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Abstract A quantum channel teleporting qubits from Alice to Bob is considered in
which the bipartite resource state shared by Alice and Bob is affected by bilocal thermal
noise treated in rigorous Davis approximation. Specific conditions are identified where
the fidelity of the teleportation channel can be either independent of temperature or
even enhanced by the temperature of the environment.

Keywords Teleportation · Dissipation · Thermal environments

1 Introduction

Teleportation [5] is probably the most spectacular application of quantum entan-
glement [12]. Nowadays, thanks to the rapid development of recent experimental
work [3,23], teleportation is a part of modern science rather than fiction. Twenty years
after inventing entanglement-based teleportation of qubits, the idea is often labeled
as “simple.” There are two parties: Alice and Bob, sharing a bipartite entangled qubit
state χAB , the resource state, one part in Alice’s and one in Bob’s hands. Alice is
going to send her qubit ρA to Bob. She performs a Bell state measurement on a pair
consisting of the qubit which is going to be sent and on her “half” of the resource
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136 D. Kłoda , J. Dajka

state. The outcome of the measurement, communicated via classical channel to Bob,
allows him to transform his qubit ρB and reproduce initial Alice’s qubit via suitable
and well-defined procedure ρB → ρA.

Performing realistic teleportation, one is faced with omnipresent decoherence [16];
especially the resource state χAB , waiting for being used, suffers from interaction
with environment and resulting noise. In such a situation, despite related information
loss, effective teleportation is not excluded [2,6,11,13,16,18]. Teleportation using a
mixed state as a resource can be formalized in terms of a generalized depolarization
channel [6]:

ρB = Λ(χ AB)ρA. (1)

where, for an arbitrary two-dimensional matrix ρ,

Λ(χ AB)ρ =
3∑

i=0

Tr[Biχ AB]σiρσi , (2)

and Bi are the Bell states associated with the Pauli matrices σi by the relation

Bi = (σ0 ⊗ σi ) B0 (σ0 ⊗ σi ) , i = 1, 2, 3,

σ0 = I, σ1,2,3 = σx,y,z (3)

with

B0 = 1

2
(|01〉 + |10〉) (〈01| + 〈10|). (4)

In this paper, we assume that the decoherence affecting χAB is due to thermal envi-
ronments. We also assume that the decoherence is bilocal, Markovian, and can be
described in terms of the rigorous Davies approximation [1]. We show that there are
environments such that fidelity of the corresponding teleportation channel Eq. (1) can
be independent of temperature of the environment. There are also certain conditions
imposed on both environment and ρA where the fidelity of teleportation channel is
enhanced by the growth of the temperature.

The paper is organized as follows: in Sect. 2, we briefly present the properties of
decoherence model used in our studies. In Sect. 3, we analyze the fidelity of tele-
portation, focusing on conditions leading to temperature independence. In Sect. 4,
we consider the unitary limit in which at least a part of the system is perfectly
isolated from its environment. Results and conclusions are summarized in the last
section.

2 Model of decoherence

A natural source of decoherence affecting quantum systems is their environment.
Here, we assume that two qubits initially in a state χAB shared by Alice and Bob
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Temperature-independent teleportation of qubits in Davies environments 137

interact with their own environments E A and EB . As Alice and Bob can be far away
from each other, we do not assume any direct interaction between their qubits. Hence,
Hamiltonian of the total system is given by

H = HA + HB + Hint
AE A

+ Hint
B EB

(5)

We also assume that qubits A and B are identical:

HA = HB = ω

2
(|1〉〈1| − |0〉〈0|) (6)

Moreover, we assume that the interaction between qubits and their environments is
weak and satisfies requirements for applying Davies weak coupling approach [1]
for constructing their reduced (with respect to environments) dynamics. The Davies
approach is dedicated to constructing explicitly the generator of a completely positive
(strictly Markovian) semigroup describing reduced (with respect to the environment)
dynamics of open systems in terms of parameters of the microscopic Hamiltonian
of the full system [1]. Davies semigroups are rigorously and consistently derived
from microscopic models of open systems. They satisfy most of the desired ther-
modynamic and statistical–mechanical properties such as the detailed balance condi-
tion [1]. Davies approximation has recently been applied to studies of various problems
in quantum information and physics of open quantum systems including entangle-
ment dynamics [14], quantum discord [7,10], or properties of geometric phases of
qubits [8].

Here, instead of using full power of Davies semigroups, we consider Davies maps
[20], being certain elements of Davies dynamical semigroups. With the subscripts
A and B denoting Alice’s and Bob’s parts (qubits and environments) of the system,
respectively, and for χAB(0) = B0:

χAB(t) = [DA ⊗ DB]B0 (7)

where the Davies map D = D(p, A, G, ω, t) reads as follows [20]:

D|1〉〈1| = [1 − (1 − p)(1 − e−At )]|1〉〈1|
+ (1 − p)(1 − e−At )|0〉〈0| (8)

D|1〉〈0| = eiωt−Gt |1〉〈0| (9)

D|0〉〈1| = e−iωt−Gt |0〉〈1| (10)

D|0〉〈0| = p(1 − e−At )|1〉〈1|
+ [1 − p(1 − e−At )]|0〉〈0| (11)

where p ∈ [0, 1/2] is related to the temperature (kB = 1) via

p = exp(−ω/2T )/[exp(−ω/2T ) + exp(ω/2T )]. (12)

The parameter p Eq. (12) can be interpreted as a rescaled temperature as it ranges
from p = 0 for zero temperature limit up to p = 1/2 for an infinite temperature.
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138 D. Kłoda , J. Dajka

Parameters A = 1/τR and G = 1/τD , interpreted in terms of spin dynamics [15],
are related to the energy relaxation time τR and the dephasing time τD , respec-
tively [20]. Decoherence in Eq. (7) is bilocal, i.e., it cannot enhance the entanglement
of χAB(t). It is reasonable as the qubits forming χAB are usually well separated in
space.

Let us notice the following asymptotic property of Davies maps, which transform
any qubit state ρ in long time limit into equilibrium Gibbs state:

lim
t→∞ D(p, A, G, ω, t)ρ = p|1〉〈1| + (1 − p)|0〉〈0| (13)

In the Davies approach, A and G obey the inequalities [15]

G ≥ A/2 ≥ 0 (14)

guarantying that the Davies map is a trace-preserving completely positive map.
The limiting case A = 0 and G 	= 0 corresponds to pure dephasing without

dissipation of energy. The opposite case, i.e., G = 0 and A 	= 0, cannot be physically
realized as the dissipation of energy is necessarily accompanied by finite dephasing.
It is also reflected in the inequality (14). Let us notice that an explicit temperature
dependence (via p) of the Davis map Eq. (8) is accompanied by implicit temperature
dependence of energy relaxation and dephasing time [1]. However, here we assume
that the potential implicit temperature dependence of Davis maps can be neglected and
both A and G are independent parameters. Such an assumption can clearly become
questionable, e.g., in high-temperature regime.

Teleporting channel Eq. (1) using as a resource χAB from Eq. (7) reads as follows:

Λ(χ AB)|1〉〈1| = (1 − x)|1〉〈1| + x |0〉〈0| (15)

Λ(χ AB)|1〉〈0| = e−(G A+G B )t |1〉〈0| (16)

Λ(χ AB)|0〉〈1| = e−(G A+G B )t |0〉〈1| (17)

Λ(χ AB)|0〉〈0| = x |1〉〈1| + (1 − x)|0〉〈0| (18)

where

x = (pA + pB − 2pA pB)
(

1 + e−(AA+AB )t − e−AAt − e−AB t
)

+1

2

(
e−AAt + e−AB t

)
(19)

Let us notice that the channel Λ(χAB) defined in Eq. (1) and Eqs. (15–18) is truly
teleporting as long as χAB remains entangled. If time t exceeds the time of potential
decoherence-induced entanglement sudden death of χAB , the channel Λ(χAB) remains
a well-defined quantum depolarization channel but it has not much to do with the
teleportation.
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Temperature-independent teleportation of qubits in Davies environments 139

3 Fidelity of the teleporting channel

The “output–input” fidelity F [4] is a natural measure of quality of a quantum channel.
It reduces to an overlap between states provided that at least one of the states used in
its calculation is pure [17].

In the following, we assume that the input qubit which Alice is going to teleport is
in a pure state

ρA = |�〉〈�|
|�〉 = cos(θ/2)|1〉 + eiφ sin(θ/2)|0〉 (20)

As the input state Eq. (20) is pure, fidelity of the teleporting channel Eq. (1) takes the
simpler form [17] and it quantifies an overlap of the final state ρB(t) and the initial
state ρA:

F(t) = Tr [ρB(t)ρA] . (21)

If teleportation is perfect, the final state is the same as the initial state so that the fidelity
F = 1.

For quantum channel given by Eq. (1) and Eqs. (15–18), it is possible and straight-
forward to obtain analytic results for corresponding fidelity. Here, to avoid presenting
large formulas, we limit our discussion to several specific and, in our opinion, most
interesting cases.

Let us start with a simplified setup when the parameters describing environments
affecting Alice’s and Bob’s part of the resource state χAB are identical, AA = AB = A,
G A = G B = G, except that one of environments, say EB , is cooled down to pB = 0.
The fidelity of the teleporting channel Eq. (1)

F = 1

4
+ p

2
(1 + cos(2θ)) + 1

4
e−2Gt (1 − cos(2θ))

+1

2
e−At (1 − p) (1 + cos(2θ)) (22)

depends both on the initial state (via θ but not via φ) and all the remaining parameters
(including temperature in p = pA) of the environment E A. In the (typical) case when
the input state Eq. (20) is unknown but pure, one can obtain from Eq. (22) mean fidelity
(averaged over Bloch sphere):

< F >= 1

4π

∫ 2π

0
dφ

∫ π

0
sin(θ)F(θ) (23)

An average fidelity related to Eq. (22) reads as follows:

< F > = (
1

3
− 2

3
p)e−At + 1

3
(e−2Gt + pe−2At ) + 1

3
(p + 1) (24)
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140 D. Kłoda , J. Dajka

To quantify the entanglement of the resource state χAB , we use negativity

N [χAB] = 1

2

∑

i

(|λi | − λi ) (25)

where λi are eigenvalues of a partially transposed density matrix χAB of a bipartite
system [12]. In panel (a) [panel (b)] of Fig. (1), we present fidelity Eq. (22) [averaged
fidelity Eq. (24)] of teleporting channel calculated for the input state Eq. (20) with
θ = π in energy-relaxing regime A = 2G. In panel (c) of Fig. (1), we present nega-
tivity of the corresponding resource state χAB . As there is energy dissipation present
in the system (A 	= 0), one always expects entanglement sudden death for any choice
of parameters (contrary to pure dephasing when the negativity can decay exponen-
tially [9]). It is intuitively clear that with growing temperature (p), the time when
entanglement death occurs becomes shorter and shorter.

However, even such a very specific example as considered here exhibits apparently
counterintuitive property: fidelity decay becomes slower with growing temperature p.
It is an example of a possibility of enhancement of teleportation fidelity induced by
local noise [24]. Such an enhancement occurs here in a quantum model of physically
well-understood framework of the Davies theory of open systems and seems to be
generic as it occurs not only for typical fidelity, as presented in panel (b) of Fig. (1),
but also for randomly chosen values of θ (not presented here).

The primary objective of our studies is to recognize regimes when the fidelity
of teleportation channel Eq. (1), with Eqs. (15–18), is temperature-independent (p-
independent). Let us consider general system but a specific input Eq. (20) with either
θ = π/2 or θ = 3π/2. The corresponding fidelity depends only on dephasing times
of both environments E A and EB :

F = 1

4
+ 1

4
e−(G A+G B )t (26)

It is obviously and trivially temperature-independent.
It is also possible to obtain temperature-independent fidelity for arbitrary input

provided that one of the environments, lets say EB , is warmed up to infinity, i.e.,
pB = 1/2. Physically, it means of course a very high temperature of one thermostat
and very weak temperature dependence with respect to the second one. Fidelity of the
corresponding teleporting channel is not affected by pA:

F = 1

2
+ 1

4
e−(AA+AB )t (1 + cos(2θ)) + 1

4
e−(G A+G B )t (1 − cos(2θ)) (27)

The corresponding average fidelity reads as follows:

< F > = 1

2
+ 1

6
e−(AA+AB )t + 1

3
e−(G A+G B )t (28)

Fidelity is also temperature-independent (p-independent) if one of the environments
does not exchange energy with its attached qubit, i.e., when (at least) one of the
environments causes pure dephasing (AB = 0) with no energy relaxation:
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Temperature-independent teleportation of qubits in Davies environments 141

Fig. 1 (Color online) a Fidelity
of teleporting channel Eq. (1)
and Eqs. (15–18) calculated for
different values of p = pA and
pB = 0 with AA = AB = 2G A
and G A = G B = 1. Initial state
Eq. (20) is chosen for θ = π .
b Average fidelity Eq. (24)
presented for the same
parameters as in panel (a).
c Negativity Eq. (25) of the
corresponding resource state
χAB given by Eq. (7)
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(c)
p=0
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p=1/3
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F = 1

2
+ 1

4
e−AAt (1 + cos(2θ)) + 1

4
e−(G A+G B )t (1 − cos(2θ)) (29)

Here, the temperature independence holds true for an arbitrary choice of remaining
parameters of environments and initial preparation ρA in Eq. (20). The average fidelity
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142 D. Kłoda , J. Dajka

Fig. 2 (Color online) Long time
limit of fidelity
F(∞) = limt→∞ F calculated
for different θ and p = pA .
Remaining parameters are as in
Fig. (1)
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Let us notice that the pure dephasing serves as a good approximation of various models
studied in wide range of contexts [19,21,22].

Relationship between temperature dependence of the fidelity and the particular
choice of initial preparation is well visible in, otherwise not very interesting for tele-
portation, long time limit limt→∞ F . In Fig. (2), we present asymptotic fidelity cal-
culated for different θ in the system with remaining parameters as in Fig. (1). Let us
observe that ordering of curves at t = ∞ presented in Fig. (2) is preserved in time, i.e.,
it is the same as for an arbitrary finite value of t . Let us also notice particular character
of both initial preparation with θ = π/2 and infinite temperature pA = 1/2 leading
to F = 1/2. In other words, teleportation of a quantum state Eq. (20) with θ = π/2 is
as ineffective as embedding teleportation protocol in a very hot environment.

4 Unitary limit

In this section, we consider very specific limiting case of the system considered in
our work. We assume that one of the qubits, either belonging to Alice or to Bob,
forming resource state χAB is not affected by any decoherence, i.e., its evolution is
purely unitary. The unitary limit of the Davis map is obtained as a limiting procedure
divided into two steps. In the first step, we exclude energy dissipation. It corresponds
to the limit A → 0 followed then by the second step which is a limit G → 0. Let us
notice that due to the condition Eq. (14), the ordering of limits follows from physical
arguments.

If an unaffected by the environment (noiseless) qubit belongs to Alice, the fidelity
of corresponding teleportation channel Eq. (1) and Eqs. (15–18)

Fu A = lim
G A→0

lim
AA→0

F
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Temperature-independent teleportation of qubits in Davies environments 143

= 1

2
e−(AB+G B )t [e(AB+G B )t + eAB t (1 − cos(θ)2)

+ 4eG B t (1 + cos(
θ

2
)4 − cos(

θ

2
)2)] (31)

does not depend on the temperature of the environment EB affecting Bob’s qubit. The
average of fidelity Eq. (31) calculated with respect to the input state reads as follows:

< Fu A > = 1

2
e−(AB+G B )t

[
e−(AB+G B )t + 2

3

(
e−AB t − e−G B t

)]
(32)

Doing one step further and assuming no decoherence at all (i.e., evolution of both
qubits forming resource state χAB is unitary), one arrives at an expected result:

Fu A,B = lim
G B→0

lim
AB→0

Fu A = 1 (33)

corresponding to perfect (generic) teleportation.
Let us notice physical and practical implication of that result. In simple words, in

order to obtain temperature-independent (p-independent) teleportation, it is enough
to take care only on “one-half” of the resource state χAB keeping it as far from
decoherence as possible and making its evolution unitary. Fidelity of the corresponding
teleportation is not affected by temperature of the environment of the second qubit
undergoing Davies evolution.

5 Conclusions

Thermal noise is one of the sources of decoherence, which seem to be unavoidable in
real systems. Lowering temperature is the first and natural answer to the question how
to reduce such a noise. It is not always possible, and it is not always desired solution.
This paper was devoted to another solution: one can operate in the regime where the
system becomes independent on temperature.

We investigated the fidelity of qubit teleportation channel in the regime when
the shared entangled resource state was affected by thermal fluctuations caused by
independent thermal reservoirs, modeled in terms of Davis maps. There are two ori-
gins of temperature dependence of the Davis maps Eqs. (8–11). The first is explicit,
via parameter p in Eq. (12), and the second via dephasing and relaxation time entering
the Davis map. We strictly limited our investigation to the first source of temperature
dependence assuming the second to be negligible. Such a simplified approach allows
us to avoid the details of microscopic processes inherent in a realistic model for a
system–reservoir coupling. We show that there are circumstances when the fidelity
becomes independent on temperature of at least one of environments. (i) Such an inde-
pendence can occur provided that one of the reservoirs is a source of pure decoherence
without energy dissipation. (ii) The temperature of one of the environments does not
alter the fidelity of teleporting channel if the second environment is infinitely hot, or
(iii) in teleportation of qubits prepared in very specific states. (iv) It is also possible to
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144 D. Kłoda , J. Dajka

obtain temperature-independent fidelity of teleportation isolating one of qubits of the
resource state from its environment. Last but not least, there is a possibility of thermal
enhancement of fidelity of teleportation channel in the model which was studied in the
paper. In all the investigated cases, desired features of teleportation are obtained via
modification of local properties of the total system by acting only on its subsystems.
The Davies model of decoherence adapted in this work, contrary to many phenom-
enological approaches, despite its limitations, is directly related to physical properties
of the investigated model. Such a choice guarantees well-defined range of applica-
bility of obtained results. We hope that presented studies will be helpful for further
development of practical implementations of teleportation in quantum information
processing.
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4. Bengtsson, I., Życzkowski, K.: Geometry of quantum states: an introduction to quantum entanglement.
Cambridge University Press, Cambridge (2008)

5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown
quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899
(1993)

6. Bowen, G., Bose, S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical
capacity. Phys. Rev. Lett. 87, 267,901 (2001)

7. Dajka, J., Łuczka, J.: Swapping of correlations via teleportation with decoherence. Phys. Rev. A 87,
022,301 (2013)

8. Dajka, J., Łuczka, J., Hänggi, P.: Geometric phase as a determinant of a qubit environment coupling.
Quantum Inf. Process. 10(1), 85–96 (2011)

9. Dajka, J., Mierzejewski, M., Łuczka, J.: Non-markovian entanglement evolution of two uncoupled
qubits. Phys. Rev. A 77, 042,316 (2008)

10. Dajka, J., Mierzejewski, M., Łuczka, J., Blattmann, R., Hänggi, P.: Negativity and quantum discord in
Davies environments. J. Phys. A Math. Theor. 45(48), 485,306 (2012)

11. Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, bell’s inequalities and inseparability. Phys.
Lett. A 222(12), 21–25 (1996)

12. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys.
81, 865–942 (2009)

13. Ishizaka, S.: Quantum channel locally interacting with environment. Phys. Rev. A 63, 034,301 (2001)
14. Lendi, K., van Wonderen, A.J.: Davies theory for reservoir-induced entanglement in a bipartite system.

J. Phys. A Math. Theor. 40(2), 279 (2007)
15. Levitt, M.: Spin dynamics: basics of nuclear magnetic resonance. Wiley, New York (2008)
16. Man, Z.X., Xia, Y.J.: Quantum teleportation in a dissipative environment. Quantum Inf. Process. 11(6),

1911–1920 (2012). doi:10.1007/s11128-011-0350-y
17. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge University Press,

Cambridge (2000)

123

http://dx.doi.org/10.1007/s11128-011-0350-y


Temperature-independent teleportation of qubits in Davies environments 145

18. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66,
022,316 (2002)

19. Reina, J.H., Quiroga, L., Johnson, N.F.: Decoherence of quantum registers. Phys. Rev. A 65, 032,326
(2002)
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