scale and orientation take part
in an image approximation. The most known geometrical
wavelets related to frames are ridgelets [2], curvelets [3],
bandelets [16], etc. Whereas the second group is related to
dictionaries like in the case of wedgelets [8], beamlets [9]
or platelets [25]. Unlike in the previous group in the case of
dictionary not all its elements take part in an approximation.
The ones which do it are somehow adaptively chosen from
the dictionary. Unfortunately, the “somehow” plays the most
important role. Whereas frame based methods of approxi-
mation are relatively fast, the dictionary based methods are
often slow. Too slow to build real time algorithms of image
processing based on them.

Since the most important part of an image constitutes its
geometry the techniques which can reflect it properly are
widely used in many areas of image processing. In this case
recently introduced wedgelets [8] are used with success in
such tasks as compression [12, 13, 20, 23], denoising [7, 9,
12, 15], image segmentation [5, 22] or edge detection [14],
to mention a few. Unfortunately, the computation time of
wedgelet transform, which is used in all these applications,
is rather slow. It causes that wedgelets-based methods may
not be used in real time applications. Indeed, to compute
wedgelet transform all wedgelet atoms from the dictionary
have to be matched to each segment of quadtree partition
of an image in order to choose the best one in MSE sense.
Since the size of the dictionary is rather substantial and is de-
pendent on the image size the computations take long time.
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So, in order to improve the time complexity of the algorithm
some modifications of it have been reported in the literature
as, for example, top-down prediction among wedgelets [19]
or the use of Green’s theorem in wedgelet coefficients com-
putation [10]. But, so far, there has not been any method
which can work in a linear time.

In the paper the method of fast computation of the
wedgelet transform has been proposed. It is based on mo-
ments computation what causes that wedgelet parameters
are computed directly from the image instead of searching
through the whole wedgelets’ dictionary. In order to obtain
wedgelet coefficients the method described in [18], which
has rather theoretical character with poor practical applica-
tion, has been improved. Additionally, since any wedgelet
determined in such a way (reflecting edge presented in the
image) is not necessarily the best one in the MSE sense, the
additional improvement has been proposed in the paper. The
improvement relates the time of computation with the qual-
ity of reconstructed image. It works in the way that the bet-
ter quality one needs the longer the computation time should
be. The theoretical proof and the experimental results, both
presented in the paper, confirm that the proposed method of
wedgelet transform is really fast, it works in linear time with
respect to the size of the output data.

2 The Wedgelet Transform

At the beginning let us recall the theory related to the clas-
sical wedgelet transform. The majority of definitions pre-
sented in this section follows the work [8].

2.1 Dictionary of Wedgelets

Let us define an image domain S = [0,1] × [0,1]. Next, let
us denote function h(x) defined within S as the “horizon”,
that is any continuous and smooth function defined on the
interval [0,1]. In practical applications it is sufficient to as-
sume that the function h is of C2 class.

Further, consider the characteristic function

H(x,y) = 1{y ≥ h(x)}, 0 ≤ x, y ≤ 1. (1)

Then the function H is called the “horizon function” if h is
“horizon”. The function H models a black and white image
with a horizon where the image is white above the horizon
and black below.

Having an image domain S = [0,1] × [0,1] one can, in
some sense, discretize it on different levels of multiresolu-
tion. Consider the dyadic square S(j1, j2, i) as the two di-
mensional interval

S(j1, j2, i) = [j1/2i , (j1 +1)/2i]×[j2/2i , (j2 +1)/2i], (2)

Fig. 1 Graphical representation of beamlet and wedgelet

where 0 ≤ j1, j2 < 2i , i ≥ 0 and j1, j2, i ∈ N. Note that
S(0,0,0) denotes the whole image domain S, that is the
square [0,1] × [0,1]. On the other hand S(j1, j2, I ) for
0 ≤ j1, j2 < N denote appropriate pixels from N × N grid,
where N is dyadic (it means that N = 2I ). From this mo-
ment on let us consider a domain of image as such N × N

grid of pixels.
Having assumed that an image domain is the square

[0,1] × [0,1] and that it consists of N × N pixels (or, more
precisely, squares of size 1/N ) one can note that on each
border of any square S(j1, j2, i), 0 ≤ j1, j2 < 2i , 0 ≤ i ≤
log2 N , j1, j2, i ∈ N, we may denote the vertices with dis-
tance equal to 1/N . Every two such vertices in any fixed
square may be connected to form a straight line—edge (also
called beamlet after the work [9]).

Assume now that the considered edges are not degener-
ated, that is, they do not lie both at the border of the square.
Then each such edge b splits any square S (we skip the sub-
scripts denoting location and scale for a moment for better
clarity) into two pieces. Let us consider one of the two pieces
which is bounded by lines connecting in turn in clockwise
direction, from the upper right corner, the first of the two
edge vertices and then the second one. Let us define then the
indicator function of that piece

W(x,y) = 1{y ≤ b(x)}, (x, y) ∈ S. (3)

Such a function we call wedgelet defined by the beamlet b.
The graphical representation of the wedgelet on S defined
by the beamlet b is presented in Fig. 1.

It is obvious that on an arbitrary square S one can de-
fine many different wedgelets. Moreover, also the function
which is the indicator function of the whole square S is taken
as the wedgelet. So, more formally, one can define the set of
wedgelets on any S as [8]

W(S) = {1(S)} ∪ {all possible w defined on S} . (4)

Additionally, within the whole image domain S = [0,1] ×
[0,1], the wedgelets are defined in different scales and lo-
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cations (as stated in the case of beamlets). So, finally, one
can define the wedgelets’ dictionary W as the sum of all
sets W(S(j1, j2, i)) of all dyadic squares S(j1, j2, i), 0 ≤
j1, j2 < 2i , 0 ≤ i ≤ log2 N , j1, j2, i ∈ N.

Let us assume from now on that the pair of subscripts
j1, j2 such that 0 ≤ j1, j2 < 2i is replaced by the only sub-
script j such that 0 ≤ j < 4i . Such enumerations are equiv-
alent, but the last one is more flexible. And let us denote
S(j1, j2, i) as Si,j . Additionally, for the parameterization of
direction (denoted so far by coordinates v1, v2) let us denote
by m. Because in practical applications different parameter-
izations of direction are used such a general model seems
to be more flexible. Indeed, the above assumptions allow to
parameterize the wedgelets’ dictionary using one parame-
ter for scale i, one for location j and one for orientation m.
More formally, we obtain the following definition.

Definition 1 The Wedgelets’ Dictionary is defined as the
following set:

W = {Wi,j,m : i = 0, . . . , log2 N;
j = 0, . . . ,4i − 1;
m = 0, . . . ,MW(Si,j ) − 1}, (5)

where MW(Si,j ) denotes the number of wedgelets on Si,j .

In practical applications usually the parameterization
based on polar coordinates is used. In such a case both
beamlet and wedgelet are determined by angle θ between
perpendicular to the beamlet and horizontal direction and
by distance t from the beamlet to the center of the square.
In grayscale images wedgelet function, additionally, is para-
meterized by two values h1 and h2 representing appropriate
grayscale values.

Note that such a dictionary of wedgelets contains quite
a large set of constant functions with discontinuities (seen
as edges in images) along different locations, scales and ori-
entations, which may be used in image representation. The
total number of wedgelets for an image of size N × N is
O(N2 log2 N) [8].

2.2 Wedgelet Transform

In adaptive methods of representation, the correlation of an
image with all atoms of the dictionary must be assigned.
In such a case the least squares projection is computed. So,
the same occurs in the case of wedgelets’ dictionary. Hav-
ing defined such a dictionary and an image F : S → N, the
Wedgelet Transform can be defined.

Definition 2 The Wedgelet Transform (WT) is defined by
the following formula:

hi,j,m = 1

T

∫∫
S

Wi,j,m(x, y)F (x, y) dxdy, (6)

where

T =
∫∫

S

Wi,j,m(x, y) dxdy (7)

is the normalization factor and S = [0,1] × [0,1], hi,j,m ∈
R, Wi,j,m ∈ W , 0 ≤ i ≤ log2 N , 0 ≤ j < 4i , 0 ≤ m <

M(Si,j ) and i, j,m ∈ N.

From the practical point of view it means that the mean
hi,j,m of all pixels (the values of which are denoted as
F(x, y)) lying in the domain of the appropriate wedgelet
Wi,j,m is computed. In the discrete case the mean is taken
from all pixels lying in the domain bounded by the border
and the digital beamlet which is produced by Bresenham al-
gorithm [1]. In the case of grayscale or colour images coef-
ficients are additionally quantized to hi,j,m ∈ {0, . . . ,255}.
Such coefficients denote mean grayscale intensities of the
regions covered by appropriate wedgelets. In the case of bi-
nary images we use quantization such that hi,j,m ∈ {0,1}.

The wedgelet image representation is defined by the fol-
lowing formula:

F(x, y) =
∑
i,j,m

hi,j,mWi,j,m(x, y). (8)

But because W is a dictionary, not a basis, not all the
wedgelets Wi,j,m from the dictionary are used in the above
representation (or in other words, some of the coefficients
hi,j,m are equal to 0). The way in which they are chosen to
represent F is described below.

2.3 Image Approximation

The base algorithm of image approximation with the use of
WT is performed in two steps as presented in Fig. 2. The first
one is the full wedgelet decomposition of an image with the
help of WT. It means that for each square Si,j , 0 ≤ j < 4i ,
0 ≤ i ≤ log2 N the best approximation in MSE sense by
wedgelet is found. It is done by searching the whole dictio-
nary of wedgelets of scale i and by choosing the one with the
smallest MSE. After the full decomposition (on all levels)
all wedgelet coefficients are stored in the nodes of quadtree.
Then, in the second step, some kind of optimization algo-
rithm, the bottom-up tree pruning algorithm [8], is applied
to get a possibly minimum number of atoms in approxima-
tion, ensuring the best image quality. Indeed, the following

Fig. 2 The scheme of wedgelet image approximation
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weighted sum is often minimized:

Rλ = min
P

{‖F − FW‖2
2 + λ2K}, (9)

where P is homogeneous partition of an image (elements
of which are stored in the quadtree from the first step), F

denotes the original image, FW its wedgelet approximation,
K is the number of wedgelets needed to code the approx-
imation and λ is the distortion rate parameter (also called
penalization factor). In the case of exact image approxima-
tion the quality is determined and the reconstructed image is
exactly like the original one. The two steps are described in
more details in [8, 12].

2.4 Time Complexity

Because the algorithm of wedgelet approximation consists
of two steps both of them should have relatively low time
complexity in order to do fast approximation. Unfortunately,
the most hard to compute is WT. Indeed, the tree pruning
algorithm works in O(N2) time [8]. Whereas in the case of
WT, since one must deal with O(N2 log2 N) wedgelet atoms
to find best correlation with an image and every atom needs
O(N2) computations, the following theorem is true.

Theorem 1 ([8]) Consider an image of size N × N pixels.
The time complexity of WT is O(N4 log2 N).

So far, nobody proposed asymptotically linear method of
wedgelet transform (with respect to the size of output data,
that is O(N2 log2 N) since the number of result pixels is
N2 log2 N for an image of size N × N ), though some at-
tempts to improve the time complexity were undertaken.

Indeed, in [19] the method based on prediction was pro-
posed. In this method in order to compute the parameters
of wedgelets at coarse scales the parameters of wedgelets at
finer scales are used. The time complexity of the algorithm
is O(MN2) where M denotes the number of wedgelets for
each dyadic square. But because M = O(N2) [8], the over-
all time complexity of the algorithm may be seen as O(N4).
Additionally, it should be pointed out that the algorithm does
not assure the best matching in the MSE sense for the pre-
dicted wedgelets.

Another improvement was proposed in [10]. The method
is based on efficient moment computation over polygonal
domains by applying the Green’s theorem. The idea is based
on the fact that in the discrete case integration of a function
over two dimensional domain (needed in wedgelet coeffi-
cient computation) is replaced by integration of associated
functions over the boundary of the domain. Since it causes
reduction in dimension the overall algorithm of the wedgelet
transform is fast and its time complexity is O(N2|θ |), where
|θ | denotes the number of angles used in computations. But

in order to obtain results comparable with WT one needs
that |θ | = O(N). So, the time complexity of the algorithm
becomes O(N3).

In the next section we show that the time complexity
of wedgelet transform can be further improved to its lower
bound, that is O(N2 log2 N). The proposed method is based
on moments computation.

3 The Fast Wedgelet Transform

Moments are widely used in wavelets theory, so it seems
that introducing them to geometrical wavelets, especially
wedgelets, should be also very attractive. Indeed, it is, as we
show in this section. So, before we introduce the moments-
based Fast Wedgelet Transform let us remind some facts
about moments.

3.1 Moments

Moments are widely used in one dimensional wavelets con-
struction in order to obtain the best possible properties of
wavelet functions which are used then in function approxi-
mation [24]. In one dimensional case the moment is defined
for any wavelet function ψ as
∫

s

m(x)ψ(x)dx (10)

where m(x) is often a power function. Such moments are
used in order to catch point discontinuities of a function.

However, in two dimensional images we deal with line
discontinuities rather then point ones. So, to catch them
properly, similarly as in the one dimensional case, moments
may be used for two dimensional functions [11, 21]. In this
case the moment is defined as∫∫

S

M(x, y)W(x, y) dxdy. (11)

Depending on the definition of function M(x,y) one can
construct different kinds of moments. For example the most
commonly used ones are the Zernike [4], Tchebichef [17]
or power moments. Additionally, in [18] a method of cus-
tom built moments construction has been proposed. Since
the last method gives the best performance in approximation
of functions such as wedgelets [18] it is used in the paper as
the base method with the help of which the Fast Wedgelet
Transform is defined.

3.2 The Moments-Based Wedgelet Transform

Consider any dyadic square S (we omit the subscripts i, j for
a moment for better clarity) from a quadtree decomposition
of any image. From the definition of wedgelet it follows that
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the wedgelet approximation of the image F : S → N which
consists of two smooth areas with smooth step discontinuity
between them, like in horizon function, is defined by the
formula

FW(x, y) = h1 + (h2 − h1)Wm(x, y), (x, y) ∈ S. (12)

All we need to determine in order to compute WT from that
simple example is the parameter m determining the beamlet
position, which reflects the step edge present in the image F ,
and the wedgelets coefficients h1 and h2. As it can be para-
meterized in polar coordinates we use the pair (θ, t) instead
of m. Such step edge may be detected in different ways. One
of the most known method is the one based on the Radon
Transform [6]. However, this method needs a rather large
accumulator array and, what follows, is rather slow.

3.2.1 Beamlet Parameters Computation

To determine the parameters (θ, t) of the beamlet b approx-
imating an edge on the image, as stated above, the following
theorem is used.

Theorem 2 ([18]) Let K(x, y) be a continuously differen-
tiable function, identically zero outside a bounded set S. De-
fine

A = ∂K

∂x
, B = ∂K

∂y
, C = ∂

∂x
(xK) + ∂

∂y
(yK)

and

α =
∫∫

S

A(h1 + (h2 − h1)Wθ,t ) dxdy,

β =
∫∫

S

B(h1 + (h2 − h1)Wθ,t ) dxdy,

γ =
∫∫

S

C(h1 + (h2 − h1)Wθ,t ) dxdy.

Then, all (x, y) ∈ b(θ, t) satisfy the equation

αx + βy = γ.

To perform the practical computations of wedgelet para-
meters from S, it has been proposed to use the following
function K [18]

K(x,y) =
{

(1 − x2)(1 − y2), if (x, y) ∈ [−1,1]2,

0, otherwise.
(13)

As shown in [18] this function assures the best approxima-
tion properties in comparison to the other known methods
such as power or Zernike moments. So, in this paper also
this function is used.

From the above theorem follows that we can compute the
parameters of beamlet b which represents edge in the step

function FW given by formula (12) with the help of the mo-
ments α,β, γ . Since our approach is parameterization kind
independent it is the fastest way to determine the beamlet
and the related two wedgelets which approximate square
segment S of the image. Indeed, one can simple transform
the Cartesian parameterization to the polar one according to
the formulae

θ = arctan
β

α
, t = γ√

α2 + β2
. (14)

Consider now any image F : S → N with edge disconti-
nuity. Because we do not know a priori the wedgelet func-
tion parameters h1, h2 in such a case we use the following
formulae to determine α,β, γ instead of the ones from the-
orem 2:

α =
∫∫

S

AF dxdy,

β =
∫∫

S

BF dxdy, γ =
∫∫

S

CF dxdy.

(15)

For images with well defined edges the computed para-
meters exactly reflect the edges which may be represented
by appropriate beamlets. But in order to approximate the
image by wedgelets one needs to compute additionally ap-
propriate wedgelet coefficients (denoted as h1, h2).

3.2.2 Wedgelet Coefficients Computation

In order to compute grayscale intensities of wedgelet W and
its complement W ′ within S, having the parameters of the
beamlet, it has been proposed to use the following computa-
tions [18]

k =
∫∫

S

(h1 + (h2 − h1)Wθ,t )K dxdy, (16)

U(a,b, c) =
∫∫

S

Wθ,tK dxdy, (17)

h2 − h1 =
(

∂

∂c
U(a, b, c)

)−1

,

h1 = k − (h2 − h1)U(a, b, c)∫∫
S
K dxdy

.

(18)

However, these formulae, as computed directly according
to Theorem 2, are useful only in the case of step functions
given by formula (12). In real applications when we deal
with any image F such approach does not give satisfactory
results. Indeed, such computed values of parameters h1, h2

often do not reflect the real values of wedgelet coefficients
represented by formula (6). So, to overcome that difficulty
we propose to use the following formulae based on defini-



J Math Imaging Vis (2011) 39: 180–192 185

tion 2 instead of the above ones:

h1 =
∫∫

S
W ′

θ,tF dxdy∫∫
S
W ′

θ,t dxdy
, h2 =

∫∫
S
Wθ,tF dxdy∫∫

S
Wθ,t dxdy

. (19)

This direct method is both simpler in implementation and
faster than the one represented by formula (18). Addition-
ally, what follows from experiments performed on a number
of real images, approximations computed with the proposed
modification give smaller MSE than the ones computed with
the method proposed originally in [18].

3.2.3 The Moments-Based Fast Wedgelet Transform

In order to perform the moments-based Fast Wedgelet
Transform we propose to proceed with the above procedure
of wedgelet approximation (based mainly on formulae (15)
and (19)) for all elements of quadtree partition of the image.
More precisely, one has to determine the best wedgelet to
every square of the quadtree image partition, that is to all the
squares Si,j for i = 0, . . . , log2 N,j = 0, . . . ,4i − 1. How-
ever, unlike in the classical WT where we must search within
the whole dictionary of wedgelets in the moments-based
version of wedgelet transform the parameters of wedgelets
are computed directly from the image content. The main al-
gorithm is presented below.

Algorithm 3.1: Fast Wedgelet Transform

1. for i = 0 to log2 N

2. for j = 0 to 4i − 1
3. compute α,β, γ according to formula (15);
4. compute θ, t according to formula (14);
5. compute h1, h2 according to formula (19);

From the above discussion one can conclude the follow-
ing theorem.

Theorem 3 Consider an image of size N × N pixels. The
time complexity of the Fast Wedgelet Transform (FWT) is
O(N2 log2 N).

Proof Consider any square Si,j , 0 ≤ i ≤ log2 N , 0 ≤ j < 4i

from the quadtree partition of the image of size N × N . The
size of the square is 2n−i × 2n−i pixels, where n = log2 N .
For each such square in order to compute the beamlet pa-
rameters one needs three integration operations according
to formula (15). Then, in order to compute wedgelet coef-
ficients one needs two integration operations according to
formula (19). Since the integration operation is performed in
discrete domain and it denotes simple addition, the process
is linear according to the number of pixels from the domain.
Additionally, from the definition of quadtree partition fol-
lows that there are 2i · 2i squares of size 2n−i × 2n−i pixels.

So, in order to integrate all squares from one level of decom-
position one needs (2i · 2i ) · (2n−i · 2n−i ) dominant opera-
tions. Because integration must be performed on all levels
of decomposition one obtains the total number of integra-
tion operations as

log2 N∑
i=0

(2i · 2i ) · (2n−i · 2n−i )

=
log2 N∑
i=0

2n · 2n = N2(1 + log2 N).

Since the integration is the dominant process in the algo-
rithm we can conclude that its time complexity is
O(N2 log2 N). �

As a direct result from the above considerations we ob-
tain the following proposition.

Proposition 1 Consider an image of size N × N pixels.
Since the full quadtree decomposition of the image consists
of M = N2(1 + log2 N) pixels the time complexity of Fast
Wedgelet Transform is O(M).

The proposition states that the moments-based FWT
works in linear time with respect to the number of pixels
of the full quadtree decomposition. Moreover, since every
pixel from this decomposition has to be computed, lesser
time complexity of the algorithm is not possible. Whereas
probably one can improve the speed of the proposed algo-
rithm the time complexity remains still the same. That is the
reason why the above proposed algorithm of decomposition
has obtained the name Fast Wedgelet Transform (FWT). It is
asymptotically the fastest algorithm of the all possible ones.

3.2.4 Practical Application

However, it should be pointed out the following problem re-
lated to FWT. Since one assumes that WT gives the best
approximation of an image in MSE sense (and best edge
adaptation as well), FWT not necessarily gives the best pos-
sible matching. An example of such a situation in the sim-
ple case of bird’s wing fragment is presented in Fig. 3. As
WT detected the edge properly (the white line), FWT de-
tected it only nearby. It follows from the fact that we use
the real image instead of ideal step function for which case
the beamlet parameters were derived. It causes that the MSE
of wedgelet matching with the help of FWT is not the best
possible. On the other hand one can note that not necessarily
MSE metric must be used in the approximation. It may be
any other one. Indeed, it is true, wedgelet transform may be
performed in any error metric because we are interested in
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Fig. 3 Edge detection with the use of (a) WT, (b) FWT

the best edge adaptation, not necessarily the best MSE adap-
tation. However, the example evidently shows that the edge
was not matched properly. So, in the next section we show
how the moments-based FWT may be improved.

3.3 From FWT to WT

From Fig. 3 and from a number of experiments performed
follows that wedgelets determined by moments-based FWT
are worse only a little than MSE best wedgelets. It means
that such detected edges in great majority are situated in
direct neighborhood of the proper edges. This fact may be
used then to construct an improvement of the method.

Consider the beamlet parameterization as proposed orig-
inally in [8]. So, any beamlet may be parameterized by a
pair of vertices (v1, v2). These vertices reflect the numbers
of border pixels because in this model all border pixels are
numbered consecutively starting from the upper right corner
and proceeding in clockwise direction. Then, because we
know that wedgelets determined by moments-based FWT
are situated in a neighborhood of the original edge, we can
try all wedgelets based on the neighboring beamlets with
coordinates (v1 + k, v2 + l) for k, l ∈ {−1,0,1} and choose
the one which gives better approximation in the MSE sense.
If we want further to improve the precision of wedgelet

Fig. 4 Edge detection with the use of (a) FWT + 1, (b) FWT + 4

matching we can try also all wedgelets based on beamlets
with coordinates (v1 + k, v2 + l) for k, l ∈ {−2,−1,0,1,2},
etc. In general case we can check all wedgelets based
on beamlets with coordinates (v1 + k, v2 + l) for k, l ∈
{−R, . . . ,−1,0,1, . . . ,R}. Let us name the improved FWT
with in range searching as FWT + R. Then in Fig. 4 one can
see the result of FWT+1 and FWT+4. From the figure one
can easily see that FWT + 1 gives better result of matching
then FWT (see also Fig. 3(b)). Moreover, FWT + 4 gives
exactly the same result as WT.

Note, additionally, that though the computation takes
longer, the asymptotical time complexity still remains the
same due to the fact that we perform additional computa-
tions a constant number of times. However, we can lengthen
the computation time so much that we really compute clas-
sical WT. Indeed, the following theorem is true.

Theorem 4 Consider an image of size N ×N pixels and the
time complexity of FWT as O(N2 log2 N). And let denote R

as the range of best wedgelet searching for FWT + R. Then
by tending with the range R to 3N − 5 one obtains WT with
time complexity O(N4 log2 N).

Proof Note that for square of size N × N pixels and for ar-
bitrary beamlet (v1, v2) from that square the possible max-
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imal R equals 3N − 5 for vi , i = 1,2, if vi is not situ-
ated at any corner of the square and it equals 2N − 1 if
vi lies at any corner. So, the overall maximal R = 3N − 5.
For larger values of R the computations begin to repeat for
the same beamlets. Similarly as in the proof of theorem 2
the dominant operation for a square Si,j , 0 ≤ i ≤ log2 N ,
0 ≤ j < 4i , is integration. Consider then the range R. For
such range one needs to perform (2R+1)2 integrations with
the help of formula (19) since the range length is 2R +1 and
we must check beamlet connections for each pair (v1, v2),
where v1, v2 ∈ {−R, . . . ,0, . . . ,R}. So, note that if R tends
to 3N − 5 the number of integrations for any square tends to

(2R + 1)2 = (2(3N − 5) + 1)2 = (6N − 9)2.

So, for the all squares from the quadtree decomposition the
number of dominant operations may be computed as follows

log2 N∑
i=0

(2i · 2i ) · (2n−i · 2n−i ) · ((6N − 9)2)

=
log2 N∑
i=0

N2(36N2 − 108N + 81)

= (36N4 − 108N3 + 81N2)(1 + log2 N).

From the above and from the fact that integration is dom-
inant operation follows that the overall time complexity is
O(N4 log2 N). Finally, note that setting R as the maximal,
R = 3N − 5, denotes checking the all possible beamlet con-
nections and determining appropriate wedgelets. It is a way
of working of the classical WT, what completes the proof. �

From the above theorem and from the definition of
FWT + R follows directly the proposition.

Proposition 2 Consider an image F of size N × N pixels.
Denote FFWT+R and FWT as approximation of F by FWT+
R and WT, respectively, for a fixed λ. If R → 3N − 5 then
‖FFWT+R − FWT ‖ → 0.

From the above follows that by enlarging the range of
best wedgelet computation one lengthens the time of com-
putations but, on the other hand, from the construction of
the algorithm follows that simultaneously one improves the
quality of the approximation.

Note, finally, that in order to approximate an image one
must perform the wedgelet transform first and then the tree
pruning algorithm. So, in the first case, basing on the pro-
posed approach, one needs to fix the parameter R (which
relates time versus quality) and then, in the second case,
one needs to fix the parameter λ (which relates compactness
versus quality) in order to obtain wedgelet approximation
of the image. So, this approach is very flexible. It is very

convenient situation for the user who may decide what to
choose: appropriately fast or exact approximation. In reality
the choice depends on application.

4 Experimental Results

In order to test in practice the theory presented in the paper a
number of numerical experiments have been performed with
the use of Pentium IV 3 GHz processor. All the algorithms
were implemented in the same programming environment,
Borland C++ Builder 6, in order to ensure reliable results.

4.1 FWT Versus WT

To test computation time of WT and FWT the test image
“Lena” has been prepared in different sizes. Since the com-
putation time is not dependent on the image content there
is no need to present other examples. Indeed, for the other
ones the computation time is practically the same. In Table 1
the computation times of WT and FWT for the test image of
different sizes are presented.

As one can see from Table 1 the computation time for
FWT falls down drastically in comparison to WT. Addi-
tionally, in Fig. 5 the theoretical versus practical computa-
tion times for WT and FWT are presented. The dots rep-
resent experimentally measured computation times whereas
the solid lines constitute their approximation by functions of
order O(N4 log2 N) and O(N2 log2 N) for WT and FWT,
respectively. As follows from the plots practical computa-
tions match nearly exactly the theoretical estimations pre-
sented in the previous sections. Additionally, note that the
plots are not comparable between each other directly since
the axes representing time are in different scales. It is very
difficult to draw the two plots in one coordinate system be-
cause the plot of FWT is too close to the horizontal axis to
be well visible. However, it best reflects the power of the
new method.

In practical applications also the memory size of the
considered method plays an important role. In the case of
FWT the memory occupancy is of the same order as of WT
and equals O(N2 log2 N). It follows from the fact that in

Table 1 Time of computation of WT and FWT (sec.) for image
“Lena”

Size WT FWT

256 1097.156 0.907

128 68.203 0.219

64 4.344 0.062

32 0.265 0.016

16 0.015 < 0.001

8 < 0.001 < 0.001
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Fig. 5 Computed and estimated time complexity for images of differ-
ent sizes for (a) WT, (b) FWT

both cases the same kinds of coefficients are stored in the
quadtree. In the case of WT the wedgelets’ dictionary is
nowhere stored, and the best matching wedgelet is found by
checking all possible beamlet connections and computing
MSE for everyone. In FWT the only difference is that such
computations are performed only once per square segment
for beamlet parameters obtained by integration (see formu-
lae (15) and (14)).

4.2 From FWT to WT

As stated in the previous section the result of FWT is not
exactly the same as the one of WT. However, it can be im-

proved by the use of FWT + R. In Table 2 the PSNR qual-
ity of image decomposition on different levels by FWT + R
and WT are gathered. In order to testify the independency of
noise of the proposed method the artificially contaminated
images have also been tested. The added contamination is
Gaussian noise with zero mean and normalized variance de-
picted in the table. As follows from the gathered data the
added noise does not disturb the efficiency of the proposed
method. Additionally, one can see that depending on the de-
composition level FWT + R assures the same results as WT
for different values of R. Indeed, for sixth level FWT + 5
gives the same result as WT, for fifth level it is FWT + 10,
etc.

Additionally, in Table 3 mean quotients (measured for
all tested images) between PSNR values of the methods
FWT + R and WT for different levels of decomposition are
presented. From that table follows that FWT assures the im-
age quality of more or less 94.7% of the quality given by
WT. And then the longer the computations we perform the
better quality we obtain. However, it is dependent on the
level of decomposition. It means that, for example, FWT+5
assures exactly the same decomposition on sixth level as
WT, but only 96.42% of the quality of WT for second de-
composition level. It is worth mentioning that in practical
applications levels 4–7 are mainly used in approximations,
so R = 20 can be treated as the upper bound for the practical
use of FWT + R.

As follows from the experiments very often edges found
by FWT are very close to the reference edges found by WT.
To visualize that fact in Fig. 6 differences between WT and
FWT + R for different values of R are presented. White
areas denote exact matching and the darker the image the
larger the error. From image (a) it is seen that in great ma-
jority of square segments the edges from FWT and WT are
quite close. Applying FWT + R (images (b)–(d)) causes that
appropriate edges are more and more close.

From the experiments performed on a number of images
follows very important fact. In the areas where in the orig-
inal image are presented well defined edges FWT assures
the results very close to WT. On the other hand edges ob-
tained from FWT are not so close to the ones given by WT
mainly in the areas where there are no well defined original
edges. In other words, original edges are detected very close
by FWT whereas false edges are detected more differently.
From practical point of view it is very reasonably approach
since false edges detected by WT, anyway, are not practi-
cally used in many image processing tasks as, for example,
edge detection. Indeed, the most important wedgelets are the
ones which reflect original edges in an image.

In contrast to the quality improvement it should be pre-
sented how the computation time of FWT + R changes in
practice. In Fig. 7 the computation time of FWT + R for
different values of R are presented. And, similarly as in the
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Table 2 Numerical results of
FWT + R and WT
decompositions on different
levels for sample images with
and without noise (PSNR)

Image Level FWT FWT + 1 FWT + 5 FWT + 10 FWT + 20 FWT + 45 WT

Bird 6 33.04 34.31 34.65 34.65 34.65 34.65 34.65

(without 5 28.71 29.74 30.40 30.47 30.47 30.47 30.47

noise) 4 24.81 25.44 26.35 26.51 26.54 26.54 26.54

3 21.24 21.49 22.07 22.46 22.79 23.03 23.03

2 18.59 18.99 19.17 19.37 19.69 19.84 19.91

Peppers 6 28.63 30.27 30.73 30.73 30.73 30.73 30.73

(without 5 24.65 25.47 26.30 26.39 26.41 26.41 26.41

noise) 4 20.62 21.13 21.98 22.23 22.43 22.45 22.45

3 17.46 17.70 18.19 18.45 18.70 18.92 18.92

2 15.01 15.19 15.46 15.74 16.01 16.51 16.51

Ballons 6 22.98 23.61 23.74 23.74 23.74 23.74 23.74

(noise 5 20.73 21.22 21.82 21.90 21.90 21.90 21.90

V = 0.005) 4 18.86 19.16 19.69 19.86 19.94 19.94 19.94

3 17.05 17.19 17.57 17.75 17.89 17.90 17.90

2 15.62 15.67 15.81 15.99 16.10 16.23 16.30

Monarch 6 21.18 21.21 21.21 21.21 21.21 21.21 21.21

(noise 5 19.07 19.55 20.15 20.21 20.22 20.22 20.22

V = 0.015) 4 17.27 17.44 17.92 18.01 18.14 18.15 18.15

3 16.57 16.63 16.83 16.95 17.01 17.02 17.02

2 16.12 16.14 16.20 16.27 16.34 16.39 16.40

Table 3 Mean quotients
between PSNR values of the
methods FWT + R and WT for
different levels of
decomposition (%)

Level FWT FWT + 1 FWT + 5 FWT + 10 FWT + 20 FWT + 45 WT

6 96.29 99.24 100.00 100.00 100.00 100.00 100.00

5 94.13 96.91 99.66 99.97 100.00 100.00 100.00

4 93.77 95.54 98.67 99.43 99.96 100.00 100.00

3 94.28 95.15 97.25 98.45 99.42 100.00 100.00

2 95.05 95.48 96.42 97.48 98.57 99.79 100.00

Fig. 6 Difference between WT and: (a) FWT, (b) FWT + 1, (c) FWT + 5, (d) FWT + 10, for fragment of Bird on third level of decomposition

previous plot, the dots represent experimentally measured
computation time whereas the solid lines represent their es-
timations. As one can see from the plot the larger the value
of R the longer the computation time. Additionally, note that
by changing the value of R to a fixed limit one obtains the
plot from Fig. 5(a).

Finally, let us observe the main trend which follows from
the previous section—the longer computation time the better
quality of image approximation. The practical confirmation
of the trend is presented in Fig. 8 for the fourth level of de-
composition of test image “Monarch” (similar plots are gen-
erated for the other levels of decomposition and the other
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images as well). The plot presents computation time ver-
sus MSE of image approximation for different values of R.
As one can see the dependency is inversely proportional. In
the presented example the result of FWT + 45 is exactly
the same as the one of WT. From the shape of the plot ev-
idently follows that addition of only little time to computa-
tions causes significant improvement of quality. On the other
hand, after passing the saddle point of the plot the situation
is inverse.

However, note that in order to make image approxima-
tion one needs to perform additional step—tree pruning.
But for every approximation this fast procedure takes nearly
the same time of computation, since it searches through the
whole quadtree once. So, in the case of image approxima-
tion by wedgelets the plot of time complexity versus MSE
is situated a little above the one from Fig. 8 and is simi-

Fig. 7 Computed and estimated time complexity for images of differ-
ent sizes for different ranges of additional searching of FWT + R

lar in shape. But because we deal in the paper with time
complexity of the wedgelet transform rather than image ap-
proximation the former plot has been omitted. Instead, as
the last example, the practical use of FWT in image approx-
imation is presented. In Fig. 9 the sample results of test im-
age “Bird” are presented. Namely, in the consecutive subfig-
ures the results of FWT, FWT + 5 and WT, followed by tree
pruning (with λ = 60) are shown. Though the PSNR values
are slightly different for the all methods the visual quality is
nearly the same. Additionally, one can note that FWT + 5
improves the PSNR quality of the image in comparison to
FWT. However, as one can expect, WT still assures the best
result.

Finally, it is worth mentioning that all tests have been
performed for squared dyadic images. For an image of arbi-

Fig. 8 Time complexity versus MSE for different searching ranges for
fourth decomposition level of image “Monarch”

Fig. 9 Wedgelet approximation of image “Bird” for λ = 60 with the use of (a) FWT, PSNR = 29.97 dB, (b) FWT+5, PSNR = 30.56 dB, (c) WT,
PSNR = 30.76 dB
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trary size there is a need to partition it on dyadic squares as
is done in modern compression standards as, for example,
JPEG2000.

5 Conclusions

In the paper the moments-based Fast Wedgelet Transform
has been proposed. It has been proven that it works in as-
ymptotically linear time with respect to the number of result
pixels of the wedgelet transform. So far there has not been
described in the literature any other method of wedgelet
transform working in linear time. So the premise posed
in [8] has been successfully fulfilled in this paper.

But, because the proposed method gives slightly different
results than the classical WT, the improvement of the new
method has been proposed in order to relate the time of com-
putation versus the quality of approximation. In more de-
tails, in practice, depending on application, one can choose
between fast computation and good reconstruction quality.
In such a case the problem of wedgelet transform may be
treated as two-criterial one. It is very important to note that
in this case changes of quality are quite small while changes
of computation time are quite substantial. So, in the pro-
posed approach it is very little to lost while it is very much
to win.

It must be mentioned, finally, that so far wedgelets-based
algorithms were seen as usefulness in real time applications.
But taking into account that the time complexity of the algo-
rithm probably may be further improved by a constant and
that the GPU parallel processing can be used (like, for ex-
ample, NVIDIA CUDA) the proposed approach opens the
door for the use of wedgelets in real time applications.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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