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Topological circuits, an exciting field just emerged over the last two years, have become a very accessible platform for realizing
and exploring topological physics, with many of their physical phenomena and potential applications as yet to be discovered. In
this work, we design and experimentally demonstrate a topologically nontrivial band structure and the associated topologically
protected edge states in an RF circuit, which is composed of a collection of grounded capacitors connected by alternating inductors
in the x and y directions, in analogy to the Su–Schrieffer–Heeger model. We take full control of the topological invariant (i.e.,
Zak phase) as well as the gap width of the band structure by simply tuning the circuit parameters. Excellent agreement is found
between the experimental and simulation results, both showing obvious nontrivial edge state that is tightly bound to the circuit
boundaries with extreme robustness against various types of defects. The demonstration of topological properties in circuits
provides a convenient and flexible platform for studying topological materials and the possibility for developing flexible circuits
with highly robust circuit performance.

1. Introduction

Topological insulators (TI), which insulate in the bulk but
conduct on the surface, have been the subject of many
recent studies in physics aimed at achieving topologically
protected nontrivial band structures and the associated exotic
phenomena, with possible implementation in diverse fields
ranging from solid in electronics [1–3], ultra-cold atoms [4],
microwave metamaterials [5], acoustic [6], mechanical sys-
tems [7], etc. Topologically protected edge statewas originally
discovered in high-purity two-dimensional electron gases
(2DEGs) [8] and has recently received increasing interests in
the field of photonics. In photonics, the topological insulating
states are usually realized through application of external
magnetic field [9] or synthetic gauge field [10]. The topolog-
ically protected edge state could be potentially used for one-
way transport of light in photonics, whereas it has always
been a challenge for conventional materials to transmit

photons along sharp corners without scatterings. Recently,
Segev’s group presented a TI laser with high efficiency and
extreme robustness to defects/disorder, opening an entirely
new avenue to the laser design with superior performance
[11, 12].

The previously demonstrated Chern and Z2 topological
insulators are enabled by the presence of Berry curvatures
or non-Abelian Berry curvatures. It is expected that many of
the topological features found in condensed-matter physics
can find their analogues in RF circuits. Many topologi-
cal phenomena and properties, including the robust edge
state, can be readily reproduced with electrical circuits.
Importantly, topological circuits represent a highly flexible
platform for investigating topological phenomena due to the
convenient connections between nodes at arbitrarily long
distances. This may lead to realization of 3D topological
systems without introducing extra synthetic dimensions [5,
13, 14]. So far, only a few works have reported the realization
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of topological phenomena with LRC circuits [15–24]. In
one of the earliest proofs of concept demonstrations, the
topological circuits consist of a network of inductors with
carefully designed connections through capacitors [15], in
which RFwave experiences an effectivemagnetic field as they
travel through each plaquette, forming a classical analogy
to the Hofstadter model originally proposed in quantum
mechanics [25]. They demonstrated experimentally in such
an RF circuit the existence of nontrivial bandgaps containing
localized edge modes. It has been recently proposed that,
by stacking multiple graphene-like LRC circuit lattices into
a 3D circuit, one can realize both nodal line state with
drumhead-like surface bands andWeyl state with Fermi-arc-
like surface bands [17, 20]. By replacing one of the capacitors
in the 1D Su–Schrieffer–Heeger (SSH) circuit with two
series back-to-back varactor diodes, a nonlinear circuit was
demonstrated in which topological characters depend on the
input intensity [19]. In addition, two recent studies reported
the experimental observation of higher-order topological
phases in microwave [21] and RF frequency [23, 24] circuits,
both showing topologically protected corner states in analogy
to the quantized bulk quadrupole moment of an electronic
crystal [26].

The SSH model has attracted increasing research inter-
ests in the past decades, due to its rich physical phenom-
ena, including topologically protected edge states, fractional
charge, PT symmetry, and topological soliton excitation [27,
28]. In this work, we present the design and experimental
realization of a 2D SSH quantum circuit exhibiting a Berry
curvature free topologically nontrivial band structure and a
topologically robust edge state.

2. Results

2.1. Model of the 2D SSH Model. We start with a brief review
of the 1D SSH model, which was originally developed to
describe the 1D polyacetylene and is one of the simplest
models to host topological properties [29]. The SSH model
describes a chain of identical atomswith alternating strengths
of bonds, as shown in the top inset of Figure 1(a). Each

building block consists of two identical atoms, i.e., a dimer,
with a coupling coefficient 𝛾 between them. The coupling
coefficient between the two neighboring atoms across the
unit cell boundary is 𝛾’. The SSH chain exhibits a topological
nontrivial phase and supports a topologically protected edge
mode at the end of the chain if the intracell coupling 𝛾
exceeds the intercell coupling 𝛾’. Next we generalize the
simple configuration of the 1D SSH model into a 2D SSH
circuit with alternating coupling terms 𝛾 and 𝛾’ in both x
and y directions, as schematically illustrated in Figure 1(a).
Note that a previous work had reported the 2D SSHmodel in
the regime of solid state physics, which exhibits a fractional
wave polarization characterized by the 2D Zak phase [30]. To
realize the 2D SSH model with a realistic circuit, we replace
each atom and two hopping amplitudes 𝛾 and 𝛾’, respectively,
with a capacitor and two different inductors. The unit cell of
2D SSH circuit is shown in Figure 1(b), which is composed of
four identical grounded capacitors C, with every two adjacent
ones connected by alternating inductors La and Lb in both the
x and y directions.

Having described the unit cell of 2D SSH circuit, we
proceed to provide the mathematical tool for analyzing its
topological properties. We apply the Kirchhoff ’s Law to the
circuit unit cell by assuming the voltagesV and currents I in
all the nodes and branches, as indicated in Supplementary
Figure S1. To calculate the band structure, we consider an
infinite 2D periodic lattice with qx and qy denoting the phase
of Block wave vector propagating in the x and y directions,
respectively. Based on [17, 20], the voltage and current
vectorsV and I in such a periodic circuit can be linked
through a grounded circuit Laplacian J in the following form
(see detailed derivation in Supplementary Materials Note 1),

(𝐼𝑎𝐼𝑏𝐼𝑐𝐼𝑑)= 𝐽(
𝑉𝑎𝑉𝑏𝑉𝑐𝑉𝑑) (1)

with J being expressed as

𝐽 = 𝑖𝜔((((((
(

C − 2𝜔2𝐿𝑎 − 2𝜔2𝐿𝑏 𝑒−𝑖𝑞𝑥𝜔2𝐿𝑎 + 1𝜔2𝐿𝑏 𝑒−𝑖𝑞𝑦𝜔2𝐿𝑎 + 1𝜔2𝐿𝑏 0𝑒𝑖𝑞𝑥𝜔2𝐿𝑎 + 1𝜔2𝐿𝑏 C − 2𝜔2𝐿𝑎 − 2𝜔2𝐿𝑏 0 𝑒−𝑖𝑞𝑦𝜔2𝐿𝑎 + 1𝜔2𝐿𝑏𝑒𝑖𝑞𝑦𝜔2𝐿𝑎 + 1𝜔2𝐿𝑏 0 C − 2𝜔2𝐿𝑎 − 2𝜔2𝐿𝑏 𝑒−𝑖𝑞𝑥𝜔2𝐿𝑎 + 1𝜔2𝐿𝑏0 𝑒𝑖𝑞𝑦𝜔2𝐿𝑎 + 1𝜔2𝐿𝑏 𝑒𝑖𝑞𝑥𝜔2𝐿𝑎 + 1𝜔2𝐿𝑏 C − 2𝜔2𝐿𝑎 − 2𝜔2𝐿𝑏
))))))
)

(2)

SubstitutingLa=39nH,Lb=220nH,C=1000pF into (2) and
solving det[𝐽(𝜔, 𝑞𝑥, 𝑞𝑦)] = 0, we can readily obtain the
eigenvalues of the periodic circuit at different Bloch wave
vectors qx and qy, producing the 2D band structure as shown
in Figure 1(c), which includes four bulk bands spanning

from 0 to 55 MHz. The middle two bands are degenerate
at the four corners of the first Brillouin zone (BZ) and
are separated from the first and fourth bands. Figure 1(d)
compares the theoretically calculated band structure and the
absorption spectra on the bulk and edge sites, which are
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Figure 1: Circuit design and band structure of the 2D SSH topological circuit. (a) An illustration of a 2D SSH model containing 3×3 unit cells,
which can be viewed as a dimerized 2D lattice with alternating hopping amplitude 𝛾 and 𝛾’. (b) Unit cell of the 2D SSH circuit, obtained by
replacing the potential well (black sphere) and two hopping amplitudes 𝛾 and 𝛾’, respectively, with a capacitor and two different inductors.The
inductances La and Lb indicate, respectively, the coupling strength between capacitors inside the unit cell (intracoupling) and between two
adjacent unit cells (intercoupling). (c) 2D band structure theoretically calculated from the grounded circuit Laplacian of the periodic circuit
model in (b) with the following circuit parameters: La=39nH, Lb=220nH, C=1000pF. (d) Band structure along the high symmetry lines and
the numerically simulated absorption spectra on the bulk and edge sites. The frequency of the absorption peaks on both the bulk and edge
sites coincides exactly with the band structure. (e) Band structure of the finite-sized 2D SSH circuit with 1×7.25 sites. The two curves located
between the three bulk bandgaps indicate the existence of the nontrivial edge mode.

numerically calculated from a finite-sized circuit containing
7.25×7.25 sites using Agilent Design System (see method).
Note that the fraction 0.25, which is the grounded capacitor,
is due to the additional inductors La added to the right
and bottom edges, which accounts for a quarter of unit
cell (Figure 1(b)). There must be a grounded term at the
edge; otherwise, the coupling component (inductors) will
be unconnected. Three absorption peaks of the bulk sites
(see left panel) appear exactly in the frequency range of the
bulk bands in the band structure diagram (see middle panel,
green regions). Two edge mode peaks can be identified from
the absorption spectra of the edge site (see right panel),
which resides in the two bandgaps (yellow regions).The good
agreement between the band structure and the absorption
spectra demonstrates the accuracy of the circuit Laplacian
in analyzing the topological circuit. By varying the value of
capacitors and inductors, we can tune the band gap sizes
(see Supplementary Figure S2) in a wide range. While the
circuit Laplacian (see (2)) for the infinitely large circuitmodel
(Figure 1(b)) can provide all the bulk modes inside the
finite-sized topological circuit, the edge modes should be
calculated from the finite-sized circuit Laplacian. We present

in Figure 1(e) the band structure of the finite-sized 2D SSH
circuit with 1×7.25 sites supercell along the x direction. Two
curves representing the eigenvalues of the edge mode reside
between the two bandgaps marked by yellow regions, whose
frequency ranges coincide exactly with the absorption peaks
in the frequency spectrum (Figure 2(d)).

Although topologically protected edge states appear at
the edge of topological circuit, they are closely related to
the bulk states through the bulk-edge correspondence, which
can predict, from the bulk circuit Laplacian, the number
of topologically protected edge modes present in a finite-
sized TI. To demonstrate the origin of these edge states,
we calculate the topological invariant, Zak phase, from the
grounded circuit Laplacian matrix J in (2). For the 1D
SSH model, the topological phases are characterized by the
winding number and determined by the intracell and intercell
coupling terms 𝛾 and 𝛾’, respectively. Specifically, 𝛾’>𝛾 results
in a topologically nontrivial winding numbers -1 and 0 for𝛾’< 𝛾, corresponding to the Zak phase of 𝜋 (nontrivial) and 0
(trivial). Similarly, the 2D SSH circuit takes a Zak phase 𝜋 in
the regime of La<Lb, where a nontrivial edgemode appears at
the four boundaries, whereas the edgemode disappears as we
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Figure 2: Fabricated sample, simulation, and experimental results of the 2D SSH circuit. (a,b) Photograph and zoomed view of the fabricated
sample with 7.25×7.25 unit cells. All the boundary sites are terminated by inductors La. (c,d) Schematic illustration of the circuits without and
with defect, respectively. The blue and red lines represent inductors La and Lb, respectively, while the black sphere represents the grounded
capacitors. The red wavelike curve indicates the nontrivial edge states. (e,f) Experimentally measured results of the absorptance distribution
at the lower bandgap (averaged between 25.2 and 28.6 MHz) for the cases without and with defect, respectively. (g,h) Theoretical results of
the absorptance distribution at the lower bandgap (30 MHz) for the cases without and with defect, respectively.

exchange the value of inductors (La>Lb, see Supplementary
Figure S3), which corresponds to a trivial phase of zero.
Note that a method was recently proposed to experimentally
measure the Zak phase of an LC coupled circuit network via
probing the bulk quantities [18].

We can obtain the spectrum of eigenmodes of the finite-
sized circuit for different choices of La and Lb by calcu-
lating the eigenvalues (𝜔2) of the dynamical matrix 𝐷 =
𝐶
−1/2
𝑊𝐶
−1/2 based on the method given in [17, 20]. Here,C

andW are the capacitance matrix and inverse inductivity
matrix of the finite-sized circuit, respectively. Supplementary
Materials Note 3 presents the detailed derivation process. In
Supplementary Figure S4a, two separated modes (magenta
color) can be clearly identified from the gaps of three bulk
modes (blue color, Supplementary Figure S4a), while they
are absent from the trivial case when the values of La and
Lb are exchanged (Supplementary Figure S4b). These two
distinct topological states cannot adiabatically transform
between each other unless the bandgap closes by setting
La=Lb (Supplementary Figure S4c). All the above theoretical
analyses further confirm that the edgemode is not a result of a
trivial surface effect, but amanifestation of the bulk nontrivial
topological phase.

2.2. Experimental Validation of Topological Properties. It can
be expected, according to the bulk-boundary correspon-
dence, that our 2D SSH circuit supports an edge mode
localized at the four edges in the nontrivial regime. To

support this expectation, we design and fabricate a circuit
boardwhich incorporates 7.25×7.25 unit cells, as shown by the
photographs in Figures 2(a) and 2(b), and also the schematics
in Figures 2(c) and 2(d). Here, for simplicity, the capacitors
and inductors are represented by the black sphere and
blue/red lines, respectively. Inductors (Q ∼37 at 40MHz) and
capacitors with the same values as the numerical simulations
are selected for the construction of the real sample. An SMA
connector is branched out from each node to facilitate the
measurement of the absorption spectra. To minimize the
influence of parasitic parameters on the circuit performance
and meanwhile to take into consideration the operational
frequency range of the VNA (Keysight N5230C, 10MHz to
40 GHz), the value of circuit elements is deliberately chosen
for the resonance to fall in the range between 10 and 60MHz.
The circuit layout is carefully designed such that the parasitic
parameters (i.e., parasitic capacitances and inductances) due
to the adjacent lines have negligible effect on the topological
properties.

Reflectancemeasurement was firstly carried out to exper-
imentally characterize the 2D SSH circuit. The absorp-
tion spectrum, which represents the amount of RF energy
pumped into the circuit, can be simply obtained from 1 − 𝑆211
[23]. As the reflectance coefficient S11 is measured with a 50
Ohm coaxial cable, it reaches zero (linear scale) when the
input impedance of a certain node equals 50 Ω, leading to
a maximum absorptance of unity. The expected edge mode
distribution is illustrated in Figure 2(c), where the RF energy
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only exists around the edges of the square circuit lattice. To
get a clear view of the edge mode distribution across the
entire circuit lattice, we map out node by node the average
absorptance at the lower (25.2-28.6 MHz, Figure 2(e)) and
higher (39.5-40.6 MHz, Supplementary Figure S5a) midgaps,
which are consistent with the theoretical results shown in
Figure 2(g) and Supplementary Figure S5b, respectively. From
the absorptance distribution at both bandgaps, we can clearly
observe bright boundaries at all the four edges.The dark cor-
ners are due to the additional grounded inductors at the four
corners, which result in a blue shift of the absorptance peak
in the frequency spectrum that deviates from the bandgap of
the edgemode. Supplementary Figure S6 presents the average
absorptance distribution for the three bulk bands, where the
bright pixels inside the circuit lattice represent the bulk state.
Good agreement can be found between the simulated and
experimentally measured absorptance (see Supplementary
Figure S7), except for a frequency shift of around 8 MHz,
which might be caused by the parasitic parameters of the
real circuits, including the parasitic inductance of the line
itself and the parasitic capacitance between neighboring
lines. To clearly visualize how the amplitude of absorptance
varies along the x/y direction on the circuit lattice, we
present in supplementary Figure S8 the statistical data of
the absorptance for columns 1-14, where dots represent their
mean value. As expected from the theoretical prediction, the
edge mode decays rapidly into the bulk site.

Because such edgemodes are protected by the topological
nature of the SSH circuit, they are thus robust to certain types
of defects and disorder.We demonstrate the robustness of the
2D SSH circuit by removing a square-shaped patch which
consists of 3×3 unit cells, as illustrated in Figure 2(d). To
introduce an appropriate defect to the 2D SSH circuit without
affecting the Zak phase of the bulk circuit network, the circuit
should be terminated in the way same as the other edges;
i.e., all the edges should be terminated with an inductor La
connected to the ground, such that the topology nature is still
protected by the inversion symmetry of the 2DSSHcircuit. As
shown by Figures 2(f) and 2(h), instead of being destroyed
by the defect, the edge mode persists at the edges on the
newly generated boundaries of the defect regions. In addition,
the spectrum of eigenmodes calculated from the dynamical
matrix still shows two separated modes in the band gaps of
three bulk modes (Supplementary Figure S4d).

The insulating bulk and conducting edge nature of topo-
logical insulator circuit can also be revealed by inspecting
the transmission coefficients (S21) between two nodes on
the edge and bulk. We note, in the following tests, that
the RF signal is pumped into the 2D SSH circuit from the
second resonator at the bottom edge with a stimulating
port (port 1, indicated by the yellow star in Figure 3(b))
and, unless otherwise specified, the probing port (port 2,
green triangular in Figure 3(b)) is swept across the other
resonators in the same row. We select the bottom edge for
the edge-to-edge test and plot in Figure 3(b) the spectra of
transmission coefficients when port 2 is connected to the
nodes in columns 3, 6, 9, and 12. Two obvious peaks appear
at the same frequency range as in the absorption spectra
(Figure S7a). The transmission decreases with the increasing

distance between the two ports, but all remain above the
noise level with at least a 10 dB margin. However this is
not the case for the bulk-to-bulk transmission as shown in
Figure 3(c), which is measured at row 11 with same method.
Due to the insulating nature of the topological circuits, the
transmission drops more rapidly than the edge-to-edge case
and almost falls to the noise level after passing column 8.
To have an easy comparison of the transmission amplitude
between these two cases, we present in Supplementary Figure
3d their average transmissions as port 2 is swept from column
3 to column 14 in the same row. The transmission amplitude
on all resonators at the edge is substantially higher than that
in the bulk and most importantly with the signal in the bulk
site decreasing with a rate of almost ∼10 dB/node. The above
test again verifies the topological insulating nature of the 2D
SSH circuit.

To further demonstrate the robustness of the topolog-
ically protected edge state, we measure the transmission
coefficient of the edge and bulk states under the presence
of different number of small defects. As illustrated in Fig-
ure 3(a), in this test scenario, the input and output ports
are fixed at columns 2 and 8 for row 11 (bulk-to-bulk) and
row 14 (edge-to-edge), respectively, while we connect both
ends of the capacitors to ground in row 10 and row 13,
which can be viewed as the small defects. Figure 3(e) shows
the transmission spectra of the edge mode measured at the
bottom row when both ends of the capacitors in row 10 at
column 8, columns 7-9, and columns 1-14 are grounded, as
indicated by the three light yellow shaded regions. The black
curve showing three transmission peaks is provided as the
reference where no defect is introduced (see Figures 3(e)
and 3(f)). As we ground row 8 column 8, the second and
third transmission peaks drop by over 10 dB as compared
to the reference curve. Further increasing the number of
grounded capacitors leads to both amplitude and frequency
shifts in the transmission spectra. Interestingly, for the edge
mode propagating along the bottom edge, little influence is
found from the transmission peaks, even in the extreme case
where the capacitors in the entire row 13 are grounded at
both ends, thus verifying the robustness of the nontrivial edge
mode.

3. Discussion

In this work, we presented the design and experimental
realization of a 2D SSH circuit exhibiting a nontrivial band
structure and topologically protected edge state. We experi-
mentally identified the topologically protected edgemodes in
a sample with 7.25×7.25 unit cells, which were located on all
the edges and decayed rapidly into the bulk sites. The circuit
performance is robust against component tolerance of ∼5%
and component Q factor of ∼10 (see Supplementary Figures
S9 and S10), making the experimental realization of such
2D SSH circuit feasible at RF frequency with most commer-
cially available capacitors and inductors. Most importantly,
the nearly invariant transmission peak in the presence of
different types of defects served as a clear experimental
signature of topologically robust transport. Our 2D SSH
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Schematic illustration of the test configurations. The input port is fixed at column 2 (yellow star). (b,c) Transmission spectra experimentally
probed as the output port is connected to columns 3, 6, 9, and 12 in the same row with the input port for the edge-to-edge case (row 14) and
bulk-to-bulk case (row 11), respectively. (d)The average transmission (25-28 MHz, yellow region) for the edge-edge case and bulk-bulk case
when port 2 is swept from columns 3-14 in the same row. The propagation loss of the edge mode is substantially lower than the bulk mode.
(e) Numerically simulated transmission spectra for the edge mode propagating from column 2 to column 8 at the bottom row, and when
different capacitors in the upper row (row 13) are connected to ground at both ends. ( f) Numerically simulated transmission spectra for the
bulkmode propagating from column 2 to column 8 at row 11 and when different capacitors in the upper row (row 10) are connected to ground
at both ends.

topological circuit may be viewed as a location-dependent
band-pass filter for RF photons travelling in a finite-sized
network composed of inductive coupled capacitors.While we
only presented a 2D circuit here, which is compatible with
conventional circuits, we believe that such RF circuits with
flexible topological connectionsmay be particular interesting
for implementing the 3D and 4D TIs which owe much richer
physics than the 2D system.

Theproposed topological circuitmay find potential appli-
cations in flexible electronics, a technology for assembling
electronic circuits on flexible substrates, such as polyimide
and polyester films [31, 32]. However, one of the technical
issues that hinders such flexible circuits from application
is the deterioration of circuit responses when the circuit
experiences different types of deformation that may lead to
unexpected variation in the distributed circuit parameters
(capacitance and inductance). Fortunately, topological cir-
cuits with highly robust circuit performance are superior
to conventional circuits in protecting circuit functionalities
from being deteriorated by physical deformations (e.g., bend-
ing, folding, twisting, compressing, and stretching) as long
as they do not affect the bulk topological invariant (see
Supplementary Figure S9 and S10).

4. Materials and Methods

4.1. Numerical Simulation. The software Agilent Design Sys-
tem is employed for the numerical simulation of the finite-
sized 2D SSH circuit having 7.25×7.25 unit cells, which is built
with the exact value as the real components selected for the
fabricated sample. The simulated absorption spectra given in
Figure 1(d) are on the node at row 8 column 8 as the bulk site,
and the node at row 14 column 8 as the edge site.

4.2. Fabrication and Experiment. To minimize the loss effect
to the topological properties of circuits, two inductors with
220nH±2% (Murata, LQW2BAN39NG00#) and 39nH±2%
(Murata, LQW2UASR22G00#) inductances are selected, with
Q-factors reaching ∼38 and ∼35 at 40 MHz, respectively. The
self-resonance frequency of both inductors is over 500MHz,
far beyond the operational frequency of our topological
circuit. Chip multilayer ceramic capacitors of 1000 pF ±5%
(GRM1882C1H102JA01-01A) are selected for the grounded
capacitors. Keysight N5230C VNA was employed to mea-
sure the reflection and transmission coefficient, which had
been calibrated using a 50 Ω calibration unit (E5052D)
before measurements. The transmission coefficient between
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two nodes was performed by means of two-port transmis-
sion measurement using a pair of microwave cables, with
one serving as the excitation and the other probing the
response.
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Supplementary Materials

Figure S1: circuit schematic with the node voltages V1 -V4
on the four nodes and current I1 -I8 in the corresponding
branches. Figure S2: bandwidth of the lower and higher
bandgaps with respect to inductances La and Lb. Figure
S3: numerically simulated absorption spectra of the 2D SSH
circuit for the edge site when La=220 nH and Lb=39nH.
Figure S4: the spectrum of eigenmodes of the circuit for
different choices of La and Lb, obtained by calculating the
eigenvalues of the dynamicalmatrix of the finite-sized circuit.
Figure S5: results of the absorptance distribution at the
higher bandgap for the case without and with defect. Figure
S6: distribution of average absorptance of the three bulk
bands. Figure S7: experimentally measured and numerically
simulated absorption spectra of the 2D SSH circuit for the
bulk site and edge site. Figure S8: statistical data of the
absorptance distribution in Figure 2(e) across columns 1-
14, in which the dot in each column is the mean value of
absorptance in each column. (Supplementary Materials)
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