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Abstract 

We examine the maintenance and behavioural expression of long-term memories acquired 

in the absence of the hippocampus. The hypothesis that the hippocampus is necessary to 

form stable and detailed long-term memories is tested. We find rats with extensive 

hippocampal damage made before learning exhibit normal maintenance and behavioural 

expression of contextual fear memory, object discrimination, and context discrimination. 

The discovery that non-hippocampal networks can encode, maintain, and retrieve 

memories, widely-thought to be dependent on the hippocampus and its consolidation 

processes adds to a growing body of literature which draws into question most views of the 

hippocampus and memory consolidation. Our findings suggest: 1) hippocampal-dependent 

systems-level consolidation is not required for stable long-term memory in the rat; 2) non-

hippocampal networks possess sufficient representational complexity to support normal 

discriminative memory-guided behaviours; 3) the broad distinction between hippocampal 

and non-hippocampal memories requires re-evaluation through rigorous experimentation, 

rather than adherence to modal views.  
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Chapter 1 

General Introduction 

Thesis Overview 

Memory is a fundamental cognitive trait – one that enables the flexible use of previous 

experience to guide adaptive behaviour (Gruber & McDonald, 2012; McDonald & Hong, 

2013). Memory is generative in nature and acts like scaffolding – the foundation on which 

consciousness is constructed. Memory is often described as an autobiographical record 

(Tulving, 2002), yet unconscious behaviours like habits and conditioned reflexes arise from 

the brain’s capacity for memory as well (Pavlov, 1927; Thorndike, 1913). For memory to 

contribute to normal thought and behaviour, it must persist and reflect experience with 

some degree of detail. It is undeniable that the properties and content of our memories 

change as they age. Accordingly, many fundamental questions about the organization of 

memory in the brain revolve around what happens to established long-term memories over 

time. Some long-term memories last a lifetime, while others decay and become more 

difficult to discriminate between, and others are forgotten entirely.  

One prominent view is that the hippocampus (HPC) is essential for the acquisition, 

initial maintenance and long-term stabilization of certain long-term memories. Specifically, 

it has been hypothesized that the longevity and precision of episodic memory both require 

hippocampal involvement. The goal of this thesis was to test these ideas by examining 

the acquisition and maintenance of long-term memory via its behavioural expression 

over time in rats with and without a functional HPC. This work speaks to extant views of 

hippocampal-dependent systems-level memory consolidation. Notably, the mnemonic 

capacities of non-hippocampal cortical networks and their contribution to memory-guided 

behaviours was investigated in the absence of the hippocampus. Each experiment was 
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designed to explore a specific research question within the common theoretical framework 

of long-term memory. This framework is largely modal and based on a few central ideas. 

Therefore, key concepts are repeatedly highlighted and presented redundantly throughout 

the thesis. 

Volumes of experimental and theoretical work have been dedicated to exploring the 

neurobiology of learning and memory-guided behaviours. Accordingly, the reader is 

encouraged to regard this thesis as a modest set of related novel contributions to a very 

large field. Chapter One provides a general overview of the concepts that lead to the 

experimental work in this thesis. The long-standing view that long-term memories belong 

to one of two broad categories; hippocampal or non-hippocampal, is emphasized. Chapter 

Two introduces evidence that non-hippocampal networks can acquire, maintain, and 

support the behavioural expression of a contextual memory for up to 30 days. Chapter 

Three builds on findings from Chapter Two and illustrates that the flexible expression of 

explicit memory does not always require the HPC, as non-hippocampal networks support 

accurate context discrimination behaviour for up to 15 days. A separate experiment in 

Chapter Three verifies that the method used to permanently damage the HPC completely 

disrupted hippocampal function. Chapter Four demonstrates that an instrumental object-

reward memory is maintained and expressed normally with and without a functional HPC, 

as evident by accurate discrimination behaviour over time. Each experimental chapter of 

this thesis (i.e., 2 – 4) was written to be self-consistent and include a dedicated discussion 

section. Accordingly, Chapter Five (Conclusion) revisits key findings and their 

implications from an alternative perspective on the organization of memory and is more 

narrative in nature than the empirical chapters. 
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Memory Systems 

The idea that long-term memory exists in many forms is ancient (Aristotle, 350/1984) and 

has persisted through time (De Biran, 1804/1929; James, 1890). This concept remains 

central to how memory is understood, with different types of memory classified 

hierarchically by their characteristics and supporting neural systems. In this way, long-term 

memory is thought of as modular rather than unitary; phenomenologically, functionally, 

and anatomically (Squire, 1992a; Tulving, 1972; White & McDonald, 2002). Pioneering 

work involving patient H.M.1 (Scoville & Milner, 1957) and others (reviewed in, Winocur 

& Moscovitch, 2011) established that damage to medial temporal lobe (MTL) structures, 

including the HPC, severely impairs long-term memory. Anterograde amnesia, the inability 

to form and retain new memories, and temporally-graded retrograde amnesia, the loss of 

established, recently-formed memories and the relative sparing of older ones, were 

described as typical consequences of hippocampal damage in human patients (Rempel-

Clower, Zola, Squire, & Amaral, 1996; Milner, Corkin, & Teuber, 1968; Scoville & Milner, 

1957). Despite massive impairments in the acquisition of new memories and recall of 

memories for events and facts, basic mnemonic abilities like procedural learning, priming, 

conditioned reflexes, and simple emotional associations appeared unaffected in some 

patients with hippocampal damage (Cohen & Squire, 1980; Milner et al., 1968). Amazingly 

and tragically, these types of learning were not accompanied by conscious memories for 

the learning experiences. Long-term memories are now defined as belonging to one of two 

broad categories: declarative and non-declarative (Figure 1.1.) (Squire, 1992a).  

                                                 
1 Identified posthumously as Henry Gustav Molaison (Squire, 2009). A friend of mine once 

said: “if you write about long-term memory and don’t mention H.M., the neuroscience 

police will come and take you away”. 
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Figure 1.1. A simplified depiction of a standard taxonomy of long-term memory. This 

schematic represents a classification scheme of dual memory systems. Declarative memory 

is expressed consciously and is initially dependent on the MTL; specifically, the HPC. 

Declarative memory encompasses episodic memory (events, bound to context) and 

semantic memory (facts, context-free). Non-declarative memories like habits, motor skills, 

and reflexes are more basic forms of memory which are expressed unconsciously and 

independent of the HPC. Original figure, adapted from multiple sources (e.g., Squire, 

2004). 

 

 

The case study of H.M. is regarded as indisputable evidence that the HPC is 

critically-important for declarative memory, yet uninvolved in non-declarative memory. 

Shaped by this tradition, investigations into the organization of memory have focussed on 

explicit memory expression and its cognitive nature versus habit-based memory and the 

dependence of each on distinct brain networks in rats and non-human primates (Hirsh, 

1974; Mishkin & Petri, 1984; O’Keefe & Nadel, 1978). In general, the HPC is thought to 

be important for memory that requires a high degree of spatial, temporal, and/or contextual 

detail (Dusek & Eichenbaum, 1997; Hirsh, 1974; O’Keefe & Nadel, 1978; Rudy, 2009; 

Sutherland & Rudy, 1989). Consistent with these ideas, rats with hippocampal damage are 

impaired on the hidden platform version of the Morris Water Task (MWT) (Morris et al., 

1982; Sutherland, Kolb, & Whishaw, 1982), tests of temporal sequence (Fortin, Agster, & 
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Eichenbaum, 2002), and negative patterning tasks (Alvarado & Rudy, 1995; Sutherland, 

McDonald, Hill, & Rudy, 1989). The importance of the rat HPC to allocentric spatial 

cognition (cognitive maps; O’Keefe & Nadel, 1978) is particularly interesting because the 

ability to create and use a world-centered, ordered representation of co-occurring elements 

within an environment, context, or cognitive state space has been compared to the capacity 

for episodic memory in humans (Buzsáki & Links, 2017).         

Along these lines, a key feature of hippocampal memory is thought to be the 

relationships between cues, stimuli, and/or elemental memoranda and the flexible use of 

these representations according to behavioural demands (Eichenbaum, Fagan, Mathews, & 

Cohen, 1988; Gruber & McDonald, 2012; McDonald & Hong, 2013; Sutherland & Rudy, 

1989). However, rats with impaired hippocampal function can learn simple, more rigid 

associations. For example, an incrementally-learned association between an action (turning 

direction) and a food reward (Packard, Hirsh, & White, 1989). Dissociations between 

anatomically-distinct networks and their mnemonic functions and subsequent theoretical 

reviews illustrate the complexity of memory systems (Ferbinteanu, 2018; McDonald et al., 

2017; McDonald & White, 1993), but the concept of memory systems is often reduced to 

a dual memory systems scenario (Squire, 2004). This approach can also be seen in 

computational and connectionist theories, which highlight unique and highly-specialized 

functions of the HPC in learning and memory and more elementary functions of other brain 

regions (Marr, 1971; McClelland, McNaughton, & O’Reilly, 1995). The HPC is regarded 

as the apex of the cortical associative processing hierarchy – performing rapid 

computations on complex polymodal (perhaps amodal) cognitive information from across 

the entire cortical mantle (McNaughton, 2010). Again, the perspective offered here is that 

contemporary views of long-term memory rely heavily on the distinction between two 
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broad categories of memory (and memory mechanisms) – hippocampal-dependent and 

non-hippocampal (Fanselow, 2009; Wiltgen & Tanaka, 2013; Winocur & Moscovitch, 

2011; but see, Lee et al., 2016; Gruber & McDonald, 2012). Like other empirical work 

from our group (Lee, Sutherland, & McDonald, 2017; Lehmann et al., 2009; McDonald, 

Jones, Richards, & Hong, 2006), much of the present thesis investigates this dichotomy in 

the rat. 

 

Memory Consolidation 

A cornerstone concept in memory systems neuroscience is that experiences are encoded, 

and later retrieved in a systematic manner by distributed neural networks in the mammalian 

brain (Hebb, 1949; Marr, 1971; McClelland, McNaughton, & O’Reilly, 1995; McNaughton 

& Morris, 1987; Teyler & DiScenna, 1986). The reinstatement of similar neuronal activity 

patterns to those which occurred during an experience is widely-thought to be the 

neurobiological basis of memory retrieval (McDonald & Hong, 2013; McNaughton & 

Morris, 1987; McNaughton, 2010). For this to occur, experience must be maintained in 

some way (i.e., stabilized and stored) until memory retrieval. Psychologists have long 

recognized that new learning is unstable, labile, and prone to forgetting by decay 

(Thorndike, 1913), interference (Jenkins & Dallenbach, 1924; McGeoch, 1932), or 

perturbation of normal brain function (Ribot, 1881). In contrast, memory seems to stabilize 

as it ages, often becoming less susceptible to the forces of forgetting or interference over 

time (Ebbinghaus, 1885). A breakthrough insight into these properties of memory came 

with the concept of a memory consolidation period (Müller & Pilzecker, 1900; see also, 

Ribot, 1881). In general, memory consolidation is regarded as the time-dependent 

strengthening of new learning – and is described by neuroscientists as consisting of two 
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distinct but interdependent levels of neurobiological processes; cellular consolidation and 

systems-level consolidation (Dudai, Karni, & Born, 2015; Sutherland & Lehmann, 2011). 

It is widely-assumed that consolidation must occur at both levels for memory to be long-

lasting (Genzel & Wixted, 2017). According to the dual account of long-term memory, it 

logically follows both consolidation processes must depend on the HPC for certain types 

of memory, but not others (Dudai, 2004; Dudai et al., 2015; Squire & Wixted, 2011). 

 

Cellular Consolidation 

The mechanism of cellular consolidation is thought to be essential for the generation of 

stable potentiated synaptic connections (Dudai, 2002), which are near-unanimously 

regarded as the neuronal substrates of memory (cf. Routtenberg, 2013). Theoretical and 

evidence-based connections between the persistence of activity-induced synaptic plasticity 

and the formation of long-term memory provide support for the neurobiological perspective 

(Bliss & Collingridge, 1993; Redondo & Morris, 2011; Rudy, 2014). On this view, the 

initial phase of memory consolidation consists of the synergistic biochemical cascades that 

form synaptic traces (memory engrams). Many influential reviews of cellular consolidation 

mechanisms exist (Korte & Schmitz, 2016; Redondo & Morris, 2011; Rudy, 2014; 

Takeuchi, Duszkiewicz, & Morris, 2014); therefore, the following overview is intended to 

illustrate two simple ideas: 1) synaptic potentiation in the HPC is impermanent and decays 

over time; 2) cellular consolidation in the HPC is regarded as the initial stage of episodic 

memory consolidation.    

The gross properties of cellular consolidation were discovered in hippocampal long-

term potentiation (LTP) experiments, both in vivo and in vitro (Bliss, Gardner-Medwin, & 

Lømo, 1973; Bliss & Lømo, 1973; McNaughton, Douglas, & Goddard, 1978). Typical LTP 



 

 8 

protocols involve the repeated application of a plasticity-inducing electrical stimulus that 

is far more intense than any physiological stimulus endogenous to the brain (Whitlock, 

Heynen, Shuler, & Bear, 2006). Despite the robust nature of LTP-induced increases in 

synaptic efficacy, the enhancements decay to baseline in acute and chronic preparations 

when left unperturbed, albeit on different time scales (Bliss, Gardner-Medwin, & Lømo, 

1973; Bliss & Lømo, 1973). The degradation of hippocampal LTP suggests that the 

mechanism of cellular consolidation is neither transient, nor constitutive. It remains 

unknown how (or if) the subcellular components of potentiated synapses survive molecular 

turnover and homeostatic processes to resist decay to baseline (Crick, 1984; Tononi & 

Cirelli, 2014)2. Despite the temporal limitations of LTP in the HPC, the persistence of 

cellular consolidation-induced synaptic modifications and memory longevity remain 

conceptually tied (Hardt, Nader, & Nadel, 2013; Redondo & Morris, 2011; Takeuchi et al., 

2014).    

Cellular consolidation requires overlapping cascades of biochemical processes, 

resulting in increases or decreases in synaptic efficacy through mechanisms similar to LTP 

and long-term depression (LTD), the opposing effects of spike timing-dependent plasticity 

(STDP) (Bi & Poo, 2001; Bliss & Collingridge, 1993; Korte et al., 2016). In this way, the 

increases/decreases in synaptic strength evolve in stages to generate and stabilize memory 

traces in a distributed set of synaptic weights (McNaughton, 2010). Post-translational 

modifications (cellular processes that do not require gene expression), de novo protein 

synthesis (gene transcription and translation), protein degradation, and constitutive cellular 

                                                 
2 This is often referred to as the plasticity-stability dilemma, which is a major consideration 

of connectionist theories of the HPC and memory (see, Marr, 1971; McClelland et al., 

1995). Systems-level consolidation was introduced to address the dilemma.   
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processes (genomic signaling, receptor trafficking, cytoskeletal changes) are crucial for 

synaptic strengthening and maintenance (Rudy, 2014). Cellular consolidation is thought to 

be completed in < 100 hours following a learning episode (Dudai, 2004; Sutherland & 

Lehmann, 2011; for a shorter estimate see, Rudy, 2014). In support of this idea, 

pharmacological antagonism of N-methyl-D-aspartate receptors (NMDARs) during this 

temporal window can disrupt the retention of learning-induced synaptic plasticity and 

memory-guided allocentric spatial behaviours (Bye, 2017; Kentros et al., 1998; R. J. 

McDonald et al., 2005; Morris, Anderson, Lynch, & Baudry, 1986; Tse et al., 2011).                                                                                                                                                               

Recent behavioural studies in rodents suggest α-amino-3-hydroxy-5-methyl-

isoxazole-4-propionic acid receptor (AMPAR) endocytosis is a key factor in trace decay, 

as memory persistence is enhanced when this process is blocked (Dong et al., 2015; Migues 

et al., 2016). A separate study found that chronic and combined administration NMDAR, 

calcineurin, and Ca2+ channel antagonists into the HPC after learning attenuates normal 

forgetting of object-location memory, possibly by inhibiting LTD-like reductions in 

synaptic strength (Sachser et al., 2016). Increasing or decreasing the persistence of memory 

by disrupting normal neurobiological processes in a timing-dependent manner suggests that 

synaptic plasticity and cellular consolidation mechanisms are bidirectionally-regulated. By 

extension, it also illustrates that hippocampal memory traces are prone to decay (Hardt et 

al., 2013; Tononi & Cirelli, 2014).     

It must be noted that many pharmacological treatments have off-target and/or 

unintended effects on normal neurobiological processes and behaviour, ranging from gross 

motor impairments and reduced cognitive flexibility, to complete silencing of local 

neuronal activity (Cain, Saucier, Hall, Hargreaves, & Boon, 1996; LeBlancq, McKinney, 

& Dickson, 2016; Mills et al., 2014; Sharma, Nargang, & Dickson, 2012). Therefore, 
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reports of highly-selective pharmacological manipulations accompanied by specific 

behavioural effects should be interpreted with caution, yet certainly merit further 

investigation. The key point for the purpose of this thesis is that cellular consolidation in 

the HPC is hypothesized to be necessary for the initial formation of explicit memory 

(Martin, Grimwood, & Morris, 2000; McClelland et al., 1995; Takeuchi, Duszkiewicz, & 

Morris, 2014). For this prediction to be true, the perturbation of hippocampal function 

during cellular consolidation, or the complete removal of the HPC prior to hippocampal-

dependent learning (e.g., an episodic experience), should result in anterograde amnesia.  

 

Systems-Level Consolidation 

Systems consolidation is the hypothetical process by which long-term memory reorganizes 

at the network level and becomes independent of the HPC (McClelland et al., 1995; Squire 

et al., 1984). During the process, changes in the longevity, detail, and neuroanatomical 

distribution of long-term memory are all thought to occur in a hippocampal-dependent 

manner (Alvarez & Squire, 1994; McGaugh, 2000; McNaughton, 2010; Wiltgen & Tanaka, 

2013; Winocur & Moscovitch, 2011). Whereas interference (Underwood, 1957) and to a 

lesser degree trace decay (Thorndike, 1913) were once influential psychological accounts 

of non-pathological forgetting (reviewed in, Wixted, 2004), more recent neuroscientific 

accounts ascribe these types of normal forgetting to systems consolidation (Preston & 

Eichenbaum, 2013; Sekeres, Moscovitch, & Winocur, 2017; Squire & Wixted, 2011; 

Wiltgen & Tanaka, 2013). Moreover, according to contemporary theories, the removal of 

the HPC results in profound anterograde amnesia and temporally-graded retrograde 

amnesia for certain types of memory, but not others due to the interruption of hippocampal-

dependent cellular and systems consolidation processes (Squire & Alvarez, 1995; Wiltgen 
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& Tanaka, 2013; Winocur & Moscovitch, 2011). The pattern of temporally-graded amnesia 

(i.e., spared remote memory) is widely-assumed to reflect the slow, network-level 

reorganization and strengthening of neocortical memory traces (Figure 1.2.)(McClelland, 

McNaughton, & O’Reilly, 1995; McNaughton, 2010; Sekeres, Moscovitch, & Winocur, 

2017; Wiltgen & Tanaka, 2013). 

The concept of systems consolidation wields significant explanatory power, as it 

offers an intuitive account for amnesia following hippocampal damage (Squire & Alvarez, 

1995; Squire et al., 1984). Evidence for systems consolidation in humans and rodents is 

regarded as abundant (Axmacher & Rasch, 2017; Winocur & Moscovitch, 2011; Winocur, 

Moscovitch, & Sekeres, 2013) and early attempts to model temporally-graded retrograde 

amnesia in rats appeared promising. Several examples of impaired recent and intact remote 

memory after damage to the HPC appeared to support ideas that hippocampal involvement 

in certain memories was temporary (Anagnostaras, Maren, & Fanselow, 1999; Kim & 

Fanselow, 1992; Maren, Aharonov, & Fanselow, 1997; Winocur, 1990). However, a recent 

lack of corroborating evidence and the accumulation of contradictory findings raises 

questions about the temporal involvement of the HPC in long-term memory. For example, 

the duration of retrograde amnesia in human hippocampal patients is more variable (Amaral 

et al., 1996; Squire, Genzel, Wixted, & Morris, 2015), and the memory impairments less-

specific than originally thought (Corkin, 2002; Winocur & Moscovitch, 2011). In at least 

one case, retrograde memory impairments extended to semantic concepts and knowledge 

(Verfaellie, Bousquet, & Keane, 2014; see also, Corkin, 2002). In fact, neuropsychological 

findings from hippocampal and MTL patients are highly-variable and difficult to interpret, 

rather than straight-forward and representative of textbook views.    
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In illustration of this point, systematic reevaluations of patient H.M.’s amnesia 

uncovered that his remote memory was far more impaired than described almost 50 years 

earlier (Steinvorth, Levine, & Corkin, 2005). Improved testing methods revealed that H.M. 

exhibited a flat gradient of retrograde amnesia – equivalent amnesia for recent and remote 

memory from specific episodes – rather than temporally-graded retrograde amnesia 

(Steinvorth et al., 2005; see also, Corkin, 2002; Sutherland & Lehmann, 2011; Sutherland, 

Sparks, & Lehmann, 2010)3. In addition to amnesia for past experiences, one study found 

that individuals with HPC damage cannot imagine new experiences (Hassabis, Kumaran, 

Vann, & Maguire, 2007). The deficit in mentally constructing a novel experience or 

narrative could reflect the inability to retrieve stored neocortical memory elements in a 

cohesive and flexible manner, like the impairments seen in flat-gradient retrograde 

amnesia. This raises the possibility that the human HPC is required to combine information 

into a usable cognitive representation, regardless of age, source, content, or nature of the 

information (Mayford, 2014). In line with this, fMRI studies involving healthy subjects 

strongly suggest the HPC is always involved in memory retrieval, regardless of the age and 

type of the memory (Hassabis & Maguire, 2009; Ritchey, Montchal, Yonelinas, & 

Ranganath, 2015; Ryan et al., 2001; Verfaellie et al., 2014). At minimum, these findings 

appear to contradict extant ideas about the reduction of hippocampal involvement in 

memory over time (Frankland & Bontempi, 2005 Squire & Alvarez, 1995; Winocur, 

Moscovitch, et al., 2013). 

Perhaps most strikingly, the primary methodology used to investigate long-term 

memory and systems consolidation in rodents; contextual fear conditioning, has produced 

                                                 
3 A wise man once said, “a paper that cites Scoville and Milner (1957), but not Steinvorth 

and colleagues (2005), exhibits poor scholarship and should not be taken too seriously”.  
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a disproportionately large number of findings that are inconsistent with a temporally-

circumscribed role of the HPC memory (Sutherland et al., 2010). Contextual fear 

conditioning is the gold standard for investigating systems consolidation and the properties 

of memory persistence due to the rapid acquisition of the conditioned fear response and 

robust longevity of the context-shock memory (Gale, 2004; Lehmann et al., 2009). By 

disrupting the HPC at various time points following fear conditioning (e.g., 1-day = recent; 

30-days = remote), hippocampal involvement in the behavioural expression of context 

memory can be investigated. As previously mentioned, temporally-graded retrograde 

amnesia was originally reported by several researchers using this paradigm (Anagnostaras, 

Maren, & Fanselow, 1999; Kim & Fanselow, 1992). Like the re-examination of patient 

H.M., the vast majority of experiments now find flat gradients of retrograde amnesia – that 

is, equal amnesia for recent and remote context memory after hippocampal damage 

(Broadbent & Clark, 2013; Sparks, Spanswick, Lehmann, & Sutherland, 2013; Sutherland 

& Lehmann, 2011; Sutherland et al., 2010). The preponderance of evidence indicates that 

the temporal involvement of the HPC in long-term memory remains unresolved, both in 

humans and rodents despite adherence to classic views which predict certain memories 

eventually become independent of the HPC. Rather, it seems more likely that neither the 

age, nor the putative type of long-term memory necessarily determines dependence on the 

HPC for retrieval. 
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Figure 1.2. Graphic representation of hippocampal-dependent systems consolidation. 

A) An experience is rapidly encoded in the HPC and to a lesser extent in neocortical 

networks via cellular consolidation mechanisms. Red circles in neocortex depict elemental 

representations contained in the experience. Black stars in the HPC connected with solid 

lines represent a memory engram, or index of the recent experience. B) – C) Over some 

undefined period, the HPC trace/index reactivates the neocortical memory elements, 

strengthening their hetero-associative connectivity. D) The neocortical memory trace, 

denoted by red stars + solid red lines, is consolidated and the memory can be expressed 

independently of the HPC. Note that the HPC is always required for episodic memory 

encoding, initial maintenance, and recall until the neocortical engram is consolidated and 

the HPC engram no longer exists, or is no longer required. This general scheme is referred 

to as the standard model of systems consolidation (SMSC), or standard consolidation theory 

(SCT). Original figure designed with Brain Explorer 2 (Version 2.3.5.) © 2015 Allen 

Institute for Brain Science. 

 

 

Challenges to contemporary views of the HPC and memory arise when examined 

from the anterograde direction as well. Recall that patients with damage to the HPC 

typically exhibit anterograde amnesia, or the inability to form new episodic memories (e.g., 

Milner et al., 1968; Scoville & Milner, 1957), and that extensive research involving rodents 

with hippocampal damage suggests the HPC is important for learning requiring allocentric 
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spatial, ordered temporal, and contextual information (Dusek & Eichenbaum, 1997; Fortin, 

Agster, & Eichenbaum, 2002; McDonald & White, 1993; Morris, Garrud, Rawlins, & 

O’Keefe, 1982; Sutherland, McDonald, Hill, Rudy, 1989; Sutherland & Rudy, 1989; 

Sutherland & McDonald, 1990). This indeed suggests that the HPC is necessary for the 

acquisition and initial retention of episodic-like information (Genzel & Wixted, 2017; 

Squire & Wixted, 2011). This is also consistent with views on the organization of multiple 

(or dual) memory systems in the mammal – that memory networks are specialized for 

certain mnemonic functions and are relatively distinct anatomically (Sherry & Schacter, 

1987; Squire, 1992a; Squire, 2004; White & McDonald, 2002). However, hippocampal 

damage before or after an experience does not typically produce equivalent memory 

impairments in rodents (Lee, Zelinski, McDonald, & Sutherland, 2016; McDonald & Hong, 

2013). 

Damage to the HPC after learning causes retrograde impairments for a wide range 

of memory-guided behaviours, whereas damage before learning causes anterograde 

impairments in a very limited number of learning and memory tasks (Lee et al., 2016). To 

illustrate this point, hippocampal damage after learning causes retrograde amnesia for: 

spatial memory, context fear, tone fear, simple visual discriminations, context 

discriminations and socially-transmitted food preference4 (Epp et al., 2008; Korte et al., 

2016; Lee et al., 2017; Mumby, Astur, Weisend, & Sutherland, 1999; Sutherland & 

McDonald, 1990; Winocur, 1990). Most commonly, precise allocentric spatial learning and 

memory has been reliably shown to be 100% dependent on the HPC. That is, complete 

hippocampal damage impairs precise allocentric mnemonic abilities – in both the 

                                                 
4 List is representative, not exhaustive (see, Lee et al., 2016; Sutherland et al., 2010; cf. 

Winocur & Moscovitch, 2011). 
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anterograde and retrograde direction. However, other less-common tasks involving 

negative patterning or transitive inference are sensitive to hippocampal damage regardless 

of timing as well (Alvarado & Rudy, 1995; Driscoll, Howard, Prusky, Rudy, & Sutherland, 

2005; Dusek & Eichenbaum, 1997). 

Barring the addition of ad hoc hypotheses5, the dissociation between anterograde 

and retrograde memory impairments in rodents with hippocampal damage is clearly at odds 

with consolidation-based accounts of the HPC and long-term memory. Hippocampal 

damage should impair any long-term memory (or memory mechanism) to which the HPC 

uniquely contributes, regardless of whether the damage occurs before or after learning (Lee 

et al., 2016). As outlined here, this is not the case in the rat, except for a very restricted 

number of learning and memory tasks. As hippocampal damage often causes a wider range 

of memory problems in the retrograde direction, this raises the somewhat paradoxical 

possibility that the rodent HPC plays a highly-specialized role in anterograde learning and 

memory processes and a more general role in memory recall (Driscoll, Howard, Prusky, 

Rudy, & Sutherland, 2005; Lee et al., 2017, 2016; Sutherland et al., 2001). By extension, 

the anterograde mnemonic capabilities of non-hippocampal networks may be far greater in 

the absence of the HPC than contemporary theories predict.      

 

Theories of Hippocampal Memory and Systems Consolidation 

As emphasized throughout this chapter, nearly all views of the HPC and long-term memory 

are based on the related concepts of multiple (or dual) memory systems, distinctions 

                                                 
5 Hypotheses involving the concept of hippocampal overshadowing were introduced to 

account for unequal anterograde and retrograde amnestic effects of hippocampal damage 

(Driscoll et al., 2005; Fanselow, 2009; Maren et al., 1997). 
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between hippocampal and non-hippocampal memories, and the existence of hippocampal-

dependent memory consolidation mechanisms. Among these theories, it can be argued that 

the most prevalent ones invoke systems consolidation in one form or another (McClelland 

et al., 1995; Nadel & Moscovitch, 1997; Squire et al., 1984; Winocur & Moscovitch, 2011). 

As depicted in Figure 1.2., the central tenet of the Standard Model of Systems 

Consolidation (SMSC) is that the HPC is only temporarily necessary for episodic memory. 

Within the model, systems consolidation is uniquely hippocampal-dependent and necessary 

to facilitate the assimilation of new experience into existing neocortical networks (see, 

Marr, 1971; McClelland et al., 1995). Importantly, memories are not handed off from the 

HPC to non-hippocampal networks per se; rather, the distributed non-hippocampal 

memory elements which are established during a learning episode and are gradually linked 

together and strengthened by the HPC (Squire et al., 2015). The underlying neurobiology 

of systems consolidation is empirically elusive, however it is often stated that the critical 

mechanistic features occur during sleep or offline periods via hippocampal “replay” 

(Jadhav & Frank, 2014; McNaughton, 2010; Ólafsdóttir, Bush, & Barry, 2018).  

 Numerous studies in rats suggest that spatial information is replayed during sharp-

wave ripple events (SWRs) in periods of slow-wave sleep (Ji & Wilson, 2007; Lee & 

Wilson, 2002; Wilson & McNaughton, 1994). The repeated reactivations are brief (< 300 

ms) and can occur an order of magnitude faster than the original activity patterns recorded 

during behaviour (Ji & Wilson, 2007; Lee & Wilson, 2002). Due to these qualities, 

hippocampal replay during offline periods is hypothesized to be the key mechanism of 
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systems consolidation6 (Genzel et al., 2017; Jadhav & Frank, 2014). Replay in the HPC 

during SWRs is thought to drive coordinated excitatory responses in neocortex and other 

non-hippocampal networks and promote long-term memory storage (Jadhav & Frank, 

2014; Skelin, Kilianski, & McNaughton, 2018). In support of this idea, interfering with 

SWRs can impair learning and memory performance (Ego‐Stengel & Wilson, 2010; 

Jadhav, Kemere, German, & Frank, 2012). These findings collectively suggest that the HPC 

may indeed strengthen memory representations via replay during offline periods. Among 

studies that blocked SWRs, only transient impairments were observed on spatial memory 

tasks (Skelin et al., 2018). If offline replay is a critical component process of systems-level 

consolidation, repeated replay events for a single experience should be apparent over the 

same time course as memory consolidation (e.g., months, years, decades). This has yet to 

be established, as to my knowledge, replay of a novel spatial experience has not been 

recorded repeatedly across multiple days (Ólafsdóttir et al., 2018). Regardless, the SMSC 

assumes that episodic memory requires the HPC for cellular and systems-level 

consolidation; therefore, it necessarily predicts that rats with hippocampal damage are 

unable to form lasting contextual memories. 

  Whereas the SMSC is the original version within the group of theories that I refer 

to generally as contemporary views, Multiple Trace Theory (MTT) was introduced to 

account for experimental results which could not be explained by the standard model. 

Namely, the heterogeneous effects of partial versus complete hippocampal damage on 

                                                 
6 If the HPC houses an index of neocortical memory elements for a given recent experience 

(Teyler & DiScenna, 1986), reinstatement of a hippocampal activity pattern which occurred 
6 during a learning episode should in principle strengthen the entire cortico-hippocampal 

memory engram. 
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long-term memory (i.e., temporal gradients) were ascribed to multiple related traces being 

created within the HPC, leading to a more permanent role for the HPC in memory that 

retains episodic quality (Nadel & Moscovitch, 1997). Stated another way, every time an 

episodic memory is recalled it will invariably be in a new context and because of the HPC’s 

obligatory role in memory encoding, a new trace will be laid down and consolidated. It is 

this recall/reencode/consolidate process that leads to the extraction of factual semantic 

information from multiple episodes (see bullets 1-9, p. 233; Nadel & Moscovitch, 1997)7. 

Therefore, MTT predicts the HPC is always involved in memory requiring episodic detail 

and partial damage to the HPC might disproportionately impair recent episodic memory 

due to the existence of fewer cortico-hippocampal traces. By extension and most relevant 

to this thesis, MTT necessarily predicts that non-hippocampal networks cannot support 

detailed memories for episodes or contexts independently of the HPC. 

 The last theory of memory and systems consolidation I will introduce is Trace 

Transformation Theory (TTT), also known as the transformation hypothesis (Sekeres et al., 

2017; Winocur, Moscovitch, & Bontempi, 2010). Except for the hypothetical mechanisms 

involved, the central tenet of TTT is identical to MTT. Namely, that highly-detailed 

episodic memories always require the HPC (e.g., context memory in rodents; Moscovitch, 

Cabeza, Winocur, & Nadel, 2016). Like the name implies, the transformation hypothesis 

involves a time and experience-dependent post-encoding shift from highly-detailed 

context-specific memory (hippocampal), to a less detailed version which only retains the 

gist of an experience (non-hippocampal) (Winocur & Moscovitch, 2011). Therefore, the 

transformation hypothesis asserts there are two broad types of memory which are classified 

                                                 
7 It should be noted that the authors explicitly rejected the idea of systems consolidation 

multiple times in the article. In my view, MTT represents a version of the same theme.   



 

 20 

by content, or level of detail, and dependence of hippocampal and non-hippocampal 

substrates. Finally, TTT proposes that both types of memory representations can exist 

simultaneously and interact, such that a transformed gist-like memory which can be 

expressed independently of the HPC can once again become hippocampal-dependent and 

highly-detailed through a brief reminder that reinstates contextual details (Wiltgen & 

Tanaka, 2013; Winocur & Moscovitch, 2011). 

Each of these theories of the HPC and long-term memory make similar predictions 

about anterograde memory processes and the nature of hippocampal versus non-

hippocampal memories – memories that can and cannot be supported after damage to the 

HPC. Collectively, they are part of the dual memory zeitgeist that attributes the pattern of 

spared and impaired mnemonic abilities after hippocampal damage to a single cause – 

hippocampal-dependent, systems-level consolidation8. This thesis tests the general 

prediction that the longevity and precision of long-term memory both require the HPC.  

 

 

 

          

                                                 
8 “The various classifications (boxes) that were developed to explain the observable 

behavioural (sic) properties and content of memory and its many dysfunctions were 

established when the brain was still a box itself. Neuroscience is now tasked with the job 

of retrofitting modern data into boxes that are fifty, upwards to one hundred years old” – 

Jerry Rudy (2008). 
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Chapter 2 

Remote Contextual Fear Memory Without the Hippocampus 

Introduction 

Contextual fear memory exhibits a fundamental property of long-term memory, extended 

longevity. In one conditioning episode, rats form a context-shock associative memory for 

the experience that survives extended train-to-test intervals (e.g., 1.5 years, Fanselow & 

Gale, 2003; 180 days, Lehmann, Lacanilao, & Sutherland, 2007). Demonstrations of 

retrograde amnesia caused by damage to the HPC indicate normal expression of contextual 

fear memory requires hippocampal function, at least for some period of time after learning 

(Anagnostaras, Maren, & Fanselow, 1999; Broadbent & Clark, 2013; Kim & Fanselow, 

1992; Lehmann et al., 2007; Lehmann, Rourke, Booker, & Glenn, 2013; Maren, Aharonov, 

& Fanselow, 1997; Sparks, Spanswick, Lehmann, & Sutherland, 2013). In contrast, when 

the HPC is damaged before a conditioning episode there is often no anterograde amnesia 

(Frankland, Filipkowski, Cestari, McDonald, & Silva, 1998; Maren et al., 1997; Wiltgen, 

Sanders, Anagnostaras, Sage, & Fanselow, 2006). The absence of anterograde amnesia 

with hippocampal damage means that non-hippocampal networks can acquire and express 

contextual fear memory in the absence of the HPC (Lee, Zelinski, McDonald, & 

Sutherland, 2016; Rudy, 2009; Wiltgen & Tanaka, 2013). However, the hallmark longevity 

of the memory is thought to require the HPC (Zelikowsky et al., 2013; Zelikowsky, 

Bissiere, & Fanselow, 2012). This idea is based on hippocampal function between learning 

and memory expression, rather than during learning, or memory expression (cf. Lee et al. 

2016).  

The role of the HPC in memory longevity centers on systems-level consolidation; 

the hypothetical process by which new memories gradually transition from a state of 
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fragility to a more permanent, consolidated form (Dudai, 2004; McClelland, McNaughton, 

& O’Reilly, 1995; McGaugh, 2000; Squire, 1992; Squire & Alvarez, 1995). Views on 

systems consolidation vary (e.g., complementary learning systems, McClelland et al., 1995; 

SMSC, Squire & Alvarez, 1995; hippocampal memory indexing theory, Teyler & 

DiScenna, 1986; TTT, Winocur & Moscovitch, 2011), yet certain general principles are 

shared: 1) learning episodes are rapidly encoded, primarily by the HPC (Marr, 1971; 

McClelland et al., 1995), via cellular consolidation mechanisms (Dudai, 2002; Martin et 

al., 2000; McNaughton & Morris, 1987); 2) Memory is established more slowly and 

incrementally in non-hippocampal networks (Marr, 1971; McClelland et al., 1995; Teyler 

& DiScenna, 1986); 3) This requires an extended reorganization and strengthening of 

memory, which is uniquely dependent on hippocampal function (Alvarez & Squire, 1994; 

McClelland et al., 1995); 4) Once complete, memory is consolidated and less vulnerable to 

amnestic agents and normal forgetting (Axmacher & Rasch, 2017; Squire & Alvarez, 1995; 

Squire et al., 1984).   

At the core of this framework is the prediction that the HPC is necessary to create 

stable explicit memories (Squire & Wixted, 2011). Stated another way, memory acquired 

after hippocampal damage, by definition, cannot undergo hippocampal-dependent systems 

consolidation – the process that confers memory longevity. Therefore, if non-hippocampal 

networks acquire a memory, like a context representation and its association with foot 

shock, the memory will be “fragile” (Squire & Wixted, 2011), exhibit rapid decay, and 

ultimately be lost to anterograde amnesia. This prediction was recently tested (Zelikowsky 

et al., 2012). Briefly, rats received neurotoxic lesions of the dorsal hippocampus (dHPC), 

or a SHAM (no lesion) procedure prior to a single contextual fear conditioning episode (8 

min, 4 foot shocks). Rats were tested for memory retention 1, 3, 10, or 30 days later in the 
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same context. Rats without dHPC lesions exhibited intact memory for the conditioning 

episode at all retention intervals. In contrast, rats with dHPC damage exhibited memory for 

the experience 1 d, but not 30 d later. Moreover, dHPC damaged rats exhibited memory 

decay beginning at the 3 d test interval. The findings suggest intact acquisition, but rapid 

decay of contextual fear memory in the absence of the dHPC. The authors attributed the 

rapid decay to the loss of hippocampal-dependent systems consolidation (Zelikowsky et 

al., 2012).  

The report from Zelikowsky and colleagues (2012) is the first known demonstration 

of rapid decay of contextual fear memory in HPC damaged rats. The findings and 

interpretation are consistent with systems consolidation accounts of the HPC and memory. 

Specifically, their results confirm the prediction that the HPC is essential for longevity of 

memory. However, only the dHPC was damaged, leaving the entire ventral hippocampus 

(vHPC) intact; therefore, attributing memory decay to the loss of a hippocampal-dependent 

process is problematic – conflating dHPC damage with the complete loss of hippocampal 

mnemonic function. The preponderance of evidence strongly suggests that dHPC and 

extensive HPC damage do not always produce equivalent memory dysfunction. For 

example, variability in the magnitude and temporal extent of RA for contextual fear 

memory may be related to the extent of HPC damage, especially when only dHPC is 

damaged (Lee, Zelinski, McDonald, & Sutherland, 2016; Sutherland & Lehmann, 2011; 

Sutherland, Sparks, & Lehmann, 2010). In fact, when damage to the HPC is extensive (e.g., 

> 70%), RA is more consistent between studies (Broadbent & Clark, 2013; Sutherland & 

Lehmann, 2011; Sutherland et al., 2010; but see, Winocur, Sekeres, Binns, & Moscovitch, 

2013). When damage is incomplete (e.g., ≤ 50%), typically when dHPC is targeted and 

vHPC is spared, memory can remain partially intact (Scott, Saucier, & Lehmann, 2016), 
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but not in a reliable pattern (Anagnostaras et al., 1999; Kim & Fanselow, 1992; Sutherland, 

O’Brien, & Lehmann, 2008). Moreover, the vHPC is reciprocally-connected to many 

regions required for memory, including, medial prefrontal cortex, nucleus accumbens, and 

amygdala (Preston & Eichenbaum, 2013; Skelin et al., 2018; Strange, Witter, Lein, & 

Moser, 2014). These regions contribute to normal acquisition and/or expression of 

contextual fear memory (Kim & Jung, 2006; Kitamura et al., 2017; McDonald & Hong, 

2013; Zelinski, Hong, Tyndall, Halsall, & McDonald, 2010). It has also been shown that 

damage to the vHPC can result in RA for contextual fear memory, even when dHPC is fully 

intact (Sutherland, O’Brien, & Lehmann, 2008). Because the vHPC is within the 

neuroanatomical network involved in long-term memory and contributes to memory in 

often overlooked ways (Gruber & McDonald, 2012; Kitamura et al., 2017; McDonald & 

Hong, 2013; McDonald, King, Wasiak, Zelinski, & Hong, 2007), results obtained under 

conditions of moderate HPC damage should be interpreted with caution (Lee, Sutherland, 

& McDonald, 2017; Scott et al., 2016; Sutherland & Lehmann, 2011; Sutherland et al., 

2010). 

With this information in hand, it is unclear whether the rapid memory decay 

observed by Zelikowsky et al. (2012) can be attributed to memory instability in non-

hippocampal networks, or if incomplete hippocampal damage resulted in the acquisition of 

dysfunctional memory, which could not be maintained by the compromised HPC. The goal 

of this study was to revisit the experiment by Zelikowsky et al. (2012), by attempting to 

reproduce the experimental methods for contextual fear conditioning, memory retention 

tests, and dHPC lesion surgeries. A sixteen-site lesion condition targeting the entire septo-

temporal axis of the HPC (dHPC + vHPC) was included to test the hypothesis that spared 

HPC could function to support the acquisition, retention, or expression of contextual fear 
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memory. In general, standard views of the HPC and memory make two predictions 

regarding contextual fear memory without the HPC. First, contextual fear will be acquired 

more slowly by rats with hippocampal damage due to slower learning rates in non-

hippocampal networks. Second, the memory will be unstable and exhibit rapid decay due 

to the absence of hippocampal-dependent systems consolidation.  

  

Methods 

Subjects 

Ninety-six male Long–Evans hooded rats (Charles River, NC, USA), weighing 400 – 500 

g at the time of surgery were housed in pairs in standard shoe-box acrylic cages (Allentown, 

Inc., NJ, USA) in the University of Lethbridge rodent vivarium (20°C, 50% relative 

humidity). Access to food and water was ad libitum upon arrival until experimental 

endpoint. The housing room light / dark cycle was 12 h, with lights on at 7:30 am daily. 

Rats were handled for several minutes daily during the week prior to surgery. All 

experimental procedures adhered to CCAC policy and were approved by the University of 

Lethbridge Animal Welfare Committee. 

 

dHPC Lesions 

Surgical procedures followed those employed by Zelikowsky and colleagues (2012). Rats 

were anesthetized with sodium pentobarbital (65 mg / kg, i.p.) and received atropine sulfate 

(0.4 mg / kg, i.p.) and Metacam® (1mg / kg, s.c.). The head was shaved, eye ointment was 

applied, and the scalp cleaned with chlorohexidine and 70% alcohol. Once fixed in the 

stereotaxic frame (David Kopf, Germany), a midline incision was made and the scalp 

retracted. Four small holes were drilled into the skull (5 mm diameter). Thirty-gauge 
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stainless steel injection cannulae, soldered into 23-gauge cannulae, were connected to 10 

μL micro-syringes (Hamilton Co., NV, USA) via polyethylene tubing (PE50) and attached 

to the arms of the stereotax. Syringes were mounted on an infusion pump (Harvard 

Apparatus, MA, USA) and N-methyl-D-aspartic acid (NMDA; 20 mg / ml; Sigma-Aldrich, 

MO, USA), dissolved in 0.01 M PBS was drawn up into the cannulae and tubing. Infusions 

of NMDA were delivered sequentially, two at a time at corresponding bilateral sites (0.1 

μL / min; coordinates and volumes, Table 2.1.). Cannulae were left in place for 2 min 

following each bilateral infusion. Once all infusions were delivered, the scalp incision was 

sutured and animals were placed in cages with soft paper bedding until fully recovered from 

anesthesia. Identical procedures were employed for SHAM surgeries, except the cannulae 

were not lowered into the brain and infusions omitted. The home cage surgical recovery 

period was 12 days. 

 

HPC Lesions 

  

Rats were medicated with phenobarbital (30 mg / kg, i.p.) and Metacam® (1 mg / kg, s.c.), 

then anesthetized via isoflurane inhalation (4% in 4 L / min oxygen for induction, then 1-

2% in 1 L / min oxygen to maintain a surgical plane). Following surgical site preparation 

and scalp incision (see above), 14 holes (0.5 mm diameter) were drilled in the skull and 

infusions were delivered in sequence (7.5 mg / mL NMDA; 0.15 μL / min; coordinates and 

volumes listed in Table 2.1.). The infusion cannulae were left in place for 3 mins following 

delivery of NMDA. After all infusions, the scalp was sutured and diazepam (5 mg / kg, i.p., 

repeated as needed) was administered for seizure prophylaxis. SHAM surgeries followed 

the same procedures, except the cannulae were not lowered, NMDA infusions were 

omitted, and diazepam was not administered. The surgical recovery period was 12 d. 
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Table 2.1. NMDA infusion volumes and site coordinates. dHPC coordinates and 

volumes (Zelikowsky et al., 2012); HPC coordinates and volumes adapted from Sparks et 

al. (2013); (all coordinates; mm relative to bregma).   

 
 

 
 

Figure 2.1. Graphic representation of stereotaxic drill sites for hippocampal lesion 

surgeries. A) Drill sites for dHPC lesions involving four infusions; B) Drill sites for HPC 

lesions involving sixteen infusions. 
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Contextual Fear Apparatus 

Contextual fear conditioning and memory retention test sessions took place in chambers 

with aluminum side walls and transparent acrylic rear wall, ceiling, and door (MED-

Associates, VT, USA; outer dimensions: 33 x 25 x 27 cm). The floor consisted of 19 

stainless steel rods (4 mm diameter) spaced 1.3 cm apart, wired to a shock source and grid 

scrambler (MED-Associates) for the delivery of foot shock US. The chambers were 

mounted in cabinets located in a standard behaviour room. Ventilation fans within the 

cabinet supplied background noise (~ 65 dB). The chambers were cleaned thoroughly with 

dilute, germicidal quat-sanitizer (4 mL / L H2O; Quatsyl-D Plus®, Pfizer Canada Inc., QC, 

Canada) between every session. The same chamber was used for conditioning and testing 

for each rat (Figure 2.2.). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Contextual fear conditioning chamber. Identical chambers within a common 

testing room served as the fear conditioning and memory retention testing contexts. Each 

rat was conditioned and tested in the same chamber. 
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Conditioning and Memory Retention Test Procedures 

The contextual fear conditioning episode was carried out as a standard procedure for all 

experimental groups. Following the 12 d surgical recovery period, rats were transported 

individually from their home cage to the testing room in an opaque transport box and placed 

in the conditioning context. Following 180 s of exposure to the context, four US trials (foot 

shocks; 4 x 0.9 mA, 2 s each) separated by an 88 s inter-trial interval were delivered 

(Zelikowsky et al., 2012). Following the final shock, rats remained in the context for 60 s 

before being returned to their home cage. Rats were brought back to the context 1, 3, 10, 

or 30 d later for a single 8 min contextual fear memory test. Each rat was conditioned once 

and tested once in the same context.  

 

Behavioural Data Analysis 

Freezing was the measure of contextual fear memory. All sessions were recorded through 

a high-definition USB camera connected to a PC laptop computer running FreezeFrame™ 

4.0 software (Actimetrics, Coulbourn Instruments, IL, USA), which captured session video 

and freezing data. For conditioning sessions, freezing during the 30 s preceding each US 

delivery was analyzed (Zelikowsky et al., 2012; [time immobile (s)  30 (s) x 100 = 

Freezing %]). For testing sessions, the entire 8 min was analyzed ([time immobile (s)  480 

(s) x 100 = Freezing %]). Frame rate and motion detection thresholds were identical for all 

conditioning and testing sessions and employed FreezeFrame™ optimal system 

performance settings. Conditioning data were analyzed with two-way analysis of variance 

(ANOVA), with repeated measures for each US delivery (Group x Trial) and post hoc 

comparisons. Memory test data were analyzed with two-way ANOVA (Group x Retention 
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interval). All analyses were performed in Prism 6© (GraphPad Software, CA, USA). Data 

from rats that did not reach the experimental endpoint due to postoperative health concerns, 

like severe scratching, were excluded from all analyses (n = 4). Three rats died during, or 

shortly after surgical procedures.  

 

Histology and Lesion Volume Estimates 

Animals were sacrificed with an overdose of sodium pentobarbital, then perfused 

transcardially with 0.9% PBS, followed by 4% PFA (in 0.9% 0.01 M PBS). The brains 

were extracted and post-fixed for at least 24 h in PFA-PBS solution, then transferred to a 

cryoprotecting solution (30% sucrose in 0.9% 0.01 M PBS with 0.02% sodium azide) for 

at least 48 h. The cryoprotected brains were frozen and sectioned in the coronal plane at 40 

μm on a cryostat (Leica Biosystems, IL, USA), with every fourth section throughout the 

entire HPC mounted on microscope slides. Sections were stained with cresyl violet and 

cover-slipped for quantification of HPC volumes.  

The volume of intact HPC principle cell fields was quantified stereologically 

(Sparks et al., 2013) via the Cavalieri method (Schmitz & Hof, 2005) using a brightfield 

microscope equipped with a motorized stage and StereoInvestigator® software (MBF 

Bioscience, VT, USA). The measured volume of intact principle cell fields in each dHPC 

group (n = 24) and HPC group (n = 29) brain was then divided by the mean HPC volume 

calculated from a subset of SHAM group animals (n = 6) and multiplied by 100 to yield 

intact HPC %. Intact HPC% was then subtracted from 100 to yield HPC% damage (100 – 

[(HPC mm3 /  X̅ (SHAM) mm3) x 100] = HPC% damage). Pearson correlation was performed 

with HPC% damage (x) and Freezing% (y) as variables. Rats with HPC damage deemed to 

be insufficient; < 40 % (dHPC group, n = 6) and < 65 % (HPC group, n = 4), were excluded 
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from all data analyses. These values were determined a priori and not in response to 

behavioural data. 

 

Results 

Contextual Fear Conditioning and Memory Retention  

During the conditioning episode, SHAM, dHPC, and HPC group rats exhibited similar 

levels of freezing prior to the first footshock and after the third footshock. Between-group 

differences were apparent after Trial 1 and Trial 2, with dHPC and HPC groups freezing 

less than the SHAM group (Trial 2; SHAM vs. HPC, p = 0.0016; and Trial 3, SHAM vs. 

dHPC, p = 0.0043 and SHAM vs. HPC, p = 0.01; Figure 2.3.). For the memory retention 

test, all groups exhibited conditioned freezing at all retention intervals, with no between-

group differences, nor an interaction (Group, F(2, 67) = 0.9744, p = 0.38; Interaction, F(6, 

67) = 0.7617, p = 0.6026). However, there was a main effect of retention interval (F(3, 67) 

= 5.34, p = 0.0019). Post hoc analyses indicated differences in conditioned freezing 

between Retention intervals (1 vs. 30 d, p = 0.0009; 10 vs. 30 d, p = 0.031). In summary, 

all rats learned to fear the context during the conditioning episode and demonstrated normal 

behavioural expression of memory for the experience at all retention intervals.  

 

Hippocampal Lesion Volumes 

Lesion volume estimates for dHPC group rats confirmed extensive and consistent damage 

across groups of animals tested at 1, 3, 10, or 30 d, as indicated by statistically similar 

means (X̅) (F(3, 20) = 0.5954, p = 0.6254, ANOVA) and standard deviations (Table 2.2., 

Figure 2.4.). A conservative proportion of 50% volume of the entire HPC was assigned to 

dHPC (e.g., Broadbent, Squire, & Clark, 2004). Lesion estimates for HPC group rats 



 

 32 

indicated HPC damage ranged from substantial to extensive (65.11% - 89.34%; Table 2.3., 

Figure 2.5.). Analysis of lesion volumes grouped by retention interval (1, 3, 10, and 30 d) 

revealed a main effect of group; F(3, 27) = 6.03, p = 0.028 (ANOVA).  

 

 

Figure 2.3. Contextual fear conditioning acquisition and retention test. All data points 

expressed as mean ± SEM. A) Acquisition. SHAM rats exhibited more freezing behaviour 

than HPC rats on trial 2, and HPC and dHPC rats on Trial 3. All groups displayed similar 

levels of freezing by the end of the conditioning episode. B) Retention. SHAM, dHPC, and 

HPC rats exhibited similar levels of freezing behaviour at all retention intervals. On 

average, rats froze more during the 30 d test than the 1 d test and the 30 d test vs. 10 d test. 

 

 

 

Correlation Between HPC Damage and Contextual Fear Memory Retention 
 

Due to differences in mean HPC damage between retention intervals, HPC damage and 

freezing scores were analyzed with Pearson correlation. The results indicated a non-

significant positive correlation coefficient (r) between HPC damage and Freezing during 

the contextual fear retention test; r = 0.16, p = 0.26, n = 55 (Figure 2.6.). The coefficient of 

determination (r2 = 0.026) indicated that 2.6% of the variance in Freezing was attributable 

to variation in extent of hippocampal damage. Freezing in the SHAM group (X̅ = 78.5 %), 

was within the 95 % confidence interval (-0.15 to 0.55) of the line of best fit (y = 0.2016x 

+ 61.63) when y = 0 (i.e., 0 % HPC damage in SHAM rats). 
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Table 2.2. dHPC lesion volumes. Damage expressed as % of the entire HPC for each 

retention interval (SD; standard deviation). Irrespective of retention interval, mean dHPC 

group lesion volume was 45.09% of the entire HPC. 

 
 

 

 
Figure 2.4. Photomicrographs of a SHAM brain and a typical dHPC lesion. A) 

Stereotaxic atlas -1.80 mm to -4.44 mm relative to bregma (left to right). B) SHAM brain 

with intact HPC. C) dHPC lesion brain, 45.1% total HPC damage (dHPC group; X̅ = 

45.01%). 

 

 

Table 2.3. HPC lesion volumes. Damage expressed as % of the entire HPC (X̅ = 73.31% 

for all HPC rats). 
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Figure 2.5. Photomicrographs of two HPC group brains illustrating different extents 

of HPC damage. A) Stereotaxic atlas -1.80 mm to -5.88 mm relative to bregma (left to 

right). B) Brain with 73.1% HPC damage (HPC group; X̅ = 73.31%). C) Brain with 84.33% 

HPC damage (HPC group; max = 89.34%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Correlation between extent of HPC damage and behavioural expression 

of contextual fear memory. Blue icons (dHPC); Red icons (HPC). Solid black line denotes 

line of best fit and curved dashed lines correspond to the upper and lower 95% confidence 

intervals. Freezing behaviour during context memory tests did not correlate strongly with 

extent of HPC damage (r = 0.16).  
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 Discussion 

The goal of the present experiment was to investigate one aspect of the systems-level 

consolidation framework; we tested the core prediction that memory acquired by non-

hippocampal networks is fragile and lacks longevity (Squire & Wixted, 2011; Zelikowsky 

et al., 2012). The present data do not confirm this prediction. Like others, this experiment 

found that damage to the HPC before learning has little effect on the acquisition, and no 

detectable effect on recent contextual fear memory expression (Frankland et al., 1998; 

Maren et al., 1997; Wiltgen et al., 2006; Zelikowsky et al., 2012). The discovery that 

memory remains intact for 30 d is novel. Only one other study tested memory without the 

HPC over this time course (Zelikowsky et al., 2012) and found rapid memory decay, 

whereas our findings build on the finding of normal memory expression after 14 d (Wiltgen 

et al., 2006). Two clear conclusions can be drawn from the present study, Wiltgen et al. 

(2006), and Zelikowsky et al. (2012): 1) non-hippocampal networks acquire, maintain, and 

express contextual fear memory in the absence of hippocampal function and the memory 

exhibits normal longevity; 2) partial hippocampal damage may produce less reliable effects 

on contextual fear memory than extensive, or complete damage.  

 Despite duplicating the dHPC lesion procedures, conditioning session parameters, 

and retention tests as described (Zelikowsky et al., 2012), no evidence of memory decay, 

rapid or otherwise, was observed. Rather, the magnitude of freezing exhibited by separate 

groups of dHPC and HPC lesion rats increased between recent and remote testing intervals 

(1 vs. 30 d, and 10 vs. 30 d), indicating either stronger remote memory, or fear incubation 

(Poulos et al., 2016). Memory strength and magnitude of fear are difficult to dissociate, but 

reports of time-dependent increases in freezing typically involve 4 or more foot shocks, 

while lower numbers of shocks typically yield stable levels of freezing over time 



 

 36 

(Fanselow, 1980; Poulos et al., 2016). The recent-to-remote increase in conditioned fear 

was also observed in SHAM rats, which supports the fear incubation account, yet does not 

preclude the possibility of stronger remote memory.  

 Conditioning parameters such as number of foot shocks, shock intensity, and 

distributed conditioning episodes among others, are known to modulate both the 

behavioural expression of remote contextual fear memory and the magnitude of fear 

(Fanselow, 1980; Hugo Lehmann et al., 2009; Pickens, Golden, Adams-Deutsch, Nair, & 

Shaham, 2009; Poulos et al., 2016; Winocur, Moscovitch, et al., 2013). However, the 

conditioning parameters used in the present experiment, Zelikowsky et al. (2012), and 

Wiltgen et al. (2006), were very similar – the former two were as similar as we could make 

them. Small differences in general procedures, such as disinfectant used between 

conditioning sessions (quat-sanitizer vs. 70% alcohol) or transporting rats singly versus in 

squads to the testing room, are unlikely to influence the expression of remote memory, 

provided they are held constant within-experiment. Notably, Zelikowsky et al. (2012) 

included trimethoprim sulfa (an antibiotic/protein synthesis inhibitor) in rats’ drinking 

water for a week during the surgical recovery period. Anterograde memory impairments 

secondary to trimethoprim sulfa drug regimens have been reported by human patients 

(Sternbach, 1997). It is unknown if this side effect extends to rodents, or if this antibiotic 

could cause profound, evolving AA for contextual fear memory selectively in rats with 

HPC damage as observed by Zelikowsky et al. (2012). However, antibiotics like 

anisomycin are known to impair memory and silence neural transmission when infused 

directly into brain parenchyma (Nader, Schafe, & Le Doux, 2000; Sharma, Nargang, & 

Dickson, 2012). It is possible that the uncontrolled use of trimethoprim sulfa is an 

extraneous variable, or a confound (see, Sharma et al., 2012). Because the prolonged use 
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of antibiotic and the observation of rapid memory decay in dHPC damaged rats are unique 

to Zelikowsky et al. (2012), drawing conclusions about either may not be possible.  

 The present findings are less ambiguous: dHPC and HPC damaged rats exhibit 

robust freezing behaviour by the end of the single conditioning episode and during all 

retention tests. These data demonstrate intact acquisition, retention, and normal expression 

of contextual fear memory in the absence of the HPC. The idea that incomplete damage to 

the HPC might have resulted in the memory decay observed by Zelikowsky et al. (2012) 

was neither supported by the present experiment. Memory expression was not correlated 

with extent of hippocampal damage, despite considerable variability between rats 

(minimum, 41%; maximum, 89%; including dHPC and HPC lesion conditions). Whereas 

the present findings and those from the Zelikowsky study provide a prime example of how 

very similar experiments can find diametrically opposite effects of partial HPC damage on 

contextual fear memory, this study and Wiltgen et al. (2006) found similar effects of 

extensive-to-complete HPC damage. This further validates concerns that incomplete HPC 

damage can have unpredictable, often incoherent effects on memory due to unknown extent 

of hippocampal dysfunction (Lee et al., 2017, 2016; Scott et al., 2016; Sutherland & 

Lehmann, 2011; Sutherland et al., 2010). 

 The finding of strong remote fear memory in rats with extensive hippocampal 

damage (X̅ = 73.31%) is statistically valid, yet an interesting coincidence exists in a subset 

of the retention and lesion volume data. Figure 2.3B shows that rats assigned to the HPC 

lesion condition and 10 d retention test exhibited less contextual fear compared to every 

other retention interval + extensive HPC lesion condition subgroup. Table 2.3 indicates the 

lowest mean (68.77%) and maximum (74.96%) HPC damage values, along with the lowest 

standard deviation (3.06%) belongs to the same subgroup of rats. It must be considered that 
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moderate damage to the entire HPC (~ 68%) before conditioning, like dHPC damage (< 

50%), disrupts hippocampal function incompletely. Views on what extent of damage 

constitutes complete hippocampal disruption are few, but current estimates range from > 

70% to > 80% (Lee et al., 2017, 2016; Scott et al., 2016; Sutherland & Lehmann, 2011; 

Sutherland et al., 2010). As previously described, incomplete hippocampal damage after a 

conditioning episode yields less reliable RA than extensive damage, which suggests spared 

hippocampal tissue retains some mnemonic function. This is likely the case in the 

anterograde direction as well, yet it cannot be known from the present data. Conceivably, 

learning and memory in dHPC and dHPC + vHPC damaged rats might be supported by the 

remaining HPC, or solely by non-hippocampal networks, be dysfunctional, or appear 

normal. The recurrent spared-impaired function confound is unlikely to be resolved through 

behavioural analysis alone (Lee et al., 2016; Scott et al., 2016; Sutherland & Lehmann, 

2011; Sutherland et al., 2010). The discovery that rats with extensive hippocampal damage 

exhibit normal behavioural expression of remote (30 d) contextual fear memory and 

interpretation of this finding are less problematic for this reason. Extensive anterograde 

HPC damage does not cause rapid decay of contextual fear memory and this is also the case 

with complete HPC damage (14 d; Wiltgen et al., 2006).     

 Interestingly, one subtle effect of hippocampal damage on contextual fear 

conditioning was observed by Zelikowsky et al. (2012), this study, and others (Maren et 

al., 1997; Wiltgen et al., 2006)(Chapter 3., this thesis). Rats with HPC damage regularly 

exhibit less conditioned fear responding during acquisition compared to intact rats. 

However, the deficit is transient and is no longer apparent after the second or third foot 

shock (Figure 2.3A). One idea is that non-hippocampal networks possess a slower learning 

rate compared to hippocampal networks and acquire memories like contextual fear less 
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efficiently (Fanselow, 2009; Wiltgen et al., 2006; Zelikowsky et al., 2013, 2012). 

Proponents of this view often cite the concept of complementary learning systems 

(McClelland et al., 1995) and Marr’s Simple Memory: A Theory for Archicortex (Marr, 

1971), which highlight the computational advantages of coexisting fast and slow memory 

networks. Specifically, rapid learning by hippocampal networks that is highly-detailed and 

specific to a relevent environment or context, then slow generation of semantic memory 

and knowledge by non-hippocampal (neocortical) networks from overlapping elements of 

many experiences in order to flexibly guide behaviour in novel environments. Indeed, 

attenuated conditioned responding in HPC damaged animals that disappears after 2 – 3 foot 

shocks might reflect slower learning by non-hippocampal networks. However, this idea 

should be addressed in more detailed terms than fast versus slow (Wiltgen et al., 2006; 

Zelikowsky et al., 2012)9 – an oversimplification of the ideas proposed by Marr (1971) and 

McClelland et al. (1995).  

 Finally, the strong aversive nature of fear condtioning must be considered. Damage 

to the HPC is likely to affect a myriad of processes involved in fear learning, both directly 

and indirectly. For example, the strength and specificity of memory are known to be 

modulated by arousal during learning, and this is dependent on norepinephrine and 

gluccocorticoid-mediated effects in the amygdala and HPC (McGaugh, 2018). Rats with 

HPC damage might initially exhibit less conditioned fear due in part to pertubation of the 

processes involved in the emotional modulation of learning, but as the number of shocks 

increase, so does the fear response (Fanselow, 1980; Poulos et al., 2016). The fact that the 

                                                 
9 If the transient deficit in conditioned fear responding during contextual conditioning is 

due to a difference between hippocampal (fast) and non-hippocampal (slow) learning rates, 

the difference might be analgous to “comparing Ferraris to Lamborghinis” (S.H. Deibel, 

personal communication). 
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primary (often only) measure of contextual fear learning is freezing makes it difficult to 

dissociate context-shock associative learning from the emotional-behavioural effects of an 

inescapable aversive stimulus, like a foot shock US (but see, Antoniadis & McDonald, 

1999; Antoniadis & McDonald, 2001).   

 To summarize, the present findings do not support a core prediction of the systems-

consolidation framework, that the HPC is required to create stable long-term context 

memory. Rats with hippocampal damage demonstated learning during a single contextual 

fear conditioning episode and expressed normal memory for the expereince up to thirty 

days later. There was no evidence of memory decay and extent of hippocampal damage 

was not predictive of memory performance. It must be concluded that contextual fear 

memory acquired in the absence of the HPC has the same hallmark longevity of normal 

memory. Present findings therefore suggest that hippocampal function is not always an 

essential feature of memory longevity. This discovery adds to a growing body of empirical 

evidence that draws into question our fundamental views on memory and the HPC, views 

derived from dichotomous taxomomies of memory types, memory systems, and memory 

processes (Roediger et al., 2017; Squire, 2004)10.  

   

  

 

                                                 
10 Squire (2004) briefly reviews and summarizes the history of memory systems and 

memory taxonomies. 



 

 41 

Chapter 3 

Context Discrimination Without the Hippocampus 

Introduction 

Prominent theoretical views have advanced the idea that the HPC and non-hippocampal 

networks support different types of memories (Squire, 1992a; Squire, 2004; Squire et al., 

1984), while other views focus more on unique mnemonic processes of networks and their 

interactions (Gruber & McDonald, 2012; McDonald et al., 2017; Lee et al., 2016; 

Sutherland & Rudy, 1989; White & McDonald, 2002). In line with the former framework, 

one proposition states the precision of episodic memory, not the longevity depends 

critically on the HPC (Winocur & Moscovitch, 2011; Winocur et al., 2013; see also, 

Fanselow, 2009; Wiltgen & Tanaka, 2013). In contrast to highly-contextualized 

hippocampal memories, non-hippocampal networks are purported to support a more 

general, contextually impoverished version of memory (Sekeres, Moscovitch, & Winocur, 

2017; Winocur et al., 2013). Moreover, a transformation is hypothesized to take place – 

from detail-rich, hippocampal-dependent memory, to a gist-like, schematic version which 

can be supported by non-hippocampal networks and expressed independently of the HPC 

(Sekeres, Moscovitch, & Winocur, 2017; Winocur & Moscovitch, 2011; Winocur et al., 

2013). One difference between these ideas and earlier systems consolidation-based theories 

of memory (e.g., McClelland et al., 1995; Squire et al., 1984) is the transformation view 

asserts two versions of one memory – detailed (hippocampal), and schematic (non-

hippocampal) –  can “co-exist, complement each other or compete with one another” 

(Winocur et al., 2013; see also, Sekeres et al., 2017). According to these ideas, non-

hippocampal networks do not possess the representational complexity to support precise 
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context memories, like those required for accurate context discrimination, regardless of 

whether the HPC is functional or non-functional.  

Past reports of impaired context discrimination in hippocampal-disrupted rats 

support the idea that the HPC is required for detailed contextual memories (Antoniadis & 

McDonald, 2000; Frankland et al., 1998). In addition, intact rodents exhibit a context-

specific fear response shortly after a conditioning episode, but memory for the experience 

generalizes over time to novel, unconditioned contexts (Poulos et al., 2016; Riccio & 

Joynes, 2007; Wiltgen & Silva, 2007). Thus, context fear generalization is thought to reflect 

a loss of memory detail. Context discriminability can be extended by repeated context pre-

exposures prior to a fear conditioning episode, which suggests stronger or more detailed 

context memories are less-prone to generalization (Biedenkapp & Rudy, 2007). A brief 

reminder, in the form of pretest re-exposure to the conditioning context (without shock), is 

also thought to re-establish details in hippocampal-dependent context memory, as this 

treatment temporarily attenuates generalization (de Oliveira Alvares et al., 2012; Zhou & 

Riccio, 1994). Some evidence suggests that reversibly disrupting dHPC function 

selectively impairs detailed context memory, both at retention intervals normally associated 

with accurate discrimination, and in mice that exhibited accurate discrimination on 

previous memory tests (de Oliveira Alvares et al., 2012; Wiltgen et al., 2010) (cf. Goshen 

et al., 2011; Wang, Teixeira, Wheeler, & Frankland, 2009). Collectively, these reports have 

been interpreted to support ideas on systems consolidation and memory transformation as 

follows: 1) fear generalization reflects a contextual-to-schematic shift in memory detail 

over time; 2) the degree of detail in long-term memory determines its dependence on the 

HPC for retrieval; 3) the HPC is uniquely involved in precise contextual memories that 

enable context discrimination; 4) different versions of a memory might co-exist in distinct 



 

 43 

memory systems (Fanselow, 2009; Rudy, 2009; Sekeres et al., 2017; Wiltgen & Tanaka, 

2013; Winocur et al., 2013). 

Forgetting, or memory decay, is one parsimonious explanation for the time-

dependent reduction in context discriminability (Hardt, Nader, & Nadel, 2013; Rudy, 

Biedenkapp, & O’Reilly, 2005). As emphasized here, current views typically reject this 

possibility and describe generalization in terms of the HPC and systems memory 

consolidation processes (Jasnow, Lynch, Gilman, & Riccio, 2017; Sekeres et al., 2017; 

Squire, 1992a; Wiltgen & Tanaka, 2013). Like extant views on the HPC and systems-level 

consolidation, which have become empirically tenuous (Chapter 2; Gidyk, McDonald, & 

Sutherland, 2016; Lee et al., 2016; McDonald & Hong, 2013; Sutherland & Lehmann, 

2011; Sutherland et al., 2008), recent work found that non-hippocampal networks can 

support accurate context discriminations (Lee et al., 2017). Employing our discriminative 

fear conditioning to context procedure (McDonald, Koerner, & Sutherland, 1995; see also, 

Frankland et al., 1998) Lee and colleagues (2017) discovered that rats with extensive 

hippocampal damage (> 80%) can discriminate between contexts for up to three days, even 

under weak conditioning parameters. A separate experiment in the same study found that 

rats with extensive post-training hippocampal damage exhibited profound RA for the 

conditioning episodes and impaired context discrimination (Lee et al., 2017). The findings 

suggest that non-hippocampal networks can acquire, maintain, and express context 

memories with sufficient detail to support normal context discrimination behaviour. 

Moreover, the observation of RA suggests that gist-like versions of the conditioning and 

unpaired context episodes did not persist after hippocampal damage. However, it could be 

argued that the memories had not undergone systems consolidation/transformation before 

the HPC was damaged. It is unclear if contemporary consolidation-based theories, or 
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transformation views of memory and the HPC can accommodate data from Lee and 

colleagues (2017). Further investigation is required to resolve uncertainties about the HPC, 

non-hippocampal networks, and context discrimination. More specifically, the putative 

timeline and boundary conditions for the hypothesized consolidation-based loss of detail in 

long-term memory needs to be elucidated.  

The present experiments were designed to explore systems consolidation and one 

aspect of the memory transformation framework, which in our view is based heavily on 

systems-level consolidation theories (e.g., McClelland et al., 1995). The following 

predictions were tested: 1) rats with extensive hippocampal damage cannot acquire memory 

that facilitates accurate context discrimination; 2) in intact rats, a precise hippocampal 

context representation co-exists with a gist-like non-hippocampal version during memory 

transformation and detail can be reinstated with a pre-test reminder at a time point when 

generalization normally occurs; 3) a low ambiguity context discrimination involving little 

overlap between environmental cues should delay generalization in intact rats, because less 

detail from the conditioning episode is required to distinguish the shock and novel 

context.11 In addition to the primary experiment which tested the predictions 1 – 3, a 

behavioural lesion verification in the form of a hippocampal-dependent, precise allocentric 

learning and memory task (MWT) was performed to confirm that extensive damage to the 

HPC substantially disrupted hippocampal function, and to ensure that key outcomes from 

the primary experiment were reproducible.   

 

                                                 
11 To my knowledge, prediction three is not explicitly stated by the authors of TTT, or its 

proponents. It is my own logical extension of predictions [(1 - 6), p. 532] stated by Winocur 

and colleagues (2013), and subsequent interpretations of the transformation framework by 

the authors and others (e.g., Sekeres et al., 2017; Wiltgen & Tanaka, 2013). 
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Methods 

Subjects 

Fifty male Long–Evans hooded rats (Charles River, NC, USA), weighing 330 – 420 g at 

the time of surgery were housed in pairs in the University of Lethbridge rodent vivarium 

(20 °C, 50% relative humidity). A 12 h light – dark schedule was maintained, with lights 

on at 7:30 am daily. Access to food and water was ad libitum upon arrival until endpoint. 

Rats were handled for several minutes each day for 5 d prior to surgery. All experimental 

procedures adhered to CCAC policy and were approved by the University of Lethbridge 

Animal Welfare Committee. Eleven male Long–Evans hooded rats (300 – 360 g) were 

subjects in the behavioural lesion verification study and were cared for as described above.   

 

Surgery 

Procedures for the 16-site HPC lesions (n = 27) and SHAM (n = 25) surgeries followed 

those described in Chapter 2. The coordinates for the most rostral bilateral drill site 

(Chapter 2.; Table 2.1., HPC site 1) were modified to A/P: - 2.2 mm, M/L: ± 1.2 mm 

(relative to bregma). All rats recovered from surgery in home cages for 10 d prior to 

contextual fear conditioning. For the behavioural lesion verification study, HPC (n = 5) and 

SHAM rats (n = 6) recovered from surgery for 7 d prior to Morris Water Task (MWT) 

training. 

 

Conditioning and Novel Contexts 

The conditioning and testing contexts were identical to that described in Chapter 2. (Figure 

2.1.). A second chamber in a different testing room served as the novel context for the 

discrimination test (Figure 3.1.). The chamber was triangular with non-transparent black 
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acrylic walls (64 cm x 64 cm x 64 cm) and a removable white acrylic lid (floor-to-ceiling 

height: 30 cm). The standard grid floor made of stainless steel bars was covered with a 

smooth transparent acrylic insert. The novel context was cleaned before and between 

sessions with a dilute persulfate solution (Virkon®; Vetoquinol N.A. Inc., Quebec, Canada).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Photographs of the novel context used for discrimination testing. A) 

Oblique view of the novel context without lid. B) Top view of the novel context without 

lid showing the steel rod floor. 

 

 

 

MWT Apparatus 

  

All sessions were carried out in a circular fiberglass pool (~ 125 cm diameter) situated in a 

testing room equipped with a ceiling-mounted video camera connected to a laptop PC 

running HVS 2100 tracking software (HVS Image Ltd, UK). The pool was filled with water 

(21°C) and made opaque with non-toxic white paint prior to each session. The escape 

platform (13 cm diameter) was located approximately 2 cm below the surface of the water 

in the center of the North-West quadrant for all training sessions. Large posters of 

geometric shapes fixed to the walls of the testing room provided extra-maze visual cues 

that rats could use to navigate and learn the location of the platform. The pool was drained 

and thoroughly cleaned following completion of each session. 

A B 
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Contextual Fear Conditioning, Retention, and Context Discrimination 

The single conditioning session was carried out as a standard procedure for all rats. The 

procedures and parameters were identical to those described in Chapter 2. The contextual 

fear memory retention test was also identical to Chapter 2. The context discrimination test 

consisted of one 5 min exposure in the novel context. The sequence of the tests was counter-

balanced; half of the subjects in each group (HPC, SHAM) received the contextual fear 

memory test first, and half received the context discrimination test first (novel context 

exposure). The tests were separated by 6 h, regardless of which occurred first. Testing took 

place 1, 7, and 15-d after conditioning. For the behavioural lesion verification study, only 

the 15-d train-to-test interval was used and all rats received the context discrimination test 

first, 6 h before the contextual fear memory test. 

 

MWT: Behavioural Lesion Verification  

Rats received 5 consecutive days of MWT training, with 8 swim trials each day for a total 

of 40 swim trials. The starting position for the first trial was randomly assigned to one of 

four cardinal points labelled: N, S, E, and W. The sequence of start points for the 8 swim 

trials varied each day. A trial began with placing a rat in the pool facing the pool wall at 

the assigned start position and ended either with the rat locating the platform and escaping, 

or until 60 s had elapsed without escape. For trials with unsuccessful escapes, rats were led 

to the platform by the experimenter. Rats remained on the platform for 10 s after every trial 

before being placed back in the transport cage. Twenty-four hours following completion of 

MWT training, rats received one 60 s spatial memory probe trial. The probe followed the 

same general procedures as MWT training, except the escape platform was removed and 

all rats began the trial from a novel starting position (SE). 
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Histological and Behavioural Data Analyses  

Rats were sacrificed 24 – 72 h following completion of behavioural testing. All endpoint 

and histological procedures followed those described in Chapter 2. Lesion volumes were 

calculated and analyzed as described in Chapter 2. Freezing data for contextual fear 

conditioning, memory retention, and context discrimination were also captured and 

analyzed as described in Chapter 2. Additionally, a context discrimination index was 

calculated; (Freezing% (shock context)) ÷ (Freezing% (shock context) + Freezing% (novel context)) x 100 

= Discrimination(%). For the behavioural lesion verification MWT sessions, data were 

captured as described above. For training, mean escape latency was analyzed by Group 

(HPC, SHAM) x Trial (1 – 8) within training day, and Group x Day (1 – 5) for the training 

period. For the probe trial, dwell time in the correct quadrant (quadrant 4; the NW location 

of the platform in all training trials) was compared with dwell time in all incorrect quadrants 

[(t quad 4) / (∑ t quad 1,2,3,4 ÷ 4)] *100 = % in correct quadrant] for each rat then analyzed 

by group. All analyses performed in Prism 6©. 

 

Results 

HPC Lesion Volumes 

As illustrated by Table 3.1. and Figure 3.2., extent of hippocampal damage ranged from 

extensive (> 70%) to near-complete (> 95%), with similar means between subgroups of 

HPC rats tested at 1, 7, and 15-d retention intervals; p = 0.56 (ANOVA). Two HPC group 

rats were excluded from all data sets due to insufficient hippocampal damage. 
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Table 3.1. HPC lesion volumes by retention interval. Extent of damage to the HPC 

expressed as % of the entire HPC (X̅ = 90.99% for all HPC rats).  

 

 

 
Figure 3.2. Photomicrographs of two HPC brains with varying extents of extensive 

hippocampal damage. A) Stereotaxic atlas -1.80 mm to -5.88 mm relative to bregma (left 

to right). B) 89.27% damage indicative of an average HPC lesion. C) 98.21% damage 

indicative of a near-complete HPC lesion. 

 

 

 

Contextual Fear Conditioning and Memory Test 

On average, HPC rats exhibited less fear responding compared to SHAM rats on 

Conditioning trials 2 and 3 and both groups froze similarly by the end of conditioning. 

Analysis of Freezing(%) by Group x Trial (1, 2, 3, 4) revealed main effects of: Group, F(1, 

51) = 8.89, p = 0.0033; Trial, F(3, 153) = 234.50, p < 0.0001; and a Group x Trial 

interaction, F(3, 153) = 3.57, p = 0.016 (ANOVA). Sidak post hoc comparisons confirmed 

A 

B 

C 
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between-group differences on Trial 2; SHAM vs. HPC, p = 0.0021, and Trial 3; SHAM vs. 

HPC, p = 0.0066. Magnitude of freezing behaviour during retention tests was similar for 

subgroups of HPC and SHAM rats tested at different retention intervals. There was no 

effect of Group; F(1, 47) = 0.87, p = 0.35, nor Retention interval; F(2, 47) = 1.02, p = 0.37. 

There was a statistically significant Group x Retention interval interaction; F(2, 47) = 3.25, 

p = 0.048. However, Sidak post hoc comparisons did not indicate differences between HPC 

and SHAM subgroups at any Retention interval. Conditioning and retention data are 

displayed in Figure 3.3. (A, B).  

 

Context Discrimination 

Groups of HPC and SHAM rats tested at 1, 7, or 15 d intervals froze more in the 

conditioning context compared to the novel context. Analysis of Freezing(%) in the novel 

context confirmed a main effect of Retention interval; F(2, 47) = 8.61, p = 0.0007, and 

Group x Retention interval interaction; F(2, 47) = 3.39, p = 0.042 (ANOVA). Sidak post 

hoc comparisons revealed a difference the 15 d test, with SHAM rats freezing more than 

HPC rats; p = 0.01 (see Figure 3.4. A, B, C). Context discrimination(%) calculations and 

subsequent ANOVA yielded a main effect of Retention interval; F(2, 47) = 6.00, p = 

0.0048. Analysis with one-sample t tests indicated above chance (50%) discrimination 

performance by HPC rats on 1, 7, and 15 d tests (p = 0.0002; p = 0.002; p = 0.01, 

respectively). The SHAM group discrimination performance was above chance on 1, 15, 

but not 7 d tests (p = 0.003; p = 0.009; p = 0.10, respectively) (Figure 3.4. D). Additional 

planned analyses (Sidak and one-sample t tests) uncovered effects of testing sequence in 

subgroups of SHAM and HPC rats at each retention interval (Figure 3.5. A-F; Figure 3.6.). 
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Figure 3.3. Contextual fear conditioning and memory test. A) Conditioning: HPC rats 

exhibited less freezing than SHAM rats on trial 2 and 3. B) Retention: HPC and SHAM 

rats performed similarly on the context memory tests at 1, 7, and 15-d retention intervals. 

Note that all statistically significant between-group differences are indicated (**). 

 

 
Figure 3.4. Context discrimination by HPC and SHAM group rats. SHAM and HPC 

rats tested 1 d (A), 7 d (B), or 15 d (C) after contextual fear conditioning exhibited context 

discrimination. Compared to HPC rats, SHAM rats froze more in the novel context during 

the 15 d test. D) HPC and SHAM rats demonstrated similar context discrimination ability 

at all train-to-test intervals (dashed line denotes chance level discrimination). 
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 -or- 

 
Figure 3.5. Context discrimination performance displayed by test sequence at 1, 7, 

and 15-day retention intervals. (A, B) 1 d discrimination: SHAM rats discriminated more 

accurately when tested in the novel context first (p = 0.0076). (C, D) 7 d discrimination: 

SHAM rats discriminated between contexts in the novel context-first sequence (p = 

0.0022), but as not accurately in the shock context-first test sequence (p = 0.48). (E, F) 15 

d discrimination: on average, SHAM rats did not exhibit accurate context discrimination in 

either test sequence (p = 0.35, p = 0.16). HPC rats discriminated between shock and novel 

contexts at all retention intervals, regardless of test sequence.  
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Figure 3.6. Context discrimination across retention intervals displayed by test 

sequence. Left panel: SHAM discrimination was not statistically above chance 

(hypothetical mean, 50 %) at any retention interval in the shock-to-novel context test 

sequence. Mean HPC discrimination was significantly greater than chance at all retention 

intervals (1 d, p < 0.0001; 7 d, p = 0.006; 15 d, p = 0.001). Right panel: in the novel-to-

shock context test sequence SHAM discrimination was above chance at all retention 

intervals (1 d, p = 0.0037; 7 d, p = 0.047; 15 d, p = 0.041), as was HPC discrimination (1 

d, p = 0.00015; 7 d, p = 0.0007; 15 d, p = 0.001). 

 

 

Results: Behavioural Lesion Verification  

 

HPC Lesion Volumes 

As shown in Table 3.2., damage to the HPC ranged from extensive (79.41%) to near-

complete (92.72%), and was consistent between rats (n = 5; X̅ = 87.04%; SD = 5.62%). 

 

MWT 

Over five days of MWT training, escape latencies decreased. Statistical analysis of mean 

escape latency by Group (SHAM, HPC) x Training day (1, 2, 3, 4, 5) revealed main effects 

of Group; F(1, 9) = 11.36, p = 0.008, and Training day; F(4, 36) = 52.47, p < 0.0001. 

Between-group post hoc comparisons indicated HPC escape latencies were longer than 
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SHAM latencies on Training day 2 and 3; p = 0.0021; p = 0.045, respectively (Sidak; Figure 

3.7.A). For the probe, dwell time in the correct quadrant (location of the escape platform 

during training) was greater than in incorrect quadrants for SHAM rats; p = 0.001, but not 

HPC rats; p > 0.99, which performed at chance-level (Figure 3.7.B). 

 

Contextual Fear Conditioning and Context Discrimination 

By the end of the conditioning episode, SHAM and HPC rats exhibited similar magnitude 

of fear. ANOVA of Freezing(%) with Group x Trial as factors revealed main effects of: 

Group; F(1, 36) = 71.73, p < 0.0001 and Trial; F(1, 36) = 4.61, p = 0.039. Sidak post hoc 

indicated a between-group difference on Trial 2; SHAM vs. HPC, p = 0.037, with HPC rats 

exhibiting less freezing (Figure 3.7.C). Freezing behaviour in the conditioning context 

during the 15 d memory test was similar between-groups (p = 0.46), as was Freezing% in 

the novel context (p = 0.34). Both groups froze more in the conditioning context than novel 

context (HPC, p < 0.0001; SHAM, p = 0.0002), and exhibited above chance context 

discrimination as confirmed by alpha values from one-sample t tests; HPC, p = 0.0002; 

SHAM, p < 0.0001. 

 

Table 3.2. Hippocampal lesion volumes. 

HPC damage as % of the entire HPC. 
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Figure 3.7. MWT, contextual fear, and context discrimination data from the lesion 

verification experiment. A) MWT training: SHAM and HPC rats decreased escape 

latencies over 5 training days. Between-group differences denoted (** and *). B) MWT 

probe: SHAM rats demonstrated memory for the platform location, but HPC rats did not as 

indicated by equal dwell time across quadrants. C) Contextual fear conditioning: HPC rats 

froze less than SHAM rats on Conditioning trial 2 (*). D) 15-day context discrimination 

test: Both groups expressed accurate context discrimination, freezing more in paired 

(shock) than novel contexts. 

 

 

 

Discussion 

Contemporary views of the HPC assert that precise memories, like those required for 

accurate context discrimination in rats and episodic memory in humans, always depend on 

the HPC (Sekeres et al., 2017; Squire et al., 2015). Over time, highly-detailed memory (i.e., 

context-specific and hippocampal-dependent) is consolidated into semantic memory – a 

gist-like, schematic version supported by non-hippocampal networks (e.g., neocortex). On 
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this view, a schematic version of contextual fear memory can be expressed independently 

of the HPC, but it lacks the precision necessary to support accurate context discrimination 

behaviour. In contrast to traditional consolidation-based theories, a key prediction of the 

transformation hypothesis asserts both versions of memory for a contextual fear 

conditioning episode can be represented in the brain simultaneously by the HPC and non-

hippocampal networks (Sekeres et al., 2017; Winocur, Frankland, Sekeres, Fogel, & 

Moscovitch, 2009; Winocur et al., 2013). It logically follows that when the HPC is 

damaged before learning, only the schematic, less-detailed version of contextual fear 

memory can be acquired and accurate context discriminations should not be possible. The 

present experiments tested these ideas which are common to systems consolidation-based 

theories of memory.  

 We found that near-complete anterograde hippocampal damage did not impair the 

acquisition, maintenance, or behavioural expression of contextual fear memory, nor context 

discrimination at any retention interval (1, 7, or 15 d). Additionally, HPC group rats’ 

discrimination accuracy was unaffected by test sequence. These findings add to work that 

suggests non-hippocampal networks can support context memory with a substantial degree 

of detail and express appropriate memory-guided discriminative behaviours without a 

functional HPC (Lee et al., 2017; Lehmann et al., 2009; Wiltgen et al., 2006). The idea that 

the precision of contextual fear memory and subsequent accuracy of context discrimination 

always depends on the HPC is not supported by these experimental outcomes. Results from 

the behavioural lesion verification experiment confirm that damage to the HPC severely 

disrupted normal function, as profound impairments in the spatial cue version of the MWT 

were evident. We consider the MWT to be a good indicator of complete HPC dysfunction, 

because lesioned rats with as little as 26% residual HPC learn and remember the task 
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normally (Moser, Moser, Forrest, Andersen, & Morris, 1995). It is unlikely the ability to 

discriminate between the paired and novel context exhibited by groups of HPC rats in 

separate experiments was due to spared hippocampal function (means of 90.99% and 

87.04%). Key data from the primary experiment were also replicated, with the HPC group 

demonstrating accurate context discrimination 15 d after the conditioning episode. Taken 

together, the absence of fear generalization in HPC rats must mean that non-hippocampal 

networks acquired, maintained, and expressed memory for the conditioning episode with 

sufficient detail to generate appropriate context-specific behaviours. 

 As confirmed by statistically different mean freezing values, the SHAM subgroups 

discriminated between the shock and novel contexts at 1, 7, and 15 d retention intervals. 

An additional experimental factor was the counterbalanced test sequence at every retention 

interval, as this procedure tested a prediction of the transformation hypothesis. Namely, the 

precision and hippocampal-dependence of context memory can be reestablished with a 

brief reminder at time points associated with generalization and predominance of the gist-

like, non-hippocampal version (Winocur et al., 2009; see also, Jasnow et al. 2016). Indeed, 

the temporal order of the memory tests may have affected context discrimination, but not 

in a manner consistent with a reinstatement of detail in the memory for the shock context. 

Subgroups of SHAM rats tested on the shock-to-novel sequence appeared to exhibit less-

accurate discrimination behaviour, especially at 7 and 15 d retention intervals. At 

minimum, reexposure to the paired context 6 h prior to novel context exposure did not 

improve discrimination performance. This despite minimal cue overlap between the shock 

and novel contexts, thus the putative ease (i.e., low-to-medium ambiguity) of the 

discrimination. In contrast, SHAM rats tested in the novel context first exhibited accurate 

discrimination in both experiments. This pattern of memory-guided behaviour seems 
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incompatible with consolidation theories and the transformation hypothesis (Table 3.3.). 

Winocur and colleagues’ (2013) prediction that a reminder skews subsequent context 

memory retrievals to the detailed representation of the conditioning episode is not 

supported by these data. The opposite trend, quite possibly a confluence of factors or 

different effect, was observed. Notably, systems consolidation-based theories focus solely 

on mnemonic aspects of contextually-conditioned fear, however emotional and 

neuromodulatory mechanisms also contribute to generalized fear (Maren, Phan, & 

Liberzon, 2013).  

 In contrast to the present findings, a few studies in rodents have provided indirect 

support for systems consolidation. In one such study, Wiltgen and colleagues (2010) 

infused an AMPAR antagonist into the dHPC of fear conditioned mice before a memory 

retention test 1 d, or 28 d after learning and observed a reduction of freezing on the recent, 

but not remote tests. In a separate experiment in the same study, mice were implanted with 

chronic dHPC cannulae, then received fear conditioning (context A). Mice were tested for 

conditioned freezing in a novel context (context B) fourteen days later, then separated into 

two groups based on freezing scores in each context (e.g., a discrimination ratio) (Wiltgen 

et al., 2010). One day later mice were tested for conditioned fear in context A after bilateral 

dHPC infusions of AMPAR antagonist or saline. Pharmacological disruption of dHPC 

function reduced freezing in mice that previously discriminated between contexts, whereas 

mice that generalized were unaffected and exhibited high-levels of freezing (Wiltgen et al., 

2010). The findings suggest a selective role of the HPC in detailed contextual memory 

retrieval. In addition, generalized context memories, presumably containing less detail, 

were retrieved without the HPC (Wiltgen et al., 2010). 
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Table 3.3. Predictions of contemporary views of the HPC and present context 

discrimination outcomes in SHAM and HPC rats. Rats with extensive damage to the 

HPC exhibited accurate context discrimination ability at all retention intervals and were 

unaffected by test sequence. On average, SHAM rats exhibited context discrimination 

ability, but accuracy may have been affected by test sequence – the shock-to-novel test 

sequence resulted in context discrimination that was not statistically above chance at all 

retention interval. In contrast, SHAM rats tested with the novel-to-shock sequence 

exhibited accurate discrimination at all retention intervals. Notably, the low-to-medium 

ambiguity of the context discrimination did not result in superior performance by SHAM 

rats.  
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 As discussed at length in Chapter Two, incomplete disruption of hippocampal 

function can result in heterogeneous and unpredictable effects on memory-guided 

behaviours. Rather than invoking a covert systems consolidation process, a more 

parsimonious explanation could involve the decay of learning-induced synaptic 

potentiation in the HPC leading to generalization at 14 d after conditioning, and incomplete 

(dHPC only) inactivation leading to heterogeneous effects on memory tests one day later. 

Previous work in our laboratory illustrates that if the HPC is functional during a contextual 

fear conditioning episode, temporary pharmacological inactivation before retention testing 

can cause unpredictable effects, even on non-discriminative tests (Sparks, Lehmann, & 

Sutherland, 2011)12.             

  Wang and colleagues (2009) conditioned groups of mice using a contextual fear 

discrimination procedure, then performed HPC lesions 1-day, or 42-days later. The authors 

reported no evidence of retrograde amnesia for the conditioned context and intact context 

discrimination at recent and remote time points. It was concluded that the HPC is not always 

required for the expression of detailed context memories. Again, the authors did not 

explicitly describe any lesion quantification procedures, only that the HPC damage was 

near complete (Wang et al., 2009). In this case, the discriminative training procedure; 

repeated experience in the paired and unpaired contexts before HPC damage, may have 

yielded sufficiently-detailed memories for each context in non-hippocampal networks. 

Interestingly, a similar procedure resulted in retrograde amnesia for context discrimination 

in a study by Lee and colleagues (2017) and the opposite result was found using a non-

discriminative learning procedure involving repeated exposures to a paired context, then 

                                                 
12 Notably, Sparks and colleagues (2011) found little evidence of RA when the HPC was 

pharmacologically inactivated 24 h following conditioning.   
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HPC lesions, then a fear generalization test (Lehmann et al., 2009). Lastly, Lee and 

colleagues (2017) also found that rats with extensive anterograde hippocampal damage 

could resolve context discriminations as well as controls under weak conditioning 

parameters. This suggests that non-hippocampal networks encode and retrieve context 

memories more efficiently than purported by others (Fanselow, 2009; Wiltgen et al., 2006).     

          In summary, present findings indicate that neither the longevity, nor the precision of 

contextual memories always depend on the HPC in the anterograde direction. Notably, the 

discrimination used here is considered low-to-medium ambiguity with regard to cue 

overlap. As such, it is unclear why SHAM rats exhibited a trend toward less-accurate 

discrimination over time when compared to HPC rats. One possibility is that the time-

degraded memory trace coupled with hippocampal pattern completion processes resulted 

in an increase in freezing to the novel context over time. Regardless, the novelty of these 

findings rests with the disconfirmed prediction that non-hippocampal networks only 

support memories that are contextually-impoverished.  
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Chapter 4 

Remote Object Discrimination Memory Without the Hippocampus 

Introduction 

The involvement of the HPC in visual discriminations is unresolved despite considerable 

empirical study. Rats with hippocampal damage can resolve two-choice visual 

discriminations in a variety of behavioural tasks (Alvarado & Rudy, 1995; Driscoll, 

Howard, Prusky, Rudy, & Sutherland, 2005; Epp et al., 2008; McDonald & White, 1993; 

Mumby, Astur, Weisend, & Sutherland, 1999; Sutherland, McDonald, Hill, Rudy, 1989). 

When the absence of learning impairments is considered alone, one might conclude the 

HPC is not required for visual discriminations. In contrast, when hippocampal damage 

follows learning, both varying degrees of RA and intact memory have been reported 

(Broadbent, Squire, & Clark, 2007; Driscoll et al., 2005; Epp et al., 2008; Lehmann, Glenn, 

& Mumby, 2007; Mumby et al., 1999; Sara, 1981). Even though rats with and without 

hippocampal damage appear to learn visual discriminations equally, some data suggest the 

memory exhibits rapid decay when supported by non-hippocampal networks (Broadbent et 

al., 2007; Gulbrandsen, Zelinski, Gidyk, McDonald, & Sutherland, 2012; Vnek & Rothblat, 

1996; Wiig et al., 1996). The reliable pattern of spared learning and sporadic occurrence of 

impaired retention for visual discriminations is reminiscent of the dissociable anterograde 

and retrograde effects of hippocampal damage on contextual fear memory (Lee et al., 

2016). This despite fundamental differences in: 1) the learning requirements for each task 

(Gruber & McDonald, 2012; McDonald & Hong, 2013; McDonald et al., 2007); 2) 

differences between the type and underlying neuroanatomy of each memory (Devan, Hong, 

& McDonald, 2011; Mishkin & Petri, 1984; Squire, Knowlton, & Musen, 1993; Squire, 

2004); 3) different views on whether the HPC is required for consolidation and longevity 



 

 63 

of the memory (Lehmann et al., 2007; Sutherland & Lehmann, 2011; Wiltgen & Tanaka, 

2013). 

 In rats, the ability to resolve visual discriminations can be acquired incrementally 

through instrumental stimulus-response (S-R) associative learning (Thorndike, 1912, 

1932). In its basic form, S-R learning requires an association between a specific sensory 

stimulus and an overt behaviour, which is strengthened through repeated reinforcement 

(Devan et al., 2011; Gruber & McDonald, 2012; McDonald & White, 1993; White, 2009; 

Yin & Knowlton, 2006). A well-learned S-R association is defined as procedural (habit) 

memory13 - a type of memory characterized as inflexible, habitual, anoetic, consolidated 

independently of the HPC (Squire et al., 1993; Squire, 1992a; Tulving, 1985), and 

dependent on the dorsolateral striatum (DLS; Devan et al., 2011; Gruber & McDonald, 

2012; McDonald et al., 2017). In contrast, contextual memory requires conjunctive 

stimulus-stimulus (S-S) associations, is defined as explicitly expressed, flexible, and 

dependent on the HPC for consolidation, thus longevity (Hirsh, 1974; O’Reilly & Rudy, 

2001; Rudy, 2009; Squire & Wixted, 2011; Zelikowsky et al., 2012)(see also, Lee et al., 

2016; Sutherland & Lehmann, 2011). Contemporary views assert that memory for visual 

discriminations (S-R habit) and contexts (explicit memory) are fundamentally distinct 

forms of memory supported by different neural networks (Mishkin & Petri, 1984; Squire, 

Knowlton, & Musen, 1993a; Squire, 1992a). Despite its importance, this framework cannot 

explain observations of retrograde amnesia for visual discriminations after hippocampal 

                                                 
13 Procedural memory is non-declarative and is acquired incrementally as function of 

reinforcement. Unlike declarative memory, procedural memory is expressed implicitly, 

habitual, or reflexive, rather than cognitive and flexible in nature. Textbook accounts of 

memory belie the complexity of S-R behaviours (Devan et al., 2011; Gruber & McDonald, 

2012; McDonald et al., 2017).  
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damage (Broadbent et al., 2007; Driscoll et al., 2005; Epp et al., 2008). Despite strong 

theoretical consideration to the contrary, the weight of empirical evidence collectively 

indicates that this form of S-R learning may not be independent of the hippocampus.  

  A central feature of instrumental S-R learning is that it proceeds incrementally – 

often requiring 60 – 200 (or more) trials distributed over several days (or weeks) to achieve 

accurate memory-guided performance (Broadbent et al., 2007; Driscoll et al., 2005; Epp et 

al., 2008; McDonald, King, & Hong, 2001; Mumby et al., 1999). The iterative and 

distributed learning does not result in memory that invariably survives HPC damage 

(Broadbent et al., 2007; Driscoll et al., 2005; Epp et al., 2008). Perhaps counterintuitively, 

if contextual fear conditioning episodes are distributed in a similar manner (e.g., 11 

episodes over 6 days), or an established memory for one conditioning episode is repeatedly 

recalled (10 brief reminders over 5 days), both cases result in preserved behavioural 

expression of memory after hippocampal damage (i.e., no RA) (Lehmann & McNamara, 

2011; Lehmann et al., 2009). The general idea here is that memory strength is modulated 

by repetition/rehearsal, and increased memory strength is correlated with increased 

longevity of memory (Ebbinghaus, 1885). Whether memory is consolidated and 

strengthened via putative systems-level mechanisms involving the HPC (McClelland et al., 

1995; Skelin et al., 2018), or an S-R habit is strengthened by distributed learning over many 

trials like in visual discrimination tasks, contemporary views predict either case will result 

in memory that is less-susceptible to forgetting and hippocampal damage (Axmacher & 

Rasch, 2017). Again, this is not always the case and no consensus on the role of the HPC 

in visual discriminations exists.  

 Among studies that investigated hippocampal involvement in visual 

discriminations, nearly all employed substantially different experimental designs and 
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procedures. For example, some studies utilized concurrent, serial, and/or interleaved 

training, testing, and retraining procedures on 3 – 5 pairwise object discriminations 

(Lehmann et al., 2007; Mumby et al., 1999). These procedures might preclude conclusions 

about what was learned, remembered, forgotten, or relearned (Lehmann et al., 2007). Some 

studies did not systematically quantify or report extent of hippocampal damage (Mumby et 

al., 1999; Wible, Shiber, & Olton, 1992), or only damaged the dHPC (Vnek & Rothblat, 

1996) (see also, Chapter 2.) A few studies did not adequately control for the possibility of 

multiple solutions to object discrimination problems (i.e., olfaction, behavioural strategy) 

(Broadbent et al., 2007; Mumby et al., 1999; Vnek & Rothblat, 1996), or employed low 

learning criterion (e.g., 80%, Broadbent et al. 2007; Lehmann et al., 2007). Some reports 

contain self-inconsistent data that obscures any one conclusion14 (Broadbent et al., 2007; 

Mumby et al., 1999). Procedural and interpretive issues aside, one trend has emerged from 

visual discrimination studies in the rat: picture discriminations and object discriminations 

do not exhibit identical properties in the presence and absence of the HPC. Whereas most 

reported cases of RA involve pictures or other simple visual stimuli (Driscoll et al., 2005; 

Epp et al., 2008; Sara, 1981), cases of intact memory, variable RA, and memory decay, 

involve objects as the discriminative memoranda (Broadbent et al., 2007; Lehmann, et al., 

2007; Mumby et al., 1999; Vnek & Rothblat, 1996). To summarize, uncertainty about the 

HPC and visual discriminations might be due to findings from object discrimination 

studies, rather than visual discrimination studies involving more simple stimuli like 

pictures. 

                                                 
14 Data from Broadbent (2007) are more representative of a minor retrograde memory 

impairment than RA for a preoperative object discrimination. Data from Mumby (1999) 

illustrate varying degrees of retrograde impairments, ranging from complete RA to intact 

memory, and substantial relearning on various object discrimination problems. 
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 Following these ideas, it is prudent to revisit the question of whether the longevity 

of memory for an object discrimination differs when the HPC is intact versus non-

functional during learning. To test this question rats with and without extensive 

hippocampal damage were trained on an instrumental two-choice object discrimination 

task, then tested for memory retention 3, 10, or 30 d later. The retention intervals were 

chosen based on previous demonstrations of minor memory decay ~ 14 d after learning 

(Broadbent et al., 2007) and profound memory decay after ~ 20 d (Vnek & Rothblat, 1996) 

in rats with damage to the HPC. To my knowledge, the 30 d retention interval used here 

was among the longest tested in the rat. Procedures from previous object discrimination 

studies which might obscure experimental outcomes were addressed: 1) the extent of HPC 

damage was maximized to lessen the chance of intact hippocampal function at the time of 

learning; 2) equivalent amounts of training on one object discrimination problem was given 

to all rats to minimize individual effects of under-training, over-training, and 

concurrent/sequential training on multiple discriminations; 3) a stringent learning criterion 

was set to eliminate the use of behavioural strategy (e.g., win-shift, etc.); 4) a single-session 

memory test was used at each retention interval, including a first-trial success measure to 

eliminate potential relearning confounds; 5) olfactory cues were eliminated before every 

trial. These adaptations to commonly-used procedures were implemented to reduce the 

possibility of alternative solutions to the discrimination and facilitate unambiguous 

conclusions about the longevity of object discriminations in rats with and without the HPC. 
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Methods 

Subjects 

Forty-eight male Long–Evans hooded rats (Charles River, NC, USA), weighing 350 - 500 

g at the time of surgery were housed in pairs in standard shoe-box acrylic cages (Allentown, 

Inc., NJ, USA) in the University of Lethbridge rodent vivarium (20°C, 50% relative 

humidity). A 12 h light/dark schedule was maintained, with lights on at 7:30 am daily. All 

experimental work occurred during the 12 h light period. Access to water was ad libitum 

upon arrival until endpoint. Access to food was ad libitum until after the surgical recovery 

period, at which time food was controlled by the experimenter. Rats were handled for 

several minutes each day for 5 d prior to surgery. All experimental procedures adhered to 

CCAC policy and were approved by the University of Lethbridge Animal Welfare 

Committee. 

 

Surgeries 

All procedures for 16-site HPC lesions and SHAM surgeries were identical to those 

employed in Chapter 2., except the A/P coordinate for the most rostral bilateral drill site 

(HPC site 1) was changed from -2.6 mm to -2.4 mm relative to bregma (Chapter 2., 

Methods section; Table 2.1. and Figure 2.1.B.). All animals recovered from surgery in 

home cages for 10 d prior to commencement of food restriction and visual discrimination 

training. 

 

Food Restriction 

Following the surgical recovery period, rats received food once a day (~ 4.0 g rat chow / 

100 g bodyweight) until weights reached ~ 95% of free-feeding values. The food reward 
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(sweetened cereal; President’s Choice® Toasted Oat Os, Loblaw Companies Ltd, Canada) 

was introduced to rats in their home cages during the same 3 d period. Food restriction 

continued throughout the experiment until endpoint, with bodyweights monitored daily and 

allowed to gradually increase by approximately 5 g each week during the various intervals 

between training and testing. No sweetened cereal was given in home cages once training 

began. Rats received their daily allotment of food between 5:30 pm and 7:30 pm, which 

corresponded to 12 to 14 h before daily visual discrimination training sessions. Food 

restriction procedures were carefully designed to ensure motivation at the time of 

training/testing rather than to drastically reduce bodyweight. 

 

Dry Land Visual Discrimination Task 

The instrumental object discrimination task could be solved independent of the spatial 

location of the objects, other sensory cues (e.g., olfaction), and information about the 

training context itself. Simply, rats had to discriminate between two objects in a rectangular 

arena. Each object was set on a reward dish and a reward was delivered when the correct 

object was moved from its position. Displacement of one object was always rewarded (S+), 

while displacement of the other was never rewarded (S-), regardless of which dish the 

objects were covering.  

 

Apparatus 

Pre-training, training, and testing took place in a custom-designed arena constructed from 

corrugated white plastic, with inner dimensions measuring; 90 cm x 60 cm x 45 cm. The 

two-layered floor consisted of a removable insert resting atop the arena ultrastructure. The 

removable insert had two circular depressions cut into it, which secured reward dishes (2.54 
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cm diameter) in place during trials, and allowed the dishes to be removed and cleaned 

between trials. The dishes were designed so objects could be placed on them by the 

experimenter before trials and displaced by rats during trials. The back wall of the box 

housed plastic tubes (2 cm diameter) positioned for manual delivery of reward to the dishes. 

A divider (15 cm) protruded from the center point of the back wall at a 90° angle to deter 

rats from displacing both objects simultaneously (Figure 4.1.). The arena and its features 

were adapted from various sources (Broadbent et al., 2007; Epp et al., 2008; Mumby et al., 

1999). 

 

 
 

Figure 4.1. Simple 2-D schematic and still-frame capture of the dry land visual 

discrimination task arena. (Left) Line drawing of the dry land visual discrimination arena, 

with reward dishes “A” and “B” and start position labelled. (Right) Picture of the arena 

with the objects balanced on dishes before a trial (rectangle on A; cylinder on B). 

 

 

 

Phase I (pre-training/shaping) 

 

Each rat was exposed to the arena prior to commencement of visual discrimination training. 

Daily pre-training sessions lasted 10 min and were designed to gradually shape rats’ 

behaviour in a uniform manner. On day one rats were free to explore the arena, objects and 
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reward dishes. Food reward was available in the dishes and throughout the box. The objects 

were not covering the food dishes. All rats explored the arena, reward dishes, objects, and 

consumed food reward. On day two the reward was only available in the dishes and the 

objects were not covering the dishes. All rats consumed reward from both dishes. On the 

final day of pre-training the reward was in the dishes (one piece in each dish) with the 

objects set on the dishes. When rats moved an object to access and consume a reward, the 

reward and object were replaced by the experimenter. All rats moved objects off the dishes 

repeatedly to access reward. All rats learned the general requirements of the task by the end 

of Phase I (i.e., remove an object to receive a reward).   

 

Phase II (training) 

Rats received 10 trials a day until 2 consecutive days of 90% correct were achieved. Pairs 

of rats were brought to the testing room in a shoe box cage and received trials sequentially, 

in an alternating manner. Correct and incorrect choices were recorded manually by the 

experimenter for each trial. The correct object (S+) and incorrect object (S-) were 

counterbalanced, so half of the HPC and SHAM rats learned each possible contingency 

(i.e., cylinder S+, rectangle S-; rectangle S+, cylinder S-). The position (dish A, or B) was 

varied pseudo-randomly, such that win-stay, or lose-switch behavioural strategies could not 

facilitate the 90% correct criterion. When employing either strategy the maximum correct% 

using an ABBABAABAB, or BAABABBABA design is 80% if a correct first choice is 

made and 70% if an incorrect first choice is made. Unlike in pre-training, the reward was 

not delivered until the correct object (S+) was displaced; therefore, rats could not simply 

locate the reward via olfaction and remove the object to access it. When a correct choice 

was made, the rat consumed the reward before being removed from the arena. When an 
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incorrect choice was made, no reward was delivered and the rat was removed from the 

arena. Thus, a trial began with the rat being placed in the start position within the arena and 

ended once the correct object had been displaced and the reward was delivered and 

consumed, or the incorrect object had been displaced and no reward was delivered (Figure 

4.2.). Critically, the removable floor, walls, reward dishes, and objects were thoroughly 

cleaned with dilute quat-sanitizer between every trial to further ensure rats could not use 

olfaction to solve the discrimination. The inter-trial interval was variable, but estimated to 

be 2 or 3 minutes due to between-trial cleaning procedures. To my knowledge, the thorough 

cleaning of the arena, objects, and reward dishes before every trial is unique to this study, 

as all others referenced here reported cleaning between sessions, or did not specify cleaning 

procedures.  

 

Phase III (retention test) 

 

Rats were tested 3, 10, or 30 d after the final training session. The procedures for retention 

testing were identical to those in Phase II, with each rat receiving 10 trials on its previously-

learned object discrimination. All rats remained on the food restriction schedule (one food 

allotment each day, 12 – 14 h before normal testing time) during their respective train-to-

test intervals, with bodyweights and adjusted food allotments recorded twice daily to ensure 

uniformity of experimental methods and health of animals.     
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Figure 4.2. Still-frame video captures of a rat performing two object discrimination 

training trials (Phase II). A) Rat approaching incorrect object (rectangle S-). B) Rat 

displacing incorrect object (incorrect trial). C) Rat approaching correct object (cylinder 

S+); D) Rat displacing correct object (correct trial). 

 

 

 

Endpoint, Histology, and Data Analysis 

Animals were sacrificed via overdose of sodium pentobarbital (~ 300 mg/kg, i.p.) and 

perfused transcardially with 0.9% PBS, then 4% PFA in 0.9% 0.01 M PBS for tissue 

fixation. Brains were extracted and post-fixed for at least 24 h in fixative, then transferred 

to a cryoprotecting solution for at least 48 h (30% sucrose in 0.9% 0.01 M PBS and 0.02% 

sodium azide). Cryoprotected brains were frozen and sectioned in the coronal plane (40 

μm) with every fourth section throughout the entire HPC mounted on microscope slides. 

A B 

C D 
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Sections were stained with cresyl violet and slides cover-slipped for quantification of HPC 

volumes.  

 

Behavioural Data and HPC Lesion Volumes 

Manually-recorded training trial data were expressed as Correct% for each session 

(#correct trials / #total trials x 100 = Correct%). Phase II training scores were analyzed 

using two-way ANOVA (Group; SHAM, HPC) with repeated measures (Training day). 

Phase III retention test scores were analyzed with two-way ANOVA (Group x Retention 

interval). All analyses performed in Prism 6®. Statistical analysis was not performed on the 

Phase III first trial success measure. The volume of intact HPC principle cell fields was 

quantified stereologically as described in Chapter 2. The same equipment and methods 

were used. All calculations that were performed to yield HPC% damage values were also 

identical to Chapter 2., except fewer SHAM brains (n = 5) were quantified to calculate the 

mean intact HPC volume.  

 

Results 

Object Discrimination Training and Memory Retention 

As shown in Figure 4.3.A, SHAM and HPC rats learned the object discrimination equally. 

This was confirmed though analysis of Group (SHAM, HPC) by Training day (1, 2, 3, 4, 

5, 6, 7), which revealed a main effect of Training day; F(6, 276) = 364.20, p < 0.0001. 

Neither a main effect of Group (F(1, 46) = 0.1706, p = 0.6815), nor an interaction was 

present (F(6, 276) = 1.406, p = 0.2123). For retention tests, a main effect of Retention 

interval (3, 10, 30 d) was found (F(2, 42) = 4.054, p = 0.025). Like the discrimination 

learning data, neither an effect of Group, nor an interaction was present (F(1, 42) = 0.1386, 
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p = 0.7115; F(2, 42) = 0.6584, p = 0.5229, respectively). Analysis of Retention interval 

data (post-hoc; Tukey) indicated a difference in mean Correct% between the 3 d and 30 d 

Retention intervals, p = 0.024; Figure 3.3.B. First trial success for individual SHAM and 

HPC rats indicated that mean Correct% values obtained during 10-trial retention sessions 

were an accurate measure of memory rather than relearning (Table 3.1.).     

  

 
Figure 4.3. Object discrimination training and memory retention tests. A) Training: 

HPC and SHAM groups learned to discriminate S+ from S- to > 90 % accuracy by day 7. 

B) Retention tests: performance of HPC and SHAM groups was similar at each train-to-

test interval. There was a small, but statistically significant decrease in memory 

performance exhibited by both groups between 3 and 30 d retention tests (HPC, 91.25 % - 

85.00 %; SHAM, 90.00 % - 81.25 %). 

 

 

 

HPC lesion volumes 

As shown in Table 4.2., damage to the entire HPC ranged from extensive to near-complete 

(72.53% - 93.75%). Analysis of HPC % damage indicated similar means between retention 

intervals; p = 0.36 (ANOVA). Figure 4.4. (B - C) below shows two examples of extensive 

and selective HPC damage which are representative of typical (i.e., mean) and near-

complete (largest) HPC lesion volumes corresponding to values in Table 4.2.  
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Table 4.1. First-trial memory probe: discrete measure of object discrimination 

retention for SHAM and HPC rats. Each green check denotes a correct first-trial choice 

for an individual rat. Each red X denotes an incorrect first-trial choice for an individual rat. 

Each retention interval; 3 d, 10 d, and 30 d contained 8 HPC and 8 SHAM rats. For 

example: all 8 SHAM rats chose the correct object on the first trial on the 3 d retention test 

and 7 of 8 HPC rats chose correctly.   

 

 

 

Table 4.2. HPC lesion volumes by retention interval. Extent of damage to the HPC 

expressed as % of the entire HPC (83.92% mean for all HPC rats). 

 
 

 

 

 
Figure 4.4. Photomicrographs of two HPC lesion brains with extensive damage. A) 

Stereotaxic atlas -1.80 mm to -5.88 mm relative to bregma (left to right). B) 83.25% damage 

indicative of a typical extensive HPC lesion. C) 91.74% damage indicative of an near-

maximum HPC lesion. 
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Discussion 

The present study found no detectable differences between intact and HPC damaged rats in 

visual discrimination learning (Driscoll et al., 2005; Epp et al., 2008; Lehmann et al., 2007; 

Mumby et al., 1999; but see, Mumby, Pinel, Kornecook, Shen, & Redila, 1995). 

Collectively, these data indicate that if the HPC is not functional during learning, non-

hippocampal networks support visual discriminations, apparently normally. Although other 

networks support learning when the HPC is damaged, this does not preclude the possibility 

that hippocampal function is required for certain properties of the memory. Our study 

investigated this possibility. Namely, whether the longevity of memory for an object 

discrimination is affected when the HPC is nonfunctional at the time of learning. Rats 

exhibited intact behavioural expression of memory at short and intermediate retention 

intervals (3 and 10 d), and minor memory decay at 30 d (Figure 4.2.B). Importantly, HPC 

rats performed similarly to SHAM rats on all object discrimination tests, including the first 

trial success measure (Table 4.1.), a highly-sensitive measure that eliminates the possibility 

of conflating relearning with memory retention. The intact behavioural expression of 

memory exhibited by HPC rats, even after a long delay, unambiguously demonstrates that 

non-hippocampal networks encode, maintain, and retrieve memory for object 

discriminations when the HPC is nonfunctional at the time of learning. Taken at face value, 

the findings support fundamental ideas on the organization of learning and memory in the 

mammalian brain (Squire et al., 1993a; Squire, 1992a; White & McDonald, 2002; Zola-

Morgan & Squire, 1993) – the key structures and networks that support instrumental visual 

discrimination learning and resultant S-R habits are anatomically and functionally 

independent of those required for explicit memory expression. However, this conclusion 
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becomes less coherent when present findings are discussed within the larger context of the 

visual discrimination experimental literature.      

Reconciling examples of RA for picture discriminations after HPC damage 

(Driscoll et al., 2005; Epp et al., 2008) with varying degrees of intact object discriminations 

(this study, Lehmann et al., 2007; Mumby et al. 1999) is challenging because the findings 

belie a single explanation that is consistent with contemporary views of memory. As 

described earlier, the crux of the problem lies in the consistent lack of anterograde 

impairments and sporadic occurrence and variable extent of RA for visual discriminations 

– this is also the case for other memory-guided behaviours (McDonald et al., 2017; Lee et 

al., 2016; Sutherland & Lehmann, 2011; Sutherland et al., 2010). To reiterate, memory 

impairments caused by perturbations of normal brain function are typically attributed to a 

priori differences in: memory type, age/consolidation, or strength (Axmacher & Rasch, 

2017; McGaugh, 1999; Müller & Pilzecker, 1900; Ribot, 1881; Squire & Wixted, 2011), 

and memory content/detail (Rudy, 2009; Wiltgen & Tanaka, 2013; Winocur, Moscovitch, 

et al., 2013). Just as normal object discrimination behaviour following pre- and post-

learning hippocampal damage suggests the memory can be maintained, and expressed 

independent of the HPC (present study; Lehmann et al., 2007; Mumby et al., 1999), 

demonstrations of RA for 2-D picture discriminations after HPC damage suggest the 

opposite (Driscoll et al., 2005; Epp et al., 2008). 

Consider two known cases of intact object discrimination after HPC damage 

(Lehmann, et al., 2007; Mumby et al., 1999). Mumby and colleagues (1999) trained rats to 

solve five pairwise object discriminations, one problem at a time sequentially. Learning to 

criterion (85 %) for each problem varied from 60 – 140 trials and each discrimination 

problem was trained at a planned time point prior to HPC or SHAM surgery (1 – 13 weeks, 
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Mumby et al. 1999). Despite extensive pre-surgical training, it was found that both HPC 

and control rats required many trials (35 to > 40) over more than one day to regain pre-

surgical performance on the 13-week object discrimination (Mumby et al., 1999). In fact, 

performance on the first five trials was chance-level (50%), indicating that the memory had 

decayed significantly (Mumby et al., 1999). Performance on the other four object 

discriminations was better-than-chance during the first five trials. The extensive pre-

surgical training, coupled with many post-surgical trials on several memory tests likely 

revealed intact memory, but also memory decay, re-learning, and possibly memory 

interference (Lehmann et al., 2007). Most importantly, HPC rats performed similarly to 

controls on all memory tests, which implies hippocampal damage did not differentially 

affect performance (Mumby et al., 1999).  

Lehmann and colleagues (2007) employed a more constrained learning paradigm 

involving two concurrent pairwise object discrimination problems acquired in 65 -79 trials 

(each) in one day 72 h prior to extensive hippocampal damage (~ 75%) or SHAM surgery. 

The same rats learned another object discrimination and a reversal of one of the 72 h 

discriminations 1 h prior to surgery. Despite receiving massed, concurrent, and 

considerably less training compared to the Mumby (1999) study, HPC rats performed 

similarly to controls on all preoperative discrimination problems, averaging ~ 80 % correct 

choices on 20 trials over 2 days under a non-rewarded testing procedure that was 

interleaved with rewarded trials on a new discrimination (Lehmann, et al., 2007). Taken 

together with Mumby and colleagues (1999), these findings suggest the following learning 

features did not differentially affect object discrimination performance after HPC damage: 

massed versus distributed learning, number of learning trials, learning-to-surgery interval 
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(1 h – 13 weeks)15, or concurrent versus sequential learning of multiple object 

discriminations.  

Now consider cases of RA for picture discriminations after damage to the HPC 

(Driscoll et al., 2005; Epp et al., 2008). Both studies required rats to resolve pairwise picture 

discriminations in a trapezoidal pool by swimming toward the correct picture and escape 

via a submerged platform. Intact rats learned to discriminate between 2-D images in a range 

of 90 – 200 trials and were assigned to HPC lesion or SHAM conditions. During retention 

testing HPC rats exhibited profound RA for the preoperative picture discriminations 

(Driscoll et al., 2005; Epp et al., 2008). Importantly, these studies revealed that nethier the 

number of learning trials, nor the learning-to-surgery interval affected memory retention, 

as RA was profound16 (Driscoll et al. 2005; Epp et al., 2008). The findings suggest the HPC 

is required for recall of picture discriminations if present during learning – the opposite of 

object discriminations (Lehmann et al., 2007; Mumby et al., 1999). Barring the addition of 

ad hoc hypotheses, it is unclear if any view on memory and the HPC can account for 

findings from object and picture discrimination studies (but see, Lee et al., 2016; McDonald 

et al., 2017) – findings that might be better explained in terms of the mnemonic 

requirements and features of each task.  

Indeed, one explanation for the different  effects of hippocampal damage on object 

and picture discriminations involves the tasks themselves. It is unclear why visual 

discriminations involving substantially different memoranda (S) and overt behavioural 

                                                 
15 Mumby and colleagues (1999) found significant deficits for the object discrimination 

learned 13 weeks prior to surgery in HPC rats. This was likely due to memory decay rather 

than RA, as SHAM rats exhibited the same decrease in performance. 
16 Driscoll and colleagues (2005) observed intact memory performance for an over-trained 

picture discrimination problem after HPC damage. Rats were trained for ~ 200 trials over 

nine days and the memory survived HPC damage.     
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responses (R) would be expected to result in learned associations and memories that exhibit 

identical properties under the umbrella terms; visual discriminations or S-R habits. For 

example, brightness-shock avoidance associations (S (black/white) – R (run, escape)) (Sara, 1981), 

picture-escape associations (S (2-D pictures) – R (swim/approach, escape)) (Driscoll et al., 2005; Epp et 

al., 2008; Gulbrandsen, et al. 2012), and object-reward associations (S (3-D objects) – R 

(approach/displace, reward)) (Broadbent et al., 2007; Lehmann, et al., 2007; Mumby et al., 1999; 

Vnek & Rothblat, 1996), likely involve memory representations of varying complexity 

(Devan et al., 2011; Gruber & McDonald, 2012; McDonald et al., 2017). Following this 

idea, a possible relationship exists between cases of RA for simple visual memoranda and 

instrumental responses (e.g., picture-approach/escape) – and the inverse (no RA, or minor 

retention deficits) for more complex memoranda and responses (3-D objects-

approach/displace/reward). The empirical evidence suggests not all S-R associations 

exhibit the same susceptibility to hippocampal damage and the difference might be related 

to the available compliment of sensory cues (e.g., polymodal vs. unimodal), the complexity 

of the behavioural response, and the associative structure that results (e.g., simple S-R, 

Thorndike, 1912; complex S-S, Tolman, 1948; and "higher-order" (S-S)-R, Devan et al. 

2011; McDonald et al. 2017 ). At minimum, it seems that visual discrimination memories 

involving pictures and objects exhibit different properties in the presence and absence of 

the HPC. The differences appear less-related to discrete learning parameters, like number 

of learning trials or massed/distributed training sessions, than to the task itself. Contrary to 

contemporary views, as the complexity of the associations increase, the retrograde amnestic 

effects of HPC damage appear less severe.  

 The general perspective offered here is in the absence of hippocampal function, the 

properties of learning and memory are not necessarily identical for all tasks, including those 
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assumed to involve a defined type of learning and memory. Stated another way, greater 

recruitment of distributed sensory and associative regions during learning – i.e., greater 

depth of information processing requiring greater representational complexity – depending 

on the task, might result in memory after few iterations in the anterograde direction (HPC 

damage before learning). This appears to be the case for object discriminations as compared 

to picture discriminations, and contextual fear memory (Chapter 2), which require the 

integration of polymodal stimuli during learning. To my knowledge, no peer-reviewed 

study to date has employed an exclusively anterograde design involving picture 

discriminations. All known studies to investigate picture discrimination learning in the 

absence of the HPC involved pre-surgical learning, HPC damage, post-surgical testing, 

then relearning (Driscoll et al., 2005; Epp et al., 2008). However, some findings from 

picture discrimination studies are consistent with the ideas presented here. For example, 

the number of trials required for picture discriminations to become resistant to HPC damage 

and RA is much larger (~ 200 trials over 9 days) (Driscoll et al., 2005) than for object 

discriminations (~ 80 in one day) (Lehmann et al., 2007). Whereas preoperative object 

discriminations require few trials to be relearned in cases of incomplete RA or memory 

decay (Mumby et al., 1999), some data suggest picture discriminations are relearned more 

slowly (Epp et al., 2008). 

 In summary, rats with extensive to near-complete hippocampal damage learned 

object discriminations and maintained the memory for 30 d. When interpreted in the larger 

context of the visual discrimination literature the findings suggest: 1) visual discriminations 

involving objects and pictures exhibit different properties in rats with HPC damage; 2) task-

related representational complexity might predict the properties of memory for visual 

discriminations better than taxonomic (S-R habit), or neuroanatomical classifications (HPC 
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dependent/independent); 3) the HPC is not always required for the behavioural expression 

of memory-guided discriminations involving polymodal stimuli, even after long train-to-

test intervals. Further study is clearly needed to determine the boundary conditions of 

learning and memory for visual discriminations across tasks, in both the anterograde and 

retrograde direction, in the presence and absence of hippocampal function. Moreover, 

continued investigation into the mnemonic capacities of non-hippocampal networks may 

help resolve recurrent theoretical questions about memory consolidation, its dependence 

on the HPC, and its importance to the longevity of memory.  
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Chapter 5 

“Depending on who you ask, either the hippocampus does everything, or it does nothing.” 

–Roger Jardin (personal communication) 

Conclusions 

The goal of my thesis was to examine the properties of long-term memory in rats with and 

without a functional HPC. The present experiments demonstrate that rats with extensive 

hippocampal damage acquired long-term memories with sufficient detail and stability to 

facilitate appropriate memory-guided behaviours over time. These findings are difficult to 

reconcile with certain views of memory and hippocampus, and systems-level consolidation 

in particular, which predict that the longevity and precision of long-term memory both 

require the HPC. My intent is not to ignore, or minimize the many known hippocampal 

contributions to learning and memory, including within allocentric spatial, temporal, and 

relational domains (Lee et al., 2016). Rather, I offer the perspective that observations of 

anterograde amnesia after hippocampal damage are best explained by the absence of unique 

hippocampal information processing functions, not dysfunctional systems consolidation 

mechanisms. Similarly, when a memory can be acquired and expressed by rats with 

hippocampal damage, it does not mean the HPC is uninvolved in the memory when it is 

present, nor does it mean memories are equivalent in the presence and absence of the HPC. 

Instead, it reveals that cortical networks can acquire and maintain similar information about 

experiences and generate task-appropriate memory-guided behaviours under a variety of 

conditions not predicted by systems consolidation-based theories of memory. The 

remainder of this chapter focuses on what I believe are the main conclusions to be gleaned 

from this work when interpreted through an emerging view on the organization of learning 

and memory. 
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Heterarchic Reinstatement Theory 

Present findings provide indirect support for an emerging view of memory organization. 

Members of our group recently developed a theory – Heterarchic Reinstatement Theory 

(HR), which posits a dynamic hierarchical organization of long-term memory networks to 

account for the anterograde/retrograde dissociation across tasks following hippocampal 

damage (Lee et al., 2016; see also, McDonald et al., 2017). The basic assumption of HR is 

that high-order associative regions which receive convergent afferents and send distributed 

efferents to many regions (often reciprocally) strongly influence memory network 

dynamics and behavioural output (Lee et al., 2016). Such central non-hippocampal 

(neocortical) regions likely include: retrosplenial cortex (Cowansage et al., 2014; 

Gulbrandsen, 2015), the rhinal cortices (Eacott, 1998; Eacott & Norman, 2004) and 

parahippocampal regions in general (McDonald et al., 2017).   

Like dual-system hierarchical views in which the HPC is situated conceptually at 

the apex of a pyramid (Marr, 1971; McClelland et al., 1995; McNaughton, 2010), HR too 

assumes global memory network activity is strongly-influence by top-down cortico-

hippocampal output. When the HPC is functional during a learning episode, it acquires a 

code for the later reinstatement of the cortical activity state which corresponds to the 

experience (e.g., Teyler & DiScenna, 1986). Importantly, with very limited experience, top-

down reinstatement of the entire distributed cortical representation requires the 

hippocampal code, regardless of the content of the memory (Lee et al., 2016). However, as 

experiential exposure increases in one or more dimension (e.g., Lewandowsky, Ecker, 

Farrell, & Brown, 2012), a greater proportion of the representational heterarchy necessarily 

becomes engaged. This may serve to increase the availability of multiple cognitive 

representations and their viability with regard to producing task-appropriate behaviours. 
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Subsequently and depending on task demands, the hippocampal code may no longer be 

required for top-down reinstatement of the relevant activity state and the generation of 

appropriate behaviours (Lee et al., 2016). 

This model may account for the presence or absence of amnesia after hippocampal 

damage across learning and memory tasks better than poorly-understood systems 

consolidation mechanisms. For example, HR can explain the occurrence of retrograde 

amnesia for incrementally-acquired memory-guided behaviours involving unimodal 

sensory features (Driscoll et al., 2005; Epp et al., 2008); and similarly distributed 

experience supporting rich contextual memories and polymodal object discriminations that 

survive hippocampal damage (Lehmann et al., 2009; Lehmann et al., 2007; Lehmann & 

McNamara, 2011). Additionally, HR may explain anomalous cases of spared remote 

contextual fear memory after hippocampal damage better than systems consolidation-based 

accounts – as most of these studies involved a mixed conditioning paradigm (15 tone + 

shock pairings followed by context tests) and therefore greater engagement of non-

hippocampal networks (e.g., Anagnostaras et al., 1999; Kim & Fanselow, 1992; Winocur, 

Sekeres, et al., 2013; but see, Sparks et al., 2013). For the heterarchic model to be valid, it 

must be applicable to cases of hippocampal damage before learning as well, thus the 

experimental outcomes of this thesis. I uncovered few if any differences in the maintenance 

and expression of memory-guided behaviours in the presence or absence of the HPC, which 

aligns well with the central framework of HR. 

 

Non-Hippocampal Networks Support Stable Memories 

Rats with hippocampal damage demonstated normal memory longevity in all present 

experiments. There was no evidence of rapid memory decay, nor a progressive impairment 
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in discriminative behaviour that could be attributed to lesion condition. In fact, 

hippocampal damage was not predictive of performance on any test; except on the MWT 

probe, which was planned and expected in order to verify hippocampal dysfunction. This 

leads me to two general conclusions: 1) hippocampal function is not always an essential 

feature of memory longevity; 2) anterograde damage to the rat HPC does not interrupt 

memory consolidation in other structures. It is clear from my experiments that asssociative 

structures outside the HPC possess intrinsic memory consolidation mechanisms (see, 

McDonald & Hong, 2013). Moreover, when rats without a HPC acquire memories, they 

appear equally persistent when compared to the version expressed by intact rats. This is 

incompatable with commonly-purported claims that memory exhibits rapid decay when 

supported by non-hippocampal networks due to impaired systems consolidation 

mechanisms (Squire & Wixted, 2011; Zelikowsky et al., 2012). It is more likely that 

anterograde amnesia after hippocampal damage in rats is due to the absence of information 

processing capabilities unique to the HPC. That is, there are a subset of cognitive processes 

that non-hippocampal networks may be incapable of supporting, even with extended 

training (see, Lee et al., 2016). 

  

Why Do Rats With Hippocampal Damage Condition More Slowly?  

Rats with damage to the HPC reliably exhibit less fear very early in conditioning compared 

to intact rats. I find this to be one of the most interesting results from this thesis. The deficit 

is transient and is no longer apparent after the second or third  shock, but it occurred in 

every conditioning cohort in the present experiments (Figure 2.3.A., Figure 3.2.A., Figure 

3.7.C.) and amazingly many others (Fanselow, 2009; Wiltgen et al., 2006; Zelikowsky et 

al., 2013, 2012). As discussed in Chapter 2, the reduction in conditioned responding is 



 

 87 

commonly attributed to a difference in associative learning rates between the HPC and  

non-hippocampal networks. Alternatively, I propose that the difference in the magnitude 

of freezing reflects the time it takes lower levels of the heterarchy to form a contextual 

representation of the conditioning chamber in the absence of the HPC, rather than the time 

it takes to learn the chamber predicts foot-shocks (the context-US association). This subtle 

difference in interpretation may be supported by certain observations. First, there is 

evidence that non-hippocampal networks acquire contextual representations of 

environments incidentally in the absence of the HPC, albeit less-efficiently17. As elegantly 

demonstrated by the Fanselow laboratory, rats require a minimum amount of exploration 

time prior to a shock and immediate removal to overcome the immediate-shock deficit 

(Fanselow, 1990; Wiltgen et al., 2006). The deficit refers to the failure of a foot shock US 

to become associated with a contextual representation when presented simultaneously upon 

introduction to the conditioning context. Stated another way, rats need time to form a 

contextual representation and this must occur prior to the US for conditioning to occur 

(Matus-Amat, Higgins, Barrientos, & Rudy, 2004; Wiltgen et al., 2006). Interestingly, rats 

with hippocampal damage exhibit less absolute freezing than controls 24 h after a 

conditioning episode involving a 48 s placement-to-shock and immediate removal 

procedure, but like controls benefit from increased preexposure time prior to a single shock 

(Wiltgen et al., 2006). This demonstrates that some version of a contextual representation 

                                                 
17 Incidental in the current discussion means prior to presentation of salient punctate stimuli 

(foot-shock US). There are several reports that suggest the HPC engages in incidental 

encoding of task-irrelevant contextual information (McDonald et al., 2001; McDonald, Ko, 

& Hong, 2002) and context-based disambiguation functions (Honey & Good, 1993; 

McDonald et al., 1997). The required conditions for non-hippocampal networks to engage 

in incidental memory encoding are relatively unexplored.    
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is formed incidentally by non-hippocampal networks which is then associated with the 

shock (Wiltgen et al., 2006). 

A second example was discussed briefly in Chapter 3. Rats with extensive 

hippocampal damage can form contextual memories that are detailed enough to support 

equivalent discriminative place preference behaviour as compared to controls, even under 

extremely weak conditioning parameters (1 unsignaled shock) (Lee et al., 2017). In my 

view, these results altogether suggest that the minor, transient deficit in conditioning 

throughout the present experiments is not indicative of a slower learning rate per se, but 

rather a slightly slower developing representation of context by lower, non-hippocampal 

levels of the heterarchy. In fact, one line of evidence indicates that under standard 

contextual conditioning parameters, learning-tagged retrosplenial neuronal populations can 

reinstate a learned fear response when optogenetically stimulated, even when the HPC is 

non-functional (Cowansage et al., 2014). There are other examples of very similar learning 

rates in rats with and without a functional HPC, including Chapter 3 (Figure 3.1.A) and 

several others (Broadbent et al., 2007; Epp et al., 2008; Lehmann et al., 2007; but see, 

Packard, Hirsh, & White, 1989). At minimum, these examples suggest that non-

hippocampal networks share similar fundamental associative functions with the HPC and 

that only challenging variants of learning and memory tasks are likely to reveal differences 

in anterograde memory processes in the absence of the HPC. However, I caution against 

following a more-of-the-same approach. Stated another way, it is unlikely that the number 

of elemental memoranda within an environmental context (i.e., memory “detail”), or mere 

task repetition (i.e., memory strength) are parametric variables, nor are they sufficient to 

explain how and when the HPC is required for learning and the behavioural expression of 

memory. There is considerable evidence regarding which tasks can and cannot be learned 
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and remembered by rats with hippocampal damage (see, Lee et al., 2016; McDonald et al. 

2017), but no comprehensive account exists to explain all of the data. 

  

Non-Hippocampal Networks Support Memory-Guided Discriminations 

Contemporary views of the HPC posit that non-hippocampal networks cannot support 

accurate context discriminations (Wiltgen & Tanaka, 2013; Winocur & Moscovitch, 2011). 

This raises the question of whether the context discrimination in Chapter Three was 

difficult enough to require the HPC. There are several problems with what might be called 

a more-of-the-same approach. First, assuming that the compliment of environmental cues 

in a given context determines the detail of the contextual memory representation is not 

entirely logical. There is no objective way of knowing which and how many cues were 

included in the contextual memory, nor is there a way to know in advance which cues will 

be treated as identical (by a rat). Indeed, titrating the ambiguity of a conditioning and novel 

context may produce differences in discrimination accuracy in the presence and absence of 

the HPC (Antoniadis & McDonald, 1999; Antoniadis & McDonald, 2000), but perhaps not 

in a reliable or coherent pattern (Balog, 2016).  

There are multiple dimensions which may contribute to memory discriminability 

(Lewandowsky et al., 2012) – the degree of overlap between stimuli in the chambers is only 

one. Furthermore, the low-to-medium ambiguity discrimination I employed should have 

been very easy for intact rats to resolve, yet on the 15 d test rats with hippocampal damage 

froze less than SHAM rats in the novel context. There is simply no evidence which can be 

gleaned from my data to support the idea that the memory for the conditioning episode was 

less detailed in animals with hippocampal damage. On a related caveat, the apparent 

decrease in discrimination accuracy in the SHAM group compared to the HPC group over 
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time might be a red herring – insofar that I cannot dissociate between the many mnemonic 

versus emotional factors that contribute to freezing behaviour values in my data sets. It is 

certain that hippocampal damage disrupts more than normal learning and memory 

processes. For example, the vHPC is a key part of the neurocircuitry that contributes to a 

myriad of affective processes, including normal and abnormal fear responses (Gouveia et 

al., 2019; Maren et al., 2013). This raises the possibility that the apparent generalization 

gradient in SHAM rats could be more affective/emotional than mnemonic in nature. 

 

Why Are Object and Picture Discriminations Different?  

The networks that support instrumental visual discrimination learning and resultant S-R 

habits are purported to be anatomically and functionally independent of the HPC (Hirsh, 

1974; Mishkin & Petri, 1984). As discussed in Chapter 4, this is not always the case, as 

illustrated by the paradoxical effects of hippocampal damage on object and picture 

discriminations. Whereas both discriminations can be learned normally by rats with 

hippocampal damage, damaging the HPC after learning causes retrograde amnesia for 

picture, but not object discriminations (Epp et al., 2008; Lehmann et al., 2007; Mumby et 

al., 1999). According to the heterarchic model, there are a few clues as to why this might 

be the case. First, it takes a far greater number of trials to learn picture discriminations 

compared to object discriminations. This is the case for rats (Broadbent et al., 2007; Epp et 

al., 2008; Lehmann et al., 2007; Chapter 4), monkeys (Zimmermann & Hochberg, 1971), 

and amazingly New Zealand parrots (O’Hara, Huber, & Gajdon, 2015). Second, rats require 

extensive overtraining on picture discriminations for the memory to survive hippocampal 

damage (Driscoll et al., 2005), but object discriminations acquired in a single day over far 

fewer trials are unaffected (Lehmann et al., 2007). Third, 3-D objects are qualitatively 
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different memoranda compared to 2-D pictures in multiple domains; including, 

visual/perceptual, olfactory, and haptic. Object discriminations likely require greater 

recruitment of visual areas during learning, but also distributed polymodal sensory and 

associative regions.  

It seems to me the complex experiential features coupled with the low-to-medium 

ambiguity of object discrimination tasks facilitate a faster learning rate and greater 

resistance to HPC damage compared to picture discriminations. This pattern of spared and 

impaired performance after hippocampal damage does not fit into any consolidation-based 

theory of memory, which might predict that more complex discriminations should take 

longer to become independent of the HPC and that picture discriminations never require 

the HPC. According to HR and in opposition of traditional views, picture discrimination 

tasks likely recruit a limited number of sensory and associative regions; therefore, more 

iterations are required for learning and for the memory to be retrievable by lower levels of 

the heterarchy. 

 

Future Directions 

To summarize, I interpret the heterarchic memory framework as making the following 

predictions: 1) tasks involving complex, polymodal stimuli require a greater depth of 

processing (dense coding), which necessarily engages a greater proportion of the 

heterarchy; 2) simple, unimodal stimuli engage less of the available heterarchy and require 

less depth of processing; 3) increased engagement of the heterarchy via dense coding 

decreases the number of iterations required for learning under certain conditions; 4) 

differences in learning rate should be apparent in tasks that engage more versus less of the 

heterarchy; 5) following damage to the rat HPC, anterograde memory impairments should 
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be present only in tasks that require unique hippocampal information processing functions, 

or in cases of very brief/limited experience. 
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