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Inverse Open-Loop Noncooperative Differential
Games and Inverse Optimal Control

Timothy L. Molloy, Jairo Inga, Michael Flad, Jason J. Ford, Tristan Perez, and Sören Hohmann

Abstract—We consider the problem of computing parameters
of player cost functionals such that given state and control
trajectories constitute an open-loop Nash equilibrium for a
noncooperative differential game. We propose two methods for
solving this inverse differential game problem and novel condi-
tions under which our methods compute unique cost-functional
parameters. Our conditions are analogous to persistence of exci-
tation conditions in adaptive control and parameter estimation.
The efficacy of our methods is illustrated in simulations.

Index Terms—Game theory, inverse differential games, inverse
optimal control, optimal control.

I. INTRODUCTION

Numerous problems in automatic control [1]–[4], economics
[5], [6], and biology [7], [8] involve modelling and analysing
interactions between players (or decision makers) in processes
governed by differential equations. Techniques for finding the
optimal controls (or decisions) of players in noncooperative
differential games given their potentially conflicting objectives
have therefore been well studied (cf. [2]). The inverse problem
of computing the objectives of players in noncooperative dif-
ferential games from player controls has received considerably
less attention [7], [9], [10]. In this paper, we propose two
inverse noncooperative differential game methods and derive
novel conditions under which they yield unique solutions.

The inverse problem of computing parameters of player
cost functions from player decisions has been well studied
in static games (i.e., games without state dynamics) and in
dynamic games with state dynamics governed by processes
other than differential equations [11]–[21]. Previous work
on inverse static game problems has extended methods of
inverse optimisation by exploiting the equivalence of one-
player games and optimisation problems. For example, the
idea of using Karush-Kuhn-Tucker conditions to solve inverse
optimisation problems proposed in [22] has inspired several
authors to solve inverse static game problems by exploiting
conditions for the existence of equilibria [11], [12], [14].

Most prior treatments of inverse dynamic game problems
have been in the discrete-time setting with state dynamics
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described by either Markov processes with discrete (and finite)
state and control spaces [17]–[21] or difference equations
[23]–[25]. Many of these treatments (particularly those in-
volving difference equations) have also focused on two-player
games [23], [25]. A notable exception is [24] where the
equivalence of one-player dynamic games and discrete-time
optimal control problems is used to propose a method of
inverse N -player noncooperative dynamic games based on the
inverse optimal control method of [26].

There has been recent interest in generalising methods of
discrete-time inverse dynamic games to the continuous-time
setting with a focus on state dynamics governed by differential
equations [7], [9], [10], [27]. These methods have primarily
involved reducing the inverse differential game problem to
inverse optimal control problems that can be solved with
existing inverse optimal control techniques [9], [10]. The
reductions have been performed under the assumption of either
an open-loop information structure (cf. [9]), or knowledge of
all but one of the player control laws (cf. [10]).

Due to the close relationship between the problems of
inverse differential games and inverse optimal control, existing
methods of inverse differential games and inverse optimal
control share the same limitations. For example, the bilevel
methods of inverse optimal control of [28] and [29] have
computationally expensive implementations that involve the
solution of optimal control problems inside numeric optimisa-
tion routines. The bilevel and nested optimisation methods of
inverse differential games proposed in in [7], [9] and derived
from these bilevel methods of inverse optimal control thus
also have computationally implementations that scale poorly
with the number of players, and state and control dimensions.
Similarly, the minimum principle method of inverse optimal
control from [30] is unable to operate on trajectories with
constrained controls, and so the minimum principle method
of inverse differential games presented in [9] and [10] are
also unable to handle constrained controls. Furthermore, few
inverse optimal control methods have established conditions
for the existence and uniqueness of solutions (with the notable
exception of [31] for the special case of differentially-flat
systems). Hence, most (if not all) inverse differential game
methods also lack conditions for the existence and uniqueness
of solutions, even in idealised settings.

The key contribution of this paper is the proposal of two
methods of inverse differential games and the development
of algebraic conditions under which they are guaranteed to
compute unique player cost-functional parameters. Our first
method builds upon the inverse differential game and inverse
optimal control methods of [9], [10], [30] by seeking cost-
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functional parameters such that necessary conditions for the
existence of open-loop Nash equilibria hold approximately
with minimal violation. Our second method addresses the
inability of our first method to handle trajectories with con-
strained controls whilst still enjoying similar guarantees on
the uniqueness of solutions and not resorting to bilevel opti-
misation. Although open-loop differential games can also be
reformulated as (static) infinite-dimensional continuous games
(cf. [3]), we do not exploit this insight here and instead
focus on connections between inverse differential games and
inverse optimal control. Indeed, the methods and results of
this paper directly provide new insight into the solution of
inverse optimal control problems (particularly those involving
constraints on the controls).

This paper is organised as follows. In Section II, we intro-
duce the inverse open-loop noncooperative differential game
problem. In Section III, we propose two inverse differential
game methods before analysing and solving them as quadratic
programs in Section IV. Finally, we present illustrative simu-
lation results in Section V and conclusions in Section VI.

II. PROBLEM FORMULATION

Let us consider a continuous-time N -player noncooperative
differential game played with an open-loop information struc-
ture. The continuous-time state process of the game is

ẋ(t) = f (t, x(t), u1(t), . . . , uN (t)) , x(0) = x0 (1)

on the (finite) time-interval t ∈ [0, T ] where x(t) ∈ Rn is the
state vector of the game, x0 ∈ Rn is the initial state of the
game, ui(t) ∈ Ui are control inputs belonging to the control
sets Ui ⊂ Rmi for i ∈ N , {1, . . . , N}, and f : [0, T ] ×
Rn × Rm1 × · · · × RmN 7→ Rn is a (potentially nonlinear)
vector-valued function. We assume that f is continuous in t
and uniformly Lipschitz in x, u1, . . . , uN such that (1) admits
a unique solution for every N -tuple of continuous controls
(u1, . . . , uN ) (cf. [2, Theorem 5.1]). We also assume that f
is continuously differentiable in x, u1, . . . , uN .

The controls ui are selected by Player i to minimise

Ji (u1, . . . , uN , θi)

,
∫ T

0

θ′igi (t, x(t), u1(t), . . . , uN (t)) dt
(2)

subject to the dynamics (1) and the control constraints ui(t) ∈
Ui. Here, θi ∈ Θi ⊂ RMi are time-invariant parameters of the
cost-functional (2), gi : [0, T ]×Rn×Rm1×. . .×RmN 7→ RMi

are basis functions that are continuously differentiable in x,
u1, . . . , uN . We use ′ to denote the transpose operator. The
controls

(
uθ1, . . . , u

θ
N

)
and associated state xθ constitute an

open-loop Nash equilibrium solution to the game (1) and (2)
with cost-functional parameters θi if and only if they solve the
N -coupled optimal control problems

inf
ui

Ji
(
uθ1, . . . , ui, . . . , u

θ
N , θi

)
s.t. ẋθ(t) = f

(
t, xθ(t), uθ1(t), . . . , ui(t), . . . , u

θ
N (t)

)
ui(t) ∈ Ui, t ∈ [0, T ]

xθ(0) = x0.

(3)

In the inverse open-loop noncooperative differential game
problem, we assume knowledge of the dynamics f , basis
functions gi, and constraint sets Ui, and we are given state
x and control (u1, . . . , uN ) trajectories on t ∈ [0, T ]. Our aim
is to compute cost-functional parameters θi for all (or some)
of the players such that the states x and controls (u1, . . . , uN )
constitute an open-loop Nash equilibrium solution to the game
(1) and (2). That is, we seek parameters θi such that the states
x and controls ui solve the optimal control problems (3) for
all i ∈ N. In the case of a single player (i.e., when N = 1),
our inverse differential game problem reduces to the problem
of inverse optimal control.

For our inverse differential game problem to be well
posed, the dynamics f , basis functions gi, and parameter
sets Θi should be specified such that the states x and con-
trols (u1, . . . , uN ) constitute an open-loop Nash equilibrium
solution to the game (1) and (2) for some (possibly non-
unique) cost-functional parameters θ∗i ∈ Θi. Addressing the
selection of suitable dynamics and basis functions is beyond
the scope of this paper, so where necessary, we shall make the
following assumption (see also [2], [6] and references therein
for discussions on the existence of open-loop Nash equilibria).

Assumption 1: The states x and controls (u1, . . . , uN )
constitute an open-loop Nash equilibrium solution to the game
(1) and (2) with dynamics f , basis functions gi, and unknown
cost-functional parameters θi = θ∗i ∈ Θi for i ∈ N.

Under Assumption 1, the inverse differential game problem
will have multiple solutions in general since if the trajectories
x and (u1, . . . , uN ) solve the optimal control problems (3)
with θi = θ∗i ∈ Θi, then the trajectories will also solve the
problems (3) with θi = κiθ

∗
i for all scaling factors κi > 0.

The zero vectors θi = 0 are also trivial solutions to the inverse
differential game problem. Without loss of generality, we shall
exclude trivial solutions and ambiguous scaling by considering
parameter sets of the form Θi = {θi ∈ RMi : θi,1 = 1} where
θi,1 denotes the first element of θi. The choice of the fixed-
element constraint θi,1 = 1 is arbitrary and results analogous
to those of this paper will also hold with normalisation
constraints such as ‖θi‖ = 1.

III. PROPOSED METHODS

In this section, we propose two methods for solving the
inverse differential game problem by exploiting necessary
conditions for the existence of open-loop Nash equilibria.

A. Necessary Conditions for Open-Loop Nash Equilibria

To present the necessary conditions that we shall exploit,
let us define the (real-valued) Hamiltonian functions

Hi (t, λi(t), x(t), u1(t), . . . , uN (t), θi)

, θ′igi (t, x(t), u1(t), . . . , uN (t))

+ λ′i(t)f (t, x(t), u1(t), . . . , uN (t))

(4)

for i ∈ N where λi : [0, T ] 7→ Rn are costate (or adjoint)
functions. Let us also use ∇xHi (t, λi(t), θi) ∈ Rn and
∇ui

Hi (t, λi(t), θi) ∈ Rmi to denote the vectors of partial
derivatives of the Hamiltonian functions with respect to x(t)
and ui(t), respectively, evaluated with θi, x(t), and ui(t). With
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this notation, we have the following necessary conditions for
the existence of open-loop Nash equilibria.

Theorem 1 (Theorem 6.11 of [2]): Consider the noncooper-
ative differential game with dynamics (1) and cost functionals
(2). If Assumption 1 holds such that x and (u1, . . . , uN )
constitute an open-loop Nash equilibrium of the game with
θi = θ∗i , then for each i ∈ N, there exists a costate trajectory
λi : [0, T ] 7→ Rn such that

λ̇i (t) = −∇xHi (t, λi(t), θi) (5)

for t ∈ [0, T ] with terminal condition λi (T ) = 0, and

ui (t) = arg min
ū(t)∈Ui

Hi (t, λi(t), x(t), u1(t), . . . ,

u∗i−1(t), ū(t), u∗i+1(t), . . . , uN (t), θi
) (6)

for all t ∈ [0, T ].
Proof: See [2, Section 6.5.1].

We note that the Hamiltonian condition (6) simplifies to

∇ui
Hi (t, λi(t), θi) = 0 (7)

at times t ∈ [0, T ] when the controls ui(t) are in the interior
(i.e., not on the boundary) of the constraint set Ui. We shall
exploit this gradient condition and the costate condition (5) to
propose two inverse differential game methods. Our methods
primarily differ in whether (5) is treated as an objective or as
a constraint. For this reason, we will refer to our first method
as the soft-constrained method, and our second method as the
hard-constrained method.

B. Proposed Soft-Constrained Method
In our soft-constrained method, we seek player cost-

functional parameters that simultaneously minimise the vio-
lation of both the costate condition (5) and the Hamiltonian
condition (6) under the following assumption.

Assumption 2: The controls ui(t) are in the interiors of the
control constraint sets Ui for all t ∈ [0, T ] and all i ∈ N.

Under Assumption 2, the Hamiltonian condition (6) reduces
to (7) for all t ∈ [0, T ]. Our proposed soft-constrained method
is then to compute parameters θ̂i and functions λ̂i : [0, T ] 7→
Rn for each player i ∈ N by solving

inf
λi,θi

∫ T

0

‖∇ui
Hi (t, λi(t), θi)‖2

+ γ‖λ̇i(t) +∇xHi (t, λi(t), θi) ‖2 dt
s.t. θi ∈ Θi

(8)

where γ > 0 is a specifiable weighting factor. Our proposed
soft-constrained method intuitively seeks functions λ̂i and pa-
rameters θ̂i such that the costate condition (5) and Hamiltonian
gradient condition (7) hold (at least approximately) for all
t ∈ [0, T ]. If Assumption 1 holds in addition to Assumption
2, then θ̂i = θ∗i will be a (possibly nonunique) solution to (8).
If Assumptions 1 or 2 do not hold (e.g., due to misspecified
dynamics or basis functions, or imperfect trajectories), then
our soft-constrained method will compute parameters and
functions such that (5) and (7) hold approximately with their
priority assigned via choice of γ. When N = 1 and γ = 1,
this method reduces to the inverse optimal control approach
of [30].

C. Proposed Hard-Constrained Method

In our hard-constrained method, we seek to handle control
trajectories with constrained controls (i.e., control trajectories
ui with times t at which ui(t) is on the boundary of the
constraint set Ui). Indeed, let us consider a finite sequence of
sampling times Ki , {tk ∈ [0, T ] : 1 ≤ k ≤ Ki and 0 ≤ t1 <
t2 < · · · < tKi ≤ T} for each player i ∈ N. The sampling
times Ki may be selected from within the interval [0, T ],
including during singular arcs, provided that the following
assumption holds.

Assumption 3: The controls ui(t) are in the interiors of the
control constraint sets Ui for all times t ∈ Ki and all i ∈ N.

Under Assumption 3, the Hamiltonian condition (6) reduces
to (7) for all t ∈ Ki and our proposed hard-constrained method
is to compute parameters θ̃i for each player i ∈ N by solving

inf
θi

Ki∑
k=1

‖∇ui
Hi (tk, λi(tk), θi)‖2

s.t. λ̇i(t) = −∇xHi (t, λi(t), θi) , t ∈ [0, T ]

λi(T ) = 0

θi ∈ Θi.

(9)

Our hard-constrained method (9) entails finding parameters
θ̃i such that the Hamiltonian gradient condition (7) holds
approximately at the sampling times t ∈ Ki whilst the costate
condition (5) holds exactly for all t ∈ [0, T ], regardless of if
Assumptions 1 and 3 hold. However, if Assumptions 1 and 3
hold, then θ̂i = θ∗i will be a (possibly nonunique) solution to
(9). By considering (7) at the sampling times t ∈ Ki rather
than for all t ∈ [0, T ], our hard constrained method can handle
trajectories in which the controls ui(t) are on the boundaries of
the constraint set Ui at the infinitely many times t ∈ [0, T ]\Ki
(i.e., times t ∈ [0, T ] not also in Ki).

IV. REFORMULATION AND SOLUTION OF
PROPOSED METHODS

In this section, we will reformulate our proposed methods
as quadratic programs. We will exploit these reformulations
to provide explicit solutions to our methods, and to establish
novel conditions under which the solutions are unique and
correspond to the true parameters under Assumption 1.

A. Reformulation of Soft-Constrained Method

We shall reformulate our soft-constrained method by defin-
ing the rectangular matrix I ,

[
I 0

]
∈ RMi×(Mi+n) where

I is the square identify matrix with appropriate dimensions.
Let us also define R = I ∈ Rn×n, B ,

[
0 I

]′
, Si(t) ,[√

γ∇xgi(t)
√
γ∇xf(t)

]′
and Qi(t) , F ′i (t)Fi(t) where

Fi(t) ,

[√
γ∇xgi(t)

√
γ∇xf(t)

∇ui
gi(t) ∇ui

f(t)

]
.

Here, we use the shorthand ∇xf(t) ∈ Rn×n and ∇ui
f(t) ∈

Rmi×n to denote the matrices of partial derivatives of f with
respect to x(t) and ui(t), respectively, and evaluated with θi,
x(t), and ui(t) for i ∈ N. Similarly, we use∇xgi(t) ∈ Rn×Mi ,
and ∇ui

gi(t) ∈ Rmi×Mi to denote the matrices of partial
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derivatives of gi evaluated with θi, x(t), and ui(t) for i ∈ N.
The following lemma reformulates (8) as a quadratic program.

Lemma 1: Consider any player i ∈ N and suppose that
γ > 0 is selected such that Qi(t) − Si(t)γ

−1R−1S′i(t) is
positive semidefinite for all t ∈ [0, T ]. Then the pair (λ̂i, θ̂i)

is a solution to (8) if and only if ˙̂
λi(t) = Ki(t)

[
θ̂′i λ̂′i(t)

]′
for all t ∈ [0, T ] with α̂i =

[
θ̂′i λ̂′i(0)

]′
solving

inf
αi

α′iPi(0)αi s.t. Iαi ∈ Θi (10)

where Ki(t) , −[B′Pi(t) + S′i(t)] and Pi : [0, T ] 7→
R(Mi+n)×(Mi+n) is the unique positive semidefinite solution
to the Riccati differential equation

Ṗi(t) = (Pi(t)B + Si(t))(B
′P ′i (t) + S′i(t))−Qi(t) (11)

for t ∈ [0, T ] with terminal condition Pi(T ) = 0.
Proof: Consider any player i ∈ N. Recalling the definition

of the Hamiltonians (4), the integrand in (8) is

‖∇uiHi (t, λi(t), θi)‖2 + γ
∥∥∥λ̇i(t) +∇xHi (t, λi(t), θi)

∥∥∥2

=

∥∥∥∥∥
[√

γλ̇i(t) +
√
γ∇xgi(t)θi +

√
γ∇xf(t)λi(t)

∇uigi(t)θi +∇uif(t)λi(t)

]∥∥∥∥∥
2

=

∥∥∥∥∥
[√

γ∇xgi(t)
√
γ∇xf(t)

∇ui
gi(t) ∇ui

f(t)

][
θi

λi(t)

]
+

[
γ

1
2 I

0

]
λ̇i(t)

∥∥∥∥∥
2

= z′i(t)Qi(t)zi(t) + v′i(t)γRvi(t) + 2z′i(t)Si(t)vi(t)

where the last line follows from the definitions of Qi(t), R,
and Si(t) together with the variable substitutions

zi(t) ,

[
θi

λi(t)

]
and vi(t) , λ̇i(t).

The constraint θi ∈ Θ in (8) may be rewritten as Izi(t) ∈ Θi

and the (implicit) constraint in (8) that θi is time-invariant is

żi(t) =

[
θ̇i

λ̇i(t)

]
=

[
0

λ̇i(t)

]
= Bvi(t).

The optimisation in (8) is thus equivalent to

inf
zi,vi

∫ T

0

z′i(t)Qi(t)zi(t) + v′i(t)γRvi(t)

+ 2z′i(t)Si(t)vi(t) dt

s.t. żi(t) = Bvi(t), t ∈ [0, T ]

Izi(t) ∈ Θi, t ∈ [0, T ].

(12)

We now note that given a function vi : [0, T ] 7→ Rn together
with an initial value zi(0) = αi ∈ RMi+n with Iαi ∈ Θi, we
may solve the differential equation żi(t) = Bvi(t) for the
unique function zi : [0, T ] 7→ RMi+n. The optimisation in
(12) is therefore essentially only over zi(0) and vi, namely,

inf
αi

inf
vi

∫ T

0

z′i(t)Qi(t)zi(t) + v′i(t)γRvi(t)

+ 2z′i(t)Si(t)vi(t) dt

s.t. żi(t) = Bvi(t), t ∈ [0, T ]

zi(0) = αi

Iαi ∈ Θi.

(13)

For any αi ∈ RMi+n, the inner optimisation problem
over the function vi in (13) is a linear quadratic optimal
control problem. Since γR = γI is positive definite and
Qi(t)− Si(t)γ−1R−1S′i(t) is positive semidefinite due to the
lemma conditions, the optimal control results of [32, Section
3.4] imply that for any zi(0) = αi ∈ RMi+n, the unique
function solving the inner optimisation over vi in (13) is
v̂i(t) = Ki(t)zi(t) for all t ∈ [0, T ]. Section 3.4 of [32] also
gives that the value of the inner optimisation problem over
vi in (13) is α′iPi(0)αi for any initial state zi(0) = αi. The
optimisation in (13) thus simplifies to (10). It follows that the
pair of functions (ẑi, v̂i) solves (12) if and only if ẑi(0) = α̂i
solves (10) and ˙̂zi(t) = Bv̂i(t) = BKi(t)ẑi(t) for t ∈ [0, T ].
The proof is complete since (12) is equivalent to (8).

Lemma 1 allows us to reformulate our soft-constrained
method (8) as the quadratic program (10). This reformulation
is new for N > 1 but was previously established in [30] for
the inverse optimal control case N = 1. We shall next exploit
this reformulation to derive descriptions of the parameters θ̂i
that solve our soft-constrained method that are novel for all
cases N ≥ 1. We also note that the choice of γ = 1 is always
sufficient to ensure that Qi(t)−Si(t)γ−1R−1S′i(t) is positive
semidefinite for all t ∈ [0, T ] since in this case

Qi(t)− Si(t)R−1S′i(t)

=
[
∇uigi(t) ∇uif(t)

]′ [∇uigi(t) ∇uif(t)
]
.

Other values of γ > 0, γ 6= 1, may lead to Qi(t) −
Si(t)γ

−1R−1S′i(t) not being positive semidefinite and hence
(11) possessing multiple solutions.

B. Solution of Soft-Constrained Method
To describe the solutions to our soft-constrained method,

let P̄i be the principal submatrix of Pi(0) formed by deleting
the first row and column of Pi(0), let p̄i be the first column
of Pi(0) with deleted first element, and let P̄+

i and rP̄i be
the pseudoinverse and rank of the submatrix P̄i, respectively.
Finally, let P̄i = UiΣ

P
i U
′
i be the singular value decomposition

(SVD) of P̄i where ΣPi ∈ R(Mi+n−1)×(Mi+n−1), and

Ui =

[
U11
i U12

i

U21
i U22

i

]
∈ R(Mi+n−1)×(Mi+n−1) (14)

is a block matrix with submatrices U11
i ∈ R(Mi−1)×rP̄i ,

U12
i ∈ R(Mi−1)×(Mi+n−1−rP̄i ), U21

i ∈ Rn×rP̄i and U22
i ∈

Rn×(Mi+n−1−rP̄i ). Our main result for our soft-constrained
method (8) follows.

Theorem 2: Consider any player i ∈ N, let Θi = {θi ∈
RMi : θi,1 = 1} and suppose that Assumption 2 holds and
that γ > 0 is selected such that Qi(t)− Si(t)γ−1R−1S′i(t) is
positive semidefinite for all t ∈ [0, T ]. If (I − P̄iP̄+

i )p̄i = 0,
then all of the vectors θ̂i corresponding to all solutions (λ̂i, θ̂i)
of (8) are of the form

θ̂i = Iα̂i (15)

where α̂i =
[
1 ˆ̄α′i

]′ ∈ RMi+n are (potentially nonunique)
solutions to (10) with ˆ̄αi ∈ RMi+n−1 given by

ˆ̄αi = −P̄+
i p̄i + Ui

[
0 b′

]′
(16)
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for any b ∈ RMi+n−1−rP̄i . Furthermore, if in addition either
U12
i = 0 or rP̄i = Mi + n − 1, then all solutions (λ̂i, θ̂i) to

(8) correspond to the unique parameter vector θ̂i given by

θ̂i = I

[
1

−P̄+
i p̄i

]
, (17)

with θ̂i = κiθ
∗
i if Assumption 1 holds and if there exists a

κi > 0 such that κiθ∗i ∈ Θi.
Proof: We apply Lemma 1 and proceed by analysing (10).

For any αi ∈ RMi+n with Iαi ∈ Θi we have that αi =[
1 ᾱ′i

]′
where ᾱi ∈ RMi+n−1 and so

α′iPi(0)αi = Pi,(1,1)(0) + ᾱ′iP̄iᾱi + 2ᾱ′ip̄i

where Pi,(1,1)(0) is the first element of Pi(0). Solutions α̂i of
(10) are thus of the form α̂i =

[
1 ˆ̄α′i

]′
where ˆ̄αi solves

inf
ᾱi

{
1

2
ᾱ′iP̄iᾱi + ᾱ′ip̄i

}
.

Under the condition (I−P̄iP̄+
i )p̄i = 0 and by noting that P̄i is

positive semidefinite due to Pi(0) being positive semidefinite,
[33, Proposition 15.2] gives that this quadratic program is
solved by any ˆ̄αi satisfying (16) for any b ∈ RMi+n−1−rP̄i .
The first theorem assertion (15) and (16) follows.

Now, from (16), clearly, rP̄i = Mi + n − 1 implies that
ˆ̄αi = −P̄+

i p̄i. We also note that U12
i = 0 implies that

ˆ̄αi = −P̄+
i p̄i +

[
0
(
U22
i b
)′]′

for any b ∈ RMi+n−1−rP̄i with U22
i b ∈ Rn. Thus, if either

U12
i = 0 or rP̄i = Mi + n − 1, then the first Mi − 1

components of ˆ̄αi are invariant with respect to the free vector
b ∈ RMi+n−1−rP̄i , and so all solutions α̂i to (10) satisfy

Iα̂i = I
[
1
(
−P̄+

i p̄i
)′]′

.

The second theorem assertion follows since θ̂i = Iα̂i. Theo-
rem 1 additionally implies that θ̂i = κiθ

∗
i when Assumption

1 holds and κiθ∗i ∈ Θi. The proof is complete.
Theorem 2 establishes that the conditions U12

i = 0 and
rP̄i = Mi + n − 1 are both sufficient for ensuring that
our soft-constrained method (8) yields unique parameters θ̂i.
These conditions will not hold when the trajectories are
uninformative — for example, when the trajectories x and
(u1, . . . , uN ) are too short (i.e., on short time-horizons T )
or when they correspond to a dynamic equilibrium of the
dynamics in the sense that ẋ(t) = 0 for all t ∈ [0, T ]. The
conditions U12

i = 0 and rP̄i = Mi + n − 1 therefore have an
intuitive interpretation as persistence of excitation conditions
(analogous to similar concepts in parameter estimation and
adaptive control). Furthermore, the last assertion of Theorem
2 highlights that these conditions become sufficient conditions
for ensuring that our soft-constrained method yields unique
parameters that only differ from the true parameters θ∗i by an
unknown factor κi > 0 when Assumptions 1 and 2 hold.

The condition U12
i = 0 can hold when rP̄i < Mi + n − 1.

If U12
i = 0 but rP̄i < Mi + n − 1, then the second assertion

of Theorem 2 implies that all pairs (λ̂i, θ̂i) solving our soft-
constrained method will share the unique parameter vector
θ̂i given by (17) but may not share a common function λ̂i.
Before we illustrate this result, we shall reformulate and solve
our hard-constrained method (9) as a quadratic program.

C. Reformulation of Hard-Constrained Method

Let us reformulate our proposed hard-constrained method
(9) by considering any player i ∈ N and defining Wi ∈
RMi×Mi as the positive semidefinite matrix given by

Wi ,
Ki∑
k=1

‖∇ui
gi(tk) +∇ui

f(tk)Li(tk)‖2 (18)

where Li : [0, T ] 7→ Rn×Mi solves the differential equation

L̇i(t) = −∇xgi(t)−∇xf(t)Li(t) (19)

for t ∈ [0, T ] with terminal boundary condition Li(T ) = 0.
We then have the following lemma.

Lemma 2: Consider any player i ∈ N, Our hard-constrained
method (9) is equivalent to the quadratic program

inf
θi

θ′iWiθi s.t. θi ∈ Θi (20)

with Wi given by (18) and Li solving (19) with Li(T ) = 0.
Proof: Consider any player i ∈ N. Multiplying the

differential equation defined in (19) by θi gives

L̇i(t)θi = −∇xgi(t)θi −∇xf(t)Li(t)θi

= −∇xHi (t, Li(t)θi, θi)

for t ∈ [0, T ] where the last line follows from the definition
of the Hamiltonian (4). Similarly, multiplying the boundary
condition Li(T ) = 0 by θi gives Li(T )θi = 0. Thus, by
substituting λi(t) = Li(t)θi, λ̇i(t) = L̇i(t)θi and λi(T ) =
Li(T ) = 0, the optimisation problem (9) becomes

inf
θi

Ki∑
k=1

‖∇uigi(tk)θi +∇uif(tk)Li(tk)θi‖2

s.t. L̇i(t)θi = −∇xgi(t)θi −∇xf(t)Li(t)θi, t ∈ [0, T ]

Li(T )θi = 0

θi ∈ Θi.

This optimisation problem simplifies to (20) since

Ki∑
k=1

‖∇ui
gi(tk)θi +∇ui

f(tk)Li(tk)θi‖2 = θ′iWiθi

due to the definition of Wi where Li solves (19) with terminal
condition Li(T ) = 0. The proof is complete.

Analogous to Lemma 1, Lemma 2 greatly simplifies the
solution of our hard-constrained method (9). Indeed, for each
player i ∈ N, we may find parameters θ̃i solving (9) by solving
the differential equation (19) for Li, computing the matrix Wi,
and then solving the quadratic program (20). Lemma 2 also
enables us to now develop our main result providing an explicit
form of the solutions to (20) and hence our hard-constrained
method (9).
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D. Solution of Hard-Constrained Method

To describe the solutions to our hard-constrained method,
let W̄i be the principal submatrix of Wi formed by deleting the
first row and column of Wi, and let w̄i denote the first column
of Wi with its first element deleted. Furthermore, let rW̄i be the
rank of W̄i, let W̄+

i be the pseudoinverse of W̄i, and let W̄i =
ViΣ

W
i V

′
i be the SVD of W̄i where Vi ∈ R(Mi−1)×(Mi−1)

and ΣWi ∈ R(Mi−1)×(Mi−1). Our main result for our hard-
constrained method (9) follows.

Theorem 3: Consider any player i ∈ N, let Θi = {θi ∈
RMi : θi,1 = 1}, and suppose that Assumption 2 holds. If
(I − W̄iW̄

+
i )w̄i = 0, then the θ̃i solving (9) all satisfy

θ̃i =

[
1

˜̄θi

]
(21)

where the vectors ˜̄θi ∈ RMi−1 are given by
˜̄θi = −W̄+

i w̄i + Vi
[
0 b′

]′
for any b ∈ RMi−1−rW̄i . Furthermore, if rW̄i = Mi − 1 then

θ̃i =

[
1

−W̄+
i w̄i

]
(22)

is the unique solution to (9), with θ̃i = κiθ
∗
i if Assumption 1

holds and if there exists a κi > 0 such that κiθ∗i ∈ Θi.
Proof: The proof is similar to that of Theorem 2 with

application of Lemma 2 and use of [33, Proposition 15.2].
Theorem 3 gives that the rank condition rW̄i = Mi − 1

is sufficient for ensuring that our hard-constrained method (9)
yields unique parameters θ̃i. As with the uniqueness conditions
for our soft-constrained method (8) established in Theorem 2,
the rank condition of Theorem 3 has an intuitive interpretation
as a persistence of excitation condition and will fail to hold
when the inverse differential game problem is ill-posed due
to uninformative trajectories (e.g., due to short time-horizons
T or degenerate system dynamics). The rank condition of
Theorem 3 will also fail to hold if there are too few (informa-
tive) sampling times tk in Ki. Under Assumption 1, the last
assertion of Theorem 3 highlights that rW̄i = Mi−1 becomes
a sufficient condition for our hard-constrained method to yield
unique parameters θ̃i that differ from the true parameters θ∗i
by an unknown factor κi.

E. Comparison of Methods

Theorems 2 and 3 imply that our soft-constrained and
hard-constrained methods can be implemented without solving
differential game or optimal control problems. They can also
both compute the cost-functional parameters of each player
separately. In contrast, existing nested optimisation and bilevel
optimisation methods of inverse differential games proposed
in [9] require the repeated solution of differential game or
optimal control problems, and may require the parameters
of all players to be computed simultaneously. Indeed, our
methods are significantly less computationally complex than
existing methods since they only involve the solution of a
differential equation (either (11) or (19)) followed by a subma-
trix pseudoinverse, rank calculation, and a potential SVD (of

0 0.5 1 1.5 2 2.5 3
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Fig. 1. State and control trajectories that solve the optimal control problem
in our illustrative example with T = 3, x0 = 1, and θ1 = θ∗1 = [1 3]′.

either P̄i or W̄i) for each player. Our hard-constrained method
is slightly less computationally expensive than our soft-
constrained method due to the lower dimensionality of W̄i ∈
R(Mi−1)×(Mi−1) compared to P̄i ∈ R(Mi+n−1)×(Mi+n−1).

V. SIMULATION EXAMPLES

In this section, we examine our methods in two examples.
We first provide an optimal control example comparing the
conditions of Theorems 2 and 3. We then consider a two-
player game to examine the performance of our methods with
larger state, parameter, and control spaces.

A. Illustrative Example

Consider a linear quadratic optimal control problem, or one-
player differential game, with state process ẋ(t) = u1(t) with
x0 = 1, u1(t) ∈ R, and cost-functional J1 of the form in (2)
with T = 3, g1 (t, x(t), u1(t)) ,

[
u2

1(t) x2(t) x(t)u1(t)
]′

and θ1 = θ∗1 =
[
1 5 2

]′
. To illustrate our methods,

we numerically solved this optimal control problem for the
trajectories x and u1 shown in Fig. 1. We gave both meth-
ods knowledge of these trajectories together with the basis
functions g1 and dynamics f so that Assumption 1 holds.
We also note that the trajectories are unique solutions to the
optimal control problem since θ∗1 satisfies the positive definite
and positive semidefinite conditions of [32, Section 3.4].

Considering our soft-constrained method with γ = 1, and
applying Lemma 1 and Theorem 2, the submatrix P̄1 is

P̄1 =

 0.9951 −0.6126 0.9951

−0.6126 0.4614 −0.6126

0.9951 −0.6126 0.9951


which is rank deficient. Computing the SVD of P̄1 yields

U1 =

−0.6445 −0.2909 −0.7071

0.4113 −0.9115 −0.0000

−0.6445 −0.2909 0.7071
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and so U12
1 6= 0 which implies that unique parameters cannot

be computed in this example with our soft-constrained method.
Considering our hard-constrained method and applying

Lemma 2 and Theorem 3 with K1 = {0, 3} yields

W̄1 =

[
0.0000 0.0015

0.0015 0.7988

]
which is trivially full rank, and so our hard-constrained method
is able to uniquely recover the parameters θ̃1 = θ∗1 =[
1 5 2

]′
. We were unable to find any K1 with Ki ≥ 2 such

that our hard-constrained method failed to uniquely recover
θ∗1 . However, our hard-constrained method could not compute
unique parameters for any Ki with Ki = 1 (which is intuitive
since it is seeking to compute two components of θ∗1).

This example illustrates that the conditions of Theorems 2
and 3 for our soft-constrained and hard-constrained methods
are not equivalent in general. Indeed, from this example we
see that the conditions of Theorem 3 are likely to be more
easily satisfied than those of Theorem 2 because there are
fewer optimisation variables in our hard-constrained method
and so less potential for nonuniqueness (e.g., due to different
pairs of functions and parameters resulting in the same value
of the Hamiltonian gradients in our soft-constrained method).

B. Two-Player Collision Avoidance Example

We now investigate our methods in a simulated two-
player collision avoidance differential game closely related
to the model proposed in [7] for the behaviours of birds
in mid-air collision scenarios. Consider two players moving
in three-dimensions and let Player i’s position and velocity
be qi(t) ,

[
qi,1(t) qi,2(t) qi,3(t)

]′ ∈ R3 and q̇i(t) ,[
q̇i,1(t) q̇i,2(t) q̇i,3(t)

]′ ∈ R3, respectively. Let the state
of the game be the positions and velocities of the two players,
namely, x(t) =

[
q′1(t) q̇′1(t) q′2(t) q̇′2(t)

]′ ∈ R12. Let the
state evolve according to the kinematic equations

ẋ(t) =

[
Ā 0

0 Ā

]
x(t) +

[
C̄

0

]
u1(t) +

[
0

C̄

]
u2(t) (23)

for t ∈ [0, T ] from the initial state x(0) =
[
x′1(0) x′2(0)

]′
where ui(t) =

[
ui,1(t) ui,2(t) ui,3(t)

]′ ∈ R3 are the
player acceleration control inputs, and the matrices

Ā ,

[
0 I

0 0

]
and C̄ ,

[
0

I

]
describe the mappings between position, velocity, and acceler-
ation. Both players seek to use minimal accelerations to avoid
colliding with the other player whilst attempting to track along
a particular coordinate axis. The basis functions are thus

gi (t, x(t), u1(t), u2(t))

=
[
δ(t) u2

i,1(t) u2
i,2(t) u2

i,3(t) q2
i,1(t) q2

i,2(t) q2
i,3(t)

]′ ∈ R7

where the first basis function is the inverse of the squared dis-
tance between the players, namely, δ(t) , ‖q1(t)− q2(t)‖−2;
the second, third, and fourth basis functions are the squared
player acceleration components; and, the last three basis
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Fig. 2. Two-Player Collision Avoidance Game: Positions of both players
given by simulated open-loop Nash equilibrium trajectories x and (u1, u2).

functions are the squared player position components. The
players weight these basis functions with the parameter vectors
θ1 = θ∗1 =

[
1 3 5 0.6 0 3 5

]′
and θ2 = θ∗2 =[

1 2 1 5 0 0.5 0.2
]′

.
To compare our methods, we numerically solved this game

for open-loop Nash equilibrium trajectories x and (u1, u2)
with T = 15, q1(0) =

[
1 1 0

]′
, q2(0) =

[
−1 −1 0

]′
,

q̇1(0) =
[
−1 −1 −1

]′
and q̇2(0) =

[
1 1 1

]′
. The posi-

tion trajectories are shown in Fig. 2. We gave both methods
knowledge of the open-loop Nash equilibrium trajectories x
and (u1, u2), dynamics f , and basis functions gi so that
Assumption 1 holds. In this example, we also note that the
cost-functionals and Hamiltonians are convex in the controls
and so the conditions of Theorem 1 are both necessary and
sufficient for the existence of open-loop Nash equilibria.

In the case of our soft-constrained method, by applying
Lemma 1 and Theorem 2 with γ = 1, we found that both
P̄1 ∈ R18×18 and P̄2 ∈ R18×18 are rank deficient with
rP̄1 = 12 and rP̄2 = 12. However by computing the SVDs of P̄1

and P̄2, we found that U12
1 and U12

2 are zero matrices. From
Theorem 2, we thus have that our soft-constrained method
yields the unique parameters θ̂1 = θ∗1 and θ̂2 = θ∗2 with
a percentage error of less than 0.05% (due to the numeric
tolerance of ordinary differential equation solver used, i.e.,
MATLAB’s ode113). We note however that since P̄1 and P̄2

are rank deficient, the functions λ̂i solving (8) are nonunique.
To consider our hard-constrained method, we considered

sampling times K1 and K2 with 1 ≤ K1,K2 ≤ 6 times
evenly spaced in the interval [0, 15] and applied Lemma
2 and Theorem 3. For a small number of sampling times
K1 = K2 < 3 at the start and end of the interval [0, 15],
we found that W̄1 and W̄2 were rank deficient and so our
hard-constrained method fails to compute unique parameters.
For a larger number of sampling times K1 = K2 ≥ 3
evenly spaced in [0, 15], we found that W̄1 and W̄2 were full
rank and so our hard-constrained method yields the (unique)
parameters θ̃1 = θ∗1 and θ̃2 = θ∗2 with a percentage error of
less than 0.17% (due to the numeric tolerance of MATLAB’s
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ode113). In this example, our hard-constrained method is not
sensitive to the choice of sampling times since it yields unique
parameters with as few as K1 = K2 = 3 sampling times as
close together as the numeric precision of the trajectories.

VI. CONCLUSION

We propose two methods of inverse open-loop noncoop-
erative differential games. Our soft-constrained method com-
putes parameters that simultaneously minimise the violation of
conditions on both the Hamiltonian and costate functions. In
contrast, our hard-constrained method handles trajectories with
constrained controls by computing parameters that minimise
the violation of the conditions on the Hamiltonians under a
constraint that the conditions on the costate functions hold
exactly. We formulate our methods as quadratic programs
and establish novel conditions analogous to persistence of
excitation under which they yield unique parameters.

Our methods and results are developed without explicit
consideration of noisy trajectories or misspecification of the
dynamics or basis functions. The development of inverse
differential game methods capable of explicitly handling noisy
trajectories, misspecified dynamics, and misspecified basis
functions therefore remains an important open problem. Sim-
ilarly, methods capable of withstanding attacks by adversaries
that obstruct the computation of parameters are also yet to be
investigated (despite recent results for static games in [34]).
The dual problems of our quadratic formulations are potential
starting points for these investigations.
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