
Phylogenetics

ParGenes: a tool for massively parallel model

selection and phylogenetic tree inference on

thousands of genes

Benoit Morel 1,*, Alexey M. Kozlov1 and Alexandros Stamatakis1,2

1Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany and
2Department of Informatics, Karlsruhe Institute of Technology, Institute of Theoretical Informatics, Postfach 6980,

76128 Karlsruhe, Germany

Associate Editor: Russell Schwartz

Received on July 26, 2018; revised on September 18, 2018; editorial decision on September 22, 2018; accepted on October 12, 2018

Abstract

Motivation: Coalescent- and reconciliation-based methods are now widely used to infer species

phylogenies from genomic data. They typically use per-gene phylogenies as input, which requires

conducting multiple individual tree inferences on a large set of multiple sequence alignments

(MSAs). At present, no easy-to-use parallel tool for this task exists. Ad hoc scripts for this purpose

do not only induce additional implementation overhead, but can also lead to poor resource utiliza-

tion and long times-to-solution. We present ParGenes, a tool for simultaneously determining the

best-fit model and inferring maximum likelihood (ML) phylogenies on thousands of independent

MSAs using supercomputers.

Results: ParGenes executes common phylogenetic pipeline steps such as model-testing, ML infer-

ence(s), bootstrapping and computation of branch support values via a single parallel program in-

vocation. We evaluated ParGenes by inferring > 20 000 phylogenetic gene trees with bootstrap

support values from Ensembl Compara and VectorBase alignments in 28 h on a cluster with 1024

nodes.

Availability and implementation: GNU GPL at https://github.com/BenoitMorel/ParGenes.

Contact: benoit.morel@h-its.org

Supplementary information: Supplementary material is available at Bioinformatics online.

1 Introduction

The availability of genomic data for an increasing number of organ-

isms allows to use thousands of genomic loci (henceforth: genes) to

delineate evolutionary relationships between species. Species tree in-

ference methods can be divided into supermatrix and supertree

approaches. The former infer the species tree directly from a large

concatenated MSA (supermatrix), whereas the latter infer individual

per-gene trees which are then reconciled into a species phylogeny.

Supermatrix methods are widely used due their simplicity and avail-

ability of efficient implementations (Kozlov et al., 2015; Nguyen

et al., 2015). However, supertree inference methods gain popularity

as they can model events such as incomplete lineage sorting

(Mirarab and Warnow, 2015), gene duplication and loss (Arvestad

et al., 2003), as well as horizontal gene transfer (Linz et al., 2007).

As input, supertree methods typically require a set of per-gene

trees (potentially also including bootstrap trees) that shall be recon-

ciled (Boussau et al., 2012). Inferring this set of per-gene trees using

maximum likelihood (ML) methods is computationally intensive

and requires the use of cluster computing resources.

While popular parallel tools for ML tree inference [e.g. RAxML

(Stamatakis, 2014), IQ-TREE (Nguyen et al., 2015)] can efficiently

process large supermatrices, no dedicated parallel tool exists for

inferring per-MSA trees on a large set of MSAs. In current studies

users deploy ad hoc, and thus potentially error-prone, scripts for

submitting each individual gene tree inference to a cluster as a single

job. As cluster systems typically limit the number of sequential jobs

a single user can execute in parallel, this can substantially increase

the time-to-solution.

VC The Author(s) 2018. Published by Oxford University Press. 1771

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35(10), 2019, 1771–1773

doi: 10.1093/bioinformatics/bty839

Advance Access Publication Date: 15 October 2018

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/10/1771/5132696 by U
niversity of Applied Sciences Karlsruhe c/o KIT Library user on 12 June 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/211224082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0001-6286-4419
https://github.com/BenoitMorel/ParGenes
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty839#supplementary-data
Deleted Text: (
Deleted Text: ,
https://academic.oup.com/


To this end, we have developed and made available a novel tool

called ParGenes. It offers a simple command-line interface that

allows to select the best-fit model, infer ML trees and compute boot-

strap support values on thousands of gene MSAs in a single MPI

run. ParGenes relies on ModelTest-NG (https://github.com/ddar

riba/modeltest) and RAxML-NG (Kozlov, 2018) to perform model

selection and tree inference, respectively.

2 Features

ParGenes encapsulates all per-gene calculations into one single MPI

invocation. To improve load balance and decrease time-to-solution,

ParGenes schedules per-gene inferences and allocates a variable

number of cores to these inferences within its MPI runtime environ-

ment. In the following, we describe some of the key features.

2.1 Simultaneous processing of MSAs
Unlike standard tools for ML inference, ParGenes analyzes multiple

MSAs. Thus, the user needs to provide a directory containing all

MSAs in PHYLIP or FASTA format. One can either specify global

or MSA-specific options for both, RAxML-NG and ModelTest-NG.

We pre-process each MSA, to check that the file is valid, compress

it, save it in a binary file, and read its number of taxa and unique

patterns.

2.2 Model selection
ParGenes employs ModelTest-NG, a re-designed, substantially more

efficient version of the widely used Modeltest tool (Posada and

Crandall, 1998), to select the best-fit model of evolution for a given

MSA. If model testing is enabled in ParGenes, it will first execute

ModelTest-NG on each MSA, and then use the best-fit model for

subsequent ML inferences.

2.3 ML searches and bootstrapping
ParGenes schedules the per-MSA inference jobs that are executed

using RAxML-NG (Kozlov, 2018). ParGenes allows to run multiple

RAxML-NG tree searches per MSA from independent starting trees,

which is recommended to better explore the tree search space. Then,

it identifies the best-scoring ML tree for each gene. To increase job

granularity and thereby improve load balance, each independent

tree search is separately scheduled. ParGenes can also conduct a

user-specified number of bootstrap (BS) inferences. It schedules in-

dependent tree inferences of BS replicates (10 BS replicates per job),

and subsequently concatenates the resulting trees into one per-MSA

BS tree file. Then, it runs RAxML-NG again to compute support

values.

2.4 Checkpointing
Since ParGenes performs massively parallel and compute-intensive

runs, it also offers a checkpointing feature that allows to resume cal-

culations (e.g. if program execution was interrupted due to typical

cluster run-time limitations of 24 or 48 h).

ParGenes keeps track of all jobs that have finished so far, and

skips them upon restart from a checkpoint. A job is typically an indi-

vidual per-gene ML search, a batch of 10 bootstrap replicate

searches, or a ModelTest-NG run.

Furthermore, RAxML-NG and ModelTest-NG also have their

own intrinsic checkpointing mechanisms: RAxML-NG writes a

checkpoint after each inference step (e.g. model optimization, topo-

logical optimization cycle, etc.) of the tree search, and ModelTest-

NG after each model it tests. ParGenes uses these checkpointing

mechanisms as well, thereby allowing for a very fine-grained

checkpointing.

2.5 Estimating the optimal number of cores
Given the input MSAs, ParGenes can calculate an a priori estimate

of the number of overall cores that will yield ‘good’ parallel effi-

ciency. This is important, as it is difficult for users to set this value

prior to running the analysis.

3 Job scheduling

ParGenes implements a scheduler that simultaneously executes inde-

pendent jobs with a varying number of cores per job. A job is either

a per-MSA RAxML-NG or ModelTest-NG run. We first outline the

parallelization scheme and then the scheduling strategy.

3.1 Parallelization scheme
For the typical use case, the input data will contain thousands of in-

dependent (per-gene) MSAs with hundreds to a few thousand sites

each. While standard tools like RAxML parallelize likelihood com-

putations over MSA sites, ParGenes parallelizes the computations

over the MSAs. Note that, the parallel efficiency of the RAxML par-

allelization is limited by MSA length (rule-of-thumb: 1000 MSA

sites per core). While most of input MSAs are small, their size exhib-

its substantial variance with respect to both, the number of taxa,

and sites (Supplementary Fig. S1). Therefore, inferring trees on large

per-gene MSAs on a single core has two drawbacks. First, the MSA

size might exceed the available main memory per core. Second, this

can decrease parallel efficiency as a large job might take longer to

complete than all other jobs (Supplementary Fig. S2a). To this end,

ParGenes allocates several cores for the largest jobs (MSAs) by

invoking the respective multi-threaded RAxML-NG executable

(Fig. 1). For each MSA, ParGenes first calls RAxML-NG in parsing

Fig. 1. Typical ParGenes core utilization, for a run with 512 cores. Each col-

ored block represents a per-MSA job including the number of cores allocated

to the job (x-axis, block width) and the execution time of the job relative to the

overall ParGenes execution time (y-axis, block height). The gray blocks depict

idle time. The exact experimental setup is described in the Supplementary

Material

1772 B.Morel et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/10/1771/5132696 by U
niversity of Applied Sciences Karlsruhe c/o KIT Library user on 12 June 2019

Deleted Text: ,
https://github.com/ddarriba/modeltest
https://github.com/ddarriba/modeltest
Deleted Text: ,
Deleted Text: ,
Deleted Text: rs
Deleted Text: ,
Deleted Text: ,
Deleted Text: , 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty839#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty839#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty839#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty839#supplementary-data


mode to obtain the recommended number of cores for optimal par-

allel efficiency via the fine-grained parallelization of the likelihood

function in RAxML-NG (Stamatakis, 2015). The actual number of

cores assigned to a job is then rounded down to the next power of

two to simplify scheduling. We also assign twice the number of cores

to the 5% MSAs with the largest number of taxa (Supplementary

Material, Section 2).

3.2 Scheduling strategy
ParGenes first sorts all jobs by (i) decreasing number of required

cores and (ii) decreasing overall number of characters per MSA. As

the number of cores per job (see Section 3) is always a power of two,

ParGenes can always keep all cores busy, as long as there are jobs

left to process. This works because the MSAs requiring the largest

number of cores are scheduled first.

4 Results

We evaluated ParGenes on two large empirical datasets obtained

from Ensembl (Zerbino et al., 2018) and VectorBase (Emrich et al.,

2015). They comprise 8880 and 12 000 gene families, respectively.

Executing the entire ParGenes pipeline on 1024 cores (model testing,

ML tree search from 20 starting trees, bootstrapping analysis with

100 replicates) took 25 h for the Ensembl dataset and 3 h for the

VectorBase dataset. The VectorBase dataset required less time as its

MSAs are smaller. In the Supplementary Material, we show scalabil-

ity results for different core counts.

5 Conclusions and future work

We have presented an efficient parallel tool for comprehensive

phylogenetic inference of gene trees on thousands of MSAs via a sin-

gle MPI invocation. Apart from being flexible with respect to the in-

ference options, ParGenes also yields ‘good’ parallel efficiency via

appropriate scheduling mechanisms. We expect that ParGenes will

contribute to increasing throughput times and productivity in gene-

tree/species-tree reconciliation studies. Future directions entail the

improvement of fault-tolerance mechanisms (e.g. core failures or

single jobs failing for other reasons) and more accurate RAxML-NG

runtime prediction approaches (e.g. machine learning).

Acknowledgements

This work was financially supported by the Klaus Tschira Foundation and by

DFG grant STA 860/4-2. We are grateful to B. Bousseau, C. Rey and E.

Tannier for providing the datasets.

Conflict of Interest: none declared.

References

Arvestad,L. et al. (2003) Bayesian gene/species tree reconciliation and orthol-

ogy analysis using MCMC. Bioinformatics, 19, 1–10.

Boussau,B. et al. (2012) Genome-scale coestimation of species and gene trees.

Genome Res., 23, 323–330.

Emrich,S.J. et al. (2015) VectorBase: an updated bioinformatics resource for

invertebrate vectors and other organisms related with human diseases.

Nucleic Acids Res., 43, 707–713.

Kozlov,A.M. et al. (2015) Examl version 3: a tool for phylogenomic analyses

on supercomputers. Bioinformatics, 31, 2577–2579.

Kozlov,O. (2018) Models, optimizations, and tools for large-scale phylogenet-

ic inference, handling sequence uncertainty, and taxonomic validation,

https://sco.h-its.org/exelixis/pubs/dissAlexey.pdf.

Linz,S. et al. (2007) A likelihood framework to measure horizontal gene trans-

fer. Mol. Biol. Evol., 24, 1312–1319.

Mirarab,S. and Warnow,T. (2015) Astral-ii: coalescent-based species tree esti-

mation with many hundreds of taxa and thousands of genes.

Bioinformatics, 31, i44–i52.

Nguyen,L.-T. et al. (2015) Iq-tree: a fast and effective stochastic algorithm for

estimating maximum-likelihood phylogenies. Mol. Biol. Evol., 32,

268–274.

Posada,D. and Crandall,K.A. (1998) MODELTEST: testing the model of

DNA substitution. Bioinformatics, 14, 817–818.

Stamatakis,A. (2014) Raxml version 8: a tool for phylogenetic analysis and

post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

Stamatakis,A. (2015) Using RAxML to infer phylogenies. Curr. Protoc.

Bioinformatics, 51, 6.14.1–6.14.14.

Zerbino,D.R. et al. (2018) Ensembl 2018. Nuclic Acids Res., 46, D754–D761.

ParGenes 1773

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/10/1771/5132696 by U
niversity of Applied Sciences Karlsruhe c/o KIT Library user on 12 June 2019

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty839#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty839#supplementary-data
Deleted Text: , 
Deleted Text: , 
Deleted Text: hours 
Deleted Text: ,
Deleted Text: hours 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty839#supplementary-data
Deleted Text: ,
Deleted Text: ,
https://sco.h-its.org/exelixis/pubs/dissAlexey.pdf

