OPUS

Faculty Research and Publications

https://opus.uleth.ca

Dibble, Peter

Thibault, Michelle E.

2008

(2R,3aR,4S,7R,7aS,9R,10aR,11S,14R,14aS)-rel-3 (9CI): a cyclophane derived from naphtho[1,2-c:5,6

Department of Chemistry and Biochemistry

https://hdl.handle.net/10133/5393 Downloaded from OPUS, University of Lethbridge Research Repository

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2R,3aR,4S,7R,7aS,9R,10aR,11S,14R,-14aS)-rel-3a,4,7,7a,10a,11,14,14a-Octahydro-4,14:7,11-diepoxy-2,9propanonaphtho[1,2-f:5,6-f']diisoindole-1,3,8,10-tetrone (9CI): a cyclophane derived from naphtho[1,2-c:5,6-c]difuran

Michelle E. Thibault,^a Masood Parvez^b and Peter W. Dibble^a*

^aDepartment of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4, and ^bDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 Correspondence e-mail: dibble@uleth.ca

Received 31 July 2008; accepted 6 August 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.108; data-to-parameter ratio = 14.4.

The title compound, $C_{25}H_{18}N_2O_6$, is a naphthalenophane styled in the manner of Warrener's alicyclic cyclophanes or molecular racks wherein a trimethylene tether is perfectly staggered between the two N atoms such that the central methylene H atoms point toward the naphthalene π -system. The dihedral angle between the mean planes of the two benzene rings is 7.61 $(7)^{\circ}$.

Related literature

For related literature, see: Butler et al. (2000); Thibault et al. (2003).

Experimental

Crystal data

-	
$\begin{array}{l} C_{25} {\rm H_{18}N_2O_6} \\ M_r = 442.41 \\ {\rm Tetragonal}, \ P4_2/n \\ a = 21.635 \ (9) \ {\rm \AA} \\ c = 8.262 \ (2) \ {\rm \AA} \\ V = 3867 \ (2) \ {\rm \AA}^3 \end{array}$	Z = 8 Mo K α radiation μ = 0.11 mm ⁻¹ T = 173 (2) K 0.35 × 0.12 × 0.12 mm
Data collection	
Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\rm min} = 0.962, T_{\rm max} = 0.987$	7455 measured reflections 4303 independent reflections 3077 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.107$ S = 1.02 4303 reflections	298 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALE-PACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2675).

References

- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Butler, D. N., Shang, M. & Warrener, R. N. (2000). Tetrahedron Lett. 41, 5985-5989
- Fan, H.-F. (1991). SAP191. Rigaku Corporation, Tokyo, Japan.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Thibault, M. E., Closson, T. L. L., Manning, S. C. & Dibble, P. W. (2003). J. Org. Chem. 68, 8373-8378.

supporting information

Acta Cryst. (2008). E64, o1837 [doi:10.1107/S1600536808025397]

(2*R*,3a*R*,4*S*,7*R*,7a*S*,9*R*,10a*R*,11*S*,14*R*,14a*S*)-*rel*-3a,4,7,7a,10a,11,14,14a-Octahydro-4,14:7,11-diepoxy-2,9-propanonaphtho[1,2-*f*:5,6-*f*']diisoindole-1,3,8,10tetrone (9Cl): a cyclophane derived from naphtho[1,2-*c*:5,6-*c*]difuran

Michelle E. Thibault, Masood Parvez and Peter W. Dibble

S1. Comment

The title compound, (1), was prepared by the Diels-Alder reaction of naphtho[1,2 - c:5,6 - c]difuran (2) and 1,3-bis-(maleimido)propane (3) (see Fig. 2). It is a naphthalenophane styled in the manner of Warreners alicyclic cyclophanes or molecular racks. (Butler *et al.*, 2000) The X-ray structure shows that the three carbon methylene tether is perfectly staggered between the two N atoms such that the central methylene protons point toward the naphthalenic π -system. There is a slight 'warp' to the naphthalene rings system with a mean-planes angle between the two benzene rings being 7.61 (7)°. The only anomalous bond angle in the molecule appears in the methylene tether with the central angle (C23— C24—C25) expanded to 115.17 (13)°, evidence of a repulsive interaction with the naphthalene ring.

S2. Experimental

The preparation of the title compound has been reported (Thibault et al., 2003).

S3. Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the C—H distances set in the range 0.95 - 1.00 Å, and $U_{iso}(H) = 1.2 U_{eq}(C)$. The final difference map was free of any chemically significant features.

Figure 1

ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids plotted at 50% probability level.

Figure 2

The formation of the title compound.

(2*R*,3a*R*,4*S*,7*R*,7a*S*,9*R*,10a*R*, 11*S*,14*R*,14a*S*)-*rel*-3a,4,7,7a,10a,11,14,14a- Octahydro-4,14:7,11-diepoxy-2,9-propanonaphtho[1,2-f:5,6-f']diisoindole- 1,3,8,10-tetrone

Crystal data	
$C_{25}H_{18}N_{2}O_{6}$ $M_{r} = 442.41$ Tetragonal, $P4_{2}/n$ Hall symbol: -P 4bc a = 21.635 (9) Å c = 8.262 (2) Å V = 3867 (2) Å ³ Z = 8 F(000) = 1840	$D_x = 1.520 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3862 reflections $\theta = 1.0-27.5^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 173 K Needle, colorless $0.35 \times 0.12 \times 0.12 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	ω and φ scans Absorption correction: multi-scan (<i>SORTAV</i> ; Blessing, 1997) $T_{\min} = 0.962, T_{\max} = 0.987$

7455 measured reflections	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 1.3^{\circ}$
4303 independent reflections	$h = -27 \rightarrow 28$
3077 reflections with $I > 2\sigma(I)$	$k = -19 \rightarrow 19$
$R_{\rm int} = 0.030$	$l = -9 \rightarrow 10$

RefinementRefinement on F^2 SecLeast-squares matrix: fullIf $R[F^2 > 2\sigma(F^2)] = 0.041$ Hy $wR(F^2) = 0.107$ IfS = 1.02H-34303 reflectionsw =298 parametersY0 restraints (ΔA) Primary atom site location: structure-invariant $\Delta \rho$ direct methods $\Delta \rho$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0461P)^2 + 0.9086P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.22246 (5)	0.13740 (6)	0.23245 (15)	0.0336 (3)	
O2	0.01829 (5)	0.13616 (6)	0.36524 (14)	0.0309 (3)	
O3	0.16200 (5)	0.15123 (5)	0.75206 (13)	0.0272 (3)	
O4	0.19993 (5)	-0.19809 (5)	0.40461 (14)	0.0273 (3)	
05	0.22497 (6)	-0.07494 (6)	-0.02726 (16)	0.0399 (3)	
O6	0.03367 (5)	-0.10018 (6)	0.19059 (15)	0.0328 (3)	
N1	0.11727 (6)	0.13315 (6)	0.26487 (16)	0.0227 (3)	
N2	0.12520 (6)	-0.07665 (6)	0.06537 (16)	0.0244 (3)	
C1	0.17687 (7)	0.14753 (7)	0.3135 (2)	0.0244 (4)	
C2	0.17425 (7)	0.17364 (7)	0.4820 (2)	0.0235 (4)	
H2	0.1943	0.2152	0.4882	0.028*	
C3	0.10474 (7)	0.17687 (7)	0.52369 (19)	0.0236 (4)	
H3	0.0907	0.2203	0.5420	0.028*	
C4	0.07282 (7)	0.14768 (7)	0.38054 (19)	0.0232 (4)	
C5	0.19873 (8)	0.12925 (7)	0.6167 (2)	0.0241 (4)	
H5	0.2445	0.1302	0.6339	0.029*	
C6	0.10185 (7)	0.13748 (7)	0.68267 (19)	0.0240 (4)	
H6	0.0657	0.1462	0.7546	0.029*	
C7	0.11018 (7)	0.07033 (7)	0.63576 (18)	0.0214 (3)	
C8	0.17119 (7)	0.06510(7)	0.59077 (18)	0.0205 (3)	
C9	0.19457 (7)	0.01012 (7)	0.52115 (18)	0.0202 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C10	0.25447 (7)	0.00473 (8)	0.45215 (19)	0.0241 (4)
H10	0.2825	0.0384	0.4612	0.029*
C11	0.27291 (7)	-0.04800 (8)	0.3725 (2)	0.0254 (4)
H11	0.3122	-0.0502	0.3214	0.030*
C12	0.23214 (7)	-0.09846 (7)	0.36885 (19)	0.0232 (4)
C13	0.17471 (7)	-0.09597 (7)	0.44037 (19)	0.0208 (3)
C14	0.15216 (7)	-0.04141 (7)	0.51354 (18)	0.0195 (3)
C15	0.09034 (7)	-0.03480 (7)	0.56703 (18)	0.0212 (3)
H15	0.0635	-0.0695	0.5644	0.025*
C16	0.06846 (7)	0.02078 (7)	0.62255 (18)	0.0215 (3)
H16	0.0262	0.0257	0.6513	0.026*
C17	0.23450 (8)	-0.16132 (8)	0.2891 (2)	0.0257 (4)
H17	0.2769	-0.1769	0.2637	0.031*
C18	0.14564 (7)	-0.15878 (7)	0.4099 (2)	0.0244 (4)
H18	0.1137	-0.1714	0.4910	0.029*
C19	0.18458 (8)	-0.10055 (8)	0.04906 (19)	0.0268 (4)
C20	0.18801 (7)	-0.16089 (8)	0.1424 (2)	0.0263 (4)
H20	0.1949	-0.1969	0.0688	0.032*
C21	0.12505 (8)	-0.16503 (8)	0.2289 (2)	0.0252 (4)
H21	0.1045	-0.2056	0.2082	0.030*
C22	0.08744 (8)	-0.11216 (8)	0.16359 (19)	0.0246 (4)
C23	0.10842 (8)	-0.01442 (7)	0.01244 (19)	0.0260 (4)
H23A	0.0646	-0.0134	-0.0219	0.031*
H23B	0.1344	-0.0019	-0.0805	0.031*
C24	0.11844 (8)	0.02956 (8)	0.1539 (2)	0.0275 (4)
H24A	0.0920	0.0160	0.2451	0.033*
H24B	0.1620	0.0261	0.1896	0.033*
C25	0.10459 (8)	0.09703 (8)	0.1186 (2)	0.0266 (4)
H25A	0.1308	0.1118	0.0284	0.032*
H25B	0.0607	0.1019	0.0868	0.032*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0261 (7)	0.0423 (8)	0.0323 (7)	0.0000 (5)	0.0082 (5)	0.0044 (5)
O2	0.0228 (7)	0.0364 (7)	0.0334 (7)	-0.0002(5)	-0.0026 (5)	0.0081 (5)
O3	0.0297 (7)	0.0280 (7)	0.0240 (6)	-0.0019 (5)	-0.0018 (5)	-0.0028 (5)
O4	0.0274 (7)	0.0232 (6)	0.0313 (7)	0.0046 (5)	0.0033 (5)	0.0054 (5)
O5	0.0330 (7)	0.0468 (8)	0.0399 (8)	0.0089 (6)	0.0131 (6)	0.0141 (6)
O6	0.0237 (7)	0.0353 (7)	0.0394 (7)	0.0039 (5)	0.0034 (5)	-0.0018 (5)
N1	0.0226 (7)	0.0226 (7)	0.0229 (7)	0.0004 (6)	-0.0001 (5)	0.0039 (5)
N2	0.0247 (7)	0.0271 (8)	0.0214 (7)	0.0053 (6)	0.0007 (5)	0.0001 (6)
C1	0.0235 (9)	0.0224 (9)	0.0273 (9)	-0.0010 (7)	0.0014 (7)	0.0081 (7)
C2	0.0228 (9)	0.0205 (8)	0.0273 (9)	-0.0022 (6)	0.0000 (6)	0.0021 (6)
C3	0.0245 (9)	0.0199 (9)	0.0264 (9)	0.0010 (6)	0.0012 (6)	0.0019 (6)
C4	0.0226 (9)	0.0202 (8)	0.0267 (9)	0.0029 (7)	0.0002 (7)	0.0093 (6)
C5	0.0227 (9)	0.0241 (9)	0.0254 (9)	-0.0003 (7)	-0.0014 (7)	0.0003 (6)
C6	0.0225 (9)	0.0264 (9)	0.0231 (8)	-0.0014 (7)	0.0003 (6)	-0.0007 (7)

supporting information

C7	0.0255 (9)	0.0248 (9)	0.0140 (8)	0.0013 (7)	0.0000 (6)	0.0035 (6)
C8	0.0224 (8)	0.0213 (8)	0.0178 (8)	-0.0006 (6)	-0.0035 (6)	0.0041 (6)
C9	0.0194 (8)	0.0229 (8)	0.0184 (8)	0.0006 (6)	-0.0032 (6)	0.0050 (6)
C10	0.0183 (8)	0.0265 (9)	0.0275 (9)	-0.0018 (7)	-0.0021 (6)	0.0059 (7)
C11	0.0189 (9)	0.0288 (9)	0.0284 (9)	0.0017 (7)	0.0017 (6)	0.0063 (7)
C12	0.0238 (9)	0.0241 (9)	0.0216 (8)	0.0042 (7)	0.0001 (6)	0.0052 (6)
C13	0.0210 (8)	0.0216 (8)	0.0197 (8)	0.0010 (6)	-0.0009 (6)	0.0036 (6)
C14	0.0213 (8)	0.0216 (8)	0.0156 (8)	-0.0006 (6)	-0.0019 (6)	0.0049 (6)
C15	0.0223 (8)	0.0234 (9)	0.0179 (8)	-0.0034 (7)	0.0000 (6)	0.0039 (6)
C16	0.0199 (8)	0.0272 (9)	0.0174 (8)	-0.0007 (6)	0.0009 (6)	0.0029 (6)
C17	0.0226 (9)	0.0268 (9)	0.0277 (9)	0.0060 (7)	0.0037 (7)	0.0036 (7)
C18	0.0249 (9)	0.0232 (9)	0.0251 (9)	0.0020 (7)	0.0024 (7)	0.0027 (6)
C19	0.0261 (9)	0.0330 (10)	0.0213 (8)	0.0059 (7)	0.0030 (7)	-0.0013 (7)
C20	0.0274 (9)	0.0250 (9)	0.0266 (9)	0.0041 (7)	0.0028 (7)	-0.0028 (7)
C21	0.0264 (9)	0.0224 (9)	0.0268 (9)	0.0008 (7)	0.0002 (7)	-0.0030 (7)
C22	0.0248 (9)	0.0269 (9)	0.0220 (8)	0.0010 (7)	-0.0005 (7)	-0.0066 (6)
C23	0.0280 (9)	0.0288 (9)	0.0213 (8)	0.0062 (7)	-0.0018 (7)	0.0034 (7)
C24	0.0339 (10)	0.0275 (9)	0.0210 (9)	0.0040 (7)	-0.0036 (7)	0.0035 (7)
C25	0.0305 (9)	0.0278 (9)	0.0214 (9)	0.0023 (7)	-0.0016 (7)	0.0040 (7)

Geometric parameters (Å, °)

1.212 (2)	C10—C11	1.376 (2)
1.212 (2)	C10—H10	0.9500
1.452 (2)	C11—C12	1.404 (2)
1.453 (2)	C11—H11	0.9500
1.451 (2)	C12—C13	1.377 (2)
1.450 (2)	C12—C17	1.512 (2)
1.212 (2)	C13—C14	1.413 (2)
1.213 (2)	C13—C18	1.518 (2)
1.386 (2)	C14—C15	1.416 (2)
1.392 (2)	C15—C16	1.371 (2)
1.465 (2)	C15—H15	0.9500
1.384 (2)	C16—H16	0.9500
1.391 (2)	C17—C20	1.575 (2)
1.461 (2)	C17—H17	1.0000
1.503 (2)	C18—C21	1.567 (2)
1.544 (2)	C18—H18	1.0000
1.563 (2)	C19—C20	1.518 (2)
1.0000	C20—C21	1.541 (2)
1.508 (2)	C20—H20	1.0000
1.567 (2)	C21—C22	1.504 (2)
1.0000	C21—H21	1.0000
1.525 (2)	C23—C24	1.523 (2)
1.0000	С23—Н23А	0.9900
1.514 (2)	C23—H23B	0.9900
1.0000	C24—C25	1.518 (2)
1.376 (2)	C24—H24A	0.9900
	$\begin{array}{c} 1.212\ (2)\\ 1.212\ (2)\\ 1.212\ (2)\\ 1.452\ (2)\\ 1.453\ (2)\\ 1.453\ (2)\\ 1.451\ (2)\\ 1.450\ (2)\\ 1.212\ (2)\\ 1.212\ (2)\\ 1.213\ (2)\\ 1.386\ (2)\\ 1.392\ (2)\\ 1.386\ (2)\\ 1.392\ (2)\\ 1.465\ (2)\\ 1.384\ (2)\\ 1.391\ (2)\\ 1.461\ (2)\\ 1.503\ (2)\\ 1.503\ (2)\\ 1.544\ (2)\\ 1.563\ (2)\\ 1.567\ (2)\\ 1.0000\\ 1.525\ (2)\\ 1.0000\\ 1.514\ (2)\\ 1.0000\\ 1.376\ (2)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C7—C16	1.406 (2)	C24—H24B	0.9900
C8—C9	1.415 (2)	С25—Н25А	0.9900
C9—C10	1.420 (2)	С25—Н25В	0.9900
C9—C14	1.445 (2)		
С5—О3—С6	96.84 (11)	C14—C13—C18	132.49 (14)
C18—O4—C17	96.65 (11)	C13—C14—C15	122.96 (14)
C1—N1—C4	113.15 (14)	C13—C14—C9	116.35 (14)
C1—N1—C25	122.21 (13)	C15—C14—C9	120.55 (14)
C4—N1—C25	123.88 (13)	C16—C15—C14	121.27 (15)
C22—N2—C19	113.30 (14)	C16—C15—H15	119.4
C22—N2—C23	122.69 (13)	C14—C15—H15	119.4
C19—N2—C23	122.87 (14)	C15—C16—C7	118.23 (14)
01—C1—N1	123.81 (16)	C15—C16—H16	120.9
O1—C1—C2	127.59 (15)	C7—C16—H16	120.9
N1—C1—C2	108.52 (13)	O4—C17—C12	100.93 (13)
C1—C2—C3	105.10 (13)	O4—C17—C20	100.38 (13)
C1—C2—C5	114.57 (13)	C12—C17—C20	107.96 (13)
C3—C2—C5	101.47 (12)	O4—C17—H17	115.2
C1—C2—H2	111.7	С12—С17—Н17	115.2
C3—C2—H2	111.7	C20—C17—H17	115.2
C5—C2—H2	111.7	04-C18-C13	101.20 (12)
C4-C3-C2	104.59 (13)	04-C18-C21	98.67 (12)
C4-C3-C6	114 28 (13)	C_{13} C_{18} C_{21}	110.69(12)
$C^2 - C^3 - C^6$	101.62(12)	04-C18-H18	114.8
C4—C3—H3	111.9	C13—C18—H18	114.8
C2—C3—H3	111.9	C21—C18—H18	114.8
C6-C3-H3	111.9	05-C19-N2	123 13 (16)
02-C4-N1	123 67 (15)	05-C19-C20	128.48 (15)
02 - C4 - C3	127.84 (15)	N_{2} C19 C20	108 39 (14)
N1 - C4 - C3	108 46 (13)	C_{19} C_{20} C_{21}	104.03(13)
03-05-08	101.09(12)	$C_{19} = C_{20} = C_{17}$	115 30 (14)
03-05-02	99.32 (12)	C_{21} C_{20} C_{17}	101.97(13)
$C_{8} - C_{5} - C_{2}$	109.09(13)	C_{19} C_{20} H_{20}	111.6
03_C5_H5	115.1	C_{21} C_{20} H_{20}	111.6
C8-C5-H5	115.1	C17 - C20 - H20	111.6
C_{2} C_{5} H_{5}	115.1	C_{22} C_{21} C_{20} C	105 53 (14)
03 - C6 - C7	101 01 (12)	$C_{22} = C_{21} = C_{18}$	105.55(14) 115 50(13)
03 - C6 - C3	100.58(12)	$C_{22} = C_{21} = C_{10}$	100.74(13)
C_{7}	107.61(13)	$C_{20} = C_{21} = C_{10}$	111 5
$C_{1} = C_{0} = C_{3}$	115.3	$C_{22} = C_{21} = H_{21}$	111.5
C7 C6 H6	115.3	$C_{20} = C_{21} = H_{21}$	111.5
$C_{1} = C_{0} = H_{0}$	115.3	$C_{10} = C_{21} = H_{21}$	111.3 123.74(15)
$C_{3} = C_{0} = 10$	113.5	06 C22 C21	123.74 (13)
$C_{0} = C_{1} = C_{10}$	122.10(13) 105 20(13)	$N_2 C_{22} C_{21}$	120.01(10) 108.25(14)
$C_{0} = C_{1} = C_{0}$	103.20(13) 132.46(15)	N2 - C22 - C21	100.23(14) 108.10(12)
$C_{10} - C_{10} - C_{10}$	152.40(15) 121.47(14)	112 - 0.23 - 0.24 N2 C22 H22A	110.10(13)
$C_7 = C_9 = C_5$	121.47 (14) 105 10 (12)	$\frac{1}{2} - \frac{1}{2} - \frac{1}$	110.1
$C/-C\delta-C\delta$	105.19 (13)	U24—U25—H23A	110.1

C9—C8—C5	133.02 (14)	N2—C23—H23B	110.1
C8—C9—C10	123.95 (15)	C24—C23—H23B	110.1
C8—C9—C14	116.05 (14)	H23A—C23—H23B	108.4
C10—C9—C14	119.89 (15)	C25—C24—C23	115.17 (13)
C11—C10—C9	121.64 (15)	C25—C24—H24A	108.5
C11—C10—H10	119.2	C23—C24—H24A	108.5
С9—С10—Н10	119.2	C25—C24—H24B	108.5
C10—C11—C12	118.22 (15)	C23—C24—H24B	108.5
C10—C11—H11	120.9	H24A—C24—H24B	107.5
C12—C11—H11	120.9	N1—C25—C24	108.51 (13)
C13—C12—C11	121.82 (15)	N1—C25—H25A	110.0
C13—C12—C17	104.63 (14)	C24—C25—H25A	110.0
C11—C12—C17	133.45 (15)	N1—C25—H25B	110.0
C12—C13—C14	121.86 (15)	C24—C25—H25B	110.0
C12—C13—C18	105.53 (14)	H25A—C25—H25B	108.4
C4—N1—C1—O1	178.33 (15)	C18—C13—C14—C15	-4.6 (3)
C25—N1—C1—O1	7.9 (2)	C12—C13—C14—C9	-5.0 (2)
C4—N1—C1—C2	1.29 (18)	C18—C13—C14—C9	179.76 (15)
C25—N1—C1—C2	-169.11 (13)	C8—C9—C14—C13	178.42 (13)
O1—C1—C2—C3	179.59 (16)	C10-C9-C14-C13	2.1 (2)
N1—C1—C2—C3	-3.51 (16)	C8—C9—C14—C15	2.7 (2)
O1—C1—C2—C5	-69.9 (2)	C10-C9-C14-C15	-173.62 (14)
N1—C1—C2—C5	106.97 (15)	C13—C14—C15—C16	-173.38 (15)
C1—C2—C3—C4	4.25 (16)	C9-C14-C15-C16	2.0 (2)
C5—C2—C3—C4	-115.36 (13)	C14—C15—C16—C7	-4.3 (2)
C1—C2—C3—C6	123.42 (13)	C8—C7—C16—C15	1.8 (2)
C5—C2—C3—C6	3.80 (15)	C6—C7—C16—C15	176.25 (16)
C1—N1—C4—O2	-176.40 (14)	C18—O4—C17—C12	52.79 (14)
C25—N1—C4—O2	-6.2 (2)	C18—O4—C17—C20	-57.98 (13)
C1—N1—C4—C3	1.60 (18)	C13—C12—C17—O4	-35.42 (15)
C25—N1—C4—C3	171.81 (13)	C11—C12—C17—O4	148.25 (17)
C2—C3—C4—O2	174.23 (15)	C13—C12—C17—C20	69.39 (16)
C6—C3—C4—O2	64.0 (2)	C11—C12—C17—C20	-106.9 (2)
C2-C3-C4-N1	-3.66 (16)	C17—O4—C18—C13	-50.62 (13)
C6-C3-C4-N1	-113.89 (14)	C17—O4—C18—C21	62.61 (13)
C6—O3—C5—C8	-50.90 (13)	C12-C13-C18-O4	30.01 (15)
C6	60.80 (13)	C14—C13—C18—O4	-154.14 (16)
C1—C2—C5—O3	-151.62 (13)	C12—C13—C18—C21	-73.82 (16)
C3—C2—C5—O3	-38.98 (14)	C14—C13—C18—C21	102.04 (19)
C1—C2—C5—C8	-46.38 (18)	C22—N2—C19—O5	-177.28 (16)
C3—C2—C5—C8	66.26 (15)	C23—N2—C19—O5	-9.2 (3)
C5—O3—C6—C7	52.06 (13)	C22—N2—C19—C20	2.06 (18)
C5—O3—C6—C3	-58.41 (13)	C23—N2—C19—C20	170.12 (14)
C4—C3—C6—O3	144.55 (13)	O5—C19—C20—C21	173.59 (18)
C2—C3—C6—O3	32.53 (14)	N2-C19-C20-C21	-5.71 (17)
C4—C3—C6—C7	39.30 (18)	O5-C19-C20-C17	62.8 (2)
C2—C3—C6—C7	-72.71 (15)	N2-C19-C20-C17	-116.47 (15)
			. ,

O3—C6—C7—C8	-33.94 (15)	O4—C17—C20—C19	142.32 (13)
C3—C6—C7—C8	71.00 (15)	C12—C17—C20—C19	37.14 (18)
O3—C6—C7—C16	150.96 (16)	O4—C17—C20—C21	30.35 (14)
C3—C6—C7—C16	-104.09 (18)	C12—C17—C20—C21	-74.84 (15)
C16—C7—C8—C9	3.1 (2)	C19—C20—C21—C22	7.03 (17)
C6—C7—C8—C9	-172.63 (14)	C17—C20—C21—C22	127.24 (13)
C16—C7—C8—C5	177.36 (13)	C19—C20—C21—C18	-113.47 (14)
C6—C7—C8—C5	1.63 (16)	C17—C20—C21—C18	6.74 (15)
O3—C5—C8—C7	31.17 (15)	O4—C18—C21—C22	-154.94 (13)
C2—C5—C8—C7	-72.85 (16)	C13—C18—C21—C22	-49.42 (18)
O3—C5—C8—C9	-155.52 (16)	O4—C18—C21—C20	-41.83 (14)
C2—C5—C8—C9	100.45 (19)	C13—C18—C21—C20	63.69 (15)
C7—C8—C9—C10	170.97 (14)	C19—N2—C22—O6	-178.31 (15)
C5-C8-C9-C10	-1.5 (3)	C23—N2—C22—O6	13.6 (2)
C7—C8—C9—C14	-5.2 (2)	C19—N2—C22—C21	2.70 (19)
C5-C8-C9-C14	-177.62 (15)	C23—N2—C22—C21	-165.38 (13)
C8—C9—C10—C11	-173.83 (15)	C20—C21—C22—O6	174.90 (16)
C14—C9—C10—C11	2.2 (2)	C18—C21—C22—O6	-74.8 (2)
C9—C10—C11—C12	-3.7 (2)	C20-C21-C22-N2	-6.16 (17)
C10-C11-C12-C13	0.8 (2)	C18—C21—C22—N2	104.13 (16)
C10-C11-C12-C17	176.65 (16)	C22—N2—C23—C24	76.48 (19)
C11—C12—C13—C14	3.6 (2)	C19—N2—C23—C24	-90.46 (18)
C17—C12—C13—C14	-173.23 (14)	N2—C23—C24—C25	178.61 (14)
C11—C12—C13—C18	-179.96 (14)	C1—N1—C25—C24	76.11 (19)
C17—C12—C13—C18	3.17 (16)	C4—N1—C25—C24	-93.24 (17)
C12—C13—C14—C15	170.65 (15)	C23—C24—C25—N1	-179.18 (14)