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Inhomogeneous poly-scale refinement type
equations and Markov operators
with perturbations

Rafa�l Kapica and Janusz Morawiec

Abstract. Given measure spaces (Ω1,A1, µ1), . . . , (ΩN ,AN , µN ), func-
tions φ1 : Rm×Ω1 → Rm, . . . , φN : Rm×ΩN → Rm and g : Rm → R, we
present results on the existence of solutions f : Rm → R of the inhomo-
geneous poly-scale refinement type equation of the form

f(x) =
N∑

n=1

∫

Ωn

��det(φn)
′
x(x, ωn)

��f(φn(x, ωn)
)
dµn(ωn) + g(x)

in some special classes of functions. The results are obtained by Banach
fixed point theorem applied to a perturbed Markov operator connected
with the considered inhomogeneous poly-scale refinement type equation.

Mathematics Subject Classification. Primary 37H99, 37N99; Secondary
39B12.

Keywords. Inhomogeneous poly-scale refinement type equations, Markov
operators with perturbations, fixed points, Lp-solutions, continuous and
bounded solutions, compactly supported solutions.

1. Introduction

Fix m,N ∈ N, measure spaces (Ω1,A1, µ1), . . . , (ΩN ,AN , µN ) and functions
φ1 : Rm×Ω1 → Rm, . . . , φN : Rm×ΩN → Rm, g : Rm → R. We are interested
in solutions f : Rm → R of the inhomogeneous poly-scale refinement type
equation

f(x) =
N∑

n=1

∫

Ωn

��det(φn)
′
x(x, ωn)

��f(φn(x, ωn)
)
dµn(ωn) + g(x) (1.1)

in the space of all pth power Lebesgue integrable functions as well as in the
space of all continuous and bounded functions. If for every n ∈ {1, . . . , N}
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the function φn : Rm × Ωn → Rm is of the form

φn(x, ωn) = Kn(ωn)x−Mn(ωn) (1.2)

with given functions

Kn : Ωn → Rm×m and Mn : Ωn → Rm,

then equation (1.1) becomes the inhomogeneous poly-scale refinement type
equation

f(x) =
N∑

n=1

∫

Ωn

��detKn(ωn)
��f(Kn(ωn)x−Mn(ωn)

)
dµn(ωn) + g(x). (1.3)

Taking g = 0 in (1.3) we obtain the following homogeneous poly-scale refine-
ment type equation

f(x) =
N∑

n=1

∫

Ωn

��detKn(ωn)
��f(Kn(ωn)x−Mn(ωn)

)
dµn(ωn).

This equation extends the discrete poly-scale refinement equation which has
been studied in [5, 26, 27]. If N = 1, then equation (1.3) reduces to the in-
homogeneous refinement type equation

f(x) =

∫

Ω

��detK(ω)
��f(K(ω)x−M(ω)

)
dµ(ω) + g(x). (1.4)

Inhomogeneous refinement equations are motivated by constructions of multi-
wavelets, multichannel filters and constructions of wavelets on a finite interval
(see, e.g., [4, 10, 23]). Various inhomogeneous forms of equation (1.4) have
been investigated in [6, 12, 24, 25].

Several problems from different areas of pure and applied mathematics
lead to the problem of the existence of nontrivial Lebesgue integrable solu-
tions of refinement type equation (1.4) with g = 0, i.e., the homogeneous
refinement type equation

f(x) =

∫

Ω

��detK(ω)
��f(K(ω)x−M(ω)

)
dµ(ω) (1.5)

(for more details see the survey [15] and the references therein). It turns out
that in some applications, continuous and bounded or continuous and com-
pactly supported solutions of homogeneous refinement equations are impor-
tant. Such solutions have significant applications in wavelet theory, approx-
imation theory, theory of subdivision schemes, computer graphics, physics,
combinatorial number theory and many others (see, e.g., [2, 7, 8, 9, 18, 19,
22]).

From the point of view of applications, all results on the existence of
“good” solutions of homogeneous as well as of inhomogeneous refinement
equations are very important (see [3] where it is showed how nonexistence
of “good” solutions of a refinement equation can lead to anomalous behav-
ior of numerical methods for a construction of wavelets). Let us note that
refinement equations always have plenty of “bad” solutions, even extremely
strange (see, e.g., [1, 15, 20]).
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To find conditions under which homogeneous refinement type equation
(1.5) has a nontrivial Lebesgue integrable solution is rather difficult; some
results in this direction can be found in [14, 21]. To the best of our knowledge,
there is no result concerning the existence of a nontrivial Lebesgue integrable
solution of the homogeneous poly-scale refinement type equation

f(x) =
N∑

n=1

∫

Ωn

��det(φn)
′
x(x, ωn)

��f(φn(x, ωn)
)
dµn(ωn). (1.6)

Nevertheless, it is possible to formulate conditions under which homogeneous
poly-scale refinement type equation (1.6) has no nontrivial Lebesgue inte-
grable solution (see [13] for the case where N = 1). Therefore, if homogeneous
poly-scale refinement type equation (1.6) has no nontrivial Lebesgue inte-
grable solution, we can ask if its inhomogeneous counterpart (1.1), obtained
by adding to the right-hand side of (1.6) a perturbation function g, has such
a solution.

If F is a given class of functions, then the existence of a solution f ∈ F of
inhomogeneous poly-scale refinement type equation (1.1) is a consequence of
the existence of a fixed point of the operator P : F → F given by

Pf =
N∑

n=1

∫

Ωn

��det(φn)
′
x(·, ωn)

��f(φn(·, ωn)
)
dµn(ωn) + g. (1.7)

It turns out that the operator P happens (under suitable assumptions) to be
the Markov operator in the case where g = 0; for the definition of the Markov
operator and more information on it see [17]. Asymptotically stability of
Markov operators has been explored in [21] to study the problem of the exis-
tence of nontrivial Lebesgue integrable solutions of homogeneous refinement
type equation (1.5). In this paper, we are going to examine the Banach fixed
point theorem to obtain results on the existence of a pth power Lebesgue
integrable solution as well as a continuous and bounded solution of equa-
tion (1.1) and of its special case (1.3). Thus we are looking for conditions, on
the spaces (Ω1,A1, µ1), . . . , (ΩN ,AN , µN ) and the given functions φ1, . . . , φN

and g, guaranteeing that the operator P is well defined and satisfies assump-
tions of the Banach fixed point theorem.

2. Notation

Given a real number p ≥ 1, we write Lp to denote the Banach space of all pth
power Lebesgue measurable functions f : Rm → R with the standard norm

∥f∥p =

(∫

Rm

|f(x)|p dx
)1/p

.

If f ∈ Lp, then f = f+ − f−, where f+ and f− are the positive and negative
parts of f ; i.e., f+ = max{f, 0} and f− = max{−, 0}. We say that a point
x ∈ Rm is in the support of f ∈ Lp if for every neighborhood Ux ⊂ Rm of x
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we have

lm
(
{y ∈ Ux : f(y) ̸= 0}

)
> 0;

here and throughout, lm denotes the Lebesgue measure on Rm. Given f ∈ Lp,
it is easy to see that the set

supp f = {x ∈ Rm : x is in the support of f}

is closed; it is called the support of f and if it is compact we say that f is
compactly supported.

We write CB to denote the Banach space of all continuous and bounded
functions f : Rm → R with the supremum norm

∥f∥sup = sup
{
|f(x)| : x ∈ Rm

}
.

Since Rm is a noncompact space, we can consider the subspace CC ⊂ CB of
all functions f : Rm → R with compact support; in contrast to the definition
of the support of pth power Lebesgue measurable functions, we say that a
continuous function f : R → R has a compact support if the set

supp f = cl{x ∈ Rm : f(x) ̸= 0},

called the support of f , is compact. The space CC endowed in the supremum
norm is not, in general, complete. The completion of CC is the space C0 con-
sisting of all those continuous functions f : Rm → R that vanish at infinity;
i.e., f ∈ C0 if and only if f ∈ CB and the set cl{x ∈ Rm : |f(x)| ≥ ε} is
compact for every ε > 0. It is easy to prove that f ∈ C0 if and only if f is
continuous and lim∥x∥→+∞ f(x) = 0, where ∥ · ∥ is an arbitrary norm in Rm.

The symbol B will denote the family of all Borel subsets of Rm.
From now on we assume that (Ω1,A1, µ1), . . . , (ΩN ,AN , µN ) are com-

plete finite measure spaces, and P denotes the operator given by (1.7).

3. L1-solutions

Throughout this section we assume that g ∈ L1.
As it was mentioned earlier, our aim is to use the Banach fixed point

theorem to the operator P defined by (1.7). For this purpose we need to know
that P transforms the space L1 into itself. Before we give conditions on φn’s
under which P (L1) ⊂ L1, we recall that f ∈ L1 is called an L1-solution of
equation (1.1), if every representative of f satisfies (1.1) for almost all x ∈ Rm

with respect to lm.

Lemma 3.1. Assume that for every n ∈ {1, . . . , N} the function

φn : Rm × Ωn → Rm

satisfies the following conditions:

(3.1) φn(·, ωn) is a diffeomorphism from Rm onto Rm for every ωn ∈ Ωn;
(3.2) φn(x, ·) is An-measurable for every x ∈ Rm;
(3.3) (lm ⊗ µn)(φ

−1
n (B)) = 0 for every Borel set B ⊂ Rm with lm(B) = 0.
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Then

(i) if f : Rm → R is a Lebesgue integrable function, then so is the function

Rm ∋ x �−→
N∑

n=1

∫

Ωn

��det(φn)
′
x(x, ωn)

��f(φn(x, ωn)
)
dµn(ωn); (3.4)

(ii) if f, f̃ : Rm → R are Lebesgue integrable functions such that f(x) = f̃(x)
for almost all x ∈ Rm and f satisfies equation (1.1) for almost all x ∈
Rm, then also f̃ satisfies equation (1.1) for almost all x ∈ Rm;

(iii) we have P (L1) ⊂ L1.

Proof. (i) Fix n ∈ {1, . . . , N}.
Conditions (3.1) and (3.2) imply that both functions φn and det(φn)

′
x

are B ⊗An-measurable (see [11] or [16]).
Fix a Lebesgue integrable function f : Rm → [0,+∞) and a set B ∈ B.

From condition (3.3) we obtain that the set (f ◦ φn)
−1(B) belongs to the

completion B ⊗An of B⊗An. Consequently, the function |det(φn)
′
x|(f ◦φn)

is Lm ⊗An-measurable and∫

Rm×Ωn

��det(φn)
′
x(x, ωn)

��f(φn(x, ωn)
)
d
(
lm ⊗ µn

)
(x, ωn)

= µn(Ωn)

∫

Rm

f(x) dx = µn(Ωn)∥f∥1 < +∞.

Since An is complete, we conclude from the Fubini theorem that the function��det(φn)
′
x(x, ·)

��(f ◦ φn)(x, ·)

is µn-integrable for almost all x ∈ Rm and that the function∫

Ωn

��det(φn)
′
x(·, ωn)

��f(φn(·, ωn)
)
dµn(ωn)

is Lebesgue integrable.
Fix now an arbitrary Lebesgue integrable function f : Rm → R. Since

both the functions f+ and f− are nonnegative and Lebesgue integrable, we
conclude that both the functions∫

Ωn

��det(φn)
′
x(·, ωn)

��f+
(
φn(·, ωn)

)
dµn(ωn)

and ∫

Ωn

��det(φn)
′
x(·, ωn)

��f−
(
φn(·, ωn)

)
dµn(ωn)

are Lebesgue integrable. In consequence, the function∫

Ωn

��det(φn)
′
x(·, ωn)

��f(φn(·, ωn)
)
dµn(ωn)

is also Lebesgue integrable.
Finally, the function given by (3.4) is Lebesgue integrable, because it is

a finite sum of Lebesgue integrable functions.
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(ii) Fix two Lebesgue integrable functions f, f̃ : Rm → R and assume

that there exists a set B ∈ B with lm(B) = 0 such that f(x) = f̃(x) for every
x ̸∈ B. Since the right-hand side of equation (1.1) is a Lebesgue integrable
function of variable x by assertion (i), we can assume that (1.1) holds for
every x ̸∈ A with lm(A) = 0. By (3.3) for every n ∈ {1, . . . , N} we have

0 = (lm ⊗ µn)
(
φ−1
n (B)

)
=

∫

Rm

µ
(
φ−1
n (B)x

)
dx.

Then for every n ∈ {1, . . . , N} there exists a Lebesgue measurable set Cn

such that lm(Cn) = 0 and µn(φ
−1
n (B)x) = 0 for every x ̸∈ Cn. Hence, if

x ̸∈ A ∪B ∪
N∪

n=1

Cn,

then

f̃(x) = f(x)

=
N∑

n=1

∫

Ωn

��det(φn)
′
x(x, ωn)

��f(φn(x, ωn)
)
dµn(ωn) + g(x)

=
N∑

n=1

∫

Ωn\φ−1
n (B)x

��det(φn)
′
x(x, ωn)

��f(φn(x, ωn)
)
dµn(ωn) + g(x)

=

∫

Ωn\φ−1
n (B)x

��det(φn)
′
x(x, ωn)

��f̃(φn(x, ωn)
)
dµn(ωn) + g(x)

=
N∑

n=1

∫

Ωn

��det(φn)
′
x(x, ωn)

��f̃(φn(x, ωn)
)
dµn(ωn) + g(x);

i.e., f̃ satisfies (1.1) for almost all x ∈ Rm.
(iii) Fix f ∈ L1 and choose two representatives f1 and f2 of f . By asser-

tion (i) we infer that both the functions Pf1 and Pf2 are Lebesgue integrable.
Now by the same arguments as in the proof of assertion (ii) we conclude that
Pf1(x) = Pf2(x) for almost all x ∈ Rm. �

Observe that assertion (ii) of the above lemma says that the definition
of L1-solutions of equation (1.1) is well posed.

In the case where the functions φn’s are of the form (1.2) we do not need
any special condition guaranteeing that P : L1 → L1. More precisely, we have
the following observation.

Remark 3.2. Let Kn : Ωn → Rm×m and Mn : Ωn → Rm be Lebesgue mea-
surable functions. If detKn(ω) ̸= 0 for every ωn ∈ Ωn, then the function
φn : Rm × Ωn → Rm given by (1.2) satisfies conditions (3.1)–(3.3).

Now we are in a position to formulate our first result on the existence
of a unique L1-solution of equation (1.1) in the space L1.

Theorem 3.3. Assume that for every n ∈ {1, . . . , N} the function

φn : Rm × Ωn → Rm
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satisfies conditions (3.1)–(3.3). If
∑N

n=1 µ(Ωn) < 1, then equation (1.1) has
exactly one L1-solution f and for every f0 ∈ L1 the sequence (Pnf0)n∈N con-
verges to f in L1. Moreover,

(i) if g is of constant sign, then so is f ;
(ii) if

∫
Rm g(x) dx = 0, then

∫
Rm f(x) dx = 0;

(iii) if there exists a closed set Z ⊂ Rm such that

φn(Z × Ωn) ⊂ Z for every n ∈ {1, . . . , N} (3.5)

and if supp g⊂Z, then supp f⊂Z; in particular, if Z is compact, then f
is compactly supported.

Proof. By Lemma 3.1 we have P : L1 → L1. Moreover, for all f1, f2 ∈ L1 we
obtain

∥Pf1 − Pf2∥1 ≤
N∑

n=1

µn(Ωn)∥f1 − f2∥1.

The Banach fixed point theorem completes the proof of the main part of the
theorem.

(i) Clearly, both the sets

L1
+ = {h ∈ L1 : h ≥ 0} and L1

− = {h ∈ L1 : h ≤ 0}

are closed subspaces of L1. Now it is enough to observe that P : L1
+ → L1

+ and
P : L1

− → L1
−.

(ii) Observe first that the set {h ∈ L1 :
∫
Rm h(x)dx = 0} is a closed sub-

space of L1.
Taking the Fourier transform of both sides of equation (1.1), we obtain

�f(y) =
∫

Rm

eixyf(x) dx

=

N∑
n=1

∫

Ωn

∫

Rm

eixy
��det(φn)

′
x(x, ωn)

��f(φn(x, ωn)
)
dx dµn(ωn) + �g(y)

for every y ∈ R. Hence for y = 0 we get
[
1−

N∑
n=1

µn(Ωn)

]
�f(0) = �g(0) =

∫

Rm

g(x) dx = 0,

and in consequence, ∫

Rm

f(x) dx = �f(0) = 0.

(iii) Since Z is closed, it follows that

X = {h ∈ L1 : supph ⊂ Z}

is a closed subspace of L1.
Fix h ∈ X. By (3.5) we have supp(h◦φn) ⊂ Z for every n ∈ {1, . . . , N}.

This jointly with supp g ⊂ Z implies suppPh ⊂ Z and, in consequence, we
obtain P : X → X. �
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Corollary 3.4. Assume that for every n ∈ {1, . . . , N} the functions

Kn : Ωn → Rm×m and Mn : Ωn → Rm

are Lebesgue measurable. If
∑N

n=1 µ(Kn ̸= 0) < 1, then equation (1.3) has ex-
actly one L1-solution f and for every f0 ∈ L1 the sequence (Pnf0)n∈N con-
verges to f in L1. Moreover,

(i) if g is of constant sign, then so is f ;
(ii) if

∫
Rm g(x) dx = 0, then

∫
Rm f(x) dx = 0;

(ii) if there exists a closed set Z ⊂ Rm such that

K(ωn)Z ⊂ Z +M(ωn) for all ωn ∈ Ωn and n ∈ {1, . . . , N} (3.6)

and if supp g⊂Z, then supp f⊂Z; in particular, if Z is compact, then f
is compactly supported.

Proof. Putting
�Ωn = {ωn ∈ Ωn : detKn(ωn) ̸= 0}

for every n ∈ {1, . . . , N} we get
∑N

n=1 µn(�Ωn) < 1. Now it is enough to apply
Remark 3.2 and Theorem 3.3. �

In the case where g = 0, Theorem 3.3 says that the trivial function is
the only L1-solution of equation (1.6). To see it in another way suppose that,
on the contrary, f is a nontrivial L1-solution of equation (1.6). Then

∥f∥1 ≤
N∑

n=1

∫

Ωn

∫

Rm

��det(φn)
′
x(x, ωn)f

(
φn(x, ωn)

)�� dx dµn(ωn)

= ∥f∥1
N∑

n=1

µn(Ωn) < ∥f∥1,

which is impossible.

4. Lp-solutions

Throughout this section we assume that g ∈ Lp with p > 1.
Recall that f ∈ Lp is called an Lp-solution of equation (1.1), if every

representative of f satisfies (1.1) for almost all x ∈ Rm with respect to lm.
We begin with a counterpart of Lemma 3.1 for the space Lp.

Lemma 4.1. Assume that for every n ∈ {1, . . . , N} the function

φn : Rm × Ωn → Rm

satisfies conditions (3.1)–(3.3) and

sup
x∈Rm

��det(φn)
′
x(x, ·)

��p−1 ≤ (Φn)
p with Φn ∈ L1(Ωn). (4.1)

Then

(i) if f : Rm → R is a pth power Lebesgue integrable function, then so is the
function given by formula (3.4);
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(ii) if f, f̃ : Rm → R are pth power Lebesgue integrable functions such that

f(x) = f̃(x) for almost all x ∈ Rm and f satisfies equation (1.1) for

almost all x ∈ Rm, then also f̃ satisfies equation (1.1) for almost all
x ∈ Rm;

(iii) we have P (Lp) ⊂ Lp.

Proof. (i) Fix n ∈ {1, . . . , N} and pth power Lebesgue integrable function
f : Rm → R. In the same way as in the proof of assertion (i) of Lemma 3.1,
conditions (3.1)–(3.3) imply that the function��det(φn)

′
x

��(f ◦ φn)

is Lm ⊗An-measurable. By the Minkowski inequality for integrals and (4.1)
we have

(∫

Rm

[∫

Ωn

��det(φn)
′
x(x, ωn)

��f+
(
φn(x, ωn)

)
dµn(ωn)

]p
dx

)1/p

≤
∫

Ωn

(∫

Rm

[��det(φn)
′
x(x, ωn)

��f+
(
φn(x, ωn)

)]p
dx

)1/p

dµn(ωn)

≤
∫

Ωn

(∫

Rm

[
Φn(ωn)f+(y)

]p
dy

)1/p

dµn(ω)

= ∥Φn∥1∥f+∥p < +∞,

which shows that the function∫

Ωn

��det(φn)
′
x(·, ωn)

��f+
(
φn(·, ωn)

)
dµn(ωn)

is pth power Lebesgue integrable. In a similar way we can prove that the func-
tion ∫

Ωn

��det(φn)
′
x(·, ωn)

��f−
(
φn(·, ωn)

)
dµn(ωn)

is pth power Lebesgue integrable. Consequently, the function∫

Ωn

��det(φn)
′
x(·, ωn)

��f(φn(·, ωn)
)
dµn(ωn)

is pth power Lebesgue integrable. Finally, the function given by (3.4) is pth
power Lebesgue integrable, because it is a finite sum of pth power Lebesgue
integrable functions.

Assertions (ii) and (iii) can be proved in the same manner as assertions
(ii) and (iii) of Lemma 3.1. �

In the case where the functions φn’s are of the form (1.2) we need a
condition on the functions Kn’s guaranteeing that (4.1) holds.

Remark 4.2. Let Kn : Ωn → Rm×m and Mn : Ωn → Rm be Lebesgue mea-
surable functions. If

(detKn)
(p−1)/p ∈ L1(Ωn),

then the function φn : Rm×Ωn → Rm given by (1.2) satisfies condition (4.1).
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Now we can formulate a result on the existence of the unique Lp-solution
of equation (1.1) in the space Lp.

Theorem 4.3. Assume that for every n ∈ {1, . . . , N} the function

φn : Rm × Ωn → Rm

satisfies conditions (3.1)–(3.3) and (4.1). If
∑N

n=1 ∥Φn∥1 < 1, then equa-
tion (1.1) has exactly one Lp-solution f and for every f0 ∈ Lp the sequence
(Pnf0)n∈N converges to f in Lp. Moreover,

(i) if g is of constant sign, then so is f ;
(ii) if there exists a closed set Z ⊂ Rm such that (3.5) holds and if supp g ⊂

Z, then supp f ⊂ Z; in particular, if Z is compact, then f is compactly
supported.

Proof. By Lemma 4.1 we have P : Lp → Lp. Fix f1, f2 ∈ Lp. Then the
Minkowski inequality for integrals and condition (4.1) imply that

∥Pf1 − Pf2∥p

≤

(∫

Rm

[
N∑

n=1

∫

Ωn

���det(φn)
′
x(x, ωn)

×
[
f1
(
φn(x, ωn)

)
− f2

(
φn(x, ωn)

)]��� dµn(ωn)

]p

dx

)1/p

≤
N∑

n=1

(∫

Rm

[∫

Ωn

���det(φn)
′
x(x, ωn)

×
[
f1
(
φn(x, ωn)

)
− f2

(
φn(x, ωn)

)]��� dµn(ωn)

]p

dx

)1/p

≤
N∑

n=1

∫

Ωn

(∫

Rm

���det(φn)
′
x(x, ωn)

×
[
f1
(
φn(x, ωn)

)
− f2

(
φn(x, ωn)

)]���
p

dx

)1/p

dµn(ωn)

≤
N∑

n=1

∫

Ωn

(∫

Rm

[
Φn(ωn)

]p|f1(y)− f2(y)|pdy

)1/p

dµn(ωn)

=

N∑
n=1

∥Φn∥1∥f1 − f2∥p.

The Banach fixed point theorem completes the proof of the main part of the
theorem.

Assertions (i) and (ii) hold because all the sets

Lp
+ = {h ∈ Lp : h ≥ 0}, Lp

− = {h ∈ Lp : h ≤ 0}, X = {h ∈ Lp : supph ⊂ Z}

are closed subspaces of Lp and P (Lp
+) ⊂ Lp

+, P (Lp
−) ⊂ Lp

−, P (X) ⊂ X. �
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An immediate consequence of Theorem 4.3 and Remarks 3.2 and 4.2 is
the following corollary.

Corollary 4.4. Assume that for every n ∈ {1, . . . , N} the functions

Kn : Ωn → Rm×m and Mn : Ωn → Rm

are Lebesgue measurable with (detKn)
(p−1)/p ∈ L1(Ωn). If

N∑
n=1

���(detKn)
(p−1)/p

���
1
< 1,

then equation (1.3) has exactly one Lp-solution f and for every f0 ∈ L1 the
sequence (Pnf0)n∈N converges to f in L1. Moreover,

(i) if g is of constant sign, then so is f ;
(ii) if there exists a closed set Z ⊂ Rm such that (3.6) holds and if supp g ⊂

Z, then supp f ⊂ Z; in particular, if Z is compact, then f is compactly
supported.

5. Continuous and bounded solutions

Throughout this section we assume that g ∈ CB .
In contrast to the previous section we recall that f ∈ CB is called solu-

tion of equation (1.1), if (1.1) holds for every x ∈ Rm.
We begin with conditions on φn’s under which P : CB → CB .

Lemma 5.1. Assume that for every n ∈ {1, . . . , N} the function

φn : Rm × Ωn → Rm

satisfies conditions (3.1)–(3.3) and

sup
x∈Rm

��det(φn)
′
x(x, ·)

�� ≤ Ψn with Ψn ∈ L1(Ωn). (5.1)

Then P (CB) ⊂ CB.

Proof. Fix a function f ∈ CB . Conditions (3.1)–(3.3) imply that the function
|det(φn)

′
x|(f ◦ φn) is L1 ⊗A-measurable for every n ∈ {1, . . . , N}. Fix a

sequence (xk)k∈N of reals convergent to a real number x. From (3.1) we have

lim
k→∞

det(φn)
′
x(xk, ωn)f

(
φn(xk, ωn)

)
= det(φn)

′
x(x, ωn)f

(
φn(x, ωn)

)
,

and by (5.1) we obtain��det(φn)
′
x(xk, ωn)f

(
φn(xk, ωn)

)�� ≤ ∥f∥supΨn(ωn)

for all ωn ∈ Ωn and n ∈ {1, . . . , N}. Hence

|Pf(y)| ≤ ∥f∥sup
N∑

n=1

∥Ψn∥1 + ∥g∥sup

for every y ∈ Rm and the Lebesgue dominated convergence theorem implies
that limk→∞ Pf(xk) = Pf(x). In consequence, Pf ∈ CB . �
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In the case where the functions φn’s are of the form (1.2), we need a
condition on the functions Kn’s guaranteeing that (5.1) holds.

Remark 5.2. Let Kn : Ωn → Rm×m and Mn : Ωn → Rm be Lebesgue mea-
surable functions. If detKn ∈ L1(Ωn), then the function φn : Rm×Ωn → Rm

given by (1.2) satisfies condition (5.1).

Now we can formulate a result on the existence of a unique solution of
equation (1.1) in the space CB .

Theorem 5.3. Assume that for every n ∈ {1, . . . , N} the function

φn : Rm × Ωn → Rm

satisfies conditions (3.1)–(3.3) and (5.1). If
∑N

n=1 ∥Ψn∥1 < 1, then equa-
tion (1.1) has exactly one solution f ∈ CB and for every f0 ∈ CB the sequence
(Pnf0)n∈N converges to f in the supremum norm. Moreover,

(i) if g is of constant sign, then so is f ;
(ii) if g ∈ C0, then f ∈ C0;
(iii) if there exists a closed set Z ⊂ Rm such that (3.5) holds and if supp g ⊂

Z, then supp f ⊂ Z; in particular, if Z is compact, then f is compactly
supported.

Proof. By Lemma 5.1 we have P : CB → CB . Fix f1, f2 ∈ Lp. Then by (5.2)
we get

∥Pf1 − Pf2∥sup ≤
N∑

n=1

∥Ψn∥1∥f1 − f2∥sup.

The Banach fixed point theorem completes the proof of the main part of the
theorem.

Assertions (i)–(iii) hold because all the sets

C+
B = {h ∈ CB : h ≥ 0}, C−

B = {h ∈ CB : h ≤ 0}, C0,

X = {h ∈ CB : supph ⊂ Z}

are closed subspaces of CB and P (C+
B ) ⊂ C+

B , P (C−
B ) ⊂ C−

B , P (C0) ⊂ C0,
P (X) ⊂ X. To prove that P (C0) ⊂ C0 take f ∈ C0. By (3.1) we have

(f ◦ φn)(·, ωn) ∈ C0

for every n ∈ {1, . . . , N}. This jointly with (5.1) and the Lebesgue dominated
convergence theorem gives

lim
∥x∥→+∞

N∑
n=1

∫

Ωn

Ψn(ωn)
��f(φn(x, ωn)

)�� dµn(ωn) = 0.

Finally, since g ∈ C0, it follows that lim∥x∥→+∞ |Pf(x)| = 0. �

Theorem 5.3 can be easily reformulated to get the existence and unique-
ness of solutions of equation (1.1) in the space L∞.

We end this paper with the following immediate consequence of Theo-
rem 5.3 and Remarks 3.2 and 5.2.
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Corollary 5.4. Assume that for every n ∈ {1, . . . , N} the functions

Kn : Ωn → Rm×m and Mn : Ωn → Rm

are Lebesgue measurable with detKn ∈ L1(Ωn). If
∑N

n=1 ∥detKn∥1 < 1, then
equation (1.3) has exactly one solution f ∈ CB and for every f0 ∈ CB the
sequence (Pnf0)n∈N converges to f in the supremum norm. Moreover,

(i) if g is of constant sign, then so is f ;
(ii) if g ∈ C0, then f ∈ C0;
(iii) if there exists a closed set Z ⊂ Rm such that (3.6) holds and if supp g ⊂

Z, then supp f ⊂ Z; in particular, if Z is compact, then f is compactly
supported.

Acknowledgment

This research was supported by the University of Silesia Mathematics De-
partment (Iterative Functional Equations and Real Analysis program).

References

[1] L. Bart�lomiejczyk and J. Morawiec, Irregular scaling functions with orthogonal
translations. J. Math. Anal. Appl. 319 (2006), 295–301.

[2] A. S. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision. Mem.
Amer. Math. Soc. 93 (1991), 1–186.

[3] J. Cnops, A scaling equation with only non-measurable orthogonal solutions.
Proc. Amer. Math. Soc. 128 (2000), 1975–1979.

[4] A. Cohen, I. Daubechies and P. Vial, Wavelets on the interval and fast wavelet
transforms. Appl. Comput. Harmon. Anal. 1 (1993), 54–81.

[5] S. Dekel and N. Dyn, Poly-scale refinability and subdivision. Appl. Comput.
Harmon. Anal. 13 (2002), 35–62.

[6] T. B. Dinsenbacher and D. P. Hardin, Nonhomogeneous refinement equations.
In: Wavelets, Multiwavelets, and their Applications (San Diego, CA, 1997),
A. Aldroubi and E. Lin, eds., Contemp. Math. 216, Amer. Math. Soc., Provi-
dence, RI, 1998, 117–127.

[7] G. Derfel, N. Dyn and D. Levin, Generalized refinement equations and subdi-
vision processes. J. Approx. Theory 80 (1995), 272–297.

[8] G. Derfel and R. Schilling, Spatially chaotic configurations and functional equa-
tions with rescaling. J. Phys. A 29 (1996), 4537–4547.

[9] A. Dubickas and Z. Xu, Refinement equations and spline functions. Adv. Com-
put. Math. 32 (2010), 1–23.

[10] J. S. Geronimo, D. P. Hardin and P. R. Massopust, Fractal functions and
wavelet expansions based on several scaling functions. J. Approx. Theory 78
(1994), 373–401.

[11] C. J. Himmelberg, Measurable relations. Fund. Math. 87 (1975), 53–72.

[12] R. Q. Jia, Q. T. Jiang and Z. W. Shen, Convergence of cascade algorithms
associated with nonhomogeneous refinement equations. Proc. Amer. Math. Soc.
129 (2001), 415–427.



520 R. Kapica and J. Morawiec JFPTA14 R. Kapica and J. Morawiec

[13] R. Kapica and J. Morawiec, On a refinement type equation. J. Appl. Anal. 4
(2008), 251–257.

[14] R. Kapica and J. Morawiec, Refinement equations and distributional fixed
points. Appl. Math. Comput. 218 (2012), 7741–7746.

[15] R. Kapica and J. Morawiec, Refinement type equations: Sources and results.
In: Recent Developments in Functional Equations and Inequalities: Selected
Topics, Banach Center Publications 99, Polish Acad. Sci. Inst. Math., Warsaw,
2013, 87–110.

[16] K. Kuratowski, Topology. Vol. 1, Academic Press, New York, 1966.

[17] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of
Dynamics. Springer, New York, 1994.

[18] D.-M. Lee, J.-G. Lee and S.-H. Yoon, A construction of multiresolution analysis
by integral equations. Proc. Amer. Math. Soc. 130 (2002), 3555–3563.

[19] C. A. Micchelli, Mathematical Aspects of Geometric Modeling. CBMS-NSF Re-
gional Conf. Ser. in Appl. Math. 65, SIAM, Philadelphia, PA, 1995.

[20] J. Morawiec, On the existence of irregular solutions of the two-coefficient dila-
tion equation. Aequationes Math. 62 (2001), 79–84.

[21] J. Morawiec and R. Kapica, Refinement equations and Feller operators. Integral
Equations Operator Theory 70 (2011), 323–331.

[22] V. Yu. Protasov, On the asymptotics of the binary partition function. Mat.
Zametki 76 (2004), 151–156 (in Russian).

[23] G. Strang and T. Nguyen, Wavelets and Filter Banks. Wellesley-Cambridge
Press, Wellesley, MA, 1996.

[24] G. Strang and D.-X. Zhou, Inhomogeneous refinement equations. J. Fourier
Anal. Appl. 4 (1998), 733–747.

[25] Q. Sun, Compactly supported distributional solutions of nonstationary nonho-
mogeneous refinement equations. Acta Math. Sin. (Engl. Ser.) 17 (2001), 1–14.

[26] Q. Sun, Local dual and poly-scale refinability. Proc. Amer. Math. Soc. 133
(2005), 1175–1184.

[27] S.-Z. Yang, Poly-scale refinable function and their properties. Appl. Math.
Mech. (English Ed.) 27 (2006), 1687–1695.

Rafa�l Kapica
Institute of Mathematics
University of Silesia
Bankowa 14, PL-40-007 Katowice
Poland
e-mail: rkapica@math.us.edu.pl

Janusz Morawiec
Institute of Mathematics
University of Silesia
Bankowa 14, PL-40-007 Katowice
Poland
e-mail: morawiec@math.us.edu.pl

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0  
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,  
distribution, and reproduction in any medium, provided you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.


	Inhomogeneous poly-scale refinement typeequations and Markov operatorswith perturbations
	Abstract
	1. Introduction
	2. Notation
	3. L1-solutions
	4. Lp-solutions
	5. Continuous and bounded solutions
	Acknowledgment
	References




