
ADA-FS
Advanced Data Placement via Ad-hoc File Systems

Towards High-Performing On-Demand File Systems at Extreme Scales

8 16 32 64 128 256
0

20

40

60

80

100

120

140

2,79
6,74

10,83

28,37

54,06

129,65

Benchmark with BeeGFS on FORHLR II

Number of nodes

T
h

ro
u

g
h

p
u

t
(G

iB
/s

e
co

n
d

)

 Initial benchmarks on ForHLR II (Cluster at KIT) with the IOzone benchmark tool.
● Using node-local storage
● Fat Tree Topology (approximately 50 Gbit per node)
● Compute nodes with local SSD (R/W 600/400 MB/s)
● Measured write performance with one process per node

 Today, large parallel file systems are shared between many concurrently running applications
which suffer from I/O bottlenecks and unreliable IOPS on HPC systems.

 As a result, emerging storage technologies (e.g., SSD, NVRAM, HBM, …) cannot be fully
utilized by applications.

 Further, cluster topologies are becoming increasingly more complex within HPC systems.

2. Motivation

Low latency High latency

3. Ad-hoc file system

4. Data aware scheduling and data management

5. Application monitoring & Resource discovery

6. Status

 Interaction with the existing batch environment - no replacement of existing components
 A central I/O planner coordinates which data is staged to which nodes.
 Improving batch system node allocation with machine learning for better wall-clock prediction.
 A distributed file system is deployed on the local storage of allocated compure nodes.
 Detailed knowledge about the cluster topology and task placement improves initial data

placement within the distributed file system.
 A new data management concept is introduced to handle data staging within complex

environments, offering a global identifier for data regardless of its physical location.
 Pre-staging data using RDMA (NVMe).

 I/O monitoring of applications and analyzing the usage of the private file system provides
hints for better data staging.

 I/O tracking of applications would also provide information for consecutive runs, since most
applications show similar I/O behavior during their runs.

 Complex memory hierachies make performance a matter of locality.
 Information about node-local resources (e.g., available local storage) and topology

information are mandatory for a central I/O planer.
 Bandwidth within a set of nodes vs. bandwidth to the PFS helps to choose the right caching

places (e.g., neighbor nodes).

1. Project overview

Mehmet Soysal1, Marc-André Vef2, Sebastian Oeste3, Achim Streit1, André Brinkmann2, Michael Kluge3

1) Karlsruhe Institut of Technology / Steinbuch Centre for Computing
2) Johannes Gutenberg-Universität Mainz / Zentrum für Datenverarbeitung
3) Technische Universität Dresden / Zentrum für Informationsdienste und Hochleistungsrechnen

 Based on the Fuse library.
 The cluster‘s batch system deploys the file system on a number of nodes that are allocated

for a job with a single namespace.
 Relaxed POSIX I/O Semantics.

● Ignore Metadata fields, such as mtime, atime, filesize
● Simplify file system protocols
● Avoid locking whenever possible

 Scalable metadata approach.
● Use Key-Value store
● No rigid data structures (e.g. directory blocks)
● Last writer wins

 Distribute data across disks (taking locality into account).
 The file system uses, among others, the cluster topology to decide where to place the data

(i.e., which node and storage device).

ada-fs.github.io

 New project in the second period of
The Priority Programme „Software for Exascale Computing“ (SPPEXA)

 Funded trough the „Deutsche Forschungsgesellschaft“ (DFG)

 Started 02/2016 till 02/2019

ADA-FS

Ad-hoc file system
Data aware
scheduling

Application
monitoring

 Ad-Hoc file system with relaxed POSIX semantics is under development.
● Basic design choices already finished
● Using BeeGFS as On-Demand filesystem as a prototype

 Requesting on-demand private PFS and data staging available @ForHLR2.
● Prototype with moab‘s job-chaining functional

 Prototype tools for topology discovery under testing.
 Tools for application monitoring are in progress.
 Testing with BeeGFS until ad-hoc file is available.
 Benchmarks with BeeGFS (full POSIX) are promising.

● Low impact on job – No impact on global PFS during job
● Speed of SSDs are limiting factor

7. Future work

8. Initial benchmarks

 Develop novel distributed ad-hoc filesystem
 Test application behavior with relaxed POSIX semantics
 Develop tools for ADA-FS deployment with support for other batch systems
 Test tools for topology and resource discovery on heterogeneous systems
 Track I/O behavior of different applications and create fingerprint
 Use information of I/O behavior for optimized data placement
 Evaluate impact on application with optimized data placement
 Develop prototype of a new data management concept with “workpools”
 Evaluate impact on running jobs during data pre-staging

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/211224083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	Slide 1

