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We theoretically analyze acousto-optic (AO) mode conversion between optical orbital angular momentum (OAM)
modes using an elastic vortex wave (EVW) carrying OAM in a squared graded index (GI) fiber. The AO mode
conversion from the fundamental mode to the higher order optical OAM mode is a useful technology to generate
optical OAM modes in the GI fiber. This paper clarify the contribution of each component of the dielectric constant
perturbation caused by the EVW to the AO mode conversion.

1. Introduction

To meet the growing demand of the communication traffic, the optical transmission technology

has continuously employed various multiplexing techniques such as time division multiplex-

ing (TDM), wavelength division multiplexing (WDM), optical code division multiplexing

(OCDM), polarization division multiplexing (PDM), and space division multiplexing (SDM).

Orbital angular momentum (OAM) has been attracting much attentions as a novel degree of

multiplexing since it is one of the orthogonal modal basis for mode division multiplexing

(MDM) which is a special case of SDM. Using multiple OAM states potentially increases

the transmission capacity1) due to the fact that different azimuthal OAM modes are mutu-

ally orthogonal while propagating coaxially.2–4) An OAM beam has a spiral phase front and

donut shape intensity distribution. This unique structure produces a variety of applications

of OAM such as optical tweezers, laser material surface treatment, quantum entanglement,

image processing, and quantum measurement as well as optical communication.5)

Generation of the optical OAM beams is generally performed by using bulk free-space

optics such as spiral phase plates, cylindrical lenses, spatial light modulators (SLMs) and

so on.6) On the other hand, fiber based OAM beam generation methods would be compact

and low-loss when considering the optical fiber transmission. The fiber based generation
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methods have been reported in literature such as multimode interference,7) stress-induced

phase difference,8,9) effective index matching,10,11) and acousto-optic interaction.12,13) Among

them, we focus on the acousto-optic (AO) effect for the interaction between the lightwave and

the elastic wave due to the controllability and tunability.14–17) The AO interaction has also

been studied for optical switching of optical signals in a Bragg diffraction configuration.18)

Optical mode conversion in optical fibers using AO effect has been reported in Refs.(19,20)

, in which the longitudinal or flexural mode is used as the elastic wave. Regarding OAM mode

conversion, it is necessary to consider the matching of OAM between the incident optical beam

and the elastic wave in addition to the conventional mode conversion. We employ an elastic

vortex wave (EVW) which is generated by two orthogonal acoustical waves and possesses

OAM on the elastic wave as suggested in13) for this purpose. The analytical expression of the

EVW, the strain and stress components, matching of phase and OAM should be revealed in

order to understand the optical OAM mode conversion by using EVW. However, Ref.13) did

not describe the displacement and the phase profile of the EVW in the fiber. Although a few

papers on AO coupling by EVWs have been reported,19,20) only the contribution from a strain

component Szz has been reported, to the best of the authors knowledge. Therefore, in this

paper, we derive the detailed analytical expression of the displacement and the phase profile

of the EVW in the fiber. We also discuss the contribution of all the strain components and

analyze the contribution to the perturbation of the dielectric constants induced by the strain for

OAM mode conversion.21) In addition, we reveal the power coupling between optical OAM

modes and indicate the perfect coupling length in the squared graded index (GI) fiber.

This paper is organized as follows. Section 2 describes the detailed analytical expression

of the displacement of the EVW, the strain and stress components, and the perturbation of

the dielectric constants. Section 3 describes the Laguerre-Gaussian mode as an optical OAM

beam. Section 4 analyzes the mode coupling using EVW for the OAM mode conversion.

Finally, we present conclusion in Section 5.

2. Elastic vortex wave

We consider a GI optical fiber as shown in Fig.1. The radius of the fiber is b. The core region

within radius a has a parabolic refractive index n(r). In general, an ultrasonic wave propagating

through an elastic medium is called elastic wave. Displacements in elastic waves are derived

from the wave equations of motion. Considering a cylindrical coordinate system along the
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optical fiber, the displacements u in the elastic wave are written as22–24)

ur = U(r)
(

sin(mθ)
cos(mθ)

)
exp [ j(Ωt − k0z)]

uθ = V(r)
(

cos(mθ)
− sin(mθ)

)
exp [ j(Ωt − k0z)]

uz = W(r)
(

sin(mθ)
cos(mθ)

)
exp [ j(Ωt − k0z)], (1)

where the radial variations are given by

U(r) = (Akd J′m(kdr) + Bk0J′m(ktr) + C
m
r

J′m(ktr))

V(r) = (Am
r

Jm(kdr) + B
k0m
ktr

Jm(ktr) + CJ′m(ktr))

W(r) = − j(Ak0Jm(kdr) − Bkt Jm(ktr)), (2)

m is an integer describing the circumferential field variation, Ω is the angular frequency, k0

is the propagation constant of the elastic wave, A,B,C are constants decided by boundary

conditions, Jm is the Bessel function of the first kind, J′m denotes its derivative with respect to

the argument, and kt and kd are expressed as

k2
t = Ω

2/c2
t − k2

0

k2
d = Ω

2/c2
d − k2

0, (3)

where the transverse wave velocity ct and the bulk dilatational velocity cd are given using the

density ρ, Lame’s constants λ and µ through

c2
t = µ/ρ (4)

c2
d = (λ + 2µ)/ρ.

We assume the elastic physical constants are uniform over the fiber cross section.
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Fig. 1. Graded-index optical fiber.

The optical mode conversion is induced by the perturbation of optical fiber using elastic

waves. Here, we derive strain and stress tensors from displacements u using Auld’s notation.

The strain tensor S is given by22,25)

S =



S1

S2

S3

S4

S5

S6


=



Srr

Sθθ

Szz

2Sθz

2Srz

2Srθ


=



∂ur
∂r

1
r (ur +

∂uθ
∂θ )

∂uz
∂z

∂uθ
∂z +

1
r
∂uz
∂θ

∂ur
∂z +

∂uz
∂r

1
r
∂ur
∂θ +

∂uθ
∂r − uθ

r


. (5)

The stress tensor T is derived from the strain tensor by

T =



T1

T2

T3

T4

T5

T6


=



Trr

Tθθ

Tzz

Tθz

Trz

Trθ



=



(λ + 2µ)Srr + λSθθ + λSzz

λSrr + (λ + 2µ)Sθθ + λSzz

λSrr + λSθθ + (λ + 2µ)Szz

2µSθz
2µSrz

2µSrθ


. (6)

Now, the dispersion relation of the elastic waves is derived using the boundary conditions
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Trr ,Trz,Trθ = 0 at r = b, where b is the fiber radius. The obtained dispersion relation is

expressed by the following determinant.

���� m2 − 1 − q2
0 (x − 1) m2 − 1 − q2

0 (2x − 1) 2(m2 − 1)[γm(qt ) −m] − q2
0 (2x − 1)

γm(qd ) −m − 1 γm(qt ) −m − 1 2m2 − 2[γm(qt ) −m] − q2
0 (2x − 1)

γm(qd ) −m −(x − 1)[γm(qt ) −m] m2

���� = 0, (7)

where q0 = k0b, qt = kt b, qd = kdb, x = Ω2/(k0ct)2, and γm(q) = qJm−1(q)/Jm(q). The

dispersion relation as shown in Fig.2 is obtained by solving eq.(7) by the bisection method. It

reveals the relation between frequency f and phase velocity c = Ω/k0 of flexural waves.

In this figure, the 1st order flexural mode is the fundamental mode of flexural wave. The

2nd order and the 3rd order flexural modes are also plotted. The three lowest order modes

are shown. In this research, we consider to use the fundamental mode of flexural wave for

AO mode conversion. The group velocity of the fundamental mode of flexural wave cg is

calculated by

cg =
c

1 − ωc
∂c
∂ω

(8)

as shown in Fig. 3.
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Fig. 2. Dispersion relation of the guided flexural waves for m=1.
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Fig. 3. Dispersion of group velocity cg of the fundamental flexural mode.

The EVW is synthesized by orthogonalizing the x-axis component (upper set) and the

y-axis component (lower set) of the displacements of eq.(1) with a phase difference of π/2 as

ur = U(r) exp( jmθ) exp [ j(Ωt − k0z)]

uθ = jV(r) exp( jmθ) exp [ j(Ωt − k0z)] (9)

uz = W(r) exp( jmθ) exp [ j(Ωt − k0z)].

We assume physical parameters of silica, such as density ρ= 2.2×103kg/m3, Lame’s constants

λ = 1.6 × 1010N · m−2, and µ = 3.1 × 1010N · m−2. Examples of obtained displacements and

phase profiles of EVW at f =0.3918 MHz are shown in Fig.4.

The acoustic power AP of the EVW in the fiber cross section is evaluated by eq.(10).24)

AP = 2π2ρcg f 2
∫ 2π

0

∫ b

0
(|ur |2 + |uθ |2 + |uz |2)rdrdθ (10)

The power of the EVW with umax
z = 50nm is calculated to be 10.6mW. This power indicates

the feasibility of the mode conversion in this setup because it is close to acousto-optic mode

converter.24) Therefore, we assume the maximum displacement is umax
z = 50nm in this research.

It is found that the EVW has an OAM since the phase of the EVW is in a spiral shape. The

displacements as a function of r are shown in Fig.5. The displacements ur and uθ distribute

almost uniformly over the cross section. The displacement uz, on the contrary, increases as

r . The strain components caused by the EVW at f = 0.3918 MHz are shown in Fig.6. The

strain S3(= Szz) increases with r and has the largest value around the fiber edge. The other

components except for S6 exist and are not negligible.
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Fig. 4. Absolute value and phase profile of EVW at f =0.3918MHz.
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Fig. 6. Distribution of the strain components at f =0.3918 MHz.

The perturbation of the dielectric constants induced by the elastic waves is obtained. The

elasto-optic constants pi j in silica of the fiber have the components p11 = p22 = p33, p12 =

p13 = p21 = p23 = p31 = p32, and p44 = p55 = p66. It is noted that p44 =
1
2 (p11 − p12).26,27)

The perturbation of the dielectric constants ∆ε due to the acousto-optic interaction is given

by the tensor notation as26–28)

∆ε =



∆ε1

∆ε2

∆ε3

∆ε4

∆ε5

∆ε6


=



∆εrr

∆εθθ

∆εzz

∆εzθ

∆εrz

∆εrθ



= −ε0ε2
r



p11S1 + p12S2 + p12S3

p12S1 + p12S2 + p12S3

p12S1 + p12S2 + p11S3

2p44S4

2p44S5

2p44S6


.

(11)

Here, ε0 is the vacuum dielectric constant and εr is the relative dielectric constant of the fiber.

3. Optical OAM mode

We consider optical modes in the squared GI fiber. The refractive index n(r) has the distribution

given by
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n2(r) =
{

n2
1[1 − (gr)2] = n2

1[1 − 2∆(r/a)2] r ≦ a

n2
2 r ≧ a,

(12)

where n1 is the core center refractive index, n2 is the cladding refractive index, g =
√

2∆/a is

the focusing constant, a is the fiber core radius, and ∆ is the relative refractive index difference

defined by ∆ = (n2
1 − n2

2)/(2n2
1). Maxwell’s wave equation in the squared GI fiber is given by

∂2Ey

∂r2 +
1
r
∂Ey

∂r
+

1
r2
∂2Ey

∂θ2
+ [k2n2

1(1 − g2r2) − β2]Ey = 0. (13)

The mode electric field derived from this equation is called Laguerre-Gaussian (LG)

mode29,30)

Ey(r, θ) = Eνne jνθ(r/w0)νL(ν)
n (r2/w0

2)e− 1
2 (r/w0)2, (14)

where k = 2π/λ, ω0 = 1/
√

kn1g is called eigen spot size. L(ν)
n is the associated Laguerre

polynomial. The amplitude coefficient Eνn is expressed by

Eνn =


√

n
2π(ν+n)!w2

0
(ν = 0)√

n
π(ν+n)!w2

0
(ν ≧ 1).

(15)

The propagation constant of this LG mode is given by

β =
√

k2n2
1 − 2kn2

1g(2n + ν + 1)

� kn1 − (2n + ν + 1)g ,

(16)

where n is the radial index corresponding to the node order of the LG mode, and ν is the

azimuthal index called topological charge.

The core center refractive index n1 and the cladding refractive index n2 of the squared

GI fiber is assumed as 1.46 and 1.45, respectively. The core diameter 2a is 62.5µm and

the cladding diameter 2b is 125µm. The optical incident wavelength is λc= 1550nm. The

equivalent index of refraction β/k with respect to the radius a of the core is shown in Fig.7

for N = 2n + ν. Hereafter, Laguerre-Gaussian (LG) mode is expressed as LGνn. Figs.8-10

show mode profiles of the lowest three modes. LG00 is a general Gaussian beam as shown

in Fig.8. In contrast, the phase of the LG modes with ν=1 in Fig.9 and ν=2 in Fig. 10 are in

spiral shapes. From these spiral phases it is found that the LG modes for ν ≧ 1 carry OAM.
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Fig. 8. Intensity and phase profile of LG00.
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Fig. 9. Intensity and phase profile of LG10.
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Fig. 10. Intensity and phase profile of LG20.

4. AO Mode Conversion Theory

4.1 Phase matching condition

We consider the phase matching condition for AO coupling between LG modes and EVW.

The phase matching condition of the propagation constants is given by20,31–33)

βl − βp = k0, (17)

where βl and βp are the propagation constants of input and output optical modes, respectively,

and k0 is the propagation constant of EVW. From eq.(15), the velocity of the EVW required

for efficient AO coupling is found to be

c = 2π f /(βl − βp). (18)

We can specify the frequency and phase velocity of the EVW for optical mode conversion

from this phase matching condition for optical LG00 and LG10 as shown in Fig.11. The solid

curve indicates the relation of phase velocity c and frequency f of the EVW. The dashed

line corresponds to 2π/(β1 − β2), where β1 and β2 are the propagation constants LG00 and

LG10 modes, respectively. The frequency of the elastic wave satisfying the phase matching

condition is obtained at the cross point of the solid curve and the dashed line, which is found to

be 0.3918 MHz. Similarly, the frequency for AO coupling between LG10 and LG20 is obtained

at 0.3925 MHz.
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Fig. 11. Phase matching condition between LG00 and LG10.

4.2 OAM mode coupling

The mode coupling equation is derived from Maxwell’s wave equation. Electro magnetic

waves are expressed by superposition of all optical modes propagated in the optical waveguide

as20,34)

E(r, θ, z) =
∑

p

Fp(r, θ)
Np

Ap(z)e− j(βp z−ωt)

H(r, θ, z) =
∑

p

Gp(r, θ)
Np

Bp(z)e− j(βp z−ωt), (19)

where Ap(z) and Bp(z) are the complex amplitudes, Fp(r, θ) and Gp(r, θ) are the transverse

distributions of the electric and magnetic field for the mode p, Np is a normalization coefficient,

and ω is the angular frequency of the optical mode. Here, we adopt normalization to optical

power as ∫ ∫
[F∗

p(r, θ) × Gl(r, θ) + Fp(r, θ) × G∗
l (r, θ)] · ezrdrdθ

= 4δpl N2
p,

(20)

where δpl represents the Kronecker delta and ez is the unit vector to z direction. Ap(z) and

Bp(z) are expressed as

Ap(z) = c+p (z)e− jβ+p z + c−p (z)e− jβ−p z

Bp(z) = c+p (z)e− jβ+p z − c−p (z)e− jβ−p z . (21)
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Mode coupling equations are derived from these notations and Maxwell’s equations as

dc+p (z)
dz

=

q∑
l=0

c+l (z)ϑ
++
pl e j(βp−βl−k)ze jΩt

+c−l (z)ϑ
+−
pl e j(βp+βl−k)ze jΩt

dc−p (z)
dz

=

q∑
l=0

c−l (z)ϑ
−−
pl e j(βp−βl−k)ze jΩt

+c+l (z)ϑ
−+
pl e j(βp+βl−k)ze jΩt .

(22)

These two equations consider all optical modes, both forward waves and backward waves.

However, only the optical modes satisfying the phase matching condition are able to transfer

energy between optical modes. For simplicity, the backward waves are not considered in this

mode coupling. In addition, the time dependent terms are excluded since the velocity of light

is much faster than that of elastic waves. Thus, the mode coupling equations are simplified

as20)

dAp(z)
dz

=

q∑
l=0

Al(z)ϑple j(βp−βl−k)z, (23)

where ϑpl is called coupling coefficient. It is expressed by34–39)

ϑpl =
ω

2(βl − βp)

∫ ∫ Fp(r, θ) · F∗
l (r, θ)

NpNl

dε
dz

rdrdθ, (24)

where dε/dz indicates the change amount of the dielectric constant by elastic waves. ε(r, θ, z)
is the total dielectric constant including the perturbation term ∆ε(r, θ, z) induced by elastic

waves

ε(r, θ, z) = εu + ∆ε(r, θ, z), (25)

where εu is the unperturbed dielectric constant. Finally, the amount of change in z direction

is expressed by the following equation because ∆ε(r, θ, z) is derived from displacements

expressed by eq.(9) in the form of R(r)e jmθe− j k0z,
dε
dz
= − j k0∆ε(r, θ, z). (26)

The OAM matching condition should be satisfied when considering OAM mode conversion

by EVW in addition to the phase matching condition. For example, a mode conversion from

LG00 to LG20 is not achieved by using an EVW at m=1. This is because the OAM matching

is not satisfied. To execute the mode conversion from LG00 to LG20, an EVW at m = 2 has to
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be used. This matching condition is given by

OAMν,n = OAMν−m,n + EVWm,n. (27)

We show a set up for the OAM mode conversion using EVW in Fig.12. Two shear-mode

piezoelectric transducers (PZTs) are stacked so that their vibration directions are perpendicular

to each other.13) They are oscillated with π/2 phase difference to generate an EVW. There is

a hole in the central area of the PZTs to pass through the input fiber. The OAM lightwave is

coming from the input fiber and incident into the stripped fiber. Here, the stripped fiber is an

unjacketed fiber. The PZTs are connected to the stripped fiber by a horn to excite the EVW

onto the stripped fiber. Then, the OAM mode conversion is achieved in the stripped fiber.
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Fig. 12. Schematic diagram of the OAM mode conversion setup.

4.3 AO mode coupling result

We describe calculated results using the mode coupling equation. As examples, we consider

mode conversion from LG00 to LG10 and from LG10 to LG20. We use EVWs at f =0.3918

MHz (between LG00 and LG10) and f =0.3925 MHz (between LG10 and LG20) that satisfy

the phase matching condition. Maximum displacement of the EVWs is umax
z =50nm. Here,

p11 = 0.121, p12 = 0.270, p44 = −0.0745. The calculated coupling coefficient ϑpl and perfect

coupling length CL are tabulated in Table I. Contribution of ∆ε1 and ∆ε2 are relatively large

among the 6 coefficients for both cases. Fig.13 shows the coupling mode power as a function of

z. We confirm the OAM mode conversion using the EVWs in the squared GI fiber from these

results. The OAM mode conversion from LG00 to LG10 is achieved at the propagation distance

about 34 mm as shown in Fig.13(a). It is found from Table I that ∆ε1,∆ε2,∆ε3,∆ε4,and ∆ε5
contribute to the OAM mode conversion. Similarly, the OAM mode conversion from LG10 to
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LG20 is achieved at the propagation distance about 23 mm as shown in Fig.13(b). It is also

found from Table I that ∆ε1,∆ε2,∆ε3,∆ε4,and ∆ε5 except for ∆ε6 contribute to the OAM mode

conversion.

The perturbation of the dielectric constants may be different for desired OAM mode conver-

sions and conditions. Thus, revealing such perturbation characteristics would provide studies

for selectively exciting elastic waves having strong contribution to OAM mode conversions.

It leads to optimize the elastic wave power and improve the mode conversion efficiency.

Table I. Absolute value of coupling coefficient ϑpl and perfect coupling length CL.

|ϑ01 | 45.7 |ϑ12 | 66.2 CL01 34mm CL12 23mm

|ϑ∆ε1 | 25.9 |ϑ∆ε1 | 36.3 CL∆ε1 60mm CL∆ε1 42mm
|ϑ∆ε2 | 22.8 |ϑ∆ε2 | 31.9 CL∆ε2 52mm CL∆ε2 45mm
|ϑ∆ε3 | 3.92 |ϑ∆ε3 | 5.48 CL∆ε3 400mm CL∆ε3 290mm
|ϑ∆ε4 | 15.1 |ϑ∆ε4 | 15.8 CL∆ε4 100mm CL∆ε4 100mm
|ϑ∆ε5 | 14.9 |ϑ∆ε5 | 15.4 CL∆ε5 100mm CL∆ε5 100mm
|ϑ∆ε6 | 0.014 |ϑ∆ε6 | 0.019 CL∆ε6 around 100m CL∆ε6 around 100m
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Fig. 13. Coupling between LG00 and LG10, between LG10 and LG20 considering all the perturbation
components.

5. Conclusion

In this paper, we theoretically discussed optical OAM mode conversion using EVW in the

squared GI fiber. The detailed analytical expression of the displacement and the phase profile

of the EVW was clarified. Numerical calculation results revealed that 5 components of the
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perturbation of the dielectric constant contributed to the mode coupling. We assumed 50nm as

the EVW amplitude in this research. The amplitude of the elastic wave is related to the mode

conversion efficiency. For that reason, the perfect mode conversion distance is controllable by

changing the EVW amplitude.
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